
Linux Userspace-api
Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

Linux Userspace-api Documentation

While much of the kernel’s user-space API is documented elsewhere (particularly
in the man-pages project), some user-space information can also be found in the
kernel tree itself. This manual is intended to be the place where this information
is gathered.

Table of contents

CONTENTS 1

https://www.kernel.org/doc/man-pages/

Linux Userspace-api Documentation

2 CONTENTS

CHAPTER

ONE

NO NEW PRIVILEGES FLAG

The execve system call can grant a newly-started program privileges that its par-
ent did not have. The most obvious examples are setuid/setgid programs and file
capabilities. To prevent the parent program from gaining these privileges as well,
the kernel and user codemust be careful to prevent the parent from doing anything
that could subvert the child. For example:

• The dynamic loader handles LD_* environment variables differently if a pro-
gram is setuid.

• chroot is disallowed to unprivileged processes, since it would allow /etc/
passwd to be replaced from the point of view of a process that inherited ch-
root.

• The exec code has special handling for ptrace.

These are all ad-hoc fixes. The no_new_privs bit (since Linux 3.5) is a new, generic
mechanism to make it safe for a process to modify its execution environment in
a manner that persists across execve. Any task can set no_new_privs. Once the
bit is set, it is inherited across fork, clone, and execve and cannot be unset. With
no_new_privs set, execve() promises not to grant the privilege to do anything
that could not have been done without the execve call. For example, the setuid
and setgid bits will no longer change the uid or gid; file capabilities will not add
to the permitted set, and LSMs will not relax constraints after execve.

To set no_new_privs, use:

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

Be careful, though: LSMs might also not tighten constraints on exec in
no_new_privs mode. (This means that setting up a general-purpose service
launcher to set no_new_privs before execing daemons may interfere with LSM-
based sandboxing.)

Note that no_new_privs does not prevent privilege changes that do not involve
execve(). An appropriately privileged task can still call setuid(2) and receive
SCM_RIGHTS datagrams.

There are two main use cases for no_new_privs so far:

• Filters installed for the seccomp mode 2 sandbox persist across execve and
can change the behavior of newly-executed programs. Unprivileged users
are therefore only allowed to install such filters if no_new_privs is set.

3

Linux Userspace-api Documentation

• By itself, no_new_privs can be used to reduce the attack surface avail-
able to an unprivileged user. If everything running with a given uid has
no_new_privs set, then that uid will be unable to escalate its privileges by
directly attacking setuid, setgid, and fcap-using binaries; it will need to com-
promise something without the no_new_privs bit set first.

In the future, other potentially dangerous kernel features could become avail-
able to unprivileged tasks if no_new_privs is set. In principle, several options
to unshare(2) and clone(2) would be safe when no_new_privs is set, and
no_new_privs + chroot is considerable less dangerous than chroot by itself.

4 Chapter 1. No New Privileges Flag

CHAPTER

TWO

SECCOMP BPF (SECURE COMPUTING WITH FILTERS)

2.1 Introduction

A large number of system calls are exposed to every userland process with many
of them going unused for the entire lifetime of the process. As system calls change
and mature, bugs are found and eradicated. A certain subset of userland applica-
tions benefit by having a reduced set of available system calls. The resulting set
reduces the total kernel surface exposed to the application. System call filtering
is meant for use with those applications.

Seccomp filtering provides a means for a process to specify a filter for incoming
system calls. The filter is expressed as a Berkeley Packet Filter (BPF) program,
as with socket filters, except that the data operated on is related to the system
call being made: system call number and the system call arguments. This allows
for expressive filtering of system calls using a filter program language with a long
history of being exposed to userland and a straightforward data set.

Additionally, BPF makes it impossible for users of seccomp to fall prey to time-of-
check-time-of-use (TOCTOU) attacks that are common in system call interposition
frameworks. BPF programs may not dereference pointers which constrains all
filters to solely evaluating the system call arguments directly.

2.2 What it isn’t

System call filtering isn’t a sandbox. It provides a clearly defined mechanism for
minimizing the exposed kernel surface. It is meant to be a tool for sandbox devel-
opers to use. Beyond that, policy for logical behavior and information flow should
be managed with a combination of other system hardening techniques and, poten-
tially, an LSM of your choosing. Expressive, dynamic filters provide further options
down this path (avoiding pathological sizes or selecting which of the multiplexed
system calls in socketcall() is allowed, for instance) which could be construed,
incorrectly, as a more complete sandboxing solution.

5

Linux Userspace-api Documentation

2.3 Usage

An additional seccompmode is added and is enabled using the same prctl(2) call as
the strict seccomp. If the architecture has CONFIG_HAVE_ARCH_SECCOMP_FILTER,
then filters may be added as below:

PR_SET_SECCOMP: Now takes an additional argument which specifies a new filter
using a BPF program. The BPF program will be executed over struct sec-
comp_data reflecting the system call number, arguments, and other meta-
data. The BPF program must then return one of the acceptable values to
inform the kernel which action should be taken.

Usage:

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, prog);

The ‘prog’argument is a pointer to a struct sock_fprog which will contain
the filter program. If the program is invalid, the call will return -1 and set
errno to EINVAL.

If fork/clone and execve are allowed by @prog, any child processes will be
constrained to the same filters and system call ABI as the parent.

Prior to use, the task must call prctl(PR_SET_NO_NEW_PRIVS, 1) or run with
CAP_SYS_ADMIN privileges in its namespace. If these are not true, -EACCES
will be returned. This requirement ensures that filter programs cannot be
applied to child processes with greater privileges than the task that installed
them.

Additionally, if prctl(2) is allowed by the attached filter, additional filters
may be layered on which will increase evaluation time, but allow for further
decreasing the attack surface during execution of a process.

The above call returns 0 on success and non-zero on error.

2.4 Return values

A seccomp filter may return any of the following values. If multiple filters exist,
the return value for the evaluation of a given system call will always use the high-
est precedent value. (For example, SECCOMP_RET_KILL_PROCESS will always take
precedence.)

In precedence order, they are:

SECCOMP_RET_KILL_PROCESS: Results in the entire process exiting immediately
without executing the system call. The exit status of the task (status & 0x7f)
will be SIGSYS, not SIGKILL.

SECCOMP_RET_KILL_THREAD: Results in the task exiting immediately without exe-
cuting the system call. The exit status of the task (status & 0x7f) will be
SIGSYS, not SIGKILL.

SECCOMP_RET_TRAP: Results in the kernel sending a SIGSYS signal to the triggering
task without executing the system call. siginfo->si_call_addr will show
the address of the system call instruction, and siginfo->si_syscall and

6 Chapter 2. Seccomp BPF (SECure COMPuting with filters)

Linux Userspace-api Documentation

siginfo->si_arch will indicate which syscall was attempted. The program
counter will be as though the syscall happened (i.e. it will not point to the
syscall instruction). The return value register will contain an arch- dependent
value – if resuming execution, set it to something sensible. (The architecture
dependency is because replacing it with -ENOSYS could overwrite some useful
information.)

The SECCOMP_RET_DATA portion of the return value will be passed as
si_errno.

SIGSYS triggered by seccomp will have a si_code of SYS_SECCOMP.

SECCOMP_RET_ERRNO: Results in the lower 16-bits of the return value being passed
to userland as the errno without executing the system call.

SECCOMP_RET_USER_NOTIF: Results in a struct seccomp_notif message sent on
the userspace notification fd, if it is attached, or -ENOSYS if it is not. See
below on discussion of how to handle user notifications.

SECCOMP_RET_TRACE: When returned, this value will cause the kernel to attempt
to notify a ptrace()-based tracer prior to executing the system call. If there
is no tracer present, -ENOSYS is returned to userland and the system call is
not executed.

A tracer will be notified if it requests PTRACE_O_TRACESECCOMP us-
ing ptrace(PTRACE_SETOPTIONS). The tracer will be notified of a
PTRACE_EVENT_SECCOMP and the SECCOMP_RET_DATA portion of the BPF
program return value will be available to the tracer via PTRACE_GETEVENTMSG.

The tracer can skip the system call by changing the syscall number to -1.
Alternatively, the tracer can change the system call requested by changing
the system call to a valid syscall number. If the tracer asks to skip the system
call, then the system call will appear to return the value that the tracer puts
in the return value register.

The seccomp check will not be run again after the tracer is notified. (This
means that seccomp-based sandboxes MUST NOT allow use of ptrace, even
of other sandboxed processes, without extreme care; ptracers can use this
mechanism to escape.)

SECCOMP_RET_LOG: Results in the system call being executed after it is logged.
This should be used by application developers to learn which syscalls their
application needs without having to iterate through multiple test and devel-
opment cycles to build the list.

This action will only be logged if“log”is present in the actions_logged sysctl
string.

SECCOMP_RET_ALLOW: Results in the system call being executed.

If multiple filters exist, the return value for the evaluation of a given system call
will always use the highest precedent value.

Precedence is only determined using the SECCOMP_RET_ACTIONmask. When multi-
ple filters return values of the same precedence, only the SECCOMP_RET_DATA from
the most recently installed filter will be returned.

2.4. Return values 7

Linux Userspace-api Documentation

2.5 Pitfalls

The biggest pitfall to avoid during use is filtering on system call number without
checking the architecture value. Why? On any architecture that supports multiple
system call invocation conventions, the system call numbers may vary based on the
specific invocation. If the numbers in the different calling conventions overlap,
then checks in the filters may be abused. Always check the arch value!

2.6 Example

The samples/seccomp/ directory contains both an x86-specific example and a
more generic example of a higher level macro interface for BPF program gen-
eration.

2.7 Userspace Notification

The SECCOMP_RET_USER_NOTIF return code lets seccomp filters pass a particu-
lar syscall to userspace to be handled. This may be useful for applications
like container managers, which wish to intercept particular syscalls (mount(),
finit_module(), etc.) and change their behavior.

To acquire a notification FD, use the SECCOMP_FILTER_FLAG_NEW_LISTENER argu-
ment to the seccomp() syscall:

fd = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_NEW_LISTENER, &
↪→prog);

which (on success) will return a listener fd for the filter, which can then be passed
around via SCM_RIGHTS or similar. Note that filter fds correspond to a particular
filter, and not a particular task. So if this task then forks, notifications from both
tasks will appear on the same filter fd. Reads and writes to/from a filter fd are also
synchronized, so a filter fd can safely have many readers.

The interface for a seccomp notification fd consists of two structures:

struct seccomp_notif_sizes {
__u16 seccomp_notif;
__u16 seccomp_notif_resp;
__u16 seccomp_data;

};

struct seccomp_notif {
__u64 id;
__u32 pid;
__u32 flags;
struct seccomp_data data;

};

struct seccomp_notif_resp {
__u64 id;
__s64 val;

(continues on next page)

8 Chapter 2. Seccomp BPF (SECure COMPuting with filters)

Linux Userspace-api Documentation

(continued from previous page)
__s32 error;
__u32 flags;

};

The struct seccomp_notif_sizes structure can be used to determine the size
of the various structures used in seccomp notifications. The size of struct
seccomp_data may change in the future, so code should use:

struct seccomp_notif_sizes sizes;
seccomp(SECCOMP_GET_NOTIF_SIZES, 0, &sizes);

to determine the size of the various structures to allocate. See
samples/seccomp/user-trap.c for an example.

Users can read via ioctl(SECCOMP_IOCTL_NOTIF_RECV) (or poll()) on a sec-
comp notification fd to receive a struct seccomp_notif, which contains five
members: the input length of the structure, a unique-per-filter id, the pid of
the task which triggered this request (which may be 0 if the task is in a pid
ns not visible from the listener’s pid namespace), a flags member which for
now only has SECCOMP_NOTIF_FLAG_SIGNALED, representing whether or not the
notification is a result of a non-fatal signal, and the data passed to seccomp.
Userspace can then make a decision based on this information about what to do,
and ioctl(SECCOMP_IOCTL_NOTIF_SEND) a response, indicating what should be
returned to userspace. The id member of struct seccomp_notif_resp should
be the same id as in struct seccomp_notif.

It is worth noting that struct seccomp_data contains the values of register argu-
ments to the syscall, but does not contain pointers to memory. The task’s memory
is accessible to suitably privileged traces via ptrace() or /proc/pid/mem. How-
ever, care should be taken to avoid the TOCTOU mentioned above in this docu-
ment: all arguments being read from the tracee’s memory should be read into the
tracer’s memory before any policy decisions are made. This allows for an atomic
decision on syscall arguments.

2.8 Sysctls

Seccomp’s sysctl files can be found in the /proc/sys/kernel/seccomp/ directory.
Here’s a description of each file in that directory:
actions_avail: A read-only ordered list of seccomp return values (refer to the

SECCOMP_RET_* macros above) in string form. The ordering, from left-to-
right, is the least permissive return value to the most permissive return value.

The list represents the set of seccomp return values supported by the kernel.
A userspace program may use this list to determine if the actions found in
the seccomp.h, when the program was built, differs from the set of actions
actually supported in the current running kernel.

actions_logged: A read-write ordered list of seccomp return values (refer to the
SECCOMP_RET_* macros above) that are allowed to be logged. Writes to the
file do not need to be in ordered form but reads from the file will be ordered
in the same way as the actions_avail sysctl.

2.8. Sysctls 9

Linux Userspace-api Documentation

The allow string is not accepted in the actions_logged sysctl as it is not
possible to log SECCOMP_RET_ALLOW actions. Attempting to write allow to the
sysctl will result in an EINVAL being returned.

2.9 Adding architecture support

See arch/Kconfig for the authoritative requirements. In general, if an architec-
ture supports both ptrace_event and seccomp, it will be able to support seccomp
filter with minor fixup: SIGSYS support and seccomp return value checking. Then
it must just add CONFIG_HAVE_ARCH_SECCOMP_FILTER to its arch-specific Kconfig.

2.10 Caveats

The vDSO can cause some system calls to run entirely in userspace, leading to sur-
prises when you run programs on different machines that fall back to real syscalls.
To minimize these surprises on x86, make sure you test with /sys/devices/
system/clocksource/clocksource0/current_clocksource set to something like
acpi_pm.

On x86-64, vsyscall emulation is enabled by default. (vsyscalls are legacy vari-
ants on vDSO calls.) Currently, emulated vsyscalls will honor seccomp, with a few
oddities:

• A return value of SECCOMP_RET_TRAP will set a si_call_addr pointing to the
vsyscall entry for the given call and not the address after the‘syscall’instruc-
tion. Any code which wants to restart the call should be aware that (a) a ret
instruction has been emulated and (b) trying to resume the syscall will again
trigger the standard vsyscall emulation security checks, making resuming the
syscall mostly pointless.

• A return value of SECCOMP_RET_TRACE will signal the tracer as usual, but the
syscall may not be changed to another system call using the orig_rax register.
It may only be changed to -1 order to skip the currently emulated call. Any
other changeMAY terminate the process. The rip value seen by the tracer will
be the syscall entry address; this is different from normal behavior. The tracer
MUST NOT modify rip or rsp. (Do not rely on other changes terminating the
process. They might work. For example, on some kernels, choosing a syscall
that only exists in future kernels will be correctly emulated (by returning
-ENOSYS).

To detect this quirky behavior, check for addr & ~0x0C00 ==
0xFFFFFFFFFF600000. (For SECCOMP_RET_TRACE, use rip. For SECCOMP_RET_TRAP,
use siginfo->si_call_addr.) Do not check any other condition: future kernels
may improve vsyscall emulation and current kernels in vsyscall=native mode will
behave differently, but the instructions at 0xF...F600{0,4,8,C}00 will not be
system calls in these cases.

Note that modern systems are unlikely to use vsyscalls at all – they are a legacy
feature and they are considerably slower than standard syscalls. New code will
use the vDSO, and vDSO-issued system calls are indistinguishable from normal
system calls.

10 Chapter 2. Seccomp BPF (SECure COMPuting with filters)

CHAPTER

THREE

UNSHARE SYSTEM CALL

This document describes the new system call, unshare(). The document provides
an overview of the feature, why it is needed, how it can be used, its interface
specification, design, implementation and how it can be tested.

3.1 Change Log

version 0.1 Initial document, Janak Desai (janak@us.ibm.com), Jan 11, 2006

3.2 Contents

1) Overview

2) Benefits

3) Cost

4) Requirements

5) Functional Specification

6) High Level Design

7) Low Level Design

8) Test Specification

9) Future Work

3.3 1) Overview

Most legacy operating system kernels support an abstraction of threads as multi-
ple execution contexts within a process. These kernels provide special resources
and mechanisms to maintain these “threads”. The Linux kernel, in a clever and
simple manner, does not make distinction between processes and “threads”.
The kernel allows processes to share resources and thus they can achieve legacy
“threads”behavior without requiring additional data structures and mechanisms
in the kernel. The power of implementing threads in this manner comes not only
from its simplicity but also from allowing application programmers to work outside
the confinement of all-or-nothing shared resources of legacy threads. On Linux, at

11

mailto:janak@us.ibm.com

Linux Userspace-api Documentation

the time of thread creation using the clone system call, applications can selectively
choose which resources to share between threads.

unshare() system call adds a primitive to the Linux thread model that allows
threads to selectively‘unshare’any resources that were being shared at the time
of their creation. unshare() was conceptualized by Al Viro in the August of 2000,
on the Linux-Kernel mailing list, as part of the discussion on POSIX threads on
Linux. unshare() augments the usefulness of Linux threads for applications that
would like to control shared resources without creating a new process. unshare()
is a natural addition to the set of available primitives on Linux that implement the
concept of process/thread as a virtual machine.

3.4 2) Benefits

unshare() would be useful to large application frameworks such as PAM where
creating a new process to control sharing/unsharing of process resources is not
possible. Since namespaces are shared by default when creating a new process
using fork or clone, unshare() can benefit even non-threaded applications if they
have a need to disassociate from default shared namespace. The following lists
two use-cases where unshare() can be used.

3.4.1 2.1 Per-security context namespaces

unshare() can be used to implement polyinstantiated directories using the kernel’s
per-process namespace mechanism. Polyinstantiated directories, such as per-user
and/or per-security context instance of /tmp, /var/tmp or per-security context in-
stance of a user’s home directory, isolate user processes when working with these
directories. Using unshare(), a PAM module can easily setup a private namespace
for a user at login. Polyinstantiated directories are required for Common Criteria
certification with Labeled System Protection Profile, however, with the availability
of shared-tree feature in the Linux kernel, even regular Linux systems can benefit
from setting up private namespaces at login and polyinstantiating /tmp, /var/tmp
and other directories deemed appropriate by system administrators.

3.4.2 2.2 unsharing of virtual memory and/or open files

Consider a client/server application where the server is processing client requests
by creating processes that share resources such as virtual memory and open files.
Without unshare(), the server has to decide what needs to be shared at the time
of creating the process which services the request. unshare() allows the server an
ability to disassociate parts of the context during the servicing of the request. For
large and complex middleware application frameworks, this ability to unshare()
after the process was created can be very useful.

12 Chapter 3. unshare system call

Linux Userspace-api Documentation

3.5 3) Cost

In order to not duplicate code and to handle the fact that unshare() works on an
active task (as opposed to clone/fork working on a newly allocated inactive task)
unshare() had to make minor reorganizational changes to copy_* functions utilized
by clone/fork system call. There is a cost associated with altering existing, well
tested and stable code to implement a new feature that may not get exercised
extensively in the beginning. However, with proper design and code review of
the changes and creation of an unshare() test for the LTP the benefits of this new
feature can exceed its cost.

3.6 4) Requirements

unshare() reverses sharing that was done using clone(2) system call, so unshare()
should have a similar interface as clone(2). That is, since flags in clone(int flags,
void *stack) specifies what should be shared, similar flags in unshare(int flags)
should specify what should be unshared. Unfortunately, this may appear to invert
the meaning of the flags from the way they are used in clone(2). However, there
was no easy solution that was less confusing and that allowed incremental context
unsharing in future without an ABI change.

unshare() interface should accommodate possible future addition of new context
flags without requiring a rebuild of old applications. If and when new context
flags are added, unshare() design should allow incremental unsharing of those
resources on an as needed basis.

3.7 5) Functional Specification

NAME unshare - disassociate parts of the process execution context

SYNOPSIS #include <sched.h>

int unshare(int flags);

DESCRIPTION unshare() allows a process to disassociate parts of its execution
context that are currently being shared with other processes. Part of execu-
tion context, such as the namespace, is shared by default when a new process
is created using fork(2), while other parts, such as the virtual memory, open
file descriptors, etc, may be shared by explicit request to share them when
creating a process using clone(2).

The main use of unshare() is to allow a process to control its shared execution
context without creating a new process.

The flags argument specifies one or bitwise-or’ed of several of the following
constants.

CLONE_FS If CLONE_FS is set, file system information of the caller is dis-
associated from the shared file system information.

CLONE_FILES If CLONE_FILES is set, the file descriptor table of the caller
is disassociated from the shared file descriptor table.

3.5. 3) Cost 13

Linux Userspace-api Documentation

CLONE_NEWNS If CLONE_NEWNS is set, the namespace of the caller is
disassociated from the shared namespace.

CLONE_VM If CLONE_VM is set, the virtual memory of the caller is disas-
sociated from the shared virtual memory.

RETURN VALUE On success, zero returned. On failure, -1 is returned and errno
is

ERRORS
EPERM CLONE_NEWNS was specified by a non-root process (process

without CAP_SYS_ADMIN).

ENOMEM Cannot allocate sufficient memory to copy parts of caller’s
context that need to be unshared.

EINVAL Invalid flag was specified as an argument.

CONFORMING TO The unshare() call is Linux-specific and should not be used in
programs intended to be portable.

SEE ALSO clone(2), fork(2)

3.8 6) High Level Design

Depending on the flags argument, the unshare() system call allocates appropriate
process context structures, populates it with values from the current shared ver-
sion, associates newly duplicated structures with the current task structure and
releases corresponding shared versions. Helper functions of clone (copy_*) could
not be used directly by unshare() because of the following two reasons.

1) clone operates on a newly allocated not-yet-active task structure, where as
unshare() operates on the current active task. Therefore unshare() has to take
appropriate task_lock() before associating newly duplicated context struc-
tures

2) unshare() has to allocate and duplicate all context structures that are being
unshared, before associating them with the current task and releasing older
shared structures. Failure do so will create race conditions and/or oops when
trying to backout due to an error. Consider the case of unsharing both vir-
tual memory and namespace. After successfully unsharing vm, if the system
call encounters an error while allocating new namespace structure, the error
return code will have to reverse the unsharing of vm. As part of the reversal
the system call will have to go back to older, shared, vm structure, which may
not exist anymore.

Therefore code from copy_* functions that allocated and duplicated current con-
text structure was moved into new dup_* functions. Now, copy_* functions call
dup_* functions to allocate and duplicate appropriate context structures and then
associate them with the task structure that is being constructed. unshare() system
call on the other hand performs the following:

1) Check flags to force missing, but implied, flags

14 Chapter 3. unshare system call

Linux Userspace-api Documentation

2) For each context structure, call the corresponding unshare() helper function
to allocate and duplicate a new context structure, if the appropriate bit is set
in the flags argument.

3) If there is no error in allocation and duplication and there are new context
structures then lock the current task structure, associate new context struc-
tures with the current task structure, and release the lock on the current task
structure.

4) Appropriately release older, shared, context structures.

3.9 7) Low Level Design

Implementation of unshare() can be grouped in the following 4 different items:

a) Reorganization of existing copy_* functions

b) unshare() system call service function

c) unshare() helper functions for each different process context

d) Registration of system call number for different architectures

3.9.1 7.1) Reorganization of copy_* functions

Each copy function such as copy_mm, copy_namespace, copy_files, etc, had
roughly two components. The first component allocated and duplicated the appro-
priate structure and the second component linked it to the task structure passed
in as an argument to the copy function. The first component was split into its own
function. These dup_* functions allocated and duplicated the appropriate context
structure. The reorganized copy_* functions invoked their corresponding dup_*
functions and then linked the newly duplicated structures to the task structure
with which the copy function was called.

3.9.2 7.2) unshare() system call service function

• Check flags Force implied flags. If CLONE_THREAD is set force CLONE_VM.
If CLONE_VM is set, force CLONE_SIGHAND. If CLONE_SIGHAND is set and
signals are also being shared, force CLONE_THREAD. If CLONE_NEWNS is
set, force CLONE_FS.

• For each context flag, invoke the corresponding unshare_* helper routine with
flags passed into the system call and a reference to pointer pointing the new
unshared structure

• If any new structures are created by unshare_* helper functions, take the
task_lock() on the current task, modify appropriate context pointers, and re-
lease the task lock.

• For all newly unshared structures, release the corresponding older, shared,
structures.

3.9. 7) Low Level Design 15

Linux Userspace-api Documentation

3.9.3 7.3) unshare_* helper functions

For unshare_* helpers corresponding to CLONE_SYSVSEM, CLONE_SIGHAND,
and CLONE_THREAD, return -EINVAL since they are not implemented yet. For
others, check the flag value to see if the unsharing is required for that structure.
If it is, invoke the corresponding dup_* function to allocate and duplicate the struc-
ture and return a pointer to it.

3.9.4 7.4) Finally

Appropriately modify architecture specific code to register the new system call.

3.10 8) Test Specification

The test for unshare() should test the following:

1) Valid flags: Test to check that clone flags for signal and signal handlers, for
which unsharing is not implemented yet, return -EINVAL.

2) Missing/implied flags: Test to make sure that if unsharing namespace without
specifying unsharing of filesystem, correctly unshares both namespace and
filesystem information.

3) For each of the four (namespace, filesystem, files and vm) supported unshar-
ing, verify that the system call correctly unshares the appropriate structure.
Verify that unsharing them individually as well as in combination with each
other works as expected.

4) Concurrent execution: Use shared memory segments and futex on an address
in the shm segment to synchronize execution of about 10 threads. Have a
couple of threads execute execve, a couple _exit and the rest unshare with
different combination of flags. Verify that unsharing is performed as expected
and that there are no oops or hangs.

3.11 9) Future Work

The current implementation of unshare() does not allow unsharing of signals and
signal handlers. Signals are complex to begin with and to unshare signals and/or
signal handlers of a currently running process is even more complex. If in the
future there is a specific need to allow unsharing of signals and/or signal handlers,
it can be incrementally added to unshare() without affecting legacy applications
using unshare().

16 Chapter 3. unshare system call

CHAPTER

FOUR

SPECULATION CONTROL

Quite some CPUs have speculation-related misfeatures which are in fact vulnera-
bilities causing data leaks in various forms even across privilege domains.

The kernel provides mitigation for such vulnerabilities in various forms. Some of
these mitigations are compile-time configurable and some can be supplied on the
kernel command line.

There is also a class of mitigations which are very expensive, but they can be
restricted to a certain set of processes or tasks in controlled environments. The
mechanism to control these mitigations is via prctl(2).

There are two prctl options which are related to this:

• PR_GET_SPECULATION_CTRL

• PR_SET_SPECULATION_CTRL

4.1 PR_GET_SPECULATION_CTRL

PR_GET_SPECULATION_CTRL returns the state of the speculation misfeature
which is selected with arg2 of prctl(2). The return value uses bits 0-3 with the
following meaning:

Bit Define Description
0 PR_SPEC_PRCTL Mitigation can be controlled per task by

PR_SET_SPECULATION_CTRL.
1 PR_SPEC_ENABLEThe speculation feature is enabled, mitigation is dis-

abled.
2 PR_SPEC_DISABLEThe speculation feature is disabled, mitigation is en-

abled.
3 PR_SPEC_FORCE_DISABLESame as PR_SPEC_DISABLE, but cannot be undone. A

subsequent prctl(⋯, PR_SPEC_ENABLE) will fail.
4 PR_SPEC_DISABLE_NOEXECSame as PR_SPEC_DISABLE, but the state will be

cleared on execve(2).

If all bits are 0 the CPU is not affected by the speculation misfeature.

If PR_SPEC_PRCTL is set, then the per-task control of the mitigation is available.
If not set, prctl(PR_SET_SPECULATION_CTRL) for the speculation misfeature will
fail.

17

Linux Userspace-api Documentation

4.2 PR_SET_SPECULATION_CTRL

PR_SET_SPECULATION_CTRL allows to control the speculation misfeature,
which is selected by arg2 of prctl(2) per task. arg3 is used to hand in
the control value, i.e. either PR_SPEC_ENABLE or PR_SPEC_DISABLE or
PR_SPEC_FORCE_DISABLE.

4.3 Common error codes

Value Meaning
EIN-
VAL

The prctl is not implemented by the architecture or unused prctl(2)
arguments are not 0.

EN-
ODEV

arg2 is selecting a not supported speculation misfeature.

4.4 PR_SET_SPECULATION_CTRL error codes

Value Meaning
0 Success
ERANGEarg3 is incorrect, i.e. it’s neither PR_SPEC_ENABLE nor

PR_SPEC_DISABLE nor PR_SPEC_FORCE_DISABLE.
ENXIO Control of the selected speculation misfeature is not possible. See

PR_GET_SPECULATION_CTRL.
EPERMSpeculation was disabled with PR_SPEC_FORCE_DISABLE and caller

tried to enable it again.

4.5 Speculation misfeature controls

• PR_SPEC_STORE_BYPASS: Speculative Store Bypass

Invocations:
– prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, 0,
0, 0);

– prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS,
PR_SPEC_ENABLE, 0, 0);

– prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS,
PR_SPEC_DISABLE, 0, 0);

– prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS,
PR_SPEC_FORCE_DISABLE, 0, 0);

– prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS,
PR_SPEC_DISABLE_NOEXEC, 0, 0);

18 Chapter 4. Speculation Control

Linux Userspace-api Documentation

• PR_SPEC_INDIR_BRANCH: Indirect Branch Speculation in User Processes
(Mitigate Spectre V2 style attacks against user processes)

Invocations:
– prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH,
0, 0, 0);

– prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH,
PR_SPEC_ENABLE, 0, 0);

– prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH,
PR_SPEC_DISABLE, 0, 0);

– prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH,
PR_SPEC_FORCE_DISABLE, 0, 0);

4.5. Speculation misfeature controls 19

Linux Userspace-api Documentation

20 Chapter 4. Speculation Control

CHAPTER

FIVE

OPENCAPI (OPEN COHERENT ACCELERATOR
PROCESSOR INTERFACE)

OpenCAPI is an interface between processors and accelerators. It aims at being
low-latency and high-bandwidth. The specification is developed by the OpenCAPI
Consortium.

It allows an accelerator (which could be a FPGA, ASICs, ⋯) to access the host
memory coherently, using virtual addresses. An OpenCAPI device can also host
its own memory, that can be accessed from the host.

OpenCAPI is known in linux as‘ocxl’, as the open, processor-agnostic evolution
of ‘cxl’(the driver for the IBM CAPI interface for powerpc), which was named
that way to avoid confusion with the ISDN CAPI subsystem.

5.1 High-level view

OpenCAPI defines a Data Link Layer (DL) and Transaction Layer (TL), to be im-
plemented on top of a physical link. Any processor or device implementing the DL
and TL can start sharing memory.

+-----------+ +-------------+
		Accelerated
Processor		Function
	+--------+	Unit
	--	Memory
	+--------+	
+-----------+ +-------------+

| |
+-----------+ +-------------+
| TL | | TLX |
+-----------+ +-------------+

| |
+-----------+ +-------------+
| DL | | DLX |
+-----------+ +-------------+

| |
| PHY |
+---------------------------------------+

21

http://opencapi.org/
http://opencapi.org/

Linux Userspace-api Documentation

5.2 Device discovery

OpenCAPI relies on a PCI-like configuration space, implemented on the device. So
the host can discover AFUs by querying the config space.

OpenCAPI devices in Linux are treated like PCI devices (with a few caveats). The
firmware is expected to abstract the hardware as if it was a PCI link. A lot of the
existing PCI infrastructure is reused: devices are scanned and BARs are assigned
during the standard PCI enumeration. Commands like ‘lspci’can therefore be
used to see what devices are available.

The configuration space defines the AFU(s) that can be found on the physical
adapter, such as its name, how many memory contexts it can work with, the size
of its MMIO areas, ⋯

5.3 MMIO

OpenCAPI defines two MMIO areas for each AFU:

• the global MMIO area, with registers pertinent to the whole AFU.

• a per-process MMIO area, which has a fixed size for each context.

5.4 AFU interrupts

OpenCAPI includes the possibility for an AFU to send an interrupt to a host pro-
cess. It is done through a‘intrp_req’defined in the Transaction Layer, specifying
a 64-bit object handle which defines the interrupt.

The driver allows a process to allocate an interrupt and obtain its 64-bit object
handle, that can be passed to the AFU.

5.5 char devices

The driver creates one char device per AFU found on the physical device. A physi-
cal device may have multiple functions and each function can have multiple AFUs.
At the time of this writing though, it has only been tested with devices exporting
only one AFU.

Char devices can be found in /dev/ocxl/ and are named as: /dev/ocxl/<AFU
name>.<location>.<index>

where <AFU name> is a max 20-character long name, as found in the config space
of the AFU. <location> is added by the driver and can help distinguish devices
when a system has more than one instance of the same OpenCAPI device. <index>
is also to help distinguish AFUs in the unlikely case where a device carries multiple
copies of the same AFU.

22Chapter 5. OpenCAPI (Open Coherent Accelerator Processor Interface)

Linux Userspace-api Documentation

5.6 Sysfs class

An ocxl class is added for the devices representing the AFUs. See /sys/class/ocxl.
The layout is described in Documentation/ABI/testing/sysfs-class-ocxl

5.7 User API

5.7.1 open

Based on the AFU definition found in the config space, an AFU may support work-
ing with more than one memory context, in which case the associated char device
may be opened multiple times by different processes.

5.7.2 ioctl

OCXL_IOCTL_ATTACH:

Attach the memory context of the calling process to the AFU so that the
AFU can access its memory.

OCXL_IOCTL_IRQ_ALLOC:

Allocate an AFU interrupt and return an identifier.

OCXL_IOCTL_IRQ_FREE:

Free a previously allocated AFU interrupt.

OCXL_IOCTL_IRQ_SET_FD:

Associate an event fd to an AFU interrupt so that the user process can
be notified when the AFU sends an interrupt.

OCXL_IOCTL_GET_METADATA:

Obtains configuration information from the card, such at the size of
MMIO areas, the AFU version, and the PASID for the current context.

OCXL_IOCTL_ENABLE_P9_WAIT:

Allows the AFU to wake a userspace thread executing‘wait’. Returns
information to userspace to allow it to configure the AFU. Note that this
is only available on POWER9.

OCXL_IOCTL_GET_FEATURES:

Reports on which CPU features that affect OpenCAPI are usable from
userspace.

5.6. Sysfs class 23

Linux Userspace-api Documentation

5.7.3 mmap

A process can mmap the per-process MMIO area for interactions with the AFU.

24Chapter 5. OpenCAPI (Open Coherent Accelerator Processor Interface)

CHAPTER

SIX

IOCTLS

6.1 Ioctl Numbers

19 October 1999

Michael Elizabeth Chastain <mec@shout.net>

If you are adding new ioctl’s to the kernel, you should use the _IO macros defined
in <linux/ioctl.h>:

_IO an ioctl with no parameters
_IOW an ioctl with write parameters (copy_from_user)
_IOR an ioctl with read parameters (copy_to_user)
_IOWR an ioctl with both write and read parameters.

‘Write’and ‘read’are from the user’s point of view, just like the system calls
‘write’and ‘read’. For example, a SET_FOO ioctl would be _IOW, although the
kernel would actually read data from user space; a GET_FOO ioctl would be _IOR,
although the kernel would actually write data to user space.

The first argument to _IO, _IOW, _IOR, or _IOWR is an identifying letter or number
from the table below. Because of the large number of drivers, many drivers share
a partial letter with other drivers.

If you are writing a driver for a new device and need a letter, pick an unused block
with enough room for expansion: 32 to 256 ioctl commands. You can register the
block by patching this file and submitting the patch to Linus Torvalds. Or you can
e-mail me at <mec@shout.net> and I’ll register one for you.
The second argument to _IO, _IOW, _IOR, or _IOWR is a sequence number to dis-
tinguish ioctls from each other. The third argument to _IOW, _IOR, or _IOWR is
the type of the data going into the kernel or coming out of the kernel (e.g.‘int’or
‘struct foo’). NOTE! Do NOT use sizeof(arg) as the third argument as this results
in your ioctl thinking it passes an argument of type size_t.

Some devices use their major number as the identifier; this is OK, as long as it is
unique. Some devices are irregular and don’t follow any convention at all.
Following this convention is good because:

(1) Keeping the ioctl’s globally unique helps error checking: if a program calls
an ioctl on the wrong device, it will get an error rather than some unexpected
behaviour.

25

mailto:mec@shout.net
mailto:mec@shout.net

Linux Userspace-api Documentation

(2) The‘strace’build procedure automatically finds ioctl numbers defined with
_IO, _IOW, _IOR, or _IOWR.

(3)‘strace’can decode numbers back into useful names when the numbers are
unique.

(4) People looking for ioctls can grep for them more easily when this convention
is used to define the ioctl numbers.

(5) When following the convention, the driver code can use generic code to copy
the parameters between user and kernel space.

This table lists ioctls visible from user land for Linux/x86. It contains most drivers
up to 2.6.31, but I know I am missing some. There has been no attempt to list
non-X86 architectures or ioctls from drivers/staging/.

Code Seq# (hex) Include File Comments
0x00 00-1F linux/fs.h conflict!
0x00 00-1F scsi/scsi_ioctl.h conflict!
0x00 00-1F linux/fb.h conflict!
0x00 00-1F linux/wavefront.h conflict!
0x02 all linux/fd.h
0x03 all linux/hdreg.h
0x04 D2-DC linux/umsdos_fs.h Dead since 2.6.11, but don’t reuse these.
0x06 all linux/lp.h
0x09 all linux/raid/md_u.h
0x10 00-0F drivers/char/s390/vmcp.h
0x10 10-1F arch/s390/include/uapi/sclp_ctl.h
0x10 20-2F arch/s390/include/uapi/asm/hypfs.h
0x12 all linux/fs.h linux/blkpg.h
0x1b all InfiniBand Subsystem <http://infiniband.sourceforge.net/>
0x20 all drivers/cdrom/cm206.h
0x22 all scsi/sg.h
‘!’ 00-1F uapi/linux/seccomp.h
‘#’ 00-3F IEEE 1394 Subsystem Block for the entire subsystem
‘$’ 00-0F linux/perf_counter.h, linux/perf_event.h
‘%’ 00-0F include/uapi/linux/stm.h System Trace Module subsystem <mailto:alexander.shishkin@linux.intel.com>
‘&’ 00-07 drivers/firewire/nosy-user.h
‘1’ 00-1F linux/timepps.h PPS kit from Ulrich Windl <ftp://ftp.de.kernel.org/pub/linux/daemons/ntp/PPS/>
‘2’ 01-04 linux/i2o.h
‘3’ 00-0F drivers/s390/char/raw3270.h conflict!
‘3’ 00-1F linux/suspend_ioctls.h, kernel/power/user.c conflict!
‘8’ all SNP8023 advanced NIC card <mailto:mcr@solidum.com>
‘;’ 64-7F linux/vfio.h
‘@’ 00-0F linux/radeonfb.h conflict!
‘@’ 00-0F drivers/video/aty/aty128fb.c conflict!
‘A’ 00-1F linux/apm_bios.h conflict!
‘A’ 00-0F linux/agpgart.h, drivers/char/agp/compat_ioctl.h conflict!
‘A’ 00-7F sound/asound.h conflict!
‘B’ 00-1F linux/cciss_ioctl.h conflict!
‘B’ 00-0F include/linux/pmu.h conflict!

Continued on next page

26 Chapter 6. IOCTLs

http://infiniband.sourceforge.net/
mailto:alexander.shishkin@linux.intel.com
ftp://ftp.de.kernel.org/pub/linux/daemons/ntp/PPS/
mailto:mcr@solidum.com

Linux Userspace-api Documentation

Table 1 – continued from previous page
Code Seq# (hex) Include File Comments

‘B’ C0-FF advanced bbus <mailto:maassen@uni-freiburg.de>
‘C’ all linux/soundcard.h conflict!
‘C’ 01-2F linux/capi.h conflict!
‘C’ F0-FF drivers/net/wan/cosa.h conflict!
‘D’ all arch/s390/include/asm/dasd.h
‘D’ 40-5F drivers/scsi/dpt/dtpi_ioctl.h
‘D’ 05 drivers/scsi/pmcraid.h
‘E’ all linux/input.h conflict!
‘E’ 00-0F xen/evtchn.h conflict!
‘F’ all linux/fb.h conflict!
‘F’ 01-02 drivers/scsi/pmcraid.h conflict!
‘F’ 20 drivers/video/fsl-diu-fb.h conflict!
‘F’ 20 drivers/video/intelfb/intelfb.h conflict!
‘F’ 20 linux/ivtvfb.h conflict!
‘F’ 20 linux/matroxfb.h conflict!
‘F’ 20 drivers/video/aty/atyfb_base.c conflict!
‘F’ 00-0F video/da8xx-fb.h conflict!
‘F’ 80-8F linux/arcfb.h conflict!
‘F’ DD video/sstfb.h conflict!
‘G’ 00-3F drivers/misc/sgi-gru/grulib.h conflict!
‘H’ 00-7F linux/hiddev.h conflict!
‘H’ 00-0F linux/hidraw.h conflict!
‘H’ 01 linux/mei.h conflict!
‘H’ 02 linux/mei.h conflict!
‘H’ 03 linux/mei.h conflict!
‘H’ 00-0F sound/asound.h conflict!
‘H’ 20-40 sound/asound_fm.h conflict!
‘H’ 80-8F sound/sfnt_info.h conflict!
‘H’ 10-8F sound/emu10k1.h conflict!
‘H’ 10-1F sound/sb16_csp.h conflict!
‘H’ 10-1F sound/hda_hwdep.h conflict!
‘H’ 40-4F sound/hdspm.h conflict!
‘H’ 40-4F sound/hdsp.h conflict!
‘H’ 90 sound/usb/usx2y/usb_stream.h
‘H’ 00-0F uapi/misc/habanalabs.h conflict!
‘H’ A0 uapi/linux/usb/cdc-wdm.h
‘H’ C0-F0 net/bluetooth/hci.h conflict!
‘H’ C0-DF net/bluetooth/hidp/hidp.h conflict!
‘H’ C0-DF net/bluetooth/cmtp/cmtp.h conflict!
‘H’ C0-DF net/bluetooth/bnep/bnep.h conflict!
‘H’ F1 linux/hid-roccat.h <mailto:erazor_de@users.sourceforge.net>
‘H’ F8-FA sound/firewire.h
‘I’ all linux/isdn.h conflict!
‘I’ 00-0F drivers/isdn/divert/isdn_divert.h conflict!
‘I’ 40-4F linux/mISDNif.h conflict!
‘J’ 00-1F drivers/scsi/gdth_ioctl.h
‘K’ all linux/kd.h

Continued on next page

6.1. Ioctl Numbers 27

mailto:maassen@uni-freiburg.de
mailto:erazor_de@users.sourceforge.net

Linux Userspace-api Documentation

Table 1 – continued from previous page
Code Seq# (hex) Include File Comments

‘L’ 00-1F linux/loop.h conflict!
‘L’ 10-1F drivers/scsi/mpt3sas/mpt3sas_ctl.h conflict!
‘L’ 20-2F linux/lightnvm.h
‘L’ E0-FF linux/ppdd.h encrypted disk device driver <http://linux01.gwdg.de/~alatham/ppdd.html>
‘M’ all linux/soundcard.h conflict!
‘M’ 01-16 and mtd/mtd-abi.h drivers/mtd/mtdchar.c conflict!
‘M’ 01-03 drivers/scsi/megaraid/megaraid_sas.h
‘M’ 00-0F drivers/video/fsl-diu-fb.h conflict!
‘N’ 00-1F drivers/usb/scanner.h
‘N’ 40-7F drivers/block/nvme.c
‘O’ 00-06 mtd/ubi-user.h UBI
‘P’ all linux/soundcard.h conflict!
‘P’ 60-6F sound/sscape_ioctl.h conflict!
‘P’ 00-0F drivers/usb/class/usblp.c conflict!
‘P’ 01-09 drivers/misc/pci_endpoint_test.c conflict!
‘Q’ all linux/soundcard.h
‘R’ 00-1F linux/random.h conflict!
‘R’ 01 linux/rfkill.h conflict!
‘R’ C0-DF net/bluetooth/rfcomm.h
‘S’ all linux/cdrom.h conflict!
‘S’ 80-81 scsi/scsi_ioctl.h conflict!
‘S’ 82-FF scsi/scsi.h conflict!
‘S’ 00-7F sound/asequencer.h conflict!
‘T’ all linux/soundcard.h conflict!
‘T’ 00-AF sound/asound.h conflict!
‘T’ all arch/x86/include/asm/ioctls.h conflict!
‘T’ C0-DF linux/if_tun.h conflict!
‘U’ all sound/asound.h conflict!
‘U’ 00-CF linux/uinput.h conflict!
‘U’ 00-EF linux/usbdevice_fs.h
‘U’ C0-CF drivers/bluetooth/hci_uart.h
‘V’ all linux/vt.h conflict!
‘V’ all linux/videodev2.h conflict!
‘V’ C0 linux/ivtvfb.h conflict!
‘V’ C0 linux/ivtv.h conflict!
‘V’ C0 media/davinci/vpfe_capture.h conflict!
‘V’ C0 media/si4713.h conflict!
‘W’ 00-1F linux/watchdog.h conflict!
‘W’ 00-1F linux/wanrouter.h conflict! (pre 3.9)
‘W’ 00-3F sound/asound.h conflict!
‘W’ 40-5F drivers/pci/switch/switchtec.c
‘W’ 60-61 linux/watch_queue.h
‘X’ all fs/xfs/xfs_fs.h, fs/xfs/linux-2.6/xfs_ioctl32.h, include/linux/falloc.h, linux/fs.h, conflict!
‘X’ all fs/ocfs2/ocfs_fs.h conflict!
‘X’ 01 linux/pktcdvd.h conflict!
‘Y’ all linux/cyclades.h
‘Z’ 14-15 drivers/message/fusion/mptctl.h

Continued on next page

28 Chapter 6. IOCTLs

http://linux01.gwdg.de/~alatham/ppdd.html

Linux Userspace-api Documentation

Table 1 – continued from previous page
Code Seq# (hex) Include File Comments

‘[‘ 00-3F linux/usb/tmc.h USB Test and Measurement Devices <mailto:gregkh@linuxfoundation.org>
‘a’ all linux/atm*.h, linux/sonet.h ATM on linux <http://lrcwww.epfl.ch/>
‘a’ 00-0F drivers/crypto/qat/qat_common/adf_cfg_common.h conflict! qat driver
‘b’ 00-FF conflict! bit3 vme host bridge <mailto:natalia@nikhefk.nikhef.nl>
‘c’ all linux/cm4000_cs.h conflict!
‘c’ 00-7F linux/comstats.h conflict!
‘c’ 00-7F linux/coda.h conflict!
‘c’ 00-1F linux/chio.h conflict!
‘c’ 80-9F arch/s390/include/asm/chsc.h conflict!
‘c’ A0-AF arch/x86/include/asm/msr.h conflict!
‘d’ 00-FF linux/char/drm/drm.h conflict!
‘d’ 02-40 pcmcia/ds.h conflict!
‘d’ F0-FF linux/digi1.h
‘e’ all linux/digi1.h conflict!
‘f’ 00-1F linux/ext2_fs.h conflict!
‘f’ 00-1F linux/ext3_fs.h conflict!
‘f’ 00-0F fs/jfs/jfs_dinode.h conflict!
‘f’ 00-0F fs/ext4/ext4.h conflict!
‘f’ 00-0F linux/fs.h conflict!
‘f’ 00-0F fs/ocfs2/ocfs2_fs.h conflict!
‘f’ 13-27 linux/fscrypt.h
‘f’ 81-8F linux/fsverity.h
‘g’ 00-0F linux/usb/gadgetfs.h
‘g’ 20-2F linux/usb/g_printer.h
‘h’ 00-7F conflict! Charon filesystem <mailto:zapman@interlan.net>
‘h’ 00-1F linux/hpet.h conflict!
‘h’ 80-8F fs/hfsplus/ioctl.c
‘i’ 00-3F linux/i2o-dev.h conflict!
‘i’ 0B-1F linux/ipmi.h conflict!
‘i’ 80-8F linux/i8k.h
‘j’ 00-3F linux/joystick.h
‘k’ 00-0F linux/spi/spidev.h conflict!
‘k’ 00-05 video/kyro.h conflict!
‘k’ 10-17 linux/hsi/hsi_char.h HSI character device
‘l’ 00-3F linux/tcfs_fs.h transparent cryptographic file system <http://web.archive.org/web/%2A/http://mikonos.dia.unisa.it/tcfs>
‘l’ 40-7F linux/udf_fs_i.h in development: <http://sourceforge.net/projects/linux-udf/>
‘m’ 00-09 linux/mmtimer.h conflict!
‘m’ all linux/mtio.h conflict!
‘m’ all linux/soundcard.h conflict!
‘m’ all linux/synclink.h conflict!
‘m’ 00-19 drivers/message/fusion/mptctl.h conflict!
‘m’ 00 drivers/scsi/megaraid/megaraid_ioctl.h conflict!
‘n’ 00-7F linux/ncp_fs.h and fs/ncpfs/ioctl.c
‘n’ 80-8F uapi/linux/nilfs2_api.h NILFS2
‘n’ E0-FF linux/matroxfb.h matroxfb
‘o’ 00-1F fs/ocfs2/ocfs2_fs.h OCFS2
‘o’ 00-03 mtd/ubi-user.h conflict! (OCFS2 and UBI overlaps)

Continued on next page

6.1. Ioctl Numbers 29

mailto:gregkh@linuxfoundation.org
http://lrcwww.epfl.ch/
mailto:natalia@nikhefk.nikhef.nl
mailto:zapman@interlan.net
http://web.archive.org/web/%2A/http://mikonos.dia.unisa.it/tcfs
http://sourceforge.net/projects/linux-udf/

Linux Userspace-api Documentation

Table 1 – continued from previous page
Code Seq# (hex) Include File Comments

‘o’ 40-41 mtd/ubi-user.h UBI
‘o’ 01-A1 linux/dvb/*.h DVB
‘p’ 00-0F linux/phantom.h conflict! (OpenHaptics needs this)
‘p’ 00-1F linux/rtc.h conflict!
‘p’ 40-7F linux/nvram.h
‘p’ 80-9F linux/ppdev.h user-space parport <mailto:tim@cyberelk.net>
‘p’ A1-A5 linux/pps.h LinuxPPS <mailto:giometti@linux.it>
‘q’ 00-1F linux/serio.h
‘q’ 80-FF linux/telephony.h linux/ixjuser.h Internet PhoneJACK, Internet LineJACK <http://web.archive.org/web/%2A/http://www.quicknet.net>
‘r’ 00-1F linux/msdos_fs.h and fs/fat/dir.c
‘s’ all linux/cdk.h
‘t’ 00-7F linux/ppp-ioctl.h
‘t’ 80-8F linux/isdn_ppp.h
‘t’ 90-91 linux/toshiba.h toshiba and toshiba_acpi SMM
‘u’ 00-1F linux/smb_fs.h gone
‘u’ 20-3F linux/uvcvideo.h USB video class host driver
‘u’ 40-4f linux/udmabuf.h userspace dma-buf misc device
‘v’ 00-1F linux/ext2_fs.h conflict!
‘v’ 00-1F linux/fs.h conflict!
‘v’ 00-0F linux/sonypi.h conflict!
‘v’ 00-0F media/v4l2-subdev.h conflict!
‘v’ 20-27 arch/powerpc/include/uapi/asm/vas-api.h VAS API
‘v’ C0-FF linux/meye.h conflict!
‘w’ all CERN SCI driver
‘y’ 00-1F packet based user level communications <mailto:zapman@interlan.net>
‘z’ 00-3F CAN bus card conflict! <mailto:hdstich@connectu.ulm.circular.de>
‘z’ 40-7F CAN bus card conflict! <mailto:oe@port.de>
‘z’ 10-4F drivers/s390/crypto/zcrypt_api.h conflict!
‘|’ 00-7F linux/media.h
0x80 00-1F linux/fb.h
0x89 00-06 arch/x86/include/asm/sockios.h
0x89 0B-DF linux/sockios.h
0x89 E0-EF linux/sockios.h SIOCPROTOPRIVATE range
0x89 E0-EF linux/dn.h PROTOPRIVATE range
0x89 F0-FF linux/sockios.h SIOCDEVPRIVATE range
0x8B all linux/wireless.h
0x8C 00-3F WiNRADiO driver <http://www.winradio.com.au/>
0x90 00 drivers/cdrom/sbpcd.h
0x92 00-0F drivers/usb/mon/mon_bin.c
0x93 60-7F linux/auto_fs.h
0x94 all fs/btrfs/ioctl.h and linux/fs.h Btrfs filesystem some lifted to vfs/generic
0x97 00-7F fs/ceph/ioctl.h Ceph file system
0x99 00-0F 537-Addinboard driver <mailto:buk@buks.ipn.de>
0xA0 all linux/sdp/sdp.h Industrial Device Project <mailto:kenji@bitgate.com>
0xA1 0 linux/vtpm_proxy.h TPM Emulator Proxy Driver
0xA3 80-8F Port ACL in development: <mailto:tlewis@mindspring.com>
0xA3 90-9F linux/dtlk.h

Continued on next page

30 Chapter 6. IOCTLs

mailto:tim@cyberelk.net
mailto:giometti@linux.it
http://web.archive.org/web/%2A/http://www.quicknet.net
mailto:zapman@interlan.net
mailto:hdstich@connectu.ulm.circular.de
mailto:oe@port.de
http://www.winradio.com.au/
mailto:buk@buks.ipn.de
mailto:kenji@bitgate.com
mailto:tlewis@mindspring.com

Linux Userspace-api Documentation

Table 1 – continued from previous page
Code Seq# (hex) Include File Comments

0xA4 00-1F uapi/linux/tee.h Generic TEE subsystem
0xAA 00-3F linux/uapi/linux/userfaultfd.h
0xAB 00-1F linux/nbd.h
0xAC 00-1F linux/raw.h
0xAD 00 Netfilter device in development: <mailto:rusty@rustcorp.com.au>
0xAE all linux/kvm.h Kernel-based Virtual Machine <mailto:kvm@vger.kernel.org>
0xAF 00-1F linux/fsl_hypervisor.h Freescale hypervisor
0xB0 all RATIO devices in development: <mailto:vgo@ratio.de>
0xB1 00-1F PPPoX <mailto:mostrows@styx.uwaterloo.ca>
0xB3 00 linux/mmc/ioctl.h
0xB4 00-0F linux/gpio.h <mailto:linux-gpio@vger.kernel.org>
0xB5 00-0F uapi/linux/rpmsg.h <mailto:linux-remoteproc@vger.kernel.org>
0xB6 all linux/fpga-dfl.h
0xC0 00-0F linux/usb/iowarrior.h
0xCA 00-0F uapi/misc/cxl.h
0xCA 10-2F uapi/misc/ocxl.h
0xCA 80-BF uapi/scsi/cxlflash_ioctl.h
0xCB 00-1F CBM serial IEC bus in development: <mailto:michael.klein@puffin.lb.shuttle.de>
0xCC 00-0F drivers/misc/ibmvmc.h pseries VMC driver
0xCD 01 linux/reiserfs_fs.h
0xCF 02 fs/cifs/ioctl.c
0xDB 00-0F drivers/char/mwave/mwavepub.h
0xDD 00-3F ZFCP device driver see drivers/s390/scsi/ <mailto:aherrman@de.ibm.com>
0xE5 00-3F linux/fuse.h
0xEC 00-01 drivers/platform/chrome/cros_ec_dev.h ChromeOS EC driver
0xF3 00-3F drivers/usb/misc/sisusbvga/sisusb.h sisfb (in development) <mailto:thomas@winischhofer.net>
0xF4 00-1F video/mbxfb.h mbxfb <mailto:raph@8d.com>
0xF6 all LTTng Linux Trace Toolkit Next Generation <mailto:mathieu.desnoyers@efficios.com>
0xFD all linux/dm-ioctl.h
0xFE all linux/isst_if.h

6.2 Decoding an IOCTL Magic Number

To decode a hex IOCTL code:

Most architectures use this generic format, but check include/ARCH/ioctl.h for
specifics, e.g. powerpc uses 3 bits to encode read/write and 13 bits for size.

bits meaning
31-
30

00 - no parameters: uses _IO macro 10 - read: _IOR 01 - write:
_IOW 11 - read/write: _IOWR

29-
16

size of arguments

15-
8

ascii character supposedly unique to each driver

7-0 function #

6.2. Decoding an IOCTL Magic Number 31

mailto:rusty@rustcorp.com.au
mailto:kvm@vger.kernel.org
mailto:vgo@ratio.de
mailto:mostrows@styx.uwaterloo.ca
mailto:linux-gpio@vger.kernel.org
mailto:linux-remoteproc@vger.kernel.org
mailto:michael.klein@puffin.lb.shuttle.de
mailto:aherrman@de.ibm.com
mailto:thomas@winischhofer.net
mailto:raph@8d.com
mailto:mathieu.desnoyers@efficios.com

Linux Userspace-api Documentation

So for example 0x82187201 is a read with arg length of 0x218, character ‘r’
function 1. Grepping the source reveals this is:

#define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2])

6.3 Summary of CDROM ioctl calls

• Edward A. Falk <efalk@google.com>

November, 2004

This document attempts to describe the ioctl(2) calls supported by the
CDROM layer. These are by-and-large implemented (as of Linux 2.6) in
drivers/cdrom/cdrom.c and drivers/block/scsi_ioctl.c

ioctl values are listed in <linux/cdrom.h>. As of this writing, they are as follows:

CDROMPAUSE Pause Audio Operation
CDROMRESUME Resume paused Audio Operation
CDROMPLAYMSF Play Audio MSF (struct cdrom_msf)
CDROMPLAYTRKIND Play Audio Track/index (struct cdrom_ti)
CDROMREADTOCHDR Read TOC header (struct cdrom_tochdr)
CDROMREADTOCENTRY Read TOC entry (struct cdrom_tocentry)
CDROMSTOP Stop the cdrom drive
CDROMSTART Start the cdrom drive
CDROMEJECT Ejects the cdrom media
CDROMVOLCTRL Control output volume (struct cdrom_volctrl)
CDROMSUBCHNL Read subchannel data (struct cdrom_subchnl)
CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes) (struct cdrom_read)
CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes) (struct cdrom_read)
CDROMREADAUDIO (struct cdrom_read_audio)
CDROMEJECT_SW enable(1)/disable(0) auto-ejecting
CDROMMULTISESSION Obtain the start-of-last-session address of multi session disks (struct cdrom_multisession)
CDROM_GET_MCN Obtain the “Universal Product Code”if available (struct cdrom_mcn)
CDROM_GET_UPC Deprecated, use CDROM_GET_MCN instead.
CDROMRESET hard-reset the drive
CDROMVOLREAD Get the drive’s volume setting (struct cdrom_volctrl)
CDROMREADRAW read data in raw mode (2352 Bytes) (struct cdrom_read)
CDROMREADCOOKED read data in cooked mode
CDROMSEEK seek msf address
CDROMPLAYBLK scsi-cd only, (struct cdrom_blk)
CDROMREADALL read all 2646 bytes
CDROMGETSPINDOWN return 4-bit spindown value
CDROMSETSPINDOWN set 4-bit spindown value
CDROMCLOSETRAY pendant of CDROMEJECT
CDROM_SET_OPTIONS Set behavior options
CDROM_CLEAR_OPTIONS Clear behavior options
CDROM_SELECT_SPEED Set the CD-ROM speed
CDROM_SELECT_DISC Select disc (for juke-boxes)

Continued on next page

32 Chapter 6. IOCTLs

mailto:efalk@google.com

Linux Userspace-api Documentation

Table 2 – continued from previous page
CDROM_MEDIA_CHANGED Check is media changed
CDROM_DRIVE_STATUS Get tray position, etc.
CDROM_DISC_STATUS Get disc type, etc.
CDROM_CHANGER_NSLOTS Get number of slots
CDROM_LOCKDOOR lock or unlock door
CDROM_DEBUG Turn debug messages on/off
CDROM_GET_CAPABILITY get capabilities
CDROMAUDIOBUFSIZ set the audio buffer size
DVD_READ_STRUCT Read structure
DVD_WRITE_STRUCT Write structure
DVD_AUTH Authentication
CDROM_SEND_PACKET send a packet to the drive
CDROM_NEXT_WRITABLE get next writable block
CDROM_LAST_WRITTEN get last block written on disc

The information that follows was determined from reading kernel source code. It
is likely that some corrections will be made over time.

General:

Unless otherwise specified, all ioctl calls return 0 on success and -1 with
errno set to an appropriate value on error. (Some ioctls return non-
negative data values.)

Unless otherwise specified, all ioctl calls return -1 and set errno to
EFAULT on a failed attempt to copy data to or from user address space.

Individual drivers may return error codes not listed here.

Unless otherwise specified, all data structures and constants are defined
in <linux/cdrom.h>

CDROMPAUSE Pause Audio Operation

usage:

ioctl(fd, CDROMPAUSE, 0);

inputs: none
outputs: none
error return:

• ENOSYS cd drive not audio-capable.

CDROMRESUME Resume paused Audio Operation

usage:

ioctl(fd, CDROMRESUME, 0);

6.3. Summary of CDROM ioctl calls 33

Linux Userspace-api Documentation

inputs: none
outputs: none
error return:

• ENOSYS cd drive not audio-capable.

CDROMPLAYMSF Play Audio MSF
(struct cdrom_msf)

usage:

struct cdrom_msf msf;

ioctl(fd, CDROMPLAYMSF, &msf);

inputs: cdrom_msf structure, describing a segment of music to play
outputs: none
error return:

• ENOSYS cd drive not audio-capable.

notes:
• MSF stands for minutes-seconds-frames

• LBA stands for logical block address

• Segment is described as start and end times, where each time is de-
scribed as minutes:seconds:frames. A frame is 1/75 of a second.

CDROMPLAYTRKIND Play Audio Track/index

(struct cdrom_ti)

usage:

struct cdrom_ti ti;

ioctl(fd, CDROMPLAYTRKIND, &ti);

inputs: cdrom_ti structure, describing a segment of music to play
outputs: none
error return:

• ENOSYS cd drive not audio-capable.

notes:
• Segment is described as start and end times, where each time is de-
scribed as a track and an index.

CDROMREADTOCHDR Read TOC header

(struct cdrom_tochdr)

usage:

34 Chapter 6. IOCTLs

Linux Userspace-api Documentation

cdrom_tochdr header;

ioctl(fd, CDROMREADTOCHDR, &header);

inputs: cdrom_tochdr structure
outputs: cdrom_tochdr structure
error return:

• ENOSYS cd drive not audio-capable.

CDROMREADTOCENTRY Read TOC entry
(struct cdrom_tocentry)

usage:

struct cdrom_tocentry entry;

ioctl(fd, CDROMREADTOCENTRY, &entry);

inputs: cdrom_tocentry structure
outputs: cdrom_tocentry structure
error return:

• ENOSYS cd drive not audio-capable.

• EINVAL entry.cdte_format not CDROM_MSF or CDROM_LBA

• EINVAL requested track out of bounds

• EIO I/O error reading TOC

notes:
• TOC stands for Table Of Contents

• MSF stands for minutes-seconds-frames

• LBA stands for logical block address

CDROMSTOP Stop the cdrom drive

usage:

ioctl(fd, CDROMSTOP, 0);

inputs: none
outputs: none
error return:

• ENOSYS cd drive not audio-capable.

notes:
• Exact interpretation of this ioctl depends on the device, but most
seem to spin the drive down.

6.3. Summary of CDROM ioctl calls 35

Linux Userspace-api Documentation

CDROMSTART Start the cdrom drive

usage:

ioctl(fd, CDROMSTART, 0);

inputs: none
outputs: none
error return:

• ENOSYS cd drive not audio-capable.

notes:
• Exact interpretation of this ioctl depends on the device, but most
seem to spin the drive up and/or close the tray. Other devices ignore
the ioctl completely.

CDROMEJECT
• Ejects the cdrom media

usage:

ioctl(fd, CDROMEJECT, 0);

inputs: none
outputs: none
error returns:

• ENOSYS cd drive not capable of ejecting

• EBUSY other processes are accessing drive, or door is locked

notes:
• See CDROM_LOCKDOOR, below.

CDROMCLOSETRAY pendant of CDROMEJECT
usage:

ioctl(fd, CDROMCLOSETRAY, 0);

inputs: none
outputs: none
error returns:

• ENOSYS cd drive not capable of closing the tray

• EBUSY other processes are accessing drive, or door is locked

notes:
• See CDROM_LOCKDOOR, below.

CDROMVOLCTRL Control output volume (struct cdrom_volctrl)
usage:

36 Chapter 6. IOCTLs

Linux Userspace-api Documentation

struct cdrom_volctrl volume;

ioctl(fd, CDROMVOLCTRL, &volume);

inputs: cdrom_volctrl structure containing volumes for up to 4 channels.
outputs: none
error return:

• ENOSYS cd drive not audio-capable.

CDROMVOLREAD Get the drive’s volume setting
(struct cdrom_volctrl)

usage:

struct cdrom_volctrl volume;

ioctl(fd, CDROMVOLREAD, &volume);

inputs: none
outputs: The current volume settings.
error return:

• ENOSYS cd drive not audio-capable.

CDROMSUBCHNL Read subchannel data
(struct cdrom_subchnl)

usage:

struct cdrom_subchnl q;

ioctl(fd, CDROMSUBCHNL, &q);

inputs: cdrom_subchnl structure
outputs: cdrom_subchnl structure
error return:

• ENOSYS cd drive not audio-capable.

• EINVAL format not CDROM_MSF or CDROM_LBA

notes:
• Format is converted to CDROM_MSF or CDROM_LBA as per user
request on return

CDROMREADRAW read data in raw mode (2352 Bytes)

(struct cdrom_read)

usage:

6.3. Summary of CDROM ioctl calls 37

Linux Userspace-api Documentation

union {

struct cdrom_msf msf; /* input */
char buffer[CD_FRAMESIZE_RAW]; /* return */

} arg;
ioctl(fd, CDROMREADRAW, &arg);

inputs: cdrom_msf structure indicating an address to read.
Only the start values are significant.

outputs: Data written to address provided by user.
error return:

• EINVAL address less than 0, or msf less than 0:2:0

• ENOMEM out of memory

notes:
• As of 2.6.8.1, comments in <linux/cdrom.h> indicate that this ioctl
accepts a cdrom_read structure, but actual source code reads a
cdrom_msf structure and writes a buffer of data to the same address.

• MSF values are converted to LBA values via this formula:

lba = (((m * CD_SECS) + s) * CD_FRAMES + f) - CD_MSF_OFFSET;

CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes)

(struct cdrom_read)

notes: Identical to CDROMREADRAW except that block size is
CD_FRAMESIZE (2048) bytes

CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes)

(struct cdrom_read)

notes: Identical to CDROMREADRAW except that block size is
CD_FRAMESIZE_RAW0 (2336) bytes

CDROMREADAUDIO (struct cdrom_read_audio)

usage:

struct cdrom_read_audio ra;

ioctl(fd, CDROMREADAUDIO, &ra);

inputs: cdrom_read_audio structure containing read start point and length
outputs: audio data, returned to buffer indicated by ra
error return:

• EINVAL format not CDROM_MSF or CDROM_LBA

• EINVAL nframes not in range [1 75]

• ENXIO drive has no queue (probably means invalid fd)

38 Chapter 6. IOCTLs

Linux Userspace-api Documentation

• ENOMEM out of memory

CDROMEJECT_SW enable(1)/disable(0) auto-ejecting

usage:

int val;

ioctl(fd, CDROMEJECT_SW, val);

inputs: Flag specifying auto-eject flag.
outputs: none
error return:

• ENOSYS Drive is not capable of ejecting.

• EBUSY Door is locked

CDROMMULTISESSION Obtain the start-of-last-session address of multi ses-
sion disks

(struct cdrom_multisession)

usage:

struct cdrom_multisession ms_info;

ioctl(fd, CDROMMULTISESSION, &ms_info);

inputs:
cdrom_multisession structure containing desired

format.

outputs: cdrom_multisession structure is filled with last_session informa-
tion.

error return:
• EINVAL format not CDROM_MSF or CDROM_LBA

CDROM_GET_MCN Obtain the “Universal Product Code”if available
(struct cdrom_mcn)

usage:

struct cdrom_mcn mcn;

ioctl(fd, CDROM_GET_MCN, &mcn);

inputs: none
outputs: Universal Product Code
error return:

• ENOSYS Drive is not capable of reading MCN data.

notes:

6.3. Summary of CDROM ioctl calls 39

Linux Userspace-api Documentation

• Source code comments state:

The following function is implemented, although very few
audio discs give Universal Product Code information, which
should just be the Medium Catalog Number on the box. Note,
that the way the code is written on the CD is /not/ uniform
across all discs!

CDROM_GET_UPC CDROM_GET_MCN (deprecated)

Not implemented, as of 2.6.8.1

CDROMRESET hard-reset the drive

usage:

ioctl(fd, CDROMRESET, 0);

inputs: none
outputs: none
error return:

• EACCES Access denied: requires CAP_SYS_ADMIN

• ENOSYS Drive is not capable of resetting.

CDROMREADCOOKED read data in cooked mode

usage:

u8 buffer[CD_FRAMESIZE]

ioctl(fd, CDROMREADCOOKED, buffer);

inputs: none
outputs: 2048 bytes of data, “cooked”mode.
notes: Not implemented on all drives.

CDROMREADALL read all 2646 bytes
Same as CDROMREADCOOKED, but reads 2646 bytes.

CDROMSEEK seek msf address

usage:

struct cdrom_msf msf;

ioctl(fd, CDROMSEEK, &msf);

inputs: MSF address to seek to.
outputs: none

CDROMPLAYBLK scsi-cd only

(struct cdrom_blk)

usage:

40 Chapter 6. IOCTLs

Linux Userspace-api Documentation

struct cdrom_blk blk;

ioctl(fd, CDROMPLAYBLK, &blk);

inputs: Region to play
outputs: none

CDROMGETSPINDOWN usage:

char spindown;

ioctl(fd, CDROMGETSPINDOWN, &spindown);

inputs: none
outputs: The value of the current 4-bit spindown value.

CDROMSETSPINDOWN usage:

char spindown

ioctl(fd, CDROMSETSPINDOWN, &spindown);

inputs: 4-bit value used to control spindown (TODO: more detail here)
outputs: none

CDROM_SET_OPTIONS Set behavior options

usage:

int options;

ioctl(fd, CDROM_SET_OPTIONS, options);

inputs:
New values for drive options. The logical ‘or’of:

CDO_AUTO_CLOSE close tray on first open(2)
CDO_AUTO_EJECT open tray on last release
CDO_USE_FFLAGS use O_NONBLOCK information on open
CDO_LOCK lock tray on open files
CDO_CHECK_TYPE check type on open for data

outputs: Returns the resulting options settings in the ioctl return value. Re-
turns -1 on error.

error return:
• ENOSYS selected option(s) not supported by drive.

CDROM_CLEAR_OPTIONS Clear behavior options

Same as CDROM_SET_OPTIONS, except that selected options are turned off.

CDROM_SELECT_SPEED Set the CD-ROM speed

6.3. Summary of CDROM ioctl calls 41

Linux Userspace-api Documentation

usage:

int speed;

ioctl(fd, CDROM_SELECT_SPEED, speed);

inputs: New drive speed.
outputs: none
error return:

• ENOSYS speed selection not supported by drive.

CDROM_SELECT_DISC Select disc (for juke-boxes)

usage:

int disk;

ioctl(fd, CDROM_SELECT_DISC, disk);

inputs: Disk to load into drive.
outputs: none
error return:

• EINVAL Disk number beyond capacity of drive

CDROM_MEDIA_CHANGED Check is media changed

usage:

int slot;

ioctl(fd, CDROM_MEDIA_CHANGED, slot);

inputs: Slot number to be tested, always zero except for jukeboxes.
May also be special values CDSL_NONE or CDSL_CURRENT

outputs:
Ioctl return value is 0 or 1 depending on whether the media

has been changed, or -1 on error.

error returns:
• ENOSYS Drive can’t detect media change
• EINVAL Slot number beyond capacity of drive

• ENOMEM Out of memory

CDROM_DRIVE_STATUS Get tray position, etc.

usage:

int slot;

ioctl(fd, CDROM_DRIVE_STATUS, slot);

42 Chapter 6. IOCTLs

Linux Userspace-api Documentation

inputs: Slot number to be tested, always zero except for jukeboxes.
May also be special values CDSL_NONE or CDSL_CURRENT

outputs:
Ioctl return value will be one of the following values

from <linux/cdrom.h>:

CDS_NO_INFO Information not available.
CDS_NO_DISC
CDS_TRAY_OPEN
CDS_DRIVE_NOT_READY
CDS_DISC_OK
-1 error

error returns:
• ENOSYS Drive can’t detect drive status
• EINVAL Slot number beyond capacity of drive

• ENOMEM Out of memory

CDROM_DISC_STATUS Get disc type, etc.

usage:

ioctl(fd, CDROM_DISC_STATUS, 0);

inputs: none
outputs:

Ioctl return value will be one of the following values

from <linux/cdrom.h>:

• CDS_NO_INFO

• CDS_AUDIO

• CDS_MIXED

• CDS_XA_2_2

• CDS_XA_2_1

• CDS_DATA_1

error returns: none at present
notes:

• Source code comments state:

Ok, this is where problems start. The current interface for
the CDROM_DISC_STATUS ioctl is flawed. It makes the false
assumption that CDs are all CDS_DATA_1 or all CDS_AUDIO, etc.
Unfortunately, while this is often the case, it is also

(continues on next page)

6.3. Summary of CDROM ioctl calls 43

Linux Userspace-api Documentation

(continued from previous page)
very common for CDs to have some tracks with data, and some
tracks with audio. Just because I feel like it, I declare
the following to be the best way to cope. If the CD has
ANY data tracks on it, it will be returned as a data CD.
If it has any XA tracks, I will return it as that. Now I
could simplify this interface by combining these returns with
the above, but this more clearly demonstrates the problem
with the current interface. Too bad this wasn't designed
to use bitmasks... -Erik

Well, now we have the option CDS_MIXED: a mixed-type CD.
User level programmers might feel the ioctl is not very
useful.

---david

CDROM_CHANGER_NSLOTS Get number of slots

usage:

ioctl(fd, CDROM_CHANGER_NSLOTS, 0);

inputs: none
outputs: The ioctl return value will be the number of slots in a CD changer.

Typically 1 for non-multi-disk devices.

error returns: none
CDROM_LOCKDOOR lock or unlock door

usage:

int lock;

ioctl(fd, CDROM_LOCKDOOR, lock);

inputs: Door lock flag, 1=lock, 0=unlock
outputs: none
error returns:

• EDRIVE_CANT_DO_THIS

Door lock function not supported.

• EBUSY

Attempt to unlock whenmultiple users have the drive open and
not CAP_SYS_ADMIN

notes: As of 2.6.8.1, the lock flag is a global lock, meaning that all CD drives
will be locked or unlocked together. This is probably a bug.

The EDRIVE_CANT_DO_THIS value is defined in <linux/cdrom.h> and is
currently (2.6.8.1) the same as EOPNOTSUPP

CDROM_DEBUG Turn debug messages on/off

usage:

44 Chapter 6. IOCTLs

Linux Userspace-api Documentation

int debug;

ioctl(fd, CDROM_DEBUG, debug);

inputs: Cdrom debug flag, 0=disable, 1=enable

outputs: The ioctl return value will be the new debug flag.
error return:

• EACCES Access denied: requires CAP_SYS_ADMIN

CDROM_GET_CAPABILITY get capabilities
usage:

ioctl(fd, CDROM_GET_CAPABILITY, 0);

inputs: none
outputs: The ioctl return value is the current device capability flags. See

CDC_CLOSE_TRAY, CDC_OPEN_TRAY, etc.

CDROMAUDIOBUFSIZ set the audio buffer size

usage:

int arg;

ioctl(fd, CDROMAUDIOBUFSIZ, val);

inputs: New audio buffer size
outputs: The ioctl return value is the new audio buffer size, or -1 on error.
error return:

• ENOSYS Not supported by this driver.

notes: Not supported by all drivers.
DVD_READ_STRUCT Read structure

usage:

dvd_struct s;

ioctl(fd, DVD_READ_STRUCT, &s);

inputs:
dvd_struct structure, containing:

6.3. Summary of CDROM ioctl calls 45

Linux Userspace-api Documentation

type specifies the information desired, one of
DVD_STRUCT_PHYSICAL, DVD_STRUCT_COPYRIGHT,
DVD_STRUCT_DISCKEY, DVD_STRUCT_BCA,
DVD_STRUCT_MANUFACT

physi-
cal.layer_num

desired layer, indexed from 0

copy-
right.layer_num

desired layer, indexed from 0

dis-
ckey.agid

outputs:
dvd_struct structure, containing:

physical for type == DVD_STRUCT_PHYSICAL
copyright for type == DVD_STRUCT_COPYRIGHT
disckey.value for type == DVD_STRUCT_DISCKEY
bca.{len,value} for type == DVD_STRUCT_BCA
manufact.{len,valu} for type == DVD_STRUCT_MANUFACT

error returns:
• EINVAL physical.layer_num exceeds number of layers

• EIO Received invalid response from drive

DVD_WRITE_STRUCT Write structure

Not implemented, as of 2.6.8.1

DVD_AUTH Authentication

usage:

dvd_authinfo ai;

ioctl(fd, DVD_AUTH, &ai);

inputs: dvd_authinfo structure. See <linux/cdrom.h>
outputs: dvd_authinfo structure.
error return:

• ENOTTY ai.type not recognized.

CDROM_SEND_PACKET send a packet to the drive

usage:

struct cdrom_generic_command cgc;

ioctl(fd, CDROM_SEND_PACKET, &cgc);

inputs: cdrom_generic_command structure containing the packet to send.

46 Chapter 6. IOCTLs

Linux Userspace-api Documentation

outputs:
none

cdrom_generic_command structure containing results.

error return:
• EIO

command failed.

• EPERM

Operation not permitted, either because a write command was
attempted on a drive which is opened read-only, or because the
command requires CAP_SYS_RAWIO

• EINVAL

cgc.data_direction not set

CDROM_NEXT_WRITABLE get next writable block

usage:

long next;

ioctl(fd, CDROM_NEXT_WRITABLE, &next);

inputs: none
outputs: The next writable block.
notes:

If the device does not support this ioctl directly, the

ioctl will return CDROM_LAST_WRITTEN + 7.

CDROM_LAST_WRITTEN get last block written on disc

usage:

long last;

ioctl(fd, CDROM_LAST_WRITTEN, &last);

inputs: none
outputs: The last block written on disc
notes: If the device does not support this ioctl directly, the result is derived

from the disc’s table of contents. If the table of contents can’t be read,
this ioctl returns an error.

6.3. Summary of CDROM ioctl calls 47

Linux Userspace-api Documentation

6.4 Summary of HDIO_ ioctl calls

• Edward A. Falk <efalk@google.com>

November, 2004

This document attempts to describe the ioctl(2) calls supported by the HD/IDE
layer. These are by-and-large implemented (as of Linux 2.6) in drivers/ide/ide.c
and drivers/block/scsi_ioctl.c

ioctl values are listed in <linux/hdreg.h>. As of this writing, they are as follows:

ioctls that pass argument pointers to user space:

HDIO_GETGEO get device geometry
HDIO_GET_UNMASKINTRget current unmask setting
HDIO_GET_MULTCOUNT get current IDE blockmode set-

ting
HDIO_GET_QDMA get use-qdma flag
HDIO_SET_XFER set transfer rate via proc
HDIO_OBSOLETE_IDENTITYOBSOLETE, DO NOT USE
HDIO_GET_KEEPSETTINGSget keep-settings-on-reset flag
HDIO_GET_32BIT get current io_32bit setting
HDIO_GET_NOWERR get ignore-write-error flag
HDIO_GET_DMA get use-dma flag
HDIO_GET_NICE get nice flags
HDIO_GET_IDENTITY get IDE identification info
HDIO_GET_WCACHE get write cache mode on|off
HDIO_GET_ACOUSTIC get acoustic value
HDIO_GET_ADDRESS get sector addressing mode
HDIO_GET_BUSSTATE get the bus state of the hwif
HDIO_TRISTATE_HWIF execute a channel tristate
HDIO_DRIVE_RESET execute a device reset
HDIO_DRIVE_TASKFILE execute raw taskfile
HDIO_DRIVE_TASK execute task and special drive

command
HDIO_DRIVE_CMD execute a special drive command
HDIO_DRIVE_CMD_AEB HDIO_DRIVE_TASK

ioctls that pass non-pointer values:

48 Chapter 6. IOCTLs

mailto:efalk@google.com

Linux Userspace-api Documentation

HDIO_SET_MULTCOUNT change IDE blockmode
HDIO_SET_UNMASKINTR permit other irqs during I/O
HDIO_SET_KEEPSETTINGSkeep ioctl settings on reset
HDIO_SET_32BIT change io_32bit flags
HDIO_SET_NOWERR change ignore-write-error flag
HDIO_SET_DMA change use-dma flag
HDIO_SET_PIO_MODE reconfig interface to new speed
HDIO_SCAN_HWIF register and (re)scan interface
HDIO_SET_NICE set nice flags
HDIO_UNREGISTER_HWIF unregister interface
HDIO_SET_WCACHE change write cache enable-

disable
HDIO_SET_ACOUSTIC change acoustic behavior
HDIO_SET_BUSSTATE set the bus state of the hwif
HDIO_SET_QDMA change use-qdma flag
HDIO_SET_ADDRESS change lba addressing modes
HDIO_SET_IDE_SCSI Set scsi emulation mode on/off
HDIO_SET_SCSI_IDE not implemented yet

The information that follows was determined from reading kernel source code. It
is likely that some corrections will be made over time.

General:

Unless otherwise specified, all ioctl calls return 0 on success and -1 with
errno set to an appropriate value on error.

Unless otherwise specified, all ioctl calls return -1 and set errno to
EFAULT on a failed attempt to copy data to or from user address space.

Unless otherwise specified, all data structures and constants are defined
in <linux/hdreg.h>

HDIO_GETGEO get device geometry

usage:

struct hd_geometry geom;

ioctl(fd, HDIO_GETGEO, &geom);

inputs: none
outputs:

hd_geometry structure containing:

heads number of heads
sectors number of sectors/track
cylinders number of cylinders, mod 65536
start starting sector of this partition.

6.4. Summary of HDIO_ ioctl calls 49

Linux Userspace-api Documentation

error returns:
• EINVAL

if the device is not a disk drive or floppy drive, or if the user
passes a null pointer

notes: Not particularly useful with modern disk drives, whose geometry is a
polite fiction anyway. Modern drives are addressed purely by sector num-
ber nowadays (lba addressing), and the drive geometry is an abstraction
which is actually subject to change. Currently (as of Nov 2004), the ge-
ometry values are the “bios”values – presumably the values the drive
had when Linux first booted.

In addition, the cylinders field of the hd_geometry is an unsigned short,
meaning that on most architectures, this ioctl will not return a meaning-
ful value on drives with more than 65535 tracks.

The start field is unsigned long, meaning that it will not contain a mean-
ingful value for disks over 219 Gb in size.

HDIO_GET_UNMASKINTR get current unmask setting

usage:

long val;

ioctl(fd, HDIO_GET_UNMASKINTR, &val);

inputs: none
outputs: The value of the drive’s current unmask setting

HDIO_SET_UNMASKINTR permit other irqs during I/O

usage:

unsigned long val;

ioctl(fd, HDIO_SET_UNMASKINTR, val);

inputs: New value for unmask flag
outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

• EINVAL value out of range [0 1]

• EBUSY Controller busy

HDIO_GET_MULTCOUNT get current IDE blockmode setting

usage:

long val;

ioctl(fd, HDIO_GET_MULTCOUNT, &val);

50 Chapter 6. IOCTLs

Linux Userspace-api Documentation

inputs: none
outputs: The value of the current IDE block mode setting. This controls how

many sectors the drive will transfer per interrupt.

HDIO_SET_MULTCOUNT change IDE blockmode

usage:

int val;

ioctl(fd, HDIO_SET_MULTCOUNT, val);

inputs: New value for IDE block mode setting. This controls how many sec-
tors the drive will transfer per interrupt.

outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

• EINVAL value out of range supported by disk.

• EBUSY Controller busy or blockmode already set.

• EIO Drive did not accept new block mode.

notes: Source code comments read:

This is tightly woven into the driver->do_special cannot
touch. DON'T do it again until a total personality rewrite
is committed.

If blockmode has already been set, this ioctl will fail with -EBUSY

HDIO_GET_QDMA get use-qdma flag

Not implemented, as of 2.6.8.1

HDIO_SET_XFER set transfer rate via proc

Not implemented, as of 2.6.8.1

HDIO_OBSOLETE_IDENTITY OBSOLETE, DO NOT USE
Same as HDIO_GET_IDENTITY (see below), except that it only returns the
first 142 bytes of drive identity information.

HDIO_GET_IDENTITY get IDE identification info
usage:

unsigned char identity[512];

ioctl(fd, HDIO_GET_IDENTITY, identity);

inputs: none

6.4. Summary of HDIO_ ioctl calls 51

Linux Userspace-api Documentation

outputs: ATA drive identity information. For full description, see the IDEN-
TIFY DEVICE and IDENTIFY PACKET DEVICE commands in the ATA
specification.

error returns:
• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• ENOMSG IDENTIFY DEVICE information not available

notes: Returns information that was obtained when the drive was probed.
Some of this information is subject to change, and this ioctl does not re-
probe the drive to update the information.

This information is also available from /proc/ide/hdX/identify

HDIO_GET_KEEPSETTINGS get keep-settings-on-reset flag

usage:

long val;

ioctl(fd, HDIO_GET_KEEPSETTINGS, &val);

inputs: none
outputs: The value of the current “keep settings”flag
notes: When set, indicates that kernel should restore settings after a drive

reset.

HDIO_SET_KEEPSETTINGS keep ioctl settings on reset

usage:

long val;

ioctl(fd, HDIO_SET_KEEPSETTINGS, val);

inputs: New value for keep_settings flag
outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

• EINVAL value out of range [0 1]

• EBUSY Controller busy

HDIO_GET_32BIT get current io_32bit setting

usage:

long val;

ioctl(fd, HDIO_GET_32BIT, &val);

inputs: none

52 Chapter 6. IOCTLs

Linux Userspace-api Documentation

outputs: The value of the current io_32bit setting
notes: 0=16-bit, 1=32-bit, 2,3 = 32bit+sync

HDIO_GET_NOWERR get ignore-write-error flag

usage:

long val;

ioctl(fd, HDIO_GET_NOWERR, &val);

inputs: none
outputs: The value of the current ignore-write-error flag

HDIO_GET_DMA get use-dma flag

usage:

long val;

ioctl(fd, HDIO_GET_DMA, &val);

inputs: none
outputs: The value of the current use-dma flag

HDIO_GET_NICE get nice flags

usage:

long nice;

ioctl(fd, HDIO_GET_NICE, &nice);

inputs: none
outputs: The drive’s “nice”values.
notes: Per-drive flags which determine when the systemwill give more band-

width to other devices sharing the same IDE bus.

See <linux/hdreg.h>, near symbol IDE_NICE_DSC_OVERLAP.

HDIO_SET_NICE set nice flags

usage:

unsigned long nice;

...
ioctl(fd, HDIO_SET_NICE, nice);

inputs: bitmask of nice flags.
outputs: none
error returns:

• EACCES Access denied: requires CAP_SYS_ADMIN

• EPERM Flags other than DSC_OVERLAP and NICE_1 set.

6.4. Summary of HDIO_ ioctl calls 53

Linux Userspace-api Documentation

• EPERM DSC_OVERLAP specified but not supported by drive

notes: This ioctl sets the DSC_OVERLAP and NICE_1 flags from values pro-
vided by the user.

Nice flags are listed in <linux/hdreg.h>, starting with
IDE_NICE_DSC_OVERLAP. These values represent shifts.

HDIO_GET_WCACHE get write cache mode on|off

usage:

long val;

ioctl(fd, HDIO_GET_WCACHE, &val);

inputs: none
outputs: The value of the current write cache mode

HDIO_GET_ACOUSTIC get acoustic value

usage:

long val;

ioctl(fd, HDIO_GET_ACOUSTIC, &val);

inputs: none
outputs: The value of the current acoustic settings
notes: See HDIO_SET_ACOUSTIC

HDIO_GET_ADDRESS usage:

long val;

ioctl(fd, HDIO_GET_ADDRESS, &val);

inputs: none
outputs:

The value of the current addressing mode:

0 28-bit
1 48-bit
2 48-bit doing 28-bit
3 64-bit

HDIO_GET_BUSSTATE get the bus state of the hwif

usage:

long state;

ioctl(fd, HDIO_SCAN_HWIF, &state);

inputs: none

54 Chapter 6. IOCTLs

Linux Userspace-api Documentation

outputs: Current power state of the IDE bus. One of BUSSTATE_OFF,
BUSSTATE_ON, or BUSSTATE_TRISTATE

error returns:
• EACCES Access denied: requires CAP_SYS_ADMIN

HDIO_SET_BUSSTATE set the bus state of the hwif

usage:

int state;

...
ioctl(fd, HDIO_SCAN_HWIF, state);

inputs: Desired IDE power state. One of BUSSTATE_OFF, BUSSTATE_ON,
or BUSSTATE_TRISTATE

outputs: none
error returns:

• EACCES Access denied: requires CAP_SYS_RAWIO

• EOPNOTSUPP Hardware interface does not support bus power con-
trol

HDIO_TRISTATE_HWIF execute a channel tristate
Not implemented, as of 2.6.8.1. See HDIO_SET_BUSSTATE

HDIO_DRIVE_RESET execute a device reset

usage:

int args[3]

...
ioctl(fd, HDIO_DRIVE_RESET, args);

inputs: none
outputs: none
error returns:

• EACCES Access denied: requires CAP_SYS_ADMIN

• ENXIO No such device: phy dead or ctl_addr == 0

• EIO I/O error: reset timed out or hardware error

notes:

• Execute a reset on the device as soon as the current IO operation has
completed.

• Executes an ATAPI soft reset if applicable, otherwise executes an ATA
soft reset on the controller.

HDIO_DRIVE_TASKFILE execute raw taskfile

6.4. Summary of HDIO_ ioctl calls 55

Linux Userspace-api Documentation

Note: If you don’t have a copy of the ANSI ATA specification handy, you
should probably ignore this ioctl.

• Execute an ATA disk command directly by writing the“taskfile”registers
of the drive. Requires ADMIN and RAWIO access privileges.

usage:

struct {

ide_task_request_t req_task;
u8 outbuf[OUTPUT_SIZE];
u8 inbuf[INPUT_SIZE];

} task;
memset(&task.req_task, 0, sizeof(task.req_task));
task.req_task.out_size = sizeof(task.outbuf);
task.req_task.in_size = sizeof(task.inbuf);
...
ioctl(fd, HDIO_DRIVE_TASKFILE, &task);
...

inputs:

(See below for details on memory area passed to ioctl.)

io_ports[8] values to be written to taskfile registers
hob_ports[8] high-order bytes, for extended commands.
out_flags flags indicating which registers are valid
in_flags flags indicating which registers should be returned
data_phase see below
req_cmd command type to be executed
out_size size of output buffer
outbuf buffer of data to be transmitted to disk
inbuf buffer of data to be received from disk (see [1])

outputs:

io_ports[] values returned in the taskfile registers
hob_ports[] high-order bytes, for extended commands.
out_flags flags indicating which registers are valid (see [2])
in_flags flags indicating which registers should be returned
outbuf buffer of data to be transmitted to disk (see [1])
inbuf buffer of data to be received from disk

error returns:
• EACCES CAP_SYS_ADMIN or CAP_SYS_RAWIO privilege not set.

• ENOMSG Device is not a disk drive.

• ENOMEM Unable to allocate memory for task

• EFAULT req_cmd == TASKFILE_IN_OUT (not implemented as of
2.6.8)

• EPERM

56 Chapter 6. IOCTLs

Linux Userspace-api Documentation

req_cmd== TASKFILE_MULTI_OUT and drivemulti-count not
yet set.

• EIO Drive failed the command.

notes:

[1] READ THE FOLLOWING NOTES CAREFULLY. THIS IOCTL IS
FULL OF GOTCHAS. Extreme caution should be used with using this
ioctl. A mistake can easily corrupt data or hang the system.

[2] Both the input and output buffers are copied from the user and
written back to the user, even when not used.

[3] If one or more bits are set in out_flags and in_flags is zero, the fol-
lowing values are used for in_flags.all and written back into in_flags
on completion.

• IDE_TASKFILE_STD_IN_FLAGS | (IDE_HOB_STD_IN_FLAGS<<
8) if LBA48 addressing is enabled for the drive

• IDE_TASKFILE_STD_IN_FLAGS if CHS/LBA28

The association between in_flags.all and each enable bitfield flips
depending on endianness; fortunately, TASKFILE only uses in-
flags.b.data bit and ignores all other bits. The end result is that, on
any endian machines, it has no effect other than modifying in_flags
on completion.

[4] The default value of SELECT is (0xa0|DEV_bit|LBA_bit) except for
four drives per port chipsets. For four drives per port chipsets, it’s
(0xa0|DEV_bit|LBA_bit) for the first pair and (0x80|DEV_bit|LBA_bit)
for the second pair.

[5] The argument to the ioctl is a pointer to a region of memory con-
taining a ide_task_request_t structure, followed by an optional buffer
of data to be transmitted to the drive, followed by an optional buffer
to receive data from the drive.

Command is passed to the disk drive via the ide_task_request_t struc-
ture, which contains these fields:

io_ports[8]values for the taskfile registers
hob_ports[8]high-order bytes, for extended commands
out_flagsflags indicating which entries in the io_ports[]

and hob_ports[] arrays contain valid values. Type
ide_reg_valid_t.

in_flagsflags indicating which entries in the io_ports[] and
hob_ports[] arrays are expected to contain valid
values on return.

data_phaseSee below
req_cmdCommand type, see below
out_sizeoutput (user->drive) buffer size, bytes
in_size input (drive->user) buffer size, bytes

6.4. Summary of HDIO_ ioctl calls 57

Linux Userspace-api Documentation

When out_flags is zero, the following registers are loaded.

HOB_FEATUREIf the drive supports LBA48
HOB_NSECTORIf the drive supports LBA48
HOB_SECTORIf the drive supports LBA48
HOB_LCYLIf the drive supports LBA48
HOB_HCYLIf the drive supports LBA48
FEA-
TURE
NSEC-
TOR
SEC-
TOR
LCYL
HCYL
SE-
LECT

First, masked with 0xE0 if LBA48, 0xEF other-
wise; then, or’ed with the default value of SE-
LECT.

If any bit in out_flags is set, the following registers are loaded.

HOB_DATAIf out_flags.b.data is set. HOB_DATA will travel on
DD8-DD15 on little endian machines and on DD0-
DD7 on big endian machines.

DATA If out_flags.b.data is set. DATA will travel on DD0-
DD7 on little endian machines and on DD8-DD15
on big endian machines.

HOB_NSECTORIf out_flags.b.nsector_hob is set
HOB_SECTORIf out_flags.b.sector_hob is set
HOB_LCYLIf out_flags.b.lcyl_hob is set
HOB_HCYLIf out_flags.b.hcyl_hob is set
FEA-
TURE

If out_flags.b.feature is set

NSEC-
TOR

If out_flags.b.nsector is set

SEC-
TOR

If out_flags.b.sector is set

LCYL If out_flags.b.lcyl is set
HCYL If out_flags.b.hcyl is set
SE-
LECT

Or’ed with the default value of SELECT and loaded
regardless of out_flags.b.select.

Taskfile registers are read back from the drive into {io|hob}_ports[]
after the command completes iff one of the following conditions is
met; otherwise, the original values will be written back, unchanged.

1. The drive fails the command (EIO).

2. One or more than one bits are set in out_flags.

3. The requested data_phase is TASKFILE_NO_DATA.

58 Chapter 6. IOCTLs

Linux Userspace-api Documentation

HOB_DATAIf in_flags.b.data is set. It will contain DD8-DD15
on little endian machines and DD0-DD7 on big en-
dian machines.

DATA If in_flags.b.data is set. It will contain DD0-DD7
on little endian machines and DD8-DD15 on big
endian machines.

HOB_FEATUREIf the drive supports LBA48
HOB_NSECTORIf the drive supports LBA48
HOB_SECTORIf the drive supports LBA48
HOB_LCYLIf the drive supports LBA48
HOB_HCYLIf the drive supports LBA48
NSEC-
TOR
SEC-
TOR
LCYL
HCYL

The data_phase field describes the data transfer to be performed.
Value is one of:

TASKFILE_IN
TASKFILE_MULTI_IN
TASKFILE_OUT
TASK-
FILE_MULTI_OUT
TASKFILE_IN_OUT
TASKFILE_IN_DMA
TASKFILE_IN_DMAQ == IN_DMA (queueing not sup-

ported)
TASK-
FILE_OUT_DMA
TASK-
FILE_OUT_DMAQ

== OUT_DMA (queueing not sup-
ported)

TASKFILE_P_IN unimplemented
TASK-
FILE_P_IN_DMA

unimplemented

TASK-
FILE_P_IN_DMAQ

unimplemented

TASKFILE_P_OUT unimplemented
TASK-
FILE_P_OUT_DMA

unimplemented

TASK-
FILE_P_OUT_DMAQ

unimplemented

The req_cmd field classifies the command type. It may be one of:

6.4. Summary of HDIO_ ioctl calls 59

Linux Userspace-api Documentation

IDE_DRIVE_TASK_NO_DATA
IDE_DRIVE_TASK_SET_XFER unimplemented
IDE_DRIVE_TASK_IN
IDE_DRIVE_TASK_OUT unimplemented
IDE_DRIVE_TASK_RAW_WRITE

[6] Do not access {in|out}_flags->all except for resetting all the
bits. Always access individual bit fields. ->all value will flip
depending on endianness. For the same reason, do not use
IDE_{TASKFILE|HOB}_STD_{OUT|IN}_FLAGS constants defined in
hdreg.h.

HDIO_DRIVE_CMD execute a special drive command

Note: If you don’t have a copy of the ANSI ATA specification handy, you
should probably ignore this ioctl.

usage:

u8 args[4+XFER_SIZE];

...
ioctl(fd, HDIO_DRIVE_CMD, args);

inputs: Commands other than WIN_SMART:

args[0] COMMAND
args[1] NSECTOR
args[2] FEATURE
args[3] NSECTOR

WIN_SMART:

args[0] COMMAND
args[1] SECTOR
args[2] FEATURE
args[3] NSECTOR

outputs:
args[] buffer is filled with register values followed by any

data returned by the disk.

args[0] status
args[1] error
args[2] NSECTOR
args[3] undefined
args[4+] NSECTOR * 512 bytes of data returned by the com-

mand.

60 Chapter 6. IOCTLs

Linux Userspace-api Documentation

error returns:
• EACCES Access denied: requires CAP_SYS_RAWIO

• ENOMEM Unable to allocate memory for task

• EIO Drive reports error

notes:

[1] For commands other than WIN_SMART, args[1] should equal
args[3]. SECTOR, LCYL and HCYL are undefined. For WIN_SMART,
0x4f and 0xc2 are loaded into LCYL and HCYL respectively. In both
cases SELECT will contain the default value for the drive. Please
refer to HDIO_DRIVE_TASKFILE notes for the default value of SE-
LECT.

[2] If NSECTOR value is greater than zero and the drive sets DRQ
when interrupting for the command, NSECTOR * 512 bytes are read
from the device into the area following NSECTOR. In the above ex-
ample, the area would be args[4..4+XFER_SIZE]. 16bit PIO is used
regardless of HDIO_SET_32BIT setting.

[3] If COMMAND == WIN_SETFEATURES && FEATURE == SET-
FEATURES_XFER && NSECTOR >= XFER_SW_DMA_0 && the
drive supports any DMAmode, IDE driver will try to tune the transfer
mode of the drive accordingly.

HDIO_DRIVE_TASK execute task and special drive command

Note: If you don’t have a copy of the ANSI ATA specification handy, you
should probably ignore this ioctl.

usage:

u8 args[7];

...
ioctl(fd, HDIO_DRIVE_TASK, args);

inputs: Taskfile register values:

args[0] COMMAND
args[1] FEATURE
args[2] NSECTOR
args[3] SECTOR
args[4] LCYL
args[5] HCYL
args[6] SELECT

outputs: Taskfile register values:

6.4. Summary of HDIO_ ioctl calls 61

Linux Userspace-api Documentation

args[0] status
args[1] error
args[2] NSECTOR
args[3] SECTOR
args[4] LCYL
args[5] HCYL
args[6] SELECT

error returns:
• EACCES Access denied: requires CAP_SYS_RAWIO

• ENOMEM Unable to allocate memory for task

• ENOMSG Device is not a disk drive.

• EIO Drive failed the command.

notes:

[1] DEV bit (0x10) of SELECT register is ignored and the appropriate
value for the drive is used. All other bits are used unaltered.

HDIO_DRIVE_CMD_AEB HDIO_DRIVE_TASK

Not implemented, as of 2.6.8.1

HDIO_SET_32BIT change io_32bit flags

usage:

int val;

ioctl(fd, HDIO_SET_32BIT, val);

inputs: New value for io_32bit flag
outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

• EINVAL value out of range [0 3]

• EBUSY Controller busy

HDIO_SET_NOWERR change ignore-write-error flag

usage:

int val;

ioctl(fd, HDIO_SET_NOWERR, val);

inputs:
New value for ignore-write-error flag. Used for ignoring

62 Chapter 6. IOCTLs

Linux Userspace-api Documentation

WRERR_STAT

outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

• EINVAL value out of range [0 1]

• EBUSY Controller busy

HDIO_SET_DMA change use-dma flag

usage:

long val;

ioctl(fd, HDIO_SET_DMA, val);

inputs: New value for use-dma flag
outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

• EINVAL value out of range [0 1]

• EBUSY Controller busy

HDIO_SET_PIO_MODE reconfig interface to new speed

usage:

long val;

ioctl(fd, HDIO_SET_PIO_MODE, val);

inputs: New interface speed.
outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

• EINVAL value out of range [0 255]

• EBUSY Controller busy

HDIO_SCAN_HWIF register and (re)scan interface
usage:

6.4. Summary of HDIO_ ioctl calls 63

Linux Userspace-api Documentation

int args[3]

...
ioctl(fd, HDIO_SCAN_HWIF, args);

inputs:

args[0] io address to probe
args[1] control address to probe
args[2] irq number

outputs: none
error returns:

• EACCES Access denied: requires CAP_SYS_RAWIO

• EIO Probe failed.

notes: This ioctl initializes the addresses and irq for a disk controller, probes
for drives, and creates /proc/ide interfaces as appropriate.

HDIO_UNREGISTER_HWIF unregister interface
usage:

int index;

ioctl(fd, HDIO_UNREGISTER_HWIF, index);

inputs: index index of hardware interface to unregister
outputs: none
error returns:

• EACCES Access denied: requires CAP_SYS_RAWIO

notes: This ioctl removes a hardware interface from the kernel.

Currently (2.6.8) this ioctl silently fails if any drive on the interface is
busy.

HDIO_SET_WCACHE change write cache enable-disable

usage:

int val;

ioctl(fd, HDIO_SET_WCACHE, val);

inputs: New value for write cache enable
outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

64 Chapter 6. IOCTLs

Linux Userspace-api Documentation

• EINVAL value out of range [0 1]

• EBUSY Controller busy

HDIO_SET_ACOUSTIC change acoustic behavior

usage:

int val;

ioctl(fd, HDIO_SET_ACOUSTIC, val);

inputs: New value for drive acoustic settings
outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

• EINVAL value out of range [0 254]

• EBUSY Controller busy

HDIO_SET_QDMA change use-qdma flag

Not implemented, as of 2.6.8.1

HDIO_SET_ADDRESS change lba addressing modes

usage:

int val;

ioctl(fd, HDIO_SET_ADDRESS, val);

inputs:
New value for addressing mode

0 28-bit
1 48-bit
2 48-bit doing 28-bit

outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

• EINVAL value out of range [0 2]

• EBUSY Controller busy

• EIO Drive does not support lba48 mode.

HDIO_SET_IDE_SCSI usage:

6.4. Summary of HDIO_ ioctl calls 65

Linux Userspace-api Documentation

long val;

ioctl(fd, HDIO_SET_IDE_SCSI, val);

inputs: New value for scsi emulation mode (?)
outputs: none
error return:

• EINVAL (bdev != bdev->bd_contains) (not sure what this means)

• EACCES Access denied: requires CAP_SYS_ADMIN

• EINVAL value out of range [0 1]

• EBUSY Controller busy

HDIO_SET_SCSI_IDE Not implemented, as of 2.6.8.1

66 Chapter 6. IOCTLs

CHAPTER

SEVEN

LINUX MEDIA INFRASTRUCTURE USERSPACE API

This section contains the driver development information and Kernel APIs used by
media devices.

Please see:

• /admin-guide/media/index for usage information about media subsystem
and supported drivers;

• /driver-api/media/index for driver development information and Kernel
APIs used by media devices;

7.1 Introduction

This document covers the Linux Kernel to Userspace API’s used by video and
radio streaming devices, including video cameras, analog and digital TV receiver
cards, AM/FM receiver cards, Software Defined Radio (SDR), streaming capture
and output devices, codec devices and remote controllers.

A typical media device hardware is shown at Typical Media Device.

The media infrastructure API was designed to control such devices. It is divided
into five parts.

1. The first part covers radio, video capture and output, cameras, analog TV
devices and codecs.

2. The second part covers the API used for digital TV and Internet reception via
one of the several digital tv standards. While it is called as DVB API, in fact
it covers several different video standards including DVB-T/T2, DVB-S/S2,
DVB-C, ATSC, ISDB-T, ISDB-S, DTMB, etc. The complete list of supported
standards can be found at fe_delivery_system.

3. The third part covers the Remote Controller API.

4. The fourth part covers the Media Controller API.

5. The fifth part covers the CEC (Consumer Electronics Control) API.

It should also be noted that a media device may also have audio components, like
mixers, PCM capture, PCM playback, etc, which are controlled via ALSA API. For
additional information and for the latest development code, see: https://linuxtv.
org. For discussing improvements, reporting troubles, sending new drivers, etc,
please mail to: Linux Media Mailing List (LMML).

67

https://linuxtv.org
https://linuxtv.org
http://vger.kernel.org/vger-lists.html#linux-media

Linux Userspace-api Documentation

<?xml version="1.0" encoding="UTF-8"?>
<!--

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software
Foundation, with no Invariant Sections, no Front-Cover Texts
and no Back-Cover Texts. A copy of the license is included at
Documentation/userspace-api/media/fdl-appendix.rst.

TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
-->
<svg id="svg2" width="235mm" height="179mm" clip-path="url(#a)" fill-rule=
↪→"evenodd" stroke-linejoin="round" stroke-width="28.222"␣
↪→preserveAspectRatio="xMidYMid" version="1.2" viewBox="0 0 22648.239␣
↪→17899.829" xml:space="preserve" xmlns="http://www.w3.org/2000/svg"␣
↪→xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/
↪→elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
↪→<metadata id="metadata1533"><rdf:RDF><cc:Work rdf:about=""><dc:format>
↪→image/svg+xml</dc:format><dc:type rdf:resource="http://purl.org/dc/
↪→dcmitype/StillImage"/><dc:title/></cc:Work></rdf:RDF></metadata><defs id=
↪→"defs4"><clipPath id="a"><rect id="rect7" width="28000" height="21000"/>
↪→</clipPath></defs><path id="path11" d="m10146 2636c-518.06 0-1035.1 515-
↪→1035.1 1031v4124c0 516 517.06 1032 1035.1 1032h8572.2c518.06 0 1036.1-
↪→516 1036.1-1032v-4124c0-516-518.06-1031-1036.1-1031h-8572.2z"
fill="#fcf" style=""/><path id="path15" d="m1505.5 13443c-293 0-585 292-
↪→585 585v2340c0 293 292 586 585 586h3275c293 0 586-293 586-586v-2340c0-
↪→293-293-585-586-585h-3275z" fill="#ffc" style=""/><path id="path19" d=
↪→"m517.15 22.013c-461 0-922 461-922 922v11169c0 461 461 923 922␣
↪→923h3692c461 0 922-462 922-923v-11169c0-461-461-922-922-922h-3692z" fill=
↪→"#e6e6e6" style=""/><path id="path23" d="m2371.5 6438h-2260v-
↪→1086h4520v1086h-2260z" fill="#ff8080" style=""/><path id="path25" d=
↪→"m2371.5 6438h-2260v-1086h4520v1086h-2260z" fill="none" stroke="#3465af"␣
↪→style=""/><text id="text27" class="TextShape" x="-2089.4541" y="-2163.
↪→9871" font-family="Serif, serif" font-size="493.88px"><tspan id="tspan29
↪→" class="TextParagraph" font-family="Serif, serif" font-size="493.88px">
↪→<tspan id="tspan31" class="TextPosition" x="489.5459" y="6111.0132" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan33"
fill="#000000" font-family="Serif, serif" font-size="493.88px">Audio␣
↪→decoder</tspan></tspan></tspan></text>
<path id="path37" d="m2371.5 9608h-2260v-1270h4520v1270h-2260z" fill="
↪→#ff8080" style=""/><path id="path39" d="m2371.5 9608h-2260v-
↪→1270h4520v1270h-2260z" fill="none" stroke="#3465af" style=""/><text id=
↪→"text41" class="TextShape" x="-2089.4541" y="-2163.9871" font-family=
↪→"Serif, serif" font-size="493.88px"><tspan id="tspan43" class=
↪→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan45" class="TextPosition" x="527.5459" y="9189.0127" font-family=
↪→"Serif, serif" font-size="493.88px"><tspan id="tspan47" fill="#000000"␣
↪→font-family="Serif, serif" font-size="493.88px">Video decoder</tspan></
↪→tspan></tspan></text>
<path id="path51" d="m2363.5 8053h-2269v-1224h4537v1224h-2268z" fill="
↪→#ff8080" style=""/><path id="path53" d="m2363.5 8053h-2269v-
↪→1224h4537v1224h-2268z" fill="none" stroke="#3465af" style=""/><text id=
↪→"text55" class="TextShape" x="-2089.4541" y="-2163.9871" font-family=
↪→"Serif, serif" font-size="493.88px"><tspan id="tspan57" class=
↪→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan59" class="TextPosition" x="481.5459" y="7657.0132" font-family=
↪→"Serif, serif" font-size="493.88px"><tspan id="tspan61" fill="#000000"␣
↪→font-family="Serif, serif" font-size="493.88px">Audio encoder</tspan></
↪→tspan></tspan></text>
<path id="path65" d="m13622 10386h-3810v-1281h7620v1281h-3810z" fill="#cfc
↪→" style=""/><path id="path67" d="m13622 10386h-3810v-1281h7620v1281h-
↪→3810z" fill="none" stroke="#3465af" style=""/><text id="text69" class=
↪→"TextShape" x="-2089.4541" y="-2446.187" font-family="Serif, serif" font-
↪→size="493.88px"><tspan id="tspan71" class="TextParagraph" font-family=
↪→"Serif, serif" font-size="493.88px"><tspan id="tspan73" class=
↪→"TextPosition" x="10287.546" y="9960.8135" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan75" fill="#000000" font-family=
↪→"Serif, serif" font-size="493.88px">Button Key/IR input logic</tspan></
↪→tspan></tspan></text>
<path id="path79" d="m12080 12182h-2268v-1412h4536v1412h-2268z" fill="
↪→#cfe7f5" style=""/><path id="path81" d="m12080 12182h-2268v-
↪→1412h4536v1412h-2268z" fill="none" stroke="#3465af" style=""/><text id=
↪→"text83" class="TextShape" x="-2089.4541" y="-2389.7871" font-family=
↪→"Serif, serif" font-size="493.88px"><tspan id="tspan85" class=
↪→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan87" class="TextPosition" x="10792.546" y="11692.213" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan89" fill="
↪→#000000" font-family="Serif, serif" font-size="493.88px">EEPROM</tspan></
↪→tspan></tspan></text>
<path id="path93" d="m3050.5 15498h-1563v-1715h3126v1715h-1563z" fill="#fc9
↪→" style=""/><path id="path95" d="m3050.5 15498h-1563v-1715h3126v1715h-
↪→1563z" fill="none" stroke="#3465af" style=""/><text id="text97" class=
↪→"TextShape" x="-2089.4541" y="-2163.9871" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan99" class="TextParagraph" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan101" class=
↪→"TextPosition" x="2186.5459" y="14856.013" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan103" fill="#000000" font-family=
↪→"Serif, serif" font-size="493.88px">Sensor</tspan></tspan></tspan></text>
<path id="path107" d="m4629.5 5866 385-353v176h1167v-176l386 353-386 354v-
↪→177h-1167v177l-385-354z" fill="#729fcf" style=""/><path id="path109" d=
↪→"m4629.5 5866 385-353v176h1167v-176l386 353-386 354v-177h-1167v177l-385-
↪→354z" fill="none" stroke="#3465af" style=""/><path id="path113" d="m4629.
↪→5 7448 385-353v176h1167v-176l386 353-386 354v-177h-1167v177l-385-354z"␣
↪→fill="#729fcf" style=""/><path id="path115" d="m4629.5 7448 385-
↪→353v176h1167v-176l386 353-386 354v-177h-1167v177l-385-354z" fill="none"␣
↪→stroke="#3465af" style=""/><path id="path119" d="m4631.5 8936 385-
↪→353v176h1166v-176l386 353-386 354v-177h-1166v177l-385-354z" fill="#729fcf
↪→" style=""/><path id="path121" d="m4631.5 8936 385-353v176h1166v-176l386␣
↪→353-386 354v-177h-1166v177l-385-354z" fill="none" stroke="#3465af" style=
↪→""/><path id="path125" d="m7872.5 11464 385-353v176h1166v-176l386 353-
↪→386 354v-177h-1166v177l-385-354z"
fill="#729fcf" style=""/><path id="path127" d="m7872.5 11464 385-
↪→353v176h1166v-176l386 353-386 354v-177h-1166v177l-385-354z" fill="none"␣
↪→stroke="#3465af" style=""/><path id="path131" d="m7872.5 9716.8 385-
↪→353v176h1166v-176l386 353-386 354v-177h-1166v177l-385-354z" fill="#729fcf
↪→" style=""/><path id="path133" d="m7872.5 9716.8 385-353v176h1166v-
↪→176l386 353-386 354v-177h-1166v177l-385-354z" fill="none" stroke="#3465af
↪→" style=""/><path id="path137" d="m7872.5 14994 670-353v176h2028v-
↪→176l671 353-671 354v-177h-2028v177l-670-354z" fill="#729fcf" style=""/>
↪→<path id="path139" d="m7872.5 14994 670-353v176h2028v-176l671 353-671␣
↪→354v-177h-2028v177l-670-354z" fill="none" stroke="#3465af" style=""/>
↪→<path id="path143" d="m17534 14105 978.49 840.89-978.49 840.89v-420.86h-
↪→2960.5v420.86l-979.49-840.89 979.49-840.89v420.03h2960.5v-420.03z" fill="
↪→#729fcf" style=""/><path id="path145" d="m17534 14105 978.49
840.89-978.49 840.89v-420.86h-2960.5v420.86l-979.49-840.89 979.49-840.
↪→89v420.03h2960.5v-420.03z" fill="none" stroke="#3465af" stroke-width="25.
↪→77" style=""/><text id="text149" class="TextShape" x="-9922.1533" y="-
↪→644.58704" font-family="Serif, serif" font-size="493.88px"><tspan id=
↪→"tspan151" class="TextParagraph" font-family="Serif, serif" font-size=
↪→"493.88px"><tspan id="tspan153" class="TextPosition" transform="matrix(0,
↪→-1,1,0,8509,40173)" x="14418.847" y="15187.413" font-family="Serif, serif
↪→" font-size="493.88px"><tspan id="tspan155" fill="#000000" font-family=
↪→"Serif, serif" font-size="493.88px">System Bus</tspan></tspan></tspan></
↪→text>
<path id="path159" d="m11062 7098h-1250v-875h2499v875h-1249z" fill="#cff"␣
↪→style=""/><path id="path161" d="m11062 7098h-1250v-875h2499v875h-1249z"␣
↪→fill="none" stroke="#3465af" style=""/><text id="text163" class=
↪→"TextShape" x="-2089.4541" y="-2163.9871" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan165" class="TextParagraph" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan167" class=
↪→"TextPosition" x="10125.546" y="6876.0132" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan169" fill="#000000" font-family=
↪→"Serif, serif" font-size="493.88px">Demux</tspan></tspan></tspan></text>
<path id="path173" d="m7906.5 6601 373-357v178h1130v-178l374 357-374 358v-
↪→179h-1130v179l-373-358z" fill="#729fcf" style=""/><path id="path175" d=
↪→"m7906.5 6601 373-357v178h1130v-178l374 357-374 358v-179h-1130v179l-373-
↪→358z" fill="none" stroke="#3465af" style=""/><path id="path179" d="m7906.
↪→5 5214 373-358v179h1130v-179l374 358-374 358v-179h-1130v179l-373-358z"␣
↪→fill="#729fcf" style=""/><path id="path181" d="m7906.5 5214 373-
↪→358v179h1130v-179l374 358-374 358v-179h-1130v179l-373-358z" fill="none"␣
↪→stroke="#3465af" style=""/><path id="path185" d="m14233 5828h-4421v-
↪→1270h8841v1270h-4420z" fill="#cff" style=""/><path id="path187" d=
↪→"m14233 5828h-4421v-1270h8841v1270h-4420z" fill="none" stroke="#3465af"␣
↪→style=""/><text id="text189" class="TextShape" x="-2089.4541" y="-2163.
↪→9871" font-family="Serif, serif" font-size="493.88px"><tspan id="tspan191
↪→" class="TextParagraph" font-family="Serif, serif"
font-size="493.88px"><tspan id="tspan193" class="TextPosition" x="10696.546
↪→" y="5409.0132" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan195" fill="#000000" font-family="Serif, serif" font-size="493.
↪→88px">Conditional Access Module</tspan></tspan></tspan></text>
<path id="path199" d="m2355.5 11123h-2269v-1224h4537v1224h-2268z" fill="
↪→#ff8080" style=""/><path id="path201" d="m2355.5 11123h-2269v-
↪→1224h4537v1224h-2268z" fill="none" stroke="#3465af" style=""/><text id=
↪→"text203" class="TextShape" x="-2089.4541" y="-2163.9871" font-family=
↪→"Serif, serif" font-size="493.88px"><tspan id="tspan205" class=
↪→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan207" class="TextPosition" x="511.5459" y="10727.013" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan209" fill="
↪→#000000" font-family="Serif, serif" font-size="493.88px">Video encoder</
↪→tspan></tspan></tspan></text>
<path id="path213" d="m4631.5 10470 385-353v176h1166v-176l386 353-386 354v-
↪→177h-1166v177l-385-354z" fill="#729fcf" style=""/><path id="path215" d=
↪→"m4631.5 10470 385-353v176h1166v-176l386 353-386 354v-177h-1166v177l-385-
↪→354z" fill="none" stroke="#3465af" style=""/><path id="path219" d=
↪→"m18702 5381 385-353v176h1166v-176l386 353-386 354v-177h-1166v177l-385-
↪→354z" fill="#729fcf" style=""/><path id="path221" d="m18702 5381 385-
↪→353v176h1166v-176l386 353-386 354v-177h-1166v177l-385-354z" fill="none"␣
↪→stroke="#3465af" style=""/><text id="text225" class="TextShape" x="-1976.
↪→5541" y="-2163.9871" font-family="Serif, serif" font-size="493.88px">
↪→<tspan id="tspan227" class="TextParagraph" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan229" class="TextPosition" x="13.4459
↪→" y="12314.013" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan231" fill="#000000"
font-family="Serif, serif" font-size="493.88px">Radio / Analog TV</tspan></
↪→tspan></tspan></text>
<text id="text235" class="TextShape" x="-2089.4541" y="-2163.9871" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan237" class=
↪→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan239" class="TextPosition" x="12866.546" y="8560.0127" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan241" fill="
↪→#000000" font-family="Serif, serif" font-size="493.88px">Digital TV</
↪→tspan></tspan></tspan></text>
<text id="text245" class="TextShape" x="-8919.0537" y="-1373.787" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan247" class=
↪→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan249" class="TextPosition" x="5804.9458" y="17793.213" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan251" fill="
↪→#000000" font-family="Serif, serif" font-size="493.88px">PS.: picture is␣
↪→not complete: other blocks may be present</tspan></tspan></tspan></text>
<text id="text255" class="TextShape" x="-2089.4541" y="-2163.9871" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan257" class=
↪→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan259" class="TextPosition" x="2109.5459" y="16397.014" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan261" fill="
↪→#000000" font-family="Serif, serif" font-size="493.88px">Webcam</tspan></
↪→tspan></tspan></text>
<path id="path265" d="m12463 13926h-2650v-1412h5299v1412h-2649z" fill="#f90
↪→" style=""/><path id="path267" d="m12463 13926h-2650v-1412h5299v1412h-
↪→2649z" fill="none" stroke="#3465af" style=""/><text id="text269" class=
↪→"TextShape" x="-2089.4541" y="-2446.187" font-family="Serif, serif" font-
↪→size="493.88px"><tspan id="tspan271" class="TextParagraph" font-family=
↪→"Serif, serif" font-size="493.88px"><tspan id="tspan273" class=
↪→"TextPosition" x="10175.546" y="13435.813" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan275" fill="#000000" font-family=
↪→"Serif, serif" font-size="493.88px">Processing blocks</tspan></tspan></
↪→tspan></text>
<path id="path279" d="m7872.5 13208 385-353v176h1166v-176l386 353-386 354v-
↪→177h-1166v177l-385-354z" fill="#729fcf" style=""/><path id="path281" d=
↪→"m7872.5 13208 385-353v176h1166v-176l386 353-386 354v-177h-1166v177l-385-
↪→354z" fill="none" stroke="#3465af" style=""/><path id="path285" d="m4612.
↪→5 14790 397-353v176h1201v-176l398 353-398 354v-177h-1201v177l-397-354z"␣
↪→fill="#729fcf" style=""/><path id="path287" d="m4612.5 14790 397-
↪→353v176h1201v-176l398 353-398 354v-177h-1201v177l-397-354z" fill="none"␣
↪→stroke="#3465af" style=""/><text id="text291" class="TextShape" x="-2428.
↪→0542" y="-2163.9871" font-family="Serif, serif" font-size="493.88px">
↪→<tspan id="tspan293" class="TextParagraph" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan295" class="TextPosition" x="20421.
↪→945" y="6628.0132" font-family="Serif, serif" font-size="493.88px">
↪→<tspan id="tspan297" fill="#000000"
font-family="Serif, serif" font-size="493.88px">Smartcard</tspan></tspan></
↪→tspan></text>
<path id="path301" d="m623.32 436.01c-334.6 0-669.2 333-669.2 666v2668c0␣
↪→333 334.6 666 669.2 666h18456c334.6 0 670.2-333 670.2-666v-2668c0-333-
↪→335.6-666-670.2-666h-18456z" fill="#fcf" style=""/><path id="path305" d=
↪→"m3031.5 2991h-1614v-1816h3227v1816h-1613z" fill="#ff8080" style=""/>
↪→<path id="path307" d="m3031.5 2991h-1614v-1816h3227v1816h-1613z" fill=
↪→"none" stroke="#3465af" style=""/><text id="text309" class="TextShape" x=
↪→"-2089.4541" y="-2163.9871" font-family="Serif, serif" font-size="493.
↪→88px"><tspan id="tspan311" class="TextParagraph"><tspan id="tspan313"␣
↪→class="TextPosition" x="2284.5459" y="1947.0129" font-family="Serif,␣
↪→serif" font-size="493.88px"><tspan id="tspan315" fill="#000000" font-
↪→family="Serif, serif" font-size="493.88px">Tuner</tspan></tspan></tspan>
↪→<tspan id="tspan317" class="TextParagraph"><tspan id="tspan319" class=
↪→"TextPosition" x="2061.5459" y="2650.0129"
font-family="Serif, serif" font-size="493.88px"><tspan id="tspan321" fill="
↪→#000000" font-family="Serif, serif" font-size="493.88px">FM/TV</tspan></
↪→tspan></tspan></text>
<path id="path325" d="m812.55 1538c0 111 40 202 88 202h530c48 0 89-91 89-
↪→202 0-110-41-202-89-202h-530c-48 0-88 92-88 202z" fill="#ff8080" style="
↪→"/><path id="path327" d="m812.55 1538c0 111 40 202 88 202h530c48 0 89-91␣
↪→89-202 0-110-41-202-89-202h-530c-48 0-88 92-88 202z" fill="none" stroke="
↪→#3465af" style=""/><path id="path329" d="m812.55 1538c0 111 40 202 88␣
↪→202s88-91 88-202c0-110-40-202-88-202s-88 92-88 202z" fill="#ffb3b3"␣
↪→style=""/><path id="path331" d="m812.55 1538c0 111 40 202 88 202s88-91␣
↪→88-202c0-110-40-202-88-202s-88 92-88 202z" fill="none" stroke="#3465af"␣
↪→style=""/><path id="path335" d="m813.55 2103c0 110 40 202 88 202h530c48␣
↪→0 89-92 89-202s-41-203-89-203h-530c-48 0-88 93-88 203z" fill="#ff8080"␣
↪→style=""/><path id="path337" d="m813.55 2103c0 110 40 202 88 202h530c48␣
↪→0 89-92 89-202s-41-203-89-203h-530c-48 0-88 93-88 203z" fill="none"␣
↪→stroke="#3465af" style=""/><path
id="path339" d="m813.55 2103c0 110 40 202 88 202s88-92 88-202-40-203-88-
↪→203-88 93-88 203z" fill="#ffb3b3" style=""/><path id="path341" d="m813.
↪→55 2103c0 110 40 202 88 202s88-92 88-202-40-203-88-203-88 93-88 203z"␣
↪→fill="none" stroke="#3465af" style=""/><path id="path345" d="m4629.5␣
↪→2032 385-353v176h1167v-176l386 353-386 354v-177h-1167v177l-385-354z"␣
↪→fill="#729fcf" style=""/><path id="path347" d="m4629.5 2032 385-
↪→353v176h1167v-176l386 353-386 354v-177h-1167v177l-385-354z" fill="none"␣
↪→stroke="#3465af" style=""/><path id="path351" d="m7889.5 1986 402-
↪→368v184h1217v-184l403 368-403 369v-185h-1217v185l-402-369z" fill="#729fcf
↪→" style=""/><path id="path353" d="m7889.5 1986 402-368v184h1217v-184l403␣
↪→368-403 369v-185h-1217v185l-402-369z" fill="none" stroke="#3465af" style=
↪→""/><path id="path357" d="m14411 4025h-4500v-1389h9e3v1389h-4500z" fill="
↪→#cff" style=""/><path id="path359" d="m14411
4025h-4500v-1389h9e3v1389h-4500z" fill="none" stroke="#3465af" style=""/>
↪→<text id="text361" class="TextShape" x="-2089.4541" y="-2163.9871" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan363" class=
↪→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan365" class="TextPosition" x="9961.5459" y="3546.0129" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan367" fill="
↪→#000000" font-family="Serif, serif" font-size="493.88px">Satellite␣
↪→Equipment Control (SEC)</tspan></tspan></tspan></text>
<path id="path371" d="m11311 2436h-1400v-1e3h2800v1e3h-1400z" fill="#cff"␣
↪→style=""/><path id="path373" d="m11311 2436h-1400v-1e3h2800v1e3h-1400z"␣
↪→fill="none" stroke="#3465af" style=""/><text id="text375" class=
↪→"TextShape" x="-2089.4541" y="-2163.9871" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan377" class="TextParagraph" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan379" class=
↪→"TextPosition" x="10375.546" y="2152.0129" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan381" fill="#000000" font-family=
↪→"Serif, serif" font-size="493.88px">Demod</tspan></tspan></tspan></text>
<path id="path385" d="m7889.5 3287 402-368v184h1217v-184l403 368-403 369v-
↪→185h-1217v185l-402-369z" fill="#729fcf" style=""/><path id="path387" d=
↪→"m7889.5 3287 402-368v184h1217v-184l403 368-403 369v-185h-1217v185l-402-
↪→369z" fill="none" stroke="#3465af" style=""/><path id="path389" d="m7906.
↪→5 9121v7302h-1270v-14605h1270v7303z" fill="#ff9" style=""/><path id=
↪→"path391" d="m7906.5 9121v7302h-1270v-14605h1270v7303z" fill="none"␣
↪→stroke="#3465af" style=""/><text id="text393" class="TextShape"␣
↪→transform="rotate(-90)" x="-20792.584" y="-6589.021" font-family="Serif,␣
↪→serif" font-size="493.88px"><tspan id="tspan395" class="TextParagraph"␣
↪→font-family="Serif, serif" font-size="493.88px"><tspan id="tspan397"␣
↪→class="TextPosition" transform="matrix(0,-1,1,0,-4473,23627)" x="-11215.
↪→646" y="7460.9849" font-family="Serif, serif" font-size="493.88px">
↪→<tspan id="tspan399" fill="#000000" font-family="Serif,
serif" font-size="493.88px">I2C Bus (control bus)</tspan></tspan></tspan></
↪→text>
<text id="text403" class="TextShape" x="-2145.854" y="-2163.9871" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan405" class=
↪→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan407" class="TextPosition" x="7245.146" y="1114.0129" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan409" fill="
↪→#000000" font-family="Serif, serif" font-size="493.88px">Digital TV␣
↪→Frontend</tspan></tspan></tspan></text>
<path id="path415" d="m863.15 636.14c-18.27 0-35.525 0.99994-53.795 2.9998
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path417" d="m776.87 644.14c-17.255 2.9998-35.525 6.9996-52.78 11.999"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path419" d="m692.63 666.14c-16.24 5.9996-33.495 11.999-49.735 19.999"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path421" d="m613.46 700.14c-15.225 7.9995-31.465 16.999-46.69 26.998"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path423" d="m539.36 745.14c-14.21 9.9994-28.42 20.999-42.63 31.998"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path425" d="m471.36 798.14c-13.195 11.999-26.39 23.999-38.57 36.998"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path427" d="m410.46 859.13c-11.165 12.999-22.33
26.998-33.495 40.998" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path429" d="m357.68 927.13c-10.15 13.999-19.285 28.
↪→998-28.42 44.997" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path431" d="m314.03 1000.1c-8.12 15.999-15.225 31.
↪→998-22.33 48.997" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path433" d="m280.54 1079.1c-5.075 16.999-10.15 33.
↪→998-14.21 50.997" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path435" d="m260.24 1162.1c-3.045 17.999-5.075 34.
↪→998-6.09 52.997" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path437" d="m254.15 1247.1v52.997" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path439" d=
↪→"m254.15 1333.1v52.997" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path441" d="m254.15 1418.1v52.997"
fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path443" d="m254.15 1504.1v52.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path445" d="m254.15 1589.1v52.997"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path447" d="m254.15 1675.1v52.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path449" d="m254.15 1760.1v52.997"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path451" d="m254.15 1845.1v53.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path453" d="m254.15 1931.1v52.997"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path455" d="m254.15 2016.1v52.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path457" d="m254.15 2102.1v52.997"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432"
style=""/><path id="path459" d="m254.15 2187.1v52.997" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path461" d="m254.15␣
↪→2273v52.997" fill="none" stroke="#3465af" stroke-width="28.432" style=""/
↪→><path id="path463" d="m254.15 2358v52.997" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path465" d="m254.15 2443v53.997
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path467" d="m254.15 2529v52.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path469" d="m254.15 2614v52.997" fill=
↪→"none" stroke="#3465af" stroke-width="28.432" style=""/><path id="path471
↪→" d="m254.15 2700v52.997" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path473" d="m254.15 2785v52.997" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path475" d=
↪→"m254.15 2871v52.997" fill="none"
stroke="#3465af" stroke-width="28.432" style=""/><path id="path477" d=
↪→"m254.15 2956v52.997" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path479" d="m254.15 3041v53.997" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path481" d="m254.15␣
↪→3127v52.997" fill="none" stroke="#3465af" stroke-width="28.432" style=""/
↪→><path id="path483" d="m254.15 3212v52.997" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path485" d="m254.15 3298v52.997
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path487" d="m254.15 3383v52.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path489" d="m254.15 3469v52.997" fill=
↪→"none" stroke="#3465af" stroke-width="28.432" style=""/><path id="path491
↪→" d="m254.15 3554v52.997" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path493"
d="m254.15 3639c0 17.999 1.015 35.998 3.045 52.997" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path495" d="m262.27␣
↪→3724c4.06 17.999 8.12 34.998 13.195 51.997" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path497" d="m285.61 3807c6.09␣
↪→15.999 13.195 32.998 20.3 48.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path499" d="m321.14 3885c8.12 14.999␣
↪→17.255 30.998 27.405 45.997" fill="none" stroke="#3465af" stroke-width=
↪→"28.432" style=""/><path id="path501" d="m366.81 3957.9c10.15 13.999 21.
↪→315 27.998 32.48 41.998" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path503" d="m420.61 4023.9c12.18 12.999 25.375␣
↪→25.998 38.57 37.998" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path505" d="m483.54 4083.9c13.195 10.999 27.405 22.
↪→999 41.615 32.998" fill="none"
stroke="#3465af" stroke-width="28.432" style=""/><path id="path507" d=
↪→"m552.56 4135.9c14.21 9.9994 29.435 18.999 45.675 26.998" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path509" d=
↪→"m627.67 4178.9c15.225 6.9996 32.48 14.999 48.72 20.999" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path511" d=
↪→"m707.85 4210.9c17.255 4.9997 34.51 9.9994 51.765 13.999" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path513" d=
↪→"m792.1 4230.9c17.255 1.9999 35.525 3.9998 53.795 4.9997" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path515" d=
↪→"m878.37 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path517" d="m964.65 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path519" d=
↪→"m1051.9 4235.9h53.795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path521" d="m1138.2 4235.9h53.795
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path523" d="m1225.5 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path525" d="m1311.8 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path527" d="m1398.1 4235.9h54.81" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path529" d="m1485.3 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path531" d="m1571.6 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path533" d="m1658.9 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path535" d="m1745.2 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path537"
d="m1832.5 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path539" d="m1918.7 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path541" d=
↪→"m2005 4235.9h54.81" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path543" d="m2092.3 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path545" d=
↪→"m2178.6 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path547" d="m2265.9 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path549" d=
↪→"m2352.2 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path551" d="m2439.4 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path553" d=
↪→"m2525.7 4235.9h53.795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path555" d="m2612 4235.9h54.81"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path557" d="m2699.3 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path559" d="m2785.6 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path561" d="m2872.8 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path563" d="m2959.1 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path565" d="m3046.4 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path567" d="m3132.7 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path569" d="m3220 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path571"
d="m3306.3 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path573" d="m3392.5 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path575" d=
↪→"m3479.8 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path577" d="m3566.1 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path579" d=
↪→"m3653.4 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path581" d="m3739.7 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path583" d=
↪→"m3826.9 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path585" d="m3913.2 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path587" d=
↪→"m3999.5 4235.9h53.795" fill="none"
stroke="#3465af" stroke-width="28.432" style=""/><path id="path589" d=
↪→"m4086.8 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path591" d="m4173.1 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path593" d=
↪→"m4260.4 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path595" d="m4346.6 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path597" d=
↪→"m4433.9 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path599" d="m4520.2 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path601" d=
↪→"m4606.5 4235.9h54.81" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path603" d="m4693.8 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432"
style=""/><path id="path605" d="m4780 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path607" d="m4867.3␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path609" d="m4953.6 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path611" d="m5040.9␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path613" d="m5127.2 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path615" d="m5213.4␣
↪→4235.9h54.81" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path617" d="m5300.7 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path619" d="m5387␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path621" d="m5474.3 4235.9h53.795"
fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path623" d="m5560.6 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path625" d="m5647.9 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path627" d="m5734.1 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path629" d="m5820.4 4235.9h54.81"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path631" d="m5907.7 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path633" d="m5994 4235.9h53.795" fill=
↪→"none" stroke="#3465af" stroke-width="28.432" style=""/><path id="path635
↪→" d="m6081.3 4235.9h53.795" fill="none" stroke="#3465af" stroke-width=
↪→"28.432" style=""/><path id="path637" d="m6167.5 4235.9h53.795" fill=
↪→"none" stroke="#3465af" stroke-width="28.432"
style=""/><path id="path639" d="m6254.8 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path641" d="m6341.1␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path643" d="m6427.4 4235.9h54.81" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path645" d="m6514.7␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path647" d="m6600.9 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path649" d="m6688.2␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path651" d="m6774.5 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path653" d="m6861.8␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path655" d="m6948.1
4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/
↪→><path id="path657" d="m7035.4 4235.9h53.795" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path659" d="m7121.6 4235.
↪→9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/>
↪→<path id="path661" d="m7207.9 4235.9h53.795" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path663" d="m7295.2 4235.
↪→9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/>
↪→<path id="path665" d="m7381.5 4235.9h53.795" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path667" d="m7468.8 4235.
↪→9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/>
↪→<path id="path669" d="m7555 4235.9h53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path671" d="m7642.3 4235.9h53.
↪→795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path673" d="m7728.6 4235.9h53.795
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path675" d="m7814.9 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path677" d="m7902.2 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path679" d="m7988.4 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path681" d="m8075.7 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path683" d="m8162 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path685" d="m8249.3 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path687" d="m8335.6 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path689"
d="m8421.9 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path691" d="m8509.1 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path693" d=
↪→"m8595.4 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path695" d="m8682.7 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path697" d=
↪→"m8769 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path699" d="m8856.3 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path701" d=
↪→"m8942.5 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path703" d="m9028.8 4235.9h54.81" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path705" d=
↪→"m9116.1 4235.9h53.795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path707" d="m9202.4 4235.9h53.795
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path709" d="m9289.7 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path711" d="m9376 4235.9h53.795" fill=
↪→"none" stroke="#3465af" stroke-width="28.432" style=""/><path id="path713
↪→" d="m9463.2 4235.9h53.795" fill="none" stroke="#3465af" stroke-width=
↪→"28.432" style=""/><path id="path715" d="m9549.5 4235.9h53.795" fill=
↪→"none" stroke="#3465af" stroke-width="28.432" style=""/><path id="path717
↪→" d="m9635.8 4235.9h54.81" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path719" d="m9723.1 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path721" d=
↪→"m9809.4 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path723"
d="m9896.6 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path725" d="m9982.9 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path727" d=
↪→"m10070 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path729" d="m10156 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path731" d=
↪→"m10243 4235.9h54.81" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path733" d="m10330 4235.9h53.795" fill="none" stroke=
↪→"#3465af" stroke-width="28.432" style=""/><path id="path735" d="m10416␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path737" d="m10504 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path739" d="m10590␣
↪→4235.9h53.795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path741" d="m10677 4235.9h53.795
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path743" d="m10763 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path745" d="m10850 4235.9h54.81" fill=
↪→"none" stroke="#3465af" stroke-width="28.432" style=""/><path id="path747
↪→" d="m10937 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path749" d="m11023 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path751" d=
↪→"m11111 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path753" d="m11197 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path755" d=
↪→"m11284 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path757" d="m11370
4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/
↪→><path id="path759" d="m11458 4235.9h53.795" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path761" d="m11544 4235.9h53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path763" d="m11630 4235.9h53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path765" d="m11718 4235.9h53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path767" d="m11804 4235.9h53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path769" d="m11891 4235.9h53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path771" d="m11977 4235.9h53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path773" d="m12065 4235.9h53.
↪→795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path775" d="m12151 4235.9h53.795
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path777" d="m12237 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path779" d="m12325 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path781" d="m12411 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path783" d="m12498 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path785" d="m12584 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path787" d="m12672 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path789" d="m12758 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path791"
d="m12844 4235.9h54.81" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path793" d="m12931 4235.9h53.795" fill="none" stroke=
↪→"#3465af" stroke-width="28.432" style=""/><path id="path795" d="m13018␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path797" d="m13105 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path799" d="m13191␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path801" d="m13279 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path803" d="m13365␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path805" d="m13451 4235.9h54.81" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path807" d="m13538 4235.9h53.
↪→795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path809" d="m13625 4235.9h53.795
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path811" d="m13712 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path813" d="m13798 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path815" d="m13886 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path817" d="m13972 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path819" d="m14058 4235.9h54.81" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path821" d="m14145 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path823" d="m14232 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path825" d="m14319
4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/
↪→><path id="path827" d="m14405 4235.9h53.795" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path829" d="m14493 4235.9h53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path831" d="m14579 4235.9h53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path833" d="m14665 4235.9h54.81
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path835" d="m14752 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path837" d="m14839 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path839" d="m14926 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path841" d="m15012 4235.9h53.795"␣
↪→fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path843" d="m15100 4235.9h53.795
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path845" d="m15186 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path847" d="m15272 4235.9h54.81" fill=
↪→"none" stroke="#3465af" stroke-width="28.432" style=""/><path id="path849
↪→" d="m15359 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path851" d="m15446 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path853" d=
↪→"m15533 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path855" d="m15619 4235.9h53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path857" d=
↪→"m15707 4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path859" d="m15793
4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/
↪→><path id="path861" d="m15880 4235.9h53.795" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path863" d="m15966 4235.9h53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path865" d="m16053 4235.9h53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path867" d="m16140 4235.9h53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path869" d="m16226 4235.9h53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path871" d="m16313 4235.9h53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path873" d="m16400 4235.9h53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path875" d="m16487 4235.9h53.
↪→795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path877" d="m16573 4235.9h53.795
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path879" d="m16660 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path881" d="m16747 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path883" d="m16833 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path885" d="m16920 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path887" d="m17007 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path889" d="m17094 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path891" d="m17180 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path893"
d="m17267 4235.9h54.81" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path895" d="m17354 4235.9h53.795" fill="none" stroke=
↪→"#3465af" stroke-width="28.432" style=""/><path id="path897" d="m17440␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path899" d="m17527 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path901" d="m17614␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path903" d="m17701 4235.9h53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path905" d="m17787␣
↪→4235.9h53.795" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path907" d="m17874 4235.9h54.81" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path909" d="m17961 4235.9h53.
↪→795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path911" d="m18047 4235.9h53.795
↪→" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path913" d="m18134 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path915" d="m18221 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path917" d="m18308 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path919" d="m18394 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path921" d="m18481 4235.9h54.81" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path923" d="m18568 4235.9h53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path925" d="m18654 4235.9h53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path927" d="m18741
4235.9c17.255-0.9999 35.525-1.9999 53.795-4.9997" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path929" d="m18828␣
↪→4225.9c17.255-3.9998 34.51-8.9995 51.765-13.999" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path931" d="m18911␣
↪→4200.9c16.24-5.9996 32.48-12.999 48.72-20.999" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path933" d="m18989␣
↪→4164.9c15.225-7.9996 31.465-16.999 45.675-26.998" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path935" d="m19062␣
↪→4118.9c14.21-9.9994 28.42-20.999 42.63-31.998" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path937" d="m19129␣
↪→4064.9c13.195-11.999 25.375-24.998 37.555-37.998" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path939" d="m19189␣
↪→4002.9c11.165-13.999 22.33-27.998 33.495-41.998" fill="none"
stroke="#3465af" stroke-width="28.432" style=""/><path id="path941" d=
↪→"m19241 3933.9c10.15-14.999 19.285-29.998 27.405-44.997" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path943" d=
↪→"m19283 3860c7.105-15.999 14.21-32.998 20.3-48.997" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path945" d="m19315␣
↪→3780c5.075-16.999 9.135-33.998 13.195-50.997" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path947" d="m19333 3697c2.03-
↪→17.999 4.06-34.998 4.06-52.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path949" d="m19337 3612v-53.997" fill=
↪→"none" stroke="#3465af" stroke-width="28.432" style=""/><path id="path951
↪→" d="m19337 3526v-52.997" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path953" d="m19337 3441v-52.997" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432"
style=""/><path id="path955" d="m19337 3355v-52.997" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path957" d="m19337␣
↪→3270v-52.997" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path959" d="m19337 3184v-52.997" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path961" d="m19337 3099v-52.
↪→997" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path963" d="m19337 3014v-53.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path965" d="m19337 2928v-52.997" fill=
↪→"none" stroke="#3465af" stroke-width="28.432" style=""/><path id="path967
↪→" d="m19337 2843v-52.997" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path969" d="m19337 2757v-52.997" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path971" d=
↪→"m19337 2672v-52.997" fill="none"
stroke="#3465af" stroke-width="28.432" style=""/><path id="path973" d=
↪→"m19337 2586v-52.997" fill="none" stroke="#3465af" stroke-width="28.432"␣
↪→style=""/><path id="path975" d="m19337 2501v-52.997" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path977" d="m19337␣
↪→2415v-52.997" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path979" d="m19337 2330v-52.997" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path981" d="m19337 2245v-52.
↪→997" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path983" d="m19337 2159.1v-52.997" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path985" d="m19337 2074.1v-52.
↪→997" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path987" d="m19337 1988.1v-52.997" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path
id="path989" d="m19337 1903.1v-52.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path991" d="m19337 1817.1v-52.997"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path993" d="m19337 1732.1v-52.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path995" d="m19337 1647.1v-52.997"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path997" d="m19337 1561.1v-52.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path999" d="m19337 1476.1v-52.997"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1001" d="m19337 1390.1v-52.997" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1003" d="m19337 1305.1v-52.997"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1005" d="m19337
1219.1c-1.015-16.999-3.045-34.998-5.075-51.997" fill="none" stroke="#3465af
↪→" stroke-width="28.432" style=""/><path id="path1007" d="m19326 1135.1c-
↪→4.06-16.999-8.12-34.998-14.21-50.997" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1009" d="m19301 1053.1c-6.
↪→09-15.999-13.195-32.998-21.315-48.997" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1011" d="m19264 976.12c-9.
↪→135-15.999-18.27-30.998-28.42-45.997" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1013" d="m19216 904.13c-10.
↪→15-13.999-21.315-27.998-33.495-41.997" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1015" d="m19161 838.13c-12.
↪→18-12.999-24.36-24.998-37.555-36.998" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1017" d="m19098 780.14c-14.
↪→21-11.999-28.42-21.999-42.63-32.998" fill="none"
stroke="#3465af" stroke-width="28.432" style=""/><path id="path1019" d=
↪→"m19028 729.14c-15.225-8.9995-30.45-17.999-46.69-26.998" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1021" d=
↪→"m18951 688.14c-16.24-7.9995-32.48-13.999-49.735-19.999" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1023" d=
↪→"m18870 657.14c-17.255-4.9997-34.51-8.9995-51.765-11.999" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1025" d=
↪→"m18786 640.14c-18.27-2.9998-35.525-3.9998-53.795-3.9998" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1027" d=
↪→"m18700 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path1029" d="m18612 636.14h-53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1031" d=
↪→"m18526 636.14h-53.795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path1033" d="m18439 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1035" d="m18353 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1037" d="m18266 636.14h-54.
↪→81" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1039" d="m18179 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1041" d="m18093 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1043" d="m18005 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1045" d="m17919 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1047" d="m17832 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path
id="path1049" d="m17746 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1051" d="m17659 636.14h-54.
↪→81" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1053" d="m17572 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1055" d="m17486 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1057" d="m17399 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1059" d="m17312 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1061" d="m17225 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1063" d="m17139 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1065" d="m17052 636.14h-54.81"
fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1067" d="m16965 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1069" d="m16879 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1071" d="m16792 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1073" d="m16705 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1075" d="m16618 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1077" d="m16532 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1079" d="m16445 636.14h-54.81" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1081" d="m16358 636.14h-53.795"␣
↪→fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path1083" d="m16272 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1085" d="m16185 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1087" d="m16098 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1089" d="m16011 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1091" d="m15925 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1093" d="m15837 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1095" d="m15751 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1097" d="m15665 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path
id="path1099" d="m15578 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1101" d="m15491 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1103" d="m15404 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1105" d="m15318 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1107" d="m15230 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1109" d="m15144 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1111" d="m15058 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1113" d="m14971 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1115" d="m14884 636.14h-53.795"
fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1117" d="m14797 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1119" d="m14711 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1121" d="m14624 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1123" d="m14537 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1125" d="m14451 636.14h-54.81" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1127" d="m14364 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1129" d="m14277 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1131" d="m14190 636.14h-53.795"␣
↪→fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path1133" d="m14104 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1135" d="m14017 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1137" d="m13930 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1139" d="m13844 636.14h-54.81" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1141" d="m13757 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1143" d="m13670 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1145" d="m13583 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1147" d="m13497 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path
id="path1149" d="m13410 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1151" d="m13323 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1153" d="m13237 636.14h-54.81" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1155" d="m13150 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1157" d="m13063 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1159" d="m12976 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1161" d="m12890 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1163" d="m12803 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1165" d="m12716 636.14h-53.795"
fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1167" d="m12630 636.14h-54.81" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1169" d="m12543 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1171" d="m12456 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1173" d="m12369 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1175" d="m12283 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1177" d="m12196 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1179" d="m12109 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1181" d="m12022 636.14h-53.795"␣
↪→fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path1183" d="m11936 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1185" d="m11850 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1187" d="m11762 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1189" d="m11676 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1191" d="m11589 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1193" d="m11502 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1195" d="m11415 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1197" d="m11329 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path
id="path1199" d="m11243 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1201" d="m11155 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1203" d="m11069 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1205" d="m10982 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1207" d="m10895 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1209" d="m10808 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1211" d="m10722 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1213" d="m10636 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1215" d="m10548 636.14h-53.795"
fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1217" d="m10462 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1219" d="m10375 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1221" d="m10288 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1223" d="m10201 636.14h-53.795"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1225" d="m10115 636.14h-53.795" fill="none" stroke="#3465af" stroke-
↪→width="28.432" style=""/><path id="path1227" d="m10029 636.14h-54.81"␣
↪→fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1229" d="m9941.3 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1231" d="m9855 636.14h-53.
↪→795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path1233" d="m9767.7 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1235" d="m9681.5 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1237" d="m9594.2 636.14h-
↪→53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/>
↪→<path id="path1239" d="m9507.9 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1241" d="m9421.6␣
↪→636.14h-54.81" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path1243" d="m9334.3 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1245" d="m9248.1␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><path id="path1247" d="m9160.8 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432"
style=""/><path id="path1249" d="m9074.5 636.14h-53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1251" d=
↪→"m8987.2 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1253" d="m8900.9 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1255" d=
↪→"m8814.7 636.14h-54.81" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path1257" d="m8727.4 636.14h-53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1259" d=
↪→"m8641.1 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1261" d="m8553.8 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1263" d=
↪→"m8467.5 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1265"
d="m8380.2 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1267" d="m8294 636.14h-53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1269" d=
↪→"m8207.7 636.14h-54.81" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path1271" d="m8120.4 636.14h-53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1273" d=
↪→"m8034.1 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1275" d="m7946.8 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1277" d=
↪→"m7860.6 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1279" d="m7773.3 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1281" d=
↪→"m7687 636.14h-53.795" fill="none"
stroke="#3465af" stroke-width="28.432" style=""/><path id="path1283" d=
↪→"m7599.7 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1285" d="m7513.4 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1287" d=
↪→"m7427.2 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1289" d="m7339.9 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1291" d=
↪→"m7253.6 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1293" d="m7166.3 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1295" d=
↪→"m7080 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path1297" d="m6992.7 636.14h-53.795" fill="none"␣
↪→stroke="#3465af"
stroke-width="28.432" style=""/><path id="path1299" d="m6906.5 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1301" d="m6820.2 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1303" d="m6732.9 636.14h-
↪→53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/>
↪→<path id="path1305" d="m6646.6 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1307" d="m6559.3␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><path id="path1309" d="m6473.1 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1311" d="m6385.8␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><path id="path1313" d="m6299.5 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432"
style=""/><path id="path1315" d="m6213.2 636.14h-54.81" fill="none" stroke=
↪→"#3465af" stroke-width="28.432" style=""/><path id="path1317" d="m6125.9␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><path id="path1319" d="m6039.6 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1321" d="m5952.4␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><path id="path1323" d="m5866.1 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1325" d="m5778.8␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><path id="path1327" d="m5692.5 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1329" d="m5606.2␣
↪→636.14h-54.81" fill="none" stroke="#3465af" stroke-width="28.432" style="
↪→"/><path id="path1331"
d="m5519 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path1333" d="m5432.7 636.14h-53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1335" d=
↪→"m5345.4 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1337" d="m5259.1 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1339" d=
↪→"m5171.8 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1341" d="m5085.5 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1343" d=
↪→"m4999.3 636.14h-54.81" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path1345" d="m4912 636.14h-53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1347" d=
↪→"m4825.7 636.14h-53.795" fill="none"
stroke="#3465af" stroke-width="28.432" style=""/><path id="path1349" d=
↪→"m4738.4 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1351" d="m4652.1 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1353" d=
↪→"m4564.9 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1355" d="m4478.6 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1357" d=
↪→"m4392.3 636.14h-54.81" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path1359" d="m4305 636.14h-53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1361" d=
↪→"m4218.7 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1363" d="m4131.4 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432"
style=""/><path id="path1365" d="m4045.2 636.14h-53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1367" d=
↪→"m3957.9 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1369" d="m3871.6 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1371" d=
↪→"m3785.3 636.14h-54.81" fill="none" stroke="#3465af" stroke-width="28.432
↪→" style=""/><path id="path1373" d="m3698 636.14h-53.795" fill="none"␣
↪→stroke="#3465af" stroke-width="28.432" style=""/><path id="path1375" d=
↪→"m3611.8 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1377" d="m3524.5 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1379" d=
↪→"m3438.2 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1381"
d="m3350.9 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1383" d="m3264.6 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1385" d=
↪→"m3177.3 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1387" d="m3091.1 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1389" d=
↪→"m3004.8 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1391" d="m2917.5 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1393" d=
↪→"m2831.2 636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.
↪→432" style=""/><path id="path1395" d="m2743.9 636.14h-53.795" fill="none
↪→" stroke="#3465af" stroke-width="28.432" style=""/><path id="path1397" d=
↪→"m2657.7 636.14h-53.795"
fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path id=
↪→"path1399" d="m2570.4 636.14h-53.795" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1401" d="m2484.1 636.14h-
↪→53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/>
↪→<path id="path1403" d="m2397.8 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1405" d="m2310.5␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><path id="path1407" d="m2224.3 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1409" d="m2137␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><path id="path1411" d="m2050.7 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1413" d="m1963.4␣
↪→636.14h-53.795" fill="none" stroke="#3465af"
stroke-width="28.432" style=""/><path id="path1415" d="m1877.1 636.14h-53.
↪→795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/><path␣
↪→id="path1417" d="m1790.9 636.14h-54.81" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1419" d="m1703.6 636.14h-
↪→53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/>
↪→<path id="path1421" d="m1617.3 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1423" d="m1530␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><path id="path1425" d="m1443.7 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1427" d="m1356.4␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><path id="path1429" d="m1270.2 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path
id="path1431" d="m1183.9 636.14h-54.81" fill="none" stroke="#3465af"␣
↪→stroke-width="28.432" style=""/><path id="path1433" d="m1096.6 636.14h-
↪→53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=""/>
↪→<path id="path1435" d="m1010.3 636.14h-53.795" fill="none" stroke="
↪→#3465af" stroke-width="28.432" style=""/><path id="path1437" d="m923.03␣
↪→636.14h-53.795" fill="none" stroke="#3465af" stroke-width="28.432" style=
↪→""/><g id="g4044" style=""><rect id="rect1441" x="21109" y="4753.1"␣
↪→width="1213.6" height="1100.7" fill="#f3e777" style=""/><path id=
↪→"path1443" d="m20656 5536.4v-405.46l150.7-169.16c82.886-93.039 170.53-
↪→186.62 194.77-207.96l44.069-38.798 783.23-0.086 783.23-0.086v1227h-1956v-
↪→405.46zm1027.7 136.98v-78.372l-169.91 4.925-169.91 4.9249-5.09 45.854c-8.
↪→249 74.303 46.711 101.04 207.69 101.04h137.21v-78.372zm235.86-262.94 4.
↪→495-341.31 207.2-8.6408 207.2-8.6408
5.144-46.443c9.596-86.615-41.863-102.05-322.02-96.607l-246.71 4.7956-4.438␣
↪→419.08-4.439 419.08h149.08l4.494-341.31zm391.3 313.72c26.41-19.286 36.
↪→255-41.399 32.697-73.447l-5.09-45.854h-348.1l-5.38 48.984c-9.97 90.771 0.
↪→993 97.91 150.36 97.91 99.305 0 148.27-7.6982 175.52-27.594zm-627.16-274.
↪→84v-77.768h-348.1v66.246c0 36.436 4.973 71.431 11.051 77.768 6.078 6.
↪→3366 84.401 11.521 174.05 11.521h163v-77.768zm659.89-4.9154 5.125-74.042-
↪→179.18 4.9155-179.18 4.9155-5.38 48.984c-10.473 95.348-2.259 99.57 183.
↪→28 94.197l170.2-4.9284 5.125-74.042zm-659.89-237.63v-78.372l-169.91 4.
↪→925-169.91 4.925-5.097 73.447-5.097 73.447h350v-78.372zm659.86 4.925-5.
↪→097-73.447h-348.1l-5.38 48.984c-10.289 93.673-2.146 97.91 188.15 97.
↪→91h175.52l-5.097-73.447zm-659.86-228.98v-77.768h-137.21c-97.358 0-147.91␣
↪→7.8138-174.05 26.902-34.952 25.523-49.645 92.242-25.79 117.11 6.078 6.
↪→3366 84.401 11.521 174.05
11.521h163v-77.768z" fill="#ca4677" style=""/></g><text id="text1489"␣
↪→class="TextShape" transform="scale(1.1036 .90616)" x="171.41566" y="9913.
↪→7109" fill-rule="evenodd" font-family="Serif, serif" font-size="493.87px
↪→" stroke-linejoin="round" stroke-width="28.222"><tspan id="tspan1491"␣
↪→class="TextParagraph" font-family="Serif, serif" font-size="493.87px"/></
↪→text>
<g id="g4048" style=""><rect id="rect1447" x="18797" y="13737" width="2320.
↪→7" height="2342.4" fill="#6076b3" style=""/><rect id="rect1451" x="18532
↪→" y="13817" width="302.7" height="137.79" fill="#e0ee2c" fill-rule=
↪→"evenodd" stroke-linejoin="round" stroke-width="28.222" style=""/><rect␣
↪→id="rect1453" x="18532" y="14076" width="302.7" height="137.79" fill="
↪→#e0ee2c" fill-rule="evenodd" stroke-linejoin="round" stroke-width="28.222
↪→" style=""/><rect id="rect1455" x="18532" y="14334" width="302.7" height=
↪→"137.79" fill="#e0ee2c" fill-rule="evenodd" stroke-linejoin="round"␣
↪→stroke-width="28.222" style=""/><rect id="rect1457" x="18532" y="14593"␣
↪→width="302.7" height="137.79" fill="#e0ee2c" fill-rule="evenodd" stroke-
↪→linejoin="round" stroke-width="28.222" style=""/><rect id="rect1459" x=
↪→"18532" y="14851" width="302.7" height="137.79" fill="#e0ee2c" fill-rule=
↪→"evenodd" stroke-linejoin="round"
stroke-width="28.222" style=""/><rect id="rect1461" x="18532" y="15110"␣
↪→width="302.7" height="137.79" fill="#e0ee2c" fill-rule="evenodd" stroke-
↪→linejoin="round" stroke-width="28.222" style=""/><rect id="rect1463" x=
↪→"18532" y="15368" width="302.7" height="137.79" fill="#e0ee2c" fill-rule=
↪→"evenodd" stroke-linejoin="round" stroke-width="28.222" style=""/><rect␣
↪→id="rect1465" x="18532" y="15626" width="302.7" height="137.79" fill="
↪→#e0ee2c" fill-rule="evenodd" stroke-linejoin="round" stroke-width="28.222
↪→" style=""/><rect id="rect1467" x="18532" y="15884" width="302.7" height=
↪→"137.79" fill="#e0ee2c" fill-rule="evenodd" stroke-linejoin="round"␣
↪→stroke-width="28.222" style=""/><rect id="rect1469" x="21080" y="13783"␣
↪→width="302.7" height="137.79" fill="#e0ee2c" fill-rule="evenodd" stroke-
↪→linejoin="round" stroke-width="28.222" style=""/><rect id="rect1471" x=
↪→"21080" y="14041" width="302.7"
height="137.79" fill="#e0ee2c" fill-rule="evenodd" stroke-linejoin="round"␣
↪→stroke-width="28.222" style=""/><rect id="rect1473" x="21080" y="14299"␣
↪→width="302.7" height="137.79" fill="#e0ee2c" fill-rule="evenodd" stroke-
↪→linejoin="round" stroke-width="28.222" style=""/><rect id="rect1475" x=
↪→"21080" y="14558" width="302.7" height="137.79" fill="#e0ee2c" fill-rule=
↪→"evenodd" stroke-linejoin="round" stroke-width="28.222" style=""/><rect␣
↪→id="rect1477" x="21080" y="14816" width="302.7" height="137.79" fill="
↪→#e0ee2c" fill-rule="evenodd" stroke-linejoin="round" stroke-width="28.222
↪→" style=""/><rect id="rect1479" x="21080" y="15075" width="302.7" height=
↪→"137.79" fill="#e0ee2c" fill-rule="evenodd" stroke-linejoin="round"␣
↪→stroke-width="28.222" style=""/><rect id="rect1481" x="21080" y="15333"␣
↪→width="302.7" height="137.79" fill="#e0ee2c" fill-rule="evenodd" stroke-
↪→linejoin="round"
stroke-width="28.222" style=""/><rect id="rect1483" x="21080" y="15592"␣
↪→width="302.7" height="137.79" fill="#e0ee2c" fill-rule="evenodd" stroke-
↪→linejoin="round" stroke-width="28.222" style=""/><rect id="rect1485" x=
↪→"21080" y="15850" width="302.7" height="137.79" fill="#e0ee2c" fill-rule=
↪→"evenodd" stroke-linejoin="round" stroke-width="28.222" style=""/><text␣
↪→id="text1493" transform="scale(1.1036 .90616)" x="17205.688" y="16777.641
↪→" fill="#000000" fill-rule="evenodd" font-family="Sans" font-size="856.
↪→96px" letter-spacing="0px" stroke-linejoin="round" stroke-width="28.222"␣
↪→word-spacing="0px" style="line-height:125%" line-height="125%" xml:space=
↪→"preserve"><tspan id="tspan1495" x="17205.688" y="16777.641" style="">CPU
↪→</tspan></text>
</g><text id="text1499" class="TextShape" x="-11700.553" y="565.61298"␣
↪→fill-rule="evenodd" font-family="Serif, serif" font-size="493.88px"␣
↪→stroke-linejoin="round" stroke-width="28.222"><tspan id="tspan1501"␣
↪→class="TextParagraph" font-family="Serif, serif" font-size="493.88px">
↪→<tspan id="tspan1503" class="TextPosition" transform="matrix(0,-1,1,0,
↪→8509,40173)" x="12640.447" y="16397.613" font-family="Serif, serif" font-
↪→size="493.88px"><tspan id="tspan1505" fill="#000000" font-family="Serif,␣
↪→serif" font-size="493.88px">PCI, USB, SPI, I2C, ...</tspan></tspan></
↪→tspan></text>
<path id="path1511" d="m12408 15562h-1115.1v-1420.3h2230.2v1420.3h-1115.1z
↪→" fill="#cfe7f5" fill-rule="evenodd" stroke-linejoin="round" stroke-
↪→width="28.222" style=""/><path id="path1513" d="m12408 15562h-1115.1v-
↪→1420.3h2230.2v1420.3h-1115.1z" fill="none" stroke="#3465af" stroke-
↪→linejoin="round" stroke-width="19.847" style=""/><text id="text1515"␣
↪→class="TextShape" x="-1394.0863" y="590.73016" fill-rule="evenodd" font-
↪→family="Serif, serif" font-size="493.88px" stroke-linejoin="round"␣
↪→stroke-width="28.222"><tspan id="tspan1517" class="TextParagraph" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan1519" class=
↪→"TextPosition" x="11487.915" y="14672.743" font-family="Serif, serif"␣
↪→font-size="493.88px"><tspan id="tspan1521" fill="#000000" font-family=
↪→"Serif, serif" font-size="493.88px">Bridge</tspan></tspan></tspan></text>
<text id="text1523" class="TextShape" x="-1450.5308" y="1324.5078" fill-
↪→rule="evenodd" font-family="Serif, serif" font-size="493.88px" stroke-
↪→linejoin="round" stroke-width="28.222"><tspan id="tspan1525" class=
↪→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan␣
↪→id="tspan1527" class="TextPosition" x="11431.471" y="15406.52" font-
↪→family="Serif, serif" font-size="493.88px"><tspan id="tspan1529" fill="
↪→#000000" font-family="Serif, serif" font-size="493.88px"> DMA</tspan></
↪→tspan></tspan></text>
</svg>

Fig. 1: Typical Media Device

68 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

7.2 Part I - Video for Linux API

This part describes the Video for Linux API version 2 (V4L2 API) specification.

Revision 4.5

7.2.1 Common API Elements

Programming a V4L2 device consists of these steps:

• Opening the device

• Changing device properties, selecting a video and audio input, video stan-
dard, picture brightness a. o.

• Negotiating a data format

• Negotiating an input/output method

• The actual input/output loop

• Closing the device

In practice most steps are optional and can be executed out of order. It depends on
the V4L2 device type, you can read about the details in Interfaces. In this chapter
we will discuss the basic concepts applicable to all devices.

Opening and Closing Devices

Device Naming

V4L2 drivers are implemented as kernel modules, loaded manually by the system
administrator or automatically when a device is first discovered. The driver mod-
ules plug into the “videodev”kernel module. It provides helper functions and a
common application interface specified in this document.

Each driver thus loaded registers one or more device nodes with major num-
ber 81 and a minor number between 0 and 255. Minor numbers are allo-
cated dynamically unless the kernel is compiled with the kernel option CON-
FIG_VIDEO_FIXED_MINOR_RANGES. In that case minor numbers are allocated
in ranges depending on the device node type (video, radio, etc.).

Many drivers support“video_nr”,“radio_nr”or“vbi_nr”module options to se-
lect specific video/radio/vbi node numbers. This allows the user to request that
the device node is named e.g. /dev/video5 instead of leaving it to chance. When
the driver supports multiple devices of the same type more than one device node
number can be assigned, separated by commas:

modprobe mydriver video_nr=0,1 radio_nr=0,1

In /etc/modules.conf this may be written as:

options mydriver video_nr=0,1 radio_nr=0,1

7.2. Part I - Video for Linux API 69

Linux Userspace-api Documentation

When no device node number is given as module option the driver supplies a de-
fault.

Normally udev will create the device nodes in /dev automatically for
you. If udev is not installed, then you need to enable the CON-
FIG_VIDEO_FIXED_MINOR_RANGES kernel option in order to be able to correctly
relate a minor number to a device node number. I.e., you need to be certain that
minor number 5 maps to device node name video5. With this kernel option differ-
ent device types have different minor number ranges. These ranges are listed in
Interfaces.

The creation of character special files (with mknod) is a privileged operation and
devices cannot be opened by major and minor number. That means applications
cannot reliably scan for loaded or installed drivers. The user must enter a device
name, or the application can try the conventional device names.

Related Devices

Devices can support several functions. For example video capturing, VBI capturing
and radio support.

The V4L2 API creates different nodes for each of these functions.

The V4L2 API was designed with the idea that one device node could support all
functions. However, in practice this never worked: this‘feature’was never used
by applications and many drivers did not support it and if they did it was certainly
never tested. In addition, switching a device node between different functions only
works when using the streaming I/O API, not with the read()/write() API.

Today each device node supports just one function.

Besides video input or output the hardware may also support audio sampling or
playback. If so, these functions are implemented as ALSA PCM devices with op-
tional ALSA audio mixer devices.

One problem with all these devices is that the V4L2 API makes no provisions to
find these related devices. Some really complex devices use the Media Controller
(see Part IV - Media Controller API) which can be used for this purpose. But most
drivers do not use it, and while some code exists that uses sysfs to discover related
devices (see libmedia_dev in the v4l-utils git repository), there is no library yet that
can provide a single API towards both Media Controller-based devices and devices
that do not use the Media Controller. If you want to work on this please write to
the linux-media mailing list: https://linuxtv.org/lists.php.

70 Chapter 7. Linux Media Infrastructure userspace API

http://git.linuxtv.org/cgit.cgi/v4l-utils.git/
https://linuxtv.org/lists.php

Linux Userspace-api Documentation

Multiple Opens

V4L2 devices can be openedmore than once.1 When this is supported by the driver,
users can for example start a“panel”application to change controls like brightness
or audio volume, while another application captures video and audio. In other
words, panel applications are comparable to an ALSA audio mixer application.
Just opening a V4L2 device should not change the state of the device.2

Once an application has allocated the memory buffers needed for streaming data
(by calling the ioctl VIDIOC_REQBUFS or ioctl VIDIOC_CREATE_BUFS ioctls, or
implicitly by calling the read() or write() functions) that application (filehandle)
becomes the owner of the device. It is no longer allowed to make changes that
would affect the buffer sizes (e.g. by calling the VIDIOC_S_FMT ioctl) and other
applications are no longer allowed to allocate buffers or start or stop streaming.
The EBUSY error code will be returned instead.

Merely opening a V4L2 device does not grant exclusive access.3 Initiating data
exchange however assigns the right to read or write the requested type of data,
and to change related properties, to this file descriptor. Applications can request
additional access privileges using the priority mechanism described in Application
Priority.

Shared Data Streams

V4L2 drivers should not support multiple applications reading or writing the same
data stream on a device by copying buffers, time multiplexing or similar means.
This is better handled by a proxy application in user space.

1 There are still some old and obscure drivers that have not been updated to allow for multiple
opens. This implies that for such drivers open() can return an EBUSY error code when the device is
already in use.

2 Unfortunately, opening a radio device often switches the state of the device to radio mode in
many drivers. This behavior should be fixed eventually as it violates the V4L2 specification.

3 Drivers could recognize the O_EXCL open flag. Presently this is not required, so applications
cannot know if it really works.

7.2. Part I - Video for Linux API 71

Linux Userspace-api Documentation

Functions

To open and close V4L2 devices applications use the open() and close() function,
respectively. Devices are programmed using the ioctl() function as explained in
the following sections.

Querying Capabilities

Because V4L2 covers a wide variety of devices not all aspects of the API are equally
applicable to all types of devices. Furthermore devices of the same type have dif-
ferent capabilities and this specification permits the omission of a few complicated
and less important parts of the API.

The ioctl VIDIOC_QUERYCAP ioctl is available to check if the kernel device is
compatible with this specification, and to query the functions and I/O methods
supported by the device.

Starting with kernel version 3.1, ioctl VIDIOC_QUERYCAP will return the V4L2
API version used by the driver, with generally matches the Kernel version. There’
s no need of using ioctl VIDIOC_QUERYCAP to check if a specific ioctl is supported,
the V4L2 core now returns ENOTTY if a driver doesn’t provide support for an ioctl.
Other features can be queried by calling the respective ioctl, for example ioctl
VIDIOC_ENUMINPUT to learn about the number, types and names of video con-
nectors on the device. Although abstraction is a major objective of this API, the
ioctl VIDIOC_QUERYCAP ioctl also allows driver specific applications to reliably
identify the driver.

All V4L2 drivers must support ioctl VIDIOC_QUERYCAP. Applications should al-
ways call this ioctl after opening the device.

Application Priority

When multiple applications share a device it may be desirable to assign them dif-
ferent priorities. Contrary to the traditional “rm -rf /”school of thought, a video
recording application could for example block other applications from changing
video controls or switching the current TV channel. Another objective is to permit
low priority applications working in background, which can be preempted by user
controlled applications and automatically regain control of the device at a later
time.

Since these features cannot be implemented entirely in user space V4L2 defines
the VIDIOC_G_PRIORITY and VIDIOC_S_PRIORITY ioctls to request and query
the access priority associate with a file descriptor. Opening a device assigns a

72 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

medium priority, compatible with earlier versions of V4L2 and drivers not sup-
porting these ioctls. Applications requiring a different priority will usually call
VIDIOC_S_PRIORITY after verifying the device with the ioctl VIDIOC_QUERYCAP
ioctl.

Ioctls changing driver properties, such as VIDIOC_S_INPUT, return an EBUSY error
code after another application obtained higher priority.

Video Inputs and Outputs

Video inputs and outputs are physical connectors of a device. These can be for
example: RF connectors (antenna/cable), CVBS a.k.a. Composite Video, S-Video
and RGB connectors. Camera sensors are also considered to be a video input.
Video and VBI capture devices have inputs. Video and VBI output devices have
outputs, at least one each. Radio devices have no video inputs or outputs.

To learn about the number and attributes of the available inputs and outputs ap-
plications can enumerate them with the ioctl VIDIOC_ENUMINPUT and ioctl VID-
IOC_ENUMOUTPUT ioctl, respectively. The struct v4l2_input returned by the
ioctl VIDIOC_ENUMINPUT ioctl also contains signal status information applica-
ble when the current video input is queried.

The VIDIOC_G_INPUT and VIDIOC_G_OUTPUT ioctls return the index of the cur-
rent video input or output. To select a different input or output applications call
the VIDIOC_S_INPUT and VIDIOC_S_OUTPUT ioctls. Drivers must implement all
the input ioctls when the device has one or more inputs, all the output ioctls when
the device has one or more outputs.

Example: Information about the current video input

struct v4l2_input input;
int index;

if (-1 == ioctl(fd, VIDIOC_G_INPUT, &index)) {
perror("VIDIOC_G_INPUT");
exit(EXIT_FAILURE);

}

memset(&input, 0, sizeof(input));
input.index = index;

if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
perror("VIDIOC_ENUMINPUT");
exit(EXIT_FAILURE);

}

printf("Current input: %s\\n", input.name);

7.2. Part I - Video for Linux API 73

Linux Userspace-api Documentation

Example: Switching to the first video input

int index;

index = 0;

if (-1 == ioctl(fd, VIDIOC_S_INPUT, &index)) {
perror("VIDIOC_S_INPUT");
exit(EXIT_FAILURE);

}

Audio Inputs and Outputs

Audio inputs and outputs are physical connectors of a device. Video capture de-
vices have inputs, output devices have outputs, zero or more each. Radio devices
have no audio inputs or outputs. They have exactly one tuner which in fact is an
audio source, but this API associates tuners with video inputs or outputs only, and
radio devices have none of these.1 A connector on a TV card to loop back the
received audio signal to a sound card is not considered an audio output.

Audio and video inputs and outputs are associated. Selecting a video source also
selects an audio source. This is most evident when the video and audio source is
a tuner. Further audio connectors can combine with more than one video input
or output. Assumed two composite video inputs and two audio inputs exist, there
may be up to four valid combinations. The relation of video and audio connec-
tors is defined in the audioset field of the respective struct v4l2_input or struct
v4l2_output, where each bit represents the index number, starting at zero, of one
audio input or output.

To learn about the number and attributes of the available inputs and outputs
applications can enumerate them with the ioctl VIDIOC_ENUMAUDIO and VID-
IOC_ENUMAUDOUT ioctl, respectively. The struct v4l2_audio returned by the
ioctl VIDIOC_ENUMAUDIO ioctl also contains signal status information applica-
ble when the current audio input is queried.

The VIDIOC_G_AUDIO and VIDIOC_G_AUDOUT ioctls report the current audio
input and output, respectively.

Note: Note that, unlike VIDIOC_G_INPUT and VIDIOC_G_OUTPUT these ioctls
return a structure as ioctl VIDIOC_ENUMAUDIO and VIDIOC_ENUMAUDOUT do,
not just an index.

To select an audio input and change its properties applications call the VID-
IOC_S_AUDIO ioctl. To select an audio output (which presently has no changeable
properties) applications call the VIDIOC_S_AUDOUT ioctl.

Drivers must implement all audio input ioctls when the device has multiple se-
lectable audio inputs, all audio output ioctls when the device has multiple se-
lectable audio outputs. When the device has any audio inputs or outputs the driver

1 Actually struct v4l2_audio ought to have a tuner field like struct v4l2_input, not only making
the API more consistent but also permitting radio devices with multiple tuners.

74 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

must set the V4L2_CAP_AUDIO flag in the struct v4l2_capability returned by the
ioctl VIDIOC_QUERYCAP ioctl.

Example: Information about the current audio input

struct v4l2_audio audio;

memset(&audio, 0, sizeof(audio));

if (-1 == ioctl(fd, VIDIOC_G_AUDIO, &audio)) {
perror("VIDIOC_G_AUDIO");
exit(EXIT_FAILURE);

}

printf("Current input: %s\\n", audio.name);

Example: Switching to the first audio input

struct v4l2_audio audio;

memset(&audio, 0, sizeof(audio)); /* clear audio.mode, audio.reserved */

audio.index = 0;

if (-1 == ioctl(fd, VIDIOC_S_AUDIO, &audio)) {
perror("VIDIOC_S_AUDIO");
exit(EXIT_FAILURE);

}

Tuners and Modulators

Tuners

Video input devices can have one or more tuners demodulating a RF signal. Each
tuner is associated with one or more video inputs, depending on the number of
RF connectors on the tuner. The type field of the respective struct v4l2_input
returned by the ioctl VIDIOC_ENUMINPUT ioctl is set to V4L2_INPUT_TYPE_TUNER
and its tuner field contains the index number of the tuner.

Radio input devices have exactly one tuner with index zero, no video inputs.

To query and change tuner properties applications use the VIDIOC_G_TUNER and
VIDIOC_S_TUNER ioctls, respectively. The struct v4l2_tuner returned by VID-
IOC_G_TUNER also contains signal status information applicable when the tuner
of the current video or radio input is queried.

Note: VIDIOC_S_TUNER does not switch the current tuner, when there is more
than one. The tuner is solely determined by the current video input. Drivers must
support both ioctls and set the V4L2_CAP_TUNER flag in the struct v4l2_capability

7.2. Part I - Video for Linux API 75

Linux Userspace-api Documentation

returned by the ioctl VIDIOC_QUERYCAP ioctl when the device has one or more
tuners.

Modulators

Video output devices can have one or more modulators, that modulate a video sig-
nal for radiation or connection to the antenna input of a TV set or video recorder.
Each modulator is associated with one or more video outputs, depending on the
number of RF connectors on the modulator. The type field of the respective
struct v4l2_output returned by the ioctl VIDIOC_ENUMOUTPUT ioctl is set to
V4L2_OUTPUT_TYPE_MODULATOR and its modulator field contains the index number
of the modulator.

Radio output devices have exactly onemodulator with index zero, no video outputs.

A video or radio device cannot support both a tuner and a modulator. Two sepa-
rate device nodes will have to be used for such hardware, one that supports the
tuner functionality and one that supports the modulator functionality. The reason
is a limitation with the VIDIOC_S_FREQUENCY ioctl where you cannot specify
whether the frequency is for a tuner or a modulator.

To query and change modulator properties applications use the VID-
IOC_G_MODULATOR and VIDIOC_S_MODULATOR ioctl. Note that VID-
IOC_S_MODULATOR does not switch the current modulator, when there is
more than one at all. The modulator is solely determined by the current video
output. Drivers must support both ioctls and set the V4L2_CAP_MODULATOR flag in
the struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl when
the device has one or more modulators.

Radio Frequency

To get and set the tuner or modulator radio frequency applications use the VID-
IOC_G_FREQUENCY and VIDIOC_S_FREQUENCY ioctl which both take a pointer
to a struct v4l2_frequency. These ioctls are used for TV and radio devices alike.
Drivers must support both ioctls when the tuner or modulator ioctls are supported,
or when the device is a radio device.

Video Standards

Video devices typically support one or more different video standards or variations
of standards. Each video input and output may support another set of standards.
This set is reported by the std field of struct v4l2_input and struct v4l2_output
returned by the ioctl VIDIOC_ENUMINPUT and ioctl VIDIOC_ENUMOUTPUT
ioctls, respectively.

V4L2 defines one bit for each analog video standard currently in use worldwide,
and sets aside bits for driver defined standards, e. g. hybrid standards to watch
NTSC video tapes on PAL TVs and vice versa. Applications can use the prede-
fined bits to select a particular standard, although presenting the user a menu
of supported standards is preferred. To enumerate and query the attributes

76 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

of the supported standards applications use the ioctl VIDIOC_ENUMSTD, VID-
IOC_SUBDEV_ENUMSTD ioctl.

Many of the defined standards are actually just variations of a fewmajor standards.
The hardware may in fact not distinguish between them, or do so internal and
switch automatically. Therefore enumerated standards also contain sets of one or
more standard bits.

Assume a hypothetic tuner capable of demodulating B/PAL, G/PAL and I/PAL sig-
nals. The first enumerated standard is a set of B and G/PAL, switched automatically
depending on the selected radio frequency in UHF or VHF band. Enumeration
gives a “PAL-B/G”or “PAL-I”choice. Similar a Composite input may collapse
standards, enumerating “PAL-B/G/H/I”, “NTSC-M”and “SECAM-D/K”.1

To query and select the standard used by the current video input or out-
put applications call the VIDIOC_G_STD and VIDIOC_S_STD ioctl, respectively.
The received standard can be sensed with the ioctl VIDIOC_QUERYSTD, VID-
IOC_SUBDEV_QUERYSTD ioctl.

Note: The parameter of all these ioctls is a pointer to a v4l2_std_id type (a stan-
dard set), not an index into the standard enumeration. Drivers must implement
all video standard ioctls when the device has one or more video inputs or outputs.

Special rules apply to devices such as USB cameras where the notion of video
standards makes little sense. More generally for any capture or output device
which is:

• incapable of capturing fields or frames at the nominal rate of the video stan-
dard, or

• that does not support the video standard formats at all.

Here the driver shall set the std field of struct v4l2_input and struct
v4l2_output to zero and the VIDIOC_G_STD, VIDIOC_S_STD, ioctl VID-
IOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD and ioctl VIDIOC_ENUMSTD,
VIDIOC_SUBDEV_ENUMSTD ioctls shall return the ENOTTY error code or the
EINVAL error code.

Applications can make use of the Input capabilities and Output capabilities flags
to determine whether the video standard ioctls can be used with the given input
or output.

1 Some users are already confused by technical terms PAL, NTSC and SECAM. There is no point
asking them to distinguish between B, G, D, or K when the software or hardware can do that auto-
matically.

7.2. Part I - Video for Linux API 77

Linux Userspace-api Documentation

Example: Information about the current video standard

v4l2_std_id std_id;
struct v4l2_standard standard;

if (-1 == ioctl(fd, VIDIOC_G_STD, &std_id)) {
/* Note when VIDIOC_ENUMSTD always returns ENOTTY this

is no video device or it falls under the USB exception,
and VIDIOC_G_STD returning ENOTTY is no error. */

perror("VIDIOC_G_STD");
exit(EXIT_FAILURE);

}

memset(&standard, 0, sizeof(standard));
standard.index = 0;

while (0 == ioctl(fd, VIDIOC_ENUMSTD, &standard)) {
if (standard.id & std_id) {

printf("Current video standard: %s\\n", standard.name);
exit(EXIT_SUCCESS);

}

standard.index++;
}

/* EINVAL indicates the end of the enumeration, which cannot be
empty unless this device falls under the USB exception. */

if (errno == EINVAL || standard.index == 0) {
perror("VIDIOC_ENUMSTD");
exit(EXIT_FAILURE);

}

Example: Listing the video standards supported by the current input

struct v4l2_input input;
struct v4l2_standard standard;

memset(&input, 0, sizeof(input));

if (-1 == ioctl(fd, VIDIOC_G_INPUT, &input.index)) {
perror("VIDIOC_G_INPUT");
exit(EXIT_FAILURE);

}

if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
perror("VIDIOC_ENUM_INPUT");
exit(EXIT_FAILURE);

}

printf("Current input %s supports:\\n", input.name);

memset(&standard, 0, sizeof(standard));
(continues on next page)

78 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
standard.index = 0;

while (0 == ioctl(fd, VIDIOC_ENUMSTD, &standard)) {
if (standard.id & input.std)

printf("%s\\n", standard.name);

standard.index++;
}

/* EINVAL indicates the end of the enumeration, which cannot be
empty unless this device falls under the USB exception. */

if (errno != EINVAL || standard.index == 0) {
perror("VIDIOC_ENUMSTD");
exit(EXIT_FAILURE);

}

Example: Selecting a new video standard

struct v4l2_input input;
v4l2_std_id std_id;

memset(&input, 0, sizeof(input));

if (-1 == ioctl(fd, VIDIOC_G_INPUT, &input.index)) {
perror("VIDIOC_G_INPUT");
exit(EXIT_FAILURE);

}

if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
perror("VIDIOC_ENUM_INPUT");
exit(EXIT_FAILURE);

}

if (0 == (input.std & V4L2_STD_PAL_BG)) {
fprintf(stderr, "Oops. B/G PAL is not supported.\\n");
exit(EXIT_FAILURE);

}

/* Note this is also supposed to work when only B
or G/PAL is supported. */

std_id = V4L2_STD_PAL_BG;

if (-1 == ioctl(fd, VIDIOC_S_STD, &std_id)) {
perror("VIDIOC_S_STD");
exit(EXIT_FAILURE);

}

7.2. Part I - Video for Linux API 79

Linux Userspace-api Documentation

Digital Video (DV) Timings

The video standards discussed so far have been dealing with Analog TV and the
corresponding video timings. Today there are many more different hardware in-
terfaces such as High Definition TV interfaces (HDMI), VGA, DVI connectors etc.,
that carry video signals and there is a need to extend the API to select the video
timings for these interfaces. Since it is not possible to extend the v4l2_std_id due
to the limited bits available, a new set of ioctls was added to set/get video timings
at the input and output.

These ioctls deal with the detailed digital video timings that define each video
format. This includes parameters such as the active video width and height,
signal polarities, frontporches, backporches, sync widths etc. The linux/
v4l2-dv-timings.h header can be used to get the timings of the formats in the
CEA-861-E and VESA DMT standards.

To enumerate and query the attributes of the DV timings supported by
a device applications use the ioctl VIDIOC_ENUM_DV_TIMINGS, VID-
IOC_SUBDEV_ENUM_DV_TIMINGS and ioctl VIDIOC_DV_TIMINGS_CAP,
VIDIOC_SUBDEV_DV_TIMINGS_CAP ioctls. To set DV timings for the device
applications use the VIDIOC_S_DV_TIMINGS ioctl and to get current DV timings
they use the VIDIOC_G_DV_TIMINGS ioctl. To detect the DV timings as seen by
the video receiver applications use the ioctl VIDIOC_QUERY_DV_TIMINGS ioctl.

Applications can make use of the Input capabilities and Output capabilities flags
to determine whether the digital video ioctls can be used with the given input or
output.

User Controls

Devices typically have a number of user-settable controls such as brightness, sat-
uration and so on, which would be presented to the user on a graphical user inter-
face. But, different devices will have different controls available, and furthermore,
the range of possible values, and the default value will vary from device to device.
The control ioctls provide the information and a mechanism to create a nice user
interface for these controls that will work correctly with any device.

All controls are accessed using an ID value. V4L2 defines several IDs for spe-
cific purposes. Drivers can also implement their own custom controls using
V4L2_CID_PRIVATE_BASE1 and higher values. The pre-defined control IDs have
the prefix V4L2_CID_, and are listed in Control IDs. The ID is used when querying
the attributes of a control, and when getting or setting the current value.

Generally applications should present controls to the user without assumptions
about their purpose. Each control comes with a name string the user is supposed

1 The use of V4L2_CID_PRIVATE_BASE is problematic because different drivers may use the same
V4L2_CID_PRIVATE_BASE ID for different controls. This makes it hard to programmatically set such
controls since the meaning of the control with that ID is driver dependent. In order to resolve this
drivers use unique IDs and the V4L2_CID_PRIVATE_BASE IDs are mapped to those unique IDs by the
kernel. Consider these V4L2_CID_PRIVATE_BASE IDs as aliases to the real IDs.
Many applications today still use the V4L2_CID_PRIVATE_BASE IDs instead of using ioctls

VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU with the
V4L2_CTRL_FLAG_NEXT_CTRL flag to enumerate all IDs, so support for V4L2_CID_PRIVATE_BASE is
still around.

80 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

to understand. When the purpose is non-intuitive the driver writer should pro-
vide a user manual, a user interface plug-in or a driver specific panel application.
Predefined IDs were introduced to change a few controls programmatically, for
example to mute a device during a channel switch.

Drivers may enumerate different controls after switching the current video input
or output, tuner or modulator, or audio input or output. Different in the sense of
other bounds, another default and current value, step size or other menu items. A
control with a certain custom ID can also change name and type.

If a control is not applicable to the current configuration of the device
(for example, it doesn’t apply to the current video input) drivers set the
V4L2_CTRL_FLAG_INACTIVE flag.

Control values are stored globally, they do not change when switching except to
stay within the reported bounds. They also do not change e. g. when the device is
opened or closed, when the tuner radio frequency is changed or generally never
without application request.

V4L2 specifies an event mechanism to notify applications when controls change
value (see ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT,
event V4L2_EVENT_CTRL), panel applications might want to make use of that in
order to always reflect the correct control value.

All controls use machine endianness.

Control IDs

V4L2_CID_BASE First predefined ID, equal to V4L2_CID_BRIGHTNESS.

V4L2_CID_USER_BASE Synonym of V4L2_CID_BASE.

V4L2_CID_BRIGHTNESS (integer) Picture brightness, or more precisely, the black
level.

V4L2_CID_CONTRAST (integer) Picture contrast or luma gain.

V4L2_CID_SATURATION (integer) Picture color saturation or chroma gain.

V4L2_CID_HUE (integer) Hue or color balance.

V4L2_CID_AUDIO_VOLUME (integer) Overall audio volume. Note some drivers
also provide an OSS or ALSA mixer interface.

V4L2_CID_AUDIO_BALANCE (integer) Audio stereo balance. Minimum corre-
sponds to all the way left, maximum to right.

V4L2_CID_AUDIO_BASS (integer) Audio bass adjustment.

V4L2_CID_AUDIO_TREBLE (integer) Audio treble adjustment.

V4L2_CID_AUDIO_MUTE (boolean) Mute audio, i. e. set the volume to zero, how-
ever without affecting V4L2_CID_AUDIO_VOLUME. Like ALSA drivers, V4L2
drivers must mute at load time to avoid excessive noise. Actually the entire
device should be reset to a low power consumption state.

V4L2_CID_AUDIO_LOUDNESS (boolean) Loudness mode (bass boost).

7.2. Part I - Video for Linux API 81

Linux Userspace-api Documentation

V4L2_CID_BLACK_LEVEL (integer) Another name for brightness (not a synonym
of V4L2_CID_BRIGHTNESS). This control is deprecated and should not be used
in new drivers and applications.

V4L2_CID_AUTO_WHITE_BALANCE (boolean) Automatic white balance (cameras).

V4L2_CID_DO_WHITE_BALANCE (button) This is an action control. When set (the
value is ignored), the device will do a white balance and then hold the cur-
rent setting. Contrast this with the boolean V4L2_CID_AUTO_WHITE_BALANCE,
which, when activated, keeps adjusting the white balance.

V4L2_CID_RED_BALANCE (integer) Red chroma balance.

V4L2_CID_BLUE_BALANCE (integer) Blue chroma balance.

V4L2_CID_GAMMA (integer) Gamma adjust.

V4L2_CID_WHITENESS (integer) Whiteness for grey-scale devices. This is a syn-
onym for V4L2_CID_GAMMA. This control is deprecated and should not be used
in new drivers and applications.

V4L2_CID_EXPOSURE (integer) Exposure (cameras). [Unit?]

V4L2_CID_AUTOGAIN (boolean) Automatic gain/exposure control.

V4L2_CID_GAIN (integer) Gain control.

Primarily used to control gain on e.g. TV tuners but also on webcams. Most
devices control only digital gain with this control but on some this could
include analogue gain as well. Devices that recognise the difference be-
tween digital and analogue gain use controls V4L2_CID_DIGITAL_GAIN and
V4L2_CID_ANALOGUE_GAIN.

V4L2_CID_HFLIP (boolean) Mirror the picture horizontally.

V4L2_CID_VFLIP (boolean) Mirror the picture vertically.

V4L2_CID_POWER_LINE_FREQUENCY (enum) Enables a power line frequency filter
to avoid flicker. Possible values for enum v4l2_power_line_frequency
are: V4L2_CID_POWER_LINE_FREQUENCY_DISABLED
(0), V4L2_CID_POWER_LINE_FREQUENCY_50HZ (1),
V4L2_CID_POWER_LINE_FREQUENCY_60HZ (2) and V4L2_CID_POWER_LINE_FREQUENCY_AUTO
(3).

V4L2_CID_HUE_AUTO (boolean) Enables automatic hue control by the device. The
effect of setting V4L2_CID_HUE while automatic hue control is enabled is un-
defined, drivers should ignore such request.

V4L2_CID_WHITE_BALANCE_TEMPERATURE (integer) This control specifies the
white balance settings as a color temperature in Kelvin. A driver should have
a minimum of 2800 (incandescent) to 6500 (daylight). For more information
about color temperature see Wikipedia.

V4L2_CID_SHARPNESS (integer) Adjusts the sharpness filters in a camera. The
minimum value disables the filters, higher values give a sharper picture.

V4L2_CID_BACKLIGHT_COMPENSATION (integer) Adjusts the backlight compensa-
tion in a camera. The minimum value disables backlight compensation.

V4L2_CID_CHROMA_AGC (boolean) Chroma automatic gain control.

82 Chapter 7. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/Color_temperature

Linux Userspace-api Documentation

V4L2_CID_CHROMA_GAIN (integer) Adjusts the Chroma gain control (for use when
chroma AGC is disabled).

V4L2_CID_COLOR_KILLER (boolean) Enable the color killer (i. e. force a black &
white image in case of a weak video signal).

V4L2_CID_COLORFX (enum) Selects a color effect. The following values are de-
fined:

V4L2_COLORFX_NONE Color effect is disabled.
V4L2_COLORFX_ANTIQUE An aging (old photo) effect.
V4L2_COLORFX_ART_FREEZE Frost color effect.
V4L2_COLORFX_AQUA Water color, cool tone.
V4L2_COLORFX_BW Black and white.
V4L2_COLORFX_EMBOSS Emboss, the highlights and shadows replace light/dark bound-

aries and low contrast areas are set to a gray background.
V4L2_COLORFX_GRASS_GREEN Grass green.
V4L2_COLORFX_NEGATIVE Negative.
V4L2_COLORFX_SEPIA Sepia tone.
V4L2_COLORFX_SKETCH Sketch.
V4L2_COLORFX_SKIN_WHITEN Skin whiten.
V4L2_COLORFX_SKY_BLUE Sky blue.
V4L2_COLORFX_SOLARIZATION Solarization, the image is partially reversed in tone, only color

values above or below a certain threshold are inverted.
V4L2_COLORFX_SILHOUETTE Silhouette (outline).
V4L2_COLORFX_VIVID Vivid colors.
V4L2_COLORFX_SET_CBCR The Cb and Cr chroma components are replaced by fixed co-

efficients determined by V4L2_CID_COLORFX_CBCR control.

V4L2_CID_COLORFX_CBCR (integer) Determines the Cb and Cr coefficients for
V4L2_COLORFX_SET_CBCR color effect. Bits [7:0] of the supplied 32 bit value
are interpreted as Cr component, bits [15:8] as Cb component and bits [31:16]
must be zero.

V4L2_CID_AUTOBRIGHTNESS (boolean) Enable Automatic Brightness.

V4L2_CID_ROTATE (integer) Rotates the image by specified angle. Common an-
gles are 90, 270 and 180. Rotating the image to 90 and 270 will reverse
the height and width of the display window. It is necessary to set the new
height and width of the picture using the VIDIOC_S_FMT ioctl according to
the rotation angle selected.

V4L2_CID_BG_COLOR (integer) Sets the background color on the current output
device. Background color needs to be specified in the RGB24 format. The
supplied 32 bit value is interpreted as bits 0-7 Red color information, bits 8-
15 Green color information, bits 16-23 Blue color information and bits 24-31
must be zero.

V4L2_CID_ILLUMINATORS_1 V4L2_CID_ILLUMINATORS_2 (boolean) Switch on or
off the illuminator 1 or 2 of the device (usually a microscope).

V4L2_CID_MIN_BUFFERS_FOR_CAPTURE (integer) This is a read-only control that
can be read by the application and used as a hint to determine the number of
CAPTURE buffers to pass to REQBUFS. The value is the minimum number of

7.2. Part I - Video for Linux API 83

Linux Userspace-api Documentation

CAPTURE buffers that is necessary for hardware to work.

V4L2_CID_MIN_BUFFERS_FOR_OUTPUT (integer) This is a read-only control that
can be read by the application and used as a hint to determine the number of
OUTPUT buffers to pass to REQBUFS. The value is the minimum number of
OUTPUT buffers that is necessary for hardware to work.

V4L2_CID_ALPHA_COMPONENT (integer) Sets the alpha color component. When a
capture device (or capture queue of a mem-to-mem device) produces a frame
format that includes an alpha component (e.g. packed RGB image formats)
and the alpha value is not defined by the device or the mem-to-mem input data
this control lets you select the alpha component value of all pixels. When an
output device (or output queue of a mem-to-mem device) consumes a frame
format that doesn’t include an alpha component and the device supports
alpha channel processing this control lets you set the alpha component value
of all pixels for further processing in the device.

V4L2_CID_LASTP1 End of the predefined control IDs (currently
V4L2_CID_ALPHA_COMPONENT + 1).

V4L2_CID_PRIVATE_BASE ID of the first custom (driver specific) control. Applica-
tions depending on particular custom controls should check the driver name
and version, see Querying Capabilities.

Applications can enumerate the available controls with the ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU and
VIDIOC_QUERYMENU ioctls, get and set a control value with the VIDIOC_G_CTRL
and VIDIOC_S_CTRL ioctls. Drivers must implement VIDIOC_QUERYCTRL,
VIDIOC_G_CTRL and VIDIOC_S_CTRL when the device has one or more controls,
VIDIOC_QUERYMENU when it has one or more menu type controls.

Example: Enumerating all controls

struct v4l2_queryctrl queryctrl;
struct v4l2_querymenu querymenu;

static void enumerate_menu(__u32 id)
{

printf(" Menu items:\\n");

memset(&querymenu, 0, sizeof(querymenu));
querymenu.id = id;

for (querymenu.index = queryctrl.minimum;
querymenu.index <= queryctrl.maximum;
querymenu.index++) {

if (0 == ioctl(fd, VIDIOC_QUERYMENU, &querymenu)) {
printf(" %s\\n", querymenu.name);

}
}

}

memset(&queryctrl, 0, sizeof(queryctrl));

(continues on next page)

84 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
queryctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {

if (!(queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)) {
printf("Control %s\\n", queryctrl.name);

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(queryctrl.id);

}

queryctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;
}
if (errno != EINVAL) {

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

}

Example: Enumerating all controls including compound controls

struct v4l2_query_ext_ctrl query_ext_ctrl;

memset(&query_ext_ctrl, 0, sizeof(query_ext_ctrl));

query_ext_ctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL | V4L2_CTRL_FLAG_NEXT_
↪→COMPOUND;
while (0 == ioctl(fd, VIDIOC_QUERY_EXT_CTRL, &query_ext_ctrl)) {

if (!(query_ext_ctrl.flags & V4L2_CTRL_FLAG_DISABLED)) {
printf("Control %s\\n", query_ext_ctrl.name);

if (query_ext_ctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(query_ext_ctrl.id);

}

query_ext_ctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL | V4L2_CTRL_FLAG_NEXT_
↪→COMPOUND;
}
if (errno != EINVAL) {

perror("VIDIOC_QUERY_EXT_CTRL");
exit(EXIT_FAILURE);

}

Example: Enumerating all user controls (old style)

memset(&queryctrl, 0, sizeof(queryctrl));

for (queryctrl.id = V4L2_CID_BASE;
queryctrl.id < V4L2_CID_LASTP1;
queryctrl.id++) {

if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {
if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)

continue;

(continues on next page)

7.2. Part I - Video for Linux API 85

Linux Userspace-api Documentation

(continued from previous page)
printf("Control %s\\n", queryctrl.name);

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(queryctrl.id);

} else {
if (errno == EINVAL)

continue;

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

}
}

for (queryctrl.id = V4L2_CID_PRIVATE_BASE;;
queryctrl.id++) {

if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {
if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)

continue;

printf("Control %s\\n", queryctrl.name);

if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
enumerate_menu(queryctrl.id);

} else {
if (errno == EINVAL)

break;

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

}
}

Example: Changing controls

struct v4l2_queryctrl queryctrl;
struct v4l2_control control;

memset(&queryctrl, 0, sizeof(queryctrl));
queryctrl.id = V4L2_CID_BRIGHTNESS;

if (-1 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {
if (errno != EINVAL) {

perror("VIDIOC_QUERYCTRL");
exit(EXIT_FAILURE);

} else {
printf("V4L2_CID_BRIGHTNESS is not supportedn");

}
} else if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED) {

printf("V4L2_CID_BRIGHTNESS is not supportedn");
} else {

memset(&control, 0, sizeof (control));
control.id = V4L2_CID_BRIGHTNESS;
control.value = queryctrl.default_value;

(continues on next page)

86 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)

if (-1 == ioctl(fd, VIDIOC_S_CTRL, &control)) {
perror("VIDIOC_S_CTRL");
exit(EXIT_FAILURE);

}
}

memset(&control, 0, sizeof(control));
control.id = V4L2_CID_CONTRAST;

if (0 == ioctl(fd, VIDIOC_G_CTRL, &control)) {
control.value += 1;

/* The driver may clamp the value or return ERANGE, ignored here */

if (-1 == ioctl(fd, VIDIOC_S_CTRL, &control)
&& errno != ERANGE) {
perror("VIDIOC_S_CTRL");
exit(EXIT_FAILURE);

}
/* Ignore if V4L2_CID_CONTRAST is unsupported */
} else if (errno != EINVAL) {

perror("VIDIOC_G_CTRL");
exit(EXIT_FAILURE);

}

control.id = V4L2_CID_AUDIO_MUTE;
control.value = 1; /* silence */

/* Errors ignored */
ioctl(fd, VIDIOC_S_CTRL, &control);

Extended Controls API

Introduction

The control mechanism as originally designed was meant to be used for user set-
tings (brightness, saturation, etc). However, it turned out to be a very useful
model for implementing more complicated driver APIs where each driver imple-
ments only a subset of a larger API.

TheMPEG encoding API was the driving force behind designing and implementing
this extended control mechanism: the MPEG standard is quite large and the cur-
rently supported hardware MPEG encoders each only implement a subset of this
standard. Further more, many parameters relating to how the video is encoded
into an MPEG stream are specific to the MPEG encoding chip since the MPEG
standard only defines the format of the resulting MPEG stream, not how the video
is actually encoded into that format.

Unfortunately, the original control API lacked some features needed for these new
uses and so it was extended into the (not terribly originally named) extended con-
trol API.

Even though the MPEG encoding API was the first effort to use the Extended Con-

7.2. Part I - Video for Linux API 87

Linux Userspace-api Documentation

trol API, nowadays there are also other classes of Extended Controls, such as Cam-
era Controls and FM Transmitter Controls. The Extended Controls API as well as
all Extended Controls classes are described in the following text.

The Extended Control API

Three new ioctls are available: VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS
and VIDIOC_TRY_EXT_CTRLS. These ioctls act on arrays of controls (as opposed
to the VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls that act on a single control).
This is needed since it is often required to atomically change several controls at
once.

Each of the new ioctls expects a pointer to a struct v4l2_ext_controls. This
structure contains a pointer to the control array, a count of the number of controls
in that array and a control class. Control classes are used to group similar controls
into a single class. For example, control class V4L2_CTRL_CLASS_USER contains all
user controls (i. e. all controls that can also be set using the old VIDIOC_S_CTRL
ioctl). Control class V4L2_CTRL_CLASS_MPEG contains all controls relating toMPEG
encoding, etc.

All controls in the control array must belong to the specified control class. An
error is returned if this is not the case.

It is also possible to use an empty control array (count == 0) to check whether
the specified control class is supported.

The control array is a struct v4l2_ext_control array. The struct
v4l2_ext_control is very similar to struct v4l2_control, except for the fact that
it also allows for 64-bit values and pointers to be passed.

Since the struct v4l2_ext_control supports pointers it is now also possible to
have controls with compound types such as N-dimensional arrays and/or struc-
tures. You need to specify the V4L2_CTRL_FLAG_NEXT_COMPOUND when enumerat-
ing controls to actually be able to see such compound controls. In other words,
these controls with compound types should only be used programmatically.

Since such compound controls need to expose more information about themselves
than is possible with VIDIOC_QUERYCTRL the VIDIOC_QUERY_EXT_CTRL ioctl
was added. In particular, this ioctl gives the dimensions of the N-dimensional
array if this control consists of more than one element.

Note:
1. It is important to realize that due to the flexibility of controls it is necessary to
check whether the control you want to set actually is supported in the driver
and what the valid range of values is. So use ioctls VIDIOC_QUERYCTRL,
VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU to check this.

2. It is possible that some of the menu indices in a control of type
V4L2_CTRL_TYPE_MENU may not be supported (VIDIOC_QUERYMENU will return
an error). A good example is the list of supported MPEG audio bitrates. Some
drivers only support one or two bitrates, others support a wider range.

88 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

All controls use machine endianness.

Enumerating Extended Controls

The recommended way to enumerate over the extended controls is by using ioctls
VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU in
combination with the V4L2_CTRL_FLAG_NEXT_CTRL flag:

struct v4l2_queryctrl qctrl;

qctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl (fd, VIDIOC_QUERYCTRL, &qctrl)) {

/* ... */
qctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;

}

The initial control ID is set to 0 ORed with the V4L2_CTRL_FLAG_NEXT_CTRL flag.
The VIDIOC_QUERYCTRL ioctl will return the first control with a higher ID than the
specified one. When no such controls are found an error is returned.

If you want to get all controls within a specific control class, then you can set the
initial qctrl.id value to the control class and add an extra check to break out of
the loop when a control of another control class is found:

qctrl.id = V4L2_CTRL_CLASS_MPEG | V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl(fd, VIDIOC_QUERYCTRL, &qctrl)) {

if (V4L2_CTRL_ID2CLASS(qctrl.id) != V4L2_CTRL_CLASS_MPEG)
break;

/* ... */
qctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;

}

The 32-bit qctrl.id value is subdivided into three bit ranges: the top 4 bits are
reserved for flags (e. g. V4L2_CTRL_FLAG_NEXT_CTRL) and are not actually part of
the ID. The remaining 28 bits form the control ID, of which the most significant 12
bits define the control class and the least significant 16 bits identify the control
within the control class. It is guaranteed that these last 16 bits are always non-
zero for controls. The range of 0x1000 and up are reserved for driver-specific
controls. The macro V4L2_CTRL_ID2CLASS(id) returns the control class ID based
on a control ID.

If the driver does not support extended controls, then VIDIOC_QUERYCTRL will fail
when used in combination with V4L2_CTRL_FLAG_NEXT_CTRL. In that case the old
method of enumerating control should be used (see Example: Enumerating all con-
trols). But if it is supported, then it is guaranteed to enumerate over all controls,
including driver-private controls.

7.2. Part I - Video for Linux API 89

Linux Userspace-api Documentation

Creating Control Panels

It is possible to create control panels for a graphical user interface where the user
can select the various controls. Basically you will have to iterate over all controls
using the method described above. Each control class starts with a control of
type V4L2_CTRL_TYPE_CTRL_CLASS. VIDIOC_QUERYCTRLwill return the name of this
control class which can be used as the title of a tab page within a control panel.

The flags field of struct v4l2_queryctrl also contains hints on the behavior of
the control. See the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and
VIDIOC_QUERYMENU documentation for more details.

Camera Control Reference

The Camera class includes controls for mechanical (or equivalent digital) features
of a device such as controllable lenses or sensors.

Camera Control IDs

V4L2_CID_CAMERA_CLASS (class) The Camera class descriptor. Call-
ing ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VID-
IOC_QUERYMENU for this control will return a description of this control
class.

V4L2_CID_EXPOSURE_AUTO (enum)

enum v4l2_exposure_auto_type - Enables automatic adjustments of the expo-
sure time and/or iris aperture. The effect of manual changes of the exposure
time or iris aperture while these features are enabled is undefined, drivers
should ignore such requests. Possible values are:

V4L2_EXPOSURE_AUTO Automatic exposure time, automatic iris
aperture.

V4L2_EXPOSURE_MANUAL Manual exposure time, manual iris.
V4L2_EXPOSURE_SHUTTER_PRIORITYManual exposure time, auto iris.
V4L2_EXPOSURE_APERTURE_PRIORITYAuto exposure time, manual iris.

V4L2_CID_EXPOSURE_ABSOLUTE (integer) Determines the exposure time of the
camera sensor. The exposure time is limited by the frame interval. Drivers
should interpret the values as 100 µs units, where the value 1 stands for
1/10000th of a second, 10000 for 1 second and 100000 for 10 seconds.

V4L2_CID_EXPOSURE_AUTO_PRIORITY (boolean) When V4L2_CID_EXPOSURE_AUTO
is set to AUTO or APERTURE_PRIORITY, this control determines if the device
may dynamically vary the frame rate. By default this feature is disabled (0)
and the frame rate must remain constant.

V4L2_CID_AUTO_EXPOSURE_BIAS (integer menu) Determines the automatic ex-
posure compensation, it is effective only when V4L2_CID_EXPOSURE_AUTO con-
trol is set to AUTO, SHUTTER_PRIORITY or APERTURE_PRIORITY. It is expressed
in terms of EV, drivers should interpret the values as 0.001 EV units, where
the value 1000 stands for +1 EV.

90 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Increasing the exposure compensation value is equivalent to decreasing the
exposure value (EV) and will increase the amount of light at the image sen-
sor. The camera performs the exposure compensation by adjusting absolute
exposure time and/or aperture.

V4L2_CID_EXPOSURE_METERING (enum)

enum v4l2_exposure_metering - Determines how the camera measures the
amount of light available for the frame exposure. Possible values are:

V4L2_EXPOSURE_METERING_AVERAGE Use the light information coming from the en-
tire frame and average giving no weighting to
any particular portion of the metered area.

V4L2_EXPOSURE_METERING_CENTER_WEIGHTED Average the light information coming from
the entire frame giving priority to the center
of the metered area.

V4L2_EXPOSURE_METERING_SPOT Measure only very small area at the center of
the frame.

V4L2_EXPOSURE_METERING_MATRIX A multi-zone metering. The light intensity is
measured in several points of the frame and
the results are combined. The algorithm of
the zones selection and their significance in
calculating the final value is device depen-
dent.

V4L2_CID_PAN_RELATIVE (integer) This control turns the camera horizontally
by the specified amount. The unit is undefined. A positive value moves the
camera to the right (clockwise when viewed from above), a negative value to
the left. A value of zero does not cause motion. This is a write-only control.

V4L2_CID_TILT_RELATIVE (integer) This control turns the camera vertically by
the specified amount. The unit is undefined. A positive value moves the cam-
era up, a negative value down. A value of zero does not cause motion. This
is a write-only control.

V4L2_CID_PAN_RESET (button) When this control is set, the camera moves hori-
zontally to the default position.

V4L2_CID_TILT_RESET (button) When this control is set, the camera moves ver-
tically to the default position.

V4L2_CID_PAN_ABSOLUTE (integer) This control turns the camera horizontally to
the specified position. Positive valuesmove the camera to the right (clockwise
when viewed from above), negative values to the left. Drivers should interpret
the values as arc seconds, with valid values between -180 * 3600 and +180 *
3600 inclusive.

V4L2_CID_TILT_ABSOLUTE (integer) This control turns the camera vertically to
the specified position. Positive values move the camera up, negative values
down. Drivers should interpret the values as arc seconds, with valid values
between -180 * 3600 and +180 * 3600 inclusive.

V4L2_CID_FOCUS_ABSOLUTE (integer) This control sets the focal point of the
camera to the specified position. The unit is undefined. Positive values set
the focus closer to the camera, negative values towards infinity.

7.2. Part I - Video for Linux API 91

Linux Userspace-api Documentation

V4L2_CID_FOCUS_RELATIVE (integer) This control moves the focal point of the
camera by the specified amount. The unit is undefined. Positive values move
the focus closer to the camera, negative values towards infinity. This is a
write-only control.

V4L2_CID_FOCUS_AUTO (boolean) Enables continuous automatic focus adjust-
ments. The effect of manual focus adjustments while this feature is enabled
is undefined, drivers should ignore such requests.

V4L2_CID_AUTO_FOCUS_START (button) Starts single auto focus process. The ef-
fect of setting this control when V4L2_CID_FOCUS_AUTO is set to TRUE (1) is
undefined, drivers should ignore such requests.

V4L2_CID_AUTO_FOCUS_STOP (button) Aborts automatic focusing started with
V4L2_CID_AUTO_FOCUS_START control. It is effective only when the contin-
uous autofocus is disabled, that is when V4L2_CID_FOCUS_AUTO control is set
to FALSE (0).

V4L2_CID_AUTO_FOCUS_STATUS (bitmask) The automatic focus status. This is a
read-only control.

Setting V4L2_LOCK_FOCUS lock bit of the V4L2_CID_3A_LOCK control may stop
updates of the V4L2_CID_AUTO_FOCUS_STATUS control value.

V4L2_AUTO_FOCUS_STATUS_IDLE Automatic focus is not active.
V4L2_AUTO_FOCUS_STATUS_BUSY Automatic focusing is in progress.
V4L2_AUTO_FOCUS_STATUS_REACHED Focus has been reached.
V4L2_AUTO_FOCUS_STATUS_FAILED Automatic focus has failed, the driver will not transition

from this state until another action is performed by an
application.

V4L2_CID_AUTO_FOCUS_RANGE (enum)

enum v4l2_auto_focus_range - Determines auto focus distance range for which
lens may be adjusted.

V4L2_AUTO_FOCUS_RANGE_AUTO The camera automatically selects the focus range.
V4L2_AUTO_FOCUS_RANGE_NORMAL Normal distance range, limited for best automatic focus

performance.
V4L2_AUTO_FOCUS_RANGE_MACRO Macro (close-up) auto focus. The camera will use its

minimum possible distance for auto focus.
V4L2_AUTO_FOCUS_RANGE_INFINITY The lens is set to focus on an object at infinite distance.

V4L2_CID_ZOOM_ABSOLUTE (integer) Specify the objective lens focal length as
an absolute value. The zoom unit is driver-specific and its value should be a
positive integer.

V4L2_CID_ZOOM_RELATIVE (integer) Specify the objective lens focal length rela-
tively to the current value. Positive values move the zoom lens group towards
the telephoto direction, negative values towards the wide-angle direction.
The zoom unit is driver-specific. This is a write-only control.

V4L2_CID_ZOOM_CONTINUOUS (integer) Move the objective lens group at the
specified speed until it reaches physical device limits or until an explicit re-
quest to stop the movement. A positive value moves the zoom lens group

92 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

towards the telephoto direction. A value of zero stops the zoom lens group
movement. A negative value moves the zoom lens group towards the wide-
angle direction. The zoom speed unit is driver-specific.

V4L2_CID_IRIS_ABSOLUTE (integer) This control sets the camera’s aperture to
the specified value. The unit is undefined. Larger values open the iris wider,
smaller values close it.

V4L2_CID_IRIS_RELATIVE (integer) This control modifies the camera’s aper-
ture by the specified amount. The unit is undefined. Positive values open
the iris one step further, negative values close it one step further. This is a
write-only control.

V4L2_CID_PRIVACY (boolean) Prevent video from being acquired by the camera.
When this control is set to TRUE (1), no image can be captured by the camera.
Common means to enforce privacy are mechanical obturation of the sensor
and firmware image processing, but the device is not restricted to thesemeth-
ods. Devices that implement the privacy control must support read access
and may support write access.

V4L2_CID_BAND_STOP_FILTER (integer) Switch the band-stop filter of a camera
sensor on or off, or specify its strength. Such band-stop filters can be used,
for example, to filter out the fluorescent light component.

V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE (enum)

enum v4l2_auto_n_preset_white_balance - Sets white balance to automatic,
manual or a preset. The presets determine color temperature of the light
as a hint to the camera for white balance adjustments resulting in most accu-
rate color representation. The following white balance presets are listed in
order of increasing color temperature.

7.2. Part I - Video for Linux API 93

Linux Userspace-api Documentation

V4L2_WHITE_BALANCE_MANUAL Manual white balance.
V4L2_WHITE_BALANCE_AUTO Automatic white balance adjustments.
V4L2_WHITE_BALANCE_INCANDESCENT White balance setting for incandescent (tungsten)

lighting. It generally cools down the colors and cor-
responds approximately to 2500⋯3500 K color tem-
perature range.

V4L2_WHITE_BALANCE_FLUORESCENT White balance preset for fluorescent lighting. It cor-
responds approximately to 4000⋯5000 K color tem-
perature.

V4L2_WHITE_BALANCE_FLUORESCENT_H With this setting the camera will compensate for flu-
orescent H lighting.

V4L2_WHITE_BALANCE_HORIZON White balance setting for horizon daylight. It corre-
sponds approximately to 5000 K color temperature.

V4L2_WHITE_BALANCE_DAYLIGHT White balance preset for daylight (with clear sky).
It corresponds approximately to 5000⋯6500 K color
temperature.

V4L2_WHITE_BALANCE_FLASH With this setting the camera will compensate for the
flash light. It slightly warms up the colors and corre-
sponds roughly to 5000⋯5500 K color temperature.

V4L2_WHITE_BALANCE_CLOUDY White balance preset for moderately overcast sky.
This option corresponds approximately to 6500⋯
8000 K color temperature range.

V4L2_WHITE_BALANCE_SHADE White balance preset for shade or heavily overcast
sky. It corresponds approximately to 9000⋯10000 K
color temperature.

V4L2_CID_WIDE_DYNAMIC_RANGE (boolean) Enables or disables the camera’s
wide dynamic range feature. This feature allows to obtain clear images in
situations where intensity of the illumination varies significantly throughout
the scene, i.e. there are simultaneously very dark and very bright areas. It
is most commonly realized in cameras by combining two subsequent frames
with different exposure times.1

V4L2_CID_IMAGE_STABILIZATION (boolean) Enables or disables image stabiliza-
tion.

V4L2_CID_ISO_SENSITIVITY (integer menu) Determines ISO equivalent of an
image sensor indicating the sensor’s sensitivity to light. The numbers are ex-
pressed in arithmetic scale, as per ISO 12232:2006 standard, where doubling
the sensor sensitivity is represented by doubling the numerical ISO value.
Applications should interpret the values as standard ISO values multiplied
by 1000, e.g. control value 800 stands for ISO 0.8. Drivers will usually sup-
port only a subset of standard ISO values. The effect of setting this control
while the V4L2_CID_ISO_SENSITIVITY_AUTO control is set to a value other
than V4L2_CID_ISO_SENSITIVITY_MANUAL is undefined, drivers should ignore
such requests.

V4L2_CID_ISO_SENSITIVITY_AUTO (enum)

enum v4l2_iso_sensitivity_type - Enables or disables automatic ISO sensitivity
adjustments.

1 This control may be changed to a menu control in the future, if more options are required.

94 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_CID_ISO_SENSITIVITY_MANUAL Manual ISO sensitivity.
V4L2_CID_ISO_SENSITIVITY_AUTO Automatic ISO sensitivity adjustments.

V4L2_CID_SCENE_MODE (enum)

enum v4l2_scene_mode - This control allows to select scene programs as the
camera automatic modes optimized for common shooting scenes. Within
these modes the camera determines best exposure, aperture, focusing, light
metering, white balance and equivalent sensitivity. The controls of those pa-
rameters are influenced by the scene mode control. An exact behavior in each
mode is subject to the camera specification.

When the scene mode feature is not used, this control should be set to
V4L2_SCENE_MODE_NONE to make sure the other possibly related controls are
accessible. The following scene programs are defined:

7.2. Part I - Video for Linux API 95

Linux Userspace-api Documentation

V4L2_SCENE_MODE_NONE The scene mode feature is disabled.
V4L2_SCENE_MODE_BACKLIGHT Backlight. Compensates for dark shadows when light is coming

from behind a subject, also by automatically turning on the flash.
V4L2_SCENE_MODE_BEACH_SNOW Beach and snow. This mode compensates for all-white or bright

scenes, which tend to look gray and low contrast, when camera’
s automatic exposure is based on an average scene brightness.
To compensate, this mode automatically slightly overexposes the
frames. The white balance may also be adjusted to compensate
for the fact that reflected snow looks bluish rather than white.

V4L2_SCENE_MODE_CANDLELIGHT Candle light. The camera generally raises the ISO sensitivity and
lowers the shutter speed. This mode compensates for relatively
close subject in the scene. The flash is disabled in order to pre-
serve the ambiance of the light.

V4L2_SCENE_MODE_DAWN_DUSK Dawn and dusk. Preserves the colors seen in low natural light
before dusk and after down. The camera may turn off the flash,
and automatically focus at infinity. It will usually boost saturation
and lower the shutter speed.

V4L2_SCENE_MODE_FALL_COLORS Fall colors. Increases saturation and adjusts white balance for
color enhancement. Pictures of autumn leaves get saturated reds
and yellows.

V4L2_SCENE_MODE_FIREWORKS Fireworks. Long exposure times are used to capture the expand-
ing burst of light from a firework. The camera may invoke image
stabilization.

V4L2_SCENE_MODE_LANDSCAPE Landscape. The camera may choose a small aperture to provide
deep depth of field and long exposure duration to help capture
detail in dim light conditions. The focus is fixed at infinity. Suit-
able for distant and wide scenery.

V4L2_SCENE_MODE_NIGHT Night, also known as Night Landscape. Designed for low light
conditions, it preserves detail in the dark areas without blowing
out bright objects. The camera generally sets itself to a medium-
to-high ISO sensitivity, with a relatively long exposure time, and
turns flash off. As such, there will be increased image noise and
the possibility of blurred image.

V4L2_SCENE_MODE_PARTY_INDOOR Party and indoor. Designed to capture indoor scenes that are lit
by indoor background lighting as well as the flash. The camera
usually increases ISO sensitivity, and adjusts exposure for the low
light conditions.

V4L2_SCENE_MODE_PORTRAIT Portrait. The camera adjusts the aperture so that the depth
of field is reduced, which helps to isolate the subject against a
smooth background. Most cameras recognize the presence of
faces in the scene and focus on them. The color hue is adjusted
to enhance skin tones. The intensity of the flash is often reduced.

V4L2_SCENE_MODE_SPORTS Sports. Significantly increases ISO and uses a fast shutter speed
to freeze motion of rapidly-moving subjects. Increased image
noise may be seen in this mode.

V4L2_SCENE_MODE_SUNSET Sunset. Preserves deep hues seen in sunsets and sunrises. It
bumps up the saturation.

V4L2_SCENE_MODE_TEXT Text. It applies extra contrast and sharpness, it is typically a
black-and-white mode optimized for readability. Automatic fo-
cus may be switched to close-up mode and this setting may also
involve some lens-distortion correction.

V4L2_CID_3A_LOCK (bitmask) This control locks or unlocks the automatic focus,
exposure and white balance. The automatic adjustments can be paused inde-
pendently by setting the corresponding lock bit to 1. The camera then retains
the settings until the lock bit is cleared. The following lock bits are defined:

96 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

When a given algorithm is not enabled, drivers should ignore requests to lock
it and should return no error. An example might be an application setting bit
V4L2_LOCK_WHITE_BALANCE when the V4L2_CID_AUTO_WHITE_BALANCE con-
trol is set to FALSE. The value of this control may be changed by exposure,
white balance or focus controls.

V4L2_LOCK_EXPOSURE Automatic exposure adjustments lock.
V4L2_LOCK_WHITE_BALANCE Automatic white balance adjustments lock.
V4L2_LOCK_FOCUS Automatic focus lock.

V4L2_CID_PAN_SPEED (integer) This control turns the camera horizontally at the
specific speed. The unit is undefined. A positive value moves the camera to
the right (clockwise when viewed from above), a negative value to the left. A
value of zero stops themotion if one is in progress and has no effect otherwise.

V4L2_CID_TILT_SPEED (integer) This control turns the camera vertically at the
specified speed. The unit is undefined. A positive value moves the camera up,
a negative value down. A value of zero stops the motion if one is in progress
and has no effect otherwise.

V4L2_CID_CAMERA_ORIENTATION (menu) This read-only control describes the
camera orientation by reporting its mounting position on the device where
the camera is installed. The control value is constant and not modifiable by
software. This control is particularly meaningful for devices which have a well
defined orientation, such as phones, laptops and portable devices since the
control is expressed as a position relative to the device’s intended usage ori-
entation. For example, a camera installed on the user-facing side of a phone, a
tablet or a laptop device is said to be have V4L2_CAMERA_ORIENTATION_FRONT
orientation, while a camera installed on the opposite side of the front one is
said to be have V4L2_CAMERA_ORIENTATION_BACK orientation. Camera sen-
sors not directly attached to the device, or attached in a way that allows
them to move freely, such as webcams and digital cameras, are said to have
the V4L2_CAMERA_ORIENTATION_EXTERNAL orientation.

V4L2_CAMERA_ORIENTATION_FRONTThe camera is oriented towards the user facing
side of the device.

V4L2_CAMERA_ORIENTATION_BACKThe camera is oriented towards the back facing
side of the device.

V4L2_CAMERA_ORIENTATION_EXTERNALThe camera is not directly attached to the device
and is freely movable.

V4L2_CID_CAMERA_SENSOR_ROTATION (integer) This read-only control describes
the rotation correction in degrees in the counter-clockwise direction to be
applied to the captured images once captured to memory to compensate for
the camera sensor mounting rotation.

For a precise definition of the sensor mounting rotation refer to the extensive
description of the‘rotation’properties in the device tree bindings file‘video-
interfaces.txt’.
A few examples are below reported, using a shark swimming from left to right
in front of the user as the example scene to capture.

7.2. Part I - Video for Linux API 97

Linux Userspace-api Documentation

0 X-axis
0 +------------------------------------->

!
!
!
! |____)___
!) _____ __`<
! |/)/
!
!
!
V

Y-axis

Example one - Webcam

Assuming you can bring your laptopwith youwhile swimmingwith sharks, the
camera module of the laptop is installed on the user facing part of a laptop
screen casing, and is typically used for video calls. The captured images
are meant to be displayed in landscape mode (width > height) on the laptop
screen.

The camera is typically mounted upside-down to compensate
the lens optical inversion effect. In this case the value of the
V4L2_CID_CAMERA_SENSOR_ROTATION control is 0, no rotation is re-
quired to display images correctly to the user.

If the camera sensor is not mounted upside-down it is required to
compensate the lens optical inversion effect and the value of the
V4L2_CID_CAMERA_SENSOR_ROTATION control is 180 degrees, as images
will result rotated when captured to memory.

+--------------------------------------+
! !
! !
! !
! __/(_____/| !
! >.___ ____ (!
! \(\| !
! !
! !
! !
+--------------------------------------+

A software rotation correction of 180 degrees has to be applied to correctly
display the image on the user screen.

+--------------------------------------+
! !
! !
! !
! |____)___ !
!) _____ __`< !
! |/)/ !
! !
! !

(continues on next page)

98 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
! !
+--------------------------------------+

Example two - Phone camera

It is more handy to go and swim with sharks with only your mobile phone
with you and take pictures with the camera that is installed on the back side
of the device, facing away from the user. The captured images are meant to
be displayed in portrait mode (height > width) to match the device screen
orientation and the device usage orientation used when taking the picture.

The camera sensor is typically mountedwith its pixel array longer side aligned
to the device longer side, upside-down mounted to compensate for the lens
optical inversion effect.

The images once captured to memory will be rotated and the value of the
V4L2_CID_CAMERA_SENSOR_ROTATION will report a 90 degree rotation.

+-------------------------------------+
| _ _ |
| \ / |
	>	
<		
.		
V		
+-------------------------------------+

A correction of 90 degrees in counter-clockwise direction has to be applied
to correctly display the image in portrait mode on the device screen.

+--------------------+
| |
| |
| |
| |
| |
| |
| |____)___ |
|) _____ __`< |
| |/)/ |
| |
| |
| |
| |
| |
+--------------------+

7.2. Part I - Video for Linux API 99

Linux Userspace-api Documentation

Flash Control Reference

The V4L2 flash controls are intended to provide generic access to flash controller
devices. Flash controller devices are typically used in digital cameras.

The interface can support both LED and xenon flash devices. As of writing this,
there is no xenon flash driver using this interface.

Supported use cases

Unsynchronised LED flash (software strobe)

Unsynchronised LED flash is controlled directly by the host as the sensor. The
flash must be enabled by the host before the exposure of the image starts and
disabled once it ends. The host is fully responsible for the timing of the flash.

Example of such device: Nokia N900.

Synchronised LED flash (hardware strobe)

The synchronised LED flash is pre-programmed by the host (power and timeout)
but controlled by the sensor through a strobe signal from the sensor to the flash.

The sensor controls the flash duration and timing. This information typically must
be made available to the sensor.

LED flash as torch

LED flash may be used as torch in conjunction with another use case involving
camera or individually.

Flash Control IDs

V4L2_CID_FLASH_CLASS (class) The FLASH class descriptor.

V4L2_CID_FLASH_LED_MODE (menu) Defines the mode of the flash LED, the high-
power white LED attached to the flash controller. Setting this control may
not be possible in presence of some faults. See V4L2_CID_FLASH_FAULT.

V4L2_FLASH_LED_MODE_NONEOff.
V4L2_FLASH_LED_MODE_FLASHFlash mode.
V4L2_FLASH_LED_MODE_TORCHTorchmode. See V4L2_CID_FLASH_TORCH_INTENSITY.

V4L2_CID_FLASH_STROBE_SOURCE (menu) Defines the source of the flash LED
strobe.

100 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_FLASH_STROBE_SOURCE_SOFTWARE The flash strobe is triggered by using the
V4L2_CID_FLASH_STROBE control.

V4L2_FLASH_STROBE_SOURCE_EXTERNAL The flash strobe is triggered by an external source.
Typically this is a sensor, which makes it possible to
synchronise the flash strobe start to exposure start.

