Linux Userspace-api Documentation

The kernel development community

Jul 14, 2020

CONTENTS

While much of the kernel's user-space API is documented elsewhere (particularly in the man-pages project), some user-space information can also be found in the kernel tree itself. This manual is intended to be the place where this information is gathered.

Table of contents

NO NEW PRIVILEGES FLAG

The execve system call can grant a newly-started program privileges that its parent did not have. The most obvious examples are setuid/setgid programs and file capabilities. To prevent the parent program from gaining these privileges as well, the kernel and user code must be careful to prevent the parent from doing anything that could subvert the child. For example:

- The dynamic loader handles LD_* environment variables differently if a program is setuid.
- chroot is disallowed to unprivileged processes, since it would allow /etc/ passwd to be replaced from the point of view of a process that inherited chroot.
- The exec code has special handling for ptrace.

These are all ad-hoc fixes. The no_new_privs bit (since Linux 3.5) is a new, generic mechanism to make it safe for a process to modify its execution environment in a manner that persists across execve. Any task can set no_new_privs. Once the bit is set, it is inherited across fork, clone, and execve and cannot be unset. With no_new_privs set, execve() promises not to grant the privilege to do anything that could not have been done without the execve call. For example, the setuid and setgid bits will no longer change the uid or gid; file capabilities will not add to the permitted set, and LSMs will not relax constraints after execve.

To set no_new_privs, use:

```
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
```

Be careful, though: LSMs might also not tighten constraints on exec in no_new_privs mode. (This means that setting up a general-purpose service launcher to set no_new_privs before execing daemons may interfere with LSM-based sandboxing.)

Note that no_new_privs does not prevent privilege changes that do not involve execve(). An appropriately privileged task can still call setuid(2) and receive SCM_RIGHTS datagrams.

There are two main use cases for no_new_privs so far:

• Filters installed for the seccomp mode 2 sandbox persist across execve and can change the behavior of newly-executed programs. Unprivileged users are therefore only allowed to install such filters if no_new_privs is set.

• By itself, no_new_privs can be used to reduce the attack surface available to an unprivileged user. If everything running with a given uid has no_new_privs set, then that uid will be unable to escalate its privileges by directly attacking setuid, setgid, and fcap-using binaries; it will need to compromise something without the no_new_privs bit set first.

In the future, other potentially dangerous kernel features could become available to unprivileged tasks if no_new_privs is set. In principle, several options to unshare(2) and clone(2) would be safe when no_new_privs is set, and no_new_privs + chroot is considerable less dangerous than chroot by itself.

SECCOMP BPF (SECURE COMPUTING WITH FILTERS)

2.1 Introduction

A large number of system calls are exposed to every userland process with many of them going unused for the entire lifetime of the process. As system calls change and mature, bugs are found and eradicated. A certain subset of userland applications benefit by having a reduced set of available system calls. The resulting set reduces the total kernel surface exposed to the application. System call filtering is meant for use with those applications.

Seccomp filtering provides a means for a process to specify a filter for incoming system calls. The filter is expressed as a Berkeley Packet Filter (BPF) program, as with socket filters, except that the data operated on is related to the system call being made: system call number and the system call arguments. This allows for expressive filtering of system calls using a filter program language with a long history of being exposed to userland and a straightforward data set.

Additionally, BPF makes it impossible for users of seccomp to fall prey to time-ofcheck-time-of-use (TOCTOU) attacks that are common in system call interposition frameworks. BPF programs may not dereference pointers which constrains all filters to solely evaluating the system call arguments directly.

2.2 What it isn't

System call filtering isn' t a sandbox. It provides a clearly defined mechanism for minimizing the exposed kernel surface. It is meant to be a tool for sandbox developers to use. Beyond that, policy for logical behavior and information flow should be managed with a combination of other system hardening techniques and, potentially, an LSM of your choosing. Expressive, dynamic filters provide further options down this path (avoiding pathological sizes or selecting which of the multiplexed system calls in socketcall() is allowed, for instance) which could be construed, incorrectly, as a more complete sandboxing solution.

2.3 Usage

An additional seccomp mode is added and is enabled using the same prctl(2) call as the strict seccomp. If the architecture has CONFIG_HAVE_ARCH_SECCOMP_FILTER, then filters may be added as below:

PR_SET_SECCOMP: Now takes an additional argument which specifies a new filter using a BPF program. The BPF program will be executed over struct seccomp_data reflecting the system call number, arguments, and other meta-data. The BPF program must then return one of the acceptable values to inform the kernel which action should be taken.

Usage:

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, prog);

The 'prog' argument is a pointer to a struct sock_fprog which will contain the filter program. If the program is invalid, the call will return -1 and set errno to EINVAL.

If fork/clone and execve are allowed by @prog, any child processes will be constrained to the same filters and system call ABI as the parent.

Prior to use, the task must call prctl(PR_SET_NO_NEW_PRIVS, 1) or run with CAP_SYS_ADMIN privileges in its namespace. If these are not true, -EACCES will be returned. This requirement ensures that filter programs cannot be applied to child processes with greater privileges than the task that installed them.

Additionally, if prctl(2) is allowed by the attached filter, additional filters may be layered on which will increase evaluation time, but allow for further decreasing the attack surface during execution of a process.

The above call returns 0 on success and non-zero on error.

2.4 Return values

A seccomp filter may return any of the following values. If multiple filters exist, the return value for the evaluation of a given system call will always use the highest precedent value. (For example, SECCOMP_RET_KILL_PROCESS will always take precedence.)

In precedence order, they are:

- SECCOMP_RET_KILL_PROCESS: Results in the entire process exiting immediately
 without executing the system call. The exit status of the task (status & 0x7f)
 will be SIGSYS, not SIGKILL.
- SECCOMP_RET_KILL_THREAD: Results in the task exiting immediately without executing the system call. The exit status of the task (status & 0x7f) will be SIGSYS, not SIGKILL.
- SECCOMP_RET_TRAP: Results in the kernel sending a SIGSYS signal to the triggering
 task without executing the system call. siginfo->si_call_addr will show
 the address of the system call instruction, and siginfo->si_syscall and

siginfo->si_arch will indicate which syscall was attempted. The program counter will be as though the syscall happened (i.e. it will not point to the syscall instruction). The return value register will contain an arch- dependent value - if resuming execution, set it to something sensible. (The architecture dependency is because replacing it with -ENOSYS could overwrite some useful information.)

The SECCOMP_RET_DATA portion of the return value will be passed as si_errno.

SIGSYS triggered by seccomp will have a si_code of SYS_SECCOMP.

- **SECCOMP_RET_ERRNO:** Results in the lower 16-bits of the return value being passed to userland as the errno without executing the system call.
- **SECCOMP_RET_USER_NOTIF:** Results in a struct seccomp_notif message sent on the userspace notification fd, if it is attached, or -ENOSYS if it is not. See below on discussion of how to handle user notifications.
- SECCOMP_RET_TRACE: When returned, this value will cause the kernel to attempt to notify a ptrace()-based tracer prior to executing the system call. If there is no tracer present, -ENOSYS is returned to userland and the system call is not executed.

A tracer will be notified if it requests PTRACE_O_TRACESECCOMP using ptrace(PTRACE_SETOPTIONS). The tracer will be notified of a PTRACE_EVENT_SECCOMP and the SECCOMP_RET_DATA portion of the BPF program return value will be available to the tracer via PTRACE_GETEVENTMSG.

The tracer can skip the system call by changing the syscall number to -1. Alternatively, the tracer can change the system call requested by changing the system call to a valid syscall number. If the tracer asks to skip the system call, then the system call will appear to return the value that the tracer puts in the return value register.

The seccomp check will not be run again after the tracer is notified. (This means that seccomp-based sandboxes MUST NOT allow use of ptrace, even of other sandboxed processes, without extreme care; ptracers can use this mechanism to escape.)

SECCOMP_RET_LOG: Results in the system call being executed after it is logged. This should be used by application developers to learn which syscalls their application needs without having to iterate through multiple test and development cycles to build the list.

This action will only be logged if "log" is present in the actions_logged sysctl string.

SECCOMP_RET_ALLOW: Results in the system call being executed.