V4L2_CID_FLASH_STROBE (button) Strobe flash. Valid when
V4L2_CID_FLASH_LED_MODE is set to V4L2_FLASH_LED_MODE_FLASH
and V4L2_CID_FLASH_STROBE_SOURCE is set to
V4L2_FLASH_STROBE_SOURCE_SOFTWARE. Setting this control may
not be possible in presence of some faults. See V4L2_CID_FLASH_FAULT.

V4L2_CID_FLASH_STROBE_STOP (button) Stop flash strobe immediately.

V4L2_CID_FLASH_STROBE_STATUS (boolean) Strobe status: whether the flash is
strobing at the moment or not. This is a read-only control.

V4L2_CID_FLASH_TIMEOUT (integer) Hardware timeout for flash. The flash
strobe is stopped after this period of time has passed from the start of the
strobe.

V4L2_CID_FLASH_INTENSITY (integer) Intensity of the flash strobe when the
flash LED is in flash mode (V4L2_FLASH_LED_MODE_FLASH). The unit
should be milliamps (mA) if possible.

V4L2_CID_FLASH_TORCH_INTENSITY (integer) Intensity of the flash LED in torch
mode (V4L2_FLASH_LED_MODE_TORCH). The unit should be milliamps
(mA) if possible. Setting this control may not be possible in presence of some
faults. See V4L2_CID_FLASH_FAULT.

V4L2_CID_FLASH_INDICATOR_INTENSITY (integer) Intensity of the indicator
LED. The indicator LED may be fully independent of the flash LED. The unit
should be microamps (uA) if possible.

V4L2_CID_FLASH_FAULT (bitmask) Faults related to the flash. The faults tell
about specific problems in the flash chip itself or the LEDs attached to it.
Faults may prevent further use of some of the flash controls. In particular,
V4L2_CID_FLASH_LED_MODE is set to V4L2_FLASH_LED_MODE_NONE if
the fault affects the flash LED. Exactly which faults have such an effect is
chip dependent. Reading the faults resets the control and returns the chip to
a usable state if possible.

7.2. Part I - Video for Linux API 101

Linux Userspace-api Documentation

V4L2_FLASH_FAULT_OVER_VOLTAGE Flash controller voltage to the flash LED has
exceeded the limit specific to the flash con-
troller.

V4L2_FLASH_FAULT_TIMEOUT The flash strobe was still on when the timeout
set by the user —V4L2_CID_FLASH_TIMEOUT
control —has expired. Not all flash controllers
may set this in all such conditions.

V4L2_FLASH_FAULT_OVER_TEMPERATURE The flash controller has overheated.
V4L2_FLASH_FAULT_SHORT_CIRCUIT The short circuit protection of the flash con-

troller has been triggered.
V4L2_FLASH_FAULT_OVER_CURRENT Current in the LED power supply has exceeded

the limit specific to the flash controller.
V4L2_FLASH_FAULT_INDICATOR The flash controller has detected a short or

open circuit condition on the indicator LED.
V4L2_FLASH_FAULT_UNDER_VOLTAGE Flash controller voltage to the flash LED has

been below the minimum limit specific to the
flash controller.

V4L2_FLASH_FAULT_INPUT_VOLTAGE The input voltage of the flash controller is be-
low the limit under which strobing the flash at
full current will not be possible.The condition
persists until this flag is no longer set.

V4L2_FLASH_FAULT_LED_OVER_TEMPERATURE The temperature of the LED has exceeded its
allowed upper limit.

V4L2_CID_FLASH_CHARGE (boolean) Enable or disable charging of the xenon
flash capacitor.

V4L2_CID_FLASH_READY (boolean) Is the flash ready to strobe? Xenon flashes
require their capacitors charged before strobing. LED flashes often require a
cooldown period after strobe duringwhich another strobewill not be possible.
This is a read-only control.

Image Source Control Reference

The Image Source control class is intended for low-level control of image source
devices such as image sensors. The devices feature an analogue to digital con-
verter and a bus transmitter to transmit the image data out of the device.

Image Source Control IDs

V4L2_CID_IMAGE_SOURCE_CLASS (class) The IMAGE_SOURCE class descriptor.

V4L2_CID_VBLANK (integer) Vertical blanking. The idle period after every frame
during which no image data is produced. The unit of vertical blanking is a
line. Every line has length of the image width plus horizontal blanking at the
pixel rate defined by V4L2_CID_PIXEL_RATE control in the same sub-device.

V4L2_CID_HBLANK (integer) Horizontal blanking. The idle period after every
line of image data during which no image data is produced. The unit of hori-
zontal blanking is pixels.

102 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_CID_ANALOGUE_GAIN (integer) Analogue gain is gain affecting all colour
components in the pixel matrix. The gain operation is performed in the ana-
logue domain before A/D conversion.

V4L2_CID_TEST_PATTERN_RED (integer) Test pattern red colour component.

V4L2_CID_TEST_PATTERN_GREENR (integer) Test pattern green (next to red)
colour component.

V4L2_CID_TEST_PATTERN_BLUE (integer) Test pattern blue colour component.

V4L2_CID_TEST_PATTERN_GREENB (integer) Test pattern green (next to blue)
colour component.

V4L2_CID_UNIT_CELL_SIZE (struct) This control returns the unit cell size in
nanometers. The struct v4l2_area provides the width and the height in sep-
arate fields to take into consideration asymmetric pixels. This control does
not take into consideration any possible hardware binning. The unit cell con-
sists of the whole area of the pixel, sensitive and non-sensitive. This control
is required for automatic calibration of sensors/cameras.

Image Process Control Reference

The Image Process control class is intended for low-level control of image process-
ing functions. Unlike V4L2_CID_IMAGE_SOURCE_CLASS, the controls in this class
affect processing the image, and do not control capturing of it.

Image Process Control IDs

V4L2_CID_IMAGE_PROC_CLASS (class) The IMAGE_PROC class descriptor.

V4L2_CID_LINK_FREQ (integer menu) Data bus frequency. Together with the
media bus pixel code, bus type (clock cycles per sample), the data bus fre-
quency defines the pixel rate (V4L2_CID_PIXEL_RATE) in the pixel array (or
possibly elsewhere, if the device is not an image sensor). The frame rate can
be calculated from the pixel clock, image width and height and horizontal
and vertical blanking. While the pixel rate control may be defined elsewhere
than in the subdev containing the pixel array, the frame rate cannot be ob-
tained from that information. This is because only on the pixel array it can
be assumed that the vertical and horizontal blanking information is exact: no
other blanking is allowed in the pixel array. The selection of frame rate is
performed by selecting the desired horizontal and vertical blanking. The unit
of this control is Hz.

V4L2_CID_PIXEL_RATE (64-bit integer) Pixel rate in the source pads of the
subdev. This control is read-only and its unit is pixels / second.

V4L2_CID_TEST_PATTERN (menu) Some capture/display/sensor devices have the
capability to generate test pattern images. These hardware specific test pat-
terns can be used to test if a device is working properly.

V4L2_CID_DEINTERLACING_MODE (menu) The video deinterlacing mode (such as
Bob, Weave, ⋯). The menu items are driver specific and are documented
in uapi-v4l-drivers.

7.2. Part I - Video for Linux API 103

Linux Userspace-api Documentation

V4L2_CID_DIGITAL_GAIN (integer) Digital gain is the value by which all colour
components are multiplied by. Typically the digital gain applied is the control
value divided by e.g. 0x100, meaning that to get no digital gain the control
value needs to be 0x100. The no-gain configuration is also typically the de-
fault.

Codec Control Reference

Below all controls within the Codec control class are described. First the generic
controls, then controls specific for certain hardware.

Note: These controls are applicable to all codecs and not just MPEG. The defines
are prefixed with V4L2_CID_MPEG/V4L2_MPEG as the controls were originally
made for MPEG codecs and later extended to cover all encoding formats.

Generic Codec Controls

Codec Control IDs

V4L2_CID_MPEG_CLASS (class) The Codec class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU
for this control will return a description of this control class. This descrip-
tion can be used as the caption of a Tab page in a GUI, for example.

V4L2_CID_MPEG_STREAM_TYPE (enum)

enum v4l2_mpeg_stream_type - The MPEG-1, -2 or -4 output stream type. One
cannot assume anything here. Each hardware MPEG encoder tends to sup-
port different subsets of the available MPEG stream types. This control is
specific to multiplexed MPEG streams. The currently defined stream types
are:

V4L2_MPEG_STREAM_TYPE_MPEG2_PS MPEG-2 program stream
V4L2_MPEG_STREAM_TYPE_MPEG2_TS MPEG-2 transport stream
V4L2_MPEG_STREAM_TYPE_MPEG1_SS MPEG-1 system stream
V4L2_MPEG_STREAM_TYPE_MPEG2_DVD MPEG-2 DVD-compatible stream
V4L2_MPEG_STREAM_TYPE_MPEG1_VCD MPEG-1 VCD-compatible stream
V4L2_MPEG_STREAM_TYPE_MPEG2_SVCD MPEG-2 SVCD-compatible stream

V4L2_CID_MPEG_STREAM_PID_PMT (integer) Program Map Table Packet ID for
the MPEG transport stream (default 16)

V4L2_CID_MPEG_STREAM_PID_AUDIO (integer) Audio Packet ID for the MPEG
transport stream (default 256)

V4L2_CID_MPEG_STREAM_PID_VIDEO (integer) Video Packet ID for the MPEG
transport stream (default 260)

V4L2_CID_MPEG_STREAM_PID_PCR (integer) Packet ID for the MPEG transport
stream carrying PCR fields (default 259)

104 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_CID_MPEG_STREAM_PES_ID_AUDIO (integer) Audio ID for MPEG PES

V4L2_CID_MPEG_STREAM_PES_ID_VIDEO (integer) Video ID for MPEG PES

V4L2_CID_MPEG_STREAM_VBI_FMT (enum)

enum v4l2_mpeg_stream_vbi_fmt - Some cards can embed VBI data (e. g.
Closed Caption, Teletext) into the MPEG stream. This control selects whether
VBI data should be embedded, and if so, what embedding method should be
used. The list of possible VBI formats depends on the driver. The currently
defined VBI format types are:

V4L2_MPEG_STREAM_VBI_FMT_NONE No VBI in the MPEG stream
V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI in private packets, IVTV format (documented

in the kernel sources in the file Documentation/
userspace-api/media/drivers/cx2341x-uapi.rst)

V4L2_CID_MPEG_AUDIO_SAMPLING_FREQ (enum)

enum v4l2_mpeg_audio_sampling_freq - MPEG Audio sampling frequency.
Possible values are:

V4L2_MPEG_AUDIO_SAMPLING_FREQ_44100 44.1 kHz
V4L2_MPEG_AUDIO_SAMPLING_FREQ_48000 48 kHz
V4L2_MPEG_AUDIO_SAMPLING_FREQ_32000 32 kHz

V4L2_CID_MPEG_AUDIO_ENCODING (enum)

enum v4l2_mpeg_audio_encoding - MPEG Audio encoding. This control is spe-
cific to multiplexed MPEG streams. Possible values are:

V4L2_MPEG_AUDIO_ENCODING_LAYER_1 MPEG-1/2 Layer I encoding
V4L2_MPEG_AUDIO_ENCODING_LAYER_2 MPEG-1/2 Layer II encoding
V4L2_MPEG_AUDIO_ENCODING_LAYER_3 MPEG-1/2 Layer III encoding
V4L2_MPEG_AUDIO_ENCODING_AAC MPEG-2/4 AAC (Advanced Audio Cod-

ing)
V4L2_MPEG_AUDIO_ENCODING_AC3 AC-3 aka ATSC A/52 encoding

V4L2_CID_MPEG_AUDIO_L1_BITRATE (enum)

enum v4l2_mpeg_audio_l1_bitrate - MPEG-1/2 Layer I bitrate. Possible values
are:

7.2. Part I - Video for Linux API 105

Linux Userspace-api Documentation

V4L2_MPEG_AUDIO_L1_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_288K 288 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_320K 320 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_352K 352 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_384K 384 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_416K 416 kbit/s
V4L2_MPEG_AUDIO_L1_BITRATE_448K 448 kbit/s

V4L2_CID_MPEG_AUDIO_L2_BITRATE (enum)

enum v4l2_mpeg_audio_l2_bitrate - MPEG-1/2 Layer II bitrate. Possible val-
ues are:

V4L2_MPEG_AUDIO_L2_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_48K 48 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_56K 56 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_80K 80 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_112K 112 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_320K 320 kbit/s
V4L2_MPEG_AUDIO_L2_BITRATE_384K 384 kbit/s

V4L2_CID_MPEG_AUDIO_L3_BITRATE (enum)

enum v4l2_mpeg_audio_l3_bitrate - MPEG-1/2 Layer III bitrate. Possible val-
ues are:

106 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_MPEG_AUDIO_L3_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_40K 40 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_48K 48 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_56K 56 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_80K 80 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_112K 112 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_L3_BITRATE_320K 320 kbit/s

V4L2_CID_MPEG_AUDIO_AAC_BITRATE (integer) AAC bitrate in bits per second.

V4L2_CID_MPEG_AUDIO_AC3_BITRATE (enum)

enum v4l2_mpeg_audio_ac3_bitrate - AC-3 bitrate. Possible values are:

V4L2_MPEG_AUDIO_AC3_BITRATE_32K 32 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_40K 40 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_48K 48 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_56K 56 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_64K 64 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_80K 80 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_96K 96 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_112K 112 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_128K 128 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_160K 160 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_192K 192 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_224K 224 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_256K 256 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_320K 320 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_384K 384 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_448K 448 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_512K 512 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_576K 576 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_640K 640 kbit/s

V4L2_CID_MPEG_AUDIO_MODE (enum)

enum v4l2_mpeg_audio_mode - MPEG Audio mode. Possible values are:

V4L2_MPEG_AUDIO_MODE_STEREO Stereo
V4L2_MPEG_AUDIO_MODE_JOINT_STEREO Joint Stereo
V4L2_MPEG_AUDIO_MODE_DUAL Bilingual
V4L2_MPEG_AUDIO_MODE_MONO Mono

V4L2_CID_MPEG_AUDIO_MODE_EXTENSION (enum)

7.2. Part I - Video for Linux API 107

Linux Userspace-api Documentation

enum v4l2_mpeg_audio_mode_extension - Joint Stereo audio mode extension.
In Layer I and II they indicate which subbands are in intensity stereo. All
other subbands are coded in stereo. Layer III is not (yet) supported. Possible
values are:

V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_4 Subbands 4-31 in intensity stereo
V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_8 Subbands 8-31 in intensity stereo
V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_12Subbands 12-31 in intensity

stereo
V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_16Subbands 16-31 in intensity

stereo

V4L2_CID_MPEG_AUDIO_EMPHASIS (enum)

enum v4l2_mpeg_audio_emphasis - Audio Emphasis. Possible values are:

V4L2_MPEG_AUDIO_EMPHASIS_NONE None
V4L2_MPEG_AUDIO_EMPHASIS_50_DIV_15_uS 50/15 microsecond emphasis
V4L2_MPEG_AUDIO_EMPHASIS_CCITT_J17 CCITT J.17

V4L2_CID_MPEG_AUDIO_CRC (enum)

enum v4l2_mpeg_audio_crc - CRC method. Possible values are:

V4L2_MPEG_AUDIO_CRC_NONE None
V4L2_MPEG_AUDIO_CRC_CRC16 16 bit parity check

V4L2_CID_MPEG_AUDIO_MUTE (boolean) Mutes the audio when capturing. This is
not done by muting audio hardware, which can still produce a slight hiss, but
in the encoder itself, guaranteeing a fixed and reproducible audio bitstream.
0 = unmuted, 1 = muted.

V4L2_CID_MPEG_AUDIO_DEC_PLAYBACK (enum)

enum v4l2_mpeg_audio_dec_playback - Determines how monolingual audio
should be played back. Possible values are:

V4L2_MPEG_AUDIO_DEC_PLAYBACK_AUTO Automatically determines the best play-
back mode.

V4L2_MPEG_AUDIO_DEC_PLAYBACK_STEREO Stereo playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_LEFT Left channel playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_RIGHT Right channel playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_MONO Mono playback.
V4L2_MPEG_AUDIO_DEC_PLAYBACK_SWAPPED_STEREO Stereo playback with swapped left and

right channels.

V4L2_CID_MPEG_AUDIO_DEC_MULTILINGUAL_PLAYBACK (enum)

enum v4l2_mpeg_audio_dec_playback - Determines how multilingual audio
should be played back.

V4L2_CID_MPEG_VIDEO_ENCODING (enum)

108 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

enum v4l2_mpeg_video_encoding - MPEG Video encoding method. This con-
trol is specific to multiplexed MPEG streams. Possible values are:

V4L2_MPEG_VIDEO_ENCODING_MPEG_1 MPEG-1 Video encoding
V4L2_MPEG_VIDEO_ENCODING_MPEG_2 MPEG-2 Video encoding
V4L2_MPEG_VIDEO_ENCODING_MPEG_4_AVC MPEG-4 AVC (H.264) Video encod-

ing

V4L2_CID_MPEG_VIDEO_ASPECT (enum)

enum v4l2_mpeg_video_aspect - Video aspect. Possible values are:

V4L2_MPEG_VIDEO_ASPECT_1x1
V4L2_MPEG_VIDEO_ASPECT_4x3
V4L2_MPEG_VIDEO_ASPECT_16x9
V4L2_MPEG_VIDEO_ASPECT_221x100

V4L2_CID_MPEG_VIDEO_B_FRAMES (integer) Number of B-Frames (default 2)

V4L2_CID_MPEG_VIDEO_GOP_SIZE (integer) GOP size (default 12)

V4L2_CID_MPEG_VIDEO_GOP_CLOSURE (boolean) GOP closure (default 1)

V4L2_CID_MPEG_VIDEO_PULLDOWN (boolean) Enable 3:2 pulldown (default 0)

V4L2_CID_MPEG_VIDEO_BITRATE_MODE (enum)

enum v4l2_mpeg_video_bitrate_mode - Video bitrate mode. Possible values
are:

V4L2_MPEG_VIDEO_BITRATE_MODE_VBR Variable bitrate
V4L2_MPEG_VIDEO_BITRATE_MODE_CBR Constant bitrate

V4L2_CID_MPEG_VIDEO_BITRATE (integer) Video bitrate in bits per second.

V4L2_CID_MPEG_VIDEO_BITRATE_PEAK (integer) Peak video bitrate in bits per
second. Must be larger or equal to the average video bitrate. It is ignored if
the video bitrate mode is set to constant bitrate.

V4L2_CID_MPEG_VIDEO_TEMPORAL_DECIMATION (integer) For every captured
frame, skip this many subsequent frames (default 0).

V4L2_CID_MPEG_VIDEO_MUTE (boolean)“Mutes”the video to a fixed color when
capturing. This is useful for testing, to produce a fixed video bitstream. 0 =
unmuted, 1 = muted.

V4L2_CID_MPEG_VIDEO_MUTE_YUV (integer) Sets the“mute”color of the video.
The supplied 32-bit integer is interpreted as follows (bit 0 = least significant
bit):

Bit 0:7 V chrominance information
Bit 8:15 U chrominance information
Bit 16:23 Y luminance information
Bit 24:31 Must be zero.

7.2. Part I - Video for Linux API 109

Linux Userspace-api Documentation

V4L2_CID_MPEG_VIDEO_DEC_PTS (integer64) This read-only control returns the
33-bit video Presentation Time Stamp as defined in ITU T-REC-H.222.0 and
ISO/IEC 13818-1 of the currently displayed frame. This is the same PTS as is
used in ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD.

V4L2_CID_MPEG_VIDEO_DEC_FRAME (integer64) This read-only control returns
the frame counter of the frame that is currently displayed (decoded). This
value is reset to 0 whenever the decoder is started.

V4L2_CID_MPEG_VIDEO_DECODER_SLICE_INTERFACE (boolean) If enabled the de-
coder expects to receive a single slice per buffer, otherwise the decoder ex-
pects a single frame in per buffer. Applicable to the decoder, all codecs.

V4L2_CID_MPEG_VIDEO_H264_VUI_SAR_ENABLE (boolean) Enable writing sample
aspect ratio in the Video Usability Information. Applicable to the H264 en-
coder.

V4L2_CID_MPEG_VIDEO_H264_VUI_SAR_IDC (enum)

enum v4l2_mpeg_video_h264_vui_sar_idc - VUI sample aspect ratio indicator
for H.264 encoding. The value is defined in the table E-1 in the standard.
Applicable to the H264 encoder.

V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_UNSPECIFIED Unspecified
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_1x1 1x1
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_12x11 12x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_10x11 10x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_16x11 16x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_40x33 40x33
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_24x11 24x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_20x11 20x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_32x11 32x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_80x33 80x33
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_18x11 18x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_15x11 15x11
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_64x33 64x33
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_160x99 160x99
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_4x3 4x3
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_3x2 3x2
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_2x1 2x1
V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_EXTENDED Extended SAR

V4L2_CID_MPEG_VIDEO_H264_VUI_EXT_SAR_WIDTH (integer) Extended sample
aspect ratio width for H.264 VUI encoding. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_VUI_EXT_SAR_HEIGHT (integer) Extended sample
aspect ratio height for H.264 VUI encoding. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_LEVEL (enum)

enum v4l2_mpeg_video_h264_level - The level information for the H264 video
elementary stream. Applicable to the H264 encoder. Possible values are:

110 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_MPEG_VIDEO_H264_LEVEL_1_0 Level 1.0
V4L2_MPEG_VIDEO_H264_LEVEL_1B Level 1B
V4L2_MPEG_VIDEO_H264_LEVEL_1_1 Level 1.1
V4L2_MPEG_VIDEO_H264_LEVEL_1_2 Level 1.2
V4L2_MPEG_VIDEO_H264_LEVEL_1_3 Level 1.3
V4L2_MPEG_VIDEO_H264_LEVEL_2_0 Level 2.0
V4L2_MPEG_VIDEO_H264_LEVEL_2_1 Level 2.1
V4L2_MPEG_VIDEO_H264_LEVEL_2_2 Level 2.2
V4L2_MPEG_VIDEO_H264_LEVEL_3_0 Level 3.0
V4L2_MPEG_VIDEO_H264_LEVEL_3_1 Level 3.1
V4L2_MPEG_VIDEO_H264_LEVEL_3_2 Level 3.2
V4L2_MPEG_VIDEO_H264_LEVEL_4_0 Level 4.0
V4L2_MPEG_VIDEO_H264_LEVEL_4_1 Level 4.1
V4L2_MPEG_VIDEO_H264_LEVEL_4_2 Level 4.2
V4L2_MPEG_VIDEO_H264_LEVEL_5_0 Level 5.0
V4L2_MPEG_VIDEO_H264_LEVEL_5_1 Level 5.1
V4L2_MPEG_VIDEO_H264_LEVEL_5_2 Level 5.2
V4L2_MPEG_VIDEO_H264_LEVEL_6_0 Level 6.0
V4L2_MPEG_VIDEO_H264_LEVEL_6_1 Level 6.1
V4L2_MPEG_VIDEO_H264_LEVEL_6_2 Level 6.2

V4L2_CID_MPEG_VIDEO_MPEG2_LEVEL (enum)

enum v4l2_mpeg_video_mpeg2_level - The level information for theMPEG2 el-
ementary stream. Applicable to MPEG2 codecs. Possible values are:

V4L2_MPEG_VIDEO_MPEG2_LEVEL_LOW Low Level (LL)
V4L2_MPEG_VIDEO_MPEG2_LEVEL_MAIN Main Level (ML)
V4L2_MPEG_VIDEO_MPEG2_LEVEL_HIGH_1440 High-1440 Level (H-14)
V4L2_MPEG_VIDEO_MPEG2_LEVEL_HIGH High Level (HL)

V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL (enum)

enum v4l2_mpeg_video_mpeg4_level - The level information for theMPEG4 el-
ementary stream. Applicable to the MPEG4 encoder. Possible values are:

V4L2_MPEG_VIDEO_MPEG4_LEVEL_0 Level 0
V4L2_MPEG_VIDEO_MPEG4_LEVEL_0B Level 0b
V4L2_MPEG_VIDEO_MPEG4_LEVEL_1 Level 1
V4L2_MPEG_VIDEO_MPEG4_LEVEL_2 Level 2
V4L2_MPEG_VIDEO_MPEG4_LEVEL_3 Level 3
V4L2_MPEG_VIDEO_MPEG4_LEVEL_3B Level 3b
V4L2_MPEG_VIDEO_MPEG4_LEVEL_4 Level 4
V4L2_MPEG_VIDEO_MPEG4_LEVEL_5 Level 5

V4L2_CID_MPEG_VIDEO_H264_PROFILE (enum)

enum v4l2_mpeg_video_h264_profile - The profile information for H264. Ap-
plicable to the H264 encoder. Possible values are:

7.2. Part I - Video for Linux API 111

Linux Userspace-api Documentation

V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE Baseline profile
V4L2_MPEG_VIDEO_H264_PROFILE_CONSTRAINED_BASELINEConstrained Baseline

profile
V4L2_MPEG_VIDEO_H264_PROFILE_MAIN Main profile
V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED Extended profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH High profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_10 High 10 profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_422 High 422 profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_444_PREDICTIVEHigh 444 Predictive pro-

file
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_10_INTRA High 10 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_422_INTRA High 422 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_444_INTRA High 444 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_CAVLC_444_INTRA CAVLC 444 Intra profile
V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_BASELINEScalable Baseline profile
V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_HIGH Scalable High profile
V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_HIGH_INTRAScalable High Intra pro-

file
V4L2_MPEG_VIDEO_H264_PROFILE_STEREO_HIGH Stereo High profile
V4L2_MPEG_VIDEO_H264_PROFILE_MULTIVIEW_HIGH Multiview High profile
V4L2_MPEG_VIDEO_H264_PROFILE_CONSTRAINED_HIGH Constrained High profile

V4L2_CID_MPEG_VIDEO_MPEG2_PROFILE (enum)

enum v4l2_mpeg_video_mpeg2_profile - The profile information for MPEG2.
Applicable to MPEG2 codecs. Possible values are:

V4L2_MPEG_VIDEO_MPEG2_PROFILE_SIMPLE Simple profile (SP)
V4L2_MPEG_VIDEO_MPEG2_PROFILE_MAIN Main profile (MP)
V4L2_MPEG_VIDEO_MPEG2_PROFILE_SNR_SCALABLE SNR Scalable profile

(SNR)
V4L2_MPEG_VIDEO_MPEG2_PROFILE_SPATIALLY_SCALABLESpatially Scalable profile

(Spt)
V4L2_MPEG_VIDEO_MPEG2_PROFILE_HIGH High profile (HP)
V4L2_MPEG_VIDEO_MPEG2_PROFILE_MULTIVIEW Multi-view profile (MVP)

V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE (enum)

enum v4l2_mpeg_video_mpeg4_profile - The profile information for MPEG4.
Applicable to the MPEG4 encoder. Possible values are:

V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE Simple profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_ADVANCED_SIMPLE Advanced Simple

profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_CORE Core profile
V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE_SCALABLE Simple Scalable pro-

file
V4L2_MPEG_VIDEO_MPEG4_PROFILE_ADVANCED_CODING_EFFICIENCY

V4L2_CID_MPEG_VIDEO_MAX_REF_PIC (integer) The maximum number of refer-

112 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

ence pictures used for encoding. Applicable to the encoder.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE (enum)

enum v4l2_mpeg_video_multi_slice_mode - Determines how the encoder
should handle division of frame into slices. Applicable to the encoder.
Possible values are:

V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE Single slice per frame.
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_MB Multiple slices with set maximum num-

ber of macroblocks per slice.
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_BYTES Multiple slice with set maximum size in

bytes per slice.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB (integer) The max-
imum number of macroblocks in a slice. Used
when V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE is set to
V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_MB. Applicable to the encoder.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES (integer) The maximum size
of a slice in bytes. Used when V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE
is set to V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_BYTES. Applicable to the
encoder.

V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE (enum)

enum v4l2_mpeg_video_h264_loop_filter_mode - Loop filter mode for H264
encoder. Possible values are:

V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_ENABLED Loop filter is enabled.
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_DISABLED Loop filter is disabled.
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_DISABLED_AT_SLICE_BOUNDARY Loop filter is disabled

at the slice boundary.

V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_ALPHA (integer) Loop filter alpha
coefficient, defined in the H264 standard. This value corresponds to the
slice_alpha_c0_offset_div2 slice header field, and should be in the range of
-6 to +6, inclusive. The actual alpha offset FilterOffsetA is twice this value.
Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_BETA (integer) Loop filter beta co-
efficient, defined in the H264 standard. This corresponds to the
slice_beta_offset_div2 slice header field, and should be in the range of -6 to
+6, inclusive. The actual beta offset FilterOffsetB is twice this value. Appli-
cable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_ENTROPY_MODE (enum)

enum v4l2_mpeg_video_h264_entropy_mode - Entropy coding mode for H264
- CABAC/CAVALC. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CAVLC Use CAVLC entropy coding.
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC Use CABAC entropy coding.

V4L2_CID_MPEG_VIDEO_H264_8X8_TRANSFORM (boolean) Enable 8X8 transform
for H264. Applicable to the H264 encoder.

7.2. Part I - Video for Linux API 113

Linux Userspace-api Documentation

V4L2_CID_MPEG_VIDEO_H264_CONSTRAINED_INTRA_PREDICTION (boolean)
Enable constrained intra prediction for H264. Applicable to the H264
encoder.

V4L2_CID_MPEG_VIDEO_H264_CHROMA_QP_INDEX_OFFSET (integer) Specify the
offset that should be added to the luma quantization parameter to determine
the chroma quantization parameter. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB (integer) Cyclic intra mac-
roblock refresh. This is the number of continuous macroblocks refreshed
every frame. Each frame a successive set of macroblocks is refreshed until
the cycle completes and starts from the top of the frame. Applicable to H264,
H263 and MPEG4 encoder.

V4L2_CID_MPEG_VIDEO_FRAME_RC_ENABLE (boolean) Frame level rate control
enable. If this control is disabled then the quantization parameter
for each frame type is constant and set with appropriate controls (e.g.
V4L2_CID_MPEG_VIDEO_H263_I_FRAME_QP). If frame rate control is enabled
then quantization parameter is adjusted to meet the chosen bitrate. Min-
imum and maximum value for the quantization parameter can be set with
appropriate controls (e.g. V4L2_CID_MPEG_VIDEO_H263_MIN_QP). Applicable
to encoders.

V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE (boolean) Macroblock level rate control
enable. Applicable to the MPEG4 and H264 encoders.

V4L2_CID_MPEG_VIDEO_MPEG4_QPEL (boolean) Quarter pixel motion estimation
for MPEG4. Applicable to the MPEG4 encoder.

V4L2_CID_MPEG_VIDEO_H263_I_FRAME_QP (integer) Quantization parameter for
an I frame for H263. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_MIN_QP (integer) Minimum quantization parame-
ter for H263. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_MAX_QP (integer) Maximum quantization parame-
ter for H263. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_P_FRAME_QP (integer) Quantization parameter for
an P frame for H263. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H263_B_FRAME_QP (integer) Quantization parameter for
an B frame for H263. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP (integer) Quantization parameter for
an I frame for H264. Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_MIN_QP (integer) Minimum quantization parame-
ter for H264. Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_MAX_QP (integer) Maximum quantization parame-
ter for H264. Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP (integer) Quantization parameter for
an P frame for H264. Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_H264_B_FRAME_QP (integer) Quantization parameter for
an B frame for H264. Valid range: from 0 to 51.

114 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_CID_MPEG_VIDEO_H264_I_FRAME_MIN_QP (integer) Minimum quantiza-
tion parameter for the H264 I frame to limit I frame quality to a range. Valid
range: from 0 to 51. If V4L2_CID_MPEG_VIDEO_H264_MIN_QP is also set,
the quantization parameter should be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_H264_I_FRAME_MAX_QP (integer) Maximum quantiza-
tion parameter for the H264 I frame to limit I frame quality to a range. Valid
range: from 0 to 51. If V4L2_CID_MPEG_VIDEO_H264_MAX_QP is also set,
the quantization parameter should be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_H264_P_FRAME_MIN_QP (integer) Minimum quantiza-
tion parameter for the H264 P frame to limit P frame quality to a range. Valid
range: from 0 to 51. If V4L2_CID_MPEG_VIDEO_H264_MIN_QP is also set,
the quantization parameter should be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_H264_P_FRAME_MAX_QP (integer) Maximum quantiza-
tion parameter for the H264 P frame to limit P frame quality to a range. Valid
range: from 0 to 51. If V4L2_CID_MPEG_VIDEO_H264_MAX_QP is also set,
the quantization parameter should be chosen to meet both requirements.

V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP (integer) Quantization parameter
for an I frame for MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_MIN_QP (integer) Minimum quantization param-
eter for MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_MAX_QP (integer) Maximum quantization param-
eter for MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP (integer) Quantization parameter
for an P frame for MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_MPEG4_B_FRAME_QP (integer) Quantization parameter
for an B frame for MPEG4. Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_VBV_SIZE (integer) The Video Buffer Verifier size in
kilobytes, it is used as a limitation of frame skip. The VBV is defined in the
standard as a mean to verify that the produced stream will be successfully
decoded. The standard describes it as “Part of a hypothetical decoder that
is conceptually connected to the output of the encoder. Its purpose is to pro-
vide a constraint on the variability of the data rate that an encoder or editing
process may produce.”. Applicable to the MPEG1, MPEG2, MPEG4 encoders.

V4L2_CID_MPEG_VIDEO_VBV_DELAY (integer) Sets the initial delay in millisec-
onds for VBV buffer control.

V4L2_CID_MPEG_VIDEO_MV_H_SEARCH_RANGE (integer) Horizontal search range
defines maximum horizontal search area in pixels to search and match for
the present Macroblock (MB) in the reference picture. This V4L2 control
macro is used to set horizontal search range for motion estimation module in
video encoder.

V4L2_CID_MPEG_VIDEO_MV_V_SEARCH_RANGE (integer) Vertical search range de-
fines maximum vertical search area in pixels to search and match for the
present Macroblock (MB) in the reference picture. This V4L2 control macro
is used to set vertical search range for motion estimation module in video
encoder.

7.2. Part I - Video for Linux API 115

Linux Userspace-api Documentation

V4L2_CID_MPEG_VIDEO_FORCE_KEY_FRAME (button) Force a key frame for the
next queued buffer. Applicable to encoders. This is a general, codec-agnostic
keyframe control.

V4L2_CID_MPEG_VIDEO_H264_CPB_SIZE (integer) The Coded Picture Buffer size
in kilobytes, it is used as a limitation of frame skip. The CPB is defined in the
H264 standard as a mean to verify that the produced stream will be success-
fully decoded. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_I_PERIOD (integer) Period between I-frames in
the open GOP for H264. In case of an open GOP this is the period between two
I-frames. The period between IDR (Instantaneous Decoding Refresh) frames
is taken from the GOP_SIZE control. An IDR frame, which stands for In-
stantaneous Decoding Refresh is an I-frame after which no prior frames are
referenced. This means that a stream can be restarted from an IDR frame
without the need to store or decode any previous frames. Applicable to the
H264 encoder.

V4L2_CID_MPEG_VIDEO_HEADER_MODE (enum)

enum v4l2_mpeg_video_header_mode - Determines whether the header is re-
turned as the first buffer or is it returned together with the first frame. Ap-
plicable to encoders. Possible values are:

V4L2_MPEG_VIDEO_HEADER_MODE_SEPARATE The stream header is returned sepa-
rately in the first buffer.

V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME The stream header is returned together
with the first encoded frame.

V4L2_CID_MPEG_VIDEO_REPEAT_SEQ_HEADER (boolean) Repeat the video se-
quence headers. Repeating these headers makes random access to the video
stream easier. Applicable to the MPEG1, 2 and 4 encoder.

V4L2_CID_MPEG_VIDEO_DECODER_MPEG4_DEBLOCK_FILTER (boolean) Enabled
the deblocking post processing filter for MPEG4 decoder. Applicable to the
MPEG4 decoder.

V4L2_CID_MPEG_VIDEO_MPEG4_VOP_TIME_RES (integer)
vop_time_increment_resolution value for MPEG4. Applicable to the MPEG4
encoder.

V4L2_CID_MPEG_VIDEO_MPEG4_VOP_TIME_INC (integer) vop_time_increment
value for MPEG4. Applicable to the MPEG4 encoder.

V4L2_CID_MPEG_VIDEO_H264_SEI_FRAME_PACKING (boolean) Enable generation
of frame packing supplemental enhancement information in the encoded bit-
stream. The frame packing SEI message contains the arrangement of L and
R planes for 3D viewing. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_SEI_FP_CURRENT_FRAME_0 (boolean) Sets current
frame as frame0 in frame packing SEI. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE (enum)

enum v4l2_mpeg_video_h264_sei_fp_arrangement_type - Frame packing ar-
rangement type for H264 SEI. Applicable to the H264 encoder. Possible val-
ues are:

116 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_CHEKERBOARD Pixels are alternatively from L
and R.

V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_COLUMN L and R are interlaced by col-
umn.

V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_ROW L and R are interlaced by row.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_SIDE_BY_SIDE L is on the left, R on the right.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_TOP_BOTTOM L is on top, R on bottom.
V4L2_MPEG_VIDEO_H264_SEI_FP_ARRANGEMENT_TYPE_TEMPORAL One view per frame.

V4L2_CID_MPEG_VIDEO_H264_FMO (boolean) Enables flexible macroblock order-
ing in the encoded bitstream. It is a technique used for restructuring the
ordering of macroblocks in pictures. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_FMO_MAP_TYPE (enum)

enum v4l2_mpeg_video_h264_fmo_map_type - When using FMO, the map
type divides the image in different scan patterns of macroblocks. Applica-
ble to the H264 encoder. Possible values are:

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_INTERLEAVED_SLICES Slices are interleaved
one after other with mac-
roblocks in run length
order.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_SCATTERED_SLICES Scatters the macroblocks
based on a mathematical
function known to both en-
coder and decoder.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_FOREGROUND_WITH_LEFT_OVER Macroblocks arranged
in rectangular areas or
regions of interest.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_BOX_OUT Slice groups grow in a cyclic
way from centre to out-
wards.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_RASTER_SCAN Slice groups grow in raster
scan pattern from left to
right.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_WIPE_SCAN Slice groups grow in wipe
scan pattern from top to bot-
tom.

V4L2_MPEG_VIDEO_H264_FMO_MAP_TYPE_EXPLICIT User defined map type.

V4L2_CID_MPEG_VIDEO_H264_FMO_SLICE_GROUP (integer) Number of slice
groups in FMO. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_FMO_CHANGE_DIRECTION (enum)

enum v4l2_mpeg_video_h264_fmo_change_dir - Specifies a direction of the
slice group change for raster and wipe maps. Applicable to the H264 en-
coder. Possible values are:

V4L2_MPEG_VIDEO_H264_FMO_CHANGE_DIR_RIGHTRaster scan or wipe right.
V4L2_MPEG_VIDEO_H264_FMO_CHANGE_DIR_LEFT Reverse raster scan or wipe

left.

V4L2_CID_MPEG_VIDEO_H264_FMO_CHANGE_RATE (integer) Specifies the size of
the first slice group for raster and wipe map. Applicable to the H264 encoder.

7.2. Part I - Video for Linux API 117

Linux Userspace-api Documentation

V4L2_CID_MPEG_VIDEO_H264_FMO_RUN_LENGTH (integer) Specifies the number
of consecutive macroblocks for the interleaved map. Applicable to the H264
encoder.

V4L2_CID_MPEG_VIDEO_H264_ASO (boolean) Enables arbitrary slice ordering in
encoded bitstream. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_ASO_SLICE_ORDER (integer) Specifies the slice or-
der in ASO. Applicable to the H264 encoder. The supplied 32-bit integer is
interpreted as follows (bit 0 = least significant bit):

Bit 0:15 Slice ID
Bit 16:32 Slice position or order

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING (boolean) Enables H264
hierarchical coding. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_TYPE (enum)

enum v4l2_mpeg_video_h264_hierarchical_coding_type - Specifies the hier-
archical coding type. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDEO_H264_HIERARCHICAL_CODING_B Hierarchical B coding.
V4L2_MPEG_VIDEO_H264_HIERARCHICAL_CODING_P Hierarchical P coding.

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_LAYER (integer) Specifies
the number of hierarchical coding layers. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_LAYER_QP (integer)
Specifies a user defined QP for each layer. Applicable to the H264 encoder.
The supplied 32-bit integer is interpreted as follows (bit 0 = least significant
bit):

Bit 0:15 QP value
Bit 16:32 Layer number

V4L2_CID_MPEG_VIDEO_H264_SPS (struct) Specifies the sequence parameter
set (as extracted from the bitstream) for the associated H264 slice data. This
includes the necessary parameters for configuring a stateless hardware de-
coding pipeline for H264. The bitstream parameters are defined according
to ITU-T Rec. H.264 Specification (04/2017 Edition), section 7.4.2.1.1 “Se-
quence Parameter Set Data Semantics”. For further documentation, refer to
the above specification, unless there is an explicit comment stating otherwise.

Note: This compound control is not yet part of the public kernel API and it
is expected to change.

v4l2_ctrl_h264_sps

118 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 1: struct v4l2_ctrl_h264_sps
__u8 profile_idc
__u8 constraint_set_flags See Sequence Parameter Set Constraints Set Flags
__u8 level_idc
__u8 seq_parameter_set_id
__u8 chroma_format_idc
__u8 bit_depth_luma_minus8
__u8 bit_depth_chroma_minus8
__u8 log2_max_frame_num_minus4
__u8 pic_order_cnt_type
__u8 log2_max_pic_order_cnt_lsb_minus4
__u8 max_num_ref_frames
__u8 num_ref_frames_in_pic_order_cnt_cycle
__s32 offset_for_ref_frame[255]
__s32 offset_for_non_ref_pic
__s32 offset_for_top_to_bottom_field
__u16 pic_width_in_mbs_minus1
__u16 pic_height_in_map_units_minus1
__u32 flags See Sequence Parameter Set Flags

Sequence Parameter Set Constraints Set Flags

V4L2_H264_SPS_CONSTRAINT_SET0_FLAG 0x00000001
V4L2_H264_SPS_CONSTRAINT_SET1_FLAG 0x00000002
V4L2_H264_SPS_CONSTRAINT_SET2_FLAG 0x00000004
V4L2_H264_SPS_CONSTRAINT_SET3_FLAG 0x00000008
V4L2_H264_SPS_CONSTRAINT_SET4_FLAG 0x00000010
V4L2_H264_SPS_CONSTRAINT_SET5_FLAG 0x00000020

Sequence Parameter Set Flags

V4L2_H264_SPS_FLAG_SEPARATE_COLOUR_PLANE 0x00000001
V4L2_H264_SPS_FLAG_QPPRIME_Y_ZERO_TRANSFORM_BYPASS 0x00000002
V4L2_H264_SPS_FLAG_DELTA_PIC_ORDER_ALWAYS_ZERO 0x00000004
V4L2_H264_SPS_FLAG_GAPS_IN_FRAME_NUM_VALUE_ALLOWED 0x00000008
V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY 0x00000010
V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD 0x00000020
V4L2_H264_SPS_FLAG_DIRECT_8X8_INFERENCE 0x00000040

V4L2_CID_MPEG_VIDEO_H264_PPS (struct) Specifies the picture parameter set
(as extracted from the bitstream) for the associated H264 slice data. This
includes the necessary parameters for configuring a stateless hardware de-
coding pipeline for H264. The bitstream parameters are defined according
to ITU-T Rec. H.264 Specification (04/2017 Edition), section 7.4.2.2“Picture
Parameter Set RBSP Semantics”. For further documentation, refer to the
above specification, unless there is an explicit comment stating otherwise.

Note: This compound control is not yet part of the public kernel API and it

7.2. Part I - Video for Linux API 119

Linux Userspace-api Documentation

is expected to change.

v4l2_ctrl_h264_pps

Table 4: struct v4l2_ctrl_h264_pps
__u8 pic_parameter_set_id
__u8 seq_parameter_set_id
__u8 num_slice_groups_minus1
__u8 num_ref_idx_l0_default_active_minus1
__u8 num_ref_idx_l1_default_active_minus1
__u8 weighted_bipred_idc
__s8 pic_init_qp_minus26
__s8 pic_init_qs_minus26
__s8 chroma_qp_index_offset
__s8 second_chroma_qp_index_offset
__u16 flags See Picture Parameter Set Flags

Picture Parameter Set Flags

V4L2_H264_PPS_FLAG_ENTROPY_CODING_MODE 0x00000001
V4L2_H264_PPS_FLAG_BOTTOM_FIELD_PIC_ORDER_IN_FRAME_PRESENT 0x00000002
V4L2_H264_PPS_FLAG_WEIGHTED_PRED 0x00000004
V4L2_H264_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT 0x00000008
V4L2_H264_PPS_FLAG_CONSTRAINED_INTRA_PRED 0x00000010
V4L2_H264_PPS_FLAG_REDUNDANT_PIC_CNT_PRESENT 0x00000020
V4L2_H264_PPS_FLAG_TRANSFORM_8X8_MODE 0x00000040
V4L2_H264_PPS_FLAG_PIC_SCALING_MATRIX_PRESENT 0x00000080

V4L2_CID_MPEG_VIDEO_H264_SCALING_MATRIX (struct) Specifies the scaling
matrix (as extracted from the bitstream) for the associated H264 slice
data. The bitstream parameters are defined according to ITU-T Rec. H.264
Specification (04/2017 Edition), section 7.4.2.1.1.1“Scaling List Semantics”
. For further documentation, refer to the above specification, unless there is
an explicit comment stating otherwise.

Note: This compound control is not yet part of the public kernel API and it
is expected to change.

v4l2_ctrl_h264_scaling_matrix

Table 6: struct v4l2_ctrl_h264_scaling_matrix
__u8 scaling_list_4x4[6][16] Scaling matrix after applying the inverse scanning process. Expected list order is Intra Y, Intra Cb, Intra Cr, Inter Y, Inter Cb, Inter Cr.
__u8 scaling_list_8x8[6][64] Scaling matrix after applying the inverse scanning process. Expected list order is Intra Y, Inter Y, Intra Cb, Inter Cb, Intra Cr, Inter Cr.

V4L2_CID_MPEG_VIDEO_H264_SLICE_PARAMS (struct) Specifies the slice param-
eters (as extracted from the bitstream) for the associated H264 slice data.
This includes the necessary parameters for configuring a stateless hardware
decoding pipeline for H264. The bitstream parameters are defined accord-

120 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

ing to ITU-T Rec. H.264 Specification (04/2017 Edition), section 7.4.3“Slice
Header Semantics”. For further documentation, refer to the above specifi-
cation, unless there is an explicit comment stating otherwise.

Note: This compound control is not yet part of the public kernel API and it
is expected to change.

This structure is expected to be passed as an array, with one entry for each
slice included in the bitstream buffer.

v4l2_ctrl_h264_slice_params

Table 7: struct v4l2_ctrl_h264_slice_params
__u32 size
__u32 start_byte_offset Offset (in bytes) from the beginning of the OUTPUT buffer

to the start of the slice. If the slice starts with a start code, then this is the
offset to such start code. When operating in slice-based decoding mode (see
v4l2_mpeg_video_h264_decode_mode), this field should be set to 0. When op-
erating in frame-based decoding mode, this field should be 0 for the first slice.

__u32 header_bit_size
__u16 first_mb_in_slice
__u8 slice_type
__u8 pic_parameter_set_id
__u8 colour_plane_id
__u8 redundant_pic_cnt
__u16 frame_num
__u16 idr_pic_id
__u16 pic_order_cnt_lsb
__s32 delta_pic_order_cnt_bottom
__s32 delta_pic_order_cnt0
__s32 delta_pic_order_cnt1
struct v4l2_h264_pred_weight_table pred_weight_table
__u32 dec_ref_pic_marking_bit_size Size in bits of the dec_ref_pic_marking() syntax element.
__u32 pic_order_cnt_bit_size
__u8 cabac_init_idc
__s8 slice_qp_delta
__s8 slice_qs_delta
__u8 disable_deblocking_filter_idc
__s8 slice_alpha_c0_offset_div2
__s8 slice_beta_offset_div2
__u8 num_ref_idx_l0_active_minus1 If num_ref_idx_active_override_flag is not set, this field must be set to the value of num_ref_idx_l0_default_active_minus1.
__u8 num_ref_idx_l1_active_minus1 If num_ref_idx_active_override_flag is not set, this field must be set to the value of num_ref_idx_l1_default_active_minus1.
__u32 slice_group_change_cycle
__u8 ref_pic_list0[32] Reference picture list after applying the per-slice modifications
__u8 ref_pic_list1[32] Reference picture list after applying the per-slice modifications
__u32 flags See Slice Parameter Flags

Slice Parameter Set Flags

7.2. Part I - Video for Linux API 121

Linux Userspace-api Documentation

V4L2_H264_SLICE_FLAG_FIELD_PIC 0x00000001
V4L2_H264_SLICE_FLAG_BOTTOM_FIELD 0x00000002
V4L2_H264_SLICE_FLAG_DIRECT_SPATIAL_MV_PRED 0x00000004
V4L2_H264_SLICE_FLAG_SP_FOR_SWITCH 0x00000008

Prediction Weight Table

The bitstream parameters are defined according to ITU-T Rec. H.264
Specification (04/2017 Edition), section 7.4.3.2“PredictionWeight Table
Semantics”. For further documentation, refer to the above specification,
unless there is an explicit comment stating otherwise.

v4l2_h264_pred_weight_table

Table 9: struct v4l2_h264_pred_weight_table
__u16 luma_log2_weight_denom
__u16 chroma_log2_weight_denom
struct v4l2_h264_weight_factors weight_factors[2] The weight factors at index 0 are the weight factors for the reference list 0, the one at index 1 for the reference list 1.

v4l2_h264_weight_factors

Table 10: struct v4l2_h264_weight_factors
__s16 luma_weight[32]
__s16 luma_offset[32]
__s16 chroma_weight[32][2]
__s16 chroma_offset[32][2]

V4L2_CID_MPEG_VIDEO_H264_DECODE_PARAMS (struct) Specifies the decode pa-
rameters (as extracted from the bitstream) for the associated H264 slice data.
This includes the necessary parameters for configuring a stateless hardware
decoding pipeline for H264. The bitstream parameters are defined according
to ITU-T Rec. H.264 Specification (04/2017 Edition). For further documen-
tation, refer to the above specification, unless there is an explicit comment
stating otherwise.

Note: This compound control is not yet part of the public kernel API and it
is expected to change.

v4l2_ctrl_h264_decode_params

Table 11: struct v4l2_ctrl_h264_decode_params
struct v4l2_h264_dpb_entry dpb[16]
__u16 num_slices Number of slices needed to decode the current frame/field. When operating in slice-based decoding mode (see v4l2_mpeg_video_h264_decode_mode), this field should always be set to one.
__u16 nal_ref_idc NAL reference ID value coming from the NAL Unit header
__s32 top_field_order_cnt Picture Order Count for the coded top field
__s32 bottom_field_order_cnt Picture Order Count for the coded bottom field
__u32 flags See Decode Parameters Flags

122 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Decode Parameters Flags

V4L2_H264_DECODE_PARAM_FLAG_IDR_PIC 0x00000001 That picture is an IDR picture

v4l2_h264_dpb_entry

Table 13: struct v4l2_h264_dpb_entry
__u64 reference_ts Timestamp of the V4L2 capture buffer to use as reference, used with B-coded and P-coded frames. The timestamp refers to the timestamp field in struct v4l2_buffer. Use the v4l2_timeval_to_ns() function to convert the struct timeval in struct v4l2_buffer to a __u64.
__u16 frame_num
__u16 pic_num
__s32 top_field_order_cnt
__s32 bottom_field_order_cnt
__u32 flags See DPB Entry Flags

DPB Entries Flags

V4L2_H264_DPB_ENTRY_FLAG_VALID 0x00000001 The DPB entry is valid and should be considered
V4L2_H264_DPB_ENTRY_FLAG_ACTIVE 0x00000002 The DPB entry is currently being used as a reference frame
V4L2_H264_DPB_ENTRY_FLAG_LONG_TERM 0x00000004 The DPB entry is a long term reference frame
V4L2_H264_DPB_ENTRY_FLAG_FIELD 0x00000008 The DPB entry is a field reference, which means only one of the field will be used when decoding the new frame/field. When not set the DPB entry is a frame reference (both fields will be used). Note that this flag does not say anything about the number of fields contained in the reference frame, it just describes the one used to decode the new field/frame
V4L2_H264_DPB_ENTRY_FLAG_BOTTOM_FIELD 0x00000010 The DPB entry is a bottom field reference (only the bottom field of the reference frame is needed to decode the new frame/field). Only valid if V4L2_H264_DPB_ENTRY_FLAG_FIELD is set. When V4L2_H264_DPB_ENTRY_FLAG_FIELD is set but V4L2_H264_DPB_ENTRY_FLAG_BOTTOM_FIELD is not, that means the DPB entry is a top field reference

V4L2_CID_MPEG_VIDEO_H264_DECODE_MODE (enum) Specifies the decoding mode
to use. Currently exposes slice-based and frame-based decoding but new
modes might be added later on. This control is used as a modifier
for V4L2_PIX_FMT_H264_SLICE pixel format. Applications that support
V4L2_PIX_FMT_H264_SLICE are required to set this control in order to spec-
ify the decoding mode that is expected for the buffer. Drivers may expose a
single or multiple decoding modes, depending on what they can support.

Note: This menu control is not yet part of the public kernel API and it is
expected to change.

v4l2_mpeg_video_h264_decode_mode

V4L2_MPEG_VIDEO_H264_DECODE_MODE_SLICE_BASED 0 Decoding is done at the slice granularity. In this mode, num_slices field in struct v4l2_ctrl_h264_decode_params should be set to 1, and start_byte_offset in struct v4l2_ctrl_h264_slice_params should be set to 0. The OUTPUT buffer must contain a single slice.
V4L2_MPEG_VIDEO_H264_DECODE_MODE_FRAME_BASED 1 Decoding is done at the frame granularity. In this mode, num_slices field in struct v4l2_ctrl_h264_decode_params should be set to the number of slices in the frame, and start_byte_offset in struct v4l2_ctrl_h264_slice_params should be set accordingly for each slice. For the first slice, start_byte_offset should be zero. The OUTPUT buffer must contain all slices needed to decode the frame. The OUTPUT buffer must also contain both fields.

V4L2_CID_MPEG_VIDEO_H264_START_CODE (enum) Specifies the H264 slice start
code expected for each slice. This control is used as a modifier
for V4L2_PIX_FMT_H264_SLICE pixel format. Applications that support
V4L2_PIX_FMT_H264_SLICE are required to set this control in order to spec-
ify the start code that is expected for the buffer. Drivers may expose a single
or multiple start codes, depending on what they can support.

Note: This menu control is not yet part of the public kernel API and it is
expected to change.

7.2. Part I - Video for Linux API 123

Linux Userspace-api Documentation

v4l2_mpeg_video_h264_start_code

V4L2_MPEG_VIDEO_H264_START_CODE_NONE 0 Selecting this value specifies that H264 slices are passed to the driver without any start code.
V4L2_MPEG_VIDEO_H264_START_CODE_ANNEX_B 1 Selecting this value specifies that H264 slices are expected to be prefixed by Annex B start codes. According to ITU-T Rec. H.264 Specification (04/2017 Edition) valid start codes can be 3-bytes 0x000001 or 4-bytes 0x00000001.

V4L2_CID_MPEG_VIDEO_MPEG2_SLICE_PARAMS (struct) Specifies the slice pa-
rameters (as extracted from the bitstream) for the associated MPEG-2 slice
data. This includes the necessary parameters for configuring a stateless hard-
ware decoding pipeline for MPEG-2. The bitstream parameters are defined
according to ISO 13818-2.

Note: This compound control is not yet part of the public kernel API and it
is expected to change.

v4l2_ctrl_mpeg2_slice_params

124 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 17: struct v4l2_ctrl_mpeg2_slice_params
__u32 bit_size Size (in bits) of the current slice

data.
__u32 data_bit_offset Offset (in bits) to the video data in

the current slice data.
struct v4l2_mpeg2_sequence sequence Structure with MPEG-2 sequence

metadata, merging relevant fields
from the sequence header and se-
quence extension parts of the bit-
stream.

struct v4l2_mpeg2_picture picture Structure with MPEG-2 picture
metadata, merging relevant fields
from the picture header and pic-
ture coding extension parts of the
bitstream.

__u64 backward_ref_ts Timestamp of the V4L2 capture
buffer to use as backward refer-
ence, used with B-coded and P-
coded frames. The timestamp
refers to the timestamp field in
struct v4l2_buffer. Use the
v4l2_timeval_to_ns() function
to convert the struct timeval in
struct v4l2_buffer to a __u64.

__u64 forward_ref_ts Timestamp for the V4L2 cap-
ture buffer to use as forward
reference, used with B-coded
frames. The timestamp refers
to the timestamp field in
struct v4l2_buffer. Use the
v4l2_timeval_to_ns() function
to convert the struct timeval in
struct v4l2_buffer to a __u64.

__u32 quantiser_scale_code Code used to determine the quan-
tization scale to use for the IDCT.

v4l2_mpeg2_sequence

7.2. Part I - Video for Linux API 125

Linux Userspace-api Documentation

Table 18: struct v4l2_mpeg2_sequence
__u16 horizontal_size The width of the displayable part of the frame’s

luminance component.
__u16 vertical_size The height of the displayable part of the frame’

s luminance component.
__u32 vbv_buffer_size Used to calculate the required size of the video

buffering verifier, defined (in bits) as: 16 * 1024
* vbv_buffer_size.

__u16 profile_and_level_indication The current profile and level indication as ex-
tracted from the bitstream.

__u8 progressive_sequence Indication that all the frames for the sequence
are progressive instead of interlaced.

__u8 chroma_format The chrominance sub-sampling format (1: 4:2:0,
2: 4:2:2, 3: 4:4:4).

v4l2_mpeg2_picture

Table 19: struct v4l2_mpeg2_picture
__u8 picture_coding_type Picture coding type for the frame

covered by the current slice
(V4L2_MPEG2_PICTURE_CODING_TYPE_I,
V4L2_MPEG2_PICTURE_CODING_TYPE_P or
V4L2_MPEG2_PICTURE_CODING_TYPE_B).

__u8 f_code[2][2] Motion vector codes.
__u8 intra_dc_precision Precision of Discrete Cosine transform (0: 8 bits

precision, 1: 9 bits precision, 2: 10 bits preci-
sion, 3: 11 bits precision).

__u8 picture_structure Picture structure (1: interlaced top field, 2: in-
terlaced bottom field, 3: progressive frame).

__u8 top_field_first If set to 1 and interlaced stream, top field is out-
put first.

__u8 frame_pred_frame_dct If set to 1, only frame-DCT and frame prediction
are used.

__u8 concealment_motion_vectors If set to 1, motion vectors are coded for intra
macroblocks.

__u8 q_scale_type This flag affects the inverse quantization pro-
cess.

__u8 intra_vlc_format This flag affects the decoding of transform coef-
ficient data.

__u8 alternate_scan This flag affects the decoding of transform coef-
ficient data.

__u8 repeat_first_field This flag affects the decoding process of progres-
sive frames.

__u16 progressive_frame Indicates whether the current frame is progres-
sive.

V4L2_CID_MPEG_VIDEO_MPEG2_QUANTIZATION (struct) Specifies quantization
matrices (as extracted from the bitstream) for the associated MPEG-2 slice
data.

126 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Note: This compound control is not yet part of the public kernel API and it
is expected to change.

v4l2_ctrl_mpeg2_quantization

Table 20: struct v4l2_ctrl_mpeg2_quantization
__u8 load_intra_quantiser_matrix One bit to indicate whether to load the

intra_quantiser_matrix data.
__u8 load_non_intra_quantiser_matrix One bit to indicate whether to load the

non_intra_quantiser_matrix data.
__u8 load_chroma_intra_quantiser_matrix One bit to indicate whether to load the

chroma_intra_quantiser_matrix data,
only relevant for non-4:2:0 YUV formats.

__u8 load_chroma_non_intra_quantiser_matrix One bit to indicate whether to load the
chroma_non_intra_quantiser_matrix
data, only relevant for non-4:2:0 YUV
formats.

__u8 intra_quantiser_matrix[64] The quantization matrix coefficients for
intra-coded frames, in zigzag scanning or-
der. It is relevant for both luma and
chroma components, although it can be
superseded by the chroma-specific matrix
for non-4:2:0 YUV formats.

__u8 non_intra_quantiser_matrix[64] The quantization matrix coefficients for
non-intra-coded frames, in zigzag scan-
ning order. It is relevant for both luma
and chroma components, although it can
be superseded by the chroma-specific ma-
trix for non-4:2:0 YUV formats.

__u8 chroma_intra_quantiser_matrix[64] The quantization matrix coefficients for
the chominance component of intra-coded
frames, in zigzag scanning order. Only
relevant for non-4:2:0 YUV formats.

__u8 chroma_non_intra_quantiser_matrix[64] The quantization matrix coefficients for
the chrominance component of non-intra-
coded frames, in zigzag scanning order.
Only relevant for non-4:2:0 YUV formats.

V4L2_CID_FWHT_I_FRAME_QP (integer) Quantization parameter for an I frame for FWHT.
Valid range: from 1 to 31.

V4L2_CID_FWHT_P_FRAME_QP (integer) Quantization parameter for a P frame for FWHT.
Valid range: from 1 to 31.

V4L2_CID_MPEG_VIDEO_VP8_FRAME_HEADER (struct) Specifies the frame parameters for
the associated VP8 parsed frame data. This includes the necessary parameters for
configuring a stateless hardware decoding pipeline for VP8. The bitstream parame-
ters are defined according to VP8.

Note: This compound control is not yet part of the public kernel API and it is
expected to change.

v4l2_ctrl_vp8_frame_header

7.2. Part I - Video for Linux API 127

Linux Userspace-api Documentation

Table 21: struct v4l2_ctrl_vp8_frame_header
struct v4l2_vp8_segment_header segment_header Structure with segment-based ad-

justments metadata.
struct v4l2_vp8_loopfilter_headerloopfilter_header Structure with loop filter level adjust-

ments metadata.
struct v4l2_vp8_quantization_headerquant_header Structure with VP8 dequantization

indices metadata.
struct v4l2_vp8_entropy_header entropy_header Structure with VP8 entropy coder

probabilities metadata.
struct v4l2_vp8_entropy_coder_statecoder_state Structure with VP8 entropy coder

state.
__u16 width The width of the frame. Must be set

for all frames.
__u16 height The height of the frame. Must be set

for all frames.
__u8 horizontal_scale Horizontal scaling factor.
__u8 vertical_scaling

factor
Vertical scale.

__u8 version Bitstream version.
__u8 prob_skip_false Indicates the probability that the

macroblock is not skipped.
__u8 prob_intra Indicates the probability that a mac-

roblock is intra-predicted.
__u8 prob_last Indicates the probability that the last

reference frame is used for inter-
prediction

__u8 prob_gf Indicates the probability that the
golden reference frame is used for
inter-prediction

__u8 num_dct_parts Number of DCT coefficients parti-
tions. Must be one of: 1, 2, 4, or 8.

__u32 first_part_size Size of the first partition, i.e. the con-
trol partition.

__u32 first_part_header_bits Size in bits of the first partition
header portion.

__u32 dct_part_sizes[8] DCT coefficients sizes.
__u64 last_frame_ts Timestamp for the V4L2 capture

buffer to use as last reference frame,
used with inter-coded frames. The
timestamp refers to the timestamp
field in struct v4l2_buffer. Use the
v4l2_timeval_to_ns() function to
convert the struct timeval in struct
v4l2_buffer to a __u64.

__u64 golden_frame_ts Timestamp for the V4L2 capture
buffer to use as last reference frame,
used with inter-coded frames. The
timestamp refers to the timestamp
field in struct v4l2_buffer. Use the
v4l2_timeval_to_ns() function to
convert the struct timeval in struct
v4l2_buffer to a __u64.

__u64 alt_frame_ts Timestamp for the V4L2 capture
buffer to use as alternate ref-
erence frame, used with inter-
coded frames. The timestamp
refers to the timestamp field in
struct v4l2_buffer. Use the
v4l2_timeval_to_ns() function
to convert the struct timeval in
struct v4l2_buffer to a __u64.

__u64 flags See Frame Header Flags

128 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Frame Header Flags

V4L2_VP8_FRAME_HEADER_FLAG_KEY_FRAME 0x01 Indicates if the frame is a key frame.
V4L2_VP8_FRAME_HEADER_FLAG_EXPERIMENTAL 0x02 Experimental bitstream.
V4L2_VP8_FRAME_HEADER_FLAG_SHOW_FRAME 0x04 Show frame flag, indicates if the frame is for display.
V4L2_VP8_FRAME_HEADER_FLAG_MB_NO_SKIP_COEFF 0x08 Enable/disable skipping of macroblocks with no non-zero coefficients.
V4L2_VP8_FRAME_HEADER_FLAG_SIGN_BIAS_GOLDEN 0x10 Sign of motion vectors when the golden frame is referenced.
V4L2_VP8_FRAME_HEADER_FLAG_SIGN_BIAS_ALT 0x20 Sign of motion vectors when the alt frame is referenced.

v4l2_vp8_entropy_coder_state

Table 23: struct v4l2_vp8_entropy_coder_state
__u8 range
__u8 value
__u8 bit_count
__u8 padding Applications and drivers must set this to zero.

v4l2_vp8_segment_header

Table 24: struct v4l2_vp8_segment_header
__s8 quant_update[4] Signed quantizer value update.
__s8 lf_update[4] Signed loop filter level value update.
__u8 segment_probs[3] Segment probabilities.
__u8 padding Applications and drivers must set this to zero.
__u32 flags See Segment Header Flags

Segment Header Flags

V4L2_VP8_SEGMENT_HEADER_FLAG_ENABLED 0x01 Enable/disable segment-based adjustments.
V4L2_VP8_SEGMENT_HEADER_FLAG_UPDATE_MAP 0x02 Indicates if the macroblock segmentation map is updated in this frame.
V4L2_VP8_SEGMENT_HEADER_FLAG_UPDATE_FEATURE_DATA 0x04 Indicates if the segment feature data is updated in this frame.
V4L2_VP8_SEGMENT_HEADER_FLAG_DELTA_VALUE_MODE 0x08 If is set, the segment feature data mode is delta-value. If cleared, it’s absolute-value.

v4l2_vp8_loopfilter_header

Table 26: struct v4l2_vp8_loopfilter_header
__s8 ref_frm_delta[4] Reference adjustment (signed) delta value.
__s8 mb_mode_delta[4] Macroblock prediction mode adjustment (signed)

delta value.
__u8 sharpness_level Sharpness level
__u8 level Filter level
__u16 padding Applications and drivers must set this to zero.
__u32 flags See Loopfilter Header Flags

Loopfilter Header Flags

V4L2_VP8_LF_HEADER_ADJ_ENABLE 0x01 Enable/disable macroblock-level loop filter adjustment.
V4L2_VP8_LF_HEADER_DELTA_UPDATE 0x02 Indicates if the delta values used in an adjustment are updated.
V4L2_VP8_LF_FILTER_TYPE_SIMPLE 0x04 If set, indicates the filter type is simple. If cleared, the filter type is normal.

v4l2_vp8_quantization_header

7.2. Part I - Video for Linux API 129

Linux Userspace-api Documentation

Table 28: struct v4l2_vp8_quantization_header
__u8 y_ac_qi Luma AC coefficient table index.
__s8 y_dc_delta Luma DC delta vaue.
__s8 y2_dc_delta Y2 block DC delta value.
__s8 y2_ac_delta Y2 block AC delta value.
__s8 uv_dc_delta Chroma DC delta value.
__s8 uv_ac_delta Chroma AC delta value.
__u16 padding Applications and drivers must set this to zero.

v4l2_vp8_entropy_header

Table 29: struct v4l2_vp8_entropy_header
__u8 coeff_probs[4][8][3][11] Coefficient update probabilities.
__u8 y_mode_probs[4] Luma mode update probabilities.
__u8 uv_mode_probs[3] Chroma mode update probabilities.
__u8 mv_probs[2][19] MV decoding update probabilities.
__u8 padding[3] Applications and drivers must set this to zero.

MFC 5.1 MPEG Controls

The following MPEG class controls deal with MPEG decoding and encoding set-
tings that are specific to the Multi Format Codec 5.1 device present in the S5P
family of SoCs by Samsung.

MFC 5.1 Control IDs

V4L2_CID_MPEG_MFC51_VIDEO_DECODER_H264_DISPLAY_DELAY_ENABLE (boolean)
If the display delay is enabled then the decoder is forced to re-
turn a CAPTURE buffer (decoded frame) after processing a cer-
tain number of OUTPUT buffers. The delay can be set through
V4L2_CID_MPEG_MFC51_VIDEO_DECODER_H264_DISPLAY_DELAY. This fea-
ture can be used for example for generating thumbnails of videos. Applicable
to the H264 decoder.

V4L2_CID_MPEG_MFC51_VIDEO_DECODER_H264_DISPLAY_DELAY (integer)
Display delay value for H264 decoder. The decoder is forced to return
a decoded frame after the set ‘display delay’number of frames. If this
number is low it may result in frames returned out of display order, in
addition the hardware may still be using the returned buffer as a reference
picture for subsequent frames.

V4L2_CID_MPEG_MFC51_VIDEO_H264_NUM_REF_PIC_FOR_P (integer) The num-
ber of reference pictures used for encoding a P picture. Applicable to the
H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_PADDING (boolean) Padding enable in the en-
coder - use a color instead of repeating border pixels. Applicable to encoders.

V4L2_CID_MPEG_MFC51_VIDEO_PADDING_YUV (integer) Padding color in the en-
coder. Applicable to encoders. The supplied 32-bit integer is interpreted as
follows (bit 0 = least significant bit):

130 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Bit 0:7 V chrominance information
Bit 8:15 U chrominance information
Bit 16:23 Y luminance information
Bit 24:31 Must be zero.

V4L2_CID_MPEG_MFC51_VIDEO_RC_REACTION_COEFF (integer) Reaction coeffi-
cient for MFC rate control. Applicable to encoders.

Note:
1. Valid only when the frame level RC is enabled.

2. For tight CBR, this field must be small (ex. 2 ~ 10). For VBR, this field
must be large (ex. 100 ~ 1000).

3. It is not recommended to use the greater number than FRAME_RATE *
(10^9 / BIT_RATE).

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_DARK (boolean) Adaptive
rate control for dark region. Valid only when H.264 and macroblock level RC
is enabled (V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264
encoder.

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_SMOOTH (boolean) Adaptive
rate control for smooth region. Valid only when H.264 and macroblock level
RC is enabled (V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the
H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_STATIC (boolean) Adaptive
rate control for static region. Valid only when H.264 and macroblock level
RC is enabled (V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the
H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_ACTIVITY (boolean)
Adaptive rate control for activity region. Valid only when H.264 and
macroblock level RC is enabled (V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE).
Applicable to the H264 encoder.

V4L2_CID_MPEG_MFC51_VIDEO_FRAME_SKIP_MODE (enum)

enum v4l2_mpeg_mfc51_video_frame_skip_mode - Indicates in what condi-
tions the encoder should skip frames. If encoding a frame would cause the
encoded stream to be larger then a chosen data limit then the frame will be
skipped. Possible values are:

V4L2_MPEG_MFC51_FRAME_SKIP_MODE_DISABLED Frame skip mode is disabled.
V4L2_MPEG_MFC51_FRAME_SKIP_MODE_LEVEL_LIMIT Frame skip mode enabled and buffer limit is

set by the chosen level and is defined by the
standard.

V4L2_MPEG_MFC51_FRAME_SKIP_MODE_BUF_LIMIT Frame skip mode enabled and buffer limit is set
by the VBV (MPEG1/2/4) or CPB (H264) buffer
size control.

7.2. Part I - Video for Linux API 131

Linux Userspace-api Documentation

V4L2_CID_MPEG_MFC51_VIDEO_RC_FIXED_TARGET_BIT (integer) Enable rate-
control with fixed target bit. If this setting is enabled, then the rate control
logic of the encoder will calculate the average bitrate for a GOP and keep
it below or equal the set bitrate target. Otherwise the rate control logic
calculates the overall average bitrate for the stream and keeps it below
or equal to the set bitrate. In the first case the average bitrate for the
whole stream will be smaller then the set bitrate. This is caused because
the average is calculated for smaller number of frames, on the other hand
enabling this setting will ensure that the stream will meet tight bandwidth
constraints. Applicable to encoders.

V4L2_CID_MPEG_MFC51_VIDEO_FORCE_FRAME_TYPE (enum)

enum v4l2_mpeg_mfc51_video_force_frame_type - Force a frame type for the
next queued buffer. Applicable to encoders. Possible values are:

V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_DISABLED Forcing a specific frame type disabled.
V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_I_FRAME Force an I-frame.
V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_NOT_CODED Force a non-coded frame.

V4L2_CID_MPEG_VIDEO_FWHT_PARAMS (struct) Specifies the fwht parameters (as
extracted from the bitstream) for the associated FWHT data. This includes
the necessary parameters for configuring a stateless hardware decoding
pipeline for FWHT.

Note: This compound control is not yet part of the public kernel API and it
is expected to change.

v4l2_ctrl_fwht_params

Table 30: struct v4l2_ctrl_fwht_params
__u64 backward_ref_ts Timestamp of the V4L2 capture buffer to use as back-

ward reference, used with P-coded frames. The timestamp
refers to the timestamp field in struct v4l2_buffer. Use
the v4l2_timeval_to_ns() function to convert the struct
timeval in struct v4l2_buffer to a __u64.

__u32 version The version of the codec
__u32 width The width of the frame
__u32 height The height of the frame
__u32 flags The flags of the frame, see FWHT Flags.
__u32 colorspace The colorspace of the frame, from enum v4l2_colorspace.
__u32 xfer_func The transfer function, from enum v4l2_xfer_func.
__u32 ycbcr_enc The Y’CbCr encoding, from enum v4l2_ycbcr_encoding.
__u32 quantization The quantization range, from enum v4l2_quantization.

132 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

FWHT Flags

FWHT_FL_IS_INTERLACED 0x00000001 Set if this is an interlaced format
FWHT_FL_IS_BOTTOM_FIRST 0x00000002 Set if this is a bottom-first (NTSC) inter-

laced format
FWHT_FL_IS_ALTERNATE 0x00000004 Set if each‘frame’contains just one field
FWHT_FL_IS_BOTTOM_FIELD 0x00000008 If FWHT_FL_IS_ALTERNATE was set, then

this is set if this‘frame’is the bottom field,
else it is the top field.

FWHT_FL_LUMA_IS_UNCOMPRESSED 0x00000010 Set if the luma plane is uncompressed
FWHT_FL_CB_IS_UNCOMPRESSED 0x00000020 Set if the cb plane is uncompressed
FWHT_FL_CR_IS_UNCOMPRESSED 0x00000040 Set if the cr plane is uncompressed
FWHT_FL_CHROMA_FULL_HEIGHT 0x00000080 Set if the chroma plane has the same

height as the luma plane, else the chroma
plane is half the height of the luma plane

FWHT_FL_CHROMA_FULL_WIDTH 0x00000100 Set if the chroma plane has the same width
as the luma plane, else the chroma plane is
half the width of the luma plane

FWHT_FL_ALPHA_IS_UNCOMPRESSED 0x00000200 Set if the alpha plane is uncompressed
FWHT_FL_I_FRAME 0x00000400 Set if this is an I-frame
FWHT_FL_COMPONENTS_NUM_MSK 0x00070000 A 4-values flag - the number of components

- 1
FWHT_FL_PIXENC_YUV 0x00080000 Set if the pixel encoding is YUV
FWHT_FL_PIXENC_RGB 0x00100000 Set if the pixel encoding is RGB
FWHT_FL_PIXENC_HSV 0x00180000 Set if the pixel encoding is HSV

CX2341x MPEG Controls

The following MPEG class controls deal with MPEG encoding settings that are
specific to the Conexant CX23415 and CX23416 MPEG encoding chips.

CX2341x Control IDs

V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER_MODE (enum)

enum v4l2_mpeg_cx2341x_video_spatial_filter_mode - Sets the Spatial Filter
mode (default MANUAL). Possible values are:

V4L2_MPEG_CX2341X_VIDEO_SPATIAL_FILTER_MODE_MANUALChoose the filter manually
V4L2_MPEG_CX2341X_VIDEO_SPATIAL_FILTER_MODE_AUTOChoose the filter automat-

ically

V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER (integer (0-15)) The set-
ting for the Spatial Filter. 0 = off, 15 = maximum. (Default is 0.)

V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE (enum)

enum v4l2_mpeg_cx2341x_video_luma_spatial_filter_type - Select the algo-
rithm to use for the Luma Spatial Filter (default 1D_HOR). Possible values:

7.2. Part I - Video for Linux API 133

Linux Userspace-api Documentation

V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_OFF No filter
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_1D_HOR One-dimensional

horizontal
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_1D_VERT One-dimensional

vertical
V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_2D_HV_SEPARABLE Two-

dimensional
separable

V4L2_MPEG_CX2341X_VIDEO_LUMA_SPATIAL_FILTER_TYPE_2D_SYM_NON_SEPARABLE Two-
dimensional
symmetrical
non-separable

V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_SPATIAL_FILTER_TYPE (enum)

enum v4l2_mpeg_cx2341x_video_chroma_spatial_filter_type - Select the al-
gorithm for the Chroma Spatial Filter (default 1D_HOR). Possible values are:

V4L2_MPEG_CX2341X_VIDEO_CHROMA_SPATIAL_FILTER_TYPE_OFF No filter
V4L2_MPEG_CX2341X_VIDEO_CHROMA_SPATIAL_FILTER_TYPE_1D_HOR One-dimensional

horizontal

V4L2_CID_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER_MODE (enum)

enum v4l2_mpeg_cx2341x_video_temporal_filter_mode - Sets the Temporal
Filter mode (default MANUAL). Possible values are:

V4L2_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER_MODE_MANUALChoose the filter manually
V4L2_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER_MODE_AUTOChoose the filter automat-

ically

V4L2_CID_MPEG_CX2341X_VIDEO_TEMPORAL_FILTER (integer (0-31)) The set-
ting for the Temporal Filter. 0 = off, 31 =maximum. (Default is 8 for full-scale
capturing and 0 for scaled capturing.)

V4L2_CID_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE (enum)

enum v4l2_mpeg_cx2341x_video_median_filter_type - Median Filter Type
(default OFF). Possible values are:

V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_OFFNo filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_HORHorizontal filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_VERTVertical filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_HOR_VERTHorizontal and vertical

filter
V4L2_MPEG_CX2341X_VIDEO_MEDIAN_FILTER_TYPE_DIAGDiagonal filter

V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_MEDIAN_FILTER_BOTTOM (integer (0-255))
Threshold above which the luminance median filter is enabled (default 0)

V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_MEDIAN_FILTER_TOP (integer (0-255))
Threshold below which the luminance median filter is enabled (default 255)

134 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_MEDIAN_FILTER_BOTTOM (integer (0-255))
Threshold above which the chroma median filter is enabled (default 0)

V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_MEDIAN_FILTER_TOP (integer (0-255))
Threshold below which the chroma median filter is enabled (default 255)

V4L2_CID_MPEG_CX2341X_STREAM_INSERT_NAV_PACKETS (boolean) The
CX2341X MPEG encoder can insert one empty MPEG-2 PES packet into the
stream between every four video frames. The packet size is 2048 bytes,
including the packet_start_code_prefix and stream_id fields. The stream_id
is 0xBF (private stream 2). The payload consists of 0x00 bytes, to be filled in
by the application. 0 = do not insert, 1 = insert packets.

VPX Control Reference

The VPX controls include controls for encoding parameters of VPx video codec.

VPX Control IDs

V4L2_CID_MPEG_VIDEO_VPX_NUM_PARTITIONS (enum)

enum v4l2_vp8_num_partitions - The number of token partitions to use in VP8
encoder. Possible values are:

V4L2_CID_MPEG_VIDEO_VPX_1_PARTITION 1 coefficient partition
V4L2_CID_MPEG_VIDEO_VPX_2_PARTITIONS 2 coefficient partitions
V4L2_CID_MPEG_VIDEO_VPX_4_PARTITIONS 4 coefficient partitions
V4L2_CID_MPEG_VIDEO_VPX_8_PARTITIONS 8 coefficient partitions

V4L2_CID_MPEG_VIDEO_VPX_IMD_DISABLE_4X4 (boolean) Setting this prevents
intra 4x4 mode in the intra mode decision.

V4L2_CID_MPEG_VIDEO_VPX_NUM_REF_FRAMES (enum)

enum v4l2_vp8_num_ref_frames - The number of reference pictures for encod-
ing P frames. Possible values are:

V4L2_CID_MPEG_VIDEO_VPX_1_REF_FRAME Last encoded frame will be searched
V4L2_CID_MPEG_VIDEO_VPX_2_REF_FRAME Two frames will be searched among the last encoded

frame, the golden frame and the alternate reference
(altref) frame. The encoder implementation will de-
cide which two are chosen.

V4L2_CID_MPEG_VIDEO_VPX_3_REF_FRAME The last encoded frame, the golden frame and the al-
tref frame will be searched.

V4L2_CID_MPEG_VIDEO_VPX_FILTER_LEVEL (integer) Indicates the loop filter
level. The adjustment of the loop filter level is done via a delta value against
a baseline loop filter value.

V4L2_CID_MPEG_VIDEO_VPX_FILTER_SHARPNESS (integer) This parameter af-
fects the loop filter. Anything above zero weakens the deblocking effect on
the loop filter.

7.2. Part I - Video for Linux API 135

Linux Userspace-api Documentation

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD (integer) Sets the re-
fresh period for the golden frame. The period is defined in number of frames.
For a value of‘n’, every nth frame starting from the first key frame will be
taken as a golden frame. For eg. for encoding sequence of 0, 1, 2, 3, 4, 5,
6, 7 where the golden frame refresh period is set as 4, the frames 0, 4, 8 etc
will be taken as the golden frames as frame 0 is always a key frame.

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_SEL (enum)

enum v4l2_vp8_golden_frame_sel - Selects the golden frame for encoding.
Possible values are:

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_USE_PREV Use the (n-2)th frame as a golden frame, current frame
index being ‘n’.

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_USE_REF_PERIOD Use the previous specific frame indicated by
V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD
as a golden frame.

V4L2_CID_MPEG_VIDEO_VPX_MIN_QP (integer) Minimum quantization parame-
ter for VP8.

V4L2_CID_MPEG_VIDEO_VPX_MAX_QP (integer) Maximum quantization parame-
ter for VP8.

V4L2_CID_MPEG_VIDEO_VPX_I_FRAME_QP (integer) Quantization parameter for
an I frame for VP8.

V4L2_CID_MPEG_VIDEO_VPX_P_FRAME_QP (integer) Quantization parameter for
a P frame for VP8.

V4L2_CID_MPEG_VIDEO_VP8_PROFILE (enum)

enum v4l2_mpeg_video_vp8_profile - This control allows selecting the profile
for VP8 encoder. This is also used to enumerate supported profiles by VP8
encoder or decoder. Possible values are:

V4L2_MPEG_VIDEO_VP8_PROFILE_0 Profile 0
V4L2_MPEG_VIDEO_VP8_PROFILE_1 Profile 1
V4L2_MPEG_VIDEO_VP8_PROFILE_2 Profile 2
V4L2_MPEG_VIDEO_VP8_PROFILE_3 Profile 3

V4L2_CID_MPEG_VIDEO_VP9_PROFILE (enum)

enum v4l2_mpeg_video_vp9_profile - This control allows selecting the profile
for VP9 encoder. This is also used to enumerate supported profiles by VP9
encoder or decoder. Possible values are:

V4L2_MPEG_VIDEO_VP9_PROFILE_0 Profile 0
V4L2_MPEG_VIDEO_VP9_PROFILE_1 Profile 1
V4L2_MPEG_VIDEO_VP9_PROFILE_2 Profile 2
V4L2_MPEG_VIDEO_VP9_PROFILE_3 Profile 3

136 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

High Efficiency Video Coding (HEVC/H.265) Control Reference

The HEVC/H.265 controls include controls for encoding parameters of
HEVC/H.265 video codec.

HEVC/H.265 Control IDs

V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP (integer) Minimum quantization parame-
ter for HEVC. Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP (integer) Maximum quantization parame-
ter for HEVC. Valid range: from 0 to 51.

V4L2_CID_MPEG_VIDEO_HEVC_I_FRAME_QP (integer) Quantization parameter for
an I frame for HEVC. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_P_FRAME_QP (integer) Quantization parameter for
a P frame for HEVC. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_B_FRAME_QP (integer) Quantization parameter for
a B frame for HEVC. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_QP (boolean) HIERARCHICAL_QP allows
the host to specify the quantization parameter values for each temporal
layer through HIERARCHICAL_QP_LAYER. This is valid only if HIERAR-
CHICAL_CODING_LAYER is greater than 1. Setting the control value to 1
enables setting of the QP values for the layers.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_TYPE (enum)

enum v4l2_mpeg_video_hevc_hier_coding_type - Selects the hierarchical cod-
ing type for encoding. Possible values are:

V4L2_MPEG_VIDEO_HEVC_HIERARCHICAL_CODING_B Use the B frame for hierarchical coding.
V4L2_MPEG_VIDEO_HEVC_HIERARCHICAL_CODING_P Use the P frame for hierarchical coding.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_LAYER (integer) Selects the hierar-
chical coding layer. In normal encoding (non-hierarchial coding), it should
be zero. Possible values are [0, 6]. 0 indicates HIERARCHICAL CODING
LAYER 0, 1 indicates HIERARCHICAL CODING LAYER 1 and so on.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L0_QP (integer) Indicates
quantization parameter for hierarchical coding layer
0. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L1_QP (integer) Indicates
quantization parameter for hierarchical coding layer
1. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L2_QP (integer) Indicates
quantization parameter for hierarchical coding layer

7.2. Part I - Video for Linux API 137

Linux Userspace-api Documentation

2. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L3_QP (integer) Indicates
quantization parameter for hierarchical coding layer
3. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L4_QP (integer) Indicates
quantization parameter for hierarchical coding layer
4. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L5_QP (integer) Indicates
quantization parameter for hierarchical coding layer
5. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L6_QP (integer) Indicates
quantization parameter for hierarchical coding layer
6. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_PROFILE (enum)

enum v4l2_mpeg_video_hevc_profile - Select the desired profile for HEVC en-
coder.

V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN Main profile.
V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_STILL_PICTURE Main still picture profile.
V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_10 Main 10 profile.

V4L2_CID_MPEG_VIDEO_HEVC_LEVEL (enum)

enum v4l2_mpeg_video_hevc_level - Selects the desired level for HEVC en-
coder.

V4L2_MPEG_VIDEO_HEVC_LEVEL_1 Level 1.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_2 Level 2.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_2_1 Level 2.1
V4L2_MPEG_VIDEO_HEVC_LEVEL_3 Level 3.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_3_1 Level 3.1
V4L2_MPEG_VIDEO_HEVC_LEVEL_4 Level 4.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_4_1 Level 4.1
V4L2_MPEG_VIDEO_HEVC_LEVEL_5 Level 5.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_5_1 Level 5.1
V4L2_MPEG_VIDEO_HEVC_LEVEL_5_2 Level 5.2
V4L2_MPEG_VIDEO_HEVC_LEVEL_6 Level 6.0
V4L2_MPEG_VIDEO_HEVC_LEVEL_6_1 Level 6.1
V4L2_MPEG_VIDEO_HEVC_LEVEL_6_2 Level 6.2

V4L2_CID_MPEG_VIDEO_HEVC_FRAME_RATE_RESOLUTION (integer) Indicates the
number of evenly spaced subintervals, called ticks, within one second. This
is a 16 bit unsigned integer and has a maximum value up to 0xffff and a min-
imum value of 1.

V4L2_CID_MPEG_VIDEO_HEVC_TIER (enum)

138 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

enum v4l2_mpeg_video_hevc_tier - TIER_FLAG specifies tiers information of
the HEVC encoded picture. Tier were made to deal with applications that
differ in terms of maximum bit rate. Setting the flag to 0 selects HEVC tier
as Main tier and setting this flag to 1 indicates High tier. High tier is for
applications requiring high bit rates.

V4L2_MPEG_VIDEO_HEVC_TIER_MAIN Main tier.
V4L2_MPEG_VIDEO_HEVC_TIER_HIGH High tier.

V4L2_CID_MPEG_VIDEO_HEVC_MAX_PARTITION_DEPTH (integer) Selects HEVC
maximum coding unit depth.

V4L2_CID_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE (enum)

enum v4l2_mpeg_video_hevc_loop_filter_mode - Loop filter mode for HEVC
encoder. Possible values are:

V4L2_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE_DISABLED Loop filter is disabled.
V4L2_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE_ENABLED Loop filter is enabled.
V4L2_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE_DISABLED_AT_SLICE_BOUNDARY Loop filter is disabled at the slice

boundary.

V4L2_CID_MPEG_VIDEO_HEVC_LF_BETA_OFFSET_DIV2 (integer) Selects HEVC
loop filter beta offset. The valid range is [-6, +6].

V4L2_CID_MPEG_VIDEO_HEVC_LF_TC_OFFSET_DIV2 (integer) Selects HEVC loop
filter tc offset. The valid range is [-6, +6].

V4L2_CID_MPEG_VIDEO_HEVC_REFRESH_TYPE (enum)

enum v4l2_mpeg_video_hevc_hier_refresh_type - Selects refresh
type for HEVC encoder. Host has to specify the period into
V4L2_CID_MPEG_VIDEO_HEVC_REFRESH_PERIOD.

V4L2_MPEG_VIDEO_HEVC_REFRESH_NONE Use the B frame for hierarchical coding.
V4L2_MPEG_VIDEO_HEVC_REFRESH_CRA Use CRA (Clean Random Access Unit) picture encoding.
V4L2_MPEG_VIDEO_HEVC_REFRESH_IDR Use IDR (Instantaneous Decoding Refresh) picture en-

coding.

V4L2_CID_MPEG_VIDEO_HEVC_REFRESH_PERIOD (integer) Selects the refresh pe-
riod for HEVC encoder. This specifies the number of I pictures between two
CRA/IDR pictures. This is valid only if REFRESH_TYPE is not 0.

V4L2_CID_MPEG_VIDEO_HEVC_LOSSLESS_CU (boolean) Indicates HEVC lossless
encoding. Setting it to 0 disables lossless encoding. Setting it to 1 enables
lossless encoding.

V4L2_CID_MPEG_VIDEO_HEVC_CONST_INTRA_PRED (boolean) Indicates constant
intra prediction for HEVC encoder. Specifies the constrained intra prediction
in which intra largest coding unit (LCU) prediction is performed by using
residual data and decoded samples of neighboring intra LCU only. Setting
the value to 1 enables constant intra prediction and setting the value to 0
disables constant intra prediction.

V4L2_CID_MPEG_VIDEO_HEVC_WAVEFRONT (boolean) Indicates wavefront parallel
processing for HEVC encoder. Setting it to 0 disables the feature and setting
it to 1 enables the wavefront parallel processing.

7.2. Part I - Video for Linux API 139

Linux Userspace-api Documentation

V4L2_CID_MPEG_VIDEO_HEVC_GENERAL_PB (boolean) Setting the value to 1 en-
ables combination of P and B frame for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_TEMPORAL_ID (boolean) Indicates temporal identi-
fier for HEVC encoder which is enabled by setting the value to 1.

V4L2_CID_MPEG_VIDEO_HEVC_STRONG_SMOOTHING (boolean) Indicates bi-linear
interpolation is conditionally used in the intra prediction filtering process in
the CVS when set to 1. Indicates bi-linear interpolation is not used in the
CVS when set to 0.

V4L2_CID_MPEG_VIDEO_HEVC_MAX_NUM_MERGE_MV_MINUS1 (integer) Indicates
maximum number of merge candidate motion vectors. Values are from 0 to
4.

V4L2_CID_MPEG_VIDEO_HEVC_TMV_PREDICTION (boolean) Indicates temporal
motion vector prediction for HEVC encoder. Setting it to 1 enables the
prediction. Setting it to 0 disables the prediction.

V4L2_CID_MPEG_VIDEO_HEVC_WITHOUT_STARTCODE (boolean) Specifies if HEVC
generates a stream with a size of the length field instead of start
code pattern. The size of the length field is configurable through the
V4L2_CID_MPEG_VIDEO_HEVC_SIZE_OF_LENGTH_FIELD control. Setting
the value to 0 disables encoding without startcode pattern. Setting the value
to 1 will enables encoding without startcode pattern.

V4L2_CID_MPEG_VIDEO_HEVC_SIZE_OF_LENGTH_FIELD (enum)

enum v4l2_mpeg_video_hevc_size_of_length_field - Indicates the size of
length field. This is valid when encoding WITHOUT_STARTCODE_ENABLE
is enabled.

V4L2_MPEG_VIDEO_HEVC_SIZE_0 Generate start code pattern (Normal).
V4L2_MPEG_VIDEO_HEVC_SIZE_1 Generate size of length field instead of start code pattern and length

is 1.
V4L2_MPEG_VIDEO_HEVC_SIZE_2 Generate size of length field instead of start code pattern and length

is 2.
V4L2_MPEG_VIDEO_HEVC_SIZE_4 Generate size of length field instead of start code pattern and length

is 4.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L0_BR (integer) Indicates bit rate
for hierarchical coding layer 0 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L1_BR (integer) Indicates bit rate
for hierarchical coding layer 1 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L2_BR (integer) Indicates bit rate
for hierarchical coding layer 2 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L3_BR (integer) Indicates bit rate
for hierarchical coding layer 3 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L4_BR (integer) Indicates bit rate
for hierarchical coding layer 4 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L5_BR (integer) Indicates bit rate
for hierarchical coding layer 5 for HEVC encoder.

140 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L6_BR (integer) Indicates bit rate
for hierarchical coding layer 6 for HEVC encoder.

V4L2_CID_MPEG_VIDEO_REF_NUMBER_FOR_PFRAMES (integer) Selects number of
P reference pictures required for HEVC encoder. P-Frame can use 1 or 2
frames for reference.

V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR (integer) Indicates whether
to generate SPS and PPS at every IDR. Setting it to 0 disables generating
SPS and PPS at every IDR. Setting it to one enables generating SPS and PPS
at every IDR.

V4L2_CID_MPEG_VIDEO_HEVC_SPS (struct) Specifies the Sequence Parameter
Set fields (as extracted from the bitstream) for the associated HEVC slice
data. These bitstream parameters are defined according to ITU H.265/HEVC.
They are described in section 7.4.3.2“Sequence parameter set RBSP seman-
tics”of the specification.

v4l2_ctrl_hevc_sps

Table 31: struct v4l2_ctrl_hevc_sps
__u16 pic_width_in_luma_samples
__u16 pic_height_in_luma_samples
__u8 bit_depth_luma_minus8
__u8 bit_depth_chroma_minus8
__u8 log2_max_pic_order_cnt_lsb_minus4
__u8 sps_max_dec_pic_buffering_minus1
__u8 sps_max_num_reorder_pics
__u8 sps_max_latency_increase_plus1
__u8 log2_min_luma_coding_block_size_minus3
__u8 log2_diff_max_min_luma_coding_block_size
__u8 log2_min_luma_transform_block_size_minus2
__u8 log2_diff_max_min_luma_transform_block_size
__u8 max_transform_hierarchy_depth_inter
__u8 max_transform_hierarchy_depth_intra
__u8 pcm_sample_bit_depth_luma_minus1
__u8 pcm_sample_bit_depth_chroma_minus1
__u8 log2_min_pcm_luma_coding_block_size_minus3
__u8 log2_diff_max_min_pcm_luma_coding_block_size
__u8 num_short_term_ref_pic_sets
__u8 num_long_term_ref_pics_sps

__u8 chroma_format_idc
__u64 flags See Sequence Parameter Set Flags

Sequence Parameter Set Flags

V4L2_HEVC_SPS_FLAG_SEPARATE_COLOUR_PLANE 0x00000001
V4L2_HEVC_SPS_FLAG_SCALING_LIST_ENABLED 0x00000002
V4L2_HEVC_SPS_FLAG_AMP_ENABLED 0x00000004
V4L2_HEVC_SPS_FLAG_SAMPLE_ADAPTIVE_OFFSET 0x00000008
V4L2_HEVC_SPS_FLAG_PCM_ENABLED 0x00000010

Continued on next page

7.2. Part I - Video for Linux API 141

Linux Userspace-api Documentation

Table 32 – continued from previous page
V4L2_HEVC_SPS_FLAG_PCM_LOOP_FILTER_DISABLED 0x00000020
V4L2_HEVC_SPS_FLAG_LONG_TERM_REF_PICS_PRESENT 0x00000040
V4L2_HEVC_SPS_FLAG_SPS_TEMPORAL_MVP_ENABLED 0x00000080
V4L2_HEVC_SPS_FLAG_STRONG_INTRA_SMOOTHING_ENABLED 0x00000100

V4L2_CID_MPEG_VIDEO_HEVC_PPS (struct) Specifies the Picture Parameter Set
fields (as extracted from the bitstream) for the associated HEVC slice data.
These bitstream parameters are defined according to ITU H.265/HEVC. They
are described in section 7.4.3.3“Picture parameter set RBSP semantics”of
the specification.

v4l2_ctrl_hevc_pps

Table 33: struct v4l2_ctrl_hevc_pps
__u8 num_extra_slice_header_bits
__s8 init_qp_minus26
__u8 diff_cu_qp_delta_depth
__s8 pps_cb_qp_offset
__s8 pps_cr_qp_offset
__u8 num_tile_columns_minus1
__u8 num_tile_rows_minus1
__u8 column_width_minus1[20]
__u8 row_height_minus1[22]
__s8 pps_beta_offset_div2
__s8 pps_tc_offset_div2
__u8 log2_parallel_merge_level_minus2
__u8 padding[4] Applications and drivers must set this to zero.
__u64 flags See Picture Parameter Set Flags

Picture Parameter Set Flags

V4L2_HEVC_PPS_FLAG_DEPENDENT_SLICE_SEGMENT 0x00000001
V4L2_HEVC_PPS_FLAG_OUTPUT_FLAG_PRESENT 0x00000002
V4L2_HEVC_PPS_FLAG_SIGN_DATA_HIDING_ENABLED 0x00000004
V4L2_HEVC_PPS_FLAG_CABAC_INIT_PRESENT 0x00000008
V4L2_HEVC_PPS_FLAG_CONSTRAINED_INTRA_PRED 0x00000010
V4L2_HEVC_PPS_FLAG_TRANSFORM_SKIP_ENABLED 0x00000020
V4L2_HEVC_PPS_FLAG_CU_QP_DELTA_ENABLED 0x00000040
V4L2_HEVC_PPS_FLAG_PPS_SLICE_CHROMA_QP_OFFSETS_PRESENT 0x00000080
V4L2_HEVC_PPS_FLAG_WEIGHTED_PRED 0x00000100
V4L2_HEVC_PPS_FLAG_WEIGHTED_BIPRED 0x00000200
V4L2_HEVC_PPS_FLAG_TRANSQUANT_BYPASS_ENABLED 0x00000400
V4L2_HEVC_PPS_FLAG_TILES_ENABLED 0x00000800
V4L2_HEVC_PPS_FLAG_ENTROPY_CODING_SYNC_ENABLED 0x00001000
V4L2_HEVC_PPS_FLAG_LOOP_FILTER_ACROSS_TILES_ENABLED 0x00002000
V4L2_HEVC_PPS_FLAG_PPS_LOOP_FILTER_ACROSS_SLICES_ENABLED 0x00004000
V4L2_HEVC_PPS_FLAG_DEBLOCKING_FILTER_OVERRIDE_ENABLED 0x00008000
V4L2_HEVC_PPS_FLAG_PPS_DISABLE_DEBLOCKING_FILTER 0x00010000

Continued on next page

142 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 34 – continued from previous page
V4L2_HEVC_PPS_FLAG_LISTS_MODIFICATION_PRESENT 0x00020000
V4L2_HEVC_PPS_FLAG_SLICE_SEGMENT_HEADER_EXTENSION_PRESENT 0x00040000

V4L2_CID_MPEG_VIDEO_HEVC_SLICE_PARAMS (struct) Specifies various slice-
specific parameters, especially from the NAL unit header, general slice
segment header and weighted prediction parameter parts of the bitstream.
These bitstream parameters are defined according to ITU H.265/HEVC. They
are described in section 7.4.7 “General slice segment header semantics”of
the specification.

v4l2_ctrl_hevc_slice_params

Table 35: struct v4l2_ctrl_hevc_slice_params
__u32 bit_size Size (in bits) of the current slice data.
__u32 data_bit_offset Offset (in bits) to the video data in the current slice data.
__u8 nal_unit_type
__u8 nuh_temporal_id_plus1
__u8 slice_type (V4L2_HEVC_SLICE_TYPE_I, V4L2_HEVC_SLICE_TYPE_P or V4L2_HEVC_SLICE_TYPE_B).
__u8 colour_plane_id
__u16 slice_pic_order_cnt
__u8 num_ref_idx_l0_active_minus1
__u8 num_ref_idx_l1_active_minus1
__u8 collocated_ref_idx
__u8 five_minus_max_num_merge_cand
__s8 slice_qp_delta
__s8 slice_cb_qp_offset
__s8 slice_cr_qp_offset
__s8 slice_act_y_qp_offset
__s8 slice_act_cb_qp_offset
__s8 slice_act_cr_qp_offset
__s8 slice_beta_offset_div2
__s8 slice_tc_offset_div2
__u8 pic_struct
__u8 num_active_dpb_entries The number of entries in dpb.
__u8 ref_idx_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX] The list of L0 reference elements as indices in the DPB.
__u8 ref_idx_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX] The list of L1 reference elements as indices in the DPB.
__u8 num_rps_poc_st_curr_before The number of reference pictures in the short-term set that come before the current frame.
__u8 num_rps_poc_st_curr_after The number of reference pictures in the short-term set that come after the current frame.
__u8 num_rps_poc_lt_curr The number of reference pictures in the long-term set.
__u8 padding[7] Applications and drivers must set this to zero.
struct v4l2_hevc_dpb_entry dpb[V4L2_HEVC_DPB_ENTRIES_NUM_MAX] The decoded picture buffer, for meta-data about reference frames.
struct v4l2_hevc_pred_weight_table pred_weight_table The prediction weight coefficients for inter-picture prediction.
__u64 flags See Slice Parameters Flags

Slice Parameters Flags

V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_SAO_LUMA 0x00000001
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_SAO_CHROMA 0x00000002

Continued on next page

7.2. Part I - Video for Linux API 143

Linux Userspace-api Documentation

Table 36 – continued from previous page
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_TEMPORAL_MVP_ENABLED 0x00000004
V4L2_HEVC_SLICE_PARAMS_FLAG_MVD_L1_ZERO 0x00000008
V4L2_HEVC_SLICE_PARAMS_FLAG_CABAC_INIT 0x00000010
V4L2_HEVC_SLICE_PARAMS_FLAG_COLLOCATED_FROM_L0 0x00000020
V4L2_HEVC_SLICE_PARAMS_FLAG_USE_INTEGER_MV 0x00000040
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_DEBLOCKING_FILTER_DISABLED 0x00000080
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_LOOP_FILTER_ACROSS_SLICES_ENABLED 0x00000100

v4l2_hevc_dpb_entry

Table 37: struct v4l2_hevc_dpb_entry
__u64 timestamp Timestamp of the V4L2 capture buffer to use as reference, used with B-coded and P-coded frames. The timestamp refers to the timestamp field in struct v4l2_buffer. Use the v4l2_timeval_to_ns() function to convert the struct timeval in struct v4l2_buffer to a __u64.
__u8 rps The reference set for the reference frame (V4L2_HEVC_DPB_ENTRY_RPS_ST_CURR_BEFORE, V4L2_HEVC_DPB_ENTRY_RPS_ST_CURR_AFTER or V4L2_HEVC_DPB_ENTRY_RPS_LT_CURR)
__u8 field_pic Whether the reference is a field picture or a frame.
__u16 pic_order_cnt[2] The picture order count of the reference. Only the first element of the array is used for frame pictures, while the first element identifies the top field and the second the bottom field in field-coded pictures.
__u8 padding[2] Applications and drivers must set this to zero.

v4l2_hevc_pred_weight_table

Table 38: struct v4l2_hevc_pred_weight_table
__u8 luma_log2_weight_denom
__s8 delta_chroma_log2_weight_denom
__s8 delta_luma_weight_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]
__s8 luma_offset_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]
__s8 delta_chroma_weight_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]
__s8 chroma_offset_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]
__s8 delta_luma_weight_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]
__s8 luma_offset_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]
__s8 delta_chroma_weight_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]
__s8 chroma_offset_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]
__u8 padding[6] Applications and drivers must set this to zero.

V4L2_CID_MPEG_VIDEO_HEVC_DECODE_MODE (enum) Specifies the decoding mode
to use. Currently exposes slice-based and frame-based decoding but new
modes might be added later on. This control is used as a modifier
for V4L2_PIX_FMT_HEVC_SLICE pixel format. Applications that support
V4L2_PIX_FMT_HEVC_SLICE are required to set this control in order to spec-
ify the decoding mode that is expected for the buffer. Drivers may expose a
single or multiple decoding modes, depending on what they can support.

Note: This menu control is not yet part of the public kernel API and it is
expected to change.

v4l2_mpeg_video_hevc_decode_mode

V4L2_MPEG_VIDEO_HEVC_DECODE_MODE_SLICE_BASED 0 Decoding is done at the slice granularity. The OUTPUT buffer must contain a single slice.
Continued on next page

144 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 39 – continued from previous page
V4L2_MPEG_VIDEO_HEVC_DECODE_MODE_FRAME_BASED 1 Decoding is done at the frame granularity. The OUTPUT buffer must contain all slices needed to decode the frame. The OUTPUT buffer must also contain both fields.

V4L2_CID_MPEG_VIDEO_HEVC_START_CODE (enum) Specifies the HEVC slice start
code expected for each slice. This control is used as a modifier for
V4L2_PIX_FMT_HEVC_SLICE pixel format. Applications that support
V4L2_PIX_FMT_HEVC_SLICE are required to set this control in order to spec-
ify the start code that is expected for the buffer. Drivers may expose a single
or multiple start codes, depending on what they can support.

Note: This menu control is not yet part of the public kernel API and it is
expected to change.

v4l2_mpeg_video_hevc_start_code

V4L2_MPEG_VIDEO_HEVC_START_CODE_NONE 0 Selecting this value specifies that HEVC slices are passed to the driver without any start code.
V4L2_MPEG_VIDEO_HEVC_START_CODE_ANNEX_B 1 Selecting this value specifies that HEVC slices are expected to be prefixed by Annex B start codes. According to ITU H.265/HEVC valid start codes can be 3-bytes 0x000001 or 4-bytes 0x00000001.

JPEG Control Reference

The JPEG class includes controls for common features of JPEG encoders and de-
coders. Currently it includes features for codecs implementing progressive base-
line DCT compression process with Huffman entrophy coding.

JPEG Control IDs

V4L2_CID_JPEG_CLASS (class) The JPEG class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU
for this control will return a description of this control class.

V4L2_CID_JPEG_CHROMA_SUBSAMPLING (menu) The chroma subsampling factors
describe how each component of an input image is sampled, in respect tomax-
imum sample rate in each spatial dimension. See ITU-T.81, clause A.1.1. for
more details. The V4L2_CID_JPEG_CHROMA_SUBSAMPLING control determines
how Cb and Cr components are downsampled after converting an input image
from RGB to Y’CbCr color space.

V4L2_JPEG_CHROMA_SUBSAMPLING_444 No chroma subsampling, each pixel has Y, Cr and
Cb values.

V4L2_JPEG_CHROMA_SUBSAMPLING_422 Horizontally subsample Cr, Cb components by a fac-
tor of 2.

V4L2_JPEG_CHROMA_SUBSAMPLING_420 Subsample Cr, Cb components horizontally and ver-
tically by 2.

V4L2_JPEG_CHROMA_SUBSAMPLING_411 Horizontally subsample Cr, Cb components by a fac-
tor of 4.

V4L2_JPEG_CHROMA_SUBSAMPLING_410 Subsample Cr, Cb components horizontally by 4 and
vertically by 2.

V4L2_JPEG_CHROMA_SUBSAMPLING_GRAY Use only luminance component.

7.2. Part I - Video for Linux API 145

Linux Userspace-api Documentation

V4L2_CID_JPEG_RESTART_INTERVAL (integer) The restart interval determines
an interval of inserting RSTm markers (m = 0..7). The purpose of
these markers is to additionally reinitialize the encoder process, in or-
der to process blocks of an image independently. For the lossy compres-
sion processes the restart interval unit is MCU (Minimum Coded Unit)
and its value is contained in DRI (Define Restart Interval) marker. If
V4L2_CID_JPEG_RESTART_INTERVAL control is set to 0, DRI and RSTm mark-
ers will not be inserted.

V4L2_CID_JPEG_COMPRESSION_QUALITY (integer) V4L2_CID_JPEG_COMPRESSION_QUALITY
control determines trade-off between image quality and size. It pro-
vides simpler method for applications to control image quality, without
a need for direct reconfiguration of luminance and chrominance quan-
tization tables. In cases where a driver uses quantization tables con-
figured directly by an application, using interfaces defined elsewhere,
V4L2_CID_JPEG_COMPRESSION_QUALITY control should be set by driver to 0.

The value range of this control is driver-specific. Only positive, non-zero val-
ues are meaningful. The recommended range is 1 - 100, where larger values
correspond to better image quality.

V4L2_CID_JPEG_ACTIVE_MARKER (bitmask) Specify which JPEG markers are in-
cluded in compressed stream. This control is valid only for encoders.

V4L2_JPEG_ACTIVE_MARKER_APP0 Application data segment APP0.
V4L2_JPEG_ACTIVE_MARKER_APP1 Application data segment APP1.
V4L2_JPEG_ACTIVE_MARKER_COM Comment segment.
V4L2_JPEG_ACTIVE_MARKER_DQT Quantization tables segment.
V4L2_JPEG_ACTIVE_MARKER_DHT Huffman tables segment.

For more details about JPEG specification, refer to ITU-T.81, JFIF, W3C JPEG JFIF.

Digital Video Control Reference

The Digital Video control class is intended to control receivers and transmitters
for VGA, DVI (Digital Visual Interface), HDMI (HDMI) and DisplayPort (DP). These
controls are generally expected to be private to the receiver or transmitter sub-
device that implements them, so they are only exposed on the /dev/v4l-subdev*
device node.

Note: Note that these devices can have multiple input or output pads which are
hooked up to e.g. HDMI connectors. Even though the subdevice will receive or
transmit video from/to only one of those pads, the other pads can still be active
when it comes to EDID (Extended Display Identification Data, EDID) and HDCP
(High-bandwidth Digital Content Protection System, HDCP) processing, allowing
the device to do the fairly slow EDID/HDCP handling in advance. This allows for
quick switching between connectors.

These pads appear in several of the controls in this section as bitmasks, one bit
for each pad. Bit 0 corresponds to pad 0, bit 1 to pad 1, etc. The maximum value
of the control is the set of valid pads.

146 Chapter 7. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/Vga
http://en.wikipedia.org/wiki/Digital_Visual_Interface

Linux Userspace-api Documentation

Digital Video Control IDs

V4L2_CID_DV_CLASS (class) The Digital Video class descriptor.

V4L2_CID_DV_TX_HOTPLUG (bitmask) Many connectors have a hotplug pin which
is high if EDID information is available from the source. This control shows
the state of the hotplug pin as seen by the transmitter. Each bit corresponds to
an output pad on the transmitter. If an output pad does not have an associated
hotplug pin, then the bit for that pad will be 0. This read-only control is
applicable to DVI-D, HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_RXSENSE (bitmask) Rx Sense is the detection of pull-ups on the
TMDS clock lines. This normally means that the sink has left/entered standby
(i.e. the transmitter can sense that the receiver is ready to receive video).
Each bit corresponds to an output pad on the transmitter. If an output pad
does not have an associated Rx Sense, then the bit for that pad will be 0. This
read-only control is applicable to DVI-D and HDMI devices.

V4L2_CID_DV_TX_EDID_PRESENT (bitmask) When the transmitter sees the hot-
plug signal from the receiver it will attempt to read the EDID. If set, then
the transmitter has read at least the first block (= 128 bytes). Each bit corre-
sponds to an output pad on the transmitter. If an output pad does not support
EDIDs, then the bit for that pad will be 0. This read-only control is applicable
to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_MODE (enum)

enum v4l2_dv_tx_mode - HDMI transmitters can transmit in DVI-D mode
(just video) or in HDMI mode (video + audio + auxiliary data).
This control selects which mode to use: V4L2_DV_TX_MODE_DVI_D or
V4L2_DV_TX_MODE_HDMI. This control is applicable to HDMI connectors.

V4L2_CID_DV_TX_RGB_RANGE (enum)

enum v4l2_dv_rgb_range - Select the quantization range for RGB output.
V4L2_DV_RANGE_AUTO follows the RGB quantization range specified
in the standard for the video interface (ie. CEA-861-E for HDMI).
V4L2_DV_RANGE_LIMITED and V4L2_DV_RANGE_FULL override the stan-
dard to be compatible with sinks that have not implemented the standard
correctly (unfortunately quite common for HDMI and DVI-D). Full range al-
lows all possible values to be used whereas limited range sets the range to
(16 << (N-8)) - (235 << (N-8)) where N is the number of bits per component.
This control is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_IT_CONTENT_TYPE (enum)

enum v4l2_dv_it_content_type - Configures the IT Content Type of the trans-
mitted video. This information is sent over HDMI and DisplayPort connectors
as part of the AVI InfoFrame. The term ‘IT Content’is used for content
that originates from a computer as opposed to content from a TV broadcast
or an analog source. The enum v4l2_dv_it_content_type defines the possible
content types:

7.2. Part I - Video for Linux API 147

Linux Userspace-api Documentation

V4L2_DV_IT_CONTENT_TYPE_GRAPHICS Graphics content. Pixel data should be passed unfil-
tered and without analog reconstruction.

V4L2_DV_IT_CONTENT_TYPE_PHOTO Photo content. The content is derived from digital still
pictures. The content should be passed through with
minimal scaling and picture enhancements.

V4L2_DV_IT_CONTENT_TYPE_CINEMA Cinema content.
V4L2_DV_IT_CONTENT_TYPE_GAME Game content. Audio and video latency should bemin-

imized.
V4L2_DV_IT_CONTENT_TYPE_NO_ITC No IT Content information is available and the ITC bit

in the AVI InfoFrame is set to 0.

V4L2_CID_DV_RX_POWER_PRESENT (bitmask) Detects whether the receiver re-
ceives power from the source (e.g. HDMI carries 5V on one of the pins). This
is often used to power an eeprom which contains EDID information, such that
the source can read the EDID even if the sink is in standby/power off. Each
bit corresponds to an input pad on the receiver. If an input pad cannot detect
whether power is present, then the bit for that pad will be 0. This read-only
control is applicable to DVI-D, HDMI and DisplayPort connectors.

V4L2_CID_DV_RX_RGB_RANGE (enum)

enum v4l2_dv_rgb_range - Select the quantization range for RGB input.
V4L2_DV_RANGE_AUTO follows the RGB quantization range specified
in the standard for the video interface (ie. CEA-861-E for HDMI).
V4L2_DV_RANGE_LIMITED and V4L2_DV_RANGE_FULL override the stan-
dard to be compatible with sources that have not implemented the standard
correctly (unfortunately quite common for HDMI and DVI-D). Full range al-
lows all possible values to be used whereas limited range sets the range to
(16 << (N-8)) - (235 << (N-8)) where N is the number of bits per component.
This control is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_RX_IT_CONTENT_TYPE (enum)

enum v4l2_dv_it_content_type - Reads the IT Content Type of the received
video. This information is sent over HDMI and DisplayPort connectors as
part of the AVI InfoFrame. The term ‘IT Content’is used for content that
originates from a computer as opposed to content from a TV broadcast or
an analog source. See V4L2_CID_DV_TX_IT_CONTENT_TYPE for the available
content types.

RF Tuner Control Reference

The RF Tuner (RF_TUNER) class includes controls for common features of devices
having RF tuner.

In this context, RF tuner is radio receiver circuit between antenna and demodula-
tor. It receives radio frequency (RF) from the antenna and converts that received
signal to lower intermediate frequency (IF) or baseband frequency (BB). Tuners
that could do baseband output are often called Zero-IF tuners. Older tuners were
typically simple PLL tuners inside a metal box, while newer ones are highly in-
tegrated chips without a metal box “silicon tuners”. These controls are mostly
applicable for new feature rich silicon tuners, just because older tuners does not

148 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

have much adjustable features.

For more information about RF tuners see Tuner (radio) and RF front end from
Wikipedia.

RF_TUNER Control IDs

V4L2_CID_RF_TUNER_CLASS (class) The RF_TUNER class descriptor. Call-
ing ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VID-
IOC_QUERYMENU for this control will return a description of this control
class.

V4L2_CID_RF_TUNER_BANDWIDTH_AUTO (boolean) Enables/disables tuner radio
channel bandwidth configuration. In automatic mode bandwidth configura-
tion is performed by the driver.

V4L2_CID_RF_TUNER_BANDWIDTH (integer) Filter(s) on tuner signal path are
used to filter signal according to receiving party needs. Driver con-
figures filters to fulfill desired bandwidth requirement. Used when
V4L2_CID_RF_TUNER_BANDWIDTH_AUTO is not set. Unit is in Hz. The
range and step are driver-specific.

V4L2_CID_RF_TUNER_LNA_GAIN_AUTO (boolean) Enables/disables LNA auto-
matic gain control (AGC)

V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO (boolean) Enables/disables mixer auto-
matic gain control (AGC)

V4L2_CID_RF_TUNER_IF_GAIN_AUTO (boolean) Enables/disables IF automatic
gain control (AGC)

V4L2_CID_RF_TUNER_RF_GAIN (integer) The RF amplifier is the very first am-
plifier on the receiver signal path, just right after the antenna input. The
difference between the LNA gain and the RF gain in this document is that the
LNA gain is integrated in the tuner chip while the RF gain is a separate chip.
There may be both RF and LNA gain controls in the same device. The range
and step are driver-specific.

V4L2_CID_RF_TUNER_LNA_GAIN (integer) LNA (low noise amplifier) gain is first
gain stage on the RF tuner signal path. It is located very close to tuner an-
tenna input. Used when V4L2_CID_RF_TUNER_LNA_GAIN_AUTO is not set. See
V4L2_CID_RF_TUNER_RF_GAIN to understand how RF gain and LNA gain dif-
fers from the each others. The range and step are driver-specific.

V4L2_CID_RF_TUNER_MIXER_GAIN (integer) Mixer gain is second gain
stage on the RF tuner signal path. It is located inside mixer block,
where RF signal is down-converted by the mixer. Used when
V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO is not set. The range and step
are driver-specific.

V4L2_CID_RF_TUNER_IF_GAIN (integer) IF gain is last gain stage on the RF
tuner signal path. It is located on output of RF tuner. It controls sig-
nal level of intermediate frequency output or baseband output. Used when
V4L2_CID_RF_TUNER_IF_GAIN_AUTO is not set. The range and step are driver-
specific.

7.2. Part I - Video for Linux API 149

http://en.wikipedia.org/wiki/Tuner_%28radio%29
http://en.wikipedia.org/wiki/RF_front_end

Linux Userspace-api Documentation

V4L2_CID_RF_TUNER_PLL_LOCK (boolean) Is synthesizer PLL locked? RF tuner is
receiving given frequency when that control is set. This is a read-only control.

FM Transmitter Control Reference

The FM Transmitter (FM_TX) class includes controls for common features of FM
transmissions capable devices. Currently this class includes parameters for audio
compression, pilot tone generation, audio deviation limiter, RDS transmission and
tuning power features.

FM_TX Control IDs

V4L2_CID_FM_TX_CLASS (class) The FM_TX class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU
for this control will return a description of this control class.

V4L2_CID_RDS_TX_DEVIATION (integer) Configures RDS signal frequency devi-
ation level in Hz. The range and step are driver-specific.

V4L2_CID_RDS_TX_PI (integer) Sets the RDS Programme Identification field for
transmission.

V4L2_CID_RDS_TX_PTY (integer) Sets the RDS Programme Type field for trans-
mission. This encodes up to 31 pre-defined programme types.

V4L2_CID_RDS_TX_PS_NAME (string) Sets the Programme Service name
(PS_NAME) for transmission. It is intended for static display on a re-
ceiver. It is the primary aid to listeners in programme service identification
and selection. In Annex E of IEC 62106, the RDS specification, there is a full
description of the correct character encoding for Programme Service name
strings. Also from RDS specification, PS is usually a single eight character
text. However, it is also possible to find receivers which can scroll strings
sized as 8 x N characters. So, this control must be configured with steps of
8 characters. The result is it must always contain a string with size multiple
of 8.

V4L2_CID_RDS_TX_RADIO_TEXT (string) Sets the Radio Text info for transmis-
sion. It is a textual description of what is being broadcasted. RDS Radio
Text can be applied when broadcaster wishes to transmit longer PS names,
programme-related information or any other text. In these cases, RadioText
should be used in addition to V4L2_CID_RDS_TX_PS_NAME. The encoding for
Radio Text strings is also fully described in Annex E of IEC 62106. The length
of Radio Text strings depends on which RDS Block is being used to transmit
it, either 32 (2A block) or 64 (2B block). However, it is also possible to find
receivers which can scroll strings sized as 32 x N or 64 x N characters. So,
this control must be configured with steps of 32 or 64 characters. The result
is it must always contain a string with size multiple of 32 or 64.

V4L2_CID_RDS_TX_MONO_STEREO (boolean) Sets the Mono/Stereo bit of the De-
coder Identification code. If set, then the audio was recorded as stereo.

V4L2_CID_RDS_TX_ARTIFICIAL_HEAD (boolean) Sets the Artificial Head bit of the
Decoder Identification code. If set, then the audio was recorded using an

150 Chapter 7. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/Artificial_head

Linux Userspace-api Documentation

artificial head.

V4L2_CID_RDS_TX_COMPRESSED (boolean) Sets the Compressed bit of the De-
coder Identification code. If set, then the audio is compressed.

V4L2_CID_RDS_TX_DYNAMIC_PTY (boolean) Sets the Dynamic PTY bit of the De-
coder Identification code. If set, then the PTY code is dynamically switched.

V4L2_CID_RDS_TX_TRAFFIC_ANNOUNCEMENT (boolean) If set, then a traffic an-
nouncement is in progress.

V4L2_CID_RDS_TX_TRAFFIC_PROGRAM (boolean) If set, then the tuned pro-
gramme carries traffic announcements.

V4L2_CID_RDS_TX_MUSIC_SPEECH (boolean) If set, then this channel broadcasts
music. If cleared, then it broadcasts speech. If the transmitter doesn’t make
this distinction, then it should be set.

V4L2_CID_RDS_TX_ALT_FREQS_ENABLE (boolean) If set, then transmit alternate
frequencies.

V4L2_CID_RDS_TX_ALT_FREQS (__u32 array) The alternate frequencies in kHz
units. The RDS standard allows for up to 25 frequencies to be defined. Drivers
may support fewer frequencies so check the array size.

V4L2_CID_AUDIO_LIMITER_ENABLED (boolean) Enables or disables the audio de-
viation limiter feature. The limiter is useful when trying tomaximize the audio
volume, minimize receiver-generated distortion and prevent overmodulation.

V4L2_CID_AUDIO_LIMITER_RELEASE_TIME (integer) Sets the audio deviation
limiter feature release time. Unit is in useconds. Step and range are driver-
specific.

V4L2_CID_AUDIO_LIMITER_DEVIATION (integer) Configures audio frequency
deviation level in Hz. The range and step are driver-specific.

V4L2_CID_AUDIO_COMPRESSION_ENABLED (boolean) Enables or disables the au-
dio compression feature. This feature amplifies signals below the threshold
by a fixed gain and compresses audio signals above the threshold by the ratio
of Threshold/(Gain + Threshold).

V4L2_CID_AUDIO_COMPRESSION_GAIN (integer) Sets the gain for audio compres-
sion feature. It is a dB value. The range and step are driver-specific.

V4L2_CID_AUDIO_COMPRESSION_THRESHOLD (integer) Sets the threshold level
for audio compression freature. It is a dB value. The range and step are
driver-specific.

V4L2_CID_AUDIO_COMPRESSION_ATTACK_TIME (integer) Sets the attack time for
audio compression feature. It is a useconds value. The range and step are
driver-specific.

V4L2_CID_AUDIO_COMPRESSION_RELEASE_TIME (integer) Sets the release time
for audio compression feature. It is a useconds value. The range and step
are driver-specific.

V4L2_CID_PILOT_TONE_ENABLED (boolean) Enables or disables the pilot tone
generation feature.

7.2. Part I - Video for Linux API 151

Linux Userspace-api Documentation

V4L2_CID_PILOT_TONE_DEVIATION (integer) Configures pilot tone frequency
deviation level. Unit is in Hz. The range and step are driver-specific.

V4L2_CID_PILOT_TONE_FREQUENCY (integer) Configures pilot tone frequency
value. Unit is in Hz. The range and step are driver-specific.

V4L2_CID_TUNE_PREEMPHASIS (enum)

enum v4l2_preemphasis - Configures the pre-emphasis value for broadcasting.
A pre-emphasis filter is applied to the broadcast to accentuate the high audio
frequencies. Depending on the region, a time constant of either 50 or 75
useconds is used. The enum v4l2_preemphasis defines possible values for
pre-emphasis. Here they are:

V4L2_PREEMPHASIS_DISABLED No pre-emphasis is applied.
V4L2_PREEMPHASIS_50_uS A pre-emphasis of 50 uS is used.
V4L2_PREEMPHASIS_75_uS A pre-emphasis of 75 uS is used.

V4L2_CID_TUNE_POWER_LEVEL (integer) Sets the output power level for signal
transmission. Unit is in dBuV. Range and step are driver-specific.

V4L2_CID_TUNE_ANTENNA_CAPACITOR (integer) This selects the value of antenna
tuning capacitor manually or automatically if set to zero. Unit, range and step
are driver-specific.

For more details about RDS specification, refer to IEC 62106 document, from CEN-
ELEC.

FM Receiver Control Reference

The FM Receiver (FM_RX) class includes controls for common features of FM Re-
ception capable devices.

FM_RX Control IDs

V4L2_CID_FM_RX_CLASS (class) The FM_RX class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU
for this control will return a description of this control class.

V4L2_CID_RDS_RECEPTION (boolean) Enables/disables RDS reception by the ra-
dio tuner

V4L2_CID_RDS_RX_PTY (integer) Gets RDS Programme Type field. This encodes
up to 31 pre-defined programme types.

V4L2_CID_RDS_RX_PS_NAME (string) Gets the Programme Service name
(PS_NAME). It is intended for static display on a receiver. It is the pri-
mary aid to listeners in programme service identification and selection. In
Annex E of IEC 62106, the RDS specification, there is a full description of
the correct character encoding for Programme Service name strings. Also
from RDS specification, PS is usually a single eight character text. However,
it is also possible to find receivers which can scroll strings sized as 8 x N
characters. So, this control must be configured with steps of 8 characters.
The result is it must always contain a string with size multiple of 8.

152 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_CID_RDS_RX_RADIO_TEXT (string) Gets the Radio Text info. It is a textual
description of what is being broadcasted. RDS Radio Text can be applied
when broadcaster wishes to transmit longer PS names, programme-related
information or any other text. In these cases, RadioText can be used in ad-
dition to V4L2_CID_RDS_RX_PS_NAME. The encoding for Radio Text strings is
also fully described in Annex E of IEC 62106. The length of Radio Text strings
depends on which RDS Block is being used to transmit it, either 32 (2A block)
or 64 (2B block). However, it is also possible to find receivers which can scroll
strings sized as 32 x N or 64 x N characters. So, this control must be config-
ured with steps of 32 or 64 characters. The result is it must always contain a
string with size multiple of 32 or 64.

V4L2_CID_RDS_RX_TRAFFIC_ANNOUNCEMENT (boolean) If set, then a traffic an-
nouncement is in progress.

V4L2_CID_RDS_RX_TRAFFIC_PROGRAM (boolean) If set, then the tuned pro-
gramme carries traffic announcements.

V4L2_CID_RDS_RX_MUSIC_SPEECH (boolean) If set, then this channel broadcasts
music. If cleared, then it broadcasts speech. If the transmitter doesn’t make
this distinction, then it will be set.

V4L2_CID_TUNE_DEEMPHASIS (enum)

enum v4l2_deemphasis - Configures the de-emphasis value for reception. A
de-emphasis filter is applied to the broadcast to accentuate the high audio
frequencies. Depending on the region, a time constant of either 50 or 75
useconds is used. The enum v4l2_deemphasis defines possible values for de-
emphasis. Here they are:

V4L2_DEEMPHASIS_DISABLED No de-emphasis is applied.
V4L2_DEEMPHASIS_50_uS A de-emphasis of 50 uS is used.
V4L2_DEEMPHASIS_75_uS A de-emphasis of 75 uS is used.

Detect Control Reference

The Detect class includes controls for common features of various motion or object
detection capable devices.

Detect Control IDs

V4L2_CID_DETECT_CLASS (class) The Detect class descriptor. Calling ioctls VID-
IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU
for this control will return a description of this control class.

V4L2_CID_DETECT_MD_MODE (menu) Sets the motion detection mode.

7.2. Part I - Video for Linux API 153

Linux Userspace-api Documentation

V4L2_DETECT_MD_MODE_DISABLED Disable motion detection.
V4L2_DETECT_MD_MODE_GLOBAL Use a single motion detection threshold.
V4L2_DETECT_MD_MODE_THRESHOLD_GRID The image is divided into a grid, each

cell with its own motion detection thresh-
old. These thresholds are set through the
V4L2_CID_DETECT_MD_THRESHOLD_GRID matrix
control.

V4L2_DETECT_MD_MODE_REGION_GRID The image is divided into a grid, each cell with
its own region value that specifies which per-
region motion detection thresholds should be
used. Each region has its own thresholds. How
these per-region thresholds are set up is driver-
specific. The region values for the grid are set
through the V4L2_CID_DETECT_MD_REGION_GRID
matrix control.

V4L2_CID_DETECT_MD_GLOBAL_THRESHOLD (integer) Sets the global motion de-
tection threshold to be used with the V4L2_DETECT_MD_MODE_GLOBAL motion
detection mode.

V4L2_CID_DETECT_MD_THRESHOLD_GRID (__u16 matrix) Sets the motion detec-
tion thresholds for each cell in the grid. To be used with the
V4L2_DETECT_MD_MODE_THRESHOLD_GRID motion detection mode. Matrix el-
ement (0, 0) represents the cell at the top-left of the grid.

V4L2_CID_DETECT_MD_REGION_GRID (__u8 matrix) Sets the motion detection
region value for each cell in the grid. To be used with the
V4L2_DETECT_MD_MODE_REGION_GRIDmotion detection mode. Matrix element
(0, 0) represents the cell at the top-left of the grid.

Guidelines for Video4Linux pixel format 4CCs

Guidelines for Video4Linux 4CC codes defined using v4l2_fourcc() are specified
in this document. First of the characters defines the nature of the pixel format,
compression and colour space. The interpretation of the other three characters
depends on the first one.

Existing 4CCs may not obey these guidelines.

Raw bayer

The following first characters are used by raw bayer formats:

• B: raw bayer, uncompressed

• b: raw bayer, DPCM compressed

• a: A-law compressed

• u: u-law compressed

2nd character: pixel order

• B: BGGR

154 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

• G: GBRG

• g: GRBG

• R: RGGB

3rd character: uncompressed bits-per-pixel 0–9, A–

4th character: compressed bits-per-pixel 0–9, A–

Data Formats

Data Format Negotiation

Different devices exchange different kinds of data with applications, for example
video images, raw or sliced VBI data, RDS datagrams. Even within one kind many
different formats are possible, in particular there is an abundance of image for-
mats. Although drivers must provide a default and the selection persists across
closing and reopening a device, applications should always negotiate a data for-
mat before engaging in data exchange. Negotiation means the application asks for
a particular format and the driver selects and reports the best the hardware can
do to satisfy the request. Of course applications can also just query the current
selection.

A single mechanism exists to negotiate all data formats using the aggregate struct
v4l2_format and the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls. Additionally the
VIDIOC_TRY_FMT ioctl can be used to examine what the hardware could do, with-
out actually selecting a new data format. The data formats supported by the V4L2
API are covered in the respective device section in Interfaces. For a closer look at
image formats see Image Formats.

The VIDIOC_S_FMT ioctl is a major turning-point in the initialization sequence.
Prior to this point multiple panel applications can access the same device concur-
rently to select the current input, change controls or modify other properties. The
first VIDIOC_S_FMT assigns a logical stream (video data, VBI data etc.) exclu-
sively to one file descriptor.

Exclusive means no other application, more precisely no other file descriptor, can
grab this stream or change device properties inconsistent with the negotiated pa-
rameters. A video standard change for example, when the new standard uses a
different number of scan lines, can invalidate the selected image format. There-
fore only the file descriptor owning the stream can make invalidating changes.
Accordingly multiple file descriptors which grabbed different logical streams pre-
vent each other from interfering with their settings. When for example video over-
lay is about to start or already in progress, simultaneous video capturing may be
restricted to the same cropping and image size.

When applications omit the VIDIOC_S_FMT ioctl its locking side effects are implied
by the next step, the selection of an I/O method with the ioctl VIDIOC_REQBUFS
ioctl or implicit with the first read() or write() call.

Generally only one logical stream can be assigned to a file descriptor, the exception
being drivers permitting simultaneous video capturing and overlay using the same
file descriptor for compatibility with V4L and earlier versions of V4L2. Switching

7.2. Part I - Video for Linux API 155

Linux Userspace-api Documentation

the logical stream or returning into “panel mode”is possible by closing and re-
opening the device. Drivers may support a switch using VIDIOC_S_FMT.

All drivers exchanging data with applications must support the VIDIOC_G_FMT
and VIDIOC_S_FMT ioctl. Implementation of the VIDIOC_TRY_FMT is highly rec-
ommended but optional.

Image Format Enumeration

Apart of the generic format negotiation functions a special ioctl to enumerate all
image formats supported by video capture, overlay or output devices is available.1

The ioctl VIDIOC_ENUM_FMT ioctl must be supported by all drivers exchanging
image data with applications.

Important: Drivers are not supposed to convert image formats in kernel space.
They must enumerate only formats directly supported by the hardware. If nec-
essary driver writers should publish an example conversion routine or library for
integration into applications.

Single- and multi-planar APIs

Some devices require data for each input or output video frame to be placed in
discontiguous memory buffers. In such cases, one video frame has to be addressed
using more than one memory address, i.e. one pointer per “plane”. A plane is a
sub-buffer of the current frame. For examples of such formats see Image Formats.

Initially, V4L2 API did not support multi-planar buffers and a set of extensions
has been introduced to handle them. Those extensions constitute what is being
referred to as the “multi-planar API”.
Some of the V4L2 API calls and structures are interpreted differently, depending
on whether single- or multi-planar API is being used. An application can choose
whether to use one or the other by passing a corresponding buffer type to its ioctl
calls. Multi-planar versions of buffer types are suffixed with an _MPLANE string.
For a list of available multi-planar buffer types see enum v4l2_buf_type.

Multi-planar formats

Multi-planar API introduces new multi-planar formats. Those formats use a sepa-
rate set of FourCC codes. It is important to distinguish between the multi-planar
API and a multi-planar format. Multi-planar API calls can handle all single-planar
formats as well (as long as they are passed in multi-planar API structures), while
the single-planar API cannot handle multi-planar formats.

1 Enumerating formats an application has no a-priori knowledge of (otherwise it could explicitly
ask for them and need not enumerate) seems useless, but there are applications serving as proxy
between drivers and the actual video applications for which this is useful.

156 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Calls that distinguish between single and multi-planar APIs

VIDIOC_QUERYCAP Two additional multi-planar capabilities are added. They
can be set together with non-multi-planar ones for devices that handle both
single- and multi-planar formats.

VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT New structures for de-
scribing multi-planar formats are added: struct v4l2_pix_format_mplane
and struct v4l2_plane_pix_format. Drivers may define new multi-planar
formats, which have distinct FourCC codes from the existing single-planar
ones.

VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_QUERYBUF A new struct
v4l2_plane structure for describing planes is added. Arrays of this
structure are passed in the new m.planes field of struct v4l2_buffer.

VIDIOC_REQBUFS Will allocate multi-planar buffers as requested.

Cropping, composing and scaling – the SELECTION API

Introduction

Some video capture devices can sample a subsection of a picture and shrink or
enlarge it to an image of arbitrary size. Next, the devices can insert the image
into larger one. Some video output devices can crop part of an input image, scale
it up or down and insert it at an arbitrary scan line and horizontal offset into a
video signal. We call these abilities cropping, scaling and composing.

On a video capture device the source is a video signal, and the cropping target
determine the area actually sampled. The sink is an image stored in a memory
buffer. The composing area specifies which part of the buffer is actually written
to by the hardware.

On a video output device the source is an image in a memory buffer, and the crop-
ping target is a part of an image to be shown on a display. The sink is the display
or the graphics screen. The application may select the part of display where the
image should be displayed. The size and position of such a window is controlled
by the compose target.

Rectangles for all cropping and composing targets are defined even if the device
does supports neither cropping nor composing. Their size and position will be
fixed in such a case. If the device does not support scaling then the cropping and
composing rectangles have the same size.

7.2. Part I - Video for Linux API 157

Linux Userspace-api Documentation

Selection targets

Fig. 2: Cropping and composing targets
Targets used by a cropping, composing and scaling process

See Selection targets for more information.

Configuration

Applications can use the selection API to select an area in a video signal or a buffer,
and to query for default settings and hardware limits.

Video hardware can have various cropping, composing and scaling limitations. It
may only scale up or down, support only discrete scaling factors, or have different
scaling abilities in the horizontal and vertical directions. Also it may not support
scaling at all. At the same time the cropping/composing rectangles may have to
be aligned, and both the source and the sink may have arbitrary upper and lower
size limits. Therefore, as usual, drivers are expected to adjust the requested pa-
rameters and return the actual values selected. An application can control the
rounding behaviour using constraint flags.

Configuration of video capture

See figure Cropping and composing targets for examples of the selection targets
available for a video capture device. It is recommended to configure the cropping
targets before to the composing targets.

The range of coordinates of the top left corner, width and height of areas that can
be sampled is given by the V4L2_SEL_TGT_CROP_BOUNDS target. It is recommended
for the driver developers to put the top/left corner at position (0,0). The rectangle’
s coordinates are expressed in pixels.

The top left corner, width and height of the source rectangle, that is the area
actually sampled, is given by the V4L2_SEL_TGT_CROP target. It uses the same
coordinate system as V4L2_SEL_TGT_CROP_BOUNDS. The active cropping area must
lie completely inside the capture boundaries. The driver may further adjust the
requested size and/or position according to hardware limitations.

158 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Each capture device has a default source rectangle, given by the
V4L2_SEL_TGT_CROP_DEFAULT target. This rectangle shall cover what the
driver writer considers the complete picture. Drivers shall set the active crop
rectangle to the default when the driver is first loaded, but not later.

The composing targets refer to a memory buffer. The limits of composing coor-
dinates are obtained using V4L2_SEL_TGT_COMPOSE_BOUNDS. All coordinates are
expressed in pixels. The rectangle’s top/left corner must be located at position
(0,0). The width and height are equal to the image size set by VIDIOC_S_FMT.

The part of a buffer into which the image is inserted by the hardware is controlled
by the V4L2_SEL_TGT_COMPOSE target. The rectangle’s coordinates are also ex-
pressed in the same coordinate system as the bounds rectangle. The composing
rectangle must lie completely inside bounds rectangle. The driver must adjust the
composing rectangle to fit to the bounding limits. Moreover, the driver can per-
form other adjustments according to hardware limitations. The application can
control rounding behaviour using constraint flags.

For capture devices the default composing rectangle is queried using
V4L2_SEL_TGT_COMPOSE_DEFAULT. It is usually equal to the bounding rectangle.

The part of a buffer that is modified by the hardware is given by
V4L2_SEL_TGT_COMPOSE_PADDED. It contains all pixels defined using
V4L2_SEL_TGT_COMPOSE plus all padding data modified by hardware during
insertion process. All pixels outside this rectangle must not be changed by the
hardware. The content of pixels that lie inside the padded area but outside active
area is undefined. The application can use the padded and active rectangles to
detect where the rubbish pixels are located and remove them if needed.

Configuration of video output

For output devices targets and ioctls are used similarly to the video capture case.
The composing rectangle refers to the insertion of an image into a video signal.
The cropping rectangles refer to a memory buffer. It is recommended to configure
the composing targets before to the cropping targets.

The cropping targets refer to the memory buffer that contains an image to be
inserted into a video signal or graphical screen. The limits of cropping coordinates
are obtained using V4L2_SEL_TGT_CROP_BOUNDS. All coordinates are expressed in
pixels. The top/left corner is always point (0,0). The width and height is equal to
the image size specified using VIDIOC_S_FMT ioctl.

The top left corner, width and height of the source rectangle, that is the
area from which image date are processed by the hardware, is given by the
V4L2_SEL_TGT_CROP. Its coordinates are expressed in in the same coordinate sys-
tem as the bounds rectangle. The active cropping area must lie completely inside
the crop boundaries and the driver may further adjust the requested size and/or
position according to hardware limitations.

For output devices the default cropping rectangle is queried using
V4L2_SEL_TGT_CROP_DEFAULT. It is usually equal to the bounding rectangle.

The part of a video signal or graphics display where the image is inserted by the
hardware is controlled by V4L2_SEL_TGT_COMPOSE target. The rectangle’s coordi-

7.2. Part I - Video for Linux API 159

Linux Userspace-api Documentation

nates are expressed in pixels. The composing rectangle must lie completely inside
the bounds rectangle. The driver must adjust the area to fit to the bounding lim-
its. Moreover, the driver can perform other adjustments according to hardware
limitations.

The device has a default composing rectangle, given by the
V4L2_SEL_TGT_COMPOSE_DEFAULT target. This rectangle shall cover what the
driver writer considers the complete picture. It is recommended for the driver
developers to put the top/left corner at position (0,0). Drivers shall set the active
composing rectangle to the default one when the driver is first loaded.

The devices may introduce additional content to video signal other than an im-
age from memory buffers. It includes borders around an image. However, such a
padded area is driver-dependent feature not covered by this document. Driver de-
velopers are encouraged to keep padded rectangle equal to active one. The padded
target is accessed by the V4L2_SEL_TGT_COMPOSE_PADDED identifier. It must con-
tain all pixels from the V4L2_SEL_TGT_COMPOSE target.

Scaling control

An application can detect if scaling is performed by comparing the width
and the height of rectangles obtained using V4L2_SEL_TGT_CROP and
V4L2_SEL_TGT_COMPOSE targets. If these are not equal then the scaling is
applied. The application can compute the scaling ratios using these values.

Comparison with old cropping API

The selection API was introduced to cope with deficiencies of the older CROP API,
that was designed to control simple capture devices. Later the cropping API was
adopted by video output drivers. The ioctls are used to select a part of the display
were the video signal is inserted. It should be considered as an API abuse because
the described operation is actually the composing. The selection API makes a clear
distinction between composing and cropping operations by setting the appropriate
targets.

The CROP API lacks any support for composing to and cropping from an image in-
side a memory buffer. The application could configure a capture device to fill only
a part of an image by abusing V4L2 API. Cropping a smaller image from a larger
one is achieved by setting the field bytesperline at struct v4l2_pix_format. In-
troducing an image offsets could be done by modifying field m_userptr at struct
v4l2_buffer before calling VIDIOC_QBUF. Those operations should be avoided
because they are not portable (endianness), and do not work for macroblock and
Bayer formats and mmap buffers.

The selection API deals with configuration of buffer cropping/composing in a clear,
intuitive and portable way. Next, with the selection API the concepts of the padded
target and constraints flags are introduced. Finally, struct v4l2_crop and struct
v4l2_cropcap have no reserved fields. Therefore there is no way to extend their
functionality. The new struct v4l2_selection provides a lot of place for future
extensions.

160 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Driver developers are encouraged to implement only selection API. The former
cropping API would be simulated using the new one.

Examples

(A video capture device is assumed; change V4L2_BUF_TYPE_VIDEO_CAPTURE for
other devices; change target to V4L2_SEL_TGT_COMPOSE_* family to configure com-
posing area)

Example: Resetting the cropping parameters

struct v4l2_selection sel = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
.target = V4L2_SEL_TGT_CROP_DEFAULT,

};
ret = ioctl(fd, VIDIOC_G_SELECTION, &sel);
if (ret)

exit(-1);
sel.target = V4L2_SEL_TGT_CROP;
ret = ioctl(fd, VIDIOC_S_SELECTION, &sel);
if (ret)

exit(-1);

Setting a composing area on output of size of at most half of limit placed at a center
of a display.

Example: Simple downscaling

struct v4l2_selection sel = {
.type = V4L2_BUF_TYPE_VIDEO_OUTPUT,
.target = V4L2_SEL_TGT_COMPOSE_BOUNDS,

};
struct v4l2_rect r;

ret = ioctl(fd, VIDIOC_G_SELECTION, &sel);
if (ret)

exit(-1);
/* setting smaller compose rectangle */
r.width = sel.r.width / 2;
r.height = sel.r.height / 2;
r.left = sel.r.width / 4;
r.top = sel.r.height / 4;
sel.r = r;
sel.target = V4L2_SEL_TGT_COMPOSE;
sel.flags = V4L2_SEL_FLAG_LE;
ret = ioctl(fd, VIDIOC_S_SELECTION, &sel);
if (ret)

exit(-1);

A video output device is assumed; change V4L2_BUF_TYPE_VIDEO_OUTPUT for other
devices

7.2. Part I - Video for Linux API 161

Linux Userspace-api Documentation

Example: Querying for scaling factors

struct v4l2_selection compose = {
.type = V4L2_BUF_TYPE_VIDEO_OUTPUT,
.target = V4L2_SEL_TGT_COMPOSE,

};
struct v4l2_selection crop = {

.type = V4L2_BUF_TYPE_VIDEO_OUTPUT,

.target = V4L2_SEL_TGT_CROP,
};
double hscale, vscale;

ret = ioctl(fd, VIDIOC_G_SELECTION, &compose);
if (ret)

exit(-1);
ret = ioctl(fd, VIDIOC_G_SELECTION, &crop);
if (ret)

exit(-1);

/* computing scaling factors */
hscale = (double)compose.r.width / crop.r.width;
vscale = (double)compose.r.height / crop.r.height;

Image Cropping, Insertion and Scaling – the CROP API

Note: The CROP API is mostly superseded by the newer SELECTION API. The
new API should be preferred in most cases, with the exception of pixel aspect ratio
detection, which is implemented by VIDIOC_CROPCAP and has no equivalent in
the SELECTION API. See Comparison with old cropping API for a comparison of
the two APIs.

Some video capture devices can sample a subsection of the picture and shrink
or enlarge it to an image of arbitrary size. We call these abilities cropping and
scaling. Some video output devices can scale an image up or down and insert it at
an arbitrary scan line and horizontal offset into a video signal.

Applications can use the following API to select an area in the video signal, query
the default area and the hardware limits.

Note: Despite their name, the VIDIOC_CROPCAP, VIDIOC_G_CROP and VID-
IOC_S_CROP ioctls apply to input as well as output devices.

Scaling requires a source and a target. On a video capture or overlay device
the source is the video signal, and the cropping ioctls determine the area actu-
ally sampled. The target are images read by the application or overlaid onto the
graphics screen. Their size (and position for an overlay) is negotiated with the
VIDIOC_G_FMT and VIDIOC_S_FMT ioctls.

On a video output device the source are the images passed in by the application,
and their size is again negotiated with the VIDIOC_G_FMT and VIDIOC_S_FMT

162 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

ioctls, or may be encoded in a compressed video stream. The target is the video
signal, and the cropping ioctls determine the area where the images are inserted.

Source and target rectangles are defined even if the device does not support scal-
ing or the VIDIOC_G_CROP and VIDIOC_S_CROP ioctls. Their size (and position
where applicable) will be fixed in this case.

Note: All capture and output devices that support the CROP or SELECTION API
will also support the VIDIOC_CROPCAP ioctl.

Cropping Structures

Fig. 3: Image Cropping, Insertion and Scaling
The cropping, insertion and scaling process

For capture devices the coordinates of the top left corner, width and height of
the area which can be sampled is given by the bounds substructure of the struct
v4l2_cropcap returned by the VIDIOC_CROPCAP ioctl. To support a wide range of
hardware this specification does not define an origin or units. However by conven-
tion drivers should horizontally count unscaled samples relative to 0H (the leading
edge of the horizontal sync pulse, see Figure 4.1. Line synchronization). Vertically
ITU-R line numbers of the first field (see ITU R-525 line numbering for 525 lines
and for 625 lines), multiplied by two if the driver can capture both fields.

The top left corner, width and height of the source rectangle, that is the area
actually sampled, is given by struct v4l2_crop using the same coordinate sys-
tem as struct v4l2_cropcap. Applications can use the VIDIOC_G_CROP and VID-
IOC_S_CROP ioctls to get and set this rectangle. It must lie completely within the
capture boundaries and the driver may further adjust the requested size and/or
position according to hardware limitations.

Each capture device has a default source rectangle, given by the defrect sub-
structure of struct v4l2_cropcap. The center of this rectangle shall align with the
center of the active picture area of the video signal, and cover what the driver

7.2. Part I - Video for Linux API 163

Linux Userspace-api Documentation

writer considers the complete picture. Drivers shall reset the source rectangle to
the default when the driver is first loaded, but not later.

For output devices these structures and ioctls are used accordingly, defining the
target rectangle where the images will be inserted into the video signal.

Scaling Adjustments

Video hardware can have various cropping, insertion and scaling limitations. It
may only scale up or down, support only discrete scaling factors, or have different
scaling abilities in horizontal and vertical direction. Also it may not support scal-
ing at all. At the same time the struct v4l2_crop rectangle may have to be aligned,
and both the source and target rectangles may have arbitrary upper and lower size
limits. In particular the maximum width and height in struct v4l2_crop may be
smaller than the struct v4l2_cropcap. bounds area. Therefore, as usual, drivers
are expected to adjust the requested parameters and return the actual values se-
lected.

Applications can change the source or the target rectangle first, as they may pre-
fer a particular image size or a certain area in the video signal. If the driver has
to adjust both to satisfy hardware limitations, the last requested rectangle shall
take priority, and the driver should preferably adjust the opposite one. The VID-
IOC_TRY_FMT ioctl however shall not change the driver state and therefore only
adjust the requested rectangle.

Suppose scaling on a video capture device is restricted to a factor 1:1 or 2:1 in
either direction and the target image size must be a multiple of 16 × 16 pixels.
The source cropping rectangle is set to defaults, which are also the upper limit in
this example, of 640 × 400 pixels at offset 0, 0. An application requests an image
size of 300 × 225 pixels, assuming video will be scaled down from the“full picture”
accordingly. The driver sets the image size to the closest possible values 304 ×
224, then chooses the cropping rectangle closest to the requested size, that is 608
× 224 (224 × 2:1 would exceed the limit 400). The offset 0, 0 is still valid, thus
unmodified. Given the default cropping rectangle reported by VIDIOC_CROPCAP
the application can easily propose another offset to center the cropping rectangle.

Now the application may insist on covering an area using a picture aspect ratio
closer to the original request, so it asks for a cropping rectangle of 608 × 456
pixels. The present scaling factors limit cropping to 640 × 384, so the driver
returns the cropping size 608 × 384 and adjusts the image size to closest possible
304 × 192.

Examples

Source and target rectangles shall remain unchanged across closing and reopen-
ing a device, such that piping data into or out of a device will work without special
preparations. More advanced applications should ensure the parameters are suit-
able before starting I/O.

Note: On the next two examples, a video capture device is assumed; change

164 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_BUF_TYPE_VIDEO_CAPTURE for other types of device.

Example: Resetting the cropping parameters

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_CROPCAP, &cropcap)) {
perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

}

memset (&crop, 0, sizeof (crop));
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect;

/* Ignore if cropping is not supported (EINVAL). */

if (-1 == ioctl (fd, VIDIOC_S_CROP, &crop)
&& errno != EINVAL) {
perror ("VIDIOC_S_CROP");
exit (EXIT_FAILURE);

}

Example: Simple downscaling

struct v4l2_cropcap cropcap;
struct v4l2_format format;

reset_cropping_parameters ();

/* Scale down to 1/4 size of full picture. */

memset (&format, 0, sizeof (format)); /* defaults */

format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

format.fmt.pix.width = cropcap.defrect.width >> 1;
format.fmt.pix.height = cropcap.defrect.height >> 1;
format.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;

if (-1 == ioctl (fd, VIDIOC_S_FMT, &format)) {
perror ("VIDIOC_S_FORMAT");
exit (EXIT_FAILURE);

}

/* We could check the actual image size now, the actual scaling factor
or if the driver can scale at all. */

7.2. Part I - Video for Linux API 165

Linux Userspace-api Documentation

Example: Selecting an output area

Note: This example assumes an output device.

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;

if (-1 == ioctl (fd, VIDIOC_CROPCAP;, &cropcap)) {
perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

}

memset (&crop, 0, sizeof (crop));

crop.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
crop.c = cropcap.defrect;

/* Scale the width and height to 50 % of their original size
and center the output. */

crop.c.width /= 2;
crop.c.height /= 2;
crop.c.left += crop.c.width / 2;
crop.c.top += crop.c.height / 2;

/* Ignore if cropping is not supported (EINVAL). */

if (-1 == ioctl (fd, VIDIOC_S_CROP, &crop)
&& errno != EINVAL) {
perror ("VIDIOC_S_CROP");
exit (EXIT_FAILURE);

}

Example: Current scaling factor and pixel aspect

Note: This example assumes a video capture device.

struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format format;
double hscale, vscale;
double aspect;
int dwidth, dheight;

memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

(continues on next page)

166 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
if (-1 == ioctl (fd, VIDIOC_CROPCAP, &cropcap)) {

perror ("VIDIOC_CROPCAP");
exit (EXIT_FAILURE);

}

memset (&crop, 0, sizeof (crop));
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_G_CROP, &crop)) {
if (errno != EINVAL) {

perror ("VIDIOC_G_CROP");
exit (EXIT_FAILURE);

}

/* Cropping not supported. */
crop.c = cropcap.defrect;

}

memset (&format, 0, sizeof (format));
format.fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (-1 == ioctl (fd, VIDIOC_G_FMT, &format)) {
perror ("VIDIOC_G_FMT");
exit (EXIT_FAILURE);

}

/* The scaling applied by the driver. */

hscale = format.fmt.pix.width / (double) crop.c.width;
vscale = format.fmt.pix.height / (double) crop.c.height;

aspect = cropcap.pixelaspect.numerator /
(double) cropcap.pixelaspect.denominator;

aspect = aspect * hscale / vscale;

/* Devices following ITU-R BT.601 do not capture
square pixels. For playback on a computer monitor
we should scale the images to this size. */

dwidth = format.fmt.pix.width / aspect;
dheight = format.fmt.pix.height;

Streaming Parameters

Streaming parameters are intended to optimize the video capture process as well
as I/O. Presently applications can request a high quality capture mode with the
VIDIOC_S_PARM ioctl.

The current video standard determines a nominal number of frames per second.
If less than this number of frames is to be captured or output, applications can
request frame skipping or duplicating on the driver side. This is especially use-
ful when using the read() or write(), which are not augmented by timestamps or
sequence counters, and to avoid unnecessary data copying.

Finally these ioctls can be used to determine the number of buffers used internally

7.2. Part I - Video for Linux API 167

Linux Userspace-api Documentation

by a driver in read/write mode. For implications see the section discussing the
read() function.

To get and set the streaming parameters applications call the VIDIOC_G_PARM
and VIDIOC_S_PARM ioctl, respectively. They take a pointer to a struct
v4l2_streamparm, which contains a union holding separate parameters for input
and output devices.

These ioctls are optional, drivers need not implement them. If so, they return the
EINVAL error code.

7.2.2 Image Formats

The V4L2 API was primarily designed for devices exchanging image data with
applications. The struct v4l2_pix_format and struct v4l2_pix_format_mplane
structures define the format and layout of an image in memory. The former is
used with the single-planar API, while the latter is used with the multi-planar ver-
sion (see Single- and multi-planar APIs). Image formats are negotiated with the
VIDIOC_S_FMT ioctl. (The explanations here focus on video capturing and output,
for overlay frame buffer formats see also VIDIOC_G_FBUF.)

Single-planar format structure

v4l2_pix_format

Table 41: struct v4l2_pix_format
__u32 width Image width in pixels.
__u32 height Image height in pixels. If field is one

of V4L2_FIELD_TOP, V4L2_FIELD_BOTTOM or
V4L2_FIELD_ALTERNATE then height refers to the
number of lines in the field, otherwise it refers to the
number of lines in the frame (which is twice the field
height for interlaced formats).

Applications set these fields to request an image size, drivers return the closest possible values.
In case of planar formats the width and height applies to the largest plane. To avoid ambi-
guities drivers must return values rounded up to a multiple of the scale factor of any smaller
planes. For example when the image format is YUV 4:2:0, width and heightmust be multiples
of two.
For compressed formats that contain the resolution information encoded inside the stream,
when fed to a stateful mem2memdecoder, the fieldsmay be zero to rely on the decoder to detect
the right values. For more details seeMemory-to-Memory Stateful Video Decoder Interface and
format descriptions.
__u32 pixelformat The pixel format or type of compression, set by the appli-

cation. This is a little endian four character code. V4L2
defines standard RGB formats in RGB Formats, YUV for-
mats in YUV Formats, and reserved codes in Reserved
Image Formats

Continued on next page

168 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 41 – continued from previous page
__u32 field Field order, from enum v4l2_field. Video images are

typically interlaced. Applications can request to capture
or output only the top or bottom field, or both fields inter-
laced or sequentially stored in one buffer or alternating
in separate buffers. Drivers return the actual field order
selected. For more details on fields see Field Order.

__u32 bytesperline Distance in bytes between the leftmost pixels in two ad-
jacent lines.

Both applications and drivers can set this field to request padding bytes at the end of each line.
Drivers however may ignore the value requested by the application, returning width times
bytes per pixel or a larger value required by the hardware. That implies applications can just
set this field to zero to get a reasonable default.
Video hardware may access padding bytes, therefore they must reside in accessible memory.
Consider cases where padding bytes after the last line of an image cross a system page bound-
ary. Input devices may write padding bytes, the value is undefined. Output devices ignore the
contents of padding bytes.
When the image format is planar the bytesperline value applies to the first plane and is divided
by the same factor as the width field for the other planes. For example the Cb and Cr planes
of a YUV 4:2:0 image have half as many padding bytes following each line as the Y plane. To
avoid ambiguities drivers must return a bytesperline value rounded up to a multiple of the
scale factor.
For compressed formats the bytesperline value makes no sense. Applications and drivers
must set this to 0 in that case.
__u32 sizeimage Size in bytes of the buffer to hold a complete image, set

by the driver. Usually this is bytesperline times height.
When the image consists of variable length compressed
data this is the number of bytes required by the codec to
support the worst-case compression scenario.
The driver will set the value for uncompressed images.
Clients are allowed to set the sizeimage field
for variable length compressed data flagged
with V4L2_FMT_FLAG_COMPRESSED at ioctl VID-
IOC_ENUM_FMT, but the driver may ignore it and
set the value itself, or it may modify the provided value
based on alignment requirements or minimum/maximum
size requirements. If the client wants to leave this to the
driver, then it should set sizeimage to 0.

__u32 colorspace Image colorspace, from enum v4l2_colorspace. This in-
formation supplements the pixelformat and must be set
by the driver for capture streams and by the application
for output streams, see Colorspaces.

Continued on next page

7.2. Part I - Video for Linux API 169

Linux Userspace-api Documentation

Table 41 – continued from previous page
__u32 priv This field indicates whether the remaining fields of the

struct v4l2_pix_format, also called the extended fields,
are valid. When set to V4L2_PIX_FMT_PRIV_MAGIC, it in-
dicates that the extended fields have been correctly ini-
tialized. When set to any other value it indicates that the
extended fields contain undefined values.
Applications that wish to use the pixel format
extended fields must first ensure that the fea-
ture is supported by querying the device for the
V4L2_CAP_EXT_PIX_FORMAT capability. If the capa-
bility isn’t set the pixel format extended fields are not
supported and using the extended fields will lead to
undefined results.
To use the extended fields, applications must set the priv
field to V4L2_PIX_FMT_PRIV_MAGIC, initialize all the ex-
tended fields and zero the unused bytes of the struct
v4l2_format raw_data field.
When the priv field isn’t set to
V4L2_PIX_FMT_PRIV_MAGIC drivers must act as if all
the extended fields were set to zero. On return drivers
must set the priv field to V4L2_PIX_FMT_PRIV_MAGIC
and all the extended fields to applicable values.

__u32 flags Flags set by the application or driver, see Format Flags.
union { (anonymous)
__u32 ycbcr_enc Y’CbCr encoding, from enum v4l2_ycbcr_encoding.

This information supplements the colorspace and must
be set by the driver for capture streams and by the ap-
plication for output streams, see Colorspaces.

__u32 hsv_enc HSV encoding, from enum v4l2_hsv_encoding. This in-
formation supplements the colorspace and must be set
by the driver for capture streams and by the application
for output streams, see Colorspaces.

}
__u32 quantization Quantization range, from enum v4l2_quantization.

This information supplements the colorspace and must
be set by the driver for capture streams and by the ap-
plication for output streams, see Colorspaces.

__u32 xfer_func Transfer function, from enum v4l2_xfer_func. This in-
formation supplements the colorspace and must be set
by the driver for capture streams and by the application
for output streams, see Colorspaces.

170 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Multi-planar format structures

The struct v4l2_plane_pix_format structures define size and layout for each of
the planes in a multi-planar format. The struct v4l2_pix_format_mplane struc-
ture contains information common to all planes (such as image width and height)
and an array of struct v4l2_plane_pix_format structures, describing all planes
of that format.

v4l2_plane_pix_format

Table 42: struct v4l2_plane_pix_format
__u32 sizeimage Maximum size in bytes required for image

data in this plane, set by the driver. When
the image consists of variable length com-
pressed data this is the number of bytes re-
quired by the codec to support theworst-case
compression scenario.
The driver will set the value for uncom-
pressed images.
Clients are allowed to set the sizeimage field
for variable length compressed data flagged
with V4L2_FMT_FLAG_COMPRESSED at ioctl
VIDIOC_ENUM_FMT, but the driver may ig-
nore it and set the value itself, or it may mod-
ify the provided value based on alignment
requirements or minimum/maximum size re-
quirements. If the client wants to leave this
to the driver, then it should set sizeimage to
0.

__u32 bytesperline Distance in bytes between the leftmost pix-
els in two adjacent lines. See struct
v4l2_pix_format.

__u16 reserved[6] Reserved for future extensions. Should be
zeroed by drivers and applications.

v4l2_pix_format_mplane

7.2. Part I - Video for Linux API 171

Linux Userspace-api Documentation

Table 43: struct v4l2_pix_format_mplane
__u32 width Image width in pixels. See struct

v4l2_pix_format.
__u32 height Image height in pixels. See struct

v4l2_pix_format.
__u32 pixelformat The pixel format. Both single- and multi-

planar four character codes can be used.
__u32 field Field order, from enum v4l2_field. See

struct v4l2_pix_format.
__u32 colorspace Colorspace encoding, from enum

v4l2_colorspace. See struct
v4l2_pix_format.

struct
v4l2_plane_pix_format

plane_fmt[VIDEO_MAX_PLANES] An array of structures describing format
of each plane this pixel format consists of.
The number of valid entries in this array
has to be put in the num_planes field.

__u8 num_planes Number of planes (i.e. separate memory
buffers) for this format and the number of
valid entries in the plane_fmt array.

__u8 flags Flags set by the application or driver, see
Format Flags.

union { (anonymous)
__u8 ycbcr_enc Y’CbCr encoding, from enum

v4l2_ycbcr_encoding. This informa-
tion supplements the colorspace and
must be set by the driver for capture
streams and by the application for output
streams, see Colorspaces.

__u8 hsv_enc HSV encoding, from enum
v4l2_hsv_encoding. This information
supplements the colorspace and must be
set by the driver for capture streams and
by the application for output streams, see
Colorspaces.

}
__u8 quantization Quantization range, from enum

v4l2_quantization. This information
supplements the colorspace and must be
set by the driver for capture streams and
by the application for output streams, see
Colorspaces.

__u8 xfer_func Transfer function, from enum
v4l2_xfer_func. This information sup-
plements the colorspace and must be set
by the driver for capture streams and by
the application for output streams, see
Colorspaces.

__u8 reserved[7] Reserved for future extensions. Should be
zeroed by drivers and applications.

172 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Standard Image Formats

In order to exchange images between drivers and applications, it is necessary
to have standard image data formats which both sides will interpret the same
way. V4L2 includes several such formats, and this section is intended to be an
unambiguous specification of the standard image data formats in V4L2.

V4L2 drivers are not limited to these formats, however. Driver-specific formats are
possible. In that case the application may depend on a codec to convert images
to one of the standard formats when needed. But the data can still be stored
and retrieved in the proprietary format. For example, a device may support a
proprietary compressed format. Applications can still capture and save the data
in the compressed format, savingmuch disk space, and later use a codec to convert
the images to the X Windows screen format when the video is to be displayed.

Even so, ultimately, some standard formats are needed, so the V4L2 specification
would not be complete without well-defined standard formats.

The V4L2 standard formats are mainly uncompressed formats. The pixels are al-
ways arranged in memory from left to right, and from top to bottom. The first byte
of data in the image buffer is always for the leftmost pixel of the topmost row. Fol-
lowing that is the pixel immediately to its right, and so on until the end of the top
row of pixels. Following the rightmost pixel of the row there may be zero or more
bytes of padding to guarantee that each row of pixel data has a certain alignment.
Following the pad bytes, if any, is data for the leftmost pixel of the second row
from the top, and so on. The last row has just as many pad bytes after it as the
other rows.

In V4L2 each format has an identifier which looks like PIX_FMT_XXX, defined in
the videodev2.h header file. These identifiers represent four character (FourCC)
codes which are also listed below, however they are not the same as those used in
the Windows world.

For some formats, data is stored in separate, discontiguousmemory buffers. Those
formats are identified by a separate set of FourCC codes and are referred to as
“multi-planar formats”. For example, a YUV422 frame is normally stored in one
memory buffer, but it can also be placed in two or three separate buffers, with Y
component in one buffer and CbCr components in another in the 2-planar version
or with each component in its own buffer in the 3-planar case. Those sub-buffers
are referred to as “planes”.

Indexed Format

In this format each pixel is represented by an 8 bit index into a 256 entry ARGB
palette. It is intended for Video Output Overlays only. There are no ioctls to access
the palette, this must be done with ioctls of the Linux framebuffer API.

Table 44: Indexed Image Format
Identifier Code Byte 0

Bit 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_PAL8 ‘PAL8’ i7 i6 i5 i4 i3 i2 i1 i0

7.2. Part I - Video for Linux API 173

Linux Userspace-api Documentation

RGB Formats

Description

These formats are designed tomatch the pixel formats of typical PC graphics frame
buffers. They occupy 8, 16, 24 or 32 bits per pixel. These are all packed-pixel
formats, meaning all the data for a pixel lie next to each other in memory.

Table 45: RGB Image Formats
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
V4L2_PIX_FMT_RGB332 ‘RGB1’

r2 r1 r0 g2 g1 g0 b1 b0
V4L2_PIX_FMT_ARGB444 ‘AR12’

g3 g2 g1 g0 b3 b2 b1 b0 a3 a2 a1 a0 r3 r2 r1 r0
V4L2_PIX_FMT_XRGB444 ‘XR12’

g3 g2 g1 g0 b3 b2 b1 b0
- - - -

r3 r2 r1 r0
V4L2_PIX_FMT_RGBA444 ‘RA12’

b3 b2 b1 b0 a3 a2 a1 a0 r3 r2 r1 r0 g3 g2 g1 g0
V4L2_PIX_FMT_RGBX444 ‘RX12’

b3 b2 b1 b0
- - - -

r3 r2 r1 r0 g3 g2 g1 g0
V4L2_PIX_FMT_ABGR444 ‘AB12’

g3 g2 g1 g0 r3 r2 r1 r0 a3 a2 a1 a0 b3 b2 b1 b0
V4L2_PIX_FMT_XBGR444 ‘XB12’

g3 g2 g1 g0 r3 r2 r1 r0
- - - -

b3 b2 b1 b0
V4L2_PIX_FMT_BGRA444 ‘BA12’

r3 r2 r1 r0 a3 a2 a1 a0 b3 b2 b1 b0 g3 g2 g1 g0
V4L2_PIX_FMT_BGRX444 ‘BX12’

r3 r2 r1 r0
- - - -

b3 b2 b1 b0 g3 g2 g1 g0
V4L2_PIX_FMT_ARGB555 ‘AR15’

g2 g1 g0 b4 b3 b2 b1 b0
a
r4 r3 r2 r1 r0 g4 g3

V4L2_PIX_FMT_XRGB555 ‘XR15’
g2 g1 g0 b4 b3 b2 b1 b0

-
r4 r3 r2 r1 r0 g4 g3

V4L2_PIX_FMT_RGBA555 ‘RA15’
g1 g0 b4 b3 b2 b1 b0

a
r4 r3 r2 r1 r0 g4 g3 g2

V4L2_PIX_FMT_RGBX555 ‘RX15’
g1 g0 b4 b3 b2 b1 b0

-
r4 r3 r2 r1 r0 g4 g3 g2

V4L2_PIX_FMT_ABGR555 ‘AB15’
g2 g1 g0 r4 r3 r2 r1 r0

a
b4 b3 b2 b1 b0 g4 g3

V4L2_PIX_FMT_XBGR555 ‘XB15’
g2 g1 g0 r4 r3 r2 r1 r0

-
b4 b3 b2 b1 b0 g4 g3

V4L2_PIX_FMT_BGRA555 ‘BA15’
g1 g0 r4 r3 r2 r1 r0

a
b4 b3 b2 b1 b0 g4 g3 g2

V4L2_PIX_FMT_BGRX555 ‘BX15’
g1 g0 r4 r3 r2 r1 r0

-
b4 b3 b2 b1 b0 g4 g3 g2

V4L2_PIX_FMT_RGB565 ‘RGBP’
g2 g1 g0 b4 b3 b2 b1 b0 r4 r3 r2 r1 r0 g5 g4 g3

V4L2_PIX_FMT_ARGB555X ‘AR15’| (1 << 31) a
r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0

V4L2_PIX_FMT_XRGB555X ‘XR15’| (1 << 31) -
r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0

V4L2_PIX_FMT_RGB565X ‘RGBR’
r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0

V4L2_PIX_FMT_BGR24 ‘BGR3’
b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0

V4L2_PIX_FMT_RGB24 ‘RGB3’
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

V4L2_PIX_FMT_BGR666 ‘BGRH’
b5 b4 b3 b2 b1 b0 g5 g4 g3 g2 g1 g0 r5 r4 r3 r2 r1 r0

- - - - - - - - - - - - - -

V4L2_PIX_FMT_ABGR32 ‘AR24’
b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0 a7 a6 a5 a4 a3 a2 a1 a0

V4L2_PIX_FMT_XBGR32 ‘XR24’
b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0

- - - - - - - -

V4L2_PIX_FMT_BGRA32 ‘RA24’
a7 a6 a5 a4 a3 a2 a1 a0 b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0

V4L2_PIX_FMT_BGRX32 ‘RX24’ - - - - - - - -
b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0

V4L2_PIX_FMT_RGBA32 ‘AB24’
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0 a7 a6 a5 a4 a3 a2 a1 a0

V4L2_PIX_FMT_RGBX32 ‘XB24’
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

- - - - - - - -

V4L2_PIX_FMT_ARGB32 ‘BA24’
a7 a6 a5 a4 a3 a2 a1 a0 r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

V4L2_PIX_FMT_XRGB32 ‘BX24’ - - - - - - - -
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

Note: Bit 7 is the most significant bit.

The usage and value of the alpha bits (a) in the ARGB and ABGR formats (col-
lectively referred to as alpha formats) depend on the device type and hardware

174 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

operation. Capture devices (including capture queues of mem-to-mem devices)
fill the alpha component in memory. When the device outputs an alpha channel
the alpha component will have a meaningful value. Otherwise, when the device
doesn’t output an alpha channel but can set the alpha bit to a user-configurable
value, the V4L2_CID_ALPHA_COMPONENT control is used to specify that alpha
value, and the alpha component of all pixels will be set to the value specified by that
control. Otherwise a corresponding format without an alpha component (XRGB or
XBGR) must be used instead of an alpha format.

Output devices (including output queues of mem-to-mem devices and video out-
put overlay devices) read the alpha component from memory. When the device
processes the alpha channel the alpha component must be filled with meaning-
ful values by applications. Otherwise a corresponding format without an alpha
component (XRGB or XBGR) must be used instead of an alpha format.

The XRGB and XBGR formats contain undefined bits (-). Applications, devices and
drivers must ignore those bits, for both Video Capture Interface and Video Output
Interface devices.

Byte Order. Each cell is one byte.

Table 46: RGB byte order
start + 0: B00 G00 R00 B01 G01 R01 B02 G02 R02 B03 G03 R03
start + 12: B10 G10 R10 B11 G11 R11 B12 G12 R12 B13 G13 R13
start + 24: B20 G20 R20 B21 G21 R21 B22 G22 R22 B23 G23 R23
start + 36: B30 G30 R30 B31 G31 R31 B32 G32 R32 B33 G33 R33

Formats defined in Deprecated Packed RGB Image Formats are deprecated and
must not be used by new drivers. They are documented here for reference. The
meaning of their alpha bits (a) are ill-defined and interpreted as in either the
corresponding ARGB or XRGB format, depending on the driver.

Table 47: Deprecated Packed RGB Image Formats
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_RGB444 ‘R444’g3 g2 g1 g0 b3 b2 b1 b0 a3 a2 a1 a0 r3 r2 r1 r0
V4L2_PIX_FMT_RGB555

‘RGBO’
g2 g1 g0 b4 b3 b2 b1 b0 a r4 r3 r2 r1 r0 g4 g3

V4L2_PIX_FMT_RGB555X
‘RGBQ’

a r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0

V4L2_PIX_FMT_BGR32
‘BGR4’

b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0 a7 a6 a5 a4 a3 a2 a1 a0

V4L2_PIX_FMT_RGB32
‘RGB4’

a7 a6 a5 a4 a3 a2 a1 a0 r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

A test utility to determine which RGB formats a driver actually supports is avail-
able from the LinuxTV v4l-dvb repository. See https://linuxtv.org/repo/ for access
instructions.

7.2. Part I - Video for Linux API 175

https://linuxtv.org/repo/

Linux Userspace-api Documentation

Raw Bayer Formats

Description

The raw Bayer formats are used by image sensors before much if any processing
is performed on the image. The formats contain green, red and blue components,
with alternating lines of red and green, and blue and green pixels in different
orders. See also the Wikipedia article on Bayer filter.

V4L2_PIX_FMT_SRGGB8 (‘RGGB’), V4L2_PIX_FMT_SGRBG8 (‘GRBG’),
V4L2_PIX_FMT_SGBRG8 (‘GBRG’), V4L2_PIX_FMT_SBGGR8 (‘BA81’),

8-bit Bayer formats

Description

These four pixel formats are raw sRGB / Bayer formats with 8 bits per sample. Each
sample is stored in a byte. Each n-pixel row contains n/2 green samples and n/2
blue or red samples, with alternating red and blue rows. They are conventionally
described as GRGR⋯BGBG⋯, RGRG⋯GBGB⋯, etc. Below is an example of a small
V4L2_PIX_FMT_SBGGR8 image:

Byte Order. Each cell is one byte.

start + 0: B00 G01 B02 G03
start + 4: G10 R11 G12 R13
start + 8: B20 G21 B22 G23
start + 12: G30 R31 G32 R33

V4L2_PIX_FMT_SRGGB10 (‘RG10’), V4L2_PIX_FMT_SGRBG10 (‘BA10’),
V4L2_PIX_FMT_SGBRG10 (‘GB10’), V4L2_PIX_FMT_SBGGR10 (‘BG10’),

V4L2_PIX_FMT_SGRBG10 V4L2_PIX_FMT_SGBRG10 V4L2_PIX_FMT_SBGGR10
10-bit Bayer formats expanded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per sample.
Each sample is stored in a 16-bit word, with 6 unused high bits filled with zeros.
Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with
alternating red and blue rows. Bytes are stored in memory in little endian or-
der. They are conventionally described as GRGR⋯BGBG⋯, RGRG⋯GBGB⋯, etc.
Below is an example of one of these formats:

Byte Order. Each cell is one byte, the 6 most significant bits in the high bytes are
0.

176 Chapter 7. Linux Media Infrastructure userspace API

https://en.wikipedia.org/wiki/Bayer_filter

Linux Userspace-api Documentation

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

V4L2_PIX_FMT_SRGGB10P (‘pRAA’), V4L2_PIX_FMT_SGRBG10P (‘pgAA’),
V4L2_PIX_FMT_SGBRG10P (‘pGAA’), V4L2_PIX_FMT_SBGGR10P (‘pBAA’
),

V4L2_PIX_FMT_SGRBG10P V4L2_PIX_FMT_SGBRG10P
V4L2_PIX_FMT_SBGGR10P 10-bit packed Bayer formats

Description

These four pixel formats are packed raw sRGB / Bayer formats with 10 bits per
sample. Every four consecutive samples are packed into 5 bytes. Each of the first
4 bytes contain the 8 high order bits of the pixels, and the 5th byte contains the 2
least significants bits of each pixel, in the same order.

Each n-pixel row contains n/2 green samples and n/2 blue or red samples,
with alternating green-red and green-blue rows. They are conventionally de-
scribed as GRGR⋯BGBG⋯, RGRG⋯GBGB⋯, etc. Below is an example of a small
V4L2_PIX_FMT_SBGGR10P image:

Byte Order. Each cell is one byte.

start + 0: B00high G01high B02high G03high G03low(bits 7–6) B02low(bits 5–4)
G01low(bits 3–2) B00low(bits 1–0)

start + 5: G10high R11high G12high R13high R13low(bits 7–6) G12low(bits 5–4)
R11low(bits 3–2) G10low(bits 1–0)

start + 10: B20high G21high B22high G23high G23low(bits 7–6) B22low(bits 5–4)
G21low(bits 3–2) B20low(bits 1–0)

start + 15: G30high R31high G32high R33high R33low(bits 7–6) G32low(bits 5–4)
R31low(bits 3–2) G30low(bits 1–0)

V4L2_PIX_FMT_SBGGR10ALAW8 (‘aBA8’), V4L2_PIX_FMT_SGBRG10ALAW8
(‘aGA8’), V4L2_PIX_FMT_SGRBG10ALAW8 (‘agA8’),
V4L2_PIX_FMT_SRGGB10ALAW8 (‘aRA8’),

V4L2_PIX_FMT_SGBRG10ALAW8 V4L2_PIX_FMT_SGRBG10ALAW8
V4L2_PIX_FMT_SRGGB10ALAW8 10-bit Bayer formats compressed to 8 bits

7.2. Part I - Video for Linux API 177

Linux Userspace-api Documentation

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per color
compressed to 8 bits each, using the A-LAW algorithm. Each color compo-
nent consumes 8 bits of memory. In other respects this format is similar
to V4L2_PIX_FMT_SRGGB8 (‘RGGB’), V4L2_PIX_FMT_SGRBG8 (‘GRBG’),
V4L2_PIX_FMT_SGBRG8 (‘GBRG’), V4L2_PIX_FMT_SBGGR8 (‘BA81’),.

V4L2_PIX_FMT_SBGGR10DPCM8 (‘bBA8’), V4L2_PIX_FMT_SGBRG10DPCM8
(‘bGA8’), V4L2_PIX_FMT_SGRBG10DPCM8 (‘BD10’),
V4L2_PIX_FMT_SRGGB10DPCM8 (‘bRA8’),

man V4L2_PIX_FMT_SBGGR10DPCM8(2)

V4L2_PIX_FMT_SGBRG10DPCM8 V4L2_PIX_FMT_SGRBG10DPCM8
V4L2_PIX_FMT_SRGGB10DPCM8 10-bit Bayer formats compressed to 8 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per colour
compressed to 8 bits each, using DPCM compression. DPCM, differential pulse-
code modulation, is lossy. Each colour component consumes 8 bits of memory.
In other respects this format is similar to V4L2_PIX_FMT_SRGGB10 (‘RG10’
), V4L2_PIX_FMT_SGRBG10 (‘BA10’), V4L2_PIX_FMT_SGBRG10 (‘GB10’),
V4L2_PIX_FMT_SBGGR10 (‘BG10’),.

V4L2_PIX_FMT_IPU3_SBGGR10 (‘ip3b’), V4L2_PIX_FMT_IPU3_SGBRG10
(‘ip3g’), V4L2_PIX_FMT_IPU3_SGRBG10 (‘ip3G’),
V4L2_PIX_FMT_IPU3_SRGGB10 (‘ip3r’)

10-bit Bayer formats

Description

These four pixel formats are used by Intel IPU3 driver, they are raw sRGB / Bayer
formats with 10 bits per sample with every 25 pixels packed to 32 bytes leaving 6
most significant bits padding in the last byte. The format is little endian.

In other respects this format is similar to V4L2_PIX_FMT_SRGGB10 (‘RG10’
), V4L2_PIX_FMT_SGRBG10 (‘BA10’), V4L2_PIX_FMT_SGBRG10 (‘GB10’),
V4L2_PIX_FMT_SBGGR10 (‘BG10’),. Below is an example of a small image in
V4L2_PIX_FMT_IPU3_SBGGR10 format.

Byte Order. Each cell is one byte.

178 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

start
+
0:

B0000low G0001low(bits 7–2)
B0000high(bits 1–0)

B0002low(bits 7–4)
G0001high(bits 3–0)

G0003low(bits 7–6)
B0002high(bits 5–0)

start
+
4:

G0003high B0004low G0005low(bits 7–2)
B0004high(bits 1–0)

B0006low(bits 7–4)
G0005high(bits 3–0)

start
+
8:

G0007low(bits 7–6)
B0006high(bits 5–0)

G0007high B0008low G0009low(bits 7–2)
B0008high(bits 1–0)

start
+
12:

B0010low(bits 7–4)
G0009high(bits 3–0)

G0011low(bits 7–6)
B0010high(bits 5–0)

G0011high B0012low

start
+
16:

G0013low(bits 7–2)
B0012high(bits 1–0)

B0014low(bits 7–4)
G0013high(bits 3–0)

G0015low(bits 7–6)
B0014high(bits 5–0)

G0015high

start
+
20

B0016low G0017low(bits 7–2)
B0016high(bits 1–0)

B0018low(bits 7–4)
G0017high(bits 3–0)

G0019low(bits 7–6)
B0018high(bits 5–0)

start
+
24:

G0019high B0020low G0021low(bits 7–2)
B0020high(bits 1–0)

B0022low(bits 7–4)
G0021high(bits 3–0)

start
+
28:

G0023low(bits 7–6)
B0022high(bits 5–0)

G0023high B0024low B0024high(bits 1–0)

start
+
32:

G0100low R0101low(bits 7–2)
G0100high(bits 1–0)

G0102low(bits 7–4)
R0101high(bits 3–0)

R0103low(bits 7–6)
G0102high(bits 5–0)

start
+
36:

R0103high G0104low R0105low(bits 7–2)
G0104high(bits 1–0)

G0106low(bits 7–4)
R0105high(bits 3–0)

start
+
40:

R0107low(bits 7–6)
G0106high(bits 5–0)

R0107high G0108low R0109low(bits 7–2)
G0108high(bits 1–0)

start
+
44:

G0110low(bits 7–4)
R0109high(bits 3–0)

R0111low(bits 7–6)
G0110high(bits 5–0)

R0111high G0112low

start
+
48:

R0113low(bits 7–2)
G0112high(bits 1–0)

G0114low(bits 7–4)
R0113high(bits 3–0)

R0115low(bits 7–6)
G0114high(bits 5–0)

R0115high

start
+
52:

G0116low R0117low(bits 7–2)
G0116high(bits 1–0)

G0118low(bits 7–4)
R0117high(bits 3–0)

R0119low(bits 7–6)
G0118high(bits 5–0)

start
+
56:

R0119high G0120low R0121low(bits 7–2)
G0120high(bits 1–0)

G0122low(bits 7–4)
R0121high(bits 3–0)

start
+
60:

R0123low(bits 7–6)
G0122high(bits 5–0)

R0123high G0124low G0124high(bits 1–0)

Continued on next page

7.2. Part I - Video for Linux API 179

Linux Userspace-api Documentation

Table 48 – continued from previous page
start
+
64:

B0200low G0201low(bits 7–2)
B0200high(bits 1–0)

B0202low(bits 7–4)
G0201high(bits 3–0)

G0203low(bits 7–6)
B0202high(bits 5–0)

start
+
68:

G0203high B0204low G0205low(bits 7–2)
B0204high(bits 1–0)

B0206low(bits 7–4)
G0205high(bits 3–0)

start
+
72:

G0207low(bits 7–6)
B0206high(bits 5–0)

G0207high B0208low G0209low(bits 7–2)
B0208high(bits 1–0)

start
+
76:

B0210low(bits 7–4)
G0209high(bits 3–0)

G0211low(bits 7–6)
B0210high(bits 5–0)

G0211high B0212low

start
+
80:

G0213low(bits 7–2)
B0212high(bits 1–0)

B0214low(bits 7–4)
G0213high(bits 3–0)

G0215low(bits 7–6)
B0214high(bits 5–0)

G0215high

start
+
84:

B0216low G0217low(bits 7–2)
B0216high(bits 1–0)

B0218low(bits 7–4)
G0217high(bits 3–0)

G0219low(bits 7–6)
B0218high(bits 5–0)

start
+
88:

G0219high B0220low G0221low(bits 7–2)
B0220high(bits 1–0)

B0222low(bits 7–4)
G0221high(bits 3–0)

start
+
92:

G0223low(bits 7–6)
B0222high(bits 5–0)

G0223high B0224low B0224high(bits 1–0)

start
+
96:

G0300low R0301low(bits 7–2)
G0300high(bits 1–0)

G0302low(bits 7–4)
R0301high(bits 3–0)

R0303low(bits 7–6)
G0302high(bits 5–0)

start
+
100:

R0303high G0304low R0305low(bits 7–2)
G0304high(bits 1–0)

G0306low(bits 7–4)
R0305high(bits 3–0)

start
+
104:

R0307low(bits 7–6)
G0306high(bits 5–0)

R0307high G0308low R0309low(bits 7–2)
G0308high(bits 1–0)

start
+
108:

G0310low(bits 7–4)
R0309high(bits 3–0)

R0311low(bits 7–6)
G0310high(bits 5–0)

R0311high G0312low

start
+
112:

R0313low(bits 7–2)
G0312high(bits 1–0)

G0314low(bits 7–4)
R0313high(bits 3–0)

R0315low(bits 7–6)
G0314high(bits 5–0)

R0315high

start
+
116:

G0316low R0317low(bits 7–2)
G0316high(bits 1–0)

G0318low(bits 7–4)
R0317high(bits 3–0)

R0319low(bits 7–6)
G0318high(bits 5–0)

start
+
120:

R0319high G0320low R0321low(bits 7–2)
G0320high(bits 1–0)

G0322low(bits 7–4)
R0321high(bits 3–0)

start
+
124:

R0323low(bits 7–6)
G0322high(bits 5–0)

R0323high G0324low G0324high(bits 1–0)

180 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_PIX_FMT_SRGGB12 (‘RG12’), V4L2_PIX_FMT_SGRBG12 (‘BA12’),
V4L2_PIX_FMT_SGBRG12 (‘GB12’), V4L2_PIX_FMT_SBGGR12 (‘BG12’),

V4L2_PIX_FMT_SGRBG12 V4L2_PIX_FMT_SGBRG12 V4L2_PIX_FMT_SBGGR12
12-bit Bayer formats expanded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 12 bits per colour.
Each colour component is stored in a 16-bit word, with 4 unused high bits filled
with zeros. Each n-pixel row contains n/2 green samples and n/2 blue or red sam-
ples, with alternating red and blue rows. Bytes are stored in memory in little en-
dian order. They are conventionally described as GRGR⋯BGBG⋯, RGRG⋯GBGB
⋯, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR12 image:
Byte Order. Each cell is one byte, the 4 most significant bits in the high bytes are
0.

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

V4L2_PIX_FMT_SRGGB12P (‘pRCC’), V4L2_PIX_FMT_SGRBG12P (‘pgCC’),
V4L2_PIX_FMT_SGBRG12P (‘pGCC’), V4L2_PIX_FMT_SBGGR12P (‘pBCC’),

12-bit packed Bayer formats

Description

These four pixel formats are packed raw sRGB / Bayer formats with 12 bits per
colour. Every two consecutive samples are packed into three bytes. Each of the
first two bytes contain the 8 high order bits of the pixels, and the third byte contains
the four least significants bits of each pixel, in the same order.

Each n-pixel row contains n/2 green samples and n/2 blue or red samples,
with alternating green-red and green-blue rows. They are conventionally de-
scribed as GRGR⋯BGBG⋯, RGRG⋯GBGB⋯, etc. Below is an example of a small
V4L2_PIX_FMT_SBGGR12P image:

Byte Order. Each cell is one byte.

7.2. Part I - Video for Linux API 181

Linux Userspace-api Documentation

start + 0: B00high G01high G01low(bits 7–4)
B00low(bits 3–0)

B02high G03high G03low(bits 7–4)
B02low(bits 3–0)

start + 6: G10high R11high R11low(bits 7–4)
G10low(bits 3–0)

G12high R13high R13low(bits 3–2)
G12low(bits 3–0)

start + 12: B20high G21high G21low(bits 7–4)
B20low(bits 3–0)

B22high G23high G23low(bits 7–4)
B22low(bits 3–0)

start + 18: G30high R31high R31low(bits 7–4)
G30low(bits 3–0)

G32high R33high R33low(bits 3–2)
G32low(bits 3–0)

V4L2_PIX_FMT_SRGGB14 (‘RG14’), V4L2_PIX_FMT_SGRBG14 (‘GR14’),
V4L2_PIX_FMT_SGBRG14 (‘GB14’), V4L2_PIX_FMT_SBGGR14 (‘BG14’),

14-bit Bayer formats expanded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 14 bits per colour.
Each sample is stored in a 16-bit word, with two unused high bits filled with ze-
ros. Each n-pixel row contains n/2 green samples and n/2 blue or red samples,
with alternating red and blue rows. Bytes are stored in memory in little endian or-
der. They are conventionally described as GRGR⋯BGBG⋯, RGRG⋯GBGB⋯, etc.
Below is an example of a small V4L2_PIX_FMT_SBGGR14 image:

Byte Order. Each cell is one byte, the two most significant bits in the high bytes
are zero.

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

V4L2_PIX_FMT_SRGGB14P (‘pREE’), V4L2_PIX_FMT_SGRBG14P (‘pgEE’),
V4L2_PIX_FMT_SGBRG14P (‘pGEE’), V4L2_PIX_FMT_SBGGR14P (‘pBEE’),

man V4L2_PIX_FMT_SRGGB14P(2)

V4L2_PIX_FMT_SGRBG14P V4L2_PIX_FMT_SGBRG14P
V4L2_PIX_FMT_SBGGR14P 14-bit packed Bayer formats

182 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

These four pixel formats are packed raw sRGB / Bayer formats with 14 bits per
colour. Every four consecutive samples are packed into seven bytes. Each of the
first four bytes contain the eight high order bits of the pixels, and the three follow-
ing bytes contains the six least significants bits of each pixel, in the same order.

Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with
alternating green-red and green-blue rows. They are conventionally described
as GRGR⋯BGBG⋯, RGRG⋯GBGB⋯, etc. Below is an example of one of these
formats:

Byte Order. Each cell is one byte.

start + 0 B00high G01high B02high G03high G01low bits 1–0(bits 7–6)
B00low bits 5–0(bits 5–0)

R02low bits 3–0(bits 7–4)
G01low bits 5–2(bits 3–0)

G03low bits 5–0(bits 7–2)
R02low bits 5–4(bits 1–0)

start + 7 G00high R01high G02high R03high R01low bits 1–0(bits 7–6)
G00low bits 5–0(bits 5–0)

G02low bits 3–0(bits 7–4)
R01low bits 5–2(bits 3–0)

R03low bits 5–0(bits 7–2)
G02low bits 5–4(bits 1–0)

start + 14 B20high G21high B22high G23high G21low bits 1–0(bits 7–6)
B20low bits 5–0(bits 5–0)

R22low bits 3–0(bits 7–4)
G21low bits 5–2(bits 3–0)

G23low bits 5–0(bits 7–2)
R22low bits 5–4(bits 1–0)

start + 21 G30high R31high G32high R33high R31low bits 1–0(bits 7–6)
G30low bits 5–0(bits 5–0)

G32low bits 3–0(bits 7–4)
R31low bits 5–2(bits 3–0)

R33low bits 5–0(bits 7–2)
G32low bits 5–4(bits 1–0)

V4L2_PIX_FMT_SRGGB16 (‘RG16’), V4L2_PIX_FMT_SGRBG16 (‘GR16’),
V4L2_PIX_FMT_SGBRG16 (‘GB16’), V4L2_PIX_FMT_SBGGR16 (‘BYR2’),

16-bit Bayer formats

Description

These four pixel formats are raw sRGB / Bayer formats with 16 bits per sam-
ple. Each sample is stored in a 16-bit word. Each n-pixel row contains n/2
green samples and n/2 blue or red samples, with alternating red and blue rows.
Bytes are stored in memory in little endian order. They are conventionally de-
scribed as GRGR⋯BGBG⋯, RGRG⋯GBGB⋯, etc. Below is an example of a small
V4L2_PIX_FMT_SBGGR16 image:

Byte Order. Each cell is one byte.

start + 0: B00low B00high G01low G01high B02low B02high G03low G03high
start + 8: G10low G10high R11low R11high G12low G12high R13low R13high
start + 16: B20low B20high G21low G21high B22low B22high G23low G23high
start + 24: G30low G30high R31low R31high G32low G32high R33low R33high

7.2. Part I - Video for Linux API 183

Linux Userspace-api Documentation

YUV Formats

YUV is the format native to TV broadcast and composite video signals. It separates
the brightness information (Y) from the color information (U and V or Cb and Cr).
The color information consists of red and blue color difference signals, this way
the green component can be reconstructed by subtracting from the brightness
component. See Colorspaces for conversion examples. YUV was chosen because
early television would only transmit brightness information. To add color in a way
compatible with existing receivers a new signal carrier was added to transmit the
color difference signals. Secondary in the YUV format the U and V components
usually have lower resolution than the Y component. This is an analog video com-
pression technique taking advantage of a property of the human visual system,
being more sensitive to brightness information.

Packed YUV formats

Description

Similar to the packed RGB formats these formats store the Y, Cb and Cr component
of each pixel in one 16 or 32 bit word.

Table 49: Packed YUV Image Formats
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_YUV444 ‘Y444’Cb3 Cb2 Cb1 Cb0 Cr3 Cr2 Cr1 Cr0 a3 a2 a1 a0 Y’
3

Y’
2

Y’
1

Y’
0

V4L2_PIX_FMT_YUV555
‘YUVO’

Cb2 Cb1 Cb0 Cr4 Cr3 Cr2 Cr1 Cr0 a Y’
4

Y’
3

Y’
2

Y’
1

Y’
0

Cb4 Cb3

V4L2_PIX_FMT_YUV565
‘YUVP’

Cb2 Cb1 Cb0 Cr4 Cr3 Cr2 Cr1 Cr0 Y’
4

Y’
3

Y’
2

Y’
1

Y’
0

Cb5 Cb4 Cb3

V4L2_PIX_FMT_YUV32
‘YUV4’

a7 a6 a5 a4 a3 a2 a1 a0 Y’
7

Y’
6

Y’
5

Y’
4

Y’
3

Y’
2

Y’
1

Y’
0

Cb7 Cb6 Cb5 Cb4 Cb3 Cb2 Cb1 Cb0 Cr7 Cr6 Cr5 Cr4 Cr3 Cr2 Cr1 Cr0

V4L2_PIX_FMT_AYUV32
‘AYUV’

a7 a6 a5 a4 a3 a2 a1 a0 Y’
7

Y’
6

Y’
5

Y’
4

Y’
3

Y’
2

Y’
1

Y’
0

Cb7 Cb6 Cb5 Cb4 Cb3 Cb2 Cb1 Cb0 Cr7 Cr6 Cr5 Cr4 Cr3 Cr2 Cr1 Cr0

V4L2_PIX_FMT_XYUV32
‘XYUV’

Y’
7

Y’
6

Y’
5

Y’
4

Y’
3

Y’
2

Y’
1

Y’
0

Cb7 Cb6 Cb5 Cb4 Cb3 Cb2 Cb1 Cb0 Cr7 Cr6 Cr5 Cr4 Cr3 Cr2 Cr1 Cr0

V4L2_PIX_FMT_VUYA32
‘VUYA’

Cr7 Cr6 Cr5 Cr4 Cr3 Cr2 Cr1 Cr0 Cb7 Cb6 Cb5 Cb4 Cb3 Cb2 Cb1 Cb0 Y’
7

Y’
6

Y’
5

Y’
4

Y’
3

Y’
2

Y’
1

Y’
0

a7 a6 a5 a4 a3 a2 a1 a0

V4L2_PIX_FMT_VUYX32
‘VUYX’

Cr7 Cr6 Cr5 Cr4 Cr3 Cr2 Cr1 Cr0 Cb7 Cb6 Cb5 Cb4 Cb3 Cb2 Cb1 Cb0 Y’
7

Y’
6

Y’
5

Y’
4

Y’
3

Y’
2

Y’
1

Y’
0

Note:
1) Bit 7 is the most significant bit;

2) The value of a = alpha bits is undefined when reading from the driver, ignored
when writing to the driver, except when alpha blending has been negotiated
for a Video Overlay or Video Output Overlay for the formats Y444, YUV555
and YUV4. However, for formats AYUV32 and VUYA32, the alpha component
is expected to contain a meaningful value that can be used by drivers and
applications. And, the formats XYUV32 and VUYX32 contain undefined alpha
values that must be ignored by all applications and drivers.

184 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_PIX_FMT_GREY (‘GREY’)

Grey-scale image

Description

This is a grey-scale image. It is really a degenerate Y’CbCr format which simply
contains no Cb or Cr data.

Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33

V4L2_PIX_FMT_Y10 (‘Y10 ‘)

Grey-scale image

Description

This is a grey-scale image with a depth of 10 bits per pixel. Pixels are stored in
16-bit words with unused high bits padded with 0. The least significant byte is
stored at lower memory addresses (little-endian).

Byte Order. Each cell is one byte.

start +
0:

Y’00low Y’
00high

Y’01low Y’
01high

Y’02low Y’
02high

Y’03low Y’
03high

start +
8:

Y’10low Y’
10high

Y’11low Y’
11high

Y’12low Y’
12high

Y’13low Y’
13high

start +
16:

Y’20low Y’
20high

Y’21low Y’
21high

Y’22low Y’
22high

Y’23low Y’
23high

start +
24:

Y’30low Y’
30high

Y’31low Y’
31high

Y’32low Y’
32high

Y’33low Y’
33high

V4L2_PIX_FMT_Y12 (‘Y12 ‘)

Grey-scale image

7.2. Part I - Video for Linux API 185

Linux Userspace-api Documentation

Description

This is a grey-scale image with a depth of 12 bits per pixel. Pixels are stored in
16-bit words with unused high bits padded with 0. The least significant byte is
stored at lower memory addresses (little-endian).

Byte Order. Each cell is one byte.

start +
0:

Y’00low Y’
00high

Y’01low Y’
01high

Y’02low Y’
02high

Y’03low Y’
03high

start +
8:

Y’10low Y’
10high

Y’11low Y’
11high

Y’12low Y’
12high

Y’13low Y’
13high

start +
16:

Y’20low Y’
20high

Y’21low Y’
21high

Y’22low Y’
22high

Y’23low Y’
23high

start +
24:

Y’30low Y’
30high

Y’31low Y’
31high

Y’32low Y’
32high

Y’33low Y’
33high

V4L2_PIX_FMT_Y14 (‘Y14 ‘)

Grey-scale image

Description

This is a grey-scale image with a depth of 14 bits per pixel. Pixels are stored in
16-bit words with unused high bits padded with 0. The least significant byte is
stored at lower memory addresses (little-endian).

Byte Order. Each cell is one byte.

start +
0:

Y’00low Y’
00high

Y’01low Y’
01high

Y’02low Y’
02high

Y’03low Y’
03high

start +
8:

Y’10low Y’
10high

Y’11low Y’
11high

Y’12low Y’
12high

Y’13low Y’
13high

start +
16:

Y’20low Y’
20high

Y’21low Y’
21high

Y’22low Y’
22high

Y’23low Y’
23high

start +
24:

Y’30low Y’
30high

Y’31low Y’
31high

Y’32low Y’
32high

Y’33low Y’
33high

V4L2_PIX_FMT_Y10BPACK (‘Y10B’)

Grey-scale image as a bit-packed array

186 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

This is a packed grey-scale image format with a depth of 10 bits per pixel. Pixels
are stored in a bit-packed array of 10bit bits per pixel, with no padding between
them and with the most significant bits coming first from the left.

Bit-packed representation.
pixels cross the byte boundary and have a ratio of 5 bytes for each 4 pixels.

Y’00[9:2] Y’00[1:0]Y’01[9:4] Y’01[3:0]Y’02[9:6] Y’02[5:0]Y’03[9:8] Y’03[7:0]

V4L2_PIX_FMT_Y10P (‘Y10P’)

Grey-scale image as a MIPI RAW10 packed array

Description

This is a packed grey-scale image format with a depth of 10 bits per pixel. Every
four consecutive pixels are packed into 5 bytes. Each of the first 4 bytes contain
the 8 high order bits of the pixels, and the 5th byte contains the 2 least significants
bits of each pixel, in the same order.

Bit-packed representation.

Y’
00[9:2]

Y’
01[9:2]

Y’
02[9:2]

Y’
03[9:2]

Y’03[1:0](bits 7–6)
Y’02[1:0](bits 5–4)
Y’01[1:0](bits 3–2)
Y’00[1:0](bits 1–0)

V4L2_PIX_FMT_Y16 (‘Y16 ‘)

Grey-scale image

Description

This is a grey-scale image with a depth of 16 bits per pixel. The least significant
byte is stored at lower memory addresses (little-endian).

Note: The actual sampling precision may be lower than 16 bits, for example 10
bits per pixel with values in range 0 to 1023.

Byte Order. Each cell is one byte.

7.2. Part I - Video for Linux API 187

Linux Userspace-api Documentation

start +
0:

Y’00low Y’
00high

Y’01low Y’
01high

Y’02low Y’
02high

Y’03low Y’
03high

start +
8:

Y’10low Y’
10high

Y’11low Y’
11high

Y’12low Y’
12high

Y’13low Y’
13high

start +
16:

Y’20low Y’
20high

Y’21low Y’
21high

Y’22low Y’
22high

Y’23low Y’
23high

start +
24:

Y’30low Y’
30high

Y’31low Y’
31high

Y’32low Y’
32high

Y’33low Y’
33high

V4L2_PIX_FMT_Y16_BE (‘Y16 ‘| (1 << 31))

Grey-scale image

Description

This is a grey-scale image with a depth of 16 bits per pixel. The most significant
byte is stored at lower memory addresses (big-endian).

Note: The actual sampling precision may be lower than 16 bits, for example 10
bits per pixel with values in range 0 to 1023.

Byte Order. Each cell is one byte.

start +
0:

Y’
00high

Y’00low Y’
01high

Y’01low Y’
02high

Y’02low Y’
03high

Y’03low

start +
8:

Y’
10high

Y’10low Y’
11high

Y’11low Y’
12high

Y’12low Y’
13high

Y’13low

start +
16:

Y’
20high

Y’20low Y’
21high

Y’21low Y’
22high

Y’22low Y’
23high

Y’23low

start +
24:

Y’
30high

Y’30low Y’
31high

Y’31low Y’
32high

Y’32low Y’
33high

Y’33low

188 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_PIX_FMT_Y8I (‘Y8I ‘)

Interleaved grey-scale image, e.g. from a stereo-pair

Description

This is a grey-scale image with a depth of 8 bits per pixel, but with pixels from 2
sources interleaved. Each pixel is stored in a 16-bit word. E.g. the R200 RealSense
camera stores pixel from the left sensor in lower and from the right sensor in the
higher 8 bits.

Byte Order. Each cell is one byte.

start +
0:

Y’
00left

Y’
00right

Y’
01left

Y’
01right

Y’
02left

Y’
02right

Y’
03left

Y’
03right

start +
8:

Y’
10left

Y’
10right

Y’
11left

Y’
11right

Y’
12left

Y’
12right

Y’
13left

Y’
13right

start +
16:

Y’
20left

Y’
20right

Y’
21left

Y’
21right

Y’
22left

Y’
22right

Y’
23left

Y’
23right

start +
24:

Y’
30left

Y’
30right

Y’
31left

Y’
31right

Y’
32left

Y’
32right

Y’
33left

Y’
33right

V4L2_PIX_FMT_Y12I (‘Y12I’)

Interleaved grey-scale image, e.g. from a stereo-pair

Description

This is a grey-scale image with a depth of 12 bits per pixel, but with pixels from
2 sources interleaved and bit-packed. Each pixel is stored in a 24-bit word in the
little-endian order. On a little-endian machine these pixels can be deinterlaced
using

__u8 *buf;
left0 = 0xfff & *(__u16 *)buf;
right0 = *(__u16 *)(buf + 1) >> 4;

Bit-packed representation. pixels cross the byte boundary and have a ratio of
3 bytes for each interleaved pixel.

Y’0left[7:0] Y’0right[3:0]Y’0left[11:8] Y’0right[11:4]

7.2. Part I - Video for Linux API 189

Linux Userspace-api Documentation

V4L2_PIX_FMT_UV8 (‘UV8’)

UV plane interleaved

Description

In this format there is no Y plane, Only CbCr plane. ie (UV interleaved)

Byte Order. Each cell is one byte.

start + 0: Cb00 Cr00 Cb01 Cr01
start + 4: Cb10 Cr10 Cb11 Cr11
start + 8: Cb20 Cr20 Cb21 Cr21
start + 12: Cb30 Cr30 Cb31 Cr31

V4L2_PIX_FMT_YUYV (‘YUYV’)

Packed format with ½ horizontal chroma resolution, also known as YUV 4:2:2

Description

In this format each four bytes is two pixels. Each four bytes is two Y’s, a Cb and
a Cr. Each Y goes to one of the pixels, and the Cb and Cr belong to both pixels.
As you can see, the Cr and Cb components have half the horizontal resolution of
the Y component. V4L2_PIX_FMT_YUYV is known in the Windows environment as
YUY2.

Byte Order. Each cell is one byte.

start + 0: Y’00 Cb00 Y’01 Cr00 Y’02 Cb01 Y’03 Cr01
start + 8: Y’10 Cb10 Y’11 Cr10 Y’12 Cb11 Y’13 Cr11
start + 16: Y’20 Cb20 Y’21 Cr20 Y’22 Cb21 Y’23 Cr21
start + 24: Y’30 Cb30 Y’31 Cr30 Y’32 Cb31 Y’33 Cr31

Color Sample Location:

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

190 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_PIX_FMT_UYVY (‘UYVY’)

Variation of V4L2_PIX_FMT_YUYV with different order of samples in memory

Description

In this format each four bytes is two pixels. Each four bytes is two Y’s, a Cb and
a Cr. Each Y goes to one of the pixels, and the Cb and Cr belong to both pixels. As
you can see, the Cr and Cb components have half the horizontal resolution of the
Y component.

Byte Order. Each cell is one byte.

start + 0: Cb00 Y’00 Cr00 Y’01 Cb01 Y’02 Cr01 Y’03
start + 8: Cb10 Y’10 Cr10 Y’11 Cb11 Y’12 Cr11 Y’13
start + 16: Cb20 Y’20 Cr20 Y’21 Cb21 Y’22 Cr21 Y’23
start + 24: Cb30 Y’30 Cr30 Y’31 Cb31 Y’32 Cr31 Y’33

Color Sample Location:

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

V4L2_PIX_FMT_YVYU (‘YVYU’)

Variation of V4L2_PIX_FMT_YUYV with different order of samples in memory

Description

In this format each four bytes is two pixels. Each four bytes is two Y’s, a Cb and
a Cr. Each Y goes to one of the pixels, and the Cb and Cr belong to both pixels. As
you can see, the Cr and Cb components have half the horizontal resolution of the
Y component.

Byte Order. Each cell is one byte.

start + 0: Y’00 Cr00 Y’01 Cb00 Y’02 Cr01 Y’03 Cb01
start + 8: Y’10 Cr10 Y’11 Cb10 Y’12 Cr11 Y’13 Cb11
start + 16: Y’20 Cr20 Y’21 Cb20 Y’22 Cr21 Y’23 Cb21
start + 24: Y’30 Cr30 Y’31 Cb30 Y’32 Cr31 Y’33 Cb31

Color Sample Location:

7.2. Part I - Video for Linux API 191

Linux Userspace-api Documentation

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

V4L2_PIX_FMT_VYUY (‘VYUY’)

Variation of V4L2_PIX_FMT_YUYV with different order of samples in memory

Description

In this format each four bytes is two pixels. Each four bytes is two Y’s, a Cb and
a Cr. Each Y goes to one of the pixels, and the Cb and Cr belong to both pixels. As
you can see, the Cr and Cb components have half the horizontal resolution of the
Y component.

Byte Order. Each cell is one byte.

start + 0: Cr00 Y’00 Cb00 Y’01 Cr01 Y’02 Cb01 Y’03
start + 8: Cr10 Y’10 Cb10 Y’11 Cr11 Y’12 Cb11 Y’13
start + 16: Cr20 Y’20 Cb20 Y’21 Cr21 Y’22 Cb21 Y’23
start + 24: Cr30 Y’30 Cb30 Y’31 Cr31 Y’32 Cb31 Y’33

Color Sample Location:

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

V4L2_PIX_FMT_Y41P (‘Y41P’)

Format with ¼ horizontal chroma resolution, also known as YUV 4:1:1

Description

In this format each 12 bytes is eight pixels. In the twelve bytes are two CbCr pairs
and eight Y’s. The first CbCr pair goes with the first four Y’s, and the second CbCr
pair goes with the other four Y’s. The Cb and Cr components have one fourth the
horizontal resolution of the Y component.

Do not confuse this format with V4L2_PIX_FMT_YUV411P. Y41P is derived from
“YUV 4:1:1 packed”, while YUV411P stands for “YUV 4:1:1 planar”.
Byte Order. Each cell is one byte.

192 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

start +
0:

Cb00 Y’00 Cr00 Y’01 Cb01 Y’02 Cr01 Y’03 Y’04 Y’05 Y’06 Y’07

start +
12:

Cb10 Y’10 Cr10 Y’11 Cb11 Y’12 Cr11 Y’13 Y’14 Y’15 Y’16 Y’17

start +
24:

Cb20 Y’20 Cr20 Y’21 Cb21 Y’22 Cr21 Y’23 Y’24 Y’25 Y’26 Y’27

start +
36:

Cb30 Y’30 Cr30 Y’31 Cb31 Y’32 Cr31 Y’33 Y’34 Y’35 Y’36 Y’37

Color Sample Location:

0 1 2 3 4 5 6 7
0 Y Y C Y Y Y Y C Y Y
1 Y Y C Y Y Y Y C Y Y
2 Y Y C Y Y Y Y C Y Y
3 Y Y C Y Y Y Y C Y Y

V4L2_PIX_FMT_YVU420 (‘YV12’), V4L2_PIX_FMT_YUV420 (‘YU12’)

V4L2_PIX_FMT_YUV420 Planar formats with ½ horizontal and vertical chroma
resolution, also known as YUV 4:2:0

Description

These are planar formats, as opposed to a packed format. The three components
are separated into three sub- images or planes. The Y plane is first. The Y plane has
one byte per pixel. For V4L2_PIX_FMT_YVU420, the Cr plane immediately follows
the Y plane in memory. The Cr plane is half the width and half the height of the Y
plane (and of the image). Each Cr belongs to four pixels, a two-by-two square of
the image. For example, Cr0 belongs to Y’00, Y’01, Y’10, and Y’11. Following
the Cr plane is the Cb plane, just like the Cr plane. V4L2_PIX_FMT_YUV420 is the
same except the Cb plane comes first, then the Cr plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have half as
many pad bytes after their rows. In other words, two Cx rows (including padding)
is exactly as long as one Y row (including padding).

Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cr00 Cr01
start + 18: Cr10 Cr11
start + 20: Cb00 Cb01
start + 22: Cb10 Cb11

7.2. Part I - Video for Linux API 193

Linux Userspace-api Documentation

Color Sample Location:

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

V4L2_PIX_FMT_YUV420M (‘YM12’), V4L2_PIX_FMT_YVU420M (‘YM21’)

V4L2_PIX_FMT_YVU420M Variation of V4L2_PIX_FMT_YUV420 and
V4L2_PIX_FMT_YVU420 with planes non contiguous in memory.

Description

This is a multi-planar format, as opposed to a packed format. The three compo-
nents are separated into three sub-images or planes.

The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YUV420M
the Cb data constitutes the second plane which is half the width and half the height
of the Y plane (and of the image). Each Cb belongs to four pixels, a two-by-two
square of the image. For example, Cb0 belongs to Y’00, Y’01, Y’10, and Y’11.
The Cr data, just like the Cb plane, is in the third plane.

V4L2_PIX_FMT_YVU420M is the same except the Cr data is stored in the second
plane and the Cb data in the third plane.

If the Y plane has pad bytes after each row, then the Cb and Cr planes have half as
many pad bytes after their rows. In other words, two Cx rows (including padding)
is exactly as long as one Y row (including padding).

V4L2_PIX_FMT_YUV420M and V4L2_PIX_FMT_YVU420M are intended to be used only
in drivers and applications that support the multi-planar API, described in Single-
and multi-planar APIs.

Byte Order. Each cell is one byte.

start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cb01
start1 + 2: Cb10 Cb11

start2 + 0: Cr00 Cr01
start2 + 2: Cr10 Cr11

194 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Color Sample Location:

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

V4L2_PIX_FMT_YUV422M (‘YM16’), V4L2_PIX_FMT_YVU422M (‘YM61’)

V4L2_PIX_FMT_YVU422M Planar formats with ½ horizontal resolution, also
known as YUV and YVU 4:2:2

Description

This is a multi-planar format, as opposed to a packed format. The three compo-
nents are separated into three sub-images or planes.

The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YUV422M
the Cb data constitutes the second plane which is half the width of the Y plane (and
of the image). Each Cb belongs to two pixels. For example, Cb0 belongs to Y’00,
Y’01. The Cr data, just like the Cb plane, is in the third plane.
V4L2_PIX_FMT_YVU422M is the same except the Cr data is stored in the second
plane and the Cb data in the third plane.

If the Y plane has pad bytes after each row, then the Cb and Cr planes have half as
many pad bytes after their rows. In other words, two Cx rows (including padding)
is exactly as long as one Y row (including padding).

V4L2_PIX_FMT_YUV422M and V4L2_PIX_FMT_YVU422M are intended to be used only
in drivers and applications that support the multi-planar API, described in Single-
and multi-planar APIs.

Byte Order. Each cell is one byte.

7.2. Part I - Video for Linux API 195

Linux Userspace-api Documentation

start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cb01
start1 + 2: Cb10 Cb11
start1 + 4: Cb20 Cb21
start1 + 6: Cb30 Cb31

start2 + 0: Cr00 Cr01
start2 + 2: Cr10 Cr11
start2 + 4: Cr20 Cr21
start2 + 6: Cr30 Cr31

Color Sample Location:

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

V4L2_PIX_FMT_YUV444M (‘YM24’), V4L2_PIX_FMT_YVU444M (‘YM42’)

V4L2_PIX_FMT_YVU444M Planar formats with full horizontal resolution, also
known as YUV and YVU 4:4:4

Description

This is a multi-planar format, as opposed to a packed format. The three compo-
nents are separated into three sub-images or planes.

The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YUV444M
the Cb data constitutes the second plane which is the same width and height as
the Y plane (and as the image). The Cr data, just like the Cb plane, is in the third
plane.

V4L2_PIX_FMT_YVU444M is the same except the Cr data is stored in the second
plane and the Cb data in the third plane.

If the Y plane has pad bytes after each row, then the Cb and Cr planes have the
same number of pad bytes after their rows.

V4L2_PIX_FMT_YUV444M and V4L2_PIX_FMT_YUV444M are intended to be used only
in drivers and applications that support the multi-planar API, described in Single-
and multi-planar APIs.

Byte Order. Each cell is one byte.

196 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cb01 Cb02 Cb03
start1 + 4: Cb10 Cb11 Cb12 Cb13
start1 + 8: Cb20 Cb21 Cb22 Cb23
start1 + 12: Cb20 Cb21 Cb32 Cb33

start2 + 0: Cr00 Cr01 Cr02 Cr03
start2 + 4: Cr10 Cr11 Cr12 Cr13
start2 + 8: Cr20 Cr21 Cr22 Cr23
start2 + 12: Cr30 Cr31 Cr32 Cr33

Color Sample Location:

0 1 2 3
0 YC YC YC YC
1 YC YC YC YC
2 YC YC YC YC
3 YC YC YC YC

V4L2_PIX_FMT_YVU410 (‘YVU9’), V4L2_PIX_FMT_YUV410 (‘YUV9’)

V4L2_PIX_FMT_YUV410 Planar formats with ¼ horizontal and vertical chroma
resolution, also known as YUV 4:1:0

Description

These are planar formats, as opposed to a packed format. The three components
are separated into three sub-images or planes. The Y plane is first. The Y plane
has one byte per pixel. For V4L2_PIX_FMT_YVU410, the Cr plane immediately fol-
lows the Y plane in memory. The Cr plane is ¼ the width and ¼ the height
of the Y plane (and of the image). Each Cr belongs to 16 pixels, a four-by-four
square of the image. Following the Cr plane is the Cb plane, just like the Cr plane.
V4L2_PIX_FMT_YUV410 is the same, except the Cb plane comes first, then the Cr
plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have ¼ as
many pad bytes after their rows. In other words, four Cx rows (including padding)
are exactly as long as one Y row (including padding).

Byte Order. Each cell is one byte.

7.2. Part I - Video for Linux API 197

Linux Userspace-api Documentation

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cr00
start + 17: Cb00

Color Sample Location:

0 1 2 3
0 Y Y Y Y

1 Y Y Y Y
C

2 Y Y Y Y

3 Y Y Y Y

V4L2_PIX_FMT_YUV422P (‘422P’)

Format with ½ horizontal chroma resolution, also known as YUV 4:2:2. Planar
layout as opposed to V4L2_PIX_FMT_YUYV

Description

This format is not commonly used. This is a planar version of the YUYV format.
The three components are separated into three sub-images or planes. The Y plane
is first. The Y plane has one byte per pixel. The Cb plane immediately follows the Y
plane in memory. The Cb plane is half the width of the Y plane (and of the image).
Each Cb belongs to two pixels. For example, Cb0 belongs to Y’00, Y’01. Following
the Cb plane is the Cr plane, just like the Cb plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have half as
many pad bytes after their rows. In other words, two Cx rows (including padding)
is exactly as long as one Y row (including padding).

Byte Order. Each cell is one byte.

198 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cb01
start + 18: Cb10 Cb11
start + 20: Cb20 Cb21
start + 22: Cb30 Cb31
start + 24: Cr00 Cr01
start + 26: Cr10 Cr11
start + 28: Cr20 Cr21
start + 30: Cr30 Cr31

Color Sample Location:

0 1 2 3
0 Y C Y Y C Y
1 Y C Y Y C Y
2 Y C Y Y C Y
3 Y C Y Y C Y

V4L2_PIX_FMT_YUV411P (‘411P’)

Format with ¼ horizontal chroma resolution, also known as YUV 4:1:1. Planar
layout as opposed to V4L2_PIX_FMT_Y41P

Description

This format is not commonly used. This is a planar format similar to the 4:2:2 pla-
nar format except with half as many chroma. The three components are separated
into three sub-images or planes. The Y plane is first. The Y plane has one byte per
pixel. The Cb plane immediately follows the Y plane in memory. The Cb plane is
¼ the width of the Y plane (and of the image). Each Cb belongs to 4 pixels all on
the same row. For example, Cb0 belongs to Y’00, Y’01, Y’02 and Y’03. Following
the Cb plane is the Cr plane, just like the Cb plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have ¼ as
many pad bytes after their rows. In other words, four C x rows (including padding)
is exactly as long as one Y row (including padding).

Byte Order. Each cell is one byte.

7.2. Part I - Video for Linux API 199

Linux Userspace-api Documentation

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00
start + 17: Cb10
start + 18: Cb20
start + 19: Cb30
start + 20: Cr00
start + 21: Cr10
start + 22: Cr20
start + 23: Cr30

Color Sample Location:

0 1 2 3
0 Y Y C Y Y
1 Y Y C Y Y
2 Y Y C Y Y
3 Y Y C Y Y

V4L2_PIX_FMT_NV12 (‘NV12’), V4L2_PIX_FMT_NV21 (‘NV21’)

V4L2_PIX_FMT_NV21 Formats with ½ horizontal and vertical chroma resolution,
also known as YUV 4:2:0. One luminance and one chrominance plane with alter-
nating chroma samples as opposed to V4L2_PIX_FMT_YVU420

Description

These are two-plane versions of the YUV 4:2:0 format. The three components are
separated into two sub-images or planes. The Y plane is first. The Y plane has
one byte per pixel. For V4L2_PIX_FMT_NV12, a combined CbCr plane immediately
follows the Y plane in memory. The CbCr plane is the same width, in bytes, as the Y
plane (and of the image), but is half as tall in pixels. Each CbCr pair belongs to four
pixels. For example, Cb0/Cr0 belongs to Y’00, Y’01, Y’10, Y’11. V4L2_PIX_FMT_NV21
is the same except the Cb and Cr bytes are swapped, the CrCb plane starts with a
Cr byte.

If the Y plane has pad bytes after each row, then the CbCr plane has as many pad
bytes after its rows.

Byte Order. Each cell is one byte.

200 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cr00 Cb01 Cr01
start + 20: Cb10 Cr10 Cb11 Cr11

Color Sample Location:

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

V4L2_PIX_FMT_NV12M (‘NM12’), V4L2_PIX_FMT_NV21M (‘NM21’),
V4L2_PIX_FMT_NV12MT_16X16

V4L2_PIX_FMT_NV21M V4L2_PIX_FMT_NV12MT_16X16 Variation of
V4L2_PIX_FMT_NV12 and V4L2_PIX_FMT_NV21 with planes non contiguous in
memory.

Description

This is a multi-planar, two-plane version of the YUV 4:2:0 format. The three compo-
nents are separated into two sub-images or planes. V4L2_PIX_FMT_NV12M differs
from V4L2_PIX_FMT_NV12 in that the two planes are non-contiguous in memory,
i.e. the chroma plane do not necessarily immediately follows the luma plane. The
luminance data occupies the first plane. The Y plane has one byte per pixel. In
the second plane there is a chrominance data with alternating chroma samples.
The CbCr plane is the same width, in bytes, as the Y plane (and of the image),
but is half as tall in pixels. Each CbCr pair belongs to four pixels. For example,
Cb0/Cr0 belongs to Y’00, Y’01, Y’10, Y’11. V4L2_PIX_FMT_NV12MT_16X16 is the
tiled version of V4L2_PIX_FMT_NV12M with 16x16 macroblock tiles. Here pixels
are arranged in 16x16 2D tiles and tiles are arranged in linear order in memory.
V4L2_PIX_FMT_NV21M is the same as V4L2_PIX_FMT_NV12M except the Cb and Cr
bytes are swapped, the CrCb plane starts with a Cr byte.

V4L2_PIX_FMT_NV12M is intended to be used only in drivers and applications that
support the multi-planar API, described in Single- and multi-planar APIs.

If the Y plane has pad bytes after each row, then the CbCr plane has as many pad
bytes after its rows.

Byte Order. Each cell is one byte.

7.2. Part I - Video for Linux API 201

Linux Userspace-api Documentation

start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cr00 Cb01 Cr01
start1 + 4: Cb10 Cr10 Cb11 Cr11

Color Sample Location:

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

V4L2_PIX_FMT_NV12MT (‘TM12’)

Formats with ½ horizontal and vertical chroma resolution. This format has two
planes - one for luminance and one for chrominance. Chroma samples are inter-
leaved. The difference to V4L2_PIX_FMT_NV12 is the memory layout. Pixels are
grouped in macroblocks of 64x32 size. The order of macroblocks in memory is
also not standard.

Description

This is the two-plane versions of the YUV 4:2:0 format where data is grouped into
64x32 macroblocks. The three components are separated into two sub-images
or planes. The Y plane has one byte per pixel and pixels are grouped into 64x32
macroblocks. The CbCr plane has the same width, in bytes, as the Y plane (and the
image), but is half as tall in pixels. The chroma plane is also grouped into 64x32
macroblocks.

Width of the buffer has to be aligned to the multiple of 128, and height alignment
is 32. Every four adjacent buffers - two horizontally and two vertically are grouped
together and are located in memory in Z or flipped Z order.

Layout of macroblocks in memory is presented in the following figure.

The requirement that width is multiple of 128 is implemented because, the Z shape
cannot be cut in half horizontally. In case the vertical resolution of macroblocks is
odd then the last row of macroblocks is arranged in a linear order.

In case of chroma the layout is identical. Cb and Cr samples are interleaved.
Height of the buffer is aligned to 32.

202 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Fig. 4: V4L2_PIX_FMT_NV12MT macroblock Z shape memory layout

Fig. 5: Example V4L2_PIX_FMT_NV12MT memory layout of macroblocks

7.2. Part I - Video for Linux API 203

Linux Userspace-api Documentation

Memory layout of macroblocks of V4L2_PIX_FMT_NV12MT format in most extreme
case.

V4L2_PIX_FMT_NV16 (‘NV16’), V4L2_PIX_FMT_NV61 (‘NV61’)

V4L2_PIX_FMT_NV61 Formats with ½ horizontal chroma resolution, also known
as YUV 4:2:2. One luminance and one chrominance plane with alternating chroma
samples as opposed to V4L2_PIX_FMT_YVU420

Description

These are two-plane versions of the YUV 4:2:2 format. The three components are
separated into two sub-images or planes. The Y plane is first. The Y plane has
one byte per pixel. For V4L2_PIX_FMT_NV16, a combined CbCr plane immediately
follows the Y plane in memory. The CbCr plane is the same width and height, in
bytes, as the Y plane (and of the image). Each CbCr pair belongs to two pixels. For
example, Cb0/Cr0 belongs to Y’00, Y’01. V4L2_PIX_FMT_NV61 is the same except
the Cb and Cr bytes are swapped, the CrCb plane starts with a Cr byte.

If the Y plane has pad bytes after each row, then the CbCr plane has as many pad
bytes after its rows.

Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cr00 Cb01 Cr01
start + 20: Cb10 Cr10 Cb11 Cr11
start + 24: Cb20 Cr20 Cb21 Cr21
start + 28: Cb30 Cr30 Cb31 Cr31

Color Sample Location:

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

C C

2 Y Y Y Y
C C

3 Y Y Y Y
C C

204 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_PIX_FMT_NV16M (‘NM16’), V4L2_PIX_FMT_NV61M (‘NM61’)

V4L2_PIX_FMT_NV61M Variation of V4L2_PIX_FMT_NV16 and V4L2_PIX_FMT_NV61
with planes non contiguous in memory.

Description

This is a multi-planar, two-plane version of the YUV 4:2:2 format. The three compo-
nents are separated into two sub-images or planes. V4L2_PIX_FMT_NV16M differs
from V4L2_PIX_FMT_NV16 in that the two planes are non-contiguous in memory,
i.e. the chroma plane does not necessarily immediately follow the luma plane.
The luminance data occupies the first plane. The Y plane has one byte per pixel.
In the second plane there is chrominance data with alternating chroma samples.
The CbCr plane is the same width and height, in bytes, as the Y plane. Each
CbCr pair belongs to two pixels. For example, Cb0/Cr0 belongs to Y’00, Y’01.
V4L2_PIX_FMT_NV61M is the same as V4L2_PIX_FMT_NV16M except the Cb and Cr
bytes are swapped, the CrCb plane starts with a Cr byte.

V4L2_PIX_FMT_NV16M and V4L2_PIX_FMT_NV61M are intended to be used only in
drivers and applications that support the multi-planar API, described in Single-
and multi-planar APIs.

Byte Order. Each cell is one byte.

start0 + 0: Y’00 Y’01 Y’02 Y’03
start0 + 4: Y’10 Y’11 Y’12 Y’13
start0 + 8: Y’20 Y’21 Y’22 Y’23
start0 + 12: Y’30 Y’31 Y’32 Y’33

start1 + 0: Cb00 Cr00 Cb02 Cr02
start1 + 4: Cb10 Cr10 Cb12 Cr12
start1 + 8: Cb20 Cr20 Cb22 Cr22
start1 + 12: Cb30 Cr30 Cb32 Cr32

Color Sample Location:

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

C C

2 Y Y Y Y
C C

3 Y Y Y Y
C C

7.2. Part I - Video for Linux API 205

Linux Userspace-api Documentation

V4L2_PIX_FMT_NV24 (‘NV24’), V4L2_PIX_FMT_NV42 (‘NV42’)

V4L2_PIX_FMT_NV42 Formats with full horizontal and vertical chroma resolu-
tions, also known as YUV 4:4:4. One luminance and one chrominance plane with
alternating chroma samples as opposed to V4L2_PIX_FMT_YVU420

Description

These are two-plane versions of the YUV 4:4:4 format. The three components are
separated into two sub-images or planes. The Y plane is first, with each Y sample
stored in one byte per pixel. For V4L2_PIX_FMT_NV24, a combined CbCr plane
immediately follows the Y plane in memory. The CbCr plane has the same width
and height, in pixels, as the Y plane (and the image). Each line contains one CbCr
pair per pixel, with each Cb and Cr sample stored in one byte. V4L2_PIX_FMT_NV42
is the same except that the Cb and Cr samples are swapped, the CrCb plane starts
with a Cr sample.

If the Y plane has pad bytes after each row, then the CbCr plane has twice as many
pad bytes after its rows.

Byte Order. Each cell is one byte.