If multiple filters exist, the return value for the evaluation of a given system call will always use the highest precedent value.

Precedence is only determined using the SECCOMP_RET_ACTION mask. When multiple filters return values of the same precedence, only the SECCOMP_RET_DATA from the most recently installed filter will be returned.

2.5 Pitfalls

The biggest pitfall to avoid during use is filtering on system call number without checking the architecture value. Why? On any architecture that supports multiple system call invocation conventions, the system call numbers may vary based on the specific invocation. If the numbers in the different calling conventions overlap, then checks in the filters may be abused. Always check the arch value!

2.6 Example

The samples/seccomp/ directory contains both an x86-specific example and a more generic example of a higher level macro interface for BPF program generation.

2.7 Userspace Notification

The SECCOMP_RET_USER_NOTIF return code lets seccomp filters pass a particular syscall to userspace to be handled. This may be useful for applications like container managers, which wish to intercept particular syscalls (mount(), finit_module(), etc.) and change their behavior.

To acquire a notification FD, use the SECCOMP_FILTER_FLAG_NEW_LISTENER argument to the seccomp() syscall:

which (on success) will return a listener fd for the filter, which can then be passed around via SCM_RIGHTS or similar. Note that filter fds correspond to a particular filter, and not a particular task. So if this task then forks, notifications from both tasks will appear on the same filter fd. Reads and writes to/from a filter fd are also synchronized, so a filter fd can safely have many readers.

The interface for a seccomp notification fd consists of two structures:

```
struct seccomp_notif_sizes {
    __ul6 seccomp_notif;
    __ul6 seccomp_notif_resp;
    __ul6 seccomp_data;
};
struct seccomp_notif {
    __u64 id;
    __u32 pid;
    __u32 flags;
    struct seccomp_data data;
};
struct seccomp_notif_resp {
    __u64 id;
    __s64 val;
```

(continues on next page)

(continued from previous page)

```
____s32 error;
____u32 flags;
};
```

The struct seccomp_notif_sizes structure can be used to determine the size of the various structures used in seccomp notifications. The size of struct seccomp_data may change in the future, so code should use:

struct seccomp_notif_sizes sizes; seccomp(SECCOMP_GET_NOTIF_SIZES, 0, &sizes);

to determine the size of the various structures to allocate. See samples/seccomp/user-trap.c for an example.

Users can read via ioctl(SECCOMP_IOCTL_NOTIF_RECV) (or poll()) on a seccomp notification fd to receive a struct seccomp_notif, which contains five members: the input length of the structure, a unique-per-filter id, the pid of the task which triggered this request (which may be 0 if the task is in a pid ns not visible from the listener' s pid namespace), a flags member which for now only has SECCOMP_NOTIF_FLAG_SIGNALED, representing whether or not the notification is a result of a non-fatal signal, and the data passed to seccomp. Userspace can then make a decision based on this information about what to do, and ioctl(SECCOMP_IOCTL_NOTIF_SEND) a response, indicating what should be returned to userspace. The id member of struct seccomp_notif_resp should be the same id as in struct seccomp_notif.

It is worth noting that struct seccomp_data contains the values of register arguments to the syscall, but does not contain pointers to memory. The task's memory is accessible to suitably privileged traces via ptrace() or /proc/pid/mem. However, care should be taken to avoid the TOCTOU mentioned above in this document: all arguments being read from the tracee's memory should be read into the tracer's memory before any policy decisions are made. This allows for an atomic decision on syscall arguments.

2.8 Sysctls

Seccomp's sysctl files can be found in the /proc/sys/kernel/seccomp/ directory. Here's a description of each file in that directory:

actions_avail: A read-only ordered list of seccomp return values (refer to the SECCOMP_RET_* macros above) in string form. The ordering, from left-toright, is the least permissive return value to the most permissive return value.

The list represents the set of seccomp return values supported by the kernel. A userspace program may use this list to determine if the actions found in the seccomp.h, when the program was built, differs from the set of actions actually supported in the current running kernel.

actions_logged: A read-write ordered list of seccomp return values (refer to the SECCOMP_RET_* macros above) that are allowed to be logged. Writes to the file do not need to be in ordered form but reads from the file will be ordered in the same way as the actions_avail sysctl.