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Y’20 Y’21 Y’22 Y’23
start + 12: Y’30 Y’31 Y’32 Y’33
start + 16: Cb00 Cr00 Cb01 Cr01 Cb02 Cr02 Cb03 Cr03
start + 24: Cb10 Cr10 Cb11 Cr11 Cb12 Cr12 Cb13 Cr13
start + 32: Cb20 Cr20 Cb21 Cr21 Cb22 Cr22 Cb23 Cr23
start + 40: Cb30 Cr30 Cb31 Cr31 Cb32 Cr32 Cb33 Cr33

V4L2_PIX_FMT_M420 (‘M420’)

Format with ½ horizontal and vertical chroma resolution, also known as YUV 4:2:0.
Hybrid plane line-interleaved layout.

Description

M420 is a YUV format with ½ horizontal and vertical chroma subsampling (YUV
4:2:0). Pixels are organized as interleaved luma and chroma planes. Two lines of
luma data are followed by one line of chroma data.

The luma plane has one byte per pixel. The chroma plane contains interleaved
CbCr pixels subsampled by ½ in the horizontal and vertical directions. Each CbCr
pair belongs to four pixels. For example, Cb0/Cr0 belongs to Y’00, Y’01, Y’10, Y’
11.

All line lengths are identical: if the Y lines include pad bytes so do the CbCr lines.

Byte Order. Each cell is one byte.

206 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

start + 0: Y’00 Y’01 Y’02 Y’03
start + 4: Y’10 Y’11 Y’12 Y’13
start + 8: Cb00 Cr00 Cb01 Cr01
start + 16: Y’20 Y’21 Y’22 Y’23
start + 20: Y’30 Y’31 Y’32 Y’33
start + 24: Cb10 Cr10 Cb11 Cr11

Color Sample Location:

0 1 2 3
0 Y Y Y Y

C C
1 Y Y Y Y

2 Y Y Y Y
C C

3 Y Y Y Y

HSV Formats

These formats store the color information of the image in a geometrical represen-
tation. The colors are mapped into a cylinder, where the angle is the HUE, the
height is the VALUE and the distance to the center is the SATURATION. This is a
very useful format for image segmentation algorithms.

Packed HSV formats

Description

The hue (h) is measured in degrees, the equivalence between degrees and LSBs
depends on the hsv-encoding used, see Colorspaces. The saturation (s) and the
value (v) are measured in percentage of the cylinder: 0 being the smallest value
and 255 the maximum.

The values are packed in 24 or 32 bit formats.

Table 50: Packed HSV Image Formats
Identifier Code Byte 0 in memory Byte 1 Byte 2 Byte 3

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

V4L2_PIX_FMT_HSV32 ‘HSV4’ h7 h6 h5 h4 h3 h2 h1 h0 s7 s6 s5 s4 s3 s2 s1 s0 v7 v6 v5 v4 v3 v2 v1 v0
V4L2_PIX_FMT_HSV24 ‘HSV3’ h7 h6 h5 h4 h3 h2 h1 h0 s7 s6 s5 s4 s3 s2 s1 s0 v7 v6 v5 v4 v3 v2 v1 v0

Bit 7 is the most significant bit.

7.2. Part I - Video for Linux API 207

Linux Userspace-api Documentation

Depth Formats

Depth data provides distance to points, mapped onto the image plane

V4L2_PIX_FMT_INZI (‘INZI’)

Infrared 10-bit linked with Depth 16-bit images

Description

Proprietary multi-planar format used by Intel SR300 Depth cameras, comprise of
Infrared image followed by Depth data. The pixel definition is 32-bpp, with the
Depth and Infrared Data split into separate continuous planes of identical dimen-
sions.

The first plane - Infrared data - is stored according to V4L2_PIX_FMT_Y10
greyscale format. Each pixel is 16-bit cell, with actual data stored in the 10 LSBs
with values in range 0 to 1023. The six remaining MSBs are padded with zeros.

The second plane provides 16-bit per-pixel Depth data arranged in V4L2-PIX-FMT-
Z16 format.

Frame Structure. Each cell is a 16-bit word with more significant data stored at
higher memory address (byte order is little-endian).

Ir0,0 Ir0,1 Ir0,2 ⋯ ⋯ ⋯
⋯
Infrared Data
⋯
⋯ ⋯ ⋯ Irn-1,n-3 Irn-1,n-2 Irn-1,n-1
Depth0,0 Depth0,1 Depth0,2 ⋯ ⋯ ⋯
⋯
Depth Data
⋯
⋯ ⋯ ⋯ Depthn-1,n-3 Depthn-1,n-2 Depthn-1,n-1

V4L2_PIX_FMT_Z16 (‘Z16 ‘)

16-bit depth data with distance values at each pixel

Description

This is a 16-bit format, representing depth data. Each pixel is a distance to the
respective point in the image coordinates. Distance unit can vary and has to be
negotiated with the device separately. Each pixel is stored in a 16-bit word in the
little endian byte order.

Byte Order. Each cell is one byte.

208 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

start + 0: Z00low Z00high Z01low Z01high Z02low Z02high Z03low Z03high
start + 8: Z10low Z10high Z11low Z11high Z12low Z12high Z13low Z13high
start + 16: Z20low Z20high Z21low Z21high Z22low Z22high Z23low Z23high
start + 24: Z30low Z30high Z31low Z31high Z32low Z32high Z33low Z33high

V4L2_PIX_FMT_CNF4 (‘CNF4’)

Depth sensor confidence information as a 4 bits per pixel packed array

Description

Proprietary format used by Intel RealSense Depth cameras containing depth con-
fidence information in range 0-15 with 0 indicating that the sensor was unable to
resolve any signal and 15 indicating maximum level of confidence for the specific
sensor (actual error margins might change from sensor to sensor).

Every two consecutive pixels are packed into a single byte. Bits 0-3 of byte n refer
to confidence value of depth pixel 2*n, bits 4-7 to confidence value of depth pixel
2*n+1.

Bit-packed representation.

Y’01[3:0](bits 7–4) Y’00[3:0](bits 3–0) Y’03[3:0](bits 7–4) Y’02[3:0](bits 3–0)

7.2. Part I - Video for Linux API 209

Linux Userspace-api Documentation

Compressed Formats

Table 51: Compressed Image Formats
Identifier Code Details

V4L2_PIX_FMT_JPEG ‘JPEG’ TBD. See also VIDIOC_G_JPEGCOMP, VID-
IOC_S_JPEGCOMP.

V4L2_PIX_FMT_MPEG ‘MPEG’ MPEG multiplexed stream. The actual
format is determined by extended control
V4L2_CID_MPEG_STREAM_TYPE, see Codec
Control IDs.

V4L2_PIX_FMT_H264 ‘H264’ H264 Access Unit. The decoder ex-
pects one Access Unit per buffer. The
encoder generates one Access Unit per
buffer. If ioctl VIDIOC_ENUM_FMT reports
V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM
then the decoder has no requirements since
it can parse all the information from the raw
bytestream.

V4L2_PIX_FMT_H264_NO_SC ‘AVC1’ H264 video elementary stream without start
codes.

V4L2_PIX_FMT_H264_MVC ‘M264’ H264 MVC video elementary stream.

V4L2_PIX_FMT_H264_SLICE ‘S264’ H264 parsed slice data, including slice
headers, either with or without the start
code, as extracted from the H264 bit-
stream. This format is adapted for state-
less video decoders that implement an
H264 pipeline (using the Video Memory-
To-Memory Interface and Request API).
This pixelformat has two modifiers that
must be set at least once through the
V4L2_CID_MPEG_VIDEO_H264_DECODE_MODE
and V4L2_CID_MPEG_VIDEO_H264_START_CODE
controls. In addition, metadata as-
sociated with the frame to decode
are required to be passed through
the V4L2_CID_MPEG_VIDEO_H264_SPS,
V4L2_CID_MPEG_VIDEO_H264_PPS,
V4L2_CID_MPEG_VIDEO_H264_SCALING_MATRIX,
V4L2_CID_MPEG_VIDEO_H264_SLICE_PARAMS
and V4L2_CID_MPEG_VIDEO_H264_DECODE_PARAMS
controls. See the associated Codec Control
IDs. Exactly one output and one capture
buffer must be provided for use with this
pixel format. The output buffer must contain
the appropriate number of macroblocks to
decode a full corresponding frame to the
matching capture buffer.
The syntax for this format is documented
in ITU-T Rec. H.264 Specification (04/2017
Edition), section 7.3.2.8“Slice layer without
partitioning RBSP syntax”and the following
sections.

Note: This format is not yet part of the pub-
lic kernel API and it is expected to change.

V4L2_PIX_FMT_H263 ‘H263’ H263 video elementary stream.

V4L2_PIX_FMT_MPEG1 ‘MPG1’ MPEG1 Picture. Each buffer starts with a
Picture header, followed by other headers
as needed and ending with the Picture
data. If ioctl VIDIOC_ENUM_FMT reports
V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM
then the decoder has no requirements since
it can parse all the information from the raw
bytestream.

V4L2_PIX_FMT_MPEG2 ‘MPG2’ MPEG2 Picture. Each buffer starts with a
Picture header, followed by other headers
as needed and ending with the Picture
data. If ioctl VIDIOC_ENUM_FMT reports
V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM
then the decoder has no requirements since
it can parse all the information from the raw
bytestream.

V4L2_PIX_FMT_MPEG2_SLICE ‘MG2S’ MPEG-2 parsed slice data, as extracted
from the MPEG-2 bitstream. This format is
adapted for stateless video decoders that im-
plement a MPEG-2 pipeline (using the Video
Memory-To-Memory Interface and Request
API). Metadata associated with the frame to
decode is required to be passed through the
V4L2_CID_MPEG_VIDEO_MPEG2_SLICE_PARAMS
control and quantization matrices can
optionally be specified through the
V4L2_CID_MPEG_VIDEO_MPEG2_QUANTIZATION
control. See the associated Codec Control
IDs. Exactly one output and one capture
buffer must be provided for use with this
pixel format. The output buffer must contain
the appropriate number of macroblocks to
decode a full corresponding frame to the
matching capture buffer.

V4L2_PIX_FMT_MPEG4 ‘MPG4’ MPEG4 video elementary stream.

V4L2_PIX_FMT_XVID ‘XVID’ Xvid video elementary stream.

V4L2_PIX_FMT_VC1_ANNEX_G ‘VC1G’ VC1, SMPTE 421M Annex G compliant
stream.

V4L2_PIX_FMT_VC1_ANNEX_L ‘VC1L’ VC1, SMPTE 421M Annex L compliant
stream.

V4L2_PIX_FMT_VP8 ‘VP80’ VP8 compressed video frame. The encoder
generates one compressed frame per buffer,
and the decoder requires one compressed
frame per buffer.

V4L2_PIX_FMT_VP8_FRAME ‘VP8F’ VP8 parsed frame, as extracted from the
container. This format is adapted for
stateless video decoders that implement
a VP8 pipeline (using the Video Memory-
To-Memory Interface and Request API).
Metadata associated with the frame to de-
code is required to be passed through the
V4L2_CID_MPEG_VIDEO_VP8_FRAME_HEADER
control. See the associated Codec Control
IDs. Exactly one output and one capture
buffer must be provided for use with this
pixel format. The output buffer must contain
the appropriate number of macroblocks to
decode a full corresponding frame to the
matching capture buffer.

Note: This format is not yet part of the pub-
lic kernel API and it is expected to change.

V4L2_PIX_FMT_VP9 ‘VP90’ VP9 compressed video frame. The encoder
generates one compressed frame per buffer,
and the decoder requires one compressed
frame per buffer.

V4L2_PIX_FMT_HEVC ‘HEVC’ HEVC/H.265 Access Unit. The decoder
expects one Access Unit per buffer. The
encoder generates one Access Unit per
buffer. If ioctl VIDIOC_ENUM_FMT reports
V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM
then the decoder has no requirements since
it can parse all the information from the raw
bytestream.

V4L2_PIX_FMT_HEVC_SLICE ‘S265’ HEVC parsed slice data, as extracted from
the HEVC bitstream. This format is adapted
for stateless video decoders that imple-
ment a HEVC pipeline (using the Video
Memory-To-Memory Interface and Request
API). This pixelformat has two modifiers
that must be set at least once through the
V4L2_CID_MPEG_VIDEO_HEVC_DECODE_MODE
and V4L2_CID_MPEG_VIDEO_HEVC_START_CODE
controls. Metadata associated with
the frame to decode is required to be
passed through the following controls
: * V4L2_CID_MPEG_VIDEO_HEVC_SPS
* V4L2_CID_MPEG_VIDEO_HEVC_PPS *
V4L2_CID_MPEG_VIDEO_HEVC_SLICE_PARAMS
See the associated Codec Control IDs.
Buffers associated with this pixel format
must contain the appropriate number of
macroblocks to decode a full corresponding
frame.

Note: This format is not yet part of the pub-
lic kernel API and it is expected to change.

V4L2_PIX_FMT_FWHT ‘FWHT’ Video elementary stream using a codec
based on the Fast Walsh Hadamard Trans-
form. This codec is implemented by the
vicodec (‘Virtual Codec’) driver. See
the codec-fwht.h header for more de-
tails. ioctl VIDIOC_ENUM_FMT reports
V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM
since the decoder can parse all the informa-
tion from the raw bytestream.

V4L2_PIX_FMT_FWHT_STATELESS ‘SFWH’ Same format as V4L2_PIX_FMT_FWHT but
requires stateless codec implementation.
See the associated Codec Control IDs.

210 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

SDR Formats

These formats are used for SDR interface only.

V4L2_SDR_FMT_CU8 (‘CU08’)

Complex unsigned 8-bit IQ sample

Description

This format contains sequence of complex number samples. Each complex num-
ber consist two parts, called In-phase and Quadrature (IQ). Both I and Q are rep-
resented as a 8 bit unsigned number. I value comes first and Q value after that.

Byte Order. Each cell is one byte.

start + 0: I’0
start + 1: Q’0

V4L2_SDR_FMT_CU16LE (‘CU16’)

Complex unsigned 16-bit little endian IQ sample

Description

This format contains sequence of complex number samples. Each complex num-
ber consist two parts, called In-phase and Quadrature (IQ). Both I and Q are rep-
resented as a 16 bit unsigned little endian number. I value comes first and Q value
after that.

Byte Order. Each cell is one byte.

start + 0: I’0[7:0] I’0[15:8]
start + 2: Q’0[7:0] Q’0[15:8]

V4L2_SDR_FMT_CS8 (‘CS08’)

Complex signed 8-bit IQ sample

7.2. Part I - Video for Linux API 211

Linux Userspace-api Documentation

Description

This format contains sequence of complex number samples. Each complex num-
ber consist two parts, called In-phase and Quadrature (IQ). Both I and Q are rep-
resented as a 8 bit signed number. I value comes first and Q value after that.

Byte Order. Each cell is one byte.

start + 0: I’0
start + 1: Q’0

V4L2_SDR_FMT_CS14LE (‘CS14’)

Complex signed 14-bit little endian IQ sample

Description

This format contains sequence of complex number samples. Each complex num-
ber consist two parts, called In-phase and Quadrature (IQ). Both I and Q are rep-
resented as a 14 bit signed little endian number. I value comes first and Q value
after that. 14 bit value is stored in 16 bit space with unused high bits padded with
0.

Byte Order. Each cell is one byte.

start + 0: I’0[7:0] I’0[13:8]
start + 2: Q’0[7:0] Q’0[13:8]

V4L2_SDR_FMT_RU12LE (‘RU12’)

Real unsigned 12-bit little endian sample

Description

This format contains sequence of real number samples. Each sample is repre-
sented as a 12 bit unsigned little endian number. Sample is stored in 16 bit space
with unused high bits padded with 0.

Byte Order. Each cell is one byte.

start + 0: I’0[7:0] I’0[11:8]

212 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_SDR_FMT_PCU16BE (‘PC16’)

Planar complex unsigned 16-bit big endian IQ sample

Description

This format contains a sequence of complex number samples. Each complex num-
ber consist of two parts called In-phase and Quadrature (IQ). Both I and Q are
represented as a 16 bit unsigned big endian number stored in 32 bit space. The
remaining unused bits within the 32 bit space will be padded with 0. I value starts
first and Q value starts at an offset equalling half of the buffer size (i.e.) offset =
buffersize/2. Out of the 16 bits, bit 15:2 (14 bit) is data and bit 1:0 (2 bit) can be
any value.

Byte Order. Each cell is one byte.

Offset: Byte B0 Byte B1 Byte B2 Byte B3
start + 0: I’0[13:6] I’0[5:0]; B1[1:0]=pad pad pad
start + 4: I’1[13:6] I’1[5:0]; B1[1:0]=pad pad pad
⋯
start + offset: Q’0[13:6] Q’0[5:0]; B1[1:0]=pad pad pad
start + offset + 4: Q’1[13:6] Q’1[5:0]; B1[1:0]=pad pad pad

V4L2_SDR_FMT_PCU18BE (‘PC18’)

Planar complex unsigned 18-bit big endian IQ sample

Description

This format contains a sequence of complex number samples. Each complex num-
ber consist of two parts called In-phase and Quadrature (IQ). Both I and Q are
represented as a 18 bit unsigned big endian number stored in 32 bit space. The
remaining unused bits within the 32 bit space will be padded with 0. I value starts
first and Q value starts at an offset equalling half of the buffer size (i.e.) offset =
buffersize/2. Out of the 18 bits, bit 17:2 (16 bit) is data and bit 1:0 (2 bit) can be
any value.

Byte Order. Each cell is one byte.

Offset: Byte B0 Byte B1 Byte B2 Byte B3
start + 0: I’0[17:10] I’0[9:2] I’0[1:0]; B2[5:0]=pad pad
start + 4: I’1[17:10] I’1[9:2] I’1[1:0]; B2[5:0]=pad pad
⋯
start + offset: Q’0[17:10] Q’0[9:2] Q’0[1:0]; B2[5:0]=pad pad
start + offset + 4: Q’1[17:10] Q’1[9:2] Q’1[1:0]; B2[5:0]=pad pad

7.2. Part I - Video for Linux API 213

Linux Userspace-api Documentation

V4L2_SDR_FMT_PCU20BE (‘PC20’)

Planar complex unsigned 20-bit big endian IQ sample

Description

This format contains a sequence of complex number samples. Each complex num-
ber consist of two parts called In-phase and Quadrature (IQ). Both I and Q are
represented as a 20 bit unsigned big endian number stored in 32 bit space. The
remaining unused bits within the 32 bit space will be padded with 0. I value starts
first and Q value starts at an offset equalling half of the buffer size (i.e.) offset =
buffersize/2. Out of the 20 bits, bit 19:2 (18 bit) is data and bit 1:0 (2 bit) can be
any value.

Byte Order. Each cell is one byte.

Offset: Byte B0 Byte B1 Byte B2 Byte B3
start + 0: I’0[19:12] I’0[11:4] I’0[3:0]; B2[3:0]=pad pad
start + 4: I’1[19:12] I’1[11:4] I’1[3:0]; B2[3:0]=pad pad
⋯
start + offset: Q’0[19:12] Q’0[11:4] Q’0[3:0]; B2[3:0]=pad pad
start + offset + 4: Q’1[19:12] Q’1[11:4] Q’1[3:0]; B2[3:0]=pad pad

Touch Formats

These formats are used for Touch Devices interface only.

V4L2_TCH_FMT_DELTA_TD16 (‘TD16’)

man V4L2_TCH_FMT_DELTA_TD16(2)

16-bit signed little endian Touch Delta

Description

This format represents delta data from a touch controller.

Delta values may range from -32768 to 32767. Typically the values will vary
through a small range depending on whether the sensor is touched or not. The
full value may be seen if one of the touchscreen nodes has a fault or the line is not
connected.

Byte Order. Each cell is one byte.

214 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

start +
0:

D’
00low

D’
00high

D’
01low

D’
01high

D’
02low

D’
02high

D’
03low

D’
03high

start +
8:

D’
10low

D’
10high

D’
11low

D’
11high

D’
12low

D’
12high

D’
13low

D’
13high

start +
16:

D’
20low

D’
20high

D’
21low

D’
21high

D’
22low

D’
22high

D’
23low

D’
23high

start +
24:

D’
30low

D’
30high

D’
31low

D’
31high

D’
32low

D’
32high

D’
33low

D’
33high

V4L2_TCH_FMT_DELTA_TD08 (‘TD08’)

man V4L2_TCH_FMT_DELTA_TD08(2)

8-bit signed Touch Delta

Description

This format represents delta data from a touch controller.

Delta values may range from -128 to 127. Typically the values will vary through a
small range depending on whether the sensor is touched or not. The full value may
be seen if one of the touchscreen nodes has a fault or the line is not connected.

Byte Order. Each cell is one byte.

start + 0: D’00 D’01 D’02 D’03
start + 4: D’10 D’11 D’12 D’13
start + 8: D’20 D’21 D’22 D’23
start + 12: D’30 D’31 D’32 D’33

V4L2_TCH_FMT_TU16 (‘TU16’)

man V4L2_TCH_FMT_TU16(2)

16-bit unsigned little endian raw touch data

Description

This format represents unsigned 16-bit data from a touch controller.

This may be used for output for raw and reference data. Values may range from 0
to 65535.

Byte Order. Each cell is one byte.

7.2. Part I - Video for Linux API 215

Linux Userspace-api Documentation

start +
0:

R’
00low

R’
00high

R’
01low

R’
01high

R’
02low

R’
02high

R’
03low

R’
03high

start +
8:

R’
10low

R’
10high

R’
11low

R’
11high

R’
12low

R’
12high

R’
13low

R’
13high

start +
16:

R’
20low

R’
20high

R’
21low

R’
21high

R’
22low

R’
22high

R’
23low

R’
23high

start +
24:

R’
30low

R’
30high

R’
31low

R’
31high

R’
32low

R’
32high

R’
33low

R’
33high

V4L2_TCH_FMT_TU08 (‘TU08’)

man V4L2_TCH_FMT_TU08(2)

8-bit unsigned raw touch data

Description

This format represents unsigned 8-bit data from a touch controller.

This may be used for output for raw and reference data. Values may range from 0
to 255.

Byte Order. Each cell is one byte.

start + 0: R’00 R’01 R’02 R’03
start + 4: R’10 R’11 R’12 R’13
start + 8: R’20 R’21 R’22 R’23
start + 12: R’30 R’31 R’32 R’33

Metadata Formats

These formats are used for the Metadata Interface interface only.

V4L2_META_FMT_D4XX (‘D4XX’)

Intel D4xx UVC Cameras Metadata

Description

Intel D4xx (D435 and other) cameras include per-frame metadata in their UVC
payload headers, following the Microsoft(R) UVC extension proposal [1]. That
means, that the private D4XX metadata, following the standard UVC header, is
organised in blocks. D4XX cameras implement several standard block types, pro-
posed by Microsoft, and several proprietary ones. Supported standard metadata
types are MetadataId_CaptureStats (ID 3), MetadataId_CameraExtrinsics (ID 4),
and MetadataId_CameraIntrinsics (ID 5). For their description see [1]. This docu-
ment describes proprietary metadata types, used by D4xx cameras.

216 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_META_FMT_D4XX buffers follow the metadata buffer layout of
V4L2_META_FMT_UVC with the only difference, that it also includes propri-
etary payload header data. D4xx cameras use bulk transfers and only send one
payload per frame, therefore their headers cannot be larger than 255 bytes.

Below are proprietary Microsoft style metadata types, used by D4xx cameras,
where all fields are in little endian order:

Table 52: D4xx metadata
Field Description
Depth Control
__u32 ID 0x80000000
__u32 Size Size in bytes (currently 56)
__u32 Version Version of this structure. The documentation herein corresponds

to version xxx. The version number will be incremented when
new fields are added.

__u32 Flags A bitmask of flags: see [2] below
__u32 Gain Gain value in internal units, same as the V4L2_CID_GAIN con-

trol, used to capture the frame
__u32 Exposure Exposure time (in microseconds) used to capture the frame
__u32 Laser power Power of the laser LED 0-360, used for depth measurement
__u32 AE mode 0: manual; 1: automatic exposure
__u32 Exposure priority Exposure priority value: 0 - constant frame rate
__u32 AE ROI left Left border of the AE Region of Interest (all ROI values are in

pixels and lie between 0 and maximum width or height respec-
tively)

__u32 AE ROI right Right border of the AE Region of Interest
__u32 AE ROI top Top border of the AE Region of Interest
__u32 AE ROI bottom Bottom border of the AE Region of Interest
__u32 Preset Preset selector value, default: 0, unless changed by the user
__u32 Laser mode 0: off, 1: on
Capture Timing
__u32 ID 0x80000001
__u32 Size Size in bytes (currently 40)
__u32 Version Version of this structure. The documentation herein corresponds

to version xxx. The version number will be incremented when
new fields are added.

__u32 Flags A bitmask of flags: see [3] below
__u32 Frame counter Monotonically increasing counter
__u32 Optical time Time in microseconds from the beginning of a frame till its mid-

dle
__u32 Readout time Time, used to read out a frame in microseconds
__u32 Exposure time Frame exposure time in microseconds
__u32 Frame interval In microseconds = 1000000 / framerate
__u32 Pipe latency Time in microseconds from start of frame to data in USB buffer
Configuration
__u32 ID 0x80000002
__u32 Size Size in bytes (currently 40)

Continued on next page

7.2. Part I - Video for Linux API 217

Linux Userspace-api Documentation

Table 52 – continued from previous page
Field Description
__u32 Version Version of this structure. The documentation herein corresponds

to version xxx. The version number will be incremented when
new fields are added.

__u32 Flags A bitmask of flags: see [4] below
__u8 Hardware type Camera hardware version [5]
__u8 SKU ID Camera hardware configuration [6]
__u32 Cookie Internal synchronisation
__u16 Format Image format code [7]
__u16 Width Width in pixels
__u16 Height Height in pixels
__u16 Framerate Requested frame rate per second
__u16 Trigger Byte 0: bit 0: depth and RGB are synchronised, bit 1: external

trigger

[1] https://docs.microsoft.com/en-us/windows-hardware/drivers/stream/
uvc-extensions-1-5

[2] Depth Control flags specify which fields are valid:

0x00000001 Gain
0x00000002 Exposure
0x00000004 Laser power
0x00000008 AE mode
0x00000010 Exposure priority
0x00000020 AE ROI
0x00000040 Preset

[3] Capture Timing flags specify which fields are valid:

0x00000001 Frame counter
0x00000002 Optical time
0x00000004 Readout time
0x00000008 Exposure time
0x00000010 Frame interval
0x00000020 Pipe latency

[4] Configuration flags specify which fields are valid:

0x00000001 Hardware type
0x00000002 SKU ID
0x00000004 Cookie
0x00000008 Format
0x00000010 Width
0x00000020 Height
0x00000040 Framerate
0x00000080 Trigger
0x00000100 Cal count

[5] Camera model:

0 DS5
1 IVCAM2

218 Chapter 7. Linux Media Infrastructure userspace API

https://docs.microsoft.com/en-us/windows-hardware/drivers/stream/uvc-extensions-1-5
https://docs.microsoft.com/en-us/windows-hardware/drivers/stream/uvc-extensions-1-5

Linux Userspace-api Documentation

[6] 8-bit camera hardware configuration bitfield:

[1:0] depthCamera
00: no depth
01: standard depth
10: wide depth
11: reserved

[2] depthIsActive - has a laser projector
[3] RGB presence
[4] Inertial Measurement Unit (IMU) presence
[5] projectorType

0: HPTG
1: Princeton

[6] 0: a projector, 1: an LED
[7] reserved

[7] Image format codes per video streaming interface:

Depth:

1 Z16
2 Z

Left sensor:

1 Y8
2 UYVY
3 R8L8
4 Calibration
5 W10

Fish Eye sensor:

1 RAW8

V4L2_META_FMT_IPU3_PARAMS (‘ip3p’), V4L2_META_FMT_IPU3_3A (‘ip3s’
)

3A statistics

The IPU3 ImgU 3A statistics accelerators collect different statistics over an in-
put Bayer frame. Those statistics are obtained from the “ipu3-imgu [01] 3a stat”
metadata capture video nodes, using the v4l2_meta_format interface. They are
formatted as described by the ipu3_uapi_stats_3a structure.

The statistics collected are AWB (Auto-white balance) RGBS (Red, Green, Blue and
Saturation measure) cells, AWB filter response, AF (Auto-focus) filter response,
and AE (Auto-exposure) histogram.

The struct ipu3_uapi_4a_config saves all configurable parameters.

struct ipu3_uapi_stats_3a {
struct ipu3_uapi_awb_raw_buffer awb_raw_buffer;
struct ipu3_uapi_ae_raw_buffer_aligned ae_raw_buffer[IPU3_UAPI_MAX_

↪→STRIPES];
(continues on next page)

7.2. Part I - Video for Linux API 219

Linux Userspace-api Documentation

(continued from previous page)
struct ipu3_uapi_af_raw_buffer af_raw_buffer;
struct ipu3_uapi_awb_fr_raw_buffer awb_fr_raw_buffer;
struct ipu3_uapi_4a_config stats_4a_config;
__u32 ae_join_buffers;
__u8 padding[28];
struct ipu3_uapi_stats_3a_bubble_info_per_stripe stats_3a_bubble_

↪→per_stripe;
struct ipu3_uapi_ff_status stats_3a_status;

};

Pipeline parameters

The pipeline parameters are passed to the“ipu3-imgu [01] parameters”metadata
output video nodes, using the v4l2_meta_format interface. They are formatted as
described by the ipu3_uapi_params structure.

Both 3A statistics and pipeline parameters described here are closely tied to the
underlying camera sub-system (CSS) APIs. They are usually consumed and pro-
duced by dedicated user space libraries that comprise the important tuning tools,
thus freeing the developers from being bothered with the low level hardware and
algorithm details.

struct ipu3_uapi_params {
/* Flags which of the settings below are to be applied */
struct ipu3_uapi_flags use;

/* Accelerator cluster parameters */
struct ipu3_uapi_acc_param acc_param;

/* ISP vector address space parameters */
struct ipu3_uapi_isp_lin_vmem_params lin_vmem_params;
struct ipu3_uapi_isp_tnr3_vmem_params tnr3_vmem_params;
struct ipu3_uapi_isp_xnr3_vmem_params xnr3_vmem_params;

/* ISP data memory (DMEM) parameters */
struct ipu3_uapi_isp_tnr3_params tnr3_dmem_params;
struct ipu3_uapi_isp_xnr3_params xnr3_dmem_params;

/* Optical black level compensation */
struct ipu3_uapi_obgrid_param obgrid_param;

};

Intel IPU3 ImgU uAPI data types

struct ipu3_uapi_grid_config
Grid plane config

Definition

struct ipu3_uapi_grid_config {
__u8 width;

(continues on next page)

220 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
__u8 height;
__u16 block_width_log2:3;
__u16 block_height_log2:3;
__u16 height_per_slice:8;
__u16 x_start;
__u16 y_start;
__u16 x_end;
__u16 y_end;

};

Members
width Grid horizontal dimensions, in number of grid blocks(cells).

height Grid vertical dimensions, in number of grid cells.

block_width_log2 Log2 of the width of each cell in pixels. for (2^3, 2^4, 2^5,
2^6, 2^7), values [3, 7].

block_height_log2 Log2 of the height of each cell in pixels. for (2^3, 2^4, 2^5,
2^6, 2^7), values [3, 7].

height_per_slice The number of blocks in vertical axis per slice. Default 2.

x_start X value of top left corner of Region of Interest(ROI).

y_start Y value of top left corner of ROI

x_end X value of bottom right corner of ROI

y_end Y value of bottom right corner of ROI

Description
Due to the size of total amount of collected data, most statistics create a grid-based
output, and the data is then divided into “slices”.
struct ipu3_uapi_awb_raw_buffer

AWB raw buffer

Definition

struct ipu3_uapi_awb_raw_buffer {
__u8 meta_data[IPU3_UAPI_AWB_MAX_BUFFER_SIZE] ;

};

Members
meta_data buffer to hold auto white balancemeta data which is the average values

for each color channel.

struct ipu3_uapi_awb_config_s
AWB config

Definition

struct ipu3_uapi_awb_config_s {
__u16 rgbs_thr_gr;
__u16 rgbs_thr_r;

(continues on next page)

7.2. Part I - Video for Linux API 221

Linux Userspace-api Documentation

(continued from previous page)
__u16 rgbs_thr_gb;
__u16 rgbs_thr_b;
struct ipu3_uapi_grid_config grid;

};

Members
rgbs_thr_gr gr threshold value.

rgbs_thr_r Red threshold value.

rgbs_thr_gb gb threshold value.

rgbs_thr_b Blue threshold value.

grid ipu3_uapi_grid_config, the default grid resolution is 16x16 cells.

Description
The threshold is a saturation measure range [0, 8191], 8191 is default. Values
over threshold may be optionally rejected for averaging.

struct ipu3_uapi_awb_config
AWB config wrapper

Definition

struct ipu3_uapi_awb_config {
struct ipu3_uapi_awb_config_s config ;

};

Members
config config for auto white balance as defined by ipu3_uapi_awb_config_s

struct ipu3_uapi_ae_raw_buffer
AE global weighted histogram

Definition

struct ipu3_uapi_ae_raw_buffer {
__u32 vals[IPU3_UAPI_AE_BINS * IPU3_UAPI_AE_COLORS];

};

Members
vals Sum of IPU3_UAPI_AE_COLORS in cell

Each histogram contains IPU3_UAPI_AE_BINS bins. Each bin has 24 bit un-
signed for counting the number of the pixel.

struct ipu3_uapi_ae_raw_buffer_aligned
AE raw buffer

Definition

struct ipu3_uapi_ae_raw_buffer_aligned {
struct ipu3_uapi_ae_raw_buffer buff ;

};

222 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Members
buff ipu3_uapi_ae_raw_buffer to hold full frame meta data.

struct ipu3_uapi_ae_grid_config
AE weight grid

Definition

struct ipu3_uapi_ae_grid_config {
__u8 width;
__u8 height;
__u8 block_width_log2:4;
__u8 block_height_log2:4;
__u8 reserved0:5;
__u8 ae_en:1;
__u8 rst_hist_array:1;
__u8 done_rst_hist_array:1;
__u16 x_start;
__u16 y_start;
__u16 x_end;
__u16 y_end;

};

Members
width Grid horizontal dimensions. Value: [16, 32], default 16.

height Grid vertical dimensions. Value: [16, 24], default 16.

block_width_log2 Log2 of the width of the grid cell, value: [3, 7].

block_height_log2 Log2 of the height of the grid cell, value: [3, 7]. default is 3
(cell size 8x8), 4 cell per grid.

reserved0 reserved

ae_en 0: does not write to ipu3_uapi_ae_raw_buffer_aligned array, 1: write
normally.

rst_hist_array write 1 to trigger histogram array reset.

done_rst_hist_array flag for histogram array reset done.

x_start X value of top left corner of ROI, default 0.

y_start Y value of top left corner of ROI, default 0.

x_end X value of bottom right corner of ROI

y_end Y value of bottom right corner of ROI

Description
The AE block accumulates 4 global weighted histograms(R, G, B, Y) over a defined
ROI within the frame. The contribution of each pixel into the histogram, defined
by ipu3_uapi_ae_weight_elem LUT, is indexed by a grid.

struct ipu3_uapi_ae_weight_elem
AE weights LUT

Definition

7.2. Part I - Video for Linux API 223

Linux Userspace-api Documentation

struct ipu3_uapi_ae_weight_elem {
__u32 cell0:4;
__u32 cell1:4;
__u32 cell2:4;
__u32 cell3:4;
__u32 cell4:4;
__u32 cell5:4;
__u32 cell6:4;
__u32 cell7:4;

};

Members
cell0 weighted histogram grid value.

cell1 weighted histogram grid value.

cell2 weighted histogram grid value.

cell3 weighted histogram grid value.

cell4 weighted histogram grid value.

cell5 weighted histogram grid value.

cell6 weighted histogram grid value.

cell7 weighted histogram grid value.

Description
Use weighted grid value to give a different contribution factor to each cell. Preci-
sion u4, range [0, 15].

struct ipu3_uapi_ae_ccm
AE coefficients for WB and CCM

Definition

struct ipu3_uapi_ae_ccm {
__u16 gain_gr;
__u16 gain_r;
__u16 gain_b;
__u16 gain_gb;
__s16 mat[16];

};

Members
gain_gr WB gain factor for the gr channels. Default 256.

gain_r WB gain factor for the r channel. Default 256.

gain_b WB gain factor for the b channel. Default 256.

gain_gb WB gain factor for the gb channels. Default 256.

mat 4x4 matrix that transforms Bayer quad output from WB to RGB+Y.

Description
Default: 128, 0, 0, 0, 0, 128, 0, 0, 0, 0, 128, 0, 0, 0, 0, 128,

224 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

As part of the raw frame pre-process stage, the WB and color conversion need to
be applied to expose the impact of these gain operations.

struct ipu3_uapi_ae_config
AE config

Definition

struct ipu3_uapi_ae_config {
struct ipu3_uapi_ae_grid_config grid_cfg ;
struct ipu3_uapi_ae_weight_elem weights[IPU3_UAPI_AE_WEIGHTS] ;
struct ipu3_uapi_ae_ccm ae_ccm ;

};

Members
grid_cfg config for auto exposure statistics grid. See struct

ipu3_uapi_ae_grid_config

weights IPU3_UAPI_AE_WEIGHTS is based on 32x24 blocks in the grid. Each grid
cell has a corresponding value in weights LUT called grid value, global his-
togram is updated based on grid value and pixel value.

ae_ccm Color convert matrix pre-processing block.

Description
Calculate AE grid from image resolution, resample ae weights.

struct ipu3_uapi_af_filter_config
AF 2D filter for contrast measurements

Definition

struct ipu3_uapi_af_filter_config {
struct {

__u8 a1;
__u8 a2;
__u8 a3;
__u8 a4;

} y1_coeff_0;
struct {

__u8 a5;
__u8 a6;
__u8 a7;
__u8 a8;

} y1_coeff_1;
struct {

__u8 a9;
__u8 a10;
__u8 a11;
__u8 a12;

} y1_coeff_2;
__u32 y1_sign_vec;
struct {

__u8 a1;
__u8 a2;
__u8 a3;
__u8 a4;

(continues on next page)

7.2. Part I - Video for Linux API 225

Linux Userspace-api Documentation

(continued from previous page)
} y2_coeff_0;
struct {

__u8 a5;
__u8 a6;
__u8 a7;
__u8 a8;

} y2_coeff_1;
struct {

__u8 a9;
__u8 a10;
__u8 a11;
__u8 a12;

} y2_coeff_2;
__u32 y2_sign_vec;
struct {

__u8 y_gen_rate_gr;
__u8 y_gen_rate_r;
__u8 y_gen_rate_b;
__u8 y_gen_rate_gb;

} y_calc;
struct {

__u32 reserved0:8;
__u32 y1_nf:4;
__u32 reserved1:4;
__u32 y2_nf:4;
__u32 reserved2:12;

} nf;
};

Members
y1_coeff_0 filter Y1, structure: 3x11, support both symmetry and anti-symmetry

type. A12 is center, A1-A11 are neighbours. for analyzing low frequency
content, used to calculate sum of gradients in x direction.

y1_coeff_0.a1 filter1 coefficients A1, u8, default 0.

y1_coeff_0.a2 filter1 coefficients A2, u8, default 0.

y1_coeff_0.a3 filter1 coefficients A3, u8, default 0.

y1_coeff_0.a4 filter1 coefficients A4, u8, default 0.

y1_coeff_1 Struct

y1_coeff_1.a5 filter1 coefficients A5, u8, default 0.

y1_coeff_1.a6 filter1 coefficients A6, u8, default 0.

y1_coeff_1.a7 filter1 coefficients A7, u8, default 0.

y1_coeff_1.a8 filter1 coefficients A8, u8, default 0.

y1_coeff_2 Struct

y1_coeff_2.a9 filter1 coefficients A9, u8, default 0.

y1_coeff_2.a10 filter1 coefficients A10, u8, default 0.

y1_coeff_2.a11 filter1 coefficients A11, u8, default 0.

226 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

y1_coeff_2.a12 filter1 coefficients A12, u8, default 128.

y1_sign_vec Each bit corresponds to one coefficient sign bit, 0: positive, 1: neg-
ative, default 0.

y2_coeff_0 Y2, same structure as Y1. For analyzing high frequency content.

y2_coeff_0.a1 filter2 coefficients A1, u8, default 0.

y2_coeff_0.a2 filter2 coefficients A2, u8, default 0.

y2_coeff_0.a3 filter2 coefficients A3, u8, default 0.

y2_coeff_0.a4 filter2 coefficients A4, u8, default 0.

y2_coeff_1 Struct

y2_coeff_1.a5 filter2 coefficients A5, u8, default 0.

y2_coeff_1.a6 filter2 coefficients A6, u8, default 0.

y2_coeff_1.a7 filter2 coefficients A7, u8, default 0.

y2_coeff_1.a8 filter2 coefficients A8, u8, default 0.

y2_coeff_2 Struct

y2_coeff_2.a9 filter1 coefficients A9, u8, default 0.

y2_coeff_2.a10 filter1 coefficients A10, u8, default 0.

y2_coeff_2.a11 filter1 coefficients A11, u8, default 0.

y2_coeff_2.a12 filter1 coefficients A12, u8, default 128.

y2_sign_vec Each bit corresponds to one coefficient sign bit, 0: positive, 1: neg-
ative, default 0.

y_calc Pre-processing that converts Bayer quad to RGB+Y values to be used
for building histogram. Range [0, 32], default 8. Rule: y_gen_rate_gr +
y_gen_rate_r + y_gen_rate_b + y_gen_rate_gb = 32 A single Y is calculated
based on sum of Gr/R/B/Gb based on their contribution ratio.

y_calc.y_gen_rate_gr Contribution ratio Gr for Y

y_calc.y_gen_rate_r Contribution ratio R for Y

y_calc.y_gen_rate_b Contribution ratio B for Y

y_calc.y_gen_rate_gb Contribution ratio Gb for Y

nf The shift right value that should be applied during the Y1/Y2 filter to make sure
the total memory needed is 2 bytes per grid cell.

nf.reserved0 reserved

nf.y1_nf Normalization factor for the convolution coeffs of y1, should be log2 of
the sum of the abs values of the filter coeffs, default 7 (2^7 = 128).

nf.reserved1 reserved

nf.y2_nf Normalization factor for y2, should be log2 of the sum of the abs values
of the filter coeffs.

nf.reserved2 reserved

7.2. Part I - Video for Linux API 227

Linux Userspace-api Documentation

struct ipu3_uapi_af_raw_buffer
AF meta data

Definition

struct ipu3_uapi_af_raw_buffer {
__u8 y_table[IPU3_UAPI_AF_Y_TABLE_MAX_SIZE] ;

};

Members
y_table Each color component will be convolved separately with filter1 and filter2

and the result will be summed out and averaged for each cell.

struct ipu3_uapi_af_config_s
AF config

Definition

struct ipu3_uapi_af_config_s {
struct ipu3_uapi_af_filter_config filter_config ;
__u8 padding[4];
struct ipu3_uapi_grid_config grid_cfg ;

};

Members
filter_config AF uses Y1 and Y2 filters as configured in

ipu3_uapi_af_filter_config

padding paddings

grid_cfg See ipu3_uapi_grid_config, default resolution 16x16. Use large grid
size for large image and vice versa.

struct ipu3_uapi_awb_fr_raw_buffer
AWB filter response meta data

Definition

struct ipu3_uapi_awb_fr_raw_buffer {
__u8 meta_data[IPU3_UAPI_AWB_FR_BAYER_TABLE_MAX_SIZE] ;

};

Members
meta_data Statistics output on the grid after convolving with 1D filter.

struct ipu3_uapi_awb_fr_config_s
AWB filter response config

Definition

struct ipu3_uapi_awb_fr_config_s {
struct ipu3_uapi_grid_config grid_cfg;
__u8 bayer_coeff[6];
__u16 reserved1;
__u32 bayer_sign;
__u8 bayer_nf;

(continues on next page)

228 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
__u8 reserved2[7];

};

Members
grid_cfg grid config, default 16x16.

bayer_coeff 1D Filter 1x11 center symmetry/anti-symmetry. coefficients defaults
{ 0, 0, 0, 0, 0, 128 }. Applied on whole image for each Bayer channel sepa-
rately by a weighted sum of its 11x1 neighbors.

reserved1 reserved

bayer_sign sign of filter coefficients, default 0.

bayer_nf normalization factor for the convolution coeffs, to make sure total mem-
ory needed is within pre-determined range. NF should be the log2 of the sum
of the abs values of the filter coeffs, range [7, 14], default 7.

reserved2 reserved

struct ipu3_uapi_4a_config
4A config

Definition

struct ipu3_uapi_4a_config {
struct ipu3_uapi_awb_config_s awb_config ;
struct ipu3_uapi_ae_grid_config ae_grd_config;
__u8 padding[20];
struct ipu3_uapi_af_config_s af_config;
struct ipu3_uapi_awb_fr_config_s awb_fr_config ;

};

Members
awb_config ipu3_uapi_awb_config_s, default resolution 16x16

ae_grd_config auto exposure statistics ipu3_uapi_ae_grid_config

padding paddings

af_config auto focus config ipu3_uapi_af_config_s

awb_fr_config ipu3_uapi_awb_fr_config_s, default resolution 16x16

struct ipu3_uapi_bubble_info
Bubble info for host side debugging

Definition

struct ipu3_uapi_bubble_info {
__u32 num_of_stripes ;
__u8 padding[28];
__u32 num_sets;
__u8 padding1[28];
__u32 size_of_set;
__u8 padding2[28];
__u32 bubble_size;

(continues on next page)

7.2. Part I - Video for Linux API 229

Linux Userspace-api Documentation

(continued from previous page)
__u8 padding3[28];

};

Members
num_of_stripes A single frame is divided into several parts called stripes due

to limitation on line buffer memory. The separation between the stripes is
vertical. Each such stripe is processed as a single frame by the ISP pipe.

padding padding bytes.

num_sets number of sets.

padding1 padding bytes.

size_of_set set size.

padding2 padding bytes.

bubble_size is the amount of padding in the bubble expressed in “sets”.
padding3 padding bytes.

struct ipu3_uapi_ff_status
Enable bits for each 3A fixed function

Definition

struct ipu3_uapi_ff_status {
__u32 awb_en ;
__u8 padding[28];
__u32 ae_en;
__u8 padding1[28];
__u32 af_en;
__u8 padding2[28];
__u32 awb_fr_en;
__u8 padding3[28];

};

Members
awb_en auto white balance enable

padding padding config

ae_en auto exposure enable

padding1 padding config

af_en auto focus enable

padding2 padding config

awb_fr_en awb filter response enable bit

padding3 padding config

struct ipu3_uapi_stats_3a
3A statistics

Definition

230 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct ipu3_uapi_stats_3a {
struct ipu3_uapi_awb_raw_buffer awb_raw_buffer;
struct ipu3_uapi_ae_raw_buffer_aligned ae_raw_buffer[IPU3_UAPI_MAX_

↪→STRIPES];
struct ipu3_uapi_af_raw_buffer af_raw_buffer;
struct ipu3_uapi_awb_fr_raw_buffer awb_fr_raw_buffer;
struct ipu3_uapi_4a_config stats_4a_config;
__u32 ae_join_buffers;
__u8 padding[28];
struct ipu3_uapi_stats_3a_bubble_info_per_stripe stats_3a_bubble_per_

↪→stripe;
struct ipu3_uapi_ff_status stats_3a_status;

};

Members
awb_raw_buffer auto white balance meta data ipu3_uapi_awb_raw_buffer

ae_raw_buffer auto exposure raw data ipu3_uapi_ae_raw_buffer_aligned

af_raw_buffer ipu3_uapi_af_raw_buffer for auto focus meta data

awb_fr_raw_buffer value as specified by ipu3_uapi_awb_fr_raw_buffer

stats_4a_config 4a statistics config as defined by ipu3_uapi_4a_config.

ae_join_buffers 1 to use ae_raw_buffer.

padding padding config

stats_3a_bubble_per_stripe a ipu3_uapi_stats_3a_bubble_info_per_stripe

stats_3a_status 3a statistics status set in ipu3_uapi_ff_status

struct ipu3_uapi_bnr_static_config_wb_gains_config
White balance gains

Definition

struct ipu3_uapi_bnr_static_config_wb_gains_config {
__u16 gr;
__u16 r;
__u16 b;
__u16 gb;

};

Members
gr white balance gain for Gr channel.

r white balance gain for R channel.

b white balance gain for B channel.

gb white balance gain for Gb channel.

Description
Precision u3.13, range [0, 8). White balance correction is done by applying a
multiplicative gain to each color channels prior to BNR.

7.2. Part I - Video for Linux API 231

Linux Userspace-api Documentation

struct ipu3_uapi_bnr_static_config_wb_gains_thr_config
Threshold config

Definition

struct ipu3_uapi_bnr_static_config_wb_gains_thr_config {
__u8 gr;
__u8 r;
__u8 b;
__u8 gb;

};

Members
gr white balance threshold gain for Gr channel.

r white balance threshold gain for R channel.

b white balance threshold gain for B channel.

gb white balance threshold gain for Gb channel.

Description
Defines the threshold that specifies how different a defect pixel can be from
its neighbors.(used by dynamic defect pixel correction sub block) Precision u4.4
range [0, 8].

struct ipu3_uapi_bnr_static_config_thr_coeffs_config
Noise model coefficients that controls noise threshold

Definition

struct ipu3_uapi_bnr_static_config_thr_coeffs_config {
__u32 cf:13;
__u32 reserved0:3;
__u32 cg:5;
__u32 ci:5;
__u32 reserved1:1;
__u32 r_nf:5;

};

Members
cf Free coefficient for threshold calculation, range [0, 8191], default 0.

reserved0 reserved

cg Gain coefficient for threshold calculation, [0, 31], default 8.

ci Intensity coefficient for threshold calculation. range [0, 0x1f] default 6. format:
u3.2 (3 most significant bits represent whole number, 2 least significant bits
represent the fractional part with each count representing 0.25) e.g. 6 in
binary format is 00110, that translates to 1.5

reserved1 reserved

r_nf Normalization shift value for r^2 calculation, range [12, 20] where r is a
radius of pixel [row, col] from centor of sensor. default 14.

Description

232 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Threshold used to distinguish between noise and details.

struct ipu3_uapi_bnr_static_config_thr_ctrl_shd_config
Shading config

Definition

struct ipu3_uapi_bnr_static_config_thr_ctrl_shd_config {
__u8 gr;
__u8 r;
__u8 b;
__u8 gb;

};

Members
gr Coefficient defines lens shading gain approximation for gr channel

r Coefficient defines lens shading gain approximation for r channel

b Coefficient defines lens shading gain approximation for b channel

gb Coefficient defines lens shading gain approximation for gb channel

Description
Parameters for noise model (NM) adaptation of BNR due to shading correction.
All above have precision of u3.3, default to 0.

struct ipu3_uapi_bnr_static_config_opt_center_config
Optical center config

Definition

struct ipu3_uapi_bnr_static_config_opt_center_config {
__s32 x_reset:13;
__u32 reserved0:3;
__s32 y_reset:13;
__u32 reserved2:3;

};

Members
x_reset Reset value of X (col start - X center). Precision s12.0.

reserved0 reserved

y_reset Reset value of Y (row start - Y center). Precision s12.0.

reserved2 reserved

Description
Distance from corner to optical center for NMadaptation due to shading correction
(should be calculated based on shading tables)

struct ipu3_uapi_bnr_static_config_lut_config
BNR square root lookup table

Definition

7.2. Part I - Video for Linux API 233

Linux Userspace-api Documentation

struct ipu3_uapi_bnr_static_config_lut_config {
__u8 values[IPU3_UAPI_BNR_LUT_SIZE];

};

Members
values pre-calculated values of square root function.

Description
LUT implementation of square root operation.

struct ipu3_uapi_bnr_static_config_bp_ctrl_config
Detect bad pixels (bp)

Definition

struct ipu3_uapi_bnr_static_config_bp_ctrl_config {
__u32 bp_thr_gain:5;
__u32 reserved0:2;
__u32 defect_mode:1;
__u32 bp_gain:6;
__u32 reserved1:18;
__u32 w0_coeff:4;
__u32 reserved2:4;
__u32 w1_coeff:4;
__u32 reserved3:20;

};

Members
bp_thr_gain Defines the threshold that specifies how different a defect pixel can

be from its neighbors. Threshold is dependent on de-noise threshold calcu-
lated by algorithm. Range [4, 31], default 4.

reserved0 reserved

defect_mode Mode of addressed defect pixels, 0 - single defect pixel is expected,
1 - 2 adjacent defect pixels are expected, default 1.

bp_gain Defines how 2nd derivation that passes through a defect pixel is different
from 2nd derivations that pass through neighbor pixels. u4.2, range [0, 256],
default 8.

reserved1 reserved

w0_coeff Blending coefficient of defect pixel correction. Precision u4, range [0,
8], default 8.

reserved2 reserved

w1_coeff Enable influence of incorrect defect pixel correction to be avoided. Pre-
cision u4, range [1, 8], default 8.

reserved3 reserved

struct ipu3_uapi_bnr_static_config_dn_detect_ctrl_config
Denoising config

Definition

234 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct ipu3_uapi_bnr_static_config_dn_detect_ctrl_config {
__u32 alpha:4;
__u32 beta:4;
__u32 gamma:4;
__u32 reserved0:4;
__u32 max_inf:4;
__u32 reserved1:7;
__u32 gd_enable:1;
__u32 bpc_enable:1;
__u32 bnr_enable:1;
__u32 ff_enable:1;
__u32 reserved2:1;

};

Members
alpha Weight of central element of smoothing filter.

beta Weight of peripheral elements of smoothing filter, default 4.

gamma Weight of diagonal elements of smoothing filter, default 4.

reserved0 reserved

max_inf Maximum increase of peripheral or diagonal element influence relative
to the pre-defined value range: [0x5, 0xa]

reserved1 reserved

gd_enable Green disparity enable control, 0 - disable, 1 - enable.

bpc_enable Bad pixel correction enable control, 0 - disable, 1 - enable.

bnr_enable Bayer noise removal enable control, 0 - disable, 1 - enable.

ff_enable Fixed function enable, 0 - disable, 1 - enable.

reserved2 reserved

Description
beta and gamma parameter define the strength of the noise removal filter.

All above has precision u0.4, range [0, 0xf] format: u0.4 (no / zero bits rep-
resent whole number, 4 bits represent the fractional part with each count
representing 0.0625) e.g. 0xf translates to 0.0625x15 = 0.9375

struct ipu3_uapi_bnr_static_config_opt_center_sqr_config
BNR optical square

Definition

struct ipu3_uapi_bnr_static_config_opt_center_sqr_config {
__u32 x_sqr_reset;
__u32 y_sqr_reset;

};

Members
x_sqr_reset Reset value of X^2.

y_sqr_reset Reset value of Y^2.

7.2. Part I - Video for Linux API 235

Linux Userspace-api Documentation

Description
Please note:

1. X and Y ref to ipu3_uapi_bnr_static_config_opt_center_config

2. Both structs are used in threshold formula to calculate r^2, where r is a radius
of pixel [row, col] from centor of sensor.

struct ipu3_uapi_bnr_static_config
BNR static config

Definition

struct ipu3_uapi_bnr_static_config {
struct ipu3_uapi_bnr_static_config_wb_gains_config wb_gains;
struct ipu3_uapi_bnr_static_config_wb_gains_thr_config wb_gains_thr;
struct ipu3_uapi_bnr_static_config_thr_coeffs_config thr_coeffs;
struct ipu3_uapi_bnr_static_config_thr_ctrl_shd_config thr_ctrl_shd;
struct ipu3_uapi_bnr_static_config_opt_center_config opt_center;
struct ipu3_uapi_bnr_static_config_lut_config lut;
struct ipu3_uapi_bnr_static_config_bp_ctrl_config bp_ctrl;
struct ipu3_uapi_bnr_static_config_dn_detect_ctrl_config dn_detect_ctrl;
__u32 column_size;
struct ipu3_uapi_bnr_static_config_opt_center_sqr_config opt_center_sqr;

};

Members
wb_gains white balance gains ipu3_uapi_bnr_static_config_wb_gains_config

wb_gains_thr white balance gains threshold as defined by
ipu3_uapi_bnr_static_config_wb_gains_thr_config

thr_coeffs coefficients of threshold ipu3_uapi_bnr_static_config_thr_coeffs_config

thr_ctrl_shd control of shading threshold ipu3_uapi_bnr_static_config_thr_ctrl_shd_config

opt_center optical center ipu3_uapi_bnr_static_config_opt_center_config

lut lookup table ipu3_uapi_bnr_static_config_lut_config

bp_ctrl detect and remove bad pixels as defined in struct
ipu3_uapi_bnr_static_config_bp_ctrl_config

dn_detect_ctrl detect and remove noise. ipu3_uapi_bnr_static_config_dn_detect_ctrl_config

column_size The number of pixels in column.

opt_center_sqr Reset value of r^2 to optical center, see
ipu3_uapi_bnr_static_config_opt_center_sqr_config.

Description
Above parameters and opt_center_sqr are used for white balance and shading.

struct ipu3_uapi_bnr_static_config_green_disparity
Correct green disparity

Definition

236 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct ipu3_uapi_bnr_static_config_green_disparity {
__u32 gd_red:6;
__u32 reserved0:2;
__u32 gd_green:6;
__u32 reserved1:2;
__u32 gd_blue:6;
__u32 reserved2:10;
__u32 gd_black:14;
__u32 reserved3:2;
__u32 gd_shading:7;
__u32 reserved4:1;
__u32 gd_support:2;
__u32 reserved5:1;
__u32 gd_clip:1;
__u32 gd_central_weight:4;

};

Members
gd_red Shading gain coeff for gr disparity level in bright red region. Precision

u0.6, default 4(0.0625).

reserved0 reserved

gd_green Shading gain coeff for gr disparity level in bright green region. Preci-
sion u0.6, default 4(0.0625).

reserved1 reserved

gd_blue Shading gain coeff for gr disparity level in bright blue region. Precision
u0.6, default 4(0.0625).

reserved2 reserved

gd_black Maximal green disparity level in dark region (stronger disparity as-
sumed to be image detail). Precision u14, default 80.

reserved3 reserved

gd_shading Change maximal green disparity level according to square distance
from image center.

reserved4 reserved

gd_support Lower bound for the number of second green color pixels in current
pixel neighborhood with less than threshold difference from it.

reserved5 reserved

gd_clip Turn green disparity clip on/off, [0, 1], default 1.

gd_central_weight Central pixel weight in 9 pixels weighted sum.

Description
The shading gain coeff of red, green, blue and black are used to calculate threshold
given a pixel’s color value and its coordinates in the image.
struct ipu3_uapi_dm_config

De-mosaic parameters

Definition

7.2. Part I - Video for Linux API 237

Linux Userspace-api Documentation

struct ipu3_uapi_dm_config {
__u32 dm_en:1;
__u32 ch_ar_en:1;
__u32 fcc_en:1;
__u32 reserved0:13;
__u32 frame_width:16;
__u32 gamma_sc:5;
__u32 reserved1:3;
__u32 lc_ctrl:5;
__u32 reserved2:3;
__u32 cr_param1:5;
__u32 reserved3:3;
__u32 cr_param2:5;
__u32 reserved4:3;
__u32 coring_param:5;
__u32 reserved5:27;

};

Members
dm_en de-mosaic enable.

ch_ar_en Checker artifacts removal enable flag. Default 0.

fcc_en False color correction (FCC) enable flag. Default 0.

reserved0 reserved

frame_width do not care

gamma_sc Sharpening coefficient (coefficient of 2-d derivation of complementary
color in Hamilton-Adams interpolation). u5, range [0, 31], default 8.

reserved1 reserved

lc_ctrl Parameter that controls weights of Chroma Homogeneity metric in cal-
culation of final homogeneity metric. u5, range [0, 31], default 7.

reserved2 reserved

cr_param1 First parameter that defines Checker artifact removal feature gain.
Precision u5, range [0, 31], default 8.

reserved3 reserved

cr_param2 Second parameter that defines Checker artifact removal feature gain.
Precision u5, range [0, 31], default 8.

reserved4 reserved

coring_param Defines power of false color correction operation. low for preserv-
ing edge colors, high for preserving gray edge artifacts. Precision u1.4, range
[0, 1.9375], default 4 (0.25).

reserved5 reserved

Description
The demosaic fixed function block is responsible to covert Bayer(mosaiced) images
into color images based on demosaicing algorithm.

238 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct ipu3_uapi_ccm_mat_config
Color correction matrix

Definition

struct ipu3_uapi_ccm_mat_config {
__s16 coeff_m11;
__s16 coeff_m12;
__s16 coeff_m13;
__s16 coeff_o_r;
__s16 coeff_m21;
__s16 coeff_m22;
__s16 coeff_m23;
__s16 coeff_o_g;
__s16 coeff_m31;
__s16 coeff_m32;
__s16 coeff_m33;
__s16 coeff_o_b;

};

Members
coeff_m11 CCM 3x3 coefficient, range [-65536, 65535]

coeff_m12 CCM 3x3 coefficient, range [-8192, 8191]

coeff_m13 CCM 3x3 coefficient, range [-32768, 32767]

coeff_o_r Bias 3x1 coefficient, range [-8191, 8181]

coeff_m21 CCM 3x3 coefficient, range [-32767, 32767]

coeff_m22 CCM 3x3 coefficient, range [-8192, 8191]

coeff_m23 CCM 3x3 coefficient, range [-32768, 32767]

coeff_o_g Bias 3x1 coefficient, range [-8191, 8181]

coeff_m31 CCM 3x3 coefficient, range [-32768, 32767]

coeff_m32 CCM 3x3 coefficient, range [-8192, 8191]

coeff_m33 CCM 3x3 coefficient, range [-32768, 32767]

coeff_o_b Bias 3x1 coefficient, range [-8191, 8181]

Description
Transform sensor specific color space to standard sRGB by applying 3x3 matrix
and adding a bias vector O. The transformation is basically a rotation and transla-
tion in the 3-dimensional color spaces. Here are the defaults:

9775, -2671, 1087, 0 -1071, 8303, 815, 0 -23, -7887, 16103, 0

struct ipu3_uapi_gamma_corr_ctrl
Gamma correction

Definition

struct ipu3_uapi_gamma_corr_ctrl {
__u32 enable:1;

(continues on next page)

7.2. Part I - Video for Linux API 239

Linux Userspace-api Documentation

(continued from previous page)
__u32 reserved:31;

};

Members
enable gamma correction enable.

reserved reserved

struct ipu3_uapi_gamma_corr_lut
Per-pixel tone mapping implemented as LUT.

Definition

struct ipu3_uapi_gamma_corr_lut {
__u16 lut[IPU3_UAPI_GAMMA_CORR_LUT_ENTRIES];

};

Members
lut 256 tabulated values of the gamma function. LUT[1].. LUT[256] format u13.0,

range [0, 8191].

Description
The tone mapping operation is done by a Piece wise linear graph that is imple-
mented as a lookup table(LUT). The pixel component input intensity is the X-axis
of the graph which is the table entry.

struct ipu3_uapi_gamma_config
Gamma config

Definition

struct ipu3_uapi_gamma_config {
struct ipu3_uapi_gamma_corr_ctrl gc_ctrl ;
struct ipu3_uapi_gamma_corr_lut gc_lut ;

};

Members
gc_ctrl control of gamma correction ipu3_uapi_gamma_corr_ctrl

gc_lut lookup table of gamma correction ipu3_uapi_gamma_corr_lut

struct ipu3_uapi_csc_mat_config
Color space conversion matrix config

Definition

struct ipu3_uapi_csc_mat_config {
__s16 coeff_c11;
__s16 coeff_c12;
__s16 coeff_c13;
__s16 coeff_b1;
__s16 coeff_c21;
__s16 coeff_c22;
__s16 coeff_c23;

(continues on next page)

240 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
__s16 coeff_b2;
__s16 coeff_c31;
__s16 coeff_c32;
__s16 coeff_c33;
__s16 coeff_b3;

};

Members
coeff_c11 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_c12 Conversion matrix value, format s0.14, range [-8192, 8191].

coeff_c13 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_b1 Bias 3x1 coefficient, s13.0 range [-8192, 8191].

coeff_c21 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_c22 Conversion matrix value, format s0.14, range [-8192, 8191].

coeff_c23 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_b2 Bias 3x1 coefficient, s13.0 range [-8192, 8191].

coeff_c31 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_c32 Conversion matrix value, format s0.14, range [-8192, 8191].

coeff_c33 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_b3 Bias 3x1 coefficient, s13.0 range [-8192, 8191].

Description
To transform each pixel from RGB to YUV (Y - brightness/luminance, UV -chroma)
by applying the pixel’s values by a 3x3 matrix and adding an optional bias 3x1
vector. Here are the default values for the matrix:

4898, 9617, 1867, 0, -2410, -4732, 7143, 0, 10076, -8437, -1638, 0,

(i.e. for real number 0.299, 0.299 * 2^14 becomes 4898.)

struct ipu3_uapi_cds_params
Chroma down-scaling

Definition

struct ipu3_uapi_cds_params {
__u32 ds_c00:2;
__u32 ds_c01:2;
__u32 ds_c02:2;
__u32 ds_c03:2;
__u32 ds_c10:2;
__u32 ds_c11:2;
__u32 ds_c12:2;
__u32 ds_c13:2;
__u32 ds_nf:5;
__u32 reserved0:3;
__u32 csc_en:1;
__u32 uv_bin_output:1;

(continues on next page)

7.2. Part I - Video for Linux API 241

Linux Userspace-api Documentation

(continued from previous page)
__u32 reserved1:6;

};

Members
ds_c00 range [0, 3]

ds_c01 range [0, 3]

ds_c02 range [0, 3]

ds_c03 range [0, 3]

ds_c10 range [0, 3]

ds_c11 range [0, 3]

ds_c12 range [0, 3]

ds_c13 range [0, 3]

ds_nf Normalization factor for Chroma output downscaling filter, range 0,4, de-
fault 2.

reserved0 reserved

csc_en Color space conversion enable

uv_bin_output 0: output YUV 4.2.0, 1: output YUV 4.2.2(default).

reserved1 reserved

Description
In case user does not provide, above 4x2 filter will use following defaults:

1, 3, 3, 1, 1, 3, 3, 1,

struct ipu3_uapi_shd_grid_config
Bayer shading(darkening) correction

Definition

struct ipu3_uapi_shd_grid_config {
__u8 width;
__u8 height;
__u8 block_width_log2:3;
__u8 reserved0:1;
__u8 block_height_log2:3;
__u8 reserved1:1;
__u8 grid_height_per_slice;
__s16 x_start;
__s16 y_start;

};

Members
width Grid horizontal dimensions, u8, [8, 128], default 73

height Grid vertical dimensions, u8, [8, 128], default 56

block_width_log2 Log2 of the width of the grid cell in pixel count u4, [0, 15],
default value 5.

242 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

reserved0 reserved

block_height_log2 Log2 of the height of the grid cell in pixel count u4, [0, 15],
default value 6.

reserved1 reserved

grid_height_per_slice SHD_MAX_CELLS_PER_SET/width. (with
SHD_MAX_CELLS_PER_SET = 146).

x_start X value of top left corner of sensor relative to ROI s13, [-4096, 0], default
0, only negative values.

y_start Y value of top left corner of sensor relative to ROI s13, [-4096, 0], default
0, only negative values.

struct ipu3_uapi_shd_general_config
Shading general config

Definition

struct ipu3_uapi_shd_general_config {
__u32 init_set_vrt_offst_ul:8;
__u32 shd_enable:1;
__u32 gain_factor:2;
__u32 reserved:21;

};

Members
init_set_vrt_offst_ul set vertical offset, y_start >> block_height_log2 %

grid_height_per_slice.

shd_enable shading enable.

gain_factor Gain factor. Shift calculated anti shading value. Precision u2. 0x0 -
gain factor [1, 5], means no shift interpolated value. 0x1 - gain factor [1, 9],
means shift interpolated by 1. 0x2 - gain factor [1, 17], means shift interpo-
lated by 2.

reserved reserved

Description
Correction is performed by multiplying a gain factor for each of the 4 Bayer chan-
nels as a function of the pixel location in the sensor.

struct ipu3_uapi_shd_black_level_config
Black level correction

Definition

struct ipu3_uapi_shd_black_level_config {
__s16 bl_r;
__s16 bl_gr;
__s16 bl_gb;
__s16 bl_b;

};

Members

7.2. Part I - Video for Linux API 243

Linux Userspace-api Documentation

bl_r Bios values for green red. s11 range [-2048, 2047].

bl_gr Bios values for green blue. s11 range [-2048, 2047].

bl_gb Bios values for red. s11 range [-2048, 2047].

bl_b Bios values for blue. s11 range [-2048, 2047].

struct ipu3_uapi_shd_config_static
Shading config static

Definition

struct ipu3_uapi_shd_config_static {
struct ipu3_uapi_shd_grid_config grid;
struct ipu3_uapi_shd_general_config general;
struct ipu3_uapi_shd_black_level_config black_level;

};

Members
grid shading grid config ipu3_uapi_shd_grid_config

general shading general config ipu3_uapi_shd_general_config

black_level black level config for shading correction as defined by
ipu3_uapi_shd_black_level_config

struct ipu3_uapi_shd_lut
Shading gain factor lookup table.

Definition

struct ipu3_uapi_shd_lut {
struct {

struct {
__u16 r;
__u16 gr;

} r_and_gr[IPU3_UAPI_SHD_MAX_CELLS_PER_SET];
__u8 reserved1[24];
struct {

__u16 gb;
__u16 b;

} gb_and_b[IPU3_UAPI_SHD_MAX_CELLS_PER_SET];
__u8 reserved2[24];

} sets[IPU3_UAPI_SHD_MAX_CFG_SETS];
};

Members
sets array

sets.r_and_gr Red and GreenR Lookup table.

sets.r_and_gr.r Red shading factor.

sets.r_and_gr.gr GreenR shading factor.

sets.reserved1 reserved

sets.gb_and_b GreenB and Blue Lookup table.

244 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

sets.gb_and_b.gb GreenB shading factor.

sets.gb_and_b.b Blue shading factor.

sets.reserved2 reserved

Description
Map to shading correction LUT register set.

struct ipu3_uapi_shd_config
Shading config

Definition

struct ipu3_uapi_shd_config {
struct ipu3_uapi_shd_config_static shd ;
struct ipu3_uapi_shd_lut shd_lut ;

};

Members
shd shading static config, see ipu3_uapi_shd_config_static

shd_lut shading lookup table ipu3_uapi_shd_lut

struct ipu3_uapi_iefd_cux2
IEFd Config Unit 2 parameters

Definition

struct ipu3_uapi_iefd_cux2 {
__u32 x0:9;
__u32 x1:9;
__u32 a01:9;
__u32 b01:5;

};

Members
x0 X0 point of Config Unit, u9.0, default 0.

x1 X1 point of Config Unit, u9.0, default 0.

a01 Slope A of Config Unit, s4.4, default 0.

b01 Slope B, always 0.

Description
Calculate weight for blending directed and non-directed denoise elements

All CU inputs are unsigned, they will be converted to signed when written to regis-
ter, i.e. a01 will be written to 9 bit register in s4.4 format. The data precision s4.4
means 4 bits for integer parts and 4 bits for the fractional part, the first bit indi-
cates positive or negative value. For userspace software (commonly the imaging
library), the computation for the CU slope values should be based on the slope res-
olution 1/16 (binary 0.0001 - the minimal interval value), the slope value range is
[-256, +255]. This applies to ipu3_uapi_iefd_cux6_ed, ipu3_uapi_iefd_cux2_1,
ipu3_uapi_iefd_cux2_1, ipu3_uapi_iefd_cux4 and ipu3_uapi_iefd_cux6_rad.

Note

7.2. Part I - Video for Linux API 245

Linux Userspace-api Documentation

Each instance of Config Unit needs X coordinate of n points and slope A factor
between points calculated by driver based on calibration parameters.

struct ipu3_uapi_iefd_cux6_ed
Calculate power of non-directed sharpening element, Config Unit 6 for edge
detail (ED).

Definition

struct ipu3_uapi_iefd_cux6_ed {
__u32 x0:9;
__u32 x1:9;
__u32 x2:9;
__u32 reserved0:5;
__u32 x3:9;
__u32 x4:9;
__u32 x5:9;
__u32 reserved1:5;
__u32 a01:9;
__u32 a12:9;
__u32 a23:9;
__u32 reserved2:5;
__u32 a34:9;
__u32 a45:9;
__u32 reserved3:14;
__u32 b01:9;
__u32 b12:9;
__u32 b23:9;
__u32 reserved4:5;
__u32 b34:9;
__u32 b45:9;
__u32 reserved5:14;

};

Members
x0 X coordinate of point 0, u9.0, default 0.

x1 X coordinate of point 1, u9.0, default 0.

x2 X coordinate of point 2, u9.0, default 0.

reserved0 reserved

x3 X coordinate of point 3, u9.0, default 0.

x4 X coordinate of point 4, u9.0, default 0.

x5 X coordinate of point 5, u9.0, default 0.

reserved1 reserved

a01 slope A points 01, s4.4, default 0.

a12 slope A points 12, s4.4, default 0.

a23 slope A points 23, s4.4, default 0.

reserved2 reserved

a34 slope A points 34, s4.4, default 0.

246 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

a45 slope A points 45, s4.4, default 0.

reserved3 reserved

b01 slope B points 01, s4.4, default 0.

b12 slope B points 12, s4.4, default 0.

b23 slope B points 23, s4.4, default 0.

reserved4 reserved

b34 slope B points 34, s4.4, default 0.

b45 slope B points 45, s4.4, default 0.

reserved5 reserved.

struct ipu3_uapi_iefd_cux2_1
Calculate power of non-directed denoise element apply.

Definition

struct ipu3_uapi_iefd_cux2_1 {
__u32 x0:9;
__u32 x1:9;
__u32 a01:9;
__u32 reserved1:5;
__u32 b01:8;
__u32 reserved2:24;

};

Members
x0 X0 point of Config Unit, u9.0, default 0.

x1 X1 point of Config Unit, u9.0, default 0.

a01 Slope A of Config Unit, s4.4, default 0.

reserved1 reserved

b01 offset B0 of Config Unit, u7.0, default 0.

reserved2 reserved

struct ipu3_uapi_iefd_cux4
Calculate power of non-directed sharpening element.

Definition

struct ipu3_uapi_iefd_cux4 {
__u32 x0:9;
__u32 x1:9;
__u32 x2:9;
__u32 reserved0:5;
__u32 x3:9;
__u32 a01:9;
__u32 a12:9;
__u32 reserved1:5;
__u32 a23:9;
__u32 b01:8;

(continues on next page)

7.2. Part I - Video for Linux API 247

Linux Userspace-api Documentation

(continued from previous page)
__u32 b12:8;
__u32 reserved2:7;
__u32 b23:8;
__u32 reserved3:24;

};

Members
x0 X0 point of Config Unit, u9.0, default 0.

x1 X1 point of Config Unit, u9.0, default 0.

x2 X2 point of Config Unit, u9.0, default 0.

reserved0 reserved

x3 X3 point of Config Unit, u9.0, default 0.

a01 Slope A0 of Config Unit, s4.4, default 0.

a12 Slope A1 of Config Unit, s4.4, default 0.

reserved1 reserved

a23 Slope A2 of Config Unit, s4.4, default 0.

b01 Offset B0 of Config Unit, s7.0, default 0.

b12 Offset B1 of Config Unit, s7.0, default 0.

reserved2 reserved

b23 Offset B2 of Config Unit, s7.0, default 0.

reserved3 reserved

struct ipu3_uapi_iefd_cux6_rad
Radial Config Unit (CU)

Definition

struct ipu3_uapi_iefd_cux6_rad {
__u32 x0:8;
__u32 x1:8;
__u32 x2:8;
__u32 x3:8;
__u32 x4:8;
__u32 x5:8;
__u32 reserved1:16;
__u32 a01:16;
__u32 a12:16;
__u32 a23:16;
__u32 a34:16;
__u32 a45:16;
__u32 reserved2:16;
__u32 b01:10;
__u32 b12:10;
__u32 b23:10;
__u32 reserved4:2;
__u32 b34:10;

(continues on next page)

248 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
__u32 b45:10;
__u32 reserved5:12;

};

Members
x0 x0 points of Config Unit radial, u8.0

x1 x1 points of Config Unit radial, u8.0

x2 x2 points of Config Unit radial, u8.0

x3 x3 points of Config Unit radial, u8.0

x4 x4 points of Config Unit radial, u8.0

x5 x5 points of Config Unit radial, u8.0

reserved1 reserved

a01 Slope A of Config Unit radial, s7.8

a12 Slope A of Config Unit radial, s7.8

a23 Slope A of Config Unit radial, s7.8

a34 Slope A of Config Unit radial, s7.8

a45 Slope A of Config Unit radial, s7.8

reserved2 reserved

b01 Slope B of Config Unit radial, s9.0

b12 Slope B of Config Unit radial, s9.0

b23 Slope B of Config Unit radial, s9.0

reserved4 reserved

b34 Slope B of Config Unit radial, s9.0

b45 Slope B of Config Unit radial, s9.0

reserved5 reserved

struct ipu3_uapi_yuvp1_iefd_cfg_units
IEFd Config Units parameters

Definition

struct ipu3_uapi_yuvp1_iefd_cfg_units {
struct ipu3_uapi_iefd_cux2 cu_1;
struct ipu3_uapi_iefd_cux6_ed cu_ed;
struct ipu3_uapi_iefd_cux2 cu_3;
struct ipu3_uapi_iefd_cux2_1 cu_5;
struct ipu3_uapi_iefd_cux4 cu_6;
struct ipu3_uapi_iefd_cux2 cu_7;
struct ipu3_uapi_iefd_cux4 cu_unsharp;
struct ipu3_uapi_iefd_cux6_rad cu_radial;
struct ipu3_uapi_iefd_cux2 cu_vssnlm;

};

7.2. Part I - Video for Linux API 249

Linux Userspace-api Documentation

Members
cu_1 calculate weight for blending directed and non-directed denoise elements.

See ipu3_uapi_iefd_cux2

cu_ed calculate power of non-directed sharpening element, see
ipu3_uapi_iefd_cux6_ed

cu_3 calculate weight for blending directed and non-directed denoise elements.
A ipu3_uapi_iefd_cux2

cu_5 calculate power of non-directed denoise element apply, use
ipu3_uapi_iefd_cux2_1

cu_6 calculate power of non-directed sharpening element. See
ipu3_uapi_iefd_cux4

cu_7 calculate weight for blending directed and non-directed denoise elements.
Use ipu3_uapi_iefd_cux2

cu_unsharp Config Unit of unsharp ipu3_uapi_iefd_cux4

cu_radial Config Unit of radial ipu3_uapi_iefd_cux6_rad

cu_vssnlm Config Unit of vssnlm ipu3_uapi_iefd_cux2

struct ipu3_uapi_yuvp1_iefd_config_s
IEFd config

Definition

struct ipu3_uapi_yuvp1_iefd_config_s {
__u32 horver_diag_coeff:7;
__u32 reserved0:1;
__u32 clamp_stitch:6;
__u32 reserved1:2;
__u32 direct_metric_update:5;
__u32 reserved2:3;
__u32 ed_horver_diag_coeff:7;
__u32 reserved3:1;

};

Members
horver_diag_coeff Gradient compensation. Compared with vertical / horizontal

(0 / 90 degree), coefficient of diagonal (45 / 135 degree) direction should be
corrected by approx. 1/sqrt(2).

reserved0 reserved

clamp_stitch Slope to stitch between clamped and unclamped edge values

reserved1 reserved

direct_metric_update Update coeff for direction metric

reserved2 reserved

ed_horver_diag_coeff Radial Coefficient that compensates for different distance
for vertical/horizontal and diagonal gradient calculation (approx. 1/sqrt(2))

reserved3 reserved

250 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct ipu3_uapi_yuvp1_iefd_control
IEFd control

Definition

struct ipu3_uapi_yuvp1_iefd_control {
__u32 iefd_en:1;
__u32 denoise_en:1;
__u32 direct_smooth_en:1;
__u32 rad_en:1;
__u32 vssnlm_en:1;
__u32 reserved:27;

};

Members
iefd_en Enable IEFd

denoise_en Enable denoise

direct_smooth_en Enable directional smooth

rad_en Enable radial update

vssnlm_en Enable VSSNLM output filter

reserved reserved

struct ipu3_uapi_sharp_cfg
Sharpening config

Definition

struct ipu3_uapi_sharp_cfg {
__u32 nega_lmt_txt:13;
__u32 reserved0:19;
__u32 posi_lmt_txt:13;
__u32 reserved1:19;
__u32 nega_lmt_dir:13;
__u32 reserved2:19;
__u32 posi_lmt_dir:13;
__u32 reserved3:19;

};

Members
nega_lmt_txt Sharpening limit for negative overshoots for texture.

reserved0 reserved

posi_lmt_txt Sharpening limit for positive overshoots for texture.

reserved1 reserved

nega_lmt_dir Sharpening limit for negative overshoots for direction (edge).

reserved2 reserved

posi_lmt_dir Sharpening limit for positive overshoots for direction (edge).

reserved3 reserved

7.2. Part I - Video for Linux API 251

Linux Userspace-api Documentation

Description
Fixed point type u13.0, range [0, 8191].

struct ipu3_uapi_far_w
Sharpening config for far sub-group

Definition

struct ipu3_uapi_far_w {
__u32 dir_shrp:7;
__u32 reserved0:1;
__u32 dir_dns:7;
__u32 reserved1:1;
__u32 ndir_dns_powr:7;
__u32 reserved2:9;

};

Members
dir_shrp Weight of wide direct sharpening, u1.6, range [0, 64], default 64.

reserved0 reserved

dir_dns Weight of wide direct denoising, u1.6, range [0, 64], default 0.

reserved1 reserved

ndir_dns_powr Power of non-direct denoising, Precision u1.6, range [0, 64], de-
fault 64.

reserved2 reserved

struct ipu3_uapi_unsharp_cfg
Unsharp config

Definition

struct ipu3_uapi_unsharp_cfg {
__u32 unsharp_weight:7;
__u32 reserved0:1;
__u32 unsharp_amount:9;
__u32 reserved1:15;

};

Members
unsharp_weight Unsharp mask blending weight. u1.6, range [0, 64], default 16.

0 - disabled, 64 - use only unsharp.

reserved0 reserved

unsharp_amount Unsharp mask amount, u4.5, range [0, 511], default 0.

reserved1 reserved

struct ipu3_uapi_yuvp1_iefd_shrp_cfg
IEFd sharpness config

Definition

252 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct ipu3_uapi_yuvp1_iefd_shrp_cfg {
struct ipu3_uapi_sharp_cfg cfg;
struct ipu3_uapi_far_w far_w;
struct ipu3_uapi_unsharp_cfg unshrp_cfg;

};

Members
cfg sharpness config ipu3_uapi_sharp_cfg

far_w wide range config, value as specified by ipu3_uapi_far_w: The 5x5 envi-
ronment is separated into 2 sub-groups, the 3x3 nearest neighbors (8 pix-
els called Near), and the second order neighborhood around them (16 pixels
called Far).

unshrp_cfg unsharpness config. ipu3_uapi_unsharp_cfg

struct ipu3_uapi_unsharp_coef0
Unsharp mask coefficients

Definition

struct ipu3_uapi_unsharp_coef0 {
__u32 c00:9;
__u32 c01:9;
__u32 c02:9;
__u32 reserved:5;

};

Members
c00 Coeff11, s0.8, range [-255, 255], default 1.

c01 Coeff12, s0.8, range [-255, 255], default 5.

c02 Coeff13, s0.8, range [-255, 255], default 9.

reserved reserved

Description
Configurable registers for common sharpening support.

struct ipu3_uapi_unsharp_coef1
Unsharp mask coefficients

Definition

struct ipu3_uapi_unsharp_coef1 {
__u32 c11:9;
__u32 c12:9;
__u32 c22:9;
__u32 reserved:5;

};

Members
c11 Coeff22, s0.8, range [-255, 255], default 29.

c12 Coeff23, s0.8, range [-255, 255], default 55.

7.2. Part I - Video for Linux API 253

Linux Userspace-api Documentation

c22 Coeff33, s0.8, range [-255, 255], default 96.

reserved reserved

struct ipu3_uapi_yuvp1_iefd_unshrp_cfg
Unsharp mask config

Definition

struct ipu3_uapi_yuvp1_iefd_unshrp_cfg {
struct ipu3_uapi_unsharp_coef0 unsharp_coef0;
struct ipu3_uapi_unsharp_coef1 unsharp_coef1;

};

Members
unsharp_coef0 unsharp coefficient 0 config. See ipu3_uapi_unsharp_coef0

unsharp_coef1 unsharp coefficient 1 config. See ipu3_uapi_unsharp_coef1

struct ipu3_uapi_radial_reset_xy
Radial coordinate reset

Definition

struct ipu3_uapi_radial_reset_xy {
__s32 x:13;
__u32 reserved0:3;
__s32 y:13;
__u32 reserved1:3;

};

Members
x Radial reset of x coordinate. Precision s12, [-4095, 4095], default 0.

reserved0 reserved

y Radial center y coordinate. Precision s12, [-4095, 4095], default 0.

reserved1 reserved

struct ipu3_uapi_radial_reset_x2
Radial X^2 reset

Definition

struct ipu3_uapi_radial_reset_x2 {
__u32 x2:24;
__u32 reserved:8;

};

Members
x2 Radial reset of x^2 coordinate. Precision u24, default 0.

reserved reserved

struct ipu3_uapi_radial_reset_y2
Radial Y^2 reset

Definition

254 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct ipu3_uapi_radial_reset_y2 {
__u32 y2:24;
__u32 reserved:8;

};

Members
y2 Radial reset of y^2 coordinate. Precision u24, default 0.

reserved reserved

struct ipu3_uapi_radial_cfg
Radial config

Definition

struct ipu3_uapi_radial_cfg {
__u32 rad_nf:4;
__u32 reserved0:4;
__u32 rad_inv_r2:7;
__u32 reserved1:17;

};

Members
rad_nf Radial. R^2 normalization factor is scale down by 2^ - (15 + scale)

reserved0 reserved

rad_inv_r2 Radial R^-2 normelized to (0.5..1). Precision u7, range [0, 127].

reserved1 reserved

struct ipu3_uapi_rad_far_w
Radial FAR sub-group

Definition

struct ipu3_uapi_rad_far_w {
__u32 rad_dir_far_sharp_w:8;
__u32 rad_dir_far_dns_w:8;
__u32 rad_ndir_far_dns_power:8;
__u32 reserved:8;

};

Members
rad_dir_far_sharp_w Weight of wide direct sharpening, u1.6, range [0, 64], de-

fault 64.

rad_dir_far_dns_w Weight of wide direct denoising, u1.6, range [0, 64], default
0.

rad_ndir_far_dns_power power of non-direct sharpening, u1.6, range [0, 64],
default 0.

reserved reserved

struct ipu3_uapi_cu_cfg0
Radius Config Unit cfg0 register

7.2. Part I - Video for Linux API 255

Linux Userspace-api Documentation

Definition

struct ipu3_uapi_cu_cfg0 {
__u32 cu6_pow:7;
__u32 reserved0:1;
__u32 cu_unsharp_pow:7;
__u32 reserved1:1;
__u32 rad_cu6_pow:7;
__u32 reserved2:1;
__u32 rad_cu_unsharp_pow:6;
__u32 reserved3:2;

};

Members
cu6_pow Power of CU6. Power of non-direct sharpening, u3.4.

reserved0 reserved

cu_unsharp_pow Power of unsharp mask, u2.4.

reserved1 reserved

rad_cu6_pow Radial/corner CU6. Directed sharpening power, u3.4.

reserved2 reserved

rad_cu_unsharp_pow Radial power of unsharp mask, u2.4.

reserved3 reserved

struct ipu3_uapi_cu_cfg1
Radius Config Unit cfg1 register

Definition

struct ipu3_uapi_cu_cfg1 {
__u32 rad_cu6_x1:9;
__u32 reserved0:1;
__u32 rad_cu_unsharp_x1:9;
__u32 reserved1:13;

};

Members
rad_cu6_x1 X1 point of Config Unit 6, precision u9.0.

reserved0 reserved

rad_cu_unsharp_x1 X1 point for Config Unit unsharp for radial/corner point pre-
cision u9.0.

reserved1 reserved

struct ipu3_uapi_yuvp1_iefd_rad_cfg
IEFd parameters changed radially over the picture plane.

Definition

struct ipu3_uapi_yuvp1_iefd_rad_cfg {
struct ipu3_uapi_radial_reset_xy reset_xy;

(continues on next page)

256 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
struct ipu3_uapi_radial_reset_x2 reset_x2;
struct ipu3_uapi_radial_reset_y2 reset_y2;
struct ipu3_uapi_radial_cfg cfg;
struct ipu3_uapi_rad_far_w rad_far_w;
struct ipu3_uapi_cu_cfg0 cu_cfg0;
struct ipu3_uapi_cu_cfg1 cu_cfg1;

};

Members
reset_xy reset xy value in radial calculation. ipu3_uapi_radial_reset_xy

reset_x2 reset x square value in radial calculation. See struct
ipu3_uapi_radial_reset_x2

reset_y2 reset y square value in radial calculation. See struct
ipu3_uapi_radial_reset_y2

cfg radial config defined in ipu3_uapi_radial_cfg

rad_far_w weight for wide range radial. ipu3_uapi_rad_far_w

cu_cfg0 configuration unit 0. See ipu3_uapi_cu_cfg0

cu_cfg1 configuration unit 1. See ipu3_uapi_cu_cfg1

struct ipu3_uapi_vss_lut_x
Vssnlm LUT x0/x1/x2

Definition

struct ipu3_uapi_vss_lut_x {
__u32 vs_x0:8;
__u32 vs_x1:8;
__u32 vs_x2:8;
__u32 reserved2:8;

};

Members
vs_x0 Vssnlm LUT x0, precision u8, range [0, 255], default 16.

vs_x1 Vssnlm LUT x1, precision u8, range [0, 255], default 32.

vs_x2 Vssnlm LUT x2, precision u8, range [0, 255], default 64.

reserved2 reserved

struct ipu3_uapi_vss_lut_y
Vssnlm LUT y0/y1/y2

Definition

struct ipu3_uapi_vss_lut_y {
__u32 vs_y1:4;
__u32 reserved0:4;
__u32 vs_y2:4;
__u32 reserved1:4;
__u32 vs_y3:4;

(continues on next page)

7.2. Part I - Video for Linux API 257

Linux Userspace-api Documentation

(continued from previous page)
__u32 reserved2:12;

};

Members
vs_y1 Vssnlm LUT y1, precision u4, range [0, 8], default 1.

reserved0 reserved

vs_y2 Vssnlm LUT y2, precision u4, range [0, 8], default 3.

reserved1 reserved

vs_y3 Vssnlm LUT y3, precision u4, range [0, 8], default 8.

reserved2 reserved

struct ipu3_uapi_yuvp1_iefd_vssnlm_cfg
IEFd Vssnlm Lookup table

Definition

struct ipu3_uapi_yuvp1_iefd_vssnlm_cfg {
struct ipu3_uapi_vss_lut_x vss_lut_x;
struct ipu3_uapi_vss_lut_y vss_lut_y;

};

Members
vss_lut_x vss lookup table. See ipu3_uapi_vss_lut_x description

vss_lut_y vss lookup table. See ipu3_uapi_vss_lut_y description

struct ipu3_uapi_yuvp1_iefd_config
IEFd config

Definition

struct ipu3_uapi_yuvp1_iefd_config {
struct ipu3_uapi_yuvp1_iefd_cfg_units units;
struct ipu3_uapi_yuvp1_iefd_config_s config;
struct ipu3_uapi_yuvp1_iefd_control control;
struct ipu3_uapi_yuvp1_iefd_shrp_cfg sharp;
struct ipu3_uapi_yuvp1_iefd_unshrp_cfg unsharp;
struct ipu3_uapi_yuvp1_iefd_rad_cfg rad;
struct ipu3_uapi_yuvp1_iefd_vssnlm_cfg vsslnm;

};

Members
units configuration unit setting, ipu3_uapi_yuvp1_iefd_cfg_units

config configuration, as defined by ipu3_uapi_yuvp1_iefd_config_s

control control setting, as defined by ipu3_uapi_yuvp1_iefd_control

sharp sharpness setting, as defined by ipu3_uapi_yuvp1_iefd_shrp_cfg

unsharp unsharpness setting, as defined by ipu3_uapi_yuvp1_iefd_unshrp_cfg

rad radial setting, as defined by ipu3_uapi_yuvp1_iefd_rad_cfg

258 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

vsslnm vsslnm setting, as defined by ipu3_uapi_yuvp1_iefd_vssnlm_cfg

struct ipu3_uapi_yuvp1_yds_config
Y Down-Sampling config

Definition

struct ipu3_uapi_yuvp1_yds_config {
__u32 c00:2;
__u32 c01:2;
__u32 c02:2;
__u32 c03:2;
__u32 c10:2;
__u32 c11:2;
__u32 c12:2;
__u32 c13:2;
__u32 norm_factor:5;
__u32 reserved0:4;
__u32 bin_output:1;
__u32 reserved1:6;

};

Members
c00 range [0, 3], default 0x0

c01 range [0, 3], default 0x1

c02 range [0, 3], default 0x1

c03 range [0, 3], default 0x0

c10 range [0, 3], default 0x0

c11 range [0, 3], default 0x1

c12 range [0, 3], default 0x1

c13 range [0, 3], default 0x0

norm_factor Normalization factor, range [0, 4], default 2 0 - divide by 1 1 - divide
by 2 2 - divide by 4 3 - divide by 8 4 - divide by 16

reserved0 reserved

bin_output Down sampling on Luma channel in two optional modes 0 - Bin output
4.2.0 (default), 1 output 4.2.2.

reserved1 reserved

Description
Above are 4x2 filter coefficients for chroma output downscaling.

struct ipu3_uapi_yuvp1_chnr_enable_config
Chroma noise reduction enable

Definition

struct ipu3_uapi_yuvp1_chnr_enable_config {
__u32 enable:1;
__u32 yuv_mode:1;

(continues on next page)

7.2. Part I - Video for Linux API 259

Linux Userspace-api Documentation

(continued from previous page)
__u32 reserved0:14;
__u32 col_size:12;
__u32 reserved1:4;

};

Members
enable enable/disable chroma noise reduction

yuv_mode 0 - YUV420, 1 - YUV422

reserved0 reserved

col_size number of columns in the frame, max width is 2560

reserved1 reserved

struct ipu3_uapi_yuvp1_chnr_coring_config
Coring thresholds for UV

Definition

struct ipu3_uapi_yuvp1_chnr_coring_config {
__u32 u:13;
__u32 reserved0:3;
__u32 v:13;
__u32 reserved1:3;

};

Members
u U coring level, u0.13, range [0.0, 1.0], default 0.0

reserved0 reserved

v V coring level, u0.13, range [0.0, 1.0], default 0.0

reserved1 reserved

struct ipu3_uapi_yuvp1_chnr_sense_gain_config
Chroma noise reduction gains

Definition

struct ipu3_uapi_yuvp1_chnr_sense_gain_config {
__u32 vy:8;
__u32 vu:8;
__u32 vv:8;
__u32 reserved0:8;
__u32 hy:8;
__u32 hu:8;
__u32 hv:8;
__u32 reserved1:8;

};

Members
vy Sensitivity of horizontal edge of Y, default 100

vu Sensitivity of horizontal edge of U, default 100

260 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

vv Sensitivity of horizontal edge of V, default 100

reserved0 reserved

hy Sensitivity of vertical edge of Y, default 50

hu Sensitivity of vertical edge of U, default 50

hv Sensitivity of vertical edge of V, default 50

reserved1 reserved

Description
All sensitivity gain parameters have precision u13.0, range [0, 8191].

struct ipu3_uapi_yuvp1_chnr_iir_fir_config
Chroma IIR/FIR filter config

Definition

struct ipu3_uapi_yuvp1_chnr_iir_fir_config {
__u32 fir_0h:6;
__u32 reserved0:2;
__u32 fir_1h:6;
__u32 reserved1:2;
__u32 fir_2h:6;
__u32 dalpha_clip_val:9;
__u32 reserved2:1;

};

Members
fir_0h Value of center tap in horizontal FIR, range [0, 32], default 8.

reserved0 reserved

fir_1h Value of distance 1 in horizontal FIR, range [0, 32], default 12.

reserved1 reserved

fir_2h Value of distance 2 tap in horizontal FIR, range [0, 32], default 0.

dalpha_clip_val weight for previous row in IIR, range [1, 256], default 0.

reserved2 reserved

struct ipu3_uapi_yuvp1_chnr_config
Chroma noise reduction config

Definition

struct ipu3_uapi_yuvp1_chnr_config {
struct ipu3_uapi_yuvp1_chnr_enable_config enable;
struct ipu3_uapi_yuvp1_chnr_coring_config coring;
struct ipu3_uapi_yuvp1_chnr_sense_gain_config sense_gain;
struct ipu3_uapi_yuvp1_chnr_iir_fir_config iir_fir;

};

Members
enable chroma noise reduction enable, see ipu3_uapi_yuvp1_chnr_enable_config

7.2. Part I - Video for Linux API 261

Linux Userspace-api Documentation

coring coring config for chroma noise reduction, see
ipu3_uapi_yuvp1_chnr_coring_config

sense_gain sensitivity config for chroma noise reduction, see
ipu3_uapi_yuvp1_chnr_sense_gain_config

iir_fir iir and fir config for chroma noise reduction, see
ipu3_uapi_yuvp1_chnr_iir_fir_config

struct ipu3_uapi_yuvp1_y_ee_nr_lpf_config
Luma(Y) edge enhancement low-pass filter coefficients

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_lpf_config {
__u32 a_diag:5;
__u32 reserved0:3;
__u32 a_periph:5;
__u32 reserved1:3;
__u32 a_cent:5;
__u32 reserved2:9;
__u32 enable:1;

};

Members
a_diag Smoothing diagonal coefficient, u5.0.

reserved0 reserved

a_periph Image smoothing perpherial, u5.0.

reserved1 reserved

a_cent Image Smoothing center coefficient, u5.0.

reserved2 reserved

enable 0: Y_EE_NR disabled, output = input; 1: Y_EE_NR enabled.

struct ipu3_uapi_yuvp1_y_ee_nr_sense_config
Luma(Y) edge enhancement noise reduction sensitivity gains

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_sense_config {
__u32 edge_sense_0:13;
__u32 reserved0:3;
__u32 delta_edge_sense:13;
__u32 reserved1:3;
__u32 corner_sense_0:13;
__u32 reserved2:3;
__u32 delta_corner_sense:13;
__u32 reserved3:3;

};

Members
edge_sense_0 Sensitivity of edge in dark area. u13.0, default 8191.

reserved0 reserved

262 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

delta_edge_sense Difference in the sensitivity of edges between the bright and
dark areas. u13.0, default 0.

reserved1 reserved

corner_sense_0 Sensitivity of corner in dark area. u13.0, default 0.

reserved2 reserved

delta_corner_sense Difference in the sensitivity of corners between the bright
and dark areas. u13.0, default 8191.

reserved3 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_gain_config
Luma(Y) edge enhancement noise reduction gain config

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_gain_config {
__u32 gain_pos_0:5;
__u32 reserved0:3;
__u32 delta_gain_posi:5;
__u32 reserved1:3;
__u32 gain_neg_0:5;
__u32 reserved2:3;
__u32 delta_gain_neg:5;
__u32 reserved3:3;

};

Members
gain_pos_0 Gain for positive edge in dark area. u5.0, [0, 16], default 2.

reserved0 reserved

delta_gain_posi Difference in the gain of edges between the bright and dark
areas for positive edges. u5.0, [0, 16], default 0.

reserved1 reserved

gain_neg_0 Gain for negative edge in dark area. u5.0, [0, 16], default 8.

reserved2 reserved

delta_gain_neg Difference in the gain of edges between the bright and dark areas
for negative edges. u5.0, [0, 16], default 0.

reserved3 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_clip_config
Luma(Y) edge enhancement noise reduction clipping config

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_clip_config {
__u32 clip_pos_0:5;
__u32 reserved0:3;
__u32 delta_clip_posi:5;
__u32 reserved1:3;
__u32 clip_neg_0:5;

(continues on next page)

7.2. Part I - Video for Linux API 263

Linux Userspace-api Documentation

(continued from previous page)
__u32 reserved2:3;
__u32 delta_clip_neg:5;
__u32 reserved3:3;

};

Members
clip_pos_0 Limit of positive edge in dark area u5, value [0, 16], default 8.

reserved0 reserved

delta_clip_posi Difference in the limit of edges between the bright and dark
areas for positive edges. u5, value [0, 16], default 8.

reserved1 reserved

clip_neg_0 Limit of negative edge in dark area u5, value [0, 16], default 8.

reserved2 reserved

delta_clip_neg Difference in the limit of edges between the bright and dark ar-
eas for negative edges. u5, value [0, 16], default 8.

reserved3 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_frng_config
Luma(Y) edge enhancement noise reduction fringe config

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_frng_config {
__u32 gain_exp:4;
__u32 reserved0:28;
__u32 min_edge:13;
__u32 reserved1:3;
__u32 lin_seg_param:4;
__u32 reserved2:4;
__u32 t1:1;
__u32 t2:1;
__u32 reserved3:6;

};

Members
gain_exp Common exponent of gains, u4, [0, 8], default 2.

reserved0 reserved

min_edge Threshold for edge and smooth stitching, u13.

reserved1 reserved

lin_seg_param Power of LinSeg, u4.

reserved2 reserved

t1 Parameter for enabling/disabling the edge enhancement, u1.0, [0, 1], default
1.

t2 Parameter for enabling/disabling the smoothing, u1.0, [0, 1], default 1.

264 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

reserved3 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_diag_config
Luma(Y) edge enhancement noise reduction diagonal config

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_diag_config {
__u32 diag_disc_g:4;
__u32 reserved0:4;
__u32 hvw_hor:4;
__u32 dw_hor:4;
__u32 hvw_diag:4;
__u32 dw_diag:4;
__u32 reserved1:8;

};

Members
diag_disc_g Coefficient that prioritize diagonal edge direction on horizontal or

vertical for final enhancement. u4.0, [1, 15], default 1.

reserved0 reserved

hvw_hor Weight of horizontal/vertical edge enhancement for hv edge. u2.2, [1,
15], default 4.

dw_hor Weight of diagonal edge enhancement for hv edge. u2.2, [1, 15], default
1.

hvw_diag Weight of horizontal/vertical edge enhancement for diagonal edge.
u2.2, [1, 15], default 1.

dw_diag Weight of diagonal edge enhancement for diagonal edge. u2.2, [1, 15],
default 4.

reserved1 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config
Luma(Y) edge enhancement noise reduction false color correction (FCC) cor-
ing config

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config {
__u32 pos_0:13;
__u32 reserved0:3;
__u32 pos_delta:13;
__u32 reserved1:3;
__u32 neg_0:13;
__u32 reserved2:3;
__u32 neg_delta:13;
__u32 reserved3:3;

};

Members
pos_0 Gain for positive edge in dark, u13.0, [0, 16], default 0.

reserved0 reserved

7.2. Part I - Video for Linux API 265

Linux Userspace-api Documentation

pos_delta Gain for positive edge in bright, value: pos_0 + pos_delta <=16 u13.0,
default 0.

reserved1 reserved

neg_0 Gain for negative edge in dark area, u13.0, range [0, 16], default 0.

reserved2 reserved

neg_delta Gain for negative edge in bright area. neg_0 + neg_delta <=16 u13.0,
default 0.

reserved3 reserved

Description
Coring is a simple soft thresholding technique.

struct ipu3_uapi_yuvp1_y_ee_nr_config
Edge enhancement and noise reduction

Definition

struct ipu3_uapi_yuvp1_y_ee_nr_config {
struct ipu3_uapi_yuvp1_y_ee_nr_lpf_config lpf;
struct ipu3_uapi_yuvp1_y_ee_nr_sense_config sense;
struct ipu3_uapi_yuvp1_y_ee_nr_gain_config gain;
struct ipu3_uapi_yuvp1_y_ee_nr_clip_config clip;
struct ipu3_uapi_yuvp1_y_ee_nr_frng_config frng;
struct ipu3_uapi_yuvp1_y_ee_nr_diag_config diag;
struct ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config fc_coring;

};

Members
lpf low-pass filter config. See ipu3_uapi_yuvp1_y_ee_nr_lpf_config

sense sensitivity config. See ipu3_uapi_yuvp1_y_ee_nr_sense_config

gain gain config as defined in ipu3_uapi_yuvp1_y_ee_nr_gain_config

clip clip config as defined in ipu3_uapi_yuvp1_y_ee_nr_clip_config

frng fringe config as defined in ipu3_uapi_yuvp1_y_ee_nr_frng_config

diag diagonal edge config. See ipu3_uapi_yuvp1_y_ee_nr_diag_config

fc_coring coring config for fringe control. See
ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config

struct ipu3_uapi_yuvp2_tcc_gen_control_static_config
Total color correction general control config

Definition

struct ipu3_uapi_yuvp2_tcc_gen_control_static_config {
__u32 en:1;
__u32 blend_shift:3;
__u32 gain_according_to_y_only:1;
__u32 reserved0:11;
__s32 gamma:5;
__u32 reserved1:3;

(continues on next page)

266 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
__s32 delta:5;
__u32 reserved2:3;

};

Members
en 0 - TCC disabled. Output = input 1 - TCC enabled.

blend_shift blend shift, Range[3, 4], default NA.

gain_according_to_y_only 0: Gain is calculated according to YUV, 1: Gain is
calculated according to Y only

reserved0 reserved

gamma Final blending coefficients. Values[-16, 16], default NA.

reserved1 reserved

delta Final blending coefficients. Values[-16, 16], default NA.

reserved2 reserved

struct ipu3_uapi_yuvp2_tcc_macc_elem_static_config
Total color correction multi-axis color control (MACC) config

Definition

struct ipu3_uapi_yuvp2_tcc_macc_elem_static_config {
__s32 a:12;
__u32 reserved0:4;
__s32 b:12;
__u32 reserved1:4;
__s32 c:12;
__u32 reserved2:4;
__s32 d:12;
__u32 reserved3:4;

};

Members
a a coefficient for 2x2 MACC conversion matrix.

reserved0 reserved

b b coefficient 2x2 MACC conversion matrix.

reserved1 reserved

c c coefficient for 2x2 MACC conversion matrix.

reserved2 reserved

d d coefficient for 2x2 MACC conversion matrix.

reserved3 reserved

struct ipu3_uapi_yuvp2_tcc_macc_table_static_config
Total color correction multi-axis color control (MACC) table array

Definition

7.2. Part I - Video for Linux API 267

Linux Userspace-api Documentation

struct ipu3_uapi_yuvp2_tcc_macc_table_static_config {
struct ipu3_uapi_yuvp2_tcc_macc_elem_static_config entries[IPU3_UAPI_

↪→YUVP2_TCC_MACC_TABLE_ELEMENTS];
};

Members
entries config for multi axis color correction, as specified by

ipu3_uapi_yuvp2_tcc_macc_elem_static_config

struct ipu3_uapi_yuvp2_tcc_inv_y_lut_static_config
Total color correction inverse y lookup table

Definition

struct ipu3_uapi_yuvp2_tcc_inv_y_lut_static_config {
__u16 entries[IPU3_UAPI_YUVP2_TCC_INV_Y_LUT_ELEMENTS];

};

Members
entries lookup table for inverse y estimation, and use it to estimate the ratio

between luma and chroma. Chroma by approximate the absolute value of the
radius on the chroma plane (R = sqrt(u^2+v^2)) and luma by approximate
by 1/Y.

struct ipu3_uapi_yuvp2_tcc_gain_pcwl_lut_static_config
Total color correction lookup table for PCWL

Definition

struct ipu3_uapi_yuvp2_tcc_gain_pcwl_lut_static_config {
__u16 entries[IPU3_UAPI_YUVP2_TCC_GAIN_PCWL_LUT_ELEMENTS];

};

Members
entries lookup table for gain piece wise linear transformation (PCWL)

struct ipu3_uapi_yuvp2_tcc_r_sqr_lut_static_config
Total color correction lookup table for r square root

Definition

struct ipu3_uapi_yuvp2_tcc_r_sqr_lut_static_config {
__s16 entries[IPU3_UAPI_YUVP2_TCC_R_SQR_LUT_ELEMENTS];

};

Members
entries lookup table for r square root estimation

struct ipu3_uapi_yuvp2_tcc_static_config
Total color correction static

Definition

268 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct ipu3_uapi_yuvp2_tcc_static_config {
struct ipu3_uapi_yuvp2_tcc_gen_control_static_config gen_control;
struct ipu3_uapi_yuvp2_tcc_macc_table_static_config macc_table;
struct ipu3_uapi_yuvp2_tcc_inv_y_lut_static_config inv_y_lut;
struct ipu3_uapi_yuvp2_tcc_gain_pcwl_lut_static_config gain_pcwl;
struct ipu3_uapi_yuvp2_tcc_r_sqr_lut_static_config r_sqr_lut;

};

Members
gen_control general config for Total Color Correction

macc_table config for multi axis color correction

inv_y_lut lookup table for inverse y estimation

gain_pcwl lookup table for gain PCWL

r_sqr_lut lookup table for r square root estimation.

struct ipu3_uapi_anr_transform_config
Advanced noise reduction transform

Definition

struct ipu3_uapi_anr_transform_config {
__u32 enable:1;
__u32 adaptive_treshhold_en:1;
__u32 reserved1:30;
__u8 reserved2[44];
struct ipu3_uapi_anr_alpha alpha[3];
struct ipu3_uapi_anr_beta beta[3];
struct ipu3_uapi_anr_plane_color color[3];
__u16 sqrt_lut[IPU3_UAPI_ANR_LUT_SIZE];
__s16 xreset:13;
__u16 reserved3:3;
__s16 yreset:13;
__u16 reserved4:3;
__u32 x_sqr_reset:24;
__u32 r_normfactor:5;
__u32 reserved5:3;
__u32 y_sqr_reset:24;
__u32 gain_scale:8;

};

Members
enable advanced noise reduction enabled.

adaptive_treshhold_en On IPU3, adaptive threshold is always enabled.

reserved1 reserved

reserved2 reserved

alpha using following defaults: 13, 13, 13, 13, 0, 0, 0, 0 11, 11, 11, 11, 0, 0, 0, 0
14, 14, 14, 14, 0, 0, 0, 0

beta use following defaults: 24, 24, 24, 24 21, 20, 20, 21 25, 25, 25, 25

color use defaults defined in driver/media/pci/intel/ipu3-tables.c

7.2. Part I - Video for Linux API 269

Linux Userspace-api Documentation

sqrt_lut 11 bits per element, values = [724 768 810 849 887 923 958 991 1024
1056 1116 1145 1173 1201 1086 1228 1254 1280 1305 1330 1355 1379 1402
1425 1448]

xreset Reset value of X for r^2 calculation Value: col_start-X_center Constraint:
Xreset + FrameWdith=4095 Xreset= -4095, default -1632.

reserved3 reserved

yreset Reset value of Y for r^2 calculation Value: row_start-Y_center Constraint:
Yreset + FrameHeight=4095 Yreset= -4095, default -1224.

reserved4 reserved

x_sqr_reset Reset value of X^2 for r^2 calculation Value = (Xreset)^2

r_normfactor Normalization factor for R. Default 14.

reserved5 reserved

y_sqr_reset Reset value of Y^2 for r^2 calculation Value = (Yreset)^2

gain_scale Parameter describing shading gain as a function of distance from the
image center. A single value per frame, loaded by the driver. Default 115.

struct ipu3_uapi_anr_stitch_pyramid
ANR stitch pyramid

Definition

struct ipu3_uapi_anr_stitch_pyramid {
__u32 entry0:6;
__u32 entry1:6;
__u32 entry2:6;
__u32 reserved:14;

};

Members
entry0 pyramid LUT entry0, range [0x0, 0x3f]

entry1 pyramid LUT entry1, range [0x0, 0x3f]

entry2 pyramid LUT entry2, range [0x0, 0x3f]

reserved reserved

struct ipu3_uapi_anr_stitch_config
ANR stitch config

Definition

struct ipu3_uapi_anr_stitch_config {
__u32 anr_stitch_en;
__u8 reserved[44];
struct ipu3_uapi_anr_stitch_pyramid pyramid[IPU3_UAPI_ANR_PYRAMID_SIZE];

};

Members
anr_stitch_en enable stitch. Enabled with 1.

reserved reserved

270 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

pyramid pyramid table as defined by ipu3_uapi_anr_stitch_pyramid default val-
ues: { 1, 3, 5 }, { 7, 7, 5 }, { 3, 1, 3 }, { 9, 15, 21 }, { 21, 15, 9 }, { 3, 5, 15
}, { 25, 35, 35 }, { 25, 15, 5 }, { 7, 21, 35 }, { 49, 49, 35 }, { 21, 7, 7 }, { 21,
35, 49 }, { 49, 35, 21 }, { 7, 5, 15 }, { 25, 35, 35 }, { 25, 15, 5 }, { 3, 9, 15
}, { 21, 21, 15 }, { 9, 3, 1 }, { 3, 5, 7 }, { 7, 5, 3}, { 1 }

struct ipu3_uapi_anr_config
ANR config

Definition

struct ipu3_uapi_anr_config {
struct ipu3_uapi_anr_transform_config transform ;
struct ipu3_uapi_anr_stitch_config stitch ;

};

Members
transform advanced noise reduction transform config as specified by

ipu3_uapi_anr_transform_config

stitch create 4x4 patch from 4 surrounding 8x8 patches.

struct ipu3_uapi_acc_param
Accelerator cluster parameters

Definition

struct ipu3_uapi_acc_param {
struct ipu3_uapi_bnr_static_config bnr;
struct ipu3_uapi_bnr_static_config_green_disparity green_disparity ;
struct ipu3_uapi_dm_config dm ;
struct ipu3_uapi_ccm_mat_config ccm ;
struct ipu3_uapi_gamma_config gamma ;
struct ipu3_uapi_csc_mat_config csc ;
struct ipu3_uapi_cds_params cds ;
struct ipu3_uapi_shd_config shd ;
struct ipu3_uapi_yuvp1_iefd_config iefd ;
struct ipu3_uapi_yuvp1_yds_config yds_c0 ;
struct ipu3_uapi_yuvp1_chnr_config chnr_c0 ;
struct ipu3_uapi_yuvp1_y_ee_nr_config y_ee_nr ;
struct ipu3_uapi_yuvp1_yds_config yds ;
struct ipu3_uapi_yuvp1_chnr_config chnr ;
struct ipu3_uapi_yuvp1_yds_config yds2 ;
struct ipu3_uapi_yuvp2_tcc_static_config tcc ;
struct ipu3_uapi_anr_config anr;
struct ipu3_uapi_awb_fr_config_s awb_fr;
struct ipu3_uapi_ae_config ae;
struct ipu3_uapi_af_config_s af;
struct ipu3_uapi_awb_config awb;

};

Members
bnr parameters for bayer noise reduction static config. See

ipu3_uapi_bnr_static_config

green_disparity disparity static config between gr and gb channel. See
ipu3_uapi_bnr_static_config_green_disparity

7.2. Part I - Video for Linux API 271

Linux Userspace-api Documentation

dm de-mosaic config. See ipu3_uapi_dm_config

ccm color correction matrix. See ipu3_uapi_ccm_mat_config

gamma gamma correction config. See ipu3_uapi_gamma_config

csc color space conversion matrix. See ipu3_uapi_csc_mat_config

cds color down sample config. See ipu3_uapi_cds_params

shd lens shading correction config. See ipu3_uapi_shd_config

iefd Image enhancement filter and denoise config.
ipu3_uapi_yuvp1_iefd_config

yds_c0 y down scaler config. ipu3_uapi_yuvp1_yds_config

chnr_c0 chroma noise reduction config. ipu3_uapi_yuvp1_chnr_config

y_ee_nr y edge enhancement and noise reduction config.
ipu3_uapi_yuvp1_y_ee_nr_config

yds y down scaler config. See ipu3_uapi_yuvp1_yds_config

chnr chroma noise reduction config. See ipu3_uapi_yuvp1_chnr_config

yds2 y channel down scaler config. See ipu3_uapi_yuvp1_yds_config

tcc total color correction config as defined in struct
ipu3_uapi_yuvp2_tcc_static_config

anr advanced noise reduction config.See ipu3_uapi_anr_config

awb_fr AWB filter response config. See ipu3_uapi_awb_fr_config

ae auto exposure config As specified by ipu3_uapi_ae_config

af auto focus config. As specified by ipu3_uapi_af_config

awb auto white balance config. As specified by ipu3_uapi_awb_config

Description
ACC refers to the HW cluster containing all Fixed Functions (FFs). Each FF im-
plements a specific algorithm.

struct ipu3_uapi_isp_lin_vmem_params
Linearization parameters

Definition

struct ipu3_uapi_isp_lin_vmem_params {
__s16 lin_lutlow_gr[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutlow_r[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutlow_b[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutlow_gb[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutdif_gr[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutdif_r[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutdif_b[IPU3_UAPI_LIN_LUT_SIZE];
__s16 lin_lutdif_gb[IPU3_UAPI_LIN_LUT_SIZE];

};

Members

272 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

lin_lutlow_gr linearization look-up table for GR channel interpolation.

lin_lutlow_r linearization look-up table for R channel interpolation.

lin_lutlow_b linearization look-up table for B channel interpolation.

lin_lutlow_gb linearization look-up table for GB channel interpolation.
lin_lutlow_gr / lin_lutlow_r / lin_lutlow_b / lin_lutlow_gb <= LIN_MAX_VALUE
- 1.

lin_lutdif_gr lin_lutlow_gr[i+1] - lin_lutlow_gr[i].

lin_lutdif_r lin_lutlow_r[i+1] - lin_lutlow_r[i].

lin_lutdif_b lin_lutlow_b[i+1] - lin_lutlow_b[i].

lin_lutdif_gb lin_lutlow_gb[i+1] - lin_lutlow_gb[i].

struct ipu3_uapi_isp_tnr3_vmem_params
Temporal noise reduction vector memory parameters

Definition

struct ipu3_uapi_isp_tnr3_vmem_params {
__u16 slope[IPU3_UAPI_ISP_TNR3_VMEM_LEN];
__u16 reserved1[IPU3_UAPI_ISP_VEC_ELEMS - IPU3_UAPI_ISP_TNR3_VMEM_LEN];
__u16 sigma[IPU3_UAPI_ISP_TNR3_VMEM_LEN];
__u16 reserved2[IPU3_UAPI_ISP_VEC_ELEMS - IPU3_UAPI_ISP_TNR3_VMEM_LEN];

};

Members
slope slope setting in interpolation curve for temporal noise reduction.

reserved1 reserved

sigma knee point setting in interpolation curve for temporal noise reduction.

reserved2 reserved

struct ipu3_uapi_isp_tnr3_params
Temporal noise reduction v3 parameters

Definition

struct ipu3_uapi_isp_tnr3_params {
__u32 knee_y1;
__u32 knee_y2;
__u32 maxfb_y;
__u32 maxfb_u;
__u32 maxfb_v;
__u32 round_adj_y;
__u32 round_adj_u;
__u32 round_adj_v;
__u32 ref_buf_select;

};

Members
knee_y1 Knee point TNR3 assumes standard deviation of Y,U and V at Y1 are

TnrY1_Sigma_Y, U and V.

7.2. Part I - Video for Linux API 273

Linux Userspace-api Documentation

knee_y2 Knee point TNR3 assumes standard deviation of Y,U and V at Y2 are
TnrY2_Sigma_Y, U and V.

maxfb_y Max feedback gain for Y

maxfb_u Max feedback gain for U

maxfb_v Max feedback gain for V

round_adj_y rounding Adjust for Y

round_adj_u rounding Adjust for U

round_adj_v rounding Adjust for V

ref_buf_select selection of the reference frame buffer to be used.

struct ipu3_uapi_isp_xnr3_vmem_params
Extreme noise reduction v3 vector memory parameters

Definition

struct ipu3_uapi_isp_xnr3_vmem_params {
__u16 x[IPU3_UAPI_ISP_VEC_ELEMS];
__u16 a[IPU3_UAPI_ISP_VEC_ELEMS];
__u16 b[IPU3_UAPI_ISP_VEC_ELEMS];
__u16 c[IPU3_UAPI_ISP_VEC_ELEMS];

};

Members
x xnr3 parameters.

a xnr3 parameters.

b xnr3 parameters.

c xnr3 parameters.

struct ipu3_uapi_xnr3_alpha_params
Extreme noise reduction v3 alpha tuning parameters

Definition

struct ipu3_uapi_xnr3_alpha_params {
__u32 y0;
__u32 u0;
__u32 v0;
__u32 ydiff;
__u32 udiff;
__u32 vdiff;

};

Members
y0 Sigma for Y range similarity in dark area.

u0 Sigma for U range similarity in dark area.

v0 Sigma for V range similarity in dark area.

ydiff Sigma difference for Y between bright area and dark area.

274 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

udiff Sigma difference for U between bright area and dark area.

vdiff Sigma difference for V between bright area and dark area.

struct ipu3_uapi_xnr3_coring_params
Extreme noise reduction v3 coring parameters

Definition

struct ipu3_uapi_xnr3_coring_params {
__u32 u0;
__u32 v0;
__u32 udiff;
__u32 vdiff;

};

Members
u0 Coring Threshold of U channel in dark area.

v0 Coring Threshold of V channel in dark area.

udiff Threshold difference of U channel between bright and dark area.

vdiff Threshold difference of V channel between bright and dark area.

struct ipu3_uapi_xnr3_blending_params
Blending factor

Definition

struct ipu3_uapi_xnr3_blending_params {
__u32 strength;

};

Members
strength The factor for blending output with input. This is tuning parameter-

Higher values lead to more aggressive XNR operation.

struct ipu3_uapi_isp_xnr3_params
Extreme noise reduction v3 parameters

Definition

struct ipu3_uapi_isp_xnr3_params {
struct ipu3_uapi_xnr3_alpha_params alpha;
struct ipu3_uapi_xnr3_coring_params coring;
struct ipu3_uapi_xnr3_blending_params blending;

};

Members
alpha parameters for xnr3 alpha. See ipu3_uapi_xnr3_alpha_params

coring parameters for xnr3 coring. See ipu3_uapi_xnr3_coring_params

blending parameters for xnr3 blending. See ipu3_uapi_xnr3_blending_params

struct ipu3_uapi_obgrid_param
Optical black level compensation parameters

7.2. Part I - Video for Linux API 275

Linux Userspace-api Documentation

Definition

struct ipu3_uapi_obgrid_param {
__u16 gr;
__u16 r;
__u16 b;
__u16 gb;

};

Members
gr Grid table values for color GR

r Grid table values for color R

b Grid table values for color B

gb Grid table values for color GB

Description
Black level is different for red, green, and blue channels. So black level compen-
sation is different per channel.

struct ipu3_uapi_flags
bits to indicate which pipeline needs update

Definition

struct ipu3_uapi_flags {
__u32 gdc:1;
__u32 obgrid:1;
__u32 reserved1:30;
__u32 acc_bnr:1;
__u32 acc_green_disparity:1;
__u32 acc_dm:1;
__u32 acc_ccm:1;
__u32 acc_gamma:1;
__u32 acc_csc:1;
__u32 acc_cds:1;
__u32 acc_shd:1;
__u32 reserved2:2;
__u32 acc_iefd:1;
__u32 acc_yds_c0:1;
__u32 acc_chnr_c0:1;
__u32 acc_y_ee_nr:1;
__u32 acc_yds:1;
__u32 acc_chnr:1;
__u32 acc_ytm:1;
__u32 acc_yds2:1;
__u32 acc_tcc:1;
__u32 acc_dpc:1;
__u32 acc_bds:1;
__u32 acc_anr:1;
__u32 acc_awb_fr:1;
__u32 acc_ae:1;
__u32 acc_af:1;
__u32 acc_awb:1;
__u32 reserved3:4;

(continues on next page)

276 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
__u32 lin_vmem_params:1;
__u32 tnr3_vmem_params:1;
__u32 xnr3_vmem_params:1;
__u32 tnr3_dmem_params:1;
__u32 xnr3_dmem_params:1;
__u32 reserved4:1;
__u32 obgrid_param:1;
__u32 reserved5:25;

};

Members
gdc 0 = no update, 1 = update.

obgrid 0 = no update, 1 = update.

reserved1 Not used.

acc_bnr 0 = no update, 1 = update.

acc_green_disparity 0 = no update, 1 = update.

acc_dm 0 = no update, 1 = update.

acc_ccm 0 = no update, 1 = update.

acc_gamma 0 = no update, 1 = update.

acc_csc 0 = no update, 1 = update.

acc_cds 0 = no update, 1 = update.

acc_shd 0 = no update, 1 = update.

reserved2 Not used.

acc_iefd 0 = no update, 1 = update.

acc_yds_c0 0 = no update, 1 = update.

acc_chnr_c0 0 = no update, 1 = update.

acc_y_ee_nr 0 = no update, 1 = update.

acc_yds 0 = no update, 1 = update.

acc_chnr 0 = no update, 1 = update.

acc_ytm 0 = no update, 1 = update.

acc_yds2 0 = no update, 1 = update.

acc_tcc 0 = no update, 1 = update.

acc_dpc 0 = no update, 1 = update.

acc_bds 0 = no update, 1 = update.

acc_anr 0 = no update, 1 = update.

acc_awb_fr 0 = no update, 1 = update.

acc_ae 0 = no update, 1 = update.

7.2. Part I - Video for Linux API 277

Linux Userspace-api Documentation

acc_af 0 = no update, 1 = update.

acc_awb 0 = no update, 1 = update.

reserved3 Not used.

lin_vmem_params 0 = no update, 1 = update.

tnr3_vmem_params 0 = no update, 1 = update.

xnr3_vmem_params 0 = no update, 1 = update.

tnr3_dmem_params 0 = no update, 1 = update.

xnr3_dmem_params 0 = no update, 1 = update.

reserved4 Not used.

obgrid_param 0 = no update, 1 = update.

reserved5 Not used.

struct ipu3_uapi_params
V4L2_META_FMT_IPU3_PARAMS

Definition

struct ipu3_uapi_params {
struct ipu3_uapi_flags use ;
struct ipu3_uapi_acc_param acc_param;
struct ipu3_uapi_isp_lin_vmem_params lin_vmem_params;
struct ipu3_uapi_isp_tnr3_vmem_params tnr3_vmem_params;
struct ipu3_uapi_isp_xnr3_vmem_params xnr3_vmem_params;
struct ipu3_uapi_isp_tnr3_params tnr3_dmem_params;
struct ipu3_uapi_isp_xnr3_params xnr3_dmem_params;
struct ipu3_uapi_obgrid_param obgrid_param;

};

Members
use select which parameters to apply, see ipu3_uapi_flags

acc_param ACC parameters, as specified by ipu3_uapi_acc_param

lin_vmem_params linearization VMEM, as specified by
ipu3_uapi_isp_lin_vmem_params

tnr3_vmem_params tnr3 VMEMas specified by ipu3_uapi_isp_tnr3_vmem_params

xnr3_vmem_params xnr3 VMEMas specified by ipu3_uapi_isp_xnr3_vmem_params

tnr3_dmem_params tnr3 DMEM as specified by ipu3_uapi_isp_tnr3_params

xnr3_dmem_params xnr3 DMEM as specified by ipu3_uapi_isp_xnr3_params

obgrid_param obgrid parameters as specified by ipu3_uapi_obgrid_param

Description
The video queue“parameters”is of format V4L2_META_FMT_IPU3_PARAMS. This
is a “single plane”v4l2_meta_format using V4L2_BUF_TYPE_META_OUTPUT.
struct ipu3_uapi_params as defined below contains a lot of parameters and
ipu3_uapi_flags selects which parameters to apply.

278 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_META_FMT_UVC (‘UVCH’)

UVC Payload Header Data

Description

This format describes standard UVC metadata, extracted from UVC packet head-
ers and provided by the UVC driver through metadata video nodes. That data
includes exact copies of the standard part of UVC Payload Header contents and
auxiliary timing information, required for precise interpretation of timestamps,
contained in those headers. See section “2.4.3.3 Video and Still Image Payload
Headers”of the “UVC 1.5 Class specification”for details.
Each UVC payload header can be between 2 and 12 bytes large. Buffers can con-
tain multiple headers, if multiple such headers have been transmitted by the cam-
era for the respective frame. However, the driver may drop headers when the
buffer is full, when they contain no useful information (e.g. those without the SCR
field or with that field identical to the previous header), or generally to perform
rate limiting when the device sends a large number of headers.

Each individual block contains the following fields:

Table 53: UVC Metadata Block
Field Description
__u64 ts; system timestamp in host byte order, measured by the driver upon

reception of the payload
__u16 sof; USB Frame Number in host byte order, also obtained by the driver

as close as possible to the above timestamp to enable correlation
between them

The rest is an exact copy of the UVC payload header:
__u8
length;

length of the rest of the block, including this field

__u8 flags; Flags, indicating presence of other standard UVC fields
__u8 buf[]; The rest of the header, possibly including UVC PTS and SCR fields

V4L2_META_FMT_VSP1_HGO (‘VSPH’)

Renesas R-Car VSP1 1-D Histogram Data

Description

This format describes histogram data generated by the Renesas R-Car VSP1 1-D
Histogram (HGO) engine.

The VSP1 HGO is a histogram computation engine that can operate on RGB, YCrCb
or HSV data. It operates on a possibly cropped and subsampled input image and
computes the minimum, maximum and sum of all pixels as well as per-channel
histograms.

7.2. Part I - Video for Linux API 279

Linux Userspace-api Documentation

The HGO can compute histograms independently per channel, on the maximum of
the three channels (RGB data only) or on the Y channel only (YCbCr only). It can
additionally output the histogram with 64 or 256 bins, resulting in four possible
modes of operation.

• In 64 bins normal mode, the HGO operates on the three channels indepen-
dently to compute three 64-bins histograms. RGB, YCbCr and HSV image
formats are supported.

• In 64 bins maximummode, the HGO operates on the maximum of the (R, G, B)
channels to compute a single 64-bins histogram. Only the RGB image format
is supported.

• In 256 bins normal mode, the HGO operates on the Y channel to compute a
single 256-bins histogram. Only the YCbCr image format is supported.

• In 256 bins maximum mode, the HGO operates on the maximum of the (R,
G, B) channels to compute a single 256-bins histogram. Only the RGB image
format is supported.

Byte Order. All data is stored in memory in little endian format. Each cell in the
tables contains one byte.

Table 54: VSP1 HGO Data - 64 Bins, Normal Mode
(792 bytes)

Offset Memory
[31:24] [23:16] [15:8] [7:0]

0 R/Cr/H max [7:0] R/Cr/H min [7:0]
4 G/Y/S max [7:0] G/Y/S min [7:0]
8 B/Cb/V max [7:0] B/Cb/V min [7:0]
12 R/Cr/H sum [31:0]
16 G/Y/S sum [31:0]
20 B/Cb/V sum [31:0]
24 R/Cr/H bin 0 [31:0]

⋯
276 R/Cr/H bin 63 [31:0]
280 G/Y/S bin 0 [31:0]

⋯
532 G/Y/S bin 63 [31:0]
536 B/Cb/V bin 0 [31:0]

⋯
788 B/Cb/V bin 63 [31:0]

Table 55: VSP1 HGO Data - 64 Bins, Max Mode (264
bytes)

Offset Memory
[31:24] [23:16] [15:8] [7:0]

0 max(R,G,B) max [7:0] max(R,G,B) min [7:0]
4 max(R,G,B) sum [31:0]
8 max(R,G,B) bin 0 [31:0]

⋯
260 max(R,G,B) bin 63 [31:0]

280 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 56: VSP1 HGO Data - 256 Bins, Normal Mode
(1032 bytes)
Offset Memory

[31:24] [23:16] [15:8] [7:0]
0 Y max [7:0] Y min [7:0]
4 Y sum [31:0]
8 Y bin 0 [31:0]

⋯
1028 Y bin 255 [31:0]

Table 57: VSP1 HGO Data - 256 Bins, Max Mode
(1032 bytes)

Offset Memory
[31:24] [23:16] [15:8] [7:0]

0 max(R,G,B) max [7:0] max(R,G,B) min [7:0]
4 max(R,G,B) sum [31:0]
8 max(R,G,B) bin 0 [31:0]

⋯
1028 max(R,G,B) bin 255 [31:0]

V4L2_META_FMT_VSP1_HGT (‘VSPT’)

Renesas R-Car VSP1 2-D Histogram Data

Description

This format describes histogram data generated by the Renesas R-Car VSP1 2-D
Histogram (HGT) engine.

The VSP1 HGT is a histogram computation engine that operates on HSV data. It
operates on a possibly cropped and subsampled input image and computes the
sum, maximum and minimum of the S component as well as a weighted frequency
histogram based on the H and S components.

The histogram is a matrix of 6 Hue and 32 Saturation buckets, 192 in total. Each
HSV value is added to one or more buckets with a weight between 1 and 16 de-
pending on the Hue areas configuration. Finding the corresponding buckets is
done by inspecting the H and S value independently.

The Saturation position n (0 - 31) of the bucket in the matrix is found by the ex-
pression:

n = S / 8

The Hue position m (0 - 5) of the bucket in the matrix depends on how the HGT
Hue areas are configured. There are 6 user configurable Hue Areas which can be
configured to cover overlapping Hue values:

7.2. Part I - Video for Linux API 281

Linux Userspace-api Documentation

Area 0 Area 1 Area 2 Area 3 Area 4 ␣
↪→Area 5

________ ________ ________ ________ ________ ____
↪→____
\ /| |\ /| |\ /| |\ /| |\ /| |\ /| ␣
↪→ |\ /
\ / | | \ / | | \ / | | \ / | | \ / | | \ / | ␣

↪→ | \ /
X | | X | | X | | X | | X | | X | ␣

↪→ | X
/ \ | | / \ | | / \ | | / \ | | / \ | | / \ | ␣

↪→ | / \
/ \| |/ \| |/ \| |/ \| |/ \| |/ \| ␣
↪→ |/ \
5U 0L 0U 1L 1U 2L 2U 3L 3U 4L 4U 5L ␣
↪→ 5U 0L

<0..............................Hue Value............................
↪→255>

When two consecutive areas don’t overlap (n+1L is equal to nU) the boundary
value is considered as part of the lower area.

Pixels with a hue value included in the centre of an area (between nL and nU
included) are attributed to that single area and given a weight of 16. Pixels with
a hue value included in the overlapping region between two areas (between n+1L
and nU excluded) are attributed to both areas and given a weight for each of these
areas proportional to their position along the diagonal lines (rounded down).

The Hue area setup must match one of the following constrains:

0L <= 0U <= 1L <= 1U <= 2L <= 2U <= 3L <= 3U <= 4L <= 4U <= 5L <= 5U

0U <= 1L <= 1U <= 2L <= 2U <= 3L <= 3U <= 4L <= 4U <= 5L <= 5U <= 0L

Byte Order. All data is stored in memory in little endian format. Each cell in the
tables contains one byte.

282 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 58: VSP1 HGT Data - (776 bytes)
Offset Memory

[31:24] [23:16] [15:8] [7:0]
0 • S max [7:0] • S min [7:0]

4 S sum [31:0]
8 Histogram bucket (m=0, n=0) [31:0]
12 Histogram bucket (m=0, n=1) [31:0]

⋯
132 Histogram bucket (m=0, n=31) [31:0]
136 Histogram bucket (m=1, n=0) [31:0]

⋯
264 Histogram bucket (m=2, n=0) [31:0]

⋯
392 Histogram bucket (m=3, n=0) [31:0]

⋯
520 Histogram bucket (m=4, n=0) [31:0]

⋯
648 Histogram bucket (m=5, n=0) [31:0]

⋯
772 Histogram bucket (m=5, n=31) [31:0]

V4L2_META_FMT_VIVID (‘VIVD’)

VIVID Metadata Format

Description

This describes metadata format used by the vivid driver.

It sets Brightness, Saturation, Contrast and Hue, each of which maps to corre-
sponding controls of the vivid driver with respect to the range and default values.

It contains the following fields:

Table 59: VIVID Metadata
Field Description
u16 bright-
ness;

Image brightness, the value is in the range 0 to 255, with the
default value as 128.

u16 con-
trast;

Image contrast, the value is in the range 0 to 255, with the default
value as 128.

u16 satura-
tion;

Image color saturation, the value is in the range 0 to 255, with the
default value as 128.

s16 hue; Image color balance, the value is in the range -128 to 128, with
the default value as 0.

7.2. Part I - Video for Linux API 283

Linux Userspace-api Documentation

Reserved Format Identifiers

These formats are not defined by this specification, they are just listed for refer-
ence and to avoid naming conflicts. If you want to register your own format, send
an e-mail to the linux-media mailing list https://linuxtv.org/lists.php for inclusion
in the videodev2.h file. If you want to share your format with other developers
add a link to your documentation and send a copy to the linux-media mailing list
for inclusion in this section. If you think your format should be listed in a standard
format section please make a proposal on the linux-media mailing list.

Table 60: Reserved Image Formats
Identifier Code Details
V4L2_PIX_FMT_DV ‘dvsd’ unknown
V4L2_PIX_FMT_ET61X251 ‘E625’ Compressed format of the ET61X251 driver.
V4L2_PIX_FMT_HI240 ‘HI24’ 8 bit RGB format used by the BTTV driver.
V4L2_PIX_FMT_HM12 ‘HM12’ YUV 4:2:0 format used by the IVTV driver.

The format is documented in the ker-
nel sources in the file Documentation/
userspace-api/media/drivers/
cx2341x-uapi.rst

V4L2_PIX_FMT_CPIA1 ‘CPIA’ YUV format used by the gspca cpia1 driver.
V4L2_PIX_FMT_JPGL ‘JPGL’ JPEG-Light format (Pegasus Lossless JPEG)

used in Divio webcams NW 80x.
V4L2_PIX_FMT_SPCA501 ‘S501’ YUYV per line used by the gspca driver.
V4L2_PIX_FMT_SPCA505 ‘S505’ YYUV per line used by the gspca driver.
V4L2_PIX_FMT_SPCA508 ‘S508’ YUVY per line used by the gspca driver.
V4L2_PIX_FMT_SPCA561 ‘S561’ Compressed GBRG Bayer format used by the

gspca driver.
V4L2_PIX_FMT_PAC207 ‘P207’ Compressed BGGR Bayer format used by the

gspca driver.
V4L2_PIX_FMT_MR97310A ‘M310’ Compressed BGGR Bayer format used by the

gspca driver.
V4L2_PIX_FMT_JL2005BCD ‘JL20’ JPEG compressed RGGB Bayer format used

by the gspca driver.
V4L2_PIX_FMT_OV511 ‘O511’ OV511 JPEG format used by the gspca driver.
V4L2_PIX_FMT_OV518 ‘O518’ OV518 JPEG format used by the gspca driver.
V4L2_PIX_FMT_PJPG ‘PJPG’ Pixart 73xx JPEG format used by the gspca

driver.
V4L2_PIX_FMT_SE401 ‘S401’ Compressed RGB format used by the gspca

se401 driver
V4L2_PIX_FMT_SQ905C ‘905C’ Compressed RGGB bayer format used by the

gspca driver.
V4L2_PIX_FMT_MJPEG ‘MJPG’ Compressed format used by the Zoran driver
V4L2_PIX_FMT_PWC1 ‘PWC1’ Compressed format of the PWC driver.
V4L2_PIX_FMT_PWC2 ‘PWC2’ Compressed format of the PWC driver.
V4L2_PIX_FMT_SN9C10X ‘S910’ Compressed format of the SN9C102 driver.
V4L2_PIX_FMT_SN9C20X_I420 ‘S920’ YUV 4:2:0 format of the gspca sn9c20x

driver.
Continued on next page

284 Chapter 7. Linux Media Infrastructure userspace API

https://linuxtv.org/lists.php

Linux Userspace-api Documentation

Table 60 – continued from previous page
Identifier Code Details
V4L2_PIX_FMT_SN9C2028 ‘SONX’ Compressed GBRG bayer format of the

gspca sn9c2028 driver.
V4L2_PIX_FMT_STV0680 ‘S680’ Bayer format of the gspca stv0680 driver.
V4L2_PIX_FMT_WNVA ‘WNVA’ Used by the Winnov Videum driver, http://

www.thedirks.org/winnov/
V4L2_PIX_FMT_TM6000 ‘TM60’ Used by Trident tm6000
V4L2_PIX_FMT_CIT_YYVYUY ‘CITV’ Used by xirlink CIT, found at IBM webcams.

Uses one line of Y then 1 line of VYUY
V4L2_PIX_FMT_KONICA420 ‘KONI’ Used by Konica webcams.

YUV420 planar in blocks of 256 pixels.
V4L2_PIX_FMT_YYUV ‘YYUV’ unknown
V4L2_PIX_FMT_Y4 ‘Y04 ‘ Old 4-bit greyscale format. Only the most

significant 4 bits of each byte are used, the
other bits are set to 0.

V4L2_PIX_FMT_Y6 ‘Y06 ‘ Old 6-bit greyscale format. Only the most
significant 6 bits of each byte are used, the
other bits are set to 0.

Continued on next page

7.2. Part I - Video for Linux API 285

http://www.thedirks.org/winnov/
http://www.thedirks.org/winnov/

Linux Userspace-api Documentation

Table 60 – continued from previous page
Identifier Code Details
V4L2_PIX_FMT_S5C_UYVY_JPG ‘S5CI’ Two-planar format used by Samsung

S5C73MX cameras. The first plane contains
interleaved JPEG and UYVY image data,
followed by meta data in form of an array
of offsets to the UYVY data blocks. The
actual pointer array follows immediately the
interleaved JPEG/UYVY data, the number
of entries in this array equals the height
of the UYVY image. Each entry is a 4-byte
unsigned integer in big endian order and
it’s an offset to a single pixel line of the
UYVY image. The first plane can start either
with JPEG or UYVY data chunk. The size of
a single UYVY block equals the UYVY image’
s width multiplied by 2. The size of a JPEG
chunk depends on the image and can vary
with each line.
The second plane, at an offset of 4084 bytes,
contains a 4-byte offset to the pointer array
in the first plane. This offset is followed by a
4-byte value indicating size of the pointer ar-
ray. All numbers in the second plane are also
in big endian order. Remaining data in the
second plane is undefined. The information
in the second plane allows to easily find loca-
tion of the pointer array, which can be differ-
ent for each frame. The size of the pointer ar-
ray is constant for given UYVY image height.
In order to extract UYVY and JPEG frames
an application can initially set a data pointer
to the start of first plane and then add an
offset from the first entry of the pointers ta-
ble. Such a pointer indicates start of an
UYVY image pixel line. Whole UYVY line
can be copied to a separate buffer. These
steps should be repeated for each line, i.e.
the number of entries in the pointer array.
Anything what’s in between the UYVY lines
is JPEG data and should be concatenated to
form the JPEG stream.

V4L2_PIX_FMT_MT21C ‘MT21’ Compressed two-planar YVU420 format
used by Mediatek MT8173. The compres-
sion is lossless. It is an opaque interme-
diate format and the MDP hardware must
be used to convert V4L2_PIX_FMT_MT21C
to V4L2_PIX_FMT_NV12M,
V4L2_PIX_FMT_YUV420M or
V4L2_PIX_FMT_YVU420.

Continued on next page

286 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 60 – continued from previous page
Identifier Code Details
V4L2_PIX_FMT_SUNXI_TILED_NV12 ‘ST12’ Two-planar NV12-based format used by the

video engine found on Allwinner (codenamed
sunxi) platforms, with 32x32 tiles for the
luminance plane and 32x64 tiles for the
chrominance plane. The data in each tile is
stored in linear order, within the tile bounds.
Each tile follows the previous one linearly in
memory (from left to right, top to bottom).
The associated buffer dimensions are aligned
to match an integer number of tiles, result-
ing in 32-aligned resolutions for the lumi-
nance plane and 16-aligned resolutions for
the chrominance plane (with 2x2 subsam-
pling).

Table 61: Format Flags
V4L2_PIX_FMT_FLAG_PREMUL_ALPHA 0x00000001 The color values are premultiplied by the al-

pha channel value. For example, if a light
blue pixel with 50% transparency was de-
scribed by RGBA values (128, 192, 255, 128),
the same pixel described with premultiplied
colors would be described by RGBA values
(64, 96, 128, 128)

Colorspaces

‘Color’is a very complex concept and depends on physics, chemistry and biology.
Just because you have three numbers that describe the‘red’,‘green’and‘blue’
components of the color of a pixel does not mean that you can accurately display
that color. A colorspace defines what it actually means to have an RGB value of
e.g. (255, 0, 0). That is, which color should be reproduced on the screen in a
perfectly calibrated environment.

In order to do that we first need to have a good definition of color, i.e. some way
to uniquely and unambiguously define a color so that someone else can reproduce
it. Human color vision is trichromatic since the human eye has color receptors
that are sensitive to three different wavelengths of light. Hence the need to use
three numbers to describe color. Be glad you are not a mantis shrimp as those are
sensitive to 12 different wavelengths, so instead of RGB we would be using the
ABCDEFGHIJKL colorspace⋯
Color exists only in the eye and brain and is the result of how strongly color recep-
tors are stimulated. This is based on the Spectral Power Distribution (SPD) which
is a graph showing the intensity (radiant power) of the light at wavelengths cover-
ing the visible spectrum as it enters the eye. The science of colorimetry is about
the relationship between the SPD and color as perceived by the human brain.

Since the human eye has only three color receptors it is perfectly possible that

7.2. Part I - Video for Linux API 287

Linux Userspace-api Documentation

different SPDs will result in the same stimulation of those receptors and are per-
ceived as the same color, even though the SPD of the light is different.

In the 1920s experiments were devised to determine the relationship between
SPDs and the perceived color and that resulted in the CIE 1931 standard that de-
fines spectral weighting functions that model the perception of color. Specifically
that standard defines functions that can take an SPD and calculate the stimulus
for each color receptor. After some further mathematical transforms these stimuli
are known as the CIE XYZ tristimulus values and these X, Y and Z values describe
a color as perceived by a human unambiguously. These X, Y and Z values are all
in the range [0⋯1].
The Y value in the CIE XYZ colorspace corresponds to luminance. Often the CIE
XYZ colorspace is transformed to the normalized CIE xyY colorspace:

x = X / (X + Y + Z)

y = Y / (X + Y + Z)

The x and y values are the chromaticity coordinates and can be used to define a
color without the luminance component Y. It is very confusing to have such similar
names for these colorspaces. Just be aware that if colors are specified with lower
case ‘x’and ‘y’, then the CIE xyY colorspace is used. Upper case ‘X’and
‘Y’refer to the CIE XYZ colorspace. Also, y has nothing to do with luminance.
Together x and y specify a color, and Y the luminance. That is really all you need
to remember from a practical point of view. At the end of this section you will find
reading resources that go into much more detail if you are interested.

A monitor or TV will reproduce colors by emitting light at three different wave-
lengths, the combination of which will stimulate the color receptors in the eye and
thus cause the perception of color. Historically these wavelengths were defined
by the red, green and blue phosphors used in the displays. These color primaries
are part of what defines a colorspace.

Different display devices will have different primaries and some primaries are
more suitable for some display technologies than others. This has resulted in a
variety of colorspaces that are used for different display technologies or uses. To
define a colorspace you need to define the three color primaries (these are typ-
ically defined as x, y chromaticity coordinates from the CIE xyY colorspace) but
also the white reference: that is the color obtained when all three primaries are at
maximum power. This determines the relative power or energy of the primaries.
This is usually chosen to be close to daylight which has been defined as the CIE
D65 Illuminant.

To recapitulate: the CIE XYZ colorspace uniquely identifies colors. Other col-
orspaces are defined by three chromaticity coordinates defined in the CIE xyY
colorspace. Based on those a 3x3 matrix can be constructed that transforms CIE
XYZ colors to colors in the new colorspace.

Both the CIE XYZ and the RGB colorspace that are derived from the specific chro-
maticity primaries are linear colorspaces. But neither the eye, nor display technol-
ogy is linear. Doubling the values of all components in the linear colorspace will
not be perceived as twice the intensity of the color. So each colorspace also de-
fines a transfer function that takes a linear color component value and transforms
it to the non-linear component value, which is a closer match to the non-linear per-
formance of both the eye and displays. Linear component values are denoted RGB,

288 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

non-linear are denoted as R’G’B’. In general colors used in graphics are all R’G’
B’, except in openGL which uses linear RGB. Special care should be taken when
dealing with openGL to provide linear RGB colors or to use the built-in openGL
support to apply the inverse transfer function.

The final piece that defines a colorspace is a function that transforms non-linear
R’G’B’to non-linear Y’CbCr. This function is determined by the so-called luma
coefficients. There may be multiple possible Y’CbCr encodings allowed for the
same colorspace. Many encodings of color prefer to use luma (Y’) and chroma
(CbCr) instead of R’G’B’. Since the human eye is more sensitive to differences
in luminance than in color this encoding allows one to reduce the amount of color
information compared to the luma data. Note that the luma (Y’) is unrelated to
the Y in the CIE XYZ colorspace. Also note that Y’CbCr is often called YCbCr or
YUV even though these are strictly speaking wrong.

Sometimes people confuse Y’CbCr as being a colorspace. This is not correct, it is
just an encoding of an R’G’B’color into luma and chroma values. The underlying
colorspace that is associated with the R’G’B’color is also associated with the Y’
CbCr color.

The final step is how the RGB, R’G’B’or Y’CbCr values are quantized. The CIE
XYZ colorspace where X, Y and Z are in the range [0⋯1] describes all colors that
humans can perceive, but the transform to another colorspace will produce colors
that are outside the [0⋯1] range. Once clamped to the [0⋯1] range those colors
can no longer be reproduced in that colorspace. This clamping is what reduces
the extent or gamut of the colorspace. How the range of [0⋯1] is translated to
integer values in the range of [0⋯255] (or higher, depending on the color depth)
is called the quantization. This is not part of the colorspace definition. In practice
RGB or R’G’B’values are full range, i.e. they use the full [0⋯255] range. Y’
CbCr values on the other hand are limited range with Y’using [16⋯235] and Cb
and Cr using [16⋯240].
Unfortunately, in some cases limited range RGB is also used where the components
use the range [16⋯235]. And full range Y’CbCr also exists using the [0⋯255]
range.

In order to correctly interpret a color you need to know the quantization range,
whether it is R’G’B’or Y’CbCr, the used Y’CbCr encoding and the colorspace.
From that information you can calculate the corresponding CIE XYZ color and map
that again to whatever colorspace your display device uses.

The colorspace definition itself consists of the three chromaticity primaries, the
white reference chromaticity, a transfer function and the luma coefficients needed
to transform R’G’B’to Y’CbCr. While some colorspace standards correctly define
all four, quite often the colorspace standard only defines some, and you have to
rely on other standards for the missing pieces. The fact that colorspaces are often
a mix of different standards also led to very confusing naming conventions where
the name of a standard was used to name a colorspace when in fact that standard
was part of various other colorspaces as well.

If you want to read more about colors and colorspaces, then the following re-
sources are useful: poynton is a good practical book for video engineers, colimg
has a much broader scope and describes many more aspects of color (physics,
chemistry, biology, etc.). The http://www.brucelindbloom.com website is an ex-
cellent resource, especially with respect to the mathematics behind colorspace

7.2. Part I - Video for Linux API 289

http://www.brucelindbloom.com

Linux Userspace-api Documentation

conversions. The wikipedia CIE 1931 colorspace article is also very useful.

Defining Colorspaces in V4L2

In V4L2 colorspaces are defined by four values. The first is the colorspace identi-
fier (enum v4l2_colorspace) which defines the chromaticities, the default trans-
fer function, the default Y’CbCr encoding and the default quantization method.
The second is the transfer function identifier (enum v4l2_xfer_func) to spec-
ify non-standard transfer functions. The third is the Y’CbCr encoding identifier
(enum v4l2_ycbcr_encoding) to specify non-standard Y’CbCr encodings and the
fourth is the quantization identifier (enum v4l2_quantization) to specify non-
standard quantization methods. Most of the time only the colorspace field of struct
v4l2_pix_format or struct v4l2_pix_format_mplane needs to be filled in.

On HSV formats the Hue is defined as the angle on the cylindrical color represen-
tation. Usually this angle is measured in degrees, i.e. 0-360. When we map this
angle value into 8 bits, there are two basic ways to do it: Divide the angular value
by 2 (0-179), or use the whole range, 0-255, dividing the angular value by 1.41.
The enum v4l2_hsv_encoding specifies which encoding is used.

Note: The default R’G’B’quantization is full range for all colorspaces except
for BT.2020 which uses limited range R’G’B’quantization.

v4l2_colorspace

Table 62: V4L2 Colorspaces
Identifier Details
V4L2_COLORSPACE_DEFAULT The default colorspace. This can be used by applications

to let the driver fill in the colorspace.
V4L2_COLORSPACE_SMPTE170M See Colorspace SMPTE 170M

(V4L2_COLORSPACE_SMPTE170M).
V4L2_COLORSPACE_REC709 See Colorspace Rec. 709

(V4L2_COLORSPACE_REC709).
V4L2_COLORSPACE_SRGB See Colorspace sRGB (V4L2_COLORSPACE_SRGB).
V4L2_COLORSPACE_OPRGB See Colorspace opRGB (V4L2_COLORSPACE_OPRGB).
V4L2_COLORSPACE_BT2020 See Colorspace BT.2020 (V4L2_COLORSPACE_BT2020).
V4L2_COLORSPACE_DCI_P3 See Colorspace DCI-P3 (V4L2_COLORSPACE_DCI_P3).
V4L2_COLORSPACE_SMPTE240M See Colorspace SMPTE 240M

(V4L2_COLORSPACE_SMPTE240M).
V4L2_COLORSPACE_470_SYSTEM_M See Colorspace NTSC 1953

(V4L2_COLORSPACE_470_SYSTEM_M).
V4L2_COLORSPACE_470_SYSTEM_BG See Colorspace EBU Tech. 3213

(V4L2_COLORSPACE_470_SYSTEM_BG).
V4L2_COLORSPACE_JPEG See Colorspace JPEG (V4L2_COLORSPACE_JPEG).
V4L2_COLORSPACE_RAW The raw colorspace. This is used for raw image capture

where the image is minimally processed and is using
the internal colorspace of the device. The software that
processes an image using this‘colorspace’will have to
know the internals of the capture device.

290 Chapter 7. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space

Linux Userspace-api Documentation

v4l2_xfer_func

Table 63: V4L2 Transfer Function
Identifier Details
V4L2_XFER_FUNC_DEFAULT Use the default transfer function as defined by the colorspace.
V4L2_XFER_FUNC_709 Use the Rec. 709 transfer function.
V4L2_XFER_FUNC_SRGB Use the sRGB transfer function.
V4L2_XFER_FUNC_OPRGB Use the opRGB transfer function.
V4L2_XFER_FUNC_SMPTE240M Use the SMPTE 240M transfer function.
V4L2_XFER_FUNC_NONE Do not use a transfer function (i.e. use linear RGB values).
V4L2_XFER_FUNC_DCI_P3 Use the DCI-P3 transfer function.
V4L2_XFER_FUNC_SMPTE2084 Use the SMPTE 2084 transfer function. See Transfer Function

SMPTE 2084 (V4L2_XFER_FUNC_SMPTE2084).

v4l2_ycbcr_encoding

Table 64: V4L2 Y’CbCr Encodings
Identifier Details
V4L2_YCBCR_ENC_DEFAULT Use the default Y’CbCr encoding as defined by the

colorspace.
V4L2_YCBCR_ENC_601 Use the BT.601 Y’CbCr encoding.
V4L2_YCBCR_ENC_709 Use the Rec. 709 Y’CbCr encoding.
V4L2_YCBCR_ENC_XV601 Use the extended gamut xvYCC BT.601 encoding.
V4L2_YCBCR_ENC_XV709 Use the extended gamut xvYCC Rec. 709 encoding.
V4L2_YCBCR_ENC_BT2020 Use the default non-constant luminance BT.2020 Y’

CbCr encoding.
V4L2_YCBCR_ENC_BT2020_CONST_LUM Use the constant luminance BT.2020 Yc’CbcCrc en-

coding.
V4L2_YCBCR_ENC_SMPTE_240M Use the SMPTE 240M Y’CbCr encoding.

v4l2_hsv_encoding

Table 65: V4L2 HSV Encodings
Identifier Details
V4L2_HSV_ENC_180 For the Hue, each LSB is two degrees.
V4L2_HSV_ENC_256 For the Hue, the 360 degrees are mapped into 8 bits, i.e.

each LSB is roughly 1.41 degrees.

v4l2_quantization

7.2. Part I - Video for Linux API 291

Linux Userspace-api Documentation

Table 66: V4L2 Quantization Methods
Identifier Details
V4L2_QUANTIZATION_DEFAULT Use the default quantization encoding as defined by the

colorspace. This is always full range for R’G’B’(except
for the BT.2020 colorspace) and HSV. It is usually limited
range for Y’CbCr.

V4L2_QUANTIZATION_FULL_RANGE Use the full range quantization encoding. I.e. the range
[0⋯1] is mapped to [0⋯255] (with possible clipping to
[1⋯254] to avoid the 0x00 and 0xff values). Cb and Cr
are mapped from [-0.5⋯0.5] to [0⋯255] (with possible
clipping to [1⋯254] to avoid the 0x00 and 0xff values).

V4L2_QUANTIZATION_LIM_RANGE Use the limited range quantization encoding. I.e. the
range [0⋯1] is mapped to [16⋯235]. Cb and Cr are
mapped from [-0.5⋯0.5] to [16⋯240].

Detailed Colorspace Descriptions

Colorspace SMPTE 170M (V4L2_COLORSPACE_SMPTE170M)

The SMPTE 170M standard defines the colorspace used by NTSC and PAL and
by SDTV in general. The default transfer function is V4L2_XFER_FUNC_709. The
default Y’CbCr encoding is V4L2_YCBCR_ENC_601. The default Y’CbCr quantization
is limited range. The chromaticities of the primary colors and the white reference
are:

Table 67: SMPTE 170M Chromaticities
Color x y
Red 0.630 0.340
Green 0.310 0.595
Blue 0.155 0.070
White Reference
(D65)

0.3127 0.3290

The red, green and blue chromaticities are also often referred to as the SMPTE C
set, so this colorspace is sometimes called SMPTE C as well.

The transfer function defined for SMPTE 170M is the same as the one defined in
Rec. 709.

L′ = −1.099(−L)0.45 + 0.099, for L ≤ −0.018

L′ = 4.5L, for − 0.018 < L < 0.018

L′ = 1.099L0.45 − 0.099, for L ≥ 0.018

292 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Inverse Transfer function:

L = −
(
L′ − 0.099

−1.099

) 1
0.45

, for L′ ≤ −0.081

L =
L′

4.5
, for − 0.081 < L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_601 encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’is clamped to the range [0⋯1] and Cb and Cr are clamped to the range [-0.5⋯
0.5]. This conversion to Y’CbCr is identical to the one defined in the ITU BT.601
standard and this colorspace is sometimes called BT.601 as well, even though
BT.601 does not mention any color primaries.

The default quantization is limited range, but full range is possible although rarely
seen.

Colorspace Rec. 709 (V4L2_COLORSPACE_REC709)

The ITU BT.709 standard defines the colorspace used by HDTV in general. The
default transfer function is V4L2_XFER_FUNC_709. The default Y’CbCr encoding
is V4L2_YCBCR_ENC_709. The default Y’CbCr quantization is limited range. The
chromaticities of the primary colors and the white reference are:

Table 68: Rec. 709 Chromaticities
Color x y
Red 0.640 0.330
Green 0.300 0.600
Blue 0.150 0.060
White Reference
(D65)

0.3127 0.3290

The full name of this standard is Rec. ITU-R BT.709-5.

Transfer function. Normally L is in the range [0⋯1], but for the extended gamut
xvYCC encoding values outside that range are allowed.

L′ = −1.099(−L)0.45 + 0.099, for L ≤ −0.018

L′ = 4.5L, for − 0.018 < L < 0.018

L′ = 1.099L0.45 − 0.099, for L ≥ 0.018

7.2. Part I - Video for Linux API 293

Linux Userspace-api Documentation

Inverse Transfer function:

L = −
(
L′ − 0.099

−1.099

) 1
0.45

, for L′ ≤ −0.081

L =
L′

4.5
, for − 0.081 < L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_709 encoding:

Y ′ = 0.2126R′ + 0.7152G′ + 0.0722B′

Cb = −0.1146R′ − 0.3854G′ + 0.5B′

Cr = 0.5R′ − 0.4542G′ − 0.0458B′

Y’is clamped to the range [0⋯1] and Cb and Cr are clamped to the range [-0.5⋯
0.5].

The default quantization is limited range, but full range is possible although rarely
seen.

The V4L2_YCBCR_ENC_709 encoding described above is the default for this col-
orspace, but it can be overridden with V4L2_YCBCR_ENC_601, in which case the
BT.601 Y’CbCr encoding is used.
Two additional extended gamut Y’CbCr encodings are also possible with this col-
orspace:

The xvYCC 709 encoding (V4L2_YCBCR_ENC_XV709, xvYCC) is similar to the Rec.
709 encoding, but it allows for R’, G’and B’values that are outside the range
[0⋯1]. The resulting Y’, Cb and Cr values are scaled and offset according to the
limited range formula:

Y ′ =
219

256
∗ (0.2126R′ + 0.7152G′ + 0.0722B′) +

16

256

Cb =
224

256
∗ (−0.1146R′ − 0.3854G′ + 0.5B′)

Cr =
224

256
∗ (0.5R′ − 0.4542G′ − 0.0458B′)

The xvYCC 601 encoding (V4L2_YCBCR_ENC_XV601, xvYCC) is similar to the BT.601
encoding, but it allows for R’, G’and B’values that are outside the range [0⋯1].
The resulting Y’, Cb and Cr values are scaled and offset according to the limited
range formula:

Y ′ =
219

256
∗ (0.2990R′ + 0.5870G′ + 0.1140B′) +

16

256

Cb =
224

256
∗ (−0.1687R′ − 0.3313G′ + 0.5B′)

Cr =
224

256
∗ (0.5R′ − 0.4187G′ − 0.0813B′)

Y’is clamped to the range [0⋯1] and Cb and Cr are clamped to the range [-0.5
⋯0.5] and quantized without further scaling or offsets. The non-standard xvYCC

294 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

709 or xvYCC 601 encodings can be used by selecting V4L2_YCBCR_ENC_XV709 or
V4L2_YCBCR_ENC_XV601. As seen by the xvYCC formulas these encodings always
use limited range quantization, there is no full range variant. The whole point of
these extended gamut encodings is that values outside the limited range are still
valid, although they map to R’, G’and B’values outside the [0⋯1] range and are
therefore outside the Rec. 709 colorspace gamut.

Colorspace sRGB (V4L2_COLORSPACE_SRGB)

The sRGB standard defines the colorspace used by most webcams and computer
graphics. The default transfer function is V4L2_XFER_FUNC_SRGB. The default Y’
CbCr encoding is V4L2_YCBCR_ENC_601. The default Y’CbCr quantization is limited
range.

Note that the sYCC standard specifies full range quantization, however all current
capture hardware supported by the kernel convert R’G’B’to limited range Y’CbCr.
So choosing full range as the default would break how applications interpret the
quantization range.

The chromaticities of the primary colors and the white reference are:

Table 69: sRGB Chromaticities
Color x y
Red 0.640 0.330
Green 0.300 0.600
Blue 0.150 0.060
White Reference
(D65)

0.3127 0.3290

These chromaticities are identical to the Rec. 709 colorspace.

Transfer function. Note that negative values for L are only used by the Y’CbCr
conversion.

L′ = −1.055(−L)
1
2.4 + 0.055, for L < −0.0031308

L′ = 12.92L, for − 0.0031308 ≤ L ≤ 0.0031308

L′ = 1.055L
1
2.4 − 0.055, for 0.0031308 < L ≤ 1

Inverse Transfer function:
L = −((−L′ + 0.055)/1.055)2.4, for L′ < −0.04045

L = L′/12.92, for − 0.04045 ≤ L′ ≤ 0.04045

L = ((L′ + 0.055)/1.055)2.4, for L′ > 0.04045

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_601 encoding as defined by sYCC:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’is clamped to the range [0⋯1] and Cb and Cr are clamped to the range [-0.5
⋯0.5]. This transform is identical to one defined in SMPTE 170M/BT.601. The Y’
CbCr quantization is limited range.

7.2. Part I - Video for Linux API 295

Linux Userspace-api Documentation

Colorspace opRGB (V4L2_COLORSPACE_OPRGB)

The opRGB standard defines the colorspace used by computer graphics that use
the opRGB colorspace. The default transfer function is V4L2_XFER_FUNC_OPRGB.
The default Y’CbCr encoding is V4L2_YCBCR_ENC_601. The default Y’CbCr quan-
tization is limited range.

Note that the opRGB standard specifies full range quantization, however all cur-
rent capture hardware supported by the kernel convert R’G’B’to limited range Y’
CbCr. So choosing full range as the default would break how applications interpret
the quantization range.

The chromaticities of the primary colors and the white reference are:

Table 70: opRGB Chromaticities
Color x y
Red 0.6400 0.3300
Green 0.2100 0.7100
Blue 0.1500 0.0600
White Reference
(D65)

0.3127 0.3290

Transfer function:

L′ = L
1

2.19921875

Inverse Transfer function:

L = L′(2.19921875)

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_601 encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’is clamped to the range [0⋯1] and Cb and Cr are clamped to the range [-0.5
⋯0.5]. This transform is identical to one defined in SMPTE 170M/BT.601. The Y’
CbCr quantization is limited range.

Colorspace BT.2020 (V4L2_COLORSPACE_BT2020)

The ITU BT.2020 standard defines the colorspace used by Ultra-high definition
television (UHDTV). The default transfer function is V4L2_XFER_FUNC_709. The de-
fault Y’CbCr encoding is V4L2_YCBCR_ENC_BT2020. The default R’G’B’quantization
is limited range (!), and so is the default Y’CbCr quantization. The chromaticities
of the primary colors and the white reference are:

296 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 71: BT.2020 Chromaticities
Color x y
Red 0.708 0.292
Green 0.170 0.797
Blue 0.131 0.046
White Reference
(D65)

0.3127 0.3290

Transfer function (same as Rec. 709):

L′ = 4.5L, for 0 ≤ L < 0.018

L′ = 1.099L0.45 − 0.099, for 0.018 ≤ L ≤ 1

Inverse Transfer function:

L = L′/4.5, for L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

Please note that while Rec. 709 is defined as the default transfer function by the
ITU BT.2020 standard, in practice this colorspace is often used with the Transfer
Function SMPTE 2084 (V4L2_XFER_FUNC_SMPTE2084). In particular Ultra HD
Blu-ray discs use this combination.

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_BT2020 encoding:

Y ′ = 0.2627R′ + 0.6780G′ + 0.0593B′

Cb = −0.1396R′ − 0.3604G′ + 0.5B′

Cr = 0.5R′ − 0.4598G′ − 0.0402B′

Y’is clamped to the range [0⋯1] and Cb and Cr are clamped to the range [-0.5⋯
0.5]. The Y’CbCr quantization is limited range.
There is also an alternate constant luminance R’G’B’to Yc’CbcCrc
(V4L2_YCBCR_ENC_BT2020_CONST_LUM) encoding:

Luma:

Y c′ = (0.2627R+ 0.6780G+ 0.0593B)′

B′ − Y c′ ≤ 0 :

Cbc = (B′ − Y c′)/1.9404

B′ − Y c′ > 0 :

Cbc = (B′ − Y c′)/1.5816

R′ − Y c′ ≤ 0 :

Crc = (R′ − Y ′)/1.7184

R′ − Y c′ > 0 :

Crc = (R′ − Y ′)/0.9936

Yc’is clamped to the range [0⋯1] and Cbc and Crc are clamped to the range [-0.5
⋯0.5]. The Yc’CbcCrc quantization is limited range.

7.2. Part I - Video for Linux API 297

Linux Userspace-api Documentation

Colorspace DCI-P3 (V4L2_COLORSPACE_DCI_P3)

The SMPTE RP 431-2 standard defines the colorspace used by cinema pro-
jectors that use the DCI-P3 colorspace. The default transfer function is
V4L2_XFER_FUNC_DCI_P3. The default Y’CbCr encoding is V4L2_YCBCR_ENC_709.
The default Y’CbCr quantization is limited range.

Note: Note that this colorspace standard does not specify a Y’CbCr encoding
since it is not meant to be encoded to Y’CbCr. So this default Y’CbCr encoding
was picked because it is the HDTV encoding.

The chromaticities of the primary colors and the white reference are:

Table 72: DCI-P3 Chromaticities
Color x y
Red 0.6800 0.3200
Green 0.2650 0.6900
Blue 0.1500 0.0600
White Reference 0.3140 0.3510

Transfer function:

L′ = L
1
2.6

Inverse Transfer function:

L = L′(2.6)

Y’CbCr encoding is not specified. V4L2 defaults to Rec. 709.

Colorspace SMPTE 240M (V4L2_COLORSPACE_SMPTE240M)

The SMPTE 240M standard was an interim standard used during the early days
of HDTV (1988-1998). It has been superseded by Rec. 709. The default trans-
fer function is V4L2_XFER_FUNC_SMPTE240M. The default Y’CbCr encoding is
V4L2_YCBCR_ENC_SMPTE240M. The default Y’CbCr quantization is limited range.
The chromaticities of the primary colors and the white reference are:

Table 73: SMPTE 240M Chromaticities
Color x y
Red 0.630 0.340
Green 0.310 0.595
Blue 0.155 0.070
White Reference
(D65)

0.3127 0.3290

These chromaticities are identical to the SMPTE 170M colorspace.

298 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Transfer function:
L′ = 4L, for 0 ≤ L < 0.0228

L′ = 1.1115L0.45 − 0.1115, for 0.0228 ≤ L ≤ 1

Inverse Transfer function:

L =
L′

4
, for 0 ≤ L′ < 0.0913

L =

(
L′ + 0.1115

1.1115

) 1
0.45

, for L′ ≥ 0.0913

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_SMPTE240M encoding:

Y ′ = 0.2122R′ + 0.7013G′ + 0.0865B′

Cb = −0.1161R′ − 0.3839G′ + 0.5B′

Cr = 0.5R′ − 0.4451G′ − 0.0549B′

Y’is clamped to the range [0⋯1] and Cb and Cr are clamped to the range [-0.5⋯
0.5]. The Y’CbCr quantization is limited range.

Colorspace NTSC 1953 (V4L2_COLORSPACE_470_SYSTEM_M)

This standard defines the colorspace used by NTSC in 1953. In practice this
colorspace is obsolete and SMPTE 170M should be used instead. The de-
fault transfer function is V4L2_XFER_FUNC_709. The default Y’CbCr encoding is
V4L2_YCBCR_ENC_601. The default Y’CbCr quantization is limited range. The
chromaticities of the primary colors and the white reference are:

Table 74: NTSC 1953 Chromaticities
Color x y
Red 0.67 0.33
Green 0.21 0.71
Blue 0.14 0.08
White Reference (C) 0.310 0.316

Note: This colorspace uses Illuminant C instead of D65 as the white reference.
To correctly convert an image in this colorspace to another that uses D65 you need
to apply a chromatic adaptation algorithm such as the Bradford method.

The transfer function was never properly defined for NTSC 1953. The Rec. 709
transfer function is recommended in the literature:

L′ = 4.5L, for 0 ≤ L < 0.018

L′ = 1.099L0.45 − 0.099, for 0.018 ≤ L ≤ 1

Inverse Transfer function:

L =
L′

4.5
, for L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

7.2. Part I - Video for Linux API 299

Linux Userspace-api Documentation

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_601 encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’is clamped to the range [0⋯1] and Cb and Cr are clamped to the range [-0.5⋯
0.5]. The Y’CbCr quantization is limited range. This transform is identical to one
defined in SMPTE 170M/BT.601.

Colorspace EBU Tech. 3213 (V4L2_COLORSPACE_470_SYSTEM_BG)

The EBU Tech 3213 standard defines the colorspace used by PAL/SECAM in 1975.
In practice this colorspace is obsolete and SMPTE 170M should be used instead.
The default transfer function is V4L2_XFER_FUNC_709. The default Y’CbCr encod-
ing is V4L2_YCBCR_ENC_601. The default Y’CbCr quantization is limited range.
The chromaticities of the primary colors and the white reference are:

Table 75: EBU Tech. 3213 Chromaticities
Color x y
Red 0.64 0.33
Green 0.29 0.60
Blue 0.15 0.06
White Reference
(D65)

0.3127 0.3290

The transfer function was never properly defined for this colorspace. The Rec.
709 transfer function is recommended in the literature:

L′ = 4.5L, for 0 ≤ L < 0.018

L′ = 1.099L0.45 − 0.099, for 0.018 ≤ L ≤ 1

Inverse Transfer function:

L =
L′

4.5
, for L′ < 0.081

L =

(
L′ + 0.099

1.099

) 1
0.45

, for L′ ≥ 0.081

The luminance (Y’) and color difference (Cb and Cr) are obtained with the following
V4L2_YCBCR_ENC_601 encoding:

Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′

Cb = −0.1687R′ − 0.3313G′ + 0.5B′

Cr = 0.5R′ − 0.4187G′ − 0.0813B′

Y’is clamped to the range [0⋯1] and Cb and Cr are clamped to the range [-0.5⋯
0.5]. The Y’CbCr quantization is limited range. This transform is identical to one
defined in SMPTE 170M/BT.601.

300 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Colorspace JPEG (V4L2_COLORSPACE_JPEG)

This colorspace defines the colorspace used by most (Motion-)JPEG formats. The
chromaticities of the primary colors and the white reference are identical to
sRGB. The transfer function use is V4L2_XFER_FUNC_SRGB. The Y’CbCr encod-
ing is V4L2_YCBCR_ENC_601 with full range quantization where Y’is scaled to [0⋯
255] and Cb/Cr are scaled to [-128⋯128] and then clipped to [-128⋯127].

Note: The JPEG standard does not actually store colorspace information.
So if something other than sRGB is used, then the driver will have to set
that information explicitly. Effectively V4L2_COLORSPACE_JPEG can be consid-
ered to be an abbreviation for V4L2_COLORSPACE_SRGB, V4L2_YCBCR_ENC_601 and
V4L2_QUANTIZATION_FULL_RANGE.

Detailed Transfer Function Descriptions

Transfer Function SMPTE 2084 (V4L2_XFER_FUNC_SMPTE2084)

The SMPTE ST 2084 standard defines the transfer function used by High Dynamic
Range content.

Constants: m1 = (2610 / 4096) / 4
m2 = (2523 / 4096) * 128

c1 = 3424 / 4096

c2 = (2413 / 4096) * 32

c3 = (2392 / 4096) * 32

Transfer function: L’= ((c1 + c2 * Lm1) / (1 + c3 * Lm1))m2

Inverse Transfer function: L = (max(L’1/m2 - c1, 0) / (c2 - c3 * L’1/m2))1/m1

Take care when converting between this transfer function and non-HDR transfer
functions: the linear RGB values [0⋯1] of HDR content map to a luminance range
of 0 to 10000 cd/m2 whereas the linear RGB values of non-HDR (aka Standard
Dynamic Range or SDR) map to a luminance range of 0 to 100 cd/m2.

To go from SDR to HDR you will have to divide L by 100 first. To go in the other
direction you will have to multiply L by 100. Of course, this clamps all luminance
values over 100 cd/m2 to 100 cd/m2.

There are better methods, see e.g. colimg for more in-depth information about
this.

7.2. Part I - Video for Linux API 301

Linux Userspace-api Documentation

7.2.3 Input/Output

The V4L2 API defines several different methods to read from or write to a device.
All drivers exchanging data with applications must support at least one of them.

The classic I/O method using the read() and write() function is automatically se-
lected after opening a V4L2 device. When the driver does not support this method
attempts to read or write will fail at any time.

Other methods must be negotiated. To select the streaming I/O method with mem-
ory mapped or user buffers applications call the ioctl VIDIOC_REQBUFS ioctl. The
asynchronous I/O method is not defined yet.

Video overlay can be considered another I/Omethod, although the application does
not directly receive the image data. It is selected by initiating video overlay with
the VIDIOC_S_FMT ioctl. For more information see Video Overlay Interface.

Generally exactly one I/O method, including overlay, is associated with each file
descriptor. The only exceptions are applications not exchanging data with a driver
(“panel applications”, see Opening and Closing Devices) and drivers permitting
simultaneous video capturing and overlay using the same file descriptor, for com-
patibility with V4L and earlier versions of V4L2.

VIDIOC_S_FMT and ioctl VIDIOC_REQBUFS would permit this to some degree,
but for simplicity drivers need not support switching the I/O method (after first
switching away from read/write) other than by closing and reopening the device.

The following sections describe the various I/O methods in more detail.

Read/Write

Input and output devices support the read() and write() function, respec-
tively, when the V4L2_CAP_READWRITE flag in the capabilities field of struct
v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl is set.

Drivers may need the CPU to copy the data, but they may also support DMA to or
from user memory, so this I/O method is not necessarily less efficient than other
methods merely exchanging buffer pointers. It is considered inferior though be-
cause no meta-information like frame counters or timestamps are passed. This in-
formation is necessary to recognize frame dropping and to synchronize with other
data streams. However this is also the simplest I/O method, requiring little or no
setup to exchange data. It permits command line stunts like this (the vidctrl tool
is fictitious):

$ vidctrl /dev/video --input=0 --format=YUYV --size=352x288
$ dd if=/dev/video of=myimage.422 bs=202752 count=1

To read from the device applications use the read() function, to write the write()
function. Drivers must implement one I/O method if they exchange data with ap-
plications, but it need not be this.1 When reading or writing is supported, the
driver must also support the select() and poll() function.2

1 It would be desirable if applications could depend on drivers supporting all I/O interfaces, but as
much as the complex memory mapping I/O can be inadequate for some devices we have no reason
to require this interface, which is most useful for simple applications capturing still images.

2 At the driver level select() and poll() are the same, and select() is too important to be optional.

302 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Streaming I/O (Memory Mapping)

Input and output devices support this I/O method when the V4L2_CAP_STREAMING
flag in the capabilities field of struct v4l2_capability returned by the ioctl
VIDIOC_QUERYCAP ioctl is set. There are two streaming methods, to determine
if the memory mapping flavor is supported applications must call the ioctl VID-
IOC_REQBUFS ioctl with the memory type set to V4L2_MEMORY_MMAP.

Streaming is an I/O method where only pointers to buffers are exchanged between
application and driver, the data itself is not copied. Memory mapping is primarily
intended to map buffers in device memory into the application’s address space.
Device memory can be for example the video memory on a graphics card with a
video capture add-on. However, being the most efficient I/O method available for
a long time, many other drivers support streaming as well, allocating buffers in
DMA-able main memory.

A driver can support many sets of buffers. Each set is identified by a unique buffer
type value. The sets are independent and each set can hold a different type of
data. To access different sets at the same time different file descriptors must be
used.1

To allocate device buffers applications call the ioctl VIDIOC_REQBUFS
ioctl with the desired number of buffers and buffer type, for example
V4L2_BUF_TYPE_VIDEO_CAPTURE. This ioctl can also be used to change the num-
ber of buffers or to free the allocated memory, provided none of the buffers are
still mapped.

Before applications can access the buffers they must map them into their address
space with the mmap() function. The location of the buffers in device memory can
be determined with the ioctl VIDIOC_QUERYBUF ioctl. In the single-planar API
case, the m.offset and length returned in a struct v4l2_buffer are passed as
sixth and second parameter to the mmap() function. When using the multi-planar
API, struct v4l2_buffer contains an array of struct v4l2_plane structures, each
containing its own m.offset and length. When using the multi-planar API, every
plane of every buffer has to bemapped separately, so the number of calls to mmap()
should be equal to number of buffers times number of planes in each buffer. The
offset and length valuesmust not bemodified. Remember, the buffers are allocated
in physical memory, as opposed to virtual memory, which can be swapped out to
disk. Applications should free the buffers as soon as possible with the munmap()
function.

1 One could use one file descriptor and set the buffer type field accordingly when calling ioctl
VIDIOC_QBUF, VIDIOC_DQBUF etc., but it makes the select() function ambiguous. We also like the
clean approach of one file descriptor per logical stream. Video overlay for example is also a logical
stream, although the CPU is not needed for continuous operation.

7.2. Part I - Video for Linux API 303

Linux Userspace-api Documentation

Example: Mapping buffers in the single-planar API

struct v4l2_requestbuffers reqbuf;
struct {

void *start;
size_t length;

} *buffers;
unsigned int i;

memset(&reqbuf, 0, sizeof(reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_MMAP;
reqbuf.count = 20;

if (-1 == ioctl (fd, VIDIOC_REQBUFS, &reqbuf)) {
if (errno == EINVAL)

printf("Video capturing or mmap-streaming is not supported\\n");
else

perror("VIDIOC_REQBUFS");

exit(EXIT_FAILURE);
}

/* We want at least five buffers. */

if (reqbuf.count < 5) {
/* You may need to free the buffers here. */
printf("Not enough buffer memory\\n");
exit(EXIT_FAILURE);

}

buffers = calloc(reqbuf.count, sizeof(*buffers));
assert(buffers != NULL);

for (i = 0; i < reqbuf.count; i++) {
struct v4l2_buffer buffer;

memset(&buffer, 0, sizeof(buffer));
buffer.type = reqbuf.type;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = i;

if (-1 == ioctl (fd, VIDIOC_QUERYBUF, &buffer)) {
perror("VIDIOC_QUERYBUF");
exit(EXIT_FAILURE);

}

buffers[i].length = buffer.length; /* remember for munmap() */

buffers[i].start = mmap(NULL, buffer.length,
PROT_READ | PROT_WRITE, /* recommended */
MAP_SHARED, /* recommended */
fd, buffer.m.offset);

if (MAP_FAILED == buffers[i].start) {
/* If you do not exit here you should unmap() and free()

(continues on next page)

304 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
the buffers mapped so far. */

perror("mmap");
exit(EXIT_FAILURE);

}
}

/* Cleanup. */

for (i = 0; i < reqbuf.count; i++)
munmap(buffers[i].start, buffers[i].length);

Example: Mapping buffers in the multi-planar API

struct v4l2_requestbuffers reqbuf;
/* Our current format uses 3 planes per buffer */
#define FMT_NUM_PLANES = 3

struct {
void *start[FMT_NUM_PLANES];
size_t length[FMT_NUM_PLANES];

} *buffers;
unsigned int i, j;

memset(&reqbuf, 0, sizeof(reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
reqbuf.memory = V4L2_MEMORY_MMAP;
reqbuf.count = 20;

if (ioctl(fd, VIDIOC_REQBUFS, &reqbuf) < 0) {
if (errno == EINVAL)

printf("Video capturing or mmap-streaming is not supported\\n");
else

perror("VIDIOC_REQBUFS");

exit(EXIT_FAILURE);
}

/* We want at least five buffers. */

if (reqbuf.count < 5) {
/* You may need to free the buffers here. */
printf("Not enough buffer memory\\n");
exit(EXIT_FAILURE);

}

buffers = calloc(reqbuf.count, sizeof(*buffers));
assert(buffers != NULL);

for (i = 0; i < reqbuf.count; i++) {
struct v4l2_buffer buffer;
struct v4l2_plane planes[FMT_NUM_PLANES];

memset(&buffer, 0, sizeof(buffer));
(continues on next page)

7.2. Part I - Video for Linux API 305

Linux Userspace-api Documentation

(continued from previous page)
buffer.type = reqbuf.type;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = i;
/* length in struct v4l2_buffer in multi-planar API stores the size
* of planes array. */

buffer.length = FMT_NUM_PLANES;
buffer.m.planes = planes;

if (ioctl(fd, VIDIOC_QUERYBUF, &buffer) < 0) {
perror("VIDIOC_QUERYBUF");
exit(EXIT_FAILURE);

}

/* Every plane has to be mapped separately */
for (j = 0; j < FMT_NUM_PLANES; j++) {

buffers[i].length[j] = buffer.m.planes[j].length; /* remember for␣
↪→munmap() */

buffers[i].start[j] = mmap(NULL, buffer.m.planes[j].length,
PROT_READ | PROT_WRITE, /* recommended */
MAP_SHARED, /* recommended */
fd, buffer.m.planes[j].m.offset);

if (MAP_FAILED == buffers[i].start[j]) {
/* If you do not exit here you should unmap() and free()

the buffers and planes mapped so far. */
perror("mmap");
exit(EXIT_FAILURE);

}
}

}

/* Cleanup. */

for (i = 0; i < reqbuf.count; i++)
for (j = 0; j < FMT_NUM_PLANES; j++)

munmap(buffers[i].start[j], buffers[i].length[j]);

Conceptually streaming drivers maintain two buffer queues, an incoming and an
outgoing queue. They separate the synchronous capture or output operation
locked to a video clock from the application which is subject to random disk or
network delays and preemption by other processes, thereby reducing the proba-
bility of data loss. The queues are organized as FIFOs, buffers will be output in the
order enqueued in the incoming FIFO, and were captured in the order dequeued
from the outgoing FIFO.

The driver may require a minimum number of buffers enqueued at all times to
function, apart of this no limit exists on the number of buffers applications can
enqueue in advance, or dequeue and process. They can also enqueue in a different
order than buffers have been dequeued, and the driver can fill enqueued empty
buffers in any order.2 The index number of a buffer (struct v4l2_buffer index)

2 Random enqueue order permits applications processing images out of order (such as video
codecs) to return buffers earlier, reducing the probability of data loss. Random fill order allows
drivers to reuse buffers on a LIFO-basis, taking advantage of caches holding scatter-gather lists and
the like.

306 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

plays no role here, it only identifies the buffer.

Initially all mapped buffers are in dequeued state, inaccessible by the driver. For
capturing applications it is customary to first enqueue all mapped buffers, then to
start capturing and enter the read loop. Here the application waits until a filled
buffer can be dequeued, and re-enqueues the buffer when the data is no longer
needed. Output applications fill and enqueue buffers, when enough buffers are
stacked up the output is started with VIDIOC_STREAMON. In the write loop, when
the application runs out of free buffers, it must wait until an empty buffer can be
dequeued and reused.

To enqueue and dequeue a buffer applications use the VIVIOC_QBUF and VID-
IOC_DQBUF ioctl. The status of a buffer being mapped, enqueued, full or empty
can be determined at any time using the ioctl VIDIOC_QUERYBUF ioctl. Two
methods exist to suspend execution of the application until one or more buffers
can be dequeued. By default VIDIOC_DQBUF blocks when no buffer is in the out-
going queue. When the O_NONBLOCK flag was given to the open() function, VID-
IOC_DQBUF returns immediately with an EAGAIN error code when no buffer is
available. The select() or poll() functions are always available.

To start and stop capturing or output applications call the VIDIOC_STREAMON
and VIDIOC_STREAMOFF ioctl.

Drivers implementing memory mapping I/O must support the VIDIOC_REQBUFS,
VIDIOC_QUERYBUF, VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_STREAMON and
VIDIOC_STREAMOFF ioctls, the mmap(), munmap(), select() and poll() function.3

[capture example]

Streaming I/O (User Pointers)

Input and output devices support this I/O method when the V4L2_CAP_STREAMING
flag in the capabilities field of struct v4l2_capability returned by the ioctl
VIDIOC_QUERYCAP ioctl is set. If the particular user pointer method (not only
memory mapping) is supported must be determined by calling the ioctl VID-
IOC_REQBUFS ioctl with the memory type set to V4L2_MEMORY_USERPTR.

This I/O method combines advantages of the read/write and memory mapping
methods. Buffers (planes) are allocated by the application itself, and can reside
for example in virtual or shared memory. Only pointers to data are exchanged,
these pointers andmeta-information are passed in struct v4l2_buffer (or in struct
v4l2_plane in the multi-planar API case). The driver must be switched into user
pointer I/O mode by calling the ioctl VIDIOC_REQBUFS with the desired buffer
type. No buffers (planes) are allocated beforehand, consequently they are not in-
dexed and cannot be queried like mapped buffers with the VIDIOC_QUERYBUF
ioctl.

3 At the driver level select() and poll() are the same, and select() is too important to be optional.
The rest should be evident.

7.2. Part I - Video for Linux API 307

Linux Userspace-api Documentation

Example: Initiating streaming I/O with user pointers

struct v4l2_requestbuffers reqbuf;

memset (&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_USERPTR;

if (ioctl (fd, VIDIOC_REQBUFS, &reqbuf) == -1) {
if (errno == EINVAL)

printf ("Video capturing or user pointer streaming is not␣
↪→supported\\n");

else
perror ("VIDIOC_REQBUFS");

exit (EXIT_FAILURE);
}

Buffer (plane) addresses and sizes are passed on the fly with the VIDIOC_QBUF
ioctl. Although buffers are commonly cycled, applications can pass different ad-
dresses and sizes at each VIDIOC_QBUF call. If required by the hardware the
driver swaps memory pages within physical memory to create a continuous area
of memory. This happens transparently to the application in the virtual memory
subsystem of the kernel. When buffer pages have been swapped out to disk they
are brought back and finally locked in physical memory for DMA.1

Filled or displayed buffers are dequeued with the VIDIOC_DQBUF ioctl. The driver
can unlock the memory pages at any time between the completion of the DMA
and this ioctl. The memory is also unlocked when VIDIOC_STREAMOFF is called,
ioctl VIDIOC_REQBUFS, or when the device is closed. Applications must take
care not to free buffers without dequeuing. Firstly, the buffers remain locked for
longer, wasting physical memory. Secondly the driver will not be notified when
the memory is returned to the application’s free list and subsequently reused for
other purposes, possibly completing the requested DMA and overwriting valuable
data.

For capturing applications it is customary to enqueue a number of empty buffers,
to start capturing and enter the read loop. Here the application waits until a filled
buffer can be dequeued, and re-enqueues the buffer when the data is no longer
needed. Output applications fill and enqueue buffers, when enough buffers are
stacked up output is started. In the write loop, when the application runs out of
free buffers it must wait until an empty buffer can be dequeued and reused. Two
methods exist to suspend execution of the application until one or more buffers
can be dequeued. By default VIDIOC_DQBUF blocks when no buffer is in the out-
going queue. When the O_NONBLOCK flag was given to the open() function, VID-
IOC_DQBUF returns immediately with an EAGAIN error code when no buffer is

1 We expect that frequently used buffers are typically not swapped out. Anyway, the process
of swapping, locking or generating scatter-gather lists may be time consuming. The delay can be
masked by the depth of the incoming buffer queue, and perhaps by maintaining caches assuming a
buffer will be soon enqueued again. On the other hand, to optimize memory usage drivers can limit
the number of buffers locked in advance and recycle the most recently used buffers first. Of course,
the pages of empty buffers in the incoming queue need not be saved to disk. Output buffers must
be saved on the incoming and outgoing queue because an application may share them with other
processes.

308 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

available. The select() or poll() function are always available.

To start and stop capturing or output applications call the VIDIOC_STREAMON
and VIDIOC_STREAMOFF ioctl.

Note: VIDIOC_STREAMOFF removes all buffers from both queues and unlocks all
buffers as a side effect. Since there is no notion of doing anything“now”on a multi-
tasking system, if an application needs to synchronize with another event it should
examine the struct v4l2_buffer timestamp of captured or outputted buffers.

Drivers implementing user pointer I/O must support the VIDIOC_REQBUFS,
VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_STREAMON and VIDIOC_STREAMOFF
ioctls, the select() and poll() function.2

Streaming I/O (DMA buffer importing)

The DMABUF framework provides a generic method for sharing buffers between
multiple devices. Device drivers that support DMABUF can export a DMA buffer to
userspace as a file descriptor (known as the exporter role), import a DMA buffer
from userspace using a file descriptor previously exported for a different or the
same device (known as the importer role), or both. This section describes the
DMABUF importer role API in V4L2.

Refer to DMABUF exporting for details about exporting V4L2 buffers as DMABUF
file descriptors.

Input and output devices support the streaming I/O method when the
V4L2_CAP_STREAMING flag in the capabilities field of struct v4l2_capability
returned by the VIDIOC_QUERYCAP ioctl is set. Whether importing DMA buffers
through DMABUF file descriptors is supported is determined by calling the VID-
IOC_REQBUFS ioctl with the memory type set to V4L2_MEMORY_DMABUF.

This I/O method is dedicated to sharing DMA buffers between different devices,
which may be V4L devices or other video-related devices (e.g. DRM). Buffers
(planes) are allocated by a driver on behalf of an application. Next, these buffers
are exported to the application as file descriptors using an API which is specific
for an allocator driver. Only such file descriptor are exchanged. The descriptors
and meta-information are passed in struct v4l2_buffer (or in struct v4l2_plane
in the multi-planar API case). The driver must be switched into DMABUF I/O mode
by calling the VIDIOC_REQBUFS with the desired buffer type.

2 At the driver level select() and poll() are the same, and select() is too important to be optional.
The rest should be evident.

7.2. Part I - Video for Linux API 309

Linux Userspace-api Documentation

Example: Initiating streaming I/O with DMABUF file descriptors

struct v4l2_requestbuffers reqbuf;

memset(&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_DMABUF;
reqbuf.count = 1;

if (ioctl(fd, VIDIOC_REQBUFS, &reqbuf) == -1) {
if (errno == EINVAL)

printf("Video capturing or DMABUF streaming is not supported\\n");
else

perror("VIDIOC_REQBUFS");

exit(EXIT_FAILURE);
}

The buffer (plane) file descriptor is passed on the fly with the VIDIOC_QBUF ioctl.
In case of multiplanar buffers, every plane can be associated with a different
DMABUF descriptor. Although buffers are commonly cycled, applications can pass
a different DMABUF descriptor at each VIDIOC_QBUF call.

Example: Queueing DMABUF using single plane API

int buffer_queue(int v4lfd, int index, int dmafd)
{

struct v4l2_buffer buf;

memset(&buf, 0, sizeof buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_DMABUF;
buf.index = index;
buf.m.fd = dmafd;

if (ioctl(v4lfd, VIDIOC_QBUF, &buf) == -1) {
perror("VIDIOC_QBUF");
return -1;

}

return 0;
}

Example 3.6. Queueing DMABUF using multi plane API

int buffer_queue_mp(int v4lfd, int index, int dmafd[], int n_planes)
{

struct v4l2_buffer buf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
int i;

memset(&buf, 0, sizeof buf);
(continues on next page)

310 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
buf.memory = V4L2_MEMORY_DMABUF;
buf.index = index;
buf.m.planes = planes;
buf.length = n_planes;

memset(&planes, 0, sizeof planes);

for (i = 0; i < n_planes; ++i)
buf.m.planes[i].m.fd = dmafd[i];

if (ioctl(v4lfd, VIDIOC_QBUF, &buf) == -1) {
perror("VIDIOC_QBUF");
return -1;

}

return 0;
}

Captured or displayed buffers are dequeued with the VIDIOC_DQBUF ioctl. The
driver can unlock the buffer at any time between the completion of the DMA and
this ioctl. The memory is also unlocked when VIDIOC_STREAMOFF is called, VID-
IOC_REQBUFS, or when the device is closed.

For capturing applications it is customary to enqueue a number of empty buffers,
to start capturing and enter the read loop. Here the application waits until a filled
buffer can be dequeued, and re-enqueues the buffer when the data is no longer
needed. Output applications fill and enqueue buffers, when enough buffers are
stacked up output is started. In the write loop, when the application runs out of
free buffers it must wait until an empty buffer can be dequeued and reused. Two
methods exist to suspend execution of the application until one or more buffers
can be dequeued. By default VIDIOC_DQBUF blocks when no buffer is in the out-
going queue. When the O_NONBLOCK flag was given to the open() function, VID-
IOC_DQBUF returns immediately with an EAGAIN error code when no buffer is
available. The select() and poll() functions are always available.

To start and stop capturing or displaying applications call the VIDIOC_STREAMON
and VIDIOC_STREAMOFF ioctls.

Note: VIDIOC_STREAMOFF removes all buffers from both queues and unlocks all
buffers as a side effect. Since there is no notion of doing anything“now”on a multi-
tasking system, if an application needs to synchronize with another event it should
examine the struct v4l2_buffer timestamp of captured or outputted buffers.

Drivers implementing DMABUF importing I/O must support the VID-
IOC_REQBUFS, VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_STREAMON and
VIDIOC_STREAMOFF ioctls, and the select() and poll() functions.

7.2. Part I - Video for Linux API 311

Linux Userspace-api Documentation

Asynchronous I/O

This method is not defined yet.

Buffers

A buffer contains data exchanged by application and driver using one of the
Streaming I/O methods. In the multi-planar API, the data is held in planes,
while the buffer structure acts as a container for the planes. Only pointers to
buffers (planes) are exchanged, the data itself is not copied. These pointers, to-
gether with meta-information like timestamps or field parity, are stored in a struct
v4l2_buffer, argument to the ioctl VIDIOC_QUERYBUF, VIDIOC_QBUF and VID-
IOC_DQBUF ioctl. In the multi-planar API, some plane-specific members of struct
v4l2_buffer, such as pointers and sizes for each plane, are stored in struct struct
v4l2_plane instead. In that case, struct struct v4l2_buffer contains an array of
plane structures.

Dequeued video buffers come with timestamps. The driver decides at which part
of the frame and with which clock the timestamp is taken. Please see flags in the
masks V4L2_BUF_FLAG_TIMESTAMP_MASK and V4L2_BUF_FLAG_TSTAMP_SRC_MASK in
Buffer Flags. These flags are always valid and constant across all buffers
during the whole video stream. Changes in these flags may take place
as a side effect of VIDIOC_S_INPUT or VIDIOC_S_OUTPUT however. The
V4L2_BUF_FLAG_TIMESTAMP_COPY timestamp type which is used by e.g. on mem-
to-mem devices is an exception to the rule: the timestamp source flags are copied
from the OUTPUT video buffer to the CAPTURE video buffer.

Interactions between formats, controls and buffers

V4L2 exposes parameters that influence the buffer size, or the way data is laid out
in the buffer. Those parameters are exposed through both formats and controls.
One example of such a control is the V4L2_CID_ROTATE control that modifies the
direction in which pixels are stored in the buffer, as well as the buffer size when
the selected format includes padding at the end of lines.

The set of information needed to interpret the content of a buffer (e.g. the pixel
format, the line stride, the tiling orientation or the rotation) is collectively referred
to in the rest of this section as the buffer layout.

Controls that can modify the buffer layout shall set the
V4L2_CTRL_FLAG_MODIFY_LAYOUT flag.

Modifying formats or controls that influence the buffer size or layout require the
stream to be stopped. Any attempt at such a modification while the stream is
active shall cause the ioctl setting the format or the control to return the EBUSY
error code. In that case drivers shall also set the V4L2_CTRL_FLAG_GRABBED flag
when calling VIDIOC_QUERYCTRL() or VIDIOC_QUERY_EXT_CTRL() for such a con-
trol while the stream is active.

Note: The VIDIOC_S_SELECTION() ioctl can, depending on the hardware (for
instance if the device doesn’t include a scaler), modify the format in addition

312 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

to the selection rectangle. Similarly, the VIDIOC_S_INPUT(), VIDIOC_S_OUTPUT(),
VIDIOC_S_STD() and VIDIOC_S_DV_TIMINGS() ioctls can also modify the format
and selection rectangles. When those ioctls result in a buffer size or layout change,
drivers shall handle that condition as they would handle it in the VIDIOC_S_FMT()
ioctl in all cases described in this section.

Controls that only influence the buffer layout can be modified at any time when
the stream is stopped. As they don’t influence the buffer size, no special han-
dling is needed to synchronize those controls with buffer allocation and the
V4L2_CTRL_FLAG_GRABBED flag is cleared once the stream is stopped.

Formats and controls that influence the buffer size interact with buffer alloca-
tion. The simplest way to handle this is for drivers to always require buffers
to be reallocated in order to change those formats or controls. In that case, to
perform such changes, userspace applications shall first stop the video stream
with the VIDIOC_STREAMOFF() ioctl if it is running and free all buffers with
the VIDIOC_REQBUFS() ioctl if they are allocated. After freeing all buffers the
V4L2_CTRL_FLAG_GRABBED flag for controls is cleared. The format or controls can
then be modified, and buffers shall then be reallocated and the stream restarted.
A typical ioctl sequence is

1. VIDIOC_STREAMOFF

2. VIDIOC_REQBUFS(0)

3. VIDIOC_S_EXT_CTRLS

4. VIDIOC_S_FMT

5. VIDIOC_REQBUFS(n)

6. VIDIOC_QBUF

7. VIDIOC_STREAMON

The second VIDIOC_REQBUFS() call will take the new format and control value into
account to compute the buffer size to allocate. Applications can also retrieve the
size by calling the VIDIOC_G_FMT() ioctl if needed.

Note: The API doesn’t mandate the above order for control (3.) and format (4.)
changes. Format and controls can be set in a different order, or even interleaved,
depending on the device and use case. For instance some controls might behave
differently for different pixel formats, in which case the format might need to be
set first.

When reallocation is required, any attempt to modify format or controls that influ-
ences the buffer size while buffers are allocated shall cause the format or control
set ioctl to return the EBUSY error. Any attempt to queue a buffer too small for the
current format or controls shall cause the VIDIOC_QBUF() ioctl to return a EINVAL
error.

Buffer reallocation is an expensive operation. To avoid that cost, drivers can (and
are encouraged to) allow format or controls that influence the buffer size to be
changed with buffers allocated. In that case, a typical ioctl sequence to modify
format and controls is

7.2. Part I - Video for Linux API 313

Linux Userspace-api Documentation

1. VIDIOC_STREAMOFF

2. VIDIOC_S_EXT_CTRLS

3. VIDIOC_S_FMT

4. VIDIOC_QBUF

5. VIDIOC_STREAMON

For this sequence to operate correctly, queued buffers need to be large enough
for the new format or controls. Drivers shall return a ENOSPC error in response
to format change (VIDIOC_S_FMT()) or control changes (VIDIOC_S_CTRL() or
VIDIOC_S_EXT_CTRLS()) if buffers too small for the new format are currently
queued. As a simplification, drivers are allowed to return a EBUSY error from these
ioctls if any buffer is currently queued, without checking the queued buffers sizes.

Additionally, drivers shall return a EINVAL error from the VIDIOC_QBUF() ioctl if
the buffer being queued is too small for the current format or controls. Together,
these requirements ensure that queued buffers will always be large enough for
the configured format and controls.

Userspace applications can query the buffer size required for a given format and
controls by first setting the desired control values and then trying the desired
format. The VIDIOC_TRY_FMT() ioctl will return the required buffer size.

1. VIDIOC_S_EXT_CTRLS(x)

2. VIDIOC_TRY_FMT()

3. VIDIOC_S_EXT_CTRLS(y)

4. VIDIOC_TRY_FMT()

The VIDIOC_CREATE_BUFS() ioctl can then be used to allocate buffers based on the
queried sizes (for instance by allocating a set of buffers large enough for all the
desired formats and controls, or by allocating separate set of appropriately sized
buffers for each use case).

v4l2_buffer

struct v4l2_buffer

314 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 76: struct v4l2_buffer
__u32 index Number

of the
buffer,
set by
the
appli-
cation
except
when
calling
VID-
IOC_DQBUF,
then it
is set
by the
driver.
This
field
can
range
from
zero
to the
num-
ber of
buffers
allo-
cated
with
the ioctl
VID-
IOC_REQBUFS
ioctl
(struct
v4l2_requestbuffers
count),
plus any
buffers
allo-
cated
with
ioctl
VID-
IOC_CREATE_BUFS
minus
one.

Continued on next page

7.2. Part I - Video for Linux API 315

Linux Userspace-api Documentation

Table 76 – continued from previous page
__u32 type Type

of the
buffer,
same as
struct
v4l2_format
type or
struct
v4l2_requestbuffers
type,
set by
the
appli-
cation.
See
v4l2_buf_type

Continued on next page

316 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 76 – continued from previous page
__u32 bytesused The

number
of bytes
occu-
pied by
the data
in the
buffer.
It de-
pends
on the
nego-
tiated
data
format
and
may
change
with
each
buffer
for com-
pressed
variable
size
data
like
JPEG
images.
Drivers
must
set this
field
when
type
refers
to a
capture
stream,
appli-
cations
when it
refers
to an
output
stream.
If the
appli-
cation
sets
this to
0 for an
output
stream,
then
bytesused
will be
set to
the size
of the
buffer
(see the
length
field
of this
struct)
by the
driver.
For
multi-
planar
formats
this
field is
ignored
and the
planes
pointer
is used
instead.

Continued on next page

7.2. Part I - Video for Linux API 317

Linux Userspace-api Documentation

Table 76 – continued from previous page
__u32 flags Flags

set by
the
applica-
tion or
driver,
see
Buffer
Flags.

__u32 field Indicates
the field
order
of the
image
in the
buffer,
see
v4l2_field.
This
field
is not
used
when
the
buffer
con-
tains
VBI
data.
Drivers
must
set it
when
type
refers
to a
capture
stream,
appli-
cations
when it
refers
to an
output
stream.

Continued on next page

318 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 76 – continued from previous page
struct timeval timestamp For

capture
streams
this is
time
when
the first
data
byte
was
cap-
tured,
as re-
turned
by the
clock_gettime()
func-
tion for
the rel-
evant
clock
id; see
V4L2_BUF_FLAG_TIMESTAMP_*
in
Buffer
Flags.
For
output
streams
the
driver
stores
the
time at
which
the last
data
byte
was
actually
sent out
in the
timestamp
field.
This
permits
applica-
tions to
moni-
tor the
drift be-
tween
the
video
and
system
clock.
For
output
streams
that use
V4L2_BUF_FLAG_TIMESTAMP_COPY
the ap-
plica-
tion has
to fill
in the
times-
tamp
which
will be
copied
by the
driver
to the
capture
stream.

Continued on next page

7.2. Part I - Video for Linux API 319

Linux Userspace-api Documentation

Table 76 – continued from previous page
struct
v4l2_timecode

timecode When
the
V4L2_BUF_FLAG_TIMECODE
flag is
set in
flags,
this
struc-
ture
con-
tains a
frame
time-
code. In
V4L2_FIELD_ALTERNATE
mode
the top
and
bottom
field
con-
tain the
same
time-
code.
Time-
codes
are in-
tended
to help
video
editing
and are
typ-
ically
recorded
on
video
tapes,
but also
embed-
ded in
com-
pressed
formats
like
MPEG.
This
field is
inde-
pendent
of the
timestamp
and
sequence
fields.

Continued on next page

320 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 76 – continued from previous page
__u32 sequence Set

by the
driver,
count-
ing the
frames
(not
fields!)
in se-
quence.
This
field is
set for
both in-
put and
output
devices.

In V4L2_FIELD_ALTERNATEmode the top
and bottom field have the same se-
quence number. The count starts at
zero and includes dropped or repeated
frames. A dropped frame was received
by an input device but could not be
stored due to lack of free buffer space.
A repeated frame was displayed again
by an output device because the appli-
cation did not pass new data in time.

Note: This may count the frames re-
ceived e.g. over USB, without taking
into account the frames dropped by the
remote hardware due to limited com-
pression throughput or bus bandwidth.
These devices identify by not enumerat-
ing any video standards, see Video Stan-
dards.

Continued on next page

7.2. Part I - Video for Linux API 321

Linux Userspace-api Documentation

Table 76 – continued from previous page
__u32 memory This

field
must be
set by
appli-
cations
and/or
drivers
in ac-
cor-
dance
with
the se-
lected
I/O
method.
See
v4l2_memory

union { m
Continued on next page

322 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 76 – continued from previous page
__u32 offset For the

single-
planar
API and
when
memory
is
V4L2_MEMORY_MMAP
this is
the
offset
of the
buffer
from
the
start
of the
device
mem-
ory.
The
value
is re-
turned
by the
driver
and
apart of
serving
as pa-
rameter
to the
mmap()
func-
tion not
use-
ful for
appli-
cations.
See
Stream-
ing I/O
(Mem-
ory
Map-
ping)
for
details

Continued on next page

7.2. Part I - Video for Linux API 323

Linux Userspace-api Documentation

Table 76 – continued from previous page
unsigned long userptr For the

single-
planar
API and
when
memory
is
V4L2_MEMORY_USERPTR
this is a
pointer
to the
buffer
(casted
to un-
signed
long
type) in
virtual
mem-
ory, set
by the
appli-
cation.
See
Stream-
ing I/O
(User
Point-
ers) for
details.

Continued on next page

324 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 76 – continued from previous page
struct
v4l2_plane

*planes When
using
the
multi-
planar
API,
con-
tains a
userspace
pointer
to an
array of
struct
v4l2_plane.
The size
of the
array
should
be put
in the
length
field
of this
struct
v4l2_buffer
struc-
ture.

int fd For the
single-
plane
API and
when
memory
is
V4L2_MEMORY_DMABUF
this is
the
file de-
scriptor
asso-
ciated
with a
DMABUF
buffer.

}
Continued on next page

7.2. Part I - Video for Linux API 325

Linux Userspace-api Documentation

Table 76 – continued from previous page
__u32 length Size

of the
buffer
(not the
pay-
load) in
bytes
for the
single-
planar
API.
This
is set
by the
driver
based
on the
calls
to ioctl
VID-
IOC_REQBUFS
and/or
ioctl
VID-
IOC_CREATE_BUFS.
For the
multi-
planar
API the
appli-
cation
sets this
to the
number
of ele-
ments
in the
planes
array.
The
driver
will fill
in the
actual
num-
ber of
valid el-
ements
in that
array.

Continued on next page

326 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 76 – continued from previous page
__u32 reserved2 A place

holder
for fu-
ture
exten-
sions.
Drivers
and
appli-
cations
must
set this
to 0.

Continued on next page

7.2. Part I - Video for Linux API 327

Linux Userspace-api Documentation

Table 76 – continued from previous page
__u32 request_fd The file

descrip-
tor of
the re-
quest to
queue
the
buffer
to. If
the flag
V4L2_BUF_FLAG_REQUEST_FD
is set,
then the
buffer
will be
queued
to this
re-
quest.
If the
flag is
not set,
then
this
field
will
be ig-
nored.
The
V4L2_BUF_FLAG_REQUEST_FD
flag and
this
field
are only
used
by ioctl
VID-
IOC_QBUF
and ig-
nored
by other
ioctls
that
take a
v4l2_buffer
as argu-
ment.
Applications
should
not set
V4L2_BUF_FLAG_REQUEST_FD
for any
ioctls
other
than
VID-
IOC_QBUF.
If the
device
does
not sup-
port
re-
quests,
then
EBADR
will
be re-
turned.
If re-
quests
are sup-
ported
but an
invalid
request
file
descrip-
tor is
given,
then
EINVAL
will
be re-
turned.

Continued on next page

328 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 76 – continued from previous page

v4l2_plane

struct v4l2_plane

__u32 bytesused The number of
bytes occupied by
data in the plane
(its payload).
Drivers must set
this field when
type refers to a
capture stream,
applications
when it refers to
an output stream.
If the application
sets this to 0 for
an output stream,
then bytesused
will be set to
the size of the
plane (see the
length field of
this struct) by the
driver.

Note: Note
that the actual
image data starts
at data_offset
which may not be
0.

__u32 length Size in bytes of
the plane (not its
payload). This is
set by the driver
based on the
calls to ioctl VID-
IOC_REQBUFS
and/or ioctl VID-
IOC_CREATE_BUFS.

union { m
Continued on next page

7.2. Part I - Video for Linux API 329

Linux Userspace-api Documentation

Table 77 – continued from previous page
__u32 mem_offset When the mem-

ory type in the
containing struct
v4l2_buffer is
V4L2_MEMORY_MMAP,
this is the value
that should
be passed to
mmap(), similar
to the offset
field in struct
v4l2_buffer.

unsigned long userptr When the mem-
ory type in the
containing struct
v4l2_buffer is
V4L2_MEMORY_USERPTR,
this is a userspace
pointer to the
memory allocated
for this plane by
an application.

int fd When the mem-
ory type in the
containing struct
v4l2_buffer is
V4L2_MEMORY_DMABUF,
this is a file de-
scriptor asso-
ciated with a
DMABUF buffer,
similar to the fd
field in struct
v4l2_buffer.

}
Continued on next page

330 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 77 – continued from previous page
__u32 data_offset Offset in bytes to

video data in the
plane. Drivers
must set this field
when type refers
to a capture
stream, appli-
cations when
it refers to an
output stream.

Note: That
data_offset
is included in
bytesused. So
the size of the im-
age in the plane
is bytesused-
data_offset
at offset
data_offset
from the start of
the plane.

__u32 reserved[11] Reserved for fu-
ture use. Should
be zeroed by
drivers and appli-
cations.

v4l2_buf_type

7.2. Part I - Video for Linux API 331

Linux Userspace-api Documentation

enum v4l2_buf_type

V4L2_BUF_TYPE_VIDEO_CAPTURE 1 Buffer of a single-planar video capture stream,
see Video Capture Interface.

V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE 9 Buffer of a multi-planar video capture stream,
see Video Capture Interface.

V4L2_BUF_TYPE_VIDEO_OUTPUT 2 Buffer of a single-planar video output stream,
see Video Output Interface.

V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE 10 Buffer of a multi-planar video output stream,
see Video Output Interface.

V4L2_BUF_TYPE_VIDEO_OVERLAY 3 Buffer for video overlay, see Video Overlay In-
terface.

V4L2_BUF_TYPE_VBI_CAPTURE 4 Buffer of a raw VBI capture stream, see Raw
VBI Data Interface.

V4L2_BUF_TYPE_VBI_OUTPUT 5 Buffer of a raw VBI output stream, see Raw VBI
Data Interface.

V4L2_BUF_TYPE_SLICED_VBI_CAPTURE 6 Buffer of a sliced VBI capture stream, see
Sliced VBI Data Interface.

V4L2_BUF_TYPE_SLICED_VBI_OUTPUT 7 Buffer of a sliced VBI output stream, see Sliced
VBI Data Interface.

V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY 8 Buffer for video output overlay (OSD), see
Video Output Overlay Interface.

V4L2_BUF_TYPE_SDR_CAPTURE 11 Buffer for Software Defined Radio (SDR) cap-
ture stream, see Software Defined Radio Inter-
face (SDR).

V4L2_BUF_TYPE_SDR_OUTPUT 12 Buffer for Software Defined Radio (SDR) out-
put stream, see Software Defined Radio Inter-
face (SDR).

V4L2_BUF_TYPE_META_CAPTURE 13 Buffer for metadata capture, see Metadata In-
terface.

V4L2_BUF_TYPE_META_OUTPUT 14 Buffer for metadata output, see Metadata In-
terface.

Buffer Flags

V4L2_BUF_FLAG_MAPPED
0x00000001

The buffer resides in device memory and
has been mapped into the application’s ad-
dress space, see Streaming I/O (Memory
Mapping) for details. Drivers set or clear
this flag when the ioctl VIDIOC_QUERYBUF,
ioctl VIDIOC_QBUF, VIDIOC_DQBUF or VID-
IOC_DQBUF ioctl is called. Set by the driver.

Continued on next page

332 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 78 – continued from previous page
V4L2_BUF_FLAG_QUEUED

0x00000002
Internally drivers maintain two buffer queues,
an incoming and outgoing queue. When this
flag is set, the buffer is currently on the in-
coming queue. It automatically moves to
the outgoing queue after the buffer has been
filled (capture devices) or displayed (output de-
vices). Drivers set or clear this flag when the
VIDIOC_QUERYBUF ioctl is called. After (success-
ful) calling the VIDIOC_QBUFioctl it is always set
and after VIDIOC_DQBUF always cleared.

V4L2_BUF_FLAG_DONE
0x00000004

When this flag is set, the buffer is cur-
rently on the outgoing queue, ready to be
dequeued from the driver. Drivers set or
clear this flag when the VIDIOC_QUERYBUF ioctl
is called. After calling the VIDIOC_QBUF or
VIDIOC_DQBUF it is always cleared. Of course
a buffer cannot be on both queues at the
same time, the V4L2_BUF_FLAG_QUEUED and
V4L2_BUF_FLAG_DONE flag are mutually exclu-
sive. They can be both cleared however, then
the buffer is in“dequeued”state, in the appli-
cation domain so to say.

V4L2_BUF_FLAG_ERROR
0x00000040

When this flag is set, the buffer has been de-
queued successfully, although the data might
have been corrupted. This is recoverable,
streaming may continue as normal and the
buffer may be reused normally. Drivers set this
flag when the VIDIOC_DQBUF ioctl is called.

V4L2_BUF_FLAG_IN_REQUEST
0x00000080

This buffer is part of a request that hasn’t been
queued yet.

V4L2_BUF_FLAG_KEYFRAME
0x00000008

Drivers set or clear this flag when calling the
VIDIOC_DQBUF ioctl. It may be set by video cap-
ture devices when the buffer contains a com-
pressed image which is a key frame (or field), i.
e. can be decompressed on its own. Also known
as an I-frame. Applications can set this bit when
type refers to an output stream.

V4L2_BUF_FLAG_PFRAME
0x00000010

Similar to V4L2_BUF_FLAG_KEYFRAME this flags
predicted frames or fields which contain only
differences to a previous key frame. Applica-
tions can set this bit when type refers to an out-
put stream.

V4L2_BUF_FLAG_BFRAME
0x00000020

Similar to V4L2_BUF_FLAG_KEYFRAME this flags
a bi-directional predicted frame or field which
contains only the differences between the cur-
rent frame and both the preceding and follow-
ing key frames to specify its content. Applica-
tions can set this bit when type refers to an out-
put stream.

V4L2_BUF_FLAG_TIMECODE
0x00000100

The timecode field is valid. Drivers set or
clear this flag when the VIDIOC_DQBUF ioctl is
called. Applications can set this bit and the
corresponding timecode structure when type
refers to an output stream.

Continued on next page

7.2. Part I - Video for Linux API 333

Linux Userspace-api Documentation

Table 78 – continued from previous page
V4L2_BUF_FLAG_PREPARED

0x00000400
The buffer has been prepared for I/O and can be
queued by the application. Drivers set or clear
this flag when the ioctl VIDIOC_QUERYBUF,
VIDIOC_PREPARE_BUF, ioctl VIDIOC_QBUF,
VIDIOC_DQBUF or VIDIOC_DQBUF ioctl is
called.

V4L2_BUF_FLAG_NO_CACHE_INVALIDATE
0x00000800

Caches do not have to be invalidated for this
buffer. Typically applications shall use this flag
if the data captured in the buffer is not going to
be touched by the CPU, instead the buffer will,
probably, be passed on to a DMA-capable hard-
ware unit for further processing or output.

V4L2_BUF_FLAG_NO_CACHE_CLEAN
0x00001000

Caches do not have to be cleaned for this
buffer. Typically applications shall use this flag
for output buffers if the data in this buffer has
not been created by the CPU but by some DMA-
capable unit, in which case caches have not
been used.

V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF
0x00000200

Only valid if V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF
is set. It is typically used with stateless de-
coders where multiple output buffers each
decode to a slice of the decoded frame. Ap-
plications can set this flag when queueing
the output buffer to prevent the driver from
dequeueing the capture buffer after the output
buffer has been decoded (i.e. the capture
buffer is ‘held’). If the timestamp of this
output buffer differs from that of the previous
output buffer, then that indicates the start of
a new frame and the previously held capture
buffer is dequeued.

V4L2_BUF_FLAG_LAST
0x00100000

Last buffer produced by the hardware.
mem2mem codec drivers set this flag on the
capture queue for the last buffer when the ioctl
VIDIOC_QUERYBUF or VIDIOC_DQBUF ioctl is
called. Due to hardware limitations, the last
buffer may be empty. In this case the driver
will set the bytesused field to 0, regardless of
the format. Any Any subsequent call to the VID-
IOC_DQBUF ioctl will not block anymore, but
return an EPIPE error code.

V4L2_BUF_FLAG_REQUEST_FD
0x00800000

The request_fd field contains a valid file de-
scriptor.

V4L2_BUF_FLAG_TIMESTAMP_MASK
0x0000e000

Mask for timestamp types below. To test the
timestamp type, mask out bits not belonging to
timestamp type by performing a logical and op-
eration with buffer flags and timestamp mask.

Continued on next page

334 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 78 – continued from previous page
V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN

0x00000000
Unknown timestamp type. This type is
used by drivers before Linux 3.9 and may
be either monotonic (see below) or realtime
(wall clock). Monotonic clock has been
favoured in embedded systems whereas most
of the drivers use the realtime clock. Ei-
ther kinds of timestamps are available in
user space via clock_gettime() using clock
IDs CLOCK_MONOTONIC and CLOCK_REALTIME, re-
spectively.

V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC
0x00002000

The buffer timestamp has been taken from the
CLOCK_MONOTONIC clock. To access the same
clock outside V4L2, use clock_gettime().

V4L2_BUF_FLAG_TIMESTAMP_COPY
0x00004000

The CAPTURE buffer timestamp has been
taken from the corresponding OUTPUT buffer.
This flag applies only to mem2mem devices.

V4L2_BUF_FLAG_TSTAMP_SRC_MASK
0x00070000

Mask for timestamp sources below. The
timestamp source defines the point of time the
timestamp is taken in relation to the frame.
Logical ‘and’operation between the flags
field and V4L2_BUF_FLAG_TSTAMP_SRC_MASK
produces the value of the timestamp source.
Applications must set the timestamp source
when type refers to an output stream and
V4L2_BUF_FLAG_TIMESTAMP_COPY is set.

V4L2_BUF_FLAG_TSTAMP_SRC_EOF
0x00000000

End Of Frame. The buffer timestamp has been
taken when the last pixel of the frame has been
received or the last pixel of the frame has been
transmitted. In practice, software generated
timestamps will typically be read from the clock
a small amount of time after the last pixel has
been received or transmitten, depending on the
system and other activity in it.

V4L2_BUF_FLAG_TSTAMP_SRC_SOE
0x00010000

Start Of Exposure. The buffer timestamp
has been taken when the exposure of the
frame has begun. This is only valid for the
V4L2_BUF_TYPE_VIDEO_CAPTURE buffer type.

v4l2_memory

enum v4l2_memory

V4L2_MEMORY_MMAP 1 The buffer is used for memory mapping I/O.
V4L2_MEMORY_USERPTR 2 The buffer is used for user pointer I/O.
V4L2_MEMORY_OVERLAY 3 [to do]
V4L2_MEMORY_DMABUF 4 The buffer is used for DMA shared buffer I/O.

7.2. Part I - Video for Linux API 335

Linux Userspace-api Documentation

Timecodes

The v4l2_buffer_timecode structure is designed to hold a SMPTE 12M or sim-
ilar timecode. (struct timeval timestamps are stored in the struct v4l2_buffer
timestamp field.)

v4l2_timecode

struct v4l2_timecode

__u32 type Frame rate the timecodes are based on, see Timecode Types.
__u32 flags Timecode flags, see Timecode Flags.
__u8 frames Frame count, 0 ⋯23/24/29/49/59, depending on the type of

timecode.
__u8 seconds Seconds count, 0 ⋯59. This is a binary, not BCD number.
__u8 minutes Minutes count, 0 ⋯59. This is a binary, not BCD number.
__u8 hours Hours count, 0 ⋯29. This is a binary, not BCD number.
__u8 userbits[4] The “user group”bits from the timecode.

Timecode Types

V4L2_TC_TYPE_24FPS 1 24 frames per second, i. e. film.
V4L2_TC_TYPE_25FPS 2 25 frames per second, i. e. PAL or SECAM video.
V4L2_TC_TYPE_30FPS 3 30 frames per second, i. e. NTSC video.
V4L2_TC_TYPE_50FPS 4
V4L2_TC_TYPE_60FPS 5

Timecode Flags

V4L2_TC_FLAG_DROPFRAME 0x0001 Indicates “drop frame”semantics for counting
frames in 29.97 fps material. When set, frame
numbers 0 and 1 at the start of each minute, ex-
cept minutes 0, 10, 20, 30, 40, 50 are omitted
from the count.

V4L2_TC_FLAG_COLORFRAME 0x0002 The “color frame”flag.
V4L2_TC_USERBITS_field 0x000C Field mask for the “binary group flags”.
V4L2_TC_USERBITS_USERDEFINED 0x0000 Unspecified format.
V4L2_TC_USERBITS_8BITCHARS 0x0008 8-bit ISO characters.

336 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Field Order

We have to distinguish between progressive and interlaced video. Progressive
video transmits all lines of a video image sequentially. Interlaced video divides an
image into two fields, containing only the odd and even lines of the image, respec-
tively. Alternating the so called odd and even field are transmitted, and due to a
small delay between fields a cathode ray TV displays the lines interleaved, yield-
ing the original frame. This curious technique was invented because at refresh
rates similar to film the image would fade out too quickly. Transmitting fields re-
duces the flicker without the necessity of doubling the frame rate and with it the
bandwidth required for each channel.

It is important to understand a video camera does not expose one frame at a time,
merely transmitting the frames separated into fields. The fields are in fact cap-
tured at two different instances in time. An object on screen may well move be-
tween one field and the next. For applications analysing motion it is of paramount
importance to recognize which field of a frame is older, the temporal order.

When the driver provides or accepts images field by field rather than interleaved,
it is also important applications understand how the fields combine to frames. We
distinguish between top (aka odd) and bottom (aka even) fields, the spatial order:
The first line of the top field is the first line of an interlaced frame, the first line of
the bottom field is the second line of that frame.

However because fields were captured one after the other, arguing whether a
frame commences with the top or bottom field is pointless. Any two successive top
and bottom, or bottom and top fields yield a valid frame. Only when the source
was progressive to begin with, e. g. when transferring film to video, two fields
may come from the same frame, creating a natural order.

Counter to intuition the top field is not necessarily the older field. Whether the
older field contains the top or bottom lines is a convention determined by the video
standard. Hence the distinction between temporal and spatial order of fields. The
diagrams below should make this clearer.

In V4L it is assumed that all video cameras transmit fields on the media bus in the
same order they were captured, so if the top field was captured first (is the older
field), the top field is also transmitted first on the bus.

All video capture and output devices must report the current field order. Some
drivers may permit the selection of a different order, to this end applications ini-
tialize the field field of struct v4l2_pix_format before calling the VIDIOC_S_FMT
ioctl. If this is not desired it should have the value V4L2_FIELD_ANY (0).

enum v4l2_field

v4l2_field

7.2. Part I - Video for Linux API 337

Linux Userspace-api Documentation

V4L2_FIELD_ANY 0 Applications request this field order when any field for-
mat is acceptable. Drivers choose depending on hard-
ware capabilities or e.g. the requested image size, and
return the actual field order. Drivers must never re-
turn V4L2_FIELD_ANY. If multiple field orders are possi-
ble the driver must choose one of the possible field or-
ders during VIDIOC_S_FMT or VIDIOC_TRY_FMT. struct
v4l2_buffer field can never be V4L2_FIELD_ANY.

V4L2_FIELD_NONE 1 Images are in progressive (frame-based) format, not in-
terlaced (field-based).

V4L2_FIELD_TOP 2 Images consist of the top (aka odd) field only.
V4L2_FIELD_BOTTOM 3 Images consist of the bottom (aka even) field only. Ap-

plications may wish to prevent a device from capturing
interlaced images because theywill have“comb”or“feath-
ering”artefacts around moving objects.

V4L2_FIELD_INTERLACED 4 Images contain both fields, interleaved line by line. The
temporal order of the fields (whether the top or bottom
field is older) depends on the current video standard. In
M/NTSC the bottom field is the older field. In all other
standards the top field is the older field.

V4L2_FIELD_SEQ_TB 5 Images contain both fields, the top field lines are stored
first in memory, immediately followed by the bottom field
lines. Fields are always stored in temporal order, the
older one first in memory. Image sizes refer to the frame,
not fields.

V4L2_FIELD_SEQ_BT 6 Images contain both fields, the bottom field lines are
stored first in memory, immediately followed by the top
field lines. Fields are always stored in temporal order,
the older one first in memory. Image sizes refer to the
frame, not fields.

V4L2_FIELD_ALTERNATE 7 The two fields of a frame are passed in separate buffers,
in temporal order, i. e. the older one first. To indi-
cate the field parity (whether the current field is a top
or bottom field) the driver or application, depending on
data direction, must set struct v4l2_buffer field to
V4L2_FIELD_TOP or V4L2_FIELD_BOTTOM. Any two succes-
sive fields pair to build a frame. If fields are succes-
sive, without any dropped fields between them (fields
can drop individually), can be determined from the struct
v4l2_buffer sequence field. This format cannot be se-
lected when using the read/write I/O method since there
is no way to communicate if a field was a top or bottom
field.

V4L2_FIELD_INTERLACED_TB 8 Images contain both fields, interleaved line by line, top
field first. The top field is the older field.

V4L2_FIELD_INTERLACED_BT 9 Images contain both fields, interleaved line by line, top
field first. The bottom field is the older field.

338 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Field Order, Top Field First Transmitted

Fig. 6: Field Order, Top Field First Transmitted

Field Order, Bottom Field First Transmitted

7.2.4 Interfaces

Video Capture Interface

Video capture devices sample an analog video signal and store the digitized images
in memory. Today nearly all devices can capture at full 25 or 30 frames/second.

7.2. Part I - Video for Linux API 339

Linux Userspace-api Documentation

Fig. 7: Field Order, Bottom Field First Transmitted

340 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

With this interface applications can control the capture process and move images
from the driver into user space.

Conventionally V4L2 video capture devices are accessed through character de-
vice special files named /dev/video and /dev/video0 to /dev/video63 with ma-
jor number 81 and minor numbers 0 to 63. /dev/video is typically a symbolic link
to the preferred video device.

Note: The same device file names are used for video output devices.

Querying Capabilities

Devices supporting the video capture interface set the V4L2_CAP_VIDEO_CAPTURE
or V4L2_CAP_VIDEO_CAPTURE_MPLANE flag in the capabilities field of
struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.
As secondary device functions they may also support the video overlay
(V4L2_CAP_VIDEO_OVERLAY) and the raw VBI capture (V4L2_CAP_VBI_CAPTURE)
interface. At least one of the read/write or streaming I/O methods must be
supported. Tuners and audio inputs are optional.

Supplemental Functions

Video capture devices shall support audio input, Tuners and Modulators, controls,
cropping and scaling and streaming parameter ioctls as needed. The video input
ioctls must be supported by all video capture devices.

Image Format Negotiation

The result of a capture operation is determined by cropping and image format
parameters. The former select an area of the video picture to capture, the latter
how images are stored in memory, i. e. in RGB or YUV format, the number of bits
per pixel or width and height. Together they also define how images are scaled in
the process.