The allow string is not accepted in the actions_logged sysctl as it is not possible to log SECCOMP_RET_ALLOW actions. Attempting to write allow to the sysctl will result in an EINVAL being returned.

2.9 Adding architecture support

See arch/Kconfig for the authoritative requirements. In general, if an architecture supports both ptrace_event and seccomp, it will be able to support seccomp filter with minor fixup: SIGSYS support and seccomp return value checking. Then it must just add CONFIG_HAVE_ARCH_SECCOMP_FILTER to its arch-specific Kconfig.

2.10 Caveats

The vDSO can cause some system calls to run entirely in userspace, leading to surprises when you run programs on different machines that fall back to real syscalls. To minimize these surprises on x86, make sure you test with /sys/devices/ system/clocksource/clocksource0/current_clocksource set to something like acpi_pm.

On x86-64, vsyscall emulation is enabled by default. (vsyscalls are legacy variants on vDSO calls.) Currently, emulated vsyscalls will honor seccomp, with a few oddities:

- A return value of SECCOMP_RET_TRAP will set a si_call_addr pointing to the vsyscall entry for the given call and not the address after the 'syscall' instruction. Any code which wants to restart the call should be aware that (a) a ret instruction has been emulated and (b) trying to resume the syscall will again trigger the standard vsyscall emulation security checks, making resuming the syscall mostly pointless.
- A return value of SECCOMP_RET_TRACE will signal the tracer as usual, but the syscall may not be changed to another system call using the orig_rax register. It may only be changed to -1 order to skip the currently emulated call. Any other change MAY terminate the process. The rip value seen by the tracer will be the syscall entry address; this is different from normal behavior. The tracer MUST NOT modify rip or rsp. (Do not rely on other changes terminating the process. They might work. For example, on some kernels, choosing a syscall that only exists in future kernels will be correctly emulated (by returning -ENOSYS).

To detect this quirky behavior, check for addr & -0x0C00 == 0xFFFFFFFF600000. (For SECCOMP_RET_TRACE, use rip. For SECCOMP_RET_TRAP, use siginfo->si_call_addr.) Do not check any other condition: future kernels may improve vsyscall emulation and current kernels in vsyscall=native mode will behave differently, but the instructions at $0xF...F600{0,4,8,C}00$ will not be system calls in these cases.

Note that modern systems are unlikely to use vsyscalls at all – they are a legacy feature and they are considerably slower than standard syscalls. New code will use the vDSO, and vDSO-issued system calls are indistinguishable from normal system calls.

CHAPTER THREE

UNSHARE SYSTEM CALL

This document describes the new system call, unshare(). The document provides an overview of the feature, why it is needed, how it can be used, its interface specification, design, implementation and how it can be tested.

3.1 Change Log

version 0.1 Initial document, Janak Desai (janak@us.ibm.com), Jan 11, 2006

3.2 Contents

- 1) Overview
- 2) Benefits
- 3) Cost
- 4) Requirements
- 5) Functional Specification
- 6) High Level Design
- 7) Low Level Design
- 8) Test Specification
- 9) Future Work

3.3 1) Overview

Most legacy operating system kernels support an abstraction of threads as multiple execution contexts within a process. These kernels provide special resources and mechanisms to maintain these "threads". The Linux kernel, in a clever and simple manner, does not make distinction between processes and "threads". The kernel allows processes to share resources and thus they can achieve legacy "threads" behavior without requiring additional data structures and mechanisms in the kernel. The power of implementing threads in this manner comes not only from its simplicity but also from allowing application programmers to work outside the confinement of all-or-nothing shared resources of legacy threads. On Linux, at the time of thread creation using the clone system call, applications can selectively choose which resources to share between threads.

unshare() system call adds a primitive to the Linux thread model that allows threads to selectively 'unshare' any resources that were being shared at the time of their creation. unshare() was conceptualized by Al Viro in the August of 2000, on the Linux-Kernel mailing list, as part of the discussion on POSIX threads on Linux. unshare() augments the usefulness of Linux threads for applications that would like to control shared resources without creating a new process. unshare() is a natural addition to the set of available primitives on Linux that implement the concept of process/thread as a virtual machine.