As usual these parameters are not reset at open() time to permit Unix tool chains,
programming a device and then reading from it as if it was a plain file. Well written
V4L2 applications ensure they really get what they want, including cropping and
scaling.

Cropping initialization at minimum requires to reset the parameters to defaults.
An example is given in Image Cropping, Insertion and Scaling – the CROP API.

To query the current image format applications set the type
field of a struct v4l2_format to V4L2_BUF_TYPE_VIDEO_CAPTURE or
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE and call the VIDIOC_G_FMT ioctl with a
pointer to this structure. Drivers fill the struct v4l2_pix_format pix or the struct
v4l2_pix_format_mplane pix_mp member of the fmt union.

To request different parameters applications set the type field of a struct
v4l2_format as above and initialize all fields of the struct v4l2_pix_format vbi

7.2. Part I - Video for Linux API 341

Linux Userspace-api Documentation

member of the fmt union, or better just modify the results of VIDIOC_G_FMT, and
call the VIDIOC_S_FMT ioctl with a pointer to this structure. Drivers may adjust
the parameters and finally return the actual parameters as VIDIOC_G_FMT does.

Like VIDIOC_S_FMT the VIDIOC_TRY_FMT ioctl can be used to learn about hard-
ware limitations without disabling I/O or possibly time consuming hardware prepa-
rations.

The contents of struct v4l2_pix_format and struct v4l2_pix_format_mplane are
discussed in Image Formats. See also the specification of the VIDIOC_G_FMT,
VIDIOC_S_FMT and VIDIOC_TRY_FMT ioctls for details. Video capture devices
must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl, even if VID-
IOC_S_FMT ignores all requests and always returns default parameters as VID-
IOC_G_FMT does. VIDIOC_TRY_FMT is optional.

Reading Images

A video capture device may support the read() function and/or streaming (memory
mapping or user pointer) I/O. See Input/Output for details.

Video Overlay Interface

Also known as Framebuffer Overlay or Previewing.
Video overlay devices have the ability to genlock (TV-)video into the (VGA-)video
signal of a graphics card, or to store captured images directly in video memory of
a graphics card, typically with clipping. This can be considerable more efficient
than capturing images and displaying them by other means. In the old days when
only nuclear power plants needed cooling towers this used to be the only way to
put live video into a window.

Video overlay devices are accessed through the same character special files as
video capture devices.

Note: The default function of a /dev/video device is video capturing. The overlay
function is only available after calling the VIDIOC_S_FMT ioctl.

The driver may support simultaneous overlay and capturing using the read/write
and streaming I/O methods. If so, operation at the nominal frame rate of the video
standard is not guaranteed. Frames may be directed away from overlay to cap-
ture, or one field may be used for overlay and the other for capture if the capture
parameters permit this.

Applications should use different file descriptors for capturing and overlay. This
must be supported by all drivers capable of simultaneous capturing and overlay.
Optionally these drivers may also permit capturing and overlay with a single file
descriptor for compatibility with V4L and earlier versions of V4L2.1

1 A common application of two file descriptors is the XFree86 Xv/V4L interface driver and a V4L2
application. While the X server controls video overlay, the application can take advantage of memory
mapping and DMA.
In the opinion of the designers of this API, no driver writer taking the efforts to support simultane-

342 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Querying Capabilities

Devices supporting the video overlay interface set the V4L2_CAP_VIDEO_OVERLAY
flag in the capabilities field of struct v4l2_capability returned by the ioctl VID-
IOC_QUERYCAP ioctl. The overlay I/O method specified below must be supported.
Tuners and audio inputs are optional.

Supplemental Functions

Video overlay devices shall support audio input, Tuners and Modulators, controls,
cropping and scaling and streaming parameter ioctls as needed. The video input
and video standard ioctls must be supported by all video overlay devices.

Setup

Before overlay can commence applications must program the driver with frame
buffer parameters, namely the address and size of the frame buffer and the image
format, for example RGB 5:6:5. The VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctls
are available to get and set these parameters, respectively. The VIDIOC_S_FBUF
ioctl is privileged because it allows to set up DMA into physical memory, bypassing
the memory protection mechanisms of the kernel. Only the superuser can change
the frame buffer address and size. Users are not supposed to run TV applications
as root or with SUID bit set. A small helper application with suitable privileges
should query the graphics system and program the V4L2 driver at the appropriate
time.

Some devices add the video overlay to the output signal of the graphics card. In
this case the frame buffer is not modified by the video device, and the frame buffer
address and pixel format are not needed by the driver. The VIDIOC_S_FBUF ioctl
is not privileged. An application can check for this type of device by calling the
VIDIOC_G_FBUF ioctl.

A driver may support any (or none) of five clipping/blending methods:

1. Chroma-keying displays the overlaid image only where pixels in the primary
graphics surface assume a certain color.

2. A bitmap can be specified where each bit corresponds to a pixel in the over-
laid image. When the bit is set, the corresponding video pixel is displayed,
otherwise a pixel of the graphics surface.

3. A list of clipping rectangles can be specified. In these regions no video is
displayed, so the graphics surface can be seen here.

4. The framebuffer has an alpha channel that can be used to clip or blend the
framebuffer with the video.

5. A global alpha value can be specified to blend the framebuffer contents with
video images.

ous capturing and overlay will restrict this ability by requiring a single file descriptor, as in V4L and
earlier versions of V4L2. Making this optional means applications depending on two file descriptors
need backup routines to be compatible with all drivers, which is considerable more work than using
two fds in applications which do not. Also two fd’s fit the general concept of one file descriptor for
each logical stream. Hence as a complexity trade-off drivers must support two file descriptors and
may support single fd operation.
7.2. Part I - Video for Linux API 343

Linux Userspace-api Documentation

When simultaneous capturing and overlay is supported and the hardware prohibits
different image and frame buffer formats, the format requested first takes prece-
dence. The attempt to capture (VIDIOC_S_FMT) or overlay (VIDIOC_S_FBUF) may
fail with an EBUSY error code or return accordingly modified parameters..

Overlay Window

The overlaid image is determined by cropping and overlay window parameters.
The former select an area of the video picture to capture, the latter how images
are overlaid and clipped. Cropping initialization at minimum requires to reset the
parameters to defaults. An example is given in Image Cropping, Insertion and
Scaling – the CROP API.

The overlay window is described by a struct v4l2_window. It defines the size of
the image, its position over the graphics surface and the clipping to be applied. To
get the current parameters applications set the type field of a struct v4l2_format
to V4L2_BUF_TYPE_VIDEO_OVERLAY and call the VIDIOC_G_FMT ioctl. The driver
fills the struct v4l2_window substructure named win. It is not possible to retrieve
a previously programmed clipping list or bitmap.

To program the overlay window applications set the type field of a struct
v4l2_format to V4L2_BUF_TYPE_VIDEO_OVERLAY, initialize the win substructure
and call the VIDIOC_S_FMT ioctl. The driver adjusts the parameters against hard-
ware limits and returns the actual parameters as VIDIOC_G_FMT does. Like VID-
IOC_S_FMT, the VIDIOC_TRY_FMT ioctl can be used to learn about driver capa-
bilities without actually changing driver state. Unlike VIDIOC_S_FMT this also
works after the overlay has been enabled.

The scaling factor of the overlaid image is implied by the width and height given in
struct v4l2_window and the size of the cropping rectangle. For more information
see Image Cropping, Insertion and Scaling – the CROP API.

When simultaneous capturing and overlay is supported and the hardware prohibits
different image and window sizes, the size requested first takes precedence. The
attempt to capture or overlay as well (VIDIOC_S_FMT)may fail with an EBUSY error
code or return accordingly modified parameters.

v4l2_window

struct v4l2_window

struct v4l2_rect w Size and position of the window relative to the top, left cor-
ner of the frame buffer defined with VIDIOC_S_FBUF. The window can extend
the frame buffer width and height, the x and y coordinates can be negative,
and it can lie completely outside the frame buffer. The driver clips the window
accordingly, or if that is not possible, modifies its size and/or position.

enum v4l2_field field Applications set this field to determine which video field
shall be overlaid, typically one of V4L2_FIELD_ANY (0), V4L2_FIELD_TOP,
V4L2_FIELD_BOTTOM or V4L2_FIELD_INTERLACED. Drivers may have to choose
a different field order and return the actual setting here.

344 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

__u32 chromakey When chroma-keying has been negotiated with VID-
IOC_S_FBUF applications set this field to the desired pixel value for the
chroma key. The format is the same as the pixel format of the framebuffer
(struct v4l2_framebuffer fmt.pixelformat field), with bytes in host order.
E. g. for V4L2_PIX_FMT_BGR24 the value should be 0xRRGGBB on a little
endian, 0xBBGGRR on a big endian host.

struct v4l2_clip * clips When chroma-keying has not been negotiated and
VIDIOC_G_FBUF indicated this capability, applications can set this field to
point to an array of clipping rectangles.

Like the window coordinates w, clipping rectangles are defined relative to
the top, left corner of the frame buffer. However clipping rectangles must
not extend the frame buffer width and height, and they must not overlap. If
possible applications should merge adjacent rectangles. Whether this must
create x-y or y-x bands, or the order of rectangles, is not defined. When clip
lists are not supported the driver ignores this field. Its contents after calling
VIDIOC_S_FMT are undefined.

__u32 clipcount When the application set the clips field, this field must contain
the number of clipping rectangles in the list. When clip lists are not supported
the driver ignores this field, its contents after calling VIDIOC_S_FMT are un-
defined. When clip lists are supported but no clipping is desired this field
must be set to zero.

void * bitmap When chroma-keying has not been negotiated and VID-
IOC_G_FBUF indicated this capability, applications can set this field to
point to a clipping bit mask.

It must be of the same size as the window, w.width and w.height. Each bit cor-
responds to a pixel in the overlaid image, which is displayed only when the bit is
set. Pixel coordinates translate to bits like:

((__u8 *) bitmap)[w.width * y + x / 8] & (1 << (x & 7))

where 0 ≤ x < w.width and 0 ≤ y <w.height.2

When a clipping bit mask is not supported the driver ignores this field, its contents
after calling VIDIOC_S_FMT are undefined. When a bit mask is supported but no
clipping is desired this field must be set to NULL.

Applications need not create a clip list or bit mask. When they pass both, or despite
negotiating chroma-keying, the results are undefined. Regardless of the chosen
method, the clipping abilities of the hardware may be limited in quantity or quality.
The results when these limits are exceeded are undefined.3

__u8 global_alpha The global alpha value used to blend the framebuffer
with video images, if global alpha blending has been negotiated
(V4L2_FBUF_FLAG_GLOBAL_ALPHA, see VIDIOC_S_FBUF, Frame Buffer Flags).

Note: This field was added in Linux 2.6.23, extending the structure. However
2 Should we require w.width to be a multiple of eight?
3 When the image is written into frame buffer memory it will be undesirable if the driver clips out

less pixels than expected, because the application and graphics system are not aware these regions
need to be refreshed. The driver should clip out more pixels or not write the image at all.

7.2. Part I - Video for Linux API 345

Linux Userspace-api Documentation

the VIDIOC_[G|S|TRY]_FMT ioctls, which take a pointer to a v4l2_format parent
structure with padding bytes at the end, are not affected.

v4l2_clip

struct v4l2_clip4

struct v4l2_rect c Coordinates of the clipping rectangle, relative to the top,
left corner of the frame buffer. Only window pixels outside all clipping rect-
angles are displayed.

struct v4l2_clip * next Pointer to the next clipping rectangle, NULL when this
is the last rectangle. Drivers ignore this field, it cannot be used to pass a
linked list of clipping rectangles.

v4l2_rect

struct v4l2_rect

__s32 left Horizontal offset of the top, left corner of the rectangle, in pixels.

__s32 top Vertical offset of the top, left corner of the rectangle, in pixels. Offsets
increase to the right and down.

__u32 width Width of the rectangle, in pixels.

__u32 height Height of the rectangle, in pixels.

Enabling Overlay

To start or stop the frame buffer overlay applications call the ioctl VID-
IOC_OVERLAY ioctl.

Video Output Interface

Video output devices encode stills or image sequences as analog video signal. With
this interface applications can control the encoding process and move images from
user space to the driver.

Conventionally V4L2 video output devices are accessed through character device
special files named /dev/video and /dev/video0 to /dev/video63 with major
number 81 and minor numbers 0 to 63. /dev/video is typically a symbolic link
to the preferred video device.

Note: The same device file names are used also for video capture devices.

4 The X Window system defines“regions”which are vectors of struct BoxRec { short x1, y1,
x2, y2; } with width = x2 - x1 and height = y2 - y1, so one cannot pass X11 clip lists directly.

346 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Querying Capabilities

Devices supporting the video output interface set the V4L2_CAP_VIDEO_OUTPUT
or V4L2_CAP_VIDEO_OUTPUT_MPLANE flag in the capabilities field of struct
v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. As secondary
device functions theymay also support the raw VBI output (V4L2_CAP_VBI_OUTPUT)
interface. At least one of the read/write or streaming I/O methods must be sup-
ported. Modulators and audio outputs are optional.

Supplemental Functions

Video output devices shall support audio output, modulator, controls, cropping
and scaling and streaming parameter ioctls as needed. The video output ioctls
must be supported by all video output devices.

Image Format Negotiation

The output is determined by cropping and image format parameters. The former
select an area of the video picture where the image will appear, the latter how
images are stored in memory, i. e. in RGB or YUV format, the number of bits per
pixel or width and height. Together they also define how images are scaled in the
process.

As usual these parameters are not reset at open() time to permit Unix tool chains,
programming a device and then writing to it as if it was a plain file. Well written
V4L2 applications ensure they really get what they want, including cropping and
scaling.

Cropping initialization at minimum requires to reset the parameters to defaults.
An example is given in Image Cropping, Insertion and Scaling – the CROP API.

To query the current image format applications set the type
field of a struct v4l2_format to V4L2_BUF_TYPE_VIDEO_OUTPUT or
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE and call the VIDIOC_G_FMT ioctl with a
pointer to this structure. Drivers fill the struct v4l2_pix_format pix or the struct
v4l2_pix_format_mplane pix_mp member of the fmt union.

To request different parameters applications set the type field of a struct
v4l2_format as above and initialize all fields of the struct v4l2_pix_format vbi
member of the fmt union, or better just modify the results of VIDIOC_G_FMT, and
call the VIDIOC_S_FMT ioctl with a pointer to this structure. Drivers may adjust
the parameters and finally return the actual parameters as VIDIOC_G_FMT does.

Like VIDIOC_S_FMT the VIDIOC_TRY_FMT ioctl can be used to learn about hard-
ware limitations without disabling I/O or possibly time consuming hardware prepa-
rations.

The contents of struct v4l2_pix_format and struct v4l2_pix_format_mplane are
discussed in Image Formats. See also the specification of the VIDIOC_G_FMT,
VIDIOC_S_FMT and VIDIOC_TRY_FMT ioctls for details. Video output devices
must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl, even if VID-

7.2. Part I - Video for Linux API 347

Linux Userspace-api Documentation

IOC_S_FMT ignores all requests and always returns default parameters as VID-
IOC_G_FMT does. VIDIOC_TRY_FMT is optional.

Writing Images

A video output device may support the write() function and/or streaming (memory
mapping or user pointer) I/O. See Input/Output for details.

Video Output Overlay Interface

Also known as On-Screen Display (OSD)
Some video output devices can overlay a framebuffer image onto the outgoing
video signal. Applications can set up such an overlay using this interface, which
borrows structures and ioctls of the Video Overlay interface.

The OSD function is accessible through the same character special file as the Video
Output function.

Note: The default function of such a /dev/video device is video capturing or
output. The OSD function is only available after calling the VIDIOC_S_FMT ioctl.

Querying Capabilities

Devices supporting the Video Output Overlay interface set the
V4L2_CAP_VIDEO_OUTPUT_OVERLAY flag in the capabilities field of struct
v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.

Framebuffer

Contrary to the Video Overlay interface the framebuffer is normally implemented
on the TV card and not the graphics card. On Linux it is accessible as a framebuffer
device (/dev/fbN). Given a V4L2 device, applications can find the corresponding
framebuffer device by calling the VIDIOC_G_FBUF ioctl. It returns, amongst other
information, the physical address of the framebuffer in the base field of struct
v4l2_framebuffer. The framebuffer device ioctl FBIOGET_FSCREENINFO returns
the same address in the smem_start field of struct struct fb_fix_screeninfo.
The FBIOGET_FSCREENINFO ioctl and struct fb_fix_screeninfo are defined in the
linux/fb.h header file.

The width and height of the framebuffer depends on the current video standard. A
V4L2 driver may reject attempts to change the video standard (or any other ioctl
which would imply a framebuffer size change) with an EBUSY error code until all
applications closed the framebuffer device.

348 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Example: Finding a framebuffer device for OSD

#include <linux/fb.h>

struct v4l2_framebuffer fbuf;
unsigned int i;
int fb_fd;

if (-1 == ioctl(fd, VIDIOC_G_FBUF, &fbuf)) {
perror("VIDIOC_G_FBUF");
exit(EXIT_FAILURE);

}

for (i = 0; i < 30; i++) {
char dev_name[16];
struct fb_fix_screeninfo si;

snprintf(dev_name, sizeof(dev_name), "/dev/fb%u", i);

fb_fd = open(dev_name, O_RDWR);
if (-1 == fb_fd) {

switch (errno) {
case ENOENT: /* no such file */
case ENXIO: /* no driver */

continue;

default:
perror("open");
exit(EXIT_FAILURE);

}
}

if (0 == ioctl(fb_fd, FBIOGET_FSCREENINFO, &si)) {
if (si.smem_start == (unsigned long)fbuf.base)

break;
} else {

/* Apparently not a framebuffer device. */
}

close(fb_fd);
fb_fd = -1;

}

/* fb_fd is the file descriptor of the framebuffer device
for the video output overlay, or -1 if no device was found. */

7.2. Part I - Video for Linux API 349

Linux Userspace-api Documentation

Overlay Window and Scaling

The overlay is controlled by source and target rectangles. The source rectangle
selects a subsection of the framebuffer image to be overlaid, the target rectangle
an area in the outgoing video signal where the image will appear. Drivers may or
may not support scaling, and arbitrary sizes and positions of these rectangles. Fur-
ther drivers may support any (or none) of the clipping/blending methods defined
for the Video Overlay interface.

A struct v4l2_window defines the size of the source rectangle, its position in the
framebuffer and the clipping/blending method to be used for the overlay. To get
the current parameters applications set the type field of a struct v4l2_format to
V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY and call the VIDIOC_G_FMT ioctl. The
driver fills the struct v4l2_window substructure named win. It is not possible to
retrieve a previously programmed clipping list or bitmap.

To program the source rectangle applications set the type field of a struct
v4l2_format to V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY, initialize the win sub-
structure and call the VIDIOC_S_FMT ioctl. The driver adjusts the parameters
against hardware limits and returns the actual parameters as VIDIOC_G_FMT
does. Like VIDIOC_S_FMT, the VIDIOC_TRY_FMT ioctl can be used to learn about
driver capabilities without actually changing driver state. Unlike VIDIOC_S_FMT
this also works after the overlay has been enabled.

A struct v4l2_crop defines the size and position of the target rectangle. The
scaling factor of the overlay is implied by the width and height given in struct
v4l2_window and struct v4l2_crop. The cropping API applies to Video Output
and Video Output Overlay devices in the same way as to Video Capture and Video
Overlay devices, merely reversing the direction of the data flow. For more infor-
mation see Image Cropping, Insertion and Scaling – the CROP API.

Enabling Overlay

There is no V4L2 ioctl to enable or disable the overlay, however the framebuffer
interface of the driver may support the FBIOBLANK ioctl.

Video Memory-To-Memory Interface

A V4L2 memory-to-memory device can compress, decompress, transform,
or otherwise convert video data from one format into another format, in
memory. Such memory-to-memory devices set the V4L2_CAP_VIDEO_M2M or
V4L2_CAP_VIDEO_M2M_MPLANE capability. Examples of memory-to-memory devices
are codecs, scalers, deinterlacers or format converters (i.e. converting from YUV
to RGB).

A memory-to-memory video node acts just like a normal video node, but it supports
both output (sending frames frommemory to the hardware) and capture (receiving
the processed frames from the hardware into memory) stream I/O. An application
will have to setup the stream I/O for both sides and finally call VIDIOC_STREAMON
for both capture and output to start the hardware.

350 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Memory-to-memory devices function as a shared resource: you can open the video
node multiple times, each application setting up their own properties that are
local to the file handle, and each can use it independently from the others. The
driver will arbitrate access to the hardware and reprogram it whenever another
file handler gets access. This is different from the usual video node behavior where
the video properties are global to the device (i.e. changing something through one
file handle is visible through another file handle).

One of the most commonmemory-to-memory device is the codec. Codecs are more
complicated than most and require additional setup for their codec parameters.
This is done through codec controls. See Codec Control Reference. More details
on how to use codec memory-to-memory devices are given in the following sec-
tions.

Memory-to-Memory Stateful Video Decoder Interface

A stateful video decoder takes complete chunks of the bytestream (e.g. Annex-B
H.264/HEVC stream, raw VP8/9 stream) and decodes them into raw video frames
in display order. The decoder is expected not to require any additional information
from the client to process these buffers.

Performing software parsing, processing etc. of the stream in the driver in order to
support this interface is strongly discouraged. In case such operations are needed,
use of the Stateless Video Decoder Interface (in development) is strongly advised.

Conventions and Notations Used in This Document

1. The general V4L2 API rules apply if not specified in this document otherwise.

2. The meaning of words“must”,“may”,“should”, etc. is as per RFC 2119.
3. All steps not marked “optional”are required.
4. VIDIOC_G_EXT_CTRLS() and VIDIOC_S_EXT_CTRLS() may be used inter-
changeably with VIDIOC_G_CTRL() and VIDIOC_S_CTRL(), unless specified
otherwise.

5. Single-planar API (see Single- and multi-planar APIs) and applicable struc-
tures may be used interchangeably with multi-planar API, unless specified
otherwise, depending on decoder capabilities and following the general V4L2
guidelines.

6. i = [a..b]: sequence of integers from a to b, inclusive, i.e. i = [0..2]: i = 0, 1,
2.

7. Given an OUTPUT buffer A, then A’represents a buffer on the CAPTURE queue
containing data that resulted from processing buffer A.

7.2. Part I - Video for Linux API 351

https://tools.ietf.org/html/rfc2119

Linux Userspace-api Documentation

Glossary

CAPTURE the destination buffer queue; for decoders, the queue of buffers
containing decoded frames; for encoders, the queue of buffers con-
taining an encoded bytestream; V4L2_BUF_TYPE_VIDEO_CAPTURE or
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; data is captured from the hardware
into CAPTURE buffers.

client the application communicating with the decoder or encoder implementing
this interface.

coded format encoded/compressed video bytestream format (e.g. H.264, VP8,
etc.); see also: raw format.

coded height height for given coded resolution.
coded resolution stream resolution in pixels aligned to codec and hardware re-

quirements; typically visible resolution rounded up to full macroblocks; see
also: visible resolution.

coded width width for given coded resolution.

decode order the order in which frames are decoded; may differ from display
order if the coded format includes a feature of frame reordering; for decoders,
OUTPUT buffers must be queued by the client in decode order; for encoders
CAPTURE buffers must be returned by the encoder in decode order.

destination data resulting from the decode process; see CAPTURE.

display order the order in which frames must be displayed; for encoders, OUTPUT
buffers must be queued by the client in display order; for decoders, CAPTURE
buffers must be returned by the decoder in display order.

DPB Decoded Picture Buffer; an H.264/HEVC term for a buffer that stores a de-
coded raw frame available for reference in further decoding steps.

EOS end of stream.

IDR Instantaneous Decoder Refresh; a type of a keyframe in an H.264/HEVC-
encoded stream, which clears the list of earlier reference frames (DPBs).

keyframe an encoded frame that does not reference frames decoded earlier, i.e.
can be decoded fully on its own.

macroblock a processing unit in image and video compression formats based on
linear block transforms (e.g. H.264, VP8, VP9); codec-specific, but for most
of popular codecs the size is 16x16 samples (pixels).

OUTPUT the source buffer queue; for decoders, the queue of buffers
containing an encoded bytestream; for encoders, the queue of
buffers containing raw frames; V4L2_BUF_TYPE_VIDEO_OUTPUT or
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; the hardware is fed with data
from OUTPUT buffers.

PPS Picture Parameter Set; a type of metadata entity in an H.264/HEVC
bytestream.

raw format uncompressed format containing raw pixel data (e.g. YUV, RGB for-
mats).

352 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

resume point a point in the bytestream from which decoding may start/continue,
without any previous state/data present, e.g.: a keyframe (VP8/VP9) or
SPS/PPS/IDR sequence (H.264/HEVC); a resume point is required to start
decode of a new stream, or to resume decoding after a seek.

source data fed to the decoder or encoder; see OUTPUT.
source height height in pixels for given source resolution; relevant to encoders

only.

source resolution resolution in pixels of source frames being source to the en-
coder and subject to further cropping to the bounds of visible resolution; rel-
evant to encoders only.

source width width in pixels for given source resolution; relevant to encoders
only.

SPS Sequence Parameter Set; a type of metadata entity in an H.264/HEVC
bytestream.

stream metadata additional (non-visual) information contained inside encoded
bytestream; for example: coded resolution, visible resolution, codec profile.

visible height height for given visible resolution; display height.
visible resolution stream resolution of the visible picture, in pixels, to be used

for display purposes; must be smaller or equal to coded resolution; display
resolution.

visible width width for given visible resolution; display width.

State Machine

Querying Capabilities

1. To enumerate the set of coded formats supported by the decoder, the client
may call VIDIOC_ENUM_FMT() on OUTPUT.

• The full set of supported formats will be returned, regardless of the for-
mat set on CAPTURE.

• Check the flags field of v4l2_fmtdesc for more information about the
decoder’s capabilities with respect to each coded format. In particular
whether or not the decoder has a full-fledged bytestream parser and if
the decoder supports dynamic resolution changes.

2. To enumerate the set of supported raw formats, the client may call
VIDIOC_ENUM_FMT() on CAPTURE.

• Only the formats supported for the format currently active on OUTPUTwill
be returned.

• In order to enumerate raw formats supported by a given coded format,
the client must first set that coded format on OUTPUT and then enumerate
formats on CAPTURE.

7.2. Part I - Video for Linux API 353

Linux Userspace-api Documentation

Decoding

Dynamic
Resolution

Change

Stream
resolution

change

Stopped

VIDIOC_STREAMOFF(CAPTURE)

Drain

V4L2_DEC_CMD_STOP

Seek

VIDIOC_STREAMOFF(OUTPUT)

End of Stream

EoS mark
in the stream

Initialization

Capture
setup

CAPTURE
format

established

CAPTURE
buffers
ready

CAPTURE
format

established

VIDIOC_STREAMOFF(OUTPUT)

V4L2_DEC_CMD_START
or

VIDIOC_STREAMON(CAPTURE)

VIDIOC_STREAMOFF(OUTPUT)

All CAPTURE
buffers dequeued

or
VIDIOC_STREAMOFF(CAPTURE)

VIDIOC_STREAMOFF(OUTPUT)

VIDIOC_STREAMON(OUTPUT)

VIDIOC_REQBUFS(OUTPUT, 0)

Implicit
drain

open()

Fig. 8: Decoder State Machine

354 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

3. The client may use VIDIOC_ENUM_FRAMESIZES() to detect supported resolu-
tions for a given format, passing desired pixel format in v4l2_frmsizeenum
pixel_format.

• Values returned by VIDIOC_ENUM_FRAMESIZES() for a coded pixel format
will include all possible coded resolutions supported by the decoder for
given coded pixel format.

• Values returned by VIDIOC_ENUM_FRAMESIZES() for a raw pixel format
will include all possible frame buffer resolutions supported by the de-
coder for given raw pixel format and the coded format currently set on
OUTPUT.

4. Supported profiles and levels for the coded format currently set on
OUTPUT, if applicable, may be queried using their respective controls via
VIDIOC_QUERYCTRL().

Initialization

1. Set the coded format on OUTPUT via VIDIOC_S_FMT()

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

pixelformat a coded pixel format.

width, height coded resolution of the stream; required only if it cannot
be parsed from the stream for the given coded format; otherwise the
decoder will use this resolution as a placeholder resolution that will
likely change as soon as it can parse the actual coded resolution from
the stream.

sizeimage desired size of OUTPUT buffers; the decoder may adjust it to
match hardware requirements.

other fields follow standard semantics.
• Return fields:
sizeimage adjusted size of OUTPUT buffers.

• The CAPTURE format will be updated with an appropriate frame
buffer resolution instantly based on the width and height returned by
VIDIOC_S_FMT(). However, for coded formats that include stream reso-
lution information, after the decoder is done parsing the information from
the stream, it will update the CAPTURE format with new values and signal
a source change event, regardless of whether they match the values set
by the client or not.

Important: Changing the OUTPUT format may change the currently set
CAPTURE format. How the new CAPTURE format is determined is up to the
decoder and the client must ensure it matches its needs afterwards.

2. Allocate source (bytestream) buffers via VIDIOC_REQBUFS() on OUTPUT.

7.2. Part I - Video for Linux API 355

Linux Userspace-api Documentation

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

memory follows standard semantics.

• Return fields:
count the actual number of buffers allocated.

Warning: The actual number of allocated buffers may differ from the
count given. The client must check the updated value of count after the
call returns.

Alternatively, VIDIOC_CREATE_BUFS() on the OUTPUT queue can be used to
have more control over buffer allocation.

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

memory follows standard semantics.

format follows standard semantics.

• Return fields:
count adjusted to the number of allocated buffers.

Warning: The actual number of allocated buffers may differ from the
count given. The client must check the updated value of count after the
call returns.

3. Start streaming on the OUTPUT queue via VIDIOC_STREAMON().

4. This step only applies to coded formats that contain resolution in-
formation in the stream. Continue queuing/dequeuing bytestream buffers
to/from the OUTPUT queue via VIDIOC_QBUF() and VIDIOC_DQBUF(). The
buffers will be processed and returned to the client in order, until required
metadata to configure the CAPTURE queue are found. This is indicated by
the decoder sending a V4L2_EVENT_SOURCE_CHANGE event with changes set
to V4L2_EVENT_SRC_CH_RESOLUTION.

• It is not an error if the first buffer does not contain enough data for this
to occur. Processing of the buffers will continue as long as more data is
needed.

• If data in a buffer that triggers the event is required to decode the first
frame, it will not be returned to the client, until the initialization sequence
completes and the frame is decoded.

• If the client has not set the coded resolution of the stream on its
own, calling VIDIOC_G_FMT(), VIDIOC_S_FMT(), VIDIOC_TRY_FMT() or

356 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

VIDIOC_REQBUFS() on the CAPTURE queue will not return the real values
for the stream until a V4L2_EVENT_SOURCE_CHANGE event with changes
set to V4L2_EVENT_SRC_CH_RESOLUTION is signaled.

Important: Any client query issued after the decoder queues the event will
return values applying to the just parsed stream, including queue formats,
selection rectangles and controls.

Note: A client capable of acquiring stream parameters from the bytestream
on its own may attempt to set the width and height of the OUTPUT format to
non-zero values matching the coded size of the stream, skip this step and
continue with the Capture Setup sequence. However, it must not rely on any
driver queries regarding stream parameters, such as selection rectangles and
controls, since the decoder has not parsed them from the stream yet. If the
values configured by the client do not match those parsed by the decoder, a
Dynamic Resolution Change will be triggered to reconfigure them.

Note: No decoded frames are produced during this phase.

5. Continue with the Capture Setup sequence.

Capture Setup

1. Call VIDIOC_G_FMT() on the CAPTURE queue to get format for the destination
buffers parsed/decoded from the bytestream.

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

• Return fields:
width, height frame buffer resolution for the decoded frames.
pixelformat pixel format for decoded frames.

num_planes (for _MPLANE type only) number of planes for pixelfor-
mat.

sizeimage, bytesperline as per standard semantics; matching frame
buffer format.

Note: The value of pixelformat may be any pixel format supported by
the decoder for the current stream. The decoder should choose a pre-
ferred/optimal format for the default configuration. For example, a YUV for-
mat may be preferred over an RGB format if an additional conversion step
would be required for the latter.

2. Optional. Acquire the visible resolution via VIDIOC_G_SELECTION().

7.2. Part I - Video for Linux API 357

Linux Userspace-api Documentation

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

target set to V4L2_SEL_TGT_COMPOSE.

• Return fields:
r.left, r.top, r.width, r.height the visible rectangle; it must fit

within the frame buffer resolution returned by VIDIOC_G_FMT() on
CAPTURE.

• The following selection targets are supported on CAPTURE:

V4L2_SEL_TGT_CROP_BOUNDS corresponds to the coded resolution of the
stream.

V4L2_SEL_TGT_CROP_DEFAULT the rectangle covering the part of the
CAPTURE buffer that contains meaningful picture data (visible area);
width and height will be equal to the visible resolution of the stream.

V4L2_SEL_TGT_CROP the rectangle within the coded resolution to be out-
put to CAPTURE; defaults to V4L2_SEL_TGT_CROP_DEFAULT; read-only
on hardware without additional compose/scaling capabilities.

V4L2_SEL_TGT_COMPOSE_BOUNDS the maximum rectangle within a
CAPTURE buffer, which the cropped frame can be composed into;
equal to V4L2_SEL_TGT_CROP if the hardware does not support
compose/scaling.

V4L2_SEL_TGT_COMPOSE_DEFAULT equal to V4L2_SEL_TGT_CROP.

V4L2_SEL_TGT_COMPOSE the rectangle inside a CAPTURE buffer
into which the cropped frame is written; defaults to
V4L2_SEL_TGT_COMPOSE_DEFAULT; read-only on hardware without
additional compose/scaling capabilities.

V4L2_SEL_TGT_COMPOSE_PADDED the rectangle inside a CAPTURE
buffer which is overwritten by the hardware; equal to
V4L2_SEL_TGT_COMPOSE if the hardware does not write padding
pixels.

Warning: The values are guaranteed to be meaningful only after the
decoder successfully parses the stream metadata. The client must not
rely on the query before that happens.

3. Optional. Enumerate CAPTURE formats via VIDIOC_ENUM_FMT() on the
CAPTURE queue. Once the stream information is parsed and known, the client
may use this ioctl to discover which raw formats are supported for given
stream and select one of them via VIDIOC_S_FMT().

Important: The decoder will return only formats supported for the currently
established coded format, as per the OUTPUT format and/or stream metadata
parsed in this initialization sequence, even if more formats may be supported

358 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

by the decoder in general. In other words, the set returned will be a subset
of the initial query mentioned in the Querying Capabilities section.

For example, a decoder may support YUV and RGB formats for resolu-
tions 1920x1088 and lower, but only YUV for higher resolutions (due to
hardware limitations). After parsing a resolution of 1920x1088 or lower,
VIDIOC_ENUM_FMT()may return a set of YUV and RGB pixel formats, but after
parsing resolution higher than 1920x1088, the decoder will not return RGB,
unsupported for this resolution.

However, subsequent resolution change event triggered after discovering a
resolution change within the same stream may switch the stream into a lower
resolution and VIDIOC_ENUM_FMT() would return RGB formats again in that
case.

4. Optional. Set the CAPTURE format via VIDIOC_S_FMT() on the CAPTURE queue.
The client may choose a different format than selected/suggested by the de-
coder in VIDIOC_G_FMT().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

pixelformat a raw pixel format.

width, height frame buffer resolution of the decoded stream; typically
unchanged from what was returned with VIDIOC_G_FMT(), but it may
be different if the hardware supports composition and/or scaling.

• Setting the CAPTURE format will reset the compose selection rectangles to
their default values, based on the new resolution, as described in the previous
step.

5. Optional. Set the compose rectangle via VIDIOC_S_SELECTION() on the
CAPTURE queue if it is desired and if the decoder has compose and/or scal-
ing capabilities.

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

target set to V4L2_SEL_TGT_COMPOSE.

r.left, r.top, r.width, r.height the rectangle inside a CAPTURE
buffer into which the cropped frame is written; defaults to
V4L2_SEL_TGT_COMPOSE_DEFAULT; read-only on hardware without
additional compose/scaling capabilities.

• Return fields:
r.left, r.top, r.width, r.height the visible rectangle; it must fit

within the frame buffer resolution returned by VIDIOC_G_FMT() on
CAPTURE.

7.2. Part I - Video for Linux API 359

Linux Userspace-api Documentation

Warning: The decoder may adjust the compose rectangle to
the nearest supported one to meet codec and hardware require-
ments. The client needs to check the adjusted rectangle returned by
VIDIOC_S_SELECTION().

6. If all the following conditions are met, the client may resume the decoding
instantly:

• sizeimage of the new format (determined in previous steps) is less than
or equal to the size of currently allocated buffers,

• the number of buffers currently allocated is greater than or equal to
the minimum number of buffers acquired in previous steps. To fulfill
this requirement, the client may use VIDIOC_CREATE_BUFS() to add new
buffers.

In that case, the remaining steps do not apply and the client may resume the
decoding by one of the following actions:

• if the CAPTURE queue is streaming, call VIDIOC_DECODER_CMD() with the
V4L2_DEC_CMD_START command,

• if the CAPTURE queue is not streaming, call VIDIOC_STREAMON() on the
CAPTURE queue.

However, if the client intends to change the buffer set, to lower memory usage
or for any other reasons, it may be achieved by following the steps below.

7. If the CAPTURE queue is streaming, keep queuing and dequeuing buffers on
the CAPTURE queue until a buffer marked with the V4L2_BUF_FLAG_LAST flag
is dequeued.

8. If the CAPTURE queue is streaming, call VIDIOC_STREAMOFF() on the
CAPTURE queue to stop streaming.

Warning: The OUTPUT queue must remain streaming. Calling
VIDIOC_STREAMOFF() on it would abort the sequence and trigger a seek.

9. If the CAPTURE queue has buffers allocated, free the CAPTURE buffers using
VIDIOC_REQBUFS().

• Required fields:
count set to 0.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

memory follows standard semantics.

10. Allocate CAPTURE buffers via VIDIOC_REQBUFS() on the CAPTURE queue.

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

360 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

memory follows standard semantics.

• Return fields:
count actual number of buffers allocated.

Warning: The actual number of allocated buffers may differ from the
count given. The client must check the updated value of count after the
call returns.

Note: To allocate more than the minimum number of buffers (for pipeline
depth), the client may query the V4L2_CID_MIN_BUFFERS_FOR_CAPTURE con-
trol to get the minimum number of buffers required, and pass the obtained
value plus the number of additional buffers needed in the count field to
VIDIOC_REQBUFS().

Alternatively, VIDIOC_CREATE_BUFS() on the CAPTURE queue can be used to
have more control over buffer allocation. For example, by allocating buffers
larger than the current CAPTURE format, future resolution changes can be
accommodated.

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

memory follows standard semantics.

format a format representing the maximum framebuffer resolution to be
accommodated by newly allocated buffers.

• Return fields:
count adjusted to the number of allocated buffers.

Warning: The actual number of allocated buffers may differ from the
count given. The client must check the updated value of count after the
call returns.

Note: To allocate buffers for a format different than parsed from the stream
metadata, the client must proceed as follows, before the metadata parsing is
initiated:

• set width and height of the OUTPUT format to desired coded resolution to
let the decoder configure the CAPTURE format appropriately,

• query the CAPTURE format using VIDIOC_G_FMT() and save it until this
step.

7.2. Part I - Video for Linux API 361

Linux Userspace-api Documentation

The format obtained in the query may be then used with
VIDIOC_CREATE_BUFS() in this step to allocate the buffers.

11. Call VIDIOC_STREAMON() on the CAPTURE queue to start decoding frames.

Decoding

This state is reached after the Capture Setup sequence finishes successfully. In this
state, the client queues and dequeues buffers to both queues via VIDIOC_QBUF()
and VIDIOC_DQBUF(), following the standard semantics.

The content of the source OUTPUT buffers depends on the active coded pixel format
andmay be affected by codec-specific extended controls, as stated in the documen-
tation of each format.

Both queues operate independently, following the standard behavior of V4L2
buffer queues and memory-to-memory devices. In addition, the order of decoded
frames dequeued from the CAPTURE queue may differ from the order of queuing
coded frames to the OUTPUT queue, due to properties of the selected coded format,
e.g. frame reordering.

The client must not assume any direct relationship between CAPTURE and OUTPUT
buffers and any specific timing of buffers becoming available to dequeue. Specifi-
cally:

• a buffer queued to OUTPUTmay result in no buffers being produced on CAPTURE
(e.g. if it does not contain encoded data, or if only metadata syntax structures
are present in it),

• a buffer queued to OUTPUT may result in more than one buffer produced on
CAPTURE (if the encoded data contained more than one frame, or if returning
a decoded frame allowed the decoder to return a frame that preceded it in
decode, but succeeded it in the display order),

• a buffer queued to OUTPUT may result in a buffer being produced on CAPTURE
later into decode process, and/or after processing further OUTPUT buffers, or
be returned out of order, e.g. if display reordering is used,

• buffers may become available on the CAPTURE queue without additional
buffers queued to OUTPUT (e.g. during drain or EOS), because of the OUTPUT
buffers queued in the past whose decoding results are only available at later
time, due to specifics of the decoding process.

Note: To allow matching decoded CAPTURE buffers with OUTPUT buffers they orig-
inated from, the client can set the timestamp field of the v4l2_buffer struct when
queuing an OUTPUT buffer. The CAPTURE buffer(s), which resulted from decoding
that OUTPUT buffer will have their timestamp field set to the same value when de-
queued.

In addition to the straightforward case of one OUTPUT buffer producing one
CAPTURE buffer, the following cases are defined:

• one OUTPUT buffer generates multiple CAPTURE buffers: the same OUTPUT
timestamp will be copied to multiple CAPTURE buffers.

362 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

• multiple OUTPUT buffers generate one CAPTURE buffer: timestamp of the
OUTPUT buffer queued first will be copied.

• the decoding order differs from the display order (i.e. the CAPTURE buffers
are out-of-order compared to the OUTPUT buffers): CAPTURE timestamps will
not retain the order of OUTPUT timestamps.

During the decoding, the decoder may initiate one of the special sequences, as
listed below. The sequences will result in the decoder returning all the CAPTURE
buffers that originated from all the OUTPUT buffers processed before the sequence
started. Last of the buffers will have the V4L2_BUF_FLAG_LAST flag set. To deter-
mine the sequence to follow, the client must check if there is any pending event
and:

• if a V4L2_EVENT_SOURCE_CHANGE event with changes set to
V4L2_EVENT_SRC_CH_RESOLUTION is pending, the Dynamic Resolution
Change sequence needs to be followed,

• if a V4L2_EVENT_EOS event is pending, the End of Stream sequence needs to
be followed.

Some of the sequences can be intermixed with each other and need to be handled
as they happen. The exact operation is documented for each sequence.

Should a decoding error occur, it will be reported to the client with the level of
details depending on the decoder capabilities. Specifically:

• the CAPTURE buffer that contains the results of the failed decode operation
will be returned with the V4L2_BUF_FLAG_ERROR flag set,

• if the decoder is able to precisely report the OUTPUT buffer that triggered
the error, such buffer will be returned with the V4L2_BUF_FLAG_ERROR flag
set.

In case of a fatal failure that does not allow the decoding to continue, any further
operations on corresponding decoder file handle will return the -EIO error code.
The client may close the file handle and open a new one, or alternatively reinitial-
ize the instance by stopping streaming on both queues, releasing all buffers and
performing the Initialization sequence again.

Seek

Seek is controlled by the OUTPUT queue, as it is the source of coded data. The
seek does not require any specific operation on the CAPTURE queue, but it may be
affected as per normal decoder operation.

1. Stop the OUTPUT queue to begin the seek sequence via VIDIOC_STREAMOFF().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

• The decoder will drop all the pending OUTPUT buffers and they must be
treated as returned to the client (following standard semantics).

2. Restart the OUTPUT queue via VIDIOC_STREAMON()

7.2. Part I - Video for Linux API 363

Linux Userspace-api Documentation

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

• The decoder will start accepting new source bytestream buffers after the
call returns.

3. Start queuing buffers containing coded data after the seek to the OUTPUT
queue until a suitable resume point is found.

Note: There is no requirement to begin queuing coded data starting exactly
from a resume point (e.g. SPS or a keyframe). Any queued OUTPUT buffers
will be processed and returned to the client until a suitable resume point is
found. While looking for a resume point, the decoder should not produce any
decoded frames into CAPTURE buffers.

Some hardware is known to mishandle seeks to a non-resume point. Such an
operation may result in an unspecified number of corrupted decoded frames
beingmade available on the CAPTURE queue. Drivers must ensure that no fatal
decoding errors or crashes occur, and implement any necessary handling and
workarounds for hardware issues related to seek operations.

Warning: In case of the H.264/HEVC codec, the client must take care
not to seek over a change of SPS/PPS. Even though the target frame could
be a keyframe, the stale SPS/PPS inside decoder state would lead to un-
defined results when decoding. Although the decoder must handle that
case without a crash or a fatal decode error, the client must not expect a
sensible decode output.

If the hardware can detect such corrupted decoded frames, then
corresponding buffers will be returned to the client with the
V4L2_BUF_FLAG_ERROR set. See the Decoding section for further
description of decode error reporting.

4. After a resume point is found, the decoder will start returning CAPTURE buffers
containing decoded frames.

Important: A seek may result in the Dynamic Resolution Change sequence being
initiated, due to the seek target having decoding parameters different from the
part of the stream decoded before the seek. The sequence must be handled as per
normal decoder operation.

Warning: It is not specified when the CAPTURE queue starts producing buffers
containing decoded data from the OUTPUT buffers queued after the seek, as it
operates independently from the OUTPUT queue.

The decoder may return a number of remaining CAPTURE buffers containing
decoded frames originating from the OUTPUT buffers queued before the seek

364 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

sequence is performed.

The VIDIOC_STREAMOFF operation discards any remaining queued OUTPUT
buffers, which means that not all of the OUTPUT buffers queued before the seek
sequence may have matching CAPTURE buffers produced. For example, given
the sequence of operations on the OUTPUT queue:

QBUF(A), QBUF(B), STREAMOFF(), STREAMON(), QBUF(G),
QBUF(H),

any of the following results on the CAPTURE queue is allowed:

{A’, B’, G’, H’}, {A’, G’, H’}, {G’, H’}.
To determine the CAPTURE buffer containing the first decoded frame after
the seek, the client may observe the timestamps to match the CAPTURE and
OUTPUT buffers or use V4L2_DEC_CMD_STOP and V4L2_DEC_CMD_START to
drain the decoder.

Note: To achieve instantaneous seek, the client may restart streaming on the
CAPTURE queue too to discard decoded, but not yet dequeued buffers.

Dynamic Resolution Change

Streams that include resolution metadata in the bytestreammay require switching
to a different resolution during the decoding.

Note: Not all decoders can detect resolution changes. Those that
do set the V4L2_FMT_FLAG_DYN_RESOLUTION flag for the coded format when
VIDIOC_ENUM_FMT() is called.

The sequence starts when the decoder detects a coded frame with one or more
of the following parameters different from those previously established (and re-
flected by corresponding queries):

• coded resolution (OUTPUT width and height),

• visible resolution (selection rectangles),

• the minimum number of buffers needed for decoding.

Whenever that happens, the decoder must proceed as follows:

1. After encountering a resolution change in the stream, the de-
coder sends a V4L2_EVENT_SOURCE_CHANGE event with changes set to
V4L2_EVENT_SRC_CH_RESOLUTION.

Important: Any client query issued after the decoder queues the event will
return values applying to the stream after the resolution change, including
queue formats, selection rectangles and controls.

7.2. Part I - Video for Linux API 365

Linux Userspace-api Documentation

2. The decoder will then process and decode all remaining buffers from before
the resolution change point.

• The last buffer from before the change must be marked with the
V4L2_BUF_FLAG_LAST flag, similarly to the Drain sequence above.

Warning: The last buffer may be empty (with v4l2_buffer bytesused =
0) and in that case it must be ignored by the client, as it does not contain
a decoded frame.

Note: Any attempt to dequeue more CAPTURE buffers beyond the
buffer marked with V4L2_BUF_FLAG_LAST will result in a -EPIPE error from
VIDIOC_DQBUF().

The client must continue the sequence as described below to continue the decod-
ing process.

1. Dequeue the source change event.

Important: A source change triggers an implicit decoder drain, simi-
lar to the explicit Drain sequence. The decoder is stopped after it com-
pletes. The decoding process must be resumed with either a pair of calls
to VIDIOC_STREAMOFF() and VIDIOC_STREAMON() on the CAPTURE queue, or a
call to VIDIOC_DECODER_CMD() with the V4L2_DEC_CMD_START command.

2. Continue with the Capture Setup sequence.

Note: During the resolution change sequence, the OUTPUT queue must remain
streaming. Calling VIDIOC_STREAMOFF() on the OUTPUT queue would abort the
sequence and initiate a seek.

In principle, the OUTPUT queue operates separately from the CAPTURE queue and
this remains true for the duration of the entire resolution change sequence as well.

The client should, for best performance and simplicity, keep queuing/dequeuing
buffers to/from the OUTPUT queue even while processing this sequence.

Drain

To ensure that all queued OUTPUT buffers have been processed and related CAPTURE
buffers are given to the client, the client must follow the drain sequence described
below. After the drain sequence ends, the client has received all decoded frames
for all OUTPUT buffers queued before the sequence was started.

1. Begin drain by issuing VIDIOC_DECODER_CMD().

• Required fields:
cmd set to V4L2_DEC_CMD_STOP.

366 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

flags set to 0.

pts set to 0.

Warning: The sequence can be only initiated if both OUTPUT and
CAPTURE queues are streaming. For compatibility reasons, the call to
VIDIOC_DECODER_CMD()will not fail even if any of the queues is not stream-
ing, but at the same time it will not initiate the Drain sequence and so the
steps described below would not be applicable.

2. Any OUTPUT buffers queued by the client before the VIDIOC_DECODER_CMD()
was issued will be processed and decoded as normal. The client must con-
tinue to handle both queues independently, similarly to normal decode oper-
ation. This includes:

• handling any operations triggered as a result of processing those buffers,
such as the Dynamic Resolution Change sequence, before continuing
with the drain sequence,

• queuing and dequeuing CAPTURE buffers, until a buffer marked with the
V4L2_BUF_FLAG_LAST flag is dequeued,

Warning: The last buffer may be empty (with v4l2_buffer
bytesused = 0) and in that case it must be ignored by the client, as it
does not contain a decoded frame.

Note: Any attempt to dequeue more CAPTURE buffers beyond the buffer
marked with V4L2_BUF_FLAG_LAST will result in a -EPIPE error from
VIDIOC_DQBUF().

• dequeuing processed OUTPUT buffers, until all the buffers queued before
the V4L2_DEC_CMD_STOP command are dequeued,

• dequeuing the V4L2_EVENT_EOS event, if the client subscribed to it.

Note: For backwards compatibility, the decoder will signal a
V4L2_EVENT_EOS event when the last frame has been decoded and all frames
are ready to be dequeued. It is a deprecated behavior and the client must not
rely on it. The V4L2_BUF_FLAG_LAST buffer flag should be used instead.

3. Once all the OUTPUT buffers queued before the V4L2_DEC_CMD_STOP call are
dequeued and the last CAPTURE buffer is dequeued, the decoder is stopped
and it will accept, but not process, any newly queued OUTPUT buffers until the
client issues any of the following operations:

• V4L2_DEC_CMD_START - the decoder will not be reset and will resume op-
eration normally, with all the state from before the drain,

7.2. Part I - Video for Linux API 367

Linux Userspace-api Documentation

• a pair of VIDIOC_STREAMOFF() and VIDIOC_STREAMON() on the CAPTURE
queue - the decoder will resume the operation normally, however any
CAPTURE buffers still in the queue will be returned to the client,

• a pair of VIDIOC_STREAMOFF() and VIDIOC_STREAMON() on the OUTPUT
queue - any pending source buffers will be returned to the client and the
Seek sequence will be triggered.

Note: Once the drain sequence is initiated, the client needs to drive it to com-
pletion, as described by the steps above, unless it aborts the process by issuing
VIDIOC_STREAMOFF() on any of the OUTPUT or CAPTURE queues. The client is not al-
lowed to issue V4L2_DEC_CMD_START or V4L2_DEC_CMD_STOP again while the drain
sequence is in progress and they will fail with -EBUSY error code if attempted.

Although mandatory, the availability of decoder commands may be queried using
VIDIOC_TRY_DECODER_CMD().

End of Stream

If the decoder encounters an end of stream marking in the stream, the decoder
will initiate the Drain sequence, which the client must handle as described above,
skipping the initial VIDIOC_DECODER_CMD().

Commit Points

Setting formats and allocating buffers trigger changes in the behavior of the de-
coder.

1. Setting the format on the OUTPUT queue may change the set of formats sup-
ported/advertised on the CAPTURE queue. In particular, it also means that the
CAPTURE format may be reset and the client must not rely on the previously
set format being preserved.

2. Enumerating formats on the CAPTURE queue always returns only formats sup-
ported for the current OUTPUT format.

3. Setting the format on the CAPTURE queue does not change the list of formats
available on the OUTPUT queue. An attempt to set a CAPTURE format that is not
supported for the currently selected OUTPUT format will result in the decoder
adjusting the requested CAPTURE format to a supported one.

4. Enumerating formats on the OUTPUT queue always returns the full set of sup-
ported coded formats, irrespectively of the current CAPTURE format.

5. While buffers are allocated on any of the OUTPUT or CAPTURE queues, the client
must not change the format on the OUTPUT queue. Drivers will return the -
EBUSY error code for any such format change attempt.

To summarize, setting formats and allocation must always start with the OUTPUT
queue and the OUTPUT queue is the master that governs the set of supported for-
mats for the CAPTURE queue.

368 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Memory-to-memory Stateless Video Decoder Interface

A stateless decoder is a decoder that works without retaining any kind of state
between processed frames. This means that each frame is decoded independently
of any previous and future frames, and that the client is responsible formaintaining
the decoding state and providing it to the decoder with each decoding request.
This is in contrast to the stateful video decoder interface, where the hardware and
driver maintain the decoding state and all the client has to do is to provide the raw
encoded stream and dequeue decoded frames in display order.

This section describes how user-space (“the client”) is expected to communicate
with stateless decoders in order to successfully decode an encoded stream. Com-
pared to stateful codecs, the decoder/client sequence is simpler, but the cost of
this simplicity is extra complexity in the client which is responsible for maintaining
a consistent decoding state.

Stateless decoders make use of the Request API. A stateless decoder must ex-
pose the V4L2_BUF_CAP_SUPPORTS_REQUESTS capability on its OUTPUT queue when
VIDIOC_REQBUFS() or VIDIOC_CREATE_BUFS() are invoked.

Depending on the encoded formats supported by the decoder, a single decoded
frame may be the result of several decode requests (for instance, H.264 streams
with multiple slices per frame). Decoders that support such formats must also
expose the V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF capability on their
OUTPUT queue.

Querying capabilities

1. To enumerate the set of coded formats supported by the decoder, the client
calls VIDIOC_ENUM_FMT() on the OUTPUT queue.

• The driver must always return the full set of supported OUTPUT formats,
irrespective of the format currently set on the CAPTURE queue.

• Simultaneously, the driver must restrain the set of values returned by
codec-specific capability controls (such as H.264 profiles) to the set ac-
tually supported by the hardware.

2. To enumerate the set of supported raw formats, the client calls
VIDIOC_ENUM_FMT() on the CAPTURE queue.

• The driver must return only the formats supported for the format cur-
rently active on the OUTPUT queue.

• Depending on the currently set OUTPUT format, the set of supported raw
formats may depend on the value of some codec-dependent controls. The
client is responsible for making sure that these controls are set before
querying the CAPTURE queue. Failure to do so will result in the default
values for these controls being used, and a returned set of formats that
may not be usable for the media the client is trying to decode.

3. The client may use VIDIOC_ENUM_FRAMESIZES() to detect supported resolu-
tions for a given format, passing desired pixel format in v4l2_frmsizeenum’
s pixel_format.

7.2. Part I - Video for Linux API 369

Linux Userspace-api Documentation

4. Supported profiles and levels for the current OUTPUT format, if applicable,
may be queried using their respective controls via VIDIOC_QUERYCTRL().

Initialization

1. Set the coded format on the OUTPUT queue via VIDIOC_S_FMT().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

pixelformat a coded pixel format.

width, height coded width and height parsed from the stream.

other fields follow standard semantics.

Note: Changing the OUTPUT format may change the currently set CAPTURE
format. The driver will derive a new CAPTURE format from the OUTPUT for-
mat being set, including resolution, colorimetry parameters, etc. If the client
needs a specific CAPTURE format, it must adjust it afterwards.

2. Call VIDIOC_S_EXT_CTRLS() to set all the controls (parsed headers, etc.) re-
quired by the OUTPUT format to enumerate the CAPTURE formats.

3. Call VIDIOC_G_FMT() for CAPTURE queue to get the format for the destination
buffers parsed/decoded from the bytestream.

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

• Returned fields:
width, height frame buffer resolution for the decoded frames.
pixelformat pixel format for decoded frames.

num_planes (for _MPLANE type only) number of planes for pixelfor-
mat.

sizeimage, bytesperline as per standard semantics; matching frame
buffer format.

Note: The value of pixelformat may be any pixel format supported for
the OUTPUT format, based on the hardware capabilities. It is suggested that
the driver chooses the preferred/optimal format for the current configura-
tion. For example, a YUV format may be preferred over an RGB format, if an
additional conversion step would be required for RGB.

4. [optional] Enumerate CAPTURE formats via VIDIOC_ENUM_FMT() on the
CAPTURE queue. The client may use this ioctl to discover which alternative
raw formats are supported for the current OUTPUT format and select one of
them via VIDIOC_S_FMT().

370 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Note: The driver will return only formats supported for the currently se-
lected OUTPUT format and currently set controls, even if more formats may be
supported by the decoder in general.

For example, a decoder may support YUV and RGB formats for resolutions
1920x1088 and lower, but only YUV for higher resolutions (due to hardware
limitations). After setting a resolution of 1920x1088 or lower as the OUTPUT
format, VIDIOC_ENUM_FMT() may return a set of YUV and RGB pixel formats,
but after setting a resolution higher than 1920x1088, the driver will not re-
turn RGB pixel formats, since they are unsupported for this resolution.

5. [optional] Choose a different CAPTURE format than suggested via
VIDIOC_S_FMT() on CAPTURE queue. It is possible for the client to choose a
different format than selected/suggested by the driver in VIDIOC_G_FMT().

• Required fields:
type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

pixelformat a raw pixel format.

width, height frame buffer resolution of the decoded stream; typically
unchanged from what was returned with VIDIOC_G_FMT(), but it may
be different if the hardware supports composition and/or scaling.

After performing this step, the client must perform step 3 again in order to
obtain up-to-date information about the buffers size and layout.

6. Allocate source (bytestream) buffers via VIDIOC_REQBUFS() on OUTPUT queue.

• Required fields:
count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

memory follows standard semantics.

• Return fields:
count actual number of buffers allocated.

• If required, the driver will adjust count to be equal or bigger to the min-
imum of required number of OUTPUT buffers for the given format and
requested count. The client must check this value after the ioctl returns
to get the actual number of buffers allocated.

7. Allocate destination (raw format) buffers via VIDIOC_REQBUFS() on the
CAPTURE queue.

• Required fields:
count requested number of buffers to allocate; greater than zero. The

client is responsible for deducing the minimum number of buffers
required for the stream to be properly decoded (taking e.g. reference
frames into account) and pass an equal or bigger number.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

7.2. Part I - Video for Linux API 371

Linux Userspace-api Documentation

memory follows standard semantics. V4L2_MEMORY_USERPTR is not sup-
ported for CAPTURE buffers.

• Return fields:
count adjusted to allocated number of buffers, in case the codec requires

more buffers than requested.

• The driver must adjust count to the minimum of required number of
CAPTURE buffers for the current format, stream configuration and re-
quested count. The client must check this value after the ioctl returns to
get the number of buffers allocated.

8. Allocate requests (likely one per OUTPUT buffer) via
MEDIA_IOC_REQUEST_ALLOC() on the media device.

9. Start streaming on both OUTPUT and CAPTURE queues via
VIDIOC_STREAMON().

Decoding

For each frame, the client is responsible for submitting at least one request to
which the following is attached:

• The amount of encoded data expected by the codec for its current configura-
tion, as a buffer submitted to the OUTPUT queue. Typically, this corresponds
to one frame worth of encoded data, but some formats may allow (or require)
different amounts per unit.

• All the metadata needed to decode the submitted encoded data, in the form
of controls relevant to the format being decoded.

The amount of data and contents of the source OUTPUT buffer, as well as the controls
that must be set on the request, depend on the active coded pixel format and might
be affected by codec-specific extended controls, as stated in documentation of each
format.

If there is a possibility that the decoded frame will require one or more decode
requests after the current one in order to be produced, then the client must set the
V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag on the OUTPUT buffer. This will result
in the (potentially partially) decoded CAPTURE buffer not being made available for
dequeueing, and reused for the next decode request if the timestamp of the next
OUTPUT buffer has not changed.

A typical frame would thus be decoded using the following sequence:

1. Queue an OUTPUT buffer containing one unit of encoded bytestream data for
the decoding request, using VIDIOC_QBUF().

• Required fields:
index index of the buffer being queued.

type type of the buffer.

bytesused number of bytes taken by the encoded data frame in the
buffer.

372 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

flags the V4L2_BUF_FLAG_REQUEST_FD flag must be set. Addition-
ally, if we are not sure that the current decode request is
the last one needed to produce a fully decoded frame, then
V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF must also be set.

request_fd must be set to the file descriptor of the decoding request.

timestamp must be set to a unique value per frame. This value will be
propagated into the decoded frame’s buffer and can also be used to
use this frame as the reference of another. If using multiple decode
requests per frame, then the timestamps of all the OUTPUT buffers for
a given frame must be identical. If the timestamp changes, then the
currently held CAPTURE buffer will be made available for dequeuing
and the current request will work on a new CAPTURE buffer.

2. Set the codec-specific controls for the decoding request, using
VIDIOC_S_EXT_CTRLS().

• Required fields:
which must be V4L2_CTRL_WHICH_REQUEST_VAL.

request_fd must be set to the file descriptor of the decoding request.

other fields other fields are set as usual when setting controls. The
controls array must contain all the codec-specific controls required
to decode a frame.

Note: It is possible to specify the controls in different invocations of
VIDIOC_S_EXT_CTRLS(), or to overwrite a previously set control, as long as
request_fd and which are properly set. The controls state at the moment of
request submission is the one that will be considered.

Note: The order in which steps 1 and 2 take place is interchangeable.

3. Submit the request by invoking MEDIA_REQUEST_IOC_QUEUE() on the request
FD.

If the request is submitted without an OUTPUT buffer, or if
some of the required controls are missing from the request,
then MEDIA_REQUEST_IOC_QUEUE() will return -ENOENT. If more
than one OUTPUT buffer is queued, then it will return -EINVAL.
MEDIA_REQUEST_IOC_QUEUE() returning non-zero means that no
CAPTURE buffer will be produced for this request.

CAPTURE buffers must not be part of the request, and are queued independently.
They are returned in decode order (i.e. the same order as coded frames were
submitted to the OUTPUT queue).

Runtime decoding errors are signaled by the dequeued CAPTURE buffers carrying
the V4L2_BUF_FLAG_ERROR flag. If a decoded reference frame has an error, then
all following decoded frames that refer to it also have the V4L2_BUF_FLAG_ERROR
flag set, although the decoder will still try to produce (likely corrupted) frames.

7.2. Part I - Video for Linux API 373

Linux Userspace-api Documentation

Buffer management while decoding

Contrary to stateful decoders, a stateless decoder does not perform any kind of
buffermanagement: it only guarantees that dequeued CAPTURE buffers can be used
by the client for as long as they are not queued again. “Used”here encompasses
using the buffer for compositing or display.

A dequeued capture buffer can also be used as the reference frame of another
buffer.

A frame is specified as reference by converting its timestamp into nanoseconds,
and storing it into the relevant member of a codec-dependent control structure.
The v4l2_timeval_to_ns() function must be used to perform that conversion.
The timestamp of a frame can be used to reference it as soon as all its units of
encoded data are successfully submitted to the OUTPUT queue.

A decoded buffer containing a reference frame must not be reused as a decoding
target until all the frames referencing it have been decoded. The safest way to
achieve this is to refrain from queueing a reference buffer until all the decoded
frames referencing it have been dequeued. However, if the driver can guarantee
that buffers queued to the CAPTURE queue are processed in queued order, then
user-space can take advantage of this guarantee and queue a reference buffer
when the following conditions are met:

1. All the requests for frames affected by the reference frame have been queued,
and

2. A sufficient number of CAPTURE buffers to cover all the decoded referencing
frames have been queued.

When queuing a decoding request, the driver will increase the reference count of
all the resources associated with reference frames. This means that the client can
e.g. close the DMABUF file descriptors of reference frame buffers if it won’t need
them afterwards.

Seeking

In order to seek, the client just needs to submit requests using input buffers cor-
responding to the new stream position. It must however be aware that resolution
may have changed and follow the dynamic resolution change sequence in that
case. Also depending on the codec used, picture parameters (e.g. SPS/PPS for
H.264) may have changed and the client is responsible for making sure that a
valid state is sent to the decoder.

The client is then free to ignore any returned CAPTURE buffer that comes from the
pre-seek position.

374 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Pausing

In order to pause, the client can just cease queuing buffers onto the OUTPUT queue.
Without source bytestream data, there is no data to process and the codec will
remain idle.

Dynamic resolution change

If the client detects a resolution change in the stream, it will need to perform the
initialization sequence again with the new resolution:

1. If the last submitted request resulted in a CAPTURE buffer being held by the
use of the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag, then the last frame
is not available on the CAPTURE queue. In this case, a V4L2_DEC_CMD_FLUSH
command shall be sent. This will make the driver dequeue the held CAPTURE
buffer.

2. Wait until all submitted requests have completed and dequeue the corre-
sponding output buffers.

3. Call VIDIOC_STREAMOFF() on both the OUTPUT and CAPTURE queues.

4. Free all CAPTURE buffers by calling VIDIOC_REQBUFS() on the CAPTURE queue
with a buffer count of zero.

5. Perform the initialization sequence again (minus the allocation of OUTPUT
buffers), with the new resolution set on the OUTPUT queue. Note that due
to resolution constraints, a different format may need to be picked on the
CAPTURE queue.

Drain

If the last submitted request resulted in a CAPTURE buffer being held by the use of
the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag, then the last frame is not avail-
able on the CAPTURE queue. In this case, a V4L2_DEC_CMD_FLUSH command shall
be sent. This will make the driver dequeue the held CAPTURE buffer.

After that, in order to drain the stream on a stateless decoder, the client just needs
to wait until all the submitted requests are completed.

Raw VBI Data Interface

VBI is an abbreviation of Vertical Blanking Interval, a gap in the sequence of lines
of an analog video signal. During VBI no picture information is transmitted, allow-
ing some time while the electron beam of a cathode ray tube TV returns to the top
of the screen. Using an oscilloscope you will find here the vertical synchronization
pulses and short data packages ASK modulated1 onto the video signal. These are
transmissions of services such as Teletext or Closed Caption.

Subject of this interface type is raw VBI data, as sampled off a video signal, or to
be added to a signal for output. The data format is similar to uncompressed video

1 ASK: Amplitude-Shift Keying. A high signal level represents a ‘1’bit, a low level a ‘0’bit.

7.2. Part I - Video for Linux API 375

Linux Userspace-api Documentation

images, a number of lines times a number of samples per line, we call this a VBI
image.

Conventionally V4L2 VBI devices are accessed through character device special
files named /dev/vbi and /dev/vbi0 to /dev/vbi31 with major number 81 and
minor numbers 224 to 255. /dev/vbi is typically a symbolic link to the preferred
VBI device. This convention applies to both input and output devices.

To address the problems of finding related video and VBI devices VBI capturing
and output is also available as device function under /dev/video. To capture or
output raw VBI data with these devices applications must call the VIDIOC_S_FMT
ioctl. Accessed as /dev/vbi, raw VBI capturing or output is the default device
function.

Querying Capabilities

Devices supporting the raw VBI capturing or output API set the
V4L2_CAP_VBI_CAPTURE or V4L2_CAP_VBI_OUTPUT flags, respectively, in the
capabilities field of struct v4l2_capability returned by the ioctl VID-
IOC_QUERYCAP ioctl. At least one of the read/write, streaming or asynchronous
I/O methods must be supported. VBI devices may or may not have a tuner or
modulator.

Supplemental Functions

VBI devices shall support video input or output, tuner or modulator, and controls
ioctls as needed. The video standard ioctls provide information vital to program a
VBI device, therefore must be supported.

Raw VBI Format Negotiation

Raw VBI sampling abilities can vary, in particular the sampling frequency. To
properly interpret the data V4L2 specifies an ioctl to query the sampling parame-
ters. Moreover, to allow for some flexibility applications can also suggest different
parameters.

As usual these parameters are not reset at open() time to permit Unix tool chains,
programming a device and then reading from it as if it was a plain file. Well written
V4L2 applications should always ensure they really get what they want, requesting
reasonable parameters and then checking if the actual parameters are suitable.

To query the current raw VBI capture parameters applications set the
type field of a struct v4l2_format to V4L2_BUF_TYPE_VBI_CAPTURE or
V4L2_BUF_TYPE_VBI_OUTPUT, and call the VIDIOC_G_FMT ioctl with a pointer to
this structure. Drivers fill the struct v4l2_vbi_format vbi member of the fmt
union.

To request different parameters applications set the type field of a struct
v4l2_format as above and initialize all fields of the struct v4l2_vbi_format vbi
member of the fmt union, or better just modify the results of VIDIOC_G_FMT,
and call the VIDIOC_S_FMT ioctl with a pointer to this structure. Drivers return

376 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

an EINVAL error code only when the given parameters are ambiguous, otherwise
they modify the parameters according to the hardware capabilities and return the
actual parameters. When the driver allocates resources at this point, it may re-
turn an EBUSY error code to indicate the returned parameters are valid but the re-
quired resources are currently not available. That may happen for instance when
the video and VBI areas to capture would overlap, or when the driver supports
multiple opens and another process already requested VBI capturing or output.
Anyway, applications must expect other resource allocation points which may re-
turn EBUSY, at the ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF ioctl and the
first read() , write() and select() calls.

VBI devices must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl,
even if VIDIOC_S_FMT ignores all requests and always returns default parameters
as VIDIOC_G_FMT does. VIDIOC_TRY_FMT is optional.

v4l2_vbi_format

Table 80: struct v4l2_vbi_format
__u32 sampling_rate Samples per second, i. e. unit 1 Hz.
__u32 offset Horizontal offset of the VBI image, relative to the leading

edge of the line synchronization pulse and counted in sam-
ples: The first sample in the VBI imagewill be located offset
/ sampling_rate seconds following the leading edge. See
also Figure 4.1. Line synchronization.

__u32 samples_per_line
__u32 sample_format Defines the sample format as in Image Formats, a four-

character-code.2 Usually this is V4L2_PIX_FMT_GREY, i. e.
each sample consists of 8 bits with lower values oriented to-
wards the black level. Do not assume any other correlation
of values with the signal level. For example, the MSB does
not necessarily indicate if the signal is‘high’or‘low’be-
cause 128 may not be the mean value of the signal. Drivers
shall not convert the sample format by software.

__u32 start2 This is the scanning system line number associated with the
first line of the VBI image, of the first and the second field
respectively. See Figure 4.2. ITU-R 525 line numbering
(M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line num-
bering for valid values. The V4L2_VBI_ITU_525_F1_START,
V4L2_VBI_ITU_525_F2_START, V4L2_VBI_ITU_625_F1_START
and V4L2_VBI_ITU_625_F2_START defines give the start line
numbers for each field for each 525 or 625 line format as a
convenience. Don’t forget that ITU line numbering starts
at 1, not 0. VBI input drivers can return start values 0 if
the hardware cannot reliable identify scanning lines, VBI
acquisition may not require this information.

__u32 count2 The number of lines in the first and second field image, re-
spectively.

Continued on next page

7.2. Part I - Video for Linux API 377

Linux Userspace-api Documentation

Table 80 – continued from previous page
Drivers should be as flexibility as possible. For example, it may be possible to extend or move
the VBI capture window down to the picture area, implementing a‘full field mode’to capture
data service transmissions embedded in the picture.
An application can set the first or second count value to zero if no data is required from the
respective field; count[1] if the scanning system is progressive, i. e. not interlaced. The
corresponding start value shall be ignored by the application and driver. Anyway, drivers may
not support single field capturing and return both count values non-zero.
Both count values set to zero, or line numbers are outside the bounds depicted4, or a field
image covering lines of two fields, are invalid and shall not be returned by the driver.
To initialize the start and count fields, applications must first determine the current video
standard selection. The v4l2_std_id or the framelines field of struct v4l2_standard can be
evaluated for this purpose.
__u32 flags See Raw VBI Format Flags below. Currently only drivers set

flags, applications must set this field to zero.
__u32 reserved2 This array is reserved for future extensions. Drivers and ap-

plications must set it to zero.

Table 81: Raw VBI Format Flags
V4L2_VBI_UNSYNC 0x0001 This flag indicates hardware which does not properly dis-

tinguish between fields. Normally the VBI image stores the
first field (lower scanning line numbers) first in memory.
This may be a top or bottom field depending on the video
standard. When this flag is set the first or second field may
be stored first, however the fields are still in correct tempo-
ral order with the older field first in memory.3

V4L2_VBI_INTERLACED 0x0002 By default the two field images will be passed sequen-
tially; all lines of the first field followed by all lines of
the second field (compare Field Order V4L2_FIELD_SEQ_TB
and V4L2_FIELD_SEQ_BT, whether the top or bottom field
is first in memory depends on the video standard).
When this flag is set, the two fields are interlaced (cf.
V4L2_FIELD_INTERLACED). The first line of the first field fol-
lowed by the first line of the second field, then the two sec-
ond lines, and so on. Such a layout may be necessary when
the hardware has been programmed to capture or output in-
terlaced video images and is unable to separate the fields for
VBI capturing at the same time. For simplicity setting this
flag implies that both count values are equal and non-zero.

Remember the VBI image format depends on the selected video standard, there-
fore the application must choose a new standard or query the current standard
first. Attempts to read or write data ahead of format negotiation, or after switching
the video standard which may invalidate the negotiated VBI parameters, should

2 A few devices may be unable to sample VBI data at all but can extend the video capture window
to the VBI region.

4 The valid values ar shown at Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and
Figure 4.3. ITU-R 625 line numbering.

3 Most VBI services transmit on both fields, but some have different semantics depending on the
field number. These cannot be reliable decoded or encoded when V4L2_VBI_UNSYNC is set.

378 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Fig. 9: Figure 4.1. Line synchronization

Fig. 10: Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL)

Fig. 11: Figure 4.3. ITU-R 625 line numbering

7.2. Part I - Video for Linux API 379

Linux Userspace-api Documentation

be refused by the driver. A format change during active I/O is not permitted.

Reading and writing VBI images

To assure synchronization with the field number and easier implementation, the
smallest unit of data passed at a time is one frame, consisting of two fields of VBI
images immediately following in memory.

The total size of a frame computes as follows:

(count[0] + count[1]) * samples_per_line * sample size in bytes

The sample size is most likely always one byte, applications must check the
sample_format field though, to function properly with other drivers.

A VBI device may support read/write and/or streaming (memory mapping or user
pointer) I/O. The latter bears the possibility of synchronizing video and VBI data
by using buffer timestamps.

Remember the VIDIOC_STREAMON ioctl and the first read(), write() and select()
call can be resource allocation points returning an EBUSY error code if the required
hardware resources are temporarily unavailable, for example the device is already
in use by another process.

Sliced VBI Data Interface

VBI stands for Vertical Blanking Interval, a gap in the sequence of lines of an
analog video signal. During VBI no picture information is transmitted, allowing
some time while the electron beam of a cathode ray tube TV returns to the top of
the screen.

Sliced VBI devices use hardware to demodulate data transmitted in the VBI. V4L2
drivers shall not do this by software, see also the raw VBI interface. The data is
passed as short packets of fixed size, covering one scan line each. The number of
packets per video frame is variable.

Sliced VBI capture and output devices are accessed through the same character
special files as raw VBI devices. When a driver supports both interfaces, the de-
fault function of a /dev/vbi device is raw VBI capturing or output, and the sliced
VBI function is only available after calling the VIDIOC_S_FMT ioctl as defined be-
low. Likewise a /dev/video device may support the sliced VBI API, however the
default function here is video capturing or output. Different file descriptors must
be used to pass raw and sliced VBI data simultaneously, if this is supported by the
driver.

380 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Querying Capabilities

Devices supporting the sliced VBI capturing or output API set the
V4L2_CAP_SLICED_VBI_CAPTURE or V4L2_CAP_SLICED_VBI_OUTPUT flag respec-
tively, in the capabilities field of struct v4l2_capability returned by the
ioctl VIDIOC_QUERYCAP ioctl. At least one of the read/write, streaming or
asynchronous I/O methods must be supported. Sliced VBI devices may have a
tuner or modulator.

Supplemental Functions

Sliced VBI devices shall support video input or output and tuner or modulator
ioctls if they have these capabilities, and they may support User Controls ioctls.
The video standard ioctls provide information vital to program a sliced VBI device,
therefore must be supported.

Sliced VBI Format Negotiation

To find out which data services are supported by the hardware applications can
call the VIDIOC_G_SLICED_VBI_CAP ioctl. All drivers implementing the sliced
VBI interface must support this ioctl. The results may differ from those of the
VIDIOC_S_FMT ioctl when the number of VBI lines the hardware can capture or
output per frame, or the number of services it can identify on a given line are
limited. For example on PAL line 16 the hardware may be able to look for a VPS
or Teletext signal, but not both at the same time.

To determine the currently selected services applications set the type
field of struct v4l2_format to V4L2_BUF_TYPE_SLICED_VBI_CAPTURE or
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT, and the VIDIOC_G_FMT ioctl fills the
fmt.sliced member, a struct v4l2_sliced_vbi_format.

Applications can request different parameters by initializing or modifying the fmt.
sliced member and calling the VIDIOC_S_FMT ioctl with a pointer to the struct
v4l2_format structure.

The sliced VBI API is more complicated than the raw VBI API because the hardware
must be told which VBI service to expect on each scan line. Not all services may
be supported by the hardware on all lines (this is especially true for VBI output
where Teletext is often unsupported and other services can only be inserted in one
specific line). In many cases, however, it is sufficient to just set the service_set
field to the required services and let the driver fill the service_lines array ac-
cording to hardware capabilities. Only if more precise control is needed should
the programmer set the service_lines array explicitly.

The VIDIOC_S_FMT ioctl modifies the parameters according to hardware capabil-
ities. When the driver allocates resources at this point, it may return an EBUSY
error code if the required resources are temporarily unavailable. Other resource
allocation points which may return EBUSY can be the ioctl VIDIOC_STREAMON,
VIDIOC_STREAMOFF ioctl and the first read(), write() and select() call.

v4l2_sliced_vbi_format

7.2. Part I - Video for Linux API 381

Linux Userspace-api Documentation

struct v4l2_sliced_vbi_format

__u32 service_set If service_set is non-zero when passed with VIDIOC_S_FMT or VIDIOC_TRY_FMT, the
service_lines array will be filled by the driver according to the services specified in
this field. For example, if service_set is initialized with V4L2_SLICED_TELETEXT_B |
V4L2_SLICED_WSS_625, a driver for the cx25840 video decoder sets lines 7-22 of both fields1 to
V4L2_SLICED_TELETEXT_B and line 23 of the first field to V4L2_SLICED_WSS_625. If service_set
is set to zero, then the values of service_lines will be used instead.
On return the driver sets this field to the union of all elements of the returned service_lines
array. It may contain less services than requested, perhaps just one, if the hardware cannot
handle more services simultaneously. It may be empty (zero) if none of the requested services
are supported by the hardware.

__u16 service_lines[2][24] Applications initialize this array with sets of data services the driver shall look for or insert on
the respective scan line. Subject to hardware capabilities drivers return the requested set, a
subset, which may be just a single service, or an empty set. When the hardware cannot handle
multiple services on the same line the driver shall choose one. No assumptions can be made on
which service the driver chooses.
Data services are defined in Sliced VBI services. Array indices map to ITU-R line numbers2 as
follows:
Element 525 line systems 625 line systems
service_lines[0][1] 1 1
service_lines[0][23] 23 23
service_lines[1][1] 264 314
service_lines[1][23] 286 336
Drivers must set service_lines [0][0] and service_lines[1][0] to zero. The
V4L2_VBI_ITU_525_F1_START, V4L2_VBI_ITU_525_F2_START, V4L2_VBI_ITU_625_F1_START
and V4L2_VBI_ITU_625_F2_START defines give the start line numbers for each field for each
525 or 625 line format as a convenience. Don’t forget that ITU line numbering starts at 1, not
0.

__u32 io_size Maximum number of bytes passed by one read() or write() call, and the buffer size in bytes for
the ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VIDIOC_DQBUF ioctl. Drivers set this field to the
size of struct v4l2_sliced_vbi_data times the number of non-zero elements in the returned
service_lines array (that is the number of lines potentially carrying data).

__u32 reserved[2] This array is reserved for future extensions.
Applications and drivers must set it to zero.

Sliced VBI services

Symbol Value Reference Lines, usually Payload
V4L2_SLICED_TELETEXT_B
(Teletext System B)

0x0001 ETS 300 706,
ITU BT.653

PAL/SECAM
line 7-22,
320-335 (sec-
ond field
7-22)

Last 42 of the 45 byte Teletext packet, that is with-
out clock run-in and framing code, lsb first trans-
mitted.

V4L2_SLICED_VPS 0x0400 ETS 300 231 PAL line 16 Byte number 3 to 15 according to Figure 9 of ETS
300 231, lsb first transmitted.

V4L2_SLICED_CAPTION_525 0x1000 CEA 608-E NTSC line 21,
284 (second
field 21)

Two bytes in transmission order, including parity
bit, lsb first transmitted.

V4L2_SLICED_WSS_625 0x4000 ITU BT.1119,
EN 300 294

PAL/SECAM
line 23 Byte 0 1

msb lsb msb ␣
↪→ lsb
Bit 7 6 5 4 3 2 1 0 x x 13 12␣
↪→11 10 9

V4L2_SLICED_VBI_525 0x1000 Set of services applicable to 525 line systems.
V4L2_SLICED_VBI_625 0x4401 Set of services applicable to 625 line systems.

1 According to ETS 300 706 lines 6-22 of the first field and lines 5-22 of the second field may carry
Teletext data.

2 See also Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625
line numbering.

382 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Drivers may return an EINVAL error code when applications attempt to read or
write data without prior format negotiation, after switching the video standard
(which may invalidate the negotiated VBI parameters) and after switching the
video input (which may change the video standard as a side effect). The VID-
IOC_S_FMT ioctl may return an EBUSY error code when applications attempt to
change the format while i/o is in progress (between a ioctl VIDIOC_STREAMON,
VIDIOC_STREAMOFF and VIDIOC_STREAMOFF call, and after the first read() or
write() call).

Reading and writing sliced VBI data

A single read() or write() call must pass all data belonging to one video frame. That
is an array of struct v4l2_sliced_vbi_data structures with one or more elements
and a total size not exceeding io_size bytes. Likewise in streaming I/O mode one
buffer of io_size bytes must contain data of one video frame. The id of unused
struct v4l2_sliced_vbi_data elements must be zero.

v4l2_sliced_vbi_data

7.2. Part I - Video for Linux API 383

Linux Userspace-api Documentation

struct v4l2_sliced_vbi_data

__u32 id A flag from Sliced VBI services identifying
the type of data in this packet. Only a single
bit must be set. When the id of a captured
packet is zero, the packet is empty and the
contents of other fields are undefined. Ap-
plications shall ignore empty packets. When
the id of a packet for output is zero the con-
tents of the data field are undefined and the
driver must no longer insert data on the re-
quested field and line.

__u32 field The video field number this data has been
captured from, or shall be inserted at. 0 for
the first field, 1 for the second field.

__u32 line The field (as opposed to frame) line number
this data has been captured from, or shall be
inserted at. See Figure 4.2. ITU-R 525 line
numbering (M/NTSC and M/PAL) and Figure
4.3. ITU-R 625 line numbering for valid val-
ues. Sliced VBI capture devices can set the
line number of all packets to 0 if the hard-
ware cannot reliably identify scan lines. The
field number must always be valid.

__u32 reserved This field is reserved for future extensions.
Applications and drivers must set it to zero.

__u8 data[48] The packet payload. See Sliced VBI services
for the contents and number of bytes passed
for each data type. The contents of padding
bytes at the end of this array are undefined,
drivers and applications shall ignore them.

Packets are always passed in ascending line number order, without duplicate line
numbers. The write() function and the ioctl VIDIOC_QBUF, VIDIOC_DQBUF ioctl
must return an EINVAL error code when applications violate this rule. They must
also return an EINVAL error code when applications pass an incorrect field or line
number, or a combination of field, line and id which has not been negotiated
with the VIDIOC_G_FMT or VIDIOC_S_FMT ioctl. When the line numbers are un-
known the driver must pass the packets in transmitted order. The driver can insert
empty packets with id set to zero anywhere in the packet array.

To assure synchronization and to distinguish from frame dropping, when a cap-
tured frame does not carry any of the requested data services drivers must pass
one or more empty packets. When an application fails to pass VBI data in time for
output, the driver must output the last VPS and WSS packet again, and disable
the output of Closed Caption and Teletext data, or output data which is ignored by
Closed Caption and Teletext decoders.

A sliced VBI device may support read/write and/or streaming (memory mapping
and/or user pointer) I/O. The latter bears the possibility of synchronizing video and
VBI data by using buffer timestamps.

384 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Sliced VBI Data in MPEG Streams

If a device can produce an MPEG output stream, it may be capable of
providing negotiated sliced VBI services as data embedded in the MPEG
stream. Users or applications control this sliced VBI data insertion with the
V4L2_CID_MPEG_STREAM_VBI_FMT control.

If the driver does not provide the V4L2_CID_MPEG_STREAM_VBI_FMT control, or
only allows that control to be set to V4L2_MPEG_STREAM_VBI_FMT_NONE, then
the device cannot embed sliced VBI data in the MPEG stream.

The V4L2_CID_MPEG_STREAM_VBI_FMT control does not implicitly set the de-
vice driver to capture nor cease capturing sliced VBI data. The control only indi-
cates to embed sliced VBI data in the MPEG stream, if an application has negoti-
ated sliced VBI service be captured.

It may also be the case that a device can embed sliced VBI data in only certain
types of MPEG streams: for example in an MPEG-2 PS but not an MPEG-2 TS.
In this situation, if sliced VBI data insertion is requested, the sliced VBI data will
be embedded in MPEG stream types when supported, and silently omitted from
MPEG stream types where sliced VBI data insertion is not supported by the device.

The following subsections specify the format of the embedded sliced VBI data.

MPEG Stream Embedded, Sliced VBI Data Format: NONE

The V4L2_MPEG_STREAM_VBI_FMT_NONE embedded sliced VBI format shall be
interpreted by drivers as a control to cease embedding sliced VBI data in MPEG
streams. Neither the device nor driver shall insert“empty”embedded sliced VBI
data packets in the MPEG stream when this format is set. No MPEG stream data
structures are specified for this format.

MPEG Stream Embedded, Sliced VBI Data Format: IVTV

The V4L2_MPEG_STREAM_VBI_FMT_IVTV embedded sliced VBI format, when
supported, indicates to the driver to embed up to 36 lines of sliced VBI data per
frame in an MPEG-2 Private Stream 1 PES packet encapsulated in an MPEG-2
Program Pack in the MPEG stream.

Historical context: This format specification originates from a custom, embedded,
sliced VBI data format used by the ivtv driver. This format has already been infor-
mally specified in the kernel sources in the file Documentation/userspace-api/
media/drivers/cx2341x-uapi.rst . The maximum size of the payload and other
aspects of this format are driven by the CX23415 MPEG decoder’s capabilities
and limitations with respect to extracting, decoding, and displaying sliced VBI data
embedded within an MPEG stream.

This format’s use is not exclusive to the ivtv driver nor exclusive to CX2341x de-
vices, as the sliced VBI data packet insertion into theMPEG stream is implemented
in driver software. At least the cx18 driver provides sliced VBI data insertion into
an MPEG-2 PS in this format as well.

7.2. Part I - Video for Linux API 385

Linux Userspace-api Documentation

The following definitions specify the payload of the MPEG-2 Private Stream 1 PES
packets that contain sliced VBI data when V4L2_MPEG_STREAM_VBI_FMT_IVTV
is set. (The MPEG-2 Private Stream 1 PES packet header and encapsulating
MPEG-2 Program Pack header are not detailed here. Please refer to the MPEG-2
specifications for details on those packet headers.)

The payload of the MPEG-2 Private Stream 1 PES packets that contain sliced
VBI data is specified by struct v4l2_mpeg_vbi_fmt_ivtv. The payload is variable
length, depending on the actual number of lines of sliced VBI data present in a
video frame. The payload may be padded at the end with unspecified fill bytes to
align the end of the payload to a 4-byte boundary. The payload shall never exceed
1552 bytes (2 fields with 18 lines/field with 43 bytes of data/line and a 4 byte magic
number).

v4l2_mpeg_vbi_fmt_ivtv

386 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct v4l2_mpeg_vbi_fmt_ivtv

__u8 magic[4] A
“magic”
con-
stant
from
Magic
Con-
stants
for
struct
v4l2_mpeg_vbi_fmt_ivtv
magic
field
that
indi-
cates
this
is a
valid
sliced
VBI
data
pay-
load
and
also
indi-
cates
which
mem-
ber
of
the
anony-
mous
union,
itv0
or
ITV0,
to
use
for
the
pay-
load
data.

union
{

(anonymous)

struct
v4l2_mpeg_vbi_itv0

itv0 The
pri-
mary
form
of
the
sliced
VBI
data
pay-
load
that
con-
tains
any-
where
from
1 to
35
lines
of
sliced
VBI
data.
Line
masks
are
pro-
vided
in
this
form
of
the
pay-
load
indi-
cat-
ing
which
VBI
lines
are
pro-
vided.

struct
v4l2_mpeg_vbi_ITV0

ITV0 An
al-
ter-
nate
form
of
the
sliced
VBI
data
pay-
load
used
when
36
lines
of
sliced
VBI
data
are
present.
No
line
masks
are
pro-
vided
in
this
form
of
the
pay-
load;
all
valid
line
mask
bits
are
impl-
citly
set.

}

7.2. Part I - Video for Linux API 387

Linux Userspace-api Documentation

Magic Constants for struct v4l2_mpeg_vbi_fmt_ivtv magic field

Defined Symbol Value Description
V4L2_MPEG_VBI_IVTV_MAGIC0 “itv0” Indicates the itv0 member of the union in

struct v4l2_mpeg_vbi_fmt_ivtv is valid.
V4L2_MPEG_VBI_IVTV_MAGIC1 “ITV0” Indicates the ITV0 member of the union in

struct v4l2_mpeg_vbi_fmt_ivtv is valid and
that 36 lines of sliced VBI data are present.

v4l2_mpeg_vbi_itv0

v4l2_mpeg_vbi_ITV0

structs v4l2_mpeg_vbi_itv0 and v4l2_mpeg_vbi_ITV0

__le32 linemask[2] Bitmasks indicating the VBI service lines present.
These linemask values are stored in little endian
byte order in the MPEG stream. Some reference
linemask bit positions with their corresponding
VBI line number and video field are given below.
b0 indicates the least significant bit of a linemask
value:
linemask[0] b0: line 6 first field
linemask[0] b17: line 23 first field
linemask[0] b18: line 6 second field
linemask[0] b31: line 19 second field
linemask[1] b0: line 20 second field
linemask[1] b3: line 23 second field
linemask[1] b4-b31: unused and set to 0

struct
v4l2_mpeg_vbi_itv0_line

line[35] This is a variable length array that holds from 1 to
35 lines of sliced VBI data. The sliced VBI data lines
present correspond to the bits set in the linemask
array, starting from b0 of linemask[0] up through
b31 of linemask[0], and from b0 of linemask[1] up
through b3 of linemask[1]. line[0] corresponds
to the first bit found set in the linemask array,
line[1] corresponds to the second bit found set in
the linemask array, etc. If no linemask array bits
are set, then line[0] may contain one line of un-
specified data that should be ignored by applica-
tions.

388 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct v4l2_mpeg_vbi_ITV0

struct
v4l2_mpeg_vbi_itv0_line

line[36] A fixed length array of 36 lines of sliced VBI data.
line[0] through line[17] correspond to lines 6
through 23 of the first field. line[18] through
line[35] corresponds to lines 6 through 23 of the
second field.

v4l2_mpeg_vbi_itv0_line

struct v4l2_mpeg_vbi_itv0_line

__u8 id A line identifier value from Line Identifiers
for struct v4l2_mpeg_vbi_itv0_line id field
that indicates the type of sliced VBI data
stored on this line.

__u8 data[42] The sliced VBI data for the line.

Line Identifiers for struct v4l2_mpeg_vbi_itv0_line id field

Defined Symbol Value Description
V4L2_MPEG_VBI_IVTV_TELETEXT_B 1 Refer to Sliced VBI services for a description

of the line payload.
V4L2_MPEG_VBI_IVTV_CAPTION_525 4 Refer to Sliced VBI services for a description

of the line payload.
V4L2_MPEG_VBI_IVTV_WSS_625 5 Refer to Sliced VBI services for a description

of the line payload.
V4L2_MPEG_VBI_IVTV_VPS 7 Refer to Sliced VBI services for a description

of the line payload.

Radio Interface

This interface is intended for AM and FM (analog) radio receivers and transmitters.

Conventionally V4L2 radio devices are accessed through character device special
files named /dev/radio and /dev/radio0 to /dev/radio63 with major number 81
and minor numbers 64 to 127.

7.2. Part I - Video for Linux API 389

Linux Userspace-api Documentation

Querying Capabilities

Devices supporting the radio interface set the V4L2_CAP_RADIO and
V4L2_CAP_TUNER or V4L2_CAP_MODULATOR flag in the capabilities field of
struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. Other
combinations of capability flags are reserved for future extensions.

Supplemental Functions

Radio devices can support controls, and must support the tuner or modulator
ioctls.

They do not support the video input or output, audio input or output, video stan-
dard, cropping and scaling, compression and streaming parameter, or overlay
ioctls. All other ioctls and I/O methods are reserved for future extensions.

Programming

Radio devices may have a couple audio controls (as discussed in User Controls)
such as a volume control, possibly custom controls. Further all radio devices have
one tuner or modulator (these are discussed in Tuners and Modulators) with in-
dex number zero to select the radio frequency and to determine if a monaural
or FM stereo program is received/emitted. Drivers switch automatically between
AM and FM depending on the selected frequency. The VIDIOC_G_TUNER or VID-
IOC_G_MODULATOR ioctl reports the supported frequency range.

RDS Interface

The Radio Data System transmits supplementary information in binary format, for
example the station name or travel information, on an inaudible audio subcarrier
of a radio program. This interface is aimed at devices capable of receiving and/or
transmitting RDS information.

For more information see the core RDS standard IEC 62106 and the RBDS stan-
dard NRSC-4-B.

Note: Note that the RBDS standard as is used in the USA is almost identical to
the RDS standard. Any RDS decoder/encoder can also handle RBDS. Only some
of the fields have slightly different meanings. See the RBDS standard for more
information.

The RBDS standard also specifies support for MMBS (Modified Mobile Search).
This is a proprietary format which seems to be discontinued. The RDS interface
does not support this format. Should support for MMBS (or the so-called‘E blocks’
in general) be needed, then please contact the linux-media mailing list: https:
//linuxtv.org/lists.php.

390 Chapter 7. Linux Media Infrastructure userspace API

https://linuxtv.org/lists.php
https://linuxtv.org/lists.php

Linux Userspace-api Documentation

Querying Capabilities

Devices supporting the RDS capturing API set the V4L2_CAP_RDS_CAPTURE
flag in the capabilities field of struct v4l2_capability returned by the
ioctl VIDIOC_QUERYCAP ioctl. Any tuner that supports RDS will set
the V4L2_TUNER_CAP_RDS flag in the capability field of struct v4l2_tuner.
If the driver only passes RDS blocks without interpreting the data the
V4L2_TUNER_CAP_RDS_BLOCK_IO flag has to be set, see Reading RDS data. For
future use the flag V4L2_TUNER_CAP_RDS_CONTROLS has also been defined. How-
ever, a driver for a radio tuner with this capability does not yet exist, so if you are
planning to write such a driver you should discuss this on the linux-media mailing
list: https://linuxtv.org/lists.php.

Whether an RDS signal is present can be detected by looking at the rxsubchans
field of struct v4l2_tuner: the V4L2_TUNER_SUB_RDS will be set if RDS data was
detected.

Devices supporting the RDS output API set the V4L2_CAP_RDS_OUTPUT flag
in the capabilities field of struct v4l2_capability returned by the ioctl
VIDIOC_QUERYCAP ioctl. Any modulator that supports RDS will set the
V4L2_TUNER_CAP_RDS flag in the capability field of struct v4l2_modulator. In
order to enable the RDS transmission one must set the V4L2_TUNER_SUB_RDS bit
in the txsubchans field of struct v4l2_modulator. If the driver only passes RDS
blocks without interpreting the data the V4L2_TUNER_CAP_RDS_BLOCK_IO flag has
to be set. If the tuner is capable of handling RDS entities like program identifica-
tion codes and radio text, the flag V4L2_TUNER_CAP_RDS_CONTROLS should be set,
see Writing RDS data and FM Transmitter Control Reference.

Reading RDS data

RDS data can be read from the radio device with the read() function. The data is
packed in groups of three bytes.

Writing RDS data

RDS data can be written to the radio device with the write() function. The data is
packed in groups of three bytes, as follows:

RDS datastructures

v4l2_rds_data

Table 83: struct v4l2_rds_data
__u8 lsb Least Significant Byte of RDS Block
__u8 msb Most Significant Byte of RDS Block
__u8 block Block description

7.2. Part I - Video for Linux API 391

https://linuxtv.org/lists.php

Linux Userspace-api Documentation

Table 84: Block description
Bits 0-2 Block (aka offset) of the received data.
Bits 3-5 Deprecated. Currently identical to bits 0-2. Do not use these bits.
Bit 6 Corrected bit. Indicates that an error was corrected for this data block.
Bit 7 Error bit. Indicates that an uncorrectable error occurred during reception

of this block.

Table 85: Block defines
V4L2_RDS_BLOCK_MSK 7 Mask for bits 0-2 to get the block ID.
V4L2_RDS_BLOCK_A 0 Block A.
V4L2_RDS_BLOCK_B 1 Block B.
V4L2_RDS_BLOCK_C 2 Block C.
V4L2_RDS_BLOCK_D 3 Block D.
V4L2_RDS_BLOCK_C_ALT 4 Block C’.
V4L2_RDS_BLOCK_INVALID read-only 7 An invalid block.
V4L2_RDS_BLOCK_CORRECTED read-only 0x40 A bit error was detected but corrected.
V4L2_RDS_BLOCK_ERROR read-only 0x80 An uncorrectable error occurred.

Software Defined Radio Interface (SDR)

SDR is an abbreviation of Software Defined Radio, the radio device which uses
application software for modulation or demodulation. This interface is intended
for controlling and data streaming of such devices.

SDR devices are accessed through character device special files named /dev/
swradio0 to /dev/swradio255 with major number 81 and dynamically allocated
minor numbers 0 to 255.

Querying Capabilities

Devices supporting the SDR receiver interface set the V4L2_CAP_SDR_CAPTURE
and V4L2_CAP_TUNER flag in the capabilities field of struct v4l2_capability
returned by the ioctl VIDIOC_QUERYCAP ioctl. That flag means the device has
an Analog to Digital Converter (ADC), which is a mandatory element for the SDR
receiver.

Devices supporting the SDR transmitter interface set the V4L2_CAP_SDR_OUTPUT
and V4L2_CAP_MODULATOR flag in the capabilities field of struct
v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. That flag
means the device has an Digital to Analog Converter (DAC), which is a mandatory
element for the SDR transmitter.

At least one of the read/write, streaming or asynchronous I/O methods must be
supported.

392 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Supplemental Functions

SDR devices can support controls, and must support the Tuners and Modulators
ioctls. Tuner ioctls are used for setting the ADC/DAC sampling rate (sampling
frequency) and the possible radio frequency (RF).

The V4L2_TUNER_SDR tuner type is used for setting SDR device ADC/DAC fre-
quency, and the V4L2_TUNER_RF tuner type is used for setting radio frequency.
The tuner index of the RF tuner (if any) must always follow the SDR tuner index.
Normally the SDR tuner is #0 and the RF tuner is #1.

The ioctl VIDIOC_S_HW_FREQ_SEEK ioctl is not supported.

Data Format Negotiation

The SDR device uses the Data Formats ioctls to select the capture and output
format. Both the sampling resolution and the data streaming format are bound
to that selectable format. In addition to the basic Data Formats ioctls, the ioctl
VIDIOC_ENUM_FMT ioctl must be supported as well.

To use the Data Formats ioctls applications set the type field of a struct
v4l2_format to V4L2_BUF_TYPE_SDR_CAPTURE or V4L2_BUF_TYPE_SDR_OUTPUT and
use the struct v4l2_sdr_format sdr member of the fmt union as needed per the
desired operation. Currently there is two fields, pixelformat and buffersize,
of struct struct v4l2_sdr_format which are used. Content of the pixelformat is
V4L2 FourCC code of the data format. The buffersize field is maximum buffer
size in bytes required for data transfer, set by the driver in order to inform appli-
cation.

v4l2_sdr_format

Table 86: struct v4l2_sdr_format
__u32 pixelformat The data format or type of compression, set

by the application. This is a little endian four
character code. V4L2 defines SDR formats
in SDR Formats.

__u32 buffersize Maximum size in bytes required for data.
Value is set by the driver.

__u8 reserved[24] This array is reserved for future extensions.
Drivers and applications must set it to zero.

An SDR device may support read/write and/or streaming (memorymapping or user
pointer) I/O.

7.2. Part I - Video for Linux API 393

Linux Userspace-api Documentation

Touch Devices

Touch devices are accessed through character device special files named /dev/
v4l-touch0 to /dev/v4l-touch255 with major number 81 and dynamically allo-
cated minor numbers 0 to 255.

Overview

Sensors may be Optical, or Projected Capacitive touch (PCT).

Processing is required to analyse the raw data and produce input events. In some
systems, this may be performed on the ASIC and the raw data is purely a side-
channel for diagnostics or tuning. In other systems, the ASIC is a simple analogue
front end device which delivers touch data at high rate, and any touch processing
must be done on the host.

For capacitive touch sensing, the touchscreen is composed of an array of hor-
izontal and vertical conductors (alternatively called rows/columns, X/Y lines, or
tx/rx). Mutual Capacitance measured is at the nodes where the conductors cross.
Alternatively, Self Capacitance measures the signal from each column and row
independently.

A touch input may be determined by comparing the raw capacitance measurement
to a no-touch reference (or “baseline”) measurement:
Delta = Raw - Reference

The reference measurement takes account of variations in the capacitance across
the touch sensor matrix, for example manufacturing irregularities, environmental
or edge effects.

Querying Capabilities

Devices supporting the touch interface set the V4L2_CAP_VIDEO_CAPTURE flag and
the V4L2_CAP_TOUCH flag in the capabilities field of v4l2_capability returned
by the ioctl VIDIOC_QUERYCAP ioctl.

At least one of the read/write or streaming I/O methods must be supported.

The formats supported by touch devices are documented in Touch Formats.

Data Format Negotiation

A touch device may support any I/O method.

394 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Event Interface

The V4L2 event interface provides a means for a user to get immediately notified
on certain conditions taking place on a device. This might include start of frame or
loss of signal events, for example. Changes in the value or state of a V4L2 control
can also be reported through events.

To receive events, the events the user is interested in first must be subscribed us-
ing the ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT ioctl.
Once an event is subscribed, the events of subscribed types are dequeueable us-
ing the ioctl VIDIOC_DQEVENT ioctl. Events may be unsubscribed using VID-
IOC_UNSUBSCRIBE_EVENT ioctl. The special event type V4L2_EVENT_ALL may
be used to unsubscribe all the events the driver supports.

The event subscriptions and event queues are specific to file handles. Subscribing
an event on one file handle does not affect other file handles.

The information on dequeueable events is obtained by using select or poll system
calls on video devices. The V4L2 events use POLLPRI events on poll system call
and exceptions on select system call.

Starting with kernel 3.1 certain guarantees can be given with regards to events:

1. Each subscribed event has its own internal dedicated event queue. This
means that flooding of one event type will not interfere with other event types.

2. If the internal event queue for a particular subscribed event becomes full,
then the oldest event in that queue will be dropped.

3. Where applicable, certain event types can ensure that the payload of the old-
est event that is about to be dropped will be merged with the payload of the
next oldest event. Thus ensuring that no information is lost, but only an in-
termediate step leading up to that information. See the documentation for
the event you want to subscribe to whether this is applicable for that event
or not.

Sub-device Interface

The complex nature of V4L2 devices, where hardware is often made of several in-
tegrated circuits that need to interact with each other in a controlled way, leads
to complex V4L2 drivers. The drivers usually reflect the hardware model in soft-
ware, and model the different hardware components as software blocks called
sub-devices.

V4L2 sub-devices are usually kernel-only objects. If the V4L2 driver implements
the media device API, they will automatically inherit from media entities. Applica-
tions will be able to enumerate the sub-devices and discover the hardware topology
using the media entities, pads and links enumeration API.

In addition to make sub-devices discoverable, drivers can also choose to make
them directly configurable by applications. When both the sub-device driver and
the V4L2 device driver support this, sub-devices will feature a character device
node on which ioctls can be called to

• query, read and write sub-devices controls

7.2. Part I - Video for Linux API 395

Linux Userspace-api Documentation

• subscribe and unsubscribe to events and retrieve them

• negotiate image formats on individual pads

Sub-device character device nodes, conventionally named /dev/v4l-subdev*, use
major number 81.

Drivers may opt to limit the sub-device character devices to only expose operations
that do not modify the device state. In such a case the sub-devices are referred
to as read-only in the rest of this documentation, and the related restrictions are
documented in individual ioctls.

Controls

Most V4L2 controls are implemented by sub-device hardware. Drivers usually
merge all controls and expose them through video device nodes. Applications can
control all sub-devices through a single interface.

Complex devices sometimes implement the same control in different pieces of
hardware. This situation is common in embedded platforms, where both sensors
and image processing hardware implement identical functions, such as contrast
adjustment, white balance or faulty pixels correction. As the V4L2 controls API
doesn’t support several identical controls in a single device, all but one of the
identical controls are hidden.

Applications can access those hidden controls through the sub-device node with
the V4L2 control API described in User Controls. The ioctls behave identically as
when issued on V4L2 device nodes, with the exception that they deal only with
controls implemented in the sub-device.

Depending on the driver, those controls might also be exposed through one (or
several) V4L2 device nodes.

Events

V4L2 sub-devices can notify applications of events as described in Event Interface.
The API behaves identically as when used on V4L2 device nodes, with the excep-
tion that it only deals with events generated by the sub-device. Depending on the
driver, those events might also be reported on one (or several) V4L2 device nodes.

Pad-level Formats

Warning: Pad-level formats are only applicable to very complex devices that
need to expose low-level format configuration to user space. Generic V4L2
applications do not need to use the API described in this section.

Note: For the purpose of this section, the term format means the combination of
media bus data format, frame width and frame height.

396 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Image formats are typically negotiated on video capture and output devices using
the format and selection ioctls. The driver is responsible for configuring every
block in the video pipeline according to the requested format at the pipeline input
and/or output.

For complex devices, such as often found in embedded systems, identical image
sizes at the output of a pipeline can be achieved using different hardware config-
urations. One such example is shown on Image Format Negotiation on Pipelines,
where image scaling can be performed on both the video sensor and the host image
processing hardware.

0 Host
Scaler 1

0 V4L I/O

HQ: 1280x720
HS: 1280x720

0 Host
Frontend 1

HQ: 2592x1968
HS: 1296x984

Sensor 0

HQ: 2592x1968
HS: 1296x984

Fig. 12: Image Format Negotiation on Pipelines
High quality and high speed pipeline configuration

The sensor scaler is usually of less quality than the host scaler, but scaling on
the sensor is required to achieve higher frame rates. Depending on the use case
(quality vs. speed), the pipeline must be configured differently. Applications need
to configure the formats at every point in the pipeline explicitly.

Drivers that implement the media API can expose pad-level image format
configuration to applications. When they do, applications can use the VID-

7.2. Part I - Video for Linux API 397

Linux Userspace-api Documentation

IOC_SUBDEV_G_FMT and VIDIOC_SUBDEV_S_FMT ioctls. to negotiate formats
on a per-pad basis.

Applications are responsible for configuring coherent parameters on the whole
pipeline and making sure that connected pads have compatible formats. The
pipeline is checked for formats mismatch at VIDIOC_STREAMON time, and an
EPIPE error code is then returned if the configuration is invalid.

Pad-level image format configuration support can be tested by calling the ioctl
VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT ioctl on pad 0. If the driver
returns an EINVAL error code pad-level format configuration is not supported by
the sub-device.

Format Negotiation

Acceptable formats on pads can (and usually do) depend on a number of external
parameters, such as formats on other pads, active links, or even controls. Finding
a combination of formats on all pads in a video pipeline, acceptable to both appli-
cation and driver, can’t rely on formats enumeration only. A format negotiation
mechanism is required.

Central to the format negotiation mechanism are the get/set format operations.
When called with the which argument set to V4L2_SUBDEV_FORMAT_TRY, the
VIDIOC_SUBDEV_G_FMT and VIDIOC_SUBDEV_S_FMT ioctls operate on a set of
formats parameters that are not connected to the hardware configuration. Modi-
fying those ‘try’formats leaves the device state untouched (this applies to both
the software state stored in the driver and the hardware state stored in the device
itself).

While not kept as part of the device state, try formats are stored in the sub-device
file handles. A VIDIOC_SUBDEV_G_FMT call will return the last try format set
on the same sub-device file handle. Several applications querying the same sub-
device at the same time will thus not interact with each other.

To find out whether a particular format is supported by the device, applications
use the VIDIOC_SUBDEV_S_FMT ioctl. Drivers verify and, if needed, change the
requested format based on device requirements and return the possibly modified
value. Applications can then choose to try a different format or accept the returned
value and continue.

Formats returned by the driver during a negotiation iteration are guaranteed to be
supported by the device. In particular, drivers guarantee that a returned format
will not be further changed if passed to an VIDIOC_SUBDEV_S_FMT call as-is (as
long as external parameters, such as formats on other pads or links’configuration
are not changed).

Drivers automatically propagate formats inside sub-devices. When a try or active
format is set on a pad, corresponding formats on other pads of the same sub-device
can be modified by the driver. Drivers are free to modify formats as required by
the device. However, they should comply with the following rules when possible:

• Formats should be propagated from sink pads to source pads. Modifying a
format on a source pad should not modify the format on any sink pad.

398 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

• Sub-devices that scale frames using variable scaling factors should reset the
scale factors to default values when sink pads formats are modified. If the
1:1 scaling ratio is supported, this means that source pads formats should be
reset to the sink pads formats.

Formats are not propagated across links, as that would involve propagating them
from one sub-device file handle to another. Applications must then take care to
configure both ends of every link explicitly with compatible formats. Identical
formats on the two ends of a link are guaranteed to be compatible. Drivers are free
to accept different formats matching device requirements as being compatible.

Sample Pipeline Configuration shows a sample configuration sequence for the
pipeline described in Image Format Negotiation on Pipelines (table columns list
entity names and pad numbers).

Table 87: Sample Pipeline Configuration
Sensor/0
format

Frontend/0
format

Frontend/1
format

Scaler/0
format

Scaler/0
compose selec-
tion rectangle

Scaler/1
format

Initial state 2048x1536
SGRBG8_1X8

(default) (default) (default) (default) (default)

Configure
frontend sink
format

2048x1536
SGRBG8_1X8

2048x1536
SGRBG8_1X8

2046x1534
SGRBG8_1X8

(default) (default) (default)

Configure
scaler sink
format

2048x1536
SGRBG8_1X8

2048x1536
SGRBG8_1X8

2046x1534
SGRBG8_1X8

2046x1534
SGRBG8_1X8

0,0/2046x1534 2046x1534
SGRBG8_1X8

Configure
scaler sink
compose
selection

2048x1536
SGRBG8_1X8

2048x1536
SGRBG8_1X8

2046x1534
SGRBG8_1X8

2046x1534
SGRBG8_1X8

0,0/1280x960 1280x960
SGRBG8_1X8

1. Initial state. The sensor source pad format is set to its native 3MP size and
V4L2_MBUS_FMT_SGRBG8_1X8 media bus code. Formats on the host fron-
tend and scaler sink and source pads have the default values, as well as the
compose rectangle on the scaler’s sink pad.

2. The application configures the frontend sink pad format’s size to 2048x1536
and its media bus code to V4L2_MBUS_FMT_SGRBG_1X8. The driver propa-
gates the format to the frontend source pad.

3. The application configures the scaler sink pad format’s size to 2046x1534
and the media bus code to V4L2_MBUS_FMT_SGRBG_1X8 to match the fron-
tend source size and media bus code. The media bus code on the sink pad is
set to V4L2_MBUS_FMT_SGRBG_1X8. The driver propagates the size to the
compose selection rectangle on the scaler’s sink pad, and the format to the
scaler source pad.

4. The application configures the size of the compose selection rectangle of the
scaler’s sink pad 1280x960. The driver propagates the size to the scaler’s
source pad format.

When satisfied with the try results, applications can set the active formats by
setting the which argument to V4L2_SUBDEV_FORMAT_ACTIVE. Active formats are
changed exactly as try formats by drivers. To avoid modifying the hardware state
during format negotiation, applications should negotiate try formats first and then
modify the active settings using the try formats returned during the last negotia-
tion iteration. This guarantees that the active format will be applied as-is by the
driver without being modified.

7.2. Part I - Video for Linux API 399

Linux Userspace-api Documentation

Selections: cropping, scaling and composition

Many sub-devices support cropping frames on their input or output pads (or pos-
sible even on both). Cropping is used to select the area of interest in an image,
typically on an image sensor or a video decoder. It can also be used as part of
digital zoom implementations to select the area of the image that will be scaled
up.

Crop settings are defined by a crop rectangle and represented in a struct
v4l2_rect by the coordinates of the top left corner and the rectangle size. Both
the coordinates and sizes are expressed in pixels.

As for pad formats, drivers store try and active rectangles for the selection targets
Common selection definitions.

On sink pads, cropping is applied relative to the current pad format. The pad
format represents the image size as received by the sub-device from the previous
block in the pipeline, and the crop rectangle represents the sub-image that will be
transmitted further inside the sub-device for processing.

The scaling operation changes the size of the image by scaling it to new dimen-
sions. The scaling ratio isn’t specified explicitly, but is implied from the original
and scaled image sizes. Both sizes are represented by struct v4l2_rect.

Scaling support is optional. When supported by a subdev, the crop rectan-
gle on the subdev’s sink pad is scaled to the size configured using the VID-
IOC_SUBDEV_S_SELECTION IOCTL using V4L2_SEL_TGT_COMPOSE selection tar-
get on the same pad. If the subdev supports scaling but not composing, the top
and left values are not used and must always be set to zero.

On source pads, cropping is similar to sink pads, with the exception that the source
size from which the cropping is performed, is the COMPOSE rectangle on the sink
pad. In both sink and source pads, the crop rectangle must be entirely contained
inside the source image size for the crop operation.

The drivers should always use the closest possible rectangle the user requests on
all selection targets, unless specifically told otherwise. V4L2_SEL_FLAG_GE and
V4L2_SEL_FLAG_LE flags may be used to round the image size either up or down.
Selection flags

Types of selection targets

Actual targets

Actual targets (without a postfix) reflect the actual hardware configuration at any
point of time. There is a BOUNDS target corresponding to every actual target.

400 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

BOUNDS targets

BOUNDS targets is the smallest rectangle that contains all valid actual rectan-
gles. It may not be possible to set the actual rectangle as large as the BOUNDS
rectangle, however. This may be because e.g. a sensor’s pixel array is not rect-
angular but cross-shaped or round. The maximum size may also be smaller than
the BOUNDS rectangle.

Order of configuration and format propagation

Inside subdevs, the order of image processing steps will always be from the sink
pad towards the source pad. This is also reflected in the order in which the config-
uration must be performed by the user: the changes made will be propagated
to any subsequent stages. If this behaviour is not desired, the user must set
V4L2_SEL_FLAG_KEEP_CONFIG flag. This flag causes no propagation of the changes
are allowed in any circumstances. This may also cause the accessed rectangle to
be adjusted by the driver, depending on the properties of the underlying hardware.

The coordinates to a step always refer to the actual size of the previous step.
The exception to this rule is the sink compose rectangle, which refers to the sink
compose bounds rectangle —if it is supported by the hardware.
1. Sink pad format. The user configures the sink pad format. This format defines
the parameters of the image the entity receives through the pad for further
processing.

2. Sink pad actual crop selection. The sink pad crop defines the crop performed
to the sink pad format.

3. Sink pad actual compose selection. The size of the sink pad compose rectan-
gle defines the scaling ratio compared to the size of the sink pad crop rectan-
gle. The location of the compose rectangle specifies the location of the actual
sink compose rectangle in the sink compose bounds rectangle.

4. Source pad actual crop selection. Crop on the source pad defines crop per-
formed to the image in the sink compose bounds rectangle.

5. Source pad format. The source pad format defines the output pixel format of
the subdev, as well as the other parameters with the exception of the image
width and height. Width and height are defined by the size of the source pad
actual crop selection.

Accessing any of the above rectangles not supported by the subdev will return
EINVAL. Any rectangle referring to a previous unsupported rectangle coordinates
will instead refer to the previous supported rectangle. For example, if sink crop is
not supported, the compose selection will refer to the sink pad format dimensions
instead.

In the above example, the subdev supports cropping on its sink pad. To configure
it, the user sets the media bus format on the subdev’s sink pad. Now the actual
crop rectangle can be set on the sink pad —the location and size of this rectangle
reflect the location and size of a rectangle to be cropped from the sink format. The
size of the sink crop rectangle will also be the size of the format of the subdev’s
source pad.

7.2. Part I - Video for Linux API 401

Linux Userspace-api Documentation

Fig. 13: Figure 4.5. Image processing in subdevs: simple crop example

Fig. 14: Figure 4.6. Image processing in subdevs: scaling with multiple
sources

In this example, the subdev is capable of first cropping, then scaling and finally
cropping for two source pads individually from the resulting scaled image. The
location of the scaled image in the cropped image is ignored in sink compose tar-
get. Both of the locations of the source crop rectangles refer to the sink scaling
rectangle, independently cropping an area at location specified by the source crop
rectangle from it.

Fig. 15: Figure 4.7. Image processing in subdevs: scaling and composition
with multiple sinks and sources

The subdev driver supports two sink pads and two source pads. The images from
both of the sink pads are individually cropped, then scaled and further composed
on the composition bounds rectangle. From that, two independent streams are
cropped and sent out of the subdev from the source pads.

402 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Media Bus Formats

v4l2_mbus_framefmt

Table 88: struct v4l2_mbus_framefmt
__u32 width Image width in pixels.
__u32 height Image height in pixels. If field is one

of V4L2_FIELD_TOP, V4L2_FIELD_BOTTOM or
V4L2_FIELD_ALTERNATE then height refers to
the number of lines in the field, otherwise
it refers to the number of lines in the frame
(which is twice the field height for interlaced
formats).

__u32 code Format code, from enum
v4l2_mbus_pixelcode.

__u32 field Field order, from enum v4l2_field. See
Field Order for details.

__u32 colorspace Image colorspace, from enum
v4l2_colorspace. See Colorspaces for
details.

__u16 ycbcr_enc Y’CbCr encoding, from enum
v4l2_ycbcr_encoding. This information
supplements the colorspace and must be
set by the driver for capture streams and
by the application for output streams, see
Colorspaces.

__u16 quantization Quantization range, from enum
v4l2_quantization. This information
supplements the colorspace and must be
set by the driver for capture streams and
by the application for output streams, see
Colorspaces.

__u16 xfer_func Transfer function, from enum
v4l2_xfer_func. This information sup-
plements the colorspace and must be set
by the driver for capture streams and by
the application for output streams, see
Colorspaces.

__u16 reserved[11] Reserved for future extensions. Applications
and drivers must set the array to zero.

7.2. Part I - Video for Linux API 403

Linux Userspace-api Documentation

Media Bus Pixel Codes

The media bus pixel codes describe image formats as flowing over physical buses
(both between separate physical components and inside SoC devices). This should
not be confused with the V4L2 pixel formats that describe, using four character
codes, image formats as stored in memory.

While there is a relationship between image formats on buses and image formats
in memory (a raw Bayer image won’t be magically converted to JPEG just by
storing it to memory), there is no one-to-one correspondence between them.

The media bus pixel codes document parallel formats. Should the pixel data be
transported over a serial bus, the media bus pixel code that describes a paral-
lel format that transfers a sample on a single clock cycle is used. For instance,
both MEDIA_BUS_FMT_BGR888_1X24 and MEDIA_BUS_FMT_BGR888_3X8 are
used on parallel busses for transferring an 8 bits per sample BGR data,
whereas on serial busses the data in this format is only referred to using ME-
DIA_BUS_FMT_BGR888_1X24. This is because there is effectively only a single
way to transport that format on the serial busses.

Packed RGB Formats

Those formats transfer pixel data as red, green and blue components. The format
code is made of the following information.

• The red, green and blue components order code, as encoded in a pixel sample.
Possible values are RGB and BGR.

• The number of bits per component, for each component. The values can be
different for all components. Common values are 555 and 565.

• The number of bus samples per pixel. Pixels that are wider than the bus width
must be transferred in multiple samples. Common values are 1 and 2.

• The bus width.

• For formats where the total number of bits per pixel is smaller than the num-
ber of bus samples per pixel times the bus width, a padding value stating if
the bytes are padded in their most high order bits (PADHI) or low order bits
(PADLO). A“C”prefix is used for component-wise padding in the most high
order bits (CPADHI) or low order bits (CPADLO) of each separate component.

• For formats where the number of bus samples per pixel is larger than 1, an
endianness value stating if the pixel is transferred MSB first (BE) or LSB first
(LE).

For instance, a format where pixels are encoded as 5-bits red, 5-bits green and
5-bit blue values padded on the high bit, transferred as 2 8-bit samples per pixel
with the most significant bits (padding, red and half of the green value) transferred
first will be named MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE.
The following tables list existing packed RGB formats.

404 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 89: RGB formats
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_RGB444_1X12

0x1016 r3 r2 r1 r0 g3 g2 g1 g0 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB444_2X8_PADHI_BE

0x1001
0 0 0 0

r3 r2 r1 r0
g3 g2 g1 g0 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE
0x1002 g3 g2 g1 g0 b3 b2 b1 b0

0 0 0 0 r3 r2 r1 r0
MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE

0x1003
0
r4 r3 r2 r1 r0 g4 g3

g2 g1 g0 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE

0x1004 g2 g1 g0 b4 b3 b2 b1 b0
0 r4 r3 r2 r1 r0 g4 g3

MEDIA_BUS_FMT_RGB565_1X16
0x1017 r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_BGR565_2X8_BE
0x1005 b4 b3 b2 b1 b0 g5 g4 g3

g2 g1 g0 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_BGR565_2X8_LE

0x1006 g2 g1 g0 r4 r3 r2 r1 r0
b4 b3 b2 b1 b0 g5 g4 g3

MEDIA_BUS_FMT_RGB565_2X8_BE
0x1007 r4 r3 r2 r1 r0 g5 g4 g3

g2 g1 g0 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB565_2X8_LE

0x1008 g2 g1 g0 b4 b3 b2 b1 b0
r4 r3 r2 r1 r0 g5 g4 g3

MEDIA_BUS_FMT_RGB666_1X18
0x1009 r5 r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RBG888_1X24
0x100e r7 r6 r5 r4 r3 r2 r1 r0 b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0

MEDIA_BUS_FMT_RGB666_1X24_CPADHI
0x1015

0 0
r5 r4 r3 r2 r1 r0

0 0
g5 g4 g3 g2 g1 g0

0 0
b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_BGR888_1X24
0x1013 b7 b6 b5 b4 b3 b2 b1 b0 g7 g6 g5 g4 g3 g2 g1 g0 r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_BGR888_3X8
0x101b b7 b6 b5 b4 b3 b2 b1 b0

g7 g6 g5 g4 g3 g2 g1 g0
r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_GBR888_1X24
0x1014 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0 r7 r6 r5 r4 r3 r2 r1 r0

MEDIA_BUS_FMT_RGB888_1X24
0x100a r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB888_2X12_BE
0x100b r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4

g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_RGB888_2X12_LE

0x100c g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4

MEDIA_BUS_FMT_RGB888_3X8
0x101c r7 r6 r5 r4 r3 r2 r1 r0

g7 g6 g5 g4 g3 g2 g1 g0
b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_ARGB888_1X32
0x100d a7 a6 a5 a4 a3 a2 a1 a0 r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB888_1X32_PADHI
0x100f

0 0 0 0 0 0 0 0
r7 r6 r5 r4 r3 r2 r1 r0 g7 g6 g5 g4 g3 g2 g1 g0 b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_RGB101010_1X30
0x1018

0 0
r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

The following table list existing packed 36bit wide RGB formats.

Table 90: 36bit RGB formats
Identifier Code Data organization

Bit 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_RGB121212_1X36 0x1019 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

The following table list existing packed 48bit wide RGB formats.

Table 91: 48bit RGB formats
Identifier Code Data organization

Bit 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_RGB161616_1X48 0x101a r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
g15g14g13g12g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0 b15b14b13b12b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

On LVDS buses, usually each sample is transferred serialized in seven time
slots per pixel clock, on three (18-bit) or four (24-bit) differential data pairs at
the same time. The remaining bits are used for control signals as defined by
SPWG/PSWG/VESA or JEIDA standards. The 24-bit RGB format serialized in

7.2. Part I - Video for Linux API 405

Linux Userspace-api Documentation

seven time slots on four lanes using JEIDA defined bit mapping will be named
MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, for example.

Table 92: LVDS RGB formats
Identifier Code Data organization

Timeslot Lane 3 2 1 0

MEDIA_BUS_FMT_RGB666_1X7X3_SPWG 0x1010 0 d b1 g0
1 d b0 r5
2 d g5 r4
3 b5 g4 r3
4 b4 g3 r2
5 b3 g2 r1
6 b2 g1 r0

MEDIA_BUS_FMT_RGB888_1X7X4_SPWG 0x1011 0 d d b1 g0
1 b7 d b0 r5
2 b6 d g5 r4
3 g7 b5 g4 r3
4 g6 b4 g3 r2
5 r7 b3 g2 r1
6 r6 b2 g1 r0

MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA 0x1012 0 d d b3 g2
1 b1 d b2 r7
2 b0 d g7 r6
3 g1 b7 g6 r5
4 g0 b6 g5 r4
5 r1 b5 g4 r3
6 r0 b4 g3 r2

Bayer Formats

Those formats transfer pixel data as red, green and blue components. The format
code is made of the following information.

• The red, green and blue components order code, as encoded in a pixel sample.
The possible values are shown in Figure 4.8 Bayer Patterns.

• The number of bits per pixel component. All components are transferred on
the same number of bits. Common values are 8, 10 and 12.

• The compression (optional). If the pixel components are ALAW- or DPCM-
compressed, a mention of the compression scheme and the number of bits
per compressed pixel component.

• The number of bus samples per pixel. Pixels that are wider than the bus width
must be transferred in multiple samples. Common values are 1 and 2.

• The bus width.

• For formats where the total number of bits per pixel is smaller than the num-
ber of bus samples per pixel times the bus width, a padding value stating if
the bytes are padded in their most high order bits (PADHI) or low order bits
(PADLO).

• For formats where the number of bus samples per pixel is larger than 1, an
endianness value stating if the pixel is transferred MSB first (BE) or LSB first
(LE).

For instance, a format with uncompressed 10-bit Bayer components ar-
ranged in a red, green, green, blue pattern transferred as 2 8-bit sam-
ples per pixel with the least significant bits transferred first will be named
MEDIA_BUS_FMT_SRGGB10_2X8_PADHI_LE.

The following table lists existing packed Bayer formats. The data organization is
given as an example for the first pixel only.

406 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Fig. 16: Figure 4.8 Bayer Patterns

Table 93: Bayer Formats
Identifier Code Data organization

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_SBGGR8_1X8

0x3001 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG8_1X8

0x3013 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG8_1X8

0x3002 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB8_1X8

0x3014 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR10_ALAW8_1X8

0x3015 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG10_ALAW8_1X8

0x3016 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG10_ALAW8_1X8

0x3017 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB10_ALAW8_1X8

0x3018 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8

0x300b b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8

0x300c g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8

0x3009 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8

0x300d r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_BE

0x3003
0 0 0 0 0 0

b9 b8
b7 b6 b5 b4 b3 b2 b1 b0

MEDIA_BUS_FMT_SBGGR10_2X8_PADHI_LE
0x3004 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 b9 b8
MEDIA_BUS_FMT_SBGGR10_2X8_PADLO_BE

0x3005 b9 b8 b7 b6 b5 b4 b3 b2
b1 b0 0 0 0 0 0 0

MEDIA_BUS_FMT_SBGGR10_2X8_PADLO_LE
0x3006 b1 b0

0 0 0 0 0 0

b9 b8 b7 b6 b5 b4 b3 b2
MEDIA_BUS_FMT_SBGGR10_1X10

0x3007 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG10_1X10

0x300e g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG10_1X10

0x300a g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB10_1X10

0x300f r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR12_1X12

0x3008 b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG12_1X12

0x3010 g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG12_1X12

0x3011 g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB12_1X12

0x3012 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR14_1X14

0x3019 b13b12b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG14_1X14

0x301a g13g12g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG14_1X14

0x301b g13g12g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SRGGB14_1X14

0x301c r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0
MEDIA_BUS_FMT_SBGGR16_1X16

0x301d b15b14b13b12b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
MEDIA_BUS_FMT_SGBRG16_1X16

0x301e g15g14g13g12g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
MEDIA_BUS_FMT_SGRBG16_1X16

0x301f g15g14g13g12g11g10g9 g8 g7 g6 g5 g4 g3 g2 g1 g0
Continued on next page

7.2. Part I - Video for Linux API 407

Linux Userspace-api Documentation

Table 93 – continued from previous page
Identifier Code Data organization

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_SRGGB16_1X16

0x3020 r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

Packed YUV Formats

Those data formats transfer pixel data as (possibly downsampled) Y, U and V com-
ponents. Some formats include dummy bits in some of their samples and are col-
lectively referred to as“YDYC”(Y-Dummy-Y-Chroma) formats. One cannot rely on
the values of these dummy bits as those are undefined.

The format code is made of the following information.

• The Y, U and V components order code, as transferred on the bus. Possible
values are YUYV, UYVY, YVYU and VYUY for formats with no dummy bit, and
YDYUYDYV, YDYVYDYU, YUYDYVYD and YVYDYUYD for YDYC formats.

• The number of bits per pixel component. All components are transferred on
the same number of bits. Common values are 8, 10 and 12.

• The number of bus samples per pixel. Pixels that are wider than the bus width
must be transferred in multiple samples. Common values are 0.5 (encoded as
0_5; in this case two pixels are transferred per bus sample), 1, 1.5 (encoded
as 1_5) and 2.

• The bus width. When the bus width is larger than the number of bits per
pixel component, several components are packed in a single bus sample. The
components are ordered as specified by the order code, with components on
the left of the code transferred in the high order bits. Common values are 8
and 16.

For instance, a format where pixels are encoded as 8-bit YUV values downsampled
to 4:2:2 and transferred as 2 8-bit bus samples per pixel in the U, Y, V, Y order will
be named MEDIA_BUS_FMT_UYVY8_2X8.

YUV Formats lists existing packed YUV formats and describes the organization of
each pixel data in each sample. When a format pattern is split across multiple
samples each of the samples in the pattern is described.

The role of each bit transferred over the bus is identified by one of the following
codes.

• yx for luma component bit number x

• ux for blue chroma component bit number x

• vx for red chroma component bit number x

• ax for alpha component bit number x

• for non-available bits (for positions higher than the bus width)

• d for dummy bits
Table 94: YUV Formats

Identifier Code Data organization
Bit 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_Y8_1X8
0x2001 y7 y6 y5 y4 y3 y2 y1 y0

Continued on next page

408 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 94 – continued from previous page
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEDIA_BUS_FMT_UV8_1X8

0x2015 u7 u6 u5 u4 u3 u2 u1 u0
v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYVY8_1_5X8
0x2002 u7 u6 u5 u4 u3 u2 u1 u0

y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY8_1_5X8
0x2003 v7 v6 v5 v4 v3 v2 v1 v0

y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV8_1_5X8
0x2004 y7 y6 y5 y4 y3 y2 y1 y0

y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU8_1_5X8
0x2005 y7 y6 y5 y4 y3 y2 y1 y0

y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0
y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_UYVY8_2X8
0x2006 u7 u6 u5 u4 u3 u2 u1 u0

y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY8_2X8
0x2007 v7 v6 v5 v4 v3 v2 v1 v0

y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV8_2X8
0x2008 y7 y6 y5 y4 y3 y2 y1 y0

u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0
v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU8_2X8
0x2009 y7 y6 y5 y4 y3 y2 y1 y0

v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_Y10_1X10
0x200a y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_Y10_2X8_PADHI_LE
0x202c y7 y6 y5 y4 y3 y2 y1 y0

0 0 0 0 0 0 y9 y8
MEDIA_BUS_FMT_UYVY10_2X10

0x2018 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY10_2X10
0x2019 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV10_2X10
0x200b y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU10_2X10
0x200c y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_Y12_1X12
0x2013 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_UYVY12_2X12
0x201c u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY12_2X12
0x201d v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV12_2X12
0x201e y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
Continued on next page

7.2. Part I - Video for Linux API 409

Linux Userspace-api Documentation

Table 94 – continued from previous page
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU12_2X12
0x201f y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_Y14_1X14
0x202d y13y12y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_UYVY8_1X16
0x200f u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0

v7 v6 v5 v4 v3 v2 v1 v0 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_VYUY8_1X16

0x2010 v7 v6 v5 v4 v3 v2 v1 v0 y7 y6 y5 y4 y3 y2 y1 y0
u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV8_1X16
0x2011 y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0

y7 y6 y5 y4 y3 y2 y1 y0 v7 v6 v5 v4 v3 v2 v1 v0
MEDIA_BUS_FMT_YVYU8_1X16

0x2012 y7 y6 y5 y4 y3 y2 y1 y0 v7 v6 v5 v4 v3 v2 v1 v0
y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_YDYUYDYV8_1X16
0x2014 y7 y6 y5 y4 y3 y2 y1 y0

d d d d d d d d

y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0
y7 y6 y5 y4 y3 y2 y1 y0 d d d d d d d d
y7 y6 y5 y4 y3 y2 y1 y0 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYVY10_1X20
0x201a u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_VYUY10_1X20

0x201b v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUYV10_1X20
0x200d y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
MEDIA_BUS_FMT_YVYU10_1X20

0x200e y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0

MEDIA_BUS_FMT_VUY8_1X24
0x201a v7 v6 v5 v4 v3 v2 v1 v0 u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUV8_1X24
0x2025 y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYYVYY8_0_5X24
0x2026 u7 u6 u5 u4 u3 u2 u1 u0 y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0

v7 v6 v5 v4 v3 v2 v1 v0 y7 y6 y5 y4 y3 y2 y1 y0 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_UYVY12_1X24

0x2020 u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_VYUY12_1X24
0x2021 v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
MEDIA_BUS_FMT_YUYV12_1X24

0x2022 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_YVYU12_1X24
0x2023 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
MEDIA_BUS_FMT_YUV10_1X30

0x2016 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
MEDIA_BUS_FMT_UYYVYY10_0_5X30

0x2027 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_AYUV8_1X32
0x2017 a7 a6 a5 a4 a3 a2 a1 a0 y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0 v7 v6 v5 v4 v3 v2 v1 v0

The following table list existing packed 36bit wide YUV formats.

Table 95: 36bit YUV Formats
Identifier Code Data organization

Bit 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_UYYVYY12_0_5X360x2028 u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0
v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

MEDIA_BUS_FMT_YUV12_1X36 0x2029 y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

The following table list existing packed 48bit wide YUV formats.

410 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 96: 48bit YUV Formats
Identifier Code Data organization

Bit 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_YUV16_1X48 0x202a y15y14y13y12y11y10y8 y8 y7 y6 y5 y4 y3 y2 y1 y0
u15u14u13u12u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 v15v14v13v12v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0

MEDIA_BUS_FMT_UYYVYY16_0_5X480x202b u15u14u13u12u11u10u9 u8 u7 u6 u5 u4 u3 u2 u1 u0
y15y14y13y12y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y15y14y13y12y11y10y8 y8 y7 y6 y5 y4 y3 y2 y1 y0

v15v14v13v12v11v10v9 v8 v7 v6 v5 v4 v3 v2 v1 v0
y15y14y13y12y11y10y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y15y14y13y12y11y10y8 y8 y7 y6 y5 y4 y3 y2 y1 y0

HSV/HSL Formats

Those formats transfer pixel data as RGB values in a cylindrical-coordinate system
using Hue-Saturation-Value or Hue-Saturation-Lightness components. The format
code is made of the following information.

• The hue, saturation, value or lightness and optional alpha components order
code, as encoded in a pixel sample. The only currently supported value is
AHSV.

• The number of bits per component, for each component. The values can be
different for all components. The only currently supported value is 8888.

• The number of bus samples per pixel. Pixels that are wider than the bus width
must be transferred in multiple samples. The only currently supported value
is 1.

• The bus width.

• For formats where the total number of bits per pixel is smaller than the num-
ber of bus samples per pixel times the bus width, a padding value stating if
the bytes are padded in their most high order bits (PADHI) or low order bits
(PADLO).

• For formats where the number of bus samples per pixel is larger than 1, an
endianness value stating if the pixel is transferred MSB first (BE) or LSB first
(LE).

The following table lists existing HSV/HSL formats.

Table 97: HSV/HSL formats
Identifier Code Data organization

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEDIA_BUS_FMT_AHSV8888_1X32 0x6001 a7 a6 a5 a4 a3 a2 a1 a0 h7 h6 h5 h4 h3 h2 h1 h0 s7 s6 s5 s4 s3 s2 s1 s0 v7 v6 v5 v4 v3 v2 v1 v0

JPEG Compressed Formats

Those data formats consist of an ordered sequence of 8-bit bytes obtained from
JPEG compression process. Additionally to the _JPEG postfix the format code is
made of the following information.

• The number of bus samples per entropy encoded byte.

• The bus width.

For instance, for a JPEG baseline process and an 8-bit bus width the format will
be named MEDIA_BUS_FMT_JPEG_1X8.

7.2. Part I - Video for Linux API 411

Linux Userspace-api Documentation

The following table lists existing JPEG compressed formats.

Table 98: JPEG Formats
Identifier Code Remarks

MEDIA_BUS_FMT_JPEG_1X8 0x4001 Besides of its usage for the parallel bus this for-
mat is recommended for transmission of JPEG data
over MIPI CSI bus using the User Defined 8-bit Data
types.

Vendor and Device Specific Formats

This section lists complex data formats that are either vendor or device specific.

The following table lists the existing vendor and device specific formats.

Table 99: Vendor and device specific formats
Identifier Code Comments

MEDIA_BUS_FMT_S5C_UYVY_JPEG_1X8 0x5001 Interleaved raw UYVY and JPEG image
format with embedded meta-data used
by Samsung S3C73MX camera sensors.

Metadata Interface

Metadata refers to any non-image data that supplements video frames with addi-
tional information. This may include statistics computed over the image, frame
capture parameters supplied by the image source or device specific parameters
for specifying how the device processes images. This interface is intended for
transfer of metadata between the userspace and the hardware and control of that
operation.

The metadata interface is implemented on video device nodes. The device can be
dedicated to metadata or can support both video and metadata as specified in its
reported capabilities.

Querying Capabilities

Device nodes supporting the metadata capture interface set the
V4L2_CAP_META_CAPTURE flag in the device_caps field of the v4l2_capability
structure returned by the VIDIOC_QUERYCAP() ioctl. That flag means the device
can capture metadata to memory. Similarly, device nodes supporting metadata
output interface set the V4L2_CAP_META_OUTPUT flag in the device_caps field of
v4l2_capability structure. That flag means the device can read metadata from
memory.

At least one of the read/write or streaming I/O methods must be supported.

412 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Data Format Negotiation

The metadata device uses the Data Formats ioctls to select the capture format.
The metadata buffer content format is bound to that selected format. In addition
to the basic Data Formats ioctls, the VIDIOC_ENUM_FMT() ioctl must be supported
as well.

To use the Data Formats ioctls applications set the type field of the v4l2_format
structure to V4L2_BUF_TYPE_META_CAPTURE or to V4L2_BUF_TYPE_META_OUTPUT
and use the v4l2_meta_format meta member of the fmt union as needed per the
desired operation. Both drivers and applications must set the remainder of the
v4l2_format structure to 0.

v4l2_meta_format

Table 100: struct v4l2_meta_format
__u32 dataformatThe data format, set by the application. This is a little endian four char-

acter code. V4L2 defines metadata formats in Metadata Formats.
__u32 buffersizeMaximum buffer size in bytes required for data. The value is set by the

driver.

7.2.5 Libv4l Userspace Library

Introduction

libv4l is a collection of libraries which adds a thin abstraction layer on top of
video4linux2 devices. The purpose of this (thin) layer is to make it easy for applica-
tion writers to support a wide variety of devices without having to write separate
code for different devices in the same class.

An example of using libv4l is provided by v4l2grab.

libv4l consists of 3 different libraries:

libv4lconvert

libv4lconvert is a library that converts several different pixelformats found in V4L2
drivers into a few common RGB and YUY formats.

It currently accepts the following V4L2 driver formats: V4L2_PIX_FMT_BGR24,
V4L2_PIX_FMT_HM12, V4L2_PIX_FMT_JPEG, V4L2_PIX_FMT_MJPEG,
V4L2_PIX_FMT_MR97310A, V4L2_PIX_FMT_OV511, V4L2_PIX_FMT_OV518,
V4L2_PIX_FMT_PAC207, V4L2_PIX_FMT_PJPG, V4L2_PIX_FMT_RGB24,
V4L2_PIX_FMT_SBGGR8, V4L2_PIX_FMT_SGBRG8, V4L2_PIX_FMT_SGRBG8,
V4L2_PIX_FMT_SN9C10X, V4L2_PIX_FMT_SN9C20X_I420,
V4L2_PIX_FMT_SPCA501, V4L2_PIX_FMT_SPCA505, V4L2_PIX_FMT_SPCA508,
V4L2_PIX_FMT_SPCA561, V4L2_PIX_FMT_SQ905C, V4L2_PIX_FMT_SRGGB8,
V4L2_PIX_FMT_UYVY, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_YUYV,
V4L2_PIX_FMT_YVU420, and V4L2_PIX_FMT_YVYU.

7.2. Part I - Video for Linux API 413

Linux Userspace-api Documentation

Later on libv4lconvert was expanded to also be able to do various video processing
functions to improve webcam video quality. The video processing is split in to 2
parts: libv4lconvert/control and libv4lconvert/processing.

The control part is used to offer video controls which can be used to control the
video processing functions made available by libv4lconvert/processing. These con-
trols are stored application wide (until reboot) by using a persistent shared mem-
ory object.

libv4lconvert/processing offers the actual video processing functionality.

libv4l1

This library offers functions that can be used to quickly make v4l1 applica-
tions work with v4l2 devices. These functions work exactly like the normal
open/close/etc, except that libv4l1 does full emulation of the v4l1 api on top of
v4l2 drivers, in case of v4l1 drivers it will just pass calls through.

Since those functions are emulations of the old V4L1 API, it shouldn’t be used for
new applications.

libv4l2

This library should be used for all modern V4L2 applications.

It provides handles to call V4L2 open/ioctl/close/poll methods. Instead of just pro-
viding the raw output of the device, it enhances the calls in the sense that it will
use libv4lconvert to provide more video formats and to enhance the image quality.

In most cases, libv4l2 just passes the calls directly through to the v4l2 driver,
intercepting the calls to VIDIOC_TRY_FMT, VIDIOC_G_FMT, VIDIOC_S_FMT,
VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS in or-
der to emulate the formats V4L2_PIX_FMT_BGR24, V4L2_PIX_FMT_RGB24,
V4L2_PIX_FMT_YUV420, and V4L2_PIX_FMT_YVU420, if they aren’t available
in the driver. VIDIOC_ENUM_FMT keeps enumerating the hardware supported
formats, plus the emulated formats offered by libv4l at the end.

Libv4l device control functions

The common file operation methods are provided by libv4l.

Those functions operate just like the gcc function dup() and V4L2 functions
open(), close(), ioctl(), read(), mmap() and munmap():

int v4l2_open(const char *file, int oflag, ...)
operates like the open() function.

int v4l2_close(int fd)
operates like the close() function.

int v4l2_dup(int fd)
operates like the libc dup() function, duplicating a file handler.

414 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

int v4l2_ioctl(int fd, unsigned long int request, ...)
operates like the ioctl() function.

int v4l2_read(int fd, void* buffer, size_t n)
operates like the read() function.

void v4l2_mmap(void *start, size_t length, int prot, int flags, int fd, int64_t offset);
operates like the munmap() function.

int v4l2_munmap(void *_start, size_t length);
operates like the munmap() function.

Those functions provide additional control:

int v4l2_fd_open(int fd, int v4l2_flags)
opens an already opened fd for further use through v4l2lib and possibly mod-
ify libv4l2’s default behavior through the v4l2_flags argument. Currently,
v4l2_flags can be V4L2_DISABLE_CONVERSION, to disable format conversion.

int v4l2_set_control(int fd, int cid, int value)
This function takes a value of 0 - 65535, and then scales that range to the
actual range of the given v4l control id, and then if the cid exists and is not
locked sets the cid to the scaled value.

int v4l2_get_control(int fd, int cid)
This function returns a value of 0 - 65535, scaled to from the actual range of
the given v4l control id. when the cid does not exist, could not be accessed
for some reason, or some error occurred 0 is returned.

v4l1compat.so wrapper library

This library intercepts calls to open(), close(), ioctl(), mmap() and munmap()
operations and redirects them to the libv4l counterparts, by using LD_PRELOAD=/
usr/lib/v4l1compat.so. It also emulates V4L1 calls via V4L2 API.

It allows usage of binary legacy applications that still don’t use libv4l.

7.2.6 Changes

The following chapters document the evolution of the V4L2 API, errata or exten-
sions. They are also intended to help application and driver writers to port or
update their code.

Differences between V4L and V4L2

The Video For Linux API was first introduced in Linux 2.1 to unify and replace
various TV and radio device related interfaces, developed independently by driver
writers in prior years. Starting with Linux 2.5 the much improved V4L2 API re-
places the V4L API. The support for the old V4L calls were removed from Kernel,
but the library Libv4l Userspace Library supports the conversion of a V4L API
system call into a V4L2 one.

7.2. Part I - Video for Linux API 415

Linux Userspace-api Documentation

Opening and Closing Devices

For compatibility reasons the character device file names recommended for V4L2
video capture, overlay, radio and raw vbi capture devices did not change from
those used by V4L. They are listed in Interfaces and below in V4L Device Types,
Names and Numbers.

The teletext devices (minor range 192-223) have been removed in V4L2 and no
longer exist. There is no hardware available anymore for handling pure teletext.
Instead raw or sliced VBI is used.

The V4L videodevmodule automatically assigns minor numbers to drivers in load
order, depending on the registered device type. We recommend that V4L2 drivers
by default register devices with the same numbers, but the system administrator
can assign arbitraryminor numbers using driver module options. Themajor device
number remains 81.

Table 101: V4L Device Types, Names and Numbers
Device Type File Name Minor Num-

bers
Video capture and
overlay

/dev/video and /dev/bttv01, /dev/video0 to
/dev/video63

0-63

Radio receiver /dev/radio2, /dev/radio0 to /dev/radio63 64-127
Raw VBI capture /dev/vbi, /dev/vbi0 to /dev/vbi31 224-255

V4L prohibits (or used to prohibit) multiple opens of a device file. V4L2 drivers
may support multiple opens, see Opening and Closing Devices for details and con-
sequences.

V4L drivers respond to V4L2 ioctls with an EINVAL error code.

Querying Capabilities

The V4L VIDIOCGCAP ioctl is equivalent to V4L2’s ioctl VIDIOC_QUERYCAP.
The name field in struct video_capability became card in struct
v4l2_capability, type was replaced by capabilities. Note V4L2 does
not distinguish between device types like this, better think of basic video input,
video output and radio devices supporting a set of related functions like video
capturing, video overlay and VBI capturing. See Opening and Closing Devices for
an introduction.

struct video_capability
type

struct v4l2_capability
capabilities flags

Purpose

VID_TYPE_CAPTURE V4L2_CAP_VIDEO_CAPTURE The video capture interface
is supported.

Continued on next page

1 According to Documentation/admin-guide/devices.rst these should be symbolic links to /dev/
video0. Note the original bttv interface is not compatible with V4L or V4L2.

2 According to Documentation/admin-guide/devices.rst a symbolic link to /dev/radio0.

416 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 102 – continued from previous page
struct video_capability
type

struct v4l2_capability
capabilities flags

Purpose

VID_TYPE_TUNER V4L2_CAP_TUNER The device has a tuner or
modulator.

VID_TYPE_TELETEXT V4L2_CAP_VBI_CAPTURE The raw VBI capture inter-
face is supported.

VID_TYPE_OVERLAY V4L2_CAP_VIDEO_OVERLAY The video overlay interface
is supported.

VID_TYPE_CHROMAKEY V4L2_FBUF_CAP_CHROMAKEY
in field capability of struct
v4l2_framebuffer

Whether chromakey overlay
is supported. For more
information on overlay see
Video Overlay Interface.

VID_TYPE_CLIPPING V4L2_FBUF_CAP_LIST_CLIPPING
and V4L2_FBUF_CAP_BITMAP_CLIPPING
in field capability of struct
v4l2_framebuffer

Whether clipping the over-
laid image is supported, see
Video Overlay Interface.

VID_TYPE_FRAMERAM V4L2_FBUF_CAP_EXTERNOVERLAY
not set in field capability of
struct v4l2_framebuffer

Whether overlay overwrites
frame buffer memory, see
Video Overlay Interface.

VID_TYPE_SCALES - This flag indicates if the
hardware can scale im-
ages. The V4L2 API implies
the scale factor by setting
the cropping dimensions
and image size with the
VIDIOC_S_CROP and VID-
IOC_S_FMT ioctl, respec-
tively. The driver returns
the closest sizes possible.
For more information on
cropping and scaling see
Image Cropping, Insertion
and Scaling – the CROP API.

VID_TYPE_MONOCHROME - Applications can enumerate
the supported image for-
mats with the ioctl VID-
IOC_ENUM_FMT ioctl to de-
termine if the device sup-
ports grey scale capturing
only. For more information
on image formats see Image
Formats.

Continued on next page

7.2. Part I - Video for Linux API 417

Linux Userspace-api Documentation

Table 102 – continued from previous page
struct video_capability
type

struct v4l2_capability
capabilities flags

Purpose

VID_TYPE_SUBCAPTURE - Applications can call the
VIDIOC_G_CROP ioctl to de-
termine if the device sup-
ports capturing a subsection
of the full picture (“crop-
ping”in V4L2). If not, the
ioctl returns the EINVAL er-
ror code. For more informa-
tion on cropping and scaling
see Image Cropping, Inser-
tion and Scaling – the CROP
API.

VID_TYPE_MPEG_DECODER - Applications can enumerate
the supported image for-
mats with the ioctl VID-
IOC_ENUM_FMT ioctl to de-
termine if the device sup-
ports MPEG streams.

VID_TYPE_MPEG_ENCODER - See above.
VID_TYPE_MJPEG_DECODER - See above.
VID_TYPE_MJPEG_ENCODER - See above.

The audios field was replaced by capabilities flag V4L2_CAP_AUDIO, indicating if
the device has any audio inputs or outputs. To determine their number applications
can enumerate audio inputs with the VIDIOC_G_AUDIO ioctl. The audio ioctls are
described in Audio Inputs and Outputs.

The maxwidth, maxheight, minwidth and minheight fields were removed. Calling
the VIDIOC_S_FMT or VIDIOC_TRY_FMT ioctl with the desired dimensions returns
the closest size possible, taking into account the current video standard, cropping
and scaling limitations.

Video Sources

V4L provides the VIDIOCGCHAN and VIDIOCSCHAN ioctl using struct video_channel
to enumerate the video inputs of a V4L device. The equivalent V4L2 ioctls are
ioctl VIDIOC_ENUMINPUT, VIDIOC_G_INPUT and VIDIOC_S_INPUT using struct
v4l2_input as discussed in Video Inputs and Outputs.

The channel field counting inputs was renamed to index, the video input types
were renamed as follows:

struct video_channel type struct v4l2_input type
VIDEO_TYPE_TV V4L2_INPUT_TYPE_TUNER
VIDEO_TYPE_CAMERA V4L2_INPUT_TYPE_CAMERA

Unlike the tuners field expressing the number of tuners of this input, V4L2 as-
sumes each video input is connected to at most one tuner. However a tuner can

418 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

have more than one input, i. e. RF connectors, and a device can have multiple
tuners. The index number of the tuner associated with the input, if any, is stored
in field tuner of struct v4l2_input. Enumeration of tuners is discussed in Tuners
and Modulators.

The redundant VIDEO_VC_TUNER flag was dropped. Video inputs associated with a
tuner are of type V4L2_INPUT_TYPE_TUNER. The VIDEO_VC_AUDIO flag was replaced
by the audioset field. V4L2 considers devices with up to 32 audio inputs. Each
set bit in the audioset field represents one audio input this video input combines
with. For information about audio inputs and how to switch between them see
Audio Inputs and Outputs.

The norm field describing the supported video standards was replaced by std. The
V4L specification mentions a flag VIDEO_VC_NORM indicating whether the standard
can be changed. This flag was a later addition together with the norm field and has
been removed in the meantime. V4L2 has a similar, albeit more comprehensive
approach to video standards, see Video Standards for more information.

Tuning

The V4L VIDIOCGTUNER and VIDIOCSTUNER ioctl and struct video_tuner can be
used to enumerate the tuners of a V4L TV or radio device. The equivalent V4L2
ioctls are VIDIOC_G_TUNER and VIDIOC_S_TUNER using struct v4l2_tuner.
Tuners are covered in Tuners and Modulators.

The tuner field counting tuners was renamed to index. The fields name, rangelow
and rangehigh remained unchanged.

The VIDEO_TUNER_PAL, VIDEO_TUNER_NTSC and VIDEO_TUNER_SECAM flags indi-
cating the supported video standards were dropped. This information is now
contained in the associated struct v4l2_input. No replacement exists for the
VIDEO_TUNER_NORM flag indicating whether the video standard can be switched.
The mode field to select a different video standard was replaced by a whole new set
of ioctls and structures described in Video Standards. Due to its ubiquity it should
bementioned the BTTV driver supports several standards in addition to the regular
VIDEO_MODE_PAL (0), VIDEO_MODE_NTSC, VIDEO_MODE_SECAM and VIDEO_MODE_AUTO
(3). Namely N/PAL Argentina, M/PAL, N/PAL, and NTSC Japan with numbers 3-6
(sic).

The VIDEO_TUNER_STEREO_ON flag indicating stereo reception became
V4L2_TUNER_SUB_STEREO in field rxsubchans. This field also permits the de-
tection of monaural and bilingual audio, see the definition of struct v4l2_tuner
for details. Presently no replacement exists for the VIDEO_TUNER_RDS_ON and
VIDEO_TUNER_MBS_ON flags.

The VIDEO_TUNER_LOW flag was renamed to V4L2_TUNER_CAP_LOW in the struct
v4l2_tuner capability field.

The VIDIOCGFREQ and VIDIOCSFREQ ioctl to change the tuner frequency where
renamed to VIDIOC_G_FREQUENCY and VIDIOC_S_FREQUENCY. They take a
pointer to a struct v4l2_frequency instead of an unsigned long integer.

7.2. Part I - Video for Linux API 419

Linux Userspace-api Documentation

Image Properties

V4L2 has no equivalent of the VIDIOCGPICT and VIDIOCSPICT ioctl and struct
video_picture. The following fields where replaced by V4L2 controls acces-
sible with the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VID-
IOC_QUERYMENU, VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls:

struct video_picture V4L2 Control ID
brightness V4L2_CID_BRIGHTNESS
hue V4L2_CID_HUE
colour V4L2_CID_SATURATION
contrast V4L2_CID_CONTRAST
whiteness V4L2_CID_WHITENESS

The V4L picture controls are assumed to range from 0 to 65535 with no partic-
ular reset value. The V4L2 API permits arbitrary limits and defaults which can
be queried with the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and
VIDIOC_QUERYMENU ioctl. For general information about controls see User Con-
trols.

The depth (average number of bits per pixel) of a video image is implied by the
selected image format. V4L2 does not explicitly provide such information assum-
ing applications recognizing the format are aware of the image depth and others
need not know. The palette field moved into the struct v4l2_pix_format:

struct video_picture palette struct v4l2_pix_format pixfmt
VIDEO_PALETTE_GREY V4L2_PIX_FMT_GREY
VIDEO_PALETTE_HI240 V4L2_PIX_FMT_HI2403
VIDEO_PALETTE_RGB565 V4L2_PIX_FMT_RGB565
VIDEO_PALETTE_RGB555 V4L2_PIX_FMT_RGB555
VIDEO_PALETTE_RGB24 V4L2_PIX_FMT_BGR24
VIDEO_PALETTE_RGB32 V4L2_PIX_FMT_BGR324
VIDEO_PALETTE_YUV422 V4L2_PIX_FMT_YUYV
VIDEO_PALETTE_YUYV5 V4L2_PIX_FMT_YUYV
VIDEO_PALETTE_UYVY V4L2_PIX_FMT_UYVY
VIDEO_PALETTE_YUV420 None
VIDEO_PALETTE_YUV411 V4L2_PIX_FMT_Y41P6

VIDEO_PALETTE_RAW None7
VIDEO_PALETTE_YUV422P V4L2_PIX_FMT_YUV422P
VIDEO_PALETTE_YUV411P V4L2_PIX_FMT_YUV411P8
VIDEO_PALETTE_YUV420P V4L2_PIX_FMT_YVU420
VIDEO_PALETTE_YUV410P V4L2_PIX_FMT_YVU410

3 This is a custom format used by the BTTV driver, not one of the V4L2 standard formats.
4 Presumably all V4L RGB formats are little-endian, although some drivers might interpret them

according to machine endianness. V4L2 defines little-endian, big-endian and red/blue swapped
variants. For details see RGB Formats.

5 VIDEO_PALETTE_YUV422 and VIDEO_PALETTE_YUYV are the same formats. Some V4L drivers re-

420 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2 image formats are defined in Image Formats. The image format can be se-
lected with the VIDIOC_S_FMT ioctl.

Audio

The VIDIOCGAUDIO and VIDIOCSAUDIO ioctl and struct video_audio are used to
enumerate the audio inputs of a V4L device. The equivalent V4L2 ioctls are VID-
IOC_G_AUDIO and VIDIOC_S_AUDIO using struct v4l2_audio as discussed in Au-
dio Inputs and Outputs.

The audio“channel number”field counting audio inputs was renamed to index.
On VIDIOCSAUDIO the mode field selects one of the VIDEO_SOUND_MONO,
VIDEO_SOUND_STEREO, VIDEO_SOUND_LANG1 or VIDEO_SOUND_LANG2 audio demod-
ulation modes. When the current audio standard is BTSC VIDEO_SOUND_LANG2
refers to SAP and VIDEO_SOUND_LANG1 is meaningless. Also undocumented in the
V4L specification, there is no way to query the selected mode. On VIDIOCGAUDIO
the driver returns the actually received audio programmes in this field. In the V4L2
API this information is stored in the struct v4l2_tuner rxsubchans and audmode
fields, respectively. See Tuners and Modulators for more information on tuners.
Related to audio modes struct v4l2_audio also reports if this is a mono or stereo
input, regardless if the source is a tuner.

The following fields where replaced by V4L2 controls accessible with the ioctls
VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU,
VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls:

struct video_audio V4L2 Control ID
volume V4L2_CID_AUDIO_VOLUME
bass V4L2_CID_AUDIO_BASS
treble V4L2_CID_AUDIO_TREBLE
balance V4L2_CID_AUDIO_BALANCE

To determine which of these controls are supported by a driver V4L pro-
vides the flags VIDEO_AUDIO_VOLUME, VIDEO_AUDIO_BASS, VIDEO_AUDIO_TREBLE
and VIDEO_AUDIO_BALANCE. In the V4L2 API the ioctls VIDIOC_QUERYCTRL,
VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU ioctl reports if the re-
spective control is supported. Accordingly the VIDEO_AUDIO_MUTABLE and
VIDEO_AUDIO_MUTE flags where replaced by the boolean V4L2_CID_AUDIO_MUTE
control.

All V4L2 controls have a step attribute replacing the struct video_audio step
field. The V4L audio controls are assumed to range from 0 to 65535 with no par-
ticular reset value. The V4L2 API permits arbitrary limits and defaults which can
be queried with the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and
VIDIOC_QUERYMENU ioctl. For general information about controls see User Con-
trols.
spond to one, some to the other.

6 Not to be confused with V4L2_PIX_FMT_YUV411P, which is a planar format.
7 V4L explains this as: “RAW capture (BT848)”
8 Not to be confused with V4L2_PIX_FMT_Y41P, which is a packed format.

7.2. Part I - Video for Linux API 421

Linux Userspace-api Documentation

Frame Buffer Overlay

The V4L2 ioctls equivalent to VIDIOCGFBUF and VIDIOCSFBUF are VIDIOC_G_FBUF
and VIDIOC_S_FBUF. The base field of struct video_buffer remained unchanged,
except V4L2 defines a flag to indicate non-destructive overlays instead of a NULL
pointer. All other fields moved into the struct v4l2_pix_format fmt substructure
of struct v4l2_framebuffer. The depth field was replaced by pixelformat. See
RGB Formats for a list of RGB formats and their respective color depths.

Instead of the special ioctls VIDIOCGWIN and VIDIOCSWIN V4L2 uses the general-
purpose data format negotiation ioctls VIDIOC_G_FMT and VIDIOC_S_FMT. They
take a pointer to a struct v4l2_format as argument. Here the win member of the
fmt union is used, a struct v4l2_window.

The x, y, width and height fields of struct video_window moved into struct
v4l2_rect substructure w of struct v4l2_window. The chromakey, clips, and
clipcount fields remained unchanged. Struct video_clip was renamed to struct
v4l2_clip, also containing a struct v4l2_rect, but the semantics are still the
same.

The VIDEO_WINDOW_INTERLACE flag was dropped. Instead applications must
set the field field to V4L2_FIELD_ANY or V4L2_FIELD_INTERLACED. The
VIDEO_WINDOW_CHROMAKEY flag moved into struct v4l2_framebuffer, under the
new name V4L2_FBUF_FLAG_CHROMAKEY.

In V4L, storing a bitmap pointer in clips and setting clipcount to
VIDEO_CLIP_BITMAP (-1) requests bitmap clipping, using a fixed size bitmap of
1024 × 625 bits. Struct v4l2_window has a separate bitmap pointer field for this
purpose and the bitmap size is determined by w.width and w.height.

The VIDIOCCAPTURE ioctl to enable or disable overlay was renamed to ioctl VID-
IOC_OVERLAY.

Cropping

To capture only a subsection of the full picture V4L defines the VIDIOCGCAPTURE
and VIDIOCSCAPTURE ioctls using struct video_capture. The equivalent V4L2
ioctls are VIDIOC_G_CROP and VIDIOC_S_CROP using struct v4l2_crop, and the
related ioctl VIDIOC_CROPCAP ioctl. This is a rather complex matter, see Image
Cropping, Insertion and Scaling – the CROP API for details.

The x, y, width and height fields moved into struct v4l2_rect substructure c of
struct v4l2_crop. The decimation field was dropped. In the V4L2 API the scaling
factor is implied by the size of the cropping rectangle and the size of the captured
or overlaid image.

The VIDEO_CAPTURE_ODD and VIDEO_CAPTURE_EVEN flags to capture only the
odd or even field, respectively, were replaced by V4L2_FIELD_TOP and
V4L2_FIELD_BOTTOM in the field named field of struct v4l2_pix_format and
struct v4l2_window. These structures are used to select a capture or overlay for-
mat with the VIDIOC_S_FMT ioctl.

422 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Reading Images, Memory Mapping

Capturing using the read method

There is no essential difference between reading images from a V4L or V4L2 de-
vice using the read() function, however V4L2 drivers are not required to support
this I/O method. Applications can determine if the function is available with the
ioctl VIDIOC_QUERYCAP ioctl. All V4L2 devices exchanging data with applica-
tions must support the select() and poll() functions.

To select an image format and size, V4L provides the VIDIOCSPICT and VIDIOCSWIN
ioctls. V4L2 uses the general-purpose data format negotiation ioctls VID-
IOC_G_FMT and VIDIOC_S_FMT. They take a pointer to a struct v4l2_format as
argument, here the struct v4l2_pix_format named pix of its fmt union is used.

For more information about the V4L2 read interface see Read/Write.

Capturing using memory mapping

Applications can read from V4L devices by mapping buffers in device memory, or
more often just buffers allocated in DMA-able system memory, into their address
space. This avoids the data copying overhead of the read method. V4L2 supports
memory mapping as well, with a few differences.

7.2. Part I - Video for Linux API 423

Linux Userspace-api Documentation

V4L V4L2
The image format must be selected before
buffers are allocated, with the VIDIOC_S_FMT
ioctl. When no format is selected the driver may
use the last, possibly by another application re-
quested format.

Applications cannot change the
number of buffers. The it is
built into the driver, unless it has
a module option to change the
number when the driver module
is loaded.

The ioctl VIDIOC_REQBUFS ioctl allocates the
desired number of buffers, this is a required
step in the initialization sequence.

Drivers map all buffers as one
contiguous range of memory.
The VIDIOCGMBUF ioctl is avail-
able to query the number of
buffers, the offset of each buffer
from the start of the virtual file,
and the overall amount of mem-
ory used, which can be used as
arguments for the mmap() func-
tion.

Buffers are individually mapped. The offset and
size of each buffer can be determined with the
ioctl VIDIOC_QUERYBUF ioctl.

The VIDIOCMCAPTURE ioctl pre-
pares a buffer for capturing. It
also determines the image for-
mat for this buffer. The ioctl
returns immediately, eventually
with an EAGAIN error code if no
video signal had been detected.
When the driver supports more
than one buffer applications can
call the ioctl multiple times and
thus have multiple outstanding
capture requests.
The VIDIOCSYNC ioctl suspends
execution until a particular
buffer has been filled.

Drivers maintain an incoming and outgoing
queue. ioctl VIDIOC_QBUF, VIDIOC_DQBUF
enqueues any empty buffer into the incom-
ing queue. Filled buffers are dequeued from
the outgoing queue with the VIDIOC_DQBUF
ioctl. To wait until filled buffers become avail-
able this function, select() or poll() can be
used. The ioctl VIDIOC_STREAMON, VID-
IOC_STREAMOFF ioctl must be called once af-
ter enqueuing one or more buffers to start cap-
turing. Its counterpart VIDIOC_STREAMOFF
stops capturing and dequeues all buffers from
both queues. Applications can query the
signal status, if known, with the ioctl VID-
IOC_ENUMINPUT ioctl.

For a more in-depth discussion of memory mapping and examples, see Streaming
I/O (Memory Mapping).

424 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Reading Raw VBI Data

Originally the V4L API did not specify a raw VBI capture interface, only the device
file /dev/vbi was reserved for this purpose. The only driver supporting this inter-
face was the BTTV driver, de-facto defining the V4L VBI interface. Reading from
the device yields a raw VBI image with the following parameters:

struct
v4l2_vbi_format

V4L, BTTV driver

sampling_rate 28636363 Hz NTSC (or any other 525-line standard); 35468950
Hz PAL and SECAM (625-line standards)

offset ?
sam-
ples_per_line

2048

sample_format V4L2_PIX_FMT_GREY. The last four bytes (a machine endianness
integer) contain a frame counter.

start[] 10, 273 NTSC; 22, 335 PAL and SECAM
count[] 16, 169
flags 0

Undocumented in the V4L specification, in Linux 2.3 the VIDIOCGVBIFMT and
VIDIOCSVBIFMT ioctls using struct vbi_format were added to determine the VBI
image parameters. These ioctls are only partially compatible with the V4L2 VBI
interface specified in Raw VBI Data Interface.

An offset field does not exist, sample_format is supposed to be
VIDEO_PALETTE_RAW, equivalent to V4L2_PIX_FMT_GREY. The remaining fields
are probably equivalent to struct v4l2_vbi_format.

Apparently only the Zoran (ZR 36120) driver implements these ioctls. The seman-
tics differ from those specified for V4L2 in two ways. The parameters are reset on
open() and VIDIOCSVBIFMT always returns an EINVAL error code if the parameters
are invalid.

Miscellaneous

V4L2 has no equivalent of the VIDIOCGUNIT ioctl. Applications can find the VBI
device associated with a video capture device (or vice versa) by reopening the
device and requesting VBI data. For details see Opening and Closing Devices.

No replacement exists for VIDIOCKEY, and the V4L functions for microcode pro-
gramming. A new interface for MPEG compression and playback devices is docu-
mented in Extended Controls API.

9 Old driver versions used different values, eventually the custom BTTV_VBISIZE ioctl was added
to query the correct values.

7.2. Part I - Video for Linux API 425

Linux Userspace-api Documentation

Changes of the V4L2 API

Soon after the V4L API was added to the kernel it was criticised as too inflexible.
In August 1998 Bill Dirks proposed a number of improvements and began to work
on documentation, example drivers and applications. With the help of other volun-
teers this eventually became the V4L2 API, not just an extension but a replacement
for the V4L API. However it took another four years and two stable kernel releases
until the new API was finally accepted for inclusion into the kernel in its present
form.

Early Versions

1998-08-20: First version.

1998-08-27: The select() function was introduced.

1998-09-10: New video standard interface.

1998-09-18: The VIDIOC_NONCAP ioctl was replaced by the otherwise meaningless
O_TRUNC open() flag, and the aliases O_NONCAP and O_NOIO were defined. Applica-
tions can set this flag if they intend to access controls only, as opposed to capture
applications which need exclusive access. The VIDEO_STD_XXX identifiers are now
ordinals instead of flags, and the video_std_construct() helper function takes
id and transmission arguments.

1998-09-28: Revamped video standard. Made video controls individually enumer-
able.

1998-10-02: The id field was removed from struct struct video_standard and
the color subcarrier fields were renamed. The ioctl VIDIOC_QUERYSTD, VID-
IOC_SUBDEV_QUERYSTD ioctl was renamed to ioctl VIDIOC_ENUMSTD, VID-
IOC_SUBDEV_ENUMSTD, VIDIOC_G_INPUT to ioctl VIDIOC_ENUMINPUT. A
first draft of the Codec API was released.

1998-11-08: Many minor changes. Most symbols have been renamed. Some ma-
terial changes to struct v4l2_capability.

1998-11-12: The read/write directon of some ioctls was misdefined.

1998-11-14: V4L2_PIX_FMT_RGB24 changed to V4L2_PIX_FMT_BGR24, and
V4L2_PIX_FMT_RGB32 changed to V4L2_PIX_FMT_BGR32. Audio controls are
now accessible with the VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls under
names starting with V4L2_CID_AUDIO. The V4L2_MAJOR define was removed from
videodev.h since it was only used once in the videodev kernel module. The
YUV422 and YUV411 planar image formats were added.

1998-11-28: A few ioctl symbols changed. Interfaces for codecs and video output
devices were added.

1999-01-14: A raw VBI capture interface was added.

1999-01-19: The VIDIOC_NEXTBUF ioctl was removed.

426 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2 Version 0.16 1999-01-31

1999-01-27: There is now one QBUF ioctl, VIDIOC_QWBUF and VIDIOC_QRBUF
are gone. VIDIOC_QBUF takes a v4l2_buffer as a parameter. Added digital zoom
(cropping) controls.

V4L2 Version 0.18 1999-03-16

Added a v4l to V4L2 ioctl compatibility layer to videodev.c. Driver writers, this
changes how you implement your ioctl handler. See the Driver Writer’s Guide.
Added some more control id codes.

V4L2 Version 0.19 1999-06-05

1999-03-18: Fill in the category and catname fields of v4l2_queryctrl objects
before passing them to the driver. Required a minor change to the VID-
IOC_QUERYCTRL handlers in the sample drivers.

1999-03-31: Better compatibility for v4l memory capture ioctls. Requires changes
to drivers to fully support new compatibility features, see Driver Writer’s Guide
and v4l2cap.c. Added new control IDs: V4L2_CID_HFLIP, _VFLIP. Changed
V4L2_PIX_FMT_YUV422P to _YUV422P, and _YUV411P to _YUV411P.

1999-04-04: Added a few more control IDs.

1999-04-07: Added the button control type.

1999-05-02: Fixed a typo in videodev.h, and added the
V4L2_CTRL_FLAG_GRAYED (later V4L2_CTRL_FLAG_GRABBED) flag.

1999-05-20: Definition of VIDIOC_G_CTRL was wrong causing a malfunction of
this ioctl.

1999-06-05: Changed the value of V4L2_CID_WHITENESS.

V4L2 Version 0.20 (1999-09-10)

Version 0.20 introduced a number of changes which were not backward compat-
ible with 0.19 and earlier versions. Purpose of these changes was to simplify the
API, while making it more extensible and following common Linux driver API con-
ventions.

1. Some typos in V4L2_FMT_FLAG symbols were fixed. struct v4l2_clip was
changed for compatibility with v4l. (1999-08-30)

2. V4L2_TUNER_SUB_LANG1 was added. (1999-09-05)

3. All ioctl() commands that used an integer argument now take a pointer to
an integer. Where it makes sense, ioctls will return the actual new value in
the integer pointed to by the argument, a common convention in the V4L2
API. The affected ioctls are: VIDIOC_PREVIEW, VIDIOC_STREAMON, VID-
IOC_STREAMOFF, VIDIOC_S_FREQ, VIDIOC_S_INPUT, VIDIOC_S_OUTPUT,
VIDIOC_S_EFFECT. For example

7.2. Part I - Video for Linux API 427

Linux Userspace-api Documentation

err = ioctl (fd, VIDIOC_XXX, V4L2_XXX);

becomes

int a = V4L2_XXX; err = ioctl(fd, VIDIOC_XXX, &a);

4. All the different get- and set-format commands were swept into one VID-
IOC_G_FMT and VIDIOC_S_FMT ioctl taking a union and a type field selecting
the union member as parameter. Purpose is to simplify the API by eliminat-
ing several ioctls and to allow new and driver private data streams without
adding new ioctls.

This change obsoletes the following ioctls: VIDIOC_S_INFMT,
VIDIOC_G_INFMT, VIDIOC_S_OUTFMT, VIDIOC_G_OUTFMT, VIDIOC_S_VBIFMT
and VIDIOC_G_VBIFMT. The image format structure struct v4l2_format was
renamed to struct v4l2_pix_format, while struct v4l2_format is now the
envelopping structure for all format negotiations.

5. Similar to the changes above, the VIDIOC_G_PARM and VIDIOC_S_PARM ioctls
were merged with VIDIOC_G_OUTPARM and VIDIOC_S_OUTPARM. A type field in
the new struct v4l2_streamparm selects the respective union member.

This change obsoletes the VIDIOC_G_OUTPARM and VIDIOC_S_OUTPARM ioctls.

6. Control enumeration was simplified, and two new control flags were intro-
duced and one dropped. The catname field was replaced by a group field.

Drivers can now flag unsupported and temporarily unavailable controls with
V4L2_CTRL_FLAG_DISABLED and V4L2_CTRL_FLAG_GRABBED respectively. The
group name indicates a possibly narrower classification than the category. In
other words, there may be multiple groups within a category. Controls within
a group would typically be drawn within a group box. Controls in different
categories might have a greater separation, or may even appear in separate
windows.

7. The struct v4l2_buffer timestamp was changed to a 64 bit integer, contain-
ing the sampling or output time of the frame in nanoseconds. Additionally
timestamps will be in absolute system time, not starting from zero at the be-
ginning of a stream. The data type name for timestamps is stamp_t, defined
as a signed 64-bit integer. Output devices should not send a buffer out un-
til the time in the timestamp field has arrived. I would like to follow SGI’
s lead, and adopt a multimedia timestamping system like their UST (Unad-
justed System Time). See http://web.archive.org/web/*/http://reality.sgi.com
/cpirazzi_engr/lg/time/intro.html. UST uses timestamps that are 64-bit signed
integers (not struct timeval’s) and given in nanosecond units. The UST clock
starts at zero when the system is booted and runs continuously and uniformly.
It takes a little over 292 years for UST to overflow. There is no way to set the
UST clock. The regular Linux time-of-day clock can be changed periodically,
which would cause errors if it were being used for timestamping a multimedia
stream. A real UST style clock will require some support in the kernel that is
not there yet. But in anticipation, I will change the timestamp field to a 64-bit
integer, and I will change the v4l2_masterclock_gettime() function (used only
by drivers) to return a 64-bit integer.

8. A sequence field was added to struct v4l2_buffer. The sequence field counts

428 Chapter 7. Linux Media Infrastructure userspace API

http://web.archive.org/web/*/http://reality.sgi.com

Linux Userspace-api Documentation

captured frames, it is ignored by output devices. When a capture driver drops
a frame, the sequence number of that frame is skipped.

V4L2 Version 0.20 incremental changes

1999-12-23: In struct v4l2_vbi_format the reserved1 field became offset. Pre-
viously drivers were required to clear the reserved1 field.

2000-01-13: The V4L2_FMT_FLAG_NOT_INTERLACED flag was added.

2000-07-31: The linux/poll.h header is now included by videodev.h for com-
patibility with the original videodev.h file.

2000-11-20: V4L2_TYPE_VBI_OUTPUT and V4L2_PIX_FMT_Y41P were added.

2000-11-25: V4L2_TYPE_VBI_INPUT was added.

2000-12-04: A couple typos in symbol names were fixed.

2001-01-18: To avoid namespace conflicts the fourcc macro defined in the
videodev.h header file was renamed to v4l2_fourcc.

2001-01-25: A possible driver-level compatibility problem between the videodev.
h file in Linux 2.4.0 and the videodev.h file included in the videodevX patch was
fixed. Users of an earlier version of videodevX on Linux 2.4.0 should recompile
their V4L and V4L2 drivers.

2001-01-26: A possible kernel-level incompatibility between the videodev.h file
in the videodevX patch and the videodev.h file in Linux 2.2.x with devfs patches
applied was fixed.

2001-03-02: Certain V4L ioctls which pass data in both direction although they are
defined with read-only parameter, did not work correctly through the backward
compatibility layer. [Solution?]

2001-04-13: Big endian 16-bit RGB formats were added.

2001-09-17: New YUV formats and the VIDIOC_G_FREQUENCY and VID-
IOC_S_FREQUENCY ioctls were added. (The old VIDIOC_G_FREQ and
VIDIOC_S_FREQ ioctls did not take multiple tuners into account.)

2000-09-18: V4L2_BUF_TYPE_VBI was added. This may break compatibility as
the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls may fail now if the struct struct
v4l2_fmt type field does not contain V4L2_BUF_TYPE_VBI. In the documentation
of the struct v4l2_vbi_format offset field the ambiguous phrase “rising edge”
was changed to “leading edge”.

7.2. Part I - Video for Linux API 429

Linux Userspace-api Documentation

V4L2 Version 0.20 2000-11-23

A number of changes were made to the raw VBI interface.

1. Figures clarifying the line numbering scheme were added to the V4L2 API
specification. The start[0] and start[1] fields no longer count line numbers
beginning at zero. Rationale: a) The previous definition was unclear. b) The
start[] values are ordinal numbers. c) There is no point in inventing a new
line numbering scheme. We now use line number as defined by ITU-R, period.
Compatibility: Add one to the start values. Applications depending on the
previous semantics may not function correctly.

2. The restriction“count[0] > 0 and count[1] > 0”has been relaxed to“(count[0]
+ count[1]) > 0”. Rationale: Drivers may allocate resources at scan line gran-
ularity and some data services are transmitted only on the first field. The com-
ment that both count values will usually be equal is misleading and pointless
and has been removed. This change breaks compatibility with earlier ver-
sions: Drivers may return EINVAL, applications may not function correctly.

3. Drivers are again permitted to return negative (unknown) start values as pro-
posed earlier. Why this feature was dropped is unclear. This change may
break compatibility with applications depending on the start values being
positive. The use of EBUSY and EINVAL error codes with the VIDIOC_S_FMT
ioctl was clarified. The EBUSY error code was finally documented, and the
reserved2 field which was previously mentioned only in the videodev.h
header file.

4. New buffer types V4L2_TYPE_VBI_INPUT and V4L2_TYPE_VBI_OUTPUT were
added. The former is an alias for the old V4L2_TYPE_VBI, the latter was miss-
ing in the videodev.h file.

V4L2 Version 0.20 2002-07-25

Added sliced VBI interface proposal.

V4L2 in Linux 2.5.46, 2002-10

Around October-November 2002, prior to an announced feature freeze of Linux
2.5, the API was revised, drawing from experience with V4L2 0.20. This unnamed
version was finally merged into Linux 2.5.46.

1. As specified in Related Devices, drivers must make related device functions
available under all minor device numbers.

2. The open() function requires access mode O_RDWR regardless of the device
type. All V4L2 drivers exchanging data with applications must support the
O_NONBLOCK flag. The O_NOIO flag, a V4L2 symbol which aliased the meaning-
less O_TRUNC to indicate accesses without data exchange (panel applications)
was dropped. Drivers must stay in“panel mode”until the application attempts
to initiate a data exchange, see Opening and Closing Devices.

3. The struct v4l2_capability changed dramatically. Note that also the size
of the structure changed, which is encoded in the ioctl request code, thus

430 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

older V4L2 devices will respond with an EINVAL error code to the new ioctl
VIDIOC_QUERYCAP ioctl.

There are new fields to identify the driver, a new RDS device func-
tion V4L2_CAP_RDS_CAPTURE, the V4L2_CAP_AUDIO flag indicates if the de-
vice has any audio connectors, another I/O capability V4L2_CAP_ASYNCIO
can be flagged. In response to these changes the type field be-
came a bit set and was merged into the flags field. V4L2_FLAG_TUNER
was renamed to V4L2_CAP_TUNER, V4L2_CAP_VIDEO_OVERLAY replaced
V4L2_FLAG_PREVIEW and V4L2_CAP_VBI_CAPTURE and V4L2_CAP_VBI_OUTPUT
replaced V4L2_FLAG_DATA_SERVICE. V4L2_FLAG_READ and V4L2_FLAG_WRITE
were merged into V4L2_CAP_READWRITE.

The redundant fields inputs, outputs and audioswere removed. These prop-
erties can be determined as described in Video Inputs and Outputs and Audio
Inputs and Outputs.

The somewhat volatile and therefore barely useful fields maxwidth,
maxheight, minwidth, minheight, maxframerate were removed. This infor-
mation is available as described in Data Formats and Video Standards.

V4L2_FLAG_SELECT was removed. We believe the select() function is impor-
tant enough to require support of it in all V4L2 drivers exchanging data with
applications. The redundant V4L2_FLAG_MONOCHROME flag was removed, this
information is available as described in Data Formats.

4. In struct v4l2_input the assoc_audio field and the capability field and
its only flag V4L2_INPUT_CAP_AUDIO was replaced by the new audioset field.
Instead of linking one video input to one audio input this field reports all audio
inputs this video input combines with.

New fields are tuner (reversing the former link from tuners to video inputs),
std and status.

Accordingly struct v4l2_output lost its capability and assoc_audio fields.
audioset, modulator and std where added instead.

5. The struct v4l2_audio field audio was renamed to index, for consistency
with other structures. A new capability flag V4L2_AUDCAP_STEREO was
added to indicated if the audio input in question supports stereo sound.
V4L2_AUDCAP_EFFECTS and the corresponding V4L2_AUDMODE flags where re-
moved. This can be easily implemented using controls. (However the same
applies to AVL which is still there.)

Again for consistency the struct v4l2_audioout field audio was renamed to
index.

6. The struct v4l2_tuner input field was replaced by an index field, permitting
devices with multiple tuners. The link between video inputs and tuners is now
reversed, inputs point to their tuner. The std substructure became a simple
set (more about this below) and moved into struct v4l2_input. A type field
was added.

Accordingly in struct v4l2_modulator the output was replaced by an index
field.

7.2. Part I - Video for Linux API 431

Linux Userspace-api Documentation

In struct v4l2_frequency the port field was replaced by a tuner field con-
taining the respective tuner or modulator index number. A tuner type field
was added and the reserved field became larger for future extensions (satel-
lite tuners in particular).

7. The idea of completely transparent video standards was dropped. Experi-
ence showed that applications must be able to work with video standards
beyond presenting the user a menu. Instead of enumerating supported stan-
dards with an ioctl applications can now refer to standards by v4l2_std_id and
symbols defined in the videodev2.h header file. For details see Video Stan-
dards. The VIDIOC_G_STD and VIDIOC_S_STD now take a pointer to this
type as argument. ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD
was added to autodetect the received standard, if the hardware has this ca-
pability. In struct v4l2_standard an index field was added for ioctl VID-
IOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD. A v4l2_std_id field named id
was added as machine readable identifier, also replacing the transmission
field. The misleading framerate field was renamed to frameperiod. The now
obsolete colorstandard information, originally needed to distguish between
variations of standards, were removed.

Struct v4l2_enumstd ceased to be. ioctl VIDIOC_ENUMSTD, VID-
IOC_SUBDEV_ENUMSTD now takes a pointer to a struct v4l2_standard di-
rectly. The information which standards are supported by a particular video
input or output moved into struct v4l2_input and struct v4l2_output fields
named std, respectively.

8. The struct v4l2_queryctrl fields category and group did not catch on and/or
were not implemented as expected and therefore removed.

9. The VIDIOC_TRY_FMT ioctl was added to negotiate data formats as with VID-
IOC_S_FMT, but without the overhead of programming the hardware and re-
gardless of I/O in progress.

In struct v4l2_format the fmt union was extended to contain struct
v4l2_window. All image format negotiations are now possible with
VIDIOC_G_FMT, VIDIOC_S_FMT and VIDIOC_TRY_FMT; ioctl. The VIDIOC_G_WIN
and VIDIOC_S_WIN ioctls to prepare for a video overlay were removed. The
type field changed to type enum v4l2_buf_type and the buffer type names
changed as follows.

432 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Old defines enum v4l2_buf_type
V4L2_BUF_TYPE_CAPTURE V4L2_BUF_TYPE_VIDEO_CAPTURE
V4L2_BUF_TYPE_CODECIN Omitted for now
V4L2_BUF_TYPE_CODECOUT Omitted for now
V4L2_BUF_TYPE_EFFECTSIN Omitted for now
V4L2_BUF_TYPE_EFFECTSIN2 Omitted for now
V4L2_BUF_TYPE_EFFECTSOUT Omitted for now
V4L2_BUF_TYPE_VIDEOOUT V4L2_BUF_TYPE_VIDEO_OUTPUT
- V4L2_BUF_TYPE_VIDEO_OVERLAY
- V4L2_BUF_TYPE_VBI_CAPTURE
- V4L2_BUF_TYPE_VBI_OUTPUT
- V4L2_BUF_TYPE_SLICED_VBI_CAPTURE
- V4L2_BUF_TYPE_SLICED_VBI_OUTPUT
V4L2_BUF_TYPE_PRIVATE_BASEV4L2_BUF_TYPE_PRIVATE (but this is depre-

cated)

10. In struct v4l2_fmtdesc a enum v4l2_buf_type field named type was added
as in struct v4l2_format. The VIDIOC_ENUM_FBUFFMT ioctl is no longer
needed and was removed. These calls can be replaced by ioctl VID-
IOC_ENUM_FMT with type V4L2_BUF_TYPE_VIDEO_OVERLAY.

11. In struct v4l2_pix_format the depth field was removed, assuming ap-
plications which recognize the format by its four-character-code already
know the color depth, and others do not care about it. The same ra-
tionale lead to the removal of the V4L2_FMT_FLAG_COMPRESSED flag. The
V4L2_FMT_FLAG_SWCONVECOMPRESSED flag was removed because drivers are
not supposed to convert images in kernel space. A user library of conversion
functions should be provided instead. The V4L2_FMT_FLAG_BYTESPERLINE
flag was redundant. Applications can set the bytesperline field to zero to
get a reasonable default. Since the remaining flags were replaced as well,
the flags field itself was removed.

The interlace flags were replaced by a enum v4l2_field value in a newly
added field field.

Old flag enum v4l2_field
V4L2_FMT_FLAG_NOT_INTERLACED ?
V4L2_FMT_FLAG_INTERLACED =
V4L2_FMT_FLAG_COMBINED

V4L2_FIELD_INTERLACED

V4L2_FMT_FLAG_TOPFIELD =
V4L2_FMT_FLAG_ODDFIELD

V4L2_FIELD_TOP

V4L2_FMT_FLAG_BOTFIELD =
V4L2_FMT_FLAG_EVENFIELD

V4L2_FIELD_BOTTOM

- V4L2_FIELD_SEQ_TB
- V4L2_FIELD_SEQ_BT
- V4L2_FIELD_ALTERNATE

The color space flags were replaced by a enum v4l2_colorspace value in a
newly added colorspace field, where one of V4L2_COLORSPACE_SMPTE170M,
V4L2_COLORSPACE_BT878, V4L2_COLORSPACE_470_SYSTEM_M or

7.2. Part I - Video for Linux API 433

Linux Userspace-api Documentation

V4L2_COLORSPACE_470_SYSTEM_BG replaces V4L2_FMT_CS_601YUV.

12. In struct v4l2_requestbuffers the type field was properly defined as enum
v4l2_buf_type. Buffer types changed as mentioned above. A new memory
field of type enum v4l2_memory was added to distinguish between I/O meth-
ods using buffers allocated by the driver or the application. See Input/Output
for details.

13. In struct v4l2_buffer the type field was properly defined as enum
v4l2_buf_type. Buffer types changed as mentioned above. A field field
of type enum v4l2_field was added to indicate if a buffer contains a top or
bottom field. The old field flags were removed. Since no unadjusted system
time clock was added to the kernel as planned, the timestamp field changed
back from type stamp_t, an unsigned 64 bit integer expressing the sample
time in nanoseconds, to struct timeval. With the addition of a second mem-
ory mapping method the offset field moved into union m, and a new memory
field of type enum v4l2_memory was added to distinguish between I/O meth-
ods. See Input/Output for details.

The V4L2_BUF_REQ_CONTIG flag was used by the V4L compatibility layer, after
changes to this code it was no longer needed. The V4L2_BUF_ATTR_DEVICEMEM
flag would indicate if the buffer was indeed allocated in device memory rather
than DMA-able system memory. It was barely useful and so was removed.

14. In struct v4l2_framebuffer the base[3] array anticipating double-
and triple-buffering in off-screen video memory, however without
defining a synchronization mechanism, was replaced by a single
pointer. The V4L2_FBUF_CAP_SCALEUP and V4L2_FBUF_CAP_SCALEDOWN
flags were removed. Applications can determine this capa-
bility more accurately using the new cropping and scaling in-
terface. The V4L2_FBUF_CAP_CLIPPING flag was replaced by
V4L2_FBUF_CAP_LIST_CLIPPING and V4L2_FBUF_CAP_BITMAP_CLIPPING.

15. In struct v4l2_clip the x, y, width and height field moved into a c substruc-
ture of type struct v4l2_rect. The x and y fields were renamed to left and
top, i. e. offsets to a context dependent origin.

16. In struct v4l2_window the x, y, width and height field moved into a w sub-
structure as above. A field field of type v4l2_fieldwas added to distinguish
between field and frame (interlaced) overlay.

17. The digital zoom interface, including struct struct v4l2_zoomcap, struct
struct v4l2_zoom, V4L2_ZOOM_NONCAP and V4L2_ZOOM_WHILESTREAMING was
replaced by a new cropping and scaling interface. The previously unused
struct struct v4l2_cropcap and struct v4l2_crop where redefined for this
purpose. See Image Cropping, Insertion and Scaling – the CROP API for de-
tails.

18. In struct v4l2_vbi_format the SAMPLE_FORMAT field now contains
a four-character-code as used to identify video image formats and
V4L2_PIX_FMT_GREY replaces the V4L2_VBI_SF_UBYTE define. The reserved
field was extended.

19. In struct v4l2_captureparm the type of the timeperframe field changed from
unsigned long to struct v4l2_fract. This allows the accurate expression of

434 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

multiples of the NTSC-M frame rate 30000 / 1001. A new field readbuffers
was added to control the driver behaviour in read I/O mode.

Similar changes were made to struct v4l2_outputparm.

20. The struct v4l2_performance and VIDIOC_G_PERF ioctl were dropped. Ex-
cept when using the read/write I/O method, which is limited anyway, this
information is already available to applications.

21. The example transformation from RGB to YCbCr color space in the old V4L2
documentation was inaccurate, this has been corrected in Image Formats.

V4L2 2003-06-19

1. A new capability flag V4L2_CAP_RADIO was added for radio devices. Prior to
this change radio devices would identify solely by having exactly one tuner
whose type field reads V4L2_TUNER_RADIO.

2. An optional driver access priority mechanism was added, see Application Pri-
ority for details.

3. The audio input and output interface was found to be incomplete.

Previously the VIDIOC_G_AUDIO ioctl would enumerate the available audio
inputs. An ioctl to determine the current audio input, if more than one com-
bines with the current video input, did not exist. So VIDIOC_G_AUDIO was
renamed to VIDIOC_G_AUDIO_OLD, this ioctl was removed on Kernel 2.6.39.
The ioctl VIDIOC_ENUMAUDIO ioctl was added to enumerate audio inputs,
while VIDIOC_G_AUDIO now reports the current audio input.

The same changes were made to VIDIOC_G_AUDOUT and VID-
IOC_ENUMAUDOUT.

Until further the“videodev”module will automatically translate between the
old and new ioctls, but drivers and applications must be updated to success-
fully compile again.

4. The ioctl VIDIOC_OVERLAY ioctl was incorrectly defined with write-read pa-
rameter. It was changed to write-only, while the write-read version was re-
named to VIDIOC_OVERLAY_OLD. The old ioctl was removed on Kernel 2.6.39.
Until further the“videodev”kernel module will automatically translate to the
new version, so drivers must be recompiled, but not applications.

5. Video Overlay Interface incorrectly stated that clipping rectangles define re-
gions where the video can be seen. Correct is that clipping rectangles define
regions where no video shall be displayed and so the graphics surface can be
seen.

6. The VIDIOC_S_PARM and VIDIOC_S_CTRL ioctls were defined with write-
only parameter, inconsistent with other ioctls modifying their argument.
They were changed to write-read, while a _OLD suffix was added to the write-
only versions. The old ioctls were removed on Kernel 2.6.39. Drivers and
applications assuming a constant parameter need an update.

7.2. Part I - Video for Linux API 435

Linux Userspace-api Documentation

V4L2 2003-11-05

1. In RGB Formats the following pixel formats were incorrectly transferred from
Bill Dirks’V4L2 specification. Descriptions below refer to bytes in memory,
in ascending address order.

Symbol In this document prior to revision 0.5 Corrected
V4L2_PIX_FMT_RGB24 B, G, R R, G, B
V4L2_PIX_FMT_BGR24 R, G, B B, G, R
V4L2_PIX_FMT_RGB32 B, G, R, X R, G, B, X
V4L2_PIX_FMT_BGR32 R, G, B, X B, G, R, X

The V4L2_PIX_FMT_BGR24 example was always correct.

In Image Properties the mapping of the V4L VIDEO_PALETTE_RGB24 and
VIDEO_PALETTE_RGB32 formats to V4L2 pixel formats was accordingly cor-
rected.

2. Unrelated to the fixes above, drivers may still interpret some V4L2 RGB pixel
formats differently. These issues have yet to be addressed, for details see
RGB Formats.

V4L2 in Linux 2.6.6, 2004-05-09

1. The ioctl VIDIOC_CROPCAP ioctl was incorrectly defined with read-only pa-
rameter. It is now defined as write-read ioctl, while the read-only version
was renamed to VIDIOC_CROPCAP_OLD. The old ioctl was removed on Kernel
2.6.39.

V4L2 in Linux 2.6.8

1. A new field input (former reserved[0]) was added to the struct v4l2_buffer
structure. Purpose of this field is to alternate between video inputs (e. g.
cameras) in step with the video capturing process. This function must be
enabled with the new V4L2_BUF_FLAG_INPUT flag. The flags field is no longer
read-only.

V4L2 spec erratum 2004-08-01

1. The return value of the V4L2 open() function was incorrectly documented.

2. Audio output ioctls end in -AUDOUT, not -AUDIOOUT.

3. In the Current Audio Input example the VIDIOC_G_AUDIO ioctl took the wrong
argument.

4. The documentation of the ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VID-
IOC_DQBUF ioctls did not mention the struct v4l2_buffer memory field. It
was also missing from examples. Also on the VIDIOC_DQBUF page the EIO
error code was not documented.

436 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2 in Linux 2.6.14

1. A new sliced VBI interface was added. It is documented in Sliced VBI Data
Interface and replaces the interface first proposed in V4L2 specification 0.8.

V4L2 in Linux 2.6.15

1. The ioctl VIDIOC_LOG_STATUS ioctl was added.

2. New video standards V4L2_STD_NTSC_443, V4L2_STD_SECAM_LC,
V4L2_STD_SECAM_DK (a set of SECAM D, K and K1), and V4L2_STD_ATSC
(a set of V4L2_STD_ATSC_8_VSB and V4L2_STD_ATSC_16_VSB) were defined.
Note the V4L2_STD_525_60 set now includes V4L2_STD_NTSC_443. See also
typedef v4l2_std_id.

3. The VIDIOC_G_COMP and VIDIOC_S_COMP ioctl were renamed to
VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP respectively. Their argu-
ment was replaced by a struct v4l2_mpeg_compression pointer. (The
VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls where removed in Linux
2.6.25.)

V4L2 spec erratum 2005-11-27

The capture example in Video Capture Example called the VIDIOC_S_CROP ioctl
without checking if cropping is supported. In the video standard selection example
in Video Standards the VIDIOC_S_STD call used the wrong argument type.

V4L2 spec erratum 2006-01-10

1. The V4L2_IN_ST_COLOR_KILL flag in struct v4l2_input not only indicates if
the color killer is enabled, but also if it is active. (The color killer disables
color decoding when it detects no color in the video signal to improve the
image quality.)

2. VIDIOC_S_PARM is a write-read ioctl, not write-only as stated on its reference
page. The ioctl changed in 2003 as noted above.

V4L2 spec erratum 2006-02-03

1. In struct v4l2_captureparm and struct v4l2_outputparm the timeperframe
field gives the time in seconds, not microseconds.

7.2. Part I - Video for Linux API 437

Linux Userspace-api Documentation

V4L2 spec erratum 2006-02-04

1. The clips field in struct v4l2_window must point to an array of struct
v4l2_clip, not a linked list, because drivers ignore the struct struct
v4l2_clip. next pointer.

V4L2 in Linux 2.6.17

1. New video standard macros were added: V4L2_STD_NTSC_M_KR (NTSC M
South Korea), and the sets V4L2_STD_MN, V4L2_STD_B, V4L2_STD_GH and
V4L2_STD_DK. The V4L2_STD_NTSC and V4L2_STD_SECAM sets now include
V4L2_STD_NTSC_M_KR and V4L2_STD_SECAM_LC respectively.

2. A new V4L2_TUNER_MODE_LANG1_LANG2 was defined to record both languages
of a bilingual program. The use of V4L2_TUNER_MODE_STEREO for this purpose
is deprecated now. See the VIDIOC_G_TUNER section for details.

V4L2 spec erratum 2006-09-23 (Draft 0.15)

1. In various places V4L2_BUF_TYPE_SLICED_VBI_CAPTURE and
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT of the sliced VBI interface were
not mentioned along with other buffer types.

2. In VIDIOC_G_AUDIO it was clarified that the struct v4l2_audio mode field is
a flags field.

3. ioctl VIDIOC_QUERYCAP did not mention the sliced VBI and radio capability
flags.

4. In VIDIOC_G_FREQUENCY it was clarified that applications must initial-
ize the tuner type field of struct v4l2_frequency before calling VID-
IOC_S_FREQUENCY.

5. The reserved array in struct v4l2_requestbuffers has 2 elements, not 32.

6. In Video Output Interface and Raw VBI Data Interface the device file names
/dev/vout which never caught on were replaced by /dev/video.

7. With Linux 2.6.15 the possible range for VBI device minor numbers was ex-
tended from 224-239 to 224-255. Accordingly device file names /dev/vbi0
to /dev/vbi31 are possible now.

V4L2 in Linux 2.6.18

1. New ioctls VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS and VID-
IOC_TRY_EXT_CTRLS were added, a flag to skip unsupported con-
trols with ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and
VIDIOC_QUERYMENU, new control types V4L2_CTRL_TYPE_INTEGER64
and V4L2_CTRL_TYPE_CTRL_CLASS (v4l2_ctrl_type), and new con-
trol flags V4L2_CTRL_FLAG_READ_ONLY, V4L2_CTRL_FLAG_UPDATE,
V4L2_CTRL_FLAG_INACTIVE and V4L2_CTRL_FLAG_SLIDER (Control Flags).
See Extended Controls API for details.

438 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2 in Linux 2.6.19

1. In struct v4l2_sliced_vbi_cap a buffer type field was added replacing a re-
served field. Note on architectures where the size of enum types differs from
int types the size of the structure changed. The VIDIOC_G_SLICED_VBI_CAP
ioctl was redefined from being read-only to write-read. Applications must ini-
tialize the type field and clear the reserved fields now. These changes may
break the compatibility with older drivers and applications.

2. The ioctls ioctl VIDIOC_ENUM_FRAMESIZES and ioctl VID-
IOC_ENUM_FRAMEINTERVALS were added.

3. A new pixel format V4L2_PIX_FMT_RGB444 (RGB Formats) was added.

V4L2 spec erratum 2006-10-12 (Draft 0.17)

1. V4L2_PIX_FMT_HM12 (Reserved Image Formats) is a YUV 4:2:0, not 4:2:2 for-
mat.

V4L2 in Linux 2.6.21

1. The videodev2.h header file is now dual licensed under GNU General Public
License version two or later, and under a 3-clause BSD-style license.

V4L2 in Linux 2.6.22

1. Two new field orders V4L2_FIELD_INTERLACED_TB and
V4L2_FIELD_INTERLACED_BT were added. See v4l2_field for details.

2. Three new clipping/blending methods with a global or straight or inverted lo-
cal alpha value were added to the video overlay interface. See the description
of the VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctls for details.

A new global_alpha field was added to v4l2_window, extending the struc-
ture. This may break compatibility with applications using a struct struct
v4l2_window directly. However the VIDIOC_G/S/TRY_FMT ioctls, which take
a pointer to a v4l2_format parent structure with padding bytes at the end,
are not affected.

3. The format of the chromakey field in struct v4l2_window changed from“host
order RGB32”to a pixel value in the same format as the framebuffer. This
may break compatibility with existing applications. Drivers supporting the
“host order RGB32”format are not known.

7.2. Part I - Video for Linux API 439

Linux Userspace-api Documentation

V4L2 in Linux 2.6.24

1. The pixel formats V4L2_PIX_FMT_PAL8, V4L2_PIX_FMT_YUV444,
V4L2_PIX_FMT_YUV555, V4L2_PIX_FMT_YUV565 and V4L2_PIX_FMT_YUV32
were added.

V4L2 in Linux 2.6.25

1. The pixel formats V4L2_PIX_FMT_Y16 and V4L2_PIX_FMT_SBGGR16 were
added.

2. New controls V4L2_CID_POWER_LINE_FREQUENCY, V4L2_CID_HUE_AUTO,
V4L2_CID_WHITE_BALANCE_TEMPERATURE, V4L2_CID_SHARPNESS and
V4L2_CID_BACKLIGHT_COMPENSATION were added. The controls
V4L2_CID_BLACK_LEVEL, V4L2_CID_WHITENESS, V4L2_CID_HCENTER and
V4L2_CID_VCENTER were deprecated.

3. A Camera controls class was added, with the new con-
trols V4L2_CID_EXPOSURE_AUTO, V4L2_CID_EXPOSURE_ABSOLUTE,
V4L2_CID_EXPOSURE_AUTO_PRIORITY, V4L2_CID_PAN_RELATIVE,
V4L2_CID_TILT_RELATIVE, V4L2_CID_PAN_RESET, V4L2_CID_TILT_RESET,
V4L2_CID_PAN_ABSOLUTE, V4L2_CID_TILT_ABSOLUTE,
V4L2_CID_FOCUS_ABSOLUTE, V4L2_CID_FOCUS_RELATIVE and
V4L2_CID_FOCUS_AUTO.

4. The VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls, which were super-
seded by the extended controls interface in Linux 2.6.18, where finally re-
moved from the videodev2.h header file.

V4L2 in Linux 2.6.26

1. The pixel formats V4L2_PIX_FMT_Y16 and V4L2_PIX_FMT_SBGGR16 were
added.

2. Added user controls V4L2_CID_CHROMA_AGC and V4L2_CID_COLOR_KILLER.

V4L2 in Linux 2.6.27

1. The ioctl VIDIOC_S_HW_FREQ_SEEK ioctl and the V4L2_CAP_HW_FREQ_SEEK
capability were added.

2. The pixel formats V4L2_PIX_FMT_YVYU, V4L2_PIX_FMT_PCA501,
V4L2_PIX_FMT_PCA505, V4L2_PIX_FMT_PCA508, V4L2_PIX_FMT_PCA561,
V4L2_PIX_FMT_SGBRG8, V4L2_PIX_FMT_PAC207 and V4L2_PIX_FMT_PJPG
were added.

440 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2 in Linux 2.6.28

1. Added V4L2_MPEG_AUDIO_ENCODING_AAC and V4L2_MPEG_AUDIO_ENCODING_AC3
MPEG audio encodings.

2. Added V4L2_MPEG_VIDEO_ENCODING_MPEG_4_AVC MPEG video encoding.

3. The pixel formats V4L2_PIX_FMT_SGRBG10 and V4L2_PIX_FMT_SGRBG10DPCM8
were added.

V4L2 in Linux 2.6.29

1. The VIDIOC_G_CHIP_IDENT ioctl was renamed to VIDIOC_G_CHIP_IDENT_OLD
and VIDIOC_DBG_G_CHIP_IDENT was introduced in its place. The old struct
struct v4l2_chip_ident was renamed to struct v4l2_chip_ident_old.

2. The pixel formats V4L2_PIX_FMT_VYUY, V4L2_PIX_FMT_NV16 and
V4L2_PIX_FMT_NV61 were added.

3. Added camera controls V4L2_CID_ZOOM_ABSOLUTE,
V4L2_CID_ZOOM_RELATIVE, V4L2_CID_ZOOM_CONTINUOUS and
V4L2_CID_PRIVACY.

V4L2 in Linux 2.6.30

1. New control flag V4L2_CTRL_FLAG_WRITE_ONLY was added.

2. New control V4L2_CID_COLORFX was added.

V4L2 in Linux 2.6.32

1. In order to be easier to compare a V4L2 API and a kernel version, now V4L2
API is numbered using the Linux Kernel version numeration.

2. Finalized the RDS capture API. See RDS Interface for more information.

3. Added new capabilities for modulators and RDS encoders.

4. Add description for libv4l API.

5. Added support for string controls via new type V4L2_CTRL_TYPE_STRING.

6. Added V4L2_CID_BAND_STOP_FILTER documentation.

7. Added FM Modulator (FM TX) Extended Control Class:
V4L2_CTRL_CLASS_FM_TX and their Control IDs.

8. Added FM Receiver (FM RX) Extended Control Class:
V4L2_CTRL_CLASS_FM_RX and their Control IDs.

9. Added Remote Controller chapter, describing the default Remote Controller
mapping for media devices.

7.2. Part I - Video for Linux API 441

Linux Userspace-api Documentation

V4L2 in Linux 2.6.33

1. Added support for Digital Video timings in order to support HDTV receivers
and transmitters.

V4L2 in Linux 2.6.34

1. Added V4L2_CID_IRIS_ABSOLUTE and V4L2_CID_IRIS_RELATIVE controls to
the Camera controls class.

V4L2 in Linux 2.6.37

1. Remove the vtx (videotext/teletext) API. This API was no longer used and no
hardware exists to verify the API. Nor were any userspace applications found
that used it. It was originally scheduled for removal in 2.6.35.

V4L2 in Linux 2.6.39

1. The old VIDIOC_*_OLD symbols and V4L1 support were removed.

2. Multi-planar API added. Does not affect the compatibility of current drivers
and applications. See multi-planar API for details.

V4L2 in Linux 3.1

1. VIDIOC_QUERYCAP now returns a per-subsystem version instead of a per-
driver one.

Standardize an error code for invalid ioctl.

Added V4L2_CTRL_TYPE_BITMASK.

V4L2 in Linux 3.2

1. V4L2_CTRL_FLAG_VOLATILE was added to signal volatile controls to
userspace.

2. Add selection API for extended control over cropping and composing. Does
not affect the compatibility of current drivers and applications. See selection
API for details.

442 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2 in Linux 3.3

1. Added V4L2_CID_ALPHA_COMPONENT control to the User controls class.

2. Added the device_caps field to struct v4l2_capabilities and added the new
V4L2_CAP_DEVICE_CAPS capability.

V4L2 in Linux 3.4

1. Added JPEG compression control class.

2. Extended the DV Timings API: ioctl VIDIOC_ENUM_DV_TIMINGS, VID-
IOC_SUBDEV_ENUM_DV_TIMINGS, ioctl VIDIOC_QUERY_DV_TIMINGS
and ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP.

V4L2 in Linux 3.5

1. Added integer menus, the new type will be
V4L2_CTRL_TYPE_INTEGER_MENU.

2. Added selection API for V4L2 subdev interface: ioctl VID-
IOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION and VID-
IOC_SUBDEV_S_SELECTION.

3. Added V4L2_COLORFX_ANTIQUE, V4L2_COLORFX_ART_FREEZE,
V4L2_COLORFX_AQUA, V4L2_COLORFX_SILHOUETTE, V4L2_COLORFX_SOLARIZATION,
V4L2_COLORFX_VIVID and V4L2_COLORFX_ARBITRARY_CBCRmenu items to the
V4L2_CID_COLORFX control.

4. Added V4L2_CID_COLORFX_CBCR control.

5. Added camera controls V4L2_CID_AUTO_EXPOSURE_BIAS,
V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE, V4L2_CID_IMAGE_STABILIZATION,
V4L2_CID_ISO_SENSITIVITY, V4L2_CID_ISO_SENSITIVITY_AUTO,
V4L2_CID_EXPOSURE_METERING, V4L2_CID_SCENE_MODE, V4L2_CID_3A_LOCK,
V4L2_CID_AUTO_FOCUS_START, V4L2_CID_AUTO_FOCUS_STOP,
V4L2_CID_AUTO_FOCUS_STATUS and V4L2_CID_AUTO_FOCUS_RANGE.

V4L2 in Linux 3.6

1. Replaced input in struct v4l2_buffer by reserved2 and removed
V4L2_BUF_FLAG_INPUT.

2. Added V4L2_CAP_VIDEO_M2M and V4L2_CAP_VIDEO_M2M_MPLANE capa-
bilities.

3. Added support for frequency band enumerations: ioctl VID-
IOC_ENUM_FREQ_BANDS.

7.2. Part I - Video for Linux API 443

Linux Userspace-api Documentation

V4L2 in Linux 3.9

1. Added timestamp types to flags field in struct v4l2_buffer. See Buffer
Flags.

2. Added V4L2_EVENT_CTRL_CH_RANGE control event changes flag. See Control
Changes.

V4L2 in Linux 3.10

1. Removed obsolete and unused DV_PRESET ioctls VIDIOC_G_DV_PRESET,
VIDIOC_S_DV_PRESET, VIDIOC_QUERY_DV_PRESET and VID-
IOC_ENUM_DV_PRESET. Remove the related v4l2_input/output capability
flags V4L2_IN_CAP_PRESETS and V4L2_OUT_CAP_PRESETS.

2. Added new debugging ioctl ioctl VIDIOC_DBG_G_CHIP_INFO.

V4L2 in Linux 3.11

1. Remove obsolete VIDIOC_DBG_G_CHIP_IDENT ioctl.

V4L2 in Linux 3.14

1. In struct v4l2_rect, the type of width and height fields changed from _s32
to _u32.

V4L2 in Linux 3.15

1. Added Software Defined Radio (SDR) Interface.

V4L2 in Linux 3.16

1. Added event V4L2_EVENT_SOURCE_CHANGE.

V4L2 in Linux 3.17

1. Extended struct v4l2_pix_format. Added format flags.

2. Added compound control types and VIDIOC_QUERY_EXT_CTRL.

444 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2 in Linux 3.18

1. Added V4L2_CID_PAN_SPEED and V4L2_CID_TILT_SPEED camera controls.

V4L2 in Linux 3.19

1. Rewrote Colorspace chapter, added new enum v4l2_ycbcr_encoding
and enum v4l2_quantization fields to struct v4l2_pix_format, struct
v4l2_pix_format_mplane and struct v4l2_mbus_framefmt.

V4L2 in Linux 4.4

1. Renamed V4L2_TUNER_ADC to V4L2_TUNER_SDR. The use of V4L2_TUNER_ADC
is deprecated now.

2. Added V4L2_CID_RF_TUNER_RF_GAIN RF Tuner control.

3. Added transmitter support for Software Defined Radio (SDR) Interface.

Relation of V4L2 to other Linux multimedia APIs

X Video Extension

The X Video Extension (abbreviated XVideo or just Xv) is an extension of the X
Window system, implemented for example by the XFree86 project. Its scope is
similar to V4L2, an API to video capture and output devices for X clients. Xv al-
lows applications to display live video in a window, send window contents to a TV
output, and capture or output still images in XPixmaps1. With their implementa-
tion XFree86 makes the extension available across many operating systems and
architectures.

Because the driver is embedded into the X server Xv has a number of advantages
over the V4L2 video overlay interface. The driver can easily determine the overlay
target, i. e. visible graphics memory or off-screen buffers for a destructive overlay.
It can program the RAMDAC for a non-destructive overlay, scaling or color-keying,
or the clipping functions of the video capture hardware, always in sync with draw-
ing operations or windows moving or changing their stacking order.

To combine the advantages of Xv and V4L a special Xv driver exists in XFree86
and XOrg, just programming any overlay capable Video4Linux device it finds. To
enable it /etc/X11/XF86Config must contain these lines:

Section "Module"
Load "v4l"

EndSection

As of XFree86 4.2 this driver still supports only V4L ioctls, however it should work
just fine with all V4L2 devices through the V4L2 backward-compatibility layer.
Since V4L2 permits multiple opens it is possible (if supported by the V4L2 driver)

1 This is not implemented in XFree86.

7.2. Part I - Video for Linux API 445

Linux Userspace-api Documentation

to capture video while an X client requested video overlay. Restrictions of simul-
taneous capturing and overlay are discussed in Video Overlay Interface apply.

Only marginally related to V4L2, XFree86 extended Xv to support hardware YUV
to RGB conversion and scaling for faster video playback, and added an interface
to MPEG-2 decoding hardware. This API is useful to display images captured with
V4L2 devices.

Digital Video

V4L2 does not support digital terrestrial, cable or satellite broadcast. A separate
project aiming at digital receivers exists. You can find its homepage at https://
linuxtv.org. The Linux DVB API has no connection to the V4L2 API except that
drivers for hybrid hardware may support both.

Audio Interfaces

[to do - OSS/ALSA]

Experimental API Elements

The following V4L2 API elements are currently experimental and may change in
the future.

• ioctl VIDIOC_DBG_G_REGISTER, VIDIOC_DBG_S_REGISTER and VID-
IOC_DBG_S_REGISTER ioctls.

• ioctl VIDIOC_DBG_G_CHIP_INFO ioctl.

Obsolete API Elements

The following V4L2 API elements were superseded by new interfaces and should
not be implemented in new drivers.

• VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls. Use Extended Controls,
Extended Controls API.

• VIDIOC_G_DV_PRESET, VIDIOC_S_DV_PRESET, VID-
IOC_ENUM_DV_PRESETS and VIDIOC_QUERY_DV_PRESET ioctls. Use
the DV Timings API (Digital Video (DV) Timings).

• VIDIOC_SUBDEV_G_CROP and VIDIOC_SUBDEV_S_CROP ioctls. Use
VIDIOC_SUBDEV_G_SELECTION and VIDIOC_SUBDEV_S_SELECTION, ioctl
VIDIOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION.

446 Chapter 7. Linux Media Infrastructure userspace API

https://linuxtv.org
https://linuxtv.org

Linux Userspace-api Documentation

7.2.7 Function Reference

V4L2 close()

Name

v4l2-close - Close a V4L2 device

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

Closes the device. Any I/O in progress is terminated and resources associated with
the file descriptor are freed. However data format parameters, current input or
output, control values or other properties remain unchanged.

Return Value

The function returns 0 on success, -1 on failure and the errno is set appropriately.
Possible error codes:

EBADF fd is not a valid open file descriptor.

V4L2 ioctl()

Name

v4l2-ioctl - Program a V4L2 device

7.2. Part I - Video for Linux API 447

Linux Userspace-api Documentation

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().

request V4L2 ioctl request code as defined in the videodev2.h header file, for
example VIDIOC_QUERYCAP.

argp Pointer to a function parameter, usually a structure.

Description

The ioctl() function is used to program V4L2 devices. The argument fdmust be an
open file descriptor. An ioctl request has encoded in it whether the argument is an
input, output or read/write parameter, and the size of the argument argp in bytes.
Macros and defines specifying V4L2 ioctl requests are located in the videodev2.
h header file. Applications should use their own copy, not include the version in
the kernel sources on the system they compile on. All V4L2 ioctl requests, their
respective function and parameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

When an ioctl that takes an output or read/write parameter fails, the parameter
remains unmodified.

ioctl VIDIOC_CREATE_BUFS

Name

VIDIOC_CREATE_BUFS - Create buffers for Memory Mapped or User Pointer or
DMA Buffer I/O

448 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, VIDIOC_CREATE_BUFS, struct v4l2_create_buffers *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_create_buffers.

Description

This ioctl is used to create buffers for memory mapped or user pointer or DMA
buffer I/O. It can be used as an alternative or in addition to the ioctl VID-
IOC_REQBUFS ioctl, when a tighter control over buffers is required. This ioctl
can be called multiple times to create buffers of different sizes.

To allocate the device buffers applications must initialize the relevant fields of the
struct v4l2_create_buffers structure. The count field must be set to the number
of requested buffers, the memory field specifies the requested I/O method and the
reserved array must be zeroed.

The format field specifies the image format that the buffers must be able to handle.
The application has to fill in this struct v4l2_format. Usually this will be done
using the VIDIOC_TRY_FMT or VIDIOC_G_FMT ioctls to ensure that the requested
format is supported by the driver. Based on the format’s type field the requested
buffer size (for single-planar) or plane sizes (for multi-planar formats) will be used
for the allocated buffers. The driver may return an error if the size(s) are not
supported by the hardware (usually because they are too small).

The buffers created by this ioctl will have as minimum size the size defined by the
format.pix.sizeimage field (or the corresponding fields for other format types).
Usually if the format.pix.sizeimage field is less than the minimum required for
the given format, then an error will be returned since drivers will typically not
allow this. If it is larger, then the value will be used as-is. In other words, the
driver may reject the requested size, but if it is accepted the driver will use it
unchanged.

When the ioctl is called with a pointer to this structure the driver will attempt
to allocate up to the requested number of buffers and store the actual number
allocated and the starting index in the count and the index fields respectively. On
return count can be smaller than the number requested.

v4l2_create_buffers

7.2. Part I - Video for Linux API 449

Linux Userspace-api Documentation

Table 103: struct v4l2_create_buffers
__u32 index The starting buffer index, returned by the

driver.
__u32 count The number of buffers requested or

granted. If count == 0, then ioctl VID-
IOC_CREATE_BUFS will set index to the
current number of created buffers, and it
will check the validity of memory and format.
type. If those are invalid -1 is returned and
errno is set to EINVAL error code, otherwise
ioctl VIDIOC_CREATE_BUFS returns 0. It
will never set errno to EBUSY error code in
this particular case.

__u32 memory Applications set this field to
V4L2_MEMORY_MMAP, V4L2_MEMORY_DMABUF or
V4L2_MEMORY_USERPTR. See v4l2_memory

struct v4l2_format format Filled in by the application, preserved by the
driver.

__u32 capabilities Set by the driver. If 0, then the driver doesn’
t support capabilities. In that case all you
know is that the driver is guaranteed to sup-
port V4L2_MEMORY_MMAP and might support
other v4l2_memory types. It will not support
any other capabilities. See here for a list of
the capabilities.
If you want to just query the capabilities
without making any other changes, then set
count to 0, memory to V4L2_MEMORY_MMAP and
format.type to the buffer type.

__u32 reserved[7] A place holder for future extensions. Drivers
and applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ENOMEM No memory to allocate buffers for memory mapped I/O.

EINVAL The buffer type (format.type field), requested I/O method (memory) or
format (format field) is not valid.

450 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

ioctl VIDIOC_CROPCAP

Name

VIDIOC_CROPCAP - Information about the video cropping and scaling abilities

Synopsis

int ioctl(int fd, VIDIOC_CROPCAP, struct v4l2_cropcap *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_cropcap.

Description

Applications use this function to query the cropping limits, the pixel aspect of im-
ages and to calculate scale factors. They set the type field of a v4l2_cropcap struc-
ture to the respective buffer (stream) type and call the ioctl VIDIOC_CROPCAP
ioctl with a pointer to this structure. Drivers fill the rest of the structure. The
results are constant except when switching the video standard. Remember this
switch can occur implicit when switching the video input or output.

This ioctl must be implemented for video capture or output devices that support
cropping and/or scaling and/or have non-square pixels, and for overlay devices.

v4l2_cropcap

7.2. Part I - Video for Linux API 451

Linux Userspace-api Documentation

Table 104: struct v4l2_cropcap
__u32 type Type of the data stream, set by the ap-

plication. Only these types are valid
here: V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
and V4L2_BUF_TYPE_VIDEO_OVERLAY. See
v4l2_buf_type and the note below.

struct v4l2_rect bounds Defines the window within capturing or out-
put is possible, this may exclude for exam-
ple the horizontal and vertical blanking ar-
eas. The cropping rectangle cannot exceed
these limits. Width and height are defined in
pixels, the driver writer is free to choose ori-
gin and units of the coordinate system in the
analog domain.

struct v4l2_rect defrect Default cropping rectangle, it shall cover the
“whole picture”. Assuming pixel aspect 1/1
this could be for example a 640 × 480 rect-
angle for NTSC, a 768 × 576 rectangle for
PAL and SECAM centered over the active pic-
ture area. The same co-ordinate system as
for bounds is used.

struct v4l2_fract pixelaspect This is the pixel aspect (y / x) when no scaling
is applied, the ratio of the actual sampling
frequency and the frequency required to get
square pixels.
When cropping coordinates refer to square
pixels, the driver sets pixelaspect to 1/1.
Other common values are 54/59 for PAL and
SECAM, 11/10 for NTSC sampled according
to [ITU BT.601].

Note: Unfortunately in the case of multiplanar
buffer types (V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE and
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) this API was messed up with regards to
how the v4l2_cropcap type field should be filled in. Some drivers only accepted
the _MPLANE buffer type while other drivers only accepted a non-multiplanar
buffer type (i.e. without the _MPLANE at the end).

Starting with kernel 4.13 both variations are allowed.

452 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 105: struct v4l2_rect
__s32 left Horizontal offset of the top, left corner of the

rectangle, in pixels.
__s32 top Vertical offset of the top, left corner of the

rectangle, in pixels.
__u32 width Width of the rectangle, in pixels.
__u32 height Height of the rectangle, in pixels.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_cropcap type is invalid.

ENODATA Cropping is not supported for this input or output.

ioctl VIDIOC_DBG_G_CHIP_INFO

Name

VIDIOC_DBG_G_CHIP_INFO - Identify the chips on a TV card

Synopsis

int ioctl(int fd, VIDIOC_DBG_G_CHIP_INFO, struct
v4l2_dbg_chip_info *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dbg_chip_info.

Description

Note: This is an Experimental API Elements interface and may change in the
future.

For driver debugging purposes this ioctl allows test applications to query the driver
about the chips present on the TV card. Regular applications must not use it.
When you found a chip specific bug, please contact the linux-media mailing list
(https://linuxtv.org/lists.php) so it can be fixed.

Additionally the Linux kernel must be compiled with the CONFIG_VIDEO_ADV_DEBUG
option to enable this ioctl.

7.2. Part I - Video for Linux API 453

https://linuxtv.org/lists.php

Linux Userspace-api Documentation

To query the driver applications must initialize the match.type and match.
addr or match.name fields of a struct v4l2_dbg_chip_info and call ioctl VID-
IOC_DBG_G_CHIP_INFO with a pointer to this structure. On success the driver
stores information about the selected chip in the name and flags fields.

When match.type is V4L2_CHIP_MATCH_BRIDGE, match.addr selects the nth bridge
‘chip’on the TV card. You can enumerate all chips by starting at zero and incre-
menting match.addr by one until ioctl VIDIOC_DBG_G_CHIP_INFO fails with an
EINVAL error code. The number zero always selects the bridge chip itself, e. g. the
chip connected to the PCI or USB bus. Non-zero numbers identify specific parts
of the bridge chip such as an AC97 register block.

When match.type is V4L2_CHIP_MATCH_SUBDEV, match.addr selects the nth sub-
device. This allows you to enumerate over all sub-devices.

On success, the name field will contain a chip name and the flags field will contain
V4L2_CHIP_FL_READABLE if the driver supports reading registers from the device
or V4L2_CHIP_FL_WRITABLE if the driver supports writing registers to the device.

We recommended the v4l2-dbg utility over calling this ioctl directly. It is avail-
able from the LinuxTV v4l-dvb repository; see https://linuxtv.org/repo/ for access
instructions.

Table 106: struct v4l2_dbg_match
__u32 type See Chip Match

Types for a list of
possible types.

union { (anonymous)
__u32 addr Match a chip by

this number, in-
terpreted accord-
ing to the type
field.

char name[32] Match a chip by
this name, inter-
preted according
to the type field.
Currently un-
used.

}

v4l2_dbg_chip_info

454 Chapter 7. Linux Media Infrastructure userspace API

https://linuxtv.org/repo/

Linux Userspace-api Documentation

Table 107: struct v4l2_dbg_chip_info
struct
v4l2_dbg_match

match How to match the chip, see struct
v4l2_dbg_match.

char name[32] The name of the chip.
__u32 flags Set by the driver. If V4L2_CHIP_FL_READABLE

is set, then the driver supports read-
ing registers from the device. If
V4L2_CHIP_FL_WRITABLE is set, then it
supports writing registers.

__u32 reserved[8] Reserved fields, both application and driver
must set these to 0.

Table 108: Chip Match Types
V4L2_CHIP_MATCH_BRIDGE 0 Match the nth chip on the card, zero for the

bridge chip. Does not match sub-devices.
V4L2_CHIP_MATCH_SUBDEV 4 Match the nth sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The match_type is invalid or no device could be matched.

ioctl VIDIOC_DBG_G_REGISTER, VIDIOC_DBG_S_REGISTER

Name

VIDIOC_DBG_G_REGISTER - VIDIOC_DBG_S_REGISTER - Read or write hardware
registers

Synopsis

int ioctl(int fd, VIDIOC_DBG_G_REGISTER, struct
v4l2_dbg_register *argp)

int ioctl(int fd, VIDIOC_DBG_S_REGISTER, const struct
v4l2_dbg_register *argp)

7.2. Part I - Video for Linux API 455

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dbg_register.

Description

Note: This is an Experimental API Elements interface and may change in the
future.

For driver debugging purposes these ioctls allow test applications to access hard-
ware registers directly. Regular applications must not use them.

Since writing or even reading registers can jeopardize the system security, its
stability and damage the hardware, both ioctls require superuser privileges. Ad-
ditionally the Linux kernel must be compiled with the CONFIG_VIDEO_ADV_DEBUG
option to enable these ioctls.

To write a register applications must initialize all fields of a struct
v4l2_dbg_register except for size and call VIDIOC_DBG_S_REGISTER with a
pointer to this structure. The match.type and match.addr or match.name fields
select a chip on the TV card, the reg field specifies a register number and the val
field the value to be written into the register.

To read a register applications must initialize the match.type, match.addr or
match.name and reg fields, and call VIDIOC_DBG_G_REGISTER with a pointer to this
structure. On success the driver stores the register value in the val field and the
size (in bytes) of the value in size.

When match.type is V4L2_CHIP_MATCH_BRIDGE, match.addr selects the nth non-
sub-device chip on the TV card. The number zero always selects the host chip, e.
g. the chip connected to the PCI or USB bus. You can find out which chips are
present with the ioctl VIDIOC_DBG_G_CHIP_INFO ioctl.

When match.type is V4L2_CHIP_MATCH_SUBDEV, match.addr selects the nth sub-
device.

These ioctls are optional, not all drivers may support them. However when a driver
supports these ioctls it must also support ioctl VIDIOC_DBG_G_CHIP_INFO. Con-
versely it may support VIDIOC_DBG_G_CHIP_INFO but not these ioctls.

VIDIOC_DBG_G_REGISTER and VIDIOC_DBG_S_REGISTER were introduced in Linux
2.6.21, but their API was changed to the one described here in kernel 2.6.29.

We recommended the v4l2-dbg utility over calling these ioctls directly. It is avail-
able from the LinuxTV v4l-dvb repository; see https://linuxtv.org/repo/ for access
instructions.

v4l2_dbg_match

456 Chapter 7. Linux Media Infrastructure userspace API

https://linuxtv.org/repo/

Linux Userspace-api Documentation

Table 109: struct v4l2_dbg_match
__u32 type See Chip Match

Types for a list of
possible types.

union { (anonymous)
__u32 addr Match a chip by

this number, in-
terpreted accord-
ing to the type
field.

char name[32] Match a chip by
this name, inter-
preted according
to the type field.
Currently un-
used.