3.4 2) Benefits

unshare() would be useful to large application frameworks such as PAM where creating a new process to control sharing/unsharing of process resources is not possible. Since namespaces are shared by default when creating a new process using fork or clone, unshare() can benefit even non-threaded applications if they have a need to disassociate from default shared namespace. The following lists two use-cases where unshare() can be used.

3.4.1 2.1 Per-security context namespaces

unshare() can be used to implement polyinstantiated directories using the kernel's per-process namespace mechanism. Polyinstantiated directories, such as per-user and/or per-security context instance of /tmp, /var/tmp or per-security context instance of a user's home directory, isolate user processes when working with these directories. Using unshare(), a PAM module can easily setup a private namespace for a user at login. Polyinstantiated directories are required for Common Criteria certification with Labeled System Protection Profile, however, with the availability of shared-tree feature in the Linux kernel, even regular Linux systems can benefit from setting up private namespaces at login and polyinstantiating /tmp, /var/tmp and other directories deemed appropriate by system administrators.

3.4.2 2.2 unsharing of virtual memory and/or open files

Consider a client/server application where the server is processing client requests by creating processes that share resources such as virtual memory and open files. Without unshare(), the server has to decide what needs to be shared at the time of creating the process which services the request. unshare() allows the server an ability to disassociate parts of the context during the servicing of the request. For large and complex middleware application frameworks, this ability to unshare() after the process was created can be very useful.

3.5 3) Cost

In order to not duplicate code and to handle the fact that unshare() works on an active task (as opposed to clone/fork working on a newly allocated inactive task) unshare() had to make minor reorganizational changes to copy_* functions utilized by clone/fork system call. There is a cost associated with altering existing, well tested and stable code to implement a new feature that may not get exercised extensively in the beginning. However, with proper design and code review of the changes and creation of an unshare() test for the LTP the benefits of this new feature can exceed its cost.

3.6 4) Requirements

unshare() reverses sharing that was done using clone(2) system call, so unshare() should have a similar interface as clone(2). That is, since flags in clone(int flags, void *stack) specifies what should be shared, similar flags in unshare(int flags) should specify what should be unshared. Unfortunately, this may appear to invert the meaning of the flags from the way they are used in clone(2). However, there was no easy solution that was less confusing and that allowed incremental context unsharing in future without an ABI change.

unshare() interface should accommodate possible future addition of new context flags without requiring a rebuild of old applications. If and when new context flags are added, unshare() design should allow incremental unsharing of those resources on an as needed basis.

3.7 5) Functional Specification

 $\ensuremath{\textbf{NAME}}$ unshare - disassociate parts of the process execution context

SYNOPSIS #include <sched.h>

int unshare(int flags);

DESCRIPTION unshare() allows a process to disassociate parts of its execution context that are currently being shared with other processes. Part of execution context, such as the namespace, is shared by default when a new process is created using fork(2), while other parts, such as the virtual memory, open file descriptors, etc, may be shared by explicit request to share them when creating a process using clone(2).

The main use of unshare() is to allow a process to control its shared execution context without creating a new process.

The flags argument specifies one or bitwise-or' ed of several of the following constants.

- **CLONE_FS** If CLONE_FS is set, file system information of the caller is disassociated from the shared file system information.
- **CLONE_FILES** If CLONE_FILES is set, the file descriptor table of the caller is disassociated from the shared file descriptor table.

- **CLONE_NEWNS** If CLONE_NEWNS is set, the namespace of the caller is disassociated from the shared namespace.
- **CLONE_VM** If CLONE_VM is set, the virtual memory of the caller is disassociated from the shared virtual memory.
- **RETURN VALUE** On success, zero returned. On failure, -1 is returned and errno is

ERRORS

- **EPERM CLONE_NEWNS was specified by a non-root process (process** without CAP_SYS_ADMIN).
- **ENOMEM Cannot allocate sufficient memory to copy parts of caller's** context that need to be unshared.

EINVAL Invalid flag was specified as an argument.

CONFORMING TO The unshare() call is Linux-specific and should not be used in programs intended to be portable.