}

v4l2_dbg_register

Table 110: struct v4l2_dbg_register
struct
v4l2_dbg_match

matchHow to match the chip, see v4l2_dbg_match.

__u32 size The register size in bytes.
__u64 reg A register number.
__u64 val The value read from, or to be written into the regis-

ter.

Table 111: Chip Match Types
V4L2_CHIP_MATCH_BRIDGE 0 Match the nth chip on the card, zero for the

bridge chip. Does not match sub-devices.
V4L2_CHIP_MATCH_SUBDEV 4 Match the nth sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EPERM Insufficient permissions. Root privileges are required to execute these
ioctls.

7.2. Part I - Video for Linux API 457

Linux Userspace-api Documentation

ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD

Name

VIDIOC_DECODER_CMD - VIDIOC_TRY_DECODER_CMD - Execute an decoder
command

Synopsis

int ioctl(int fd, VIDIOC_DECODER_CMD, struct v4l2_decoder_cmd *argp)

int ioctl(int fd, VIDIOC_TRY_DECODER_CMD, struct
v4l2_decoder_cmd *argp)

Arguments

fd File descriptor returned by open().

argp pointer to struct v4l2_decoder_cmd.

Description

These ioctls control an audio/video (usually MPEG-) decoder.
VIDIOC_DECODER_CMD sends a command to the decoder, VIDIOC_TRY_DECODER_CMD
can be used to try a command without actually executing it. To send a command
applications must initialize all fields of a struct v4l2_decoder_cmd and call
VIDIOC_DECODER_CMD or VIDIOC_TRY_DECODER_CMD with a pointer to this struc-
ture.

The cmd field must contain the command code. Some commands use the flags
field for additional information.

A write() or ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF call sends an implicit
START command to the decoder if it has not been started yet. Applies to both
queues of mem2mem decoders.

A close() or VIDIOC_STREAMOFF call of a streaming file descriptor sends an im-
plicit immediate STOP command to the decoder, and all buffered data is discarded.
Applies to both queues of mem2mem decoders.

In principle, these ioctls are optional, not all drivers may support them. They were
introduced in Linux 3.3. They are, however, mandatory for stateful mem2mem
decoders (as further documented in Memory-to-Memory Stateful Video Decoder
Interface).

v4l2_decoder_cmd

458 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 112: struct v4l2_decoder_cmd
__u32 cmd The

decoder
com-
mand,
see De-
coder
Com-
mands.

__u32 flags Flags
to go
with the
com-
mand.
If no
flags
are de-
fined
for this
com-
mand,
drivers
and
appli-
cations
must
set this
field to
zero.

union
{

(anonymous)

struct start Structure
contain-
ing
addi-
tional
data
for the
V4L2_DEC_CMD_START
com-
mand.

Continued on next page

7.2. Part I - Video for Linux API 459

Linux Userspace-api Documentation

Table 112 – continued from previous page
__s32 speed Playback

speed
and di-
rection.
The
play-
back
speed
is de-
fined as
speed/1000
of the
normal
speed.
So 1000
is nor-
mal
play-
back.
Neg-
ative
num-
bers
denote
reverse
play-
back, so
-1000
does
reverse
play-
back at
normal
speed.
Speeds
-1, 0
and 1
have
special
mean-
ings:
speed 0
is short-
hand
for
1000
(normal
play-
back).
A speed
of 1
steps
just one
frame
for-
ward, a
speed
of -1
steps
just one
frame
back.

Continued on next page

460 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 112 – continued from previous page
__u32 formatFormat

restric-
tions.
This
field
is set
by the
driver,
not the
appli-
cation.
Possible
val-
ues are
V4L2_DEC_START_FMT_NONE
if there
are no
format
restric-
tions or
V4L2_DEC_START_FMT_GOP
if the
decoder
oper-
ates
on full
GOPs
(Group
Of Pic-
tures).
This is
usually
the case
for re-
verse
play-
back:
the de-
coder
needs
full
GOPs,
which
it can
then
play in
reverse
order.
So to
imple-
ment
reverse
play-
back
the
appli-
cation
must
feed the
decoder
the last
GOP
in the
video
file,
then
the
GOP
before
that,
etc. etc.

Continued on next page

7.2. Part I - Video for Linux API 461

Linux Userspace-api Documentation

Table 112 – continued from previous page
struct stop Structure

contain-
ing
addi-
tional
data
for the
V4L2_DEC_CMD_STOP
com-
mand.

__u64 pts Stop
play-
back
at this
pts or
imme-
diately
if the
play-
back is
already
past
that
times-
tamp.
Leave
to 0
if you
want
to stop
after
the last
frame
was de-
coded.

struct raw
__u32 data[16]Reserved

for fu-
ture
exten-
sions.
Drivers
and
appli-
cations
must
set the
array to
zero.

Continued on next page

462 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 112 – continued from previous page
}

7.2. Part I - Video for Linux API 463

Linux Userspace-api Documentation

Table 113: Decoder Commands
V4L2_DEC_CMD_START 0 Start the decoder. When the decoder is already running or

paused, this commandwill just change the playback speed.
That means that calling V4L2_DEC_CMD_STARTwhen the de-
coder was paused will not resume the decoder. You have
to explicitly call V4L2_DEC_CMD_RESUME for that. This com-
mand has one flag: V4L2_DEC_CMD_START_MUTE_AUDIO. If
set, then audio will be muted when playing back at a non-
standard speed.
For a device implementing the Memory-to-Memory State-
ful Video Decoder Interface, once the drain sequence is
initiated with the V4L2_DEC_CMD_STOP command, it must
be driven to completion before this command can be in-
voked. Any attempt to invoke the commandwhile the drain
sequence is in progress will trigger an EBUSY error code.
The command may be also used to restart the decoder in
case of an implicit stop initiated by the decoder itself, with-
out the V4L2_DEC_CMD_STOP being called explicitly. See
Memory-to-Memory Stateful Video Decoder Interface for
more details.

V4L2_DEC_CMD_STOP 1 Stop the decoder. When the decoder is already stopped,
this command does nothing. This command has two
flags: if V4L2_DEC_CMD_STOP_TO_BLACK is set, then the
decoder will set the picture to black after it stopped
decoding. Otherwise the last image will repeat. If
V4L2_DEC_CMD_STOP_IMMEDIATELY is set, then the decoder
stops immediately (ignoring the pts value), otherwise it
will keep decoding until timestamp >= pts or until the last
of the pending data from its internal buffers was decoded.
For a device implementing the Memory-to-Memory State-
ful Video Decoder Interface, the command will initiate
the drain sequence as documented in Memory-to-Memory
Stateful Video Decoder Interface. No flags or other argu-
ments are accepted in this case. Any attempt to invoke the
command again before the sequence completes will trig-
ger an EBUSY error code.

V4L2_DEC_CMD_PAUSE 2 Pause the decoder. When the decoder has not been
started yet, the driver will return an EPERM error
code. When the decoder is already paused, this com-
mand does nothing. This command has one flag: if
V4L2_DEC_CMD_PAUSE_TO_BLACK is set, then set the de-
coder output to black when paused.

V4L2_DEC_CMD_RESUME 3 Resume decoding after a PAUSE command. When the de-
coder has not been started yet, the driver will return an
EPERM error code. When the decoder is already running,
this command does nothing. No flags are defined for this
command.

V4L2_DEC_CMD_FLUSH 4 Flush any held capture buffers. Only valid for stateless
decoders. This command is typically used when the appli-
cation reached the end of the stream and the last output
buffer had the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF
flag set. This would prevent dequeueing the capture buffer
containing the last decoded frame. So this command
can be used to explicitly flush that final decoded frame.
This command does nothing if there are no held capture
buffers.

464 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EBUSY A drain sequence of a device implementing the Memory-to-Memory State-
ful Video Decoder Interface is still in progress. It is not allowed to issue an-
other decoder command until it completes.

EINVAL The cmd field is invalid.
EPERM The application sent a PAUSE or RESUME command when the decoder

was not running.

ioctl VIDIOC_DQEVENT

Name

VIDIOC_DQEVENT - Dequeue event

Synopsis

int ioctl(int fd, VIDIOC_DQEVENT, struct v4l2_event *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_event.

Description

Dequeue an event from a video device. No input is required for this ioctl. All the
fields of the struct v4l2_event structure are filled by the driver. The file handle
will also receive exceptions which the application may get by e.g. using the select
system call.

v4l2_event

7.2. Part I - Video for Linux API 465

Linux Userspace-api Documentation

Table 114: struct v4l2_event
__u32 type Type of

the event,
see Event
Types.

union { u
struct
v4l2_event_vsync

vsync Event data
for event
V4L2_EVENT_VSYNC.

struct
v4l2_event_ctrl

ctrl Event data
for event
V4L2_EVENT_CTRL.

struct
v4l2_event_frame_sync

frame_sync Event data
for event
V4L2_EVENT_FRAME_SYNC.

struct
v4l2_event_motion_det

motion_det Event data
for event
V4L2_EVENT_MOTION_DET.

struct
v4l2_event_src_change

src_change Event data
for event
V4L2_EVENT_SOURCE_CHANGE.

__u8 data[64] Event data.
Defined
by the
event type.
The union
should be
used to de-
fine easily
accessible
type for
events.

}
__u32 pending Number

of pending
events ex-
cluding this
one.

__u32 sequence Event se-
quence
number.
The se-
quence
number
is incre-
mented
for every
subscribed
event that
takes place.
If sequence
numbers
are not con-
tiguous it
means that
events have
been lost.

struct timespec timestamp Event
timestamp.
The times-
tamp has
been taken
from the
CLOCK_MONOTONIC
clock. To
access the
same clock
outside
V4L2, use
clock_gettime().

u32 id The ID asso-
ciated with
the event
source. If
the event
does not
have an
associated
ID (this de-
pends on
the event
type), then
this is 0.

__u32 reserved[8] Reserved
for future
extensions.
Drivers
must set
the array to
zero.

466 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 115: Event Types
V4L2_EVENT_ALL 0 All events. V4L2_EVENT_ALL is valid only

for VIDIOC_UNSUBSCRIBE_EVENT for un-
subscribing all events at once.

V4L2_EVENT_VSYNC 1 This event is triggered on the vertical sync.
This event has a struct v4l2_event_vsync
associated with it.

V4L2_EVENT_EOS 2 This event is triggered when the end of a
stream is reached. This is typically used with
MPEG decoders to report to the application
when the last of the MPEG stream has been
decoded.

V4L2_EVENT_CTRL 3 This event requires that the id matches the
control ID from which you want to receive
events. This event is triggered if the con-
trol’s value changes, if a button control is
pressed or if the control’s flags change. This
event has a struct v4l2_event_ctrl associ-
ated with it. This struct contains much of the
same information as struct v4l2_queryctrl
and struct v4l2_control.
If the event is generated due to a call to
VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS,
then the event will not be sent to the
file handle that called the ioctl function.
This prevents nasty feedback loops. If you
do want to get the event, then set the
V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag.
This event type will ensure that no infor-
mation is lost when more events are raised
than there is room internally. In that case
the struct v4l2_event_ctrl of the second-
oldest event is kept, but the changes field
of the second-oldest event is ORed with the
changes field of the oldest event.

V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception of
a frame has begun. This event has a struct
v4l2_event_frame_sync associated with it.
If the hardware needs to be stopped in
the case of a buffer underrun it might not
be able to generate this event. In such
cases the frame_sequence field in struct
v4l2_event_frame_sync will not be incre-
mented. This causes two consecutive frame
sequence numbers to have n times frame in-
terval in between them.

Continued on next page

7.2. Part I - Video for Linux API 467

Linux Userspace-api Documentation

Table 115 – continued from previous page
V4L2_EVENT_SOURCE_CHANGE 5 This event is triggered when a source param-

eter change is detected during runtime by
the video device. It can be a runtime reso-
lution change triggered by a video decoder
or the format change happening on an input
connector. This event requires that the id
matches the input index (when used with a
video device node) or the pad index (when
used with a subdevice node) from which you
want to receive events.
This event has a struct
v4l2_event_src_change associated with
it. The changes bitfield denotes what has
changed for the subscribed pad. If multiple
events occurred before application could
dequeue them, then the changes will have
the ORed value of all the events generated.

V4L2_EVENT_MOTION_DET 6 Triggered whenever the motion detec-
tion state for one or more of the re-
gions changes. This event has a struct
v4l2_event_motion_det associated with it.

V4L2_EVENT_PRIVATE_START 0x08000000Base event number for driver-private events.

v4l2_event_vsync

Table 116: struct v4l2_event_vsync
__u8 field The upcoming field. See enum v4l2_field.

v4l2_event_ctrl

468 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 117: struct v4l2_event_ctrl
__u32 changes A bit-

mask
that tells
what has
changed.
See
Control
Changes.

__u32 type The type
of the
con-
trol. See
enum
v4l2_ctrl_type.

union { (anonymous)
__s32 value The 32-

bit value
of the
control
for 32-bit
control
types.
This is
0 for
string
controls
since the
value of
a string
can-
not be
passed
using
ioctl
VID-
IOC_DQEVENT.

__s64 value64 The 64-
bit value
of the
control
for 64-bit
control
types.

}
__u32 flags The

control
flags.
See
Control
Flags.

__s32 minimum The min-
imum
value of
the con-
trol. See
struct
v4l2_queryctrl.

__s32 maximum The max-
imum
value of
the con-
trol. See
struct
v4l2_queryctrl.

__s32 step The step
value of
the con-
trol. See
struct
v4l2_queryctrl.

__s32 default_value The de-
fault
value
value of
the con-
trol. See
struct
v4l2_queryctrl.

7.2. Part I - Video for Linux API 469

Linux Userspace-api Documentation

v4l2_event_frame_sync

Table 118: struct v4l2_event_frame_sync
__u32 frame_sequence The sequence number of the frame being re-

ceived.

v4l2_event_src_change

Table 119: struct v4l2_event_src_change
__u32 changes A bitmask that tells what has changed. See

Source Changes.

v4l2_event_motion_det

Table 120: struct v4l2_event_motion_det
__u32 flags Currently only one flag is available: if

V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ is set,
then the frame_sequence field is valid, oth-
erwise that field should be ignored.

__u32 frame_sequence The sequence number of the frame
being received. Only valid if the
V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ flag
was set.

__u32 region_mask The bitmask of the regions that re-
ported motion. There is at least one
region. If this field is 0, then no mo-
tion was detected at all. If there is no
V4L2_CID_DETECT_MD_REGION_GRID control
(see Detect Control Reference) to assign a
different region to each cell in the motion
detection grid, then that all cells are au-
tomatically assigned to the default region
0.

Table 121: Control Changes
V4L2_EVENT_CTRL_CH_VALUE 0x0001 This control event was triggered because

the value of the control changed. Spe-
cial cases: Volatile controls do no gen-
erate this event; If a control has the
V4L2_CTRL_FLAG_EXECUTE_ON_WRITE flag
set, then this event is sent as well, regard-
less its value.

V4L2_EVENT_CTRL_CH_FLAGS 0x0002 This control event was triggered because the
control flags changed.

V4L2_EVENT_CTRL_CH_RANGE 0x0004 This control event was triggered because
the minimum, maximum, step or the default
value of the control changed.

470 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 122: Source Changes
V4L2_EVENT_SRC_CH_RESOLUTION 0x0001 This event gets triggered when a resolution

change is detected at an input. This can
come from an input connector or from a video
decoder. Applications will have to query the
new resolution (if any, the signal may also
have been lost).
For stateful decoders follow the guide-
lines in Memory-to-Memory Stateful Video
Decoder Interface. Video Capture de-
vices have to query the new timings using
ioctl VIDIOC_QUERY_DV_TIMINGS or VID-
IOC_QUERYSTD.
Important: even if the new video timings
appear identical to the old ones, receiving
this event indicates that there was an issue
with the video signal and you must stop and
restart streaming (VIDIOC_STREAMOFF fol-
lowed by VIDIOC_STREAMON). The reason
is that many Video Capture devices are not
able to recover from a temporary loss of sig-
nal and so restarting streaming I/O is re-
quired in order for the hardware to synchro-
nize to the video signal.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP

Name

VIDIOC_DV_TIMINGS_CAP - VIDIOC_SUBDEV_DV_TIMINGS_CAP - The capabili-
ties of the Digital Video receiver/transmitter

Synopsis

int ioctl(int fd, VIDIOC_DV_TIMINGS_CAP, struct
v4l2_dv_timings_cap *argp)

int ioctl(int fd, VIDIOC_SUBDEV_DV_TIMINGS_CAP, struct
v4l2_dv_timings_cap *argp)

7.2. Part I - Video for Linux API 471

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dv_timings_cap.

Description

To query the capabilities of the DV receiver/transmitter applications initialize the
pad field to 0, zero the reserved array of struct v4l2_dv_timings_cap and call
the VIDIOC_DV_TIMINGS_CAP ioctl on a video node and the driver will fill in the
structure.

Note: Drivers may return different values after switching the video input or
output.

When implemented by the driver DV capabilities of subdevices can be queried by
calling the VIDIOC_SUBDEV_DV_TIMINGS_CAP ioctl directly on a subdevice node.
The capabilities are specific to inputs (for DV receivers) or outputs (for DV
transmitters), applications must specify the desired pad number in the struct
v4l2_dv_timings_cap pad field and zero the reserved array. Attempts to query
capabilities on a pad that doesn’t support them will return an EINVAL error code.

v4l2_bt_timings_cap

Table 123: struct v4l2_bt_timings_cap
__u32 min_width Minimum width of the active video in pixels.
__u32 max_width Maximum width of the active video in pixels.
__u32 min_height Minimum height of the active video in lines.
__u32 max_height Maximum height of the active video in lines.
__u64 min_pixelclockMinimum pixelclock frequency in Hz.
__u64 max_pixelclockMaximum pixelclock frequency in Hz.
__u32 standards The video standard(s) supported by the hardware. See DV BT Timing

standards for a list of standards.
__u32 capabilities Several flags giving more information about the capabilities. See DV

BT Timing capabilities for a description of the flags.
__u32 reserved[16] Reserved for future extensions. Drivers must set the array to zero.

v4l2_dv_timings_cap

472 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 124: struct v4l2_dv_timings_cap
__u32type Type of DV tim-

ings as listed in
DV Timing types.

__u32pad Pad number as
reported by the
media controller
API. This field is
only used when
operating on a
subdevice node.
When operating
on a video node
applications must
set this field to
zero.

__u32reserved[2] Reserved for fu-
ture extensions.
Drivers and appli-
cations must set
the array to zero.

union
{

(anonymous)

struct
v4l2_bt_timings_cap

bt BT.656/1120 tim-
ings capabilities
of the hardware.

__u32raw_data[32]
}

Table 125: DV BT Timing capabilities
Flag Description

V4L2_DV_BT_CAP_INTERLACED Interlaced formats are supported.
V4L2_DV_BT_CAP_PROGRESSIVE Progressive formats are supported.
V4L2_DV_BT_CAP_REDUCED_BLANKINGCVT/GTF specific: the timings can make use of re-

duced blanking (CVT) or the‘Secondary GTF’curve
(GTF).

V4L2_DV_BT_CAP_CUSTOM Can support non-standard timings, i.e. timings not be-
longing to the standards set in the standards field.

7.2. Part I - Video for Linux API 473

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_ENCODER_CMD, VIDIOC_TRY_ENCODER_CMD

Name

VIDIOC_ENCODER_CMD - VIDIOC_TRY_ENCODER_CMD - Execute an encoder
command

Synopsis

int ioctl(int fd, VIDIOC_ENCODER_CMD, struct v4l2_encoder_cmd *argp)

int ioctl(int fd, VIDIOC_TRY_ENCODER_CMD, struct
v4l2_encoder_cmd *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_encoder_cmd.

Description

These ioctls control an audio/video (usually MPEG-) encoder.
VIDIOC_ENCODER_CMD sends a command to the encoder, VIDIOC_TRY_ENCODER_CMD
can be used to try a command without actually executing it.

To send a command applications must initialize all fields of a struct
v4l2_encoder_cmd and call VIDIOC_ENCODER_CMD or VIDIOC_TRY_ENCODER_CMD
with a pointer to this structure.

The cmd field must contain the command code. The flags field is cur-
rently only used by the STOP command and contains one bit: If the
V4L2_ENC_CMD_STOP_AT_GOP_END flag is set, encoding will continue until the end
of the current Group Of Pictures, otherwise it will stop immediately.

A read() or VIDIOC_STREAMON call sends an implicit START command to the
encoder if it has not been started yet. After a STOP command, read() calls will
read the remaining data buffered by the driver. When the buffer is empty, read()
will return zero and the next read() call will restart the encoder.

A close() or VIDIOC_STREAMOFF call of a streaming file descriptor sends an im-
plicit immediate STOP to the encoder, and all buffered data is discarded.

These ioctls are optional, not all drivers may support them. They were introduced
in Linux 2.6.21.

474 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

v4l2_encoder_cmd

Table 126: struct v4l2_encoder_cmd
__u32 cmd The encoder command, see Encoder Com-

mands.
__u32 flags Flags to go with the command, see Encoder

Command Flags. If no flags are defined for
this command, drivers and applications must
set this field to zero.

__u32 data[8] Reserved for future extensions. Drivers and
applications must set the array to zero.

Table 127: Encoder Commands
V4L2_ENC_CMD_START 0 Start the encoder. When the encoder is al-

ready running or paused, this command does
nothing. No flags are defined for this com-
mand.

V4L2_ENC_CMD_STOP 1 Stop the encoder. When the
V4L2_ENC_CMD_STOP_AT_GOP_END flag is
set, encoding will continue until the end of
the current Group Of Pictures, otherwise
encoding will stop immediately. When the
encoder is already stopped, this command
does nothing. mem2mem encoders will
send a V4L2_EVENT_EOS event when the
last frame has been encoded and all frames
are ready to be dequeued and will set the
V4L2_BUF_FLAG_LAST buffer flag on the last
buffer of the capture queue to indicate there
will be no new buffers produced to dequeue.
This buffer may be empty, indicated by
the driver setting the bytesused field to
0. Once the V4L2_BUF_FLAG_LAST flag was
set, the VIDIOC_DQBUF ioctl will not block
anymore, but return an EPIPE error code.

V4L2_ENC_CMD_PAUSE 2 Pause the encoder. When the encoder has
not been started yet, the driver will return
an EPERM error code. When the encoder is
already paused, this command does nothing.
No flags are defined for this command.

V4L2_ENC_CMD_RESUME 3 Resume encoding after a PAUSE command.
When the encoder has not been started yet,
the driver will return an EPERM error code.
When the encoder is already running, this
command does nothing. No flags are defined
for this command.

7.2. Part I - Video for Linux API 475

Linux Userspace-api Documentation

Table 128: Encoder Command Flags
V4L2_ENC_CMD_STOP_AT_GOP_END 0x0001 Stop encoding at the end of the current

Group Of Pictures, rather than immediately.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The cmd field is invalid.
EPERM The application sent a PAUSE or RESUME command when the encoder

was not running.

ioctl VIDIOC_ENUMAUDIO

Name

VIDIOC_ENUMAUDIO - Enumerate audio inputs

Synopsis

int ioctl(int fd, VIDIOC_ENUMAUDIO, struct v4l2_audio *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audio.

Description

To query the attributes of an audio input applications initialize the index field
and zero out the reserved array of a struct v4l2_audio and call the ioctl VID-
IOC_ENUMAUDIO ioctl with a pointer to this structure. Drivers fill the rest of
the structure or return an EINVAL error code when the index is out of bounds. To
enumerate all audio inputs applications shall begin at index zero, incrementing by
one until the driver returns EINVAL.

See VIDIOC_G_AUDIO for a description of struct v4l2_audio.

476 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The number of the audio input is out of bounds.

ioctl VIDIOC_ENUMAUDOUT

Name

VIDIOC_ENUMAUDOUT - Enumerate audio outputs

Synopsis

int ioctl(int fd, VIDIOC_ENUMAUDOUT, struct v4l2_audioout *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audioout.

Description

To query the attributes of an audio output applications initialize the index
field and zero out the reserved array of a struct v4l2_audioout and call the
VIDIOC_G_AUDOUT ioctl with a pointer to this structure. Drivers fill the rest of
the structure or return an EINVAL error code when the index is out of bounds. To
enumerate all audio outputs applications shall begin at index zero, incrementing
by one until the driver returns EINVAL.

Note: Connectors on a TV card to loop back the received audio signal to a sound
card are not audio outputs in this sense.

See VIDIOC_G_AUDIOout for a description of struct v4l2_audioout.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The number of the audio output is out of bounds.

7.2. Part I - Video for Linux API 477

Linux Userspace-api Documentation

ioctl VIDIOC_ENUM_DV_TIMINGS, VIDIOC_SUBDEV_ENUM_DV_TIMINGS

Name

VIDIOC_ENUM_DV_TIMINGS - VIDIOC_SUBDEV_ENUM_DV_TIMINGS - Enumer-
ate supported Digital Video timings

Synopsis

int ioctl(int fd, VIDIOC_ENUM_DV_TIMINGS, struct
v4l2_enum_dv_timings *argp)

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_DV_TIMINGS, struct
v4l2_enum_dv_timings *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_enum_dv_timings.

Description

While some DV receivers or transmitters support a wide range of timings, others
support only a limited number of timings. With this ioctl applications can enu-
merate a list of known supported timings. Call ioctl VIDIOC_DV_TIMINGS_CAP,
VIDIOC_SUBDEV_DV_TIMINGS_CAP to check if it also supports other standards
or even custom timings that are not in this list.

To query the available timings, applications initialize the index field, set the pad
field to 0, zero the reserved array of struct v4l2_enum_dv_timings and call the
VIDIOC_ENUM_DV_TIMINGS ioctl on a video node with a pointer to this structure.
Drivers fill the rest of the structure or return an EINVAL error code when the index
is out of bounds. To enumerate all supported DV timings, applications shall begin
at index zero, incrementing by one until the driver returns EINVAL.

Note: Drivers may enumerate a different set of DV timings after switching the
video input or output.

When implemented by the driver DV timings of subdevices can be queried by
calling the VIDIOC_SUBDEV_ENUM_DV_TIMINGS ioctl directly on a subdevice node.
The DV timings are specific to inputs (for DV receivers) or outputs (for DV
transmitters), applications must specify the desired pad number in the struct
v4l2_enum_dv_timings pad field. Attempts to enumerate timings on a pad that
doesn’t support them will return an EINVAL error code.

v4l2_enum_dv_timings

478 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 129: struct v4l2_enum_dv_timings
__u32 index Number of the DV timings, set by the appli-

cation.
__u32 pad Pad number as reported by the media con-

troller API. This field is only used when op-
erating on a subdevice node. When operat-
ing on a video node applications must set this
field to zero.

__u32 reserved[2] Reserved for future extensions. Drivers and
applications must set the array to zero.

struct
v4l2_dv_timings

timings The timings.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_enum_dv_timings index is out of bounds or the pad num-
ber is invalid.

ENODATA Digital video presets are not supported for this input or output.

ioctl VIDIOC_ENUM_FMT

Name

VIDIOC_ENUM_FMT - Enumerate image formats

Synopsis

int ioctl(int fd, VIDIOC_ENUM_FMT, struct v4l2_fmtdesc *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_fmtdesc.

7.2. Part I - Video for Linux API 479

Linux Userspace-api Documentation

Description

To enumerate image formats applications initialize the type, mbus_code and index
fields of struct v4l2_fmtdesc and call the ioctl VIDIOC_ENUM_FMT ioctl with a
pointer to this structure. Drivers fill the rest of the structure or return an EINVAL
error code. All formats are enumerable by beginning at index zero and increment-
ing by one until EINVAL is returned. If applicable, drivers shall return formats in
preference order, where preferred formats are returned before (that is, with lower
index value) less-preferred formats.

Depending on the V4L2_CAP_IO_MC capability, the mbus_code field is handled dif-
ferently:

1) V4L2_CAP_IO_MC is not set (also known as a ‘video-node-centric’driver)
Applications shall initialize the mbus_code field to zero and drivers shall ig-
nore the value of the field.

Drivers shall enumerate all image formats.

Note: After switching the input or output the list of enumerated image for-
mats may be different.

2) V4L2_CAP_IO_MC is set (also known as an ‘MC-centric’driver)
If the mbus_code field is zero, then all image formats shall be enumerated.

If the mbus_code field is initialized to a valid (non-zero) media bus format
code, then drivers shall restrict enumeration to only the image formats that
can produce (for video output devices) or be produced from (for video capture
devices) that media bus code. If the mbus_code is unsupported by the driver,
then EINVAL shall be returned.

Regardless of the value of the mbus_code field, the enumerated image formats
shall not depend on the active configuration of the video device or device
pipeline.

v4l2_fmtdesc

480 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 130: struct v4l2_fmtdesc
__u32 index Number of the format in the enumeration, set

by the application. This is in no way related
to the pixelformat field.

__u32 type Type of the data stream, set by the ap-
plication. Only these types are valid
here: V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE,
V4L2_BUF_TYPE_VIDEO_OVERLAY,
V4L2_BUF_TYPE_SDR_CAPTURE,
V4L2_BUF_TYPE_SDR_OUTPUT,
V4L2_BUF_TYPE_META_CAPTURE and
V4L2_BUF_TYPE_META_OUTPUT. See
v4l2_buf_type.

__u32 flags See Image Format Description Flags
__u8 description[32] Description of the format, a NUL-terminated

ASCII string. This information is intended for
the user, for example: “YUV 4:2:2”.

__u32 pixelformat The image format identifier. This is a
four character code as computed by the
v4l2_fourcc() macro:

#define v4l2_fourcc(a,b,c,d)
(((__u32)(a)<<0)|((__u32)(b)<<8)|((__u32)(c)<<16)|((__u32)(d)<<24))
Several image formats are already defined by this specification in Image Formats.

Attention: These codes are not the same as those used in the Windows world.

__u32 mbus_code Media bus code restricting the enumer-
ated formats, set by the application. Only
applicable to drivers that advertise the
V4L2_CAP_IO_MC capability, shall be 0 other-
wise.

__u32 reserved[3] Reserved for future extensions. Drivers must
set the array to zero.

7.2. Part I - Video for Linux API 481

Linux Userspace-api Documentation

Table 131: Image Format Description Flags
V4L2_FMT_FLAG_COMPRESSED 0x0001 This is a compressed format.
V4L2_FMT_FLAG_EMULATED 0x0002 This format is not native to the device but

emulated through software (usually libv4l2),
where possible try to use a native format in-
stead for better performance.

V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM0x0004 The hardware decoder for this compressed
bytestream format (aka coded format) is ca-
pable of parsing a continuous bytestream.
Applications do not need to parse the
bytestream themselves to find the bound-
aries between frames/fields. This flag
can only be used in combination with the
V4L2_FMT_FLAG_COMPRESSED flag, since this
applies to compressed formats only. This flag
is valid for stateful decoders only.

V4L2_FMT_FLAG_DYN_RESOLUTION 0x0008 Dynamic resolution switching is sup-
ported by the device for this compressed
bytestream format (aka coded format).
It will notify the user via the event
V4L2_EVENT_SOURCE_CHANGE when changes
in the video parameters are detected. This
flag can only be used in combination with
the V4L2_FMT_FLAG_COMPRESSED flag, since
this applies to compressed formats only. It
is also only applies to stateful codecs.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_fmtdesc type is not supported or the index is out of
bounds.

If V4L2_CAP_IO_MC is set and the specified mbus_code is unsupported, then
also return this error code.

ioctl VIDIOC_ENUM_FRAMESIZES

Name

VIDIOC_ENUM_FRAMESIZES - Enumerate frame sizes

482 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, VIDIOC_ENUM_FRAMESIZES, struct
v4l2_frmsizeenum *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frmsizeenum that contains an index and pixel format
and receives a frame width and height.

Description

This ioctl allows applications to enumerate all frame sizes (i. e. width and height
in pixels) that the device supports for the given pixel format.

The supported pixel formats can be obtained by using the ioctl VID-
IOC_ENUM_FMT function.

The return value and the content of the v4l2_frmsizeenum.type field depend on
the type of frame sizes the device supports. Here are the semantics of the function
for the different cases:

• Discrete: The function returns success if the given index value (zero-
based) is valid. The application should increase the index by one for each
call until EINVAL is returned. The v4l2_frmsizeenum.type field is set to
V4L2_FRMSIZE_TYPE_DISCRETE by the driver. Of the union only the discrete
member is valid.

• Step-wise: The function returns success if the given index value is zero and
EINVAL for any other index value. The v4l2_frmsizeenum.type field is set to
V4L2_FRMSIZE_TYPE_STEPWISE by the driver. Of the union only the stepwise
member is valid.

• Continuous: This is a special case of the step-wise type above. The
function returns success if the given index value is zero and EINVAL
for any other index value. The v4l2_frmsizeenum.type field is set to
V4L2_FRMSIZE_TYPE_CONTINUOUS by the driver. Of the union only the
stepwise member is valid and the step_width and step_height values are
set to 1.

When the application calls the function with index zero, it must check the type field
to determine the type of frame size enumeration the device supports. Only for the
V4L2_FRMSIZE_TYPE_DISCRETE type does it make sense to increase the index value
to receive more frame sizes.

Note: The order in which the frame sizes are returned has no special meaning.
In particular does it not say anything about potential default format sizes.

Applications can assume that the enumeration data does not change without any
interaction from the application itself. This means that the enumeration data is

7.2. Part I - Video for Linux API 483

Linux Userspace-api Documentation

consistent if the application does not perform any other ioctl calls while it runs
the frame size enumeration.

Structs

In the structs below, IN denotes a value that has to be filled in by the application,
OUT denotes values that the driver fills in. The application should zero out all
members except for the IN fields.

v4l2_frmsize_discrete

Table 132: struct v4l2_frmsize_discrete
__u32 width Width of the frame [pixel].
__u32 height Height of the frame [pixel].

v4l2_frmsize_stepwise

Table 133: struct v4l2_frmsize_stepwise
__u32 min_width Minimum frame width [pixel].
__u32 max_width Maximum frame width [pixel].
__u32 step_width Frame width step size [pixel].
__u32 min_height Minimum frame height [pixel].
__u32 max_height Maximum frame height [pixel].
__u32 step_height Frame height step size [pixel].

v4l2_frmsizeenum

484 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 134: struct v4l2_frmsizeenum
__u32 index IN: Index

of the given
frame size
in the enu-
meration.

__u32 pixel_format IN: Pixel
format for
which the
frame sizes
are enu-
merated.

__u32 type OUT:
Frame
size type
the device
supports.

union
{

(anonymous) OUT:
Frame
size with
the given
index.

struct
v4l2_frmsize_discrete

discrete

struct
v4l2_frmsize_stepwise

stepwise

}
__u32 reserved[2] Reserved

space for
future use.
Must be
zeroed by
drivers and
applica-
tions.

Enums

v4l2_frmsizetypes

Table 135: enum v4l2_frmsizetypes
V4L2_FRMSIZE_TYPE_DISCRETE 1 Discrete frame size.
V4L2_FRMSIZE_TYPE_CONTINUOUS 2 Continuous frame size.
V4L2_FRMSIZE_TYPE_STEPWISE 3 Step-wise defined frame size.

7.2. Part I - Video for Linux API 485

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_ENUM_FRAMEINTERVALS

Name

VIDIOC_ENUM_FRAMEINTERVALS - Enumerate frame intervals

Synopsis

int ioctl(int fd, VIDIOC_ENUM_FRAMEINTERVALS, struct
v4l2_frmivalenum *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frmivalenum that contains a pixel format and size and
receives a frame interval.

Description

This ioctl allows applications to enumerate all frame intervals that the device sup-
ports for the given pixel format and frame size.

The supported pixel formats and frame sizes can be obtained by using the ioctl
VIDIOC_ENUM_FMT and ioctl VIDIOC_ENUM_FRAMESIZES functions.

The return value and the content of the v4l2_frmivalenum.type field depend on
the type of frame intervals the device supports. Here are the semantics of the
function for the different cases:

• Discrete: The function returns success if the given index value (zero-
based) is valid. The application should increase the index by one for each
call until EINVAL is returned. The v4l2_frmivalenum.type field is set to
V4L2_FRMIVAL_TYPE_DISCRETE by the driver. Of the union only the dis-
crete member is valid.

• Step-wise: The function returns success if the given index value is zero and
EINVAL for any other index value. The v4l2_frmivalenum.type field is set to
V4L2_FRMIVAL_TYPE_STEPWISE by the driver. Of the union only the stepwise
member is valid.

• Continuous: This is a special case of the step-wise type above. The
function returns success if the given index value is zero and EINVAL
for any other index value. The v4l2_frmivalenum.type field is set to

486 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_FRMIVAL_TYPE_CONTINUOUS by the driver. Of the union only the
stepwise member is valid and the step value is set to 1.

When the application calls the function with index zero, it must check the type field
to determine the type of frame interval enumeration the device supports. Only for
the V4L2_FRMIVAL_TYPE_DISCRETE type does it make sense to increase the index
value to receive more frame intervals.

Note: The order in which the frame intervals are returned has no special mean-
ing. In particular does it not say anything about potential default frame intervals.

Applications can assume that the enumeration data does not change without any
interaction from the application itself. This means that the enumeration data is
consistent if the application does not perform any other ioctl calls while it runs
the frame interval enumeration.

Note: Frame intervals and frame rates: The V4L2 API uses frame intervals
instead of frame rates. Given the frame interval the frame rate can be computed
as follows:

frame_rate = 1 / frame_interval

Structs

In the structs below, IN denotes a value that has to be filled in by the application,
OUT denotes values that the driver fills in. The application should zero out all
members except for the IN fields.

v4l2_frmival_stepwise

Table 136: struct v4l2_frmival_stepwise
struct v4l2_fract min Minimum frame interval [s].
struct v4l2_fract max Maximum frame interval [s].
struct v4l2_fract step Frame interval step size [s].

v4l2_frmivalenum

7.2. Part I - Video for Linux API 487

Linux Userspace-api Documentation

Table 137: struct v4l2_frmivalenum
__u32 index IN: Index of the given frame interval in the enumeration.
__u32 pixel_format IN: Pixel format for which the frame intervals are enumer-

ated.
__u32 width IN: Frame width for which the frame intervals are enumer-

ated.
__u32 height IN: Frame height for which the frame intervals are enumer-

ated.
__u32 type OUT: Frame interval type the device supports.
union { (anonymous) OUT: Frame interval with the given index.
struct
v4l2_fract

discrete Frame interval [s].

struct
v4l2_frmival_stepwise

stepwise

}
__u32 reserved[2] Reserved space for future use. Must be ze-

roed by drivers and applications.

Enums

v4l2_frmivaltypes

Table 138: enum v4l2_frmivaltypes
V4L2_FRMIVAL_TYPE_DISCRETE 1 Discrete frame interval.
V4L2_FRMIVAL_TYPE_CONTINUOUS 2 Continuous frame interval.
V4L2_FRMIVAL_TYPE_STEPWISE 3 Step-wise defined frame interval.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_ENUM_FREQ_BANDS

Name

VIDIOC_ENUM_FREQ_BANDS - Enumerate supported frequency bands

488 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, VIDIOC_ENUM_FREQ_BANDS, struct
v4l2_frequency_band *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frequency_band.

Description

Enumerates the frequency bands that a tuner or modulator supports. To
do this applications initialize the tuner, type and index fields, and zero out
the reserved array of a struct v4l2_frequency_band and call the ioctl VID-
IOC_ENUM_FREQ_BANDS ioctl with a pointer to this structure.

This ioctl is supported if the V4L2_TUNER_CAP_FREQ_BANDS capability of the corre-
sponding tuner/modulator is set.

v4l2_frequency_band

7.2. Part I - Video for Linux API 489

Linux Userspace-api Documentation

Table 139: struct v4l2_frequency_band
__u32 tuner The tuner or modulator index number. This is the same

value as in the struct v4l2_input tuner field and the struct
v4l2_tuner index field, or the struct v4l2_output modulator
field and the struct v4l2_modulator index field.

__u32 type The tuner type. This is the same value as in the
struct v4l2_tuner type field. The type must be set to
V4L2_TUNER_RADIO for /dev/radioX device nodes, and to
V4L2_TUNER_ANALOG_TV for all others. Set this field to
V4L2_TUNER_RADIO for modulators (currently only radio mod-
ulators are supported). See v4l2_tuner_type

__u32 index Identifies the frequency band, set by the application.
__u32 capability The tuner/modulator capability flags for this frequency

band, see Tuner and Modulator Capability Flags. The
V4L2_TUNER_CAP_LOW or V4L2_TUNER_CAP_1HZ capability must
be the same for all frequency bands of the selected
tuner/modulator. So either all bands have that capability set,
or none of them have that capability.

__u32 rangelow The lowest tunable frequency in units of 62.5 kHz, or if the
capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5
Hz, for this frequency band. A 1 Hz unit is used when the
capability flag V4L2_TUNER_CAP_1HZ is set.

__u32 rangehigh The highest tunable frequency in units of 62.5 kHz, or if the
capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5
Hz, for this frequency band. A 1 Hz unit is used when the
capability flag V4L2_TUNER_CAP_1HZ is set.

__u32 modulation The supported modulation systems of this frequency band.
See Band Modulation Systems.

Note: Currently only one modulation system per frequency
band is supported. More work will need to be done if mul-
tiple modulation systems are possible. Contact the linux-
media mailing list (https://linuxtv.org/lists.php) if you need
such functionality.

__u32 reserved[9] Reserved for future extensions.
Applications and drivers must set the array to zero.

Table 140: Band Modulation Systems
V4L2_BAND_MODULATION_VSB 0x02 Vestigial Sideband modulation, used for ana-

log TV.
V4L2_BAND_MODULATION_FM 0x04 Frequency Modulation, commonly used for

analog radio.
V4L2_BAND_MODULATION_AM 0x08 Amplitude Modulation, commonly used for

analog radio.

490 Chapter 7. Linux Media Infrastructure userspace API

https://linuxtv.org/lists.php

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The tuner or index is out of bounds or the type field is wrong.

ioctl VIDIOC_ENUMINPUT

Name

VIDIOC_ENUMINPUT - Enumerate video inputs

Synopsis

int ioctl(int fd, VIDIOC_ENUMINPUT, struct v4l2_input *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_input.

Description

To query the attributes of a video input applications initialize the index field of
struct v4l2_input and call the ioctl VIDIOC_ENUMINPUT with a pointer to this
structure. Drivers fill the rest of the structure or return an EINVAL error code
when the index is out of bounds. To enumerate all inputs applications shall begin
at index zero, incrementing by one until the driver returns EINVAL.

v4l2_input

7.2. Part I - Video for Linux API 491

Linux Userspace-api Documentation

Table 141: struct v4l2_input
__u32 index Identifies the input, set by the application.
__u8 name[32] Name of the video input, a NUL-terminated

ASCII string, for example: “Vin (Composite
2)”. This information is intended for the user,
preferably the connector label on the device
itself.

__u32 type Type of the input, see Input Types.
__u32 audioset Drivers can enumerate up to 32 video and au-

dio inputs. This field shows which audio in-
puts were selectable as audio source if this
was the currently selected video input. It is
a bit mask. The LSB corresponds to audio in-
put 0, the MSB to input 31. Any number of
bits can be set, or none.
When the driver does not enumerate audio
inputs no bits must be set. Applications
shall not interpret this as lack of audio sup-
port. Some drivers automatically select au-
dio sources and do not enumerate them since
there is no choice anyway.
For details on audio inputs and how to select
the current input see Audio Inputs and Out-
puts.

__u32 tuner Capture devices can have zero or more
tuners (RF demodulators). When the type
is set to V4L2_INPUT_TYPE_TUNER this is an
RF connector and this field identifies the
tuner. It corresponds to struct v4l2_tuner
field index. For details on tuners see Tuners
and Modulators.

v4l2_std_id std Every video input supports one or more dif-
ferent video standards. This field is a set of
all supported standards. For details on video
standards and how to switch see Video Stan-
dards.

__u32 status This field provides status information about
the input. See Input Status Flags for flags.
With the exception of the sensor orientation
bits status is only valid when this is the cur-
rent input.

__u32 capabilities This field provides capabilities for the input.
See Input capabilities for flags.

__u32 reserved[3] Reserved for future extensions. Drivers must
set the array to zero.

492 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 142: Input Types
V4L2_INPUT_TYPE_TUNER 1 This input uses a tuner (RF demodulator).
V4L2_INPUT_TYPE_CAMERA 2 Any non-tuner video input, for example Com-

posite Video, S-Video, HDMI, camera sensor.
The naming as _TYPE_CAMERA is historical, to-
day we would have called it _TYPE_VIDEO.

V4L2_INPUT_TYPE_TOUCH 3 This input is a touch device for capturing raw
touch data.

Table 143: Input Status Flags
General
V4L2_IN_ST_NO_POWER 0x00000001 Attached device is off.
V4L2_IN_ST_NO_SIGNAL 0x00000002
V4L2_IN_ST_NO_COLOR 0x00000004 The hardware supports color decoding, but does not

detect color modulation in the signal.
Sensor Orientation
V4L2_IN_ST_HFLIP 0x00000010 The input is connected to a device that produces a

signal that is flipped horizontally and does not cor-
rect this before passing the signal to userspace.

V4L2_IN_ST_VFLIP 0x00000020 The input is connected to a device that produces a
signal that is flipped vertically and does not correct
this before passing the signal to userspace. .. note::
A 180 degree rotation is the same as HFLIP | VFLIP

Analog Video
V4L2_IN_ST_NO_H_LOCK 0x00000100 No horizontal sync lock.
V4L2_IN_ST_COLOR_KILL 0x00000200 A color killer circuit automatically disables color de-

coding when it detects no color modulation. When
this flag is set the color killer is enabled and has shut
off color decoding.

V4L2_IN_ST_NO_V_LOCK 0x00000400 No vertical sync lock.
V4L2_IN_ST_NO_STD_LOCK0x00000800 No standard format lock in case of auto-detection

format by the component.
Digital Video
V4L2_IN_ST_NO_SYNC 0x00010000 No synchronization lock.
V4L2_IN_ST_NO_EQU 0x00020000 No equalizer lock.
V4L2_IN_ST_NO_CARRIER 0x00040000 Carrier recovery failed.
VCR and Set-Top Box
V4L2_IN_ST_MACROVISION0x01000000 Macrovision is an analog copy prevention sys-

tem mangling the video signal to confuse video
recorders. When this flag is set Macrovision has
been detected.

V4L2_IN_ST_NO_ACCESS 0x02000000 Conditional access denied.
V4L2_IN_ST_VTR 0x04000000 VTR time constant. [?]

7.2. Part I - Video for Linux API 493

Linux Userspace-api Documentation

Table 144: Input capabilities
V4L2_IN_CAP_DV_TIMINGS 0x00000002This input supports setting video timings by

using VIDIOC_S_DV_TIMINGS.
V4L2_IN_CAP_STD 0x00000004This input supports setting the TV standard

by using VIDIOC_S_STD.
V4L2_IN_CAP_NATIVE_SIZE 0x00000008This input supports setting the native size

using the V4L2_SEL_TGT_NATIVE_SIZE selec-
tion target, see Common selection defini-
tions.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_input index is out of bounds.

ioctl VIDIOC_ENUMOUTPUT

Name

VIDIOC_ENUMOUTPUT - Enumerate video outputs

Synopsis

int ioctl(int fd, VIDIOC_ENUMOUTPUT, struct v4l2_output *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_output.

Description

To query the attributes of a video outputs applications initialize the index field
of struct v4l2_output and call the ioctl VIDIOC_ENUMOUTPUT with a pointer to
this structure. Drivers fill the rest of the structure or return an EINVAL error code
when the index is out of bounds. To enumerate all outputs applications shall begin
at index zero, incrementing by one until the driver returns EINVAL.

v4l2_output

494 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 145: struct v4l2_output
__u32 index Identifies the output, set by the application.
__u8 name[32] Name of the video output, a NUL-terminated

ASCII string, for example: “Vout”. This in-
formation is intended for the user, preferably
the connector label on the device itself.

__u32 type Type of the output, see Output Type.
__u32 audioset Drivers can enumerate up to 32 video and

audio outputs. This field shows which audio
outputs were selectable as the current out-
put if this was the currently selected video
output. It is a bit mask. The LSB corresponds
to audio output 0, the MSB to output 31. Any
number of bits can be set, or none.
When the driver does not enumerate audio
outputs no bits must be set. Applications
shall not interpret this as lack of audio sup-
port. Drivers may automatically select audio
outputs without enumerating them.
For details on audio outputs and how to se-
lect the current output see Audio Inputs and
Outputs.

__u32 modulator Output devices can have zero or more
RF modulators. When the type is
V4L2_OUTPUT_TYPE_MODULATOR this is an
RF connector and this field identifies
the modulator. It corresponds to struct
v4l2_modulator field index. For details on
modulators see Tuners and Modulators.

v4l2_std_id std Every video output supports one or more dif-
ferent video standards. This field is a set of
all supported standards. For details on video
standards and how to switch see Video Stan-
dards.

__u32 capabilities This field provides capabilities for the output.
See Output capabilities for flags.

__u32 reserved[3] Reserved for future extensions. Drivers must
set the array to zero.

Table 146: Output Type
V4L2_OUTPUT_TYPE_MODULATOR 1 This output is an analog TV modulator.
V4L2_OUTPUT_TYPE_ANALOG 2 Any non-modulator video output, for example

Composite Video, S-Video, HDMI. The nam-
ing as _TYPE_ANALOG is historical, today we
would have called it _TYPE_VIDEO.

V4L2_OUTPUT_TYPE_ANALOGVGAOVERLAY3 The video output will be copied to a video
overlay.

7.2. Part I - Video for Linux API 495

Linux Userspace-api Documentation

Table 147: Output capabilities
V4L2_OUT_CAP_DV_TIMINGS 0x00000002This output supports setting video timings by

using VIDIOC_S_DV_TIMINGS.
V4L2_OUT_CAP_STD 0x00000004This output supports setting the TV standard

by using VIDIOC_S_STD.
V4L2_OUT_CAP_NATIVE_SIZE 0x00000008This output supports setting the native size

using the V4L2_SEL_TGT_NATIVE_SIZE selec-
tion target, see Common selection defini-
tions.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_output index is out of bounds.

ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD

Name

VIDIOC_ENUMSTD - VIDIOC_SUBDEV_ENUMSTD - Enumerate supported video
standards

Synopsis

int ioctl(int fd, VIDIOC_ENUMSTD, struct v4l2_standard *argp)

int ioctl(int fd, VIDIOC_SUBDEV_ENUMSTD, struct v4l2_standard *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_standard.

Description

To query the attributes of a video standard, especially a custom (driver defined)
one, applications initialize the index field of struct v4l2_standard and call the
ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD ioctl with a pointer to this
structure. Drivers fill the rest of the structure or return an EINVAL error code when
the index is out of bounds. To enumerate all standards applications shall begin
at index zero, incrementing by one until the driver returns EINVAL. Drivers may
enumerate a different set of standards after switching the video input or output.1

1 The supported standards may overlap and we need an unambiguous set to find the current
standard returned by VIDIOC_G_STD.

496 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

v4l2_standard

Table 148: struct v4l2_standard
__u32 index Number of the video standard, set by the ap-

plication.
v4l2_std_id id The bits in this field identify the standard as

one of the common standards listed in type-
def v4l2_std_id, or if bits 32 to 63 are set
as custom standards. Multiple bits can be
set if the hardware does not distinguish be-
tween these standards, however separate in-
dices do not indicate the opposite. The id
must be unique. No other enumerated struct
v4l2_standard structure, for this input or
output anyway, can contain the same set of
bits.

__u8 name[24] Name of the standard, a NUL-terminated
ASCII string, for example:“PAL-B/G”,“NTSC
Japan”. This information is intended for the
user.

struct v4l2_fract frameperiod The frame period (not field period) is numer-
ator / denominator. For example M/NTSC
has a frame period of 1001 / 30000 seconds.

__u32 framelines Total lines per frame including blanking, e.
g. 625 for B/PAL.

__u32 reserved[4] Reserved for future extensions. Drivers must
set the array to zero.

v4l2_fract

Table 149: struct v4l2_fract
__u32 numerator
__u32 denominator

Table 150: typedef v4l2_std_id
__u64 v4l2_std_id This type is a set, each bit representing an-

other video standard as listed below and in
Video Standards (based on itu470). The 32
most significant bits are reserved for custom
(driver defined) video standards.

#define V4L2_STD_PAL_B ((v4l2_std_id)0x00000001)
#define V4L2_STD_PAL_B1 ((v4l2_std_id)0x00000002)
#define V4L2_STD_PAL_G ((v4l2_std_id)0x00000004)
#define V4L2_STD_PAL_H ((v4l2_std_id)0x00000008)
#define V4L2_STD_PAL_I ((v4l2_std_id)0x00000010)
#define V4L2_STD_PAL_D ((v4l2_std_id)0x00000020)
#define V4L2_STD_PAL_D1 ((v4l2_std_id)0x00000040)
#define V4L2_STD_PAL_K ((v4l2_std_id)0x00000080)

(continues on next page)

7.2. Part I - Video for Linux API 497

Linux Userspace-api Documentation

(continued from previous page)

#define V4L2_STD_PAL_M ((v4l2_std_id)0x00000100)
#define V4L2_STD_PAL_N ((v4l2_std_id)0x00000200)
#define V4L2_STD_PAL_Nc ((v4l2_std_id)0x00000400)
#define V4L2_STD_PAL_60 ((v4l2_std_id)0x00000800)

V4L2_STD_PAL_60 is a hybrid standard with 525 lines, 60 Hz refresh rate, and PAL
color modulation with a 4.43 MHz color subcarrier. Some PAL video recorders can
play back NTSC tapes in this mode for display on a 50/60 Hz agnostic PAL TV.

#define V4L2_STD_NTSC_M ((v4l2_std_id)0x00001000)
#define V4L2_STD_NTSC_M_JP ((v4l2_std_id)0x00002000)
#define V4L2_STD_NTSC_443 ((v4l2_std_id)0x00004000)

V4L2_STD_NTSC_443 is a hybrid standard with 525 lines, 60 Hz refresh rate, and
NTSC color modulation with a 4.43 MHz color subcarrier.

#define V4L2_STD_NTSC_M_KR ((v4l2_std_id)0x00008000)

#define V4L2_STD_SECAM_B ((v4l2_std_id)0x00010000)
#define V4L2_STD_SECAM_D ((v4l2_std_id)0x00020000)
#define V4L2_STD_SECAM_G ((v4l2_std_id)0x00040000)
#define V4L2_STD_SECAM_H ((v4l2_std_id)0x00080000)
#define V4L2_STD_SECAM_K ((v4l2_std_id)0x00100000)
#define V4L2_STD_SECAM_K1 ((v4l2_std_id)0x00200000)
#define V4L2_STD_SECAM_L ((v4l2_std_id)0x00400000)
#define V4L2_STD_SECAM_LC ((v4l2_std_id)0x00800000)

/* ATSC/HDTV */
#define V4L2_STD_ATSC_8_VSB ((v4l2_std_id)0x01000000)
#define V4L2_STD_ATSC_16_VSB ((v4l2_std_id)0x02000000)

V4L2_STD_ATSC_8_VSB and V4L2_STD_ATSC_16_VSB are U.S. terrestrial digital TV
standards. Presently the V4L2 API does not support digital TV. See also the Linux
DVB API at https://linuxtv.org.

#define V4L2_STD_PAL_BG (V4L2_STD_PAL_B |
V4L2_STD_PAL_B1 |
V4L2_STD_PAL_G)

#define V4L2_STD_B (V4L2_STD_PAL_B |
V4L2_STD_PAL_B1 |
V4L2_STD_SECAM_B)

#define V4L2_STD_GH (V4L2_STD_PAL_G |
V4L2_STD_PAL_H |
V4L2_STD_SECAM_G |
V4L2_STD_SECAM_H)

#define V4L2_STD_PAL_DK (V4L2_STD_PAL_D |
V4L2_STD_PAL_D1 |
V4L2_STD_PAL_K)

#define V4L2_STD_PAL (V4L2_STD_PAL_BG |
V4L2_STD_PAL_DK |
V4L2_STD_PAL_H |
V4L2_STD_PAL_I)

#define V4L2_STD_NTSC (V4L2_STD_NTSC_M |
V4L2_STD_NTSC_M_JP |

(continues on next page)

498 Chapter 7. Linux Media Infrastructure userspace API

https://linuxtv.org

Linux Userspace-api Documentation

(continued from previous page)
V4L2_STD_NTSC_M_KR)

#define V4L2_STD_MN (V4L2_STD_PAL_M |
V4L2_STD_PAL_N |
V4L2_STD_PAL_Nc |
V4L2_STD_NTSC)

#define V4L2_STD_SECAM_DK (V4L2_STD_SECAM_D |
V4L2_STD_SECAM_K |
V4L2_STD_SECAM_K1)

#define V4L2_STD_DK (V4L2_STD_PAL_DK |
V4L2_STD_SECAM_DK)

#define V4L2_STD_SECAM (V4L2_STD_SECAM_B |
V4L2_STD_SECAM_G |
V4L2_STD_SECAM_H |
V4L2_STD_SECAM_DK |
V4L2_STD_SECAM_L |
V4L2_STD_SECAM_LC)

#define V4L2_STD_525_60 (V4L2_STD_PAL_M |
V4L2_STD_PAL_60 |
V4L2_STD_NTSC |
V4L2_STD_NTSC_443)

#define V4L2_STD_625_50 (V4L2_STD_PAL |
V4L2_STD_PAL_N |
V4L2_STD_PAL_Nc |
V4L2_STD_SECAM)

#define V4L2_STD_UNKNOWN 0
#define V4L2_STD_ALL (V4L2_STD_525_60 |

V4L2_STD_625_50)

Table 151: Video Standards (based on ITU BT.470)
CharacteristicsM/NTSC2 M/PAL N/PAL3 B, B1, G/PAL D, D1,

K/PAL
H/PAL I/PAL B, G/SECAM D,

K/SECAM
K1/SECAM L/SECAM

Frame lines 525 625
Frame pe-
riod (s)

1001/30000 1/25

Chrominance
sub-carrier
frequency
(Hz)

3579545 ±
10

3579611.49 ±
10

4433618.75 ±
5
(3582056.25 ±
5)

4433618.75 ± 5 4433618.75 ±
1

fOR = 4406250 ± 2000,
fOB = 4250000 ± 2000

Nominal
radio-
frequency
channel
bandwidth
(MHz)

6 6 6 B: 7; B1, G: 8 8 8 8 8 8 8 8

Sound car-
rier relative
to vision car-
rier (MHz)

4.5 4.5 4.5 5.5 ±
0.0014567

6.5 ±
0.001

5.5 5.9996 ±
0.0005

5.5 ± 0.001 6.5 ±
0.001

6.5 6.58

2 Japan uses a standard similar to M/NTSC (V4L2_STD_NTSC_M_JP).
3 The values in brackets apply to the combination N/PAL a.k.a. NC used in Argentina

(V4L2_STD_PAL_Nc).
4 In the Federal Republic of Germany, Austria, Italy, the Netherlands, Slovakia and Switzerland a

system of two sound carriers is used, the frequency of the second carrier being 242.1875 kHz above
the frequency of the first sound carrier. For stereophonic sound transmissions a similar system is
used in Australia.

5 New Zealand uses a sound carrier displaced 5.4996 ± 0.0005 MHz from the vision carrier.
6 In Denmark, Finland, New Zealand, Sweden and Spain a system of two sound carriers is used.

In Iceland, Norway and Poland the same system is being introduced. The second carrier is 5.85
MHz above the vision carrier and is DQPSK modulated with 728 kbit/s sound and data multiplex.

7.2. Part I - Video for Linux API 499

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_standard index is out of bounds.

ENODATA Standard video timings are not supported for this input or output.

ioctl VIDIOC_EXPBUF

Name

VIDIOC_EXPBUF - Export a buffer as a DMABUF file descriptor.

Synopsis

int ioctl(int fd, VIDIOC_EXPBUF, struct v4l2_exportbuffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_exportbuffer.

Description

This ioctl is an extension to the memory mapping I/O method, therefore it is avail-
able only for V4L2_MEMORY_MMAP buffers. It can be used to export a buffer as a
DMABUF file at any time after buffers have been allocated with the ioctl VID-
IOC_REQBUFS ioctl.

To export a buffer, applications fill struct v4l2_exportbuffer. The type field is set
to the same buffer type as was previously used with struct v4l2_requestbuffers
type. Applications must also set the index field. Valid index numbers range
from zero to the number of buffers allocated with ioctl VIDIOC_REQBUFS (struct
v4l2_requestbuffers count) minus one. For the multi-planar API, applications
set the plane field to the index of the plane to be exported. Valid planes range from
zero to the maximal number of valid planes for the currently active format. For
the single-planar API, applications must set plane to zero. Additional flags may

(NICAM system)
7 In the United Kingdom, a system of two sound carriers is used. The second sound carrier is 6.552

MHz above the vision carrier and is DQPSK modulated with a 728 kbit/s sound and data multiplex
able to carry two sound channels. (NICAM system)

8 In France, a digital carrier 5.85 MHz away from the vision carrier may be used in addition to
the main sound carrier. It is modulated in differentially encoded QPSK with a 728 kbit/s sound and
data multiplexer capable of carrying two sound channels. (NICAM system)

500 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

be posted in the flags field. Refer to a manual for open() for details. Currently
only O_CLOEXEC, O_RDONLY, O_WRONLY, and O_RDWR are supported. All other
fields must be set to zero. In the case of multi-planar API, every plane is exported
separately using multiple ioctl VIDIOC_EXPBUF calls.

After calling ioctl VIDIOC_EXPBUF the fd field will be set by a driver. This is
a DMABUF file descriptor. The application may pass it to other DMABUF-aware
devices. Refer to DMABUF importing for details about importing DMABUF files
into V4L2 nodes. It is recommended to close a DMABUF file when it is no longer
used to allow the associated memory to be reclaimed.

Examples

int buffer_export(int v4lfd, enum v4l2_buf_type bt, int index, int *dmafd)
{

struct v4l2_exportbuffer expbuf;

memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = bt;
expbuf.index = index;
if (ioctl(v4lfd, VIDIOC_EXPBUF, &expbuf) == -1) {

perror("VIDIOC_EXPBUF");
return -1;

}

*dmafd = expbuf.fd;

return 0;
}

int buffer_export_mp(int v4lfd, enum v4l2_buf_type bt, int index,
int dmafd[], int n_planes)

{
int i;

for (i = 0; i < n_planes; ++i) {
struct v4l2_exportbuffer expbuf;

memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = bt;
expbuf.index = index;
expbuf.plane = i;
if (ioctl(v4lfd, VIDIOC_EXPBUF, &expbuf) == -1) {

perror("VIDIOC_EXPBUF");
while (i)

close(dmafd[--i]);
return -1;

}
dmafd[i] = expbuf.fd;

}

return 0;
}

v4l2_exportbuffer

7.2. Part I - Video for Linux API 501

Linux Userspace-api Documentation

Table 152: struct v4l2_exportbuffer
__u32 type Type of the buffer, same as

struct v4l2_format type or struct
v4l2_requestbuffers type, set by the
application. See v4l2_buf_type

__u32 index Number of the buffer, set by the applica-
tion. This field is only used for memory
mapping I/O and can range from zero to
the number of buffers allocated with the
ioctl VIDIOC_REQBUFS and/or ioctl VID-
IOC_CREATE_BUFS ioctls.

__u32 plane Index of the plane to be exported when using
the multi-planar API. Otherwise this value
must be set to zero.

__u32 flags Flags for the newly created file, currently
only O_CLOEXEC, O_RDONLY, O_WRONLY, and
O_RDWR are supported, refer to the manual of
open() for more details.

__s32 fd The DMABUF file descriptor associated with
a buffer. Set by the driver.

__u32 reserved[11] Reserved field for future use. Drivers and ap-
plications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL A queue is not in MMAP mode or DMABUF exporting is not supported or
flags or type or index or plane fields are invalid.

ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO

Name

VIDIOC_G_AUDIO - VIDIOC_S_AUDIO - Query or select the current audio input
and its attributes

Synopsis

int ioctl(int fd, VIDIOC_G_AUDIO, struct v4l2_audio *argp)

int ioctl(int fd, VIDIOC_S_AUDIO, const struct v4l2_audio *argp)

502 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audio.

Description

To query the current audio input applications zero out the reserved array of a
struct v4l2_audio and call the VIDIOC_G_AUDIO ioctl with a pointer to this struc-
ture. Drivers fill the rest of the structure or return an EINVAL error code when the
device has no audio inputs, or none which combine with the current video input.

Audio inputs have one writable property, the audio mode. To select the current
audio input and change the audio mode, applications initialize the index and mode
fields, and the reserved array of a struct v4l2_audio structure and call the VID-
IOC_S_AUDIO ioctl. Drivers may switch to a different audio mode if the request
cannot be satisfied. However, this is a write-only ioctl, it does not return the actual
new audio mode.

v4l2_audio

Table 153: struct v4l2_audio
__u32 index Identifies the audio input, set by the driver

or application.
__u8 name[32] Name of the audio input, a NUL-terminated

ASCII string, for example:“Line In”. This in-
formation is intended for the user, preferably
the connector label on the device itself.

__u32 capability Audio capability flags, see Audio Capability
Flags.

__u32 mode Audio mode flags set by drivers and applica-
tions (on VIDIOC_S_AUDIO ioctl), see Audio
Mode Flags.

__u32 reserved[2] Reserved for future extensions. Drivers and
applications must set the array to zero.

Table 154: Audio Capability Flags
V4L2_AUDCAP_STEREO 0x00001 This is a stereo input. The flag is intended

to automatically disable stereo recording etc.
when the signal is always monaural. The API
provides no means to detect if stereo is re-
ceived, unless the audio input belongs to a
tuner.

V4L2_AUDCAP_AVL 0x00002 Automatic Volume Level mode is supported.

Table 155: Audio Mode Flags
V4L2_AUDMODE_AVL 0x00001 AVL mode is on.

7.2. Part I - Video for Linux API 503

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL No audio inputs combine with the current video input, or the number of
the selected audio input is out of bounds or it does not combine.

ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT

Name

VIDIOC_G_AUDOUT - VIDIOC_S_AUDOUT - Query or select the current audio out-
put

Synopsis

int ioctl(int fd, VIDIOC_G_AUDOUT, struct v4l2_audioout *argp)

int ioctl(int fd, VIDIOC_S_AUDOUT, const struct v4l2_audioout *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audioout.

Description

To query the current audio output applications zero out the reserved array of a
struct v4l2_audioout and call the VIDIOC_G_AUDOUT ioctl with a pointer to this
structure. Drivers fill the rest of the structure or return an EINVAL error code
when the device has no audio inputs, or none which combine with the current
video output.

Audio outputs have no writable properties. Nevertheless, to select the current
audio output applications can initialize the index field and reserved array (which
in the future may contain writable properties) of a struct v4l2_audioout structure
and call the VIDIOC_S_AUDOUT ioctl. Drivers switch to the requested output or
return the EINVAL error code when the index is out of bounds. This is a write-only
ioctl, it does not return the current audio output attributes as VIDIOC_G_AUDOUT
does.

Note: Connectors on a TV card to loop back the received audio signal to a sound
card are not audio outputs in this sense.

v4l2_audioout

504 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 156: struct v4l2_audioout
__u32 index Identifies the audio output, set by the driver

or application.
__u8 name[32] Name of the audio output, a NUL-terminated

ASCII string, for example:“Line Out”. This
information is intended for the user, prefer-
ably the connector label on the device itself.

__u32 capability Audio capability flags, none defined yet.
Drivers must set this field to zero.

__u32 mode Audio mode, none defined yet. Drivers and
applications (on VIDIOC_S_AUDOUT) must set
this field to zero.

__u32 reserved[2] Reserved for future extensions. Drivers and
applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL No audio outputs combine with the current video output, or the number
of the selected audio output is out of bounds or it does not combine.

ioctl VIDIOC_G_CROP, VIDIOC_S_CROP

Name

VIDIOC_G_CROP - VIDIOC_S_CROP - Get or set the current cropping rectangle

Synopsis

int ioctl(int fd, VIDIOC_G_CROP, struct v4l2_crop *argp)

int ioctl(int fd, VIDIOC_S_CROP, const struct v4l2_crop *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_crop.

7.2. Part I - Video for Linux API 505

Linux Userspace-api Documentation

Description

To query the cropping rectangle size and position applications set the type field
of a struct v4l2_crop structure to the respective buffer (stream) type and call the
VIDIOC_G_CROP ioctl with a pointer to this structure. The driver fills the rest of
the structure or returns the EINVAL error code if cropping is not supported.

To change the cropping rectangle applications initialize the type and struct
v4l2_rect substructure named c of a v4l2_crop structure and call the VID-
IOC_S_CROP ioctl with a pointer to this structure.

The driver first adjusts the requested dimensions against hardware limits, i. e. the
bounds given by the capture/output window, and it rounds to the closest possible
values of horizontal and vertical offset, width and height. In particular the driver
must round the vertical offset of the cropping rectangle to frame lines modulo two,
such that the field order cannot be confused.

Second the driver adjusts the image size (the opposite rectangle of the scaling pro-
cess, source or target depending on the data direction) to the closest size possible
while maintaining the current horizontal and vertical scaling factor.

Finally the driver programs the hardware with the actual cropping and image
parameters. VIDIOC_S_CROP is a write-only ioctl, it does not return the actual
parameters. To query them applications must call VIDIOC_G_CROP and ioctl VID-
IOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT. When the parameters are unsuit-
able the application may modify the cropping or image parameters and repeat the
cycle until satisfactory parameters have been negotiated.

When cropping is not supported then no parameters are changed and VID-
IOC_S_CROP returns the EINVAL error code.

v4l2_crop

Table 157: struct v4l2_crop
__u32 type Type of the data stream, set by the ap-

plication. Only these types are valid
here: V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
V4L2_BUF_TYPE_VIDEO_OUTPUT,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE
and V4L2_BUF_TYPE_VIDEO_OVERLAY. See
v4l2_buf_type and the note below.

struct v4l2_rect c Cropping rectangle. The same co-ordinate
system as for struct v4l2_cropcap bounds is
used.

Note: Unfortunately in the case of multiplanar
buffer types (V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE and
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) this API was messed up with regards to
how the v4l2_crop type field should be filled in. Some drivers only accepted the
_MPLANE buffer type while other drivers only accepted a non-multiplanar buffer
type (i.e. without the _MPLANE at the end).

506 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Starting with kernel 4.13 both variations are allowed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ENODATA Cropping is not supported for this input or output.

ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL

Name

VIDIOC_G_CTRL - VIDIOC_S_CTRL - Get or set the value of a control

Synopsis

int ioctl(int fd, VIDIOC_G_CTRL, struct v4l2_control *argp)

int ioctl(int fd, VIDIOC_S_CTRL, struct v4l2_control *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_control.

Description

To get the current value of a control applications initialize the id field of a struct
v4l2_control and call the VIDIOC_G_CTRL ioctl with a pointer to this structure.
To change the value of a control applications initialize the id and value fields of a
struct v4l2_control and call the VIDIOC_S_CTRL ioctl.

When the id is invalid drivers return an EINVAL error code. When the value is out
of bounds drivers can choose to take the closest valid value or return an ERANGE
error code, whatever seems more appropriate. However, VIDIOC_S_CTRL is a
write-only ioctl, it does not return the actual new value. If the value is inappro-
priate for the control (e.g. if it refers to an unsupported menu index of a menu
control), then EINVAL error code is returned as well.

These ioctls work only with user controls. For other control classes the VID-
IOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS or VIDIOC_TRY_EXT_CTRLS must be
used.

v4l2_control

7.2. Part I - Video for Linux API 507

Linux Userspace-api Documentation

Table 158: struct v4l2_control
__u32 id Identifies the control, set by the application.
__s32 value New value or current value.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_control id is invalid or the value is inappropriate for
the given control (i.e. if a menu item is selected that is not supported by the
driver according to VIDIOC_QUERYMENU).

ERANGE The struct v4l2_control value is out of bounds.

EBUSY The control is temporarily not changeable, possibly because another ap-
plications took over control of the device function this control belongs to.

EACCES Attempt to set a read-only control or to get a write-only control.

ioctl VIDIOC_G_DV_TIMINGS, VIDIOC_S_DV_TIMINGS

Name

VIDIOC_G_DV_TIMINGS - VIDIOC_S_DV_TIMINGS - VID-
IOC_SUBDEV_G_DV_TIMINGS - VIDIOC_SUBDEV_S_DV_TIMINGS - Get or
set DV timings for input or output

Synopsis

int ioctl(int fd, VIDIOC_G_DV_TIMINGS, struct v4l2_dv_timings *argp)

int ioctl(int fd, VIDIOC_S_DV_TIMINGS, struct v4l2_dv_timings *argp)

int ioctl(int fd, VIDIOC_SUBDEV_G_DV_TIMINGS, struct
v4l2_dv_timings *argp)

int ioctl(int fd, VIDIOC_SUBDEV_S_DV_TIMINGS, struct
v4l2_dv_timings *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dv_timings.

508 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

To set DV timings for the input or output, applications use the VID-
IOC_S_DV_TIMINGS ioctl and to get the current timings, applications use the
VIDIOC_G_DV_TIMINGS ioctl. The detailed timing information is filled in using
the structure struct v4l2_dv_timings. These ioctls take a pointer to the struct
v4l2_dv_timings structure as argument. If the ioctl is not supported or the tim-
ing values are not correct, the driver returns EINVAL error code.

Calling VIDIOC_SUBDEV_S_DV_TIMINGS on a subdev device node that has been reg-
istered in read-only mode is not allowed. An error is returned and the errno vari-
able is set to -EPERM.

The linux/v4l2-dv-timings.h header can be used to get the timings of the for-
mats in the CEA-861-E and VESA DMT standards. If the current input or output
does not support DV timings (e.g. if ioctl VIDIOC_ENUMINPUT does not set the
V4L2_IN_CAP_DV_TIMINGS flag), then ENODATA error code is returned.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL This ioctl is not supported, or the VIDIOC_S_DV_TIMINGS parameter
was unsuitable.

ENODATA Digital video timings are not supported for this input or output.

EBUSY The device is busy and therefore can not change the timings.
EPERM VIDIOC_SUBDEV_S_DV_TIMINGS has been called on a read-only subdevice.

v4l2_bt_timings

7.2. Part I - Video for Linux API 509

Linux Userspace-api Documentation

Table 159: struct v4l2_bt_timings
__u32 width Width of the active video in pixels.
__u32 height Height of the active video frame in lines. So

for interlaced formats the height of the active
video in each field is height/2.

__u32 interlaced Progressive (V4L2_DV_PROGRESSIVE) or in-
terlaced (V4L2_DV_INTERLACED).

__u32 polarities This is a bit mask that defines polarities of
sync signals. bit 0 (V4L2_DV_VSYNC_POS_POL)
is for vertical sync polarity and bit 1
(V4L2_DV_HSYNC_POS_POL) is for horizontal
sync polarity. If the bit is set (1) it is positive
polarity and if is cleared (0), it is negative po-
larity.

__u64 pixelclock Pixel clock in Hz. Ex. 74.25MHz->74250000
__u32 hfrontporch Horizontal front porch in pixels
__u32 hsync Horizontal sync length in pixels
__u32 hbackporch Horizontal back porch in pixels
__u32 vfrontporch Vertical front porch in lines. For interlaced

formats this refers to the odd field (aka field
1).

__u32 vsync Vertical sync length in lines. For interlaced
formats this refers to the odd field (aka field
1).

__u32 vbackporch Vertical back porch in lines. For interlaced
formats this refers to the odd field (aka field
1).

__u32 il_vfrontporch Vertical front porch in lines for the even field
(aka field 2) of interlaced field formats. Must
be 0 for progressive formats.

__u32 il_vsync Vertical sync length in lines for the even field
(aka field 2) of interlaced field formats. Must
be 0 for progressive formats.

__u32 il_vbackporch Vertical back porch in lines for the even field
(aka field 2) of interlaced field formats. Must
be 0 for progressive formats.

__u32 standards The video standard(s) this format belongs to.
This will be filled in by the driver. Applica-
tions must set this to 0. See DV BT Timing
standards for a list of standards.

__u32 flags Several flags giving more information about
the format. See DV BT Timing flags for a de-
scription of the flags.

struct v4l2_fract picture_aspect The picture aspect if the pixels
are not square. Only valid if the
V4L2_DV_FL_HAS_PICTURE_ASPECT flag is
set.

__u8 cea861_vic The Video Identification Code according to
the CEA-861 standard. Only valid if the
V4L2_DV_FL_HAS_CEA861_VIC flag is set.

__u8 hdmi_vic The Video Identification Code according to
the HDMI standard. Only valid if the
V4L2_DV_FL_HAS_HDMI_VIC flag is set.

__u8 reserved[46] Reserved for future extensions. Drivers and
applications must set the array to zero.

510 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

v4l2_dv_timings

Table 160: struct v4l2_dv_timings
__u32 type Type of DV timings as listed in DV

Timing types.
union { (anonymous)
struct
v4l2_bt_timings

bt Timings defined by BT.656/1120
specifications

__u32 reserved[32]
}

Table 161: DV Timing types
Timing type value Description

V4L2_DV_BT_656_1120 0 BT.656/1120 timings

Table 162: DV BT Timing standards
Timing standard Description
V4L2_DV_BT_STD_CEA861The timings follow the CEA-861 Digital TV Profile standard
V4L2_DV_BT_STD_DMT The timings follow the VESA Discrete Monitor Timings standard
V4L2_DV_BT_STD_CVT The timings follow the VESA Coordinated Video Timings standard
V4L2_DV_BT_STD_GTF The timings follow the VESA Generalized Timings Formula stan-

dard
V4L2_DV_BT_STD_SDI The timings follow the SDI Timings standard. There are no hori-

zontal syncs/porches at all in this format. Total blanking timings
must be set in hsync or vsync fields only.

7.2. Part I - Video for Linux API 511

Linux Userspace-api Documentation

Table 163: DV BT Timing flags
Flag Description
V4L2_DV_FL_REDUCED_BLANKING CVT/GTF specific: the timings use reduced blanking

(CVT) or the ‘Secondary GTF’curve (GTF). In both
cases the horizontal and/or vertical blanking intervals
are reduced, allowing a higher resolution over the
same bandwidth. This is a read-only flag, applications
must not set this.

V4L2_DV_FL_CAN_REDUCE_FPS CEA-861 specific: set for CEA-861 formats with a
framerate that is a multiple of six. These formats can
be optionally played at 1 / 1.001 speed to be compati-
ble with 60Hz based standards such as NTSC and PAL-
M that use a framerate of 29.97 frames per second. If
the transmitter can’t generate such frequencies, then
the flag will also be cleared. This is a read-only flag,
applications must not set this.

V4L2_DV_FL_REDUCED_FPS CEA-861 specific: only valid for video trans-
mitters or video receivers that have the
V4L2_DV_FL_CAN_DETECT_REDUCED_FPS set. This
flag is cleared otherwise. It is also only valid for
formats with the V4L2_DV_FL_CAN_REDUCE_FPS flag
set, for other formats the flag will be cleared by the
driver.
If the application sets this flag for a transmitter, then
the pixelclock used to set up the transmitter is divided
by 1.001 to make it compatible with NTSC framerates.
If the transmitter can’t generate such frequencies,
then the flag will be cleared.
If a video receiver detects that the format uses a re-
duced framerate, then it will set this flag to signal this
to the application.

V4L2_DV_FL_HALF_LINE Specific to interlaced formats: if set, then the vertical
frontporch of field 1 (aka the odd field) is really one
half-line longer and the vertical backporch of field 2
(aka the even field) is really one half-line shorter, so
each field has exactly the same number of half-lines.
Whether half-lines can be detected or used depends
on the hardware.

V4L2_DV_FL_IS_CE_VIDEO If set, then this is a Consumer Electronics (CE) video
format. Such formats differ from other formats (com-
monly called IT formats) in that if R’G’B’encoding
is used then by default the R’G’B’values use lim-
ited range (i.e. 16-235) as opposed to full range (i.e.
0-255). All formats defined in CEA-861 except for the
640x480p59.94 format are CE formats.

V4L2_DV_FL_FIRST_FIELD_EXTRA_LINESome formats like SMPTE-125M have an interlaced
signal with a odd total height. For these formats, if
this flag is set, the first field has the extra line. Else,
it is the second field.

V4L2_DV_FL_HAS_PICTURE_ASPECT If set, then the picture_aspect field is valid. Otherwise
assume that the pixels are square, so the picture as-
pect ratio is the same as the width to height ratio.

V4L2_DV_FL_HAS_CEA861_VIC If set, then the cea861_vic field is valid and contains
the Video Identification Code as per the CEA-861 stan-
dard.

V4L2_DV_FL_HAS_HDMI_VIC If set, then the hdmi_vic field is valid and contains the
Video Identification Code as per the HDMI standard
(HDMI Vendor Specific InfoFrame).

V4L2_DV_FL_CAN_DETECT_REDUCED_FPSCEA-861 specific: only valid for video receivers, the
flag is cleared by transmitters. If set, then the hard-
ware can detect the difference between regular fram-
erates and framerates reduced by 1000/1001. E.g.: 60
vs 59.94 Hz, 30 vs 29.97 Hz or 24 vs 23.976 Hz.

512 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

ioctl VIDIOC_G_EDID, VIDIOC_S_EDID, VIDIOC_SUBDEV_G_EDID, VID-
IOC_SUBDEV_S_EDID

Name

VIDIOC_G_EDID - VIDIOC_S_EDID - VIDIOC_SUBDEV_G_EDID - VID-
IOC_SUBDEV_S_EDID - Get or set the EDID of a video receiver/transmitter

Synopsis

int ioctl(int fd, VIDIOC_G_EDID, struct v4l2_edid *argp)

int ioctl(int fd, VIDIOC_S_EDID, struct v4l2_edid *argp)

int ioctl(int fd, VIDIOC_SUBDEV_G_EDID, struct v4l2_edid *argp)

int ioctl(int fd, VIDIOC_SUBDEV_S_EDID, struct v4l2_edid *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_edid.

Description

These ioctls can be used to get or set an EDID associated with an input from a
receiver or an output of a transmitter device. They can be used with subdevice
nodes (/dev/v4l-subdevX) or with video nodes (/dev/videoX).

When used with video nodes the pad field represents the input (for video cap-
ture devices) or output (for video output devices) index as is returned by ioctl
VIDIOC_ENUMINPUT and ioctl VIDIOC_ENUMOUTPUT respectively. When used
with subdevice nodes the pad field represents the input or output pad of the sub-
device. If there is no EDID support for the given pad value, then the EINVAL error
code will be returned.

To get the EDID data the application has to fill in the pad, start_block, blocks
and edid fields, zero the reserved array and call VIDIOC_G_EDID. The current
EDID from block start_block and of size blocks will be placed in the memory
edid points to. The edid pointer must point to memory at least blocks * 128 bytes
large (the size of one block is 128 bytes).

If there are fewer blocks than specified, then the driver will set blocks to the
actual number of blocks. If there are no EDID blocks available at all, then the
error code ENODATA is set.

If blocks have to be retrieved from the sink, then this call will block until they have
been read.

If start_block and blocks are both set to 0 when VIDIOC_G_EDID is called, then
the driver will set blocks to the total number of available EDID blocks and it will

7.2. Part I - Video for Linux API 513

Linux Userspace-api Documentation

return 0 without copying any data. This is an easy way to discover how many EDID
blocks there are.

Note: If there are no EDID blocks available at all, then the driver will set blocks
to 0 and it returns 0.

To set the EDID blocks of a receiver the application has to fill in the pad, blocks and
edid fields, set start_block to 0 and zero the reserved array. It is not possible to
set part of an EDID, it is always all or nothing. Setting the EDID data is only valid
for receivers as it makes no sense for a transmitter.

The driver assumes that the full EDID is passed in. If there are more EDID blocks
than the hardware can handle then the EDID is not written, but instead the error
code E2BIG is set and blocks is set to the maximum that the hardware supports.
If start_block is any value other than 0 then the error code EINVAL is set.

To disable an EDID you set blocks to 0. Depending on the hardware this will drive
the hotplug pin low and/or block the source from reading the EDID data in some
way. In any case, the end result is the same: the EDID is no longer available.

v4l2_edid

Table 164: struct v4l2_edid
__u32 pad Pad for which to get/set the EDID blocks.

When used with a video device node the
pad represents the input or output index as
returned by ioctl VIDIOC_ENUMINPUT and
ioctl VIDIOC_ENUMOUTPUT respectively.

__u32 start_block Read the EDID from starting with this block.
Must be 0 when setting the EDID.

__u32 blocks The number of blocks to get or set. Must be
less or equal to 256 (the maximum number
of blocks as defined by the standard). When
you set the EDID and blocks is 0, then the
EDID is disabled or erased.

__u32 reserved[5] Reserved for future extensions. Applications
and drivers must set the array to zero.

__u8 * edid Pointer to memory that contains the EDID.
The minimum size is blocks * 128.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ENODATA The EDID data is not available.

E2BIG The EDID data you provided is more than the hardware can handle.

514 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

ioctl VIDIOC_G_ENC_INDEX

Name

VIDIOC_G_ENC_INDEX - Get meta data about a compressed video stream

Synopsis

int ioctl(int fd, VIDIOC_G_ENC_INDEX, struct v4l2_enc_idx *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_enc_idx.

Description

The VIDIOC_G_ENC_INDEX ioctl provides meta data about a compressed video
stream the same or another application currently reads from the driver, which is
useful for random access into the stream without decoding it.

To read the data applications must call VIDIOC_G_ENC_INDEX with a pointer to
a struct v4l2_enc_idx. On success the driver fills the entry array, stores the
number of elements written in the entries field, and initializes the entries_cap
field.

Each element of the entry array contains meta data about one picture. A VID-
IOC_G_ENC_INDEX call reads up to V4L2_ENC_IDX_ENTRIES entries from a driver
buffer, which can hold up to entries_cap entries. This number can be lower or
higher than V4L2_ENC_IDX_ENTRIES, but not zero. When the application fails to
read the meta data in time the oldest entries will be lost. When the buffer is empty
or no capturing/encoding is in progress, entries will be zero.

Currently this ioctl is only defined for MPEG-2 program streams and video elemen-
tary streams.

v4l2_enc_idx

Table 165: struct v4l2_enc_idx
__u32 entries The number of entries the driver stored in

the entry array.
__u32 entries_cap The number of entries the driver can

buffer. Must be greater than zero.
__u32 reserved[4] Reserved for future extensions. Drivers

must set the array to zero.
struct
v4l2_enc_idx_entry

entry[V4L2_ENC_IDX_ENTRIES]Meta data about a compressed video
stream. Each element of the array corre-
sponds to one picture, sorted in ascending
order by their offset.

7.2. Part I - Video for Linux API 515

Linux Userspace-api Documentation

v4l2_enc_idx_entry

Table 166: struct v4l2_enc_idx_entry
__u64 offset The offset in bytes from the beginning of the

compressed video stream to the beginning of
this picture, that is a PES packet header as
defined in ISO 13818-1 or a picture header as
defined in ISO 13818-2. When the encoder is
stopped, the driver resets the offset to zero.

__u64 pts The 33 bit Presentation Time Stamp of this
picture as defined in ISO 13818-1.

__u32 length The length of this picture in bytes.
__u32 flags Flags containing the coding type of this pic-

ture, see Index Entry Flags.
__u32 reserved[2] Reserved for future extensions. Drivers must

set the array to zero.

Table 167: Index Entry Flags
V4L2_ENC_IDX_FRAME_I 0x00 This is an Intra-coded picture.
V4L2_ENC_IDX_FRAME_P 0x01 This is a Predictive-coded picture.
V4L2_ENC_IDX_FRAME_B 0x02 This is a Bidirectionally predictive-coded pic-

ture.
V4L2_ENC_IDX_FRAME_MASK 0x0F AND the flags field with this mask to obtain

the picture coding type.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS, VIDIOC_TRY_EXT_CTRLS

Name

VIDIOC_G_EXT_CTRLS - VIDIOC_S_EXT_CTRLS - VIDIOC_TRY_EXT_CTRLS - Get
or set the value of several controls, try control values

Synopsis

int ioctl(int fd, VIDIOC_G_EXT_CTRLS, struct v4l2_ext_controls *argp)

int ioctl(int fd, VIDIOC_S_EXT_CTRLS, struct v4l2_ext_controls *argp)

int ioctl(int fd, VIDIOC_TRY_EXT_CTRLS, struct v4l2_ext_controls *argp)

516 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_ext_controls.

Description

These ioctls allow the caller to get or set multiple controls atomically. Control
IDs are grouped into control classes (see Control classes) and all controls in the
control array must belong to the same control class.

Applications must always fill in the count, which, controls and reserved fields
of struct v4l2_ext_controls, and initialize the struct v4l2_ext_control array
pointed to by the controls fields.

To get the current value of a set of controls applications initialize the id,
size and reserved2 fields of each struct v4l2_ext_control and call the VID-
IOC_G_EXT_CTRLS ioctl. String controls controls must also set the string field.
Controls of compound types (V4L2_CTRL_FLAG_HAS_PAYLOAD is set) must set the
ptr field.

If the size is too small to receive the control result (only relevant for pointer-
type controls like strings), then the driver will set size to a valid value and return
an ENOSPC error code. You should re-allocate the memory to this new size and try
again. For the string type it is possible that the same issue occurs again if the string
has grown in the meantime. It is recommended to call ioctls VIDIOC_QUERYCTRL,
VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU first and use maximum+1
as the new size value. It is guaranteed that that is sufficient memory.

N-dimensional arrays are set and retrieved row-by-row. You cannot set a partial
array, all elements have to be set or retrieved. The total size is calculated as elems
* elem_size. These values can be obtained by calling VIDIOC_QUERY_EXT_CTRL.

To change the value of a set of controls applications initialize the id,
size, reserved2 and value/value64/string/ptr fields of each struct
v4l2_ext_control and call the VIDIOC_S_EXT_CTRLS ioctl. The controls
will only be set if all control values are valid.

To check if a set of controls have correct values applications initialize the
id, size, reserved2 and value/value64/string/ptr fields of each struct
v4l2_ext_control and call the VIDIOC_TRY_EXT_CTRLS ioctl. It is up to the
driver whether wrong values are automatically adjusted to a valid value or if an
error is returned.

When the id or which is invalid drivers return an EINVAL error code. When the
value is out of bounds drivers can choose to take the closest valid value or return
an ERANGE error code, whatever seems more appropriate. In the first case the new
value is set in struct v4l2_ext_control. If the new control value is inappropriate
(e.g. the given menu index is not supported by the menu control), then this will
also result in an EINVAL error code error.

If request_fd is set to a not-yet-queued request file descriptor and which is set
to V4L2_CTRL_WHICH_REQUEST_VAL, then the controls are not applied immediately

7.2. Part I - Video for Linux API 517

Linux Userspace-api Documentation

when calling VIDIOC_S_EXT_CTRLS, but instead are applied by the driver for the
buffer associated with the same request. If the device does not support requests,
then EACCES will be returned. If requests are supported but an invalid request file
descriptor is given, then EINVAL will be returned.

An attempt to call VIDIOC_S_EXT_CTRLS for a request that has already been
queued will result in an EBUSY error.

If request_fd is specified and which is set to V4L2_CTRL_WHICH_REQUEST_VAL dur-
ing a call to VIDIOC_G_EXT_CTRLS, then it will return the values of the controls
at the time of request completion. If the request is not yet completed, then this
will result in an EACCES error.

The driver will only set/get these controls if all control values are correct. This
prevents the situation where only some of the controls were set/get. Only low-
level errors (e. g. a failed i2c command) can still cause this situation.

v4l2_ext_control

518 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 168: struct v4l2_ext_control
__u32 id Identifies

the
con-
trol,
set by
the
appli-
cation.

__u32 size The
total
size in
bytes
of the
pay-
load
of this
con-
trol.
This
is nor-
mally
0, but
for
pointer
con-
trols
this
should
be set
to the
size
of the
mem-
ory
con-
taining
the
pay-
load,
or that
will
receive
the
pay-
load.
If VID-
IOC_G_EXT_CTRLS
finds
that
this
value
is less
than
is re-
quired
to store
the
pay-
load
result,
then it
is set to
a value
large
enough
to store
the
pay-
load
result
and
ENOSPC
is re-
turned.

Note:
For
string
con-
trols,
this
size
field
should
not be
con-
fused
with
the
length
of the
string.
This
field
refers
to the
size
of the
mem-
ory
that
con-
tains
the
string.
The
actual
length
of the
string
may
well be
much
smaller.

__u32 reserved2[1] Reserved
for fu-
ture
exten-
sions.
Drivers
and
appli-
cations
must
set the
array
to zero.

union
{

(anonymous)

__s32 value New
value
or cur-
rent
value.
Valid
if this
control
is not
of type
V4L2_CTRL_TYPE_INTEGER64
and
V4L2_CTRL_FLAG_HAS_PAYLOAD
is not
set.

__s64 value64 New
value
or cur-
rent
value.
Valid
if this
con-
trol is
of type
V4L2_CTRL_TYPE_INTEGER64
and
V4L2_CTRL_FLAG_HAS_PAYLOAD
is not
set.

char * string A
pointer
to a
string.
Valid
if this
con-
trol is
of type
V4L2_CTRL_TYPE_STRING.

__u8 * p_u8 A
pointer
to a
matrix
control
of un-
signed
8-bit
values.
Valid
if this
con-
trol is
of type
V4L2_CTRL_TYPE_U8.

__u16
*

p_u16 A
pointer
to a
matrix
control
of un-
signed
16-bit
values.
Valid
if this
con-
trol is
of type
V4L2_CTRL_TYPE_U16.

__u32
*

p_u32 A
pointer
to a
matrix
control
of un-
signed
32-bit
values.
Valid
if this
con-
trol is
of type
V4L2_CTRL_TYPE_U32.

v4l2_area
*

p_area A
pointer
to a
struct
v4l2_area.
Valid
if this
con-
trol is
of type
V4L2_CTRL_TYPE_AREA.

void * ptr A
pointer
to a
com-
pound
type
which
can be
an N-
dimensional
array
and/or
a com-
pound
type
(the
control’
s type
is >=
V4L2_CTRL_COMPOUND_TYPES).
Valid if
V4L2_CTRL_FLAG_HAS_PAYLOAD
is set
for this
con-
trol.

}

7.2. Part I - Video for Linux API 519

Linux Userspace-api Documentation

v4l2_ext_controls

Table 169: struct v4l2_ext_controls
union { (anonymous)
__u32 ctrl_classThe con-

trol class
to which
all con-
trols be-
long, see
Control
classes.
Drivers
that use
a kernel
frame-
work for
handling
controls
will also
accept a
value of
0 here,
meaning
that the
controls
can be-
long to
any con-
trol class.
Whether
drivers
support
this can
be tested
by setting
ctrl_class
to 0 and
calling
VID-
IOC_TRY_EXT_CTRLS
with a
count of
0. If that
succeeds,
then the
driver sup-
ports this
feature.

Continued on next page

520 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 169 – continued from previous page
__u32 which Which

value of
the con-
trol to
get/set/try.
V4L2_CTRL_WHICH_CUR_VAL
will return
the cur-
rent value
of the
control,
V4L2_CTRL_WHICH_DEF_VAL
will return
the default
value of
the con-
trol and
V4L2_CTRL_WHICH_REQUEST_VAL
indicates
that these
controls
have to be
retrieved
from a
request or
tried/set
for a re-
quest. In
the latter
case the
request_fd
field con-
tains the
file de-
scriptor
of the re-
quest that
should be
used. If
the device
does not
support
requests,
then
EACCES
will be
returned.

Note:
When
using
V4L2_CTRL_WHICH_DEF_VAL
be aware
that you
can only
get the de-
fault value
of the con-
trol, you
cannot set
or try it.

For back-
wards
compati-
bility you
can also
use a con-
trol class
here (see
Control
classes).
In that
case all
controls
have to
belong to
that con-
trol class.
This usage
is dep-
recated,
instead
just use
V4L2_CTRL_WHICH_CUR_VAL.
There are
some very
old drivers
that do
not yet
support
V4L2_CTRL_WHICH_CUR_VAL
and that
require
a con-
trol class
here. You
can test
for such
drivers
by setting
ctrl_class
to
V4L2_CTRL_WHICH_CUR_VAL
and call-
ing VID-
IOC_TRY_EXT_CTRLS
with a
count of
0. If that
fails, then
the driver
does not
support
V4L2_CTRL_WHICH_CUR_VAL.

Continued on next page

7.2. Part I - Video for Linux API 521

Linux Userspace-api Documentation

Table 169 – continued from previous page
}
__u32 count The num-

ber of
controls
in the
controls
array.
May also
be zero.

Continued on next page

522 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 169 – continued from previous page
__u32 error_idx Set by the

driver in
case of an
error. If
the error
is associ-
ated with
a partic-
ular con-
trol, then
error_idx
is set to
the index
of that
control. If
the error
is not re-
lated to
a specific
control,
or the
validation
step failed
(see be-
low), then
error_idx
is set to
count.
The value
is unde-
fined if
the ioctl
returned 0
(success).
Before
controls
are read
from/written
to hard-
ware a
validation
step takes
place: this
checks if
all con-
trols in
the list are
valid con-
trols, if no
attempt is
made to
write to a
read-only
control
or read
from a
write-only
control,
and any
other
up-front
checks
that can
be done
without
access-
ing the
hardware.
The exact
valida-
tions done
during
this step
are driver
depen-
dent since
some
checks
might
require
hardware
access for
some de-
vices, thus
making
it impos-
sible to
do those
checks
up-front.
However,
drivers
should
make a
best-effort
to do as
many
up-front
checks as
possible.
This check
is done to
avoid leav-
ing the
hardware
in an in-
consistent
state due
to easy-
to-avoid
problems.
But it
leads to
another
problem:
the ap-
plication
needs
to know
whether
an error
came from
the valida-
tion step
(meaning
that the
hardware
was not
touched)
or from
an error
during
the actual
reading
from/writing
to hard-
ware.
The, in
hindsight
quite poor,
solution
for that
is to set
error_idx
to count if
the valida-
tion failed.
This has
the un-
fortunate
side-effect
that it is
not pos-
sible to
see which
control
failed the
validation.
If the vali-
dation was
success-
ful and
the error
happened
while ac-
cessing
the hard-
ware, then
error_idx
is less
than
count
and only
the con-
trols up to
error_idx-1
were read
or written
correctly,
and the
state of
the re-
maining
controls is
undefined.
Since VID-
IOC_TRY_EXT_CTRLS
does not
access
hardware
there is
also no
need to
handle
the valida-
tion step
in this
special
way, so
error_idx
will just
be set to
the con-
trol that
failed the
validation
step in-
stead of to
count.
This
means
that if VID-
IOC_S_EXT_CTRLS
fails with
error_idx
set to
count,
then
you can
call VID-
IOC_TRY_EXT_CTRLS
to try to
discover
the actual
control
that failed
the valida-
tion step.
Unfortu-
nately,
there is
no TRY
equivalent
for VID-
IOC_G_EXT_CTRLS.

Continued on next page

7.2. Part I - Video for Linux API 523

Linux Userspace-api Documentation

Table 169 – continued from previous page
__s32 request_fdFile de-

scriptor
of the re-
quest to
be used
by this
operation.
Only valid
if which
is set to
V4L2_CTRL_WHICH_REQUEST_VAL.
If the de-
vice does
not sup-
port re-
quests,
then
EACCES
will be
returned.
If requests
are sup-
ported but
an invalid
request
file de-
scriptor is
given,
then
EINVAL
will be
returned.

__u32 reserved[1]Reserved
for future
exten-
sions.
Drivers
and ap-
plications
must set
the array
to zero.

Continued on next page

524 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 169 – continued from previous page
struct
v4l2_ext_control
*

controls Pointer to
an array
of count
v4l2_ext_control
struc-
tures.
Ignored
if count
equals
zero.

Table 170: Control classes
V4L2_CTRL_CLASS_USER 0x980000 The class containing user controls. These

controls are described in User Controls. All
controls that can be set using the VID-
IOC_S_CTRL and VIDIOC_G_CTRL ioctl be-
long to this class.

V4L2_CTRL_CLASS_MPEG 0x990000 The class containing MPEG compression
controls. These controls are described in
Codec Control Reference.

V4L2_CTRL_CLASS_CAMERA 0x9a0000 The class containing camera controls. These
controls are described in Camera Control
Reference.

V4L2_CTRL_CLASS_FM_TX 0x9b0000 The class containing FM Transmitter (FM
TX) controls. These controls are described
in FM Transmitter Control Reference.

V4L2_CTRL_CLASS_FLASH 0x9c0000 The class containing flash device controls.
These controls are described in Flash Con-
trol Reference.

V4L2_CTRL_CLASS_JPEG 0x9d0000 The class containing JPEG compression con-
trols. These controls are described in JPEG
Control Reference.

V4L2_CTRL_CLASS_IMAGE_SOURCE 0x9e0000 The class containing image source con-
trols. These controls are described in Image
Source Control Reference.

V4L2_CTRL_CLASS_IMAGE_PROC 0x9f0000 The class containing image processing con-
trols. These controls are described in Image
Process Control Reference.

V4L2_CTRL_CLASS_FM_RX 0xa10000 The class containing FM Receiver (FM RX)
controls. These controls are described in FM
Receiver Control Reference.

V4L2_CTRL_CLASS_RF_TUNER 0xa20000 The class containing RF tuner controls.
These controls are described in RF Tuner
Control Reference.

7.2. Part I - Video for Linux API 525

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_ext_control id is invalid, or the struct
v4l2_ext_controls which is invalid, or the struct v4l2_ext_control
value was inappropriate (e.g. the given menu index is not supported by
the driver), or the which field was set to V4L2_CTRL_WHICH_REQUEST_VAL
but the given request_fd was invalid or V4L2_CTRL_WHICH_REQUEST_VAL
is not supported by the kernel. This error code is also returned by the
VIDIOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS ioctls if two or more
control values are in conflict.

ERANGE The struct v4l2_ext_control value is out of bounds.

EBUSY The control is temporarily not changeable, possibly because another ap-
plications took over control of the device function this control belongs to, or
(if the which field was set to V4L2_CTRL_WHICH_REQUEST_VAL) the request was
queued but not yet completed.

ENOSPC The space reserved for the control’s payload is insufficient. The field
size is set to a value that is enough to store the payload and this error code
is returned.

EACCES Attempt to try or set a read-only control, or to get a write-only control,
or to get a control from a request that has not yet been completed.

Or the which field was set to V4L2_CTRL_WHICH_REQUEST_VAL but the device
does not support requests.

ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF

Name

VIDIOC_G_FBUF - VIDIOC_S_FBUF - Get or set frame buffer overlay parameters

Synopsis

int ioctl(int fd, VIDIOC_G_FBUF, struct v4l2_framebuffer *argp)

int ioctl(int fd, VIDIOC_S_FBUF, const struct v4l2_framebuffer *argp)

526 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_framebuffer.

Description

Applications can use the VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctl to get and set
the framebuffer parameters for a Video Overlay or Video Output Overlay (OSD).
The type of overlay is implied by the device type (capture or output device) and can
be determined with the ioctl VIDIOC_QUERYCAP ioctl. One /dev/videoN device
must not support both kinds of overlay.

The V4L2 API distinguishes destructive and non-destructive overlays. A destruc-
tive overlay copies captured video images into the video memory of a graphics
card. A non-destructive overlay blends video images into a VGA signal or graphics
into a video signal. Video Output Overlays are always non-destructive.

To get the current parameters applications call the VIDIOC_G_FBUF ioctl with a
pointer to a struct v4l2_framebuffer structure. The driver fills all fields of the
structure or returns an EINVAL error code when overlays are not supported.

To set the parameters for a Video Output Overlay, applications must initialize the
flags field of a struct v4l2_framebuffer. Since the framebuffer is implemented
on the TV card all other parameters are determined by the driver. When an appli-
cation calls VIDIOC_S_FBUF with a pointer to this structure, the driver prepares
for the overlay and returns the framebuffer parameters as VIDIOC_G_FBUF does,
or it returns an error code.

To set the parameters for a non-destructive Video Overlay, applications must ini-
tialize the flags field, the fmt substructure, and call VIDIOC_S_FBUF. Again the
driver prepares for the overlay and returns the framebuffer parameters as VID-
IOC_G_FBUF does, or it returns an error code.

For a destructive Video Overlay applications must additionally provide a base ad-
dress. Setting up a DMA to a random memory location can jeopardize the system
security, its stability or even damage the hardware, therefore only the superuser
can set the parameters for a destructive video overlay.

v4l2_framebuffer

Table 171: struct v4l2_framebuffer
__u32 capability Overlay capability flags set by the

driver, see Frame Buffer Capability
Flags.

__u32 flags Overlay control flags set by appli-
cation and driver, see Frame Buffer
Flags

Continued on next page

7.2. Part I - Video for Linux API 527

Linux Userspace-api Documentation

Table 171 – continued from previous page
void * base Physical base address of the frame-

buffer, that is the address of the
pixel in the top left corner of the
framebuffer.1
This field is irrelevant to non-
destructive Video Overlays. For
destructive Video Overlays applica-
tions must provide a base address.
The driver may accept only base ad-
dresses which are a multiple of two,
four or eight bytes. For Video Out-
put Overlays the driver must return
a valid base address, so applications
can find the corresponding Linux
framebuffer device (see Video Out-
put Overlay Interface).

struct fmt Layout of the frame buffer.
__u32 width Width of the frame buffer in pixels.
__u32 height Height of the frame buffer in pixels.
__u32 pixelformat The pixel format of the framebuffer.

For non-destructive Video Overlays
this field only defines a format for
the struct v4l2_window chromakey
field.
For destructive Video Overlays ap-
plications must initialize this field.
For Video Output Overlays the
driver must return a valid format.
Usually this is an RGB format (for
example V4L2_PIX_FMT_RGB565)
but YUV formats (only packed
YUV formats when chroma
keying is used, not includ-
ing V4L2_PIX_FMT_YUYV and
V4L2_PIX_FMT_UYVY) and the
V4L2_PIX_FMT_PAL8 format are
also permitted. The behavior of the
driver when an application requests
a compressed format is undefined.
See Image Formats for information
on pixel formats.

enum v4l2_field field Drivers and applications shall ig-
nore this field. If applicable, the
field order is selected with the VID-
IOC_S_FMT ioctl, using the field
field of struct v4l2_window.

__u32 bytesperline Distance in bytes between the left-
most pixels in two adjacent lines.

Continued on next page

528 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 171 – continued from previous page
This field is irrelevant to non-destructive Video Overlays.
For destructive Video Overlays both applications and drivers can set this field to request
padding bytes at the end of each line. Drivers however may ignore the requested value, re-
turning width times bytes-per-pixel or a larger value required by the hardware. That implies
applications can just set this field to zero to get a reasonable default.
For Video Output Overlays the driver must return a valid value.
Video hardware may access padding bytes, therefore they must reside in accessible memory.
Consider for example the case where padding bytes after the last line of an image cross a
system page boundary. Capture devices may write padding bytes, the value is undefined.
Output devices ignore the contents of padding bytes.
When the image format is planar the bytesperline value applies to the first plane and is
divided by the same factor as the width field for the other planes. For example the Cb and
Cr planes of a YUV 4:2:0 image have half as many padding bytes following each line as the
Y plane. To avoid ambiguities drivers must return a bytesperline value rounded up to a
multiple of the scale factor.

__u32 sizeimage This field is irrelevant to non-
destructive Video Overlays. For
destructive Video Overlays applica-
tions must initialize this field. For
Video Output Overlays the driver
must return a valid format.
Together with base it defines the
framebuffer memory accessible by
the driver.

enum
v4l2_colorspace

colorspace This information supplements the
pixelformat and must be set by the
driver, see Colorspaces.

__u32 priv Reserved. Drivers and applications
must set this field to zero.

1 A physical base address may not suit all platforms. GK notes in theory we should pass something
like PCI device + memory region + offset instead. If you encounter problems please discuss on the
linux-media mailing list: https://linuxtv.org/lists.php.

7.2. Part I - Video for Linux API 529

https://linuxtv.org/lists.php

Linux Userspace-api Documentation

Table 172: Frame Buffer Capability Flags
V4L2_FBUF_CAP_EXTERNOVERLAY 0x0001 The device is capable of non-destructive

overlays. When the driver clears this flag,
only destructive overlays are supported.
There are no drivers yet which support
both destructive and non-destructive over-
lays. Video Output Overlays are in practice
always non-destructive.

V4L2_FBUF_CAP_CHROMAKEY 0x0002 The device supports clipping by chroma-
keying the images. That is, image pixels
replace pixels in the VGA or video signal
only where the latter assume a certain color.
Chroma-keying makes no sense for destruc-
tive overlays.

V4L2_FBUF_CAP_LIST_CLIPPING 0x0004 The device supports clipping using a list of
clip rectangles.

V4L2_FBUF_CAP_BITMAP_CLIPPING0x0008 The device supports clipping using a bit
mask.

V4L2_FBUF_CAP_LOCAL_ALPHA 0x0010 The device supports clipping/blending using
the alpha channel of the framebuffer or VGA
signal. Alpha blending makes no sense for
destructive overlays.

V4L2_FBUF_CAP_GLOBAL_ALPHA 0x0020 The device supports alpha blending using a
global alpha value. Alpha blending makes no
sense for destructive overlays.

V4L2_FBUF_CAP_LOCAL_INV_ALPHA0x0040 The device supports clipping/blending using
the inverted alpha channel of the framebuffer
or VGA signal. Alpha blending makes no
sense for destructive overlays.

V4L2_FBUF_CAP_SRC_CHROMAKEY 0x0080 The device supports Source Chroma-keying.
Video pixels with the chroma-key colors are
replaced by framebuffer pixels, which is ex-
actly opposite of V4L2_FBUF_CAP_CHROMAKEY

Table 173: Frame Buffer Flags
V4L2_FBUF_FLAG_PRIMARY 0x0001 The framebuffer is the primary graph-

ics surface. In other words, the over-
lay is destructive. This flag is typi-
cally set by any driver that doesn’t have
the V4L2_FBUF_CAP_EXTERNOVERLAY capabil-
ity and it is cleared otherwise.

Continued on next page

530 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 173 – continued from previous page
V4L2_FBUF_FLAG_OVERLAY 0x0002 If this flag is set for a video capture device,

then the driver will set the initial overlay
size to cover the full framebuffer size, other-
wise the existing overlay size (as set by VID-
IOC_S_FMT) will be used. Only one video
capture driver (bttv) supports this flag. The
use of this flag for capture devices is dep-
recated. There is no way to detect which
drivers support this flag, so the only reliable
method of setting the overlay size is through
VIDIOC_S_FMT. If this flag is set for a video
output device, then the video output overlay
window is relative to the top-left corner of the
framebuffer and restricted to the size of the
framebuffer. If it is cleared, then the video
output overlay window is relative to the video
output display.

V4L2_FBUF_FLAG_CHROMAKEY 0x0004 Use chroma-keying. The chroma-key color is
determined by the chromakey field of struct
v4l2_window and negotiated with the VID-
IOC_S_FMT ioctl, see Video Overlay Inter-
face and Video Output Overlay Interface.

There are no flags to enable clipping using a list of clip rectangles or a bitmap. These
methods are negotiated with the VIDIOC_S_FMT ioctl, see Video Overlay Interface and Video
Output Overlay Interface.
V4L2_FBUF_FLAG_LOCAL_ALPHA 0x0008 Use the alpha channel of the framebuffer to

clip or blend framebuffer pixels with video
images. The blend function is: output =
framebuffer pixel * alpha + video pixel * (1
- alpha). The actual alpha depth depends on
the framebuffer pixel format.

V4L2_FBUF_FLAG_GLOBAL_ALPHA 0x0010 Use a global alpha value to blend the frame-
buffer with video images. The blend func-
tion is: output = (framebuffer pixel * alpha +
video pixel * (255 - alpha)) / 255. The alpha
value is determined by the global_alpha
field of struct v4l2_window and negotiated
with the VIDIOC_S_FMT ioctl, see Video
Overlay Interface and Video Output Overlay
Interface.

V4L2_FBUF_FLAG_LOCAL_INV_ALPHA0x0020 Like V4L2_FBUF_FLAG_LOCAL_ALPHA, use the
alpha channel of the framebuffer to clip or
blend framebuffer pixels with video images,
but with an inverted alpha value. The blend
function is: output = framebuffer pixel * (1 -
alpha) + video pixel * alpha. The actual al-
pha depth depends on the framebuffer pixel
format.

Continued on next page

7.2. Part I - Video for Linux API 531

Linux Userspace-api Documentation

Table 173 – continued from previous page
V4L2_FBUF_FLAG_SRC_CHROMAKEY 0x0040 Use source chroma-keying. The source

chroma-key color is determined by the
chromakey field of struct v4l2_window and
negotiated with the VIDIOC_S_FMT ioctl, see
Video Overlay Interface and Video Output
Overlay Interface. Both chroma-keying are
mutual exclusive to each other, so same
chromakey field of struct v4l2_window is be-
ing used.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EPERM VIDIOC_S_FBUF can only be called by a privileged user to negotiate the
parameters for a destructive overlay.

EINVAL The VIDIOC_S_FBUF parameters are unsuitable.

ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT

Name

VIDIOC_G_FMT - VIDIOC_S_FMT - VIDIOC_TRY_FMT - Get or set the data format,
try a format

Synopsis

int ioctl(int fd, VIDIOC_G_FMT, struct v4l2_format *argp)

int ioctl(int fd, VIDIOC_S_FMT, struct v4l2_format *argp)

int ioctl(int fd, VIDIOC_TRY_FMT, struct v4l2_format *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_format.

532 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

These ioctls are used to negotiate the format of data (typically image format) ex-
changed between driver and application.

To query the current parameters applications set the type field of a
struct v4l2_format to the respective buffer (stream) type. For ex-
ample video capture devices use V4L2_BUF_TYPE_VIDEO_CAPTURE or
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE. When the application calls the VID-
IOC_G_FMT ioctl with a pointer to this structure the driver fills the respective
member of the fmt union. In case of video capture devices that is either the struct
v4l2_pix_format pix or the struct v4l2_pix_format_mplane pix_mp member.
When the requested buffer type is not supported drivers return an EINVAL error
code.

To change the current format parameters applications initialize the type field and
all fields of the respective fmt union member. For details see the documentation
of the various devices types in Interfaces. Good practice is to query the current
parameters first, and to modify only those parameters not suitable for the appli-
cation. When the application calls the VIDIOC_S_FMT ioctl with a pointer to a
struct v4l2_format structure the driver checks and adjusts the parameters against
hardware abilities. Drivers should not return an error code unless the type field
is invalid, this is a mechanism to fathom device capabilities and to approach pa-
rameters acceptable for both the application and driver. On success the driver
may program the hardware, allocate resources and generally prepare for data ex-
change. Finally the VIDIOC_S_FMT ioctl returns the current format parameters
as VIDIOC_G_FMT does. Very simple, inflexible devices may even ignore all input
and always return the default parameters. However all V4L2 devices exchanging
data with the application must implement the VIDIOC_G_FMT and VIDIOC_S_FMT
ioctl. When the requested buffer type is not supported drivers return an EINVAL
error code on a VIDIOC_S_FMT attempt. When I/O is already in progress or the
resource is not available for other reasons drivers return the EBUSY error code.

The VIDIOC_TRY_FMT ioctl is equivalent to VIDIOC_S_FMT with one exception:
it does not change driver state. It can also be called at any time, never returning
EBUSY. This function is provided to negotiate parameters, to learn about hardware
limitations, without disabling I/O or possibly time consuming hardware prepara-
tions. Although strongly recommended drivers are not required to implement this
ioctl.

The format as returned by VIDIOC_TRY_FMT must be identical to what VID-
IOC_S_FMT returns for the same input or output.

v4l2_format

7.2. Part I - Video for Linux API 533

Linux Userspace-api Documentation

Table 174: struct v4l2_format
__u32 type Type of

the data
stream, see
v4l2_buf_type.

union
{

fmt

struct
v4l2_pix_format

pix Definition of an
image format,
see Image For-
mats, used by
video capture
and output
devices.

struct
v4l2_pix_format_mplane

pix_mp Definition of an
image format,
see Image For-
mats, used by
video capture
and output
devices that
support the
multi-planar
version of the
API.

struct
v4l2_window

win Definition of
an overlaid im-
age, see Video
Overlay Inter-
face, used by
video overlay
devices.

struct
v4l2_vbi_format

vbi Raw VBI cap-
ture or output
parameters.
This is dis-
cussed in more
detail in Raw
VBI Data In-
terface. Used
by raw VBI
capture and
output devices.

struct
v4l2_sliced_vbi_format

sliced Sliced VBI cap-
ture or output
parameters.
See Sliced VBI
Data Interface
for details.
Used by sliced
VBI capture
and output
devices.

struct
v4l2_sdr_format

sdr Definition of a
data format,
see Image For-
mats, used by
SDR capture
and output
devices.

struct
v4l2_meta_format

meta Definition of
a metadata
format, see
Metadata For-
mats, used by
metadata cap-
ture devices.

__u8 raw_data[200] Place holder
for future
extensions.

}

534 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_format type field is invalid or the requested buffer type
not supported.

EBUSY The device is busy and cannot change the format. This could be because
or the device is streaming or buffers are allocated or queued to the driver.
Relevant for VIDIOC_S_FMT only.

ioctl VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY

Name

VIDIOC_G_FREQUENCY - VIDIOC_S_FREQUENCY - Get or set tuner or modulator
radio frequency

Synopsis

int ioctl(int fd, VIDIOC_G_FREQUENCY, struct v4l2_frequency *argp)

int ioctl(int fd, VIDIOC_S_FREQUENCY, const struct
v4l2_frequency *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frequency.

Description

To get the current tuner or modulator radio frequency applications set the tuner
field of a struct v4l2_frequency to the respective tuner or modulator number
(only input devices have tuners, only output devices have modulators), zero out
the reserved array and call the VIDIOC_G_FREQUENCY ioctl with a pointer to
this structure. The driver stores the current frequency in the frequency field.

To change the current tuner or modulator radio frequency applications initial-
ize the tuner, type and frequency fields, and the reserved array of a struct
v4l2_frequency and call the VIDIOC_S_FREQUENCY ioctl with a pointer to this
structure. When the requested frequency is not possible the driver assumes the
closest possible value. However VIDIOC_S_FREQUENCY is a write-only ioctl, it
does not return the actual new frequency.

v4l2_frequency

7.2. Part I - Video for Linux API 535

Linux Userspace-api Documentation

Table 175: struct v4l2_frequency
__u32 tuner The tuner or modulator index number. This

is the same value as in the struct v4l2_input
tuner field and the struct v4l2_tuner index
field, or the struct v4l2_output modulator
field and the struct v4l2_modulator index
field.

__u32 type The tuner type. This is the same value
as in the struct v4l2_tuner type field.
The type must be set to V4L2_TUNER_RADIO
for /dev/radioX device nodes, and to
V4L2_TUNER_ANALOG_TV for all others. Set
this field to V4L2_TUNER_RADIO for modu-
lators (currently only radio modulators are
supported). See v4l2_tuner_type

__u32 frequency Tuning frequency in units of 62.5
kHz, or if the struct v4l2_tuner or
struct v4l2_modulator capability flag
V4L2_TUNER_CAP_LOW is set, in units of 62.5
Hz. A 1 Hz unit is used when the capability
flag V4L2_TUNER_CAP_1HZ is set.

__u32 reserved[8] Reserved for future extensions. Drivers and
applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The tuner index is out of bounds or the value in the type field is wrong.
EBUSY A hardware seek is in progress.

ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT

Name

VIDIOC_G_INPUT - VIDIOC_S_INPUT - Query or select the current video input

Synopsis

int ioctl(int fd, VIDIOC_G_INPUT, int *argp)

int ioctl(int fd, VIDIOC_S_INPUT, int *argp)

536 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp Pointer an integer with input index.

Description

To query the current video input applications call the VIDIOC_G_INPUT ioctl with
a pointer to an integer where the driver stores the number of the input, as in the
struct v4l2_input index field. This ioctl will fail only when there are no video
inputs, returning EINVAL.

To select a video input applications store the number of the desired input in an
integer and call the VIDIOC_S_INPUT ioctl with a pointer to this integer. Side
effects are possible. For example inputs may support different video standards, so
the driver may implicitly switch the current standard. Because of these possible
side effects applications must select an input before querying or negotiating any
other parameters.

Information about video inputs is available using the ioctl VIDIOC_ENUMINPUT
ioctl.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The number of the video input is out of bounds.

ioctl VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP

Name

VIDIOC_G_JPEGCOMP - VIDIOC_S_JPEGCOMP

Synopsis

int ioctl(int fd, VIDIOC_G_JPEGCOMP, v4l2_jpegcompression *argp)

int ioctl(int fd, VIDIOC_S_JPEGCOMP, const v4l2_jpegcompression *argp)

7.2. Part I - Video for Linux API 537

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_jpegcompression.

Description

These ioctls are deprecated. New drivers and applications should use JPEG class
controls for image quality and JPEG markers control.

[to do]

Ronald Bultje elaborates:

APP is some application-specific information. The application can set it itself, and
it’ll be stored in the JPEG-encoded fields (eg; interlacing information for in an AVI
or so). COM is the same, but it’s comments, like ‘encoded by me’or so.
jpeg_markers describes whether the huffman tables, quantization tables and the
restart interval information (all JPEG-specific stuff) should be stored in the JPEG-
encoded fields. These define how the JPEG field is encoded. If you omit them,
applications assume you’ve used standard encoding. You usually do want to add
them.

v4l2_jpegcompression

Table 176: struct v4l2_jpegcompression
int quality Deprecated. If V4L2_CID_JPEG_COMPRESSION_QUALITY control

is exposed by a driver applications should use it instead and ignore
this field.

int APPn
int APP_len
char APP_data[60]
int COM_len
char COM_data[60]
__u32 jpeg_markers See JPEG Markers Flags. Deprecated. If

V4L2_CID_JPEG_ACTIVE_MARKER control is exposed by a driver
applications should use it instead and ignore this field.

Table 177: JPEG Markers Flags
V4L2_JPEG_MARKER_DHT (1<<3) Define Huffman Tables
V4L2_JPEG_MARKER_DQT (1<<4) Define Quantization Tables
V4L2_JPEG_MARKER_DRI (1<<5) Define Restart Interval
V4L2_JPEG_MARKER_COM (1<<6) Comment segment
V4L2_JPEG_MARKER_APP (1<<7) App segment, driver will always use APP0

538 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR

Name

VIDIOC_G_MODULATOR - VIDIOC_S_MODULATOR - Get or set modulator at-
tributes

Synopsis

int ioctl(int fd, VIDIOC_G_MODULATOR, struct v4l2_modulator *argp)

int ioctl(int fd, VIDIOC_S_MODULATOR, const struct
v4l2_modulator *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_modulator.

Description

To query the attributes of a modulator applications initialize the index field
and zero out the reserved array of a struct v4l2_modulator and call the VID-
IOC_G_MODULATOR ioctl with a pointer to this structure. Drivers fill the rest of
the structure or return an EINVAL error code when the index is out of bounds. To
enumerate all modulators applications shall begin at index zero, incrementing by
one until the driver returns EINVAL.

Modulators have two writable properties, an audio modulation set and the ra-
dio frequency. To change the modulated audio subprograms, applications initial-
ize the index and txsubchans fields and the reserved array and call the VID-
IOC_S_MODULATOR ioctl. Drivers may choose a different audio modulation if the
request cannot be satisfied. However this is a write-only ioctl, it does not return
the actual audio modulation selected.

SDR specific modulator types are V4L2_TUNER_SDR and V4L2_TUNER_RF. For SDR
devices txsubchans field must be initialized to zero. The term‘modulator’means
SDR transmitter in this context.

To change the radio frequency the VIDIOC_S_FREQUENCY ioctl is available.

v4l2_modulator

7.2. Part I - Video for Linux API 539

Linux Userspace-api Documentation

Table 178: struct v4l2_modulator
__u32 index Identifies the modulator, set by the application.
__u8 name[32] Name of the modulator, a NUL-terminated ASCII string.

This information is intended for the user.
__u32 capability Modulator capability flags. No flags are defined for this field,

the tuner flags in struct v4l2_tuner are used accordingly. The
audio flags indicate the ability to encode audio subprograms.
They will not change for example with the current video stan-
dard.

__u32 rangelow The lowest tunable frequency in units of 62.5 KHz, or if the
capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5
Hz, or if the capability flag V4L2_TUNER_CAP_1HZ is set, in
units of 1 Hz.

__u32 rangehigh The highest tunable frequency in units of 62.5 KHz, or if the
capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5
Hz, or if the capability flag V4L2_TUNER_CAP_1HZ is set, in
units of 1 Hz.

__u32 txsubchans With this field applications can determine how audio sub-
carriers shall be modulated. It contains a set of flags as de-
fined in Modulator Audio Transmission Flags.

Note: The tuner rxsubchans flags are reused, but the se-
mantics are different. Video output devices are assumed to
have an analog or PCM audio input with 1-3 channels. The
txsubchans flags select one or more channels for modulation,
together with some audio subprogram indicator, for example,
a stereo pilot tone.

__u32 type Type of the modulator, see v4l2_tuner_type.
__u32 reserved[3] Reserved for future extensions.

Drivers and applications must set the array to zero.

540 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 179: Modulator Audio Transmission Flags
V4L2_TUNER_SUB_MONO 0x0001 Modulate channel 1 as mono audio, when

the input has more channels, a down-mix
of channel 1 and 2. This flag does not
combine with V4L2_TUNER_SUB_STEREO or
V4L2_TUNER_SUB_LANG1.

V4L2_TUNER_SUB_STEREO 0x0002 Modulate channel 1 and 2 as left and
right channel of a stereo audio signal.
When the input has only one channel
or two channels and V4L2_TUNER_SUB_SAP
is also set, channel 1 is encoded as
left and right channel. This flag does
not combine with V4L2_TUNER_SUB_MONO or
V4L2_TUNER_SUB_LANG1. When the driver
does not support stereo audio it shall fall
back to mono.

V4L2_TUNER_SUB_LANG1 0x0008 Modulate channel 1 and 2 as primary
and secondary language of a bilingual au-
dio signal. When the input has only one
channel it is used for both languages. It
is not possible to encode the primary or
secondary language only. This flag does
not combine with V4L2_TUNER_SUB_MONO,
V4L2_TUNER_SUB_STEREO or
V4L2_TUNER_SUB_SAP. If the hardware does
not support the respective audio matrix, or
the current video standard does not permit
bilingual audio the VIDIOC_S_MODULATOR
ioctl shall return an EINVAL error code and
the driver shall fall back to mono or stereo
mode.

V4L2_TUNER_SUB_LANG2 0x0004 Same effect as V4L2_TUNER_SUB_SAP.
V4L2_TUNER_SUB_SAP 0x0004 When combined with V4L2_TUNER_SUB_MONO

the first channel is encoded as mono audio,
the last channel as Second Audio Program.
When the input has only one channel it is
used for both audio tracks. When the in-
put has three channels the mono track is a
down-mix of channel 1 and 2. When com-
bined with V4L2_TUNER_SUB_STEREO chan-
nel 1 and 2 are encoded as left and right
stereo audio, channel 3 as Second Audio Pro-
gram. When the input has only two chan-
nels, the first is encoded as left and right
channel and the second as SAP. When the
input has only one channel it is used for
all audio tracks. It is not possible to en-
code a Second Audio Program only. This flag
must combine with V4L2_TUNER_SUB_MONO
or V4L2_TUNER_SUB_STEREO. If the hardware
does not support the respective audio matrix,
or the current video standard does not permit
SAP the VIDIOC_S_MODULATOR ioctl shall
return an EINVAL error code and driver shall
fall back to mono or stereo mode.

V4L2_TUNER_SUB_RDS 0x0010 Enable the RDS encoder for a radio FM trans-
mitter.

7.2. Part I - Video for Linux API 541

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_modulator index is out of bounds.

ioctl VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT

Name

VIDIOC_G_OUTPUT - VIDIOC_S_OUTPUT - Query or select the current video out-
put

Synopsis

int ioctl(int fd, VIDIOC_G_OUTPUT, int *argp)

int ioctl(int fd, VIDIOC_S_OUTPUT, int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer with output index.

Description

To query the current video output applications call the VIDIOC_G_OUTPUT ioctl
with a pointer to an integer where the driver stores the number of the output, as
in the struct v4l2_output index field. This ioctl will fail only when there are no
video outputs, returning the EINVAL error code.

To select a video output applications store the number of the desired output in an
integer and call the VIDIOC_S_OUTPUT ioctl with a pointer to this integer. Side
effects are possible. For example outputs may support different video standards,
so the driver may implicitly switch the current standard. standard. Because of
these possible side effects applications must select an output before querying or
negotiating any other parameters.

Information about video outputs is available using the ioctl VID-
IOC_ENUMOUTPUT ioctl.

542 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The number of the video output is out of bounds, or there are no video
outputs at all.

ioctl VIDIOC_G_PARM, VIDIOC_S_PARM

Name

VIDIOC_G_PARM - VIDIOC_S_PARM - Get or set streaming parameters

Synopsis

int ioctl(int fd, VIDIOC_G_PARM, v4l2_streamparm *argp)

int ioctl(int fd, VIDIOC_S_PARM, v4l2_streamparm *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_streamparm.

Description

The current video standard determines a nominal number of frames per second.
If less than this number of frames is to be captured or output, applications can
request frame skipping or duplicating on the driver side. This is especially use-
ful when using the read() or write(), which are not augmented by timestamps or
sequence counters, and to avoid unnecessary data copying.

Changing the frame interval shall never change the format. Changing the format,
on the other hand, may change the frame interval.

Further these ioctls can be used to determine the number of buffers used internally
by a driver in read/write mode. For implications see the section discussing the
read() function.

To get and set the streaming parameters applications call the VIDIOC_G_PARM
and VIDIOC_S_PARM ioctl, respectively. They take a pointer to a struct
v4l2_streamparm which contains a union holding separate parameters for input
and output devices.

v4l2_streamparm

7.2. Part I - Video for Linux API 543

Linux Userspace-api Documentation

Table 180: struct v4l2_streamparm
__u32 type The buffer

(stream) type,
same as struct
v4l2_format
type, set by the
application. See
v4l2_buf_type.

union { parm
struct
v4l2_captureparm

capture Parameters for
capture devices,
used when type is
V4L2_BUF_TYPE_VIDEO_CAPTURE
or
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE.

struct
v4l2_outputparm

output Parameters for
output devices,
used when type is
V4L2_BUF_TYPE_VIDEO_OUTPUT
or
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE.

__u8 raw_data[200] A place holder for
future extensions.

}

v4l2_captureparm

544 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 181: struct v4l2_captureparm
__u32 capability See Streaming Parameters Capabilities.
__u32 capturemode Set by drivers and applications, see Capture

Parameters Flags.
struct v4l2_fract timeperframe This is the desired period between succes-

sive frames captured by the driver, in sec-
onds. The field is intended to skip frames on
the driver side, saving I/O bandwidth.
Applications store here the desired frame
period, drivers return the actual frame pe-
riod, which must be greater or equal to the
nominal frame period determined by the cur-
rent video standard (struct v4l2_standard
frameperiod field). Changing the video stan-
dard (also implicitly by switching the video
input) may reset this parameter to the nomi-
nal frame period. To reset manually applica-
tions can just set this field to zero.
Drivers support this function only when they
set the V4L2_CAP_TIMEPERFRAME flag in the
capability field.

__u32 extendedmode Custom (driver specific) streaming parame-
ters. When unused, applications and drivers
must set this field to zero. Applications us-
ing this field should check the driver name
and version, see Querying Capabilities.

__u32 readbuffers Applications set this field to the desired num-
ber of buffers used internally by the driver in
read() mode. Drivers return the actual num-
ber of buffers. When an application requests
zero buffers, drivers should just return the
current setting rather than the minimum or
an error code. For details see Read/Write.

__u32 reserved[4] Reserved for future extensions. Drivers and
applications must set the array to zero.

v4l2_outputparm

7.2. Part I - Video for Linux API 545

Linux Userspace-api Documentation

Table 182: struct v4l2_outputparm
__u32 capability See Streaming Parameters Capabilities.
__u32 outputmode Set by drivers and applications, see Capture

Parameters Flags.
struct v4l2_fract timeperframe This is the desired period between succes-

sive frames output by the driver, in seconds.
The field is intended to repeat frames on the driver side in write() mode (in streaming mode
timestamps can be used to throttle the output), saving I/O bandwidth.
Applications store here the desired frame period, drivers return the actual frame period,
which must be greater or equal to the nominal frame period determined by the current
video standard (struct v4l2_standard frameperiod field). Changing the video standard
(also implicitly by switching the video output) may reset this parameter to the nominal frame
period. To reset manually applications can just set this field to zero.
Drivers support this function only when they set the V4L2_CAP_TIMEPERFRAME flag in the
capability field.
__u32 extendedmode Custom (driver specific) streaming parame-

ters. When unused, applications and drivers
must set this field to zero. Applications us-
ing this field should check the driver name
and version, see Querying Capabilities.

__u32 writebuffers Applications set this field to the desired num-
ber of buffers used internally by the driver in
write() mode. Drivers return the actual num-
ber of buffers. When an application requests
zero buffers, drivers should just return the
current setting rather than the minimum or
an error code. For details see Read/Write.

__u32 reserved[4] Reserved for future extensions. Drivers and
applications must set the array to zero.

Table 183: Streaming Parameters Capabilities
V4L2_CAP_TIMEPERFRAME 0x1000 The frame skipping/repeating controlled by

the timeperframe field is supported.

546 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 184: Capture Parameters Flags
V4L2_MODE_HIGHQUALITY 0x0001 High quality imaging mode. High quality

mode is intended for still imaging applica-
tions. The idea is to get the best possible
image quality that the hardware can deliver.
It is not defined how the driver writer may
achieve that; it will depend on the hardware
and the ingenuity of the driver writer. High
quality mode is a different mode from the
regular motion video capture modes. In high
quality mode:
• The driver may be able to capture
higher resolutions than for motion cap-
ture.

• The driver may support fewer pixel for-
mats than motion capture (eg; true
color).

• The driver may capture and arithmeti-
cally combine multiple successive fields
or frames to remove color edge artifacts
and reduce the noise in the video data.

• The driver may capture images in slices
like a scanner in order to handle larger
format images than would otherwise be
possible.

• An image capture operation may be sig-
nificantly slower than motion capture.

• Moving objects in the image might have
excessive motion blur.

• Capture might only work through the
read() call.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY

Name

VIDIOC_G_PRIORITY - VIDIOC_S_PRIORITY - Query or request the access priority
associated with a file descriptor

7.2. Part I - Video for Linux API 547

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, VIDIOC_G_PRIORITY, enum v4l2_priority *argp)

int ioctl(int fd, VIDIOC_S_PRIORITY, const enum v4l2_priority *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an enum v4l2_priority type.

Description

To query the current access priority applications call the VIDIOC_G_PRIORITY
ioctl with a pointer to an enum v4l2_priority variable where the driver stores the
current priority.

To request an access priority applications store the desired priority in an enum
v4l2_priority variable and call VIDIOC_S_PRIORITY ioctl with a pointer to this vari-
able.

v4l2_priority

Table 185: enum v4l2_priority
V4L2_PRIORITY_UNSET 0
V4L2_PRIORITY_BACKGROUND 1 Lowest priority, usually applications running

in background, for example monitoring VBI
transmissions. A proxy application running
in user space will be necessary if multiple ap-
plications want to read from a device at this
priority.

V4L2_PRIORITY_INTERACTIVE 2
V4L2_PRIORITY_DEFAULT 2 Medium priority, usually applications started

and interactively controlled by the user. For
example TV viewers, Teletext browsers, or
just“panel”applications to change the chan-
nel or video controls. This is the default pri-
ority unless an application requests another.

V4L2_PRIORITY_RECORD 3 Highest priority. Only one file descriptor can
have this priority, it blocks any other fd from
changing device properties. Usually appli-
cations which must not be interrupted, like
video recording.

548 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The requested priority value is invalid.
EBUSY Another application already requested higher priority.

ioctl VIDIOC_G_SELECTION, VIDIOC_S_SELECTION

Name

VIDIOC_G_SELECTION - VIDIOC_S_SELECTION - Get or set one of the selection
rectangles

Synopsis

int ioctl(int fd, VIDIOC_G_SELECTION, struct v4l2_selection *argp)

int ioctl(int fd, VIDIOC_S_SELECTION, struct v4l2_selection *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_selection.

Description

The ioctls are used to query and configure selection rectangles.

To query the cropping (composing) rectangle set struct v4l2_selection type
field to the respective buffer type. The next step is setting the value of struct
v4l2_selection target field to V4L2_SEL_TGT_CROP (V4L2_SEL_TGT_COMPOSE).
Please refer to table Common selection definitions or Cropping, composing and
scaling – the SELECTION API for additional targets. The flags and reserved
fields of struct v4l2_selection are ignored and they must be filled with zeros.
The driver fills the rest of the structure or returns EINVAL error code if incorrect
buffer type or target was used. If cropping (composing) is not supported then the
active rectangle is not mutable and it is always equal to the bounds rectangle.
Finally, the struct v4l2_rect r rectangle is filled with the current cropping (com-
posing) coordinates. The coordinates are expressed in driver-dependent units.
The only exception are rectangles for images in raw formats, whose coordinates
are always expressed in pixels.

To change the cropping (composing) rectangle set the struct v4l2_selection type
field to the respective buffer type. The next step is setting the value of struct
v4l2_selection target to V4L2_SEL_TGT_CROP (V4L2_SEL_TGT_COMPOSE). Please
refer to table Common selection definitions or Cropping, composing and scaling

7.2. Part I - Video for Linux API 549

Linux Userspace-api Documentation

– the SELECTION API for additional targets. The struct v4l2_rect r rectangle
need to be set to the desired active area. Field struct v4l2_selection reserved
is ignored and must be filled with zeros. The driver may adjust coordinates of the
requested rectangle. An application may introduce constraints to control round-
ing behaviour. The struct v4l2_selection flags field must be set to one of the
following:

• 0 - The driver can adjust the rectangle size freely and shall choose a
crop/compose rectangle as close as possible to the requested one.

• V4L2_SEL_FLAG_GE - The driver is not allowed to shrink the rectangle. The
original rectangle must lay inside the adjusted one.

• V4L2_SEL_FLAG_LE - The driver is not allowed to enlarge the rectangle. The
adjusted rectangle must lay inside the original one.

• V4L2_SEL_FLAG_GE | V4L2_SEL_FLAG_LE - The driver must choose the size
exactly the same as in the requested rectangle.

Please refer to Size adjustments with constraint flags..

The driver may have to adjusts the requested dimensions against hardware limits
and other parts as the pipeline, i.e. the bounds given by the capture/output window
or TV display. The closest possible values of horizontal and vertical offset and sizes
are chosen according to following priority:

1. Satisfy constraints from struct v4l2_selection flags.

2. Adjust width, height, left, and top to hardware limits and alignments.

3. Keep center of adjusted rectangle as close as possible to the original one.

4. Keep width and height as close as possible to original ones.

5. Keep horizontal and vertical offset as close as possible to original ones.

On success the struct v4l2_rect r field contains the adjusted rectangle. When the
parameters are unsuitable the application may modify the cropping (composing)
or image parameters and repeat the cycle until satisfactory parameters have been
negotiated. If constraints flags have to be violated at then ERANGE is returned. The
error indicates that there exist no rectangle that satisfies the constraints.

Selection targets and flags are documented in Common selection definitions.

v4l2_selection

Table 186: struct v4l2_selection
__u32 type Type of the buffer (from enum

v4l2_buf_type).
__u32 target Used to select between cropping and com-

posing rectangles.
__u32 flags Flags controlling the selection rectangle ad-

justments, refer to selection flags.
struct v4l2_rect r The selection rectangle.
__u32 reserved[9] Reserved fields for future use. Drivers and

applications must zero this array.

550 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Fig. 17: Size adjustments with constraint flags.
Behaviour of rectangle adjustment for different constraint flags.

Note: Unfortunately in the case of multiplanar
buffer types (V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE and
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) this API was messed up with regards to
how the v4l2_selection type field should be filled in. Some drivers only accepted
the _MPLANE buffer type while other drivers only accepted a non-multiplanar buffer
type (i.e. without the _MPLANE at the end).

Starting with kernel 4.13 both variations are allowed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL Given buffer type type or the selection target target is not supported,
or the flags argument is not valid.

ERANGE It is not possible to adjust struct v4l2_rect r rectangle to satisfy all
constraints given in the flags argument.

ENODATA Selection is not supported for this input or output.

EBUSY It is not possible to apply change of the selection rectangle at the moment.
Usually because streaming is in progress.

7.2. Part I - Video for Linux API 551

Linux Userspace-api Documentation

ioctl VIDIOC_G_SLICED_VBI_CAP

Name

VIDIOC_G_SLICED_VBI_CAP - Query sliced VBI capabilities

Synopsis

int ioctl(int fd, VIDIOC_G_SLICED_VBI_CAP, struct
v4l2_sliced_vbi_cap *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_sliced_vbi_cap.

Description

To find out which data services are supported by a sliced VBI capture or output de-
vice, applications initialize the type field of a struct v4l2_sliced_vbi_cap, clear
the reserved array and call the VIDIOC_G_SLICED_VBI_CAP ioctl. The driver fills
in the remaining fields or returns an EINVAL error code if the sliced VBI API is
unsupported or type is invalid.

Note: The type field was added, and the ioctl changed from read-only to write-
read, in Linux 2.6.19.

v4l2_sliced_vbi_cap

552 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 187: struct v4l2_sliced_vbi_cap
__u16 service_set A set of all data services supported by the driver.

Equal to the union of all elements of the service_lines array.
__u16 service_lines[2][24]Each element of this array contains a set of data services the

hardware can look for or insert into a particular scan line. Data
services are defined in Sliced VBI services. Array indices map
to ITU-R line numbers1 as follows:
Element 525 line systems 625 line systems
service_lines[0][1] 1 1
service_lines[0][23]23 23
service_lines[1][1] 264 314
service_lines[1][23]286 336

The number of VBI lines the hardware can capture or output per
frame, or the number of services it can identify on a given line
may be limited. For example on PAL line 16 the hardware may
be able to look for a VPS or Teletext signal, but not both at the
same time. Applications can learn about these limits using the
VIDIOC_S_FMT ioctl as described in Sliced VBI Data Interface.

Driversmust set service_lines [0][0] and service_lines[1][0]
to zero.

__u32 type Type of the data stream, see v4l2_buf_type.
Should be V4L2_BUF_TYPE_SLICED_VBI_CAPTURE or
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT.

__u32 reserved[3] This array is reserved for future extensions.
Applications and drivers must set it to zero.

Table 188: Sliced VBI services
Symbol Value Reference Lines, usually Payload
V4L2_SLICED_TELETEXT_B
(Teletext System B)

0x0001 ETS 300 706,
ITU BT.653

PAL/SECAM
line 7-22,
320-335 (sec-
ond field
7-22)

Last 42 of the 45 byte Teletext packet, that is without
clock run-in and framing code, lsb first transmitted.

V4L2_SLICED_VPS 0x0400 ETS 300 231 PAL line 16 Byte number 3 to 15 according to Figure 9 of ETS 300
231, lsb first transmitted.

V4L2_SLICED_CAPTION_5250x1000 CEA 608-E NTSC line 21,
284 (second
field 21)

Two bytes in transmission order, including parity bit, lsb
first transmitted.

V4L2_SLICED_WSS_625 0x4000 EN 300 294,
ITU BT.1119

PAL/SECAM
line 23 Byte 0 1

msb lsb msb ␣
↪→lsb
Bit 7 6 5 4 3 2 1 0 x x 13 12 11␣
↪→10 9

V4L2_SLICED_VBI_525 0x1000 Set of services applicable to 525 line systems.
V4L2_SLICED_VBI_625 0x4401 Set of services applicable to 625 line systems.

1 See also Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625
line numbering.

7.2. Part I - Video for Linux API 553

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The value in the type field is wrong.

ioctl VIDIOC_G_STD, VIDIOC_S_STD, VIDIOC_SUBDEV_G_STD, VID-
IOC_SUBDEV_S_STD

Name

VIDIOC_G_STD - VIDIOC_S_STD - VIDIOC_SUBDEV_G_STD - VID-
IOC_SUBDEV_S_STD - Query or select the video standard of the current
input

Synopsis

int ioctl(int fd, VIDIOC_G_STD, v4l2_std_id *argp)

int ioctl(int fd, VIDIOC_S_STD, const v4l2_std_id *argp)

int ioctl(int fd, VIDIOC_SUBDEV_G_STD, v4l2_std_id *argp)

int ioctl(int fd, VIDIOC_SUBDEV_S_STD, const v4l2_std_id *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to v4l2_std_id.

Description

To query and select the current video standard applications use the VIDIOC_G_STD
and VIDIOC_S_STD ioctls which take a pointer to a v4l2_std_id type as argument.
VIDIOC_G_STD can return a single flag or a set of flags as in struct v4l2_standard
field id. The flags must be unambiguous such that they appear in only one enu-
merated struct v4l2_standard structure.

VIDIOC_S_STD accepts one or more flags, being a write-only ioctl it does not re-
turn the actual new standard as VIDIOC_G_STD does. When no flags are given
or the current input does not support the requested standard the driver returns
an EINVAL error code. When the standard set is ambiguous drivers may return
EINVAL or choose any of the requested standards. If the current input or output
does not support standard video timings (e.g. if ioctl VIDIOC_ENUMINPUT does
not set the V4L2_IN_CAP_STD flag), then ENODATA error code is returned.

Calling VIDIOC_SUBDEV_S_STD on a subdev device node that has been registered
in read-only mode is not allowed. An error is returned and the errno variable is
set to -EPERM.

554 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The VIDIOC_S_STD parameter was unsuitable.
ENODATA Standard video timings are not supported for this input or output.

EPERM VIDIOC_SUBDEV_S_STD has been called on a read-only subdevice.

ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER

Name

VIDIOC_G_TUNER - VIDIOC_S_TUNER - Get or set tuner attributes

Synopsis

int ioctl(int fd, VIDIOC_G_TUNER, struct v4l2_tuner *argp)

int ioctl(int fd, VIDIOC_S_TUNER, const struct v4l2_tuner *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_tuner.

Description

To query the attributes of a tuner applications initialize the index field and zero
out the reserved array of a struct v4l2_tuner and call the VIDIOC_G_TUNER ioctl
with a pointer to this structure. Drivers fill the rest of the structure or return
an EINVAL error code when the index is out of bounds. To enumerate all tuners
applications shall begin at index zero, incrementing by one until the driver returns
EINVAL.

Tuners have two writable properties, the audio mode and the radio frequency. To
change the audio mode, applications initialize the index, audmode and reserved
fields and call the VIDIOC_S_TUNER ioctl. This will not change the current tuner,
which is determined by the current video input. Drivers may choose a different
audio mode if the requested mode is invalid or unsupported. Since this is a write-
only ioctl, it does not return the actually selected audio mode.

SDR specific tuner types are V4L2_TUNER_SDR and V4L2_TUNER_RF. For SDR de-
vices audmode field must be initialized to zero. The term ‘tuner’means SDR
receiver in this context.

To change the radio frequency the VIDIOC_S_FREQUENCY ioctl is available.

7.2. Part I - Video for Linux API 555

Linux Userspace-api Documentation

v4l2_tuner

Table 189: struct v4l2_tuner
__u32 index Identifies the tuner, set by the application.
__u8 name[32] Name of the tuner, a NUL-terminated ASCII string.

This information is intended for the user.
__u32 type Type of the tuner, see v4l2_tuner_type.
__u32 capability Tuner capability flags, see Tuner and Modulator Capability Flags.

Audio flags indicate the ability to decode audio subprograms. They
will not change, for example with the current video standard.
When the structure refers to a radio tuner the
V4L2_TUNER_CAP_LANG1, V4L2_TUNER_CAP_LANG2 and
V4L2_TUNER_CAP_NORM flags can’t be used.
If multiple frequency bands are supported, then capability is the
union of all capability fields of each struct v4l2_frequency_band.

__u32 rangelow The lowest tunable frequency in units of 62.5 kHz, or if the
capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz, or if
the capability flag V4L2_TUNER_CAP_1HZ is set, in units of 1 Hz. If
multiple frequency bands are supported, then rangelow is the lowest
frequency of all the frequency bands.

__u32 rangehigh The highest tunable frequency in units of 62.5 kHz, or if the
capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz, or if
the capability flag V4L2_TUNER_CAP_1HZ is set, in units of 1 Hz. If
multiple frequency bands are supported, then rangehigh is the high-
est frequency of all the frequency bands.

__u32 rxsubchans Some tuners or audio decoders can determine the received audio sub-
programs by analyzing audio carriers, pilot tones or other indicators.
To pass this information drivers set flags defined in Tuner Audio Re-
ception Flags in this field. For example:
V4L2_TUNER_SUB_MONO receiving mono audio
STEREO | SAP receiving stereo audio and a sec-

ondary audio program
MONO | STEREO receiving mono or stereo audio,

the hardware cannot distinguish
LANG1 | LANG2 receiving bilingual audio
MONO | STEREO | LANG1 |
LANG2

receiving mono, stereo or bilin-
gual audio

When the V4L2_TUNER_CAP_STEREO, _LANG1, _LANG2 or _SAP flag is
cleared in the capability field, the corresponding V4L2_TUNER_SUB_
flag must not be set here.
This field is valid only if this is the tuner of the current video input,
or when the structure refers to a radio tuner.

__u32 audmode The selected audio mode, see Tuner Audio Modes for valid values.
The audio mode does not affect audio subprogram detection, and like
a User Controls it does not automatically change unless the requested
mode is invalid or unsupported. See Tuner Audio Matrix for possible
results when the selected and received audio programs do not match.
Currently this is the only field of struct struct v4l2_tuner applica-
tions can change.

Continued on next page

556 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 189 – continued from previous page
__u32 signal The signal strength if known.

Ranging from 0 to 65535. Higher values indicate a better signal.
__s32 afc Automatic frequency control.

When the afc value is negative, the frequency is too low, when posi-
tive too high.

__u32 reserved[4] Reserved for future extensions.
Drivers and applications must set the array to zero.

v4l2_tuner_type

Table 190: enum v4l2_tuner_type
V4L2_TUNER_RADIO 1 Tuner supports radio
V4L2_TUNER_ANALOG_TV 2 Tuner supports analog TV
V4L2_TUNER_SDR 4 Tuner controls the A/D and/or D/A block of a

Software Digital Radio (SDR)
V4L2_TUNER_RF 5 Tuner controls the RF part of a Software Dig-

ital Radio (SDR)

Table 191: Tuner and Modulator Capability Flags
V4L2_TUNER_CAP_LOW 0x0001 When set, tuning frequencies are expressed

in units of 62.5 Hz instead of 62.5 kHz.
V4L2_TUNER_CAP_NORM 0x0002 This is a multi-standard tuner; the video

standard can or must be switched. (B/G
PAL tuners for example are typically not
considered multi-standard because the video
standard is automatically determined from
the frequency band.) The set of supported
video standards is available from the struct
v4l2_input pointing to this tuner, see the de-
scription of ioctl ioctl VIDIOC_ENUMINPUT
for details. Only V4L2_TUNER_ANALOG_TV
tuners can have this capability.

V4L2_TUNER_CAP_HWSEEK_BOUNDED0x0004 If set, then this tuner supports the hardware
seek functionality where the seek stops when
it reaches the end of the frequency range.

V4L2_TUNER_CAP_HWSEEK_WRAP 0x0008 If set, then this tuner supports the hardware
seek functionality where the seek wraps
around when it reaches the end of the fre-
quency range.

V4L2_TUNER_CAP_STEREO 0x0010 Stereo audio reception is supported.
Continued on next page

7.2. Part I - Video for Linux API 557

Linux Userspace-api Documentation

Table 191 – continued from previous page
V4L2_TUNER_CAP_LANG1 0x0040 Reception of the primary language of a bilin-

gual audio program is supported. Bilingual
audio is a feature of two-channel systems,
transmitting the primary language monaural
on the main audio carrier and a secondary
language monaural on a second carrier. Only
V4L2_TUNER_ANALOG_TV tuners can have this
capability.

V4L2_TUNER_CAP_LANG2 0x0020 Reception of the secondary language of a
bilingual audio program is supported. Only
V4L2_TUNER_ANALOG_TV tuners can have this
capability.

V4L2_TUNER_CAP_SAP 0x0020 Reception of a secondary audio program is
supported. This is a feature of the BTSC
system which accompanies the NTSC video
standard. Two audio carriers are available
formono or stereo transmissions of a primary
language, and an independent third carrier
for a monaural secondary language. Only
V4L2_TUNER_ANALOG_TV tuners can have this
capability.

Note: The V4L2_TUNER_CAP_LANG2 and
V4L2_TUNER_CAP_SAP flags are synonyms.
V4L2_TUNER_CAP_SAP applies when the tuner
supports the V4L2_STD_NTSC_M video stan-
dard.

V4L2_TUNER_CAP_RDS 0x0080 RDS capture is supported. This capability is
only valid for radio tuners.

V4L2_TUNER_CAP_RDS_BLOCK_IO 0x0100 The RDS data is passed as unparsed RDS
blocks.

V4L2_TUNER_CAP_RDS_CONTROLS 0x0200 The RDS data is parsed by the hardware and
set via controls.

V4L2_TUNER_CAP_FREQ_BANDS 0x0400 The ioctl VIDIOC_ENUM_FREQ_BANDS
ioctl can be used to enumerate the available
frequency bands.

V4L2_TUNER_CAP_HWSEEK_PROG_LIM0x0800 The range to search when using the hard-
ware seek functionality is programmable,
see ioctl VIDIOC_S_HW_FREQ_SEEK for de-
tails.

V4L2_TUNER_CAP_1HZ 0x1000 When set, tuning frequencies are expressed
in units of 1 Hz instead of 62.5 kHz.

558 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 192: Tuner Audio Reception Flags
V4L2_TUNER_SUB_MONO 0x0001 The tuner receives a mono audio signal.
V4L2_TUNER_SUB_STEREO 0x0002 The tuner receives a stereo audio signal.
V4L2_TUNER_SUB_LANG1 0x0008 The tuner receives the primary language of

a bilingual audio signal. Drivers must clear
this flag when the current video standard is
V4L2_STD_NTSC_M.

V4L2_TUNER_SUB_LANG2 0x0004 The tuner receives the secondary language
of a bilingual audio signal (or a second audio
program).

V4L2_TUNER_SUB_SAP 0x0004 The tuner receives a Second Audio Program.

Note: The V4L2_TUNER_SUB_LANG2
and V4L2_TUNER_SUB_SAP flags are syn-
onyms. The V4L2_TUNER_SUB_SAP flag
applies when the current video standard is
V4L2_STD_NTSC_M.

V4L2_TUNER_SUB_RDS 0x0010 The tuner receives an RDS channel.

7.2. Part I - Video for Linux API 559

Linux Userspace-api Documentation

Table 193: Tuner Audio Modes
V4L2_TUNER_MODE_MONO 0 Play mono audio. When the tuner receives

a stereo signal this a down-mix of the left
and right channel. When the tuner receives a
bilingual or SAP signal this mode selects the
primary language.

V4L2_TUNER_MODE_STEREO 1 Play stereo audio. When the tuner receives
bilingual audio it may play different lan-
guages on the left and right channel or the
primary language is played on both channels.
Playing different languages in this mode is
deprecated. New drivers should do this only
in MODE_LANG1_LANG2.
When the tuner receives no stereo signal or
does not support stereo reception the driver
shall fall back to MODE_MONO.

V4L2_TUNER_MODE_LANG1 3 Play the primary language, mono or stereo.
Only V4L2_TUNER_ANALOG_TV tuners support
this mode.

V4L2_TUNER_MODE_LANG2 2 Play the secondary language, mono. When
the tuner receives no bilingual audio or SAP,
or their reception is not supported the driver
shall fall back to mono or stereo mode. Only
V4L2_TUNER_ANALOG_TV tuners support this
mode.

V4L2_TUNER_MODE_SAP 2 Play the Second Audio Program. When the
tuner receives no bilingual audio or SAP, or
their reception is not supported the driver
shall fall back to mono or stereo mode. Only
V4L2_TUNER_ANALOG_TV tuners support this
mode.

Note: The V4L2_TUNER_MODE_LANG2 and
V4L2_TUNER_MODE_SAP are synonyms.

V4L2_TUNER_MODE_LANG1_LANG2 4 Play the primary language on the left
channel, the secondary language on the
right channel. When the tuner receives
no bilingual audio or SAP, it shall fall
back to MODE_LANG1 or MODE_MONO. Only
V4L2_TUNER_ANALOG_TV tuners support this
mode.

560 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 194: Tuner Audio Matrix
Selected V4L2_TUNER_MODE_

Received
V4L2_TUNER_SUB_

MONO STEREO LANG1 LANG2 = SAP LANG1_LANG21

MONO Mono Mono/Mono Mono Mono Mono/Mono
MONO |
SAP

Mono Mono/Mono Mono SAP Mono/SAP
(preferred) or
Mono/Mono

STEREO L+R L/R Stereo L/R (pre-
ferred) or Mono
L+R

Stereo L/R (pre-
ferred) or Mono
L+R

L/R (preferred) or
L+R/L+R

STEREO |
SAP

L+R L/R Stereo L/R (pre-
ferred) or Mono
L+R

SAP L+R/SAP (pre-
ferred) or L/R or
L+R/L+R

LANG1 |
LANG2

Language
1

Lang1/Lang2
(deprecated2) or
Lang1/Lang1

Language 1 Language 2 Lang1/Lang2
(preferred) or
Lang1/Lang1

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_tuner index is out of bounds.

ioctl VIDIOC_LOG_STATUS

Name

VIDIOC_LOG_STATUS - Log driver status information

Synopsis

int ioctl(int fd, VIDIOC_LOG_STATUS)

Arguments

fd File descriptor returned by open().
1 This mode has been added in Linux 2.6.17 and may not be supported by older drivers.
2 Playback of both languages in MODE_STEREO is deprecated. In the future drivers should produce

only the primary language in this mode. Applications should request MODE_LANG1_LANG2 to record
both languages or a stereo signal.

7.2. Part I - Video for Linux API 561

Linux Userspace-api Documentation

Description

As the video/audio devices become more complicated it becomes harder to debug
problems. When this ioctl is called the driver will output the current device sta-
tus to the kernel log. This is particular useful when dealing with problems like
no sound, no video and incorrectly tuned channels. Also many modern devices au-
todetect video and audio standards and this ioctl will report what the device thinks
what the standard is. Mismatches may give an indication where the problem is.

This ioctl is optional and not all drivers support it. It was introduced in Linux
2.6.15.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_OVERLAY

Name

VIDIOC_OVERLAY - Start or stop video overlay

Synopsis

int ioctl(int fd, VIDIOC_OVERLAY, const int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer.

Description

This ioctl is part of the video overlay I/O method. Applications call ioctl VID-
IOC_OVERLAY to start or stop the overlay. It takes a pointer to an integer which
must be set to zero by the application to stop overlay, to one to start.

Drivers do not support ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF or VID-
IOC_STREAMOFF with V4L2_BUF_TYPE_VIDEO_OVERLAY.

562 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The overlay parameters have not been set up. See Video Overlay Inter-
face for the necessary steps.

ioctl VIDIOC_PREPARE_BUF

Name

VIDIOC_PREPARE_BUF - Prepare a buffer for I/O

Synopsis

int ioctl(int fd, VIDIOC_PREPARE_BUF, struct v4l2_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_buffer.

Description

Applications can optionally call the ioctl VIDIOC_PREPARE_BUF ioctl to pass own-
ership of the buffer to the driver before actually enqueuing it, using the VID-
IOC_QBUF ioctl, and to prepare it for future I/O. Such preparations may include
cache invalidation or cleaning. Performing them in advance saves time during the
actual I/O.

The struct v4l2_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EBUSY File I/O is in progress.
EINVAL The buffer type is not supported, or the index is out of bounds, or no

buffers have been allocated yet, or the userptr or length are invalid.

7.2. Part I - Video for Linux API 563

Linux Userspace-api Documentation

ioctl VIDIOC_QBUF, VIDIOC_DQBUF

Name

VIDIOC_QBUF - VIDIOC_DQBUF - Exchange a buffer with the driver

Synopsis

int ioctl(int fd, VIDIOC_QBUF, struct v4l2_buffer *argp)

int ioctl(int fd, VIDIOC_DQBUF, struct v4l2_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_buffer.

Description

Applications call the VIDIOC_QBUF ioctl to enqueue an empty (capturing) or filled
(output) buffer in the driver’s incoming queue. The semantics depend on the
selected I/O method.

To enqueue a buffer applications set the type field of a struct v4l2_buffer
to the same buffer type as was previously used with struct v4l2_format type
and struct v4l2_requestbuffers type. Applications must also set the index
field. Valid index numbers range from zero to the number of buffers allo-
cated with ioctl VIDIOC_REQBUFS (struct v4l2_requestbuffers count) mi-
nus one. The contents of the struct v4l2_buffer returned by a ioctl VID-
IOC_QUERYBUF ioctl will do as well. When the buffer is intended for output
(type is V4L2_BUF_TYPE_VIDEO_OUTPUT, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE,
or V4L2_BUF_TYPE_VBI_OUTPUT) applications must also initialize the bytesused,
field and timestamp fields, see Buffers for details. Applications must also set
flags to 0. The reserved2 and reserved fields must be set to 0. When using the
multi-planar API, the m.planes field must contain a userspace pointer to a filled-
in array of struct v4l2_plane and the length field must be set to the number of
elements in that array.

To enqueue a memory mapped buffer applications set the memory field to
V4L2_MEMORY_MMAP. When VIDIOC_QBUF is called with a pointer to this structure
the driver sets the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_QUEUED flags and
clears the V4L2_BUF_FLAG_DONE flag in the flags field, or it returns an EINVAL
error code.

To enqueue a user pointer buffer applications set the memory field to
V4L2_MEMORY_USERPTR, the m.userptr field to the address of the buffer and length
to its size. When the multi-planar API is used, m.userptr and length members of
the passed array of struct v4l2_plane have to be used instead. When VIDIOC_QBUF
is called with a pointer to this structure the driver sets the V4L2_BUF_FLAG_QUEUED
flag and clears the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_DONE flags in the

564 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

flags field, or it returns an error code. This ioctl locks the memory pages of the
buffer in physical memory, they cannot be swapped out to disk. Buffers remain
locked until dequeued, until the VIDIOC_STREAMOFF or ioctl VIDIOC_REQBUFS
ioctl is called, or until the device is closed.

To enqueue a DMABUF buffer applications set the memory field to
V4L2_MEMORY_DMABUF and the m.fd field to a file descriptor associated with
a DMABUF buffer. When the multi-planar API is used the m.fd fields of the
passed array of struct v4l2_plane have to be used instead. When VIDIOC_QBUF is
called with a pointer to this structure the driver sets the V4L2_BUF_FLAG_QUEUED
flag and clears the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_DONE flags in the
flags field, or it returns an error code. This ioctl locks the buffer. Locking a
buffer means passing it to a driver for a hardware access (usually DMA). If an
application accesses (reads/writes) a locked buffer then the result is undefined.
Buffers remain locked until dequeued, until the VIDIOC_STREAMOFF or ioctl
VIDIOC_REQBUFS ioctl is called, or until the device is closed.

The request_fd field can be used with the VIDIOC_QBUF ioctl to specify the file
descriptor of a request, if requests are in use. Setting it means that the buffer will
not be passed to the driver until the request itself is queued. Also, the driver will
apply any settings associated with the request for this buffer. This field will be
ignored unless the V4L2_BUF_FLAG_REQUEST_FD flag is set. If the device does not
support requests, then EBADR will be returned. If requests are supported but an
invalid request file descriptor is given, then EINVAL will be returned.

Caution: It is not allowed to mix queuing requests with queuing buffers di-
rectly. EBUSY will be returned if the first buffer was queued directly and then
the application tries to queue a request, or vice versa. After closing the file de-
scriptor, calling VIDIOC_STREAMOFF or calling ioctl VIDIOC_REQBUFS the
check for this will be reset.

For memory-to-memory devices you can specify the request_fd only for output
buffers, not for capture buffers. Attempting to specify this for a capture buffer
will result in an EBADR error.

Applications call the VIDIOC_DQBUF ioctl to dequeue a filled (capturing) or dis-
played (output) buffer from the driver’s outgoing queue. They just set the type,
memory and reserved fields of a struct v4l2_buffer as above, when VIDIOC_DQBUF
is called with a pointer to this structure the driver fills the remaining fields or re-
turns an error code. The driver may also set V4L2_BUF_FLAG_ERROR in the flags
field. It indicates a non-critical (recoverable) streaming error. In such case the ap-
plication may continue as normal, but should be aware that data in the dequeued
buffer might be corrupted. When using the multi-planar API, the planes array must
be passed in as well.

If the application sets the memory field to V4L2_MEMORY_DMABUF to dequeue a
DMABUF buffer, the driver fills the m.fd field with a file descriptor numerically
the same as the one given to VIDIOC_QBUF when the buffer was enqueued. No new
file descriptor is created at dequeue time and the value is only for the application
convenience. When the multi-planar API is used the m.fd fields of the passed array
of struct v4l2_plane are filled instead.

7.2. Part I - Video for Linux API 565

Linux Userspace-api Documentation

By default VIDIOC_DQBUF blocks when no buffer is in the outgoing queue. When
the O_NONBLOCK flag was given to the open() function, VIDIOC_DQBUF returns im-
mediately with an EAGAIN error code when no buffer is available.

The struct v4l2_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EAGAIN Non-blocking I/O has been selected using O_NONBLOCK and no buffer was
in the outgoing queue.

EINVAL The buffer type is not supported, or the index is out of bounds, or no
buffers have been allocated yet, or the userptr or length are invalid, or the
V4L2_BUF_FLAG_REQUEST_FD flag was set but the the given request_fd was
invalid, or m.fd was an invalid DMABUF file descriptor.

EIO VIDIOC_DQBUF failed due to an internal error. Can also indicate temporary
problems like signal loss.

Note: The driver might dequeue an (empty) buffer despite returning an
error, or even stop capturing. Reusing such buffer may be unsafe though and
its details (e.g. index) may not be returned either. It is recommended that
drivers indicate recoverable errors by setting the V4L2_BUF_FLAG_ERROR and
returning 0 instead. In that case the application should be able to safely reuse
the buffer and continue streaming.

EPIPE VIDIOC_DQBUF returns this on an empty capture queue for mem2mem
codecs if a buffer with the V4L2_BUF_FLAG_LAST was already dequeued and
no new buffers are expected to become available.

EBADR The V4L2_BUF_FLAG_REQUEST_FD flag was set but the device does not sup-
port requests for the given buffer type, or the V4L2_BUF_FLAG_REQUEST_FD
flag was not set but the device requires that the buffer is part of a request.

EBUSY The first buffer was queued via a request, but the application now tries
to queue it directly, or vice versa (it is not permitted to mix the two APIs).

ioctl VIDIOC_QUERYBUF

Name

VIDIOC_QUERYBUF - Query the status of a buffer

566 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, VIDIOC_QUERYBUF, struct v4l2_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_buffer.

Description

This ioctl is part of the streaming I/O method. It can be used to query the sta-
tus of a buffer at any time after buffers have been allocated with the ioctl VID-
IOC_REQBUFS ioctl.

Applications set the type field of a struct v4l2_buffer to the same buffer
type as was previously used with struct v4l2_format type and struct
v4l2_requestbuffers type, and the index field. Valid index numbers range
from zero to the number of buffers allocated with ioctl VIDIOC_REQBUFS (struct
v4l2_requestbuffers count) minus one. The reserved and reserved2 fields
must be set to 0. When using the multi-planar API, the m.planes field must contain
a userspace pointer to an array of struct v4l2_plane and the length field has to be
set to the number of elements in that array. After calling ioctl VIDIOC_QUERYBUF
with a pointer to this structure drivers return an error code or fill the rest of the
structure.

In the flags field the V4L2_BUF_FLAG_MAPPED, V4L2_BUF_FLAG_PREPARED,
V4L2_BUF_FLAG_QUEUED and V4L2_BUF_FLAG_DONE flags will be valid. The memory
field will be set to the current I/O method. For the single-planar API, the m.
offset contains the offset of the buffer from the start of the device memory, the
length field its size. For the multi-planar API, fields m.mem_offset and length in
the m.planes array elements will be used instead and the length field of struct
v4l2_buffer is set to the number of filled-in array elements. The driver may or
may not set the remaining fields and flags, they are meaningless in this context.

The struct v4l2_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The buffer type is not supported, or the index is out of bounds.

7.2. Part I - Video for Linux API 567

Linux Userspace-api Documentation

ioctl VIDIOC_QUERYCAP

Name

VIDIOC_QUERYCAP - Query device capabilities

Synopsis

int ioctl(int fd, VIDIOC_QUERYCAP, struct v4l2_capability *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_capability.

Description

All V4L2 devices support the VIDIOC_QUERYCAP ioctl. It is used to identify kernel
devices compatible with this specification and to obtain information about driver
and hardware capabilities. The ioctl takes a pointer to a struct v4l2_capability
which is filled by the driver. When the driver is not compatible with this specifi-
cation the ioctl returns an EINVAL error code.

v4l2_capability

568 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 195: struct v4l2_capability
__u8 driver[16] Name of the driver, a unique NUL-terminated ASCII string. For ex-

ample:“bttv”. Driver specific applications can use this information
to verify the driver identity. It is also useful to work around known
bugs, or to identify drivers in error reports.
Storing strings in fixed sized arrays is bad practice but unavoidable
here. Drivers and applications should take precautions to never
read or write beyond the end of the array and to make sure the
strings are properly NUL-terminated.

__u8 card[32] Name of the device, a NUL-terminated UTF-8 string. For example:
“Yoyodyne TV/FM”. One driver may support different brands or
models of video hardware. This information is intended for users,
for example in a menu of available devices. Since multiple TV cards
of the same brand may be installed which are supported by the
same driver, this name should be combined with the character de-
vice file name (e. g. /dev/video2) or the bus_info string to avoid
ambiguities.

__u8 bus_info[32]Location of the device in the system, a NUL-terminated ASCII
string. For example: “PCI:0000:05:06.0”. This information is in-
tended for users, to distinguish multiple identical devices. If no
such information is available the field must simply count the de-
vices controlled by the driver (“platform:vivid-000”). The bus_info
must start with “PCI:”for PCI boards, “PCIe:”for PCI Express
boards,“usb-”for USB devices,“I2C:”for i2c devices,“ISA:”for
ISA devices,“parport”for parallel port devices and“platform:”for
platform devices.

__u32 version Version number of the driver.
Starting with kernel 3.1, the version reported is provided by the
V4L2 subsystem following the kernel numbering scheme. How-
ever, it may not always return the same version as the kernel if,
for example, a stable or distribution-modified kernel uses the V4L2
stack from a newer kernel.
The version number is formatted using the KERNEL_VERSION()
macro. For example if the media stack corresponds to the V4L2
version shipped with Kernel 4.14, it would be equivalent to:

#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))
__u32 version = KERNEL_VERSION(4, 14, 0);
printf ("Version: %u.%u.%u\\n",
(version >> 16) & 0xFF, (version >> 8) & 0xFF, version & 0xFF);
__u32 capabilitiesAvailable capabilities of the physical device as a whole, see Device

Capabilities Flags. The same physical device can export multiple
devices in /dev (e.g. /dev/videoX, /dev/vbiY and /dev/radioZ). The
capabilities field should contain a union of all capabilities avail-
able around the several V4L2 devices exported to userspace. For
all those devices the capabilities field returns the same set of ca-
pabilities. This allows applications to open just one of the devices
(typically the video device) and discover whether video, vbi and/or
radio are also supported.

__u32 device_caps Device capabilities of the opened device, see Device Capabilities
Flags. Should contain the available capabilities of that specific de-
vice node. So, for example, device_caps of a radio device will
only contain radio related capabilities and no video or vbi capabil-
ities. This field is only set if the capabilities field contains the
V4L2_CAP_DEVICE_CAPS capability. Only the capabilities field
can have the V4L2_CAP_DEVICE_CAPS capability, device_caps will
never set V4L2_CAP_DEVICE_CAPS.

__u32 reserved[3] Reserved for future extensions. Drivers must set this array to zero.

7.2. Part I - Video for Linux API 569

Linux Userspace-api Documentation

Table 196: Device Capabilities Flags
V4L2_CAP_VIDEO_CAPTURE 0x00000001The device supports the single-planar API

through the Video Capture interface.
V4L2_CAP_VIDEO_CAPTURE_MPLANE0x00001000The device supports the multi-planar API

through the Video Capture interface.
V4L2_CAP_VIDEO_OUTPUT 0x00000002The device supports the single-planar API

through the Video Output interface.
V4L2_CAP_VIDEO_OUTPUT_MPLANE0x00002000The device supports the multi-planar API

through the Video Output interface.
V4L2_CAP_VIDEO_M2M 0x00004000The device supports the single-planar API

through the Video Memory-To-Memory inter-
face.

V4L2_CAP_VIDEO_M2M_MPLANE 0x00008000The device supports the multi-planar API
through the Video Memory-To-Memory inter-
face.

V4L2_CAP_VIDEO_OVERLAY 0x00000004The device supports the Video Overlay inter-
face. A video overlay device typically stores
captured images directly in the video mem-
ory of a graphics card, with hardware clip-
ping and scaling.

V4L2_CAP_VBI_CAPTURE 0x00000010The device supports the Raw VBI Capture in-
terface, providing Teletext and Closed Cap-
tion data.

V4L2_CAP_VBI_OUTPUT 0x00000020The device supports the Raw VBI Output in-
terface.

V4L2_CAP_SLICED_VBI_CAPTURE0x00000040The device supports the Sliced VBI Capture
interface.

V4L2_CAP_SLICED_VBI_OUTPUT 0x00000080The device supports the Sliced VBI Output
interface.

V4L2_CAP_RDS_CAPTURE 0x00000100The device supports the RDS capture inter-
face.

V4L2_CAP_VIDEO_OUTPUT_OVERLAY0x00000200The device supports the Video Output Over-
lay (OSD) interface. Unlike the Video Over-
lay interface, this is a secondary function
of video output devices and overlays an im-
age onto an outgoing video signal. When
the driver sets this flag, it must clear
the V4L2_CAP_VIDEO_OVERLAY flag and vice
versa.1

V4L2_CAP_HW_FREQ_SEEK 0x00000400The device supports the ioctl VID-
IOC_S_HW_FREQ_SEEK ioctl for hardware
frequency seeking.

V4L2_CAP_RDS_OUTPUT 0x00000800The device supports the RDS output inter-
face.

V4L2_CAP_TUNER 0x00010000The device has some sort of tuner to receive
RF-modulated video signals. For more infor-
mation about tuner programming see Tuners
and Modulators.

Continued on next page

570 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 196 – continued from previous page
V4L2_CAP_AUDIO 0x00020000The device has audio inputs or outputs. It

may or may not support audio recording or
playback, in PCM or compressed formats.
PCM audio support must be implemented as
ALSA or OSS interface. For more informa-
tion on audio inputs and outputs see Audio
Inputs and Outputs.

V4L2_CAP_RADIO 0x00040000This is a radio receiver.
V4L2_CAP_MODULATOR 0x00080000The device has some sort of modulator to

emit RF-modulated video/audio signals. For
more information about modulator program-
ming see Tuners and Modulators.

V4L2_CAP_SDR_CAPTURE 0x00100000The device supports the SDR Capture inter-
face.

V4L2_CAP_EXT_PIX_FORMAT 0x00200000The device supports the struct
v4l2_pix_format extended fields.

V4L2_CAP_SDR_OUTPUT 0x00400000The device supports the SDR Output inter-
face.

V4L2_CAP_META_CAPTURE 0x00800000The device supports the Metadata Interface
capture interface.

V4L2_CAP_READWRITE 0x01000000The device supports the read() and/or write()
I/O methods.

V4L2_CAP_ASYNCIO 0x02000000The device supports the asynchronous I/O
methods.

V4L2_CAP_STREAMING 0x04000000The device supports the streaming I/O
method.

V4L2_CAP_META_OUTPUT 0x08000000The device supports the Metadata Interface
output interface.

V4L2_CAP_TOUCH 0x10000000This is a touch device.
V4L2_CAP_IO_MC 0x20000000There is only one input and/or output seen

from userspace. The whole video topology
configuration, including which I/O entity is
routed to the input/output, is configured by
userspace via the Media Controller. See Part
IV - Media Controller API.

V4L2_CAP_DEVICE_CAPS 0x80000000The driver fills the device_caps field.
This capability can only appear in the
capabilities field and never in the
device_caps field.

1 The struct v4l2_framebuffer lacks an enum v4l2_buf_type field, therefore the type of overlay
is implied by the driver capabilities.

7.2. Part I - Video for Linux API 571

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VID-
IOC_QUERYMENU

Name

VIDIOC_QUERYCTRL - VIDIOC_QUERY_EXT_CTRL - VIDIOC_QUERYMENU -
Enumerate controls and menu control items

Synopsis

int ioctl(int fd, int VIDIOC_QUERYCTRL, struct v4l2_queryctrl *argp)

int ioctl(int fd, VIDIOC_QUERY_EXT_CTRL, struct
v4l2_query_ext_ctrl *argp)

int ioctl(int fd, VIDIOC_QUERYMENU, struct v4l2_querymenu *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_queryctrl, v4l2_query_ext_ctrl or
v4l2_querymenu (depending on the ioctl).

Description

To query the attributes of a control applications set the id field of a struct
v4l2_queryctrl and call the VIDIOC_QUERYCTRL ioctl with a pointer to this struc-
ture. The driver fills the rest of the structure or returns an EINVAL error code
when the id is invalid.

It is possible to enumerate controls by calling VIDIOC_QUERYCTRL with succes-
sive id values starting from V4L2_CID_BASE up to and exclusive V4L2_CID_LASTP1.
Drivers may return EINVAL if a control in this range is not supported. Further ap-
plications can enumerate private controls, which are not defined in this specifica-
tion, by starting at V4L2_CID_PRIVATE_BASE and incrementing id until the driver
returns EINVAL.

In both cases, when the driver sets the V4L2_CTRL_FLAG_DISABLED flag in the
flags field this control is permanently disabled and should be ignored by the ap-
plication.1

1 V4L2_CTRL_FLAG_DISABLEDwas intended for two purposes: Drivers can skip predefined controls
not supported by the hardware (although returning EINVAL would do as well), or disable predefined
and private controls after hardware detection without the trouble of reordering control arrays and
indices (EINVAL cannot be used to skip private controls because it would prematurely end the enu-

572 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

When the application ORs id with V4L2_CTRL_FLAG_NEXT_CTRL the driver returns
the next supported non-compound control, or EINVAL if there is none. In addi-
tion, the V4L2_CTRL_FLAG_NEXT_COMPOUND flag can be specified to enumerate all
compound controls (i.e. controls with type ≥ V4L2_CTRL_COMPOUND_TYPES and/or
array control, in other words controls that contain more than one value). Specify
both V4L2_CTRL_FLAG_NEXT_CTRL and V4L2_CTRL_FLAG_NEXT_COMPOUND in order
to enumerate all controls, compound or not. Drivers which do not support these
flags yet always return EINVAL.

The VIDIOC_QUERY_EXT_CTRL ioctl was introduced in order to better support con-
trols that can use compound types, and to expose additional control information
that cannot be returned in struct v4l2_queryctrl since that structure is full.

VIDIOC_QUERY_EXT_CTRL is used in the same way as VIDIOC_QUERYCTRL, except
that the reserved array must be zeroed as well.

Additional information is required for menu controls: the names of themenu items.
To query them applications set the id and index fields of struct v4l2_querymenu
and call the VIDIOC_QUERYMENU ioctl with a pointer to this structure. The driver fills
the rest of the structure or returns an EINVAL error code when the id or index is
invalid. Menu items are enumerated by calling VIDIOC_QUERYMENUwith successive
index values from struct v4l2_queryctrl minimum to maximum, inclusive.

Note: It is possible for VIDIOC_QUERYMENU to return an EINVAL error code for
some indices between minimum and maximum. In that case that particular menu
item is not supported by this driver. Also note that the minimum value is not nec-
essarily 0.

See also the examples in User Controls.

Table 197: struct v4l2_queryctrl
__u32 id Identifies the control, set by the application. See Con-

trol IDs for predefined IDs. When the ID is ORed with
V4L2_CTRL_FLAG_NEXT_CTRL the driver clears the flag and re-
turns the first control with a higher ID. Drivers which do not sup-
port this flag yet always return an EINVAL error code.

__u32 type Type of control, see v4l2_ctrl_type.
__u8 name[32] Name of the control, a NUL-terminated ASCII string. This infor-

mation is intended for the user.
__s32 minimum Minimum value, inclusive. This field gives a lower bound for the

control. See enum v4l2_ctrl_type how the minimum value is to
be used for each possible control type. Note that this a signed
32-bit value.

__s32 maximum Maximum value, inclusive. This field gives an upper bound for the
control. See enum v4l2_ctrl_type how the maximum value is to
be used for each possible control type. Note that this a signed
32-bit value.

Continued on next page

meration).

7.2. Part I - Video for Linux API 573

Linux Userspace-api Documentation

Table 197 – continued from previous page
__s32 step This field gives a step size for the control. See enum

v4l2_ctrl_type how the step value is to be used for each pos-
sible control type. Note that this an unsigned 32-bit value.
Generally drivers should not scale hardware control values. It
may be necessary for example when the name or id imply a partic-
ular unit and the hardware actually accepts only multiples of said
unit. If so, drivers must take care values are properly rounded
when scaling, such that errors will not accumulate on repeated
read-write cycles.
This field gives the smallest change of an integer control actually
affecting hardware. Often the information is needed when the
user can change controls by keyboard or GUI buttons, rather than
a slider. When for example a hardware register accepts values 0-
511 and the driver reports 0-65535, step should be 128.
Note that although signed, the step value is supposed to be always
positive.

__s32 default_value The default value of a V4L2_CTRL_TYPE_INTEGER, _BOOLEAN,
_BITMASK, _MENU or _INTEGER_MENU control. Not valid for other
types of controls.

Note: Drivers reset controls to their default value only when the
driver is first loaded, never afterwards.

__u32 flags Control flags, see Control Flags.
__u32 reserved[2] Reserved for future extensions. Drivers must set the array to zero.

Table 198: struct v4l2_query_ext_ctrl
__u32 id Identifies the control, set by the application. See

Control IDs for predefined IDs. When the ID is
ORed with V4L2_CTRL_FLAG_NEXT_CTRL the driver clears
the flag and returns the first non-compound con-
trol with a higher ID. When the ID is ORed with
V4L2_CTRL_FLAG_NEXT_COMPOUND the driver clears the flag
and returns the first compound control with a higher ID.
Set both to get the first control (compound or not) with a
higher ID.

__u32 type Type of control, see v4l2_ctrl_type.
char name[32] Name of the control, a NUL-terminated ASCII string. This

information is intended for the user.
__s64 minimum Minimum value, inclusive. This field gives a lower bound

for the control. See enum v4l2_ctrl_type how the min-
imum value is to be used for each possible control type.
Note that this a signed 64-bit value.

__s64 maximum Maximum value, inclusive. This field gives an upper bound
for the control. See enum v4l2_ctrl_type how the max-
imum value is to be used for each possible control type.
Note that this a signed 64-bit value.

Continued on next page

574 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 198 – continued from previous page
__u64 step This field gives a step size for the control. See enum

v4l2_ctrl_type how the step value is to be used for each
possible control type. Note that this an unsigned 64-bit
value.
Generally drivers should not scale hardware control val-
ues. It may be necessary for example when the name or
id imply a particular unit and the hardware actually ac-
cepts only multiples of said unit. If so, drivers must take
care values are properly rounded when scaling, such that
errors will not accumulate on repeated read-write cycles.
This field gives the smallest change of an integer con-
trol actually affecting hardware. Often the information is
needed when the user can change controls by keyboard
or GUI buttons, rather than a slider. When for example
a hardware register accepts values 0-511 and the driver
reports 0-65535, step should be 128.

__s64 default_value The default value of a V4L2_CTRL_TYPE_INTEGER,
_INTEGER64, _BOOLEAN, _BITMASK, _MENU, _INTEGER_MENU,
_U8 or _U16 control. Not valid for other types of controls.

Note: Drivers reset controls to their default value only
when the driver is first loaded, never afterwards.

__u32 flags Control flags, see Control Flags.
__u32 elem_size The size in bytes of a single element of the array. Given a

char pointer p to a 3-dimensional array you can find the po-
sition of cell (z, y, x) as follows: p + ((z * dims[1] +
y) * dims[0] + x) * elem_size. elem_size is always
valid, also when the control isn’t an array. For string
controls elem_size is equal to maximum + 1.

__u32 elems The number of elements in the N-dimensional array. If this
control is not an array, then elems is 1. The elems field can
never be 0.

__u32 nr_of_dims The number of dimension in the N-dimensional array. If
this control is not an array, then this field is 0.

__u32 dims[V4L2_CTRL_MAX_DIMS]The size of each dimension. The first nr_of_dims elements
of this array must be non-zero, all remaining elements
must be zero.

__u32 reserved[32] Reserved for future extensions. Applications and drivers
must set the array to zero.

7.2. Part I - Video for Linux API 575

Linux Userspace-api Documentation

Table 199: struct v4l2_querymenu
__u32 id Identifies

the con-
trol, set
by the
appli-
cation
from
the re-
spective
struct
v4l2_queryctrl
id.

__u32 indexIndex
of the
menu
item,
start-
ing at
zero, set
by the
applica-
tion.

union
{

(anonymous)

__u8 name[32]Name
of the
menu
item,
a NUL-
terminated
ASCII
string.
This
infor-
mation
is in-
tended
for the
user.
This
field is
valid for
V4L2_CTRL_TYPE_MENU
type
con-
trols.

__s64 valueValue
of the
integer
menu
item.
This
field is
valid for
V4L2_CTRL_TYPE_INTEGER_MENU
type
con-
trols.

}
__u32 reservedReserved

for fu-
ture
exten-
sions.
Drivers
must
set the
array to
zero.

576 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

v4l2_ctrl_type

Table 200: enum v4l2_ctrl_type
Type minimumstep maximumDescription
V4L2_CTRL_TYPE_INTEGER any any any An integer-valued control ranging

from minimum to maximum inclu-
sive. The step value indicates the
increment between values.

V4L2_CTRL_TYPE_BOOLEAN 0 1 1 A boolean-valued control. Zero cor-
responds to “disabled”, and one
means “enabled”.

V4L2_CTRL_TYPE_MENU ≥ 0 1 N-1 The control has a menu of N
choices. The names of the menu
items can be enumerated with the
VIDIOC_QUERYMENU ioctl.

V4L2_CTRL_TYPE_INTEGER_MENU≥ 0 1 N-1 The control has a menu of N
choices. The values of the menu
items can be enumerated with
the VIDIOC_QUERYMENU ioctl. This
is similar to V4L2_CTRL_TYPE_MENU
except that instead of strings, the
menu items are signed 64-bit inte-
gers.

V4L2_CTRL_TYPE_BITMASK 0 n/a any A bitmask field. The maximum
value is the set of bits that can be
used, all other bits are to be 0. The
maximum value is interpreted as a
__u32, allowing the use of bit 31 in
the bitmask.

V4L2_CTRL_TYPE_BUTTON 0 0 0 A control which performs an action
when set. Drivers must ignore the
value passed with VIDIOC_S_CTRL
and return an EACCES error code on
a VIDIOC_G_CTRL attempt.

V4L2_CTRL_TYPE_INTEGER64 any any any A 64-bit integer valued con-
trol. Minimum, maximum and
step size cannot be queried
using VIDIOC_QUERYCTRL. Only
VIDIOC_QUERY_EXT_CTRL can re-
trieve the 64-bit min/max/step val-
ues, they should be interpreted as
n/a when using VIDIOC_QUERYCTRL.

Continued on next page

7.2. Part I - Video for Linux API 577

Linux Userspace-api Documentation

Table 200 – continued from previous page
Type minimumstep maximumDescription
V4L2_CTRL_TYPE_STRING ≥ 0 ≥ 1 ≥ 0 The minimum and maximum string

lengths. The step size means that
the string must be (minimum +
N * step) characters long for N
≥ 0. These lengths do not in-
clude the terminating zero, so in
order to pass a string of length 8
to VIDIOC_S_EXT_CTRLS you need
to set the size field of struct
v4l2_ext_control to 9. For VID-
IOC_G_EXT_CTRLS you can set the
size field to maximum + 1. Which
character encoding is used will de-
pend on the string control itself and
should be part of the control docu-
mentation.

V4L2_CTRL_TYPE_CTRL_CLASS n/a n/a n/a This is not a control. When
VIDIOC_QUERYCTRL is called with a
control ID equal to a control class
code (see Control classes) + 1, the
ioctl returns the name of the con-
trol class and this control type.
Older drivers which do not support
this feature return an EINVAL error
code.

V4L2_CTRL_TYPE_U8 any any any An unsigned 8-bit valued control
ranging from minimum to maxi-
mum inclusive. The step value in-
dicates the increment between val-
ues.

V4L2_CTRL_TYPE_U16 any any any An unsigned 16-bit valued control
ranging from minimum to maxi-
mum inclusive. The step value in-
dicates the increment between val-
ues.

V4L2_CTRL_TYPE_U32 any any any An unsigned 32-bit valued control
ranging from minimum to maxi-
mum inclusive. The step value in-
dicates the increment between val-
ues.

V4L2_CTRL_TYPE_MPEG2_SLICE_PARAMSn/a n/a n/a A struct v4l2_ctrl_mpeg2_slice_params,
containing MPEG-2 slice parame-
ters for stateless video decoders.

V4L2_CTRL_TYPE_MPEG2_QUANTIZATIONn/a n/a n/a A struct v4l2_ctrl_mpeg2_quantization,
containing MPEG-2 quantization
matrices for stateless video de-
coders.

Continued on next page

578 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 200 – continued from previous page
Type minimumstep maximumDescription
V4L2_CTRL_TYPE_AREA n/a n/a n/a A struct v4l2_area, containing the

width and the height of a rectangu-
lar area. Units depend on the use
case.

V4L2_CTRL_TYPE_H264_SPS n/a n/a n/a A struct v4l2_ctrl_h264_sps, con-
taining H264 sequence parameters
for stateless video decoders.

V4L2_CTRL_TYPE_H264_PPS n/a n/a n/a A struct v4l2_ctrl_h264_pps, con-
taining H264 picture parameters
for stateless video decoders.

V4L2_CTRL_TYPE_H264_SCALING_MATRIXn/a n/a n/a A struct v4l2_ctrl_h264_scaling_matrix,
containing H264 scaling matrices
for stateless video decoders.

V4L2_CTRL_TYPE_H264_SLICE_PARAMSn/a n/a n/a A struct v4l2_ctrl_h264_slice_params,
containing H264 slice parameters
for stateless video decoders.

V4L2_CTRL_TYPE_H264_DECODE_PARAMSn/a n/a n/a A struct v4l2_ctrl_h264_decode_params,
containing H264 decode parame-
ters for stateless video decoders.

V4L2_CTRL_TYPE_HEVC_SPS n/a n/a n/a A struct v4l2_ctrl_hevc_sps, con-
taining HEVC Sequence Parameter
Set for stateless video decoders.

V4L2_CTRL_TYPE_HEVC_PPS n/a n/a n/a A struct v4l2_ctrl_hevc_pps, con-
taining HEVC Picture Parameter
Set for stateless video decoders.

V4L2_CTRL_TYPE_HEVC_SLICE_PARAMSn/a n/a n/a A struct v4l2_ctrl_hevc_slice_params,
containing HEVC slice parameters
for stateless video decoders.

Table 201: Control Flags
V4L2_CTRL_FLAG_DISABLED 0x0001 This control is permanently disabled and

should be ignored by the application. Any at-
tempt to change the control will result in an
EINVAL error code.

V4L2_CTRL_FLAG_GRABBED 0x0002 This control is temporarily unchangeable, for
example because another application took
over control of the respective resource. Such
controls may be displayed specially in a user
interface. Attempts to change the control
may result in an EBUSY error code.

V4L2_CTRL_FLAG_READ_ONLY 0x0004 This control is permanently readable only.
Any attempt to change the control will result
in an EINVAL error code.

V4L2_CTRL_FLAG_UPDATE 0x0008 A hint that changing this control may affect
the value of other controls within the same
control class. Applications should update
their user interface accordingly.

Continued on next page

7.2. Part I - Video for Linux API 579

Linux Userspace-api Documentation

Table 201 – continued from previous page
V4L2_CTRL_FLAG_INACTIVE 0x0010 This control is not applicable to the current

configuration and should be displayed ac-
cordingly in a user interface. For example
the flag may be set on a MPEG audio level 2
bitrate control when MPEG audio encoding
level 1 was selected with another control.

V4L2_CTRL_FLAG_SLIDER 0x0020 A hint that this control is best represented as
a slider-like element in a user interface.

V4L2_CTRL_FLAG_WRITE_ONLY 0x0040 This control is permanently writable only.
Any attempt to read the control will result in
an EACCES error code error code. This flag is
typically present for relative controls or ac-
tion controls where writing a value will cause
the device to carry out a given action (e. g.
motor control) but no meaningful value can
be returned.

V4L2_CTRL_FLAG_VOLATILE 0x0080 This control is volatile, which means that the
value of the control changes continuously. A
typical example would be the current gain
value if the device is in auto-gain mode. In
such a case the hardware calculates the gain
value based on the lighting conditions which
can change over time.

Note: Setting a new value for a
volatile control will be ignored unless
V4L2_CTRL_FLAG_EXECUTE_ON_WRITE
is also set. Setting a new value for
a volatile control will never trigger a
V4L2_EVENT_CTRL_CH_VALUE event.

V4L2_CTRL_FLAG_HAS_PAYLOAD 0x0100 This control has a pointer type, so its value
has to be accessed using one of the pointer
fields of struct v4l2_ext_control. This flag
is set for controls that are an array, string,
or have a compound type. In all cases you
have to set a pointer to memory containing
the payload of the control.

V4L2_CTRL_FLAG_EXECUTE_ON_WRITE0x0200 The value provided to the control will be
propagated to the driver even if it remains
constant. This is required when the control
represents an action on the hardware. For
example: clearing an error flag or trigger-
ing the flash. All the controls of the type
V4L2_CTRL_TYPE_BUTTON have this flag set.

Continued on next page

580 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 201 – continued from previous page
V4L2_CTRL_FLAG_MODIFY_LAYOUT 0x0400 Changing this control value may modify the

layout of the buffer (for video devices) or the
media bus format (for sub-devices).
A typical example would be the
V4L2_CID_ROTATE control.
Note that typically controls with this flag will
also set the V4L2_CTRL_FLAG_GRABBED flag
when buffers are allocated or streaming is in
progress since most drivers do not support
changing the format in that case.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_queryctrl id is invalid. The struct v4l2_querymenu id is
invalid or index is out of range (less than minimum or greater than maximum)
or this particular menu item is not supported by the driver.

EACCES An attempt was made to read a write-only control.

ioctl VIDIOC_QUERY_DV_TIMINGS

Name

VIDIOC_QUERY_DV_TIMINGS - VIDIOC_SUBDEV_QUERY_DV_TIMINGS - Sense
the DV preset received by the current input

Synopsis

int ioctl(int fd, VIDIOC_QUERY_DV_TIMINGS, struct
v4l2_dv_timings *argp)

int ioctl(int fd, VIDIOC_SUBDEV_QUERY_DV_TIMINGS, struct
v4l2_dv_timings *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dv_timings.

7.2. Part I - Video for Linux API 581

Linux Userspace-api Documentation

Description

The hardware may be able to detect the current DV timings automatically,
similar to sensing the video standard. To do so, applications call ioctl VID-
IOC_QUERY_DV_TIMINGS with a pointer to a struct v4l2_dv_timings. Once the
hardware detects the timings, it will fill in the timings structure.

Note: Drivers shall not switch timings automatically if new timings are de-
tected. Instead, drivers should send the V4L2_EVENT_SOURCE_CHANGE event (if
they support this) and expect that userspace will take action by calling ioctl VID-
IOC_QUERY_DV_TIMINGS. The reason is that new timings usually mean different
buffer sizes as well, and you cannot change buffer sizes on the fly. In general,
applications that receive the Source Change event will have to call ioctl VID-
IOC_QUERY_DV_TIMINGS, and if the detected timings are valid they will have
to stop streaming, set the new timings, allocate new buffers and start streaming
again.

If the timings could not be detected because there was no signal, then ENOLINK is
returned. If a signal was detected, but it was unstable and the receiver could not
lock to the signal, then ENOLCK is returned. If the receiver could lock to the signal,
but the format is unsupported (e.g. because the pixelclock is out of range of the
hardware capabilities), then the driver fills in whatever timings it could find and re-
turns ERANGE. In that case the application can call ioctl VIDIOC_DV_TIMINGS_CAP,
VIDIOC_SUBDEV_DV_TIMINGS_CAP to compare the found timings with the hard-
ware’s capabilities in order to give more precise feedback to the user.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ENODATA Digital video timings are not supported for this input or output.

ENOLINK No timings could be detected because no signal was found.

ENOLCK The signal was unstable and the hardware could not lock on to it.

ERANGE Timings were found, but they are out of range of the hardware capabil-
ities.

ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD

Name

VIDIOC_QUERYSTD - VIDIOC_SUBDEV_QUERYSTD - Sense the video standard
received by the current input

582 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, VIDIOC_QUERYSTD, v4l2_std_id *argp)

int ioctl(int fd, VIDIOC_SUBDEV_QUERYSTD, v4l2_std_id *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to v4l2_std_id.

Description

The hardware may be able to detect the current video standard automatically. To
do so, applications call ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD
with a pointer to a v4l2_std_id type. The driver stores here a set of candidates, this
can be a single flag or a set of supported standards if for example the hardware
can only distinguish between 50 and 60 Hz systems. If no signal was detected,
then the driver will return V4L2_STD_UNKNOWN. When detection is not possible
or fails, the set must contain all standards supported by the current video input or
output.

Note: Drivers shall not switch the video standard automatically if
a new video standard is detected. Instead, drivers should send the
V4L2_EVENT_SOURCE_CHANGE event (if they support this) and expect that
userspace will take action by calling ioctl VIDIOC_QUERYSTD, VID-
IOC_SUBDEV_QUERYSTD. The reason is that a new video standard can mean
different buffer sizes as well, and you cannot change buffer sizes on the fly. In
general, applications that receive the Source Change event will have to call ioctl
VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD, and if the detected video
standard is valid they will have to stop streaming, set the new standard, allocate
new buffers and start streaming again.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ENODATA Standard video timings are not supported for this input or output.

7.2. Part I - Video for Linux API 583

Linux Userspace-api Documentation

ioctl VIDIOC_REQBUFS

Name

VIDIOC_REQBUFS - Initiate Memory Mapping, User Pointer I/O or DMA buffer I/O

Synopsis

int ioctl(int fd, VIDIOC_REQBUFS, struct v4l2_requestbuffers *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_requestbuffers.

Description

This ioctl is used to initiate memory mapped, user pointer or DMABUF based I/O.
Memory mapped buffers are located in device memory and must be allocated with
this ioctl before they can be mapped into the application’s address space. User
buffers are allocated by applications themselves, and this ioctl is merely used to
switch the driver into user pointer I/O mode and to setup some internal struc-
tures. Similarly, DMABUF buffers are allocated by applications through a device
driver, and this ioctl only configures the driver into DMABUF I/O mode without
performing any direct allocation.

To allocate device buffers applications initialize all fields of the struct
v4l2_requestbuffers structure. They set the type field to the respective stream
or buffer type, the count field to the desired number of buffers, memory must be
set to the requested I/O method and the reserved array must be zeroed. When
the ioctl is called with a pointer to this structure the driver will attempt to allocate
the requested number of buffers and it stores the actual number allocated in the
count field. It can be smaller than the number requested, even zero, when the
driver runs out of free memory. A larger number is also possible when the driver
requires more buffers to function correctly. For example video output requires at
least two buffers, one displayed and one filled by the application.

When the I/O method is not supported the ioctl returns an EINVAL error code.

Applications can call ioctl VIDIOC_REQBUFS again to change the
number of buffers. Note that if any buffers are still mapped or ex-
ported via DMABUF, then ioctl VIDIOC_REQBUFS can only succeed
if the V4L2_BUF_CAP_SUPPORTS_ORPHANED_BUFS capability is set. Oth-
erwise ioctl VIDIOC_REQBUFS will return the EBUSY error code. If
V4L2_BUF_CAP_SUPPORTS_ORPHANED_BUFS is set, then these buffers are orphaned
and will be freed when they are unmapped or when the exported DMABUF fds
are closed. A count value of zero frees or orphans all buffers, after aborting or
finishing any DMA in progress, an implicit VIDIOC_STREAMOFF.

v4l2_requestbuffers

584 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 202: struct v4l2_requestbuffers
__u32 count The number of buffers requested or granted.
__u32 type Type of the stream or buffers, this is the same

as the struct v4l2_format type field. See
v4l2_buf_type for valid values.

__u32 memory Applications set this field to
V4L2_MEMORY_MMAP, V4L2_MEMORY_DMABUF or
V4L2_MEMORY_USERPTR. See v4l2_memory.

__u32 capabilities Set by the driver. If 0, then the driver doesn’
t support capabilities. In that case all you
know is that the driver is guaranteed to sup-
port V4L2_MEMORY_MMAP and might support
other v4l2_memory types. It will not support
any other capabilities.
If you want to query the capabilities with
a minimum of side-effects, then this can be
called with count set to 0, memory set to
V4L2_MEMORY_MMAP and type set to the buffer
type. This will free any previously allocated
buffers, so this is typically something that
will be done at the start of the application.

__u32 reserved[1] A place holder for future extensions. Drivers
and applications must set the array to zero.

Table 203: V4L2 Buffer Capabilities Flags
V4L2_BUF_CAP_SUPPORTS_MMAP 0x00000001This buffer type supports the

V4L2_MEMORY_MMAP streaming mode.
V4L2_BUF_CAP_SUPPORTS_USERPTR0x00000002This buffer type supports the

V4L2_MEMORY_USERPTR streaming mode.
V4L2_BUF_CAP_SUPPORTS_DMABUF0x00000004This buffer type supports the

V4L2_MEMORY_DMABUF streaming mode.
V4L2_BUF_CAP_SUPPORTS_REQUESTS0x00000008This buffer type supports requests.
V4L2_BUF_CAP_SUPPORTS_ORPHANED_BUFS0x00000010The kernel allows calling ioctl VID-

IOC_REQBUFS while buffers are still
mapped or exported via DMABUF. These
orphaned buffers will be freed when they are
unmapped or when the exported DMABUF
fds are closed.

V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF0x00000020Only valid for stateless decoders.
If set, then userspace can set the
V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag
to hold off on returning the capture buffer
until the OUTPUT timestamp changes.

7.2. Part I - Video for Linux API 585

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The buffer type (type field) or the requested I/O method (memory) is not
supported.

ioctl VIDIOC_S_HW_FREQ_SEEK

Name

VIDIOC_S_HW_FREQ_SEEK - Perform a hardware frequency seek

Synopsis

int ioctl(int fd, VIDIOC_S_HW_FREQ_SEEK, struct
v4l2_hw_freq_seek *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_hw_freq_seek.

Description

Start a hardware frequency seek from the current frequency. To do this
applications initialize the tuner, type, seek_upward, wrap_around, spacing,
rangelow and rangehigh fields, and zero out the reserved array of a struct
v4l2_hw_freq_seek and call the VIDIOC_S_HW_FREQ_SEEK ioctl with a pointer to
this structure.

The rangelow and rangehigh fields can be set to a non-zero value to tell
the driver to search a specific band. If the struct v4l2_tuner capability
field has the V4L2_TUNER_CAP_HWSEEK_PROG_LIM flag set, these values must fall
within one of the bands returned by ioctl VIDIOC_ENUM_FREQ_BANDS. If the
V4L2_TUNER_CAP_HWSEEK_PROG_LIM flag is not set, then these values must exactly
match those of one of the bands returned by ioctl VIDIOC_ENUM_FREQ_BANDS.
If the current frequency of the tuner does not fall within the selected band it will
be clamped to fit in the band before the seek is started.

If an error is returned, then the original frequency will be restored.

This ioctl is supported if the V4L2_CAP_HW_FREQ_SEEK capability is set.

If this ioctl is called from a non-blocking filehandle, then EAGAIN error code is
returned and no seek takes place.

v4l2_hw_freq_seek

586 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 204: struct v4l2_hw_freq_seek
__u32 tuner The tuner index number. This is the same

value as in the struct v4l2_input tuner field
and the struct v4l2_tuner index field.

__u32 type The tuner type. This is the same value as
in the struct v4l2_tuner type field. See
v4l2_tuner_type

__u32 seek_upward If non-zero, seek upward from the current
frequency, else seek downward.

__u32 wrap_around If non-zero, wrap around when at the end of
the frequency range, else stop seeking. The
struct v4l2_tuner capability field will tell
you what the hardware supports.

__u32 spacing If non-zero, defines the hardware seek res-
olution in Hz. The driver selects the nearest
value that is supported by the device. If spac-
ing is zero a reasonable default value is used.

__u32 rangelow If non-zero, the lowest tunable frequency
of the band to search in units of 62.5 kHz,
or if the struct v4l2_tuner capability
field has the V4L2_TUNER_CAP_LOW flag
set, in units of 62.5 Hz or if the struct
v4l2_tuner capability field has the
V4L2_TUNER_CAP_1HZ flag set, in units of
1 Hz. If rangelow is zero a reasonable
default value is used.

__u32 rangehigh If non-zero, the highest tunable frequency
of the band to search in units of 62.5 kHz,
or if the struct v4l2_tuner capability
field has the V4L2_TUNER_CAP_LOW flag
set, in units of 62.5 Hz or if the struct
v4l2_tuner capability field has the
V4L2_TUNER_CAP_1HZ flag set, in units of
1 Hz. If rangehigh is zero a reasonable
default value is used.

__u32 reserved[5] Reserved for future extensions. Applications
must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The tuner index is out of bounds, the wrap_around value is not supported
or one of the values in the type, rangelow or rangehigh fields is wrong.

EAGAIN Attempted to call VIDIOC_S_HW_FREQ_SEEK with the filehandle in non-
blocking mode.

ENODATA The hardware seek found no channels.

7.2. Part I - Video for Linux API 587

Linux Userspace-api Documentation

EBUSY Another hardware seek is already in progress.

ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF

Name

VIDIOC_STREAMON - VIDIOC_STREAMOFF - Start or stop streaming I/O

Synopsis

int ioctl(int fd, VIDIOC_STREAMON, const int *argp)

int ioctl(int fd, VIDIOC_STREAMOFF, const int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer.

Description

The VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctl start and stop the capture or
output process during streaming (memory mapping, user pointer or DMABUF) I/O.

Capture hardware is disabled and no input buffers are filled (if there are any empty
buffers in the incoming queue) until VIDIOC_STREAMON has been called. Output
hardware is disabled and no video signal is produced until VIDIOC_STREAMON has
been called. The ioctl will succeed when at least one output buffer is in the incom-
ing queue.

Memory-to-memory devices will not start until VIDIOC_STREAMON has been called
for both the capture and output stream types.

If VIDIOC_STREAMON fails then any already queued buffers will remain queued.

The VIDIOC_STREAMOFF ioctl, apart of aborting or finishing any DMA in progress,
unlocks any user pointer buffers locked in physical memory, and it removes all
buffers from the incoming and outgoing queues. That means all images cap-
tured but not dequeued yet will be lost, likewise all images enqueued for output
but not transmitted yet. I/O returns to the same state as after calling ioctl VID-
IOC_REQBUFS and can be restarted accordingly.

If buffers have been queued with ioctl VIDIOC_QBUF, VIDIOC_DQBUF and
VIDIOC_STREAMOFF is called without ever having called VIDIOC_STREAMON, then
those queued buffers will also be removed from the incoming queue and all are
returned to the same state as after calling ioctl VIDIOC_REQBUFS and can be
restarted accordingly.

Both ioctls take a pointer to an integer, the desired buffer or stream type. This is
the same as struct v4l2_requestbuffers type.

588 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

If VIDIOC_STREAMON is called when streaming is already in progress, or if
VIDIOC_STREAMOFF is called when streaming is already stopped, then 0 is returned.
Nothing happens in the case of VIDIOC_STREAMON, but VIDIOC_STREAMOFF will re-
turn queued buffers to their starting state as mentioned above.

Note: Applications can be preempted for unknown periods right before or after
the VIDIOC_STREAMON or VIDIOC_STREAMOFF calls, there is no notion of starting or
stopping“now”. Buffer timestamps can be used to synchronize with other events.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The buffer type is not supported, or no buffers have been allocated (mem-
ory mapping) or enqueued (output) yet.

EPIPE The driver implements pad-level format configuration and the pipeline con-
figuration is invalid.

ENOLINK The driver implementsMedia Controller interface and the pipeline link
configuration is invalid.

ioctl VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL

Name

VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL - Enumerate frame intervals

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL, struct
v4l2_subdev_frame_interval_enum * argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_frame_interval_enum.

7.2. Part I - Video for Linux API 589

Linux Userspace-api Documentation

Description

This ioctl lets applications enumerate available frame intervals on a given sub-
device pad. Frame intervals only makes sense for sub-devices that can control
the frame period on their own. This includes, for instance, image sensors and TV
tuners.

For the common use case of image sensors, the frame intervals available on the
sub-device output pad depend on the frame format and size on the same pad. Ap-
plications must thus specify the desired format and size when enumerating frame
intervals.

To enumerate frame intervals applications initialize the index, pad, which, code,
width and height fields of struct v4l2_subdev_frame_interval_enum and call
the ioctl VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL ioctl with a pointer to this
structure. Drivers fill the rest of the structure or return an EINVAL error code if
one of the input fields is invalid. All frame intervals are enumerable by beginning
at index zero and incrementing by one until EINVAL is returned.

Available frame intervals may depend on the current ‘try’formats at other
pads of the sub-device, as well as on the current active links. See ioctl VID-
IOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT for more information about the
try formats.

Sub-devices that support the frame interval enumeration ioctl should implemented
it on a single pad only. Its behaviour when supported on multiple pads of the same
sub-device is not defined.

v4l2_subdev_frame_interval_enum

Table 205: struct v4l2_subdev_frame_interval_enum
__u32 index Number of the format in the enumeration, set

by the application.
__u32 pad Pad number as reported by the media con-

troller API.
__u32 code Themedia bus format code, as defined inMe-

dia Bus Formats.
__u32 width Frame width, in pixels.
__u32 height Frame height, in pixels.
struct v4l2_fract interval Period, in seconds, between consecutive

video frames.
__u32 which Frame intervals to be enumerated, from

enum v4l2_subdev_format_whence.
__u32 reserved[8] Reserved for future extensions. Applications

and drivers must set the array to zero.

590 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_subdev_frame_interval_enum pad references a non-
existing pad, one of the code, width or height fields are invalid for the given
pad or the index field is out of bounds.

ioctl VIDIOC_SUBDEV_ENUM_FRAME_SIZE

Name

VIDIOC_SUBDEV_ENUM_FRAME_SIZE - Enumerate media bus frame sizes

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_FRAME_SIZE, struct
v4l2_subdev_frame_size_enum * argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_frame_size_enum.

Description

This ioctl allows applications to enumerate all frame sizes supported by a sub-
device on the given pad for the given media bus format. Supported formats can
be retrieved with the ioctl VIDIOC_SUBDEV_ENUM_MBUS_CODE ioctl.

To enumerate frame sizes applications initialize the pad, which , code and
index fields of the struct v4l2_subdev_mbus_code_enum and call the ioctl VID-
IOC_SUBDEV_ENUM_FRAME_SIZE ioctl with a pointer to the structure. Drivers
fill the minimum and maximum frame sizes or return an EINVAL error code if one
of the input parameters is invalid.

Sub-devices that only support discrete frame sizes (such as most sensors) will
return one or more frame sizes with identical minimum and maximum values.

Not all possible sizes in given [minimum, maximum] ranges need to be supported.
For instance, a scaler that uses a fixed-point scaling ratio might not be able to
produce every frame size between the minimum and maximum values. Applica-
tions must use the VIDIOC_SUBDEV_S_FMT ioctl to try the sub-device for an exact
supported frame size.

Available frame sizes may depend on the current‘try’formats at other pads of the
sub-device, as well as on the current active links and the current values of V4L2

7.2. Part I - Video for Linux API 591

Linux Userspace-api Documentation

controls. See ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT for more
information about try formats.

v4l2_subdev_frame_size_enum

Table 206: struct v4l2_subdev_frame_size_enum
__u32 index Number of the format in the enumeration, set

by the application.
__u32 pad Pad number as reported by the media con-

troller API.
__u32 code Themedia bus format code, as defined inMe-

dia Bus Formats.
__u32 min_width Minimum frame width, in pixels.
__u32 max_width Maximum frame width, in pixels.
__u32 min_height Minimum frame height, in pixels.
__u32 max_height Maximum frame height, in pixels.
__u32 which Frame sizes to be enumerated, from enum

v4l2_subdev_format_whence.
__u32 reserved[8] Reserved for future extensions. Applications

and drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_subdev_frame_size_enum pad references a non-existing
pad, the code is invalid for the given pad or the index field is out of bounds.

ioctl VIDIOC_SUBDEV_ENUM_MBUS_CODE

Name

VIDIOC_SUBDEV_ENUM_MBUS_CODE - Enumerate media bus formats

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_ENUM_MBUS_CODE, struct
v4l2_subdev_mbus_code_enum * argp)

592 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_mbus_code_enum.

Description

To enumerate media bus formats available at a given sub-device pad applications
initialize the pad, which and index fields of struct v4l2_subdev_mbus_code_enum
and call the ioctl VIDIOC_SUBDEV_ENUM_MBUS_CODE ioctl with a pointer to
this structure. Drivers fill the rest of the structure or return an EINVAL error code
if either the pad or index are invalid. All media bus formats are enumerable by
beginning at index zero and incrementing by one until EINVAL is returned.

Available media bus formats may depend on the current ‘try’formats at other
pads of the sub-device, as well as on the current active links. See ioctl VID-
IOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT for more information about the
try formats.

v4l2_subdev_mbus_code_enum

Table 207: struct v4l2_subdev_mbus_code_enum
__u32 pad Pad number as reported by the media con-

troller API.
__u32 index Number of the format in the enumeration, set

by the application.
__u32 code Themedia bus format code, as defined inMe-

dia Bus Formats.
__u32 which Media bus format codes to be enumerated,

from enum v4l2_subdev_format_whence.
__u32 reserved[8] Reserved for future extensions. Applications

and drivers must set the array to zero.

7.2. Part I - Video for Linux API 593

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_subdev_mbus_code_enum pad references a non-existing
pad, or the index field is out of bounds.

ioctl VIDIOC_SUBDEV_G_CROP, VIDIOC_SUBDEV_S_CROP

Name

VIDIOC_SUBDEV_G_CROP - VIDIOC_SUBDEV_S_CROP - Get or set the crop rect-
angle on a subdev pad

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_G_CROP, struct v4l2_subdev_crop *argp)

int ioctl(int fd, VIDIOC_SUBDEV_S_CROP, const struct
v4l2_subdev_crop *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_crop.

Description

Note: This is an Obsolete API Elements interface and may be removed in the
future. It is superseded by the selection API.

To retrieve the current crop rectangle applications set the pad field of a
struct v4l2_subdev_crop to the desired pad number as reported by the me-
dia API and the which field to V4L2_SUBDEV_FORMAT_ACTIVE. They then call the
VIDIOC_SUBDEV_G_CROP ioctl with a pointer to this structure. The driver fills the
members of the rect field or returns EINVAL error code if the input arguments are
invalid, or if cropping is not supported on the given pad.

To change the current crop rectangle applications set both the pad and which fields
and all members of the rect field. They then call the VIDIOC_SUBDEV_S_CROP ioctl
with a pointer to this structure. The driver verifies the requested crop rectangle,
adjusts it based on the hardware capabilities and configures the device. Upon
return the struct v4l2_subdev_crop contains the current format as would be re-
turned by a VIDIOC_SUBDEV_G_CROP call.

594 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Applications can query the device capabilities by setting the which to
V4L2_SUBDEV_FORMAT_TRY. When set,‘try’crop rectangles are not applied to the de-
vice by the driver, but are mangled exactly as active crop rectangles and stored in
the sub-device file handle. Two applications querying the same sub-device would
thus not interact with each other.

If the subdev device node has been registered in read-only mode, calls
to VIDIOC_SUBDEV_S_CROP are only valid if the which field is set to
V4L2_SUBDEV_FORMAT_TRY, otherwise an error is returned and the errno variable
is set to -EPERM.

Drivers must not return an error solely because the requested crop rectangle
doesn’t match the device capabilities. They must instead modify the rectangle to
match what the hardware can provide. The modified format should be as close as
possible to the original request.

v4l2_subdev_crop

Table 208: struct v4l2_subdev_crop
__u32 pad Pad number as reported by the media frame-

work.
__u32 which Crop rectangle to get or set, from enum

v4l2_subdev_format_whence.
struct v4l2_rect rect Crop rectangle boundaries, in pixels.
__u32 reserved[8] Reserved for future extensions. Applications

and drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EBUSY The crop rectangle can’t be changed because the pad is currently busy.
This can be caused, for instance, by an active video stream on the pad. The
ioctl must not be retried without performing another action to fix the problem
first. Only returned by VIDIOC_SUBDEV_S_CROP

EINVAL The struct v4l2_subdev_crop pad references a non-existing pad, the
which field references a non-existing format, or cropping is not supported
on the given subdev pad.

EPERM The VIDIOC_SUBDEV_S_CROP ioctl has been called on a read-only subde-
vice and the which field is set to V4L2_SUBDEV_FORMAT_ACTIVE.

7.2. Part I - Video for Linux API 595

Linux Userspace-api Documentation

ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT

Name

VIDIOC_SUBDEV_G_FMT - VIDIOC_SUBDEV_S_FMT - Get or set the data format
on a subdev pad

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_G_FMT, struct
v4l2_subdev_format *argp)

int ioctl(int fd, VIDIOC_SUBDEV_S_FMT, struct
v4l2_subdev_format *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_format.

Description

These ioctls are used to negotiate the frame format at specific subdev pads in the
image pipeline.

To retrieve the current format applications set the pad field of a struct
v4l2_subdev_format to the desired pad number as reported by the media
API and the which field to V4L2_SUBDEV_FORMAT_ACTIVE. When they call the
VIDIOC_SUBDEV_G_FMT ioctl with a pointer to this structure the driver fills themem-
bers of the format field.

To change the current format applications set both the pad and which fields and
all members of the format field. When they call the VIDIOC_SUBDEV_S_FMT ioctl
with a pointer to this structure the driver verifies the requested format, adjusts
it based on the hardware capabilities and configures the device. Upon return the
struct v4l2_subdev_format contains the current format as would be returned by
a VIDIOC_SUBDEV_G_FMT call.

Applications can query the device capabilities by setting the which to
V4L2_SUBDEV_FORMAT_TRY. When set,‘try’formats are not applied to the device
by the driver, but are changed exactly as active formats and stored in the sub-
device file handle. Two applications querying the same sub-device would thus not
interact with each other.

For instance, to try a format at the output pad of a sub-device, applications would
first set the try format at the sub-device input with the VIDIOC_SUBDEV_S_FMT
ioctl. They would then either retrieve the default format at the output pad with
the VIDIOC_SUBDEV_G_FMT ioctl, or set the desired output pad format with the
VIDIOC_SUBDEV_S_FMT ioctl and check the returned value.

596 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Try formats do not depend on active formats, but can depend on the current links
configuration or sub-device controls value. For instance, a low-pass noise filter
might crop pixels at the frame boundaries, modifying its output frame size.

If the subdev device node has been registered in read-only mode, calls
to VIDIOC_SUBDEV_S_FMT are only valid if the which field is set to
V4L2_SUBDEV_FORMAT_TRY, otherwise an error is returned and the errno variable
is set to -EPERM.

Drivers must not return an error solely because the requested format doesn’t
match the device capabilities. They must instead modify the format to match what
the hardware can provide. The modified format should be as close as possible to
the original request.

v4l2_subdev_format

Table 209: struct v4l2_subdev_format
__u32 pad Pad number as reported by the media con-

troller API.
__u32 which Format to modified, from enum

v4l2_subdev_format_whence.
struct
v4l2_mbus_framefmt

format Definition of an image format, see
v4l2_mbus_framefmt for details.

__u32 reserved[8] Reserved for future extensions. Applications
and drivers must set the array to zero.

Table 210: enum v4l2_subdev_format_whence
V4L2_SUBDEV_FORMAT_TRY 0 Try formats, used for querying device capa-

bilities.
V4L2_SUBDEV_FORMAT_ACTIVE 1 Active formats, applied to the hardware.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EBUSY The format can’t be changed because the pad is currently busy. This can
be caused, for instance, by an active video stream on the pad. The ioctl must
not be retried without performing another action to fix the problem first. Only
returned by VIDIOC_SUBDEV_S_FMT

EINVAL The struct v4l2_subdev_format pad references a non-existing pad, or
the which field references a non-existing format.

EPERM The VIDIOC_SUBDEV_S_FMT ioctl has been called on a read-only subdevice
and the which field is set to V4L2_SUBDEV_FORMAT_ACTIVE.

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

7.2. Part I - Video for Linux API 597

Linux Userspace-api Documentation

ioctl VIDIOC_SUBDEV_G_FRAME_INTERVAL, VIDIOC_SUBDEV_S_FRAME_INTERVAL

Name

VIDIOC_SUBDEV_G_FRAME_INTERVAL - VIDIOC_SUBDEV_S_FRAME_INTERVAL
- Get or set the frame interval on a subdev pad

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_G_FRAME_INTERVAL, struct
v4l2_subdev_frame_interval *argp)

int ioctl(int fd, VIDIOC_SUBDEV_S_FRAME_INTERVAL, struct
v4l2_subdev_frame_interval *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_frame_interval.

Description

These ioctls are used to get and set the frame interval at specific subdev pads in
the image pipeline. The frame interval only makes sense for sub-devices that can
control the frame period on their own. This includes, for instance, image sensors
and TV tuners. Sub-devices that don’t support frame intervals must not implement
these ioctls.

To retrieve the current frame interval applications set the pad field of a struct
v4l2_subdev_frame_interval to the desired pad number as reported by the me-
dia controller API. When they call the VIDIOC_SUBDEV_G_FRAME_INTERVAL ioctl
with a pointer to this structure the driver fills the members of the interval field.

To change the current frame interval applications set both the pad
field and all members of the interval field. When they call the
VIDIOC_SUBDEV_S_FRAME_INTERVAL ioctl with a pointer to this structure
the driver verifies the requested interval, adjusts it based on the hard-
ware capabilities and configures the device. Upon return the struct
v4l2_subdev_frame_interval contains the current frame interval as would
be returned by a VIDIOC_SUBDEV_G_FRAME_INTERVAL call.

Calling VIDIOC_SUBDEV_S_FRAME_INTERVAL on a subdev device node that has been
registered in read-only mode is not allowed. An error is returned and the errno
variable is set to -EPERM.

Drivers must not return an error solely because the requested interval doesn’t
match the device capabilities. Theymust insteadmodify the interval to match what
the hardware can provide. The modified interval should be as close as possible to
the original request.

598 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Changing the frame interval shall never change the format. Changing the format,
on the other hand, may change the frame interval.

Sub-devices that support the frame interval ioctls should implement them on a
single pad only. Their behaviour when supported on multiple pads of the same
sub-device is not defined.

v4l2_subdev_frame_interval

Table 211: struct v4l2_subdev_frame_interval
__u32 pad Pad number as reported by the media con-

troller API.
struct v4l2_fract interval Period, in seconds, between consecutive

video frames.
__u32 reserved[9] Reserved for future extensions. Applications

and drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EBUSY The frame interval can’t be changed because the pad is currently busy.
This can be caused, for instance, by an active video stream on the pad. The
ioctl must not be retried without performing another action to fix the problem
first. Only returned by VIDIOC_SUBDEV_S_FRAME_INTERVAL

EINVAL The struct v4l2_subdev_frame_interval pad references a non-existing
pad, or the pad doesn’t support frame intervals.

EPERM The VIDIOC_SUBDEV_S_FRAME_INTERVAL ioctl has been called on a read-
only subdevice.

ioctl VIDIOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION

Name

VIDIOC_SUBDEV_G_SELECTION - VIDIOC_SUBDEV_S_SELECTION - Get or set
selection rectangles on a subdev pad

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_G_SELECTION, struct
v4l2_subdev_selection *argp)

int ioctl(int fd, VIDIOC_SUBDEV_S_SELECTION, struct
v4l2_subdev_selection *argp)

7.2. Part I - Video for Linux API 599

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_selection.

Description

The selections are used to configure various image processing functionality per-
formed by the subdevs which affect the image size. This currently includes crop-
ping, scaling and composition.

The selection API replaces the old subdev crop API. All the function of the crop
API, and more, are supported by the selections API.

See Sub-device Interface for more information on how each selection target affects
the image processing pipeline inside the subdevice.

If the subdev device node has been registered in read-only mode, calls
to VIDIOC_SUBDEV_S_SELECTION are only valid if the which field is set to
V4L2_SUBDEV_FORMAT_TRY, otherwise an error is returned and the errno variable
is set to -EPERM.

Types of selection targets

There are two types of selection targets: actual and bounds. The actual targets
are the targets which configure the hardware. The BOUNDS target will return a
rectangle that contain all possible actual rectangles.

Discovering supported features

To discover which targets are supported, the user can perform
VIDIOC_SUBDEV_G_SELECTION on them. Any unsupported target will return
EINVAL.

Selection targets and flags are documented in Common selection definitions.

v4l2_subdev_selection

Table 212: struct v4l2_subdev_selection
__u32 which Active or try selection, from enum

v4l2_subdev_format_whence.
__u32 pad Pad number as reported by the media frame-

work.
__u32 target Target selection rectangle. See Common se-

lection definitions.
__u32 flags Flags. See Selection flags.
struct v4l2_rect r Selection rectangle, in pixels.
__u32 reserved[8] Reserved for future extensions. Applications

and drivers must set the array to zero.

600 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EBUSY The selection rectangle can’t be changed because the pad is currently
busy. This can be caused, for instance, by an active video stream on the pad.
The ioctl must not be retried without performing another action to fix the
problem first. Only returned by VIDIOC_SUBDEV_S_SELECTION

EINVAL The struct v4l2_subdev_selection pad references a non-existing pad,
the which field references a non-existing format, or the selection target is not
supported on the given subdev pad.

EPERM The VIDIOC_SUBDEV_S_SELECTION ioctl has been called on a read-only
subdevice and the which field is set to V4L2_SUBDEV_FORMAT_ACTIVE.

ioctl VIDIOC_SUBDEV_QUERYCAP

Name

VIDIOC_SUBDEV_QUERYCAP - Query sub-device capabilities

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_QUERYCAP, struct
v4l2_subdev_capability *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_capability.

Description

All V4L2 sub-devices support the VIDIOC_SUBDEV_QUERYCAP ioctl. It is used to
identify kernel devices compatible with this specification and to obtain informa-
tion about driver and hardware capabilities. The ioctl takes a pointer to a struct
v4l2_subdev_capability which is filled by the driver. When the driver is not
compatible with this specification the ioctl returns ENOTTY error code.

v4l2_subdev_capability

7.2. Part I - Video for Linux API 601

Linux Userspace-api Documentation

Table 213: struct v4l2_subdev_capability
__u32 version Version number of the driver.

The version reported is provided by the V4L2 subsystem follow-
ing the kernel numbering scheme. However, it may not always
return the same version as the kernel if, for example, a stable or
distribution-modified kernel uses the V4L2 stack from a newer ker-
nel.
The version number is formatted using the KERNEL_VERSION()
macro:

#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))
__u32 version = KERNEL_VERSION(0, 8, 1);
printf ("Version: %u.%u.%u\\n",
(version >> 16) & 0xFF, (version >> 8) & 0xFF, version & 0xFF);
__u32 capabilitiesSub-device capabilities of the opened device, see Sub-Device Capa-

bilities Flags.
__u32 reserved[14]Reserved for future extensions. Set to 0 by the V4L2 core.

Table 214: Sub-Device Capabilities Flags
V4L2_SUBDEV_CAP_RO_SUBDEV0x00000001The sub-device device node is registered in

read-only mode. Access to the sub-device
ioctls that modify the device state is re-
stricted. Refer to each individual subdevice
ioctl documentation for a description of which
restrictions apply to a read-only sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ENOTTY The device node is not a V4L2 sub-device.

ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT

Name

VIDIOC_SUBSCRIBE_EVENT - VIDIOC_UNSUBSCRIBE_EVENT - Subscribe or un-
subscribe event

602 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, VIDIOC_SUBSCRIBE_EVENT, struct
v4l2_event_subscription *argp)

int ioctl(int fd, VIDIOC_UNSUBSCRIBE_EVENT, struct
v4l2_event_subscription *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_event_subscription.

Description

Subscribe or unsubscribe V4L2 event. Subscribed events are dequeued by using
the ioctl VIDIOC_DQEVENT ioctl.

v4l2_event_subscription

Table 215: struct v4l2_event_subscription
__u32 type Type of the event, see Event Types.

Note: V4L2_EVENT_ALL can be used with
VIDIOC_UNSUBSCRIBE_EVENT for unsub-
scribing all events at once.

__u32 id ID of the event source. If there is no ID as-
sociated with the event source, then set this
to 0. Whether or not an event needs an ID
depends on the event type.

__u32 flags Event flags, see Event Flags.
__u32 reserved[5] Reserved for future extensions. Drivers and

applications must set the array to zero.

7.2. Part I - Video for Linux API 603

Linux Userspace-api Documentation

Table 216: Event Flags
V4L2_EVENT_SUB_FL_SEND_INITIAL0x0001 When this event is subscribed an initial

event will be sent containing the current
status. This only makes sense for events
that are triggered by a status change such
as V4L2_EVENT_CTRL. Other events will ig-
nore this flag.

V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK0x0002 If set, then events directly caused by an
ioctl will also be sent to the filehandle that
called that ioctl. For example, changing
a control using VIDIOC_S_CTRL will cause
a V4L2_EVENT_CTRL to be sent back to
that same filehandle. Normally such events
are suppressed to prevent feedback loops
where an application changes a control to
a one value and then another, and then re-
ceives an event telling it that that control
has changed to the first value.
Since it can’t tell whether that event was
caused by another application or by the
VIDIOC_S_CTRL call it is hard to decide
whether to set the control to the value in
the event, or ignore it.
Think carefully when you set this flag so you
won’t get into situations like that.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

V4L2 mmap()

Name

v4l2-mmap - Map device memory into application address space

Synopsis

#include <unistd.h>
#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset)

604 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

start Map the buffer to this address in the application’s address space. When
the MAP_FIXED flag is specified, start must be a multiple of the pagesize and
mmap will fail when the specified address cannot be used. Use of this option
is discouraged; applications should just specify a NULL pointer here.

length Length of the memory area to map. This must be the same value as re-
turned by the driver in the struct v4l2_buffer length field for the single-
planar API, and the same value as returned by the driver in the struct
v4l2_plane length field for the multi-planar API.

prot The prot argument describes the desired memory protection. Regardless
of the device type and the direction of data exchange it should be set to
PROT_READ | PROT_WRITE, permitting read and write access to image buffers.
Drivers should support at least this combination of flags.

Note:
1. The Linux videobuf kernel module, which is used by some drivers sup-
ports only PROT_READ | PROT_WRITE. When the driver does not support
the desired protection, the mmap() function fails.

2. Device memory accesses (e. g. the memory on a graphics card with video
capturing hardware) may incur a performance penalty compared to main
memory accesses, or readsmay be significantly slower thanwrites or vice
versa. Other I/O methods may be more efficient in such case.

flags The flags parameter specifies the type of the mapped object, mapping op-
tions and whether modifications made to the mapped copy of the page are
private to the process or are to be shared with other references.

MAP_FIXED requests that the driver selects no other address than the one
specified. If the specified address cannot be used, mmap() will fail. If
MAP_FIXED is specified, start must be a multiple of the pagesize. Use of
this option is discouraged.

One of the MAP_SHARED or MAP_PRIVATE flags must be set. MAP_SHARED allows
applications to share the mapped memory with other (e. g. child-) processes.

Note: The Linux videobuf module which is used by some drivers supports
only MAP_SHARED. MAP_PRIVATE requests copy-on-write semantics. V4L2 ap-
plications should not set the MAP_PRIVATE, MAP_DENYWRITE, MAP_EXECUTABLE
or MAP_ANON flags.

fd File descriptor returned by open().

offset Offset of the buffer in device memory. This must be the same value as
returned by the driver in the struct v4l2_buffer m union offset field for the
single-planar API, and the same value as returned by the driver in the struct
v4l2_plane m union mem_offset field for the multi-planar API.

7.2. Part I - Video for Linux API 605

Linux Userspace-api Documentation

Description

The mmap() function asks to map length bytes starting at offset in the memory of
the device specified by fd into the application address space, preferably at address
start. This latter address is a hint only, and is usually specified as 0.

Suitable length and offset parameters are queried with the ioctl VID-
IOC_QUERYBUF ioctl. Buffers must be allocated with the ioctl VIDIOC_REQBUFS
ioctl before they can be queried.

To unmap buffers the munmap() function is used.

Return Value

On success mmap() returns a pointer to the mapped buffer. On error MAP_FAILED
(-1) is returned, and the errno variable is set appropriately. Possible error codes
are:

EBADF fd is not a valid file descriptor.

EACCES fd is not open for reading and writing.

EINVAL The start or length or offset are not suitable. (E. g. they are too large,
or not aligned on a PAGESIZE boundary.)

The flags or prot value is not supported.

No buffers have been allocated with the ioctl VIDIOC_REQBUFS ioctl.

ENOMEM Not enough physical or virtual memory was available to complete the
request.

V4L2 munmap()

Name

v4l2-munmap - Unmap device memory

Synopsis

#include <unistd.h>
#include <sys/mman.h>

int munmap(void *start, size_t length)

606 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

start Address of the mapped buffer as returned by the mmap() function.

length Length of the mapped buffer. This must be the same value as given to
mmap() and returned by the driver in the struct v4l2_buffer length field
for the single-planar API and in the struct v4l2_plane length field for the
multi-planar API.

Description

Unmaps a previously with the mmap() function mapped buffer and frees it, if pos-
sible.

Return Value

On success munmap() returns 0, on failure -1 and the errno variable is set appro-
priately:

EINVAL The start or length is incorrect, or no buffers have been mapped yet.

V4L2 open()

Name

v4l2-open - Open a V4L2 device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.

flags Open flags. Access mode must be O_RDWR. This is just a technicality, input
devices still support only reading and output devices only writing.

When the O_NONBLOCK flag is given, the read() function and the VID-
IOC_DQBUF ioctl will return the EAGAIN error code when no data is avail-
able or no buffer is in the driver outgoing queue, otherwise these functions
block until data becomes available. All V4L2 drivers exchanging data with
applications must support the O_NONBLOCK flag.

Other flags have no effect.

7.2. Part I - Video for Linux API 607

Linux Userspace-api Documentation

Description

To open a V4L2 device applications call open() with the desired device name. This
function has no side effects; all data format parameters, current input or output,
control values or other properties remain unchanged. At the first open() call after
loading the driver they will be reset to default values, drivers are never in an
undefined state.

Return Value

On success open() returns the new file descriptor. On error -1 is returned, and the
errno variable is set appropriately. Possible error codes are:

EACCES The caller has no permission to access the device.

EBUSY The driver does not support multiple opens and the device is already in
use.

ENXIO No device corresponding to this device special file exists.

ENOMEM Not enough kernel memory was available to complete the request.

EMFILE The process already has the maximum number of files open.

ENFILE The limit on the total number of files open on the system has been
reached.

V4L2 poll()

Name

v4l2-poll - Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

Description

With the poll() function applications can suspend execution until the driver has
captured data or is ready to accept data for output.

When streaming I/O has been negotiated this function waits until a buffer has been
filled by the capture device and can be dequeued with the VIDIOC_DQBUF ioctl.
For output devices this function waits until the device is ready to accept a new
buffer to be queued up with the VIDIOC_QBUF ioctl for display. When buffers are

608 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

already in the outgoing queue of the driver (capture) or the incoming queue isn’t
full (display) the function returns immediately.

On success poll() returns the number of file descriptors that have been selected
(that is, file descriptors for which the revents field of the respective struct
pollfd() structure is non-zero). Capture devices set the POLLIN and POLLRDNORM
flags in the revents field, output devices the POLLOUT and POLLWRNORM flags. When
the function timed out it returns a value of zero, on failure it returns -1 and
the errno variable is set appropriately. When the application did not call VID-
IOC_STREAMON the poll() function succeeds, but sets the POLLERR flag in the
revents field. When the application has called VIDIOC_STREAMON for a capture
device but hasn’t yet called VIDIOC_QBUF, the poll() function succeeds and sets
the POLLERR flag in the revents field. For output devices this same situation will
cause poll() to succeed as well, but it sets the POLLOUT and POLLWRNORM flags in the
revents field.

If an event occurred (see ioctl VIDIOC_DQEVENT) then POLLPRI will be set in the
revents field and poll() will return.

When use of the read() function has been negotiated and the driver does not cap-
ture yet, the poll() function starts capturing. When that fails it returns a POLLERR
as above. Otherwise it waits until data has been captured and can be read. When
the driver captures continuously (as opposed to, for example, still images) the
function may return immediately.

When use of the write() function has been negotiated and the driver does not
stream yet, the poll() function starts streaming. When that fails it returns a
POLLERR as above. Otherwise it waits until the driver is ready for a non-blocking
write() call.

If the caller is only interested in events (just POLLPRI is set in the events field),
then poll() will not start streaming if the driver does not stream yet. This makes it
possible to just poll for events and not for buffers.

All drivers implementing the read() or write() function or streaming I/O must also
support the poll() function.

For more details see the poll() manual page.

Return Value

On success, poll() returns the number structures which have non-zero revents
fields, or zero if the call timed out. On error -1 is returned, and the errno variable
is set appropriately:

EBADF One or more of the ufds members specify an invalid file descriptor.
EBUSY The driver does not support multiple read or write streams and the device

is already in use.

EFAULT ufds references an inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds value exceeds the RLIMIT_NOFILE value. Use getrlimit() to
obtain this value.

7.2. Part I - Video for Linux API 609

Linux Userspace-api Documentation

V4L2 read()

Name

v4l2-read - Read from a V4L2 device

Synopsis

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().

buf Buffer to be filled

count Max number of bytes to read

Description

read() attempts to read up to count bytes from file descriptor fd into the buffer
starting at buf. The layout of the data in the buffer is discussed in the respective
device interface section, see ##. If count is zero, read() returns zero and has
no other results. If count is greater than SSIZE_MAX, the result is unspecified.
Regardless of the count value each read() call will provide at most one frame (two
fields) worth of data.

By default read() blocks until data becomes available. When the O_NONBLOCK flag
was given to the open() function it returns immediately with an EAGAIN error code
when no data is available. The select() or poll() functions can always be used to
suspend execution until data becomes available. All drivers supporting the read()
function must also support select() and poll().

Drivers can implement read functionality in different ways, using a single or mul-
tiple buffers and discarding the oldest or newest frames once the internal buffers
are filled.

read() never returns a“snapshot”of a buffer being filled. Using a single buffer the
driver will stop capturing when the application starts reading the buffer until the
read is finished. Thus only the period of the vertical blanking interval is available
for reading, or the capture rate must fall below the nominal frame rate of the video
standard.

The behavior of read() when called during the active picture period or the vertical
blanking separating the top and bottom field depends on the discarding policy. A
driver discarding the oldest frames keeps capturing into an internal buffer, con-
tinuously overwriting the previously, not read frame, and returns the frame being
received at the time of the read() call as soon as it is complete.

610 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

A driver discarding the newest frames stops capturing until the next read() call.
The frame being received at read() time is discarded, returning the following frame
instead. Again this implies a reduction of the capture rate to one half or less of
the nominal frame rate. An example of this model is the video read mode of the
bttv driver, initiating a DMA to user memory when read() is called and returning
when the DMA finished.

In the multiple buffer model drivers maintain a ring of internal buffers, automat-
ically advancing to the next free buffer. This allows continuous capturing when
the application can empty the buffers fast enough. Again, the behavior when the
driver runs out of free buffers depends on the discarding policy.

Applications can get and set the number of buffers used internally by the driver
with the VIDIOC_G_PARM and VIDIOC_S_PARM ioctls. They are optional, how-
ever. The discarding policy is not reported and cannot be changed. For minimum
requirements see Interfaces.

Return Value

On success, the number of bytes read is returned. It is not an error if this number
is smaller than the number of bytes requested, or the amount of data required
for one frame. This may happen for example because read() was interrupted by a
signal. On error, -1 is returned, and the errno variable is set appropriately. In this
case the next read will start at the beginning of a new frame. Possible error codes
are:

EAGAIN Non-blocking I/O has been selected using O_NONBLOCK and no data
was immediately available for reading.

EBADF fd is not a valid file descriptor or is not open for reading, or the process
already has the maximum number of files open.

EBUSY The driver does not support multiple read streams and the device is al-
ready in use.

EFAULT buf references an inaccessible memory area.

EINTR The call was interrupted by a signal before any data was read.

EIO I/O error. This indicates some hardware problem or a failure to communicate
with a remote device (USB camera etc.).

EINVAL The read() function is not supported by this driver, not on this device, or
generally not on this type of device.

7.2. Part I - Video for Linux API 611

Linux Userspace-api Documentation

V4L2 select()

Name

v4l2-select - Synchronous I/O multiplexing

Synopsis

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout)

Arguments

nfds The highest-numbered file descriptor in any of the three sets, plus 1.

readfds File descriptions to be watched if a read() call won’t block.
writefds File descriptions to be watched if a write() won’t block.
exceptfds File descriptions to be watched for V4L2 events.

timeout Maximum time to wait.

Description

With the select() function applications can suspend execution until the driver has
captured data or is ready to accept data for output.

When streaming I/O has been negotiated this function waits until a buffer has been
filled or displayed and can be dequeued with the VIDIOC_DQBUF ioctl. When
buffers are already in the outgoing queue of the driver the function returns imme-
diately.

On success select() returns the total number of bits set in struct fd_set(). When
the function timed out it returns a value of zero. On failure it returns -1 and the
errno variable is set appropriately. When the application did not call ioctl VID-
IOC_QBUF, VIDIOC_DQBUF or ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF
yet the select() function succeeds, setting the bit of the file descriptor in readfds
or writefds, but subsequent VIDIOC_DQBUF calls will fail.1

When use of the read() function has been negotiated and the driver does not cap-
ture yet, the select() function starts capturing. When that fails, select() returns
successful and a subsequent read() call, which also attempts to start capturing,
will return an appropriate error code. When the driver captures continuously (as
opposed to, for example, still images) and data is already available the select()
function returns immediately.

1 The Linux kernel implements select() like the poll() function, but select() cannot return a
POLLERR.

612 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

When use of the write() function has been negotiated the select() function just
waits until the driver is ready for a non-blocking write() call.

All drivers implementing the read() or write() function or streaming I/O must also
support the select() function.

For more details see the select() manual page.

Return Value

On success, select() returns the number of descriptors contained in the three re-
turned descriptor sets, which will be zero if the timeout expired. On error -1 is
returned, and the errno variable is set appropriately; the sets and timeout are
undefined. Possible error codes are:

EBADF One or more of the file descriptor sets specified a file descriptor that is
not open.

EBUSY The driver does not support multiple read or write streams and the device
is already in use.

EFAULT The readfds, writefds, exceptfds or timeout pointer references an
inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds argument is less than zero or greater than FD_SETSIZE.

V4L2 write()

Name

v4l2-write - Write to a V4L2 device

Synopsis

#include <unistd.h>

ssize_t write(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().

buf Buffer with data to be written

count Number of bytes at the buffer

7.2. Part I - Video for Linux API 613

Linux Userspace-api Documentation

Description

write() writes up to count bytes to the device referenced by the file descriptor fd
from the buffer starting at buf. When the hardware outputs are not active yet, this
function enables them. When count is zero, write() returns 0 without any other
effect.

When the application does not providemore data in time, the previous video frame,
raw VBI image, sliced VPS or WSS data is displayed again. Sliced Teletext or
Closed Caption data is not repeated, the driver inserts a blank line instead.

Return Value

On success, the number of bytes written are returned. Zero indicates nothing was
written. On error, -1 is returned, and the errno variable is set appropriately. In
this case the next write will start at the beginning of a new frame. Possible error
codes are:

EAGAIN Non-blocking I/O has been selected using the O_NONBLOCK flag and
no buffer space was available to write the data immediately.

EBADF fd is not a valid file descriptor or is not open for writing.

EBUSY The driver does not support multiple write streams and the device is al-
ready in use.

EFAULT buf references an inaccessible memory area.

EINTR The call was interrupted by a signal before any data was written.

EIO I/O error. This indicates some hardware problem.

EINVAL The write() function is not supported by this driver, not on this device, or
generally not on this type of device.

7.2.8 Common definitions for V4L2 and V4L2 subdev interfaces

Common selection definitions

While the V4L2 selection API and V4L2 subdev selection APIs are very similar,
there’s one fundamental difference between the two. On sub-device API, the
selection rectangle refers to the media bus format, and is bound to a sub-device’
s pad. On the V4L2 interface the selection rectangles refer to the in-memory pixel
format.

This section defines the common definitions of the selection interfaces on the two
APIs.

614 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Selection targets

The precise meaning of the selection targets may be dependent on which of the
two interfaces they are used.

Table 217: Selection target definitions
Target name id Definition Valid

for
V4L2

Valid
for
V4L2
subdev

V4L2_SEL_TGT_CROP 0x0000 Crop rectangle. Defines the cropped
area.

Yes Yes

V4L2_SEL_TGT_CROP_DEFAULT 0x0001 Suggested cropping rectangle that
covers the “whole picture”. This in-
cludes only active pixels and excludes
other non-active pixels such as black
pixels.

Yes Yes

V4L2_SEL_TGT_CROP_BOUNDS 0x0002 Bounds of the crop rectangle. All
valid crop rectangles fit inside the
crop bounds rectangle.

Yes Yes

V4L2_SEL_TGT_NATIVE_SIZE 0x0003 The native size of the device, e.g. a
sensor’s pixel array. left and top
fields are zero for this target.

Yes Yes

V4L2_SEL_TGT_COMPOSE 0x0100 Compose rectangle. Used to config-
ure scaling and composition.

Yes Yes

V4L2_SEL_TGT_COMPOSE_DEFAULT0x0101 Suggested composition rectangle that
covers the “whole picture”.

Yes No

V4L2_SEL_TGT_COMPOSE_BOUNDS0x0102 Bounds of the compose rectangle. All
valid compose rectangles fit inside the
compose bounds rectangle.

Yes Yes

V4L2_SEL_TGT_COMPOSE_PADDED0x0103 The active area and all padding pixels
that are inserted or modified by hard-
ware.

Yes No

7.2. Part I - Video for Linux API 615

Linux Userspace-api Documentation

Selection flags

Table 218: Selection flag definitions
Flag name id Definition Valid

for
V4L2

Valid for
V4L2
subdev

V4L2_SEL_FLAG_GE (1 << 0) Suggest the driver it should
choose greater or equal rectan-
gle (in size) than was requested.
Albeit the driver may choose a
lesser size, it will only do so due
to hardware limitations. Without
this flag (and V4L2_SEL_FLAG_LE)
the behaviour is to choose the
closest possible rectangle.

Yes Yes

V4L2_SEL_FLAG_LE (1 << 1) Suggest the driver it should
choose lesser or equal rectan-
gle (in size) than was requested.
Albeit the driver may choose a
greater size, it will only do so due
to hardware limitations.

Yes Yes

V4L2_SEL_FLAG_KEEP_CONFIG(1 << 2) The configuration must not be
propagated to any further pro-
cessing steps. If this flag is not
given, the configuration is propa-
gated inside the subdevice to all
further processing steps.

No Yes

7.2.9 Video For Linux Two Header File

videodev2.h

/* SPDX-License-Identifier: ((GPL-2.0+ WITH Linux-syscall-note) OR␣
↪→BSD-3-Clause) */
/*
* Video for Linux Two header file
*
* Copyright (C) 1999-2012 the contributors
*
* This program is free software; you can redistribute it and/or␣
↪→modify
* it under the terms of the GNU General Public License as␣
↪→published by
* the Free Software Foundation; either version 2 of the License,␣
↪→or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of

616 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Alternatively you can redistribute this file under the terms of␣
↪→the
* BSD license as stated below:
*
* Redistribution and use in source and binary forms, with or␣
↪→without
* modification, are permitted provided that the following␣
↪→conditions
* are met:
* 1. Redistributions of source code must retain the above␣
↪→copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above␣
↪→copyright
* notice, this list of conditions and the following disclaimer␣
↪→in
* the documentation and/or other materials provided with the
* distribution.
* 3. The names of its contributors may not be used to endorse or␣
↪→promote
* products derived from this software without specific prior␣
↪→written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND␣
↪→CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT␣
↪→NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND␣
↪→FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE␣
↪→COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,␣
↪→INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT␣
↪→NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,␣
↪→DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY␣
↪→THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT␣
↪→(INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF␣
↪→THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Header file for v4l or V4L2 drivers and applications
* with public API.

7.2. Part I - Video for Linux API 617

Linux Userspace-api Documentation

* All kernel-specific stuff were moved to media/v4l2-dev.h, so
* no #if __KERNEL tests are allowed here
*
* See https://linuxtv.org for more info
*
* Author: Bill Dirks <bill@thedirks.org>
* Justin Schoeman
* Hans Verkuil <hverkuil@xs4all.nl>
* et al.
*/

#ifndef _UAPI__LINUX_VIDEODEV2_H
#define _UAPI__LINUX_VIDEODEV2_H

#ifndef __KERNEL__
#include <sys/time.h>
#endif
#include <linux/compiler.h>
#include <linux/ioctl.h>
#include <linux/types.h>
#include <linux/v4l2-common.h>
#include <linux/v4l2-controls.h>

/*
* Common stuff for both V4L1 and V4L2
* Moved from videodev.h
*/

#define VIDEO_MAX_FRAME 32
#define VIDEO_MAX_PLANES 8

/*
* M I S C E L L A N E O U S
*/

/* Four-character-code (FOURCC) */
#define v4l2_fourcc(a, b, c, d)\

((__u32)(a) | ((__u32)(b) << 8) | ((__u32)(c) << 16) | ((__
↪→u32)(d) << 24))
#define v4l2_fourcc_be(a, b, c, d) (v4l2_fourcc(a, b, c, d) |␣
↪→(1U << 31))

/*
* E N U M S
*/

enum v4l2_field {
V4L2_FIELD_ANY = 0, /* driver can choose from␣

↪→none,
top, bottom, interlaced
depending on whatever it␣

↪→thinks
is approximate ... */

V4L2_FIELD_NONE = 1, /* this device has no fields .

618 Chapter 7. Linux Media Infrastructure userspace API

mailto:bill@thedirks.org
mailto:hverkuil@xs4all.nl

Linux Userspace-api Documentation

↪→.. */
V4L2_FIELD_TOP = 2, /* top field only */
V4L2_FIELD_BOTTOM = 3, /* bottom field only */
V4L2_FIELD_INTERLACED = 4, /* both fields interlaced */
V4L2_FIELD_SEQ_TB = 5, /* both fields sequential␣

↪→into one
buffer, top-bottom order */

V4L2_FIELD_SEQ_BT = 6, /* same as above + bottom-top␣
↪→order */

V4L2_FIELD_ALTERNATE = 7, /* both fields alternating␣
↪→into

separate buffers */
V4L2_FIELD_INTERLACED_TB = 8, /* both fields interlaced,␣

↪→top field
first and the top field is
transmitted first */

V4L2_FIELD_INTERLACED_BT = 9, /* both fields interlaced,␣
↪→top field

first and the bottom field␣
↪→is

transmitted first */
};
#define V4L2_FIELD_HAS_TOP(field) \

((field) == V4L2_FIELD_TOP ||\
(field) == V4L2_FIELD_INTERLACED ||\
(field) == V4L2_FIELD_INTERLACED_TB ||\
(field) == V4L2_FIELD_INTERLACED_BT ||\
(field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

#define V4L2_FIELD_HAS_BOTTOM(field) \
((field) == V4L2_FIELD_BOTTOM ||\
(field) == V4L2_FIELD_INTERLACED ||\
(field) == V4L2_FIELD_INTERLACED_TB ||\
(field) == V4L2_FIELD_INTERLACED_BT ||\
(field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

#define V4L2_FIELD_HAS_BOTH(field) \
((field) == V4L2_FIELD_INTERLACED ||\
(field) == V4L2_FIELD_INTERLACED_TB ||\
(field) == V4L2_FIELD_INTERLACED_BT ||\
(field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

#define V4L2_FIELD_HAS_T_OR_B(field) \
((field) == V4L2_FIELD_BOTTOM ||\
(field) == V4L2_FIELD_TOP ||\
(field) == V4L2_FIELD_ALTERNATE)

#define V4L2_FIELD_IS_INTERLACED(field) \
((field) == V4L2_FIELD_INTERLACED ||\
(field) == V4L2_FIELD_INTERLACED_TB ||\
(field) == V4L2_FIELD_INTERLACED_BT)

#define V4L2_FIELD_IS_SEQUENTIAL(field) \

7.2. Part I - Video for Linux API 619

Linux Userspace-api Documentation

((field) == V4L2_FIELD_SEQ_TB ||\
(field) == V4L2_FIELD_SEQ_BT)

enum v4l2_buf_type {
V4L2_BUF_TYPE_VIDEO_CAPTURE = 1,
V4L2_BUF_TYPE_VIDEO_OUTPUT = 2,
V4L2_BUF_TYPE_VIDEO_OVERLAY = 3,
V4L2_BUF_TYPE_VBI_CAPTURE = 4,
V4L2_BUF_TYPE_VBI_OUTPUT = 5,
V4L2_BUF_TYPE_SLICED_VBI_CAPTURE = 6,
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT = 7,
V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY = 8,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE = 9,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE = 10,
V4L2_BUF_TYPE_SDR_CAPTURE = 11,
V4L2_BUF_TYPE_SDR_OUTPUT = 12,
V4L2_BUF_TYPE_META_CAPTURE = 13,
V4L2_BUF_TYPE_META_OUTPUT = 14,
/* Deprecated, do not use */
V4L2_BUF_TYPE_PRIVATE = 0x80,

};

#define V4L2_TYPE_IS_MULTIPLANAR(type) \
((type) == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE \
|| (type) == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)

#define V4L2_TYPE_IS_OUTPUT(type) \
((type) == V4L2_BUF_TYPE_VIDEO_OUTPUT \
|| (type) == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE \
|| (type) == V4L2_BUF_TYPE_VIDEO_OVERLAY \
|| (type) == V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY \
|| (type) == V4L2_BUF_TYPE_VBI_OUTPUT \
|| (type) == V4L2_BUF_TYPE_SLICED_VBI_OUTPUT \
|| (type) == V4L2_BUF_TYPE_SDR_OUTPUT \
|| (type) == V4L2_BUF_TYPE_META_OUTPUT)

enum v4l2_tuner_type {
V4L2_TUNER_RADIO = 1,
V4L2_TUNER_ANALOG_TV = 2,
V4L2_TUNER_DIGITAL_TV = 3,
V4L2_TUNER_SDR = 4,
V4L2_TUNER_RF = 5,

};

/* Deprecated, do not use */
#define V4L2_TUNER_ADC V4L2_TUNER_SDR

enum v4l2_memory {
V4L2_MEMORY_MMAP = 1,
V4L2_MEMORY_USERPTR = 2,
V4L2_MEMORY_OVERLAY = 3,

620 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_MEMORY_DMABUF = 4,
};

/* see also http://vektor.theorem.ca/graphics/ycbcr/ */
enum v4l2_colorspace {

/*
* Default colorspace, i.e. let the driver figure it out.
* Can only be used with video capture.
*/
V4L2_COLORSPACE_DEFAULT = 0,

/* SMPTE 170M: used for broadcast NTSC/PAL SDTV */
V4L2_COLORSPACE_SMPTE170M = 1,

/* Obsolete pre-1998 SMPTE 240M HDTV standard, superseded␣
↪→by Rec 709 */

V4L2_COLORSPACE_SMPTE240M = 2,

/* Rec.709: used for HDTV */
V4L2_COLORSPACE_REC709 = 3,

/*
* Deprecated, do not use. No driver will ever return this.␣

↪→This was
* based on a misunderstanding of the bt878 datasheet.
*/
V4L2_COLORSPACE_BT878 = 4,

/*
* NTSC 1953 colorspace. This only makes sense when dealing␣

↪→with
* really, really old NTSC recordings. Superseded by SMPTE␣

↪→170M.
*/
V4L2_COLORSPACE_470_SYSTEM_M = 5,

/*
* EBU Tech 3213 PAL/SECAM colorspace. This only makes␣

↪→sense when
* dealing with really old PAL/SECAM recordings. Superseded␣

↪→by
* SMPTE 170M.
*/
V4L2_COLORSPACE_470_SYSTEM_BG = 6,

/*
* Effectively shorthand for V4L2_COLORSPACE_SRGB, V4L2_

↪→YCBCR_ENC_601
* and V4L2_QUANTIZATION_FULL_RANGE. To be used for␣

↪→(Motion-)JPEG.
*/

7.2. Part I - Video for Linux API 621

Linux Userspace-api Documentation

V4L2_COLORSPACE_JPEG = 7,

/* For RGB colorspaces such as produces by most webcams. */
V4L2_COLORSPACE_SRGB = 8,

/* opRGB colorspace */
V4L2_COLORSPACE_OPRGB = 9,

/* BT.2020 colorspace, used for UHDTV. */
V4L2_COLORSPACE_BT2020 = 10,

/* Raw colorspace: for RAW unprocessed images */
V4L2_COLORSPACE_RAW = 11,

/* DCI-P3 colorspace, used by cinema projectors */
V4L2_COLORSPACE_DCI_P3 = 12,

};

/*
* Determine how COLORSPACE_DEFAULT should map to a proper␣
↪→colorspace.
* This depends on whether this is a SDTV image (use SMPTE 170M), an
* HDTV image (use Rec. 709), or something else (use sRGB).
*/

#define V4L2_MAP_COLORSPACE_DEFAULT(is_sdtv, is_hdtv) \
((is_sdtv) ? V4L2_COLORSPACE_SMPTE170M : \
((is_hdtv) ? V4L2_COLORSPACE_REC709 : V4L2_COLORSPACE_

↪→SRGB))

enum v4l2_xfer_func {
/*
* Mapping of V4L2_XFER_FUNC_DEFAULT to actual transfer␣

↪→functions
* for the various colorspaces:
*
* V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_470_SYSTEM_M,
* V4L2_COLORSPACE_470_SYSTEM_BG, V4L2_COLORSPACE_REC709 and
* V4L2_COLORSPACE_BT2020: V4L2_XFER_FUNC_709
*
* V4L2_COLORSPACE_SRGB, V4L2_COLORSPACE_JPEG: V4L2_XFER_

↪→FUNC_SRGB
*
* V4L2_COLORSPACE_OPRGB: V4L2_XFER_FUNC_OPRGB
*
* V4L2_COLORSPACE_SMPTE240M: V4L2_XFER_FUNC_SMPTE240M
*
* V4L2_COLORSPACE_RAW: V4L2_XFER_FUNC_NONE
*
* V4L2_COLORSPACE_DCI_P3: V4L2_XFER_FUNC_DCI_P3
*/
V4L2_XFER_FUNC_DEFAULT = 0,

622 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

V4L2_XFER_FUNC_709 = 1,
V4L2_XFER_FUNC_SRGB = 2,
V4L2_XFER_FUNC_OPRGB = 3,
V4L2_XFER_FUNC_SMPTE240M = 4,
V4L2_XFER_FUNC_NONE = 5,
V4L2_XFER_FUNC_DCI_P3 = 6,
V4L2_XFER_FUNC_SMPTE2084 = 7,

};

/*
* Determine how XFER_FUNC_DEFAULT should map to a proper transfer␣
↪→function.
* This depends on the colorspace.
*/

#define V4L2_MAP_XFER_FUNC_DEFAULT(colsp) \
((colsp) == V4L2_COLORSPACE_OPRGB ? V4L2_XFER_FUNC_OPRGB : \
((colsp) == V4L2_COLORSPACE_SMPTE240M ? V4L2_XFER_FUNC_

↪→SMPTE240M : \
((colsp) == V4L2_COLORSPACE_DCI_P3 ? V4L2_XFER_FUNC_DCI_

↪→P3 : \
((colsp) == V4L2_COLORSPACE_RAW ? V4L2_XFER_FUNC_NONE : \
((colsp) == V4L2_COLORSPACE_SRGB || (colsp) == V4L2_

↪→COLORSPACE_JPEG ? \
V4L2_XFER_FUNC_SRGB : V4L2_XFER_FUNC_709)))))

enum v4l2_ycbcr_encoding {
/*
* Mapping of V4L2_YCBCR_ENC_DEFAULT to actual encodings␣

↪→for the
* various colorspaces:
*
* V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_470_SYSTEM_M,
* V4L2_COLORSPACE_470_SYSTEM_BG, V4L2_COLORSPACE_SRGB,
* V4L2_COLORSPACE_OPRGB and V4L2_COLORSPACE_JPEG: V4L2_

↪→YCBCR_ENC_601
*
* V4L2_COLORSPACE_REC709 and V4L2_COLORSPACE_DCI_P3: V4L2_

↪→YCBCR_ENC_709
*
* V4L2_COLORSPACE_BT2020: V4L2_YCBCR_ENC_BT2020
*
* V4L2_COLORSPACE_SMPTE240M: V4L2_YCBCR_ENC_SMPTE240M
*/
V4L2_YCBCR_ENC_DEFAULT = 0,

/* ITU-R 601 -- SDTV */
V4L2_YCBCR_ENC_601 = 1,

/* Rec. 709 -- HDTV */
V4L2_YCBCR_ENC_709 = 2,

7.2. Part I - Video for Linux API 623

Linux Userspace-api Documentation

/* ITU-R 601/EN 61966-2-4 Extended Gamut -- SDTV */
V4L2_YCBCR_ENC_XV601 = 3,

/* Rec. 709/EN 61966-2-4 Extended Gamut -- HDTV */
V4L2_YCBCR_ENC_XV709 = 4,

#ifndef __KERNEL__
/*
* sYCC (Y'CbCr encoding of sRGB), identical to ENC_601. It␣

↪→was added
* originally due to a misunderstanding of the sYCC␣

↪→standard. It should
* not be used, instead use V4L2_YCBCR_ENC_601.
*/
V4L2_YCBCR_ENC_SYCC = 5,

#endif

/* BT.2020 Non-constant Luminance Y'CbCr */
V4L2_YCBCR_ENC_BT2020 = 6,

/* BT.2020 Constant Luminance Y'CbcCrc */
V4L2_YCBCR_ENC_BT2020_CONST_LUM = 7,

/* SMPTE 240M -- Obsolete HDTV */
V4L2_YCBCR_ENC_SMPTE240M = 8,

};

/*
* enum v4l2_hsv_encoding values should not collide with the ones␣
↪→from
* enum v4l2_ycbcr_encoding.
*/

enum v4l2_hsv_encoding {

/* Hue mapped to 0 - 179 */
V4L2_HSV_ENC_180 = 128,

/* Hue mapped to 0-255 */
V4L2_HSV_ENC_256 = 129,

};

/*
* Determine how YCBCR_ENC_DEFAULT should map to a proper Y'CbCr␣
↪→encoding.
* This depends on the colorspace.
*/

#define V4L2_MAP_YCBCR_ENC_DEFAULT(colsp) \
(((colsp) == V4L2_COLORSPACE_REC709 || \
(colsp) == V4L2_COLORSPACE_DCI_P3) ? V4L2_YCBCR_ENC_709 :␣

↪→\
((colsp) == V4L2_COLORSPACE_BT2020 ? V4L2_YCBCR_ENC_BT2020␣

624 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

↪→: \
((colsp) == V4L2_COLORSPACE_SMPTE240M ? V4L2_YCBCR_ENC_

↪→SMPTE240M : \
V4L2_YCBCR_ENC_601)))

enum v4l2_quantization {
/*
* The default for R'G'B' quantization is always full range,

↪→ except
* for the BT2020 colorspace. For Y'CbCr the quantization␣

↪→is always
* limited range, except for COLORSPACE_JPEG: this is full␣

↪→range.
*/
V4L2_QUANTIZATION_DEFAULT = 0,
V4L2_QUANTIZATION_FULL_RANGE = 1,
V4L2_QUANTIZATION_LIM_RANGE = 2,

};

/*
* Determine how QUANTIZATION_DEFAULT should map to a proper␣
↪→quantization.
* This depends on whether the image is RGB or not, the colorspace␣
↪→and the
* Y'CbCr encoding.
*/

#define V4L2_MAP_QUANTIZATION_DEFAULT(is_rgb_or_hsv, colsp, ycbcr_
↪→enc) \

(((is_rgb_or_hsv) && (colsp) == V4L2_COLORSPACE_BT2020) ? \
V4L2_QUANTIZATION_LIM_RANGE : \
(((is_rgb_or_hsv) || (colsp) == V4L2_COLORSPACE_JPEG) ? \
V4L2_QUANTIZATION_FULL_RANGE : V4L2_QUANTIZATION_LIM_

↪→RANGE))

/*
* Deprecated names for opRGB colorspace (IEC 61966-2-5)
*
* WARNING: Please don't use these deprecated defines in your code,␣
↪→as
* there is a chance we have to remove them in the future.
*/

#ifndef __KERNEL__
#define V4L2_COLORSPACE_ADOBERGB V4L2_COLORSPACE_OPRGB
#define V4L2_XFER_FUNC_ADOBERGB V4L2_XFER_FUNC_OPRGB
#endif

enum v4l2_priority {
V4L2_PRIORITY_UNSET = 0, /* not initialized */
V4L2_PRIORITY_BACKGROUND = 1,
V4L2_PRIORITY_INTERACTIVE = 2,
V4L2_PRIORITY_RECORD = 3,

7.2. Part I - Video for Linux API 625

Linux Userspace-api Documentation

V4L2_PRIORITY_DEFAULT = V4L2_PRIORITY_INTERACTIVE,
};

struct v4l2_rect {
__s32 left;
__s32 top;
__u32 width;
__u32 height;

};

struct v4l2_fract {
__u32 numerator;
__u32 denominator;

};

struct v4l2_area {
__u32 width;
__u32 height;

};

/**
* struct v4l2_capability - Describes V4L2 device caps returned by␣

↪→VIDIOC_QUERYCAP
*
* @driver: name of the driver module (e.g. "bttv")
* @card: name of the card (e.g. "Hauppauge WinTV")
* @bus_info: name of the bus (e.g. "PCI:" + pci_name(pci_dev)␣

↪→)
* @version: KERNEL_VERSION
* @capabilities: capabilities of the physical device as a whole
* @device_caps: capabilities accessed via this particular device␣

↪→(node)
* @reserved: reserved fields for future extensions
*/

struct v4l2_capability {
__u8 driver[16];
__u8 card[32];
__u8 bus_info[32];
__u32 version;
__u32 capabilities;
__u32 device_caps;
__u32 reserved[3];

};

/* Values for 'capabilities' field */
#define V4L2_CAP_VIDEO_CAPTURE 0x00000001 /* Is a video␣
↪→capture device */
#define V4L2_CAP_VIDEO_OUTPUT 0x00000002 /* Is a video␣
↪→output device */
#define V4L2_CAP_VIDEO_OVERLAY 0x00000004 /* Can do video␣
↪→overlay */

626 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define V4L2_CAP_VBI_CAPTURE 0x00000010 /* Is a raw VBI␣
↪→capture device */
#define V4L2_CAP_VBI_OUTPUT 0x00000020 /* Is a raw VBI␣
↪→output device */
#define V4L2_CAP_SLICED_VBI_CAPTURE 0x00000040 /* Is a sliced␣
↪→VBI capture device */
#define V4L2_CAP_SLICED_VBI_OUTPUT 0x00000080 /* Is a sliced␣
↪→VBI output device */
#define V4L2_CAP_RDS_CAPTURE 0x00000100 /* RDS data␣
↪→capture */
#define V4L2_CAP_VIDEO_OUTPUT_OVERLAY 0x00000200 /* Can do video␣
↪→output overlay */
#define V4L2_CAP_HW_FREQ_SEEK 0x00000400 /* Can do␣
↪→hardware frequency seek */
#define V4L2_CAP_RDS_OUTPUT 0x00000800 /* Is an RDS␣
↪→encoder */

/* Is a video capture device that supports multiplanar formats */
#define V4L2_CAP_VIDEO_CAPTURE_MPLANE 0x00001000
/* Is a video output device that supports multiplanar formats */
#define V4L2_CAP_VIDEO_OUTPUT_MPLANE 0x00002000
/* Is a video mem-to-mem device that supports multiplanar formats */
#define V4L2_CAP_VIDEO_M2M_MPLANE 0x00004000
/* Is a video mem-to-mem device */
#define V4L2_CAP_VIDEO_M2M 0x00008000

#define V4L2_CAP_TUNER 0x00010000 /* has a tuner␣
↪→*/
#define V4L2_CAP_AUDIO 0x00020000 /* has audio␣
↪→support */
#define V4L2_CAP_RADIO 0x00040000 /* is a radio␣
↪→device */
#define V4L2_CAP_MODULATOR 0x00080000 /* has a␣
↪→modulator */

#define V4L2_CAP_SDR_CAPTURE 0x00100000 /* Is a SDR␣
↪→capture device */
#define V4L2_CAP_EXT_PIX_FORMAT 0x00200000 /* Supports the␣
↪→extended pixel format */
#define V4L2_CAP_SDR_OUTPUT 0x00400000 /* Is a SDR␣
↪→output device */
#define V4L2_CAP_META_CAPTURE 0x00800000 /* Is a␣
↪→metadata capture device */

#define V4L2_CAP_READWRITE 0x01000000 /* read/write␣
↪→systemcalls */
#define V4L2_CAP_ASYNCIO 0x02000000 /* async I/O */
#define V4L2_CAP_STREAMING 0x04000000 /* streaming I/
↪→O ioctls */
#define V4L2_CAP_META_OUTPUT 0x08000000 /* Is a␣
↪→metadata output device */

7.2. Part I - Video for Linux API 627

Linux Userspace-api Documentation

#define V4L2_CAP_TOUCH 0x10000000 /* Is a touch␣
↪→device */

#define V4L2_CAP_IO_MC 0x20000000 /* Is input/
↪→output controlled by the media controller */

#define V4L2_CAP_DEVICE_CAPS 0x80000000 /* sets device␣
↪→capabilities field */

/*
* V I D E O I M A G E F O R M A T
*/

struct v4l2_pix_format {
__u32 width;
__u32 height;
__u32 pixelformat;
__u32 field; /* enum v4l2_field␣

↪→*/
__u32 bytesperline; /* for padding,␣

↪→zero if unused */
__u32 sizeimage;
__u32 colorspace; /* enum v4l2_

↪→colorspace */
__u32 priv; /* private data,␣

↪→depends on pixelformat */
__u32 flags; /* format flags␣

↪→(V4L2_PIX_FMT_FLAG_*) */
union {

/* enum v4l2_ycbcr_encoding */
__u32 ycbcr_enc;
/* enum v4l2_hsv_encoding */
__u32 hsv_enc;

};
__u32 quantization; /* enum v4l2_

↪→quantization */
__u32 xfer_func; /* enum v4l2_xfer_

↪→func */
};

/* Pixel format FOURCC depth ␣
↪→Description */

/* RGB formats */
#define V4L2_PIX_FMT_RGB332 v4l2_fourcc('R', 'G', 'B', '1') /* 8 ␣
↪→RGB-3-3-2 */
#define V4L2_PIX_FMT_RGB444 v4l2_fourcc('R', '4', '4', '4') /* 16 ␣
↪→xxxxrrrr ggggbbbb */
#define V4L2_PIX_FMT_ARGB444 v4l2_fourcc('A', 'R', '1', '2') /* 16 ␣
↪→aaaarrrr ggggbbbb */
#define V4L2_PIX_FMT_XRGB444 v4l2_fourcc('X', 'R', '1', '2') /* 16 ␣

628 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

↪→xxxxrrrr ggggbbbb */
#define V4L2_PIX_FMT_RGBA444 v4l2_fourcc('R', 'A', '1', '2') /* 16 ␣
↪→rrrrgggg bbbbaaaa */
#define V4L2_PIX_FMT_RGBX444 v4l2_fourcc('R', 'X', '1', '2') /* 16 ␣
↪→rrrrgggg bbbbxxxx */
#define V4L2_PIX_FMT_ABGR444 v4l2_fourcc('A', 'B', '1', '2') /* 16 ␣
↪→aaaabbbb ggggrrrr */
#define V4L2_PIX_FMT_XBGR444 v4l2_fourcc('X', 'B', '1', '2') /* 16 ␣
↪→xxxxbbbb ggggrrrr */

/*
* Originally this had 'BA12' as fourcc, but this clashed with the␣
↪→older
* V4L2_PIX_FMT_SGRBG12 which inexplicably used that same fourcc.
* So use 'GA12' instead for V4L2_PIX_FMT_BGRA444.
*/

#define V4L2_PIX_FMT_BGRA444 v4l2_fourcc('G', 'A', '1', '2') /* 16 ␣
↪→bbbbgggg rrrraaaa */
#define V4L2_PIX_FMT_BGRX444 v4l2_fourcc('B', 'X', '1', '2') /* 16 ␣
↪→bbbbgggg rrrrxxxx */
#define V4L2_PIX_FMT_RGB555 v4l2_fourcc('R', 'G', 'B', 'O') /* 16 ␣
↪→RGB-5-5-5 */
#define V4L2_PIX_FMT_ARGB555 v4l2_fourcc('A', 'R', '1', '5') /* 16 ␣
↪→ARGB-1-5-5-5 */
#define V4L2_PIX_FMT_XRGB555 v4l2_fourcc('X', 'R', '1', '5') /* 16 ␣
↪→XRGB-1-5-5-5 */
#define V4L2_PIX_FMT_RGBA555 v4l2_fourcc('R', 'A', '1', '5') /* 16 ␣
↪→RGBA-5-5-5-1 */
#define V4L2_PIX_FMT_RGBX555 v4l2_fourcc('R', 'X', '1', '5') /* 16 ␣
↪→RGBX-5-5-5-1 */
#define V4L2_PIX_FMT_ABGR555 v4l2_fourcc('A', 'B', '1', '5') /* 16 ␣
↪→ABGR-1-5-5-5 */
#define V4L2_PIX_FMT_XBGR555 v4l2_fourcc('X', 'B', '1', '5') /* 16 ␣
↪→XBGR-1-5-5-5 */
#define V4L2_PIX_FMT_BGRA555 v4l2_fourcc('B', 'A', '1', '5') /* 16 ␣
↪→BGRA-5-5-5-1 */
#define V4L2_PIX_FMT_BGRX555 v4l2_fourcc('B', 'X', '1', '5') /* 16 ␣
↪→BGRX-5-5-5-1 */
#define V4L2_PIX_FMT_RGB565 v4l2_fourcc('R', 'G', 'B', 'P') /* 16 ␣
↪→RGB-5-6-5 */
#define V4L2_PIX_FMT_RGB555X v4l2_fourcc('R', 'G', 'B', 'Q') /* 16 ␣
↪→RGB-5-5-5 BE */
#define V4L2_PIX_FMT_ARGB555X v4l2_fourcc_be('A', 'R', '1', '5') /*␣
↪→16 ARGB-5-5-5 BE */
#define V4L2_PIX_FMT_XRGB555X v4l2_fourcc_be('X', 'R', '1', '5') /*␣
↪→16 XRGB-5-5-5 BE */
#define V4L2_PIX_FMT_RGB565X v4l2_fourcc('R', 'G', 'B', 'R') /* 16 ␣
↪→RGB-5-6-5 BE */
#define V4L2_PIX_FMT_BGR666 v4l2_fourcc('B', 'G', 'R', 'H') /* 18 ␣
↪→BGR-6-6-6 */
#define V4L2_PIX_FMT_BGR24 v4l2_fourcc('B', 'G', 'R', '3') /* 24 ␣

7.2. Part I - Video for Linux API 629

Linux Userspace-api Documentation

↪→BGR-8-8-8 */
#define V4L2_PIX_FMT_RGB24 v4l2_fourcc('R', 'G', 'B', '3') /* 24 ␣
↪→RGB-8-8-8 */
#define V4L2_PIX_FMT_BGR32 v4l2_fourcc('B', 'G', 'R', '4') /* 32 ␣
↪→BGR-8-8-8-8 */
#define V4L2_PIX_FMT_ABGR32 v4l2_fourcc('A', 'R', '2', '4') /* 32 ␣
↪→BGRA-8-8-8-8 */
#define V4L2_PIX_FMT_XBGR32 v4l2_fourcc('X', 'R', '2', '4') /* 32 ␣
↪→BGRX-8-8-8-8 */
#define V4L2_PIX_FMT_BGRA32 v4l2_fourcc('R', 'A', '2', '4') /* 32 ␣
↪→ABGR-8-8-8-8 */
#define V4L2_PIX_FMT_BGRX32 v4l2_fourcc('R', 'X', '2', '4') /* 32 ␣
↪→XBGR-8-8-8-8 */
#define V4L2_PIX_FMT_RGB32 v4l2_fourcc('R', 'G', 'B', '4') /* 32 ␣
↪→RGB-8-8-8-8 */
#define V4L2_PIX_FMT_RGBA32 v4l2_fourcc('A', 'B', '2', '4') /* 32 ␣
↪→RGBA-8-8-8-8 */
#define V4L2_PIX_FMT_RGBX32 v4l2_fourcc('X', 'B', '2', '4') /* 32 ␣
↪→RGBX-8-8-8-8 */
#define V4L2_PIX_FMT_ARGB32 v4l2_fourcc('B', 'A', '2', '4') /* 32 ␣
↪→ARGB-8-8-8-8 */
#define V4L2_PIX_FMT_XRGB32 v4l2_fourcc('B', 'X', '2', '4') /* 32 ␣
↪→XRGB-8-8-8-8 */

/* Grey formats */
#define V4L2_PIX_FMT_GREY v4l2_fourcc('G', 'R', 'E', 'Y') /* 8 ␣
↪→Greyscale */
#define V4L2_PIX_FMT_Y4 v4l2_fourcc('Y', '0', '4', ' ') /* 4 ␣
↪→Greyscale */
#define V4L2_PIX_FMT_Y6 v4l2_fourcc('Y', '0', '6', ' ') /* 6 ␣
↪→Greyscale */
#define V4L2_PIX_FMT_Y10 v4l2_fourcc('Y', '1', '0', ' ') /* 10 ␣
↪→Greyscale */
#define V4L2_PIX_FMT_Y12 v4l2_fourcc('Y', '1', '2', ' ') /* 12 ␣
↪→Greyscale */
#define V4L2_PIX_FMT_Y14 v4l2_fourcc('Y', '1', '4', ' ') /* 14 ␣
↪→Greyscale */
#define V4L2_PIX_FMT_Y16 v4l2_fourcc('Y', '1', '6', ' ') /* 16 ␣
↪→Greyscale */
#define V4L2_PIX_FMT_Y16_BE v4l2_fourcc_be('Y', '1', '6', ' ') /*␣
↪→16 Greyscale BE */

/* Grey bit-packed formats */
#define V4L2_PIX_FMT_Y10BPACK v4l2_fourcc('Y', '1', '0', 'B') /*␣
↪→10 Greyscale bit-packed */
#define V4L2_PIX_FMT_Y10P v4l2_fourcc('Y', '1', '0', 'P') /* 10 ␣
↪→Greyscale, MIPI RAW10 packed */

/* Palette formats */
#define V4L2_PIX_FMT_PAL8 v4l2_fourcc('P', 'A', 'L', '8') /* 8 ␣
↪→8-bit palette */

630 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/* Chrominance formats */
#define V4L2_PIX_FMT_UV8 v4l2_fourcc('U', 'V', '8', ' ') /* 8 ␣
↪→UV 4:4 */

/* Luminance+Chrominance formats */
#define V4L2_PIX_FMT_YUYV v4l2_fourcc('Y', 'U', 'Y', 'V') /* 16 ␣
↪→YUV 4:2:2 */
#define V4L2_PIX_FMT_YYUV v4l2_fourcc('Y', 'Y', 'U', 'V') /* 16 ␣
↪→YUV 4:2:2 */
#define V4L2_PIX_FMT_YVYU v4l2_fourcc('Y', 'V', 'Y', 'U') /* 16␣
↪→YVU 4:2:2 */
#define V4L2_PIX_FMT_UYVY v4l2_fourcc('U', 'Y', 'V', 'Y') /* 16 ␣
↪→YUV 4:2:2 */
#define V4L2_PIX_FMT_VYUY v4l2_fourcc('V', 'Y', 'U', 'Y') /* 16 ␣
↪→YUV 4:2:2 */
#define V4L2_PIX_FMT_Y41P v4l2_fourcc('Y', '4', '1', 'P') /* 12 ␣
↪→YUV 4:1:1 */
#define V4L2_PIX_FMT_YUV444 v4l2_fourcc('Y', '4', '4', '4') /* 16 ␣
↪→xxxxyyyy uuuuvvvv */
#define V4L2_PIX_FMT_YUV555 v4l2_fourcc('Y', 'U', 'V', 'O') /* 16 ␣
↪→YUV-5-5-5 */
#define V4L2_PIX_FMT_YUV565 v4l2_fourcc('Y', 'U', 'V', 'P') /* 16 ␣
↪→YUV-5-6-5 */
#define V4L2_PIX_FMT_YUV32 v4l2_fourcc('Y', 'U', 'V', '4') /* 32 ␣
↪→YUV-8-8-8-8 */
#define V4L2_PIX_FMT_AYUV32 v4l2_fourcc('A', 'Y', 'U', 'V') /* 32 ␣
↪→AYUV-8-8-8-8 */
#define V4L2_PIX_FMT_XYUV32 v4l2_fourcc('X', 'Y', 'U', 'V') /* 32 ␣
↪→XYUV-8-8-8-8 */
#define V4L2_PIX_FMT_VUYA32 v4l2_fourcc('V', 'U', 'Y', 'A') /* 32 ␣
↪→VUYA-8-8-8-8 */
#define V4L2_PIX_FMT_VUYX32 v4l2_fourcc('V', 'U', 'Y', 'X') /* 32 ␣
↪→VUYX-8-8-8-8 */
#define V4L2_PIX_FMT_HI240 v4l2_fourcc('H', 'I', '2', '4') /* 8 ␣
↪→8-bit color */
#define V4L2_PIX_FMT_HM12 v4l2_fourcc('H', 'M', '1', '2') /* 8 ␣
↪→YUV 4:2:0 16x16 macroblocks */
#define V4L2_PIX_FMT_M420 v4l2_fourcc('M', '4', '2', '0') /* 12 ␣
↪→YUV 4:2:0 2 lines y, 1 line uv interleaved */

/* two planes -- one Y, one Cr + Cb interleaved */
#define V4L2_PIX_FMT_NV12 v4l2_fourcc('N', 'V', '1', '2') /* 12 ␣
↪→Y/CbCr 4:2:0 */
#define V4L2_PIX_FMT_NV21 v4l2_fourcc('N', 'V', '2', '1') /* 12 ␣
↪→Y/CrCb 4:2:0 */
#define V4L2_PIX_FMT_NV16 v4l2_fourcc('N', 'V', '1', '6') /* 16 ␣
↪→Y/CbCr 4:2:2 */
#define V4L2_PIX_FMT_NV61 v4l2_fourcc('N', 'V', '6', '1') /* 16 ␣
↪→Y/CrCb 4:2:2 */
#define V4L2_PIX_FMT_NV24 v4l2_fourcc('N', 'V', '2', '4') /* 24 ␣

7.2. Part I - Video for Linux API 631

Linux Userspace-api Documentation

↪→Y/CbCr 4:4:4 */
#define V4L2_PIX_FMT_NV42 v4l2_fourcc('N', 'V', '4', '2') /* 24 ␣
↪→Y/CrCb 4:4:4 */

/* two non contiguous planes - one Y, one Cr + Cb interleaved */
#define V4L2_PIX_FMT_NV12M v4l2_fourcc('N', 'M', '1', '2') /* 12 ␣
↪→Y/CbCr 4:2:0 */
#define V4L2_PIX_FMT_NV21M v4l2_fourcc('N', 'M', '2', '1') /* 21 ␣
↪→Y/CrCb 4:2:0 */
#define V4L2_PIX_FMT_NV16M v4l2_fourcc('N', 'M', '1', '6') /* 16 ␣
↪→Y/CbCr 4:2:2 */
#define V4L2_PIX_FMT_NV61M v4l2_fourcc('N', 'M', '6', '1') /* 16 ␣
↪→Y/CrCb 4:2:2 */
#define V4L2_PIX_FMT_NV12MT v4l2_fourcc('T', 'M', '1', '2') /* 12 ␣
↪→Y/CbCr 4:2:0 64x32 macroblocks */
#define V4L2_PIX_FMT_NV12MT_16X16 v4l2_fourcc('V', 'M', '1', '2') /
↪→* 12 Y/CbCr 4:2:0 16x16 macroblocks */

/* three planes - Y Cb, Cr */
#define V4L2_PIX_FMT_YUV410 v4l2_fourcc('Y', 'U', 'V', '9') /* 9 ␣
↪→YUV 4:1:0 */
#define V4L2_PIX_FMT_YVU410 v4l2_fourcc('Y', 'V', 'U', '9') /* 9 ␣
↪→YVU 4:1:0 */
#define V4L2_PIX_FMT_YUV411P v4l2_fourcc('4', '1', '1', 'P') /* 12 ␣
↪→YVU411 planar */
#define V4L2_PIX_FMT_YUV420 v4l2_fourcc('Y', 'U', '1', '2') /* 12 ␣
↪→YUV 4:2:0 */
#define V4L2_PIX_FMT_YVU420 v4l2_fourcc('Y', 'V', '1', '2') /* 12 ␣
↪→YVU 4:2:0 */
#define V4L2_PIX_FMT_YUV422P v4l2_fourcc('4', '2', '2', 'P') /* 16 ␣
↪→YVU422 planar */

/* three non contiguous planes - Y, Cb, Cr */
#define V4L2_PIX_FMT_YUV420M v4l2_fourcc('Y', 'M', '1', '2') /* 12 ␣
↪→YUV420 planar */
#define V4L2_PIX_FMT_YVU420M v4l2_fourcc('Y', 'M', '2', '1') /* 12 ␣
↪→YVU420 planar */
#define V4L2_PIX_FMT_YUV422M v4l2_fourcc('Y', 'M', '1', '6') /* 16 ␣
↪→YUV422 planar */
#define V4L2_PIX_FMT_YVU422M v4l2_fourcc('Y', 'M', '6', '1') /* 16 ␣
↪→YVU422 planar */
#define V4L2_PIX_FMT_YUV444M v4l2_fourcc('Y', 'M', '2', '4') /* 24 ␣
↪→YUV444 planar */
#define V4L2_PIX_FMT_YVU444M v4l2_fourcc('Y', 'M', '4', '2') /* 24 ␣
↪→YVU444 planar */

/* Bayer formats - see http://www.siliconimaging.com/RGB%20Bayer.
↪→htm */
#define V4L2_PIX_FMT_SBGGR8 v4l2_fourcc('B', 'A', '8', '1') /* 8 ␣
↪→BGBG.. GRGR.. */
#define V4L2_PIX_FMT_SGBRG8 v4l2_fourcc('G', 'B', 'R', 'G') /* 8 ␣

632 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

↪→GBGB.. RGRG.. */
#define V4L2_PIX_FMT_SGRBG8 v4l2_fourcc('G', 'R', 'B', 'G') /* 8 ␣
↪→GRGR.. BGBG.. */
#define V4L2_PIX_FMT_SRGGB8 v4l2_fourcc('R', 'G', 'G', 'B') /* 8 ␣
↪→RGRG.. GBGB.. */
#define V4L2_PIX_FMT_SBGGR10 v4l2_fourcc('B', 'G', '1', '0') /* 10 ␣
↪→BGBG.. GRGR.. */
#define V4L2_PIX_FMT_SGBRG10 v4l2_fourcc('G', 'B', '1', '0') /* 10 ␣
↪→GBGB.. RGRG.. */
#define V4L2_PIX_FMT_SGRBG10 v4l2_fourcc('B', 'A', '1', '0') /* 10 ␣
↪→GRGR.. BGBG.. */
#define V4L2_PIX_FMT_SRGGB10 v4l2_fourcc('R', 'G', '1', '0') /* 10 ␣
↪→RGRG.. GBGB.. */

/* 10bit raw bayer packed, 5 bytes for every 4 pixels */
#define V4L2_PIX_FMT_SBGGR10P v4l2_fourcc('p', 'B', 'A', 'A')
#define V4L2_PIX_FMT_SGBRG10P v4l2_fourcc('p', 'G', 'A', 'A')
#define V4L2_PIX_FMT_SGRBG10P v4l2_fourcc('p', 'g', 'A', 'A')
#define V4L2_PIX_FMT_SRGGB10P v4l2_fourcc('p', 'R', 'A', 'A')

/* 10bit raw bayer a-law compressed to 8 bits */
#define V4L2_PIX_FMT_SBGGR10ALAW8 v4l2_fourcc('a', 'B', 'A', '8')
#define V4L2_PIX_FMT_SGBRG10ALAW8 v4l2_fourcc('a', 'G', 'A', '8')
#define V4L2_PIX_FMT_SGRBG10ALAW8 v4l2_fourcc('a', 'g', 'A', '8')
#define V4L2_PIX_FMT_SRGGB10ALAW8 v4l2_fourcc('a', 'R', 'A', '8')

/* 10bit raw bayer DPCM compressed to 8 bits */
#define V4L2_PIX_FMT_SBGGR10DPCM8 v4l2_fourcc('b', 'B', 'A', '8')
#define V4L2_PIX_FMT_SGBRG10DPCM8 v4l2_fourcc('b', 'G', 'A', '8')
#define V4L2_PIX_FMT_SGRBG10DPCM8 v4l2_fourcc('B', 'D', '1', '0')
#define V4L2_PIX_FMT_SRGGB10DPCM8 v4l2_fourcc('b', 'R', 'A', '8')
#define V4L2_PIX_FMT_SBGGR12 v4l2_fourcc('B', 'G', '1', '2') /* 12 ␣
↪→BGBG.. GRGR.. */
#define V4L2_PIX_FMT_SGBRG12 v4l2_fourcc('G', 'B', '1', '2') /* 12 ␣
↪→GBGB.. RGRG.. */
#define V4L2_PIX_FMT_SGRBG12 v4l2_fourcc('B', 'A', '1', '2') /* 12 ␣
↪→GRGR.. BGBG.. */
#define V4L2_PIX_FMT_SRGGB12 v4l2_fourcc('R', 'G', '1', '2') /* 12 ␣
↪→RGRG.. GBGB.. */

/* 12bit raw bayer packed, 6 bytes for every 4 pixels */
#define V4L2_PIX_FMT_SBGGR12P v4l2_fourcc('p', 'B', 'C', 'C')
#define V4L2_PIX_FMT_SGBRG12P v4l2_fourcc('p', 'G', 'C', 'C')
#define V4L2_PIX_FMT_SGRBG12P v4l2_fourcc('p', 'g', 'C', 'C')
#define V4L2_PIX_FMT_SRGGB12P v4l2_fourcc('p', 'R', 'C', 'C')
#define V4L2_PIX_FMT_SBGGR14 v4l2_fourcc('B', 'G', '1', '4') /* 14 ␣
↪→BGBG.. GRGR.. */
#define V4L2_PIX_FMT_SGBRG14 v4l2_fourcc('G', 'B', '1', '4') /* 14 ␣
↪→GBGB.. RGRG.. */
#define V4L2_PIX_FMT_SGRBG14 v4l2_fourcc('G', 'R', '1', '4') /* 14 ␣
↪→GRGR.. BGBG.. */
#define V4L2_PIX_FMT_SRGGB14 v4l2_fourcc('R', 'G', '1', '4') /* 14 ␣
↪→RGRG.. GBGB.. */

/* 14bit raw bayer packed, 7 bytes for every 4 pixels */
#define V4L2_PIX_FMT_SBGGR14P v4l2_fourcc('p', 'B', 'E', 'E')

7.2. Part I - Video for Linux API 633

Linux Userspace-api Documentation

#define V4L2_PIX_FMT_SGBRG14P v4l2_fourcc('p', 'G', 'E', 'E')
#define V4L2_PIX_FMT_SGRBG14P v4l2_fourcc('p', 'g', 'E', 'E')
#define V4L2_PIX_FMT_SRGGB14P v4l2_fourcc('p', 'R', 'E', 'E')
#define V4L2_PIX_FMT_SBGGR16 v4l2_fourcc('B', 'Y', 'R', '2') /* 16 ␣
↪→BGBG.. GRGR.. */
#define V4L2_PIX_FMT_SGBRG16 v4l2_fourcc('G', 'B', '1', '6') /* 16 ␣
↪→GBGB.. RGRG.. */
#define V4L2_PIX_FMT_SGRBG16 v4l2_fourcc('G', 'R', '1', '6') /* 16 ␣
↪→GRGR.. BGBG.. */
#define V4L2_PIX_FMT_SRGGB16 v4l2_fourcc('R', 'G', '1', '6') /* 16 ␣
↪→RGRG.. GBGB.. */

/* HSV formats */
#define V4L2_PIX_FMT_HSV24 v4l2_fourcc('H', 'S', 'V', '3')
#define V4L2_PIX_FMT_HSV32 v4l2_fourcc('H', 'S', 'V', '4')

/* compressed formats */
#define V4L2_PIX_FMT_MJPEG v4l2_fourcc('M', 'J', 'P', 'G') /*␣
↪→Motion-JPEG */
#define V4L2_PIX_FMT_JPEG v4l2_fourcc('J', 'P', 'E', 'G') /*␣
↪→JFIF JPEG */
#define V4L2_PIX_FMT_DV v4l2_fourcc('d', 'v', 's', 'd') /*␣
↪→1394 */
#define V4L2_PIX_FMT_MPEG v4l2_fourcc('M', 'P', 'E', 'G') /*␣
↪→MPEG-1/2/4 Multiplexed */
#define V4L2_PIX_FMT_H264 v4l2_fourcc('H', '2', '6', '4') /*␣
↪→H264 with start codes */
#define V4L2_PIX_FMT_H264_NO_SC v4l2_fourcc('A', 'V', 'C', '1') /*␣
↪→H264 without start codes */
#define V4L2_PIX_FMT_H264_MVC v4l2_fourcc('M', '2', '6', '4') /*␣
↪→H264 MVC */
#define V4L2_PIX_FMT_H263 v4l2_fourcc('H', '2', '6', '3') /*␣
↪→H263 */
#define V4L2_PIX_FMT_MPEG1 v4l2_fourcc('M', 'P', 'G', '1') /*␣
↪→MPEG-1 ES */
#define V4L2_PIX_FMT_MPEG2 v4l2_fourcc('M', 'P', 'G', '2') /*␣
↪→MPEG-2 ES */
#define V4L2_PIX_FMT_MPEG2_SLICE v4l2_fourcc('M', 'G', '2', 'S') /*␣
↪→MPEG-2 parsed slice data */
#define V4L2_PIX_FMT_MPEG4 v4l2_fourcc('M', 'P', 'G', '4') /*␣
↪→MPEG-4 part 2 ES */
#define V4L2_PIX_FMT_XVID v4l2_fourcc('X', 'V', 'I', 'D') /*␣
↪→Xvid */
#define V4L2_PIX_FMT_VC1_ANNEX_G v4l2_fourcc('V', 'C', '1', 'G') /*␣
↪→SMPTE 421M Annex G compliant stream */
#define V4L2_PIX_FMT_VC1_ANNEX_L v4l2_fourcc('V', 'C', '1', 'L') /*␣
↪→SMPTE 421M Annex L compliant stream */
#define V4L2_PIX_FMT_VP8 v4l2_fourcc('V', 'P', '8', '0') /*␣
↪→VP8 */
#define V4L2_PIX_FMT_VP9 v4l2_fourcc('V', 'P', '9', '0') /*␣
↪→VP9 */

634 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define V4L2_PIX_FMT_HEVC v4l2_fourcc('H', 'E', 'V', 'C') /*␣
↪→HEVC aka H.265 */
#define V4L2_PIX_FMT_FWHT v4l2_fourcc('F', 'W', 'H', 'T') /*␣
↪→Fast Walsh Hadamard Transform (vicodec) */
#define V4L2_PIX_FMT_FWHT_STATELESS v4l2_fourcc('S', 'F', 'W',␣
↪→'H') /* Stateless FWHT (vicodec) */

/* Vendor-specific formats */
#define V4L2_PIX_FMT_CPIA1 v4l2_fourcc('C', 'P', 'I', 'A') /*␣
↪→cpia1 YUV */
#define V4L2_PIX_FMT_WNVA v4l2_fourcc('W', 'N', 'V', 'A') /*␣
↪→Winnov hw compress */
#define V4L2_PIX_FMT_SN9C10X v4l2_fourcc('S', '9', '1', '0') /*␣
↪→SN9C10x compression */
#define V4L2_PIX_FMT_SN9C20X_I420 v4l2_fourcc('S', '9', '2', '0') /
↪→* SN9C20x YUV 4:2:0 */
#define V4L2_PIX_FMT_PWC1 v4l2_fourcc('P', 'W', 'C', '1') /*␣
↪→pwc older webcam */
#define V4L2_PIX_FMT_PWC2 v4l2_fourcc('P', 'W', 'C', '2') /*␣
↪→pwc newer webcam */
#define V4L2_PIX_FMT_ET61X251 v4l2_fourcc('E', '6', '2', '5') /*␣
↪→ET61X251 compression */
#define V4L2_PIX_FMT_SPCA501 v4l2_fourcc('S', '5', '0', '1') /*␣
↪→YUYV per line */
#define V4L2_PIX_FMT_SPCA505 v4l2_fourcc('S', '5', '0', '5') /*␣
↪→YYUV per line */
#define V4L2_PIX_FMT_SPCA508 v4l2_fourcc('S', '5', '0', '8') /*␣
↪→YUVY per line */
#define V4L2_PIX_FMT_SPCA561 v4l2_fourcc('S', '5', '6', '1') /*␣
↪→compressed GBRG bayer */
#define V4L2_PIX_FMT_PAC207 v4l2_fourcc('P', '2', '0', '7') /*␣
↪→compressed BGGR bayer */
#define V4L2_PIX_FMT_MR97310A v4l2_fourcc('M', '3', '1', '0') /*␣
↪→compressed BGGR bayer */
#define V4L2_PIX_FMT_JL2005BCD v4l2_fourcc('J', 'L', '2', '0') /*␣
↪→compressed RGGB bayer */
#define V4L2_PIX_FMT_SN9C2028 v4l2_fourcc('S', 'O', 'N', 'X') /*␣
↪→compressed GBRG bayer */
#define V4L2_PIX_FMT_SQ905C v4l2_fourcc('9', '0', '5', 'C') /*␣
↪→compressed RGGB bayer */
#define V4L2_PIX_FMT_PJPG v4l2_fourcc('P', 'J', 'P', 'G') /*␣
↪→Pixart 73xx JPEG */
#define V4L2_PIX_FMT_OV511 v4l2_fourcc('O', '5', '1', '1') /*␣
↪→ov511 JPEG */
#define V4L2_PIX_FMT_OV518 v4l2_fourcc('O', '5', '1', '8') /*␣
↪→ov518 JPEG */
#define V4L2_PIX_FMT_STV0680 v4l2_fourcc('S', '6', '8', '0') /*␣
↪→stv0680 bayer */
#define V4L2_PIX_FMT_TM6000 v4l2_fourcc('T', 'M', '6', '0') /*␣
↪→tm5600/tm60x0 */
#define V4L2_PIX_FMT_CIT_YYVYUY v4l2_fourcc('C', 'I', 'T', 'V') /*␣

7.2. Part I - Video for Linux API 635

Linux Userspace-api Documentation

↪→one line of Y then 1 line of VYUY */
#define V4L2_PIX_FMT_KONICA420 v4l2_fourcc('K', 'O', 'N', 'I') /*␣
↪→YUV420 planar in blocks of 256 pixels */
#define V4L2_PIX_FMT_JPGL v4l2_fourcc('J', 'P', 'G', 'L') /*␣
↪→JPEG-Lite */
#define V4L2_PIX_FMT_SE401 v4l2_fourcc('S', '4', '0', '1') /*␣
↪→se401 janggu compressed rgb */
#define V4L2_PIX_FMT_S5C_UYVY_JPG v4l2_fourcc('S', '5', 'C', 'I') /
↪→* S5C73M3 interleaved UYVY/JPEG */
#define V4L2_PIX_FMT_Y8I v4l2_fourcc('Y', '8', 'I', ' ') /*␣
↪→Greyscale 8-bit L/R interleaved */
#define V4L2_PIX_FMT_Y12I v4l2_fourcc('Y', '1', '2', 'I') /*␣
↪→Greyscale 12-bit L/R interleaved */
#define V4L2_PIX_FMT_Z16 v4l2_fourcc('Z', '1', '6', ' ') /*␣
↪→Depth data 16-bit */
#define V4L2_PIX_FMT_MT21C v4l2_fourcc('M', 'T', '2', '1') /*␣
↪→Mediatek compressed block mode */
#define V4L2_PIX_FMT_INZI v4l2_fourcc('I', 'N', 'Z', 'I') /*␣
↪→Intel Planar Greyscale 10-bit and Depth 16-bit */
#define V4L2_PIX_FMT_SUNXI_TILED_NV12 v4l2_fourcc('S', 'T', '1',␣
↪→'2') /* Sunxi Tiled NV12 Format */
#define V4L2_PIX_FMT_CNF4 v4l2_fourcc('C', 'N', 'F', '4') /*␣
↪→Intel 4-bit packed depth confidence information */

/* 10bit raw bayer packed, 32 bytes for every 25 pixels, last LSB 6␣
↪→bits unused */
#define V4L2_PIX_FMT_IPU3_SBGGR10 v4l2_fourcc('i', 'p', '3',␣
↪→'b') /* IPU3 packed 10-bit BGGR bayer */
#define V4L2_PIX_FMT_IPU3_SGBRG10 v4l2_fourcc('i', 'p', '3',␣
↪→'g') /* IPU3 packed 10-bit GBRG bayer */
#define V4L2_PIX_FMT_IPU3_SGRBG10 v4l2_fourcc('i', 'p', '3',␣
↪→'G') /* IPU3 packed 10-bit GRBG bayer */
#define V4L2_PIX_FMT_IPU3_SRGGB10 v4l2_fourcc('i', 'p', '3',␣
↪→'r') /* IPU3 packed 10-bit RGGB bayer */

/* SDR formats - used only for Software Defined Radio devices */
#define V4L2_SDR_FMT_CU8 v4l2_fourcc('C', 'U', '0', '8') /
↪→* IQ u8 */
#define V4L2_SDR_FMT_CU16LE v4l2_fourcc('C', 'U', '1', '6') /
↪→* IQ u16le */
#define V4L2_SDR_FMT_CS8 v4l2_fourcc('C', 'S', '0', '8') /
↪→* complex s8 */
#define V4L2_SDR_FMT_CS14LE v4l2_fourcc('C', 'S', '1', '4') /
↪→* complex s14le */
#define V4L2_SDR_FMT_RU12LE v4l2_fourcc('R', 'U', '1', '2') /
↪→* real u12le */
#define V4L2_SDR_FMT_PCU16BE v4l2_fourcc('P', 'C', '1', '6') /
↪→* planar complex u16be */
#define V4L2_SDR_FMT_PCU18BE v4l2_fourcc('P', 'C', '1', '8') /
↪→* planar complex u18be */
#define V4L2_SDR_FMT_PCU20BE v4l2_fourcc('P', 'C', '2', '0') /

636 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

↪→* planar complex u20be */

/* Touch formats - used for Touch devices */
#define V4L2_TCH_FMT_DELTA_TD16 v4l2_fourcc('T', 'D', '1', '6') /*␣
↪→16-bit signed deltas */
#define V4L2_TCH_FMT_DELTA_TD08 v4l2_fourcc('T', 'D', '0', '8') /*␣
↪→8-bit signed deltas */
#define V4L2_TCH_FMT_TU16 v4l2_fourcc('T', 'U', '1', '6') /*␣
↪→16-bit unsigned touch data */
#define V4L2_TCH_FMT_TU08 v4l2_fourcc('T', 'U', '0', '8') /*␣
↪→8-bit unsigned touch data */

/* Meta-data formats */
#define V4L2_META_FMT_VSP1_HGO v4l2_fourcc('V', 'S', 'P', 'H') /
↪→* R-Car VSP1 1-D Histogram */
#define V4L2_META_FMT_VSP1_HGT v4l2_fourcc('V', 'S', 'P', 'T') /
↪→* R-Car VSP1 2-D Histogram */
#define V4L2_META_FMT_UVC v4l2_fourcc('U', 'V', 'C', 'H') /
↪→* UVC Payload Header metadata */
#define V4L2_META_FMT_D4XX v4l2_fourcc('D', '4', 'X', 'X') /
↪→* D4XX Payload Header metadata */
#define V4L2_META_FMT_VIVID v4l2_fourcc('V', 'I', 'V', 'D') /
↪→* Vivid Metadata */

/* priv field value to indicates that subsequent fields are valid.␣
↪→*/
#define V4L2_PIX_FMT_PRIV_MAGIC 0xfeedcafe

/* Flags */
#define V4L2_PIX_FMT_FLAG_PREMUL_ALPHA 0x00000001

/*
* F O R M A T E N U M E R A T I O N
*/

struct v4l2_fmtdesc {
__u32 index; /* Format number ␣

↪→ */
__u32 type; /* enum v4l2_buf_

↪→type */
__u32 flags;
__u8 description[32]; /* Description␣

↪→string */
__u32 pixelformat; /* Format fourcc ␣

↪→ */
__u32 mbus_code; /* Media bus code ␣

↪→ */
__u32 reserved[3];

};

#define V4L2_FMT_FLAG_COMPRESSED 0x0001
#define V4L2_FMT_FLAG_EMULATED 0x0002

7.2. Part I - Video for Linux API 637

Linux Userspace-api Documentation

#define V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM 0x0004
#define V4L2_FMT_FLAG_DYN_RESOLUTION 0x0008

/* Frame Size and frame rate enumeration */
/*
* F R A M E S I Z E E N U M E R A T I O N
*/

enum v4l2_frmsizetypes {
V4L2_FRMSIZE_TYPE_DISCRETE = 1,
V4L2_FRMSIZE_TYPE_CONTINUOUS = 2,
V4L2_FRMSIZE_TYPE_STEPWISE = 3,

};

struct v4l2_frmsize_discrete {
__u32 width; /* Frame width␣

↪→[pixel] */
__u32 height; /* Frame height␣

↪→[pixel] */
};

struct v4l2_frmsize_stepwise {
__u32 min_width; /* Minimum frame␣

↪→width [pixel] */
__u32 max_width; /* Maximum frame␣

↪→width [pixel] */
__u32 step_width; /* Frame width step␣

↪→size [pixel] */
__u32 min_height; /* Minimum frame␣

↪→height [pixel] */
__u32 max_height; /* Maximum frame␣

↪→height [pixel] */
__u32 step_height; /* Frame height␣

↪→step size [pixel] */
};

struct v4l2_frmsizeenum {
__u32 index; /* Frame size␣

↪→number */
__u32 pixel_format; /* Pixel format */
__u32 type; /* Frame size type␣

↪→the device supports. */

union { /* Frame size */
struct v4l2_frmsize_discrete discrete;
struct v4l2_frmsize_stepwise stepwise;

};

__u32 reserved[2]; /* Reserved space␣
↪→for future use */
};

638 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/*
* F R A M E R A T E E N U M E R A T I O N
*/

enum v4l2_frmivaltypes {
V4L2_FRMIVAL_TYPE_DISCRETE = 1,
V4L2_FRMIVAL_TYPE_CONTINUOUS = 2,
V4L2_FRMIVAL_TYPE_STEPWISE = 3,

};

struct v4l2_frmival_stepwise {
struct v4l2_fract min; /* Minimum frame␣

↪→interval [s] */
struct v4l2_fract max; /* Maximum frame␣

↪→interval [s] */
struct v4l2_fract step; /* Frame interval␣

↪→step size [s] */
};

struct v4l2_frmivalenum {
__u32 index; /* Frame format␣

↪→index */
__u32 pixel_format; /* Pixel format */
__u32 width; /* Frame width */
__u32 height; /* Frame height */
__u32 type; /* Frame interval␣

↪→type the device supports. */

union { /* Frame interval */
struct v4l2_fract discrete;
struct v4l2_frmival_stepwise stepwise;

};

__u32 reserved[2]; /* Reserved space␣
↪→for future use */
};

/*
* T I M E C O D E
*/

struct v4l2_timecode {
__u32 type;
__u32 flags;
__u8 frames;
__u8 seconds;
__u8 minutes;
__u8 hours;
__u8 userbits[4];

};

/* Type */
#define V4L2_TC_TYPE_24FPS 1

7.2. Part I - Video for Linux API 639

Linux Userspace-api Documentation

#define V4L2_TC_TYPE_25FPS 2
#define V4L2_TC_TYPE_30FPS 3
#define V4L2_TC_TYPE_50FPS 4
#define V4L2_TC_TYPE_60FPS 5

/* Flags */
#define V4L2_TC_FLAG_DROPFRAME 0x0001 /* "drop-frame" mode␣
↪→*/
#define V4L2_TC_FLAG_COLORFRAME 0x0002
#define V4L2_TC_USERBITS_field 0x000C
#define V4L2_TC_USERBITS_USERDEFINED 0x0000
#define V4L2_TC_USERBITS_8BITCHARS 0x0008
/* The above is based on SMPTE timecodes */

struct v4l2_jpegcompression {
int quality;

int APPn; /* Number of APP segment to be␣
↪→written,

* must be 0..15 */
int APP_len; /* Length of data in JPEG APPn␣

↪→segment */
char APP_data[60]; /* Data in the JPEG APPn segment. */

int COM_len; /* Length of data in JPEG COM␣
↪→segment */

char COM_data[60]; /* Data in JPEG COM segment */

__u32 jpeg_markers; /* Which markers should go into the␣
↪→JPEG

* output. Unless you exactly know␣
↪→what

* you do, leave them untouched.
* Including less markers will make␣

↪→the
* resulting code smaller, but␣

↪→there will
* be fewer applications which can␣

↪→read it.
* The presence of the APP and COM␣

↪→marker
* is influenced by APP_len and COM_

↪→len
* ONLY, not by this property! */

#define V4L2_JPEG_MARKER_DHT (1<<3) /* Define Huffman Tables */
#define V4L2_JPEG_MARKER_DQT (1<<4) /* Define Quantization␣
↪→Tables */
#define V4L2_JPEG_MARKER_DRI (1<<5) /* Define Restart Interval */
#define V4L2_JPEG_MARKER_COM (1<<6) /* Comment segment */
#define V4L2_JPEG_MARKER_APP (1<<7) /* App segment, driver will

640 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* always use APP0 */
};

/*
* M E M O R Y - M A P P I N G B U F F E R S
*/

#ifdef __KERNEL__
/*
* This corresponds to the user space version of timeval
* for 64-bit time_t. sparc64 is different from everyone
* else, using the microseconds in the wrong half of the
* second 64-bit word.
*/

struct __kernel_v4l2_timeval {
long long tv_sec;

#if defined(__sparc__) && defined(__arch64__)
int tv_usec;
int __pad;

#else
long long tv_usec;

#endif
};
#endif

struct v4l2_requestbuffers {
__u32 count;
__u32 type; /* enum v4l2_buf_

↪→type */
__u32 memory; /* enum v4l2_memory␣

↪→*/
__u32 capabilities;
__u32 reserved[1];

};

/* capabilities for struct v4l2_requestbuffers and v4l2_create_
↪→buffers */
#define V4L2_BUF_CAP_SUPPORTS_MMAP (1 << 0)
#define V4L2_BUF_CAP_SUPPORTS_USERPTR (1 << 1)
#define V4L2_BUF_CAP_SUPPORTS_DMABUF (1 << 2)
#define V4L2_BUF_CAP_SUPPORTS_REQUESTS (1 << 3)
#define V4L2_BUF_CAP_SUPPORTS_ORPHANED_BUFS (1 << 4)
#define V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF (1 << 5)

/**
* struct v4l2_plane - plane info for multi-planar buffers
* @bytesused: number of bytes occupied by data in the␣
↪→plane (payload)
* @length: size of this plane (NOT the payload) in␣
↪→bytes
* @mem_offset: when memory in the associated struct v4l2_

7.2. Part I - Video for Linux API 641

Linux Userspace-api Documentation

↪→buffer is
* V4L2_MEMORY_MMAP, equals the offset from␣
↪→the start of
* the device memory for this plane (or is a␣
↪→"cookie" that
* should be passed to mmap() called on the␣
↪→video node)
* @userptr: when memory is V4L2_MEMORY_USERPTR, a␣
↪→userspace pointer
* pointing to this plane
* @fd: when memory is V4L2_MEMORY_DMABUF, a␣
↪→userspace file
* descriptor associated with this plane
* @data_offset: offset in the plane to the start of data;␣
↪→usually 0,
* unless there is a header in front of the␣
↪→data
*
* Multi-planar buffers consist of one or more planes, e.g. an␣
↪→YCbCr buffer
* with two planes can have one plane for Y, and another for␣
↪→interleaved CbCr
* components. Each plane can reside in a separate memory buffer,␣
↪→or even in
* a completely separate memory node (e.g. in embedded devices).
*/

struct v4l2_plane {
__u32 bytesused;
__u32 length;
union {

__u32 mem_offset;
unsigned long userptr;
__s32 fd;

} m;
__u32 data_offset;
__u32 reserved[11];

};

/**
* struct v4l2_buffer - video buffer info
* @index: id number of the buffer
* @type: enum v4l2_buf_type; buffer type (type == *_MPLANE␣
↪→for
* multiplanar buffers);
* @bytesused: number of bytes occupied by data in the buffer␣
↪→(payload);
* unused (set to 0) for multiplanar buffers
* @flags: buffer informational flags
* @field: enum v4l2_field; field order of the image in the␣
↪→buffer
* @timestamp: frame timestamp

642 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* @timecode: frame timecode
* @sequence: sequence count of this frame
* @memory: enum v4l2_memory; the method, in which the actual␣
↪→video data is
* passed
* @offset: for non-multiplanar buffers with memory == V4L2_
↪→MEMORY_MMAP;
* offset from the start of the device memory for this␣
↪→plane,
* (or a "cookie" that should be passed to mmap() as␣
↪→offset)
* @userptr: for non-multiplanar buffers with memory == V4L2_
↪→MEMORY_USERPTR;
* a userspace pointer pointing to this buffer
* @fd: for non-multiplanar buffers with memory == V4L2_
↪→MEMORY_DMABUF;
* a userspace file descriptor associated with this␣
↪→buffer
* @planes: for multiplanar buffers; userspace pointer to the␣
↪→array of plane
* info structs for this buffer
* @length: size in bytes of the buffer (NOT its payload) for␣
↪→single-plane
* buffers (when type != *_MPLANE); number of elements␣
↪→in the
* planes array for multi-plane buffers
* @request_fd: fd of the request that this buffer should use
*
* Contains data exchanged by application and driver using one of␣
↪→the Streaming
* I/O methods.
*/

struct v4l2_buffer {
__u32 index;
__u32 type;
__u32 bytesused;
__u32 flags;
__u32 field;

#ifdef __KERNEL__
struct __kernel_v4l2_timeval timestamp;

#else
struct timeval timestamp;

#endif
struct v4l2_timecode timecode;
__u32 sequence;

/* memory location */
__u32 memory;
union {

__u32 offset;
unsigned long userptr;

7.2. Part I - Video for Linux API 643

Linux Userspace-api Documentation

struct v4l2_plane *planes;
__s32 fd;

} m;
__u32 length;
__u32 reserved2;
union {

__s32 request_fd;
__u32 reserved;

};
};

#ifndef __KERNEL__
/**
* v4l2_timeval_to_ns - Convert timeval to nanoseconds
* @ts: pointer to the timeval variable to be converted
*
* Returns the scalar nanosecond representation of the timeval
* parameter.
*/

static inline __u64 v4l2_timeval_to_ns(const struct timeval *tv)
{

return (__u64)tv->tv_sec * 1000000000ULL + tv->tv_usec *␣
↪→1000;
}
#endif

/* Flags for 'flags' field */
/* Buffer is mapped (flag) */
#define V4L2_BUF_FLAG_MAPPED 0x00000001
/* Buffer is queued for processing */
#define V4L2_BUF_FLAG_QUEUED 0x00000002
/* Buffer is ready */
#define V4L2_BUF_FLAG_DONE 0x00000004
/* Image is a keyframe (I-frame) */
#define V4L2_BUF_FLAG_KEYFRAME 0x00000008
/* Image is a P-frame */
#define V4L2_BUF_FLAG_PFRAME 0x00000010
/* Image is a B-frame */
#define V4L2_BUF_FLAG_BFRAME 0x00000020
/* Buffer is ready, but the data contained within is corrupted. */
#define V4L2_BUF_FLAG_ERROR 0x00000040
/* Buffer is added to an unqueued request */
#define V4L2_BUF_FLAG_IN_REQUEST 0x00000080
/* timecode field is valid */
#define V4L2_BUF_FLAG_TIMECODE 0x00000100
/* Don't return the capture buffer until OUTPUT timestamp changes */
#define V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF 0x00000200
/* Buffer is prepared for queuing */
#define V4L2_BUF_FLAG_PREPARED 0x00000400
/* Cache handling flags */
#define V4L2_BUF_FLAG_NO_CACHE_INVALIDATE 0x00000800

644 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define V4L2_BUF_FLAG_NO_CACHE_CLEAN 0x00001000
/* Timestamp type */
#define V4L2_BUF_FLAG_TIMESTAMP_MASK 0x0000e000
#define V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN 0x00000000
#define V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC 0x00002000
#define V4L2_BUF_FLAG_TIMESTAMP_COPY 0x00004000
/* Timestamp sources. */
#define V4L2_BUF_FLAG_TSTAMP_SRC_MASK 0x00070000
#define V4L2_BUF_FLAG_TSTAMP_SRC_EOF 0x00000000
#define V4L2_BUF_FLAG_TSTAMP_SRC_SOE 0x00010000
/* mem2mem encoder/decoder */
#define V4L2_BUF_FLAG_LAST 0x00100000
/* request_fd is valid */
#define V4L2_BUF_FLAG_REQUEST_FD 0x00800000

/**
* struct v4l2_exportbuffer - export of video buffer as DMABUF file␣
↪→descriptor
*
* @index: id number of the buffer
* @type: enum v4l2_buf_type; buffer type (type == *_MPLANE␣
↪→for
* multiplanar buffers);
* @plane: index of the plane to be exported, 0 for single␣
↪→plane queues
* @flags: flags for newly created file, currently only O_
↪→CLOEXEC is
* supported, refer to manual of open syscall for more␣
↪→details
* @fd: file descriptor associated with DMABUF (set by␣
↪→driver)
*
* Contains data used for exporting a video buffer as DMABUF file␣
↪→descriptor.
* The buffer is identified by a 'cookie' returned by VIDIOC_
↪→QUERYBUF
* (identical to the cookie used to mmap() the buffer to userspace).
↪→ All
* reserved fields must be set to zero. The field reserved0 is␣
↪→expected to
* become a structure 'type' allowing an alternative layout of the␣
↪→structure
* content. Therefore this field should not be used for any other␣
↪→extensions.
*/

struct v4l2_exportbuffer {
__u32 type; /* enum v4l2_buf_type */
__u32 index;
__u32 plane;
__u32 flags;
__s32 fd;

7.2. Part I - Video for Linux API 645

Linux Userspace-api Documentation

__u32 reserved[11];
};

/*
* O V E R L A Y P R E V I E W
*/

struct v4l2_framebuffer {
__u32 capability;
__u32 flags;

/* FIXME: in theory we should pass something like PCI device +␣
↪→memory
* region + offset instead of some physical address */

void *base;
struct {

__u32 width;
__u32 height;
__u32 pixelformat;
__u32 field; /* enum v4l2_field␣

↪→*/
__u32 bytesperline; /* for padding,␣

↪→zero if unused */
__u32 sizeimage;
__u32 colorspace; /* enum v4l2_

↪→colorspace */
__u32 priv; /* reserved field,␣

↪→set to 0 */
} fmt;

};
/* Flags for the 'capability' field. Read only */
#define V4L2_FBUF_CAP_EXTERNOVERLAY 0x0001
#define V4L2_FBUF_CAP_CHROMAKEY 0x0002
#define V4L2_FBUF_CAP_LIST_CLIPPING 0x0004
#define V4L2_FBUF_CAP_BITMAP_CLIPPING 0x0008
#define V4L2_FBUF_CAP_LOCAL_ALPHA 0x0010
#define V4L2_FBUF_CAP_GLOBAL_ALPHA 0x0020
#define V4L2_FBUF_CAP_LOCAL_INV_ALPHA 0x0040
#define V4L2_FBUF_CAP_SRC_CHROMAKEY 0x0080
/* Flags for the 'flags' field. */
#define V4L2_FBUF_FLAG_PRIMARY 0x0001
#define V4L2_FBUF_FLAG_OVERLAY 0x0002
#define V4L2_FBUF_FLAG_CHROMAKEY 0x0004
#define V4L2_FBUF_FLAG_LOCAL_ALPHA 0x0008
#define V4L2_FBUF_FLAG_GLOBAL_ALPHA 0x0010
#define V4L2_FBUF_FLAG_LOCAL_INV_ALPHA 0x0020
#define V4L2_FBUF_FLAG_SRC_CHROMAKEY 0x0040

struct v4l2_clip {
struct v4l2_rect c;
struct v4l2_clip __user *next;

};

646 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct v4l2_window {
struct v4l2_rect w;
__u32 field; /* enum v4l2_field */
__u32 chromakey;
struct v4l2_clip __user *clips;
__u32 clipcount;
void __user *bitmap;
__u8 global_alpha;

};

/*
* C A P T U R E P A R A M E T E R S
*/

struct v4l2_captureparm {
__u32 capability; /* Supported modes */
__u32 capturemode; /* Current mode */
struct v4l2_fract timeperframe; /* Time per frame in␣

↪→seconds */
__u32 extendedmode; /* Driver-specific␣

↪→extensions */
__u32 readbuffers; /* # of buffers for read␣

↪→*/
__u32 reserved[4];

};

/* Flags for 'capability' and 'capturemode' fields */
#define V4L2_MODE_HIGHQUALITY 0x0001 /* High quality imaging␣
↪→mode */
#define V4L2_CAP_TIMEPERFRAME 0x1000 /* timeperframe field is␣
↪→supported */

struct v4l2_outputparm {
__u32 capability; /* Supported modes */
__u32 outputmode; /* Current mode */
struct v4l2_fract timeperframe; /* Time per frame in␣

↪→seconds */
__u32 extendedmode; /* Driver-specific␣

↪→extensions */
__u32 writebuffers; /* # of buffers for write␣

↪→*/
__u32 reserved[4];

};

/*
* I N P U T I M A G E C R O P P I N G
*/

struct v4l2_cropcap {
__u32 type; /* enum v4l2_buf_type */
struct v4l2_rect bounds;
struct v4l2_rect defrect;
struct v4l2_fract pixelaspect;

7.2. Part I - Video for Linux API 647

Linux Userspace-api Documentation

};

struct v4l2_crop {
__u32 type; /* enum v4l2_buf_type */
struct v4l2_rect c;

};

/**
* struct v4l2_selection - selection info
* @type: buffer type (do not use *_MPLANE types)
* @target: Selection target, used to choose one of possible␣
↪→rectangles;
* defined in v4l2-common.h; V4L2_SEL_TGT_* .
* @flags: constraints flags, defined in v4l2-common.h; V4L2_
↪→SEL_FLAG_*.
* @r: coordinates of selection window
* @reserved: for future use, rounds structure size to 64 bytes,␣
↪→set to zero
*
* Hardware may use multiple helper windows to process a video␣
↪→stream.
* The structure is used to exchange this selection areas between
* an application and a driver.
*/

struct v4l2_selection {
__u32 type;
__u32 target;
__u32 flags;
struct v4l2_rect r;
__u32 reserved[9];

};

/*
* A N A L O G V I D E O S T A N D A R D
*/

typedef __u64 v4l2_std_id;

/*
* Attention: Keep the V4L2_STD_* bit definitions in sync with
* include/dt-bindings/display/sdtv-standards.h SDTV_STD_* bit␣
↪→definitions.
*/

/* one bit for each */
#define V4L2_STD_PAL_B ((v4l2_std_id)0x00000001)
#define V4L2_STD_PAL_B1 ((v4l2_std_id)0x00000002)
#define V4L2_STD_PAL_G ((v4l2_std_id)0x00000004)
#define V4L2_STD_PAL_H ((v4l2_std_id)0x00000008)
#define V4L2_STD_PAL_I ((v4l2_std_id)0x00000010)
#define V4L2_STD_PAL_D ((v4l2_std_id)0x00000020)
#define V4L2_STD_PAL_D1 ((v4l2_std_id)0x00000040)

648 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define V4L2_STD_PAL_K ((v4l2_std_id)0x00000080)

#define V4L2_STD_PAL_M ((v4l2_std_id)0x00000100)
#define V4L2_STD_PAL_N ((v4l2_std_id)0x00000200)
#define V4L2_STD_PAL_Nc ((v4l2_std_id)0x00000400)
#define V4L2_STD_PAL_60 ((v4l2_std_id)0x00000800)

#define V4L2_STD_NTSC_M ((v4l2_std_id)0x00001000) /*␣
↪→BTSC */
#define V4L2_STD_NTSC_M_JP ((v4l2_std_id)0x00002000) /*␣
↪→EIA-J */
#define V4L2_STD_NTSC_443 ((v4l2_std_id)0x00004000)
#define V4L2_STD_NTSC_M_KR ((v4l2_std_id)0x00008000) /*␣
↪→FM A2 */

#define V4L2_STD_SECAM_B ((v4l2_std_id)0x00010000)
#define V4L2_STD_SECAM_D ((v4l2_std_id)0x00020000)
#define V4L2_STD_SECAM_G ((v4l2_std_id)0x00040000)
#define V4L2_STD_SECAM_H ((v4l2_std_id)0x00080000)
#define V4L2_STD_SECAM_K ((v4l2_std_id)0x00100000)
#define V4L2_STD_SECAM_K1 ((v4l2_std_id)0x00200000)
#define V4L2_STD_SECAM_L ((v4l2_std_id)0x00400000)
#define V4L2_STD_SECAM_LC ((v4l2_std_id)0x00800000)

/* ATSC/HDTV */
#define V4L2_STD_ATSC_8_VSB ((v4l2_std_id)0x01000000)
#define V4L2_STD_ATSC_16_VSB ((v4l2_std_id)0x02000000)

/* FIXME:
Although std_id is 64 bits, there is an issue on PPC32␣

↪→architecture that
makes switch(__u64) to break. So, there's a hack on v4l2-common.

↪→c rounding
this value to 32 bits.
As, currently, the max value is for V4L2_STD_ATSC_16_VSB (30␣

↪→bits wide),
it should work fine. However, if needed to add more than two␣

↪→standards,
v4l2-common.c should be fixed.

*/

/*
* Some macros to merge video standards in order to make live␣
↪→easier for the
* drivers and V4L2 applications
*/

/*
* "Common" NTSC/M - It should be noticed that V4L2_STD_NTSC_443 is
* Missing here.
*/

7.2. Part I - Video for Linux API 649

Linux Userspace-api Documentation

#define V4L2_STD_NTSC (V4L2_STD_NTSC_M |\
V4L2_STD_NTSC_M_JP |\
V4L2_STD_NTSC_M_KR)

/* Secam macros */
#define V4L2_STD_SECAM_DK (V4L2_STD_SECAM_D |\

V4L2_STD_SECAM_K |\
V4L2_STD_SECAM_K1)

/* All Secam Standards */
#define V4L2_STD_SECAM (V4L2_STD_SECAM_B |\

V4L2_STD_SECAM_G |\
V4L2_STD_SECAM_H |\
V4L2_STD_SECAM_DK |\
V4L2_STD_SECAM_L |\
V4L2_STD_SECAM_LC)

/* PAL macros */
#define V4L2_STD_PAL_BG (V4L2_STD_PAL_B |\

V4L2_STD_PAL_B1 |\
V4L2_STD_PAL_G)

#define V4L2_STD_PAL_DK (V4L2_STD_PAL_D |\
V4L2_STD_PAL_D1 |\
V4L2_STD_PAL_K)

/*
* "Common" PAL - This macro is there to be compatible with the old
* V4L1 concept of "PAL": /BGDKHI.
* Several PAL standards are missing here: /M, /N and /Nc
*/

#define V4L2_STD_PAL (V4L2_STD_PAL_BG |\
V4L2_STD_PAL_DK |\
V4L2_STD_PAL_H |\
V4L2_STD_PAL_I)

/* Chroma "agnostic" standards */
#define V4L2_STD_B (V4L2_STD_PAL_B |\

V4L2_STD_PAL_B1 |\
V4L2_STD_SECAM_B)

#define V4L2_STD_G (V4L2_STD_PAL_G |\
V4L2_STD_SECAM_G)

#define V4L2_STD_H (V4L2_STD_PAL_H |\
V4L2_STD_SECAM_H)

#define V4L2_STD_L (V4L2_STD_SECAM_L |\
V4L2_STD_SECAM_LC)

#define V4L2_STD_GH (V4L2_STD_G |\
V4L2_STD_H)

#define V4L2_STD_DK (V4L2_STD_PAL_DK |\
V4L2_STD_SECAM_DK)

#define V4L2_STD_BG (V4L2_STD_B |\
V4L2_STD_G)

#define V4L2_STD_MN (V4L2_STD_PAL_M |\
V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc |\
V4L2_STD_NTSC)

650 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/* Standards where MTS/BTSC stereo could be found */
#define V4L2_STD_MTS (V4L2_STD_NTSC_M |\

V4L2_STD_PAL_M |\
V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc)

/* Standards for Countries with 60Hz Line frequency */
#define V4L2_STD_525_60 (V4L2_STD_PAL_M |\

V4L2_STD_PAL_60 |\
V4L2_STD_NTSC |\
V4L2_STD_NTSC_443)

/* Standards for Countries with 50Hz Line frequency */
#define V4L2_STD_625_50 (V4L2_STD_PAL |\

V4L2_STD_PAL_N |\
V4L2_STD_PAL_Nc |\
V4L2_STD_SECAM)

#define V4L2_STD_ATSC (V4L2_STD_ATSC_8_VSB |\
V4L2_STD_ATSC_16_VSB)

/* Macros with none and all analog standards */
#define V4L2_STD_UNKNOWN 0
#define V4L2_STD_ALL (V4L2_STD_525_60 |\

V4L2_STD_625_50)

struct v4l2_standard {
__u32 index;
v4l2_std_id id;
__u8 name[24];
struct v4l2_fract frameperiod; /* Frames, not fields */
__u32 framelines;
__u32 reserved[4];

};

/*
* D V B T T I M I N G S
*/

/** struct v4l2_bt_timings - BT.656/BT.1120 timing data
* @width: total width of the active video in pixels
* @height: total height of the active video in lines
* @interlaced: Interlaced or progressive
* @polarities: Positive or negative polarities
* @pixelclock: Pixel clock in HZ. Ex. 74.25MHz->74250000
* @hfrontporch:Horizontal front porch in pixels
* @hsync: Horizontal Sync length in pixels
* @hbackporch: Horizontal back porch in pixels
* @vfrontporch:Vertical front porch in lines
* @vsync: Vertical Sync length in lines
* @vbackporch: Vertical back porch in lines
* @il_vfrontporch:Vertical front porch for the even field
* (aka field 2) of interlaced field formats

7.2. Part I - Video for Linux API 651

Linux Userspace-api Documentation

* @il_vsync: Vertical Sync length for the even field
* (aka field 2) of interlaced field formats
* @il_vbackporch:Vertical back porch for the even field
* (aka field 2) of interlaced field formats
* @standards: Standards the timing belongs to
* @flags: Flags
* @picture_aspect: The picture aspect ratio (hor/vert).
* @cea861_vic: VIC code as per the CEA-861 standard.
* @hdmi_vic: VIC code as per the HDMI standard.
* @reserved: Reserved fields, must be zeroed.
*
* A note regarding vertical interlaced timings: height refers to␣
↪→the total
* height of the active video frame (= two fields). The blanking␣
↪→timings refer
* to the blanking of each field. So the height of the total frame␣
↪→is
* calculated as follows:
*
* tot_height = height + vfrontporch + vsync + vbackporch +
* il_vfrontporch + il_vsync + il_vbackporch
*
* The active height of each field is height / 2.
*/

struct v4l2_bt_timings {
__u32 width;
__u32 height;
__u32 interlaced;
__u32 polarities;
__u64 pixelclock;
__u32 hfrontporch;
__u32 hsync;
__u32 hbackporch;
__u32 vfrontporch;
__u32 vsync;
__u32 vbackporch;
__u32 il_vfrontporch;
__u32 il_vsync;
__u32 il_vbackporch;
__u32 standards;
__u32 flags;
struct v4l2_fract picture_aspect;
__u8 cea861_vic;
__u8 hdmi_vic;
__u8 reserved[46];

} __attribute__ ((packed));

/* Interlaced or progressive format */
#define V4L2_DV_PROGRESSIVE 0
#define V4L2_DV_INTERLACED 1

652 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/* Polarities. If bit is not set, it is assumed to be negative␣
↪→polarity */
#define V4L2_DV_VSYNC_POS_POL 0x00000001
#define V4L2_DV_HSYNC_POS_POL 0x00000002

/* Timings standards */
#define V4L2_DV_BT_STD_CEA861 (1 << 0) /* CEA-861 Digital TV␣
↪→Profile */
#define V4L2_DV_BT_STD_DMT (1 << 1) /* VESA Discrete Monitor␣
↪→Timings */
#define V4L2_DV_BT_STD_CVT (1 << 2) /* VESA Coordinated Video␣
↪→Timings */
#define V4L2_DV_BT_STD_GTF (1 << 3) /* VESA Generalized␣
↪→Timings Formula */
#define V4L2_DV_BT_STD_SDI (1 << 4) /* SDI Timings */

/* Flags */

/*
* CVT/GTF specific: timing uses reduced blanking (CVT) or the␣
↪→'Secondary
* GTF' curve (GTF). In both cases the horizontal and/or vertical␣
↪→blanking
* intervals are reduced, allowing a higher resolution over the same
* bandwidth. This is a read-only flag.
*/

#define V4L2_DV_FL_REDUCED_BLANKING (1 << 0)
/*
* CEA-861 specific: set for CEA-861 formats with a framerate of a␣
↪→multiple
* of six. These formats can be optionally played at 1 / 1.001␣
↪→speed.
* This is a read-only flag.
*/

#define V4L2_DV_FL_CAN_REDUCE_FPS (1 << 1)
/*
* CEA-861 specific: only valid for video transmitters, the flag is␣
↪→cleared
* by receivers.
* If the framerate of the format is a multiple of six, then the␣
↪→pixelclock
* used to set up the transmitter is divided by 1.001 to make it␣
↪→compatible
* with 60 Hz based standards such as NTSC and PAL-M that use a␣
↪→framerate of
* 29.97 Hz. Otherwise this flag is cleared. If the transmitter␣
↪→can't generate
* such frequencies, then the flag will also be cleared.
*/

#define V4L2_DV_FL_REDUCED_FPS (1 << 2)
/*

7.2. Part I - Video for Linux API 653

Linux Userspace-api Documentation

* Specific to interlaced formats: if set, then field 1 is really␣
↪→one half-line
* longer and field 2 is really one half-line shorter, so each␣
↪→field has
* exactly the same number of half-lines. Whether half-lines can be␣
↪→detected
* or used depends on the hardware.
*/

#define V4L2_DV_FL_HALF_LINE (1 << 3)
/*
* If set, then this is a Consumer Electronics (CE) video format.␣
↪→Such formats
* differ from other formats (commonly called IT formats) in that␣
↪→if RGB
* encoding is used then by default the RGB values use limited␣
↪→range (i.e.
* use the range 16-235) as opposed to 0-255. All formats defined␣
↪→in CEA-861
* except for the 640x480 format are CE formats.
*/

#define V4L2_DV_FL_IS_CE_VIDEO (1 << 4)
/* Some formats like SMPTE-125M have an interlaced signal with a odd
* total height. For these formats, if this flag is set, the first
* field has the extra line. If not, it is the second field.
*/

#define V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE (1 << 5)
/*
* If set, then the picture_aspect field is valid. Otherwise assume␣
↪→that the
* pixels are square, so the picture aspect ratio is the same as␣
↪→the width to
* height ratio.
*/

#define V4L2_DV_FL_HAS_PICTURE_ASPECT (1 << 6)
/*
* If set, then the cea861_vic field is valid and contains the Video
* Identification Code as per the CEA-861 standard.
*/

#define V4L2_DV_FL_HAS_CEA861_VIC (1 << 7)
/*
* If set, then the hdmi_vic field is valid and contains the Video
* Identification Code as per the HDMI standard (HDMI Vendor␣
↪→Specific
* InfoFrame).
*/

#define V4L2_DV_FL_HAS_HDMI_VIC (1 << 8)
/*
* CEA-861 specific: only valid for video receivers.
* If set, then HW can detect the difference between regular FPS and
* 1000/1001 FPS. Note: This flag is only valid for HDMI VIC codes␣
↪→with

654 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* the V4L2_DV_FL_CAN_REDUCE_FPS flag set.
*/

#define V4L2_DV_FL_CAN_DETECT_REDUCED_FPS (1 << 9)

/* A few useful defines to calculate the total blanking and frame␣
↪→sizes */
#define V4L2_DV_BT_BLANKING_WIDTH(bt) \

((bt)->hfrontporch + (bt)->hsync + (bt)->hbackporch)
#define V4L2_DV_BT_FRAME_WIDTH(bt) \

((bt)->width + V4L2_DV_BT_BLANKING_WIDTH(bt))
#define V4L2_DV_BT_BLANKING_HEIGHT(bt) \

((bt)->vfrontporch + (bt)->vsync + (bt)->vbackporch + \
(bt)->il_vfrontporch + (bt)->il_vsync + (bt)->il_

↪→vbackporch)
#define V4L2_DV_BT_FRAME_HEIGHT(bt) \

((bt)->height + V4L2_DV_BT_BLANKING_HEIGHT(bt))

/** struct v4l2_dv_timings - DV timings
* @type: the type of the timings
* @bt: BT656/1120 timings
*/

struct v4l2_dv_timings {
__u32 type;
union {

struct v4l2_bt_timings bt;
__u32 reserved[32];

};
} __attribute__ ((packed));

/* Values for the type field */
#define V4L2_DV_BT_656_1120 0 /* BT.656/1120 timing type␣
↪→*/

/** struct v4l2_enum_dv_timings - DV timings enumeration
* @index: enumeration index
* @pad: the pad number for which to enumerate timings (used␣
↪→with
* v4l-subdev nodes only)
* @reserved: must be zeroed
* @timings: the timings for the given index
*/

struct v4l2_enum_dv_timings {
__u32 index;
__u32 pad;
__u32 reserved[2];
struct v4l2_dv_timings timings;

};

/** struct v4l2_bt_timings_cap - BT.656/BT.1120 timing capabilities
* @min_width: width in pixels
* @max_width: width in pixels

7.2. Part I - Video for Linux API 655

Linux Userspace-api Documentation

* @min_height: height in lines
* @max_height: height in lines
* @min_pixelclock: Pixel clock in HZ. Ex. 74.25MHz->74250000
* @max_pixelclock: Pixel clock in HZ. Ex. 74.25MHz->74250000
* @standards: Supported standards
* @capabilities: Supported capabilities
* @reserved: Must be zeroed
*/

struct v4l2_bt_timings_cap {
__u32 min_width;
__u32 max_width;
__u32 min_height;
__u32 max_height;
__u64 min_pixelclock;
__u64 max_pixelclock;
__u32 standards;
__u32 capabilities;
__u32 reserved[16];

} __attribute__ ((packed));

/* Supports interlaced formats */
#define V4L2_DV_BT_CAP_INTERLACED (1 << 0)
/* Supports progressive formats */
#define V4L2_DV_BT_CAP_PROGRESSIVE (1 << 1)
/* Supports CVT/GTF reduced blanking */
#define V4L2_DV_BT_CAP_REDUCED_BLANKING (1 << 2)
/* Supports custom formats */
#define V4L2_DV_BT_CAP_CUSTOM (1 << 3)

/** struct v4l2_dv_timings_cap - DV timings capabilities
* @type: the type of the timings (same as in struct v4l2_dv_
↪→timings)
* @pad: the pad number for which to query capabilities␣
↪→(used with
* v4l-subdev nodes only)
* @bt: the BT656/1120 timings capabilities
*/

struct v4l2_dv_timings_cap {
__u32 type;
__u32 pad;
__u32 reserved[2];
union {

struct v4l2_bt_timings_cap bt;
__u32 raw_data[32];

};
};

/*
* V I D E O I N P U T S
*/

struct v4l2_input {

656 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

__u32 index; /* Which input */
__u8 name[32]; /* Label */
__u32 type; /* Type of input */
__u32 audioset; /* Associated audios␣

↪→(bitfield) */
__u32 tuner; /* enum v4l2_tuner_type */
v4l2_std_id std;
__u32 status;
__u32 capabilities;
__u32 reserved[3];

};

/* Values for the 'type' field */
#define V4L2_INPUT_TYPE_TUNER 1
#define V4L2_INPUT_TYPE_CAMERA 2
#define V4L2_INPUT_TYPE_TOUCH 3

/* field 'status' - general */
#define V4L2_IN_ST_NO_POWER 0x00000001 /* Attached device is␣
↪→off */
#define V4L2_IN_ST_NO_SIGNAL 0x00000002
#define V4L2_IN_ST_NO_COLOR 0x00000004

/* field 'status' - sensor orientation */
/* If sensor is mounted upside down set both bits */
#define V4L2_IN_ST_HFLIP 0x00000010 /* Frames are flipped␣
↪→horizontally */
#define V4L2_IN_ST_VFLIP 0x00000020 /* Frames are flipped␣
↪→vertically */

/* field 'status' - analog */
#define V4L2_IN_ST_NO_H_LOCK 0x00000100 /* No horizontal sync␣
↪→lock */
#define V4L2_IN_ST_COLOR_KILL 0x00000200 /* Color killer is␣
↪→active */
#define V4L2_IN_ST_NO_V_LOCK 0x00000400 /* No vertical sync lock␣
↪→*/
#define V4L2_IN_ST_NO_STD_LOCK 0x00000800 /* No standard format␣
↪→lock */

/* field 'status' - digital */
#define V4L2_IN_ST_NO_SYNC 0x00010000 /* No synchronization␣
↪→lock */
#define V4L2_IN_ST_NO_EQU 0x00020000 /* No equalizer lock */
#define V4L2_IN_ST_NO_CARRIER 0x00040000 /* Carrier recovery␣
↪→failed */

/* field 'status' - VCR and set-top box */
#define V4L2_IN_ST_MACROVISION 0x01000000 /* Macrovision detected␣
↪→*/
#define V4L2_IN_ST_NO_ACCESS 0x02000000 /* Conditional access␣

7.2. Part I - Video for Linux API 657

Linux Userspace-api Documentation

↪→denied */
#define V4L2_IN_ST_VTR 0x04000000 /* VTR time constant */

/* capabilities flags */
#define V4L2_IN_CAP_DV_TIMINGS 0x00000002 /* Supports S_DV_
↪→TIMINGS */
#define V4L2_IN_CAP_CUSTOM_TIMINGS V4L2_IN_CAP_DV_TIMINGS /*␣
↪→For compatibility */
#define V4L2_IN_CAP_STD 0x00000004 /* Supports S_
↪→STD */
#define V4L2_IN_CAP_NATIVE_SIZE 0x00000008 /* Supports␣
↪→setting native size */

/*
* V I D E O O U T P U T S
*/

struct v4l2_output {
__u32 index; /* Which output */
__u8 name[32]; /* Label */
__u32 type; /* Type of output */
__u32 audioset; /* Associated audios␣

↪→(bitfield) */
__u32 modulator; /* Associated modulator */
v4l2_std_id std;
__u32 capabilities;
__u32 reserved[3];

};
/* Values for the 'type' field */
#define V4L2_OUTPUT_TYPE_MODULATOR 1
#define V4L2_OUTPUT_TYPE_ANALOG 2
#define V4L2_OUTPUT_TYPE_ANALOGVGAOVERLAY 3

/* capabilities flags */
#define V4L2_OUT_CAP_DV_TIMINGS 0x00000002 /* Supports S_DV_
↪→TIMINGS */
#define V4L2_OUT_CAP_CUSTOM_TIMINGS V4L2_OUT_CAP_DV_TIMINGS /*␣
↪→For compatibility */
#define V4L2_OUT_CAP_STD 0x00000004 /* Supports S_
↪→STD */
#define V4L2_OUT_CAP_NATIVE_SIZE 0x00000008 /* Supports␣
↪→setting native size */

/*
* C O N T R O L S
*/

struct v4l2_control {
__u32 id;
__s32 value;

};

struct v4l2_ext_control {

658 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

__u32 id;
__u32 size;
__u32 reserved2[1];
union {

__s32 value;
__s64 value64;
char __user *string;
__u8 __user *p_u8;
__u16 __user *p_u16;
__u32 __user *p_u32;
struct v4l2_area __user *p_area;
void __user *ptr;

};
} __attribute__ ((packed));

struct v4l2_ext_controls {
union {

#ifndef __KERNEL__
__u32 ctrl_class;

#endif
__u32 which;

};
__u32 count;
__u32 error_idx;
__s32 request_fd;
__u32 reserved[1];
struct v4l2_ext_control *controls;

};

#define V4L2_CTRL_ID_MASK (0x0fffffff)
#ifndef __KERNEL__
#define V4L2_CTRL_ID2CLASS(id) ((id) & 0x0fff0000UL)
#endif
#define V4L2_CTRL_ID2WHICH(id) ((id) & 0x0fff0000UL)
#define V4L2_CTRL_DRIVER_PRIV(id) (((id) & 0xffff) >= 0x1000)
#define V4L2_CTRL_MAX_DIMS (4)
#define V4L2_CTRL_WHICH_CUR_VAL 0
#define V4L2_CTRL_WHICH_DEF_VAL 0x0f000000
#define V4L2_CTRL_WHICH_REQUEST_VAL 0x0f010000

enum v4l2_ctrl_type {
V4L2_CTRL_TYPE_INTEGER = 1,
V4L2_CTRL_TYPE_BOOLEAN = 2,
V4L2_CTRL_TYPE_MENU = 3,
V4L2_CTRL_TYPE_BUTTON = 4,
V4L2_CTRL_TYPE_INTEGER64 = 5,
V4L2_CTRL_TYPE_CTRL_CLASS = 6,
V4L2_CTRL_TYPE_STRING = 7,
V4L2_CTRL_TYPE_BITMASK = 8,
V4L2_CTRL_TYPE_INTEGER_MENU = 9,

7.2. Part I - Video for Linux API 659

Linux Userspace-api Documentation

/* Compound types are >= 0x0100 */
V4L2_CTRL_COMPOUND_TYPES = 0x0100,
V4L2_CTRL_TYPE_U8 = 0x0100,
V4L2_CTRL_TYPE_U16 = 0x0101,
V4L2_CTRL_TYPE_U32 = 0x0102,
V4L2_CTRL_TYPE_AREA = 0x0106,

};

/* Used in the VIDIOC_QUERYCTRL ioctl for querying controls */
struct v4l2_queryctrl {

__u32 id;
__u32 type; /* enum v4l2_ctrl_type */
__u8 name[32]; /* Whatever */
__s32 minimum; /* Note signedness */
__s32 maximum;
__s32 step;
__s32 default_value;
__u32 flags;
__u32 reserved[2];

};

/* Used in the VIDIOC_QUERY_EXT_CTRL ioctl for querying extended␣
↪→controls */
struct v4l2_query_ext_ctrl {

__u32 id;
__u32 type;
char name[32];
__s64 minimum;
__s64 maximum;
__u64 step;
__s64 default_value;
__u32 flags;
__u32 elem_size;
__u32 elems;
__u32 nr_of_dims;
__u32 dims[V4L2_CTRL_MAX_DIMS];
__u32 reserved[32];

};

/* Used in the VIDIOC_QUERYMENU ioctl for querying menu items */
struct v4l2_querymenu {

__u32 id;
__u32 index;
union {

__u8 name[32]; /* Whatever */
__s64 value;

};
__u32 reserved;

} __attribute__ ((packed));

/* Control flags */

660 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define V4L2_CTRL_FLAG_DISABLED 0x0001
#define V4L2_CTRL_FLAG_GRABBED 0x0002
#define V4L2_CTRL_FLAG_READ_ONLY 0x0004
#define V4L2_CTRL_FLAG_UPDATE 0x0008
#define V4L2_CTRL_FLAG_INACTIVE 0x0010
#define V4L2_CTRL_FLAG_SLIDER 0x0020
#define V4L2_CTRL_FLAG_WRITE_ONLY 0x0040
#define V4L2_CTRL_FLAG_VOLATILE 0x0080
#define V4L2_CTRL_FLAG_HAS_PAYLOAD 0x0100
#define V4L2_CTRL_FLAG_EXECUTE_ON_WRITE 0x0200
#define V4L2_CTRL_FLAG_MODIFY_LAYOUT 0x0400

/* Query flags, to be ORed with the control ID */
#define V4L2_CTRL_FLAG_NEXT_CTRL 0x80000000
#define V4L2_CTRL_FLAG_NEXT_COMPOUND 0x40000000

/* User-class control IDs defined by V4L2 */
#define V4L2_CID_MAX_CTRLS 1024
/* IDs reserved for driver specific controls */
#define V4L2_CID_PRIVATE_BASE 0x08000000

/*
* T U N I N G
*/

struct v4l2_tuner {
__u32 index;
__u8 name[32];
__u32 type; /* enum v4l2_tuner_type */
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 rxsubchans;
__u32 audmode;
__s32 signal;
__s32 afc;
__u32 reserved[4];

};

struct v4l2_modulator {
__u32 index;
__u8 name[32];
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 txsubchans;
__u32 type; /* enum v4l2_tuner_type */
__u32 reserved[3];

};

/* Flags for the 'capability' field */
#define V4L2_TUNER_CAP_LOW 0x0001

7.2. Part I - Video for Linux API 661

Linux Userspace-api Documentation

#define V4L2_TUNER_CAP_NORM 0x0002
#define V4L2_TUNER_CAP_HWSEEK_BOUNDED 0x0004
#define V4L2_TUNER_CAP_HWSEEK_WRAP 0x0008
#define V4L2_TUNER_CAP_STEREO 0x0010
#define V4L2_TUNER_CAP_LANG2 0x0020
#define V4L2_TUNER_CAP_SAP 0x0020
#define V4L2_TUNER_CAP_LANG1 0x0040
#define V4L2_TUNER_CAP_RDS 0x0080
#define V4L2_TUNER_CAP_RDS_BLOCK_IO 0x0100
#define V4L2_TUNER_CAP_RDS_CONTROLS 0x0200
#define V4L2_TUNER_CAP_FREQ_BANDS 0x0400
#define V4L2_TUNER_CAP_HWSEEK_PROG_LIM 0x0800
#define V4L2_TUNER_CAP_1HZ 0x1000

/* Flags for the 'rxsubchans' field */
#define V4L2_TUNER_SUB_MONO 0x0001
#define V4L2_TUNER_SUB_STEREO 0x0002
#define V4L2_TUNER_SUB_LANG2 0x0004
#define V4L2_TUNER_SUB_SAP 0x0004
#define V4L2_TUNER_SUB_LANG1 0x0008
#define V4L2_TUNER_SUB_RDS 0x0010

/* Values for the 'audmode' field */
#define V4L2_TUNER_MODE_MONO 0x0000
#define V4L2_TUNER_MODE_STEREO 0x0001
#define V4L2_TUNER_MODE_LANG2 0x0002
#define V4L2_TUNER_MODE_SAP 0x0002
#define V4L2_TUNER_MODE_LANG1 0x0003
#define V4L2_TUNER_MODE_LANG1_LANG2 0x0004

struct v4l2_frequency {
__u32 tuner;
__u32 type; /* enum v4l2_tuner_type */
__u32 frequency;
__u32 reserved[8];

};

#define V4L2_BAND_MODULATION_VSB (1 << 1)
#define V4L2_BAND_MODULATION_FM (1 << 2)
#define V4L2_BAND_MODULATION_AM (1 << 3)

struct v4l2_frequency_band {
__u32 tuner;
__u32 type; /* enum v4l2_tuner_type */
__u32 index;
__u32 capability;
__u32 rangelow;
__u32 rangehigh;
__u32 modulation;
__u32 reserved[9];

};

662 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct v4l2_hw_freq_seek {
__u32 tuner;
__u32 type; /* enum v4l2_tuner_type */
__u32 seek_upward;
__u32 wrap_around;
__u32 spacing;
__u32 rangelow;
__u32 rangehigh;
__u32 reserved[5];

};

/*
* R D S
*/

struct v4l2_rds_data {
__u8 lsb;
__u8 msb;
__u8 block;

} __attribute__ ((packed));

#define V4L2_RDS_BLOCK_MSK 0x7
#define V4L2_RDS_BLOCK_A 0
#define V4L2_RDS_BLOCK_B 1
#define V4L2_RDS_BLOCK_C 2
#define V4L2_RDS_BLOCK_D 3
#define V4L2_RDS_BLOCK_C_ALT 4
#define V4L2_RDS_BLOCK_INVALID 7

#define V4L2_RDS_BLOCK_CORRECTED 0x40
#define V4L2_RDS_BLOCK_ERROR 0x80

/*
* A U D I O
*/

struct v4l2_audio {
__u32 index;
__u8 name[32];
__u32 capability;
__u32 mode;
__u32 reserved[2];

};

/* Flags for the 'capability' field */
#define V4L2_AUDCAP_STEREO 0x00001
#define V4L2_AUDCAP_AVL 0x00002

/* Flags for the 'mode' field */
#define V4L2_AUDMODE_AVL 0x00001

7.2. Part I - Video for Linux API 663

Linux Userspace-api Documentation

struct v4l2_audioout {
__u32 index;
__u8 name[32];
__u32 capability;
__u32 mode;
__u32 reserved[2];

};

/*
* M P E G S E R V I C E S
*/

#if 1
#define V4L2_ENC_IDX_FRAME_I (0)
#define V4L2_ENC_IDX_FRAME_P (1)
#define V4L2_ENC_IDX_FRAME_B (2)
#define V4L2_ENC_IDX_FRAME_MASK (0xf)

struct v4l2_enc_idx_entry {
__u64 offset;
__u64 pts;
__u32 length;
__u32 flags;
__u32 reserved[2];

};

#define V4L2_ENC_IDX_ENTRIES (64)
struct v4l2_enc_idx {

__u32 entries;
__u32 entries_cap;
__u32 reserved[4];
struct v4l2_enc_idx_entry entry[V4L2_ENC_IDX_ENTRIES];

};

#define V4L2_ENC_CMD_START (0)
#define V4L2_ENC_CMD_STOP (1)
#define V4L2_ENC_CMD_PAUSE (2)
#define V4L2_ENC_CMD_RESUME (3)

/* Flags for V4L2_ENC_CMD_STOP */
#define V4L2_ENC_CMD_STOP_AT_GOP_END (1 << 0)

struct v4l2_encoder_cmd {
__u32 cmd;
__u32 flags;
union {

struct {
__u32 data[8];

} raw;
};

};

664 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/* Decoder commands */
#define V4L2_DEC_CMD_START (0)
#define V4L2_DEC_CMD_STOP (1)
#define V4L2_DEC_CMD_PAUSE (2)
#define V4L2_DEC_CMD_RESUME (3)
#define V4L2_DEC_CMD_FLUSH (4)

/* Flags for V4L2_DEC_CMD_START */
#define V4L2_DEC_CMD_START_MUTE_AUDIO (1 << 0)

/* Flags for V4L2_DEC_CMD_PAUSE */
#define V4L2_DEC_CMD_PAUSE_TO_BLACK (1 << 0)

/* Flags for V4L2_DEC_CMD_STOP */
#define V4L2_DEC_CMD_STOP_TO_BLACK (1 << 0)
#define V4L2_DEC_CMD_STOP_IMMEDIATELY (1 << 1)

/* Play format requirements (returned by the driver): */

/* The decoder has no special format requirements */
#define V4L2_DEC_START_FMT_NONE (0)
/* The decoder requires full GOPs */
#define V4L2_DEC_START_FMT_GOP (1)

/* The structure must be zeroed before use by the application
This ensures it can be extended safely in the future. */

struct v4l2_decoder_cmd {
__u32 cmd;
__u32 flags;
union {

struct {
__u64 pts;

} stop;

struct {
/* 0 or 1000 specifies normal speed,

1 specifies forward single stepping,
-1 specifies backward single stepping,
>1: playback at speed/1000 of the normal␣

↪→speed,
<-1: reverse playback at (-speed/1000)␣

↪→of the normal speed. */
__s32 speed;
__u32 format;

} start;

struct {
__u32 data[16];

} raw;
};

};

7.2. Part I - Video for Linux API 665

Linux Userspace-api Documentation

#endif

/*
* D A T A S E R V I C E S (V B I)
*
* Data services API by Michael Schimek
*/

/* Raw VBI */
struct v4l2_vbi_format {

__u32 sampling_rate; /* in 1 Hz */
__u32 offset;
__u32 samples_per_line;
__u32 sample_format; /* V4L2_PIX_FMT_* */
__s32 start[2];
__u32 count[2];
__u32 flags; /* V4L2_VBI_* */
__u32 reserved[2]; /* must be zero */

};

/* VBI flags */
#define V4L2_VBI_UNSYNC (1 << 0)
#define V4L2_VBI_INTERLACED (1 << 1)

/* ITU-R start lines for each field */
#define V4L2_VBI_ITU_525_F1_START (1)
#define V4L2_VBI_ITU_525_F2_START (264)
#define V4L2_VBI_ITU_625_F1_START (1)
#define V4L2_VBI_ITU_625_F2_START (314)

/* Sliced VBI
*
* This implements is a proposal V4L2 API to allow SLICED VBI
* required for some hardware encoders. It should change without
* notice in the definitive implementation.
*/

struct v4l2_sliced_vbi_format {
__u16 service_set;
/* service_lines[0][...] specifies lines 0-23 (1-23 used)␣

↪→of the first field
service_lines[1][...] specifies lines 0-23 (1-23 used)␣

↪→of the second field
(equals frame lines 313-336 for␣

↪→625 line video
standards, 263-286 for 525 line␣

↪→standards) */
__u16 service_lines[2][24];
__u32 io_size;
__u32 reserved[2]; /* must be zero */

};

666 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/* Teletext World System Teletext
(WST), defined on ITU-R BT.653-2 */

#define V4L2_SLICED_TELETEXT_B (0x0001)
/* Video Program System, defined on ETS 300 231*/
#define V4L2_SLICED_VPS (0x0400)
/* Closed Caption, defined on EIA-608 */
#define V4L2_SLICED_CAPTION_525 (0x1000)
/* Wide Screen System, defined on ITU-R BT1119.1 */
#define V4L2_SLICED_WSS_625 (0x4000)

#define V4L2_SLICED_VBI_525 (V4L2_SLICED_CAPTION_525)
#define V4L2_SLICED_VBI_625 (V4L2_SLICED_TELETEXT_B |␣
↪→V4L2_SLICED_VPS | V4L2_SLICED_WSS_625)

struct v4l2_sliced_vbi_cap {
__u16 service_set;
/* service_lines[0][...] specifies lines 0-23 (1-23 used)␣

↪→of the first field
service_lines[1][...] specifies lines 0-23 (1-23 used)␣

↪→of the second field
(equals frame lines 313-336 for␣

↪→625 line video
standards, 263-286 for 525 line␣

↪→standards) */
__u16 service_lines[2][24];
__u32 type; /* enum v4l2_buf_type */
__u32 reserved[3]; /* must be 0 */

};

struct v4l2_sliced_vbi_data {
__u32 id;
__u32 field; /* 0: first field, 1: second field␣

↪→*/
__u32 line; /* 1-23 */
__u32 reserved; /* must be 0 */
__u8 data[48];

};

/*
* Sliced VBI data inserted into MPEG Streams
*/

/*
* V4L2_MPEG_STREAM_VBI_FMT_IVTV:
*
* Structure of payload contained in an MPEG 2 Private Stream 1 PES␣
↪→Packet in an
* MPEG-2 Program Pack that contains V4L2_MPEG_STREAM_VBI_FMT_IVTV␣
↪→Sliced VBI
* data

7.2. Part I - Video for Linux API 667

Linux Userspace-api Documentation

*
* Note, the MPEG-2 Program Pack and Private Stream 1 PES packet␣
↪→header
* definitions are not included here. See the MPEG-2␣
↪→specifications for details
* on these headers.
*/

/* Line type IDs */
#define V4L2_MPEG_VBI_IVTV_TELETEXT_B (1)
#define V4L2_MPEG_VBI_IVTV_CAPTION_525 (4)
#define V4L2_MPEG_VBI_IVTV_WSS_625 (5)
#define V4L2_MPEG_VBI_IVTV_VPS (7)

struct v4l2_mpeg_vbi_itv0_line {
__u8 id; /* One of V4L2_MPEG_VBI_IVTV_* above */
__u8 data[42]; /* Sliced VBI data for the line */

} __attribute__ ((packed));

struct v4l2_mpeg_vbi_itv0 {
__le32 linemask[2]; /* Bitmasks of VBI service lines␣

↪→present */
struct v4l2_mpeg_vbi_itv0_line line[35];

} __attribute__ ((packed));

struct v4l2_mpeg_vbi_ITV0 {
struct v4l2_mpeg_vbi_itv0_line line[36];

} __attribute__ ((packed));

#define V4L2_MPEG_VBI_IVTV_MAGIC0 "itv0"
#define V4L2_MPEG_VBI_IVTV_MAGIC1 "ITV0"

struct v4l2_mpeg_vbi_fmt_ivtv {
__u8 magic[4];
union {

struct v4l2_mpeg_vbi_itv0 itv0;
struct v4l2_mpeg_vbi_ITV0 ITV0;

};
} __attribute__ ((packed));

/*
* A G G R E G A T E S T R U C T U R E S
*/

/**
* struct v4l2_plane_pix_format - additional, per-plane format␣
↪→definition
* @sizeimage: maximum size in bytes required for data,␣
↪→for which
* this plane will be used
* @bytesperline: distance in bytes between the leftmost␣

668 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

↪→pixels in two
* adjacent lines
*/

struct v4l2_plane_pix_format {
__u32 sizeimage;
__u32 bytesperline;
__u16 reserved[6];

} __attribute__ ((packed));

/**
* struct v4l2_pix_format_mplane - multiplanar format definition
* @width: image width in pixels
* @height: image height in pixels
* @pixelformat: little endian four character code (fourcc)
* @field: enum v4l2_field; field order (for␣
↪→interlaced video)
* @colorspace: enum v4l2_colorspace; supplemental to␣
↪→pixelformat
* @plane_fmt: per-plane information
* @num_planes: number of planes for this format
* @flags: format flags (V4L2_PIX_FMT_FLAG_*)
* @ycbcr_enc: enum v4l2_ycbcr_encoding, Y'CbCr encoding
* @quantization: enum v4l2_quantization, colorspace␣
↪→quantization
* @xfer_func: enum v4l2_xfer_func, colorspace transfer␣
↪→function
*/

struct v4l2_pix_format_mplane {
__u32 width;
__u32 height;
__u32 pixelformat;
__u32 field;
__u32 colorspace;

struct v4l2_plane_pix_format plane_fmt[VIDEO_MAX_PLANES];
__u8 num_planes;
__u8 flags;
union {

__u8 ycbcr_enc;
__u8 hsv_enc;

};
__u8 quantization;
__u8 xfer_func;
__u8 reserved[7];

} __attribute__ ((packed));

/**
* struct v4l2_sdr_format - SDR format definition
* @pixelformat: little endian four character code (fourcc)
* @buffersize: maximum size in bytes required for data
*/

7.2. Part I - Video for Linux API 669

Linux Userspace-api Documentation

struct v4l2_sdr_format {
__u32 pixelformat;
__u32 buffersize;
__u8 reserved[24];

} __attribute__ ((packed));

/**
* struct v4l2_meta_format - metadata format definition
* @dataformat: little endian four character code (fourcc)
* @buffersize: maximum size in bytes required for data
*/

struct v4l2_meta_format {
__u32 dataformat;
__u32 buffersize;

} __attribute__ ((packed));

/**
* struct v4l2_format - stream data format
* @type: enum v4l2_buf_type; type of the data stream
* @pix: definition of an image format
* @pix_mp: definition of a multiplanar image format
* @win: definition of an overlaid image
* @vbi: raw VBI capture or output parameters
* @sliced: sliced VBI capture or output parameters
* @raw_data: placeholder for future extensions and custom formats
*/

struct v4l2_format {
__u32 type;
union {

struct v4l2_pix_format pix; /* V4L2_
↪→BUF_TYPE_VIDEO_CAPTURE */

struct v4l2_pix_format_mplane pix_mp; /* V4L2_
↪→BUF_TYPE_VIDEO_CAPTURE_MPLANE */

struct v4l2_window win; /* V4L2_
↪→BUF_TYPE_VIDEO_OVERLAY */

struct v4l2_vbi_format vbi; /* V4L2_
↪→BUF_TYPE_VBI_CAPTURE */

struct v4l2_sliced_vbi_format sliced; /* V4L2_
↪→BUF_TYPE_SLICED_VBI_CAPTURE */

struct v4l2_sdr_format sdr; /* V4L2_
↪→BUF_TYPE_SDR_CAPTURE */

struct v4l2_meta_format meta; /* V4L2_
↪→BUF_TYPE_META_CAPTURE */

__u8 raw_data[200]; /*␣
↪→user-defined */

} fmt;
};

/* Stream type-dependent parameters
*/

struct v4l2_streamparm {

670 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

__u32 type; /* enum v4l2_buf_type */
union {

struct v4l2_captureparm capture;
struct v4l2_outputparm output;
__u8 raw_data[200]; /* user-defined */

} parm;
};

/*
* E V E N T S
*/

#define V4L2_EVENT_ALL 0
#define V4L2_EVENT_VSYNC 1
#define V4L2_EVENT_EOS 2
#define V4L2_EVENT_CTRL 3
#define V4L2_EVENT_FRAME_SYNC 4
#define V4L2_EVENT_SOURCE_CHANGE 5
#define V4L2_EVENT_MOTION_DET 6
#define V4L2_EVENT_PRIVATE_START 0x08000000

/* Payload for V4L2_EVENT_VSYNC */
struct v4l2_event_vsync {

/* Can be V4L2_FIELD_ANY, _NONE, _TOP or _BOTTOM */
__u8 field;

} __attribute__ ((packed));

/* Payload for V4L2_EVENT_CTRL */
#define V4L2_EVENT_CTRL_CH_VALUE (1 << 0)
#define V4L2_EVENT_CTRL_CH_FLAGS (1 << 1)
#define V4L2_EVENT_CTRL_CH_RANGE (1 << 2)

struct v4l2_event_ctrl {
__u32 changes;
__u32 type;
union {

__s32 value;
__s64 value64;

};
__u32 flags;
__s32 minimum;
__s32 maximum;
__s32 step;
__s32 default_value;

};

struct v4l2_event_frame_sync {
__u32 frame_sequence;

};

#define V4L2_EVENT_SRC_CH_RESOLUTION (1 << 0)

7.2. Part I - Video for Linux API 671

Linux Userspace-api Documentation

struct v4l2_event_src_change {
__u32 changes;

};

#define V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ (1 << 0)

/**
* struct v4l2_event_motion_det - motion detection event
* @flags: if V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ is set,␣
↪→then the
* frame_sequence field is valid.
* @frame_sequence: the frame sequence number associated with␣
↪→this event.
* @region_mask: which regions detected motion.
*/

struct v4l2_event_motion_det {
__u32 flags;
__u32 frame_sequence;
__u32 region_mask;

};

struct v4l2_event {
__u32 type;
union {

struct v4l2_event_vsync vsync;
struct v4l2_event_ctrl ctrl;
struct v4l2_event_frame_sync frame_sync;
struct v4l2_event_src_change src_change;
struct v4l2_event_motion_det motion_det;
__u8 data[64];

} u;
__u32 pending;
__u32 sequence;

#ifdef __KERNEL__
struct __kernel_timespec timestamp;

#else
struct timespec timestamp;

#endif
__u32 id;
__u32 reserved[8];

};

#define V4L2_EVENT_SUB_FL_SEND_INITIAL (1 << 0)
#define V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK (1 << 1)

struct v4l2_event_subscription {
__u32 type;
__u32 id;
__u32 flags;
__u32 reserved[5];

672 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

};

/*
* A D V A N C E D D E B U G G I N G
*
* NOTE: EXPERIMENTAL API, NEVER RELY ON THIS IN APPLICATIONS!
* FOR DEBUGGING, TESTING AND INTERNAL USE ONLY!
*/

/* VIDIOC_DBG_G_REGISTER and VIDIOC_DBG_S_REGISTER */

#define V4L2_CHIP_MATCH_BRIDGE 0 /* Match against chip ID on␣
↪→the bridge (0 for the bridge) */
#define V4L2_CHIP_MATCH_SUBDEV 4 /* Match against subdev␣
↪→index */

/* The following four defines are no longer in use */
#define V4L2_CHIP_MATCH_HOST V4L2_CHIP_MATCH_BRIDGE
#define V4L2_CHIP_MATCH_I2C_DRIVER 1 /* Match against I2C driver␣
↪→name */
#define V4L2_CHIP_MATCH_I2C_ADDR 2 /* Match against I2C 7-bit␣
↪→address */
#define V4L2_CHIP_MATCH_AC97 3 /* Match against ancillary␣
↪→AC97 chip */

struct v4l2_dbg_match {
__u32 type; /* Match type */
union { /* Match this chip, meaning determined by type␣

↪→*/
__u32 addr;
char name[32];

};
} __attribute__ ((packed));

struct v4l2_dbg_register {
struct v4l2_dbg_match match;
__u32 size; /* register size in bytes */
__u64 reg;
__u64 val;

} __attribute__ ((packed));

#define V4L2_CHIP_FL_READABLE (1 << 0)
#define V4L2_CHIP_FL_WRITABLE (1 << 1)

/* VIDIOC_DBG_G_CHIP_INFO */
struct v4l2_dbg_chip_info {

struct v4l2_dbg_match match;
char name[32];
__u32 flags;
__u32 reserved[32];

} __attribute__ ((packed));

7.2. Part I - Video for Linux API 673

Linux Userspace-api Documentation

/**
* struct v4l2_create_buffers - VIDIOC_CREATE_BUFS argument
* @index: on return, index of the first created buffer
* @count: entry: number of requested buffers,
* return: number of created buffers
* @memory: enum v4l2_memory; buffer memory type
* @format: frame format, for which buffers are requested
* @capabilities: capabilities of this buffer type.
* @reserved: future extensions
*/

struct v4l2_create_buffers {
__u32 index;
__u32 count;
__u32 memory;
struct v4l2_format format;
__u32 capabilities;
__u32 reserved[7];

};

/*
* I O C T L C O D E S F O R V I D E O D E V I C E S
*
*/

#define VIDIOC_QUERYCAP _IOR('V', 0, struct v4l2_
↪→capability)
#define VIDIOC_ENUM_FMT _IOWR('V', 2, struct v4l2_fmtdesc)
#define VIDIOC_G_FMT _IOWR('V', 4, struct v4l2_format)
#define VIDIOC_S_FMT _IOWR('V', 5, struct v4l2_format)
#define VIDIOC_REQBUFS _IOWR('V', 8, struct v4l2_
↪→requestbuffers)
#define VIDIOC_QUERYBUF _IOWR('V', 9, struct v4l2_buffer)
#define VIDIOC_G_FBUF _IOR('V', 10, struct v4l2_
↪→framebuffer)
#define VIDIOC_S_FBUF _IOW('V', 11, struct v4l2_
↪→framebuffer)
#define VIDIOC_OVERLAY _IOW('V', 14, int)
#define VIDIOC_QBUF _IOWR('V', 15, struct v4l2_buffer)
#define VIDIOC_EXPBUF _IOWR('V', 16, struct v4l2_
↪→exportbuffer)
#define VIDIOC_DQBUF _IOWR('V', 17, struct v4l2_buffer)
#define VIDIOC_STREAMON _IOW('V', 18, int)
#define VIDIOC_STREAMOFF _IOW('V', 19, int)
#define VIDIOC_G_PARM _IOWR('V', 21, struct v4l2_
↪→streamparm)
#define VIDIOC_S_PARM _IOWR('V', 22, struct v4l2_
↪→streamparm)
#define VIDIOC_G_STD _IOR('V', 23, v4l2_std_id)
#define VIDIOC_S_STD _IOW('V', 24, v4l2_std_id)
#define VIDIOC_ENUMSTD _IOWR('V', 25, struct v4l2_standard)
#define VIDIOC_ENUMINPUT _IOWR('V', 26, struct v4l2_input)

674 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define VIDIOC_G_CTRL _IOWR('V', 27, struct v4l2_control)
#define VIDIOC_S_CTRL _IOWR('V', 28, struct v4l2_control)
#define VIDIOC_G_TUNER _IOWR('V', 29, struct v4l2_tuner)
#define VIDIOC_S_TUNER _IOW('V', 30, struct v4l2_tuner)
#define VIDIOC_G_AUDIO _IOR('V', 33, struct v4l2_audio)
#define VIDIOC_S_AUDIO _IOW('V', 34, struct v4l2_audio)
#define VIDIOC_QUERYCTRL _IOWR('V', 36, struct v4l2_
↪→queryctrl)
#define VIDIOC_QUERYMENU _IOWR('V', 37, struct v4l2_
↪→querymenu)
#define VIDIOC_G_INPUT _IOR('V', 38, int)
#define VIDIOC_S_INPUT _IOWR('V', 39, int)
#define VIDIOC_G_EDID _IOWR('V', 40, struct v4l2_edid)
#define VIDIOC_S_EDID _IOWR('V', 41, struct v4l2_edid)
#define VIDIOC_G_OUTPUT _IOR('V', 46, int)
#define VIDIOC_S_OUTPUT _IOWR('V', 47, int)
#define VIDIOC_ENUMOUTPUT _IOWR('V', 48, struct v4l2_output)
#define VIDIOC_G_AUDOUT _IOR('V', 49, struct v4l2_audioout)
#define VIDIOC_S_AUDOUT _IOW('V', 50, struct v4l2_audioout)
#define VIDIOC_G_MODULATOR _IOWR('V', 54, struct v4l2_
↪→modulator)
#define VIDIOC_S_MODULATOR _IOW('V', 55, struct v4l2_
↪→modulator)
#define VIDIOC_G_FREQUENCY _IOWR('V', 56, struct v4l2_
↪→frequency)
#define VIDIOC_S_FREQUENCY _IOW('V', 57, struct v4l2_
↪→frequency)
#define VIDIOC_CROPCAP _IOWR('V', 58, struct v4l2_cropcap)
#define VIDIOC_G_CROP _IOWR('V', 59, struct v4l2_crop)
#define VIDIOC_S_CROP _IOW('V', 60, struct v4l2_crop)
#define VIDIOC_G_JPEGCOMP _IOR('V', 61, struct v4l2_
↪→jpegcompression)
#define VIDIOC_S_JPEGCOMP _IOW('V', 62, struct v4l2_
↪→jpegcompression)
#define VIDIOC_QUERYSTD _IOR('V', 63, v4l2_std_id)
#define VIDIOC_TRY_FMT _IOWR('V', 64, struct v4l2_format)
#define VIDIOC_ENUMAUDIO _IOWR('V', 65, struct v4l2_audio)
#define VIDIOC_ENUMAUDOUT _IOWR('V', 66, struct v4l2_audioout)
#define VIDIOC_G_PRIORITY _IOR('V', 67, __u32) /* enum v4l2_
↪→priority */
#define VIDIOC_S_PRIORITY _IOW('V', 68, __u32) /* enum v4l2_
↪→priority */
#define VIDIOC_G_SLICED_VBI_CAP _IOWR('V', 69, struct v4l2_sliced_
↪→vbi_cap)
#define VIDIOC_LOG_STATUS _IO('V', 70)
#define VIDIOC_G_EXT_CTRLS _IOWR('V', 71, struct v4l2_ext_
↪→controls)
#define VIDIOC_S_EXT_CTRLS _IOWR('V', 72, struct v4l2_ext_
↪→controls)
#define VIDIOC_TRY_EXT_CTRLS _IOWR('V', 73, struct v4l2_ext_
↪→controls)

7.2. Part I - Video for Linux API 675

Linux Userspace-api Documentation

#define VIDIOC_ENUM_FRAMESIZES _IOWR('V', 74, struct v4l2_
↪→frmsizeenum)
#define VIDIOC_ENUM_FRAMEINTERVALS _IOWR('V', 75, struct v4l2_
↪→frmivalenum)
#define VIDIOC_G_ENC_INDEX _IOR('V', 76, struct v4l2_enc_idx)
#define VIDIOC_ENCODER_CMD _IOWR('V', 77, struct v4l2_encoder_
↪→cmd)
#define VIDIOC_TRY_ENCODER_CMD _IOWR('V', 78, struct v4l2_encoder_
↪→cmd)

/*
* Experimental, meant for debugging, testing and internal use.
* Only implemented if CONFIG_VIDEO_ADV_DEBUG is defined.
* You must be root to use these ioctls. Never use these in␣
↪→applications!
*/

#define VIDIOC_DBG_S_REGISTER _IOW('V', 79, struct v4l2_dbg_
↪→register)
#define VIDIOC_DBG_G_REGISTER _IOWR('V', 80, struct v4l2_dbg_
↪→register)

#define VIDIOC_S_HW_FREQ_SEEK _IOW('V', 82, struct v4l2_hw_freq_
↪→seek)
#define VIDIOC_S_DV_TIMINGS _IOWR('V', 87, struct v4l2_dv_
↪→timings)
#define VIDIOC_G_DV_TIMINGS _IOWR('V', 88, struct v4l2_dv_
↪→timings)
#define VIDIOC_DQEVENT _IOR('V', 89, struct v4l2_event)
#define VIDIOC_SUBSCRIBE_EVENT _IOW('V', 90, struct v4l2_event_
↪→subscription)
#define VIDIOC_UNSUBSCRIBE_EVENT _IOW('V', 91, struct v4l2_event_
↪→subscription)
#define VIDIOC_CREATE_BUFS _IOWR('V', 92, struct v4l2_create_
↪→buffers)
#define VIDIOC_PREPARE_BUF _IOWR('V', 93, struct v4l2_buffer)
#define VIDIOC_G_SELECTION _IOWR('V', 94, struct v4l2_
↪→selection)
#define VIDIOC_S_SELECTION _IOWR('V', 95, struct v4l2_
↪→selection)
#define VIDIOC_DECODER_CMD _IOWR('V', 96, struct v4l2_decoder_
↪→cmd)
#define VIDIOC_TRY_DECODER_CMD _IOWR('V', 97, struct v4l2_decoder_
↪→cmd)
#define VIDIOC_ENUM_DV_TIMINGS _IOWR('V', 98, struct v4l2_enum_dv_
↪→timings)
#define VIDIOC_QUERY_DV_TIMINGS _IOR('V', 99, struct v4l2_dv_
↪→timings)
#define VIDIOC_DV_TIMINGS_CAP _IOWR('V', 100, struct v4l2_dv_
↪→timings_cap)
#define VIDIOC_ENUM_FREQ_BANDS _IOWR('V', 101, struct v4l2_
↪→frequency_band)

676 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/*
* Experimental, meant for debugging, testing and internal use.
* Never use this in applications!
*/

#define VIDIOC_DBG_G_CHIP_INFO _IOWR('V', 102, struct v4l2_dbg_
↪→chip_info)

#define VIDIOC_QUERY_EXT_CTRL _IOWR('V', 103, struct v4l2_query_
↪→ext_ctrl)

/* Reminder: when adding new ioctls please add support for them to
drivers/media/v4l2-core/v4l2-compat-ioctl32.c as well! */

#define BASE_VIDIOC_PRIVATE 192 /* 192-255 are␣
↪→private */

#endif /* _UAPI__LINUX_VIDEODEV2_H */

7.2.10 Video Capture Example

file: media/v4l/capture.c

/*
* V4L2 video capture example
*
* This program can be used and distributed without restrictions.
*
* This program is provided with the V4L2 API
* see https://linuxtv.org/docs.php for more information
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include <getopt.h> /* getopt_long() */

#include <fcntl.h> /* low-level i/o */
#include <unistd.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/ioctl.h>

#include <linux/videodev2.h>

#define CLEAR(x) memset(&(x), 0, sizeof(x))

enum io_method {
(continues on next page)

7.2. Part I - Video for Linux API 677

Linux Userspace-api Documentation

(continued from previous page)
IO_METHOD_READ,
IO_METHOD_MMAP,
IO_METHOD_USERPTR,

};

struct buffer {
void *start;
size_t length;

};

static char *dev_name;
static enum io_method io = IO_METHOD_MMAP;
static int fd = -1;
struct buffer *buffers;
static unsigned int n_buffers;
static int out_buf;
static int force_format;
static int frame_count = 70;

static void errno_exit(const char *s)
{

fprintf(stderr, "%s error %d, %s\\n", s, errno, strerror(errno));
exit(EXIT_FAILURE);

}

static int xioctl(int fh, int request, void *arg)
{

int r;

do {
r = ioctl(fh, request, arg);

} while (-1 == r && EINTR == errno);

return r;
}

static void process_image(const void *p, int size)
{

if (out_buf)
fwrite(p, size, 1, stdout);

fflush(stderr);
fprintf(stderr, ".");
fflush(stdout);

}

static int read_frame(void)
{

struct v4l2_buffer buf;
unsigned int i;

switch (io) {
case IO_METHOD_READ:

if (-1 == read(fd, buffers[0].start, buffers[0].length)) {
switch (errno) {
case EAGAIN:

(continues on next page)

678 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit("read");

}
}

process_image(buffers[0].start, buffers[0].length);
break;

case IO_METHOD_MMAP:
CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;

if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:

return 0;

case EIO:
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit("VIDIOC_DQBUF");

}
}

assert(buf.index < n_buffers);

process_image(buffers[buf.index].start, buf.bytesused);

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

break;

case IO_METHOD_USERPTR:
CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;

if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
switch (errno) {
case EAGAIN:

return 0;

case EIO:
(continues on next page)

7.2. Part I - Video for Linux API 679

Linux Userspace-api Documentation

(continued from previous page)
/* Could ignore EIO, see spec. */

/* fall through */

default:
errno_exit("VIDIOC_DQBUF");

}
}

for (i = 0; i < n_buffers; ++i)
if (buf.m.userptr == (unsigned long)buffers[i].

↪→start
&& buf.length == buffers[i].length)

break;

assert(i < n_buffers);

process_image((void *)buf.m.userptr, buf.bytesused);

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

break;
}

return 1;
}

static void mainloop(void)
{

unsigned int count;

count = frame_count;

while (count-- > 0) {
for (;;) {

fd_set fds;
struct timeval tv;
int r;

FD_ZERO(&fds);
FD_SET(fd, &fds);

/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;

r = select(fd + 1, &fds, NULL, NULL, &tv);

if (-1 == r) {
if (EINTR == errno)

continue;
errno_exit("select");

}

if (0 == r) {
fprintf(stderr, "select timeout\\n");

(continues on next page)

680 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
exit(EXIT_FAILURE);

}

if (read_frame())
break;

/* EAGAIN - continue select loop. */
}

}
}

static void stop_capturing(void)
{

enum v4l2_buf_type type;

switch (io) {
case IO_METHOD_READ:

/* Nothing to do. */
break;

case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMOFF, &type))

errno_exit("VIDIOC_STREAMOFF");
break;

}
}

static void start_capturing(void)
{

unsigned int i;
enum v4l2_buf_type type;

switch (io) {
case IO_METHOD_READ:

/* Nothing to do. */
break;

case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))

errno_exit("VIDIOC_STREAMON");
break;

case IO_METHOD_USERPTR:
(continues on next page)

7.2. Part I - Video for Linux API 681

Linux Userspace-api Documentation

(continued from previous page)
for (i = 0; i < n_buffers; ++i) {

struct v4l2_buffer buf;

CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;
buf.index = i;
buf.m.userptr = (unsigned long)buffers[i].start;
buf.length = buffers[i].length;

if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))

errno_exit("VIDIOC_STREAMON");
break;

}
}

static void uninit_device(void)
{

unsigned int i;

switch (io) {
case IO_METHOD_READ:

free(buffers[0].start);
break;

case IO_METHOD_MMAP:
for (i = 0; i < n_buffers; ++i)

if (-1 == munmap(buffers[i].start, buffers[i].
↪→length))

errno_exit("munmap");
break;

case IO_METHOD_USERPTR:
for (i = 0; i < n_buffers; ++i)

free(buffers[i].start);
break;

}

free(buffers);
}

static void init_read(unsigned int buffer_size)
{

buffers = calloc(1, sizeof(*buffers));

if (!buffers) {
fprintf(stderr, "Out of memory\\n");
exit(EXIT_FAILURE);

}

buffers[0].length = buffer_size;
buffers[0].start = malloc(buffer_size);

(continues on next page)

682 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)

if (!buffers[0].start) {
fprintf(stderr, "Out of memory\\n");
exit(EXIT_FAILURE);

}
}

static void init_mmap(void)
{

struct v4l2_requestbuffers req;

CLEAR(req);

req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;

if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {

fprintf(stderr, "%s does not support "
"memory mappingn", dev_name);

exit(EXIT_FAILURE);
} else {

errno_exit("VIDIOC_REQBUFS");
}

}

if (req.count < 2) {
fprintf(stderr, "Insufficient buffer memory on %s\\n",

dev_name);
exit(EXIT_FAILURE);

}

buffers = calloc(req.count, sizeof(*buffers));

if (!buffers) {
fprintf(stderr, "Out of memory\\n");
exit(EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {
struct v4l2_buffer buf;

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;

if (-1 == xioctl(fd, VIDIOC_QUERYBUF, &buf))
errno_exit("VIDIOC_QUERYBUF");

buffers[n_buffers].length = buf.length;
buffers[n_buffers].start =

mmap(NULL /* start anywhere */,
buf.length,

(continues on next page)

7.2. Part I - Video for Linux API 683

Linux Userspace-api Documentation

(continued from previous page)
PROT_READ | PROT_WRITE /* required */,
MAP_SHARED /* recommended */,
fd, buf.m.offset);

if (MAP_FAILED == buffers[n_buffers].start)
errno_exit("mmap");

}
}

static void init_userp(unsigned int buffer_size)
{

struct v4l2_requestbuffers req;

CLEAR(req);

req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_USERPTR;

if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {

fprintf(stderr, "%s does not support "
"user pointer i/on", dev_name);

exit(EXIT_FAILURE);
} else {

errno_exit("VIDIOC_REQBUFS");
}

}

buffers = calloc(4, sizeof(*buffers));

if (!buffers) {
fprintf(stderr, "Out of memory\\n");
exit(EXIT_FAILURE);

}

for (n_buffers = 0; n_buffers < 4; ++n_buffers) {
buffers[n_buffers].length = buffer_size;
buffers[n_buffers].start = malloc(buffer_size);

if (!buffers[n_buffers].start) {
fprintf(stderr, "Out of memory\\n");
exit(EXIT_FAILURE);

}
}

}

static void init_device(void)
{

struct v4l2_capability cap;
struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format fmt;
unsigned int min;

if (-1 == xioctl(fd, VIDIOC_QUERYCAP, &cap)) {
(continues on next page)

684 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
if (EINVAL == errno) {

fprintf(stderr, "%s is no V4L2 device\\n",
dev_name);

exit(EXIT_FAILURE);
} else {

errno_exit("VIDIOC_QUERYCAP");
}

}

if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {
fprintf(stderr, "%s is no video capture device\\n",

dev_name);
exit(EXIT_FAILURE);

}

switch (io) {
case IO_METHOD_READ:

if (!(cap.capabilities & V4L2_CAP_READWRITE)) {
fprintf(stderr, "%s does not support read i/o\\n",

dev_name);
exit(EXIT_FAILURE);

}
break;

case IO_METHOD_MMAP:
case IO_METHOD_USERPTR:

if (!(cap.capabilities & V4L2_CAP_STREAMING)) {
fprintf(stderr, "%s does not support streaming i/o\

↪→\n",
dev_name);

exit(EXIT_FAILURE);
}
break;

}

/* Select video input, video standard and tune here. */

CLEAR(cropcap);

cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

if (0 == xioctl(fd, VIDIOC_CROPCAP, &cropcap)) {
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect; /* reset to default */

if (-1 == xioctl(fd, VIDIOC_S_CROP, &crop)) {
switch (errno) {
case EINVAL:

/* Cropping not supported. */
break;

default:
/* Errors ignored. */
break;

}
(continues on next page)

7.2. Part I - Video for Linux API 685

Linux Userspace-api Documentation

(continued from previous page)
}

} else {
/* Errors ignored. */

}

CLEAR(fmt);

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (force_format) {

fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;

if (-1 == xioctl(fd, VIDIOC_S_FMT, &fmt))
errno_exit("VIDIOC_S_FMT");

/* Note VIDIOC_S_FMT may change width and height. */
} else {

/* Preserve original settings as set by v4l2-ctl for␣
↪→example */

if (-1 == xioctl(fd, VIDIOC_G_FMT, &fmt))
errno_exit("VIDIOC_G_FMT");

}

/* Buggy driver paranoia. */
min = fmt.fmt.pix.width * 2;
if (fmt.fmt.pix.bytesperline < min)

fmt.fmt.pix.bytesperline = min;
min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;
if (fmt.fmt.pix.sizeimage < min)

fmt.fmt.pix.sizeimage = min;

switch (io) {
case IO_METHOD_READ:

init_read(fmt.fmt.pix.sizeimage);
break;

case IO_METHOD_MMAP:
init_mmap();
break;

case IO_METHOD_USERPTR:
init_userp(fmt.fmt.pix.sizeimage);
break;

}
}

static void close_device(void)
{

if (-1 == close(fd))
errno_exit("close");

fd = -1;
}

(continues on next page)

686 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)

static void open_device(void)
{

struct stat st;

if (-1 == stat(dev_name, &st)) {
fprintf(stderr, "Cannot identify '%s': %d, %s\\n",

dev_name, errno, strerror(errno));
exit(EXIT_FAILURE);

}

if (!S_ISCHR(st.st_mode)) {
fprintf(stderr, "%s is no devicen", dev_name);
exit(EXIT_FAILURE);

}

fd = open(dev_name, O_RDWR /* required */ | O_NONBLOCK, 0);

if (-1 == fd) {
fprintf(stderr, "Cannot open '%s': %d, %s\\n",

dev_name, errno, strerror(errno));
exit(EXIT_FAILURE);

}
}

static void usage(FILE *fp, int argc, char **argv)
{

fprintf(fp,
"Usage: %s [options]\\n\\n"
"Version 1.3\\n"
"Options:\\n"
"-d | --device name Video device name [%s]n"
"-h | --help Print this messagen"
"-m | --mmap Use memory mapped buffers [default]n

↪→"
"-r | --read Use read() callsn"
"-u | --userp Use application allocated buffersn"
"-o | --output Outputs stream to stdoutn"
"-f | --format Force format to 640x480 YUYVn"
"-c | --count Number of frames to grab [%i]n"
"",
argv[0], dev_name, frame_count);

}

static const char short_options[] = "d:hmruofc:";

static const struct option
long_options[] = {

{ "device", required_argument, NULL, 'd' },
{ "help", no_argument, NULL, 'h' },
{ "mmap", no_argument, NULL, 'm' },
{ "read", no_argument, NULL, 'r' },
{ "userp", no_argument, NULL, 'u' },
{ "output", no_argument, NULL, 'o' },
{ "format", no_argument, NULL, 'f' },
{ "count", required_argument, NULL, 'c' },

(continues on next page)

7.2. Part I - Video for Linux API 687

Linux Userspace-api Documentation

(continued from previous page)
{ 0, 0, 0, 0 }

};

int main(int argc, char **argv)
{

dev_name = "/dev/video0";

for (;;) {
int idx;
int c;

c = getopt_long(argc, argv,
short_options, long_options, &idx);

if (-1 == c)
break;

switch (c) {
case 0: /* getopt_long() flag */

break;

case 'd':
dev_name = optarg;
break;

case 'h':
usage(stdout, argc, argv);
exit(EXIT_SUCCESS);

case 'm':
io = IO_METHOD_MMAP;
break;

case 'r':
io = IO_METHOD_READ;
break;

case 'u':
io = IO_METHOD_USERPTR;
break;

case 'o':
out_buf++;
break;

case 'f':
force_format++;
break;

case 'c':
errno = 0;
frame_count = strtol(optarg, NULL, 0);
if (errno)

errno_exit(optarg);
break;

(continues on next page)

688 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
default:

usage(stderr, argc, argv);
exit(EXIT_FAILURE);

}
}

open_device();
init_device();
start_capturing();
mainloop();
stop_capturing();
uninit_device();
close_device();
fprintf(stderr, "\\n");
return 0;

}

7.2.11 Video Grabber example using libv4l

This program demonstrates how to grab V4L2 images in ppm format by using libv4l
handlers. The advantage is that this grabber can potentially work with any V4L2
driver.

file: media/v4l/v4l2grab.c

/* V4L2 video picture grabber
Copyright (C) 2009 Mauro Carvalho Chehab <mchehab@kernel.org>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <linux/videodev2.h>
#include "../libv4l/include/libv4l2.h"

#define CLEAR(x) memset(&(x), 0, sizeof(x))

(continues on next page)

7.2. Part I - Video for Linux API 689

Linux Userspace-api Documentation

(continued from previous page)
struct buffer {

void *start;
size_t length;

};

static void xioctl(int fh, int request, void *arg)
{

int r;

do {
r = v4l2_ioctl(fh, request, arg);

} while (r == -1 && ((errno == EINTR) || (errno == EAGAIN)));

if (r == -1) {
fprintf(stderr, "error %d, %s\\n", errno, strerror(errno));
exit(EXIT_FAILURE);

}
}

int main(int argc, char **argv)
{

struct v4l2_format fmt;
struct v4l2_buffer buf;
struct v4l2_requestbuffers req;
enum v4l2_buf_type type;
fd_set fds;
struct timeval tv;
int r, fd = -1;
unsigned int i, n_buffers;
char *dev_name = "/dev/video0";
char out_name[256];
FILE *fout;
struct buffer *buffers;

fd = v4l2_open(dev_name, O_RDWR | O_NONBLOCK, 0);
if (fd < 0) {

perror("Cannot open device");
exit(EXIT_FAILURE);

}

CLEAR(fmt);
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_RGB24;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
xioctl(fd, VIDIOC_S_FMT, &fmt);
if (fmt.fmt.pix.pixelformat != V4L2_PIX_FMT_RGB24) {

printf("Libv4l didn't accept RGB24 format. Can't proceed.\\
↪→n");

exit(EXIT_FAILURE);
}
if ((fmt.fmt.pix.width != 640) || (fmt.fmt.pix.height != 480))

printf("Warning: driver is sending image at %dx%d\\n",
fmt.fmt.pix.width, fmt.fmt.pix.height);

(continues on next page)

690 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
CLEAR(req);
req.count = 2;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;
xioctl(fd, VIDIOC_REQBUFS, &req);

buffers = calloc(req.count, sizeof(*buffers));
for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {

CLEAR(buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;

xioctl(fd, VIDIOC_QUERYBUF, &buf);

buffers[n_buffers].length = buf.length;
buffers[n_buffers].start = v4l2_mmap(NULL, buf.length,

PROT_READ | PROT_WRITE, MAP_SHARED,
fd, buf.m.offset);

if (MAP_FAILED == buffers[n_buffers].start) {
perror("mmap");
exit(EXIT_FAILURE);

}
}

for (i = 0; i < n_buffers; ++i) {
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;
xioctl(fd, VIDIOC_QBUF, &buf);

}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

xioctl(fd, VIDIOC_STREAMON, &type);
for (i = 0; i < 20; i++) {

do {
FD_ZERO(&fds);
FD_SET(fd, &fds);

/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;

r = select(fd + 1, &fds, NULL, NULL, &tv);
} while ((r == -1 && (errno = EINTR)));
if (r == -1) {

perror("select");
return errno;

}

CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;

(continues on next page)

7.2. Part I - Video for Linux API 691

Linux Userspace-api Documentation

(continued from previous page)
xioctl(fd, VIDIOC_DQBUF, &buf);

sprintf(out_name, "out%03d.ppm", i);
fout = fopen(out_name, "w");
if (!fout) {

perror("Cannot open image");
exit(EXIT_FAILURE);

}
fprintf(fout, "P6\\n%d %d 255\\n",

fmt.fmt.pix.width, fmt.fmt.pix.height);
fwrite(buffers[buf.index].start, buf.bytesused, 1, fout);
fclose(fout);

xioctl(fd, VIDIOC_QBUF, &buf);
}

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
xioctl(fd, VIDIOC_STREAMOFF, &type);
for (i = 0; i < n_buffers; ++i)

v4l2_munmap(buffers[i].start, buffers[i].length);
v4l2_close(fd);

return 0;
}

7.2.12 References

CEA 608-E

title CEA-608-E R-2014 “Line 21 Data Services”
author Consumer Electronics Association (http://www.ce.org)

EN 300 294

title EN 300 294 “625-line television Wide Screen Signalling (WSS)”
author European Telecommunication Standards Institute (http://www.

etsi.org)

ETS 300 231

title ETS 300 231“Specification of the domestic video Programme De-
livery Control system (PDC)”

author European Telecommunication Standards Institute (http://www.
etsi.org)

692 Chapter 7. Linux Media Infrastructure userspace API

http://www.ce.org
http://www.etsi.org
http://www.etsi.org
http://www.etsi.org
http://www.etsi.org

Linux Userspace-api Documentation

ETS 300 706

title ETS 300 706 “Enhanced Teletext specification”
author European Telecommunication Standards Institute (http://www.

etsi.org)

ISO 13818-1

title ITU-T Rec. H.222.0 | ISO/IEC 13818-1 “Information technology
—Generic coding of moving pictures and associated audio informa-
tion: Systems”

author International Telecommunication Union (http://www.itu.ch), In-
ternational Organisation for Standardisation (http://www.iso.ch)

ISO 13818-2

title ITU-T Rec. H.262 | ISO/IEC 13818-2 “Information technology —
Generic coding of moving pictures and associated audio informa-
tion: Video”

author International Telecommunication Union (http://www.itu.ch), In-
ternational Organisation for Standardisation (http://www.iso.ch)

ITU BT.470

title ITU-R Recommendation BT.470-6 “Conventional Television Sys-
tems”

author International Telecommunication Union (http://www.itu.ch)

ITU BT.601

title ITU-R Recommendation BT.601-5 “Studio Encoding Parameters
of Digital Television for Standard 4:3 and Wide-Screen 16:9 Aspect
Ratios”

author International Telecommunication Union (http://www.itu.ch)

ITU BT.653

title ITU-R Recommendation BT.653-3 “Teletext systems”
author International Telecommunication Union (http://www.itu.ch)

7.2. Part I - Video for Linux API 693

http://www.etsi.org
http://www.etsi.org
http://www.itu.ch
http://www.iso.ch
http://www.itu.ch
http://www.iso.ch
http://www.itu.ch
http://www.itu.ch
http://www.itu.ch

Linux Userspace-api Documentation

ITU BT.709

title ITU-R Recommendation BT.709-5“Parameter values for the HDTV
standards for production and international programme exchange”

author International Telecommunication Union (http://www.itu.ch)

ITU BT.1119

title ITU-R Recommendation BT.1119“625-line television Wide Screen
Signalling (WSS)”

author International Telecommunication Union (http://www.itu.ch)

ITU-T Rec. H.264 Specification (04/2017 Edition)

title ITU-T Recommendation H.264 “Advanced Video Coding for
Generic Audiovisual Services”

author International Telecommunication Union (http://www.itu.ch)

ITU H.265/HEVC

title ITU-T Rec. H.265 | ISO/IEC 23008-2 “High Efficiency Video Cod-
ing”

author International Telecommunication Union (http://www.itu.ch), In-
ternational Organisation for Standardisation (http://www.iso.ch)

JFIF

title JPEG File Interchange Format
subtitle Version 1.02
author Independent JPEG Group (http://www.ijg.org)

ITU-T.81

title ITU-T Recommendation T.81 “Information Technology —Digital
Compression and Coding of Continous-Tone Still Images —Require-
ments and Guidelines”

author International Telecommunication Union (http://www.itu.int)

694 Chapter 7. Linux Media Infrastructure userspace API

http://www.itu.ch
http://www.itu.ch
http://www.itu.ch
http://www.itu.ch
http://www.iso.ch
http://www.ijg.org
http://www.itu.int

Linux Userspace-api Documentation

W3C JPEG JFIF

title JPEG JFIF
author The World Wide Web Consortium (http://www.w3.org)

SMPTE 12M

title SMPTE 12M-1999“Television, Audio and Film - Time and Control
Code”

author Society of Motion Picture and Television Engineers (http://www.
smpte.org)

SMPTE 170M

title SMPTE 170M-1999“Television - Composite Analog Video Signal -
NTSC for Studio Applications”

author Society of Motion Picture and Television Engineers (http://www.
smpte.org)

SMPTE 240M

title SMPTE 240M-1999 “Television - Signal Parameters - 1125-Line
High-Definition Production”

author Society of Motion Picture and Television Engineers (http://www.
smpte.org)

SMPTE RP 431-2

title SMPTE RP 431-2:2011 “D-Cinema Quality - Reference Projector
and Environment”

author Society of Motion Picture and Television Engineers (http://www.
smpte.org)

SMPTE ST 2084

title SMPTE ST 2084:2014“HighDynamic Range Electro-Optical Trans-
fer Function of Master Reference Displays”

author Society of Motion Picture and Television Engineers (http://www.
smpte.org)

7.2. Part I - Video for Linux API 695

http://www.w3.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org
http://www.smpte.org

Linux Userspace-api Documentation

sRGB

title IEC 61966-2-1 ed1.0“Multimedia systems and equipment - Colour
measurement and management - Part 2-1: Colour management -
Default RGB colour space - sRGB”

author International Electrotechnical Commission (http://www.iec.ch)

sYCC

title IEC 61966-2-1-am1 ed1.0 “Amendment 1 - Multimedia systems
and equipment - Colour measurement and management - Part 2-1:
Colour management - Default RGB colour space - sRGB”

author International Electrotechnical Commission (http://www.iec.ch)

xvYCC

title IEC 61966-2-4 ed1.0“Multimedia systems and equipment - Colour
measurement and management - Part 2-4: Colour management -
Extended-gamut YCC colour space for video applications - xvYCC”

author International Electrotechnical Commission (http://www.iec.ch)

opRGB

title IEC 61966-2-5“Multimedia systems and equipment - Colour mea-
surement and management - Part 2-5: Colour management - Op-
tional RGB colour space - opRGB”

author International Electrotechnical Commission (http://www.iec.ch)

ITU BT.2020

title ITU-R Recommendation BT.2020 (08/2012)“Parameter values for
ultra-high definition television systems for production and interna-
tional programme exchange”

author International Telecommunication Union (http://www.itu.ch)

EBU Tech 3213

title E.B.U. Standard for Chromaticity Tolerances for Studio Monitors”
author European Broadcast Union (http://www.ebu.ch)

696 Chapter 7. Linux Media Infrastructure userspace API

http://www.iec.ch
http://www.iec.ch
http://www.iec.ch
http://www.iec.ch
http://www.itu.ch
http://www.ebu.ch

Linux Userspace-api Documentation

IEC 62106

title Specification of the radio data system (RDS) for VHF/FM sound
broadcasting in the frequency range from 87,5 to 108,0 MHz

author International Electrotechnical Commission (http://www.iec.ch)

NRSC-4-B

title NRSC-4-B: United States RBDS Standard
author National Radio Systems Committee (http://www.nrscstandards.

org)

ISO 12232:2006

title Photography —Digital still cameras —Determination of exposure
index, ISO speed ratings, standard output sensitivity, and recom-
mended exposure index

author International Organization for Standardization (http://www.iso.
org)

CEA-861-E

title A DTV Profile for Uncompressed High Speed Digital Interfaces
author Consumer Electronics Association (http://www.ce.org)

VESA DMT

title VESA and Industry Standards and Guidelines for Computer Display
Monitor Timing (DMT)

author Video Electronics Standards Association (http://www.vesa.org)

EDID

title VESA Enhanced Extended Display Identification Data Standard
subtitle Release A, Revision 2
author Video Electronics Standards Association (http://www.vesa.org)

7.2. Part I - Video for Linux API 697

http://www.iec.ch
http://www.nrscstandards.org
http://www.nrscstandards.org
http://www.iso.org
http://www.iso.org
http://www.ce.org
http://www.vesa.org
http://www.vesa.org

Linux Userspace-api Documentation

HDCP

title High-bandwidth Digital Content Protection System
subtitle Revision 1.3
author Digital Content Protection LLC (http://www.digital-cp.com)

HDMI

title High-Definition Multimedia Interface
subtitle Specification Version 1.4a
author HDMI Licensing LLC (http://www.hdmi.org)

HDMI2

title High-Definition Multimedia Interface
subtitle Specification Version 2.0
author HDMI Licensing LLC (http://www.hdmi.org)

DP

title VESA DisplayPort Standard
subtitle Version 1, Revision 2
author Video Electronics Standards Association (http://www.vesa.org)

poynton

title Digital Video and HDTV, Algorithms and Interfaces
author Charles Poynton

colimg

title Color Imaging: Fundamentals and Applications
author Erik Reinhard et al.

698 Chapter 7. Linux Media Infrastructure userspace API

http://www.digital-cp.com
http://www.hdmi.org
http://www.hdmi.org
http://www.vesa.org

Linux Userspace-api Documentation

VP8

title RFC 6386: “VP8 Data Format and Decoding Guide”
author

J. Bankoski et al.

7.2.13 Revision and Copyright

Authors, in alphabetical order:

• Ailus, Sakari <sakari.ailus@iki.fi>

– Subdev selections API.
• Carvalho Chehab, Mauro <mchehab+samsung@kernel.org>

– Documented libv4l, designed and added v4l2grab example, Remote Con-
troller chapter.

• Dirks, Bill

– Original author of the V4L2 API and documentation.
• Figa, Tomasz <tfiga@chromium.org>

– Documented the memory-to-memory decoder interface.
• H Schimek, Michael <mschimek@gmx.at>

– Original author of the V4L2 API and documentation.
• Karicheri, Muralidharan <m-karicheri2@ti.com>

– Documented the Digital Video timings API.
• Osciak, Pawel <posciak@chromium.org>

– Documented the memory-to-memory decoder interface.
• Osciak, Pawel <pawel@osciak.com>

– Designed and documented the multi-planar API.
• Palosaari, Antti <crope@iki.fi>

– SDR API.
• Ribalda, Ricardo

– Introduce HSV formats and other minor changes.
• Rubli, Martin

– Designed and documented the VIDIOC_ENUM_FRAMESIZES and VID-
IOC_ENUM_FRAMEINTERVALS ioctls.

• Walls, Andy <awalls@md.metrocast.net>

– Documented the fielded V4L2_MPEG_STREAM_VBI_FMT_IVTV MPEG
stream embedded, sliced VBI data format in this specification.

• Verkuil, Hans <hverkuil@xs4all.nl>

7.2. Part I - Video for Linux API 699

mailto:sakari.ailus@iki.fi
mailto:mchehab+samsung@kernel.org
mailto:tfiga@chromium.org
mailto:mschimek@gmx.at
mailto:m-karicheri2@ti.com
mailto:posciak@chromium.org
mailto:pawel@osciak.com
mailto:crope@iki.fi
mailto:awalls@md.metrocast.net
mailto:hverkuil@xs4all.nl

Linux Userspace-api Documentation

– Designed and documented the VIDIOC_LOG_STATUS ioctl, the extended
control ioctls, major parts of the sliced VBI API, the MPEG encoder and
decoder APIs and the DV Timings API.

Copyright © 1999-2018: Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin
Rubli, Andy Walls, Muralidharan Karicheri, Mauro Carvalho Chehab, Pawel Os-
ciak, Sakari Ailus & Antti Palosaari, Tomasz Figa

Except when explicitly stated as GPL, programming examples within this part can
be used and distributed without restrictions.

7.2.14 Revision History

revision 4.10 / 2016-07-15 (rr)

Introduce HSV formats.

revision 4.5 / 2015-10-29 (rr)

Extend VIDIOC_G_EXT_CTRLS;. Replace ctrl_class with a new union with
ctrl_class and which. Which is used to select the current value of the control or
the default value.

revision 4.4 / 2015-05-26 (ap)

Renamed V4L2_TUNER_ADC to V4L2_TUNER_SDR. Added
V4L2_CID_RF_TUNER_RF_GAIN control. Added transmitter support for Software
Defined Radio (SDR) Interface.

revision 4.1 / 2015-02-13 (mcc)

Fix documentation for media controller device nodes and add support for DVB
device nodes. Add support for Tuner sub-device.

revision 3.19 / 2014-12-05 (hv)

Rewrote Colorspace chapter, added new enum v4l2_ycbcr_encoding
and enum v4l2_quantization fields to struct v4l2_pix_format, struct
v4l2_pix_format_mplane and struct v4l2_mbus_framefmt.

revision 3.17 / 2014-08-04 (lp, hv)

Extended struct v4l2_pix_format. Added format flags. Added compound control
types and VIDIOC_QUERY_EXT_CTRL.

revision 3.15 / 2014-02-03 (hv, ap)

Update several sections of “Common API Elements”: “Opening and Closing
Devices”“Querying Capabilities”, “Application Priority”, “Video Inputs and
Outputs”,“Audio Inputs and Outputs”“Tuners andModulators”,“Video Standards”
and “Digital Video (DV) Timings”. Added SDR API.

revision 3.14 / 2013-11-25 (rr)

Set width and height as unsigned on v4l2_rect.

revision 3.11 / 2013-05-26 (hv)

Remove obsolete VIDIOC_DBG_G_CHIP_IDENT ioctl.

revision 3.10 / 2013-03-25 (hv)

700 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Remove obsolete and unused DV_PRESET ioctls: VIDIOC_G_DV_PRESET,
VIDIOC_S_DV_PRESET, VIDIOC_QUERY_DV_PRESET and VID-
IOC_ENUM_DV_PRESET. Remove the related v4l2_input/output capability
flags V4L2_IN_CAP_PRESETS and V4L2_OUT_CAP_PRESETS. Added VID-
IOC_DBG_G_CHIP_INFO.

revision 3.9 / 2012-12-03 (sa, sn)

Added timestamp types to v4l2_buffer. Added V4L2_EVENT_CTRL_CH_RANGE
control event changes flag.

revision 3.6 / 2012-07-02 (hv)

Added VIDIOC_ENUM_FREQ_BANDS.

revision 3.5 / 2012-05-07 (sa, sn, hv)

Added V4L2_CTRL_TYPE_INTEGER_MENU and V4L2 subdev se-
lections API. Improved the description of V4L2_CID_COLORFX
control, added V4L2_CID_COLORFX_CBCR control.
Added camera controls V4L2_CID_AUTO_EXPOSURE_BIAS,
V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE, V4L2_CID_IMAGE_STABILIZATION,
V4L2_CID_ISO_SENSITIVITY, V4L2_CID_ISO_SENSITIVITY_AUTO,
V4L2_CID_EXPOSURE_METERING, V4L2_CID_SCENE_MODE,
V4L2_CID_3A_LOCK, V4L2_CID_AUTO_FOCUS_START,
V4L2_CID_AUTO_FOCUS_STOP, V4L2_CID_AUTO_FOCUS_STATUS and
V4L2_CID_AUTO_FOCUS_RANGE. Added VIDIOC_ENUM_DV_TIMINGS, VID-
IOC_QUERY_DV_TIMINGS and VIDIOC_DV_TIMINGS_CAP.

revision 3.4 / 2012-01-25 (sn)

Added JPEG compression control class.

revision 3.3 / 2012-01-11 (hv)

Added device_caps field to struct v4l2_capabilities.

revision 3.2 / 2011-08-26 (hv)

Added V4L2_CTRL_FLAG_VOLATILE.

revision 3.1 / 2011-06-27 (mcc, po, hv)

Documented that VIDIOC_QUERYCAP now returns a per-subsystem version in-
stead of a per-driver one. Standardize an error code for invalid ioctl. Added
V4L2_CTRL_TYPE_BITMASK.

revision 2.6.39 / 2011-03-01 (mcc, po)

Removed VIDIOC_*_OLD from videodev2.h header and update it to reflect latest
changes. Added the multi-planar API.

revision 2.6.37 / 2010-08-06 (hv)

Removed obsolete vtx (videotext) API.

revision 2.6.33 / 2009-12-03 (mk)

Added documentation for the Digital Video timings API.

revision 2.6.32 / 2009-08-31 (mcc)

7.2. Part I - Video for Linux API 701

Linux Userspace-api Documentation

Now, revisions will match the kernel version where the V4L2 API changes will be
used by the Linux Kernel. Also added Remote Controller chapter.

revision 0.29 / 2009-08-26 (ev)

Added documentation for string controls and for FM Transmitter controls.

revision 0.28 / 2009-08-26 (gl)

Added V4L2_CID_BAND_STOP_FILTER documentation.

revision 0.27 / 2009-08-15 (mcc)

Added libv4l and Remote Controller documentation; added v4l2grab and keytable
application examples.

revision 0.26 / 2009-07-23 (hv)

Finalized the RDS capture API. Added modulator and RDS encoder capabilities.
Added support for string controls.

revision 0.25 / 2009-01-18 (hv)

Added pixel formats VYUY, NV16 and NV61, and changed the debug
ioctls VIDIOC_DBG_G/S_REGISTER and VIDIOC_DBG_G_CHIP_IDENT. Added
camera controls V4L2_CID_ZOOM_ABSOLUTE, V4L2_CID_ZOOM_RELATIVE,
V4L2_CID_ZOOM_CONTINUOUS and V4L2_CID_PRIVACY.

revision 0.24 / 2008-03-04 (mhs)

Added pixel formats Y16 and SBGGR16, new controls and a camera controls class.
Removed VIDIOC_G/S_MPEGCOMP.

revision 0.23 / 2007-08-30 (mhs)

Fixed a typo in VIDIOC_DBG_G/S_REGISTER. Clarified the byte order of packed
pixel formats.

revision 0.22 / 2007-08-29 (mhs)

Added the Video Output Overlay interface, new MPEG controls,
V4L2_FIELD_INTERLACED_TB and V4L2_FIELD_INTERLACED_BT,
VIDIOC_DBG_G/S_REGISTER, VIDIOC_(TRY_)ENCODER_CMD, VID-
IOC_G_CHIP_IDENT, VIDIOC_G_ENC_INDEX, new pixel formats. Clarifications in
the cropping chapter, about RGB pixel formats, the mmap(), poll(), select(), read()
and write() functions. Typographical fixes.

revision 0.21 / 2006-12-19 (mhs)

Fixed a link in the VIDIOC_G_EXT_CTRLS section.

revision 0.20 / 2006-11-24 (mhs)

Clarified the purpose of the audioset field in struct v4l2_input and v4l2_output.

revision 0.19 / 2006-10-19 (mhs)

Documented V4L2_PIX_FMT_RGB444.

revision 0.18 / 2006-10-18 (mhs)

Added the description of extended controls by Hans Verkuil. Linked
V4L2_PIX_FMT_MPEG to V4L2_CID_MPEG_STREAM_TYPE.

702 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

revision 0.17 / 2006-10-12 (mhs)

Corrected V4L2_PIX_FMT_HM12 description.

revision 0.16 / 2006-10-08 (mhs)

VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS are now
part of the API.

revision 0.15 / 2006-09-23 (mhs)

Cleaned up the bibliography, added BT.653 and BT.1119. cap-
ture.c/start_capturing() for user pointer I/O did not initialize the buffer index.
Documented the V4LMPEG andMJPEG VID_TYPEs and V4L2_PIX_FMT_SBGGR8.
Updated the list of reserved pixel formats. See the history chapter for API changes.

revision 0.14 / 2006-09-14 (mr)

Added VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS
proposal for frame format enumeration of digital devices.

revision 0.13 / 2006-04-07 (mhs)

Corrected the description of struct v4l2_window clips. New V4L2_STD_ and
V4L2_TUNER_MODE_LANG1_LANG2 defines.

revision 0.12 / 2006-02-03 (mhs)

Corrected the description of struct v4l2_captureparm and v4l2_outputparm.

revision 0.11 / 2006-01-27 (mhs)

Improved the description of struct v4l2_tuner.

revision 0.10 / 2006-01-10 (mhs)

VIDIOC_G_INPUT and VIDIOC_S_PARM clarifications.

revision 0.9 / 2005-11-27 (mhs)

Improved the 525 line numbering diagram. Hans Verkuil and I rewrote the
sliced VBI section. He also contributed a VIDIOC_LOG_STATUS page. Fixed VID-
IOC_S_STD call in the video standard selection example. Various updates.

revision 0.8 / 2004-10-04 (mhs)

Somehow a piece of junk slipped into the capture example, removed.

revision 0.7 / 2004-09-19 (mhs)

Fixed video standard selection, control enumeration, downscaling and aspect ex-
ample. Added read and user pointer i/o to video capture example.

revision 0.6 / 2004-08-01 (mhs)

v4l2_buffer changes, added video capture example, various corrections.

revision 0.5 / 2003-11-05 (mhs)

Pixel format erratum.

revision 0.4 / 2003-09-17 (mhs)

Corrected source and Makefile to generate a PDF. SGML fixes. Added latest API
changes. Closed gaps in the history chapter.

7.2. Part I - Video for Linux API 703

Linux Userspace-api Documentation

revision 0.3 / 2003-02-05 (mhs)

Another draft, more corrections.

revision 0.2 / 2003-01-15 (mhs)

Second draft, with corrections pointed out by Gerd Knorr.

revision 0.1 / 2002-12-01 (mhs)

First draft, based on documentation by Bill Dirks and discussions on the V4L mail-
ing list.

7.3 Part II - Digital TV API

Note: This API is also known as Linux DVB API.
It it was originally written to support the European digital TV standard (DVB), and
later extended to support all digital TV standards.

In order to avoid confusion, within this document, it was opted to refer to it, and
to associated hardware as Digital TV.
The word DVB is reserved to be used for:
• the Digital TV API version (e. g. DVB API version 3 or DVB API version 5);

• digital TV data types (enums, structs, defines, etc);

• digital TV device nodes (/dev/dvb/...);

• the European DVB standard.

Version 5.10

7.3.1 Introduction

What you need to know

The reader of this document is required to have some knowledge in the area of
digital video broadcasting (Digital TV) and should be familiar with part I of the
MPEG2 specification ISO/IEC 13818 (aka ITU-T H.222), i.e you should know what
a program/transport stream (PS/TS) is and what is meant by a packetized elemen-
tary stream (PES) or an I-frame.

Various Digital TV standards documents are available for download at:

• European standards (DVB): http://www.dvb.org and/or http://www.etsi.org.

• American standards (ATSC): https://www.atsc.org/standards/

• Japanese standards (ISDB): http://www.dibeg.org/

It is also necessary to know how to access Linux devices and how to use ioctl calls.
This also includes the knowledge of C or C++.

704 Chapter 7. Linux Media Infrastructure userspace API

http://www.dvb.org
http://www.etsi.org
https://www.atsc.org/standards/
http://www.dibeg.org/

Linux Userspace-api Documentation

History

The first API for Digital TV cards we used at Convergence in late 1999 was an
extension of the Video4Linux API which was primarily developed for frame grabber
cards. As such it was not really well suited to be used for Digital TV cards and their
new features like recording MPEG streams and filtering several section and PES
data streams at the same time.

In early 2000, Convergence was approached by Nokia with a proposal for a new
standard Linux Digital TV API. As a commitment to the development of terminals
based on open standards, Nokia and Convergence made it available to all Linux
developers and published it on https://linuxtv.org in September 2000. With the
Linux driver for the Siemens/Hauppauge DVB PCI card, Convergence provided a
first implementation of the Linux Digital TV API. Convergence was the maintainer
of the Linux Digital TV API in the early days.

Now, the API is maintained by the LinuxTV community (i.e. you, the reader of
this document). The Linux Digital TV API is constantly reviewed and improved
together with the improvements at the subsystem’s core at the Kernel.

Overview

Fig. 18: Components of a Digital TV card/STB

A Digital TV card or set-top-box (STB) usually consists of the following main hard-
ware components:

Frontend consisting of tuner and digital TV demodulator Here the raw sig-
nal reaches the digital TV hardware from a satellite dish or antenna or directly
from cable. The frontend down-converts and demodulates this signal into an
MPEG transport stream (TS). In case of a satellite frontend, this includes a
facility for satellite equipment control (SEC), which allows control of LNB
polarization, multi feed switches or dish rotors.

7.3. Part II - Digital TV API 705

https://linuxtv.org

Linux Userspace-api Documentation

Conditional Access (CA) hardware like CI adapters and smartcard slots
The complete TS is passed through the CA hardware. Programs to which the
user has access (controlled by the smart card) are decoded in real time and
re-inserted into the TS.

Note: Not every digital TV hardware provides conditional access hardware.

Demultiplexer which filters the incoming Digital TV MPEG-TS stream
The demultiplexer splits the TS into its components like audio and video
streams. Besides usually several of such audio and video streams it also
contains data streams with information about the programs offered in this
or other streams of the same provider.

Audio and video decoder The main targets of the demultiplexer are audio and
video decoders. After decoding, they pass on the uncompressed audio and
video to the computer screen or to a TV set.

Note: Modern hardware usually doesn’t have a separate decoder hard-
ware, as such functionality can be provided by the main CPU, by the graphics
adapter of the system or by a signal processing hardware embedded on a
Systems on a Chip (SoC) integrated circuit.

It may also not be needed for certain usages (e.g. for data-only uses like
“internet over satellite”).

Components of a Digital TV card/STB shows a crude schematic of the control and
data flow between those components.

Linux Digital TV Devices

The Linux Digital TV API lets you control these hardware components through cur-
rently six Unix-style character devices for video, audio, frontend, demux, CA and
IP-over-DVB networking. The video and audio devices control the MPEG2 decoder
hardware, the frontend device the tuner and the Digital TV demodulator. The de-
mux device gives you control over the PES and section filters of the hardware. If
the hardware does not support filtering these filters can be implemented in soft-
ware. Finally, the CA device controls all the conditional access capabilities of the
hardware. It can depend on the individual security requirements of the platform,
if and how many of the CA functions are made available to the application through
this device.

All devices can be found in the /dev tree under /dev/dvb. The individual devices
are called:

• /dev/dvb/adapterN/audioM,

• /dev/dvb/adapterN/videoM,

• /dev/dvb/adapterN/frontendM,

• /dev/dvb/adapterN/netM,

• /dev/dvb/adapterN/demuxM,

706 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

• /dev/dvb/adapterN/dvrM,

• /dev/dvb/adapterN/caM,

where N enumerates the Digital TV cards in a system starting from 0, and M enu-
merates the devices of each type within each adapter, starting from 0, too. We will
omit the “/dev/dvb/adapterN/”in the further discussion of these devices.
More details about the data structures and function calls of all the devices are
described in the following chapters.

API include files

For each of the Digital TV devices a corresponding include file exists. The Digital
TV API include files should be included in application sources with a partial path
like:

#include <linux/dvb/ca.h>

#include <linux/dvb/dmx.h>

#include <linux/dvb/frontend.h>

#include <linux/dvb/net.h>

To enable applications to support different API version, an additional include file
linux/dvb/version.h exists, which defines the constant DVB_API_VERSION. This
document describes DVB_API_VERSION 5.10.

7.3.2 Digital TV Frontend API

The Digital TV frontend API was designed to support three groups of delivery sys-
tems: Terrestrial, cable and Satellite. Currently, the following delivery systems
are supported:

• Terrestrial systems: DVB-T, DVB-T2, ATSC, ATSC M/H, ISDB-T, DVB-H,
DTMB, CMMB

• Cable systems: DVB-C Annex A/C, ClearQAM (DVB-C Annex B)

• Satellite systems: DVB-S, DVB-S2, DVB Turbo, ISDB-S, DSS

The Digital TV frontend controls several sub-devices including:

• Tuner

• Digital TV demodulator

• Low noise amplifier (LNA)

• Satellite Equipment Control (SEC)1.
1 On Satellite systems, the API support for the Satellite Equipment Control (SEC) allows to power

control and to send/receive signals to control the antenna subsystem, selecting the polarization and
choosing the Intermediate Frequency IF) of the Low Noise Block Converter Feed Horn (LNBf). It
supports the DiSEqC and V-SEC protocols. The DiSEqC (digital SEC) specification is available at
Eutelsat.

7.3. Part II - Digital TV API 707

http://www.eutelsat.com/satellites/4_5_5.html

Linux Userspace-api Documentation

The frontend can be accessed through /dev/dvb/adapter?/frontend?. Data
types and ioctl definitions can be accessed by including linux/dvb/frontend.h
in your application.

Note: Transmission via the internet (DVB-IP) and MMT (MPEGMedia Transport)
is not yet handled by this API but a future extension is possible.

Querying frontend information

Usually, the first thing to do when the frontend is opened is to check the frontend
capabilities. This is done using ioctl FE_GET_INFO. This ioctl will enumerate the
Digital TV API version and other characteristics about the frontend, and can be
opened either in read only or read/write mode.

Querying frontend status and statistics

Once FE_SET_PROPERTY is called, the frontend will run a kernel thread that will
periodically check for the tuner lock status and provide statistics about the quality
of the signal.

The information about the frontend tuner locking status can be queried using ioctl
FE_READ_STATUS.

Signal statistics are provided via ioctl FE_SET_PROPERTY, FE_GET_PROPERTY.

Note: Most statistics require the demodulator to be fully locked (e. g. with
FE_HAS_LOCK bit set). See Frontend statistics indicators for more details.

Property types

Tuning into a Digital TV physical channel and starting decoding it requires chang-
ing a set of parameters, in order to control the tuner, the demodulator, the Linear
Low-noise Amplifier (LNA) and to set the antenna subsystem via Satellite Equip-
ment Control - SEC (on satellite systems). The actual parameters are specific
to each particular digital TV standards, and may change as the digital TV specs
evolves.

In the past (up to DVB API version 3 - DVBv3), the strategy used was to have a
union with the parameters needed to tune for DVB-S, DVB-C, DVB-T and ATSC
delivery systems grouped there. The problem is that, as the second generation
standards appeared, the size of such union was not big enough to group the structs
that would be required for those new standards. Also, extending it would break
userspace.

So, the legacy union/struct based approach was deprecated, in favor of
a properties set approach. On such approach, FE_GET_PROPERTY and
FE_SET_PROPERTY are used to setup the frontend and read its status.

708 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

The actual action is determined by a set of dtv_property cmd/data pairs. With one
single ioctl, is possible to get/set up to 64 properties.

This section describes the new and recommended way to set the frontend, with
supports all digital TV delivery systems.

Note:
1. On Linux DVB API version 3, setting a frontend was done via struct

dvb_frontend_parameters.

2. Don’t use DVB API version 3 calls on hardware with supports newer stan-
dards. Such API provides no support or a very limited support to new stan-
dards and/or new hardware.

3. Nowadays, most frontends support multiple delivery systems. Only with DVB
API version 5 calls it is possible to switch between the multiple delivery sys-
tems supported by a frontend.

4. DVB API version 5 is also called S2API, as the first new standard added to it
was DVB-S2.

Example: in order to set the hardware to tune into a DVB-C channel at 651 kHz,
modulated with 256-QAM, FEC 3/4 and symbol rate of 5.217 Mbauds, those prop-
erties should be sent to FE_SET_PROPERTY ioctl:

DTV_DELIVERY_SYSTEM = SYS_DVBC_ANNEX_A

DTV_FREQUENCY = 651000000

DTV_MODULATION = QAM_256

DTV_INVERSION = INVERSION_AUTO

DTV_SYMBOL_RATE = 5217000

DTV_INNER_FEC = FEC_3_4

DTV_TUNE

The code that would that would do the above is show in Example: Setting digital
TV frontend properties.

Listing 1: Example: Setting digital TV frontend prop-
erties

#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/dvb/frontend.h>

static struct dtv_property props[] = {
{ .cmd = DTV_DELIVERY_SYSTEM, .u.data = SYS_DVBC_ANNEX_A },
{ .cmd = DTV_FREQUENCY, .u.data = 651000000 },
{ .cmd = DTV_MODULATION, .u.data = QAM_256 },
{ .cmd = DTV_INVERSION, .u.data = INVERSION_AUTO },
{ .cmd = DTV_SYMBOL_RATE, .u.data = 5217000 },
{ .cmd = DTV_INNER_FEC, .u.data = FEC_3_4 },

(continues on next page)

7.3. Part II - Digital TV API 709

Linux Userspace-api Documentation

(continued from previous page)
{ .cmd = DTV_TUNE }

};

static struct dtv_properties dtv_prop = {
.num = 6, .props = props

};

int main(void)
{

int fd = open("/dev/dvb/adapter0/frontend0", O_RDWR);

if (!fd) {
perror ("open");
return -1;

}
if (ioctl(fd, FE_SET_PROPERTY, &dtv_prop) == -1) {

perror("ioctl");
return -1;

}
printf("Frontend set\\n");
return 0;

}

Attention: While it is possible to directly call the Kernel code like the above
example, it is strongly recommended to use libdvbv5, as it provides abstraction
to work with the supported digital TV standards and provides methods for usual
operations like program scanning and to read/write channel descriptor files.

Digital TV property parameters

There are several different Digital TV parameters that can be used by
FE_SET_PROPERTY and FE_GET_PROPERTY ioctls. This section describes each
of them. Please notice, however, that only a subset of them are needed to setup a
frontend.

710 Chapter 7. Linux Media Infrastructure userspace API

https://linuxtv.org/docs/libdvbv5/index.html

Linux Userspace-api Documentation

DTV_UNDEFINED

Used internally. A GET/SET operation for it won’t change or return anything.

DTV_TUNE

Interpret the cache of data, build either a traditional frontend tunerequest so we
can pass validation in the FE_SET_FRONTEND ioctl.

DTV_CLEAR

Reset a cache of data specific to the frontend here. This does not effect hardware.

DTV_FREQUENCY

Frequency of the digital TV transponder/channel.

Note:
1. For satellite delivery systems, the frequency is in kHz.

2. For cable and terrestrial delivery systems, the frequency is in Hz.

3. On most delivery systems, the frequency is the center frequency of the
transponder/channel. The exception is for ISDB-T, where the main carrier
has a 1/7 offset from the center.

4. For ISDB-T, the channels are usually transmitted with an offset of about
143kHz. E.g. a valid frequency could be 474,143 kHz. The stepping is bound
to the bandwidth of the channel which is typically 6MHz.

5. In ISDB-Tsb, the channel consists of only one or three segments the frequency
step is 429kHz, 3*429 respectively.

DTV_MODULATION

Specifies the frontend modulation type for delivery systems that supports more
multiple modulations.

The modulation can be one of the types defined by enum fe_modulation.

Most of the digital TV standards offers more than one possible modulation type.

The table below presents a summary of the types of modulation types supported
by each delivery system, as currently defined by specs.

7.3. Part II - Digital TV API 711

Linux Userspace-api Documentation

Standard Modulation types
ATSC (version 1) 8-VSB and 16-VSB.
DMTB 4-QAM, 16-QAM, 32-QAM, 64-QAM and 4-QAM-NR.
DVB-C Annex A/C 16-QAM, 32-QAM, 64-QAM and 256-QAM.
DVB-C Annex B 64-QAM.
DVB-T QPSK, 16-QAM and 64-QAM.
DVB-T2 QPSK, 16-QAM, 64-QAM and 256-QAM.
DVB-S No need to set. It supports only QPSK.
DVB-S2 QPSK, 8-PSK, 16-APSK and 32-APSK.
ISDB-T QPSK, DQPSK, 16-QAM and 64-QAM.
ISDB-S 8-PSK, QPSK and BPSK.

Note: Please notice that some of the above modulation types may not be defined
currently at the Kernel. The reason is simple: no driver needed such definition
yet.

DTV_BANDWIDTH_HZ

Bandwidth for the channel, in HZ.

Should be set only for terrestrial delivery systems.

Possible values: 1712000, 5000000, 6000000, 7000000, 8000000, 10000000.

Terrestrial Stan-
dard

Possible values for bandwidth

ATSC (version 1) No need to set. It is always 6MHz.
DMTB No need to set. It is always 8MHz.
DVB-T 6MHz, 7MHz and 8MHz.
DVB-T2 1.172 MHz, 5MHz, 6MHz, 7MHz, 8MHz and 10MHz
ISDB-T 5MHz, 6MHz, 7MHz and 8MHz, although most places use

6MHz.

Note:
1. For ISDB-Tsb, the bandwidth can vary depending on the number of connected
segments.

It can be easily derived from other parameters
(DTV_ISDBT_SB_SEGMENT_IDX, DTV_ISDBT_SB_SEGMENT_COUNT).

2. On Satellite and Cable delivery systems, the bandwidth depends on
the symbol rate. So, the Kernel will silently ignore any setting
DTV_BANDWIDTH_HZ. I will however fill it back with a bandwidth estima-
tion.

Such bandwidth estimation takes into account the symbol rate set with
DTV_SYMBOL_RATE, and the rolloff factor, with is fixed for DVB-C and DVB-
S.

712 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

For DVB-S2, the rolloff should also be set via DTV_ROLLOFF.

DTV_INVERSION

Specifies if the frontend should do spectral inversion or not.

The acceptable values are defined by fe_spectral_inversion.

DTV_DISEQC_MASTER

Currently not implemented.

DTV_SYMBOL_RATE

Used on cable and satellite delivery systems.

Digital TV symbol rate, in bauds (symbols/second).

DTV_INNER_FEC

Used on cable and satellite delivery systems.

The acceptable values are defined by fe_code_rate.

DTV_VOLTAGE

Used on satellite delivery systems.

The voltage is usually used with non-DiSEqC capable LNBs to switch the polarza-
tion (horizontal/vertical). When using DiSEqC epuipment this voltage has to be
switched consistently to the DiSEqC commands as described in the DiSEqC spec.

The acceptable values are defined by fe_sec_voltage.

DTV_TONE

Currently not used.

7.3. Part II - Digital TV API 713

Linux Userspace-api Documentation

DTV_PILOT

Used on DVB-S2.

Sets DVB-S2 pilot.

The acceptable values are defined by fe_pilot.

DTV_ROLLOFF

Used on DVB-S2.

Sets DVB-S2 rolloff.

The acceptable values are defined by fe_rolloff.

DTV_DISEQC_SLAVE_REPLY

Currently not implemented.

DTV_FE_CAPABILITY_COUNT

Currently not implemented.

DTV_FE_CAPABILITY

Currently not implemented.

DTV_DELIVERY_SYSTEM

Specifies the type of the delivery system.

The acceptable values are defined by fe_delivery_system.

DTV_ISDBT_PARTIAL_RECEPTION

Used only on ISDB.

If DTV_ISDBT_SOUND_BROADCASTING is ‘0’this bit-field represents whether the
channel is in partial reception mode or not.

If ‘1’DTV_ISDBT_LAYERA_* values are assigned to the center segment and
DTV_ISDBT_LAYERA_SEGMENT_COUNT has to be ‘1’.
If in addition DTV_ISDBT_SOUND_BROADCASTING is ‘1’
DTV_ISDBT_PARTIAL_RECEPTION represents whether this ISDB-Tsb channel is
consisting of one segment and layer or three segments and two layers.

Possible values: 0, 1, -1 (AUTO)

714 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

DTV_ISDBT_SOUND_BROADCASTING

Used only on ISDB.

This field represents whether the other DTV_ISDBT_*-parameters are referring to
an ISDB-T and an ISDB-Tsb channel. (See also DTV_ISDBT_PARTIAL_RECEPTION).

Possible values: 0, 1, -1 (AUTO)

DTV_ISDBT_SB_SUBCHANNEL_ID

Used only on ISDB.

This field only applies if DTV_ISDBT_SOUND_BROADCASTING is ‘1’.
(Note of the author: This might not be the correct description of the
SUBCHANNEL-ID in all details, but it is my understanding of the technical back-
ground needed to program a device)

An ISDB-Tsb channel (1 or 3 segments) can be broadcasted alone or in a set of
connected ISDB-Tsb channels. In this set of channels every channel can be re-
ceived independently. The number of connected ISDB-Tsb segment can vary, e.g.
depending on the frequency spectrum bandwidth available.

Example: Assume 8 ISDB-Tsb connected segments are broadcasted. The broad-
caster has several possibilities to put those channels in the air: Assuming a normal
13-segment ISDB-T spectrum he can align the 8 segments from position 1-8 to 5-13
or anything in between.

The underlying layer of segments are subchannels: each segment is consisting
of several subchannels with a predefined IDs. A sub-channel is used to help the
demodulator to synchronize on the channel.

An ISDB-T channel is always centered over all sub-channels. As for the example
above, in ISDB-Tsb it is no longer as simple as that.

The DTV_ISDBT_SB_SUBCHANNEL_ID parameter is used to give the sub-channel ID
of the segment to be demodulated.

Possible values: 0 .. 41, -1 (AUTO)

DTV_ISDBT_SB_SEGMENT_IDX

Used only on ISDB.

This field only applies if DTV_ISDBT_SOUND_BROADCASTING is ‘1’.
DTV_ISDBT_SB_SEGMENT_IDX gives the index of the segment to be demodulated
for an ISDB-Tsb channel where several of them are transmitted in the connected
manner.

Possible values: 0 .. DTV_ISDBT_SB_SEGMENT_COUNT - 1

Note: This value cannot be determined by an automatic channel search.

7.3. Part II - Digital TV API 715

Linux Userspace-api Documentation

DTV_ISDBT_SB_SEGMENT_COUNT

Used only on ISDB.

This field only applies if DTV_ISDBT_SOUND_BROADCASTING is ‘1’.
DTV_ISDBT_SB_SEGMENT_COUNT gives the total count of connected ISDB-Tsb chan-
nels.

Possible values: 1 .. 13

Note: This value cannot be determined by an automatic channel search.

DTV-ISDBT-LAYER[A-C] parameters

Used only on ISDB.

ISDB-T channels can be coded hierarchically. As opposed to DVB-T in ISDB-T
hierarchical layers can be decoded simultaneously. For that reason a ISDB-T de-
modulator has 3 Viterbi and 3 Reed-Solomon decoders.

ISDB-T has 3 hierarchical layers which each can use a part of the available seg-
ments. The total number of segments over all layers has to 13 in ISDB-T.

There are 3 parameter sets, for Layers A, B and C.

DTV_ISDBT_LAYER_ENABLED

Used only on ISDB.

Hierarchical reception in ISDB-T is achieved by enabling or disabling layers in the
decoding process. Setting all bits of DTV_ISDBT_LAYER_ENABLED to‘1’forces all
layers (if applicable) to be demodulated. This is the default.

If the channel is in the partial reception mode (DTV_ISDBT_PARTIAL_RECEPTION =
1) the central segment can be decoded independently of the other 12 segments.
In that mode layer A has to have a SEGMENT_COUNT of 1.

In ISDB-Tsb only layer A is used, it can be 1 or 3 in ISDB-Tsb according to
DTV_ISDBT_PARTIAL_RECEPTION. SEGMENT_COUNT must be filled accordingly.

Only the values of the first 3 bits are used. Other bits will be silently ignored:

DTV_ISDBT_LAYER_ENABLED bit 0: layer A enabled

DTV_ISDBT_LAYER_ENABLED bit 1: layer B enabled

DTV_ISDBT_LAYER_ENABLED bit 2: layer C enabled

DTV_ISDBT_LAYER_ENABLED bits 3-31: unused

716 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

DTV_ISDBT_LAYER[A-C]_FEC

Used only on ISDB.

The Forward Error Correction mechanism used by a given ISDB Layer, as defined
by fe_code_rate.

Possible values are: FEC_AUTO, FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8

DTV_ISDBT_LAYER[A-C]_MODULATION

Used only on ISDB.

The modulation used by a given ISDB Layer, as defined by fe_modulation.

Possible values are: QAM_AUTO, QPSK, QAM_16, QAM_64, DQPSK

Note:
1. If layer C is DQPSK, then layer B has to be DQPSK.

2. If layer B is DQPSK and DTV_ISDBT_PARTIAL_RECEPTION= 0, then layer has to
be DQPSK.

DTV_ISDBT_LAYER[A-C]_SEGMENT_COUNT

Used only on ISDB.

Possible values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1 (AUTO)

Note: Truth table for DTV_ISDBT_SOUND_BROADCASTING and
DTV_ISDBT_PARTIAL_RECEPTION and LAYER[A-C]_SEGMENT_COUNT

Table 219: Truth table for ISDB-T Sound Broadcast-
ing

Partial Recep-
tion

Sound Broadcast-
ing

Layer A
width

Layer B
width

Layer C
width

total
width

0 0 1 .. 13 1 .. 13 1 .. 13 13
1 0 1 1 .. 13 1 .. 13 13
0 1 1 0 0 1
1 1 1 2 0 13

7.3. Part II - Digital TV API 717

Linux Userspace-api Documentation

DTV_ISDBT_LAYER[A-C]_TIME_INTERLEAVING

Used only on ISDB.

Valid values: 0, 1, 2, 4, -1 (AUTO)

when DTV_ISDBT_SOUND_BROADCASTING is active, value 8 is also valid.

Note: The real time interleaving length depends on the mode (fft-size). The values
here are referring to what can be found in the TMCC-structure, as shown in the
table below.

isdbt_layer_interleaving_table

Table 220: ISDB-T time interleaving modes
DTV_ISDBT_LAYER[A-C]_TIME_INTERLEAVINGMode 1 (2K

FFT)
Mode 2 (4K
FFT)

Mode 3 (8K
FFT)

0 0 0 0
1 4 2 1
2 8 4 2
4 16 8 4

DTV_ATSCMH_FIC_VER

Used only on ATSC-MH.

Version number of the FIC (Fast Information Channel) signaling data.

FIC is used for relaying information to allow rapid service acquisition by the re-
ceiver.

Possible values: 0, 1, 2, 3, ⋯, 30, 31

DTV_ATSCMH_PARADE_ID

Used only on ATSC-MH.

Parade identification number

A parade is a collection of up to eight MH groups, conveying one or two ensembles.

Possible values: 0, 1, 2, 3, ⋯, 126, 127

DTV_ATSCMH_NOG

Used only on ATSC-MH.

Number of MH groups per MH subframe for a designated parade.

Possible values: 1, 2, 3, 4, 5, 6, 7, 8

718 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

DTV_ATSCMH_TNOG

Used only on ATSC-MH.

Total number of MH groups including all MH groups belonging to all MH parades
in one MH subframe.

Possible values: 0, 1, 2, 3, ⋯, 30, 31

DTV_ATSCMH_SGN

Used only on ATSC-MH.

Start group number.

Possible values: 0, 1, 2, 3, ⋯, 14, 15

DTV_ATSCMH_PRC

Used only on ATSC-MH.

Parade repetition cycle.

Possible values: 1, 2, 3, 4, 5, 6, 7, 8

DTV_ATSCMH_RS_FRAME_MODE

Used only on ATSC-MH.

Reed Solomon (RS) frame mode.

The acceptable values are defined by atscmh_rs_frame_mode.

DTV_ATSCMH_RS_FRAME_ENSEMBLE

Used only on ATSC-MH.

Reed Solomon(RS) frame ensemble.

The acceptable values are defined by atscmh_rs_frame_ensemble.

DTV_ATSCMH_RS_CODE_MODE_PRI

Used only on ATSC-MH.

Reed Solomon (RS) code mode (primary).

The acceptable values are defined by atscmh_rs_code_mode.

7.3. Part II - Digital TV API 719

Linux Userspace-api Documentation

DTV_ATSCMH_RS_CODE_MODE_SEC

Used only on ATSC-MH.

Reed Solomon (RS) code mode (secondary).

The acceptable values are defined by atscmh_rs_code_mode.

DTV_ATSCMH_SCCC_BLOCK_MODE

Used only on ATSC-MH.

Series Concatenated Convolutional Code Block Mode.

The acceptable values are defined by atscmh_sccc_block_mode.

DTV_ATSCMH_SCCC_CODE_MODE_A

Used only on ATSC-MH.

Series Concatenated Convolutional Code Rate.

The acceptable values are defined by atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_B

Used only on ATSC-MH.

Series Concatenated Convolutional Code Rate.

Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_C

Used only on ATSC-MH.

Series Concatenated Convolutional Code Rate.

Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_D

Used only on ATSC-MH.

Series Concatenated Convolutional Code Rate.

Possible values are the same as documented on enum atscmh_sccc_code_mode.

720 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

DTV_API_VERSION

Returns the major/minor version of the Digital TV API

DTV_CODE_RATE_HP

Used on terrestrial transmissions.

The acceptable values are defined by fe_transmit_mode.

DTV_CODE_RATE_LP

Used on terrestrial transmissions.

The acceptable values are defined by fe_transmit_mode.

DTV_GUARD_INTERVAL

The acceptable values are defined by fe_guard_interval.

Note:
1. If DTV_GUARD_INTERVAL is set the GUARD_INTERVAL_AUTO the hardware will
try to find the correct guard interval (if capable) and will use TMCC to fill in
the missing parameters.

2. Intervals GUARD_INTERVAL_1_128, GUARD_INTERVAL_19_128 and
GUARD_INTERVAL_19_256 are used only for DVB-T2 at present.

3. Intervals GUARD_INTERVAL_PN420, GUARD_INTERVAL_PN595 and
GUARD_INTERVAL_PN945 are used only for DMTB at the present. On such
standard, only those intervals and GUARD_INTERVAL_AUTO are valid.

DTV_TRANSMISSION_MODE

Used only on OFTM-based standards, e. g. DVB-T/T2, ISDB-T, DTMB.

Specifies the FFT size (with corresponds to the approximate number of carriers)
used by the standard.

The acceptable values are defined by fe_transmit_mode.

Note:
1. ISDB-T supports three carrier/symbol-size: 8K, 4K, 2K. It is called mode on
such standard, and are numbered from 1 to 3:

7.3. Part II - Digital TV API 721

Linux Userspace-api Documentation

Mode FFT size Transmission mode
1 2K TRANSMISSION_MODE_2K
2 4K TRANSMISSION_MODE_4K
3 8K TRANSMISSION_MODE_8K

2. If DTV_TRANSMISSION_MODE is set the TRANSMISSION_MODE_AUTO the hardware
will try to find the correct FFT-size (if capable) and will use TMCC to fill in
the missing parameters.

3. DVB-T specifies 2K and 8K as valid sizes.

4. DVB-T2 specifies 1K, 2K, 4K, 8K, 16K and 32K.

5. DTMB specifies C1 and C3780.

DTV_HIERARCHY

Used only on DVB-T and DVB-T2.

Frontend hierarchy.

The acceptable values are defined by fe_hierarchy.

DTV_STREAM_ID

Used on DVB-S2, DVB-T2 and ISDB-S.

DVB-S2, DVB-T2 and ISDB-S support the transmission of several streams on a
single transport stream. This property enables the digital TV driver to handle sub-
stream filtering, when supported by the hardware. By default, substream filtering
is disabled.

For DVB-S2 and DVB-T2, the valid substream id range is from 0 to 255.

For ISDB, the valid substream id range is from 1 to 65535.

To disable it, you should use the special macro NO_STREAM_ID_FILTER.

Note: any value outside the id range also disables filtering.

DTV_DVBT2_PLP_ID_LEGACY

Obsolete, replaced with DTV_STREAM_ID.

722 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

DTV_ENUM_DELSYS

AMulti standard frontend needs to advertise the delivery systems provided. Appli-
cations need to enumerate the provided delivery systems, before using any other
operation with the frontend. Prior to it’s introduction, FE_GET_INFO was used to
determine a frontend type. A frontend which provides more than a single delivery
system, FE_GET_INFO doesn’t help much. Applications which intends to use a
multistandard frontend must enumerate the delivery systems associated with it,
rather than trying to use FE_GET_INFO. In the case of a legacy frontend, the result
is just the same as with FE_GET_INFO, but in a more structured format

The acceptable values are defined by fe_delivery_system.

DTV_INTERLEAVING

Time interleaving to be used.

The acceptable values are defined by fe_interleaving.

DTV_LNA

Low-noise amplifier.

Hardware might offer controllable LNA which can be set manually using that pa-
rameter. Usually LNA could be found only from terrestrial devices if at all.

Possible values: 0, 1, LNA_AUTO

0, LNA off

1, LNA on

use the special macro LNA_AUTO to set LNA auto

DTV_SCRAMBLING_SEQUENCE_INDEX

Used on DVB-S2.

This 18 bit field, when present, carries the index of the DVB-S2 physical layer
scrambling sequence as defined in clause 5.5.4 of EN 302 307. There is no ex-
plicit signalling method to convey scrambling sequence index to the receiver. If
S2 satellite delivery system descriptor is available it can be used to read the scram-
bling sequence index (EN 300 468 table 41).

By default, gold scrambling sequence index 0 is used.

The valid scrambling sequence index range is from 0 to 262142.

7.3. Part II - Digital TV API 723

Linux Userspace-api Documentation

Frontend statistics indicators

The values are returned via dtv_property.stat. If the property is supported,
dtv_property.stat.len is bigger than zero.

For most delivery systems, dtv_property.stat.len will be 1 if the stats is sup-
ported, and the properties will return a single value for each parameter.

It should be noted, however, that new OFDM delivery systems like ISDB can use
different modulation types for each group of carriers. On such standards, up to
3 groups of statistics can be provided, and dtv_property.stat.len is updated to
reflect the“global”metrics, plus one metric per each carrier group (called“layer”
on ISDB).

So, in order to be consistent with other delivery systems, the first value at
dtv_property.stat.dtv_stats array refers to the global metric. The other el-
ements of the array represent each layer, starting from layer A(index 1), layer B
(index 2) and so on.

The number of filled elements are stored at dtv_property.stat.len.

Each element of the dtv_property.stat.dtv_stats array consists on two ele-
ments:

• svalue or uvalue, where svalue is for signed values of the measure (dB mea-
sures) and uvalue is for unsigned values (counters, relative scale)

• scale - Scale for the value. It can be:

– FE_SCALE_NOT_AVAILABLE - The parameter is supported by the frontend,
but it was not possible to collect it (could be a transitory or permanent
condition)

– FE_SCALE_DECIBEL - parameter is a signed value, measured in 1/1000 dB

– FE_SCALE_RELATIVE - parameter is a unsigned value, where 0 means 0%
and 65535 means 100%.

– FE_SCALE_COUNTER - parameter is a unsigned value that counts the oc-
currence of an event, like bit error, block error, or lapsed time.

DTV_STAT_SIGNAL_STRENGTH

Indicates the signal strength level at the analog part of the tuner or of the demod.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was
not complete yet.

• FE_SCALE_DECIBEL - signal strength is in 0.001 dBm units, power measured
in miliwatts. This value is generally negative.

• FE_SCALE_RELATIVE - The frontend provides a 0% to 100% measurement for
power (actually, 0 to 65535).

724 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

DTV_STAT_CNR

Indicates the Signal to Noise ratio for the main carrier.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was
not complete yet.

• FE_SCALE_DECIBEL - Signal/Noise ratio is in 0.001 dB units.

• FE_SCALE_RELATIVE - The frontend provides a 0% to 100% measurement for
Signal/Noise (actually, 0 to 65535).

DTV_STAT_PRE_ERROR_BIT_COUNT

Measures the number of bit errors before the forward error correction (FEC) on
the inner coding block (before Viterbi, LDPC or other inner code).

This measure is taken during the same interval as
DTV_STAT_PRE_TOTAL_BIT_COUNT.

In order to get the BER (Bit Error Rate) measurement, it should be divided by
DTV_STAT_PRE_TOTAL_BIT_COUNT.

This measurement is monotonically increased, as the frontend gets more bit count
measurements. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was
not complete yet.

• FE_SCALE_COUNTER - Number of error bits counted before the inner coding.

DTV_STAT_PRE_TOTAL_BIT_COUNT

Measures the amount of bits received before the inner code block, during the same
period as DTV_STAT_PRE_ERROR_BIT_COUNT measurement was taken.

It should be noted that this measurement can be smaller than the total amount
of bits on the transport stream, as the frontend may need to manually restart the
measurement, losing some data between each measurement interval.

This measurement is monotonically increased, as the frontend gets more bit count
measurements. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was
not complete yet.

• FE_SCALE_COUNTER - Number of bits counted while measuring
DTV_STAT_PRE_ERROR_BIT_COUNT.

7.3. Part II - Digital TV API 725

Linux Userspace-api Documentation

DTV_STAT_POST_ERROR_BIT_COUNT

Measures the number of bit errors after the forward error correction (FEC) done
by inner code block (after Viterbi, LDPC or other inner code).

This measure is taken during the same interval as
DTV_STAT_POST_TOTAL_BIT_COUNT.

In order to get the BER (Bit Error Rate) measurement, it should be divided by
DTV_STAT_POST_TOTAL_BIT_COUNT.

This measurement is monotonically increased, as the frontend gets more bit count
measurements. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was
not complete yet.

• FE_SCALE_COUNTER - Number of error bits counted after the inner coding.

DTV_STAT_POST_TOTAL_BIT_COUNT

Measures the amount of bits received after the inner coding, during the same
period as DTV_STAT_POST_ERROR_BIT_COUNT measurement was taken.

It should be noted that this measurement can be smaller than the total amount
of bits on the transport stream, as the frontend may need to manually restart the
measurement, losing some data between each measurement interval.

This measurement is monotonically increased, as the frontend gets more bit count
measurements. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was
not complete yet.

• FE_SCALE_COUNTER - Number of bits counted while measuring
DTV_STAT_POST_ERROR_BIT_COUNT.

DTV_STAT_ERROR_BLOCK_COUNT

Measures the number of block errors after the outer forward error correction cod-
ing (after Reed-Solomon or other outer code).

This measurement is monotonically increased, as the frontend gets more bit count
measurements. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was
not complete yet.

• FE_SCALE_COUNTER - Number of error blocks counted after the outer coding.

726 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

DTV-STAT_TOTAL_BLOCK_COUNT

Measures the total number of blocks received during the same period as
DTV_STAT_ERROR_BLOCK_COUNT measurement was taken.

It can be used to calculate the PER indicator, by dividing
DTV_STAT_ERROR_BLOCK_COUNT by DTV-STAT_TOTAL_BLOCK_COUNT.

Possible scales for this metric are:

• FE_SCALE_NOT_AVAILABLE - it failed to measure it, or the measurement was
not complete yet.

• FE_SCALE_COUNTER - Number of blocks counted while measuring
DTV_STAT_ERROR_BLOCK_COUNT.

Properties used on terrestrial delivery systems

DVB-T delivery system

The following parameters are valid for DVB-T:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_CODE_RATE_HP

• DTV_CODE_RATE_LP

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_HIERARCHY

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

7.3. Part II - Digital TV API 727

Linux Userspace-api Documentation

DVB-T2 delivery system

DVB-T2 support is currently in the early stages of development, so expect that this
section maygrow and become more detailed with time.

The following parameters are valid for DVB-T2:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_CODE_RATE_HP

• DTV_CODE_RATE_LP

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_HIERARCHY

• DTV_STREAM_ID

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

ISDB-T delivery system

This ISDB-T/ISDB-Tsb API extension should reflect all information needed to tune
any ISDB-T/ISDB-Tsb hardware. Of course it is possible that some very sophisti-
cated devices won’t need certain parameters to tune.
The information given here should help application writers to know how to handle
ISDB-T and ISDB-Tsb hardware using the Linux Digital TV API.

The details given here about ISDB-T and ISDB-Tsb are just enough to basically
show the dependencies between the needed parameter values, but surely some
information is left out. For more detailed information see the following documents:

ARIB STD-B31 - “Transmission System for Digital Terrestrial Television Broad-
casting”and
ARIB TR-B14 - “Operational Guidelines for Digital Terrestrial Television Broad-
casting”.
In order to understand the ISDB specific parameters, one has to have some knowl-
edge the channel structure in ISDB-T and ISDB-Tsb. I.e. it has to be known to the

728 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

reader that an ISDB-T channel consists of 13 segments, that it can have up to 3
layer sharing those segments, and things like that.

The following parameters are valid for ISDB-T:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_ISDBT_LAYER_ENABLED

• DTV_ISDBT_PARTIAL_RECEPTION

• DTV_ISDBT_SOUND_BROADCASTING

• DTV_ISDBT_SB_SUBCHANNEL_ID

• DTV_ISDBT_SB_SEGMENT_IDX

• DTV_ISDBT_SB_SEGMENT_COUNT

• DTV_ISDBT_LAYERA_FEC

• DTV_ISDBT_LAYERA_MODULATION

• DTV_ISDBT_LAYERA_SEGMENT_COUNT

• DTV_ISDBT_LAYERA_TIME_INTERLEAVING

• DTV_ISDBT_LAYERB_FEC

• DTV_ISDBT_LAYERB_MODULATION

• DTV_ISDBT_LAYERB_SEGMENT_COUNT

• DTV_ISDBT_LAYERB_TIME_INTERLEAVING

• DTV_ISDBT_LAYERC_FEC

• DTV_ISDBT_LAYERC_MODULATION

• DTV_ISDBT_LAYERC_SEGMENT_COUNT

• DTV_ISDBT_LAYERC_TIME_INTERLEAVING

In addition, the DTV QoS statistics are also valid.

7.3. Part II - Digital TV API 729

Linux Userspace-api Documentation

ATSC delivery system

The following parameters are valid for ATSC:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

In addition, the DTV QoS statistics are also valid.

ATSC-MH delivery system

The following parameters are valid for ATSC-MH:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_BANDWIDTH_HZ

• DTV_ATSCMH_FIC_VER

• DTV_ATSCMH_PARADE_ID

• DTV_ATSCMH_NOG

• DTV_ATSCMH_TNOG

• DTV_ATSCMH_SGN

• DTV_ATSCMH_PRC

• DTV_ATSCMH_RS_FRAME_MODE

• DTV_ATSCMH_RS_FRAME_ENSEMBLE

• DTV_ATSCMH_RS_CODE_MODE_PRI

• DTV_ATSCMH_RS_CODE_MODE_SEC

• DTV_ATSCMH_SCCC_BLOCK_MODE

• DTV_ATSCMH_SCCC_CODE_MODE_A

• DTV_ATSCMH_SCCC_CODE_MODE_B

• DTV_ATSCMH_SCCC_CODE_MODE_C

730 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

• DTV_ATSCMH_SCCC_CODE_MODE_D

In addition, the DTV QoS statistics are also valid.

DTMB delivery system

The following parameters are valid for DTMB:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_BANDWIDTH_HZ

• DTV_INVERSION

• DTV_INNER_FEC

• DTV_GUARD_INTERVAL

• DTV_TRANSMISSION_MODE

• DTV_INTERLEAVING

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

Properties used on cable delivery systems

DVB-C delivery system

The DVB-C Annex-A is the widely used cable standard. Transmission uses QAM
modulation.

The DVB-C Annex-C is optimized for 6MHz, and is used in Japan. It supports a
subset of the Annex A modulation types, and a roll-off of 0.13, instead of 0.15

The following parameters are valid for DVB-C Annex A/C:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_INVERSION

7.3. Part II - Digital TV API 731

Linux Userspace-api Documentation

• DTV_SYMBOL_RATE

• DTV_INNER_FEC

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

DVB-C Annex B delivery system

The DVB-C Annex-B is only used on a few Countries like the United States.

The following parameters are valid for DVB-C Annex B:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_MODULATION

• DTV_INVERSION

• DTV_LNA

In addition, the DTV QoS statistics are also valid.

Properties used on satellite delivery systems

DVB-S delivery system

The following parameters are valid for DVB-S:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_INVERSION

• DTV_SYMBOL_RATE

• DTV_INNER_FEC

• DTV_VOLTAGE

• DTV_TONE

In addition, the DTV QoS statistics are also valid.