SEE ALSO clone(2), fork(2)

3.8 6) High Level Design

Depending on the flags argument, the unshare() system call allocates appropriate process context structures, populates it with values from the current shared version, associates newly duplicated structures with the current task structure and releases corresponding shared versions. Helper functions of clone (copy_*) could not be used directly by unshare() because of the following two reasons.

- clone operates on a newly allocated not-yet-active task structure, where as unshare() operates on the current active task. Therefore unshare() has to take appropriate task_lock() before associating newly duplicated context structures
- 2) unshare() has to allocate and duplicate all context structures that are being unshared, before associating them with the current task and releasing older shared structures. Failure do so will create race conditions and/or oops when trying to backout due to an error. Consider the case of unsharing both virtual memory and namespace. After successfully unsharing vm, if the system call encounters an error while allocating new namespace structure, the error return code will have to reverse the unsharing of vm. As part of the reversal the system call will have to go back to older, shared, vm structure, which may not exist anymore.

Therefore code from copy_* functions that allocated and duplicated current context structure was moved into new dup_* functions. Now, copy_* functions call dup_* functions to allocate and duplicate appropriate context structures and then associate them with the task structure that is being constructed. unshare() system call on the other hand performs the following:

1) Check flags to force missing, but implied, flags

- 2) For each context structure, call the corresponding unshare() helper function to allocate and duplicate a new context structure, if the appropriate bit is set in the flags argument.
- 3) If there is no error in allocation and duplication and there are new context structures then lock the current task structure, associate new context structures with the current task structure, and release the lock on the current task structure.
- 4) Appropriately release older, shared, context structures.

3.9 7) Low Level Design

Implementation of unshare() can be grouped in the following 4 different items:

- a) Reorganization of existing copy_* functions
- b) unshare() system call service function
- c) unshare() helper functions for each different process context
- d) Registration of system call number for different architectures

3.9.1 7.1) Reorganization of copy_* functions

Each copy function such as copy_mm, copy_namespace, copy_files, etc, had roughly two components. The first component allocated and duplicated the appropriate structure and the second component linked it to the task structure passed in as an argument to the copy function. The first component was split into its own function. These dup_* functions allocated and duplicated the appropriate context structure. The reorganized copy_* functions invoked their corresponding dup_* functions and then linked the newly duplicated structures to the task structure with which the copy function was called.

3.9.2 7.2) unshare() system call service function

- Check flags Force implied flags. If CLONE_THREAD is set force CLONE_VM. If CLONE_VM is set, force CLONE_SIGHAND. If CLONE_SIGHAND is set and signals are also being shared, force CLONE_THREAD. If CLONE_NEWNS is set, force CLONE_FS.
- For each context flag, invoke the corresponding unshare_* helper routine with flags passed into the system call and a reference to pointer pointing the new unshared structure
- If any new structures are created by unshare_* helper functions, take the task_lock() on the current task, modify appropriate context pointers, and release the task lock.
- For all newly unshared structures, release the corresponding older, shared, structures.

3.9.3 7.3) unshare_* helper functions

For unshare_* helpers corresponding to CLONE_SYSVSEM, CLONE_SIGHAND, and CLONE_THREAD, return -EINVAL since they are not implemented yet. For others, check the flag value to see if the unsharing is required for that structure. If it is, invoke the corresponding dup_* function to allocate and duplicate the structure and return a pointer to it.

3.9.4 7.4) Finally

Appropriately modify architecture specific code to register the new system call.

3.10 8) Test Specification

The test for unshare() should test the following:

- 1) Valid flags: Test to check that clone flags for signal and signal handlers, for which unsharing is not implemented yet, return -EINVAL.
- 2) Missing/implied flags: Test to make sure that if unsharing namespace without specifying unsharing of filesystem, correctly unshares both namespace and filesystem information.
- 3) For each of the four (namespace, filesystem, files and vm) supported unsharing, verify that the system call correctly unshares the appropriate structure. Verify that unsharing them individually as well as in combination with each other works as expected.
- 4) Concurrent execution: Use shared memory segments and futex on an address in the shm segment to synchronize execution of about 10 threads. Have a couple of threads execute execve, a couple _exit and the rest unshare with different combination of flags. Verify that unsharing is performed as expected and that there are no oops or hangs.

3.11 9) Future Work

The current implementation of unshare() does not allow unsharing of signals and signal handlers. Signals are complex to begin with and to unshare signals and/or signal handlers of a currently running process is even more complex. If in the future there is a specific need to allow unsharing of signals and/or signal handlers, it can be incrementally added to unshare() without affecting legacy applications using unshare().

SPECULATION CONTROL

Quite some CPUs have speculation-related misfeatures which are in fact vulnerabilities causing data leaks in various forms even across privilege domains.

The kernel provides mitigation for such vulnerabilities in various forms. Some of these mitigations are compile-time configurable and some can be supplied on the kernel command line.

There is also a class of mitigations which are very expensive, but they can be restricted to a certain set of processes or tasks in controlled environments. The mechanism to control these mitigations is via prctl(2).

There are two prctl options which are related to this:

- PR_GET_SPECULATION_CTRL
- PR_SET_SPECULATION_CTRL

4.1 PR_GET_SPECULATION_CTRL

 $PR_GET_SPECULATION_CTRL$ returns the state of the speculation misfeature which is selected with arg2 of prctl(2). The return value uses bits 0-3 with the following meaning:

Bit	Define	Description
0	PR_SPEC_PRCTL	Mitigation can be controlled per task by
		PR_SET_SPECULATION_CTRL.
1	PR_SPEC_ENABI	.He speculation feature is enabled, mitigation is dis-
		abled.
2	PR_SPEC_DISAB	LEhe speculation feature is disabled, mitigation is en-
		abled.
3	PR_SPEC_FORCE	E_SALSABABRPR_SPEC_DISABLE, but cannot be undone. A
		subsequent prctl(…, PR_SPEC_ENABLE) will fail.
4	PR_SPEC_DISAB	LSEAMOEXSECPR_SPEC_DISABLE, but the state will be
		cleared on execve(2).

If all bits are 0 the CPU is not affected by the speculation misfeature.

If PR_SPEC_PRCTL is set, then the per-task control of the mitigation is available. If not set, prctl(PR_SET_SPECULATION_CTRL) for the speculation misfeature will fail.

4.2 PR_SET_SPECULATION_CTRL

PR_SET_SPECULATION_CTRL allows to control the speculation misfeature, which is selected by arg2 of prctl(2) per task. arg3 is used to hand in the control value, i.e. either PR_SPEC_ENABLE or PR_SPEC_DISABLE or PR_SPEC_FORCE_DISABLE.

4.3 Common error codes

Value	Meaning
EIN-	The prctl is not implemented by the architecture or unused prctl(2)
VAL	arguments are not 0.
EN-	arg2 is selecting a not supported speculation misfeature.
ODEV	

4.4 PR_SET_SPECULATION_CTRL error codes

Value	Meaning
0	Success
ERANC	Earg3 is incorrect, i.e. it's neither PR_SPEC_ENABLE nor
	PR_SPEC_DISABLE nor PR_SPEC_FORCE_DISABLE.
ENXIO	Control of the selected speculation misfeature is not possible. See
	PR_GET_SPECULATION_CTRL.
EPERM	I Speculation was disabled with PR_SPEC_FORCE_DISABLE and caller
	tried to enable it again.

4.5 Speculation misfeature controls

• PR_SPEC_STORE_BYPASS: Speculative Store Bypass

Invocations:

- prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, 0, 0, 0);
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, PR_SPEC_ENABLE, 0, 0);
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, PR_SPEC_DISABLE, 0, 0); PR_SPEC_STORE_BYPASS, PR_SPEC_DISABLE, 0, 0);
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_FORCE_DISABLE, 0, 0);
 PR_SPEC_STORE_BYPASS,
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_DISABLE_NOEXEC, 0, 0);
 PR_SPEC_STORE_BYPASS,

• **PR_SPEC_INDIR_BRANCH: Indirect Branch Speculation in User Processes** (Mitigate Spectre V2 style attacks against user processes)

Invocations:

- prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0);
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0);
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0);
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0);

CHAPTER FIVE

OPENCAPI (OPEN COHERENT ACCELERATOR PROCESSOR INTERFACE)

OpenCAPI is an interface between processors and accelerators. It aims at being low-latency and high-bandwidth. The specification is developed by the OpenCAPI Consortium.