Future implementations might add those two missing parameters:

732 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

• DTV_DISEQC_MASTER

• DTV_DISEQC_SLAVE_REPLY

DVB-S2 delivery system

In addition to all parameters valid for DVB-S, DVB-S2 supports the following pa-
rameters:

• DTV_MODULATION

• DTV_PILOT

• DTV_ROLLOFF

• DTV_STREAM_ID

• DTV_SCRAMBLING_SEQUENCE_INDEX

In addition, the DTV QoS statistics are also valid.

Turbo code delivery system

In addition to all parameters valid for DVB-S, turbo code supports the following
parameters:

• DTV_MODULATION

ISDB-S delivery system

The following parameters are valid for ISDB-S:

• DTV_API_VERSION

• DTV_DELIVERY_SYSTEM

• DTV_TUNE

• DTV_CLEAR

• DTV_FREQUENCY

• DTV_INVERSION

• DTV_SYMBOL_RATE

• DTV_INNER_FEC

• DTV_VOLTAGE

• DTV_STREAM_ID

7.3. Part II - Digital TV API 733

Linux Userspace-api Documentation

Frontend uAPI data types

enum fe_caps
Frontend capabilities

Constants
FE_IS_STUPID There’s something wrong at the frontend, and it can’t report its

capabilities.

FE_CAN_INVERSION_AUTO Can auto-detect frequency spectral band inversion

FE_CAN_FEC_1_2 Supports FEC 1/2

FE_CAN_FEC_2_3 Supports FEC 2/3

FE_CAN_FEC_3_4 Supports FEC 3/4

FE_CAN_FEC_4_5 Supports FEC 4/5

FE_CAN_FEC_5_6 Supports FEC 5/6

FE_CAN_FEC_6_7 Supports FEC 6/7

FE_CAN_FEC_7_8 Supports FEC 7/8

FE_CAN_FEC_8_9 Supports FEC 8/9

FE_CAN_FEC_AUTO Can auto-detect FEC

FE_CAN_QPSK Supports QPSK modulation

FE_CAN_QAM_16 Supports 16-QAM modulation

FE_CAN_QAM_32 Supports 32-QAM modulation

FE_CAN_QAM_64 Supports 64-QAM modulation

FE_CAN_QAM_128 Supports 128-QAM modulation

FE_CAN_QAM_256 Supports 256-QAM modulation

FE_CAN_QAM_AUTO Can auto-detect QAM modulation

FE_CAN_TRANSMISSION_MODE_AUTO Can auto-detect transmission mode

FE_CAN_BANDWIDTH_AUTO Can auto-detect bandwidth

FE_CAN_GUARD_INTERVAL_AUTO Can auto-detect guard interval

FE_CAN_HIERARCHY_AUTO Can auto-detect hierarchy

FE_CAN_8VSB Supports 8-VSB modulation

FE_CAN_16VSB Supporta 16-VSB modulation

FE_HAS_EXTENDED_CAPS Unused

FE_CAN_MULTISTREAM Supports multistream filtering

FE_CAN_TURBO_FEC Supports “turbo FEC”modulation
FE_CAN_2G_MODULATION Supports “2nd generation”modulation, e. g. DVB-S2,

DVB-T2, DVB-C2

FE_NEEDS_BENDING Unused

734 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

FE_CAN_RECOVER Can recover from a cable unplug automatically

FE_CAN_MUTE_TS Can stop spurious TS data output

struct dvb_frontend_info
Frontend properties and capabilities

Definition

struct dvb_frontend_info {
char name[128];
enum fe_type type;
__u32 frequency_min;
__u32 frequency_max;
__u32 frequency_stepsize;
__u32 frequency_tolerance;
__u32 symbol_rate_min;
__u32 symbol_rate_max;
__u32 symbol_rate_tolerance;
__u32 notifier_delay;
enum fe_caps caps;

};

Members
name Name of the frontend

type DEPRECATED. Should not be used on modern programs, as a frontend may
havemore than one type. In order to get the support types of a given frontend,
use DTV_ENUM_DELSYS instead.

frequency_min Minimal frequency supported by the frontend.

frequency_max Minimal frequency supported by the frontend.

frequency_stepsize All frequencies are multiple of this value.

frequency_tolerance Frequency tolerance.

symbol_rate_min Minimal symbol rate, in bauds (for Cable/Satellite systems).

symbol_rate_max Maximal symbol rate, in bauds (for Cable/Satellite systems).

symbol_rate_tolerance Maximal symbol rate tolerance, in ppm (for Ca-
ble/Satellite systems).

notifier_delay DEPRECATED. Not used by any driver.
caps Capabilities supported by the frontend, as specified in enum fe_caps.

Description
struct dvb_diseqc_master_cmd

DiSEqC master command

Definition

struct dvb_diseqc_master_cmd {
__u8 msg[6];
__u8 msg_len;

};

7.3. Part II - Digital TV API 735

Linux Userspace-api Documentation

Members
msg DiSEqC message to be sent. It contains a 3 bytes header with: framing +

address + command, and an optional argument of up to 3 bytes of data.

msg_len Length of the DiSEqC message. Valid values are 3 to 6.

Description
Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for the pos-
sible messages that can be used.

struct dvb_diseqc_slave_reply
DiSEqC received data

Definition

struct dvb_diseqc_slave_reply {
__u8 msg[4];
__u8 msg_len;
int timeout;

};

Members
msg DiSEqC message buffer to store a message received via DiSEqC. It contains

one byte header with: framing and an optional argument of up to 3 bytes of
data.

msg_len Length of the DiSEqC message. Valid values are 0 to 4, where 0 means
no message.

timeout Return from ioctl after timeout ms with errorcode when no message was
received.

Description
Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for the pos-
sible messages that can be used.

enum fe_sec_voltage
DC Voltage used to feed the LNBf

Constants
SEC_VOLTAGE_13 Output 13V to the LNBf

SEC_VOLTAGE_18 Output 18V to the LNBf

SEC_VOLTAGE_OFF Don’t feed the LNBf with a DC voltage
enum fe_sec_tone_mode

Type of tone to be send to the LNBf.

Constants
SEC_TONE_ON Sends a 22kHz tone burst to the antenna.

SEC_TONE_OFF Don’t send a 22kHz tone to the antenna (except if the FE_DISEQC_*
ioctls are called).

enum fe_sec_mini_cmd
Type of mini burst to be sent

736 Chapter 7. Linux Media Infrastructure userspace API

http://www.eutelsat.org/
http://www.eutelsat.org/

Linux Userspace-api Documentation

Constants
SEC_MINI_A Sends a mini-DiSEqC 22kHz ‘0’Tone Burst to select satellite-A
SEC_MINI_B Sends a mini-DiSEqC 22kHz ‘1’Data Burst to select satellite-B
enum fe_status

Enumerates the possible frontend status.

Constants
FE_NONE The frontend doesn’t have any kind of lock. That’s the initial frontend

status

FE_HAS_SIGNAL Has found something above the noise level.

FE_HAS_CARRIER Has found a signal.

FE_HAS_VITERBI FEC inner coding (Viterbi, LDPC or other inner code). is stable.

FE_HAS_SYNC Synchronization bytes was found.

FE_HAS_LOCK Digital TV were locked and everything is working.

FE_TIMEDOUT Fo lock within the last about 2 seconds.

FE_REINIT Frontend was reinitialized, application is recommended to reset DiS-
EqC, tone and parameters.

enum fe_spectral_inversion
Type of inversion band

Constants
INVERSION_OFF Don’t do spectral band inversion.
INVERSION_ON Do spectral band inversion.

INVERSION_AUTO Autodetect spectral band inversion.

Description
This parameter indicates if spectral inversion should be presumed or not. In the
automatic setting (INVERSION_AUTO) the hardware will try to figure out the correct
setting by itself. If the hardware doesn’t support, the dvb_frontend will try to
lock at the carrier first with inversion off. If it fails, it will try to enable inversion.

enum fe_code_rate
Type of Forward Error Correction (FEC)

Constants
FEC_NONE No Forward Error Correction Code

FEC_1_2 Forward Error Correction Code 1/2

FEC_2_3 Forward Error Correction Code 2/3

FEC_3_4 Forward Error Correction Code 3/4

FEC_4_5 Forward Error Correction Code 4/5

FEC_5_6 Forward Error Correction Code 5/6

FEC_6_7 Forward Error Correction Code 6/7

7.3. Part II - Digital TV API 737

Linux Userspace-api Documentation

FEC_7_8 Forward Error Correction Code 7/8

FEC_8_9 Forward Error Correction Code 8/9

FEC_AUTO Autodetect Error Correction Code

FEC_3_5 Forward Error Correction Code 3/5

FEC_9_10 Forward Error Correction Code 9/10

FEC_2_5 Forward Error Correction Code 2/5

Description
Please note that not all FEC types are supported by a given standard.

enum fe_modulation
Type of modulation/constellation

Constants
QPSK QPSK modulation

QAM_16 16-QAM modulation

QAM_32 32-QAM modulation

QAM_64 64-QAM modulation

QAM_128 128-QAM modulation

QAM_256 256-QAM modulation

QAM_AUTO Autodetect QAM modulation

VSB_8 8-VSB modulation

VSB_16 16-VSB modulation

PSK_8 8-PSK modulation

APSK_16 16-APSK modulation

APSK_32 32-APSK modulation

DQPSK DQPSK modulation

QAM_4_NR 4-QAM-NR modulation

Description
Please note that not all modulations are supported by a given standard.

enum fe_transmit_mode
Transmission mode

Constants
TRANSMISSION_MODE_2K Transmission mode 2K

TRANSMISSION_MODE_8K Transmission mode 8K

TRANSMISSION_MODE_AUTO Autodetect transmission mode. The hardware will try
to find the correct FFT-size (if capable) to fill in the missing parameters.

TRANSMISSION_MODE_4K Transmission mode 4K

738 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

TRANSMISSION_MODE_1K Transmission mode 1K

TRANSMISSION_MODE_16K Transmission mode 16K

TRANSMISSION_MODE_32K Transmission mode 32K

TRANSMISSION_MODE_C1 Single Carrier (C=1) transmission mode (DTMB only)

TRANSMISSION_MODE_C3780 Multi Carrier (C=3780) transmission mode (DTMB
only)

Description
Please note that not all transmission modes are supported by a given standard.

enum fe_guard_interval
Guard interval

Constants
GUARD_INTERVAL_1_32 Guard interval 1/32

GUARD_INTERVAL_1_16 Guard interval 1/16

GUARD_INTERVAL_1_8 Guard interval 1/8

GUARD_INTERVAL_1_4 Guard interval 1/4

GUARD_INTERVAL_AUTO Autodetect the guard interval

GUARD_INTERVAL_1_128 Guard interval 1/128

GUARD_INTERVAL_19_128 Guard interval 19/128

GUARD_INTERVAL_19_256 Guard interval 19/256

GUARD_INTERVAL_PN420 PN length 420 (1/4)

GUARD_INTERVAL_PN595 PN length 595 (1/6)

GUARD_INTERVAL_PN945 PN length 945 (1/9)

Description
Please note that not all guard intervals are supported by a given standard.

enum fe_hierarchy
Hierarchy

Constants
HIERARCHY_NONE No hierarchy

HIERARCHY_1 Hierarchy 1

HIERARCHY_2 Hierarchy 2

HIERARCHY_4 Hierarchy 4

HIERARCHY_AUTO Autodetect hierarchy (if supported)

Description
Please note that not all hierarchy types are supported by a given standard.

enum fe_interleaving
Interleaving

7.3. Part II - Digital TV API 739

Linux Userspace-api Documentation

Constants
INTERLEAVING_NONE No interleaving.

INTERLEAVING_AUTO Auto-detect interleaving.

INTERLEAVING_240 Interleaving of 240 symbols.

INTERLEAVING_720 Interleaving of 720 symbols.

Description
Please note that, currently, only DTMB uses it.

enum fe_pilot
Type of pilot tone

Constants
PILOT_ON Pilot tones enabled

PILOT_OFF Pilot tones disabled

PILOT_AUTO Autodetect pilot tones

enum fe_rolloff
Rolloff factor

Constants
ROLLOFF_35 Roloff factor: α=35%

ROLLOFF_20 Roloff factor: α=20%

ROLLOFF_25 Roloff factor: α=25%

ROLLOFF_AUTO Auto-detect the roloff factor.

Description
enum fe_delivery_system

Type of the delivery system

Constants
SYS_UNDEFINED Undefined standard. Generally, indicates an error

SYS_DVBC_ANNEX_A Cable TV: DVB-C following ITU-T J.83 Annex A spec

SYS_DVBC_ANNEX_B Cable TV: DVB-C following ITU-T J.83 Annex B spec (Clear-
QAM)

SYS_DVBT Terrestrial TV: DVB-T

SYS_DSS Satellite TV: DSS (not fully supported)

SYS_DVBS Satellite TV: DVB-S

SYS_DVBS2 Satellite TV: DVB-S2

SYS_DVBH Terrestrial TV (mobile): DVB-H (standard deprecated)

SYS_ISDBT Terrestrial TV: ISDB-T

SYS_ISDBS Satellite TV: ISDB-S

SYS_ISDBC Cable TV: ISDB-C (no drivers yet)

740 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

SYS_ATSC Terrestrial TV: ATSC

SYS_ATSCMH Terrestrial TV (mobile): ATSC-M/H

SYS_DTMB Terrestrial TV: DTMB

SYS_CMMB Terrestrial TV (mobile): CMMB (not fully supported)

SYS_DAB Digital audio: DAB (not fully supported)

SYS_DVBT2 Terrestrial TV: DVB-T2

SYS_TURBO Satellite TV: DVB-S Turbo

SYS_DVBC_ANNEX_C Cable TV: DVB-C following ITU-T J.83 Annex C spec

enum atscmh_sccc_block_mode
Type of Series Concatenated Convolutional Code Block Mode.

Constants
ATSCMH_SCCC_BLK_SEP Separate SCCC: the SCCC outer code mode shall be set

independently for each Group Region (A, B, C, D)

ATSCMH_SCCC_BLK_COMB Combined SCCC: all four Regions shall have the same
SCCC outer code mode.

ATSCMH_SCCC_BLK_RES Reserved. Shouldn’t be used.
enum atscmh_sccc_code_mode

Type of Series Concatenated Convolutional Code Rate.

Constants
ATSCMH_SCCC_CODE_HLF The outer code rate of a SCCC Block is 1/2 rate.

ATSCMH_SCCC_CODE_QTR The outer code rate of a SCCC Block is 1/4 rate.

ATSCMH_SCCC_CODE_RES Reserved. Should not be used.

enum atscmh_rs_frame_ensemble
Reed Solomon(RS) frame ensemble.

Constants
ATSCMH_RSFRAME_ENS_PRI Primary Ensemble.

ATSCMH_RSFRAME_ENS_SEC Secondary Ensemble.

enum atscmh_rs_frame_mode
Reed Solomon (RS) frame mode.

Constants
ATSCMH_RSFRAME_PRI_ONLY Single Frame: There is only a primary RS Frame for

all Group Regions.

ATSCMH_RSFRAME_PRI_SEC Dual Frame: There are two separate RS Frames: Pri-
mary RS Frame for Group Region A and B and Secondary RS Frame for Group
Region C and D.

ATSCMH_RSFRAME_RES Reserved. Shouldn’t be used.
enum atscmh_rs_code_mode

7.3. Part II - Digital TV API 741

Linux Userspace-api Documentation

Constants
ATSCMH_RSCODE_211_187 Reed Solomon code (211,187).

ATSCMH_RSCODE_223_187 Reed Solomon code (223,187).

ATSCMH_RSCODE_235_187 Reed Solomon code (235,187).

ATSCMH_RSCODE_RES Reserved. Shouldn’t be used.
enum fecap_scale_params

scale types for the quality parameters.

Constants
FE_SCALE_NOT_AVAILABLE That QoS measure is not available. That could indicate

a temporary or a permanent condition.

FE_SCALE_DECIBEL The scale is measured in 0.001 dB steps, typically used on
signal measures.

FE_SCALE_RELATIVE The scale is a relative percentual measure, ranging from 0
(0%) to 0xffff (100%).

FE_SCALE_COUNTER The scale counts the occurrence of an event, like bit error,
block error, lapsed time.

struct dtv_stats
Used for reading a DTV status property

Definition

struct dtv_stats {
__u8 scale;
union {

__u64 uvalue;
__s64 svalue;

};
};

Members
scale Filled with enum fecap_scale_params - the scale in usage for that parameter

{unnamed_union} anonymous

uvalue unsigned integer value of the measure, used when scale is either
FE_SCALE_RELATIVE or FE_SCALE_COUNTER.

svalue integer value of the measure, for FE_SCALE_DECIBEL, used for dB mea-
sures. The unit is 0.001 dB.

Description
For most delivery systems, this will return a single value for each parameter.

It should be noticed, however, that new OFDM delivery systems like ISDB can use
different modulation types for each group of carriers. On such standards, up to 8
groups of statistics can be provided, one for each carrier group (called“layer”on
ISDB).

742 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

In order to be consistent with other delivery systems, the first value refers to the
entire set of carriers (“global”).
scale should use the value FE_SCALE_NOT_AVAILABLEwhen the value for the entire
group of carriers or from one specific layer is not provided by the hardware.

len should be filled with the latest filled status + 1.
In other words, for ISDB, those values should be filled like:

u.st.stat.svalue[0] = global statistics;
u.st.stat.scale[0] = FE_SCALE_DECIBEL;
u.st.stat.value[1] = layer A statistics;
u.st.stat.scale[1] = FE_SCALE_NOT_AVAILABLE (if not available);
u.st.stat.svalue[2] = layer B statistics;
u.st.stat.scale[2] = FE_SCALE_DECIBEL;
u.st.stat.svalue[3] = layer C statistics;
u.st.stat.scale[3] = FE_SCALE_DECIBEL;
u.st.len = 4;

struct dtv_fe_stats
store Digital TV frontend statistics

Definition

struct dtv_fe_stats {
__u8 len;
struct dtv_stats stat[MAX_DTV_STATS];

};

Members
len length of the statistics - if zero, stats is disabled.

stat array with digital TV statistics.

Description
On most standards, len can either be 0 or 1. However, for ISDB, each layer is
modulated in separate. So, each layer may have its own set of statistics. If so,
stat[0] carries on a global value for the property. Indexes 1 to 3 means layer A to
B.

struct dtv_property
store one of frontend command and its value

Definition

struct dtv_property {
__u32 cmd;
__u32 reserved[3];
union {

__u32 data;
struct dtv_fe_stats st;
struct {
__u8 data[32];
__u32 len;
__u32 reserved1[3];
void *reserved2;

(continues on next page)

7.3. Part II - Digital TV API 743

Linux Userspace-api Documentation

(continued from previous page)
} buffer;

} u;
int result;

};

Members
cmd Digital TV command.

reserved Not used.

u Union with the values for the command.

u.data A unsigned 32 bits integer with command value.

u.st a struct dtv_fe_stats array of statistics.

u.buffer Struct to store bigger properties. Currently unused.

u.buffer.data an unsigned 32-bits array.

u.buffer.len number of elements of the buffer.

u.buffer.reserved1 Reserved.

u.buffer.reserved2 Reserved.

result Currently unused.

struct dtv_properties
a set of command/value pairs.

Definition

struct dtv_properties {
__u32 num;
struct dtv_property *props;

};

Members
num amount of commands stored at the struct.

props a pointer to struct dtv_property.

Frontend Function Calls

Digital TV frontend open()

Name

fe-open - Open a frontend device

744 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.

flags Open flags. Access can either be O_RDWR or O_RDONLY.

Multiple opens are allowed with O_RDONLY. In this mode, only query and read
ioctls are allowed.

Only one open is allowed in O_RDWR. In this mode, all ioctls are allowed.

When the O_NONBLOCK flag is given, the system calls may return EAGAIN error
code when no data is available or when the device driver is temporarily busy.

Other flags have no effect.

Description

This system call opens a named frontend device (/dev/dvb/adapter?/frontend?)
for subsequent use. Usually the first thing to do after a successful open is to find
out the frontend type with ioctl FE_GET_INFO.

The device can be opened in read-only mode, which only allows monitoring of
device status and statistics, or read/write mode, which allows any kind of use (e.g.
performing tuning operations.)

In a system with multiple front-ends, it is usually the case that multiple devices
cannot be open in read/write mode simultaneously. As long as a front-end device
is opened in read/write mode, other open() calls in read/write mode will either fail
or block, depending on whether non-blocking or blocking mode was specified. A
front-end device opened in blocking mode can later be put into non-blocking mode
(and vice versa) using the F_SETFL command of the fcntl system call. This is a
standard system call, documented in the Linux manual page for fcntl. When an
open() call has succeeded, the device will be ready for use in the specified mode.
This implies that the corresponding hardware is powered up, and that other front-
ends may have been powered down to make that possible.

7.3. Part II - Digital TV API 745

Linux Userspace-api Documentation

Return Value

On success open() returns the new file descriptor. On error, -1 is returned, and
the errno variable is set appropriately.

Possible error codes are:

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

EPERM The caller has no permission to access the device.
EBUSY The the device driver is already in use.
EMFILE The process already has the maximum number of files open.
ENFILE The limit on the total number of files open on the system has been reached.

The generic error codes are described at the Generic Error Codes chapter.

Digital TV frontend close()

Name

fe-close - Close a frontend device

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

This system call closes a previously opened front-end device. After closing a front-
end device, its corresponding hardware might be powered down automatically.

746 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_GET_INFO

Name

FE_GET_INFO - Query Digital TV frontend capabilities and returns information
about the - front-end. This call only requires read-only access to the device.

Synopsis

int ioctl(int fd, FE_GET_INFO, struct dvb_frontend_info *argp)

Arguments

fd File descriptor returned by open().

argp pointer to struct struct dvb_frontend_info

Description

All Digital TV frontend devices support the ioctl FE_GET_INFO ioctl. It is used
to identify kernel devices compatible with this specification and to obtain in-
formation about driver and hardware capabilities. The ioctl takes a pointer to
dvb_frontend_info which is filled by the driver. When the driver is not compatible
with this specification the ioctl returns an error.

frontend capabilities

Capabilities describe what a frontend can do. Some capabilities are supported
only on some specific frontend types.

The frontend capabilities are described at fe_caps.

7.3. Part II - Digital TV API 747

Linux Userspace-api Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_READ_STATUS

Name

FE_READ_STATUS - Returns status information about the front-end. This call only
requires - read-only access to the device

Synopsis

int ioctl(int fd, FE_READ_STATUS, unsigned int *status)

Arguments

fd File descriptor returned by open().

status pointer to a bitmask integer filled with the values defined by enum
fe_status.

Description

All Digital TV frontend devices support the FE_READ_STATUS ioctl. It is used to
check about the locking status of the frontend after being tuned. The ioctl takes a
pointer to an integer where the status will be written.

Note: The size of status is actually sizeof(enum fe_status), with varies according
with the architecture. This needs to be fixed in the future.

int fe_status

The fe_status parameter is used to indicate the current state and/or state changes
of the frontend hardware. It is produced using the enum fe_status values on a
bitmask

748 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_PROPERTY, FE_GET_PROPERTY

Name

FE_SET_PROPERTY - FE_GET_PROPERTY - FE_SET_PROPERTY sets one or more
frontend properties. - FE_GET_PROPERTY returns one or more frontend proper-
ties.

Synopsis

int ioctl(int fd, FE_GET_PROPERTY, struct dtv_properties *argp)

int ioctl(int fd, FE_SET_PROPERTY, struct dtv_properties *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dtv_properties.

Description

All Digital TV frontend devices support the FE_SET_PROPERTY and
FE_GET_PROPERTY ioctls. The supported properties and statistics depends on
the delivery system and on the device:

• FE_SET_PROPERTY:

– This ioctl is used to set one or more frontend properties.
– This is the basic command to request the frontend to tune into some
frequency and to start decoding the digital TV signal.

– This call requires read/write access to the device.

Note: At return, the values aren’t updated to reflect the actual parameters
used. If the actual parameters are needed, an explicit call to FE_GET_PROPERTY is
needed.

• FE_GET_PROPERTY:

– This ioctl is used to get properties and statistics from the frontend.

7.3. Part II - Digital TV API 749

Linux Userspace-api Documentation

– No properties are changed, and statistics aren’t reset.
– This call only requires read-only access to the device.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_RESET_OVERLOAD

Name

FE_DISEQC_RESET_OVERLOAD - Restores the power to the antenna subsystem,
if it was powered off due - to power overload.

Synopsis

int ioctl(int fd, FE_DISEQC_RESET_OVERLOAD, NULL)

Arguments

fd File descriptor returned by open().

Description

If the bus has been automatically powered off due to power overload, this ioctl call
restores the power to the bus. The call requires read/write access to the device.
This call has no effect if the device is manually powered off. Not all Digital TV
adapters support this ioctl.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

750 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

ioctl FE_DISEQC_SEND_MASTER_CMD

Name

FE_DISEQC_SEND_MASTER_CMD - Sends a DiSEqC command

Synopsis

int ioctl(int fd, FE_DISEQC_SEND_MASTER_CMD, struct
dvb_diseqc_master_cmd *argp)

Arguments

fd File descriptor returned by open().

argp pointer to struct dvb_diseqc_master_cmd

Description

Sends the DiSEqC command pointed by dvb_diseqc_master_cmd to the antenna
subsystem.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_RECV_SLAVE_REPLY

Name

FE_DISEQC_RECV_SLAVE_REPLY - Receives reply from a DiSEqC 2.0 command

Synopsis

int ioctl(int fd, FE_DISEQC_RECV_SLAVE_REPLY, struct
dvb_diseqc_slave_reply *argp)

7.3. Part II - Digital TV API 751

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp pointer to struct dvb_diseqc_slave_reply.

Description

Receives reply from a DiSEqC 2.0 command.

The received message is stored at the buffer pointed by argp.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_SEND_BURST

Name

FE_DISEQC_SEND_BURST - Sends a 22KHz tone burst for 2x1 mini DiSEqC satel-
lite selection.

Synopsis

int ioctl(int fd, FE_DISEQC_SEND_BURST, enum fe_sec_mini_cmd tone)

Arguments

fd File descriptor returned by open().

tone An integer enumered value described at fe_sec_mini_cmd.

Description

This ioctl is used to set the generation of a 22kHz tone burst for mini DiSEqC
satellite selection for 2x1 switches. This call requires read/write permissions.

It provides support for what’s specified at Digital Satellite Equipment Control
(DiSEqC) - Simple “ToneBurst”Detection Circuit specification.

752 Chapter 7. Linux Media Infrastructure userspace API

http://www.eutelsat.com/files/contributed/satellites/pdf/Diseqc/associated%20docs/simple_tone_burst_detec.pdf
http://www.eutelsat.com/files/contributed/satellites/pdf/Diseqc/associated%20docs/simple_tone_burst_detec.pdf

Linux Userspace-api Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_TONE

Name

FE_SET_TONE - Sets/resets the generation of the continuous 22kHz tone.

Synopsis

int ioctl(int fd, FE_SET_TONE, enum fe_sec_tone_mode tone)

Arguments

fd File descriptor returned by open().

tone an integer enumered value described at fe_sec_tone_mode

Description

This ioctl is used to set the generation of the continuous 22kHz tone. This call
requires read/write permissions.

Usually, satellite antenna subsystems require that the digital TV device to send a
22kHz tone in order to select between high/low band on some dual-band LNBf.
It is also used to send signals to DiSEqC equipment, but this is done using the
DiSEqC ioctls.

Attention: If more than one device is connected to the same antenna, set-
ting a tone may interfere on other devices, as they may lose the capability of
selecting the band. So, it is recommended that applications would change to
SEC_TONE_OFF when the device is not used.

7.3. Part II - Digital TV API 753

Linux Userspace-api Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_VOLTAGE

Name

FE_SET_VOLTAGE - Allow setting the DC level sent to the antenna subsystem.

Synopsis

int ioctl(int fd, FE_SET_VOLTAGE, enum fe_sec_voltage voltage)

Arguments

fd File descriptor returned by open().

voltage an integer enumered value described at fe_sec_voltage

Description

This ioctl allows to set the DC voltage level sent through the antenna cable to 13V,
18V or off.

Usually, a satellite antenna subsystems require that the digital TV device to send a
DC voltage to feed power to the LNBf. Depending on the LNBf type, the polariza-
tion or the intermediate frequency (IF) of the LNBf can controlled by the voltage
level. Other devices (for example, the ones that implement DISEqC and multipoint
LNBf’s don’t need to control the voltage level, provided that either 13V or 18V
is sent to power up the LNBf.

Attention: if more than one device is connected to the same antenna, set-
ting a voltage level may interfere on other devices, as they may lose the ca-
pability of setting polarization or IF. So, on those cases, setting the voltage to
SEC_VOLTAGE_OFF while the device is not is used is recommended.

754 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_ENABLE_HIGH_LNB_VOLTAGE

Name

FE_ENABLE_HIGH_LNB_VOLTAGE - Select output DC level between normal LNBf
voltages or higher LNBf - voltages.

Synopsis

int ioctl(int fd, FE_ENABLE_HIGH_LNB_VOLTAGE, unsigned int high)

Arguments

fd File descriptor returned by open().

high Valid flags:

• 0 - normal 13V and 18V.

• >0 - enables slightly higher voltages instead of 13/18V, in order to com-
pensate for long antenna cables.

Description

Select output DC level between normal LNBf voltages or higher LNBf voltages
between 0 (normal) or a value grater than 0 for higher voltages.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

7.3. Part II - Digital TV API 755

Linux Userspace-api Documentation

ioctl FE_SET_FRONTEND_TUNE_MODE

Name

FE_SET_FRONTEND_TUNE_MODE - Allow setting tuner mode flags to the fron-
tend.

Synopsis

int ioctl(int fd, FE_SET_FRONTEND_TUNE_MODE, unsigned int flags)

Arguments

fd File descriptor returned by open().

flags Valid flags:

• 0 - normal tune mode

• FE_TUNE_MODE_ONESHOT - When set, this flag will disable any zigzagging
or other“normal”tuning behaviour. Additionally, there will be no auto-
matic monitoring of the lock status, and hence no frontend events will be
generated. If a frontend device is closed, this flag will be automatically
turned off when the device is reopened read-write.

Description

Allow setting tuner mode flags to the frontend, between 0 (normal) or
FE_TUNE_MODE_ONESHOT mode

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

7.3.3 Digital TV Demux Device

The Digital TV demux device controls the MPEG-TS filters for the digital TV. If
the driver and hardware supports, those filters are implemented at the hardware.
Otherwise, the Kernel provides a software emulation.

It can be accessed through /dev/adapter?/demux?. Data types and and ioctl def-
initions can be accessed by including linux/dvb/dmx.h in your application.

756 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Demux Data Types

enum dmx_output
Output for the demux.

Constants
DMX_OUT_DECODER Streaming directly to decoder.

DMX_OUT_TAP Output going to a memory buffer (to be retrieved via the read com-
mand). Delivers the stream output to the demux device on which the ioctl is
called.

DMX_OUT_TS_TAP Output multiplexed into a new TS (to be retrieved by reading
from the logical DVR device). Routes output to the logical DVR device /dev/
dvb/adapter?/dvr?, which delivers a TSmultiplexed from all filters for which
DMX_OUT_TS_TAP was specified.

DMX_OUT_TSDEMUX_TAP Like DMX_OUT_TS_TAP but retrieved from the DMX de-
vice.

enum dmx_input
Input from the demux.

Constants
DMX_IN_FRONTEND Input from a front-end device.

DMX_IN_DVR Input from the logical DVR device.

enum dmx_ts_pes
type of the PES filter.

Constants
DMX_PES_AUDIO0 first audio PID. Also referred as DMX_PES_AUDIO.
DMX_PES_VIDEO0 first video PID. Also referred as DMX_PES_VIDEO.
DMX_PES_TELETEXT0 first teletext PID. Also referred as DMX_PES_TELETEXT.
DMX_PES_SUBTITLE0 first subtitle PID. Also referred as DMX_PES_SUBTITLE.
DMX_PES_PCR0 first Program Clock Reference PID. Also referred as

DMX_PES_PCR.
DMX_PES_AUDIO1 second audio PID.

DMX_PES_VIDEO1 second video PID.

DMX_PES_TELETEXT1 second teletext PID.

DMX_PES_SUBTITLE1 second subtitle PID.

DMX_PES_PCR1 second Program Clock Reference PID.

DMX_PES_AUDIO2 third audio PID.

DMX_PES_VIDEO2 third video PID.

DMX_PES_TELETEXT2 third teletext PID.

DMX_PES_SUBTITLE2 third subtitle PID.

7.3. Part II - Digital TV API 757

Linux Userspace-api Documentation

DMX_PES_PCR2 third Program Clock Reference PID.

DMX_PES_AUDIO3 fourth audio PID.

DMX_PES_VIDEO3 fourth video PID.

DMX_PES_TELETEXT3 fourth teletext PID.

DMX_PES_SUBTITLE3 fourth subtitle PID.

DMX_PES_PCR3 fourth Program Clock Reference PID.

DMX_PES_OTHER any other PID.

struct dmx_filter
Specifies a section header filter.

Definition

struct dmx_filter {
__u8 filter[DMX_FILTER_SIZE];
__u8 mask[DMX_FILTER_SIZE];
__u8 mode[DMX_FILTER_SIZE];

};

Members
filter bit array with bits to be matched at the section header.

mask bits that are valid at the filter bit array.

mode mode of match: if bit is zero, it will match if equal (positive match); if bit is
one, it will match if the bit is negated.

Note
All arrays in this struct have a size of DMX_FILTER_SIZE (16 bytes).

struct dmx_sct_filter_params
Specifies a section filter.

Definition

struct dmx_sct_filter_params {
__u16 pid;
struct dmx_filter filter;
__u32 timeout;
__u32 flags;

#define DMX_CHECK_CRC 1;
#define DMX_ONESHOT 2;
#define DMX_IMMEDIATE_START 4;
};

Members
pid PID to be filtered.

filter section header filter, as defined by struct dmx_filter.

timeout maximum time to filter, in milliseconds.

flags extra flags for the section filter.

758 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description
Carries the configuration for a MPEG-TS section filter.

The flags can be:
• DMX_CHECK_CRC - only deliver sections where the CRC check succeeded;

• DMX_ONESHOT - disable the section filter after one section has been delivered;

• DMX_IMMEDIATE_START - Start filter immediately without requiring a
DMX_START.

struct dmx_pes_filter_params
Specifies Packetized Elementary Stream (PES) filter parameters.

Definition

struct dmx_pes_filter_params {
__u16 pid;
enum dmx_input input;
enum dmx_output output;
enum dmx_ts_pes pes_type;
__u32 flags;

};

Members
pid PID to be filtered.

input Demux input, as specified by enum dmx_input.

output Demux output, as specified by enum dmx_output.

pes_type Type of the pes filter, as specified by enum dmx_pes_type.

flags Demux PES flags.

struct dmx_stc
Stores System Time Counter (STC) information.

Definition

struct dmx_stc {
unsigned int num;
unsigned int base;
__u64 stc;

};

Members
num input data: number of the STC, from 0 to N.

base output: divisor for STC to get 90 kHz clock.

stc output: stc in base * 90 kHz units.
enum dmx_buffer_flags

DMX memory-mapped buffer flags

Constants

7.3. Part II - Digital TV API 759

Linux Userspace-api Documentation

DMX_BUFFER_FLAG_HAD_CRC32_DISCARD Indicates that the Kernel discarded one or
more frames due to wrong CRC32 checksum.

DMX_BUFFER_FLAG_TEI Indicates that the Kernel has detected a Transport Error
indicator (TEI) on a filtered pid.

DMX_BUFFER_PKT_COUNTER_MISMATCH Indicates that the Kernel has detected a
packet counter mismatch on a filtered pid.

DMX_BUFFER_FLAG_DISCONTINUITY_DETECTED Indicates that the Kernel has de-
tected one or more frame discontinuity.

DMX_BUFFER_FLAG_DISCONTINUITY_INDICATOR Received at least one packet with
a frame discontinuity indicator.

struct dmx_buffer
dmx buffer info

Definition

struct dmx_buffer {
__u32 index;
__u32 bytesused;
__u32 offset;
__u32 length;
__u32 flags;
__u32 count;

};

Members
index id number of the buffer

bytesused number of bytes occupied by data in the buffer (payload);

offset for buffers with memory == DMX_MEMORY_MMAP; offset from the start
of the device memory for this plane, (or a“cookie”that should be passed to
mmap() as offset)

length size in bytes of the buffer

flags bit array of buffer flags as defined by enum dmx_buffer_flags. Filled only
at DMX_DQBUF.

count monotonic counter for filled buffers. Helps to identify data stream loses.
Filled only at DMX_DQBUF.

Description
Contains data exchanged by application and driver using one of the streaming I/O
methods.

Please notice that, for DMX_QBUF, only index should be filled. On DMX_DQBUF calls,
all fields will be filled by the Kernel.

struct dmx_requestbuffers
request dmx buffer information

Definition

760 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct dmx_requestbuffers {
__u32 count;
__u32 size;

};

Members
count number of requested buffers,

size size in bytes of the requested buffer

Description
Contains data used for requesting a dmx buffer. All reserved fields must be set to
zero.

struct dmx_exportbuffer
export of dmx buffer as DMABUF file descriptor

Definition

struct dmx_exportbuffer {
__u32 index;
__u32 flags;
__s32 fd;

};

Members
index id number of the buffer

flags flags for newly created file, currently only O_CLOEXEC is supported, refer
to manual of open syscall for more details

fd file descriptor associated with DMABUF (set by driver)

Description
Contains data used for exporting a dmx buffer as DMABUF file descriptor. The
buffer is identified by a ‘cookie’returned by DMX_QUERYBUF (identical to the
cookie used to mmap() the buffer to userspace). All reserved fields must be set to
zero. The field reserved0 is expected to become a structure ‘type’allowing an
alternative layout of the structure content. Therefore this field should not be used
for any other extensions.

Demux Function Calls

Digital TV demux open()

Name

Digital TV demux open()

7.3. Part II - Digital TV API 761

Linux Userspace-api Documentation

Synopsis

int open(const char *deviceName, int flags)

Arguments

name Name of specific Digital TV demux device.

flags A bit-wise OR of the following flags:

O_RDONLY read-only access
O_RDWR read/write access
O_NONBLOCK open in non-blocking mode (blocking mode is the default)

Description

This system call, used with a device name of /dev/dvb/adapter?/demux?, allo-
cates a new filter and returns a handle which can be used for subsequent control
of that filter. This call has to be made for each filter to be used, i.e. every returned
file descriptor is a reference to a single filter. /dev/dvb/adapter?/dvr? is a logi-
cal device to be used for retrieving Transport Streams for digital video recording.
When reading from this device a transport stream containing the packets from all
PES filters set in the corresponding demux device (/dev/dvb/adapter?/demux?)
having the output set to DMX_OUT_TS_TAP. A recorded Transport Stream is replayed
by writing to this device.

The significance of blocking or non-blocking mode is described in the documenta-
tion for functions where there is a difference. It does not affect the semantics of
the open() call itself. A device opened in blocking mode can later be put into non-
blocking mode (and vice versa) using the F_SETFL command of the fcntl system
call.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EMFILE “Too many open files”, i.e. no more filters available.

The generic error codes are described at the Generic Error Codes chapter.

762 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Digital TV demux close()

Name

Digital TV demux close()

Synopsis

int close(int fd)

Arguments

fd File descriptor returned by a previous call to open().

Description

This system call deactivates and deallocates a filter that was previously allocated
via the open() call.

Return Value

On success 0 is returned.

On error, -1 is returned and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

Digital TV demux read()

Name

Digital TV demux read()

Synopsis

size_t read(int fd, void *buf, size_t count)

7.3. Part II - Digital TV API 763

Linux Userspace-api Documentation

Arguments

fd

File descriptor returned by a previous call to open().

buf Buffer to be filled

count Max number of bytes to read

Description

This system call returns filtered data, which might be section or Packetized Ele-
mentary Stream (PES) data. The filtered data is transferred from the driver’s
internal circular buffer to buf. The maximum amount of data to be transferred is
implied by count.

Note: if a section filter created with DMX_CHECK_CRC flag set, data that fails on
CRC check will be silently ignored.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EWOULDBLOCK No data to return and O_NONBLOCK was specified.
EOVERFLOW The filtered data was not read from the buffer in due time, resulting in non-

read data being lost. The buffer is flushed.
ETIMEDOUT The section was not loaded within the stated timeout period. See ioctl

DMX_SET_FILTER for how to set a timeout.
EFAULT The driver failed to write to the callers buffer due to an invalid *buf pointer.

The generic error codes are described at the Generic Error Codes chapter.

Digital TV demux write()

Name

Digital TV demux write()

764 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

ssize_t write(int fd, const void *buf, size_t count)

Arguments

fd File descriptor returned by a previous call to open().

buf Buffer with data to be written

count Number of bytes at the buffer

Description

This system call is only provided by the logical device /dev/dvb/adapter?/dvr?,
associated with the physical demux device that provides the actual DVR function-
ality. It is used for replay of a digitally recorded Transport Stream. Matching
filters have to be defined in the corresponding physical demux device, /dev/dvb/
adapter?/demux?. The amount of data to be transferred is implied by count.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EWOULDBLOCK No data was written. This might happen if O_NONBLOCK was specified and
there is no more buffer space available (if O_NONBLOCK is not specified the
function will block until buffer space is available).

EBUSY This error code indicates that there are conflicting requests. The correspond-
ing demux device is setup to receive data from the front- end. Make sure that
these filters are stopped and that the filters with input set to DMX_IN_DVR are
started.

The generic error codes are described at the Generic Error Codes chapter.

Digital TV mmap()

Name

dmx-mmap - Map device memory into application address space

Warning: this API is still experimental

7.3. Part II - Digital TV API 765

Linux Userspace-api Documentation

Synopsis

#include <unistd.h>
#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset)

Arguments

start Map the buffer to this address in the application’s address space. When
the MAP_FIXED flag is specified, start must be a multiple of the pagesize and
mmap will fail when the specified address cannot be used. Use of this option
is discouraged; applications should just specify a NULL pointer here.

length Length of the memory area to map. This must be a multiple of the DVB
packet length (188, on most drivers).

prot The prot argument describes the desired memory protection. Regardless
of the device type and the direction of data exchange it should be set to
PROT_READ | PROT_WRITE, permitting read and write access to image buffers.
Drivers should support at least this combination of flags.

flags The flags parameter specifies the type of the mapped object, mapping op-
tions and whether modifications made to the mapped copy of the page are
private to the process or are to be shared with other references.

MAP_FIXED requests that the driver selects no other address than the one
specified. If the specified address cannot be used, mmap() will fail. If
MAP_FIXED is specified, start must be a multiple of the pagesize. Use of
this option is discouraged.

One of the MAP_SHARED or MAP_PRIVATE flags must be set. MAP_SHARED allows
applications to share the mapped memory with other (e. g. child-) processes.

Note: The Linux Digital TV applications should not set the MAP_PRIVATE,
MAP_DENYWRITE, MAP_EXECUTABLE or MAP_ANON flags.

fd File descriptor returned by open().

offset Offset of the buffer in device memory, as returned by ioctl
DMX_QUERYBUF ioctl.

Description

The mmap() function asks to map length bytes starting at offset in the memory of
the device specified by fd into the application address space, preferably at address
start. This latter address is a hint only, and is usually specified as 0.

Suitable length and offset parameters are queried with the ioctl DMX_QUERYBUF
ioctl. Buffers must be allocated with the ioctl DMX_REQBUFS ioctl before they
can be queried.

766 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

To unmap buffers the munmap() function is used.

Return Value

On success mmap() returns a pointer to the mapped buffer. On error MAP_FAILED
(-1) is returned, and the errno variable is set appropriately. Possible error codes
are:

EBADF fd is not a valid file descriptor.

EACCES fd is not open for reading and writing.

EINVAL The start or length or offset are not suitable. (E. g. they are too large,
or not aligned on a PAGESIZE boundary.)

The flags or prot value is not supported.

No buffers have been allocated with the ioctl DMX_REQBUFS ioctl.

ENOMEM Not enough physical or virtual memory was available to complete the
request.

DVB munmap()

Name

dmx-munmap - Unmap device memory

Warning: This API is still experimental.

Synopsis

#include <unistd.h>
#include <sys/mman.h>

int munmap(void *start, size_t length)

Arguments

start Address of the mapped buffer as returned by the mmap() function.

length Length of the mapped buffer. This must be the same value as given to
mmap().

7.3. Part II - Digital TV API 767

Linux Userspace-api Documentation

Description

Unmaps a previously with the mmap() function mapped buffer and frees it, if pos-
sible.

Return Value

On success munmap() returns 0, on failure -1 and the errno variable is set appro-
priately:

EINVAL The start or length is incorrect, or no buffers have been mapped yet.

DMX_START

Name

DMX_START

Synopsis

int ioctl(int fd, DMX_START)

Arguments

fd File descriptor returned by open().

Description

This ioctl call is used to start the actual filtering operation defined via the ioctl
calls DMX_SET_FILTER or DMX_SET_PES_FILTER.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL Invalid argument, i.e. no filtering parameters provided via the
DMX_SET_FILTER or DMX_SET_PES_FILTER ioctls.

EBUSY This error code indicates that there are conflicting requests. There are active
filters filtering data from another input source. Make sure that these filters
are stopped before starting this filter.

The generic error codes are described at the Generic Error Codes chapter.

768 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

DMX_STOP

Name

DMX_STOP

Synopsis

int ioctl(int fd, DMX_STOP)

Arguments

fd File descriptor returned by open().

Description

This ioctl call is used to stop the actual filtering operation defined via the ioctl calls
DMX_SET_FILTER or DMX_SET_PES_FILTER and started via the DMX_START
command.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_FILTER

Name

DMX_SET_FILTER

Synopsis

int ioctl(int fd, DMX_SET_FILTER, struct dmx_sct_filter_params *params)

7.3. Part II - Digital TV API 769

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

params

Pointer to structure containing filter parameters.

Description

This ioctl call sets up a filter according to the filter and mask parameters provided.
A timeout may be defined stating number of seconds to wait for a section to be
loaded. A value of 0 means that no timeout should be applied. Finally there is a
flag field where it is possible to state whether a section should be CRC-checked,
whether the filter should be a”one-shot”filter, i.e. if the filtering operation should
be stopped after the first section is received, and whether the filtering operation
should be started immediately (without waiting for a DMX_START ioctl call). If a
filter was previously set-up, this filter will be canceled, and the receive buffer will
be flushed.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_PES_FILTER

Name

DMX_SET_PES_FILTER

Synopsis

int ioctl(int fd, DMX_SET_PES_FILTER, struct
dmx_pes_filter_params *params)

Arguments

fd File descriptor returned by open().

params Pointer to structure containing filter parameters.

770 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

This ioctl call sets up a PES filter according to the parameters provided. By a PES
filter is meant a filter that is based just on the packet identifier (PID), i.e. no PES
header or payload filtering capability is supported.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EBUSY This error code indicates that there are conflicting requests. There are active
filters filtering data from another input source. Make sure that these filters
are stopped before starting this filter.

The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_BUFFER_SIZE

Name

DMX_SET_BUFFER_SIZE

Synopsis

int ioctl(int fd, DMX_SET_BUFFER_SIZE, unsigned long size)

Arguments

fd File descriptor returned by open().

size Unsigned long size

Description

This ioctl call is used to set the size of the circular buffer used for filtered data.
The default size is two maximum sized sections, i.e. if this function is not called a
buffer size of 2 * 4096 bytes will be used.

7.3. Part II - Digital TV API 771

Linux Userspace-api Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

DMX_GET_STC

Name

DMX_GET_STC

Synopsis

int ioctl(int fd, DMX_GET_STC, struct dmx_stc *stc)

Arguments

fd File descriptor returned by open().

stc Pointer to dmx_stc where the stc data is to be stored.

Description

This ioctl call returns the current value of the system time counter (which is driven
by a PES filter of type DMX_PES_PCR). Some hardware supports more than one STC,
so you must specify which one by setting the num field of stc before the ioctl (range
0⋯n). The result is returned in form of a ratio with a 64 bit numerator and a 32
bit denominator, so the real 90kHz STC value is stc->stc / stc->base.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL Invalid stc number.

The generic error codes are described at the Generic Error Codes chapter.

772 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

DMX_GET_PES_PIDS

Name

DMX_GET_PES_PIDS

Synopsis

int ioctl(fd, DMX_GET_PES_PIDS, __u16 pids[5])

Arguments

fd File descriptor returned by open().

pids Array used to store 5 Program IDs.

Description

This ioctl allows to query a DVB device to return the first PID used by audio, video,
textext, subtitle and PCR programs on a given service. They’re stored as:

PID element position content
pids[DMX_PES_AUDIO] 0 first audio PID
pids[DMX_PES_VIDEO] 1 first video PID
pids[DMX_PES_TELETEXT] 2 first teletext PID
pids[DMX_PES_SUBTITLE] 3 first subtitle PID
pids[DMX_PES_PCR] 4 first Program Clock Reference PID

Note: A value equal to 0xffff means that the PID was not filled by the Kernel.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

7.3. Part II - Digital TV API 773

Linux Userspace-api Documentation

DMX_ADD_PID

Name

DMX_ADD_PID

Synopsis

int ioctl(fd, DMX_ADD_PID, __u16 *pid)

Arguments

fd File descriptor returned by open().

pid PID number to be filtered.

Description

This ioctl call allows to add multiple PIDs to a transport stream filter previously
set up with DMX_SET_PES_FILTER and output equal to DMX_OUT_TSDEMUX_TAP.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

DMX_REMOVE_PID

Name

DMX_REMOVE_PID

Synopsis

int ioctl(fd, DMX_REMOVE_PID, __u16 *pid)

774 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

pid PID of the PES filter to be removed.

Description

This ioctl call allows to remove a PID when multiple PIDs are set on a
transport stream filter, e. g. a filter previously set up with output
equal to DMX_OUT_TSDEMUX_TAP, created via either DMX_SET_PES_FILTER or
DMX_ADD_PID.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

ioctl DMX_REQBUFS

Name

DMX_REQBUFS - Initiate Memory Mapping and/or DMA buffer I/O

Warning: this API is still experimental

Synopsis

int ioctl(int fd, DMX_REQBUFS, struct dmx_requestbuffers *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dmx_requestbuffers.

7.3. Part II - Digital TV API 775

Linux Userspace-api Documentation

Description

This ioctl is used to initiate a memory mapped or DMABUF based demux I/O.

Memory mapped buffers are located in device memory and must be allocated with
this ioctl before they can be mapped into the application’s address space. User
buffers are allocated by applications themselves, and this ioctl is merely used to
switch the driver into user pointer I/O mode and to setup some internal struc-
tures. Similarly, DMABUF buffers are allocated by applications through a device
driver, and this ioctl only configures the driver into DMABUF I/O mode without
performing any direct allocation.

To allocate device buffers applications initialize all fields of the struct
dmx_requestbuffers structure. They set the count field to the desired number
of buffers, and size to the size of each buffer.

When the ioctl is called with a pointer to this structure, the driver will attempt to
allocate the requested number of buffers and it stores the actual number allocated
in the count field. The count can be smaller than the number requested, even zero,
when the driver runs out of free memory. A larger number is also possible when
the driver requires more buffers to function correctly. The actual allocated buffer
size can is returned at size, and can be smaller than what’s requested.
When this I/O method is not supported, the ioctl returns an EOPNOTSUPP error code.

Applications can call ioctl DMX_REQBUFS again to change the number of buffers,
however this cannot succeed when any buffers are still mapped. A count value of
zero frees all buffers, after aborting or finishing any DMA in progress.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EOPNOTSUPP The the requested I/O method is not supported.

ioctl DMX_QUERYBUF

Name

DMX_QUERYBUF - Query the status of a buffer

Warning: this API is still experimental

776 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, DMX_QUERYBUF, struct dvb_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dvb_buffer.

Description

This ioctl is part of the mmap streaming I/O method. It can be used to query
the status of a buffer at any time after buffers have been allocated with the ioctl
DMX_REQBUFS ioctl.

Applications set the index field. Valid index numbers range from zero to the num-
ber of buffers allocated with ioctl DMX_REQBUFS (struct dvb_requestbuffers
count) minus one.

After calling ioctl DMX_QUERYBUF with a pointer to this structure, drivers return
an error code or fill the rest of the structure.

On success, the offset will contain the offset of the buffer from the start of the
device memory, the length field its size, and the bytesused the number of bytes
occupied by data in the buffer (payload).

Return Value

On success 0 is returned, the offset will contain the offset of the buffer from the
start of the device memory, the length field its size, and the bytesused the number
of bytes occupied by data in the buffer (payload).

On error it returns -1 and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

EINVAL The index is out of bounds.

ioctl DMX_EXPBUF

Name

DMX_EXPBUF - Export a buffer as a DMABUF file descriptor.

Warning: this API is still experimental

7.3. Part II - Digital TV API 777

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, DMX_EXPBUF, struct dmx_exportbuffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dmx_exportbuffer.

Description

This ioctl is an extension to the memory mapping I/O method. It can be used to
export a buffer as a DMABUF file at any time after buffers have been allocated
with the ioctl DMX_REQBUFS ioctl.

To export a buffer, applications fill struct dmx_exportbuffer. Applications must
set the index field. Valid index numbers range from zero to the number of buffers
allocated with ioctl DMX_REQBUFS (struct dmx_requestbuffers count) minus
one. Additional flags may be posted in the flags field. Refer to a manual for open()
for details. Currently only O_CLOEXEC, O_RDONLY, O_WRONLY, and O_RDWR
are supported. All other fields must be set to zero. In the case of multi-planar API,
every plane is exported separately using multiple ioctl DMX_EXPBUF calls.

After calling ioctl DMX_EXPBUF the fd field will be set by a driver, on success.
This is a DMABUF file descriptor. The application may pass it to other DMABUF-
aware devices. It is recommended to close a DMABUF file when it is no longer
used to allow the associated memory to be reclaimed.

Examples

int buffer_export(int v4lfd, enum dmx_buf_type bt, int index, int *dmafd)
{

struct dmx_exportbuffer expbuf;

memset(&expbuf, 0, sizeof(expbuf));
expbuf.type = bt;
expbuf.index = index;
if (ioctl(v4lfd, DMX_EXPBUF, &expbuf) == -1) {

perror("DMX_EXPBUF");
return -1;

}

*dmafd = expbuf.fd;

return 0;
}

778 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL A queue is not in MMAP mode or DMABUF exporting is not supported or
flags or index fields are invalid.

ioctl DMX_QBUF, DMX_DQBUF

Name

DMX_QBUF - DMX_DQBUF - Exchange a buffer with the driver

Warning: this API is still experimental

Synopsis

int ioctl(int fd, DMX_QBUF, struct dmx_buffer *argp)

int ioctl(int fd, DMX_DQBUF, struct dmx_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dmx_buffer.

Description

Applications call the DMX_QBUF ioctl to enqueue an empty (capturing) or filled (out-
put) buffer in the driver’s incoming queue. The semantics depend on the selected
I/O method.

To enqueue a buffer applications set the index field. Valid index numbers range
from zero to the number of buffers allocated with ioctl DMX_REQBUFS (struct
dmx_requestbuffers count) minus one. The contents of the struct dmx_buffer
returned by a ioctl DMX_QUERYBUF ioctl will do as well.

When DMX_QBUF is called with a pointer to this structure, it locks the memory pages
of the buffer in physical memory, so they cannot be swapped out to disk. Buffers
remain locked until dequeued, until the the device is closed.

Applications call the DMX_DQBUF ioctl to dequeue a filled (capturing) buffer from
the driver’s outgoing queue. They just set the index field with the buffer ID to be
queued. When DMX_DQBUF is called with a pointer to struct dmx_buffer, the driver
fills the remaining fields or returns an error code.

7.3. Part II - Digital TV API 779

Linux Userspace-api Documentation

By default DMX_DQBUF blocks when no buffer is in the outgoing queue. When the
O_NONBLOCK flag was given to the open() function, DMX_DQBUF returns immediately
with an EAGAIN error code when no buffer is available.

The struct dmx_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EAGAIN Non-blocking I/O has been selected using O_NONBLOCK and no buffer was
in the outgoing queue.

EINVAL The index is out of bounds, or no buffers have been allocated yet.
EIO DMX_DQBUF failed due to an internal error. Can also indicate temporary prob-

lems like signal loss or CRC errors.

7.3.4 Digital TV CA Device

The Digital TV CA device controls the conditional access hardware. It can be
accessed through /dev/dvb/adapter?/ca?. Data types and and ioctl definitions
can be accessed by including linux/dvb/ca.h in your application.

Note: There are three ioctls at this API that aren’t documented: CA_GET_MSG,
CA_SEND_MSG and CA_SET_DESCR. Documentation for them are welcome.

CA Data Types

struct ca_slot_info
CA slot interface types and info.

Definition

struct ca_slot_info {
int num;
int type;

#define CA_CI 1;
#define CA_CI_LINK 2;
#define CA_CI_PHYS 4;
#define CA_DESCR 8;
#define CA_SC 128;
unsigned int flags;

#define CA_CI_MODULE_PRESENT 1;
#define CA_CI_MODULE_READY 2;
};

Members
num slot number.

type slot type.

780 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

flags flags applicable to the slot.

Description
This struct stores the CA slot information.

type can be:
• CA_CI - CI high level interface;

• CA_CI_LINK - CI link layer level interface;

• CA_CI_PHYS - CI physical layer level interface;

• CA_DESCR - built-in descrambler;

• CA_SC -simple smart card interface.

flags can be:
• CA_CI_MODULE_PRESENT - module (or card) inserted;

• CA_CI_MODULE_READY - module is ready for usage.

struct ca_descr_info
descrambler types and info.

Definition

struct ca_descr_info {
unsigned int num;
unsigned int type;

#define CA_ECD 1;
#define CA_NDS 2;
#define CA_DSS 4;
};

Members
num number of available descramblers (keys).

type type of supported scrambling system.

Description
Identifies the number of descramblers and their type.

type can be:
• CA_ECD - European Common Descrambler (ECD) hardware;

• CA_NDS - Videoguard (NDS) hardware;

• CA_DSS - Distributed Sample Scrambling (DSS) hardware.

struct ca_caps
CA slot interface capabilities.

Definition

struct ca_caps {
unsigned int slot_num;
unsigned int slot_type;
unsigned int descr_num;

(continues on next page)

7.3. Part II - Digital TV API 781

Linux Userspace-api Documentation

(continued from previous page)
unsigned int descr_type;

};

Members
slot_num total number of CA card and module slots.

slot_type bitmap with all supported types as defined at struct ca_slot_info
(e. g. CA_CI, CA_CI_LINK, etc).

descr_num total number of descrambler slots (keys)

descr_type bitmap with all supported types as defined at struct ca_descr_info
(e. g. CA_ECD, CA_NDS, etc).

struct ca_msg
a message to/from a CI-CAM

Definition

struct ca_msg {
unsigned int index;
unsigned int type;
unsigned int length;
unsigned char msg[256];

};

Members
index unused

type unused

length length of the message

msg message

Description
This struct carries a message to be send/received from a CI CA module.

struct ca_descr
CA descrambler control words info

Definition

struct ca_descr {
unsigned int index;
unsigned int parity;
unsigned char cw[8];

};

Members
index CA Descrambler slot

parity control words parity, where 0 means even and 1 means odd

cw CA Descrambler control words

782 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

CA Function Calls

Digital TV CA open()

Name

Digital TV CA open()

Synopsis

int open(const char *name, int flags)

Arguments

name Name of specific Digital TV CA device.

flags A bit-wise OR of the following flags:

O_RDONLY read-only access
O_RDWR read/write access
O_NONBLOCK open in non-blocking mode (blocking mode is the default)

Description

This system call opens a named ca device (e.g. /dev/dvb/adapter?/ca?) for sub-
sequent use.

When an open() call has succeeded, the device will be ready for use. The sig-
nificance of blocking or non-blocking mode is described in the documentation for
functions where there is a difference. It does not affect the semantics of the open()
call itself. A device opened in blocking mode can later be put into non-blocking
mode (and vice versa) using the F_SETFL command of the fcntl system call. This
is a standard system call, documented in the Linux manual page for fcntl. Only
one user can open the CA Device in O_RDWR mode. All other attempts to open the
device in this mode will fail, and an error code will be returned.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

7.3. Part II - Digital TV API 783

Linux Userspace-api Documentation

Digital TV CA close()

Name

Digital TV CA close()

Synopsis

int close(int fd)

Arguments

fd File descriptor returned by a previous call to open().

Description

This system call closes a previously opened CA device.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

CA_RESET

Name

CA_RESET

Synopsis

int ioctl(fd, CA_RESET)

Arguments

fd File descriptor returned by a previous call to open().

784 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

Puts the Conditional Access hardware on its initial state. It should be called before
start using the CA hardware.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

CA_GET_CAP

Name

CA_GET_CAP

Synopsis

int ioctl(fd, CA_GET_CAP, struct ca_caps *caps)

Arguments

fd File descriptor returned by a previous call to open().

caps Pointer to struct ca_caps.

Description

Queries the Kernel for information about the available CA and descrambler slots,
and their types.

Return Value

On success 0 is returned and ca_caps is filled.

On error, -1 is returned and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

7.3. Part II - Digital TV API 785

Linux Userspace-api Documentation

CA_GET_SLOT_INFO

Name

CA_GET_SLOT_INFO

Synopsis

int ioctl(fd, CA_GET_SLOT_INFO, struct ca_slot_info *info)

Arguments

fd File descriptor returned by a previous call to open().

info Pointer to struct ca_slot_info.

Description

Returns information about a CA slot identified by ca_slot_info.slot_num.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

ENODEV the slot is not available.

The generic error codes are described at the Generic Error Codes chapter.

CA_GET_DESCR_INFO

Name

CA_GET_DESCR_INFO

Synopsis

int ioctl(fd, CA_GET_DESCR_INFO, struct ca_descr_info *desc)

786 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by a previous call to open().

desc Pointer to struct ca_descr_info.

Description

Returns information about all descrambler slots.

Return Value

On success 0 is returned, and ca_descr_info is filled.

On error -1 is returned, and the errno variable is set appropriately. The generic
error codes are described at the Generic Error Codes chapter.

CA_GET_MSG

Name

CA_GET_MSG

Synopsis

int ioctl(fd, CA_GET_MSG, struct ca_msg *msg)

Arguments

fd File descriptor returned by a previous call to open().

msg Pointer to struct ca_msg.

Description

Receives a message via a CI CA module.

Note: Please notice that, on most drivers, this is done by reading from the
/dev/adapter?/ca? device node.

7.3. Part II - Digital TV API 787

Linux Userspace-api Documentation

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

CA_SEND_MSG

Name

CA_SEND_MSG

Synopsis

int ioctl(fd, CA_SEND_MSG, struct ca_msg *msg)

Arguments

fd File descriptor returned by a previous call to open().

msg Pointer to struct ca_msg.

Description

Sends a message via a CI CA module.

Note: Please notice that, on most drivers, this is done by writing to the
/dev/adapter?/ca? device node.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

788 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

CA_SET_DESCR

Name

CA_SET_DESCR

Synopsis

int ioctl(fd, CA_SET_DESCR, struct ca_descr *desc)

Arguments

fd File descriptor returned by a previous call to open().

msg Pointer to struct ca_descr.

Description

CA_SET_DESCR is used for feeding descrambler CA slots with descrambling keys
(referred as control words).

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

The High level CI API

Note: This documentation is outdated.

This document describes the high level CI API as in accordance to the Linux DVB
API.

With the High Level CI approach any new card with almost any random architec-
ture can be implemented with this style, the definitions inside the switch statement
can be easily adapted for any card, thereby eliminating the need for any additional
ioctls.

The disadvantage is that the driver/hardware has to manage the rest. For the ap-
plication programmer it would be as simple as sending/receiving an array to/from
the CI ioctls as defined in the Linux DVB API. No changes have been made in the
API to accommodate this feature.

7.3. Part II - Digital TV API 789

Linux Userspace-api Documentation

Why the need for another CI interface?

This is one of the most commonly asked question. Well a nice question. Strictly
speaking this is not a new interface.

The CI interface is defined in the DVB API in ca.h as:

typedef struct ca_slot_info {
int num; /* slot number */

int type; /* CA interface this slot supports */
#define CA_CI 1 /* CI high level interface */
#define CA_CI_LINK 2 /* CI link layer level interface */
#define CA_CI_PHYS 4 /* CI physical layer level interface */
#define CA_DESCR 8 /* built-in descrambler */
#define CA_SC 128 /* simple smart card interface */

unsigned int flags;
#define CA_CI_MODULE_PRESENT 1 /* module (or card) inserted */
#define CA_CI_MODULE_READY 2
} ca_slot_info_t;

This CI interface follows the CI high level interface, which is not implemented by
most applications. Hence this area is revisited.

This CI interface is quite different in the case that it tries to accommodate all other
CI based devices, that fall into the other categories.

This means that this CI interface handles the EN50221 style tags in the Application
layer only and no session management is taken care of by the application. The
driver/hardware will take care of all that.

This interface is purely an EN50221 interface exchanging APDU’s. This means that
no session management, link layer or a transport layer do exist in this case in the
application to driver communication. It is as simple as that. The driver/hardware
has to take care of that.

With this High Level CI interface, the interface can be defined with the regular
ioctls.

All these ioctls are also valid for the High level CI interface

#define CA_RESET _IO(‘o’, 128) #define CA_GET_CAP _IOR(‘o’, 129,
ca_caps_t) #define CA_GET_SLOT_INFO _IOR(‘o’, 130, ca_slot_info_t) #define
CA_GET_DESCR_INFO _IOR(‘o’, 131, ca_descr_info_t) #define CA_GET_MSG
_IOR(‘o’, 132, ca_msg_t) #define CA_SEND_MSG _IOW(‘o’, 133, ca_msg_t)
#define CA_SET_DESCR _IOW(‘o’, 134, ca_descr_t)
On querying the device, the device yields information thus:

CA_GET_SLOT_INFO

Command = [info]
APP: Number=[1]
APP: Type=[1]
APP: flags=[1]
APP: CI High level interface

(continues on next page)

790 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
APP: CA/CI Module Present

CA_GET_CAP

Command = [caps]
APP: Slots=[1]
APP: Type=[1]
APP: Descrambler keys=[16]
APP: Type=[1]

CA_SEND_MSG

Descriptors(Program Level)=[09 06 06 04 05 50 ff f1]
Found CA descriptor @ program level

(20) ES type=[2] ES pid=[201] ES length =[0 (0x0)]
(25) ES type=[4] ES pid=[301] ES length =[0 (0x0)]
ca_message length is 25 (0x19) bytes
EN50221 CA MSG=[9f 80 32 19 03 01 2d d1 f0 08 01 09 06 06 04 05 50 ff f1␣
↪→02 e0 c9 00 00 04 e1 2d 00 00]

Not all ioctl’s are implemented in the driver from the API, the other features
of the hardware that cannot be implemented by the API are achieved using the
CA_GET_MSG and CA_SEND_MSG ioctls. An EN50221 style wrapper is used to
exchange the data to maintain compatibility with other hardware.

/* a message to/from a CI-CAM */
typedef struct ca_msg {

unsigned int index;
unsigned int type;
unsigned int length;
unsigned char msg[256];

} ca_msg_t;

The flow of data can be described thus,

App (User)

parse

|
|
v

en50221 APDU (package)

| | | High Level CI driver
| | |
| v |
| en50221 APDU (unpackage) |
| | |
| | |
| v |
| sanity checks |
| | |
| | |
| v |

(continues on next page)

7.3. Part II - Digital TV API 791

Linux Userspace-api Documentation

(continued from previous page)
do (H/W dep)

| Hardware
|
v

The High Level CI interface uses the EN50221 DVB standard, following a standard
ensures futureproofness.

7.3.5 Digital TV Network API

The Digital TV net device controls the mapping of data packages that are part of
a transport stream to be mapped into a virtual network interface, visible through
the standard Linux network protocol stack.

Currently, two encapsulations are supported:

• Multi Protocol Encapsulation (MPE)

• Ultra Lightweight Encapsulation (ULE)

In order to create the Linux virtual network interfaces, an application needs to
tell to the Kernel what are the PIDs and the encapsulation types that are present
on the transport stream. This is done through /dev/dvb/adapter?/net? device
node. The data will be available via virtual dvb?_? network interfaces, and will be
controlled/routed via the standard ip tools (like ip, route, netstat, ifconfig, etc).

Data types and and ioctl definitions are defined via linux/dvb/net.h header.

Digital TV net Function Calls

Net Data Types

struct dvb_net_if
describes a DVB network interface

Definition

struct dvb_net_if {
__u16 pid;
__u16 if_num;
__u8 feedtype;

#define DVB_NET_FEEDTYPE_MPE 0 ;
#define DVB_NET_FEEDTYPE_ULE 1 ;
};

Members
pid Packet ID (PID) of the MPEG-TS that contains data

if_num number of the Digital TV interface.

feedtype Encapsulation type of the feed.

792 Chapter 7. Linux Media Infrastructure userspace API

http://en.wikipedia.org/wiki/Multiprotocol_Encapsulation
http://en.wikipedia.org/wiki/Unidirectional_Lightweight_Encapsulation

Linux Userspace-api Documentation

Description
A MPEG-TS stream may contain packet IDs with IP packages on it. This struct
describes it, and the type of encoding.

feedtype can be:
• DVB_NET_FEEDTYPE_MPE for MPE encoding

• DVB_NET_FEEDTYPE_ULE for ULE encoding.

ioctl NET_ADD_IF

Name

NET_ADD_IF - Creates a new network interface for a given Packet ID.

Synopsis

int ioctl(int fd, NET_ADD_IF, struct dvb_net_if *net_if)

Arguments

fd File descriptor returned by open().

net_if pointer to struct dvb_net_if

Description

The NET_ADD_IF ioctl system call selects the Packet ID (PID) that contains a
TCP/IP traffic, the type of encapsulation to be used (MPE or ULE) and the inter-
face number for the new interface to be created. When the system call successfully
returns, a new virtual network interface is created.

The struct dvb_net_if::ifnum field will be filled with the number of the created
interface.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

7.3. Part II - Digital TV API 793

Linux Userspace-api Documentation

ioctl NET_REMOVE_IF

Name

NET_REMOVE_IF - Removes a network interface.

Synopsis

int ioctl(int fd, NET_REMOVE_IF, int ifnum)

Arguments

fd File descriptor returned by open().

net_if number of the interface to be removed

Description

The NET_REMOVE_IF ioctl deletes an interface previously created via
NET_ADD_IF.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

ioctl NET_GET_IF

Name

NET_GET_IF - Read the configuration data of an interface created via -
NET_ADD_IF.

Synopsis

int ioctl(int fd, NET_GET_IF, struct dvb_net_if *net_if)

794 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

net_if pointer to struct dvb_net_if

Description

The NET_GET_IF ioctl uses the interface number given by the struct
dvb_net_if::ifnum field and fills the content of struct dvb_net_if with the packet
ID and encapsulation type used on such interface. If the interface was not created
yet with NET_ADD_IF, it will return -1 and fill the errno with EINVAL error code.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

7.3.6 Digital TV Deprecated APIs

The APIs described here should not be used on new drivers or applications.
The DVBv3 frontend API has issues with new delivery systems, including DVB-S2,
DVB-T2, ISDB, etc.

There’s just one driver for a very legacy hardware using the Digital TV audio
and video APIs. No modern drivers should use it. Instead, audio and video should
be using the V4L2 and ALSA APIs, and the pipelines should be set via the Media
Controller API.

Attention: The APIs described here doesn’t necessarily reflect the current
code implementation, as this section of the document was written for DVB ver-
sion 1, while the code reflects DVB version 3 implementation.

Digital TV Frontend legacy API (a. k. a. DVBv3)

The usage of this API is deprecated, as it doesn’t support all digital TV standards,
doesn’t provide good statistics measurements and provides incomplete informa-
tion. This is kept only to support legacy applications.

7.3. Part II - Digital TV API 795

Linux Userspace-api Documentation

Frontend Legacy Data Types

Frontend type

For historical reasons, frontend types are named by the type of modulation used
in transmission. The fontend types are given by fe_type_t type, defined as:

fe_type

Table 221: Frontend types
fe_type Description DTV_DELIVERY_SYSTEM equivalent type

FE_QPSK
For DVB-S
standard

SYS_DVBS

FE_QAM
For DVB-C
annex A
standard

SYS_DVBC_ANNEX_A

FE_OFDM
For DVB-T
standard

SYS_DVBT

FE_ATSC
For ATSC
standard
(terres-
trial) or
for DVB-
C Annex
B (cable)
used in US.

SYS_ATSC (terrestrial) or SYS_DVBC_ANNEX_B
(cable)

Newer formats like DVB-S2, ISDB-T, ISDB-S and DVB-T2 are
not described at the above, as they’re supported via the new
FE_GET_PROPERTY/FE_GET_SET_PROPERTY ioctl’s, using the
DTV_DELIVERY_SYSTEM parameter.

In the old days, struct dvb_frontend_info used to contain fe_type_t field to
indicate the delivery systems, filled with either FE_QPSK, FE_QAM, FE_OFDM or
FE_ATSC. While this is still filled to keep backward compatibility, the usage of this
field is deprecated, as it can report just one delivery system, but some devices
support multiple delivery systems. Please use DTV_ENUM_DELSYS instead.

On devices that support multiple delivery systems, struct
dvb_frontend_info::fe_type_t is filled with the currently standard, as se-
lected by the last call to FE_SET_PROPERTY using the DTV_DELIVERY_SYSTEM
property.

796 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Frontend bandwidth

fe_bandwidth

Table 222: enum fe_bandwidth
ID Description

BANDWIDTH_AUTO
Autodetect bandwidth (if supported)

BANDWIDTH_1_712_MHZ
1.712 MHz

BANDWIDTH_5_MHZ
5 MHz

BANDWIDTH_6_MHZ
6 MHz

BANDWIDTH_7_MHZ
7 MHz

BANDWIDTH_8_MHZ
8 MHz

BANDWIDTH_10_MHZ
10 MHz

dvb_frontend_parameters

frontend parameters

The kind of parameters passed to the frontend device for tuning depend on the
kind of hardware you are using.

The struct dvb_frontend_parameters uses a union with specific per-system pa-
rameters. However, as newer delivery systems required more data, the struc-
ture size weren’t enough to fit, and just extending its size would break the
existing applications. So, those parameters were replaced by the usage of
FE_GET_PROPERTY/FE_SET_PROPERTY ioctl’s. The new API is flexible enough
to add new parameters to existing delivery systems, and to add newer delivery
systems.

So, newer applications should use FE_GET_PROPERTY/FE_SET_PROPERTY in-
stead, in order to be able to support the newer System Delivery like DVB-S2, DVB-
T2, DVB-C2, ISDB, etc.

All kinds of parameters are combined as a union in the dvb_frontend_parameters
structure:

struct dvb_frontend_parameters {
uint32_t frequency; /* (absolute) frequency in Hz for QAM/OFDM */

/* intermediate frequency in kHz for QPSK */
fe_spectral_inversion_t inversion;
union {

struct dvb_qpsk_parameters qpsk;
struct dvb_qam_parameters qam;
struct dvb_ofdm_parameters ofdm;
struct dvb_vsb_parameters vsb;

} u;
};

7.3. Part II - Digital TV API 797

Linux Userspace-api Documentation

In the case of QPSK frontends the frequency field specifies the intermediate fre-
quency, i.e. the offset which is effectively added to the local oscillator frequency
(LOF) of the LNB. The intermediate frequency has to be specified in units of kHz.
For QAM and OFDM frontends the frequency specifies the absolute frequency and
is given in Hz.

dvb_qpsk_parameters

QPSK parameters

For satellite QPSK frontends you have to use the dvb_qpsk_parameters structure:

struct dvb_qpsk_parameters {
uint32_t symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec_inner; /* forward error correction (see above)␣

↪→*/
};

dvb_qam_parameters

QAM parameters

for cable QAM frontend you use the dvb_qam_parameters structure:

struct dvb_qam_parameters {
uint32_t symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec_inner; /* forward error correction (see above)␣

↪→*/
fe_modulation_t modulation; /* modulation type (see above) */

};

dvb_vsb_parameters

VSB parameters

ATSC frontends are supported by the dvb_vsb_parameters structure:

struct dvb_vsb_parameters {
fe_modulation_t modulation; /* modulation type (see above) */

};

dvb_ofdm_parameters

798 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

OFDM parameters

DVB-T frontends are supported by the dvb_ofdm_parameters structure:

struct dvb_ofdm_parameters {
fe_bandwidth_t bandwidth;
fe_code_rate_t code_rate_HP; /* high priority stream code rate */
fe_code_rate_t code_rate_LP; /* low priority stream code rate */
fe_modulation_t constellation; /* modulation type (see above) */
fe_transmit_mode_t transmission_mode;
fe_guard_interval_t guard_interval;
fe_hierarchy_t hierarchy_information;

};

dvb_frontend_event

frontend events

struct dvb_frontend_event {
fe_status_t status;
struct dvb_frontend_parameters parameters;

};

Frontend Legacy Function Calls

Those functions are defined at DVB version 3. The support is kept in the kernel
due to compatibility issues only. Their usage is strongly not recommended

FE_READ_BER

Name

FE_READ_BER

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_BER, uint32_t *ber)

7.3. Part II - Digital TV API 799

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

ber The bit error rate is stored into *ber.

Description

This ioctl call returns the bit error rate for the signal currently re-
ceived/demodulated by the front-end. For this command, read-only access to the
device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

FE_READ_SNR

Name

FE_READ_SNR

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_SNR, int16_t *snr)

Arguments

fd File descriptor returned by open().

snr The signal-to-noise ratio is stored into *snr.

800 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

This ioctl call returns the signal-to-noise ratio for the signal currently received by
the front-end. For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

FE_READ_SIGNAL_STRENGTH

Name

FE_READ_SIGNAL_STRENGTH

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_SIGNAL_STRENGTH, uint16_t *strength)

Arguments

fd File descriptor returned by open().

strength The signal strength value is stored into *strength.

Description

This ioctl call returns the signal strength value for the signal currently received
by the front-end. For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

7.3. Part II - Digital TV API 801

Linux Userspace-api Documentation

FE_READ_UNCORRECTED_BLOCKS

Name

FE_READ_UNCORRECTED_BLOCKS

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_UNCORRECTED_BLOCKS, uint32_t *ublocks)

Arguments

fd File descriptor returned by open().

ublocks The total number of uncorrected blocks seen by the driver so far.

Description

This ioctl call returns the number of uncorrected blocks detected by the device
driver during its lifetime. For meaningful measurements, the increment in block
count during a specific time interval should be calculated. For this command,
read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

FE_SET_FRONTEND

Attention: This ioctl is deprecated.

Name

FE_SET_FRONTEND

802 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, FE_SET_FRONTEND, struct dvb_frontend_parameters *p)

Arguments

fd File descriptor returned by open().

p Points to parameters for tuning operation.

Description

This ioctl call starts a tuning operation using specified parameters. The result of
this call will be successful if the parameters were valid and the tuning could be
initiated. The result of the tuning operation in itself, however, will arrive asyn-
chronously as an event (see documentation for FE_GET_EVENT and FrontendE-
vent.) If a new FE_SET_FRONTEND operation is initiated before the previous one
was completed, the previous operation will be aborted in favor of the new one.
This command requires read/write access to the device.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL Maximum supported symbol rate reached.

Generic error codes are described at the Generic Error Codes chapter.

FE_GET_FRONTEND

Name

FE_GET_FRONTEND

Attention: This ioctl is deprecated.

7.3. Part II - Digital TV API 803

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, FE_GET_FRONTEND, struct dvb_frontend_parameters *p)

Arguments

fd File descriptor returned by open().

p Points to parameters for tuning operation.

Description

This ioctl call queries the currently effective frontend parameters. For this com-
mand, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL Maximum supported symbol rate reached.

Generic error codes are described at the Generic Error Codes chapter.

FE_GET_EVENT

Name

FE_GET_EVENT

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_GET_EVENT, struct dvb_frontend_event *ev)

804 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

ev Points to the location where the event, if any, is to be stored.

Description

This ioctl call returns a frontend event if available. If an event is not available,
the behavior depends on whether the device is in blocking or non-blocking mode.
In the latter case, the call fails immediately with errno set to EWOULDBLOCK. In the
former case, the call blocks until an event becomes available.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EWOULDBLOCK There is no event pending, and the device is in non-blocking mode.
EOVERFLOW Overflow in event queue - one or more events were lost.

Generic error codes are described at the Generic Error Codes chapter.

FE_DISHNETWORK_SEND_LEGACY_CMD

Name

FE_DISHNETWORK_SEND_LEGACY_CMD

Synopsis

int ioctl(int fd, FE_DISHNETWORK_SEND_LEGACY_CMD, unsigned
long cmd)

Arguments

fd File descriptor returned by open().

cmd Sends the specified raw cmd to the dish via DISEqC.

7.3. Part II - Digital TV API 805

Linux Userspace-api Documentation

Description

Warning: This is a very obscure legacy command, used only at stv0299 driver.
Should not be used on newer drivers.

It provides a non-standard method for selecting Diseqc voltage on the frontend,
for Dish Network legacy switches.

As support for this ioctl were added in 2004, this means that such dishes were
already legacy in 2004.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

Digital TV Video Device

The Digital TV video device controls the MPEG2 video decoder of the Digital TV
hardware. It can be accessed through /dev/dvb/adapter0/video0. Data types
and and ioctl definitions can be accessed by including linux/dvb/video.h in your
application.

Note that the Digital TV video device only controls decoding of the MPEG video
stream, not its presentation on the TV or computer screen. On PCs this is typically
handled by an associated video4linux device, e.g. /dev/video, which allows scaling
and defining output windows.

Some Digital TV cards don’t have their own MPEG decoder, which results in the
omission of the audio and video device as well as the video4linux device.

The ioctls that deal with SPUs (sub picture units) and navigation packets are only
supported on some MPEG decoders made for DVD playback.

These ioctls were also used by V4L2 to control MPEG decoders implemented in
V4L2. The use of these ioctls for that purpose has been made obsolete and proper
V4L2 ioctls or controls have been created to replace that functionality.

Video Data Types

video_format_t

The video_format_t data type defined by

typedef enum {
VIDEO_FORMAT_4_3, /* Select 4:3 format */
VIDEO_FORMAT_16_9, /* Select 16:9 format. */

(continues on next page)

806 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
VIDEO_FORMAT_221_1 /* 2.21:1 */

} video_format_t;

is used in the VIDEO_SET_FORMAT function (??) to tell the driver which aspect
ratio the output hardware (e.g. TV) has. It is also used in the data structures
video_status (??) returned by VIDEO_GET_STATUS (??) and video_event (??) re-
turned by VIDEO_GET_EVENT (??) which report about the display format of the
current video stream.

video_displayformat_t

In case the display format of the video stream and of the display hardware differ
the application has to specify how to handle the cropping of the picture. This can
be done using the VIDEO_SET_DISPLAY_FORMAT call (??) which accepts

typedef enum {
VIDEO_PAN_SCAN, /* use pan and scan format */
VIDEO_LETTER_BOX, /* use letterbox format */
VIDEO_CENTER_CUT_OUT /* use center cut out format */

} video_displayformat_t;

as argument.

video_stream_source_t

The video stream source is set through the VIDEO_SELECT_SOURCE call and can
take the following values, depending on whether we are replaying from an internal
(demuxer) or external (user write) source.

typedef enum {
VIDEO_SOURCE_DEMUX, /* Select the demux as the main source */
VIDEO_SOURCE_MEMORY /* If this source is selected, the stream

comes from the user through the write
system call */

} video_stream_source_t;

VIDEO_SOURCE_DEMUX selects the demultiplexer (fed either by the frontend or
the DVR device) as the source of the video stream. If VIDEO_SOURCE_MEMORY
is selected the stream comes from the application through the write() system call.

video_play_state_t

The following values can be returned by the VIDEO_GET_STATUS call represent-
ing the state of video playback.

typedef enum {
VIDEO_STOPPED, /* Video is stopped */
VIDEO_PLAYING, /* Video is currently playing */
VIDEO_FREEZED /* Video is freezed */

} video_play_state_t;

7.3. Part II - Digital TV API 807

Linux Userspace-api Documentation

video_command

struct video_command

The structure must be zeroed before use by the application This ensures it can be
extended safely in the future.

struct video_command {
__u32 cmd;
__u32 flags;
union {

struct {
__u64 pts;

} stop;

struct {
/* 0 or 1000 specifies normal speed,

1 specifies forward single stepping,
-1 specifies backward single stepping,
>>1: playback at speed/1000 of the normal speed,
<-1: reverse playback at (-speed/1000) of the normal speed.␣

↪→*/
__s32 speed;
__u32 format;

} play;

struct {
__u32 data[16];

} raw;
};

};

video_size_t

typedef struct {
int w;
int h;
video_format_t aspect_ratio;

} video_size_t;

video_event

struct video_event

The following is the structure of a video event as it is returned by the
VIDEO_GET_EVENT call.

struct video_event {
__s32 type;

#define VIDEO_EVENT_SIZE_CHANGED 1
#define VIDEO_EVENT_FRAME_RATE_CHANGED 2

(continues on next page)

808 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
#define VIDEO_EVENT_DECODER_STOPPED 3
#define VIDEO_EVENT_VSYNC 4

long timestamp;
union {

video_size_t size;
unsigned int frame_rate; /* in frames per 1000sec */
unsigned char vsync_field; /* unknown/odd/even/progressive */

} u;
};

video_status

struct video_status

The VIDEO_GET_STATUS call returns the following structure informing about var-
ious states of the playback operation.

struct video_status {
int video_blank; /* blank video on freeze? */
video_play_state_t play_state; /* current state of playback */
video_stream_source_t stream_source; /* current source (demux/memory)␣

↪→*/
video_format_t video_format; /* current aspect ratio of stream␣

↪→*/
video_displayformat_t display_format;/* selected cropping mode */

};

If video_blank is set video will be blanked out if the channel is changed or if play-
back is stopped. Otherwise, the last picture will be displayed. play_state indicates
if the video is currently frozen, stopped, or being played back. The stream_source
corresponds to the selected source for the video stream. It can come either from
the demultiplexer or from memory. The video_format indicates the aspect ratio
(one of 4:3 or 16:9) of the currently played video stream. Finally, display_format
corresponds to the selected cropping mode in case the source video format is not
the same as the format of the output device.

video_still_picture

struct video_still_picture

An I-frame displayed via the VIDEO_STILLPICTURE call is passed on within the
following structure.

/* pointer to and size of a single iframe in memory */
struct video_still_picture {

char *iFrame; /* pointer to a single iframe in memory */
int32_t size;

};

7.3. Part II - Digital TV API 809

Linux Userspace-api Documentation

video capabilities

A call to VIDEO_GET_CAPABILITIES returns an unsigned integer with the follow-
ing bits set according to the hardwares capabilities.

/* bit definitions for capabilities: */
/* can the hardware decode MPEG1 and/or MPEG2? */
#define VIDEO_CAP_MPEG1 1
#define VIDEO_CAP_MPEG2 2
/* can you send a system and/or program stream to video device?

(you still have to open the video and the audio device but only
send the stream to the video device) */

#define VIDEO_CAP_SYS 4
#define VIDEO_CAP_PROG 8
/* can the driver also handle SPU, NAVI and CSS encoded data?

(CSS API is not present yet) */
#define VIDEO_CAP_SPU 16
#define VIDEO_CAP_NAVI 32
#define VIDEO_CAP_CSS 64

Video Function Calls

dvb video open()

Name

dvb video open()

Attention: This ioctl is deprecated.

Synopsis

int open(const char *deviceName, int flags)

Arguments

const char *deviceName Name of specific video device.
int flags A bit-wise OR of the following flags:

O_RDONLY read-only access
O_RDWR read/write access
O_NONBLOCK open in non-blocking mode
(blocking mode is the default)

810 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

This system call opens a named video device (e.g. /dev/dvb/adapter0/video0) for
subsequent use.

When an open() call has succeeded, the device will be ready for use. The signif-
icance of blocking or non-blocking mode is described in the documentation for
functions where there is a difference. It does not affect the semantics of the
open() call itself. A device opened in blocking mode can later be put into non-
blocking mode (and vice versa) using the F_SETFL command of the fcntl system
call. This is a standard system call, documented in the Linux manual page for fcntl.
Only one user can open the Video Device in O_RDWR mode. All other attempts to
open the device in this mode will fail, and an error-code will be returned. If the
Video Device is opened in O_RDONLY mode, the only ioctl call that can be used is
VIDEO_GET_STATUS. All other call will return an error code.

Return Value

ENODEV Device driver not loaded/available.
EINTERNAL Internal error.
EBUSY Device or resource busy.
EINVAL Invalid argument.

dvb video close()

Name

dvb video close()

Attention: This ioctl is deprecated.

Synopsis

int close(int fd)

Arguments

int fd File descriptor returned by a previous call to open().

7.3. Part II - Digital TV API 811

Linux Userspace-api Documentation

Description

This system call closes a previously opened video device.

Return Value

EBADF fd is not a valid open file descriptor.

dvb video write()

Name

dvb video write()

Attention: This ioctl is deprecated.

Synopsis

size_t write(int fd, const void *buf, size_t count)

Arguments

int fd File descriptor returned by a previous call to open().
void *buf Pointer to the buffer containing the PES data.
size_t count Size of buf.

Description

This system call can only be used if VIDEO_SOURCE_MEMORY is selected in the
ioctl call VIDEO_SELECT_SOURCE. The data provided shall be in PES format, un-
less the capability allows other formats. If O_NONBLOCK is not specified the func-
tion will block until buffer space is available. The amount of data to be transferred
is implied by count.

812 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

EPERM Mode VIDEO_SOURCE_MEMORY not selected.
ENOMEM Attempted to write more data than the internal buffer can hold.
EBADF fd is not a valid open file descriptor.

VIDEO_STOP

Name

VIDEO_STOP

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_STOP, boolean mode)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_STOP for this command.
Boolean mode Indicates how the screen shall be handled.

TRUE: Blank screen when stop.
FALSE: Show last decoded frame.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2
ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.

This ioctl call asks the Video Device to stop playing the current stream. Depend-
ing on the input parameter, the screen can be blanked out or displaying the last
decoded frame.

7.3. Part II - Digital TV API 813

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_PLAY

Name

VIDEO_PLAY

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_PLAY)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_PLAY for this command.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2
ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.

This ioctl call asks the Video Device to start playing a video stream from the se-
lected source.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

814 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

VIDEO_FREEZE

Name

VIDEO_FREEZE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_FREEZE)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_FREEZE for this command.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2
ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.

This ioctl call suspends the live video stream being played. Decoding and
playing are frozen. It is then possible to restart the decoding and play-
ing process of the video stream using the VIDEO_CONTINUE command. If
VIDEO_SOURCE_MEMORY is selected in the ioctl call VIDEO_SELECT_SOURCE,
the Digital TV subsystem will not decode any more data until the ioctl call
VIDEO_CONTINUE or VIDEO_PLAY is performed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_CONTINUE

Name

VIDEO_CONTINUE

Attention: This ioctl is deprecated.

7.3. Part II - Digital TV API 815

Linux Userspace-api Documentation

Synopsis

int ioctl(fd, VIDEO_CONTINUE)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_CONTINUE for this command.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2
ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.

This ioctl call restarts decoding and playing processes of the video stream which
was played before a call to VIDEO_FREEZE was made.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_SELECT_SOURCE

Name

VIDEO_SELECT_SOURCE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SELECT_SOURCE, video_stream_source_t source)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SELECT_SOURCE for this command.
video_stream_source_t
source

Indicates which source shall be used for the Video
stream.

816 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

This ioctl is for Digital TV devices only. This ioctl was also supported
by the V4L2 ivtv driver, but that has been replaced by the ivtv-specific
IVTV_IOC_PASSTHROUGH_MODE ioctl.

This ioctl call informs the video device which source shall be used for the input
data. The possible sources are demux or memory. If memory is selected, the data
is fed to the video device through the write command.

video_stream_source_t

typedef enum {
VIDEO_SOURCE_DEMUX, /* Select the demux as the main source */
VIDEO_SOURCE_MEMORY /* If this source is selected, the stream

comes from the user through the write
system call */

} video_stream_source_t;

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_SET_BLANK

Name

VIDEO_SET_BLANK

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_BLANK, boolean mode)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_BLANK for this command.
boolean mode TRUE: Blank screen when stop.

FALSE: Show last decoded frame.

7.3. Part II - Digital TV API 817

Linux Userspace-api Documentation

Description

This ioctl call asks the Video Device to blank out the picture.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_GET_STATUS

Name

VIDEO_GET_STATUS

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_GET_STATUS, struct video_status *status)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_STATUS for this command.
struct video_status *status Returns the current status of the Video Device.

Description

This ioctl call asks the Video Device to return the current status of the device.

video_status

struct video_status {
int video_blank; /* blank video on freeze? */
video_play_state_t play_state; /* current state of playback␣

↪→*/
video_stream_source_t stream_source; /* current source (demux/

↪→memory) */
video_format_t video_format; /* current aspect ratio of␣

↪→stream*/
video_displayformat_t display_format;/* selected cropping mode */

};

818 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_GET_FRAME_COUNT

Name

VIDEO_GET_FRAME_COUNT

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_GET_FRAME_COUNT, __u64 *pts)

Arguments

int fd File descriptor returned by a previous call to open().
int re-
quest

Equals VIDEO_GET_FRAME_COUNT for this command.

__u64 *pts Returns the number of frames displayed since the decoder was
started.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has
been replaced by the V4L2_CID_MPEG_VIDEO_DEC_FRAME control.

This ioctl call asks the Video Device to return the number of displayed frames since
the decoder was started.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

7.3. Part II - Digital TV API 819

Linux Userspace-api Documentation

VIDEO_GET_PTS

Name

VIDEO_GET_PTS

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_GET_PTS, __u64 *pts)

Arguments

int
fd

File descriptor returned by a previous call to open().

int
re-
quest

Equals VIDEO_GET_PTS for this command.

__u64
*pts

Returns the 33-bit timestamp as defined in ITU T-REC-H.222.0 / ISO/IEC
13818-1.
The PTS should belong to the currently played frame if possible, but may also
be a value close to it like the PTS of the last decoded frame or the last PTS
extracted by the PES parser.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has
been replaced by the V4L2_CID_MPEG_VIDEO_DEC_PTS control.

This ioctl call asks the Video Device to return the current PTS timestamp.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

820 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

VIDEO_GET_EVENT

Name

VIDEO_GET_EVENT

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_GET_EVENT, struct video_event *ev)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_EVENT for this command.
struct video_event
*ev

Points to the location where the event, if any, is to be stored.

Description

This ioctl is for Digital TV devices only. To get events from a V4L2 decoder use the
V4L2 ioctl VIDIOC_DQEVENT ioctl instead.

This ioctl call returns an event of type video_event if available. If an event is
not available, the behavior depends on whether the device is in blocking or non-
blocking mode. In the latter case, the call fails immediately with errno set to
EWOULDBLOCK. In the former case, the call blocks until an event becomes available.
The standard Linux poll() and/or select() system calls can be used with the device
file descriptor to watch for new events. For select(), the file descriptor should be
included in the exceptfds argument, and for poll(), POLLPRI should be specified
as the wake-up condition. Read-only permissions are sufficient for this ioctl call.

video_event

struct video_event {
__s32 type;

#define VIDEO_EVENT_SIZE_CHANGED 1
#define VIDEO_EVENT_FRAME_RATE_CHANGED 2
#define VIDEO_EVENT_DECODER_STOPPED 3
#define VIDEO_EVENT_VSYNC 4

long timestamp;
union {

video_size_t size;
unsigned int frame_rate; /* in frames per 1000sec */
unsigned char vsync_field; /* unknown/odd/even/

↪→progressive */
(continues on next page)

7.3. Part II - Digital TV API 821

Linux Userspace-api Documentation

(continued from previous page)
} u;

};

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EWOULDBLOCK There is no event pending, and the device is in non-blocking mode.
EOVERFLOW Overflow in event queue - one or more events were lost.

VIDEO_COMMAND

Name

VIDEO_COMMAND

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_COMMAND, struct video_command *cmd)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_COMMAND for this command.
struct video_command *cmd Commands the decoder.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders
this ioctl has been replaced by the ioctl VIDIOC_DECODER_CMD, VID-
IOC_TRY_DECODER_CMD ioctl.

This ioctl commands the decoder. The video_command struct is a subset of the
v4l2_decoder_cmd struct, so refer to the ioctl VIDIOC_DECODER_CMD, VID-
IOC_TRY_DECODER_CMD documentation for more information.

struct video_command

822 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/* The structure must be zeroed before use by the application
This ensures it can be extended safely in the future. */
struct video_command {

__u32 cmd;
__u32 flags;
union {

struct {
__u64 pts;

} stop;

struct {
/* 0 or 1000 specifies normal speed,
1 specifies forward single stepping,
-1 specifies backward single stepping,
>1: playback at speed/1000 of the normal speed,
<-1: reverse playback at (-speed/1000) of the␣

↪→normal speed. */
__s32 speed;
__u32 format;

} play;

struct {
__u32 data[16];

} raw;
};

};

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_TRY_COMMAND

Name

VIDEO_TRY_COMMAND

Attention: This ioctl is deprecated.

7.3. Part II - Digital TV API 823

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, VIDEO_TRY_COMMAND, struct video_command *cmd)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_TRY_COMMAND for this command.
struct video_command *cmd Try a decoder command.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has
been replaced by the VIDIOC_TRY_DECODER_CMD ioctl.

This ioctl tries a decoder command. The video_command struct is a subset of the
v4l2_decoder_cmd struct, so refer to the VIDIOC_TRY_DECODER_CMD documen-
tation for more information.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_GET_SIZE

Name

VIDEO_GET_SIZE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_GET_SIZE, video_size_t *size)

824 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_SIZE for this command.
video_size_t *size Returns the size and aspect ratio.

Description

This ioctl returns the size and aspect ratio.

video_size_t

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_SET_DISPLAY_FORMAT

Name

VIDEO_SET_DISPLAY_FORMAT

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_DISPLAY_FORMAT)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_DISPLAY_FORMAT for this com-

mand.
video_display_format_t for-
mat

Selects the video format to be used.

7.3. Part II - Digital TV API 825

Linux Userspace-api Documentation

Description

This ioctl call asks the Video Device to select the video format to be applied by the
MPEG chip on the video.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_STILLPICTURE

Name

VIDEO_STILLPICTURE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_STILLPICTURE, struct video_still_picture *sp)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_STILLPICTURE for this command.
struct video_still_picture
*sp

Pointer to a location where an I-frame and size is
stored.

Description

This ioctl call asks the Video Device to display a still picture (I-frame). The input
data shall contain an I-frame. If the pointer is NULL, then the current displayed
still picture is blanked.

826 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_FAST_FORWARD

Name

VIDEO_FAST_FORWARD

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_FAST_FORWARD, int nFrames)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_FAST_FORWARD for this command.
int nFrames The number of frames to skip.

Description

This ioctl call asks the Video Device to skip decoding of N number of I-frames. This
call can only be used if VIDEO_SOURCE_MEMORY is selected.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EPERM Mode VIDEO_SOURCE_MEMORY not selected.

7.3. Part II - Digital TV API 827

Linux Userspace-api Documentation

VIDEO_SLOWMOTION

Name

VIDEO_SLOWMOTION

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SLOWMOTION, int nFrames)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SLOWMOTION for this command.
int nFrames The number of times to repeat each frame.

Description

This ioctl call asks the video device to repeat decoding frames N number of times.
This call can only be used if VIDEO_SOURCE_MEMORY is selected.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EPERM Mode VIDEO_SOURCE_MEMORY not selected.

VIDEO_GET_CAPABILITIES

Name

VIDEO_GET_CAPABILITIES

Attention: This ioctl is deprecated.

828 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(fd, VIDEO_GET_CAPABILITIES, unsigned int *cap)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_GET_CAPABILITIES for this command.
unsigned int *cap Pointer to a location where to store the capability information.

Description

This ioctl call asks the video device about its decoding capabilities. On success it
returns and integer which has bits set according to the defines in section ??.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_CLEAR_BUFFER

Name

VIDEO_CLEAR_BUFFER

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_CLEAR_BUFFER)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_CLEAR_BUFFER for this command.

7.3. Part II - Digital TV API 829

Linux Userspace-api Documentation

Description

This ioctl call clears all video buffers in the driver and in the decoder hardware.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

VIDEO_SET_STREAMTYPE

Name

VIDEO_SET_STREAMTYPE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_STREAMTYPE, int type)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_STREAMTYPE for this command.
int type stream type

Description

This ioctl tells the driver which kind of stream to expect being written to it. If this
call is not used the default of video PES is used. Some drivers might not support
this call and always expect PES.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

830 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

VIDEO_SET_FORMAT

Name

VIDEO_SET_FORMAT

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_FORMAT, video_format_t format)

Arguments

int fd File descriptor returned by a previous call to open().
int request Equals VIDEO_SET_FORMAT for this command.
video_format_t format video format of TV as defined in section ??.

Description

This ioctl sets the screen format (aspect ratio) of the connected output device (TV)
so that the output of the decoder can be adjusted accordingly.

video_format_t

typedef enum {
VIDEO_FORMAT_4_3, /* Select 4:3 format */
VIDEO_FORMAT_16_9, /* Select 16:9 format. */
VIDEO_FORMAT_221_1 /* 2.21:1 */

} video_format_t;

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL format is not a valid video format.

7.3. Part II - Digital TV API 831

Linux Userspace-api Documentation

Digital TV Audio Device

The Digital TV audio device controls the MPEG2 audio decoder of the Digital TV
hardware. It can be accessed through /dev/dvb/adapter?/audio?. Data types
and and ioctl definitions can be accessed by including linux/dvb/audio.h in your
application.

Please note that some Digital TV cards don’t have their ownMPEG decoder, which
results in the omission of the audio and video device.

These ioctls were also used by V4L2 to control MPEG decoders implemented in
V4L2. The use of these ioctls for that purpose has been made obsolete and proper
V4L2 ioctls or controls have been created to replace that functionality.

Audio Data Types

This section describes the structures, data types and defines used when talking to
the audio device.

audio_stream_source

The audio stream source is set through the AUDIO_SELECT_SOURCE call and can
take the following values, depending on whether we are replaying from an internal
(demux) or external (user write) source.

typedef enum {
AUDIO_SOURCE_DEMUX,
AUDIO_SOURCE_MEMORY

} audio_stream_source_t;

AUDIO_SOURCE_DEMUX selects the demultiplexer (fed either by the frontend or
the DVR device) as the source of the video stream. If AUDIO_SOURCE_MEMORY
is selected the stream comes from the application through the write() system
call.

audio_play_state

The following values can be returned by the AUDIO_GET_STATUS call represent-
ing the state of audio playback.

typedef enum {
AUDIO_STOPPED,
AUDIO_PLAYING,
AUDIO_PAUSED

} audio_play_state_t;

audio_channel_select

The audio channel selected via AUDIO_CHANNEL_SELECT is determined by the
following values.

typedef enum {
AUDIO_STEREO,
AUDIO_MONO_LEFT,
AUDIO_MONO_RIGHT,

(continues on next page)

832 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
AUDIO_MONO,
AUDIO_STEREO_SWAPPED

} audio_channel_select_t;

audio_status

The AUDIO_GET_STATUS call returns the following structure informing about var-
ious states of the playback operation.

typedef struct audio_status {
boolean AV_sync_state;
boolean mute_state;
audio_play_state_t play_state;
audio_stream_source_t stream_source;
audio_channel_select_t channel_select;
boolean bypass_mode;
audio_mixer_t mixer_state;

} audio_status_t;

audio_mixer

The following structure is used by the AUDIO_SET_MIXER call to set the audio
volume.

typedef struct audio_mixer {
unsigned int volume_left;
unsigned int volume_right;

} audio_mixer_t;

audio encodings

A call to AUDIO_GET_CAPABILITIES returns an unsigned integer with the follow-
ing bits set according to the hardwares capabilities.

#define AUDIO_CAP_DTS 1
#define AUDIO_CAP_LPCM 2
#define AUDIO_CAP_MP1 4
#define AUDIO_CAP_MP2 8
#define AUDIO_CAP_MP3 16
#define AUDIO_CAP_AAC 32
#define AUDIO_CAP_OGG 64
#define AUDIO_CAP_SDDS 128
#define AUDIO_CAP_AC3 256

7.3. Part II - Digital TV API 833

Linux Userspace-api Documentation

Audio Function Calls

Digital TV audio open()

Name

Digital TV audio open()

Attention: This ioctl is deprecated

Synopsis

int open(const char *deviceName, int flags)

Arguments

const char *deviceName Name of specific audio device.
int flags A bit-wise OR of the following flags:

O_RDONLY read-only access
O_RDWR read/write access
O_NONBLOCK open in non-blocking mode
(blocking mode is the default)

Description

This system call opens a named audio device (e.g. /dev/dvb/adapter0/audio0) for
subsequent use. When an open() call has succeeded, the device will be ready
for use. The significance of blocking or non-blocking mode is described in the
documentation for functions where there is a difference. It does not affect the
semantics of the open() call itself. A device opened in blocking mode can later be
put into non-blocking mode (and vice versa) using the F_SETFL command of the
fcntl system call. This is a standard system call, documented in the Linux manual
page for fcntl. Only one user can open the Audio Device in O_RDWR mode. All
other attempts to open the device in this mode will fail, and an error code will be
returned. If the Audio Device is opened in O_RDONLY mode, the only ioctl call
that can be used is AUDIO_GET_STATUS. All other call will return with an error
code.

834 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

ENODEV Device driver not loaded/available.
EBUSY Device or resource busy.
EINVAL Invalid argument.

Digital TV audio close()

Name

Digital TV audio close()

Attention: This ioctl is deprecated

Synopsis

int close(int fd)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This system call closes a previously opened audio device.

Return Value

EBADF fd is not a valid open file descriptor.

Digital TV audio write()

Name

Digital TV audio write()

Attention: This ioctl is deprecated

7.3. Part II - Digital TV API 835

Linux Userspace-api Documentation

Synopsis

size_t write(int fd, const void *buf, size_t count)

Arguments

int fd File descriptor returned by a previous call to open().
void *buf Pointer to the buffer containing the PES data.
size_t count Size of buf.

Description

This system call can only be used if AUDIO_SOURCE_MEMORY is selected in the
ioctl call AUDIO_SELECT_SOURCE. The data provided shall be in PES format. If
O_NONBLOCK is not specified the function will block until buffer space is avail-
able. The amount of data to be transferred is implied by count.

Return Value

EPERM Mode AUDIO_SOURCE_MEMORY not selected.
ENOMEM Attempted to write more data than the internal buffer can hold.
EBADF fd is not a valid open file descriptor.

AUDIO_STOP

Name

AUDIO_STOP

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_STOP)

836 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call asks the Audio Device to stop playing the current stream.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_PLAY

Name

AUDIO_PLAY

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_PLAY)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call asks the Audio Device to start playing an audio stream from the
selected source.

7.3. Part II - Digital TV API 837

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_PAUSE

Name

AUDIO_PAUSE

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_PAUSE)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call suspends the audio stream being played. Decoding and playing are
paused. It is then possible to restart again decoding and playing process of the
audio stream using AUDIO_CONTINUE command.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_CONTINUE

Name

AUDIO_CONTINUE

Attention: This ioctl is deprecated

838 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, AUDIO_CONTINUE)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl restarts the decoding and playing process previously paused with AU-
DIO_PAUSE command.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SELECT_SOURCE

Name

AUDIO_SELECT_SOURCE

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SELECT_SOURCE, struct au-
dio_stream_source *source)

Arguments

int fd File descriptor returned by a previous call to open().
audio_stream_source_t
source

Indicates the source that shall be used for the Audio
stream.

7.3. Part II - Digital TV API 839

Linux Userspace-api Documentation

Description

This ioctl call informs the audio device which source shall be used for the input
data. The possible sources are demux or memory. If AUDIO_SOURCE_MEMORY
is selected, the data is fed to the Audio Device through the write command.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_MUTE

Name

AUDIO_SET_MUTE

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_MUTE, boolean state)

Arguments

int fd File descriptor returned by a previous call to open().
boolean
state

Indicates if audio device shall mute or not.
TRUE: Audio Mute
FALSE: Audio Un-mute

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use
the V4L2 ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD with the
V4L2_DEC_CMD_START_MUTE_AUDIO flag instead.

This ioctl call asks the audio device to mute the stream that is currently being
played.

840 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_AV_SYNC

Name

AUDIO_SET_AV_SYNC

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_AV_SYNC, boolean state)

Arguments

int fd File descriptor returned by a previous call to open().
boolean
state

Tells the Digital TV subsystem if A/V synchronization shall be ON or OFF.
TRUE: AV-sync ON
FALSE: AV-sync OFF

Description

This ioctl call asks the Audio Device to turn ON or OFF A/V synchronization.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_BYPASS_MODE

Name

AUDIO_SET_BYPASS_MODE

Attention: This ioctl is deprecated

7.3. Part II - Digital TV API 841

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, AUDIO_SET_BYPASS_MODE, boolean mode)

Arguments

int fd File descriptor returned by a previous call to open().
boolean
mode

Enables or disables the decoding of the current Audio stream in the Dig-
ital TV subsystem.
TRUE: Bypass is disabled
FALSE: Bypass is enabled

Description

This ioctl call asks the Audio Device to bypass the Audio decoder and forward
the stream without decoding. This mode shall be used if streams that can’t be
handled by the Digital TV system shall be decoded. Dolby DigitalTM streams are
automatically forwarded by the Digital TV subsystem if the hardware can handle
it.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_CHANNEL_SELECT

Name

AUDIO_CHANNEL_SELECT

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_CHANNEL_SELECT, struct *audio_channel_select)

842 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

int fd File descriptor returned by a previous call to open().
audio_channel_select_t
ch

Select the output format of the audio (mono left/right,
stereo).

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2
V4L2_CID_MPEG_AUDIO_DEC_PLAYBACK control instead.

This ioctl call asks the Audio Device to select the requested channel if possible.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_BILINGUAL_CHANNEL_SELECT

Name

AUDIO_BILINGUAL_CHANNEL_SELECT

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_BILINGUAL_CHANNEL_SELECT,
struct *audio_channel_select)

Arguments

int fd File descriptor returned by a previous call to open().
audio_channel_select_t
ch

Select the output format of the audio (mono left/right,
stereo).

7.3. Part II - Digital TV API 843

Linux Userspace-api Documentation

Description

This ioctl is obsolete. Do not use in new drivers. It has been replaced by the V4L2
V4L2_CID_MPEG_AUDIO_DEC_MULTILINGUAL_PLAYBACK control for MPEG decoders
controlled through V4L2.

This ioctl call asks the Audio Device to select the requested channel for bilingual
streams if possible.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_GET_STATUS

Name

AUDIO_GET_STATUS

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_GET_STATUS, struct audio_status *status)

Arguments

int fd File descriptor returned by a previous call to open().
struct audio_status *status Returns the current state of Audio Device.

Description

This ioctl call asks the Audio Device to return the current state of the Audio Device.

844 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_GET_CAPABILITIES

Name

AUDIO_GET_CAPABILITIES

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_GET_CAPABILITIES, unsigned int *cap)

Arguments

int fd File descriptor returned by a previous call to open().
unsigned int *cap Returns a bit array of supported sound formats.

Description

This ioctl call asks the Audio Device to tell us about the decoding capabilities of
the audio hardware.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_CLEAR_BUFFER

Name

AUDIO_CLEAR_BUFFER

Attention: This ioctl is deprecated

7.3. Part II - Digital TV API 845

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, AUDIO_CLEAR_BUFFER)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call asks the Audio Device to clear all software and hardware buffers of
the audio decoder device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_ID

Name

AUDIO_SET_ID

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_ID, int id)

Arguments

int fd File descriptor returned by a previous call to open().
int id audio sub-stream id

846 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

This ioctl selects which sub-stream is to be decoded if a program or system stream
is sent to the video device. If no audio stream type is set the id has to be in
[0xC0,0xDF] for MPEG sound, in [0x80,0x87] for AC3 and in [0xA0,0xA7] for
LPCM. More specifications may follow for other stream types. If the stream type
is set the id just specifies the substream id of the audio stream and only the first
5 bits are recognized.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_MIXER

Name

AUDIO_SET_MIXER

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_MIXER, struct audio_mixer *mix)

Arguments

int fd File descriptor returned by a previous call to open().
audio_mixer_t *mix mixer settings.

Description

This ioctl lets you adjust the mixer settings of the audio decoder.

7.3. Part II - Digital TV API 847

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_STREAMTYPE

Name

AUDIO_SET_STREAMTYPE

Attention: This ioctl is deprecated

Synopsis

int ioctl(fd, AUDIO_SET_STREAMTYPE, int type)

Arguments

int fd File descriptor returned by a previous call to open().
int type stream type

Description

This ioctl tells the driver which kind of audio stream to expect. This is useful if the
stream offers several audio sub-streams like LPCM and AC3.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL type is not a valid or supported stream type.

848 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

7.3.7 Examples

In the past, we used to have a set of examples here. However, those examples got
out of date and doesn’t even compile nowadays.
Also, nowadays, the best is to use the libdvbv5 DVB API nowadays, with is fully
documented.

Please refer to the libdvbv5 for updated/recommended examples.

7.3.8 Digital TV uAPI header files

Digital TV uAPI headers

frontend.h

/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
* frontend.h
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* Ralph Metzler <ralph@convergence.de>
* Holger Waechtler <holger@convergence.de>
* Andre Draszik <ad@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public␣
↪→License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public␣
↪→License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA ␣
↪→02111-1307, USA.
*
*/

#ifndef _DVBFRONTEND_H_
#define _DVBFRONTEND_H_

#include <linux/types.h>

/**

7.3. Part II - Digital TV API 849

https://linuxtv.org/docs/libdvbv5/index.html
mailto:marcus@convergence.de
mailto:ralph@convergence.de
mailto:holger@convergence.de
mailto:ad@convergence.de

Linux Userspace-api Documentation

* enum fe_caps - Frontend capabilities
*
* @FE_IS_STUPID: There's something wrong at␣
↪→the
* frontend, and it can't␣
↪→report its
* capabilities.
* @FE_CAN_INVERSION_AUTO: Can auto-detect frequency␣
↪→spectral
* band inversion
* @FE_CAN_FEC_1_2: Supports FEC 1/2
* @FE_CAN_FEC_2_3: Supports FEC 2/3
* @FE_CAN_FEC_3_4: Supports FEC 3/4
* @FE_CAN_FEC_4_5: Supports FEC 4/5
* @FE_CAN_FEC_5_6: Supports FEC 5/6
* @FE_CAN_FEC_6_7: Supports FEC 6/7
* @FE_CAN_FEC_7_8: Supports FEC 7/8
* @FE_CAN_FEC_8_9: Supports FEC 8/9
* @FE_CAN_FEC_AUTO: Can auto-detect FEC
* @FE_CAN_QPSK: Supports QPSK modulation
* @FE_CAN_QAM_16: Supports 16-QAM modulation
* @FE_CAN_QAM_32: Supports 32-QAM modulation
* @FE_CAN_QAM_64: Supports 64-QAM modulation
* @FE_CAN_QAM_128: Supports 128-QAM modulation
* @FE_CAN_QAM_256: Supports 256-QAM modulation
* @FE_CAN_QAM_AUTO: Can auto-detect QAM␣
↪→modulation
* @FE_CAN_TRANSMISSION_MODE_AUTO: Can auto-detect␣
↪→transmission mode
* @FE_CAN_BANDWIDTH_AUTO: Can auto-detect bandwidth
* @FE_CAN_GUARD_INTERVAL_AUTO: Can auto-detect guard␣
↪→interval
* @FE_CAN_HIERARCHY_AUTO: Can auto-detect hierarchy
* @FE_CAN_8VSB: Supports 8-VSB modulation
* @FE_CAN_16VSB: Supporta 16-VSB modulation
* @FE_HAS_EXTENDED_CAPS: Unused
* @FE_CAN_MULTISTREAM: Supports multistream␣
↪→filtering
* @FE_CAN_TURBO_FEC: Supports "turbo FEC"␣
↪→modulation
* @FE_CAN_2G_MODULATION: Supports "2nd generation"␣
↪→modulation,
* e. g. DVB-S2, DVB-T2, DVB-C2
* @FE_NEEDS_BENDING: Unused
* @FE_CAN_RECOVER: Can recover from a cable␣
↪→unplug
* automatically
* @FE_CAN_MUTE_TS: Can stop spurious TS data␣
↪→output
*/

enum fe_caps {

850 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

FE_IS_STUPID = 0,
FE_CAN_INVERSION_AUTO = 0x1,
FE_CAN_FEC_1_2 = 0x2,
FE_CAN_FEC_2_3 = 0x4,
FE_CAN_FEC_3_4 = 0x8,
FE_CAN_FEC_4_5 = 0x10,
FE_CAN_FEC_5_6 = 0x20,
FE_CAN_FEC_6_7 = 0x40,
FE_CAN_FEC_7_8 = 0x80,
FE_CAN_FEC_8_9 = 0x100,
FE_CAN_FEC_AUTO = 0x200,
FE_CAN_QPSK = 0x400,
FE_CAN_QAM_16 = 0x800,
FE_CAN_QAM_32 = 0x1000,
FE_CAN_QAM_64 = 0x2000,
FE_CAN_QAM_128 = 0x4000,
FE_CAN_QAM_256 = 0x8000,
FE_CAN_QAM_AUTO = 0x10000,
FE_CAN_TRANSMISSION_MODE_AUTO = 0x20000,
FE_CAN_BANDWIDTH_AUTO = 0x40000,
FE_CAN_GUARD_INTERVAL_AUTO = 0x80000,
FE_CAN_HIERARCHY_AUTO = 0x100000,
FE_CAN_8VSB = 0x200000,
FE_CAN_16VSB = 0x400000,
FE_HAS_EXTENDED_CAPS = 0x800000,
FE_CAN_MULTISTREAM = 0x4000000,
FE_CAN_TURBO_FEC = 0x8000000,
FE_CAN_2G_MODULATION = 0x10000000,
FE_NEEDS_BENDING = 0x20000000,
FE_CAN_RECOVER = 0x40000000,
FE_CAN_MUTE_TS = 0x80000000

};

/*
* DEPRECATED: Should be kept just due to backward compatibility.
*/

enum fe_type {
FE_QPSK,
FE_QAM,
FE_OFDM,
FE_ATSC

};

/**
* struct dvb_frontend_info - Frontend properties and capabilities
*
* @name: Name of the frontend
* @type: ****DEPRECATED****.
* Should not be used on modern␣
↪→programs,
* as a frontend may have more than␣

7.3. Part II - Digital TV API 851

Linux Userspace-api Documentation

↪→one type.
* In order to get the support types␣
↪→of a given
* frontend, use :c:type:`DTV_ENUM_
↪→DELSYS`
* instead.
* @frequency_min: Minimal frequency supported by the␣
↪→frontend.
* @frequency_max: Minimal frequency supported by the␣
↪→frontend.
* @frequency_stepsize: All frequencies are multiple of␣
↪→this value.
* @frequency_tolerance: Frequency tolerance.
* @symbol_rate_min: Minimal symbol rate, in bauds
* (for Cable/Satellite systems).
* @symbol_rate_max: Maximal symbol rate, in bauds
* (for Cable/Satellite systems).
* @symbol_rate_tolerance: Maximal symbol rate tolerance, in␣
↪→ppm
* (for Cable/Satellite systems).
* @notifier_delay: ****DEPRECATED****. Not used by any␣
↪→driver.
* @caps: Capabilities supported by the␣
↪→frontend,
* as specified in &enum fe_caps.
*
* .. note:
*
* #. The frequencies are specified in Hz for Terrestrial and␣
↪→Cable
* systems.
* #. The frequencies are specified in kHz for Satellite systems.
*/

struct dvb_frontend_info {
char name[128];
enum fe_type type; /* DEPRECATED. Use DTV_ENUM_DELSYS␣

↪→instead */
__u32 frequency_min;
__u32 frequency_max;
__u32 frequency_stepsize;
__u32 frequency_tolerance;
__u32 symbol_rate_min;
__u32 symbol_rate_max;
__u32 symbol_rate_tolerance;
__u32 notifier_delay; /* DEPRECATED */
enum fe_caps caps;

};

/**
* struct dvb_diseqc_master_cmd - DiSEqC master command
*

852 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* @msg:
* DiSEqC message to be sent. It contains a 3 bytes header␣
↪→with:
* framing + address + command, and an optional argument
* of up to 3 bytes of data.
* @msg_len:
* Length of the DiSEqC message. Valid values are 3 to 6.
*
* Check out the DiSEqC bus spec available on http://www.eutelsat.
↪→org/ for
* the possible messages that can be used.
*/

struct dvb_diseqc_master_cmd {
__u8 msg[6];
__u8 msg_len;

};

/**
* struct dvb_diseqc_slave_reply - DiSEqC received data
*
* @msg:
* DiSEqC message buffer to store a message received via␣
↪→DiSEqC.
* It contains one byte header with: framing and
* an optional argument of up to 3 bytes of data.
* @msg_len:
* Length of the DiSEqC message. Valid values are 0 to 4,
* where 0 means no message.
* @timeout:
* Return from ioctl after timeout ms with errorcode when
* no message was received.
*
* Check out the DiSEqC bus spec available on http://www.eutelsat.
↪→org/ for
* the possible messages that can be used.
*/

struct dvb_diseqc_slave_reply {
__u8 msg[4];
__u8 msg_len;
int timeout;

};

/**
* enum fe_sec_voltage - DC Voltage used to feed the LNBf
*
* @SEC_VOLTAGE_13: Output 13V to the LNBf
* @SEC_VOLTAGE_18: Output 18V to the LNBf
* @SEC_VOLTAGE_OFF: Don't feed the LNBf with a DC voltage
*/

enum fe_sec_voltage {
SEC_VOLTAGE_13,

7.3. Part II - Digital TV API 853

Linux Userspace-api Documentation

SEC_VOLTAGE_18,
SEC_VOLTAGE_OFF

};

/**
* enum fe_sec_tone_mode - Type of tone to be send to the LNBf.
* @SEC_TONE_ON: Sends a 22kHz tone burst to the antenna.
* @SEC_TONE_OFF: Don't send a 22kHz tone to the antenna␣
↪→(except
* if the ``FE_DISEQC_*`` ioctls are called).
*/

enum fe_sec_tone_mode {
SEC_TONE_ON,
SEC_TONE_OFF

};

/**
* enum fe_sec_mini_cmd - Type of mini burst to be sent
*
* @SEC_MINI_A: Sends a mini-DiSEqC 22kHz '0' Tone Burst to␣
↪→select
* satellite-A
* @SEC_MINI_B: Sends a mini-DiSEqC 22kHz '1' Data Burst to␣
↪→select
* satellite-B
*/

enum fe_sec_mini_cmd {
SEC_MINI_A,
SEC_MINI_B

};

/**
* enum fe_status - Enumerates the possible frontend status.
* @FE_NONE: The frontend doesn't have any kind of lock.
* That's the initial frontend status
* @FE_HAS_SIGNAL: Has found something above the noise level.
* @FE_HAS_CARRIER: Has found a signal.
* @FE_HAS_VITERBI: FEC inner coding (Viterbi, LDPC or other␣
↪→inner code).
* is stable.
* @FE_HAS_SYNC: Synchronization bytes was found.
* @FE_HAS_LOCK: Digital TV were locked and everything is␣
↪→working.
* @FE_TIMEDOUT: Fo lock within the last about 2 seconds.
* @FE_REINIT: Frontend was reinitialized, application is␣
↪→recommended
* to reset DiSEqC, tone and parameters.
*/

enum fe_status {
FE_NONE = 0x00,
FE_HAS_SIGNAL = 0x01,

854 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

FE_HAS_CARRIER = 0x02,
FE_HAS_VITERBI = 0x04,
FE_HAS_SYNC = 0x08,
FE_HAS_LOCK = 0x10,
FE_TIMEDOUT = 0x20,
FE_REINIT = 0x40,

};

/**
* enum fe_spectral_inversion - Type of inversion band
*
* @INVERSION_OFF: Don't do spectral band inversion.
* @INVERSION_ON: Do spectral band inversion.
* @INVERSION_AUTO: Autodetect spectral band inversion.
*
* This parameter indicates if spectral inversion should be␣
↪→presumed or
* not. In the automatic setting (``INVERSION_AUTO``) the hardware␣
↪→will try
* to figure out the correct setting by itself. If the hardware␣
↪→doesn't
* support, the %dvb_frontend will try to lock at the carrier first␣
↪→with
* inversion off. If it fails, it will try to enable inversion.
*/

enum fe_spectral_inversion {
INVERSION_OFF,
INVERSION_ON,
INVERSION_AUTO

};

/**
* enum fe_code_rate - Type of Forward Error Correction (FEC)
*
*
* @FEC_NONE: No Forward Error Correction Code
* @FEC_1_2: Forward Error Correction Code 1/2
* @FEC_2_3: Forward Error Correction Code 2/3
* @FEC_3_4: Forward Error Correction Code 3/4
* @FEC_4_5: Forward Error Correction Code 4/5
* @FEC_5_6: Forward Error Correction Code 5/6
* @FEC_6_7: Forward Error Correction Code 6/7
* @FEC_7_8: Forward Error Correction Code 7/8
* @FEC_8_9: Forward Error Correction Code 8/9
* @FEC_AUTO: Autodetect Error Correction Code
* @FEC_3_5: Forward Error Correction Code 3/5
* @FEC_9_10: Forward Error Correction Code 9/10
* @FEC_2_5: Forward Error Correction Code 2/5
*
* Please note that not all FEC types are supported by a given␣
↪→standard.

7.3. Part II - Digital TV API 855

Linux Userspace-api Documentation

*/
enum fe_code_rate {

FEC_NONE = 0,
FEC_1_2,
FEC_2_3,
FEC_3_4,
FEC_4_5,
FEC_5_6,
FEC_6_7,
FEC_7_8,
FEC_8_9,
FEC_AUTO,
FEC_3_5,
FEC_9_10,
FEC_2_5,

};

/**
* enum fe_modulation - Type of modulation/constellation
* @QPSK: QPSK modulation
* @QAM_16: 16-QAM modulation
* @QAM_32: 32-QAM modulation
* @QAM_64: 64-QAM modulation
* @QAM_128: 128-QAM modulation
* @QAM_256: 256-QAM modulation
* @QAM_AUTO: Autodetect QAM modulation
* @VSB_8: 8-VSB modulation
* @VSB_16: 16-VSB modulation
* @PSK_8: 8-PSK modulation
* @APSK_16: 16-APSK modulation
* @APSK_32: 32-APSK modulation
* @DQPSK: DQPSK modulation
* @QAM_4_NR: 4-QAM-NR modulation
*
* Please note that not all modulations are supported by a given␣
↪→standard.
*
*/

enum fe_modulation {
QPSK,
QAM_16,
QAM_32,
QAM_64,
QAM_128,
QAM_256,
QAM_AUTO,
VSB_8,
VSB_16,
PSK_8,
APSK_16,
APSK_32,

856 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

DQPSK,
QAM_4_NR,

};

/**
* enum fe_transmit_mode - Transmission mode
*
* @TRANSMISSION_MODE_AUTO:
* Autodetect transmission mode. The hardware will try to find␣
↪→the
* correct FFT-size (if capable) to fill in the missing␣
↪→parameters.
* @TRANSMISSION_MODE_1K:
* Transmission mode 1K
* @TRANSMISSION_MODE_2K:
* Transmission mode 2K
* @TRANSMISSION_MODE_8K:
* Transmission mode 8K
* @TRANSMISSION_MODE_4K:
* Transmission mode 4K
* @TRANSMISSION_MODE_16K:
* Transmission mode 16K
* @TRANSMISSION_MODE_32K:
* Transmission mode 32K
* @TRANSMISSION_MODE_C1:
* Single Carrier (C=1) transmission mode (DTMB only)
* @TRANSMISSION_MODE_C3780:
* Multi Carrier (C=3780) transmission mode (DTMB only)
*
* Please note that not all transmission modes are supported by a␣
↪→given
* standard.
*/

enum fe_transmit_mode {
TRANSMISSION_MODE_2K,
TRANSMISSION_MODE_8K,
TRANSMISSION_MODE_AUTO,
TRANSMISSION_MODE_4K,
TRANSMISSION_MODE_1K,
TRANSMISSION_MODE_16K,
TRANSMISSION_MODE_32K,
TRANSMISSION_MODE_C1,
TRANSMISSION_MODE_C3780,

};

/**
* enum fe_guard_interval - Guard interval
*
* @GUARD_INTERVAL_AUTO: Autodetect the guard interval
* @GUARD_INTERVAL_1_128: Guard interval 1/128
* @GUARD_INTERVAL_1_32: Guard interval 1/32

7.3. Part II - Digital TV API 857

Linux Userspace-api Documentation

* @GUARD_INTERVAL_1_16: Guard interval 1/16
* @GUARD_INTERVAL_1_8: Guard interval 1/8
* @GUARD_INTERVAL_1_4: Guard interval 1/4
* @GUARD_INTERVAL_19_128: Guard interval 19/128
* @GUARD_INTERVAL_19_256: Guard interval 19/256
* @GUARD_INTERVAL_PN420: PN length 420 (1/4)
* @GUARD_INTERVAL_PN595: PN length 595 (1/6)
* @GUARD_INTERVAL_PN945: PN length 945 (1/9)
*
* Please note that not all guard intervals are supported by a␣
↪→given standard.
*/

enum fe_guard_interval {
GUARD_INTERVAL_1_32,
GUARD_INTERVAL_1_16,
GUARD_INTERVAL_1_8,
GUARD_INTERVAL_1_4,
GUARD_INTERVAL_AUTO,
GUARD_INTERVAL_1_128,
GUARD_INTERVAL_19_128,
GUARD_INTERVAL_19_256,
GUARD_INTERVAL_PN420,
GUARD_INTERVAL_PN595,
GUARD_INTERVAL_PN945,

};

/**
* enum fe_hierarchy - Hierarchy
* @HIERARCHY_NONE: No hierarchy
* @HIERARCHY_AUTO: Autodetect hierarchy (if supported)
* @HIERARCHY_1: Hierarchy 1
* @HIERARCHY_2: Hierarchy 2
* @HIERARCHY_4: Hierarchy 4
*
* Please note that not all hierarchy types are supported by a␣
↪→given standard.
*/

enum fe_hierarchy {
HIERARCHY_NONE,
HIERARCHY_1,
HIERARCHY_2,
HIERARCHY_4,
HIERARCHY_AUTO

};

/**
* enum fe_interleaving - Interleaving
* @INTERLEAVING_NONE: No interleaving.
* @INTERLEAVING_AUTO: Auto-detect interleaving.
* @INTERLEAVING_240: Interleaving of 240 symbols.
* @INTERLEAVING_720: Interleaving of 720 symbols.

858 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

*
* Please note that, currently, only DTMB uses it.
*/

enum fe_interleaving {
INTERLEAVING_NONE,
INTERLEAVING_AUTO,
INTERLEAVING_240,
INTERLEAVING_720,

};

/* DVBv5 property Commands */

#define DTV_UNDEFINED 0
#define DTV_TUNE 1
#define DTV_CLEAR 2
#define DTV_FREQUENCY 3
#define DTV_MODULATION 4
#define DTV_BANDWIDTH_HZ 5
#define DTV_INVERSION 6
#define DTV_DISEQC_MASTER 7
#define DTV_SYMBOL_RATE 8
#define DTV_INNER_FEC 9
#define DTV_VOLTAGE 10
#define DTV_TONE 11
#define DTV_PILOT 12
#define DTV_ROLLOFF 13
#define DTV_DISEQC_SLAVE_REPLY 14

/* Basic enumeration set for querying unlimited capabilities */
#define DTV_FE_CAPABILITY_COUNT 15
#define DTV_FE_CAPABILITY 16
#define DTV_DELIVERY_SYSTEM 17

/* ISDB-T and ISDB-Tsb */
#define DTV_ISDBT_PARTIAL_RECEPTION 18
#define DTV_ISDBT_SOUND_BROADCASTING 19

#define DTV_ISDBT_SB_SUBCHANNEL_ID 20
#define DTV_ISDBT_SB_SEGMENT_IDX 21
#define DTV_ISDBT_SB_SEGMENT_COUNT 22

#define DTV_ISDBT_LAYERA_FEC 23
#define DTV_ISDBT_LAYERA_MODULATION 24
#define DTV_ISDBT_LAYERA_SEGMENT_COUNT 25
#define DTV_ISDBT_LAYERA_TIME_INTERLEAVING 26

#define DTV_ISDBT_LAYERB_FEC 27
#define DTV_ISDBT_LAYERB_MODULATION 28
#define DTV_ISDBT_LAYERB_SEGMENT_COUNT 29
#define DTV_ISDBT_LAYERB_TIME_INTERLEAVING 30

7.3. Part II - Digital TV API 859

Linux Userspace-api Documentation

#define DTV_ISDBT_LAYERC_FEC 31
#define DTV_ISDBT_LAYERC_MODULATION 32
#define DTV_ISDBT_LAYERC_SEGMENT_COUNT 33
#define DTV_ISDBT_LAYERC_TIME_INTERLEAVING 34

#define DTV_API_VERSION 35

#define DTV_CODE_RATE_HP 36
#define DTV_CODE_RATE_LP 37
#define DTV_GUARD_INTERVAL 38
#define DTV_TRANSMISSION_MODE 39
#define DTV_HIERARCHY 40

#define DTV_ISDBT_LAYER_ENABLED 41

#define DTV_STREAM_ID 42
#define DTV_ISDBS_TS_ID_LEGACY DTV_STREAM_ID
#define DTV_DVBT2_PLP_ID_LEGACY 43

#define DTV_ENUM_DELSYS 44

/* ATSC-MH */
#define DTV_ATSCMH_FIC_VER 45
#define DTV_ATSCMH_PARADE_ID 46
#define DTV_ATSCMH_NOG 47
#define DTV_ATSCMH_TNOG 48
#define DTV_ATSCMH_SGN 49
#define DTV_ATSCMH_PRC 50
#define DTV_ATSCMH_RS_FRAME_MODE 51
#define DTV_ATSCMH_RS_FRAME_ENSEMBLE 52
#define DTV_ATSCMH_RS_CODE_MODE_PRI 53
#define DTV_ATSCMH_RS_CODE_MODE_SEC 54
#define DTV_ATSCMH_SCCC_BLOCK_MODE 55
#define DTV_ATSCMH_SCCC_CODE_MODE_A 56
#define DTV_ATSCMH_SCCC_CODE_MODE_B 57
#define DTV_ATSCMH_SCCC_CODE_MODE_C 58
#define DTV_ATSCMH_SCCC_CODE_MODE_D 59

#define DTV_INTERLEAVING 60
#define DTV_LNA 61

/* Quality parameters */
#define DTV_STAT_SIGNAL_STRENGTH 62
#define DTV_STAT_CNR 63
#define DTV_STAT_PRE_ERROR_BIT_COUNT 64
#define DTV_STAT_PRE_TOTAL_BIT_COUNT 65
#define DTV_STAT_POST_ERROR_BIT_COUNT 66
#define DTV_STAT_POST_TOTAL_BIT_COUNT 67
#define DTV_STAT_ERROR_BLOCK_COUNT 68
#define DTV_STAT_TOTAL_BLOCK_COUNT 69

860 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/* Physical layer scrambling */
#define DTV_SCRAMBLING_SEQUENCE_INDEX 70

#define DTV_MAX_COMMAND DTV_SCRAMBLING_SEQUENCE_INDEX

/**
* enum fe_pilot - Type of pilot tone
*
* @PILOT_ON: Pilot tones enabled
* @PILOT_OFF: Pilot tones disabled
* @PILOT_AUTO: Autodetect pilot tones
*/

enum fe_pilot {
PILOT_ON,
PILOT_OFF,
PILOT_AUTO,

};

/**
* enum fe_rolloff - Rolloff factor
* @ROLLOFF_35: Roloff factor: α=35%
* @ROLLOFF_20: Roloff factor: α=20%
* @ROLLOFF_25: Roloff factor: α=25%
* @ROLLOFF_AUTO: Auto-detect the roloff factor.
*
* .. note:
*
* Roloff factor of 35% is implied on DVB-S. On DVB-S2, it is␣
↪→default.
*/

enum fe_rolloff {
ROLLOFF_35,
ROLLOFF_20,
ROLLOFF_25,
ROLLOFF_AUTO,

};

/**
* enum fe_delivery_system - Type of the delivery system
*
* @SYS_UNDEFINED:
* Undefined standard. Generally, indicates an error
* @SYS_DVBC_ANNEX_A:
* Cable TV: DVB-C following ITU-T J.83 Annex A spec
* @SYS_DVBC_ANNEX_B:
* Cable TV: DVB-C following ITU-T J.83 Annex B spec (ClearQAM)
* @SYS_DVBC_ANNEX_C:
* Cable TV: DVB-C following ITU-T J.83 Annex C spec
* @SYS_ISDBC:
* Cable TV: ISDB-C (no drivers yet)
* @SYS_DVBT:

7.3. Part II - Digital TV API 861

Linux Userspace-api Documentation

* Terrestrial TV: DVB-T
* @SYS_DVBT2:
* Terrestrial TV: DVB-T2
* @SYS_ISDBT:
* Terrestrial TV: ISDB-T
* @SYS_ATSC:
* Terrestrial TV: ATSC
* @SYS_ATSCMH:
* Terrestrial TV (mobile): ATSC-M/H
* @SYS_DTMB:
* Terrestrial TV: DTMB
* @SYS_DVBS:
* Satellite TV: DVB-S
* @SYS_DVBS2:
* Satellite TV: DVB-S2
* @SYS_TURBO:
* Satellite TV: DVB-S Turbo
* @SYS_ISDBS:
* Satellite TV: ISDB-S
* @SYS_DAB:
* Digital audio: DAB (not fully supported)
* @SYS_DSS:
* Satellite TV: DSS (not fully supported)
* @SYS_CMMB:
* Terrestrial TV (mobile): CMMB (not fully supported)
* @SYS_DVBH:
* Terrestrial TV (mobile): DVB-H (standard deprecated)
*/

enum fe_delivery_system {
SYS_UNDEFINED,
SYS_DVBC_ANNEX_A,
SYS_DVBC_ANNEX_B,
SYS_DVBT,
SYS_DSS,
SYS_DVBS,
SYS_DVBS2,
SYS_DVBH,
SYS_ISDBT,
SYS_ISDBS,
SYS_ISDBC,
SYS_ATSC,
SYS_ATSCMH,
SYS_DTMB,
SYS_CMMB,
SYS_DAB,
SYS_DVBT2,
SYS_TURBO,
SYS_DVBC_ANNEX_C,

};

/* backward compatibility definitions for delivery systems */

862 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define SYS_DVBC_ANNEX_AC SYS_DVBC_ANNEX_A
#define SYS_DMBTH SYS_DTMB /* DMB-TH is legacy name,␣
↪→use DTMB */

/* ATSC-MH specific parameters */

/**
* enum atscmh_sccc_block_mode - Type of Series Concatenated␣
↪→Convolutional
* Code Block Mode.
*
* @ATSCMH_SCCC_BLK_SEP:
* Separate SCCC: the SCCC outer code mode shall be set␣
↪→independently
* for each Group Region (A, B, C, D)
* @ATSCMH_SCCC_BLK_COMB:
* Combined SCCC: all four Regions shall have the same SCCC␣
↪→outer
* code mode.
* @ATSCMH_SCCC_BLK_RES:
* Reserved. Shouldn't be used.
*/

enum atscmh_sccc_block_mode {
ATSCMH_SCCC_BLK_SEP = 0,
ATSCMH_SCCC_BLK_COMB = 1,
ATSCMH_SCCC_BLK_RES = 2,

};

/**
* enum atscmh_sccc_code_mode - Type of Series Concatenated␣
↪→Convolutional
* Code Rate.
*
* @ATSCMH_SCCC_CODE_HLF:
* The outer code rate of a SCCC Block is 1/2 rate.
* @ATSCMH_SCCC_CODE_QTR:
* The outer code rate of a SCCC Block is 1/4 rate.
* @ATSCMH_SCCC_CODE_RES:
* Reserved. Should not be used.
*/

enum atscmh_sccc_code_mode {
ATSCMH_SCCC_CODE_HLF = 0,
ATSCMH_SCCC_CODE_QTR = 1,
ATSCMH_SCCC_CODE_RES = 2,

};

/**
* enum atscmh_rs_frame_ensemble - Reed Solomon(RS) frame ensemble.
*
* @ATSCMH_RSFRAME_ENS_PRI: Primary Ensemble.
* @ATSCMH_RSFRAME_ENS_SEC: Secondary Ensemble.

7.3. Part II - Digital TV API 863

Linux Userspace-api Documentation

*/
enum atscmh_rs_frame_ensemble {

ATSCMH_RSFRAME_ENS_PRI = 0,
ATSCMH_RSFRAME_ENS_SEC = 1,

};

/**
* enum atscmh_rs_frame_mode - Reed Solomon (RS) frame mode.
*
* @ATSCMH_RSFRAME_PRI_ONLY:
* Single Frame: There is only a primary RS Frame for all Group
* Regions.
* @ATSCMH_RSFRAME_PRI_SEC:
* Dual Frame: There are two separate RS Frames: Primary RS␣
↪→Frame for
* Group Region A and B and Secondary RS Frame for Group␣
↪→Region C and
* D.
* @ATSCMH_RSFRAME_RES:
* Reserved. Shouldn't be used.
*/

enum atscmh_rs_frame_mode {
ATSCMH_RSFRAME_PRI_ONLY = 0,
ATSCMH_RSFRAME_PRI_SEC = 1,
ATSCMH_RSFRAME_RES = 2,

};

/**
* enum atscmh_rs_code_mode
* @ATSCMH_RSCODE_211_187: Reed Solomon code (211,187).
* @ATSCMH_RSCODE_223_187: Reed Solomon code (223,187).
* @ATSCMH_RSCODE_235_187: Reed Solomon code (235,187).
* @ATSCMH_RSCODE_RES: Reserved. Shouldn't be used.
*/

enum atscmh_rs_code_mode {
ATSCMH_RSCODE_211_187 = 0,
ATSCMH_RSCODE_223_187 = 1,
ATSCMH_RSCODE_235_187 = 2,
ATSCMH_RSCODE_RES = 3,

};

#define NO_STREAM_ID_FILTER (~0U)
#define LNA_AUTO (~0U)

/**
* enum fecap_scale_params - scale types for the quality parameters.
*
* @FE_SCALE_NOT_AVAILABLE: That QoS measure is not available. That
* could indicate a temporary or a␣
↪→permanent
* condition.

864 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* @FE_SCALE_DECIBEL: The scale is measured in 0.001 dB steps,␣
↪→typically
* used on signal measures.
* @FE_SCALE_RELATIVE: The scale is a relative percentual measure,
* ranging from 0 (0%) to 0xffff (100%).
* @FE_SCALE_COUNTER: The scale counts the occurrence of an event,␣
↪→like
* bit error, block error, lapsed time.
*/

enum fecap_scale_params {
FE_SCALE_NOT_AVAILABLE = 0,
FE_SCALE_DECIBEL,
FE_SCALE_RELATIVE,
FE_SCALE_COUNTER

};

/**
* struct dtv_stats - Used for reading a DTV status property
*
* @scale:
* Filled with enum fecap_scale_params - the scale in usage
* for that parameter
*
* @svalue:
* integer value of the measure, for %FE_SCALE_DECIBEL,
* used for dB measures. The unit is 0.001 dB.
*
* @uvalue:
* unsigned integer value of the measure, used when @scale is
* either %FE_SCALE_RELATIVE or %FE_SCALE_COUNTER.
*
* For most delivery systems, this will return a single value for␣
↪→each
* parameter.
*
* It should be noticed, however, that new OFDM delivery systems␣
↪→like
* ISDB can use different modulation types for each group of␣
↪→carriers.
* On such standards, up to 8 groups of statistics can be provided,␣
↪→one
* for each carrier group (called "layer" on ISDB).
*
* In order to be consistent with other delivery systems, the first
* value refers to the entire set of carriers ("global").
*
* @scale should use the value %FE_SCALE_NOT_AVAILABLE when
* the value for the entire group of carriers or from one specific␣
↪→layer
* is not provided by the hardware.
*

7.3. Part II - Digital TV API 865

Linux Userspace-api Documentation

* @len should be filled with the latest filled status + 1.
*
* In other words, for ISDB, those values should be filled like::
*
* u.st.stat.svalue[0] = global statistics;
* u.st.stat.scale[0] = FE_SCALE_DECIBEL;
* u.st.stat.value[1] = layer A statistics;
* u.st.stat.scale[1] = FE_SCALE_NOT_AVAILABLE (if not␣
↪→available);
* u.st.stat.svalue[2] = layer B statistics;
* u.st.stat.scale[2] = FE_SCALE_DECIBEL;
* u.st.stat.svalue[3] = layer C statistics;
* u.st.stat.scale[3] = FE_SCALE_DECIBEL;
* u.st.len = 4;
*/

struct dtv_stats {
__u8 scale; /* enum fecap_scale_params type */
union {

__u64 uvalue; /* for counters and relative scales␣
↪→*/

__s64 svalue; /* for 0.001 dB measures */
};

} __attribute__ ((packed));

#define MAX_DTV_STATS 4

/**
* struct dtv_fe_stats - store Digital TV frontend statistics
*
* @len: length of the statistics - if zero, stats is␣
↪→disabled.
* @stat: array with digital TV statistics.
*
* On most standards, @len can either be 0 or 1. However, for ISDB,␣
↪→each
* layer is modulated in separate. So, each layer may have its own␣
↪→set
* of statistics. If so, stat[0] carries on a global value for the␣
↪→property.
* Indexes 1 to 3 means layer A to B.
*/

struct dtv_fe_stats {
__u8 len;
struct dtv_stats stat[MAX_DTV_STATS];

} __attribute__ ((packed));

/**
* struct dtv_property - store one of frontend command and its value
*
* @cmd: Digital TV command.
* @reserved: Not used.

866 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* @u: Union with the values for the command.
* @u.data: A unsigned 32 bits integer with command␣
↪→value.
* @u.buffer: Struct to store bigger properties.
* Currently unused.
* @u.buffer.data: an unsigned 32-bits array.
* @u.buffer.len: number of elements of the buffer.
* @u.buffer.reserved1: Reserved.
* @u.buffer.reserved2: Reserved.
* @u.st: a &struct dtv_fe_stats array of statistics.
* @result: Currently unused.
*
*/

struct dtv_property {
__u32 cmd;
__u32 reserved[3];
union {

__u32 data;
struct dtv_fe_stats st;
struct {

__u8 data[32];
__u32 len;
__u32 reserved1[3];
void *reserved2;

} buffer;
} u;
int result;

} __attribute__ ((packed));

/* num of properties cannot exceed DTV_IOCTL_MAX_MSGS per ioctl */
#define DTV_IOCTL_MAX_MSGS 64

/**
* struct dtv_properties - a set of command/value pairs.
*
* @num: amount of commands stored at the struct.
* @props: a pointer to &struct dtv_property.
*/

struct dtv_properties {
__u32 num;
struct dtv_property *props;

};

/*
* When set, this flag will disable any zigzagging or other␣
↪→"normal" tuning
* behavior. Additionally, there will be no automatic monitoring of␣
↪→the lock
* status, and hence no frontend events will be generated. If a␣
↪→frontend device
* is closed, this flag will be automatically turned off when the␣

7.3. Part II - Digital TV API 867

Linux Userspace-api Documentation

↪→device is
* reopened read-write.
*/

#define FE_TUNE_MODE_ONESHOT 0x01

/* Digital TV Frontend API calls */

#define FE_GET_INFO _IOR('o', 61, struct dvb_
↪→frontend_info)

#define FE_DISEQC_RESET_OVERLOAD _IO('o', 62)
#define FE_DISEQC_SEND_MASTER_CMD _IOW('o', 63, struct dvb_diseqc_
↪→master_cmd)
#define FE_DISEQC_RECV_SLAVE_REPLY _IOR('o', 64, struct dvb_diseqc_
↪→slave_reply)
#define FE_DISEQC_SEND_BURST _IO('o', 65) /* fe_sec_mini_cmd_
↪→t */

#define FE_SET_TONE _IO('o', 66) /* fe_sec_tone_
↪→mode_t */
#define FE_SET_VOLTAGE _IO('o', 67) /* fe_sec_voltage_
↪→t */
#define FE_ENABLE_HIGH_LNB_VOLTAGE _IO('o', 68) /* int */

#define FE_READ_STATUS _IOR('o', 69, fe_status_t)
#define FE_READ_BER _IOR('o', 70, __u32)
#define FE_READ_SIGNAL_STRENGTH _IOR('o', 71, __u16)
#define FE_READ_SNR _IOR('o', 72, __u16)
#define FE_READ_UNCORRECTED_BLOCKS _IOR('o', 73, __u32)

#define FE_SET_FRONTEND_TUNE_MODE _IO('o', 81) /* unsigned int */
#define FE_GET_EVENT _IOR('o', 78, struct dvb_
↪→frontend_event)

#define FE_DISHNETWORK_SEND_LEGACY_CMD _IO('o', 80) /* unsigned int␣
↪→*/

#define FE_SET_PROPERTY _IOW('o', 82, struct dtv_
↪→properties)
#define FE_GET_PROPERTY _IOR('o', 83, struct dtv_
↪→properties)

#if defined(__DVB_CORE__) || !defined(__KERNEL__)

/*
* DEPRECATED: Everything below is deprecated in favor of DVBv5 API
*
* The DVBv3 only ioctls, structs and enums should not be used on
* newer programs, as it doesn't support the second generation of
* digital TV standards, nor supports newer delivery systems.
* They also don't support modern frontends with usually support␣

868 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

↪→multiple
* delivery systems.
*
* Drivers shouldn't use them.
*
* New applications should use DVBv5 delivery system instead
*/

/*
*/

enum fe_bandwidth {
BANDWIDTH_8_MHZ,
BANDWIDTH_7_MHZ,
BANDWIDTH_6_MHZ,
BANDWIDTH_AUTO,
BANDWIDTH_5_MHZ,
BANDWIDTH_10_MHZ,
BANDWIDTH_1_712_MHZ,

};

/* This is kept for legacy userspace support */
typedef enum fe_sec_voltage fe_sec_voltage_t;
typedef enum fe_caps fe_caps_t;
typedef enum fe_type fe_type_t;
typedef enum fe_sec_tone_mode fe_sec_tone_mode_t;
typedef enum fe_sec_mini_cmd fe_sec_mini_cmd_t;
typedef enum fe_status fe_status_t;
typedef enum fe_spectral_inversion fe_spectral_inversion_t;
typedef enum fe_code_rate fe_code_rate_t;
typedef enum fe_modulation fe_modulation_t;
typedef enum fe_transmit_mode fe_transmit_mode_t;
typedef enum fe_bandwidth fe_bandwidth_t;
typedef enum fe_guard_interval fe_guard_interval_t;
typedef enum fe_hierarchy fe_hierarchy_t;
typedef enum fe_pilot fe_pilot_t;
typedef enum fe_rolloff fe_rolloff_t;
typedef enum fe_delivery_system fe_delivery_system_t;

/* DVBv3 structs */

struct dvb_qpsk_parameters {
__u32 symbol_rate; /* symbol rate in Symbols per␣

↪→second */
fe_code_rate_t fec_inner; /* forward error correction␣

↪→(see above) */
};

struct dvb_qam_parameters {
__u32 symbol_rate; /* symbol rate in Symbols per␣

↪→second */

7.3. Part II - Digital TV API 869

Linux Userspace-api Documentation

fe_code_rate_t fec_inner; /* forward error correction␣
↪→(see above) */

fe_modulation_t modulation; /* modulation type (see above)␣
↪→*/
};

struct dvb_vsb_parameters {
fe_modulation_t modulation; /* modulation type (see above)␣

↪→*/
};

struct dvb_ofdm_parameters {
fe_bandwidth_t bandwidth;
fe_code_rate_t code_rate_HP; /* high priority stream␣

↪→code rate */
fe_code_rate_t code_rate_LP; /* low priority stream␣

↪→code rate */
fe_modulation_t constellation; /* modulation type (see␣

↪→above) */
fe_transmit_mode_t transmission_mode;
fe_guard_interval_t guard_interval;
fe_hierarchy_t hierarchy_information;

};

struct dvb_frontend_parameters {
__u32 frequency; /* (absolute) frequency in Hz for DVB-C/

↪→DVB-T/ATSC */
/* intermediate frequency in kHz for␣

↪→DVB-S */
fe_spectral_inversion_t inversion;
union {

struct dvb_qpsk_parameters qpsk; /* DVB-S */
struct dvb_qam_parameters qam; /* DVB-C */
struct dvb_ofdm_parameters ofdm; /* DVB-T */
struct dvb_vsb_parameters vsb; /* ATSC */

} u;
};

struct dvb_frontend_event {
fe_status_t status;
struct dvb_frontend_parameters parameters;

};

/* DVBv3 API calls */

#define FE_SET_FRONTEND _IOW('o', 76, struct dvb_
↪→frontend_parameters)
#define FE_GET_FRONTEND _IOR('o', 77, struct dvb_
↪→frontend_parameters)

#endif

870 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#endif /*_DVBFRONTEND_H_*/

dmx.h

/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
* dmx.h
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* & Ralph Metzler <ralph@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public␣
↪→License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public␣
↪→License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA ␣
↪→02111-1307, USA.
*
*/

#ifndef _UAPI_DVBDMX_H_
#define _UAPI_DVBDMX_H_

#include <linux/types.h>
#ifndef __KERNEL__
#include <time.h>
#endif

#define DMX_FILTER_SIZE 16

/**
* enum dmx_output - Output for the demux.
*
* @:c:type:DMX_OUT_DECODER <dmx_output>:
* Streaming directly to decoder.
* @:c:type:DMX_OUT_TAP <dmx_output>:
* Output going to a memory buffer (to be retrieved via the␣
↪→read command).

7.3. Part II - Digital TV API 871

mailto:marcus@convergence.de
mailto:ralph@convergence.de

Linux Userspace-api Documentation

* Delivers the stream output to the demux device on which the␣
↪→ioctl
* is called.
* @:c:type:DMX_OUT_TS_TAP <dmx_output>:
* Output multiplexed into a new TS (to be retrieved by␣
↪→reading from the
* logical DVR device). Routes output to the logical DVR device
* ``/dev/dvb/adapter?/dvr?``, which delivers a TS multiplexed␣
↪→from all
* filters for which @:c:type:DMX_OUT_TS_TAP <dmx_output> was␣
↪→specified.
* @:c:type:DMX_OUT_TSDEMUX_TAP <dmx_output>:
* Like @:c:type:DMX_OUT_TS_TAP <dmx_output> but retrieved␣
↪→from the DMX device.
*/

enum dmx_output {
DMX_OUT_DECODER,
DMX_OUT_TAP,
DMX_OUT_TS_TAP,
DMX_OUT_TSDEMUX_TAP

};

/**
* dmx_input - Input from the demux.
*
* @:c:type:DMX_IN_FRONTEND <dmx_input>: Input from a front-end␣
↪→device.
* @:c:type:DMX_IN_DVR <dmx_input>: Input from the logical␣
↪→DVR device.
*/

dmx_input {
DMX_IN_FRONTEND,
DMX_IN_DVR

};

/**
* dmx_ts_pes - type of the PES filter.
*
* @:c:type:DMX_PES_AUDIO0 <dmx_pes_type>: first audio PID.␣
↪→Also referred as @DMX_PES_AUDIO.
* @:c:type:DMX_PES_VIDEO0 <dmx_pes_type>: first video PID.␣
↪→Also referred as @DMX_PES_VIDEO.
* @:c:type:DMX_PES_TELETEXT0 <dmx_pes_type>: first teletext PID.␣
↪→Also referred as @DMX_PES_TELETEXT.
* @:c:type:DMX_PES_SUBTITLE0 <dmx_pes_type>: first subtitle PID.␣
↪→Also referred as @DMX_PES_SUBTITLE.
* @:c:type:DMX_PES_PCR0 <dmx_pes_type>: first Program Clock␣
↪→Reference PID.
* Also referred as @DMX_PES_PCR.
*
* @:c:type:DMX_PES_AUDIO1 <dmx_pes_type>: second audio PID.

872 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* @:c:type:DMX_PES_VIDEO1 <dmx_pes_type>: second video PID.
* @:c:type:DMX_PES_TELETEXT1 <dmx_pes_type>: second teletext PID.
* @:c:type:DMX_PES_SUBTITLE1 <dmx_pes_type>: second subtitle PID.
* @:c:type:DMX_PES_PCR1 <dmx_pes_type>: second Program Clock␣
↪→Reference PID.
*
* @:c:type:DMX_PES_AUDIO2 <dmx_pes_type>: third audio PID.
* @:c:type:DMX_PES_VIDEO2 <dmx_pes_type>: third video PID.
* @:c:type:DMX_PES_TELETEXT2 <dmx_pes_type>: third teletext PID.
* @:c:type:DMX_PES_SUBTITLE2 <dmx_pes_type>: third subtitle PID.
* @:c:type:DMX_PES_PCR2 <dmx_pes_type>: third Program Clock␣
↪→Reference PID.
*
* @:c:type:DMX_PES_AUDIO3 <dmx_pes_type>: fourth audio PID.
* @:c:type:DMX_PES_VIDEO3 <dmx_pes_type>: fourth video PID.
* @:c:type:DMX_PES_TELETEXT3 <dmx_pes_type>: fourth teletext PID.
* @:c:type:DMX_PES_SUBTITLE3 <dmx_pes_type>: fourth subtitle PID.
* @:c:type:DMX_PES_PCR3 <dmx_pes_type>: fourth Program Clock␣
↪→Reference PID.
*
* @:c:type:DMX_PES_OTHER <dmx_pes_type>: any other PID.
*/

dmx_ts_pes {
DMX_PES_AUDIO0,
DMX_PES_VIDEO0,
DMX_PES_TELETEXT0,
DMX_PES_SUBTITLE0,
DMX_PES_PCR0,

DMX_PES_AUDIO1,
DMX_PES_VIDEO1,
DMX_PES_TELETEXT1,
DMX_PES_SUBTITLE1,
DMX_PES_PCR1,

DMX_PES_AUDIO2,
DMX_PES_VIDEO2,
DMX_PES_TELETEXT2,
DMX_PES_SUBTITLE2,
DMX_PES_PCR2,

DMX_PES_AUDIO3,
DMX_PES_VIDEO3,
DMX_PES_TELETEXT3,
DMX_PES_SUBTITLE3,
DMX_PES_PCR3,

DMX_PES_OTHER
};

7.3. Part II - Digital TV API 873

Linux Userspace-api Documentation

#define DMX_PES_AUDIO DMX_PES_AUDIO0
#define DMX_PES_VIDEO DMX_PES_VIDEO0
#define DMX_PES_TELETEXT DMX_PES_TELETEXT0
#define DMX_PES_SUBTITLE DMX_PES_SUBTITLE0
#define DMX_PES_PCR DMX_PES_PCR0

/**
* struct dmx_filter - Specifies a section header filter.
*
* @filter: bit array with bits to be matched at the section header.
* @mask: bits that are valid at the filter bit array.
* @mode: mode of match: if bit is zero, it will match if equal␣
↪→(positive
* match); if bit is one, it will match if the bit is␣
↪→negated.
*
* Note: All arrays in this struct have a size of DMX_FILTER_SIZE␣
↪→(16 bytes).
*/

struct dmx_filter {
__u8 filter[DMX_FILTER_SIZE];
__u8 mask[DMX_FILTER_SIZE];
__u8 mode[DMX_FILTER_SIZE];

};

/**
* struct dmx_sct_filter_params - Specifies a section filter.
*
* @pid: PID to be filtered.
* @filter: section header filter, as defined by &struct dmx_filter.
* @timeout: maximum time to filter, in milliseconds.
* @flags: extra flags for the section filter.
*
* Carries the configuration for a MPEG-TS section filter.
*
* The @flags can be:
*
* - %DMX_CHECK_CRC - only deliver sections where the CRC␣
↪→check succeeded;
* - %DMX_ONESHOT - disable the section filter after one␣
↪→section
* has been delivered;
* - %DMX_IMMEDIATE_START - Start filter immediately without␣
↪→requiring a
* :ref:`DMX_START`.
*/

struct dmx_sct_filter_params {
__u16 pid;
struct dmx_filter filter;
__u32 timeout;
__u32 flags;

874 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define DMX_CHECK_CRC 1
#define DMX_ONESHOT 2
#define DMX_IMMEDIATE_START 4
};

/**
* struct dmx_pes_filter_params - Specifies Packetized Elementary␣
↪→Stream (PES)
* filter parameters.
*
* @pid: PID to be filtered.
* @input: Demux input, as specified by &enum dmx_input.
* @output: Demux output, as specified by &enum dmx_output.
* @pes_type: Type of the pes filter, as specified by &enum dmx_
↪→pes_type.
* @flags: Demux PES flags.
*/

struct dmx_pes_filter_params {
__u16 pid;
dmx_input input;
enum dmx_output output;
dmx_ts_pes pes_type;
__u32 flags;

};

/**
* struct dmx_stc - Stores System Time Counter (STC) information.
*
* @num: input data: number of the STC, from 0 to N.
* @base: output: divisor for STC to get 90 kHz clock.
* @stc: output: stc in @base * 90 kHz units.
*/

struct dmx_stc {
unsigned int num;
unsigned int base;
__u64 stc;

};

/**
* enum dmx_buffer_flags - DMX memory-mapped buffer flags
*
* @:c:type:DMX_BUFFER_FLAG_HAD_CRC32_DISCARD <dmx_buffer_flags>:
* Indicates that the Kernel discarded one or more frames due␣
↪→to wrong
* CRC32 checksum.
* @:c:type:DMX_BUFFER_FLAG_TEI <dmx_buffer_flags>:
* Indicates that the Kernel has detected a Transport Error␣
↪→indicator
* (TEI) on a filtered pid.
* @:c:type:DMX_BUFFER_PKT_COUNTER_MISMATCH <dmx_buffer_flags>:
* Indicates that the Kernel has detected a packet counter␣

7.3. Part II - Digital TV API 875

Linux Userspace-api Documentation

↪→mismatch
* on a filtered pid.
* @:c:type:DMX_BUFFER_FLAG_DISCONTINUITY_DETECTED <dmx_buffer_
↪→flags>:
* Indicates that the Kernel has detected one or more frame␣
↪→discontinuity.
* @:c:type:DMX_BUFFER_FLAG_DISCONTINUITY_INDICATOR <dmx_buffer_
↪→flags>:
* Received at least one packet with a frame discontinuity␣
↪→indicator.
*/

enum dmx_buffer_flags {
DMX_BUFFER_FLAG_HAD_CRC32_DISCARD = 1 << 0,
DMX_BUFFER_FLAG_TEI = 1 << 1,
DMX_BUFFER_PKT_COUNTER_MISMATCH = 1 << 2,
DMX_BUFFER_FLAG_DISCONTINUITY_DETECTED = 1 << 3,
DMX_BUFFER_FLAG_DISCONTINUITY_INDICATOR = 1 << 4,

};

/**
* struct dmx_buffer - dmx buffer info
*
* @index: id number of the buffer
* @bytesused: number of bytes occupied by data in the buffer␣
↪→(payload);
* @offset: for buffers with memory == DMX_MEMORY_MMAP;
* offset from the start of the device memory for this␣
↪→plane,
* (or a "cookie" that should be passed to mmap() as␣
↪→offset)
* @length: size in bytes of the buffer
* @flags: bit array of buffer flags as defined by &enum dmx_
↪→buffer_flags.
* Filled only at &DMX_DQBUF.
* @count: monotonic counter for filled buffers. Helps to␣
↪→identify
* data stream loses. Filled only at &DMX_DQBUF.
*
* Contains data exchanged by application and driver using one of␣
↪→the streaming
* I/O methods.
*
* Please notice that, for &DMX_QBUF, only @index should be filled.
* On &DMX_DQBUF calls, all fields will be filled by the Kernel.
*/

struct dmx_buffer {
__u32 index;
__u32 bytesused;
__u32 offset;
__u32 length;

876 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

__u32 flags;
__u32 count;

};

/**
* struct dmx_requestbuffers - request dmx buffer information
*
* @count: number of requested buffers,
* @size: size in bytes of the requested buffer
*
* Contains data used for requesting a dmx buffer.
* All reserved fields must be set to zero.
*/

struct dmx_requestbuffers {
__u32 count;
__u32 size;

};

/**
* struct dmx_exportbuffer - export of dmx buffer as DMABUF file␣
↪→descriptor
*
* @index: id number of the buffer
* @flags: flags for newly created file, currently only O_
↪→CLOEXEC is
* supported, refer to manual of open syscall for more␣
↪→details
* @fd: file descriptor associated with DMABUF (set by␣
↪→driver)
*
* Contains data used for exporting a dmx buffer as DMABUF file␣
↪→descriptor.
* The buffer is identified by a 'cookie' returned by DMX_QUERYBUF
* (identical to the cookie used to mmap() the buffer to userspace).
↪→ All
* reserved fields must be set to zero. The field reserved0 is␣
↪→expected to
* become a structure 'type' allowing an alternative layout of the␣
↪→structure
* content. Therefore this field should not be used for any other␣
↪→extensions.
*/

struct dmx_exportbuffer {
__u32 index;
__u32 flags;
__s32 fd;

};

#define DMX_START _IO('o', 41)
#define DMX_STOP _IO('o', 42)
#define DMX_SET_FILTER _IOW('o', 43, struct dmx_sct_

7.3. Part II - Digital TV API 877

Linux Userspace-api Documentation

↪→filter_params)
#define DMX_SET_PES_FILTER _IOW('o', 44, struct dmx_pes_
↪→filter_params)
#define DMX_SET_BUFFER_SIZE _IO('o', 45)
#define DMX_GET_PES_PIDS _IOR('o', 47, __u16[5])
#define DMX_GET_STC _IOWR('o', 50, struct dmx_stc)
#define DMX_ADD_PID _IOW('o', 51, __u16)
#define DMX_REMOVE_PID _IOW('o', 52, __u16)

#if !defined(__KERNEL__)

/* This is needed for legacy userspace support */
typedef enum dmx_output dmx_output_t;
typedef dmx_input dmx_input_t;
typedef dmx_ts_pes dmx_pes_type_t;
typedef struct dmx_filter dmx_filter_t;

#endif

#define DMX_REQBUFS _IOWR('o', 60, struct dmx_
↪→requestbuffers)
#define DMX_QUERYBUF _IOWR('o', 61, struct dmx_buffer)
#define DMX_EXPBUF _IOWR('o', 62, struct dmx_
↪→exportbuffer)
#define DMX_QBUF _IOWR('o', 63, struct dmx_buffer)
#define DMX_DQBUF _IOWR('o', 64, struct dmx_buffer)

#endif /* _DVBDMX_H_ */

ca.h

/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
* ca.h
*
* Copyright (C) 2000 Ralph Metzler <ralph@convergence.de>
* & Marcus Metzler <marcus@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Lesser Public␣
↪→License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*

878 Chapter 7. Linux Media Infrastructure userspace API

mailto:ralph@convergence.de
mailto:marcus@convergence.de

Linux Userspace-api Documentation

* You should have received a copy of the GNU Lesser General Public␣
↪→License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA ␣
↪→02111-1307, USA.
*
*/

#ifndef _DVBCA_H_
#define _DVBCA_H_

/**
* struct ca_slot_info - CA slot interface types and info.
*
* @num: slot number.
* @type: slot type.
* @flags: flags applicable to the slot.
*
* This struct stores the CA slot information.
*
* @type can be:
*
* - %CA_CI - CI high level interface;
* - %CA_CI_LINK - CI link layer level interface;
* - %CA_CI_PHYS - CI physical layer level interface;
* - %CA_DESCR - built-in descrambler;
* - %CA_SC -simple smart card interface.
*
* @flags can be:
*
* - %CA_CI_MODULE_PRESENT - module (or card) inserted;
* - %CA_CI_MODULE_READY - module is ready for usage.
*/

struct ca_slot_info {
int num;
int type;

#define CA_CI 1
#define CA_CI_LINK 2
#define CA_CI_PHYS 4
#define CA_DESCR 8
#define CA_SC 128

unsigned int flags;
#define CA_CI_MODULE_PRESENT 1
#define CA_CI_MODULE_READY 2
};

/**
* struct ca_descr_info - descrambler types and info.
*

7.3. Part II - Digital TV API 879

Linux Userspace-api Documentation

* @num: number of available descramblers (keys).
* @type: type of supported scrambling system.
*
* Identifies the number of descramblers and their type.
*
* @type can be:
*
* - %CA_ECD - European Common Descrambler (ECD) hardware;
* - %CA_NDS - Videoguard (NDS) hardware;
* - %CA_DSS - Distributed Sample Scrambling (DSS) hardware.
*/

struct ca_descr_info {
unsigned int num;
unsigned int type;

#define CA_ECD 1
#define CA_NDS 2
#define CA_DSS 4
};

/**
* struct ca_caps - CA slot interface capabilities.
*
* @slot_num: total number of CA card and module slots.
* @slot_type: bitmap with all supported types as defined at
* &struct ca_slot_info (e. g. %CA_CI, %CA_CI_LINK,␣
↪→etc).
* @descr_num: total number of descrambler slots (keys)
* @descr_type: bitmap with all supported types as defined at
* &struct ca_descr_info (e. g. %CA_ECD, %CA_NDS, etc).
*/

struct ca_caps {
unsigned int slot_num;
unsigned int slot_type;
unsigned int descr_num;
unsigned int descr_type;

};

/**
* struct ca_msg - a message to/from a CI-CAM
*
* @index: unused
* @type: unused
* @length: length of the message
* @msg: message
*
* This struct carries a message to be send/received from a CI CA␣
↪→module.
*/

struct ca_msg {
unsigned int index;
unsigned int type;

880 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

unsigned int length;
unsigned char msg[256];

};

/**
* struct ca_descr - CA descrambler control words info
*
* @index: CA Descrambler slot
* @parity: control words parity, where 0 means even and 1 means odd
* @cw: CA Descrambler control words
*/

struct ca_descr {
unsigned int index;
unsigned int parity;
unsigned char cw[8];

};

#define CA_RESET _IO('o', 128)
#define CA_GET_CAP _IOR('o', 129, struct ca_caps)
#define CA_GET_SLOT_INFO _IOR('o', 130, struct ca_slot_info)
#define CA_GET_DESCR_INFO _IOR('o', 131, struct ca_descr_info)
#define CA_GET_MSG _IOR('o', 132, struct ca_msg)
#define CA_SEND_MSG _IOW('o', 133, struct ca_msg)
#define CA_SET_DESCR _IOW('o', 134, struct ca_descr)

#if !defined(__KERNEL__)

/* This is needed for legacy userspace support */
typedef struct ca_slot_info ca_slot_info_t;
typedef struct ca_descr_info ca_descr_info_t;
typedef struct ca_caps ca_caps_t;
typedef struct ca_msg ca_msg_t;
typedef struct ca_descr ca_descr_t;

#endif

#endif

net.h

/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
* net.h
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* & Ralph Metzler <ralph@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public␣

7.3. Part II - Digital TV API 881

mailto:marcus@convergence.de
mailto:ralph@convergence.de

Linux Userspace-api Documentation

↪→License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public␣
↪→License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA ␣
↪→02111-1307, USA.
*
*/

#ifndef _DVBNET_H_
#define _DVBNET_H_

#include <linux/types.h>

/**
* struct dvb_net_if - describes a DVB network interface
*
* @pid: Packet ID (PID) of the MPEG-TS that contains data
* @if_num: number of the Digital TV interface.
* @feedtype: Encapsulation type of the feed.
*
* A MPEG-TS stream may contain packet IDs with IP packages on it.
* This struct describes it, and the type of encoding.
*
* @feedtype can be:
*
* - %DVB_NET_FEEDTYPE_MPE for MPE encoding
* - %DVB_NET_FEEDTYPE_ULE for ULE encoding.
*/

struct dvb_net_if {
__u16 pid;
__u16 if_num;
__u8 feedtype;

#define DVB_NET_FEEDTYPE_MPE 0 /* multi protocol encapsulation */
#define DVB_NET_FEEDTYPE_ULE 1 /* ultra lightweight encapsulation␣
↪→*/
};

#define NET_ADD_IF _IOWR('o', 52, struct dvb_net_if)
#define NET_REMOVE_IF _IO('o', 53)
#define NET_GET_IF _IOWR('o', 54, struct dvb_net_if)

/* binary compatibility cruft: */

882 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct __dvb_net_if_old {
__u16 pid;
__u16 if_num;

};
#define __NET_ADD_IF_OLD _IOWR('o', 52, struct __dvb_net_if_old)
#define __NET_GET_IF_OLD _IOWR('o', 54, struct __dvb_net_if_old)

#endif /*_DVBNET_H_*/

Legacy uAPI

audio.h

/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
* audio.h - DEPRECATED MPEG-TS audio decoder API
*
* NOTE: should not be used on future drivers
*
* Copyright (C) 2000 Ralph Metzler <ralph@convergence.de>
* & Marcus Metzler <marcus@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Lesser Public␣
↪→License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public␣
↪→License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA ␣
↪→02111-1307, USA.
*
*/

#ifndef _DVBAUDIO_H_
#define _DVBAUDIO_H_

#include <linux/types.h>

typedef enum {
AUDIO_SOURCE_DEMUX, /* Select the demux as the main source␣

↪→*/

7.3. Part II - Digital TV API 883

mailto:ralph@convergence.de
mailto:marcus@convergence.de

Linux Userspace-api Documentation

AUDIO_SOURCE_MEMORY /* Select internal memory as the main␣
↪→source */
} audio_stream_source_t;

typedef enum {
AUDIO_STOPPED, /* Device is stopped */
AUDIO_PLAYING, /* Device is currently playing */
AUDIO_PAUSED /* Device is paused */

} audio_play_state_t;

typedef enum {
AUDIO_STEREO,
AUDIO_MONO_LEFT,
AUDIO_MONO_RIGHT,
AUDIO_MONO,
AUDIO_STEREO_SWAPPED

} audio_channel_select_t;

typedef struct audio_mixer {
unsigned int volume_left;
unsigned int volume_right;

/* what else do we need? bass, pass-through, ... */
} audio_mixer_t;

typedef struct audio_status {
int AV_sync_state; /* sync audio and␣

↪→video? */
int mute_state; /* audio is muted */
audio_play_state_t play_state; /* current playback␣

↪→state */
audio_stream_source_t stream_source; /* current stream␣

↪→source */
audio_channel_select_t channel_select; /* currently␣

↪→selected channel */
int bypass_mode; /* pass on audio␣

↪→data to */
audio_mixer_t mixer_state; /* current mixer␣

↪→state */
} audio_status_t; /* separate decoder␣
↪→hardware */

/* for GET_CAPABILITIES and SET_FORMAT, the latter should only set␣
↪→one bit */
#define AUDIO_CAP_DTS 1
#define AUDIO_CAP_LPCM 2
#define AUDIO_CAP_MP1 4
#define AUDIO_CAP_MP2 8
#define AUDIO_CAP_MP3 16
#define AUDIO_CAP_AAC 32
#define AUDIO_CAP_OGG 64
#define AUDIO_CAP_SDDS 128

884 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define AUDIO_CAP_AC3 256

#define AUDIO_STOP _IO('o', 1)
#define AUDIO_PLAY _IO('o', 2)
#define AUDIO_PAUSE _IO('o', 3)
#define AUDIO_CONTINUE _IO('o', 4)
#define AUDIO_SELECT_SOURCE _IO('o', 5)
#define AUDIO_SET_MUTE _IO('o', 6)
#define AUDIO_SET_AV_SYNC _IO('o', 7)
#define AUDIO_SET_BYPASS_MODE _IO('o', 8)
#define AUDIO_CHANNEL_SELECT _IO('o', 9)
#define AUDIO_GET_STATUS _IOR('o', 10, audio_status_t)

#define AUDIO_GET_CAPABILITIES _IOR('o', 11, unsigned int)
#define AUDIO_CLEAR_BUFFER _IO('o', 12)
#define AUDIO_SET_ID _IO('o', 13)
#define AUDIO_SET_MIXER _IOW('o', 14, audio_mixer_t)
#define AUDIO_SET_STREAMTYPE _IO('o', 15)
#define AUDIO_BILINGUAL_CHANNEL_SELECT _IO('o', 20)

#endif /* _DVBAUDIO_H_ */

video.h

/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
* video.h - DEPRECATED MPEG-TS video decoder API
*
* NOTE: should not be used on future drivers
*
* Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
* & Ralph Metzler <ralph@convergence.de>
* for convergence integrated media GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public␣
↪→License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public␣
↪→License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA ␣
↪→02111-1307, USA.

7.3. Part II - Digital TV API 885

mailto:marcus@convergence.de
mailto:ralph@convergence.de

Linux Userspace-api Documentation

*
*/

#ifndef _UAPI_DVBVIDEO_H_
#define _UAPI_DVBVIDEO_H_

#include <linux/types.h>
#ifndef __KERNEL__
#include <time.h>
#endif

typedef enum {
VIDEO_FORMAT_4_3, /* Select 4:3 format */
VIDEO_FORMAT_16_9, /* Select 16:9 format. */
VIDEO_FORMAT_221_1 /* 2.21:1 */

} video_format_t;

typedef enum {
VIDEO_PAN_SCAN, /* use pan and scan format */
VIDEO_LETTER_BOX, /* use letterbox format */
VIDEO_CENTER_CUT_OUT /* use center cut out format */

} video_displayformat_t;

typedef struct {
int w;
int h;
video_format_t aspect_ratio;

} video_size_t;

typedef enum {
VIDEO_SOURCE_DEMUX, /* Select the demux as the main source␣

↪→*/
VIDEO_SOURCE_MEMORY /* If this source is selected, the␣

↪→stream
comes from the user through the write
system call */

} video_stream_source_t;

typedef enum {
VIDEO_STOPPED, /* Video is stopped */
VIDEO_PLAYING, /* Video is currently playing */
VIDEO_FREEZED /* Video is freezed */

} video_play_state_t;

/* Decoder commands */
#define VIDEO_CMD_PLAY (0)
#define VIDEO_CMD_STOP (1)
#define VIDEO_CMD_FREEZE (2)
#define VIDEO_CMD_CONTINUE (3)

/* Flags for VIDEO_CMD_FREEZE */

886 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define VIDEO_CMD_FREEZE_TO_BLACK (1 << 0)

/* Flags for VIDEO_CMD_STOP */
#define VIDEO_CMD_STOP_TO_BLACK (1 << 0)
#define VIDEO_CMD_STOP_IMMEDIATELY (1 << 1)

/* Play input formats: */
/* The decoder has no special format requirements */
#define VIDEO_PLAY_FMT_NONE (0)
/* The decoder requires full GOPs */
#define VIDEO_PLAY_FMT_GOP (1)

/* The structure must be zeroed before use by the application
This ensures it can be extended safely in the future. */

struct video_command {
__u32 cmd;
__u32 flags;
union {

struct {
__u64 pts;

} stop;

struct {
/* 0 or 1000 specifies normal speed,

1 specifies forward single stepping,
-1 specifies backward single stepping,
>1: playback at speed/1000 of the normal␣

↪→speed,
<-1: reverse playback at (-speed/1000)␣

↪→of the normal speed. */
__s32 speed;
__u32 format;

} play;

struct {
__u32 data[16];

} raw;
};

};

/* FIELD_UNKNOWN can be used if the hardware does not know whether
the Vsync is for an odd, even or progressive (i.e.␣

↪→non-interlaced)
field. */

#define VIDEO_VSYNC_FIELD_UNKNOWN (0)
#define VIDEO_VSYNC_FIELD_ODD (1)
#define VIDEO_VSYNC_FIELD_EVEN (2)
#define VIDEO_VSYNC_FIELD_PROGRESSIVE (3)

struct video_event {
__s32 type;

7.3. Part II - Digital TV API 887

Linux Userspace-api Documentation

#define VIDEO_EVENT_SIZE_CHANGED 1
#define VIDEO_EVENT_FRAME_RATE_CHANGED 2
#define VIDEO_EVENT_DECODER_STOPPED 3
#define VIDEO_EVENT_VSYNC 4

/* unused, make sure to use atomic time for y2038 if it␣
↪→ever gets used */

long timestamp;
union {

video_size_t size;
unsigned int frame_rate; /* in frames per␣

↪→1000sec */
unsigned char vsync_field; /* unknown/odd/even/

↪→progressive */
} u;

};

struct video_status {
int video_blank; /* blank video on␣

↪→freeze? */
video_play_state_t play_state; /* current state of␣

↪→playback */
video_stream_source_t stream_source; /* current source␣

↪→(demux/memory) */
video_format_t video_format; /* current aspect␣

↪→ratio of stream*/
video_displayformat_t display_format;/* selected cropping␣

↪→mode */
};

struct video_still_picture {
char __user *iFrame; /* pointer to a single iframe␣

↪→in memory */
__s32 size;

};

typedef __u16 video_attributes_t;
/* bits: descr. */
/* 15-14 Video compression mode (0=MPEG-1, 1=MPEG-2) */
/* 13-12 TV system (0=525/60, 1=625/50) */
/* 11-10 Aspect ratio (0=4:3, 3=16:9) */
/* 9- 8 permitted display mode on 4:3 monitor (0=both, 1=only␣
↪→pan-sca */
/* 7 line 21-1 data present in GOP (1=yes, 0=no) */
/* 6 line 21-2 data present in GOP (1=yes, 0=no) */
/* 5- 3 source resolution (0=720x480/576, 1=704x480/576,␣
↪→2=352x480/57 */
/* 2 source letterboxed (1=yes, 0=no) */
/* 0 film/camera mode (0=
*camera, 1=film (625/50 only)) */

/* bit definitions for capabilities: */

888 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/* can the hardware decode MPEG1 and/or MPEG2? */
#define VIDEO_CAP_MPEG1 1
#define VIDEO_CAP_MPEG2 2
/* can you send a system and/or program stream to video device?

(you still have to open the video and the audio device but only
send the stream to the video device) */

#define VIDEO_CAP_SYS 4
#define VIDEO_CAP_PROG 8
/* can the driver also handle SPU, NAVI and CSS encoded data?

(CSS API is not present yet) */
#define VIDEO_CAP_SPU 16
#define VIDEO_CAP_NAVI 32
#define VIDEO_CAP_CSS 64

#define VIDEO_STOP _IO('o', 21)
#define VIDEO_PLAY _IO('o', 22)
#define VIDEO_FREEZE _IO('o', 23)
#define VIDEO_CONTINUE _IO('o', 24)
#define VIDEO_SELECT_SOURCE _IO('o', 25)
#define VIDEO_SET_BLANK _IO('o', 26)
#define VIDEO_GET_STATUS _IOR('o', 27, struct video_
↪→status)
#define VIDEO_GET_EVENT _IOR('o', 28, struct video_event)
#define VIDEO_SET_DISPLAY_FORMAT _IO('o', 29)
#define VIDEO_STILLPICTURE _IOW('o', 30, struct video_still_
↪→picture)
#define VIDEO_FAST_FORWARD _IO('o', 31)
#define VIDEO_SLOWMOTION _IO('o', 32)
#define VIDEO_GET_CAPABILITIES _IOR('o', 33, unsigned int)
#define VIDEO_CLEAR_BUFFER _IO('o', 34)
#define VIDEO_SET_STREAMTYPE _IO('o', 36)
#define VIDEO_SET_FORMAT _IO('o', 37)
#define VIDEO_GET_SIZE _IOR('o', 55, video_size_t)

/**
* VIDEO_GET_PTS
*
* Read the 33 bit presentation time stamp as defined
* in ITU T-REC-H.222.0 / ISO/IEC 13818-1.
*
* The PTS should belong to the currently played
* frame if possible, but may also be a value close to it
* like the PTS of the last decoded frame or the last PTS
* extracted by the PES parser.
*/

#define VIDEO_GET_PTS _IOR('o', 57, __u64)

/* Read the number of displayed frames since the decoder was␣
↪→started */
#define VIDEO_GET_FRAME_COUNT _IOR('o', 58, __u64)

7.3. Part II - Digital TV API 889

Linux Userspace-api Documentation

#define VIDEO_COMMAND _IOWR('o', 59, struct video_
↪→command)
#define VIDEO_TRY_COMMAND _IOWR('o', 60, struct video_
↪→command)

#endif /* _UAPI_DVBVIDEO_H_ */

7.3.9 Revision and Copyright

Authors:

• J. K. Metzler, Ralph <rjkm@metzlerbros.de>

• Original author of the Digital TV API documentation.

• O. C. Metzler, Marcus <rjkm@metzlerbros.de>

• Original author of the Digital TV API documentation.

• Carvalho Chehab, Mauro <mchehab+samsung@kernel.org>

• Ported document to Docbook XML, addition of DVBv5 API, documentation
gaps fix.

Copyright © 2002-2003 : Convergence GmbH

Copyright © 2009-2017 : Mauro Carvalho Chehab

7.3.10 Revision History

revision 2.2.0 / 2017-09-01 (mcc)

Most gaps between the uAPI document and the Kernel implementation got fixed
for the non-legacy API.

revision 2.1.0 / 2015-05-29 (mcc)

DocBook improvements and cleanups, in order to document the system calls on
a more standard way and provide more description about the current Digital TV
API.

revision 2.0.4 / 2011-05-06 (mcc)

Add more information about DVBv5 API, better describing the frontend GET/SET
props ioctl’s.

revision 2.0.3 / 2010-07-03 (mcc)

Add some frontend capabilities flags, present on kernel, but missing at the specs.

revision 2.0.2 / 2009-10-25 (mcc)

documents FE_SET_FRONTEND_TUNE_MODE and FE_DISHETWORK_SEND_LEGACY_CMD
ioctls.

revision 2.0.1 / 2009-09-16 (mcc)

Added ISDB-T test originally written by Patrick Boettcher

revision 2.0.0 / 2009-09-06 (mcc)

890 Chapter 7. Linux Media Infrastructure userspace API

mailto:rjkm@metzlerbros.de
mailto:rjkm@metzlerbros.de
mailto:mchehab+samsung@kernel.org

Linux Userspace-api Documentation

Conversion from LaTex to DocBook XML. The contents is the same as the original
LaTex version.

revision 1.0.0 / 2003-07-24 (rjkm)

Initial revision on LaTEX.

7.4 Part III - Remote Controller API

7.4.1 Introduction

Currently, most analog and digital devices have a Infrared input for remote con-
trollers. Each manufacturer has their own type of control. It is not rare for the
same manufacturer to ship different types of controls, depending on the device.

A Remote Controller interface is mapped as a normal evdev/input interface, just
like a keyboard or a mouse. So, it uses all ioctls already defined for any other input
devices.

However, remove controllers are more flexible than a normal input device, as the
IR receiver (and/or transmitter) can be used in conjunction with a wide variety of
different IR remotes.

In order to allow flexibility, the Remote Controller subsystem allows controlling
the RC-specific attributes via the sysfs class nodes.

7.4.2 Remote Controller’s sysfs nodes

As defined at Documentation/ABI/testing/sysfs-class-rc, those are the sysfs
nodes that control the Remote Controllers:

/sys/class/rc/

The /sys/class/rc/ class sub-directory belongs to the Remote Controller core
and provides a sysfs interface for configuring infrared remote controller receivers.

/sys/class/rc/rcN/

A /sys/class/rc/rcN directory is created for each remote control receiver device
where N is the number of the receiver.

7.4. Part III - Remote Controller API 891

Linux Userspace-api Documentation

/sys/class/rc/rcN/protocols

Reading this file returns a list of available protocols, something like:

rc5 [rc6] nec jvc [sony]

Enabled protocols are shown in [] brackets.

Writing “+proto”will add a protocol to the list of enabled protocols.
Writing “-proto”will remove a protocol from the list of enabled protocols.

Writing “proto”will enable only “proto”.
Writing “none”will disable all protocols.
Write fails with EINVAL if an invalid protocol combination or unknown protocol
name is used.

/sys/class/rc/rcN/filter

Sets the scancode filter expected value.

Use in combination with /sys/class/rc/rcN/filter_mask to set the expected
value of the bits set in the filter mask. If the hardware supports it then scancodes
which do not match the filter will be ignored. Otherwise the write will fail with an
error.

This value may be reset to 0 if the current protocol is altered.

/sys/class/rc/rcN/filter_mask

Sets the scancode filter mask of bits to compare. Use in combination with /sys/
class/rc/rcN/filter to set the bits of the scancode which should be compared
against the expected value. A value of 0 disables the filter to allow all valid scan-
codes to be processed.

If the hardware supports it then scancodes which do not match the filter will be
ignored. Otherwise the write will fail with an error.

This value may be reset to 0 if the current protocol is altered.

/sys/class/rc/rcN/wakeup_protocols

Reading this file returns a list of available protocols to use for the wakeup filter,
something like:

rc-5 nec nec-x rc-6-0 rc-6-6a-24 [rc-6-6a-32] rc-6-mce

Note that protocol variants are listed, so nec, sony, rc-5, rc-6 have their different
bit length encodings listed if available.

Note that all protocol variants are listed.

The enabled wakeup protocol is shown in [] brackets.

892 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Only one protocol can be selected at a time.

Writing “proto”will use “proto”for wakeup events.
Writing “none”will disable wakeup.
Write fails with EINVAL if an invalid protocol combination or unknown protocol
name is used, or if wakeup is not supported by the hardware.

/sys/class/rc/rcN/wakeup_filter

Sets the scancode wakeup filter expected value. Use in combination with /sys/
class/rc/rcN/wakeup_filter_mask to set the expected value of the bits set in
the wakeup filter mask to trigger a system wake event.

If the hardware supports it and wakeup_filter_mask is not 0 then scancodes which
match the filter will wake the system from e.g. suspend to RAM or power off.
Otherwise the write will fail with an error.

This value may be reset to 0 if the wakeup protocol is altered.

/sys/class/rc/rcN/wakeup_filter_mask

Sets the scancode wakeup filter mask of bits to compare. Use in combination with
/sys/class/rc/rcN/wakeup_filter to set the bits of the scancode which should
be compared against the expected value to trigger a system wake event.

If the hardware supports it and wakeup_filter_mask is not 0 then scancodes which
match the filter will wake the system from e.g. suspend to RAM or power off.
Otherwise the write will fail with an error.

This value may be reset to 0 if the wakeup protocol is altered.

7.4.3 Remote Controller Protocols and Scancodes

IR is encoded as a series of pulses and spaces, using a protocol. These protocols
can encode e.g. an address (which device should respond) and a command: what it
should do. The values for these are not always consistent across different devices
for a given protocol.

Therefore out the output of the IR decoder is a scancode; a single u32 value. Using
keymap tables this can be mapped to linux key codes.

Other things can be encoded too. Some IR protocols encode a toggle bit; this is to
distinguish whether the same button is being held down, or has been released and
pressed again. If has been released and pressed again, the toggle bit will invert
from one IR message to the next.

Some remotes have a pointer-type device which can used to control the mouse;
some air conditioning systems can have their target temperature target set in IR.

The following are the protocols the kernel knows about and also lists how scan-
codes are encoded for each protocol.

7.4. Part III - Remote Controller API 893

Linux Userspace-api Documentation

rc-5 (RC_PROTO_RC5)

This IR protocol uses manchester encoding to encode 14 bits. There is a detailed
description here https://www.sbprojects.net/knowledge/ir/rc5.php.

The scancode encoding is not consistent with the lirc daemon (lircd) rc5 protocol,
or the manchester BPF decoder.

Table 223: rc5 bits scancode mapping
rc-5 bit scancode bit description
1 none Start bit, always set
1 6 (inverted) 2nd start bit in rc5, re-used as 6th command bit
1 none Toggle bit
5 8 to 13 Address
6 0 to 5 Command

There is a variant of rc5 called either rc5x or extended rc5 where there the second
stop bit is the 6th commmand bit, but inverted. This is done so it the scancodes
and encoding is compatible with existing schemes. This bit is stored in bit 6 of the
scancode, inverted. This is done to keep it compatible with plain rc-5 where there
are two start bits.

rc-5-sz (RC_PROTO_RC5_SZ)

This is much like rc-5 but one bit longer. The scancode is encoded differently.

Table 224: rc-5-sz bits scancode mapping
rc-5-sz bits scancode bit description
1 none Start bit, always set
1 13 Address bit
1 none Toggle bit
6 6 to 11 Address
6 0 to 5 Command

rc-5x-20 (RC_PROTO_RC5X_20)

This rc-5 extended to encoded 20 bits. The is a 3555 microseconds space after the
8th bit.

Table 225: rc-5x-20 bits scancode mapping
rc-5-sz bits scancode bit description
1 none Start bit, always set
1 14 Address bit
1 none Toggle bit
5 16 to 20 Address
6 8 to 13 Address
6 0 to 5 Command

894 Chapter 7. Linux Media Infrastructure userspace API

https://www.sbprojects.net/knowledge/ir/rc5.php

Linux Userspace-api Documentation

jvc (RC_PROTO_JVC)

The jvc protocol is much like nec, without the inverted values. It is described here
https://www.sbprojects.net/knowledge/ir/jvc.php.

The scancode is a 16 bits value, where the address is the lower 8 bits and the
command the higher 8 bits; this is reversed from IR order.

sony-12 (RC_PROTO_SONY12)

The sony protocol is a pulse-width encoding. There are three variants, which just
differ in number of bits and scancode encoding.

Table 226: sony-12 bits scancode mapping
sony-12 bits scancode bit description
5 16 to 20 device
7 0 to 6 function

sony-15 (RC_PROTO_SONY15)

The sony protocol is a pulse-width encoding. There are three variants, which just
differ in number of bits and scancode encoding.

Table 227: sony-12 bits scancode mapping
sony-12 bits scancode bit description
8 16 to 23 device
7 0 to 6 function

sony-20 (RC_PROTO_SONY20)

The sony protocol is a pulse-width encoding. There are three variants, which just
differ in number of bits and scancode encoding.

Table 228: sony-20 bits scancode mapping
sony-20 bits scancode bit description
5 16 to 20 device
7 0 to 7 device
8 8 to 15 extended bits

7.4. Part III - Remote Controller API 895

https://www.sbprojects.net/knowledge/ir/jvc.php

Linux Userspace-api Documentation

nec (RC_PROTO_NEC)

The nec protocol encodes an 8 bit address and an 8 bit command. It is de-
scribed here https://www.sbprojects.net/knowledge/ir/nec.php. Note that the pro-
tocol sends least significant bit first.

As a check, the nec protocol sends the address and command twice; the second
time it is inverted. This is done for verification.

A plain nec IR message has 16 bits; the high 8 bits are the address and the low 8
bits are the command.

nec-x (RC_PROTO_NECX)

Extended nec has a 16 bit address and a 8 bit command. This is encoded as a 24
bit value as you would expect, with the lower 8 bits the command and the upper
16 bits the address.

nec-32 (RC_PROTO_NEC32)

nec-32 does not send an inverted address or an inverted command; the entire
message, all 32 bits, are used.

For this to be decoded correctly, the second 8 bits must not be the inverted value
of the first, and also the last 8 bits must not be the inverted value of the third 8 bit
value.

The scancode has a somewhat unusual encoding.

Table 229: nec-32 bits scancode mapping
nec-32 bits scancode bit
First 8 bits 16 to 23
Second 8 bits 24 to 31
Third 8 bits 0 to 7
Fourth 8 bits 8 to 15

sanyo (RC_PROTO_SANYO)

The sanyo protocol is like the nec protocol, but with 13 bits address rather than 8
bits. Both the address and the command are followed by their inverted versions,
but these are not present in the scancodes.

Bis 8 to 20 of the scancode is the 13 bits address, and the lower 8 bits are the
command.

896 Chapter 7. Linux Media Infrastructure userspace API

https://www.sbprojects.net/knowledge/ir/nec.php

Linux Userspace-api Documentation

mcir2-kbd (RC_PROTO_MCIR2_KBD)

This protocol is generated by the Microsoft MCE keyboard for keyboard events.
Refer to the ir-mce_kbd-decoder.c to see how it is encoded.

mcir2-mse (RC_PROTO_MCIR2_MSE)

This protocol is generated by the Microsoft MCE keyboard for pointer events. Re-
fer to the ir-mce_kbd-decoder.c to see how it is encoded.

rc-6-0 (RC_PROTO_RC6_0)

This is the rc-6 in mode 0. rc-6 is described here https://www.sbprojects.net/
knowledge/ir/rc6.php. The scancode is the exact 16 bits as in the protocol. There
is also a toggle bit.

rc-6-6a-20 (RC_PROTO_RC6_6A_20)

This is the rc-6 in mode 6a, 20 bits. rc-6 is described here https://www.sbprojects.
net/knowledge/ir/rc6.php. The scancode is the exact 20 bits as in the protocol.
There is also a toggle bit.

rc-6-6a-24 (RC_PROTO_RC6_6A_24)

This is the rc-6 in mode 6a, 24 bits. rc-6 is described here https://www.sbprojects.
net/knowledge/ir/rc6.php. The scancode is the exact 24 bits as in the protocol.
There is also a toggle bit.

rc-6-6a-32 (RC_PROTO_RC6_6A_32)

This is the rc-6 in mode 6a, 32 bits. rc-6 is described here https://www.sbprojects.
net/knowledge/ir/rc6.php. The upper 16 bits are the vendor, and the lower 16 bits
are the vendor-specific bits. This protocol is for the non-Microsoft MCE variant
(vendor != 0x800f).

rc-6-mce (RC_PROTO_RC6_MCE)

This is the rc-6 in mode 6a, 32 bits. The upper 16 bits are the vendor, and the
lower 16 bits are the vendor-specific bits. This protocol is for the Microsoft MCE
variant (vendor = 0x800f). The toggle bit in the protocol itself is ignored, and the
16th bit should be takes as the toggle bit.

7.4. Part III - Remote Controller API 897

https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php
https://www.sbprojects.net/knowledge/ir/rc6.php

Linux Userspace-api Documentation

sharp (RC_PROTO_SHARP)

This is a protocol used by Sharp VCRs, is described here https://www.sbprojects.
net/knowledge/ir/sharp.php. There is a very long (40ms) space between the nor-
mal and inverted values, and some IR receivers cannot decode this.

There is a 5 bit address and a 8 bit command. In the scancode the address is in
bits 8 to 12, and the command in bits 0 to 7.

xmp (RC_PROTO_XMP)

This protocol has several versions and only version 1 is supported. Refer to the
decoder (ir-xmp-decoder.c) to see how it is encoded.

cec (RC_PROTO_CEC)

This is not an IR protocol, this is a protocol over CEC. The CEC infrastructure uses
rc-core for handling CEC commands, so that they can easily be remapped.

imon (RC_PROTO_IMON)

This protocol is used by Antec Veris/SoundGraph iMON remotes.

The protocol describes both button presses and pointer movements. The protocol
encodes 31 bits, and the scancode is simply the 31 bits with the top bit always 0.

rc-mm-12 (RC_PROTO_RCMM12)

The rc-mm protocol is described here https://www.sbprojects.net/knowledge/ir/
rcmm.php. The scancode is simply the 12 bits.

rc-mm-24 (RC_PROTO_RCMM24)

The rc-mm protocol is described here https://www.sbprojects.net/knowledge/ir/
rcmm.php. The scancode is simply the 24 bits.

rc-mm-32 (RC_PROTO_RCMM32)

The rc-mm protocol is described here https://www.sbprojects.net/knowledge/ir/
rcmm.php. The scancode is simply the 32 bits.

898 Chapter 7. Linux Media Infrastructure userspace API

https://www.sbprojects.net/knowledge/ir/sharp.php
https://www.sbprojects.net/knowledge/ir/sharp.php
https://www.sbprojects.net/knowledge/ir/rcmm.php
https://www.sbprojects.net/knowledge/ir/rcmm.php
https://www.sbprojects.net/knowledge/ir/rcmm.php
https://www.sbprojects.net/knowledge/ir/rcmm.php
https://www.sbprojects.net/knowledge/ir/rcmm.php
https://www.sbprojects.net/knowledge/ir/rcmm.php

Linux Userspace-api Documentation

xbox-dvd (RC_PROTO_XBOX_DVD)

This protocol is used by XBox DVD Remote, which was made for the original XBox.
There is no in-kernel decoder or encoder for this protocol. The usb device decodes
the protocol. There is a BPF decoder available in v4l-utils.

7.4.4 Remote controller tables

Unfortunately, for several years, there was no effort to create uniform IR keycodes
for different devices. This caused the same IR keyname to be mapped completely
differently on different IR devices. This resulted that the same IR keyname to be
mapped completely different on different IR’s. Due to that, V4L2 API now specifies
a standard for mapping Media keys on IR.

This standard should be used by both V4L/DVB drivers and userspace applications

The modules register the remote as keyboard within the linux input layer.
This means that the IR key strokes will look like normal keyboard key strokes
(if CONFIG_INPUT_KEYBOARD is enabled). Using the event devices (CON-
FIG_INPUT_EVDEV) it is possible for applications to access the remote via
/dev/input/event devices.

Table 230: IR default keymapping
Key code Meaning Key examples on IR
Numeric keys
KEY_NUMERIC_0 Keyboard digit 0 0
KEY_NUMERIC_1 Keyboard digit 1 1
KEY_NUMERIC_2 Keyboard digit 2 2
KEY_NUMERIC_3 Keyboard digit 3 3
KEY_NUMERIC_4 Keyboard digit 4 4
KEY_NUMERIC_5 Keyboard digit 5 5
KEY_NUMERIC_6 Keyboard digit 6 6
KEY_NUMERIC_7 Keyboard digit 7 7
KEY_NUMERIC_8 Keyboard digit 8 8
KEY_NUMERIC_9 Keyboard digit 9 9
Movie play control
KEY_FORWARD Instantly advance in

time
>> / FORWARD

KEY_BACK Instantly go back in
time

<<< / BACK

KEY_FASTFORWARD Play movie faster
>>> / FORWARD

KEY_REWIND Play movie back REWIND / BACKWARD
KEY_NEXT Select next chapter /

sub-chapter / interval
NEXT / SKIP

KEY_PREVIOUS Select previous chap-
ter / sub-chapter / in-
terval

<< / PREV / PREVIOUS

Continued on next page

7.4. Part III - Remote Controller API 899

Linux Userspace-api Documentation

Table 230 – continued from previous page
KEY_AGAIN Repeat the video or a

video interval
REPEAT / LOOP / RECALL

KEY_PAUSE Pause stream PAUSE / FREEZE
KEY_PLAY Play movie at the nor-

mal timeshift
NORMAL TIMESHIFT / LIVE / >

KEY_PLAYPAUSE Alternate between
play and pause

PLAY / PAUSE

KEY_STOP Stop stream STOP
KEY_RECORD Start/stop recording

stream
CAPTURE / REC / RECORD/PAUSE

KEY_CAMERA Take a picture of the
image

CAMERA ICON / CAPTURE / SNAPSHOT

KEY_SHUFFLE Enable shuffle mode SHUFFLE
KEY_TIME Activate time shift

mode
TIME SHIFT

KEY_TITLE Allow changing the
chapter

CHAPTER

KEY_SUBTITLE Allow changing the
subtitle

SUBTITLE

Image control
KEY_BRIGHTNESSDOWN Decrease Brightness BRIGHTNESS DECREASE
KEY_BRIGHTNESSUP Increase Brightness BRIGHTNESS INCREASE
KEY_ANGLE Switch video camera

angle (on videos with
more than one angle
stored)

ANGLE / SWAP

KEY_EPG Open the Elecrowonic
Play Guide (EPG)

EPG / GUIDE

KEY_TEXT Activate/change
closed caption mode

CLOSED CAPTION/TELETEXT / DVD TEXT /
TELETEXT / TTX

Audio control
KEY_AUDIO Change audio source AUDIO SOURCE / AUDIO / MUSIC
KEY_MUTE Mute/unmute audio MUTE / DEMUTE / UNMUTE
KEY_VOLUMEDOWN Decrease volume VOLUME- / VOLUME DOWN
KEY_VOLUMEUP Increase volume VOLUME+ / VOLUME UP
KEY_MODE Change sound mode MONO/STEREO
KEY_LANGUAGE Select Language 1ST / 2ND LANGUAGE / DVD LANG /

MTS/SAP / MTS SEL
Channel control
KEY_CHANNEL Go to the next favorite

channel
ALT / CHANNEL / CH SURFING / SURF / FAV

KEY_CHANNELDOWN Decrease channel se-
quentially

CHANNEL - / CHANNEL DOWN / DOWN

KEY_CHANNELUP Increase channel se-
quentially

CHANNEL + / CHANNEL UP / UP

KEY_DIGITS Use more than one
digit for channel

PLUS / 100/ 1xx / xxx / -/– / Single Double
Triple Digit

Continued on next page

900 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 230 – continued from previous page
KEY_SEARCH Start channel au-

toscan
SCAN / AUTOSCAN

Colored keys
KEY_BLUE IR Blue key BLUE
KEY_GREEN IR Green Key GREEN
KEY_RED IR Red key RED
KEY_YELLOW IR Yellow key YELLOW
Media selection
KEY_CD Change input source

to Compact Disc
CD

KEY_DVD Change input to DVD DVD / DVD MENU
KEY_EJECTCLOSECD Open/close the

CD/DVD player
->) / CLOSE / OPEN

KEY_MEDIA Turn on/off Media ap-
plication

PC/TV / TURN ON/OFF APP

KEY_PC Selects from TV to PC PC
KEY_RADIO Put into AM/FM radio

mode
RADIO / TV/FM / TV/RADIO / FM / FM/RADIO

KEY_TV Select tv mode TV / LIVE TV
KEY_TV2 Select Cable mode AIR/CBL
KEY_VCR Select VCR mode VCR MODE / DTR
KEY_VIDEO Alternate between in-

put modes
SOURCE / SELECT / DISPLAY / SWITCH IN-
PUTS / VIDEO

Power control
KEY_POWER Turn on/off computer SYSTEM POWER / COMPUTER POWER
KEY_POWER2 Turn on/off application TV ON/OFF / POWER
KEY_SLEEP Activate sleep timer SLEEP / SLEEP TIMER
KEY_SUSPEND Put computer into sus-

pend mode
STANDBY / SUSPEND

Window control
KEY_CLEAR Stop stream and re-

turn to default input
video/audio

CLEAR / RESET / BOSS KEY

KEY_CYCLEWINDOWS Minimize windows and
move to the next one

ALT-TAB / MINIMIZE / DESKTOP

KEY_FAVORITES Open the favorites
stream window

TV WALL / Favorites

KEY_MENU Call application menu 2ND CONTROLS (USA: MENU) /
DVD/MENU / SHOW/HIDE CTRL

KEY_NEW Open/Close Picture in
Picture

PIP

KEY_OK Send a confirmation
code to application

OK / ENTER / RETURN

KEY_ASPECT_RATIO Select screen aspect
ratio

4:3 16:9 SELECT

KEY_FULL_SCREEN Put device into
zoom/full screen mode

ZOOM / FULL SCREEN / ZOOM+ / HIDE
PANNEL / SWITCH

Navigation keys
Continued on next page

7.4. Part III - Remote Controller API 901

Linux Userspace-api Documentation

Table 230 – continued from previous page
KEY_ESC Cancel current opera-

tion
CANCEL / BACK

KEY_HELP Open a Help window HELP
KEY_HOMEPAGE Navigate to Home-

page
HOME

KEY_INFO Open On Screen Dis-
play

DISPLAY INFORMATION / OSD

KEY_WWW Open the default
browser

WEB

KEY_UP Up key UP
KEY_DOWN Down key DOWN
KEY_LEFT Left key LEFT
KEY_RIGHT Right key RIGHT
Miscellaneous keys
KEY_DOT Return a dot .
KEY_FN Select a function FUNCTION

It should be noted that, sometimes, there some fundamental missing keys at some
cheaper IR’s. Due to that, it is recommended to:

Table 231: Notes
On simpler IR’s, without separate channel keys, you need to map UP as
KEY_CHANNELUP
On simpler IR’s, without separate channel keys, you need to map DOWN as
KEY_CHANNELDOWN
On simpler IR’s, without separate volume keys, you need to map LEFT as
KEY_VOLUMEDOWN
On simpler IR’s, without separate volume keys, you need to map RIGHT as
KEY_VOLUMEUP

7.4.5 Changing default Remote Controller mappings

The event interface provides two ioctls to be used against the /dev/input/event
device, to allow changing the default keymapping.

This program demonstrates how to replace the keymap tables.

file: uapi/v4l/keytable.c

/* keytable.c - This program allows checking/replacing keys at IR

Copyright (C) 2006-2009 Mauro Carvalho Chehab <mchehab@kernel.org>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 2 of the License.

This program is distributed in the hope that it will be useful,
(continues on next page)

902 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

*/

#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <linux/input.h>
#include <sys/ioctl.h>

#include "parse.h"

void prtcode (int *codes)
{

struct parse_key *p;

for (p=keynames;p->name!=NULL;p++) {
if (p->value == (unsigned)codes[1]) {

printf("scancode 0x%04x = %s (0x%02x)\\n",␣
↪→codes[0], p->name, codes[1]);

return;
}

}

if (isprint (codes[1]))
printf("scancode %d = '%c' (0x%02x)\\n", codes[0],␣

↪→codes[1], codes[1]);
else

printf("scancode %d = 0x%02x\\n", codes[0], codes[1]);
}

int parse_code(char *string)
{

struct parse_key *p;

for (p=keynames;p->name!=NULL;p++) {
if (!strcasecmp(p->name, string)) {

return p->value;
}

}
return -1;

}

int main (int argc, char *argv[])
{

int fd;
unsigned int i, j;
int codes[2];

if (argc<2 || argc>4) {
printf ("usage: %s <device> to get table; or\\n"

" %s <device> <scancode> <keycode>\\n"
(continues on next page)

7.4. Part III - Remote Controller API 903

Linux Userspace-api Documentation

(continued from previous page)
" %s <device> <keycode_file>n",*argv,*argv,

↪→*argv);
return -1;

}

if ((fd = open(argv[1], O_RDONLY)) < 0) {
perror("Couldn't open input device");
return(-1);

}

if (argc==4) {
int value;

value=parse_code(argv[3]);

if (value==-1) {
value = strtol(argv[3], NULL, 0);
if (errno)

perror("value");
}

codes [0] = (unsigned) strtol(argv[2], NULL, 0);
codes [1] = (unsigned) value;

if(ioctl(fd, EVIOCSKEYCODE, codes))
perror ("EVIOCSKEYCODE");

if(ioctl(fd, EVIOCGKEYCODE, codes)==0)
prtcode(codes);

return 0;
}

if (argc==3) {
FILE *fin;
int value;
char *scancode, *keycode, s[2048];

fin=fopen(argv[2],"r");
if (fin==NULL) {

perror ("opening keycode file");
return -1;

}

/* Clears old table */
for (j = 0; j < 256; j++) {

for (i = 0; i < 256; i++) {
codes[0] = (j << 8) | i;
codes[1] = KEY_RESERVED;
ioctl(fd, EVIOCSKEYCODE, codes);

}
}

while (fgets(s,sizeof(s),fin)) {
scancode=strtok(s,"\\n\\t =:");
if (!scancode) {

perror ("parsing input file scancode");
(continues on next page)

904 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

(continued from previous page)
return -1;

}
if (!strcasecmp(scancode, "scancode")) {

scancode = strtok(NULL,"\\n\\t =:");
if (!scancode) {

perror ("parsing input file␣
↪→scancode");

return -1;
}

}

keycode=strtok(NULL,"\\n\\t =:(");
if (!keycode) {

perror ("parsing input file keycode");
return -1;

}

// printf ("parsing %s=%s:", scancode, keycode);
value=parse_code(keycode);
// printf ("\\tvalue=%d\\n",value);

if (value==-1) {
value = strtol(keycode, NULL, 0);
if (errno)

perror("value");
}

codes [0] = (unsigned) strtol(scancode, NULL, 0);
codes [1] = (unsigned) value;

// printf("\\t%04x=%04x\\n",codes[0], codes[1]);
if(ioctl(fd, EVIOCSKEYCODE, codes)) {

fprintf(stderr, "Setting scancode 0x%04x␣
↪→with 0x%04x via ",codes[0], codes[1]);

perror ("EVIOCSKEYCODE");
}

if(ioctl(fd, EVIOCGKEYCODE, codes)==0)
prtcode(codes);

}
return 0;

}

/* Get scancode table */
for (j = 0; j < 256; j++) {

for (i = 0; i < 256; i++) {
codes[0] = (j << 8) | i;
if (!ioctl(fd, EVIOCGKEYCODE, codes) && codes[1] !

↪→= KEY_RESERVED)
prtcode(codes);

}
}
return 0;

}

7.4. Part III - Remote Controller API 905

Linux Userspace-api Documentation

7.4.6 LIRC Device Interface

Introduction

LIRC stands for Linux Infrared Remote Control. The LIRC device interface is a bi-
directional interface for transporting raw IR and decoded scancodes data between
userspace and kernelspace. Fundamentally, it is just a chardev (/dev/lircX, for X
= 0, 1, 2, ⋯), with a number of standard struct file_operations defined on it. With
respect to transporting raw IR and decoded scancodes to and fro, the essential
fops are read, write and ioctl.

It is also possible to attach a BPF program to a LIRC device for decoding raw IR
into scancodes.

Example dmesg output upon a driver registering w/LIRC:

$ dmesg |grep lirc_dev
rc rc0: lirc_dev: driver mceusb registered at minor = 0, raw IR receiver,␣
↪→raw IR transmitter

What you should see for a chardev:

$ ls -l /dev/lirc*
crw-rw---- 1 root root 248, 0 Jul 2 22:20 /dev/lirc0

Note that the package v4l-utils contains tools for working with LIRC devices:

• ir-ctl: can receive raw IR and transmit IR, as well as query LIRC device fea-
tures.

• ir-keytable: can load keymaps; allows you to set IR kernel protocols; load BPF
IR decoders and test IR decoding. Some BPF IR decoders are also provided.

LIRC modes

LIRC supports some modes of receiving and sending IR codes, as shown on the
following table.

LIRC_MODE_SCANCODE

This mode is for both sending and receiving IR.

For transmitting (aka sending), create a struct lirc_scancode with
the desired scancode set in the scancode member, rc_proto set to the
IR protocol, and all other members set to 0. Write this struct to the lirc
device.

For receiving, you read struct lirc_scancode from the LIRC device.
The scancode field is set to the received scancode and the IR protocol is
set in rc_proto. If the scancode maps to a valid key code, this is set in
the keycode field, else it is set to KEY_RESERVED.

The flags can have LIRC_SCANCODE_FLAG_TOGGLE set if the toggle
bit is set in protocols that support it (e.g. rc-5 and rc-6), or
LIRC_SCANCODE_FLAG_REPEAT for when a repeat is received for proto-
cols that support it (e.g. nec).

906 Chapter 7. Linux Media Infrastructure userspace API

https://git.linuxtv.org/v4l-utils.git/

Linux Userspace-api Documentation

In the Sanyo and NEC protocol, if you hold a button on remote, rather
than repeating the entire scancode, the remote sends a shorter message
with no scancode, which just means button is held, a“repeat”. When this
is received, the LIRC_SCANCODE_FLAG_REPEAT is set and the scancode
and keycode is repeated.

With nec, there is no way to distinguish“button hold”from“repeatedly
pressing the same button”. The rc-5 and rc-6 protocols have a toggle bit.
When a button is released and pressed again, the toggle bit is inverted.
If the toggle bit is set, the LIRC_SCANCODE_FLAG_TOGGLE is set.

The timestamp field is filled with the time nanoseconds (in
CLOCK_MONOTONIC) when the scancode was decoded.

LIRC_MODE_MODE2

The driver returns a sequence of pulse and space codes to userspace, as
a series of u32 values.

This mode is used only for IR receive.

The upper 8 bits determine the packet type, and the lower 24 bits the
payload. Use LIRC_VALUE() macro to get the payload, and the macro
LIRC_MODE2() will give you the type, which is one of:

LIRC_MODE2_PULSE

Signifies the presence of IR in microseconds.

LIRC_MODE2_SPACE

Signifies absence of IR in microseconds.

LIRC_MODE2_FREQUENCY

If measurement of the carrier frequency was enabled with ioctl
LIRC_SET_MEASURE_CARRIER_MODE then this packet gives
you the carrier frequency in Hertz.

LIRC_MODE2_TIMEOUT

If timeout reports are enabled with ioctl
LIRC_SET_REC_TIMEOUT_REPORTS, when the time-
out set with ioctl LIRC_GET_REC_TIMEOUT and
LIRC_SET_REC_TIMEOUT expires due to no IR being detected,
this packet will be sent, with the number of microseconds with
no IR.

LIRC_MODE_PULSE

In pulse mode, a sequence of pulse/space integer values are written to
the lirc device using LIRC write().

The values are alternating pulse and space lengths, in microseconds.
The first and last entry must be a pulse, so there must be an odd number
of entries.

This mode is used only for IR send.

7.4. Part III - Remote Controller API 907

Linux Userspace-api Documentation

BPF based IR decoder

The kernel has support for decoding the most common IR protocols, but there are
many protocols which are not supported. To support these, it is possible to load
an BPF program which does the decoding. This can only be done on LIRC devices
which support reading raw IR.

First, using the bpf(2) syscall with the BPF_LOAD_PROG argument, program must
be loaded of type BPF_PROG_TYPE_LIRC_MODE2. Once attached to the LIRC device,
this program will be called for each pulse, space or timeout event on the LIRC
device. The context for the BPF program is a pointer to a unsigned int, which is a
LIRC_MODE_MODE2 value. When the program has decoded the scancode, it can
be submitted using the BPF functions bpf_rc_keydown() or bpf_rc_repeat().
Mouse or pointer movements can be reported using bpf_rc_pointer_rel().

Once you have the file descriptor for the BPF_PROG_TYPE_LIRC_MODE2 BPF pro-
gram, it can be attached to the LIRC device using the bpf(2) syscall. The tar-
get must be the file descriptor for the LIRC device, and the attach type must be
BPF_LIRC_MODE2. No more than 64 BPF programs can be attached to a single LIRC
device at a time.

LIRC Function Reference

LIRC read()

Name

lirc-read - Read from a LIRC device

Synopsis

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().

buf Buffer to be filled

count Max number of bytes to read

908 Chapter 7. Linux Media Infrastructure userspace API

http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/bpf.2.html

Linux Userspace-api Documentation

Description

read() attempts to read up to count bytes from file descriptor fd into the buffer
starting at buf. If count is zero, read() returns zero and has no other results. If
count is greater than SSIZE_MAX, the result is unspecified.

The exact format of the data depends on what LIRC modes a driver uses.
Use ioctl LIRC_GET_FEATURES to get the supported mode, and use ioctls
LIRC_GET_REC_MODE and LIRC_SET_REC_MODE set the current active mode.

The mode LIRC_MODE_MODE2 is for raw IR, in which packets containing an un-
signed int value describing an IR signal are read from the chardev.

Alternatively, LIRC_MODE_SCANCODE can be available, in this mode scancodes
which are either decoded by software decoders, or by hardware decoders. The
rc_protomember is set to the IR protocol used for transmission, and scancode to
the decoded scancode, and the keycode set to the keycode or KEY_RESERVED.

Return Value

On success, the number of bytes read is returned. It is not an error if this number
is smaller than the number of bytes requested, or the amount of data required for
one frame. On error, -1 is returned, and the errno variable is set appropriately.

LIRC write()

Name

lirc-write - Write to a LIRC device

Synopsis

#include <unistd.h>

ssize_t write(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().

buf Buffer with data to be written

count Number of bytes at the buffer

7.4. Part III - Remote Controller API 909

Linux Userspace-api Documentation

Description

write() writes up to count bytes to the device referenced by the file descriptor fd
from the buffer starting at buf.

The exact format of the data depends on what mode a driver is in,
use ioctl LIRC_GET_FEATURES to get the supported modes and use ioctls
LIRC_GET_SEND_MODE and LIRC_SET_SEND_MODE set the mode.

When in LIRC_MODE_PULSE mode, the data written to the chardev is a
pulse/space sequence of integer values. Pulses and spaces are only marked im-
plicitly by their position. The data must start and end with a pulse, therefore, the
data must always include an uneven number of samples. The write function blocks
until the data has been transmitted by the hardware. If more data is provided than
the hardware can send, the driver returns EINVAL.

When in LIRC_MODE_SCANCODE mode, one struct lirc_scancode must be
written to the chardev at a time, else EINVAL is returned. Set the desired scan-
code in the scancode member, and the IR protocol in the rc_proto: member. All
other members must be set to 0, else EINVAL is returned. If there is no protocol
encoder for the protocol or the scancode is not valid for the specified protocol,
EINVAL is returned. The write function blocks until the scancode is transmitted by
the hardware.

Return Value

On success, the number of bytes written is returned. It is not an error if this
number is smaller than the number of bytes requested, or the amount of data
required for one frame. On error, -1 is returned, and the errno variable is set
appropriately. The generic error codes are described at the Generic Error Codes
chapter.

ioctl LIRC_GET_FEATURES

Name

LIRC_GET_FEATURES - Get the underlying hardware device’s features

Synopsis

int ioctl(int fd, LIRC_GET_FEATURES, __u32 *features)

910 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

features Bitmask with the LIRC features.

Description

Get the underlying hardware device’s features. If a driver does not announce
support of certain features, calling of the corresponding ioctls is undefined.

LIRC features

LIRC_CAN_REC_RAW

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_REC_PULSE

Unused. Kept just to avoid breaking uAPI. LIRC_MODE_PULSE can only
be used for transmitting.

LIRC_CAN_REC_MODE2

This is raw IR driver for receiving. Thismeans that LIRC_MODE_MODE2
is used. This also implies that LIRC_MODE_SCANCODE is also sup-
ported, as long as the kernel is recent enough. Use the ioctls
LIRC_GET_REC_MODE and LIRC_SET_REC_MODE to switch modes.

LIRC_CAN_REC_LIRCCODE

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_REC_SCANCODE

This is a scancode driver for receiving. This means that
LIRC_MODE_SCANCODE is used.

LIRC_CAN_SET_SEND_CARRIER

The driver supports changing the modulation frequency via ioctl
LIRC_SET_SEND_CARRIER.

LIRC_CAN_SET_SEND_DUTY_CYCLE

The driver supports changing the duty cycle using ioctl
LIRC_SET_SEND_DUTY_CYCLE.

LIRC_CAN_SET_TRANSMITTER_MASK

The driver supports changing the active transmitter(s) using ioctl
LIRC_SET_TRANSMITTER_MASK.

LIRC_CAN_SET_REC_CARRIER

The driver supports setting the receive carrier frequency using ioctl
LIRC_SET_REC_CARRIER.

LIRC_CAN_SET_REC_DUTY_CYCLE_RANGE

7.4. Part III - Remote Controller API 911

Linux Userspace-api Documentation

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_SET_REC_CARRIER_RANGE

The driver supports ioctl LIRC_SET_REC_CARRIER_RANGE.

LIRC_CAN_GET_REC_RESOLUTION

The driver supports ioctl LIRC_GET_REC_RESOLUTION.

LIRC_CAN_SET_REC_TIMEOUT

The driver supports ioctl LIRC_SET_REC_TIMEOUT.

LIRC_CAN_SET_REC_FILTER

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_MEASURE_CARRIER

The driver supports measuring of the modulation frequency using ioctl
LIRC_SET_MEASURE_CARRIER_MODE.

LIRC_CAN_USE_WIDEBAND_RECEIVER

The driver supports learning mode using ioctl
LIRC_SET_WIDEBAND_RECEIVER.

LIRC_CAN_NOTIFY_DECODE

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_SEND_RAW

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_SEND_PULSE

The driver supports sending (also called as IR blasting or IR TX) using
LIRC_MODE_PULSE. This implies that LIRC_MODE_SCANCODE is also
supported for transmit, as long as the kernel is recent enough. Use the
ioctls LIRC_GET_SEND_MODE and LIRC_SET_SEND_MODE to switch
modes.

LIRC_CAN_SEND_MODE2

Unused. Kept just to avoid breaking uAPI. LIRC_MODE_MODE2 can
only be used for receiving.

LIRC_CAN_SEND_LIRCCODE

Unused. Kept just to avoid breaking uAPI.

912 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctls LIRC_GET_SEND_MODE and LIRC_SET_SEND_MODE

Name

LIRC_GET_SEND_MODE/LIRC_SET_SEND_MODE - Get/set current transmit
mode.

Synopsis

int ioctl(int fd, LIRC_GET_SEND_MODE, __u32 *mode)

int ioctl(int fd, LIRC_SET_SEND_MODE, __u32 *mode)

Arguments

fd File descriptor returned by open().

mode The mode used for transmitting.

Description

Get/set current transmit mode.

Only LIRC_MODE_PULSE and LIRC_MODE_SCANCODE are supported by for IR
send, depending on the driver. Use ioctl LIRC_GET_FEATURES to find out which
modes the driver supports.

Return Value

ENODEV Device not available.
ENOTTY Device does not support transmitting.
EINVAL Invalid mode or invalid mode for this device.

7.4. Part III - Remote Controller API 913

Linux Userspace-api Documentation

ioctls LIRC_GET_REC_MODE and LIRC_SET_REC_MODE

Name

LIRC_GET_REC_MODE/LIRC_SET_REC_MODE - Get/set current receive mode.

Synopsis

int ioctl(int fd, LIRC_GET_REC_MODE, __u32 *mode)

int ioctl(int fd, LIRC_SET_REC_MODE, __u32 *mode)

Arguments

fd File descriptor returned by open().

mode Mode used for receive.

Description

Get and set the current receive mode. Only LIRC_MODE_MODE2 and
LIRC_MODE_SCANCODE are supported. Use ioctl LIRC_GET_FEATURES to find
out which modes the driver supports.

Return Value

ENODEV Device not available.
ENOTTY Device does not support receiving.
EINVAL Invalid mode or invalid mode for this device.

ioctl LIRC_GET_REC_RESOLUTION

Name

LIRC_GET_REC_RESOLUTION - Obtain the value of receive resolution, in mi-
croseconds.

914 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, LIRC_GET_REC_RESOLUTION, __u32 *microseconds)

Arguments

fd File descriptor returned by open().

microseconds Resolution, in microseconds.

Description

Some receivers have maximum resolution which is defined by internal sample rate
or data format limitations. E.g. it’s common that signals can only be reported in
50 microsecond steps.

This ioctl returns the integer value with such resolution, with can be used by
userspace applications like lircd to automatically adjust the tolerance value.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_SEND_DUTY_CYCLE

Name

LIRC_SET_SEND_DUTY_CYCLE - Set the duty cycle of the carrier signal for IR
transmit.

Synopsis

int ioctl(int fd, LIRC_SET_SEND_DUTY_CYCLE, __u32 *duty_cycle)

Arguments

fd File descriptor returned by open().

duty_cycle Duty cicle, describing the pulse width in percent (from 1 to 99) of the
total cycle. Values 0 and 100 are reserved.

7.4. Part III - Remote Controller API 915

Linux Userspace-api Documentation

Description

Get/set the duty cycle of the carrier signal for IR transmit.

Currently, no special meaning is defined for 0 or 100, but this could be used to
switch off carrier generation in the future, so these values should be reserved.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctls LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT

Name

LIRC_GET_MIN_TIMEOUT / LIRC_GET_MAX_TIMEOUT - Obtain the possible
timeout range for IR receive.

Synopsis

int ioctl(int fd, LIRC_GET_MIN_TIMEOUT, __u32 *timeout)

int ioctl(int fd, LIRC_GET_MAX_TIMEOUT, __u32 *timeout)

Arguments

fd File descriptor returned by open().

timeout Timeout, in microseconds.

Description

Some devices have internal timers that can be used to detect when there’s no
IR activity for a long time. This can help lircd in detecting that a IR signal is
finished and can speed up the decoding process. Returns an integer value with
the minimum/maximum timeout that can be set.

Note: Some devices have a fixed timeout, in that case both ioctls will re-
turn the same value even though the timeout cannot be changed via ioctl
LIRC_GET_REC_TIMEOUT and LIRC_SET_REC_TIMEOUT.

916 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_GET_REC_TIMEOUT and LIRC_SET_REC_TIMEOUT

Name

LIRC_GET_REC_TIMEOUT/LIRC_SET_REC_TIMEOUT - Get/set the integer value
for IR inactivity timeout.

Synopsis

int ioctl(int fd, LIRC_GET_REC_TIMEOUT, __u32 *timeout)

int ioctl(int fd, LIRC_SET_REC_TIMEOUT, __u32 *timeout)

Arguments

fd File descriptor returned by open().

timeout Timeout, in microseconds.

Description

Get and set the integer value for IR inactivity timeout.

If supported by the hardware, setting it to 0 disables all hardware timeouts and
data should be reported as soon as possible. If the exact value cannot be set, then
the next possible value _greater_ than the given value should be set.

Note: The range of supported timeout is given by ioctls
LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

7.4. Part III - Remote Controller API 917

Linux Userspace-api Documentation

ioctl LIRC_SET_REC_CARRIER

Name

LIRC_SET_REC_CARRIER - Set carrier used to modulate IR receive.

Synopsis

int ioctl(int fd, LIRC_SET_REC_CARRIER, __u32 *frequency)

Arguments

fd File descriptor returned by open().

frequency Frequency of the carrier that modulates PWM data, in Hz.

Description

Set receive carrier used to modulate IR PWM pulses and spaces.

Note: If called together with ioctl LIRC_SET_REC_CARRIER_RANGE, this ioctl
sets the upper bound frequency that will be recognized by the device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_CARRIER_RANGE

Name

LIRC_SET_REC_CARRIER_RANGE - Set lower bound of the carrier used to modu-
late IR receive.

Synopsis

int ioctl(int fd, LIRC_SET_REC_CARRIER_RANGE, __u32 *frequency)

918 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

frequency Frequency of the carrier that modulates PWM data, in Hz.

Description

This ioctl sets the upper range of carrier frequency that will be recognized by the
IR receiver.

Note: To set a range use LIRC_SET_REC_CARRIER_RANGEwith the lower bound
first and later call LIRC_SET_REC_CARRIER with the upper bound.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_SEND_CARRIER

Name

LIRC_SET_SEND_CARRIER - Set send carrier used to modulate IR TX.

Synopsis

int ioctl(int fd, LIRC_SET_SEND_CARRIER, __u32 *frequency)

Arguments

fd File descriptor returned by open().

frequency Frequency of the carrier to be modulated, in Hz.

Description

Set send carrier used to modulate IR PWM pulses and spaces.

7.4. Part III - Remote Controller API 919

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_TRANSMITTER_MASK

Name

LIRC_SET_TRANSMITTER_MASK - Enables send codes on a given set of transmit-
ters

Synopsis

int ioctl(int fd, LIRC_SET_TRANSMITTER_MASK, __u32 *mask)

Arguments

fd File descriptor returned by open().

mask Mask with channels to enable tx. Channel 0 is the least significant bit.

Description

Some IR TX devices have multiple output channels, in such
case, LIRC_CAN_SET_TRANSMITTER_MASK is returned via ioctl
LIRC_GET_FEATURES and this ioctl sets what channels will send IR codes.

This ioctl enables the given set of transmitters. The first transmitter is encoded
by the least significant bit and so on.

When an invalid bit mask is given, i.e. a bit is set, even though the device does not
have so many transitters, then this ioctl returns the number of available transitters
and does nothing otherwise.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

920 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

ioctl LIRC_SET_REC_TIMEOUT_REPORTS

Name

LIRC_SET_REC_TIMEOUT_REPORTS - enable or disable timeout reports for IR
receive

Synopsis

int ioctl(int fd, LIRC_SET_REC_TIMEOUT_REPORTS, __u32 *enable)

Arguments

fd File descriptor returned by open().

enable enable = 1means enable timeout report, enable = 0means disable timeout
reports.

Description

Enable or disable timeout reports for IR receive. By default, timeout reports should
be turned off.

Note: This ioctl is only valid for LIRC_MODE_MODE2.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_MEASURE_CARRIER_MODE

Name

LIRC_SET_MEASURE_CARRIER_MODE - enable or disable measure mode

7.4. Part III - Remote Controller API 921

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, LIRC_SET_MEASURE_CARRIER_MODE, __u32 *enable)

Arguments

fd File descriptor returned by open().

enable enable = 1 means enable measure mode, enable = 0 means disable mea-
sure mode.

Description

Enable or disable measure mode. If enabled, from the next key press on, the driver
will send LIRC_MODE2_FREQUENCY packets. By default this should be turned off.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_WIDEBAND_RECEIVER

Name

LIRC_SET_WIDEBAND_RECEIVER - enable wide band receiver.

Synopsis

int ioctl(int fd, LIRC_SET_WIDEBAND_RECEIVER, __u32 *enable)

Arguments

fd File descriptor returned by open().

enable enable = 1 means enable wideband receiver, enable = 0 means disable
wideband receiver.

922 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

Some receivers are equipped with special wide band receiver which is intended to
be used to learn output of existing remote. This ioctl allows enabling or disabling
it.

This might be useful of receivers that have otherwise narrow band receiver that
prevents them to be used with some remotes. Wide band receiver might also be
more precise. On the other hand its disadvantage it usually reduced range of
reception.

Note: Wide band receiver might be implictly enabled if you enable carrier re-
ports. In that case it will be disabled as soon as you disable carrier reports. Trying
to disable wide band receiver while carrier reports are active will do nothing.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

LIRC Header File

lirc.h

/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/*
* lirc.h - linux infrared remote control header file
* last modified 2010/07/13 by Jarod Wilson
*/

#ifndef _LINUX_LIRC_H
#define _LINUX_LIRC_H

#include <linux/types.h>
#include <linux/ioctl.h>

#define PULSE_BIT 0x01000000
#define PULSE_MASK 0x00FFFFFF

#define LIRC_MODE2_SPACE 0x00000000
#define LIRC_MODE2_PULSE 0x01000000
#define LIRC_MODE2_FREQUENCY 0x02000000
#define LIRC_MODE2_TIMEOUT 0x03000000

#define LIRC_VALUE_MASK 0x00FFFFFF
#define LIRC_MODE2_MASK 0xFF000000

#define LIRC_SPACE(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_SPACE)

7.4. Part III - Remote Controller API 923

Linux Userspace-api Documentation

#define LIRC_PULSE(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_PULSE)
#define LIRC_FREQUENCY(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_
↪→FREQUENCY)
#define LIRC_TIMEOUT(val) (((val)&LIRC_VALUE_MASK) | LIRC_MODE2_
↪→TIMEOUT)

#define LIRC_VALUE(val) ((val)&LIRC_VALUE_MASK)
#define LIRC_MODE2(val) ((val)&LIRC_MODE2_MASK)

#define LIRC_IS_SPACE(val) (LIRC_MODE2(val) == LIRC_MODE2_SPACE)
#define LIRC_IS_PULSE(val) (LIRC_MODE2(val) == LIRC_MODE2_PULSE)
#define LIRC_IS_FREQUENCY(val) (LIRC_MODE2(val) == LIRC_MODE2_
↪→FREQUENCY)
#define LIRC_IS_TIMEOUT(val) (LIRC_MODE2(val) == LIRC_MODE2_TIMEOUT)

/* used heavily by lirc userspace */
#define lirc_t int

/*** lirc compatible hardware features ***/

#define LIRC_MODE2SEND(x) (x)
#define LIRC_SEND2MODE(x) (x)
#define LIRC_MODE2REC(x) ((x) << 16)
#define LIRC_REC2MODE(x) ((x) >> 16)

#define LIRC_MODE_RAW 0x00000001
#define LIRC_MODE_PULSE 0x00000002
#define LIRC_MODE_MODE2 0x00000004
#define LIRC_MODE_SCANCODE 0x00000008
#define LIRC_MODE_LIRCCODE 0x00000010

#define LIRC_CAN_SEND_RAW LIRC_MODE2SEND(LIRC_MODE_RAW)
#define LIRC_CAN_SEND_PULSE LIRC_MODE2SEND(LIRC_MODE_
↪→PULSE)
#define LIRC_CAN_SEND_MODE2 LIRC_MODE2SEND(LIRC_MODE_
↪→MODE2)
#define LIRC_CAN_SEND_LIRCCODE LIRC_MODE2SEND(LIRC_MODE_
↪→LIRCCODE)

#define LIRC_CAN_SEND_MASK 0x0000003f

#define LIRC_CAN_SET_SEND_CARRIER 0x00000100
#define LIRC_CAN_SET_SEND_DUTY_CYCLE 0x00000200
#define LIRC_CAN_SET_TRANSMITTER_MASK 0x00000400

#define LIRC_CAN_REC_RAW LIRC_MODE2REC(LIRC_MODE_RAW)
#define LIRC_CAN_REC_PULSE LIRC_MODE2REC(LIRC_MODE_
↪→PULSE)
#define LIRC_CAN_REC_MODE2 LIRC_MODE2REC(LIRC_MODE_
↪→MODE2)
#define LIRC_CAN_REC_SCANCODE LIRC_MODE2REC(LIRC_MODE_

924 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

↪→SCANCODE)
#define LIRC_CAN_REC_LIRCCODE LIRC_MODE2REC(LIRC_MODE_
↪→LIRCCODE)

#define LIRC_CAN_REC_MASK LIRC_MODE2REC(LIRC_CAN_SEND_
↪→MASK)

#define LIRC_CAN_SET_REC_CARRIER (LIRC_CAN_SET_SEND_CARRIER <
↪→< 16)
#define LIRC_CAN_SET_REC_DUTY_CYCLE (LIRC_CAN_SET_SEND_DUTY_
↪→CYCLE << 16)

#define LIRC_CAN_SET_REC_DUTY_CYCLE_RANGE 0x40000000
#define LIRC_CAN_SET_REC_CARRIER_RANGE 0x80000000
#define LIRC_CAN_GET_REC_RESOLUTION 0x20000000
#define LIRC_CAN_SET_REC_TIMEOUT 0x10000000
#define LIRC_CAN_SET_REC_FILTER 0x08000000

#define LIRC_CAN_MEASURE_CARRIER 0x02000000
#define LIRC_CAN_USE_WIDEBAND_RECEIVER 0x04000000

#define LIRC_CAN_SEND(x) ((x)&LIRC_CAN_SEND_MASK)
#define LIRC_CAN_REC(x) ((x)&LIRC_CAN_REC_MASK)

#define LIRC_CAN_NOTIFY_DECODE 0x01000000

/*** IOCTL commands for lirc driver ***/

#define LIRC_GET_FEATURES _IOR('i', 0x00000000, __u32)

#define LIRC_GET_SEND_MODE _IOR('i', 0x00000001, __u32)
#define LIRC_GET_REC_MODE _IOR('i', 0x00000002, __u32)
#define LIRC_GET_REC_RESOLUTION _IOR('i', 0x00000007, __u32)

#define LIRC_GET_MIN_TIMEOUT _IOR('i', 0x00000008, __u32)
#define LIRC_GET_MAX_TIMEOUT _IOR('i', 0x00000009, __u32)

/* code length in bits, currently only for LIRC_MODE_LIRCCODE */
#define LIRC_GET_LENGTH _IOR('i', 0x0000000f, __u32)

#define LIRC_SET_SEND_MODE _IOW('i', 0x00000011, __u32)
#define LIRC_SET_REC_MODE _IOW('i', 0x00000012, __u32)
/* Note: these can reset the according pulse_width */
#define LIRC_SET_SEND_CARRIER _IOW('i', 0x00000013, __u32)
#define LIRC_SET_REC_CARRIER _IOW('i', 0x00000014, __u32)
#define LIRC_SET_SEND_DUTY_CYCLE _IOW('i', 0x00000015, __u32)
#define LIRC_SET_TRANSMITTER_MASK _IOW('i', 0x00000017, __u32)

/*
* when a timeout != 0 is set the driver will send a
* LIRC_MODE2_TIMEOUT data packet, otherwise LIRC_MODE2_TIMEOUT is

7.4. Part III - Remote Controller API 925

Linux Userspace-api Documentation

* never sent, timeout is disabled by default
*/

#define LIRC_SET_REC_TIMEOUT _IOW('i', 0x00000018, __u32)

/* 1 enables, 0 disables timeout reports in MODE2 */
#define LIRC_SET_REC_TIMEOUT_REPORTS _IOW('i', 0x00000019, __u32)

/*
* if enabled from the next key press on the driver will send
* LIRC_MODE2_FREQUENCY packets
*/

#define LIRC_SET_MEASURE_CARRIER_MODE _IOW('i', 0x0000001d, __u32)

/*
* to set a range use LIRC_SET_REC_CARRIER_RANGE with the
* lower bound first and later LIRC_SET_REC_CARRIER with the upper␣
↪→bound
*/

#define LIRC_SET_REC_CARRIER_RANGE _IOW('i', 0x0000001f, __u32)

#define LIRC_SET_WIDEBAND_RECEIVER _IOW('i', 0x00000023, __u32)

/*
* Return the recording timeout, which is either set by
* the ioctl LIRC_SET_REC_TIMEOUT or by the kernel after setting␣
↪→the protocols.
*/

#define LIRC_GET_REC_TIMEOUT _IOR('i', 0x00000024, __u32)

/*
* struct lirc_scancode - decoded scancode with protocol for use␣
↪→with
* LIRC_MODE_SCANCODE
*
* @timestamp: Timestamp in nanoseconds using CLOCK_MONOTONIC when␣
↪→IR
* was decoded.
* @flags: should be 0 for transmit. When receiving scancodes,
* LIRC_SCANCODE_FLAG_TOGGLE or LIRC_SCANCODE_FLAG_REPEAT can␣
↪→be set
* depending on the protocol
* @rc_proto: see enum rc_proto
* @keycode: the translated keycode. Set to 0 for transmit.
* @scancode: the scancode received or to be sent
*/

struct lirc_scancode {
__u64 timestamp;
__u16 flags;
__u16 rc_proto;
__u32 keycode;
__u64 scancode;

926 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

};

/* Set if the toggle bit of rc-5 or rc-6 is enabled */
#define LIRC_SCANCODE_FLAG_TOGGLE 1
/* Set if this is a nec or sanyo repeat */
#define LIRC_SCANCODE_FLAG_REPEAT 2

/**
* enum rc_proto - the Remote Controller protocol
*
* @RC_PROTO_UNKNOWN: Protocol not known
* @RC_PROTO_OTHER: Protocol known but proprietary
* @RC_PROTO_RC5: Philips RC5 protocol
* @RC_PROTO_RC5X_20: Philips RC5x 20 bit protocol
* @RC_PROTO_RC5_SZ: StreamZap variant of RC5
* @RC_PROTO_JVC: JVC protocol
* @RC_PROTO_SONY12: Sony 12 bit protocol
* @RC_PROTO_SONY15: Sony 15 bit protocol
* @RC_PROTO_SONY20: Sony 20 bit protocol
* @RC_PROTO_NEC: NEC protocol
* @RC_PROTO_NECX: Extended NEC protocol
* @RC_PROTO_NEC32: NEC 32 bit protocol
* @RC_PROTO_SANYO: Sanyo protocol
* @RC_PROTO_MCIR2_KBD: RC6-ish MCE keyboard
* @RC_PROTO_MCIR2_MSE: RC6-ish MCE mouse
* @RC_PROTO_RC6_0: Philips RC6-0-16 protocol
* @RC_PROTO_RC6_6A_20: Philips RC6-6A-20 protocol
* @RC_PROTO_RC6_6A_24: Philips RC6-6A-24 protocol
* @RC_PROTO_RC6_6A_32: Philips RC6-6A-32 protocol
* @RC_PROTO_RC6_MCE: MCE (Philips RC6-6A-32 subtype) protocol
* @RC_PROTO_SHARP: Sharp protocol
* @RC_PROTO_XMP: XMP protocol
* @RC_PROTO_CEC: CEC protocol
* @RC_PROTO_IMON: iMon Pad protocol
* @RC_PROTO_RCMM12: RC-MM protocol 12 bits
* @RC_PROTO_RCMM24: RC-MM protocol 24 bits
* @RC_PROTO_RCMM32: RC-MM protocol 32 bits
* @RC_PROTO_XBOX_DVD: Xbox DVD Movie Playback Kit protocol
*/

enum rc_proto {
RC_PROTO_UNKNOWN = 0,
RC_PROTO_OTHER = 1,
RC_PROTO_RC5 = 2,
RC_PROTO_RC5X_20 = 3,
RC_PROTO_RC5_SZ = 4,
RC_PROTO_JVC = 5,
RC_PROTO_SONY12 = 6,
RC_PROTO_SONY15 = 7,
RC_PROTO_SONY20 = 8,
RC_PROTO_NEC = 9,
RC_PROTO_NECX = 10,

7.4. Part III - Remote Controller API 927

Linux Userspace-api Documentation

RC_PROTO_NEC32 = 11,
RC_PROTO_SANYO = 12,
RC_PROTO_MCIR2_KBD = 13,
RC_PROTO_MCIR2_MSE = 14,
RC_PROTO_RC6_0 = 15,
RC_PROTO_RC6_6A_20 = 16,
RC_PROTO_RC6_6A_24 = 17,
RC_PROTO_RC6_6A_32 = 18,
RC_PROTO_RC6_MCE = 19,
RC_PROTO_SHARP = 20,
RC_PROTO_XMP = 21,
RC_PROTO_CEC = 22,
RC_PROTO_IMON = 23,
RC_PROTO_RCMM12 = 24,
RC_PROTO_RCMM24 = 25,
RC_PROTO_RCMM32 = 26,
RC_PROTO_XBOX_DVD = 27,

};

#endif

7.4.7 Revision and Copyright

Authors:

• Carvalho Chehab, Mauro <mchehab@kernel.org>

• Initial version.

Copyright © 2009-2016 : Mauro Carvalho Chehab

7.4.8 Revision History

revision 3.15 / 2014-02-06 (mcc)

Added the interface description and the RC sysfs class description.

revision 1.0 / 2009-09-06 (mcc)

Initial revision

7.5 Part IV - Media Controller API

7.5.1 Introduction

Media devices increasingly handle multiple related functions. Many USB cameras
include microphones, video capture hardware can also output video, or SoC cam-
era interfaces also performmemory-to-memory operations similar to video codecs.

Independent functions, even when implemented in the same hardware, can be
modelled as separate devices. A USB camera with a microphone will be presented

928 Chapter 7. Linux Media Infrastructure userspace API

mailto:mchehab@kernel.org

Linux Userspace-api Documentation

to userspace applications as V4L2 and ALSA capture devices. The devices’rela-
tionships (when using a webcam, end-users shouldn’t have to manually select the
associated USB microphone), while not made available directly to applications by
the drivers, can usually be retrieved from sysfs.

With more and more advanced SoC devices being introduced, the current ap-
proach will not scale. Device topologies are getting increasingly complex and can’
t always be represented by a tree structure. Hardware blocks are shared between
different functions, creating dependencies between seemingly unrelated devices.

Kernel abstraction APIs such as V4L2 and ALSA provide means for applications
to access hardware parameters. As newer hardware expose an increasingly high
number of those parameters, drivers need to guess what applications really re-
quire based on limited information, thereby implementing policies that belong to
userspace.

The media controller API aims at solving those problems.

7.5.2 Media device model

Discovering a device internal topology, and configuring it at runtime, is one of the
goals of the media controller API. To achieve this, hardware devices and Linux
Kernel interfaces are modelled as graph objects on an oriented graph. The object
types that constitute the graph are:

• An entity is a basic media hardware or software building block. It can corre-
spond to a large variety of logical blocks such as physical hardware devices
(CMOS sensor for instance), logical hardware devices (a building block in a
System-on-Chip image processing pipeline), DMA channels or physical con-
nectors.

• An interface is a graph representation of a Linux Kernel userspace API in-
terface, like a device node or a sysfs file that controls one or more entities in
the graph.

• A pad is a data connection endpoint through which an entity can interact with
other entities. Data (not restricted to video) produced by an entity flows from
the entity’s output to one or more entity inputs. Pads should not be confused
with physical pins at chip boundaries.

• A data link is a point-to-point oriented connection between two pads, either
on the same entity or on different entities. Data flows from a source pad to a
sink pad.

• An interface link is a point-to-point bidirectional control connection between
a Linux Kernel interface and an entity.

7.5. Part IV - Media Controller API 929

Linux Userspace-api Documentation

7.5.3 Types and flags used to represent the media graph elements

Table 232: Media entity functions
MEDIA_ENT_F_UNKNOWN and
MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN

Unknown entity. That generally indicates that a
driver didn’t initialize properly the entity, which is a
Kernel bug

MEDIA_ENT_F_IO_V4L Data streaming input and/or output entity.
MEDIA_ENT_F_IO_VBI V4L VBI streaming input or output entity
MEDIA_ENT_F_IO_SWRADIO V4L Software Digital Radio (SDR) streaming input or

output entity
MEDIA_ENT_F_IO_DTV DVB Digital TV streaming input or output entity
MEDIA_ENT_F_DTV_DEMOD Digital TV demodulator entity.
MEDIA_ENT_F_TS_DEMUX MPEG Transport stream demux entity. Could be

implemented on hardware or in Kernelspace by the
Linux DVB subsystem.

MEDIA_ENT_F_DTV_CA Digital TV Conditional Access module (CAM) entity
MEDIA_ENT_F_DTV_NET_DECAP Digital TV network ULE/MLE desencapsulation en-

tity. Could be implemented on hardware or in Ker-
nelspace

MEDIA_ENT_F_CONN_RF Connector for a Radio Frequency (RF) signal.
MEDIA_ENT_F_CONN_SVIDEO Connector for a S-Video signal.
MEDIA_ENT_F_CONN_COMPOSITE Connector for a RGB composite signal.
MEDIA_ENT_F_CAM_SENSOR Camera video sensor entity.
MEDIA_ENT_F_FLASH Flash controller entity.
MEDIA_ENT_F_LENS Lens controller entity.
MEDIA_ENT_F_ATV_DECODER Analog video decoder, the basic function of the video

decoder is to accept analogue video from a wide vari-
ety of sources such as broadcast, DVD players, cam-
eras and video cassette recorders, in either NTSC,
PAL, SECAM or HD format, separating the stream
into its component parts, luminance and chromi-
nance, and output it in some digital video standard,
with appropriate timing signals.

MEDIA_ENT_F_TUNER Digital TV, analog TV, radio and/or software radio
tuner, with consists on a PLL tuning stage that con-
verts radio frequency (RF) signal into an Intermedi-
ate Frequency (IF). Modern tuners have internally IF-
PLL decoders for audio and video, but older models
have those stages implemented on separate entities.

MEDIA_ENT_F_IF_VID_DECODER IF-PLL video decoder. It receives the IF from a PLL
and decodes the analog TV video signal. This is com-
monly found on some very old analog tuners, like
Philips MK3 designs. They all contain a tda9887 (or
some software compatible similar chip, like tda9885).
Those devices use a different I2C address than the
tuner PLL.

Continued on next page

930 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 232 – continued from previous page
MEDIA_ENT_F_IF_AUD_DECODER IF-PLL sound decoder. It receives the IF from a PLL

and decodes the analog TV audio signal. This is com-
monly found on some very old analog hardware, like
Micronas msp3400, Philips tda9840, tda985x, etc.
Those devices use a different I2C address than the
tuner PLL and should be controlled together with the
IF-PLL video decoder.

MEDIA_ENT_F_AUDIO_CAPTURE Audio Capture Function Entity.
MEDIA_ENT_F_AUDIO_PLAYBACK Audio Playback Function Entity.
MEDIA_ENT_F_AUDIO_MIXER Audio Mixer Function Entity.
MEDIA_ENT_F_PROC_VIDEO_COMPOSER Video composer (blender). An entity capable of video

composing must have at least two sink pads and one
source pad, and composes input video frames onto
output video frames. Composition can be performed
using alpha blending, color keying, raster operations
(ROP), stitching or any other means.

MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTERVideo pixel formatter. An entity capable of pixel for-
matting must have at least one sink pad and one
source pad. Read pixel formatters read pixels from
memory and perform a subset of unpacking, crop-
ping, color keying, alpha multiplication and pixel en-
coding conversion. Write pixel formatters perform
a subset of dithering, pixel encoding conversion and
packing and write pixels to memory.

MEDIA_ENT_F_PROC_VIDEO_PIXEL_ENC_CONVVideo pixel encoding converter. An entity capable of
pixel encoding conversion must have at least one sink
pad and one source pad, and convert the encoding of
pixels received on its sink pad(s) to a different en-
coding output on its source pad(s). Pixel encoding
conversion includes but isn’t limited to RGB to/from
HSV, RGB to/from YUV and CFA (Bayer) to RGB con-
versions.

MEDIA_ENT_F_PROC_VIDEO_LUT Video look-up table. An entity capable of video lookup
table processing must have one sink pad and one
source pad. It uses the values of the pixels received
on its sink pad to look up entries in internal tables and
output them on its source pad. The lookup process-
ing can be performed on all components separately or
combine them for multi-dimensional table lookups.

MEDIA_ENT_F_PROC_VIDEO_SCALER Video scaler. An entity capable of video scaling must
have at least one sink pad and one source pad, and
scale the video frame(s) received on its sink pad(s) to
a different resolution output on its source pad(s). The
range of supported scaling ratios is entity-specific
and can differ between the horizontal and vertical
directions (in particular scaling can be supported in
one direction only). Binning and sub-sampling (occa-
sionally also referred to as skipping) are considered
as scaling.

Continued on next page

7.5. Part IV - Media Controller API 931

Linux Userspace-api Documentation

Table 232 – continued from previous page
MEDIA_ENT_F_PROC_VIDEO_STATISTICS Video statistics computation (histogram, 3A, etc.). An

entity capable of statistics computation must have
one sink pad and one source pad. It computes statis-
tics over the frames received on its sink pad and out-
puts the statistics data on its source pad.

MEDIA_ENT_F_PROC_VIDEO_ENCODER Video (MPEG, HEVC, VPx, etc.) encoder. An entity
capable of compressing video frames. Must have one
sink pad and at least one source pad.

MEDIA_ENT_F_PROC_VIDEO_DECODER Video (MPEG, HEVC, VPx, etc.) decoder. An en-
tity capable of decompressing a compressed video
stream into uncompressed video frames. Must have
one sink pad and at least one source pad.

MEDIA_ENT_F_VID_MUX Video multiplexer. An entity capable of multiplexing
must have at least two sink pads and one source pad,
and must pass the video frame(s) received from the
active sink pad to the source pad.

MEDIA_ENT_F_VID_IF_BRIDGE Video interface bridge. A video interface bridge en-
tity must have at least one sink pad and at least one
source pad. It receives video frames on its sink pad
from an input video bus of one type (HDMI, eDP, MIPI
CSI-2, etc.), and outputs them on its source pad to an
output video bus of another type (eDP, MIPI CSI-2,
parallel, etc.).

MEDIA_ENT_F_DV_DECODER Digital video decoder. The basic function of the video
decoder is to accept digital video from a wide variety
of sources and output it in some digital video stan-
dard, with appropriate timing signals.

MEDIA_ENT_F_DV_ENCODER Digital video encoder. The basic function of the video
encoder is to accept digital video from some digital
video standard with appropriate timing signals (usu-
ally a parallel video bus with sync signals) and output
this to a digital video output connector such as HDMI
or DisplayPort.

Table 233: Media entity flags
MEDIA_ENT_FL_DEFAULT Default entity for its type. Used to discover the default audio,

VBI and video devices, the default camera sensor, etc.
MEDIA_ENT_FL_CONNECTOR The entity represents a connector.

932 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 234: Media interface types
MEDIA_INTF_T_DVB_FE Device node interface for the

Digital TV frontend
typically,
/dev/dvb/adapter?/frontend?

MEDIA_INTF_T_DVB_DEMUX Device node interface for the
Digital TV demux

typically,
/dev/dvb/adapter?/demux?

MEDIA_INTF_T_DVB_DVR Device node interface for the
Digital TV DVR

typically,
/dev/dvb/adapter?/dvr?

MEDIA_INTF_T_DVB_CA Device node interface for the
Digital TV Conditional Access

typically,
/dev/dvb/adapter?/ca?

MEDIA_INTF_T_DVB_NET Device node interface for the
Digital TV network control

typically,
/dev/dvb/adapter?/net?

MEDIA_INTF_T_V4L_VIDEO Device node interface for video
(V4L)

typically, /dev/video?

MEDIA_INTF_T_V4L_VBI Device node interface for VBI
(V4L)

typically, /dev/vbi?

MEDIA_INTF_T_V4L_RADIO Device node interface for radio
(V4L)

typically, /dev/radio?

MEDIA_INTF_T_V4L_SUBDEV Device node interface for a V4L
subdevice

typically, /dev/v4l-
subdev?

MEDIA_INTF_T_V4L_SWRADIO Device node interface for Soft-
ware Defined Radio (V4L)

typically, /dev/swradio?

MEDIA_INTF_T_V4L_TOUCH Device node interface for
Touch device (V4L)

typically, /dev/v4l-touch?

MEDIA_INTF_T_ALSA_PCM_CAPTUREDevice node interface for ALSA
PCM Capture

typically,
/dev/snd/pcmC?D?c

MEDIA_INTF_T_ALSA_PCM_PLAYBACKDevice node interface for ALSA
PCM Playback

typically,
/dev/snd/pcmC?D?p

MEDIA_INTF_T_ALSA_CONTROL Device node interface for ALSA
Control

typically,
/dev/snd/controlC?

MEDIA_INTF_T_ALSA_COMPRESS Device node interface for ALSA
Compress

typically,
/dev/snd/compr?

MEDIA_INTF_T_ALSA_RAWMIDI Device node interface for ALSA
Raw MIDI

typically, /dev/snd/midi?

MEDIA_INTF_T_ALSA_HWDEP Device node interface for ALSA
Hardware Dependent

typically,
/dev/snd/hwC?D?

MEDIA_INTF_T_ALSA_SEQUENCER Device node interface for ALSA
Sequencer

typically, /dev/snd/seq

MEDIA_INTF_T_ALSA_TIMER Device node interface for ALSA
Timer

typically, /dev/snd/timer

7.5. Part IV - Media Controller API 933

Linux Userspace-api Documentation

Table 235: Media pad flags
MEDIA_PAD_FL_SINK Input pad, relative to the entity. Input pads sink data and are

targets of links.
MEDIA_PAD_FL_SOURCE Output pad, relative to the entity. Output pads source data

and are origins of links.
MEDIA_PAD_FL_MUST_CONNECTIf this flag is set and the pad is linked to any other pad, then

at least one of those links must be enabled for the entity to
be able to stream. There could be temporary reasons (e.g.
device configuration dependent) for the pad to need enabled
links even when this flag isn’t set; the absence of the flag
doesn’t imply there is none.

One and only one of MEDIA_PAD_FL_SINK and MEDIA_PAD_FL_SOURCE must be set
for every pad.

Table 236: Media link flags
MEDIA_LNK_FL_ENABLED The link is enabled and can be used to transfer media data.

When two or more links target a sink pad, only one of them
can be enabled at a time.

MEDIA_LNK_FL_IMMUTABLE The link enabled state can’t be modified at runtime. An im-
mutable link is always enabled.

MEDIA_LNK_FL_DYNAMIC The link enabled state can be modified during streaming. This
flag is set by drivers and is read-only for applications.

MEDIA_LNK_FL_LINK_TYPE This is a bitmask that defines the type of the link. Currently,
two types of links are supported:
MEDIA_LNK_FL_DATA_LINK if the link is between two pads
MEDIA_LNK_FL_INTERFACE_LINK if the link is between an in-
terface and an entity

7.5.4 Request API

The Request API has been designed to allow V4L2 to deal with requirements of
modern devices (stateless codecs, complex camera pipelines, ⋯) and APIs (An-
droid Codec v2). One such requirement is the ability for devices belonging to
the same pipeline to reconfigure and collaborate closely on a per-frame basis. An-
other is support of stateless codecs, which require controls to be applied to specific
frames (aka ‘per-frame controls’) in order to be used efficiently.
While the initial use-case was V4L2, it can be extended to other subsystems as
well, as long as they use the media controller.

Supporting these features without the Request API is not always possible and if
it is, it is terribly inefficient: user-space would have to flush all activity on the
media pipeline, reconfigure it for the next frame, queue the buffers to be processed
with that configuration, and wait until they are all available for dequeuing before
considering the next frame. This defeats the purpose of having buffer queues since
in practice only one buffer would be queued at a time.

The Request API allows a specific configuration of the pipeline (media controller
topology + configuration for each media entity) to be associated with specific

934 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

buffers. This allows user-space to schedule several tasks (“requests”) with dif-
ferent configurations in advance, knowing that the configuration will be applied
when needed to get the expected result. Configuration values at the time of re-
quest completion are also available for reading.

General Usage

The Request API extends theMedia Controller API and cooperates with subsystem-
specific APIs to support request usage. At the Media Controller level, requests
are allocated from the supporting Media Controller device node. Their life cycle
is then managed through the request file descriptors in an opaque way. Configu-
ration data, buffer handles and processing results stored in requests are accessed
through subsystem-specific APIs extended for request support, such as V4L2 APIs
that take an explicit request_fd parameter.

Request Allocation

User-space allocates requests using ioctl MEDIA_IOC_REQUEST_ALLOC for the
media device node. This returns a file descriptor representing the request. Typi-
cally, several such requests will be allocated.

Request Preparation

Standard V4L2 ioctls can then receive a request file descriptor to express the fact
that the ioctl is part of said request, and is not to be applied immediately. See ioctl
MEDIA_IOC_REQUEST_ALLOC for a list of ioctls that support this. Configurations
set with a request_fd parameter are stored instead of being immediately applied,
and buffers queued to a request do not enter the regular buffer queue until the
request itself is queued.

Request Submission

Once the configuration and buffers of the request are specified, it can be queued
by calling ioctl MEDIA_REQUEST_IOC_QUEUE on the request file descriptor. A
request must contain at least one buffer, otherwise ENOENT is returned. A queued
request cannot be modified anymore.

Caution: For memory-to-memory devices you can use requests only for output
buffers, not for capture buffers. Attempting to add a capture buffer to a request
will result in an EBADR error.

If the request contains configurations for multiple entities, individual drivers may
synchronize so the requested pipeline’s topology is applied before the buffers are
processed. Media controller drivers do a best effort implementation since perfect
atomicity may not be possible due to hardware limitations.

7.5. Part IV - Media Controller API 935

Linux Userspace-api Documentation

Caution: It is not allowed to mix queuing requests with directly queu-
ing buffers: whichever method is used first locks this in place until VID-
IOC_STREAMOFF is called or the device is closed. Attempts to directly queue
a buffer when earlier a buffer was queued via a request or vice versa will result
in an EBUSY error.

Controls can still be set without a request and are applied immediately, regardless
of whether a request is in use or not.

Caution: Setting the same control through a request and also directly can
lead to undefined behavior!

User-space can poll() a request file descriptor in order to wait until the request
completes. A request is considered complete once all its associated buffers are
available for dequeuing and all the associated controls have been updated with the
values at the time of completion. Note that user-space does not need to wait for
the request to complete to dequeue its buffers: buffers that are available halfway
through a request can be dequeued independently of the request’s state.
A completed request contains the state of the device after the request was ex-
ecuted. User-space can query that state by calling ioctl VIDIOC_G_EXT_CTRLS
with the request file descriptor. Calling ioctl VIDIOC_G_EXT_CTRLS for a request
that has been queued but not yet completed will return EBUSY since the control
values might be changed at any time by the driver while the request is in flight.

Recycling and Destruction

Finally, a completed request can either be discarded or be reused. Calling close()
on a request file descriptor will make that file descriptor unusable and the request
will be freed once it is no longer in use by the kernel. That is, if the request is
queued and then the file descriptor is closed, then it won’t be freed until the
driver completed the request.

The ioctl MEDIA_REQUEST_IOC_REINIT will clear a request’s state and make it
available again. No state is retained by this operation: the request is as if it had
just been allocated.

Example for a Codec Device

For use-cases such as codecs, the request API can be used to associate specific
controls to be applied by the driver for the OUTPUT buffer, allowing user-space
to queue many such buffers in advance. It can also take advantage of requests’
ability to capture the state of controls when the request completes to read back
information that may be subject to change.

Put into code, after obtaining a request, user-space can assign controls and one
OUTPUT buffer to it:

936 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct v4l2_buffer buf;
struct v4l2_ext_controls ctrls;
int req_fd;
...
if (ioctl(media_fd, MEDIA_IOC_REQUEST_ALLOC, &req_fd))

return errno;
...
ctrls.which = V4L2_CTRL_WHICH_REQUEST_VAL;
ctrls.request_fd = req_fd;
if (ioctl(codec_fd, VIDIOC_S_EXT_CTRLS, &ctrls))

return errno;
...
buf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
buf.flags |= V4L2_BUF_FLAG_REQUEST_FD;
buf.request_fd = req_fd;
if (ioctl(codec_fd, VIDIOC_QBUF, &buf))

return errno;

Note that it is not allowed to use the Request API for CAPTURE buffers since there
are no per-frame settings to report there.

Once the request is fully prepared, it can be queued to the driver:

if (ioctl(req_fd, MEDIA_REQUEST_IOC_QUEUE))
return errno;

User-space can then either wait for the request to complete by calling poll() on
its file descriptor, or start dequeuing CAPTURE buffers. Most likely, it will want
to get CAPTURE buffers as soon as possible and this can be done using a regular
VIDIOC_DQBUF:

struct v4l2_buffer buf;

memset(&buf, 0, sizeof(buf));
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (ioctl(codec_fd, VIDIOC_DQBUF, &buf))

return errno;

Note that this example assumes for simplicity that for every OUTPUT buffer there
will be one CAPTURE buffer, but this does not have to be the case.

We can then, after ensuring that the request is completed via polling the request
file descriptor, query control values at the time of its completion via a call to VID-
IOC_G_EXT_CTRLS. This is particularly useful for volatile controls for which we
want to query values as soon as the capture buffer is produced.

struct pollfd pfd = { .events = POLLPRI, .fd = req_fd };
poll(&pfd, 1, -1);
...
ctrls.which = V4L2_CTRL_WHICH_REQUEST_VAL;
ctrls.request_fd = req_fd;
if (ioctl(codec_fd, VIDIOC_G_EXT_CTRLS, &ctrls))

return errno;

Once we don’t need the request anymore, we can either recycle it for reuse with
ioctl MEDIA_REQUEST_IOC_REINIT⋯

7.5. Part IV - Media Controller API 937

Linux Userspace-api Documentation

if (ioctl(req_fd, MEDIA_REQUEST_IOC_REINIT))
return errno;

⋯or close its file descriptor to completely dispose of it.
close(req_fd);

Example for a Simple Capture Device

With a simple capture device, requests can be used to specify controls to apply for
a given CAPTURE buffer.

struct v4l2_buffer buf;
struct v4l2_ext_controls ctrls;
int req_fd;
...
if (ioctl(media_fd, MEDIA_IOC_REQUEST_ALLOC, &req_fd))

return errno;
...
ctrls.which = V4L2_CTRL_WHICH_REQUEST_VAL;
ctrls.request_fd = req_fd;
if (ioctl(camera_fd, VIDIOC_S_EXT_CTRLS, &ctrls))

return errno;
...
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.flags |= V4L2_BUF_FLAG_REQUEST_FD;
buf.request_fd = req_fd;
if (ioctl(camera_fd, VIDIOC_QBUF, &buf))

return errno;

Once the request is fully prepared, it can be queued to the driver:

if (ioctl(req_fd, MEDIA_REQUEST_IOC_QUEUE))
return errno;

User-space can then dequeue buffers, wait for the request completion, query con-
trols and recycle the request as in the M2M example above.

7.5.5 Function Reference

media open()

Name

media-open - Open a media device

938 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.

flags Open flags. Access mode must be either O_RDONLY or O_RDWR. Other flags
have no effect.

Description

To open a media device applications call open() with the desired device name. The
function has no side effects; the device configuration remain unchanged.

When the device is opened in read-only mode, attempts to modify its configuration
will result in an error, and errno will be set to EBADF.

Return Value

open() returns the new file descriptor on success. On error, -1 is returned, and
errno is set appropriately. Possible error codes are:

EACCES The requested access to the file is not allowed.

EMFILE The process already has the maximum number of files open.

ENFILE The system limit on the total number of open files has been reached.

ENOMEM Insufficient kernel memory was available.

ENXIO No device corresponding to this device special file exists.

media close()

Name

media-close - Close a media device

7.5. Part IV - Media Controller API 939

Linux Userspace-api Documentation

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

Closes the media device. Resources associated with the file descriptor are freed.
The device configuration remain unchanged.

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropri-
ately. Possible error codes are:

EBADF fd is not a valid open file descriptor.

media ioctl()

Name

media-ioctl - Control a media device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().

request Media ioctl request code as defined in the media.h header file, for exam-
ple MEDIA_IOC_SETUP_LINK.

argp Pointer to a request-specific structure.

940 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

The ioctl() function manipulates media device parameters. The argument fd must
be an open file descriptor.

The ioctl request code specifies the media function to be called. It has encoded in
it whether the argument is an input, output or read/write parameter, and the size
of the argument argp in bytes.

Macros and structures definitions specifying media ioctl requests and their pa-
rameters are located in the media.h header file. All media ioctl requests, their
respective function and parameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

Request-specific error codes are listed in the individual requests descriptions.

When an ioctl that takes an output or read/write parameter fails, the parameter
remains unmodified.

ioctl MEDIA_IOC_DEVICE_INFO

Name

MEDIA_IOC_DEVICE_INFO - Query device information

Synopsis

int ioctl(int fd, MEDIA_IOC_DEVICE_INFO, struct me-
dia_device_info *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_device_info.

7.5. Part IV - Media Controller API 941

Linux Userspace-api Documentation

Description

All media devices must support the MEDIA_IOC_DEVICE_INFO ioctl. To query
device information, applications call the ioctl with a pointer to a struct
media_device_info. The driver fills the structure and returns the information
to the application. The ioctl never fails.

media_device_info

Table 237: struct media_device_info
char driver[16] Name of the driver implementing the

media API as a NUL-terminated ASCII
string. The driver version is stored in the
driver_version field.
Driver specific applications can use this in-
formation to verify the driver identity. It is
also useful to work around known bugs, or to
identify drivers in error reports.

char model[32] Device model name as a NUL-terminated
UTF-8 string. The device version is stored
in the device_version field and is not be ap-
pended to the model name.

char serial[40] Serial number as a NUL-terminated ASCII
string.

char bus_info[32] Location of the device in the system as a
NUL-terminated ASCII string. This includes
the bus type name (PCI, USB, ⋯) and a bus-
specific identifier.

__u32 media_version Media API version, formatted with the
KERNEL_VERSION() macro.

__u32 hw_revision Hardware device revision in a driver-specific
format.

__u32 driver_version Media device driver version, formatted with
the KERNEL_VERSION()macro. Together with
the driver field this identifies a particular
driver.

__u32 reserved[31] Reserved for future extensions. Drivers and
applications must set this array to zero.

The serial and bus_info fields can be used to distinguish between multiple in-
stances of otherwise identical hardware. The serial number takes precedence
when provided and can be assumed to be unique. If the serial number is an empty
string, the bus_info field can be used instead. The bus_info field is guaranteed
to be unique, but can vary across reboots or device unplug/replug.

942 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctl MEDIA_IOC_G_TOPOLOGY

Name

MEDIA_IOC_G_TOPOLOGY - Enumerate the graph topology and graph element
properties

Synopsis

int ioctl(int fd, MEDIA_IOC_G_TOPOLOGY, struct me-
dia_v2_topology *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_v2_topology.

Description

The typical usage of this ioctl is to call it twice. On the first call, the structure
defined at struct media_v2_topology should be zeroed. At return, if no errors
happen, this ioctl will return the topology_version and the total number of enti-
ties, interfaces, pads and links.

Before the second call, the userspace should allocate arrays to store the graph
elements that are desired, putting the pointers to them at the ptr_entities,
ptr_interfaces, ptr_links and/or ptr_pads, keeping the other values untouched.

If the topology_version remains the same, the ioctl should fill the desired arrays
with the media graph elements.

media_v2_topology

7.5. Part IV - Media Controller API 943

Linux Userspace-api Documentation

Table 238: struct media_v2_topology
__u64 topology_versionVersion of the media graph topology. When the graph is created,

this field starts with zero. Every time a graph element is added
or removed, this field is incremented.

__u32 num_entities Number of entities in the graph
__u32 reserved1 Applications and drivers shall set this to 0.
__u64 ptr_entities A pointer to a memory area where the entities array will be

stored, converted to a 64-bits integer. It can be zero. if zero, the
ioctl won’t store the entities. It will just update num_entities

__u32 num_interfaces Number of interfaces in the graph
__u32 reserved2 Applications and drivers shall set this to 0.
__u64 ptr_interfaces A pointer to a memory area where the interfaces array will

be stored, converted to a 64-bits integer. It can be zero. if
zero, the ioctl won’t store the interfaces. It will just update
num_interfaces

__u32 num_pads Total number of pads in the graph
__u32 reserved3 Applications and drivers shall set this to 0.
__u64 ptr_pads A pointer to a memory area where the pads array will be stored,

converted to a 64-bits integer. It can be zero. if zero, the ioctl
won’t store the pads. It will just update num_pads

__u32 num_links Total number of data and interface links in the graph
__u32 reserved4 Applications and drivers shall set this to 0.
__u64 ptr_links A pointer to a memory area where the links array will be stored,

converted to a 64-bits integer. It can be zero. if zero, the ioctl
won’t store the links. It will just update num_links

media_v2_entity

Table 239: struct media_v2_entity
__u32 id Unique ID for the entity. Do not expect that the ID will always be

the same for each instance of the device. In other words, do not
hardcode entity IDs in an application.

char name[64] Entity name as an UTF-8 NULL-terminated string. This name
must be unique within the media topology.

__u32 function Entity main function, see Media entity functions for details.
__u32 flags Entity flags, see Media entity flags for details. Only valid if

MEDIA_V2_ENTITY_HAS_FLAGS(media_version) returns true. The
media_version is defined in struct media_device_info and can
be retrieved using ioctl MEDIA_IOC_DEVICE_INFO.

__u32 reserved[5] Reserved for future extensions. Drivers and applications must set
this array to zero.

media_v2_interface

944 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 240: struct media_v2_interface
__u32 id Unique ID for the interface. Do not expect that the ID will always

be the same for each instance of the device. In other words, do
not hardcode interface IDs in an application.

__u32 intf_type Interface type, see Media interface types for details.
__u32 flags Interface flags. Currently unused.
__u32 reserved[9] Reserved for future extensions. Drivers and applications must set

this array to zero.
struct
me-
dia_v2_intf_devnode

devnode Used only for device node interfaces. See
media_v2_intf_devnode for details.

media_v2_intf_devnode

Table 241: struct media_v2_intf_devnode
__u32 major Device node major number.
__u32 minor Device node minor number.

media_v2_pad

Table 242: struct media_v2_pad
__u32 id Unique ID for the pad. Do not expect that the ID will always be

the same for each instance of the device. In other words, do not
hardcode pad IDs in an application.

__u32 entity_id Unique ID for the entity where this pad belongs.
__u32 flags Pad flags, see Media pad flags for more details.
__u32 index Pad index, starts at 0. Only valid if

MEDIA_V2_PAD_HAS_INDEX(media_version) returns true. The
media_version is defined in struct media_device_info and can
be retrieved using ioctl MEDIA_IOC_DEVICE_INFO.

__u32 reserved[4] Reserved for future extensions. Drivers and applications must set
this array to zero.

media_v2_link

Table 243: struct media_v2_link
__u32 id Unique ID for the link. Do not expect that the ID will always be

the same for each instance of the device. In other words, do not
hardcode link IDs in an application.

__u32 source_id On pad to pad links: unique ID for the source pad.
On interface to entity links: unique ID for the interface.

__u32 sink_id On pad to pad links: unique ID for the sink pad.
On interface to entity links: unique ID for the entity.

__u32 flags Link flags, see Media link flags for more details.
__u32 reserved[6] Reserved for future extensions. Drivers and applications must set

this array to zero.

7.5. Part IV - Media Controller API 945

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ENOSPC This is returned when either one or more of the num_entities,
num_interfaces, num_links or num_pads are non-zero and are smaller than
the actual number of elements inside the graph. This may happen if the
topology_version changed when compared to the last time this ioctl was
called. Userspace should usually free the area for the pointers, zero the struct
elements and call this ioctl again.

ioctl MEDIA_IOC_ENUM_ENTITIES

Name

MEDIA_IOC_ENUM_ENTITIES - Enumerate entities and their properties

Synopsis

int ioctl(int fd, MEDIA_IOC_ENUM_ENTITIES, struct me-
dia_entity_desc *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_entity_desc.

Description

To query the attributes of an entity, applications set the id field of a struct
media_entity_desc structure and call the MEDIA_IOC_ENUM_ENTITIES ioctl
with a pointer to this structure. The driver fills the rest of the structure or re-
turns an EINVAL error code when the id is invalid.

Entities can be enumerated by or’ing the id with the MEDIA_ENT_ID_FLAG_NEXT
flag. The driver will return information about the entity with the smallest id strictly
larger than the requested one (‘next entity’), or the EINVAL error code if there
is none.

Entity IDs can be non-contiguous. Applications must not try to enumerate entities
by calling MEDIA_IOC_ENUM_ENTITIES with increasing id’s until they get an
error.

media_entity_desc

946 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 244: struct media_entity_desc
__u32 id Entity

ID, set
by the
appli-
cation.
When
the ID
is or’
ed with
MEDIA_ENT_ID_FLAG_NEXT,
the
driver
clears
the flag
and
returns
the
first
entity
with a
larger
ID. Do
not
expect
that
the ID
will
always
be the
same
for
each
in-
stance
of the
de-
vice. In
other
words,
do not
hard-
code
entity
IDs
in an
appli-
cation.

char name[32] Entity
name
as an
UTF-8
NULL-
terminated
string.
This
name
must
be
unique
within
the
media
topol-
ogy.

__u32 type Entity
type,
see
Media
entity
func-
tions
for
details.

__u32 revision Entity
revi-
sion.
Always
zero
(obso-
lete)

__u32 flags Entity
flags,
see
Media
entity
flags
for
details.

__u32 group_id Entity
group
ID. Al-
ways
zero
(obso-
lete)

__u16 pads Number
of pads

__u16 links Total
num-
ber of
out-
bound
links.
In-
bound
links
are not
counted
in this
field.

__u32 reserved[4] Reserved
for fu-
ture
exten-
sions.
Drivers
and
appli-
cations
must
set the
array
to zero.

union { (anonymous)
struct dev Valid

for
(sub-
)devices
that
create
a single
device
node.

__u32 major Device
node
major
num-
ber.

__u32 minor Device
node
minor
num-
ber.

__u8 raw[184]
}

7.5. Part IV - Media Controller API 947

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct media_entity_desc id references a non-existing entity.

ioctl MEDIA_IOC_ENUM_LINKS

Name

MEDIA_IOC_ENUM_LINKS - Enumerate all pads and links for a given entity

Synopsis

int ioctl(int fd, MEDIA_IOC_ENUM_LINKS, struct me-
dia_links_enum *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_links_enum.

Description

To enumerate pads and/or links for a given entity, applications set the entity field
of a struct media_links_enum structure and initialize the struct media_pad_desc
and struct media_link_desc structure arrays pointed by the pads and links fields.
They then call theMEDIA_IOC_ENUM_LINKS ioctl with a pointer to this structure.

If the pads field is not NULL, the driver fills the pads array with information about
the entity’s pads. The array must have enough room to store all the entity’s pads.
The number of pads can be retrieved with ioctl MEDIA_IOC_ENUM_ENTITIES.

If the links field is not NULL, the driver fills the links array with information
about the entity’s outbound links. The array must have enough room to store all
the entity’s outbound links. The number of outbound links can be retrieved with
ioctl MEDIA_IOC_ENUM_ENTITIES.

Only forward links that originate at one of the entity’s source pads are returned
during the enumeration process.

media_links_enum

948 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 245: struct media_links_enum
__u32 entity Entity id, set by the application.
struct
media_pad_desc

*pads Pointer to a pads array allocated by the ap-
plication. Ignored if NULL.

struct
media_link_desc

*links Pointer to a links array allocated by the ap-
plication. Ignored if NULL.

__u32 reserved[4] Reserved for future extensions. Drivers and
applications must set the array to zero.

media_pad_desc

Table 246: struct media_pad_desc
__u32 entity ID of the entity this pad belongs to.
__u16 index Pad index, starts at 0.
__u32 flags Pad flags, see Media pad flags for more de-

tails.
__u32 reserved[2] Reserved for future extensions. Drivers and

applications must set the array to zero.

media_link_desc

Table 247: struct media_link_desc
struct
media_pad_desc

source Pad at the origin of this link.

struct
media_pad_desc

sink Pad at the target of this link.

__u32 flags Link flags, see Media link flags for more de-
tails.

__u32 reserved[2] Reserved for future extensions. Drivers and
applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct media_links_enum id references a non-existing entity.

ioctl MEDIA_IOC_SETUP_LINK

Name

MEDIA_IOC_SETUP_LINK - Modify the properties of a link

7.5. Part IV - Media Controller API 949

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, MEDIA_IOC_SETUP_LINK, struct media_link_desc *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_link_desc.

Description

To change link properties applications fill a struct media_link_descwith link iden-
tification information (source and sink pad) and the new requested link flags. They
then call the MEDIA_IOC_SETUP_LINK ioctl with a pointer to that structure.

The only configurable property is the ENABLED link flag to enable/disable a link.
Links marked with the IMMUTABLE link flag can not be enabled or disabled.

Link configuration has no side effect on other links. If an enabled link at the sink
pad prevents the link from being enabled, the driver returns with an EBUSY error
code.

Only linksmarkedwith the DYNAMIC link flag can be enabled/disabled while stream-
ing media data. Attempting to enable or disable a streaming non-dynamic link will
return an EBUSY error code.

If the specified link can’t be found the driver returns with an EINVAL error code.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct media_link_desc references a non-existing link, or the link is
immutable and an attempt to modify its configuration was made.

ioctl MEDIA_IOC_REQUEST_ALLOC

Name

MEDIA_IOC_REQUEST_ALLOC - Allocate a request

950 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Synopsis

int ioctl(int fd, MEDIA_IOC_REQUEST_ALLOC, int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer.

Description

If the media device supports requests, then this ioctl can be used to allocate a
request. If it is not supported, then errno is set to ENOTTY. A request is accessed
through a file descriptor that is returned in *argp.

If the request was successfully allocated, then the request file descriptor can be
passed to the VIDIOC_QBUF, VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS and
VIDIOC_TRY_EXT_CTRLS ioctls.

In addition, the request can be queued by calling ioctl ME-
DIA_REQUEST_IOC_QUEUE and re-initialized by calling ioctl ME-
DIA_REQUEST_IOC_REINIT.

Finally, the file descriptor can be polled to wait for the request to complete.

The request will remain allocated until all the file descriptors associated with it
are closed by close() and the driver no longer uses the request internally. See also
here for more information.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ENOTTY The driver has no support for requests.

request close()

Name

request-close - Close a request file descriptor

7.5. Part IV - Media Controller API 951

Linux Userspace-api Documentation

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

Description

Closes the request file descriptor. Resources associated with the request are freed
once all file descriptors associated with the request are closed and the driver has
completed the request. See here for more information.

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropri-
ately. Possible error codes are:

EBADF fd is not a valid open file descriptor.

request ioctl()

Name

request-ioctl - Control a request file descriptor

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int cmd, void *argp)

Arguments

fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

cmd The request ioctl command code as defined in the media.h header file, for
example ioctl MEDIA_REQUEST_IOC_QUEUE.

argp Pointer to a request-specific structure.

952 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

The ioctl() function manipulates request parameters. The argument fdmust be an
open file descriptor.

The ioctl cmd code specifies the request function to be called. It has encoded in it
whether the argument is an input, output or read/write parameter, and the size of
the argument argp in bytes.

Macros and structures definitions specifying request ioctl commands and their
parameters are located in the media.h header file. All request ioctl commands,
their respective function and parameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

Command-specific error codes are listed in the individual command descriptions.

When an ioctl that takes an output or read/write parameter fails, the parameter
remains unmodified.

request poll()

Name

request-poll - Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

ufds List of file descriptor events to be watched

nfds Number of file descriptor events at the *ufds array

timeout Timeout to wait for events

7.5. Part IV - Media Controller API 953

Linux Userspace-api Documentation

Description

With the poll() function applications can wait for a request to complete.

On success poll() returns the number of file descriptors that have been selected
(that is, file descriptors for which the revents field of the respective struct pollfd
is non-zero). Request file descriptor set the POLLPRI flag in revents when the
request was completed. When the function times out it returns a value of zero, on
failure it returns -1 and the errno variable is set appropriately.

Attempting to poll for a request that is not yet queued will set the POLLERR flag in
revents.

Return Value

On success, poll() returns the number of structures which have non-zero revents
fields, or zero if the call timed out. On error -1 is returned, and the errno variable
is set appropriately:

EBADF One or more of the ufds members specify an invalid file descriptor.

EFAULT ufds references an inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds value exceeds the RLIMIT_NOFILE value. Use getrlimit() to
obtain this value.

ioctl MEDIA_REQUEST_IOC_QUEUE

Name

MEDIA_REQUEST_IOC_QUEUE - Queue a request

Synopsis

int ioctl(int request_fd, MEDIA_REQUEST_IOC_QUEUE)

Arguments

request_fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

954 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

If the media device supports requests, then this request ioctl can be used to queue
a previously allocated request.

If the request was successfully queued, then the file descriptor can be polled to
wait for the request to complete.

If the request was already queued before, then EBUSY is returned. Other errors can
be returned if the contents of the request contained invalid or inconsistent data,
see the next section for a list of common error codes. On error both the request
and driver state are unchanged.

Once a request is queued, then the driver is required to gracefully handle errors
that occur when the request is applied to the hardware. The exception is the EIO
error which signals a fatal error that requires the application to stop streaming to
reset the hardware state.

It is not allowed to mix queuing requests with queuing buffers directly (without
a request). EBUSY will be returned if the first buffer was queued directly and you
next try to queue a request, or vice versa.

A requestmust contain at least one buffer, otherwise this ioctl will return an ENOENT
error.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

EBUSY The request was already queued or the application queued the first buffer
directly, but later attempted to use a request. It is not permitted to mix the
two APIs.

ENOENT The request did not contain any buffers. All requests are required to
have at least one buffer. This can also be returned if some required configu-
ration is missing in the request.

ENOMEM Out of memory when allocating internal data structures for this re-
quest.

EINVAL The request has invalid data.
EIO The hardware is in a bad state. To recover, the application needs to stop

streaming to reset the hardware state and then try to restart streaming.

7.5. Part IV - Media Controller API 955

Linux Userspace-api Documentation

ioctl MEDIA_REQUEST_IOC_REINIT

Name

MEDIA_REQUEST_IOC_REINIT - Re-initialize a request

Synopsis

int ioctl(int request_fd, MEDIA_REQUEST_IOC_REINIT)

Arguments

request_fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

Description

If the media device supports requests, then this request ioctl can be used to re-
initialize a previously allocated request.

Re-initializing a request will clear any existing data from the request. This avoids
having to close() a completed request and allocate a new request. Instead the
completed request can just be re-initialized and it is ready to be used again.

A request can only be re-initialized if it either has not been queued yet, or if it was
queued and completed. Otherwise it will set errno to EBUSY. No other error codes
can be returned.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.

EBUSY The request is queued but not yet completed.

7.5.6 Media Controller Header File

media.h

/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/*
* Multimedia device API
*
* Copyright (C) 2010 Nokia Corporation
*
* Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Sakari Ailus <sakari.ailus@iki.fi>
*
* This program is free software; you can redistribute it and/or␣
↪→modify

956 Chapter 7. Linux Media Infrastructure userspace API

mailto:laurent.pinchart@ideasonboard.com
mailto:sakari.ailus@iki.fi

Linux Userspace-api Documentation

* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/

#ifndef __LINUX_MEDIA_H
#define __LINUX_MEDIA_H

#ifndef __KERNEL__
#include <stdint.h>
#endif
#include <linux/ioctl.h>
#include <linux/types.h>

struct media_device_info {
char driver[16];
char model[32];
char serial[40];
char bus_info[32];
__u32 media_version;
__u32 hw_revision;
__u32 driver_version;
__u32 reserved[31];

};

/*
* Base number ranges for entity functions
*
* NOTE: Userspace should not rely on these ranges to identify a␣
↪→group
* of function types, as newer functions can be added with any name␣
↪→within
* the full u32 range.
*
* Some older functions use the MEDIA_ENT_F_OLD_*_BASE range. Do not
* change this, this is for backwards compatibility. When adding new
* functions always use MEDIA_ENT_F_BASE.
*/

#define MEDIA_ENT_F_BASE 0x00000000
#define MEDIA_ENT_F_OLD_BASE 0x00010000
#define MEDIA_ENT_F_OLD_SUBDEV_BASE 0x00020000

/*
* Initial value to be used when a new entity is created
* Drivers should change it to something useful.
*/

#define MEDIA_ENT_F_UNKNOWN MEDIA_ENT_F_BASE

7.5. Part IV - Media Controller API 957

Linux Userspace-api Documentation

/*
* Subdevs are initialized with MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN in␣
↪→order
* to preserve backward compatibility. Drivers must change to the␣
↪→proper
* subdev type before registering the entity.
*/

#define MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN MEDIA_ENT_F_OLD_
↪→SUBDEV_BASE

/*
* DVB entity functions
*/

#define MEDIA_ENT_F_DTV_DEMOD (MEDIA_ENT_F_BASE +␣
↪→0x00001)
#define MEDIA_ENT_F_TS_DEMUX (MEDIA_ENT_F_BASE +␣
↪→0x00002)
#define MEDIA_ENT_F_DTV_CA (MEDIA_ENT_F_BASE +␣
↪→0x00003)
#define MEDIA_ENT_F_DTV_NET_DECAP (MEDIA_ENT_F_BASE +␣
↪→0x00004)

/*
* I/O entity functions
*/

#define MEDIA_ENT_F_IO_V4L (MEDIA_ENT_F_OLD_
↪→BASE + 1)
#define MEDIA_ENT_F_IO_DTV (MEDIA_ENT_F_BASE +␣
↪→0x01001)
#define MEDIA_ENT_F_IO_VBI (MEDIA_ENT_F_BASE +␣
↪→0x01002)
#define MEDIA_ENT_F_IO_SWRADIO (MEDIA_ENT_F_BASE +␣
↪→0x01003)

/*
* Sensor functions
*/

#define MEDIA_ENT_F_CAM_SENSOR (MEDIA_ENT_F_OLD_
↪→SUBDEV_BASE + 1)
#define MEDIA_ENT_F_FLASH (MEDIA_ENT_F_OLD_
↪→SUBDEV_BASE + 2)
#define MEDIA_ENT_F_LENS (MEDIA_ENT_F_OLD_
↪→SUBDEV_BASE + 3)

/*
* Digital TV, analog TV, radio and/or software defined radio tuner␣
↪→functions.
*
* It is a responsibility of the master/bridge drivers to add␣
↪→connectors

958 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* and links for MEDIA_ENT_F_TUNER. Please notice that some old␣
↪→tuners
* may require the usage of separate I2C chips to decode analog TV␣
↪→signals,
* when the master/bridge chipset doesn't have its own TV standard␣
↪→decoder.
* On such cases, the IF-PLL staging is mapped via one or two␣
↪→entities:
* MEDIA_ENT_F_IF_VID_DECODER and/or MEDIA_ENT_F_IF_AUD_DECODER.
*/

#define MEDIA_ENT_F_TUNER (MEDIA_ENT_F_OLD_
↪→SUBDEV_BASE + 5)

/*
* Analog TV IF-PLL decoder functions
*
* It is a responsibility of the master/bridge drivers to create␣
↪→links
* for MEDIA_ENT_F_IF_VID_DECODER and MEDIA_ENT_F_IF_AUD_DECODER.
*/

#define MEDIA_ENT_F_IF_VID_DECODER (MEDIA_ENT_F_BASE +␣
↪→0x02001)
#define MEDIA_ENT_F_IF_AUD_DECODER (MEDIA_ENT_F_BASE +␣
↪→0x02002)

/*
* Audio entity functions
*/

#define MEDIA_ENT_F_AUDIO_CAPTURE (MEDIA_ENT_F_BASE +␣
↪→0x03001)
#define MEDIA_ENT_F_AUDIO_PLAYBACK (MEDIA_ENT_F_BASE +␣
↪→0x03002)
#define MEDIA_ENT_F_AUDIO_MIXER (MEDIA_ENT_F_BASE +␣
↪→0x03003)

/*
* Processing entity functions
*/

#define MEDIA_ENT_F_PROC_VIDEO_COMPOSER (MEDIA_ENT_F_BASE +␣
↪→0x4001)
#define MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER (MEDIA_ENT_F_BASE +␣
↪→0x4002)
#define MEDIA_ENT_F_PROC_VIDEO_PIXEL_ENC_CONV (MEDIA_ENT_F_BASE +␣
↪→0x4003)
#define MEDIA_ENT_F_PROC_VIDEO_LUT (MEDIA_ENT_F_BASE +␣
↪→0x4004)
#define MEDIA_ENT_F_PROC_VIDEO_SCALER (MEDIA_ENT_F_BASE +␣
↪→0x4005)
#define MEDIA_ENT_F_PROC_VIDEO_STATISTICS (MEDIA_ENT_F_BASE +␣
↪→0x4006)
#define MEDIA_ENT_F_PROC_VIDEO_ENCODER (MEDIA_ENT_F_BASE +␣

7.5. Part IV - Media Controller API 959

Linux Userspace-api Documentation

↪→0x4007)
#define MEDIA_ENT_F_PROC_VIDEO_DECODER (MEDIA_ENT_F_BASE +␣
↪→0x4008)

/*
* Switch and bridge entity functions
*/

#define MEDIA_ENT_F_VID_MUX (MEDIA_ENT_F_BASE +␣
↪→0x5001)
#define MEDIA_ENT_F_VID_IF_BRIDGE (MEDIA_ENT_F_BASE +␣
↪→0x5002)

/*
* Video decoder/encoder functions
*/

#define MEDIA_ENT_F_ATV_DECODER (MEDIA_ENT_F_OLD_
↪→SUBDEV_BASE + 4)
#define MEDIA_ENT_F_DV_DECODER (MEDIA_ENT_F_BASE +␣
↪→0x6001)
#define MEDIA_ENT_F_DV_ENCODER (MEDIA_ENT_F_BASE +␣
↪→0x6002)

/* Entity flags */
#define MEDIA_ENT_FL_DEFAULT (1 << 0)
#define MEDIA_ENT_FL_CONNECTOR (1 << 1)

/* OR with the entity id value to find the next entity */
#define MEDIA_ENT_ID_FLAG_NEXT (1U << 31)

struct media_entity_desc {
__u32 id;
char name[32];
__u32 type;
__u32 revision;
__u32 flags;
__u32 group_id;
__u16 pads;
__u16 links;

__u32 reserved[4];

union {
/* Node specifications */
struct {

__u32 major;
__u32 minor;

} dev;

#if !defined(__KERNEL__)
/*
* TODO: this shouldn't have been added without

960 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* actual drivers that use this. When the first␣
↪→real driver

* appears that sets this information, special␣
↪→attention

* should be given whether this information is 1)␣
↪→enough, and

* 2) can deal with udev rules that rename devices.␣
↪→The struct

* dev would not be sufficient for this since that␣
↪→does not

* contain the subdevice information. In addition,␣
↪→struct dev

* can only refer to a single device, and not to␣
↪→multiple (e.g.

* pcm and mixer devices).
*/

struct {
__u32 card;
__u32 device;
__u32 subdevice;

} alsa;

/*
* DEPRECATED: previous node specifications. Kept␣

↪→just to
* avoid breaking compilation. Use media_entity_

↪→desc.dev
* instead.
*/

struct {
__u32 major;
__u32 minor;

} v4l;
struct {

__u32 major;
__u32 minor;

} fb;
int dvb;

#endif

/* Sub-device specifications */
/* Nothing needed yet */
__u8 raw[184];

};
};

#define MEDIA_PAD_FL_SINK (1 << 0)
#define MEDIA_PAD_FL_SOURCE (1 << 1)
#define MEDIA_PAD_FL_MUST_CONNECT (1 << 2)

struct media_pad_desc {

7.5. Part IV - Media Controller API 961

Linux Userspace-api Documentation

__u32 entity; /* entity ID */
__u16 index; /* pad index */
__u32 flags; /* pad flags */
__u32 reserved[2];

};

#define MEDIA_LNK_FL_ENABLED (1 << 0)
#define MEDIA_LNK_FL_IMMUTABLE (1 << 1)
#define MEDIA_LNK_FL_DYNAMIC (1 << 2)

#define MEDIA_LNK_FL_LINK_TYPE (0xf << 28)
define MEDIA_LNK_FL_DATA_LINK (0 << 28)
define MEDIA_LNK_FL_INTERFACE_LINK (1 << 28)

struct media_link_desc {
struct media_pad_desc source;
struct media_pad_desc sink;
__u32 flags;
__u32 reserved[2];

};

struct media_links_enum {
__u32 entity;
/* Should have enough room for pads elements */
struct media_pad_desc __user *pads;
/* Should have enough room for links elements */
struct media_link_desc __user *links;
__u32 reserved[4];

};

/* Interface type ranges */

#define MEDIA_INTF_T_DVB_BASE 0x00000100
#define MEDIA_INTF_T_V4L_BASE 0x00000200

/* Interface types */

#define MEDIA_INTF_T_DVB_FE (MEDIA_INTF_T_DVB_
↪→BASE)
#define MEDIA_INTF_T_DVB_DEMUX (MEDIA_INTF_T_DVB_
↪→BASE + 1)
#define MEDIA_INTF_T_DVB_DVR (MEDIA_INTF_T_DVB_
↪→BASE + 2)
#define MEDIA_INTF_T_DVB_CA (MEDIA_INTF_T_DVB_
↪→BASE + 3)
#define MEDIA_INTF_T_DVB_NET (MEDIA_INTF_T_DVB_
↪→BASE + 4)

#define MEDIA_INTF_T_V4L_VIDEO (MEDIA_INTF_T_V4L_
↪→BASE)
#define MEDIA_INTF_T_V4L_VBI (MEDIA_INTF_T_V4L_

962 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

↪→BASE + 1)
#define MEDIA_INTF_T_V4L_RADIO (MEDIA_INTF_T_V4L_
↪→BASE + 2)
#define MEDIA_INTF_T_V4L_SUBDEV (MEDIA_INTF_T_V4L_
↪→BASE + 3)
#define MEDIA_INTF_T_V4L_SWRADIO (MEDIA_INTF_T_V4L_
↪→BASE + 4)
#define MEDIA_INTF_T_V4L_TOUCH (MEDIA_INTF_T_V4L_
↪→BASE + 5)

#define MEDIA_INTF_T_ALSA_BASE 0x00000300
#define MEDIA_INTF_T_ALSA_PCM_CAPTURE (MEDIA_INTF_T_ALSA_
↪→BASE)
#define MEDIA_INTF_T_ALSA_PCM_PLAYBACK (MEDIA_INTF_T_ALSA_
↪→BASE + 1)
#define MEDIA_INTF_T_ALSA_CONTROL (MEDIA_INTF_T_ALSA_
↪→BASE + 2)

#if defined(__KERNEL__)

/*
* Connector functions
*
* For now these should not be used in userspace, as some␣
↪→definitions may
* change.
*
* It is the responsibility of the entity drivers to add connectors␣
↪→and links.
*/

#define MEDIA_ENT_F_CONN_RF (MEDIA_ENT_F_BASE +␣
↪→0x30001)
#define MEDIA_ENT_F_CONN_SVIDEO (MEDIA_ENT_F_BASE +␣
↪→0x30002)
#define MEDIA_ENT_F_CONN_COMPOSITE (MEDIA_ENT_F_BASE +␣
↪→0x30003)

#endif

/*
* MC next gen API definitions
*/

/*
* Appeared in 4.19.0.
*
* The media_version argument comes from the media_version field in
* struct media_device_info.
*/

#define MEDIA_V2_ENTITY_HAS_FLAGS(media_version) \
((media_version) >= ((4 << 16) | (19 << 8) | 0))

7.5. Part IV - Media Controller API 963

Linux Userspace-api Documentation

struct media_v2_entity {
__u32 id;
char name[64];
__u32 function; /* Main function of the entity */
__u32 flags;
__u32 reserved[5];

} __attribute__ ((packed));

/* Should match the specific fields at media_intf_devnode */
struct media_v2_intf_devnode {

__u32 major;
__u32 minor;

} __attribute__ ((packed));

struct media_v2_interface {
__u32 id;
__u32 intf_type;
__u32 flags;
__u32 reserved[9];

union {
struct media_v2_intf_devnode devnode;
__u32 raw[16];

};
} __attribute__ ((packed));

/*
* Appeared in 4.19.0.
*
* The media_version argument comes from the media_version field in
* struct media_device_info.
*/

#define MEDIA_V2_PAD_HAS_INDEX(media_version) \
((media_version) >= ((4 << 16) | (19 << 8) | 0))

struct media_v2_pad {
__u32 id;
__u32 entity_id;
__u32 flags;
__u32 index;
__u32 reserved[4];

} __attribute__ ((packed));

struct media_v2_link {
__u32 id;
__u32 source_id;
__u32 sink_id;
__u32 flags;
__u32 reserved[6];

} __attribute__ ((packed));

964 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

struct media_v2_topology {
__u64 topology_version;

__u32 num_entities;
__u32 reserved1;
__u64 ptr_entities;

__u32 num_interfaces;
__u32 reserved2;
__u64 ptr_interfaces;

__u32 num_pads;
__u32 reserved3;
__u64 ptr_pads;

__u32 num_links;
__u32 reserved4;
__u64 ptr_links;

} __attribute__ ((packed));

/* ioctls */

#define MEDIA_IOC_DEVICE_INFO _IOWR('|', 0x00, struct media_
↪→device_info)
#define MEDIA_IOC_ENUM_ENTITIES _IOWR('|', 0x01, struct media_
↪→entity_desc)
#define MEDIA_IOC_ENUM_LINKS _IOWR('|', 0x02, struct media_links_
↪→enum)
#define MEDIA_IOC_SETUP_LINK _IOWR('|', 0x03, struct media_link_
↪→desc)
#define MEDIA_IOC_G_TOPOLOGY _IOWR('|', 0x04, struct media_v2_
↪→topology)
#define MEDIA_IOC_REQUEST_ALLOC _IOR ('|', 0x05, int)

/*
* These ioctls are called on the request file descriptor as␣
↪→returned
* by MEDIA_IOC_REQUEST_ALLOC.
*/

#define MEDIA_REQUEST_IOC_QUEUE _IO('|', 0x80)
#define MEDIA_REQUEST_IOC_REINIT _IO('|', 0x81)

#ifndef __KERNEL__

/*
* Legacy symbols used to avoid userspace compilation breakages.
* Do not use any of this in new applications!
*
* Those symbols map the entity function into types and should be
* used only on legacy programs for legacy hardware. Don't rely

7.5. Part IV - Media Controller API 965

Linux Userspace-api Documentation

* on those for MEDIA_IOC_G_TOPOLOGY.
*/

#define MEDIA_ENT_TYPE_SHIFT 16
#define MEDIA_ENT_TYPE_MASK 0x00ff0000
#define MEDIA_ENT_SUBTYPE_MASK 0x0000ffff

#define MEDIA_ENT_T_DEVNODE_UNKNOWN (MEDIA_ENT_F_OLD_
↪→BASE | \

MEDIA_ENT_SUBTYPE_
↪→MASK)

#define MEDIA_ENT_T_DEVNODE MEDIA_ENT_F_OLD_BASE
#define MEDIA_ENT_T_DEVNODE_V4L MEDIA_ENT_F_IO_V4L
#define MEDIA_ENT_T_DEVNODE_FB (MEDIA_ENT_F_OLD_
↪→BASE + 2)
#define MEDIA_ENT_T_DEVNODE_ALSA (MEDIA_ENT_F_OLD_
↪→BASE + 3)
#define MEDIA_ENT_T_DEVNODE_DVB (MEDIA_ENT_F_OLD_
↪→BASE + 4)

#define MEDIA_ENT_T_UNKNOWN MEDIA_ENT_F_UNKNOWN
#define MEDIA_ENT_T_V4L2_VIDEO MEDIA_ENT_F_IO_V4L
#define MEDIA_ENT_T_V4L2_SUBDEV MEDIA_ENT_F_V4L2_
↪→SUBDEV_UNKNOWN
#define MEDIA_ENT_T_V4L2_SUBDEV_SENSOR MEDIA_ENT_F_CAM_
↪→SENSOR
#define MEDIA_ENT_T_V4L2_SUBDEV_FLASH MEDIA_ENT_F_FLASH
#define MEDIA_ENT_T_V4L2_SUBDEV_LENS MEDIA_ENT_F_LENS
#define MEDIA_ENT_T_V4L2_SUBDEV_DECODER MEDIA_ENT_F_ATV_
↪→DECODER
#define MEDIA_ENT_T_V4L2_SUBDEV_TUNER MEDIA_ENT_F_TUNER

#define MEDIA_ENT_F_DTV_DECODER MEDIA_ENT_F_DV_
↪→DECODER

/*
* There is still no full ALSA support in the media controller.␣
↪→These
* defines should not have been added and we leave them here only
* in case some application tries to use these defines.
*
* The ALSA defines that are in use have been moved into __KERNEL__
* scope. As support gets added to these interface types, they␣
↪→should
* be moved into __KERNEL__ scope with the code that uses them.
*/

#define MEDIA_INTF_T_ALSA_COMPRESS (MEDIA_INTF_T_ALSA_
↪→BASE + 3)
#define MEDIA_INTF_T_ALSA_RAWMIDI (MEDIA_INTF_T_ALSA_
↪→BASE + 4)
#define MEDIA_INTF_T_ALSA_HWDEP (MEDIA_INTF_T_ALSA_

966 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

↪→BASE + 5)
#define MEDIA_INTF_T_ALSA_SEQUENCER (MEDIA_INTF_T_ALSA_
↪→BASE + 6)
#define MEDIA_INTF_T_ALSA_TIMER (MEDIA_INTF_T_ALSA_
↪→BASE + 7)

/* Obsolete symbol for media_version, no longer used in the kernel␣
↪→*/
#define MEDIA_API_VERSION ((0 << 16) | (1 <<␣
↪→8) | 0)

#endif

#endif /* __LINUX_MEDIA_H */

7.5.7 Revision and Copyright

Authors:

• Pinchart, Laurent <laurent.pinchart@ideasonboard.com>

• Initial version.

• Carvalho Chehab, Mauro <mchehab@kernel.org>

• MEDIA_IOC_G_TOPOLOGY documentation and documentation improve-
ments.

Copyright © 2010 : Laurent Pinchart

Copyright © 2015-2016 : Mauro Carvalho Chehab

7.5.8 Revision History

revision 1.1.0 / 2015-12-12 (mcc)

revision 1.0.0 / 2010-11-10 (lp)

Initial revision

7.6 Part V - Consumer Electronics Control API

This part describes the CEC: Consumer Electronics Control

7.6. Part V - Consumer Electronics Control API 967

mailto:laurent.pinchart@ideasonboard.com
mailto:mchehab@kernel.org

Linux Userspace-api Documentation

7.6.1 Introduction

HDMI connectors provide a single pin for use by the Consumer Electronics Control
protocol. This protocol allows different devices connected by an HDMI cable to
communicate. The protocol for CEC version 1.4 is defined in supplements 1 (CEC)
and 2 (HEAC or HDMI Ethernet and Audio Return Channel) of the HDMI 1.4a
(HDMI) specification and the extensions added to CEC version 2.0 are defined in
chapter 11 of the HDMI 2.0 (HDMI2) specification.

The bitrate is very slow (effectively no more than 36 bytes per second) and is based
on the ancient AV.link protocol used in old SCART connectors. The protocol closely
resembles a crazy Rube Goldberg contraption and is an unholy mix of low and
high level messages. Some messages, especially those part of the HEAC protocol
layered on top of CEC, need to be handled by the kernel, others can be handled
either by the kernel or by userspace.

In addition, CEC can be implemented in HDMI receivers, transmitters and in USB
devices that have an HDMI input and an HDMI output and that control just the
CEC pin.

Drivers that support CEC will create a CEC device node (/dev/cecX) to give
userspace access to the CEC adapter. The ioctl CEC_ADAP_G_CAPS ioctl will tell
userspace what it is allowed to do.

In order to check the support and test it, it is suggested to download the v4l-utils
package. It provides three tools to handle CEC:

• cec-ctl: the Swiss army knife of CEC. Allows you to configure, transmit and
monitor CEC messages.

• cec-compliance: does a CEC compliance test of a remote CEC device to de-
termine how compliant the CEC implementation is.

• cec-follower: emulates a CEC follower.

7.6.2 Function Reference

cec open()

Name

cec-open - Open a cec device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

968 Chapter 7. Linux Media Infrastructure userspace API

https://git.linuxtv.org/v4l-utils.git/

Linux Userspace-api Documentation

Arguments

device_name Device to be opened.

flags Open flags. Access mode must be O_RDWR.

When the O_NONBLOCK flag is given, the CEC_RECEIVE and CEC_DQEVENT
ioctls will return the EAGAIN error code when no message or event
is available, and ioctls CEC_TRANSMIT, CEC_ADAP_S_PHYS_ADDR and
CEC_ADAP_S_LOG_ADDRS all return 0.

Other flags have no effect.

Description

To open a cec device applications call open() with the desired device name. The
function has no side effects; the device configuration remain unchanged.

When the device is opened in read-only mode, attempts to modify its configuration
will result in an error, and errno will be set to EBADF.

Return Value

open() returns the new file descriptor on success. On error, -1 is returned, and
errno is set appropriately. Possible error codes include:

EACCES The requested access to the file is not allowed.

EMFILE The process already has the maximum number of files open.

ENFILE The system limit on the total number of open files has been reached.

ENOMEM Insufficient kernel memory was available.

ENXIO No device corresponding to this device special file exists.

cec close()

Name

cec-close - Close a cec device

Synopsis

#include <unistd.h>

int close(int fd)

7.6. Part V - Consumer Electronics Control API 969

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

Description

Closes the cec device. Resources associated with the file descriptor are freed. The
device configuration remain unchanged.

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropri-
ately. Possible error codes are:

EBADF fd is not a valid open file descriptor.

cec ioctl()

Name

cec-ioctl - Control a cec device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().

request CEC ioctl request code as defined in the cec.h header file, for example
CEC_ADAP_G_CAPS.

argp Pointer to a request-specific structure.

Description

The ioctl() function manipulates cec device parameters. The argument fd must
be an open file descriptor.

The ioctl request code specifies the cec function to be called. It has encoded in it
whether the argument is an input, output or read/write parameter, and the size of
the argument argp in bytes.

970 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Macros and structures definitions specifying cec ioctl requests and their param-
eters are located in the cec.h header file. All cec ioctl requests, their respective
function and parameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

Request-specific error codes are listed in the individual requests descriptions.

When an ioctl that takes an output or read/write parameter fails, the parameter
remains unmodified.

cec poll()

Name

cec-poll - Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

ufds List of FD events to be watched

nfds Number of FD events at the *ufds array

timeout Timeout to wait for events

Description

With the poll() function applications can wait for CEC events.

On success poll() returns the number of file descriptors that have been selected
(that is, file descriptors for which the revents field of the respective struct pollfd
is non-zero). CEC devices set the POLLIN and POLLRDNORM flags in the revents field
if there are messages in the receive queue. If the transmit queue has room for new
messages, the POLLOUT and POLLWRNORM flags are set. If there are events in the
event queue, then the POLLPRI flag is set. When the function times out it returns
a value of zero, on failure it returns -1 and the errno variable is set appropriately.

For more details see the poll() manual page.

7.6. Part V - Consumer Electronics Control API 971

Linux Userspace-api Documentation

Return Value

On success, poll() returns the number structures which have non-zero revents
fields, or zero if the call timed out. On error -1 is returned, and the errno variable
is set appropriately:

EBADF One or more of the ufds members specify an invalid file descriptor.

EFAULT ufds references an inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds value exceeds the RLIMIT_NOFILE value. Use getrlimit() to
obtain this value.

ioctl CEC_ADAP_G_CAPS

Name

CEC_ADAP_G_CAPS - Query device capabilities

Synopsis

int ioctl(int fd, CEC_ADAP_G_CAPS, struct cec_caps *argp)

Arguments

fd File descriptor returned by open().

argp

Description

All cec devices must support ioctl CEC_ADAP_G_CAPS. To query device informa-
tion, applications call the ioctl with a pointer to a struct cec_caps. The driver fills
the structure and returns the information to the application. The ioctl never fails.

cec_caps

Table 248: struct cec_caps
char driver[32] The name of the cec adapter driver.
char name[32] The name of this CEC adapter. The combination driver and name must

be unique.
__u32 capabilitiesThe capabilities of the CEC adapter, see CEC Capabilities Flags.
__u32 version CEC Framework API version, formatted with the KERNEL_VERSION()

macro.

972 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 249: CEC Capabilities Flags

CEC_CAP_PHYS_ADDR 0x00000001 Userspace has to configure the physical address by
calling ioctl CEC_ADAP_S_PHYS_ADDR. If this capa-
bility isn’t set, then setting the physical address is
handled by the kernel whenever the EDID is set (for
an HDMI receiver) or read (for an HDMI transmitter).

CEC_CAP_LOG_ADDRS 0x00000002 Userspace has to configure the logical addresses by
calling ioctl CEC_ADAP_S_LOG_ADDRS. If this capa-
bility isn’t set, then the kernel will have configured
this.

CEC_CAP_TRANSMIT 0x00000004 Userspace can transmit CEC messages by calling ioctl
CEC_TRANSMIT. This implies that userspace can be
a follower as well, since being able to transmit mes-
sages is a prerequisite of becoming a follower. If this
capability isn’t set, then the kernel will handle all CEC
transmits and process all CEC messages it receives.

CEC_CAP_PASSTHROUGH 0x00000008 Userspace can use the passthrough mode by calling
ioctl CEC_S_MODE.

CEC_CAP_RC 0x00000010 This adapter supports the remote control protocol.

CEC_CAP_MONITOR_ALL 0x00000020 The CEC hardware can monitor all messages, not just
directed and broadcast messages.

CEC_CAP_NEEDS_HPD 0x00000040 The CEC hardware is only active if the HDMI Hotplug
Detect pin is high. This makes it impossible to use CEC
to wake up displays that set the HPD pin low when in
standby mode, but keep the CEC bus alive.

CEC_CAP_MONITOR_PIN 0x00000080 The CEC hardware can monitor CEC pin
changes from low to high voltage and vice
versa. When in pin monitoring mode the appli-
cation will receive CEC_EVENT_PIN_CEC_LOW and
CEC_EVENT_PIN_CEC_HIGH events.

CEC_CAP_CONNECTOR_INFO0x00000100 If this capability is set, then ioctl
CEC_ADAP_G_CONNECTOR_INFO can be used.

7.6. Part V - Consumer Electronics Control API 973

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

ioctls CEC_ADAP_G_LOG_ADDRS and CEC_ADAP_S_LOG_ADDRS

Name

CEC_ADAP_G_LOG_ADDRS, CEC_ADAP_S_LOG_ADDRS - Get or set the logical ad-
dresses

Synopsis

int ioctl(int fd, CEC_ADAP_G_LOG_ADDRS, struct cec_log_addrs *argp)

int ioctl(int fd, CEC_ADAP_S_LOG_ADDRS, struct cec_log_addrs *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct cec_log_addrs.

Description

To query the current CEC logical addresses, applications call ioctl
CEC_ADAP_G_LOG_ADDRS with a pointer to a struct cec_log_addrs where
the driver stores the logical addresses.

To set new logical addresses, applications fill in struct cec_log_addrs and
call ioctl CEC_ADAP_S_LOG_ADDRS with a pointer to this struct. The ioctl
CEC_ADAP_S_LOG_ADDRS is only available if CEC_CAP_LOG_ADDRS is set (the
ENOTTY error code is returned otherwise). The ioctl CEC_ADAP_S_LOG_ADDRS
can only be called by a file descriptor in initiator mode (see ioctls CEC_G_MODE
and CEC_S_MODE), if not the EBUSY error code will be returned.

To clear existing logical addresses set num_log_addrs to 0. All other fields will
be ignored in that case. The adapter will go to the unconfigured state and the
cec_version, vendor_id and osd_name fields are all reset to their default values
(CEC version 2.0, no vendor ID and an empty OSD name).

If the physical address is valid (see ioctl CEC_ADAP_S_PHYS_ADDR), then this
ioctl will block until all requested logical addresses have been claimed. If the file
descriptor is in non-blocking mode then it will not wait for the logical addresses
to be claimed, instead it just returns 0.

A CEC_EVENT_STATE_CHANGE event is sent when the logical addresses are
claimed or cleared.

974 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Attempting to call ioctl CEC_ADAP_S_LOG_ADDRS when logical address types are
already defined will return with error EBUSY.

cec_log_addrs

Table 250: struct cec_log_addrs
__u8 log_addr[CEC_MAX_LOG_ADDRS] The actual logical addresses that were

claimed. This is set by the driver. If no
logical address could be claimed, then
it is set to CEC_LOG_ADDR_INVALID.
If this adapter is Unregistered, then
log_addr[0] is set to 0xf and all oth-
ers to CEC_LOG_ADDR_INVALID.

__u16log_addr_mask The bitmask of all logical ad-
dresses this adapter has claimed.
If this adapter is Unregistered then
log_addr_mask sets bit 15 and clears
all other bits. If this adapter is not
configured at all, then log_addr_mask
is set to 0. Set by the driver.

__u8 cec_version The CEC version that this adapter
shall use. See CEC Versions. Used to
implement the CEC_MSG_CEC_VERSION
and CEC_MSG_REPORT_FEATURES
messages. Note that
CEC_OP_CEC_VERSION_1_3A is
not allowed by the CEC framework.

__u8 num_log_addrs Number of logical addresses to set up.
Must be ≤ available_log_addrs as
returned by ioctl CEC_ADAP_G_CAPS.
All arrays in this structure
are only filled up to index
available_log_addrs-1. The remain-
ing array elements will be ignored.
Note that the CEC 2.0 standard allows
for a maximum of 2 logical addresses,
although some hardware has support
for more. CEC_MAX_LOG_ADDRS is
4. The driver will return the actual
number of logical addresses it could
claim, which may be less than what
was requested. If this field is set to
0, then the CEC adapter shall clear
all claimed logical addresses and all
other fields will be ignored.

Continued on next page

7.6. Part V - Consumer Electronics Control API 975

Linux Userspace-api Documentation

Table 250 – continued from previous page
__u32vendor_id The vendor ID is a 24-bit number that

identifies the specific vendor or en-
tity. Based on this ID vendor specific
commands may be defined. If you do
not want a vendor ID then set it to
CEC_VENDOR_ID_NONE.

__u32flags Flags. See Flags for struct
cec_log_addrs for a list of available
flags.

char osd_name[15] The On-Screen Display name as is re-
turned by the CEC_MSG_SET_OSD_NAME
message.

__u8 primary_device_type[CEC_MAX_LOG_ADDRS]Primary device type for each logical
address. See CEC Primary Device
Types for possible types.

__u8 log_addr_type[CEC_MAX_LOG_ADDRS] Logical address types. See CEC Logi-
cal Address Types for possible types.
The driver will update this with the
actual logical address type that it
claimed (e.g. it may have to fallback to
CEC_LOG_ADDR_TYPE_UNREGISTERED).

__u8 all_device_types[CEC_MAX_LOG_ADDRS]CEC 2.0 specific: the bit mask of all
device types. See CEC All Device
Types Flags. It is used in the CEC
2.0 CEC_MSG_REPORT_FEATURES mes-
sage. For CEC 1.4 you can either leave
this field to 0, or fill it in according to
the CEC 2.0 guidelines to give the CEC
frameworkmore information about the
device type, even though the frame-
work won’t use it directly in the CEC
message.

__u8 features[CEC_MAX_LOG_ADDRS][12] Features for each logical ad-
dress. It is used in the CEC 2.0
CEC_MSG_REPORT_FEATURES message.
The 12 bytes include both the RC Pro-
file and the Device Features. For CEC
1.4 you can either leave this field to all
0, or fill it in according to the CEC 2.0
guidelines to give the CEC framework
more information about the device
type, even though the framework won’
t use it directly in the CEC message.

976 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 251: Flags for struct cec_log_addrs

CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK1 By default if no logical address of the re-
quested type can be claimed, then it will go
back to the unconfigured state. If this flag
is set, then it will fallback to the Unregis-
tered logical address. Note that if the Un-
registered logical address was explicitly re-
quested, then this flag has no effect.

CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU 2 By default the CEC_MSG_USER_CONTROL_PRESSED
and CEC_MSG_USER_CONTROL_RELEASED mes-
sages are only passed on to the follower(s),
if any. If this flag is set, then these messages
are also passed on to the remote control in-
put subsystem and will appear as keystrokes.
This features needs to be enabled explicitly.
If CEC is used to enter e.g. passwords, then
you may not want to enable this to avoid
trivial snooping of the keystrokes.

CEC_LOG_ADDRS_FL_CDC_ONLY 4 If this flag is set, then the device is CDC-Only.
CDC-Only CEC devices are CEC devices that
can only handle CDC messages.
All other messages are ignored.

Table 252: CEC Versions

CEC_OP_CEC_VERSION_1_3A 4 CEC version according to the HDMI 1.3a
standard.

CEC_OP_CEC_VERSION_1_4B 5 CEC version according to the HDMI 1.4b
standard.

CEC_OP_CEC_VERSION_2_0 6 CEC version according to the HDMI 2.0 stan-
dard.

7.6. Part V - Consumer Electronics Control API 977

Linux Userspace-api Documentation

Table 253: CEC Primary Device Types

CEC_OP_PRIM_DEVTYPE_TV 0 Use for a TV.

CEC_OP_PRIM_DEVTYPE_RECORD 1 Use for a recording device.

CEC_OP_PRIM_DEVTYPE_TUNER 3 Use for a device with a tuner.

CEC_OP_PRIM_DEVTYPE_PLAYBACK 4 Use for a playback device.

CEC_OP_PRIM_DEVTYPE_AUDIOSYSTEM5 Use for an audio system (e.g. an audio/video
receiver).

CEC_OP_PRIM_DEVTYPE_SWITCH 6 Use for a CEC switch.

CEC_OP_PRIM_DEVTYPE_VIDEOPROC7 Use for a video processor device.

Table 254: CEC Logical Address Types

CEC_LOG_ADDR_TYPE_TV 0 Use for a TV.

CEC_LOG_ADDR_TYPE_RECORD 1 Use for a recording device.

CEC_LOG_ADDR_TYPE_TUNER 2 Use for a tuner device.

CEC_LOG_ADDR_TYPE_PLAYBACK 3 Use for a playback device.

CEC_LOG_ADDR_TYPE_AUDIOSYSTEM4 Use for an audio system device.

CEC_LOG_ADDR_TYPE_SPECIFIC 5 Use for a second TV or for a video processor
device.

CEC_LOG_ADDR_TYPE_UNREGISTERED6 Use this if you just want to remain unregis-
tered. Used for pure CEC switches or CDC-
only devices (CDC: Capability Discovery and
Control).

Table 255: CEC All Device Types Flags

CEC_OP_ALL_DEVTYPE_TV 0x80 This supports the TV type.

CEC_OP_ALL_DEVTYPE_RECORD 0x40 This supports the Recording type.

CEC_OP_ALL_DEVTYPE_TUNER 0x20 This supports the Tuner type.

CEC_OP_ALL_DEVTYPE_PLAYBACK 0x10 This supports the Playback type.

CEC_OP_ALL_DEVTYPE_AUDIOSYSTEM0x08 This supports the Audio System type.

CEC_OP_ALL_DEVTYPE_SWITCH 0x04 This supports the CEC Switch or Video Pro-
cessing type.

978 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

The ioctl CEC_ADAP_S_LOG_ADDRS can return the following error codes:

ENOTTY The CEC_CAP_LOG_ADDRS capability wasn’t set, so this ioctl is not sup-
ported.

EBUSY The CEC adapter is currently configuring itself, or it is already configured
and num_log_addrs is non-zero, or another filehandle is in exclusive follower
or initiator mode, or the filehandle is in mode CEC_MODE_NO_INITIATOR.

EINVAL The contents of struct cec_log_addrs is invalid.

ioctls CEC_ADAP_G_PHYS_ADDR and CEC_ADAP_S_PHYS_ADDR

Name

CEC_ADAP_G_PHYS_ADDR, CEC_ADAP_S_PHYS_ADDR - Get or set the physical
address

Synopsis

int ioctl(int fd, CEC_ADAP_G_PHYS_ADDR, __u16 *argp)

int ioctl(int fd, CEC_ADAP_S_PHYS_ADDR, __u16 *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to the CEC address.

Description

To query the current physical address applications call ioctl
CEC_ADAP_G_PHYS_ADDR with a pointer to a __u16 where the driver stores the
physical address.

To set a new physical address applications store the physical address in a
__u16 and call ioctl CEC_ADAP_S_PHYS_ADDR with a pointer to this inte-
ger. The ioctl CEC_ADAP_S_PHYS_ADDR is only available if CEC_CAP_PHYS_ADDR
is set (the ENOTTY error code will be returned otherwise). The ioctl
CEC_ADAP_S_PHYS_ADDR can only be called by a file descriptor in initiator mode
(see ioctls CEC_G_MODE and CEC_S_MODE), if not the EBUSY error code will be
returned.

To clear an existing physical address use CEC_PHYS_ADDR_INVALID. The adapter
will go to the unconfigured state.

7.6. Part V - Consumer Electronics Control API 979

Linux Userspace-api Documentation

If logical address types have been defined (see ioctl CEC_ADAP_S_LOG_ADDRS),
then this ioctl will block until all requested logical addresses have been claimed.
If the file descriptor is in non-blocking mode then it will not wait for the logical
addresses to be claimed, instead it just returns 0.

A CEC_EVENT_STATE_CHANGE event is sent when the physical address changes.

The physical address is a 16-bit number where each group of 4 bits represent a
digit of the physical address a.b.c.d where the most significant 4 bits represent‘a’
. The CEC root device (usually the TV) has address 0.0.0.0. Every device that is
hooked up to an input of the TV has address a.0.0.0 (where ‘a’is ≥ 1), devices
hooked up to those in turn have addresses a.b.0.0, etc. So a topology of up to 5
devices deep is supported. The physical address a device shall use is stored in the
EDID of the sink.

For example, the EDID for each HDMI input of the TV will have a different physical
address of the form a.0.0.0 that the sources will read out and use as their physical
address.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

The ioctl CEC_ADAP_S_PHYS_ADDR can return the following error codes:

ENOTTY The CEC_CAP_PHYS_ADDR capability wasn’t set, so this ioctl is not sup-
ported.

EBUSY Another filehandle is in exclusive follower or initiator mode, or the file-
handle is in mode CEC_MODE_NO_INITIATOR.

EINVAL The physical address is malformed.

ioctl CEC_ADAP_G_CONNECTOR_INFO

Name

CEC_ADAP_G_CONNECTOR_INFO - Query HDMI connector information

Synopsis

int ioctl(int fd, CEC_ADAP_G_CONNECTOR_INFO, struct
cec_connector_info *argp)

980 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Arguments

fd File descriptor returned by open().

argp

Description

Using this ioctl an application can learn which HDMI connector this CEC de-
vice corresponds to. While calling this ioctl the application should provide a
pointer to a cec_connector_info struct which will be populated by the kernel with
the info provided by the adapter’s driver. This ioctl is only available if the
CEC_CAP_CONNECTOR_INFO capability is set.

cec_connector_info

Table 256: struct cec_connector_info
__u32type The type of

connector
this adapter
is associated
with.

union
{

(anonymous)

struct
cec_drm_connector_info

drm struct
cec_drm_connector_info

}

Table 257: Connector types

CEC_CONNECTOR_TYPE_NO_CONNECTOR0 No connector is associated with the adapter/the infor-
mation is not provided by the driver.

CEC_CONNECTOR_TYPE_DRM1 Indicates that a DRM connector is associated with this
adapter. Information about the connector can be found
in struct cec_drm_connector_info.

cec_drm_connector_info

Table 258: struct cec_drm_connector_info

__u32 card_no DRM card number: the number from a card’s path,
e.g. 0 in case of /dev/card0.

__u32 connector_idDRM connector ID.

7.6. Part V - Consumer Electronics Control API 981

Linux Userspace-api Documentation

ioctl CEC_DQEVENT

Name

CEC_DQEVENT - Dequeue a CEC event

Synopsis

int ioctl(int fd, CEC_DQEVENT, struct cec_event *argp)

Arguments

fd File descriptor returned by open().

argp

Description

CEC devices can send asynchronous events. These can be retrieved by calling
CEC_DQEVENT(). If the file descriptor is in non-blocking mode and no event is
pending, then it will return -1 and set errno to the EAGAIN error code.

The internal event queues are per-filehandle and per-event type. If there is no
more room in a queue then the last event is overwritten with the new one. This
means that intermediate results can be thrown away but that the latest event is
always available. This also means that is it possible to read two successive events
that have the same value (e.g. two CEC_EVENT_STATE_CHANGE events with
the same state). In that case the intermediate state changes were lost but it is
guaranteed that the state did change in between the two events.

cec_event_state_change

Table 259: struct cec_event_state_change
__u16 phys_addr The current physical address. This is CEC_PHYS_ADDR_INVALID if no

valid physical address is set.
__u16 log_addr_maskThe current set of claimed logical addresses. This is 0 if no logical

addresses are claimed or if phys_addr is CEC_PHYS_ADDR_INVALID.
If bit 15 is set (1 << CEC_LOG_ADDR_UNREGISTERED) then this device
has the unregistered logical address. In that case all other bits are 0.

__u16 have_conn_infoIf non-zero, then HDMI connector information is available. This field
is only valid if CEC_CAP_CONNECTOR_INFO is set. If that capability is
set and have_conn_info is zero, then that indicates that the HDMI
connector device is not instantiated, either because the HDMI driver
is still configuring the device or because the HDMI device was un-
bound.

cec_event_lost_msgs

982 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 260: struct cec_event_lost_msgs
__u32lost_msgsSet to the number of lost messages since the filehandle was opened or since

the last time this event was dequeued for this filehandle. The messages lost
are the oldest messages. So when a new message arrives and there is no
more room, then the oldest message is discarded to make room for the new
one. The internal size of the message queue guarantees that all messages
received in the last two seconds will be stored. Since messages should be
replied to within a second according to the CEC specification, this is more
than enough.

cec_event

7.6. Part V - Consumer Electronics Control API 983

Linux Userspace-api Documentation

Table 261: struct cec_event
__u64ts Timestamp

of the event
in ns.
The times-
tamp has
been taken
from the
CLOCK_MONOTONIC
clock.
To access
the same
clock from
userspace
use
clock_gettime().

__u32event The CEC
event type,
see CEC
Events
Types.

__u32flags Event flags,
see CEC
Event Flags.

union
{

(anonymous)

struct
cec_event_state_change

state_change The new
adapter
state as
sent by the
CEC_EVENT_STATE_CHANGE
event.

struct
cec_event_lost_msgs

lost_msgs The num-
ber of lost
messages as
sent by the
CEC_EVENT_LOST_MSGS
event.

}

984 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 262: CEC Events Types

CEC_EVENT_STATE_CHANGE 1 Generated when the CEC Adapter’s state changes. When
open() is called an initial event will be generated for that
filehandle with the CEC Adapter’s state at that time.

CEC_EVENT_LOST_MSGS 2 Generated if one or more CEC messages were lost be-
cause the application didn’t dequeue CEC messages fast
enough.

CEC_EVENT_PIN_CEC_LOW 3 Generated if the CEC pin goes from a high voltage to
a low voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set.

CEC_EVENT_PIN_CEC_HIGH 4 Generated if the CEC pin goes from a low voltage to
a high voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set.

CEC_EVENT_PIN_HPD_LOW 5 Generated if the HPD pin goes from a high voltage to
a low voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set. When open() is
called, the HPD pin can be read and if the HPD is low,
then an initial event will be generated for that filehan-
dle.

CEC_EVENT_PIN_HPD_HIGH 6 Generated if the HPD pin goes from a low voltage to
a high voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set. When open() is
called, the HPD pin can be read and if the HPD is high,
then an initial event will be generated for that filehandle.

CEC_EVENT_PIN_5V_LOW 6 Generated if the 5V pin goes from a high voltage to
a low voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set. When open() is
called, the 5V pin can be read and if the 5V is low, then
an initial event will be generated for that filehandle.

CEC_EVENT_PIN_5V_HIGH 7 Generated if the 5V pin goes from a low voltage to a
high voltage. Only applies to adapters that have the
CEC_CAP_MONITOR_PIN capability set. When open() is
called, the 5V pin can be read and if the 5V is high, then
an initial event will be generated for that filehandle.

7.6. Part V - Consumer Electronics Control API 985

Linux Userspace-api Documentation

Table 263: CEC Event Flags

CEC_EVENT_FL_INITIAL_STATE 1 Set for the initial events that are generated when the
device is opened. See the table above for which events
do this. This allows applications to learn the initial state
of the CEC adapter at open() time.

CEC_EVENT_FL_DROPPED_EVENTS2 Set if one or more events of the given event type have
been dropped. This is an indication that the application
cannot keep up.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

The ioctl CEC_DQEVENT can return the following error codes:

EAGAIN This is returned when the filehandle is in non-blocking mode and there
are no pending events.

ERESTARTSYS An interrupt (e.g. Ctrl-C) arrived while in blocking mode waiting
for events to arrive.

ioctls CEC_G_MODE and CEC_S_MODE

CEC_G_MODE, CEC_S_MODE - Get or set exclusive use of the CEC adapter

Synopsis

int ioctl(int fd, CEC_G_MODE, __u32 *argp)

int ioctl(int fd, CEC_S_MODE, __u32 *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to CEC mode.

986 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Description

By default any filehandle can use ioctls CEC_RECEIVE and CEC_TRANSMIT, but
in order to prevent applications from stepping on each others toes it must be pos-
sible to obtain exclusive access to the CEC adapter. This ioctl sets the filehandle
to initiator and/or follower mode which can be exclusive depending on the chosen
mode. The initiator is the filehandle that is used to initiate messages, i.e. it com-
mands other CEC devices. The follower is the filehandle that receives messages
sent to the CEC adapter and processes them. The same filehandle can be both
initiator and follower, or this role can be taken by two different filehandles.

When a CEC message is received, then the CEC framework will decide how it will
be processed. If the message is a reply to an earlier transmitted message, then
the reply is sent back to the filehandle that is waiting for it. In addition the CEC
framework will process it.

If the message is not a reply, then the CEC framework will process it first. If there
is no follower, then the message is just discarded and a feature abort is sent back
to the initiator if the framework couldn’t process it. If there is a follower, then the
message is passed on to the follower who will use ioctl CEC_RECEIVE to dequeue
the newmessage. The framework expects the follower to make the right decisions.

The CEC framework will process core messages unless requested otherwise by
the follower. The follower can enable the passthrough mode. In that case, the
CEC framework will pass on most core messages without processing them and
the follower will have to implement those messages. There are some messages
that the core will always process, regardless of the passthrough mode. See Core
Message Processing for details.

If there is no initiator, then any CEC filehandle can use ioctl CEC_TRANSMIT.
If there is an exclusive initiator then only that initiator can call ioctls
CEC_RECEIVE and CEC_TRANSMIT. The follower can of course always call ioctl
CEC_TRANSMIT.

Available initiator modes are:

Table 264: Initiator Modes

CEC_MODE_NO_INITIATOR 0x0 This is not an initiator, i.e. it cannot transmit CEC mes-
sages or make any other changes to the CEC adapter.

CEC_MODE_INITIATOR 0x1 This is an initiator (the default when the device is
opened) and it can transmit CEC messages and make
changes to the CEC adapter, unless there is an exclusive
initiator.

CEC_MODE_EXCL_INITIATOR 0x2 This is an exclusive initiator and this file descriptor is
the only one that can transmit CEC messages and make
changes to the CEC adapter. If someone else is already
the exclusive initiator then an attempt to become one will
return the EBUSY error code error.

Available follower modes are:

7.6. Part V - Consumer Electronics Control API 987

Linux Userspace-api Documentation

Table 265: Follower Modes
CEC_MODE_NO_FOLLOWER

0x00
This is not a follower (the default when the device
is opened).

CEC_MODE_FOLLOWER
0x10

This is a follower and it will receive CEC messages
unless there is an exclusive follower. You cannot be-
come a follower if CEC_CAP_TRANSMIT is not set
or if CEC_MODE_NO_INITIATOR was specified, the
EINVAL error code is returned in that case.

CEC_MODE_EXCL_FOLLOWER
0x20

This is an exclusive follower and only this file de-
scriptor will receive CEC messages for process-
ing. If someone else is already the exclusive fol-
lower then an attempt to become one will re-
turn the EBUSY error code. You cannot become
a follower if CEC_CAP_TRANSMIT is not set or
if CEC_MODE_NO_INITIATOR was specified, the
EINVAL error code is returned in that case.

CEC_MODE_EXCL_FOLLOWER_PASSTHRU
0x30

This is an exclusive follower and only this file de-
scriptor will receive CEC messages for process-
ing. In addition it will put the CEC device into
passthrough mode, allowing the exclusive follower
to handle most core messages instead of relying on
the CEC framework for that. If someone else is al-
ready the exclusive follower then an attempt to be-
come one will return the EBUSY error code. You can-
not become a follower if CEC_CAP_TRANSMIT is
not set or if CEC_MODE_NO_INITIATOR was speci-
fied, the EINVAL error code is returned in that case.

CEC_MODE_MONITOR_PIN
0xd0

Put the file descriptor into pin monitoring
mode. Can only be used in combination with
CEC_MODE_NO_INITIATOR, otherwise the EINVAL
error code will be returned. This mode re-
quires that the CEC_CAP_MONITOR_PIN capabil-
ity is set, otherwise the EINVAL error code is re-
turned. While in pin monitoring mode this file de-
scriptor can receive the CEC_EVENT_PIN_CEC_LOW
and CEC_EVENT_PIN_CEC_HIGH events to see the
low-level CEC pin transitions. This is very useful for
debugging. This mode is only allowed if the process
has the CAP_NET_ADMIN capability. If that is not set,
then the EPERM error code is returned.

Continued on next page

988 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 265 – continued from previous page
CEC_MODE_MONITOR

0xe0
Put the file descriptor into monitor mode.

Can only be used in combination with
CEC_MODE_NO_INITIATOR, otherwise the EINVAL
error code will be returned. In monitor mode
all messages this CEC device transmits and all
messages it receives (both broadcast messages and
directed messages for one its logical addresses)
will be reported. This is very useful for debug-
ging. This is only allowed if the process has the
CAP_NET_ADMIN capability. If that is not set, then
the EPERM error code is returned.

CEC_MODE_MONITOR_ALL
0xf0

Put the file descriptor into ‘monitor all’
mode. Can only be used in combination with
CEC_MODE_NO_INITIATOR, otherwise the EINVAL
error code will be returned. In ‘monitor all’
mode all messages this CEC device transmits
and all messages it receives, including directed
messages for other CEC devices will be reported.
This is very useful for debugging, but not all de-
vices support this. This mode requires that the
CEC_CAP_MONITOR_ALL capability is set, other-
wise the EINVAL error code is returned. This is
only allowed if the process has the CAP_NET_ADMIN
capability. If that is not set, then the EPERM error
code is returned.

Core message processing details:

7.6. Part V - Consumer Electronics Control API 989

Linux Userspace-api Documentation

Table 266: Core Message Processing

CEC_MSG_GET_CEC_VERSION The core will return the CEC version that was set
with ioctl CEC_ADAP_S_LOG_ADDRS, except when in
passthrough mode. In passthrough mode the core does
nothing and this message has to be handled by a follower
instead.

CEC_MSG_GIVE_DEVICE_VENDOR_IDThe core will return the vendor ID that was set
with ioctl CEC_ADAP_S_LOG_ADDRS, except when in
passthrough mode. In passthrough mode the core does
nothing and this message has to be handled by a follower
instead.

CEC_MSG_ABORT The core will return a Feature Abort message with rea-
son ‘Feature Refused’as per the specification, except
when in passthrough mode. In passthrough mode the
core does nothing and this message has to be handled
by a follower instead.

CEC_MSG_GIVE_PHYSICAL_ADDR The core will report the current physical address, except
when in passthrough mode. In passthrough mode the
core does nothing and this message has to be handled
by a follower instead.

CEC_MSG_GIVE_OSD_NAME The core will report the current OSD name that was
set with ioctl CEC_ADAP_S_LOG_ADDRS, except when
in passthrough mode. In passthrough mode the core
does nothing and this message has to be handled by a
follower instead.

CEC_MSG_GIVE_FEATURES The core will do nothing if the CEC version is older than
2.0, otherwise it will report the current features that
were set with ioctl CEC_ADAP_S_LOG_ADDRS, except
when in passthrough mode. In passthrough mode the
core does nothing (for any CEC version) and this mes-
sage has to be handled by a follower instead.

CEC_MSG_USER_CONTROL_PRESSED If CEC_CAP_RC is set and if
CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU is set,
then generate a remote control key press. This message
is always passed on to the follower(s).

CEC_MSG_USER_CONTROL_RELEASEDIf CEC_CAP_RC is set and if
CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU is set,
then generate a remote control key release. This
message is always passed on to the follower(s).

CEC_MSG_REPORT_PHYSICAL_ADDR The CEC framework will make note of the reported phys-
ical address and then just pass the message on to the
follower(s).

990 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

The ioctl CEC_S_MODE can return the following error codes:

EINVAL The requested mode is invalid.
EPERM Monitor mode is requested, but the process does have the

CAP_NET_ADMIN capability.

EBUSY Someone else is already an exclusive follower or initiator.

ioctls CEC_RECEIVE and CEC_TRANSMIT

Name

CEC_RECEIVE, CEC_TRANSMIT - Receive or transmit a CEC message

Synopsis

int ioctl(int fd, CEC_RECEIVE, struct cec_msg *argp)

int ioctl(int fd, CEC_TRANSMIT, struct cec_msg *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct cec_msg.

Description

To receive a CEC message the application has to fill in the timeout field of struct
cec_msg and pass it to ioctl CEC_RECEIVE. If the file descriptor is in non-blocking
mode and there are no received messages pending, then it will return -1 and set
errno to the EAGAIN error code. If the file descriptor is in blocking mode and
timeout is non-zero and no message arrived within timeout milliseconds, then it
will return -1 and set errno to the ETIMEDOUT error code.

A received message can be:

1. a message received from another CEC device (the sequence field will be 0).

2. the result of an earlier non-blocking transmit (the sequence field will be non-
zero).

To send a CEC message the application has to fill in the struct cec_msg and
pass it to ioctl CEC_TRANSMIT. The ioctl CEC_TRANSMIT is only available if
CEC_CAP_TRANSMIT is set. If there is no more room in the transmit queue, then
it will return -1 and set errno to the EBUSY error code. The transmit queue has

7.6. Part V - Consumer Electronics Control API 991

Linux Userspace-api Documentation

enough room for 18 messages (about 1 second worth of 2-byte messages). Note
that the CEC kernel framework will also reply to core messages (see CoreMessage
Processing), so it is not a good idea to fully fill up the transmit queue.

If the file descriptor is in non-blocking mode then the transmit will return 0 and the
result of the transmit will be available via ioctl CEC_RECEIVE once the transmit
has finished (including waiting for a reply, if requested).

The sequence field is filled in for every transmit and this can be checked against
the received messages to find the corresponding transmit result.

Normally calling ioctl CEC_TRANSMIT when the physical address is invalid (due
to e.g. a disconnect) will return ENONET.

However, the CEC specification allows sending messages from‘Unregistered’to
‘TV’when the physical address is invalid since some TVs pull the hotplug detect
pin of the HDMI connector low when they go into standby, or when switching to
another input.

When the hotplug detect pin goes low the EDID disappears, and thus the phys-
ical address, but the cable is still connected and CEC still works. In order to
detect/wake up the device it is allowed to send poll and ‘Image/Text View On’
messages from initiator 0xf (‘Unregistered’) to destination 0 (‘TV’).
cec_msg

Table 267: struct cec_msg
__u64tx_ts Timestamp in ns of when the last byte of the message

was transmitted. The timestamp has been taken from the
CLOCK_MONOTONIC clock. To access the same clock from userspace
use clock_gettime().

__u64rx_ts Timestamp in ns of when the last byte of the message was received.
The timestamp has been taken from the CLOCK_MONOTONIC clock. To
access the same clock from userspace use clock_gettime().

__u32len The length of the message. For ioctl CEC_TRANSMIT this is
filled in by the application. The driver will fill this in for ioctl
CEC_RECEIVE. For ioctl CEC_TRANSMIT it will be filled in by the
driver with the length of the reply message if reply was set.

__u32timeout The timeout in milliseconds. This is the time the device will wait for
a message to be received before timing out. If it is set to 0, then it
will wait indefinitely when it is called by ioctl CEC_RECEIVE. If it is
0 and it is called by ioctl CEC_TRANSMIT, then it will be replaced
by 1000 if the reply is non-zero or ignored if reply is 0.

__u32sequence A non-zero sequence number is automatically assigned by the CEC
framework for all transmitted messages. It is used by the CEC
framework when it queues the transmit result (when transmit was
called in non-blocking mode). This allows the application to asso-
ciate the received message with the original transmit.

__u32flags Flags. See Flags for struct cec_msg for a list of available flags.
__u8 tx_status The status bits of the transmitted message. See CEC Transmit Sta-

tus for the possible status values. It is 0 if this message was re-
ceived, not transmitted.

Continued on next page

992 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 267 – continued from previous page
__u8 msg[16] The message payload. For ioctl CEC_TRANSMIT this is filled in by

the application. The driver will fill this in for ioctl CEC_RECEIVE.
For ioctl CEC_TRANSMIT it will be filled in by the driver with the
payload of the reply message if timeout was set.

__u8 reply Wait until this message is replied. If reply is 0 and the
timeout is 0, then don’t wait for a reply but return after
transmitting the message. Ignored by ioctl CEC_RECEIVE.
The case where reply is 0 (this is the opcode for the Fea-
ture Abort message) and timeout is non-zero is specifically al-
lowed to make it possible to send a message and wait up to
timeout milliseconds for a Feature Abort reply. In this case
rx_status will either be set to CEC_RX_STATUS_TIMEOUT or
CEC_RX_STATUS_FEATURE_ABORT.
If the transmitter message is CEC_MSG_INITIATE_ARC then
the reply values CEC_MSG_REPORT_ARC_INITIATED and
CEC_MSG_REPORT_ARC_TERMINATED are processed differently:
either value will match both possible replies. The reason is that
the CEC_MSG_INITIATE_ARC message is the only CEC message that
has two possible replies other than Feature Abort. The reply field
will be updated with the actual reply so that it is synchronized with
the contents of the received message.

__u8 rx_status The status bits of the received message. See CEC Receive Status
for the possible status values. It is 0 if this message was transmit-
ted, not received, unless this is the reply to a transmitted message.
In that case both rx_status and tx_status are set.

__u8 tx_status The status bits of the transmitted message. See CEC Transmit Sta-
tus for the possible status values. It is 0 if this message was re-
ceived, not transmitted.

__u8 tx_arb_lost_cnt A counter of the number of transmit attempts that resulted in the
Arbitration Lost error. This is only set if the hardware supports
this, otherwise it is always 0. This counter is only valid if the
CEC_TX_STATUS_ARB_LOST status bit is set.

__u8 tx_nack_cnt A counter of the number of transmit attempts that resulted in the
Not Acknowledged error. This is only set if the hardware sup-
ports this, otherwise it is always 0. This counter is only valid if
the CEC_TX_STATUS_NACK status bit is set.

__u8 tx_low_drive_cntA counter of the number of transmit attempts that resulted in the
Arbitration Lost error. This is only set if the hardware supports
this, otherwise it is always 0. This counter is only valid if the
CEC_TX_STATUS_LOW_DRIVE status bit is set.

__u8 tx_error_cnt A counter of the number of transmit errors other than Arbitration
Lost or Not Acknowledged. This is only set if the hardware sup-
ports this, otherwise it is always 0. This counter is only valid if the
CEC_TX_STATUS_ERROR status bit is set.

7.6. Part V - Consumer Electronics Control API 993

Linux Userspace-api Documentation

Table 268: Flags for struct cec_msg

CEC_MSG_FL_REPLY_TO_FOLLOWERS1 If a CEC transmit expects a reply, then by default that
reply is only sent to the filehandle that called ioctl
CEC_TRANSMIT. If this flag is set, then the reply is
also sent to all followers, if any. If the filehandle that
called ioctl CEC_TRANSMIT is also a follower, then
that filehandle will receive the reply twice: once as
the result of the ioctl CEC_TRANSMIT, and once via
ioctl CEC_RECEIVE.

CEC_MSG_FL_RAW 2 Normally CEC messages are validated before trans-
mitting them. If this flag is set when ioctl
CEC_TRANSMIT is called, then no validation takes
place and the message is transmitted as-is. This is
useful when debugging CEC issues. This flag is only
allowed if the process has the CAP_SYS_RAWIO capa-
bility. If that is not set, then the EPERM error code is
returned.

994 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Table 269: CEC Transmit Status

CEC_TX_STATUS_OK 0x01 The message was transmitted successfully. This is mu-
tually exclusive with CEC_TX_STATUS_MAX_RETRIES.
Other bits can still be set if earlier attempts met with
failure before the transmit was eventually successful.

CEC_TX_STATUS_ARB_LOST 0x02 CEC line arbitration was lost, i.e. another transmit
started at the same time with a higher priority. Optional
status, not all hardware can detect this error condition.

CEC_TX_STATUS_NACK 0x04 Message was not acknowledged. Note that some hard-
ware cannot tell apart a‘Not Acknowledged’status from
other error conditions, i.e. the result of a transmit is just
OK or FAIL. In that case this status will be returned when
the transmit failed.

CEC_TX_STATUS_LOW_DRIVE 0x08 Low drive was detected on the CEC bus. This indicates
that a follower detected an error on the bus and requests
a retransmission. Optional status, not all hardware can
detect this error condition.

CEC_TX_STATUS_ERROR 0x10 Some error occurred. This is used for any er-
rors that do not fit CEC_TX_STATUS_ARB_LOST or
CEC_TX_STATUS_LOW_DRIVE, either because the hard-
ware could not tell which error occurred, or because the
hardware tested for other conditions besides those two.
Optional status.

CEC_TX_STATUS_MAX_RETRIES0x20 The transmit failed after one or more retries. This sta-
tus bit is mutually exclusive with CEC_TX_STATUS_OK.
Other bits can still be set to explain which failures were
seen.

CEC_TX_STATUS_ABORTED 0x40 The transmit was aborted due to an HDMI disconnect, or
the adapter was unconfigured, or a transmit was inter-
rupted, or the driver returned an error when attempting
to start a transmit.

CEC_TX_STATUS_TIMEOUT 0x80 The transmit timed out. This should not normally happen
and this indicates a driver problem.

7.6. Part V - Consumer Electronics Control API 995

Linux Userspace-api Documentation

Table 270: CEC Receive Status

CEC_RX_STATUS_OK 0x01 The message was received successfully.

CEC_RX_STATUS_TIMEOUT 0x02 The reply to an earlier transmitted message timed out.

CEC_RX_STATUS_FEATURE_ABORT0x04 The message was received successfully but the reply was
CEC_MSG_FEATURE_ABORT. This status is only set if this
messagewas the reply to an earlier transmittedmessage.

CEC_RX_STATUS_ABORTED 0x08 The wait for a reply to an earlier transmitted message
was aborted because the HDMI cable was disconnected,
the adapter was unconfigured or the CEC_TRANSMIT
that waited for a reply was interrupted.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.
The generic error codes are described at the Generic Error Codes chapter.

The ioctl CEC_RECEIVE can return the following error codes:

EAGAIN No messages are in the receive queue, and the filehandle is in non-
blocking mode.

ETIMEDOUT The timeout was reached while waiting for a message.

ERESTARTSYS The wait for a message was interrupted (e.g. by Ctrl-C).

The ioctl CEC_TRANSMIT can return the following error codes:

ENOTTY The CEC_CAP_TRANSMIT capability wasn’t set, so this ioctl is not sup-
ported.

EPERM The CEC adapter is not configured, i.e. ioctl CEC_ADAP_S_LOG_ADDRS
has never been called, or CEC_MSG_FL_RAW was used from a process that did
not have the CAP_SYS_RAWIO capability.

ENONET The CEC adapter is not configured, i.e. ioctl
CEC_ADAP_S_LOG_ADDRS was called, but the physical address is in-
valid so no logical address was claimed. An exception is made in this case
for transmits from initiator 0xf (‘Unregistered’) to destination 0 (‘TV’).
In that case the transmit will proceed as usual.

EBUSY Another filehandle is in exclusive follower or initiator mode, or the filehan-
dle is in mode CEC_MODE_NO_INITIATOR. This is also returned if the transmit
queue is full.

EINVAL The contents of struct cec_msg is invalid.
ERESTARTSYS The wait for a successful transmit was interrupted (e.g. by Ctrl-

C).

996 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

7.6.3 CEC Pin Framework Error Injection

The CEC Pin Framework is a core CEC framework for CEC hardware that only
has low-level support for the CEC bus. Most hardware today will have high-level
CEC support where the hardware deals with driving the CEC bus, but some older
devices aren’t that fancy. However, this framework also allows you to connect the
CEC pin to a GPIO on e.g. a Raspberry Pi and you have now made a CEC adapter.

What makes doing this so interesting is that since we have full control over the bus
it is easy to support error injection. This is ideal to test how well CEC adapters
can handle error conditions.

Currently only the cec-gpio driver (when the CEC line is directly connected to a
pull-up GPIO line) and the AllWinner A10/A20 drm driver support this framework.

If CONFIG_CEC_PIN_ERROR_INJ is enabled, then error injection is available
through debugfs. Specifically, in /sys/kernel/debug/cec/cecX/ there is now an
error-inj file.

Note: The error injection commands are not a stable ABI and may change in the
future.

With cat error-inj you can see both the possible commands and the current
error injection status:

$ cat /sys/kernel/debug/cec/cec0/error-inj
Clear error injections:
clear clear all rx and tx error injections
rx-clear clear all rx error injections
tx-clear clear all tx error injections
<op> clear clear all rx and tx error injections for <op>
<op> rx-clear clear all rx error injections for <op>
<op> tx-clear clear all tx error injections for <op>
#
RX error injection:
<op>[,<mode>] rx-nack NACK the message instead of sending␣
↪→an ACK
<op>[,<mode>] rx-low-drive <bit> force a low-drive condition at this␣
↪→bit position
<op>[,<mode>] rx-add-byte add a spurious byte to the received␣
↪→CEC message
<op>[,<mode>] rx-remove-byte remove the last byte from the␣
↪→received CEC message
<op>[,<mode>] rx-arb-lost <poll> generate a POLL message to trigger␣
↪→an arbitration lost
#
TX error injection settings:
tx-ignore-nack-until-eom ignore early NACKs until EOM
tx-custom-low-usecs <usecs> define the 'low' time for the␣
↪→custom pulse
tx-custom-high-usecs <usecs> define the 'high' time for the␣
↪→custom pulse
tx-custom-pulse transmit the custom pulse once the␣
↪→bus is idle
#

(continues on next page)

7.6. Part V - Consumer Electronics Control API 997

Linux Userspace-api Documentation

(continued from previous page)
TX error injection:
<op>[,<mode>] tx-no-eom don't set the EOM bit
<op>[,<mode>] tx-early-eom set the EOM bit one byte too soon
<op>[,<mode>] tx-add-bytes <num> append <num> (1-255) spurious bytes␣
↪→to the message
<op>[,<mode>] tx-remove-byte drop the last byte from the message
<op>[,<mode>] tx-short-bit <bit> make this bit shorter than allowed
<op>[,<mode>] tx-long-bit <bit> make this bit longer than allowed
<op>[,<mode>] tx-custom-bit <bit> send the custom pulse instead of␣
↪→this bit
<op>[,<mode>] tx-short-start send a start pulse that's too short
<op>[,<mode>] tx-long-start send a start pulse that's too long
<op>[,<mode>] tx-custom-start send the custom pulse instead of␣
↪→the start pulse
<op>[,<mode>] tx-last-bit <bit> stop sending after this bit
<op>[,<mode>] tx-low-drive <bit> force a low-drive condition at this␣
↪→bit position
#
<op> CEC message opcode (0-255) or 'any'
<mode> 'once' (default), 'always', 'toggle' or 'off'
<bit> CEC message bit (0-159)
10 bits per 'byte': bits 0-7: data, bit 8: EOM, bit 9: ACK
<poll> CEC poll message used to test arbitration lost (0x00-0xff,␣
↪→default 0x0f)
<usecs> microseconds (0-10000000, default 1000)

clear

You can write error injection commands to error-inj using echo 'cmd'
>error-inj or cat cmd.txt >error-inj. The cat error-inj output contains
the current error commands. You can save the output to a file and use it as an
input to error-inj later.

Basic Syntax

Leading spaces/tabs are ignored. If the next character is a # or the end of the line
was reached, then the whole line is ignored. Otherwise a command is expected.

The error injection commands fall in two main groups: those relating to receiving
CECmessages and those relating to transmitting CECmessages. In addition, there
are commands to clear existing error injection commands and to create custom
pulses on the CEC bus.

Most error injection commands can be executed for specific CEC opcodes or for all
opcodes (any). Each command also has a‘mode’which can be off (can be used to
turn off an existing error injection command), once (the default) which will trigger
the error injection only once for the next received or transmitted message, always
to always trigger the error injection and toggle to toggle the error injection on or
off for every transmit or receive.

So ‘any rx-nack’will NACK the next received CEC message, ‘any,always
rx-nack’will NACK all received CEC messages and‘0x82,toggle rx-nack’will
only NACK if an Active Source message was received and do that only for every
other received message.

998 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

After an error was injected with mode once the error injection command is cleared
automatically, so once is a one-time deal.

All combinations of <op> and error injection commands can co-exist. So this is
fine:

0x9e tx-add-bytes 1
0x9e tx-early-eom
0x9f tx-add-bytes 2
any rx-nack

All four error injection commands will be active simultaneously.

However, if the same <op> and command combination is specified, but with differ-
ent arguments:

0x9e tx-add-bytes 1
0x9e tx-add-bytes 2

Then the second will overwrite the first.

Clear Error Injections

clear Clear all error injections.

rx-clear Clear all receive error injections

tx-clear Clear all transmit error injections

<op> clear Clear all error injections for the given opcode.

<op> rx-clear Clear all receive error injections for the given opcode.

<op> tx-clear Clear all transmit error injections for the given opcode.

Receive Messages

<op>[,<mode>] rx-nack NACK broadcast messages and messages directed to
this CEC adapter. Every byte of the message will be NACKed in case the
transmitter keeps transmitting after the first byte was NACKed.

<op>[,<mode>] rx-low-drive <bit> Force a Low Drive condition at this bit po-
sition. If <op> specifies a specific CEC opcode then the bit position must be
at least 18, otherwise the opcode hasn’t been received yet. This tests if the
transmitter can handle the Low Drive condition correctly and reports the er-
ror correctly. Note that a Low Drive in the first 4 bits can also be interpreted
as an Arbitration Lost condition by the transmitter. This is implementation
dependent.

<op>[,<mode>] rx-add-byte Add a spurious 0x55 byte to the received CEC mes-
sage, provided the message was 15 bytes long or less. This is useful to test
the high-level protocol since spurious bytes should be ignored.

<op>[,<mode>] rx-remove-byte Remove the last byte from the received CEC
message, provided it was at least 2 bytes long. This is useful to test the
high-level protocol since messages that are too short should be ignored.

7.6. Part V - Consumer Electronics Control API 999

Linux Userspace-api Documentation

<op>[,<mode>] rx-arb-lost <poll> Generate a POLL message to trigger an Ar-
bitration Lost condition. This command is only allowed for <op> values of next
or all. As soon as a start bit has been received the CEC adapter will switch
to transmit mode and it will transmit a POLL message. By default this is 0x0f,
but it can also be specified explicitly via the <poll> argument.

This command can be used to test the Arbitration Lost condition in the remote
CEC transmitter. Arbitration happens when two CEC adapters start sending
a message at the same time. In that case the initiator with the most leading
zeroes wins and the other transmitter has to stop transmitting (‘Arbitration
Lost’). This is very hard to test, except by using this error injection command.
This does not work if the remote CEC transmitter has logical address 0 (‘TV’
) since that will always win.

Transmit Messages

tx-ignore-nack-until-eom This setting changes the behavior of transmitting
CEC messages. Normally as soon as the receiver NACKs a byte the transmit
will stop, but the specification also allows that the full message is transmit-
ted and only at the end will the transmitter look at the ACK bit. This is not
recommended behavior since there is no point in keeping the CEC bus busy
for longer than is strictly needed. Especially given how slow the bus is.

This setting can be used to test how well a receiver deals with transmitters
that ignore NACKs until the very end of the message.

<op>[,<mode>] tx-no-eom Don’t set the EOM bit. Normally the last byte of
the message has the EOM (End-Of-Message) bit set. With this command the
transmit will just stop without ever sending an EOM. This can be used to test
how a receiver handles this case. Normally receivers have a time-out after
which they will go back to the Idle state.

<op>[,<mode>] tx-early-eom Set the EOM bit one byte too soon. This obviously
only works for messages of two bytes or more. The EOM bit will be set for the
second-to-last byte and not for the final byte. The receiver should ignore the
last byte in this case. Since the resulting message is likely to be too short for
this same reason the whole message is typically ignored. The receiver should
be in Idle state after the last byte was transmitted.

<op>[,<mode>] tx-add-bytes <num> Append <num> (1-255) spurious bytes to the
message. The extra bytes have the value of the byte position in the message.
So if you transmit a two byte message (e.g. a Get CEC Version message) and
add 2 bytes, then the full message received by the remote CEC adapter is
0x40 0x9f 0x02 0x03.

This command can be used to test buffer overflows in the receiver. E.g. what
does it do when it receives more than the maximum message size of 16 bytes.

<op>[,<mode>] tx-remove-byte Drop the last byte from the message, provided
the message is at least two bytes long. The receiver should ignore messages
that are too short.

<op>[,<mode>] tx-short-bit <bit> Make this bit period shorter than allowed.
The bit position cannot be an Ack bit. If <op> specifies a specific CEC opcode

1000 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

then the bit position must be at least 18, otherwise the opcode hasn’t been
received yet. Normally the period of a data bit is between 2.05 and 2.75
milliseconds. With this command the period of this bit is 1.8 milliseconds,
this is done by reducing the time the CEC bus is high. This bit period is less
than is allowed and the receiver should respond with a Low Drive condition.

This command is ignored for 0 bits in bit positions 0 to 3. This is because the
receiver also looks for an Arbitration Lost condition in those first four bits
and it is undefined what will happen if it sees a too-short 0 bit.

<op>[,<mode>] tx-long-bit <bit> Make this bit period longer than is valid.
The bit position cannot be an Ack bit. If <op> specifies a specific CEC opcode
then the bit position must be at least 18, otherwise the opcode hasn’t been
received yet. Normally the period of a data bit is between 2.05 and 2.75 mil-
liseconds. With this command the period of this bit is 2.9 milliseconds, this
is done by increasing the time the CEC bus is high.

Even though this bit period is longer than is valid it is undefined what a re-
ceiver will do. It might just accept it, or it might time out and return to Idle
state. Unfortunately the CEC specification is silent about this.

This command is ignored for 0 bits in bit positions 0 to 3. This is because the
receiver also looks for an Arbitration Lost condition in those first four bits
and it is undefined what will happen if it sees a too-long 0 bit.

<op>[,<mode>] tx-short-start Make this start bit period shorter than allowed.
Normally the period of a start bit is between 4.3 and 4.7 milliseconds. With
this command the period of the start bit is 4.1 milliseconds, this is done by
reducing the time the CEC bus is high. This start bit period is less than is
allowed and the receiver should return to Idle state when this is detected.

<op>[,<mode>] tx-long-start Make this start bit period longer than is valid.
Normally the period of a start bit is between 4.3 and 4.7 milliseconds. With
this command the period of the start bit is 5 milliseconds, this is done by
increasing the time the CEC bus is high. This start bit period is more than is
valid and the receiver should return to Idle state when this is detected.

Even though this start bit period is longer than is valid it is undefined what
a receiver will do. It might just accept it, or it might time out and return to
Idle state. Unfortunately the CEC specification is silent about this.

<op>[,<mode>] tx-last-bit <bit> Just stop transmitting after this bit. If <op>
specifies a specific CEC opcode then the bit position must be at least 18,
otherwise the opcode hasn’t been received yet. This command can be used
to test how the receiver reacts when a message just suddenly stops. It should
time out and go back to Idle state.

<op>[,<mode>] tx-low-drive <bit> Force a Low Drive condition at this bit po-
sition. If <op> specifies a specific CEC opcode then the bit position must
be at least 18, otherwise the opcode hasn’t been received yet. This can be
used to test how the receiver handles Low Drive conditions. Note that if this
happens at bit positions 0-3 the receiver can interpret this as an Arbitration
Lost condition. This is implementation dependent.

7.6. Part V - Consumer Electronics Control API 1001

Linux Userspace-api Documentation

Custom Pulses

tx-custom-low-usecs <usecs> This defines the duration in microseconds that
the custom pulse pulls the CEC line low. The default is 1000 microseconds.

tx-custom-high-usecs <usecs> This defines the duration in microseconds that
the custom pulse keeps the CEC line high (unless another CEC adapter pulls
it low in that time). The default is 1000 microseconds. The total period of the
custom pulse is tx-custom-low-usecs + tx-custom-high-usecs.

<op>[,<mode>] tx-custom-bit <bit> Send the custom bit instead of a regular
data bit. The bit position cannot be an Ack bit. If <op> specifies a specific
CEC opcode then the bit position must be at least 18, otherwise the opcode
hasn’t been received yet.

<op>[,<mode>] tx-custom-start Send the custom bit instead of a regular start
bit.

tx-custom-pulse Transmit a single custom pulse as soon as the CEC bus is idle.

7.6.4 CEC Header File

cec.h

/* SPDX-License-Identifier: ((GPL-2.0 WITH Linux-syscall-note) OR␣
↪→BSD-3-Clause) */
/*
* cec - HDMI Consumer Electronics Control public header
*
* Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All␣
↪→rights reserved.
*/

#ifndef _CEC_UAPI_H
#define _CEC_UAPI_H

#include <linux/types.h>
#include <linux/string.h>

#define CEC_MAX_MSG_SIZE 16

/**
* struct cec_msg - CEC message structure.
* @tx_ts: Timestamp in nanoseconds using CLOCK_MONOTONIC. Set␣
↪→by the
* driver when the message transmission has finished.
* @rx_ts: Timestamp in nanoseconds using CLOCK_MONOTONIC. Set␣
↪→by the
* driver when the message was received.
* @len: Length in bytes of the message.
* @timeout: The timeout (in ms) that is used to timeout CEC_
↪→RECEIVE.

1002 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* Set to 0 if you want to wait forever. This timeout␣
↪→can also be
* used with CEC_TRANSMIT as the timeout for waiting␣
↪→for a reply.
* If 0, then it will use a 1 second timeout instead␣
↪→of waiting
* forever as is done with CEC_RECEIVE.
* @sequence: The framework assigns a sequence number to messages␣
↪→that are
* sent. This can be used to track replies to␣
↪→previously sent
* messages.
* @flags: Set to 0.
* @msg: The message payload.
* @reply: This field is ignored with CEC_RECEIVE and is only␣
↪→used by
* CEC_TRANSMIT. If non-zero, then wait for a reply␣
↪→with this
* opcode. Set to CEC_MSG_FEATURE_ABORT if you want to␣
↪→wait for
* a possible ABORT reply. If there was an error when␣
↪→sending the
* msg or FeatureAbort was returned, then reply is set␣
↪→to 0.
* If reply is non-zero upon return, then len/msg are␣
↪→set to
* the received message.
* If reply is zero upon return and status has the
* CEC_TX_STATUS_FEATURE_ABORT bit set, then len/msg␣
↪→are set to
* the received feature abort message.
* If reply is zero upon return and status has the
* CEC_TX_STATUS_MAX_RETRIES bit set, then no reply␣
↪→was seen at
* all. If reply is non-zero for CEC_TRANSMIT and the␣
↪→message is a
* broadcast, then -EINVAL is returned.
* if reply is non-zero, then timeout is set to 1000␣
↪→(the required
* maximum response time).
* @rx_status: The message receive status bits. Set by the driver.
* @tx_status: The message transmit status bits. Set by the driver.
* @tx_arb_lost_cnt: The number of 'Arbitration Lost' events. Set␣
↪→by the driver.
* @tx_nack_cnt: The number of 'Not Acknowledged' events. Set by␣
↪→the driver.
* @tx_low_drive_cnt: The number of 'Low Drive Detected' events.␣
↪→Set by the
* driver.
* @tx_error_cnt: The number of 'Error' events. Set by the driver.
*/

7.6. Part V - Consumer Electronics Control API 1003

Linux Userspace-api Documentation

struct cec_msg {
__u64 tx_ts;
__u64 rx_ts;
__u32 len;
__u32 timeout;
__u32 sequence;
__u32 flags;
__u8 msg[CEC_MAX_MSG_SIZE];
__u8 reply;
__u8 rx_status;
__u8 tx_status;
__u8 tx_arb_lost_cnt;
__u8 tx_nack_cnt;
__u8 tx_low_drive_cnt;
__u8 tx_error_cnt;

};

/**
* cec_msg_initiator - return the initiator's logical address.
* @msg: the message structure
*/

static inline __u8 cec_msg_initiator(const struct cec_msg *msg)
{

return msg->msg[0] >> 4;
}

/**
* cec_msg_destination - return the destination's logical address.
* @msg: the message structure
*/

static inline __u8 cec_msg_destination(const struct cec_msg *msg)
{

return msg->msg[0] & 0xf;
}

/**
* cec_msg_opcode - return the opcode of the message, -1 for poll
* @msg: the message structure
*/

static inline int cec_msg_opcode(const struct cec_msg *msg)
{

return msg->len > 1 ? msg->msg[1] : -1;
}

/**
* cec_msg_is_broadcast - return true if this is a broadcast␣
↪→message.
* @msg: the message structure
*/

static inline int cec_msg_is_broadcast(const struct cec_msg *msg)
{

1004 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

return (msg->msg[0] & 0xf) == 0xf;
}

/**
* cec_msg_init - initialize the message structure.
* @msg: the message structure
* @initiator: the logical address of the initiator
* @destination:the logical address of the destination (0xf for␣
↪→broadcast)
*
* The whole structure is zeroed, the len field is set to 1 (i.e. a␣
↪→poll
* message) and the initiator and destination are filled in.
*/

static inline void cec_msg_init(struct cec_msg *msg,
__u8 initiator, __u8 destination)

{
memset(msg, 0, sizeof(*msg));
msg->msg[0] = (initiator << 4) | destination;
msg->len = 1;

}

/**
* cec_msg_set_reply_to - fill in destination/initiator in a reply␣
↪→message.
* @msg: the message structure for the reply
* @orig: the original message structure
*
* Set the msg destination to the orig initiator and the msg␣
↪→initiator to the
* orig destination. Note that msg and orig may be the same pointer,
↪→ in which
* case the change is done in place.
*/

static inline void cec_msg_set_reply_to(struct cec_msg *msg,
struct cec_msg *orig)

{
/* The destination becomes the initiator and vice versa */
msg->msg[0] = (cec_msg_destination(orig) << 4) |

cec_msg_initiator(orig);
msg->reply = msg->timeout = 0;

}

/* cec_msg flags field */
#define CEC_MSG_FL_REPLY_TO_FOLLOWERS (1 << 0)
#define CEC_MSG_FL_RAW (1 << 1)

/* cec_msg tx/rx_status field */
#define CEC_TX_STATUS_OK (1 << 0)
#define CEC_TX_STATUS_ARB_LOST (1 << 1)
#define CEC_TX_STATUS_NACK (1 << 2)

7.6. Part V - Consumer Electronics Control API 1005

Linux Userspace-api Documentation

#define CEC_TX_STATUS_LOW_DRIVE (1 << 3)
#define CEC_TX_STATUS_ERROR (1 << 4)
#define CEC_TX_STATUS_MAX_RETRIES (1 << 5)
#define CEC_TX_STATUS_ABORTED (1 << 6)
#define CEC_TX_STATUS_TIMEOUT (1 << 7)

#define CEC_RX_STATUS_OK (1 << 0)
#define CEC_RX_STATUS_TIMEOUT (1 << 1)
#define CEC_RX_STATUS_FEATURE_ABORT (1 << 2)
#define CEC_RX_STATUS_ABORTED (1 << 3)

static inline int cec_msg_status_is_ok(const struct cec_msg *msg)
{

if (msg->tx_status && !(msg->tx_status & CEC_TX_STATUS_OK))
return 0;

if (msg->rx_status && !(msg->rx_status & CEC_RX_STATUS_OK))
return 0;

if (!msg->tx_status && !msg->rx_status)
return 0;

return !(msg->rx_status & CEC_RX_STATUS_FEATURE_ABORT);
}

#define CEC_LOG_ADDR_INVALID 0xff
#define CEC_PHYS_ADDR_INVALID 0xffff

/*
* The maximum number of logical addresses one device can be␣
↪→assigned to.
* The CEC 2.0 spec allows for only 2 logical addresses at the␣
↪→moment. The
* Analog Devices CEC hardware supports 3. So let's go wild and go␣
↪→for 4.
*/

#define CEC_MAX_LOG_ADDRS 4

/* The logical addresses defined by CEC 2.0 */
#define CEC_LOG_ADDR_TV 0
#define CEC_LOG_ADDR_RECORD_1 1
#define CEC_LOG_ADDR_RECORD_2 2
#define CEC_LOG_ADDR_TUNER_1 3
#define CEC_LOG_ADDR_PLAYBACK_1 4
#define CEC_LOG_ADDR_AUDIOSYSTEM 5
#define CEC_LOG_ADDR_TUNER_2 6
#define CEC_LOG_ADDR_TUNER_3 7
#define CEC_LOG_ADDR_PLAYBACK_2 8
#define CEC_LOG_ADDR_RECORD_3 9
#define CEC_LOG_ADDR_TUNER_4 10
#define CEC_LOG_ADDR_PLAYBACK_3 11
#define CEC_LOG_ADDR_BACKUP_1 12
#define CEC_LOG_ADDR_BACKUP_2 13
#define CEC_LOG_ADDR_SPECIFIC 14

1006 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define CEC_LOG_ADDR_UNREGISTERED 15 /* as initiator address␣
↪→*/
#define CEC_LOG_ADDR_BROADCAST 15 /* as destination␣
↪→address */

/* The logical address types that the CEC device wants to claim */
#define CEC_LOG_ADDR_TYPE_TV 0
#define CEC_LOG_ADDR_TYPE_RECORD 1
#define CEC_LOG_ADDR_TYPE_TUNER 2
#define CEC_LOG_ADDR_TYPE_PLAYBACK 3
#define CEC_LOG_ADDR_TYPE_AUDIOSYSTEM 4
#define CEC_LOG_ADDR_TYPE_SPECIFIC 5
#define CEC_LOG_ADDR_TYPE_UNREGISTERED 6
/*
* Switches should use UNREGISTERED.
* Processors should use SPECIFIC.
*/

#define CEC_LOG_ADDR_MASK_TV (1 << CEC_LOG_ADDR_TV)
#define CEC_LOG_ADDR_MASK_RECORD ((1 << CEC_LOG_ADDR_RECORD_
↪→1) | \

(1 << CEC_LOG_ADDR_RECORD_
↪→2) | \

(1 << CEC_LOG_ADDR_RECORD_
↪→3))
#define CEC_LOG_ADDR_MASK_TUNER ((1 << CEC_LOG_ADDR_TUNER_
↪→1) | \

(1 << CEC_LOG_ADDR_TUNER_
↪→2) | \

(1 << CEC_LOG_ADDR_TUNER_
↪→3) | \

(1 << CEC_LOG_ADDR_TUNER_
↪→4))
#define CEC_LOG_ADDR_MASK_PLAYBACK ((1 << CEC_LOG_ADDR_
↪→PLAYBACK_1) | \

(1 << CEC_LOG_ADDR_
↪→PLAYBACK_2) | \

(1 << CEC_LOG_ADDR_
↪→PLAYBACK_3))
#define CEC_LOG_ADDR_MASK_AUDIOSYSTEM (1 << CEC_LOG_ADDR_
↪→AUDIOSYSTEM)
#define CEC_LOG_ADDR_MASK_BACKUP ((1 << CEC_LOG_ADDR_BACKUP_
↪→1) | \

(1 << CEC_LOG_ADDR_BACKUP_
↪→2))
#define CEC_LOG_ADDR_MASK_SPECIFIC (1 << CEC_LOG_ADDR_SPECIFIC)
#define CEC_LOG_ADDR_MASK_UNREGISTERED (1 << CEC_LOG_ADDR_
↪→UNREGISTERED)

static inline int cec_has_tv(__u16 log_addr_mask)
{

7.6. Part V - Consumer Electronics Control API 1007

Linux Userspace-api Documentation

return log_addr_mask & CEC_LOG_ADDR_MASK_TV;
}

static inline int cec_has_record(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_RECORD;
}

static inline int cec_has_tuner(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_TUNER;
}

static inline int cec_has_playback(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_PLAYBACK;
}

static inline int cec_has_audiosystem(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_AUDIOSYSTEM;
}

static inline int cec_has_backup(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_BACKUP;
}

static inline int cec_has_specific(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_SPECIFIC;
}

static inline int cec_is_unregistered(__u16 log_addr_mask)
{

return log_addr_mask & CEC_LOG_ADDR_MASK_UNREGISTERED;
}

static inline int cec_is_unconfigured(__u16 log_addr_mask)
{

return log_addr_mask == 0;
}

/*
* Use this if there is no vendor ID (CEC_G_VENDOR_ID) or if the␣
↪→vendor ID
* should be disabled (CEC_S_VENDOR_ID)
*/

#define CEC_VENDOR_ID_NONE 0xffffffff

/* The message handling modes */

1008 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/* Modes for initiator */
#define CEC_MODE_NO_INITIATOR (0x0 << 0)
#define CEC_MODE_INITIATOR (0x1 << 0)
#define CEC_MODE_EXCL_INITIATOR (0x2 << 0)
#define CEC_MODE_INITIATOR_MSK 0x0f

/* Modes for follower */
#define CEC_MODE_NO_FOLLOWER (0x0 << 4)
#define CEC_MODE_FOLLOWER (0x1 << 4)
#define CEC_MODE_EXCL_FOLLOWER (0x2 << 4)
#define CEC_MODE_EXCL_FOLLOWER_PASSTHRU (0x3 << 4)
#define CEC_MODE_MONITOR_PIN (0xd << 4)
#define CEC_MODE_MONITOR (0xe << 4)
#define CEC_MODE_MONITOR_ALL (0xf << 4)
#define CEC_MODE_FOLLOWER_MSK 0xf0

/* Userspace has to configure the physical address */
#define CEC_CAP_PHYS_ADDR (1 << 0)
/* Userspace has to configure the logical addresses */
#define CEC_CAP_LOG_ADDRS (1 << 1)
/* Userspace can transmit messages (and thus become follower as␣
↪→well) */
#define CEC_CAP_TRANSMIT (1 << 2)
/*
* Passthrough all messages instead of processing them.
*/

#define CEC_CAP_PASSTHROUGH (1 << 3)
/* Supports remote control */
#define CEC_CAP_RC (1 << 4)
/* Hardware can monitor all messages, not just directed and␣
↪→broadcast. */
#define CEC_CAP_MONITOR_ALL (1 << 5)
/* Hardware can use CEC only if the HDMI HPD pin is high. */
#define CEC_CAP_NEEDS_HPD (1 << 6)
/* Hardware can monitor CEC pin transitions */
#define CEC_CAP_MONITOR_PIN (1 << 7)
/* CEC_ADAP_G_CONNECTOR_INFO is available */
#define CEC_CAP_CONNECTOR_INFO (1 << 8)

/**
* struct cec_caps - CEC capabilities structure.
* @driver: name of the CEC device driver.
* @name: name of the CEC device. @driver + @name must be unique.
* @available_log_addrs: number of available logical addresses.
* @capabilities: capabilities of the CEC adapter.
* @version: version of the CEC adapter framework.
*/

struct cec_caps {
char driver[32];
char name[32];
__u32 available_log_addrs;

7.6. Part V - Consumer Electronics Control API 1009

Linux Userspace-api Documentation

__u32 capabilities;
__u32 version;

};

/**
* struct cec_log_addrs - CEC logical addresses structure.
* @log_addr: the claimed logical addresses. Set by the driver.
* @log_addr_mask: current logical address mask. Set by the driver.
* @cec_version: the CEC version that the adapter should implement.␣
↪→Set by the
* caller.
* @num_log_addrs: how many logical addresses should be claimed.␣
↪→Set by the
* caller.
* @vendor_id: the vendor ID of the device. Set by the caller.
* @flags: flags.
* @osd_name: the OSD name of the device. Set by the caller.
* @primary_device_type: the primary device type for each logical␣
↪→address.
* Set by the caller.
* @log_addr_type: the logical address types. Set by the caller.
* @all_device_types: CEC 2.0: all device types represented by the␣
↪→logical
* address. Set by the caller.
* @features: CEC 2.0: The logical address features. Set by the␣
↪→caller.
*/

struct cec_log_addrs {
__u8 log_addr[CEC_MAX_LOG_ADDRS];
__u16 log_addr_mask;
__u8 cec_version;
__u8 num_log_addrs;
__u32 vendor_id;
__u32 flags;
char osd_name[15];
__u8 primary_device_type[CEC_MAX_LOG_ADDRS];
__u8 log_addr_type[CEC_MAX_LOG_ADDRS];

/* CEC 2.0 */
__u8 all_device_types[CEC_MAX_LOG_ADDRS];
__u8 features[CEC_MAX_LOG_ADDRS][12];

};

/* Allow a fallback to unregistered */
#define CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK (1 << 0)
/* Passthrough RC messages to the input subsystem */
#define CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU (1 << 1)
/* CDC-Only device: supports only CDC messages */
#define CEC_LOG_ADDRS_FL_CDC_ONLY (1 << 2)

/**

1010 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

* struct cec_drm_connector_info - tells which drm connector is
* associated with the CEC adapter.
* @card_no: drm card number
* @connector_id: drm connector ID
*/

struct cec_drm_connector_info {
__u32 card_no;
__u32 connector_id;

};

#define CEC_CONNECTOR_TYPE_NO_CONNECTOR 0
#define CEC_CONNECTOR_TYPE_DRM 1

/**
* struct cec_connector_info - tells if and which connector is
* associated with the CEC adapter.
* @type: connector type (if any)
* @drm: drm connector info
*/

struct cec_connector_info {
__u32 type;
union {

struct cec_drm_connector_info drm;
__u32 raw[16];

};
};

/* Events */

/* Event that occurs when the adapter state changes */
#define CEC_EVENT_STATE_CHANGE 1
/*
* This event is sent when messages are lost because the application
* didn't empty the message queue in time
*/

#define CEC_EVENT_LOST_MSGS 2
#define CEC_EVENT_PIN_CEC_LOW 3
#define CEC_EVENT_PIN_CEC_HIGH 4
#define CEC_EVENT_PIN_HPD_LOW 5
#define CEC_EVENT_PIN_HPD_HIGH 6
#define CEC_EVENT_PIN_5V_LOW 7
#define CEC_EVENT_PIN_5V_HIGH 8

#define CEC_EVENT_FL_INITIAL_STATE (1 << 0)
#define CEC_EVENT_FL_DROPPED_EVENTS (1 << 1)

/**
* struct cec_event_state_change - used when the CEC adapter␣
↪→changes state.
* @phys_addr: the current physical address
* @log_addr_mask: the current logical address mask

7.6. Part V - Consumer Electronics Control API 1011

Linux Userspace-api Documentation

* @have_conn_info: if non-zero, then HDMI connector information is␣
↪→available.
* This field is only valid if CEC_CAP_CONNECTOR_INFO is set.␣
↪→If that
* capability is set and @have_conn_info is zero, then that␣
↪→indicates
* that the HDMI connector device is not instantiated, either␣
↪→because
* the HDMI driver is still configuring the device or because␣
↪→the HDMI
* device was unbound.
*/

struct cec_event_state_change {
__u16 phys_addr;
__u16 log_addr_mask;
__u16 have_conn_info;

};

/**
* struct cec_event_lost_msgs - tells you how many messages were␣
↪→lost.
* @lost_msgs: how many messages were lost.
*/

struct cec_event_lost_msgs {
__u32 lost_msgs;

};

/**
* struct cec_event - CEC event structure
* @ts: the timestamp of when the event was sent.
* @event: the event.
* array.
* @state_change: the event payload for CEC_EVENT_STATE_CHANGE.
* @lost_msgs: the event payload for CEC_EVENT_LOST_MSGS.
* @raw: array to pad the union.
*/

struct cec_event {
__u64 ts;
__u32 event;
__u32 flags;
union {

struct cec_event_state_change state_change;
struct cec_event_lost_msgs lost_msgs;
__u32 raw[16];

};
};

/* ioctls */

/* Adapter capabilities */
#define CEC_ADAP_G_CAPS _IOWR('a', 0, struct cec_caps)

1012 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/*
* phys_addr is either 0 (if this is the CEC root device)
* or a valid physical address obtained from the sink's EDID
* as read by this CEC device (if this is a source device)
* or a physical address obtained and modified from a sink
* EDID and used for a sink CEC device.
* If nothing is connected, then phys_addr is 0xffff.
* See HDMI 1.4b, section 8.7 (Physical Address).
*
* The CEC_ADAP_S_PHYS_ADDR ioctl may not be available if that is␣
↪→handled
* internally.
*/

#define CEC_ADAP_G_PHYS_ADDR _IOR('a', 1, __u16)
#define CEC_ADAP_S_PHYS_ADDR _IOW('a', 2, __u16)

/*
* Configure the CEC adapter. It sets the device type and which
* logical types it will try to claim. It will return which
* logical addresses it could actually claim.
* An error is returned if the adapter is disabled or if there
* is no physical address assigned.
*/

#define CEC_ADAP_G_LOG_ADDRS _IOR('a', 3, struct cec_log_addrs)
#define CEC_ADAP_S_LOG_ADDRS _IOWR('a', 4, struct cec_log_addrs)

/* Transmit/receive a CEC command */
#define CEC_TRANSMIT _IOWR('a', 5, struct cec_msg)
#define CEC_RECEIVE _IOWR('a', 6, struct cec_msg)

/* Dequeue CEC events */
#define CEC_DQEVENT _IOWR('a', 7, struct cec_event)

/*
* Get and set the message handling mode for this filehandle.
*/

#define CEC_G_MODE _IOR('a', 8, __u32)
#define CEC_S_MODE _IOW('a', 9, __u32)

/* Get the connector info */
#define CEC_ADAP_G_CONNECTOR_INFO _IOR('a', 10, struct cec_
↪→connector_info)

/*
* The remainder of this header defines all CEC messages and␣
↪→operands.
* The format matters since it the cec-ctl utility parses it to␣
↪→generate
* code for implementing all these messages.

7.6. Part V - Consumer Electronics Control API 1013

Linux Userspace-api Documentation

*
* Comments ending with 'Feature' group messages for each feature.
* If messages are part of multiple features, then the "Has also"
* comment is used to list the previously defined messages that are
* supported by the feature.
*
* Before operands are defined a comment is added that gives the
* name of the operand and in brackets the variable name of the
* corresponding argument in the cec-funcs.h function.
*/

/* Messages */

/* One Touch Play Feature */
#define CEC_MSG_ACTIVE_SOURCE 0x82
#define CEC_MSG_IMAGE_VIEW_ON 0x04
#define CEC_MSG_TEXT_VIEW_ON 0x0d

/* Routing Control Feature */

/*
* Has also:
* CEC_MSG_ACTIVE_SOURCE
*/

#define CEC_MSG_INACTIVE_SOURCE 0x9d
#define CEC_MSG_REQUEST_ACTIVE_SOURCE 0x85
#define CEC_MSG_ROUTING_CHANGE 0x80
#define CEC_MSG_ROUTING_INFORMATION 0x81
#define CEC_MSG_SET_STREAM_PATH 0x86

/* Standby Feature */
#define CEC_MSG_STANDBY 0x36

/* One Touch Record Feature */
#define CEC_MSG_RECORD_OFF 0x0b
#define CEC_MSG_RECORD_ON 0x09
/* Record Source Type Operand (rec_src_type) */
#define CEC_OP_RECORD_SRC_OWN 1
#define CEC_OP_RECORD_SRC_DIGITAL 2
#define CEC_OP_RECORD_SRC_ANALOG 3
#define CEC_OP_RECORD_SRC_EXT_PLUG 4
#define CEC_OP_RECORD_SRC_EXT_PHYS_ADDR 5
/* Service Identification Method Operand (service_id_method) */
#define CEC_OP_SERVICE_ID_METHOD_BY_DIG_ID 0
#define CEC_OP_SERVICE_ID_METHOD_BY_CHANNEL 1
/* Digital Service Broadcast System Operand (dig_bcast_system) */
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_GEN 0x00
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_GEN 0x01
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_GEN 0x02
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_BS 0x08

1014 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_CS 0x09
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_T 0x0a
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_CABLE 0x10
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_SAT 0x11
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_T 0x12
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_C 0x18
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_S 0x19
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_S2 0x1a
#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_T 0x1b
/* Analogue Broadcast Type Operand (ana_bcast_type) */
#define CEC_OP_ANA_BCAST_TYPE_CABLE 0
#define CEC_OP_ANA_BCAST_TYPE_SATELLITE 1
#define CEC_OP_ANA_BCAST_TYPE_TERRESTRIAL 2
/* Broadcast System Operand (bcast_system) */
#define CEC_OP_BCAST_SYSTEM_PAL_BG 0x00
#define CEC_OP_BCAST_SYSTEM_SECAM_LQ 0x01 /*␣
↪→SECAM L' */
#define CEC_OP_BCAST_SYSTEM_PAL_M 0x02
#define CEC_OP_BCAST_SYSTEM_NTSC_M 0x03
#define CEC_OP_BCAST_SYSTEM_PAL_I 0x04
#define CEC_OP_BCAST_SYSTEM_SECAM_DK 0x05
#define CEC_OP_BCAST_SYSTEM_SECAM_BG 0x06
#define CEC_OP_BCAST_SYSTEM_SECAM_L 0x07
#define CEC_OP_BCAST_SYSTEM_PAL_DK 0x08
#define CEC_OP_BCAST_SYSTEM_OTHER 0x1f
/* Channel Number Format Operand (channel_number_fmt) */
#define CEC_OP_CHANNEL_NUMBER_FMT_1_PART 0x01
#define CEC_OP_CHANNEL_NUMBER_FMT_2_PART 0x02

#define CEC_MSG_RECORD_STATUS 0x0a
/* Record Status Operand (rec_status) */
#define CEC_OP_RECORD_STATUS_CUR_SRC 0x01
#define CEC_OP_RECORD_STATUS_DIG_SERVICE 0x02
#define CEC_OP_RECORD_STATUS_ANA_SERVICE 0x03
#define CEC_OP_RECORD_STATUS_EXT_INPUT 0x04
#define CEC_OP_RECORD_STATUS_NO_DIG_SERVICE 0x05
#define CEC_OP_RECORD_STATUS_NO_ANA_SERVICE 0x06
#define CEC_OP_RECORD_STATUS_NO_SERVICE 0x07
#define CEC_OP_RECORD_STATUS_INVALID_EXT_PLUG 0x09
#define CEC_OP_RECORD_STATUS_INVALID_EXT_PHYS_ADDR 0x0a
#define CEC_OP_RECORD_STATUS_UNSUP_CA 0x0b
#define CEC_OP_RECORD_STATUS_NO_CA_ENTITLEMENTS 0x0c
#define CEC_OP_RECORD_STATUS_CANT_COPY_SRC 0x0d
#define CEC_OP_RECORD_STATUS_NO_MORE_COPIES 0x0e
#define CEC_OP_RECORD_STATUS_NO_MEDIA 0x10
#define CEC_OP_RECORD_STATUS_PLAYING 0x11
#define CEC_OP_RECORD_STATUS_ALREADY_RECORDING 0x12
#define CEC_OP_RECORD_STATUS_MEDIA_PROT 0x13
#define CEC_OP_RECORD_STATUS_NO_SIGNAL 0x14
#define CEC_OP_RECORD_STATUS_MEDIA_PROBLEM 0x15
#define CEC_OP_RECORD_STATUS_NO_SPACE 0x16

7.6. Part V - Consumer Electronics Control API 1015

Linux Userspace-api Documentation

#define CEC_OP_RECORD_STATUS_PARENTAL_LOCK 0x17
#define CEC_OP_RECORD_STATUS_TERMINATED_OK 0x1a
#define CEC_OP_RECORD_STATUS_ALREADY_TERM 0x1b
#define CEC_OP_RECORD_STATUS_OTHER 0x1f

#define CEC_MSG_RECORD_TV_SCREEN 0x0f

/* Timer Programming Feature */
#define CEC_MSG_CLEAR_ANALOGUE_TIMER 0x33
/* Recording Sequence Operand (recording_seq) */
#define CEC_OP_REC_SEQ_SUNDAY 0x01
#define CEC_OP_REC_SEQ_MONDAY 0x02
#define CEC_OP_REC_SEQ_TUESDAY 0x04
#define CEC_OP_REC_SEQ_WEDNESDAY 0x08
#define CEC_OP_REC_SEQ_THURSDAY 0x10
#define CEC_OP_REC_SEQ_FRIDAY 0x20
#define CEC_OP_REC_SEQ_SATERDAY 0x40
#define CEC_OP_REC_SEQ_ONCE_ONLY 0x00

#define CEC_MSG_CLEAR_DIGITAL_TIMER 0x99

#define CEC_MSG_CLEAR_EXT_TIMER 0xa1
/* External Source Specifier Operand (ext_src_spec) */
#define CEC_OP_EXT_SRC_PLUG 0x04
#define CEC_OP_EXT_SRC_PHYS_ADDR 0x05

#define CEC_MSG_SET_ANALOGUE_TIMER 0x34
#define CEC_MSG_SET_DIGITAL_TIMER 0x97
#define CEC_MSG_SET_EXT_TIMER 0xa2

#define CEC_MSG_SET_TIMER_PROGRAM_TITLE 0x67
#define CEC_MSG_TIMER_CLEARED_STATUS 0x43
/* Timer Cleared Status Data Operand (timer_cleared_status) */
#define CEC_OP_TIMER_CLR_STAT_RECORDING 0x00
#define CEC_OP_TIMER_CLR_STAT_NO_MATCHING 0x01
#define CEC_OP_TIMER_CLR_STAT_NO_INFO 0x02
#define CEC_OP_TIMER_CLR_STAT_CLEARED 0x80

#define CEC_MSG_TIMER_STATUS 0x35
/* Timer Overlap Warning Operand (timer_overlap_warning) */
#define CEC_OP_TIMER_OVERLAP_WARNING_NO_OVERLAP 0
#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP 1
/* Media Info Operand (media_info) */
#define CEC_OP_MEDIA_INFO_UNPROT_MEDIA 0
#define CEC_OP_MEDIA_INFO_PROT_MEDIA 1
#define CEC_OP_MEDIA_INFO_NO_MEDIA 2
/* Programmed Indicator Operand (prog_indicator) */
#define CEC_OP_PROG_IND_NOT_PROGRAMMED 0
#define CEC_OP_PROG_IND_PROGRAMMED 1
/* Programmed Info Operand (prog_info) */
#define CEC_OP_PROG_INFO_ENOUGH_SPACE 0x08

1016 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE 0x09
#define CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE 0x0b
#define CEC_OP_PROG_INFO_NONE_AVAILABLE 0x0a
/* Not Programmed Error Info Operand (prog_error) */
#define CEC_OP_PROG_ERROR_NO_FREE_TIMER 0x01
#define CEC_OP_PROG_ERROR_DATE_OUT_OF_RANGE 0x02
#define CEC_OP_PROG_ERROR_REC_SEQ_ERROR 0x03
#define CEC_OP_PROG_ERROR_INV_EXT_PLUG 0x04
#define CEC_OP_PROG_ERROR_INV_EXT_PHYS_ADDR 0x05
#define CEC_OP_PROG_ERROR_CA_UNSUPP 0x06
#define CEC_OP_PROG_ERROR_INSUF_CA_ENTITLEMENTS 0x07
#define CEC_OP_PROG_ERROR_RESOLUTION_UNSUPP 0x08
#define CEC_OP_PROG_ERROR_PARENTAL_LOCK 0x09
#define CEC_OP_PROG_ERROR_CLOCK_FAILURE 0x0a
#define CEC_OP_PROG_ERROR_DUPLICATE 0x0e

/* System Information Feature */
#define CEC_MSG_CEC_VERSION 0x9e
/* CEC Version Operand (cec_version) */
#define CEC_OP_CEC_VERSION_1_3A 4
#define CEC_OP_CEC_VERSION_1_4 5
#define CEC_OP_CEC_VERSION_2_0 6

#define CEC_MSG_GET_CEC_VERSION 0x9f
#define CEC_MSG_GIVE_PHYSICAL_ADDR 0x83
#define CEC_MSG_GET_MENU_LANGUAGE 0x91
#define CEC_MSG_REPORT_PHYSICAL_ADDR 0x84
/* Primary Device Type Operand (prim_devtype) */
#define CEC_OP_PRIM_DEVTYPE_TV 0
#define CEC_OP_PRIM_DEVTYPE_RECORD 1
#define CEC_OP_PRIM_DEVTYPE_TUNER 3
#define CEC_OP_PRIM_DEVTYPE_PLAYBACK 4
#define CEC_OP_PRIM_DEVTYPE_AUDIOSYSTEM 5
#define CEC_OP_PRIM_DEVTYPE_SWITCH 6
#define CEC_OP_PRIM_DEVTYPE_PROCESSOR 7

#define CEC_MSG_SET_MENU_LANGUAGE 0x32
#define CEC_MSG_REPORT_FEATURES 0xa6 /*␣
↪→HDMI 2.0 */
/* All Device Types Operand (all_device_types) */
#define CEC_OP_ALL_DEVTYPE_TV 0x80
#define CEC_OP_ALL_DEVTYPE_RECORD 0x40
#define CEC_OP_ALL_DEVTYPE_TUNER 0x20
#define CEC_OP_ALL_DEVTYPE_PLAYBACK 0x10
#define CEC_OP_ALL_DEVTYPE_AUDIOSYSTEM 0x08
#define CEC_OP_ALL_DEVTYPE_SWITCH 0x04
/*
* And if you wondering what happened to PROCESSOR devices: those␣
↪→should
* be mapped to a SWITCH.
*/

7.6. Part V - Consumer Electronics Control API 1017

Linux Userspace-api Documentation

/* Valid for RC Profile and Device Feature operands */
#define CEC_OP_FEAT_EXT 0x80 /*␣
↪→Extension bit */
/* RC Profile Operand (rc_profile) */
#define CEC_OP_FEAT_RC_TV_PROFILE_NONE 0x00
#define CEC_OP_FEAT_RC_TV_PROFILE_1 0x02
#define CEC_OP_FEAT_RC_TV_PROFILE_2 0x06
#define CEC_OP_FEAT_RC_TV_PROFILE_3 0x0a
#define CEC_OP_FEAT_RC_TV_PROFILE_4 0x0e
#define CEC_OP_FEAT_RC_SRC_HAS_DEV_ROOT_MENU 0x50
#define CEC_OP_FEAT_RC_SRC_HAS_DEV_SETUP_MENU 0x48
#define CEC_OP_FEAT_RC_SRC_HAS_CONTENTS_MENU 0x44
#define CEC_OP_FEAT_RC_SRC_HAS_MEDIA_TOP_MENU 0x42
#define CEC_OP_FEAT_RC_SRC_HAS_MEDIA_CONTEXT_MENU 0x41
/* Device Feature Operand (dev_features) */
#define CEC_OP_FEAT_DEV_HAS_RECORD_TV_SCREEN 0x40
#define CEC_OP_FEAT_DEV_HAS_SET_OSD_STRING 0x20
#define CEC_OP_FEAT_DEV_HAS_DECK_CONTROL 0x10
#define CEC_OP_FEAT_DEV_HAS_SET_AUDIO_RATE 0x08
#define CEC_OP_FEAT_DEV_SINK_HAS_ARC_TX 0x04
#define CEC_OP_FEAT_DEV_SOURCE_HAS_ARC_RX 0x02

#define CEC_MSG_GIVE_FEATURES 0xa5 /*␣
↪→HDMI 2.0 */

/* Deck Control Feature */
#define CEC_MSG_DECK_CONTROL 0x42
/* Deck Control Mode Operand (deck_control_mode) */
#define CEC_OP_DECK_CTL_MODE_SKIP_FWD 1
#define CEC_OP_DECK_CTL_MODE_SKIP_REV 2
#define CEC_OP_DECK_CTL_MODE_STOP 3
#define CEC_OP_DECK_CTL_MODE_EJECT 4

#define CEC_MSG_DECK_STATUS 0x1b
/* Deck Info Operand (deck_info) */
#define CEC_OP_DECK_INFO_PLAY 0x11
#define CEC_OP_DECK_INFO_RECORD 0x12
#define CEC_OP_DECK_INFO_PLAY_REV 0x13
#define CEC_OP_DECK_INFO_STILL 0x14
#define CEC_OP_DECK_INFO_SLOW 0x15
#define CEC_OP_DECK_INFO_SLOW_REV 0x16
#define CEC_OP_DECK_INFO_FAST_FWD 0x17
#define CEC_OP_DECK_INFO_FAST_REV 0x18
#define CEC_OP_DECK_INFO_NO_MEDIA 0x19
#define CEC_OP_DECK_INFO_STOP 0x1a
#define CEC_OP_DECK_INFO_SKIP_FWD 0x1b
#define CEC_OP_DECK_INFO_SKIP_REV 0x1c
#define CEC_OP_DECK_INFO_INDEX_SEARCH_FWD 0x1d
#define CEC_OP_DECK_INFO_INDEX_SEARCH_REV 0x1e
#define CEC_OP_DECK_INFO_OTHER 0x1f

1018 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define CEC_MSG_GIVE_DECK_STATUS 0x1a
/* Status Request Operand (status_req) */
#define CEC_OP_STATUS_REQ_ON 1
#define CEC_OP_STATUS_REQ_OFF 2
#define CEC_OP_STATUS_REQ_ONCE 3

#define CEC_MSG_PLAY 0x41
/* Play Mode Operand (play_mode) */
#define CEC_OP_PLAY_MODE_PLAY_FWD 0x24
#define CEC_OP_PLAY_MODE_PLAY_REV 0x20
#define CEC_OP_PLAY_MODE_PLAY_STILL 0x25
#define CEC_OP_PLAY_MODE_PLAY_FAST_FWD_MIN 0x05
#define CEC_OP_PLAY_MODE_PLAY_FAST_FWD_MED 0x06
#define CEC_OP_PLAY_MODE_PLAY_FAST_FWD_MAX 0x07
#define CEC_OP_PLAY_MODE_PLAY_FAST_REV_MIN 0x09
#define CEC_OP_PLAY_MODE_PLAY_FAST_REV_MED 0x0a
#define CEC_OP_PLAY_MODE_PLAY_FAST_REV_MAX 0x0b
#define CEC_OP_PLAY_MODE_PLAY_SLOW_FWD_MIN 0x15
#define CEC_OP_PLAY_MODE_PLAY_SLOW_FWD_MED 0x16
#define CEC_OP_PLAY_MODE_PLAY_SLOW_FWD_MAX 0x17
#define CEC_OP_PLAY_MODE_PLAY_SLOW_REV_MIN 0x19
#define CEC_OP_PLAY_MODE_PLAY_SLOW_REV_MED 0x1a
#define CEC_OP_PLAY_MODE_PLAY_SLOW_REV_MAX 0x1b

/* Tuner Control Feature */
#define CEC_MSG_GIVE_TUNER_DEVICE_STATUS 0x08
#define CEC_MSG_SELECT_ANALOGUE_SERVICE 0x92
#define CEC_MSG_SELECT_DIGITAL_SERVICE 0x93
#define CEC_MSG_TUNER_DEVICE_STATUS 0x07
/* Recording Flag Operand (rec_flag) */
#define CEC_OP_REC_FLAG_NOT_USED 0
#define CEC_OP_REC_FLAG_USED 1
/* Tuner Display Info Operand (tuner_display_info) */
#define CEC_OP_TUNER_DISPLAY_INFO_DIGITAL 0
#define CEC_OP_TUNER_DISPLAY_INFO_NONE 1
#define CEC_OP_TUNER_DISPLAY_INFO_ANALOGUE 2

#define CEC_MSG_TUNER_STEP_DECREMENT 0x06
#define CEC_MSG_TUNER_STEP_INCREMENT 0x05

/* Vendor Specific Commands Feature */

/*
* Has also:
* CEC_MSG_CEC_VERSION
* CEC_MSG_GET_CEC_VERSION
*/

#define CEC_MSG_DEVICE_VENDOR_ID 0x87
#define CEC_MSG_GIVE_DEVICE_VENDOR_ID 0x8c
#define CEC_MSG_VENDOR_COMMAND 0x89

7.6. Part V - Consumer Electronics Control API 1019

Linux Userspace-api Documentation

#define CEC_MSG_VENDOR_COMMAND_WITH_ID 0xa0
#define CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN 0x8a
#define CEC_MSG_VENDOR_REMOTE_BUTTON_UP 0x8b

/* OSD Display Feature */
#define CEC_MSG_SET_OSD_STRING 0x64
/* Display Control Operand (disp_ctl) */
#define CEC_OP_DISP_CTL_DEFAULT 0x00
#define CEC_OP_DISP_CTL_UNTIL_CLEARED 0x40
#define CEC_OP_DISP_CTL_CLEAR 0x80

/* Device OSD Transfer Feature */
#define CEC_MSG_GIVE_OSD_NAME 0x46
#define CEC_MSG_SET_OSD_NAME 0x47

/* Device Menu Control Feature */
#define CEC_MSG_MENU_REQUEST 0x8d
/* Menu Request Type Operand (menu_req) */
#define CEC_OP_MENU_REQUEST_ACTIVATE 0x00
#define CEC_OP_MENU_REQUEST_DEACTIVATE 0x01
#define CEC_OP_MENU_REQUEST_QUERY 0x02

#define CEC_MSG_MENU_STATUS 0x8e
/* Menu State Operand (menu_state) */
#define CEC_OP_MENU_STATE_ACTIVATED 0x00
#define CEC_OP_MENU_STATE_DEACTIVATED 0x01

#define CEC_MSG_USER_CONTROL_PRESSED 0x44
/* UI Command Operand (ui_cmd) */
#define CEC_OP_UI_CMD_SELECT 0x00
#define CEC_OP_UI_CMD_UP 0x01
#define CEC_OP_UI_CMD_DOWN 0x02
#define CEC_OP_UI_CMD_LEFT 0x03
#define CEC_OP_UI_CMD_RIGHT 0x04
#define CEC_OP_UI_CMD_RIGHT_UP 0x05
#define CEC_OP_UI_CMD_RIGHT_DOWN 0x06
#define CEC_OP_UI_CMD_LEFT_UP 0x07
#define CEC_OP_UI_CMD_LEFT_DOWN 0x08
#define CEC_OP_UI_CMD_DEVICE_ROOT_MENU 0x09
#define CEC_OP_UI_CMD_DEVICE_SETUP_MENU 0x0a
#define CEC_OP_UI_CMD_CONTENTS_MENU 0x0b
#define CEC_OP_UI_CMD_FAVORITE_MENU 0x0c
#define CEC_OP_UI_CMD_BACK 0x0d
#define CEC_OP_UI_CMD_MEDIA_TOP_MENU 0x10
#define CEC_OP_UI_CMD_MEDIA_CONTEXT_SENSITIVE_MENU 0x11
#define CEC_OP_UI_CMD_NUMBER_ENTRY_MODE 0x1d
#define CEC_OP_UI_CMD_NUMBER_11 0x1e
#define CEC_OP_UI_CMD_NUMBER_12 0x1f
#define CEC_OP_UI_CMD_NUMBER_0_OR_NUMBER_10 0x20
#define CEC_OP_UI_CMD_NUMBER_1 0x21
#define CEC_OP_UI_CMD_NUMBER_2 0x22

1020 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define CEC_OP_UI_CMD_NUMBER_3 0x23
#define CEC_OP_UI_CMD_NUMBER_4 0x24
#define CEC_OP_UI_CMD_NUMBER_5 0x25
#define CEC_OP_UI_CMD_NUMBER_6 0x26
#define CEC_OP_UI_CMD_NUMBER_7 0x27
#define CEC_OP_UI_CMD_NUMBER_8 0x28
#define CEC_OP_UI_CMD_NUMBER_9 0x29
#define CEC_OP_UI_CMD_DOT 0x2a
#define CEC_OP_UI_CMD_ENTER 0x2b
#define CEC_OP_UI_CMD_CLEAR 0x2c
#define CEC_OP_UI_CMD_NEXT_FAVORITE 0x2f
#define CEC_OP_UI_CMD_CHANNEL_UP 0x30
#define CEC_OP_UI_CMD_CHANNEL_DOWN 0x31
#define CEC_OP_UI_CMD_PREVIOUS_CHANNEL 0x32
#define CEC_OP_UI_CMD_SOUND_SELECT 0x33
#define CEC_OP_UI_CMD_INPUT_SELECT 0x34
#define CEC_OP_UI_CMD_DISPLAY_INFORMATION 0x35
#define CEC_OP_UI_CMD_HELP 0x36
#define CEC_OP_UI_CMD_PAGE_UP 0x37
#define CEC_OP_UI_CMD_PAGE_DOWN 0x38
#define CEC_OP_UI_CMD_POWER 0x40
#define CEC_OP_UI_CMD_VOLUME_UP 0x41
#define CEC_OP_UI_CMD_VOLUME_DOWN 0x42
#define CEC_OP_UI_CMD_MUTE 0x43
#define CEC_OP_UI_CMD_PLAY 0x44
#define CEC_OP_UI_CMD_STOP 0x45
#define CEC_OP_UI_CMD_PAUSE 0x46
#define CEC_OP_UI_CMD_RECORD 0x47
#define CEC_OP_UI_CMD_REWIND 0x48
#define CEC_OP_UI_CMD_FAST_FORWARD 0x49
#define CEC_OP_UI_CMD_EJECT 0x4a
#define CEC_OP_UI_CMD_SKIP_FORWARD 0x4b
#define CEC_OP_UI_CMD_SKIP_BACKWARD 0x4c
#define CEC_OP_UI_CMD_STOP_RECORD 0x4d
#define CEC_OP_UI_CMD_PAUSE_RECORD 0x4e
#define CEC_OP_UI_CMD_ANGLE 0x50
#define CEC_OP_UI_CMD_SUB_PICTURE 0x51
#define CEC_OP_UI_CMD_VIDEO_ON_DEMAND 0x52
#define CEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE 0x53
#define CEC_OP_UI_CMD_TIMER_PROGRAMMING 0x54
#define CEC_OP_UI_CMD_INITIAL_CONFIGURATION 0x55
#define CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE 0x56
#define CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION 0x57
#define CEC_OP_UI_CMD_AUDIO_DESCRIPTION 0x58
#define CEC_OP_UI_CMD_INTERNET 0x59
#define CEC_OP_UI_CMD_3D_MODE 0x5a
#define CEC_OP_UI_CMD_PLAY_FUNCTION 0x60
#define CEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION 0x61
#define CEC_OP_UI_CMD_RECORD_FUNCTION 0x62
#define CEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION 0x63
#define CEC_OP_UI_CMD_STOP_FUNCTION 0x64

7.6. Part V - Consumer Electronics Control API 1021

Linux Userspace-api Documentation

#define CEC_OP_UI_CMD_MUTE_FUNCTION 0x65
#define CEC_OP_UI_CMD_RESTORE_VOLUME_FUNCTION 0x66
#define CEC_OP_UI_CMD_TUNE_FUNCTION 0x67
#define CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION 0x68
#define CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION 0x69
#define CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION 0x6a
#define CEC_OP_UI_CMD_POWER_TOGGLE_FUNCTION 0x6b
#define CEC_OP_UI_CMD_POWER_OFF_FUNCTION 0x6c
#define CEC_OP_UI_CMD_POWER_ON_FUNCTION 0x6d
#define CEC_OP_UI_CMD_F1_BLUE 0x71
#define CEC_OP_UI_CMD_F2_RED 0x72
#define CEC_OP_UI_CMD_F3_GREEN 0x73
#define CEC_OP_UI_CMD_F4_YELLOW 0x74
#define CEC_OP_UI_CMD_F5 0x75
#define CEC_OP_UI_CMD_DATA 0x76
/* UI Broadcast Type Operand (ui_bcast_type) */
#define CEC_OP_UI_BCAST_TYPE_TOGGLE_ALL 0x00
#define CEC_OP_UI_BCAST_TYPE_TOGGLE_DIG_ANA 0x01
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE 0x10
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE_T 0x20
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE_CABLE 0x30
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE_SAT 0x40
#define CEC_OP_UI_BCAST_TYPE_DIGITAL 0x50
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_T 0x60
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_CABLE 0x70
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_SAT 0x80
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_COM_SAT 0x90
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_COM_SAT2 0x91
#define CEC_OP_UI_BCAST_TYPE_IP 0xa0
/* UI Sound Presentation Control Operand (ui_snd_pres_ctl) */
#define CEC_OP_UI_SND_PRES_CTL_DUAL_MONO 0x10
#define CEC_OP_UI_SND_PRES_CTL_KARAOKE 0x20
#define CEC_OP_UI_SND_PRES_CTL_DOWNMIX 0x80
#define CEC_OP_UI_SND_PRES_CTL_REVERB 0x90
#define CEC_OP_UI_SND_PRES_CTL_EQUALIZER 0xa0
#define CEC_OP_UI_SND_PRES_CTL_BASS_UP 0xb1
#define CEC_OP_UI_SND_PRES_CTL_BASS_NEUTRAL 0xb2
#define CEC_OP_UI_SND_PRES_CTL_BASS_DOWN 0xb3
#define CEC_OP_UI_SND_PRES_CTL_TREBLE_UP 0xc1
#define CEC_OP_UI_SND_PRES_CTL_TREBLE_NEUTRAL 0xc2
#define CEC_OP_UI_SND_PRES_CTL_TREBLE_DOWN 0xc3

#define CEC_MSG_USER_CONTROL_RELEASED 0x45

/* Remote Control Passthrough Feature */

/*
* Has also:
* CEC_MSG_USER_CONTROL_PRESSED
* CEC_MSG_USER_CONTROL_RELEASED
*/

1022 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

/* Power Status Feature */
#define CEC_MSG_GIVE_DEVICE_POWER_STATUS 0x8f
#define CEC_MSG_REPORT_POWER_STATUS 0x90
/* Power Status Operand (pwr_state) */
#define CEC_OP_POWER_STATUS_ON 0
#define CEC_OP_POWER_STATUS_STANDBY 1
#define CEC_OP_POWER_STATUS_TO_ON 2
#define CEC_OP_POWER_STATUS_TO_STANDBY 3

/* General Protocol Messages */
#define CEC_MSG_FEATURE_ABORT 0x00
/* Abort Reason Operand (reason) */
#define CEC_OP_ABORT_UNRECOGNIZED_OP 0
#define CEC_OP_ABORT_INCORRECT_MODE 1
#define CEC_OP_ABORT_NO_SOURCE 2
#define CEC_OP_ABORT_INVALID_OP 3
#define CEC_OP_ABORT_REFUSED 4
#define CEC_OP_ABORT_UNDETERMINED 5

#define CEC_MSG_ABORT 0xff

/* System Audio Control Feature */

/*
* Has also:
* CEC_MSG_USER_CONTROL_PRESSED
* CEC_MSG_USER_CONTROL_RELEASED
*/

#define CEC_MSG_GIVE_AUDIO_STATUS 0x71
#define CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS 0x7d
#define CEC_MSG_REPORT_AUDIO_STATUS 0x7a
/* Audio Mute Status Operand (aud_mute_status) */
#define CEC_OP_AUD_MUTE_STATUS_OFF 0
#define CEC_OP_AUD_MUTE_STATUS_ON 1

#define CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR 0xa3
#define CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR 0xa4
#define CEC_MSG_SET_SYSTEM_AUDIO_MODE 0x72
/* System Audio Status Operand (sys_aud_status) */
#define CEC_OP_SYS_AUD_STATUS_OFF 0
#define CEC_OP_SYS_AUD_STATUS_ON 1

#define CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST 0x70
#define CEC_MSG_SYSTEM_AUDIO_MODE_STATUS 0x7e
/* Audio Format ID Operand (audio_format_id) */
#define CEC_OP_AUD_FMT_ID_CEA861 0
#define CEC_OP_AUD_FMT_ID_CEA861_CXT 1

/* Audio Rate Control Feature */
#define CEC_MSG_SET_AUDIO_RATE 0x9a

7.6. Part V - Consumer Electronics Control API 1023

Linux Userspace-api Documentation

/* Audio Rate Operand (audio_rate) */
#define CEC_OP_AUD_RATE_OFF 0
#define CEC_OP_AUD_RATE_WIDE_STD 1
#define CEC_OP_AUD_RATE_WIDE_FAST 2
#define CEC_OP_AUD_RATE_WIDE_SLOW 3
#define CEC_OP_AUD_RATE_NARROW_STD 4
#define CEC_OP_AUD_RATE_NARROW_FAST 5
#define CEC_OP_AUD_RATE_NARROW_SLOW 6

/* Audio Return Channel Control Feature */
#define CEC_MSG_INITIATE_ARC 0xc0
#define CEC_MSG_REPORT_ARC_INITIATED 0xc1
#define CEC_MSG_REPORT_ARC_TERMINATED 0xc2
#define CEC_MSG_REQUEST_ARC_INITIATION 0xc3
#define CEC_MSG_REQUEST_ARC_TERMINATION 0xc4
#define CEC_MSG_TERMINATE_ARC 0xc5

/* Dynamic Audio Lipsync Feature */
/* Only for CEC 2.0 and up */
#define CEC_MSG_REQUEST_CURRENT_LATENCY 0xa7
#define CEC_MSG_REPORT_CURRENT_LATENCY 0xa8
/* Low Latency Mode Operand (low_latency_mode) */
#define CEC_OP_LOW_LATENCY_MODE_OFF 0
#define CEC_OP_LOW_LATENCY_MODE_ON 1
/* Audio Output Compensated Operand (audio_out_compensated) */
#define CEC_OP_AUD_OUT_COMPENSATED_NA 0
#define CEC_OP_AUD_OUT_COMPENSATED_DELAY 1
#define CEC_OP_AUD_OUT_COMPENSATED_NO_DELAY 2
#define CEC_OP_AUD_OUT_COMPENSATED_PARTIAL_DELAY 3

/* Capability Discovery and Control Feature */
#define CEC_MSG_CDC_MESSAGE 0xf8
/* Ethernet-over-HDMI: nobody ever does this... */
#define CEC_MSG_CDC_HEC_INQUIRE_STATE 0x00
#define CEC_MSG_CDC_HEC_REPORT_STATE 0x01
/* HEC Functionality State Operand (hec_func_state) */
#define CEC_OP_HEC_FUNC_STATE_NOT_SUPPORTED 0
#define CEC_OP_HEC_FUNC_STATE_INACTIVE 1
#define CEC_OP_HEC_FUNC_STATE_ACTIVE 2
#define CEC_OP_HEC_FUNC_STATE_ACTIVATION_FIELD 3
/* Host Functionality State Operand (host_func_state) */
#define CEC_OP_HOST_FUNC_STATE_NOT_SUPPORTED 0
#define CEC_OP_HOST_FUNC_STATE_INACTIVE 1
#define CEC_OP_HOST_FUNC_STATE_ACTIVE 2
/* ENC Functionality State Operand (enc_func_state) */
#define CEC_OP_ENC_FUNC_STATE_EXT_CON_NOT_SUPPORTED 0
#define CEC_OP_ENC_FUNC_STATE_EXT_CON_INACTIVE 1
#define CEC_OP_ENC_FUNC_STATE_EXT_CON_ACTIVE 2
/* CDC Error Code Operand (cdc_errcode) */
#define CEC_OP_CDC_ERROR_CODE_NONE 0
#define CEC_OP_CDC_ERROR_CODE_CAP_UNSUPPORTED 1

1024 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

#define CEC_OP_CDC_ERROR_CODE_WRONG_STATE 2
#define CEC_OP_CDC_ERROR_CODE_OTHER 3
/* HEC Support Operand (hec_support) */
#define CEC_OP_HEC_SUPPORT_NO 0
#define CEC_OP_HEC_SUPPORT_YES 1
/* HEC Activation Operand (hec_activation) */
#define CEC_OP_HEC_ACTIVATION_ON 0
#define CEC_OP_HEC_ACTIVATION_OFF 1

#define CEC_MSG_CDC_HEC_SET_STATE_ADJACENT 0x02
#define CEC_MSG_CDC_HEC_SET_STATE 0x03
/* HEC Set State Operand (hec_set_state) */
#define CEC_OP_HEC_SET_STATE_DEACTIVATE 0
#define CEC_OP_HEC_SET_STATE_ACTIVATE 1

#define CEC_MSG_CDC_HEC_REQUEST_DEACTIVATION 0x04
#define CEC_MSG_CDC_HEC_NOTIFY_ALIVE 0x05
#define CEC_MSG_CDC_HEC_DISCOVER 0x06
/* Hotplug Detect messages */
#define CEC_MSG_CDC_HPD_SET_STATE 0x10
/* HPD State Operand (hpd_state) */
#define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0
#define CEC_OP_HPD_STATE_CP_EDID_ENABLE 1
#define CEC_OP_HPD_STATE_CP_EDID_DISABLE_ENABLE 2
#define CEC_OP_HPD_STATE_EDID_DISABLE 3
#define CEC_OP_HPD_STATE_EDID_ENABLE 4
#define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5
#define CEC_MSG_CDC_HPD_REPORT_STATE 0x11
/* HPD Error Code Operand (hpd_error) */
#define CEC_OP_HPD_ERROR_NONE 0
#define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1
#define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2
#define CEC_OP_HPD_ERROR_OTHER 3
#define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4

/* End of Messages */

/* Helper functions to identify the 'special' CEC devices */

static inline int cec_is_2nd_tv(const struct cec_log_addrs *las)
{

/*
* It is a second TV if the logical address is 14 or 15 and␣

↪→the
* primary device type is a TV.
*/
return las->num_log_addrs &&

las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_

↪→TV;
}

7.6. Part V - Consumer Electronics Control API 1025

Linux Userspace-api Documentation

static inline int cec_is_processor(const struct cec_log_addrs *las)
{

/*
* It is a processor if the logical address is 12-15 and the
* primary device type is a Processor.
*/
return las->num_log_addrs &&

las->log_addr[0] >= CEC_LOG_ADDR_BACKUP_1 &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_

↪→PROCESSOR;
}

static inline int cec_is_switch(const struct cec_log_addrs *las)
{

/*
* It is a switch if the logical address is 15 and the
* primary device type is a Switch and the CDC-Only flag is␣

↪→not set.
*/
return las->num_log_addrs == 1 &&

las->log_addr[0] == CEC_LOG_ADDR_UNREGISTERED &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_

↪→SWITCH &&
!(las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY);

}

static inline int cec_is_cdc_only(const struct cec_log_addrs *las)
{

/*
* It is a CDC-only device if the logical address is 15 and␣

↪→the
* primary device type is a Switch and the CDC-Only flag is␣

↪→set.
*/
return las->num_log_addrs == 1 &&

las->log_addr[0] == CEC_LOG_ADDR_UNREGISTERED &&
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_

↪→SWITCH &&
(las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY);

}

#endif

1026 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

7.6.5 Revision and Copyright

Authors:

• Verkuil, Hans <hverkuil-cisco@xs4all.nl>

• Initial version.

Copyright © 2016 : Hans Verkuil

7.6.6 Revision History

revision 1.0.0 / 2016-03-17 (hv)

Initial revision

7.7 Generic Error Codes

Table 271: Generic error codes
EAGAIN (aka
EWOULDBLOCK)

The ioctl can’t be handled because the device is in state where it can’t perform
it. This could happen for example in case where device is sleeping and ioctl
is performed to query statistics. It is also returned when the ioctl would need
to wait for an event, but the device was opened in non-blocking mode.

EBADF The file descriptor is not a valid.
EBUSY The ioctl can’t be handled because the device is busy. This is typically return

while device is streaming, and an ioctl tried to change something that would
affect the stream, or would require the usage of a hardware resource that was
already allocated. The ioctl must not be retried without performing another
action to fix the problem first (typically: stop the stream before retrying).

EFAULT There was a failure while copying data from/to userspace, probably caused
by an invalid pointer reference.

EINVAL One or more of the ioctl parameters are invalid or out of the allowed range.
This is a widely used error code. See the individual ioctl requests for specific
causes.

ENODEV Device not found or was removed.
ENOMEM There’s not enough memory to handle the desired operation.
ENOTTY The ioctl is not supported by the driver, actually meaning that the required

functionality is not available, or the file descriptor is not for a media device.
ENOSPC On USB devices, the stream ioctl’s can return this error, meaning that this

request would overcommit the usb bandwidth reserved for periodic transfers
(up to 80% of the USB bandwidth).

EPERM Permission denied. Can be returned if the device needs write permission, or
some special capabilities is needed (e. g. root)

EIO I/O error. Typically used when there are problems communicating with a
hardware device. This could indicate broken or flaky hardware. It’s a‘Some-
thing is wrong, I give up!’type of error.

ENXIO No device corresponding to this device special file exists.

Note:

7.7. Generic Error Codes 1027

mailto:hverkuil-cisco@xs4all.nl

Linux Userspace-api Documentation

1. This list is not exhaustive; ioctls may return other error codes. Since errors
may have side effects such as a driver reset, applications should abort on
unexpected errors, or otherwise assume that the device is in a bad state.

2. Request-specific error codes are listed in the individual requests descriptions.

7.8 GNU Free Documentation License

7.8.1 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written docu-
ment“free”in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modi-
fications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should comewith
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

7.8.2 1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License.
The“Document”, below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as “you”.
A“Modified Version”of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated
into another language.

A“Secondary Section”is a named appendix or a front-matter section of the Docu-
ment that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For example, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections”are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Docu-
ment is released under this License.

1028 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

The“Cover Texts”are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released
under this License.

A “Transparent”copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, whose
contents can be viewed and edited directly and straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not“Transparent”is called“Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human mod-
ification. Opaque formats include PostScript, PDF, proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.

The“Title Page”means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear
in the title page. For works in formats which do not have any title page as such,
“Title Page”means the text near the most prominent appearance of the work’s
title, preceding the beginning of the body of the text.

7.8.3 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of this License. You may
not use technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

7.8.4 3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on
the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes lim-

7.8. GNU Free Documentation License 1029

Linux Userspace-api Documentation

ited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent copy of the Docu-
ment, free of added material, which the general network-using public has access
to download anonymously at no charge using public-standard network protocols.
If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

7.8.5 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the con-
ditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modified Version to who-
ever possesses a copy of it. In addition, you must do these things in the Modified
Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives
permission.

• B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five).

• C. State on the Title Page the name of the publisher of the Modified Version,
as the publisher.

• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

1030 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

• G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section entitled“History”, and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network lo-
cations given in the Document for previous versions it was based on. These
may be placed in the“History”section. You may omit a network location for
a work that was published at least four years before the Document itself, or
if the original publisher of the version it refers to gives permission.

• K. In any section entitled“Acknowledgements”or“Dedications”, preserve
the section’s title, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

• M. Delete any section entitled“Endorsements”. Such a section may not be
included in the Modified Version.

• N. Do not retitle any existing section as“Endorsements”or to conflict in title
with any Invariant Section.

If theModified Version includes new front-matter sections or appendices that qual-
ify as Secondary Sections and contain no material copied from the Document, you
may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version’s license
notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement of
any Modified Version.

7.8. GNU Free Documentation License 1031

Linux Userspace-api Documentation

7.8.6 5. COMBINING DOCUMENTS

Youmay combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that
you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice.

The combined work need only contain one copy of this License, and multiple iden-
tical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, youmust combine any sections entitled“History”in the various
original documents, forming one section entitled“History”; likewise combine any
sections entitled“Acknowledgements”, and any sections entitled“Dedications”
. You must delete all sections entitled “Endorsements.”

7.8.7 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents re-
leased under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the docu-
ments in all other respects.

You may extract a single document from such a collection, and distribute it in-
dividually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verba-
tim copying of that document.

7.8.8 7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium,
does not as a whole count as aModified Version of the Document, provided no com-
pilation copyright is claimed for the compilation. Such a compilation is called an
“aggregate”, and this License does not apply to the other self-contained works thus
compiled with the Document , on account of their being thus compiled, if they are
not themselves derivative works of the Document. If the Cover Text requirement
of section 3 is applicable to these copies of the Document, then if the Document
is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

1032 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

7.8.9 8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License
provided that you also include the original English version of this License. In case
of a disagreement between the translation and the original English version of this
License, the original English version will prevail.

7.8.10 9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as ex-
pressly provided for under this License. Any other attempt to copy, modify, sub-
license or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

7.8.11 10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Doc-
ument specifies that a particular numbered version of this License “or any later
version”applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

7.8.12 Addendum

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright © YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation; with
the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST. A copy of
the license is included in the section entitled“GNU Free Documentation
License”.

7.8. GNU Free Documentation License 1033

http://www.gnu.org/fsf/fsf.html
http://www.gnu.org/copyleft

Linux Userspace-api Documentation

If you have no Invariant Sections, write “with no Invariant Sections”instead of
saying which ones are invariant. If you have no Front-Cover Texts, write“no Front-
Cover Texts”instead of“Front-Cover Texts being LIST”; likewise for Back-Cover
Texts.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.

7.9 Video4Linux (V4L) driver-specific documentation

Copyright © 1999-2016 : LinuxTV Developers

This documentation is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

For more details see the file COPYING in the source distribution of Linux.

7.9.1 The cx2341x driver

Non-compressed file format

The cx23416 can produce (and the cx23415 can also read) raw YUV output. The
format of a YUV frame is specific to this chip and is called HM12. ‘HM’stands
for ‘Hauppauge Macroblock’, which is a misnomer as ‘Conexant Macroblock’
would be more accurate.

The format is YUV 4:2:0 which uses 1 Y byte per pixel and 1 U and V byte per four
pixels.

The data is encoded as two macroblock planes, the first containing the Y values,
the second containing UV macroblocks.

The Y plane is divided into blocks of 16x16 pixels from left to right and from top
to bottom. Each block is transmitted in turn, line-by-line.

So the first 16 bytes are the first line of the top-left block, the second 16 bytes are
the second line of the top-left block, etc. After transmitting this block the first line
of the block on the right to the first block is transmitted, etc.

The UV plane is divided into blocks of 16x8 UV values going from left to right, top
to bottom. Each block is transmitted in turn, line-by-line.

So the first 16 bytes are the first line of the top-left block and contain 8 UV value
pairs (16 bytes in total). The second 16 bytes are the second line of 8 UV pairs of
the top-left block, etc. After transmitting this block the first line of the block on
the right to the first block is transmitted, etc.

1034 Chapter 7. Linux Media Infrastructure userspace API

http://www.gnu.org/copyleft/gpl.html

Linux Userspace-api Documentation

The code below is given as an example on how to convert HM12 to separate Y, U
and V planes. This code assumes frames of 720x576 (PAL) pixels.

The width of a frame is always 720 pixels, regardless of the actual specified width.

If the height is not a multiple of 32 lines, then the captured video is missing mac-
roblocks at the end and is unusable. So the height must be a multiple of 32.

Raw format c example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static unsigned char frame[576*720*3/2];
static unsigned char framey[576*720];
static unsigned char frameu[576*720 / 4];
static unsigned char framev[576*720 / 4];

static void de_macro_y(unsigned char* dst, unsigned char *src, int dstride,
↪→ int w, int h)
{
unsigned int y, x, i;

// descramble Y plane
// dstride = 720 = w
// The Y plane is divided into blocks of 16x16 pixels
// Each block in transmitted in turn, line-by-line.
for (y = 0; y < h; y += 16) {

for (x = 0; x < w; x += 16) {
for (i = 0; i < 16; i++) {

memcpy(dst + x + (y + i) * dstride, src, 16);
src += 16;

}
}

}
}

static void de_macro_uv(unsigned char *dstu, unsigned char *dstv, unsigned␣
↪→char *src, int dstride, int w, int h)
{
unsigned int y, x, i;

// descramble U/V plane
// dstride = 720 / 2 = w
// The U/V values are interlaced (UVUV...).
// Again, the UV plane is divided into blocks of 16x16 UV values.
// Each block in transmitted in turn, line-by-line.
for (y = 0; y < h; y += 16) {

for (x = 0; x < w; x += 8) {
for (i = 0; i < 16; i++) {

int idx = x + (y + i) * dstride;

dstu[idx+0] = src[0]; dstv[idx+0] = src[1];
dstu[idx+1] = src[2]; dstv[idx+1] = src[3];
dstu[idx+2] = src[4]; dstv[idx+2] = src[5];

(continues on next page)

7.9. Video4Linux (V4L) driver-specific documentation 1035

Linux Userspace-api Documentation

(continued from previous page)
dstu[idx+3] = src[6]; dstv[idx+3] = src[7];
dstu[idx+4] = src[8]; dstv[idx+4] = src[9];
dstu[idx+5] = src[10]; dstv[idx+5] = src[11];
dstu[idx+6] = src[12]; dstv[idx+6] = src[13];
dstu[idx+7] = src[14]; dstv[idx+7] = src[15];
src += 16;

}
}

}
}

/***/
int main(int argc, char **argv)
{
FILE *fin;
int i;

if (argc == 1) fin = stdin;
else fin = fopen(argv[1], "r");

if (fin == NULL) {
fprintf(stderr, "cannot open input\n");
exit(-1);

}
while (fread(frame, sizeof(frame), 1, fin) == 1) {

de_macro_y(framey, frame, 720, 720, 576);
de_macro_uv(frameu, framev, frame + 720 * 576, 720 / 2, 720 / 2,␣

↪→576 / 2);
fwrite(framey, sizeof(framey), 1, stdout);
fwrite(framev, sizeof(framev), 1, stdout);
fwrite(frameu, sizeof(frameu), 1, stdout);

}
fclose(fin);
return 0;
}

Format of embedded V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI data

Author: Hans Verkuil <hverkuil@xs4all.nl>

This section describes the V4L2_MPEG_STREAM_VBI_FMT_IVTV format of the
VBI data embedded in an MPEG-2 program stream. This format is in part dic-
tated by some hardware limitations of the ivtv driver (the driver for the Conexant
cx23415/6 chips), in particular a maximum size for the VBI data. Anything longer
is cut off when the MPEG stream is played back through the cx23415.

The advantage of this format is it is very compact and that all VBI data for all lines
can be stored while still fitting within the maximum allowed size.

The stream ID of the VBI data is 0xBD. The maximum size of the embedded data
is 4 + 43 * 36, which is 4 bytes for a header and 2 * 18 VBI lines with a 1 byte
header and a 42 bytes payload each. Anything beyond this limit is cut off by the
cx23415/6 firmware. Besides the data for the VBI lines we also need 36 bits for
a bitmask determining which lines are captured and 4 bytes for a magic cookie,

1036 Chapter 7. Linux Media Infrastructure userspace API

mailto:hverkuil@xs4all.nl

Linux Userspace-api Documentation

signifying that this data package contains V4L2_MPEG_STREAM_VBI_FMT_IVTV
VBI data. If all lines are used, then there is no longer room for the bitmask. To
solve this two different magic numbers were introduced:

‘itv0’: After this magic number two unsigned longs follow. Bits 0-17 of the first
unsigned long denote which lines of the first field are captured. Bits 18-31 of the
first unsigned long and bits 0-3 of the second unsigned long are used for the second
field.

‘ITV0’: This magic number assumes all VBI lines are captured, i.e. it implicitly
implies that the bitmasks are 0xffffffff and 0xf.

After these magic cookies (and the 8 byte bitmask in case of cookie ‘itv0’) the
captured VBI lines start:

For each line the least significant 4 bits of the first byte contain the data type.
Possible values are shown in the table below. The payload is in the following 42
bytes.

Here is the list of possible data types:

#define IVTV_SLICED_TYPE_TELETEXT 0x1 // Teletext (uses lines 6-
↪→22 for PAL)
#define IVTV_SLICED_TYPE_CC 0x4 // Closed Captions (line␣
↪→21 NTSC)
#define IVTV_SLICED_TYPE_WSS 0x5 // Wide Screen Signal␣
↪→(line 23 PAL)
#define IVTV_SLICED_TYPE_VPS 0x7 // Video Programming␣
↪→System (PAL) (line 16)

7.9.2 i.MX Video Capture Driver

Events

ipuX_csiY

This subdev can generate the following event when enabling the second IDMAC
source pad:

• V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR

The user application can subscribe to this event from the ipuX_csiY subdev node.
This event is generated by the Frame Interval Monitor (see below for more on the
FIM).

7.9. Video4Linux (V4L) driver-specific documentation 1037

Linux Userspace-api Documentation

Controls

Frame Interval Monitor in ipuX_csiY

The adv718x decoders can occasionally send corrupt fields during NTSC/PAL sig-
nal re-sync (too little or too many video lines). When this happens, the IPU triggers
a mechanism to re-establish vertical sync by adding 1 dummy line every frame,
which causes a rolling effect from image to image, and can last a long time before
a stable image is recovered. Or sometimes the mechanism doesn’t work at all,
causing a permanent split image (one frame contains lines from two consecutive
captured images).

From experiment it was found that during image rolling, the frame intervals
(elapsed time between two EOF’s) drop below the nominal value for the current
standard, by about one frame time (60 usec), and remain at that value until rolling
stops.

While the reason for this observation isn’t known (the IPU dummy line mecha-
nism should show an increase in the intervals by 1 line time every frame, not a
fixed value), we can use it to detect the corrupt fields using a frame interval mon-
itor. If the FIM detects a bad frame interval, the ipuX_csiY subdev will send the
event V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR. Userland can register with
the FIM event notification on the ipuX_csiY subdev device node. Userland can
issue a streaming restart when this event is received to correct the rolling/split
image.

The ipuX_csiY subdev includes custom controls to tweak some dials for FIM. If
one of these controls is changed during streaming, the FIM will be reset and will
continue at the new settings.

• V4L2_CID_IMX_FIM_ENABLE

Enable/disable the FIM.

• V4L2_CID_IMX_FIM_NUM

How many frame interval measurements to average before comparing against the
nominal frame interval reported by the sensor. This can reduce noise caused by
interrupt latency.

• V4L2_CID_IMX_FIM_TOLERANCE_MIN

If the averaged intervals fall outside nominal by this amount, in microseconds, the
V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR event is sent.

• V4L2_CID_IMX_FIM_TOLERANCE_MAX

If any intervals are higher than this value, those samples are discarded and do not
enter into the average. This can be used to discard really high interval errors that
might be due to interrupt latency from high system load.

• V4L2_CID_IMX_FIM_NUM_SKIP

How many frames to skip after a FIM reset or stream restart before FIM begins
to average intervals.

• V4L2_CID_IMX_FIM_ICAP_CHANNEL / V4L2_CID_IMX_FIM_ICAP_EDGE

1038 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

These controls will configure an input capture channel as the method for measur-
ing frame intervals. This is superior to the default method of measuring frame
intervals via EOF interrupt, since it is not subject to uncertainty errors introduced
by interrupt latency.

Input capture requires hardware support. A VSYNC signal must be routed to one
of the i.MX6 input capture channel pads.

V4L2_CID_IMX_FIM_ICAP_CHANNEL configures which i.MX6 input capture
channel to use. This must be 0 or 1.

V4L2_CID_IMX_FIM_ICAP_EDGE configures which signal edge will trigger in-
put capture events. By default the input capture method is disabled with
a value of IRQ_TYPE_NONE. Set this control to IRQ_TYPE_EDGE_RISING,
IRQ_TYPE_EDGE_FALLING, or IRQ_TYPE_EDGE_BOTH to enable input capture,
triggered on the given signal edge(s).

When input capture is disabled, frame intervals will be measured via EOF inter-
rupt.

File list

drivers/staging/media/imx/ include/media/imx.h include/linux/imx-media.h

Authors

• Steve Longerbeam <steve_longerbeam@mentor.com>

• Philipp Zabel <kernel@pengutronix.de>

• Russell King <linux@armlinux.org.uk>

Copyright (C) 2012-2017 Mentor Graphics Inc.

7.9.3 Maxim Integrated MAX2175 RF to bits tuner driver

The MAX2175 driver implements the following driver-specific controls:

V4L2_CID_MAX2175_I2S_ENABLE

Enable/Disable I2S output of the tuner. This is a private control
that can be accessed only using the subdev interface. Refer to
Documentation/driver-api/media/v4l2-controls.rst for more details.

(0) I2S output is disabled.
(1) I2S output is enabled.

7.9. Video4Linux (V4L) driver-specific documentation 1039

mailto:steve_longerbeam@mentor.com
mailto:kernel@pengutronix.de
mailto:linux@armlinux.org.uk

Linux Userspace-api Documentation

V4L2_CID_MAX2175_HSLS

The high-side/low-side (HSLS) control of the tuner for a given band.

(0) The LO frequency position is below the desired frequency.
(1) The LO frequency position is above the desired frequency.

V4L2_CID_MAX2175_RX_MODE (menu)

The Rx mode controls a number of preset parameters of the tuner like
sample clock (sck), sampling rate etc. These multiple settings are pro-
vided under one single label called Rx mode in the datasheet. The list
below shows the supported modes with a brief description.

"Europe modes"
"FM 1.2"
(0)

This configures FM band with a sample rate of 0.512 million sam-
ples/sec with a 10.24 MHz sck.

"DAB 1.
2" (1)

This configures VHF band with a sample rate of 2.048 million sam-
ples/sec with a 32.768 MHz sck.

"North America modes"
"FM 1.0"
(0)

This configures FM band with a sample rate of 0.7441875 million sam-
ples/sec with a 14.88375 MHz sck.

"DAB 1.
2" (1)

This configures FM band with a sample rate of 0.372 million sam-
ples/sec with a 7.441875 MHz sck.

7.9.4 Vaio Picturebook Motion Eye Camera Driver

Copyright © 2001-2004 Stelian Pop <stelian@popies.net>

Copyright © 2001-2002 Alcôve <www.alcove.com>

Copyright © 2000 Andrew Tridgell <tridge@samba.org>

Private API

The driver supports frame grabbing with the video4linux API, so all video4linux
tools (like xawtv) should work with this driver.

Besides the video4linux interface, the driver has a private interface for accessing
the Motion Eye extended parameters (camera sharpness, agc, video framerate),
the snapshot and the MJPEG capture facilities.

This interface consists of several ioctls (prototypes and structures can be found in
include/linux/meye.h):

MEYEIOC_G_PARAMS and MEYEIOC_S_PARAMS Get and set the extended
parameters of the motion eye camera. The user should always query the cur-
rent parameters with MEYEIOC_G_PARAMS, change what he likes and then
issue the MEYEIOC_S_PARAMS call (checking for -EINVAL). The extended
parameters are described by the meye_params structure.

1040 Chapter 7. Linux Media Infrastructure userspace API

mailto:stelian@popies.net
mailto:tridge@samba.org

Linux Userspace-api Documentation

MEYEIOC_QBUF_CAPT Queue a buffer for capture (the buffers must have been
obtained with a VIDIOCGMBUF call and mmap’ed by the application). The
argument to MEYEIOC_QBUF_CAPT is the buffer number to queue (or -1 to
end capture). The first call to MEYEIOC_QBUF_CAPT starts the streaming
capture.

MEYEIOC_SYNC Takes as an argument the buffer number you want to sync. This
ioctl blocks until the buffer is filled and ready for the application to use. It
returns the buffer size.

MEYEIOC_STILLCAPT and MEYEIOC_STILLJCAPT Takes a snapshot in an
uncompressed or compressed jpeg format. This ioctl blocks until the snap-
shot is done and returns (for jpeg snapshot) the size of the image. The image
data is available from the first mmap’ed buffer.

Look at the ‘motioneye’application code for an actual example.

7.9.5 OMAP 3 Image Signal Processor (ISP) driver

Copyright © 2010 Nokia Corporation

Copyright © 2009 Texas Instruments, Inc.

Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>, Sakari Ailus
<sakari.ailus@iki.fi>, David Cohen <dacohen@gmail.com>

Events

The OMAP 3 ISP driver does support the V4L2 event interface on CCDC and statis-
tics (AEWB, AF and histogram) subdevs.

The CCDC subdev produces V4L2_EVENT_FRAME_SYNC type event on HS_VS
interrupt which is used to signal frame start. Earlier version of this driver used
V4L2_EVENT_OMAP3ISP_HS_VS for this purpose. The event is triggered exactly
when the reception of the first line of the frame starts in the CCDC module. The
event can be subscribed on the CCDC subdev.

(When using parallel interface onemust pay account to correct configuration of the
VS signal polarity. This is automatically correct when using the serial receivers.)

Each of the statistics subdevs is able to produce events. An event is generated
whenever a statistics buffer can be dequeued by a user space application using
the VIDIOC_OMAP3ISP_STAT_REQ IOCTL. The events available are:

• V4L2_EVENT_OMAP3ISP_AEWB

• V4L2_EVENT_OMAP3ISP_AF

• V4L2_EVENT_OMAP3ISP_HIST

The type of the event data is struct omap3isp_stat_event_status for these ioctls. If
there is an error calculating the statistics, there will be an event as usual, but no
related statistics buffer. In this case omap3isp_stat_event_status.buf_err is set to
non-zero.

7.9. Video4Linux (V4L) driver-specific documentation 1041

mailto:laurent.pinchart@ideasonboard.com
mailto:sakari.ailus@iki.fi
mailto:dacohen@gmail.com

Linux Userspace-api Documentation

Private IOCTLs

The OMAP 3 ISP driver supports standard V4L2 IOCTLs and controls where pos-
sible and practical. Much of the functions provided by the ISP, however, does
not fall under the standard IOCTLs —gamma tables and configuration of statistics
collection are examples of such.

In general, there is a private ioctl for configuring each of the blocks containing
hardware-dependent functions.

The following private IOCTLs are supported:

• VIDIOC_OMAP3ISP_CCDC_CFG

• VIDIOC_OMAP3ISP_PRV_CFG

• VIDIOC_OMAP3ISP_AEWB_CFG

• VIDIOC_OMAP3ISP_HIST_CFG

• VIDIOC_OMAP3ISP_AF_CFG

• VIDIOC_OMAP3ISP_STAT_REQ

• VIDIOC_OMAP3ISP_STAT_EN

The parameter structures used by these ioctls are described in in-
clude/linux/omap3isp.h. The detailed functions of the ISP itself related to a
given ISP block is described in the Technical Reference Manuals (TRMs) —see the
end of the document for those.

While it is possible to use the ISP driver without any use of these private IOCTLs
it is not possible to obtain optimal image quality this way. The AEWB, AF and
histogrammodules cannot be used without configuring them using the appropriate
private IOCTLs.

CCDC and preview block IOCTLs

The VIDIOC_OMAP3ISP_CCDC_CFG and VIDIOC_OMAP3ISP_PRV_CFG
IOCTLs are used to configure, enable and disable functions in the CCDC
and preview blocks, respectively. Both IOCTLs control several func-
tions in the blocks they control. VIDIOC_OMAP3ISP_CCDC_CFG IOCTL
accepts a pointer to struct omap3isp_ccdc_update_config as its argu-
ment. Similarly VIDIOC_OMAP3ISP_PRV_CFG accepts a pointer to struct
omap3isp_prev_update_config. The definition of both structures is available in1.

The update field in the structures tells whether to update the configuration for the
specific function and the flag tells whether to enable or disable the function.

The update and flag bit masks accept the following values. Each separate functions
in the CCDC and preview blocks is associated with a flag (either disable or enable;
part of the flag field in the structure) and a pointer to configuration data for the
function.

1 include/linux/omap3isp.h

1042 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

Valid values for the update and flag fields are listed here for VID-
IOC_OMAP3ISP_CCDC_CFG. Values may be or’ed to configure more than one
function in the same IOCTL call.

• OMAP3ISP_CCDC_ALAW

• OMAP3ISP_CCDC_LPF

• OMAP3ISP_CCDC_BLCLAMP

• OMAP3ISP_CCDC_BCOMP

• OMAP3ISP_CCDC_FPC

• OMAP3ISP_CCDC_CULL

• OMAP3ISP_CCDC_CONFIG_LSC

• OMAP3ISP_CCDC_TBL_LSC

The corresponding values for the VIDIOC_OMAP3ISP_PRV_CFG are here:

• OMAP3ISP_PREV_LUMAENH

• OMAP3ISP_PREV_INVALAW

• OMAP3ISP_PREV_HRZ_MED

• OMAP3ISP_PREV_CFA

• OMAP3ISP_PREV_CHROMA_SUPP

• OMAP3ISP_PREV_WB

• OMAP3ISP_PREV_BLKADJ

• OMAP3ISP_PREV_RGB2RGB

• OMAP3ISP_PREV_COLOR_CONV

• OMAP3ISP_PREV_YC_LIMIT

• OMAP3ISP_PREV_DEFECT_COR

• OMAP3ISP_PREV_GAMMABYPASS

• OMAP3ISP_PREV_DRK_FRM_CAPTURE

• OMAP3ISP_PREV_DRK_FRM_SUBTRACT

• OMAP3ISP_PREV_LENS_SHADING

• OMAP3ISP_PREV_NF

• OMAP3ISP_PREV_GAMMA

The associated configuration pointer for the function may not be NULL when en-
abling the function. When disabling a function the configuration pointer is ignored.

7.9. Video4Linux (V4L) driver-specific documentation 1043

Linux Userspace-api Documentation

Statistic blocks IOCTLs

The statistics subdevs do offer more dynamic configuration options than the other
subdevs. They can be enabled, disable and reconfigured when the pipeline is in
streaming state.

The statistics blocks always get the input image data from the CCDC (as the his-
togram memory read isn’t implemented). The statistics are dequeueable by the
user from the statistics subdev nodes using private IOCTLs.

The private IOCTLs offered by the AEWB, AF and histogram subdevs are heavily
reflected by the register level interface offered by the ISP hardware. There are as-
pects that are purely related to the driver implementation and these are discussed
next.

VIDIOC_OMAP3ISP_STAT_EN

This private IOCTL enables/disables a statistic module. If this request is done
before streaming, it will take effect as soon as the pipeline starts to stream. If the
pipeline is already streaming, it will take effect as soon as the CCDC becomes idle.

VIDIOC_OMAP3ISP_AEWB_CFG, VIDIOC_OMAP3ISP_HIST_CFG and VID-
IOC_OMAP3ISP_AF_CFG

Those IOCTLs are used to configure the modules. They require user applications
to have an in-depth knowledge of the hardware. Most of the fields explanation
can be found on OMAP’s TRMs. The two following fields common to all the above
configure private IOCTLs require explanation for better understanding as they are
not part of the TRM.

omap3isp_[h3a_af/h3a_aewb/hist]_config.buf_size:

The modules handle their buffers internally. The necessary buffer size for the
module’s data output depends on the requested configuration. Although the driver
supports reconfiguration while streaming, it does not support a reconfiguration
which requires bigger buffer size than what is already internally allocated if the
module is enabled. It will return -EBUSY on this case. In order to avoid such
condition, either disable/reconfigure/enable the module or request the necessary
buffer size during the first configuration while the module is disabled.

The internal buffer size allocation considers the requested configuration’s min-
imum buffer size and the value set on buf_size field. If buf_size field is out of
[minimum, maximum] buffer size range, it’s clamped to fit in there. The driver
then selects the biggest value. The corrected buf_size value is written back to user
application.

omap3isp_[h3a_af/h3a_aewb/hist]_config.config_counter:

As the configuration doesn’t take effect synchronously to the request, the driver
must provide a way to track this information to provide more accurate data. After
a configuration is requested, the config_counter returned to user space applica-
tion will be an unique value associated to that request. When user application
receives an event for buffer availability or when a new buffer is requested, this
config_counter is used to match a buffer data and a configuration.

1044 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

VIDIOC_OMAP3ISP_STAT_REQ

Send to user space the oldest data available in the internal buffer queue and
discards such buffer afterwards. The field omap3isp_stat_data.frame_number
matches with the video buffer’s field_count.

References

7.9.6 The Linux USB Video Class (UVC) driver

This file documents some driver-specific aspects of the UVC driver, such as driver-
specific ioctls and implementation notes.

Questions and remarks can be sent to the Linux UVC development mailing list at
linux-uvc-devel@lists.berlios.de.

Extension Unit (XU) support

Introduction

The UVC specification allows for vendor-specific extensions through extension
units (XUs). The Linux UVC driver supports extension unit controls (XU controls)
through two separate mechanisms:

• through mappings of XU controls to V4L2 controls

• through a driver-specific ioctl interface

The first one allows generic V4L2 applications to use XU controls by mapping cer-
tain XU controls onto V4L2 controls, which then show up during ordinary control
enumeration.

The second mechanism requires uvcvideo-specific knowledge for the application
to access XU controls but exposes the entire UVC XU concept to user space for
maximum flexibility.

Both mechanisms complement each other and are described in more detail below.

Control mappings

The UVC driver provides an API for user space applications to define so-called
control mappings at runtime. These allow for individual XU controls or byte ranges
thereof to be mapped to new V4L2 controls. Such controls appear and function
exactly like normal V4L2 controls (i.e. the stock controls, such as brightness,
contrast, etc.). However, reading or writing of such a V4L2 controls triggers a
read or write of the associated XU control.

The ioctl used to create these control mappings is called UVCIOC_CTRL_MAP. Pre-
vious driver versions (before 0.2.0) required another ioctl to be used beforehand
(UVCIOC_CTRL_ADD) to pass XU control information to the UVC driver. This is no
longer necessary as newer uvcvideo versions query the information directly from
the device.

7.9. Video4Linux (V4L) driver-specific documentation 1045

mailto:linux-uvc-devel@lists.berlios.de

Linux Userspace-api Documentation

For details on the UVCIOC_CTRL_MAP ioctl please refer to the section titled
“IOCTL reference”below.
3. Driver specific XU control interface

For applications that need to access XU controls directly, e.g. for testing pur-
poses, firmware upload, or accessing binary controls, a second mechanism to
access XU controls is provided in the form of a driver-specific ioctl, namely
UVCIOC_CTRL_QUERY.

A call to this ioctl allows applications to send queries to the UVC driver that directly
map to the low-level UVC control requests.

In order to make such a request the UVC unit ID of the control’s extension unit
and the control selector need to be known. This information either needs to be
hardcoded in the application or queried using other ways such as by parsing the
UVC descriptor or, if available, using the media controller API to enumerate a
device’s entities.
Unless the control size is already known it is necessary to first make a
UVC_GET_LEN requests in order to be able to allocate a sufficiently large buffer
and set the buffer size to the correct value. Similarly, to find out whether
UVC_GET_CUR or UVC_SET_CUR are valid requests for a given control, a
UVC_GET_INFO request should be made. The bits 0 (GET supported) and 1 (SET
supported) of the resulting byte indicate which requests are valid.

With the addition of the UVCIOC_CTRL_QUERY ioctl the UVCIOC_CTRL_GET and
UVCIOC_CTRL_SET ioctls have become obsolete since their functionality is a sub-
set of the former ioctl. For the time being they are still supported but application
developers are encouraged to use UVCIOC_CTRL_QUERY instead.

For details on the UVCIOC_CTRL_QUERY ioctl please refer to the section titled
“IOCTL reference”below.

Security

The API doesn’t currently provide a fine-grained access control facility. The
UVCIOC_CTRL_ADD and UVCIOC_CTRL_MAP ioctls require super user permis-
sions.

Suggestions on how to improve this are welcome.

Debugging

In order to debug problems related to XU controls or controls in general it is recom-
mended to enable the UVC_TRACE_CONTROL bit in the module parameter‘trace’
. This causes extra output to be written into the system log.

1046 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

IOCTL reference

UVCIOC_CTRL_MAP - Map a UVC control to a V4L2 control

Argument: struct uvc_xu_control_mapping

Description:
This ioctl creates a mapping between a UVC control or part of a UVC con-
trol and a V4L2 control. Once mappings are defined, userspace applica-
tions can access vendor-defined UVC control through the V4L2 control
API.

To create a mapping, applications fill the uvc_xu_control_mapping struc-
ture with information about an existing UVC control defined with
UVCIOC_CTRL_ADD and a new V4L2 control.

A UVC control can be mapped to several V4L2 controls. For instance,
a UVC pan/tilt control could be mapped to separate pan and tilt V4L2
controls. The UVC control is divided into non overlapping fields using
the ‘size’and ‘offset’fields and are then independently mapped to
V4L2 control.

For signed integer V4L2 controls the data_type field should be set to
UVC_CTRL_DATA_TYPE_SIGNED. Other values are currently ignored.

Return value:
On success 0 is returned. On error -1 is returned and errno is set appro-
priately.

ENOMEM Not enough memory to perform the operation.

EPERM Insufficient privileges (super user privileges are required).

EINVAL No such UVC control.
EOVERFLOW The requested offset and size would overflow the UVC

control.

EEXIST Mapping already exists.

Data types:

* struct uvc_xu_control_mapping

__u32 id V4L2 control identifier
__u8 name[32] V4L2 control name
__u8 entity[16] UVC extension unit GUID
__u8 selector UVC control selector
__u8 size V4L2 control size (in bits)
__u8 offset V4L2 control offset (in bits)
enum v4l2_ctrl_type

v4l2_type V4L2 control type
enum uvc_control_data_type

data_type UVC control data type
struct uvc_menu_info

*menu_info Array of menu entries (for menu controls only)
(continues on next page)

7.9. Video4Linux (V4L) driver-specific documentation 1047

Linux Userspace-api Documentation

(continued from previous page)
__u32 menu_count Number of menu entries (for menu controls only)

* struct uvc_menu_info

__u32 value Menu entry value used by the device
__u8 name[32] Menu entry name

* enum uvc_control_data_type

UVC_CTRL_DATA_TYPE_RAW Raw control (byte array)
UVC_CTRL_DATA_TYPE_SIGNED Signed integer
UVC_CTRL_DATA_TYPE_UNSIGNED Unsigned integer
UVC_CTRL_DATA_TYPE_BOOLEAN Boolean
UVC_CTRL_DATA_TYPE_ENUM Enumeration
UVC_CTRL_DATA_TYPE_BITMASK Bitmask

UVCIOC_CTRL_QUERY - Query a UVC XU control

Argument: struct uvc_xu_control_query

Description:
This ioctl queries a UVC XU control identified by its extension unit ID
and control selector.

There are a number of different queries available that closely corre-
spond to the low-level control requests described in the UVC specifi-
cation. These requests are:

UVC_GET_CUR Obtain the current value of the control.

UVC_GET_MIN Obtain the minimum value of the control.

UVC_GET_MAX Obtain the maximum value of the control.

UVC_GET_DEF Obtain the default value of the control.
UVC_GET_RES Query the resolution of the control, i.e. the step size of

the allowed control values.

UVC_GET_LEN Query the size of the control in bytes.

UVC_GET_INFO Query the control information bitmap, which indicates
whether get/set requests are supported.

UVC_SET_CUR Update the value of the control.

Applications must set the ‘size’field to the correct length for the con-
trol. Exceptions are the UVC_GET_LEN and UVC_GET_INFO queries,
for which the size must be set to 2 and 1, respectively. The‘data’field
must point to a valid writable buffer big enough to hold the indicated
number of data bytes.

Data is copied directly from the device without any driver-side process-
ing. Applications are responsible for data buffer formatting, including
little-endian/big-endian conversion. This is particularly important for

1048 Chapter 7. Linux Media Infrastructure userspace API

Linux Userspace-api Documentation

the result of the UVC_GET_LEN requests, which is always returned as a
little-endian 16-bit integer by the device.

Return value:
On success 0 is returned. On error -1 is returned and errno is set appro-
priately.

ENOENT The device does not support the given control or the specified
extension unit could not be found.

ENOBUFS The specified buffer size is incorrect (too big or too small).

EINVAL An invalid request code was passed.
EBADRQC The given request is not supported by the given control.

EFAULT The data pointer references an inaccessible memory area.

Data types:

* struct uvc_xu_control_query

__u8 unit Extension unit ID
__u8 selector Control selector
__u8 query Request code to send to the device
__u16 size Control data size (in bytes)
__u8 *data Control value

Copyright © 2009-2020 : LinuxTV Developers

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation, with no
Invariant Sections. A copy of the license is included in the chapter
entitled "GNU Free Documentation License".

Please notice that some documents inside themedia userspace API, when explicitly
mentioned on its source code, are dual-licensed with GNU Free Documentation
License Version 1.1 and with the GNU General Public License:

This documentation is free software; you can redistribute it and/or modify␣
↪→it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)␣
↪→any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

For more details see the file COPYING in the source distribution of Linux.

7.9. Video4Linux (V4L) driver-specific documentation 1049