It allows an accelerator (which could be a FPGA, ASICs, \cdots) to access the host memory coherently, using virtual addresses. An OpenCAPI device can also host its own memory, that can be accessed from the host.

OpenCAPI is known in linux as 'ocxl', as the open, processor-agnostic evolution of 'cxl' (the driver for the IBM CAPI interface for powerpc), which was named that way to avoid confusion with the ISDN CAPI subsystem.

5.1 High-level view

OpenCAPI defines a Data Link Layer (DL) and Transaction Layer (TL), to be implemented on top of a physical link. Any processor or device implementing the DL and TL can start sharing memory.

+++	++	
 Processor ++ Memory ++	Accelerated Function Unit (AFU)	++ Memory ++
+++	++	
	. .	
	TLX	
	++ 	
	DLX	
+	++ +	

5.2 Device discovery

OpenCAPI relies on a PCI-like configuration space, implemented on the device. So the host can discover AFUs by querying the config space.

OpenCAPI devices in Linux are treated like PCI devices (with a few caveats). The firmware is expected to abstract the hardware as if it was a PCI link. A lot of the existing PCI infrastructure is reused: devices are scanned and BARs are assigned during the standard PCI enumeration. Commands like 'lspci' can therefore be used to see what devices are available.

The configuration space defines the AFU(s) that can be found on the physical adapter, such as its name, how many memory contexts it can work with, the size of its MMIO areas, \cdots

5.3 MMIO

OpenCAPI defines two MMIO areas for each AFU:

- the global MMIO area, with registers pertinent to the whole AFU.
- a per-process MMIO area, which has a fixed size for each context.

5.4 AFU interrupts

OpenCAPI includes the possibility for an AFU to send an interrupt to a host process. It is done through a 'intrp_req' defined in the Transaction Layer, specifying a 64-bit object handle which defines the interrupt.

The driver allows a process to allocate an interrupt and obtain its 64-bit object handle, that can be passed to the AFU.

5.5 char devices

The driver creates one char device per AFU found on the physical device. A physical device may have multiple functions and each function can have multiple AFUs. At the time of this writing though, it has only been tested with devices exporting only one AFU.

Char devices can be found in /dev/ocxl/ and are named as: /dev/ocxl/<AFU name>.<location>.<index>

where <AFU name> is a max 20-character long name, as found in the config space of the AFU. <location> is added by the driver and can help distinguish devices when a system has more than one instance of the same OpenCAPI device. <index> is also to help distinguish AFUs in the unlikely case where a device carries multiple copies of the same AFU.

5.6 Sysfs class

An ocxl class is added for the devices representing the AFUs. See /sys/class/ocxl. The layout is described in Documentation/ABI/testing/sysfs-class-ocxl

5.7 User API

5.7.1 open

Based on the AFU definition found in the config space, an AFU may support working with more than one memory context, in which case the associated char device may be opened multiple times by different processes.

5.7.2 ioctl

OCXL_IOCTL_ATTACH:

Attach the memory context of the calling process to the AFU so that the AFU can access its memory.

OCXL_IOCTL_IRQ_ALLOC:

Allocate an AFU interrupt and return an identifier.

OCXL_IOCTL_IRQ_FREE:

Free a previously allocated AFU interrupt.

```
OCXL IOCTL IRQ SET FD:
```

Associate an event fd to an AFU interrupt so that the user process can be notified when the AFU sends an interrupt.

OCXL_IOCTL_GET_METADATA:

Obtains configuration information from the card, such at the size of MMIO areas, the AFU version, and the PASID for the current context.

OCXL_IOCTL_ENABLE_P9_WAIT:

Allows the AFU to wake a userspace thread executing 'wait'. Returns information to userspace to allow it to configure the AFU. Note that this is only available on POWER9.

OCXL_IOCTL_GET_FEATURES:

Reports on which CPU features that affect OpenCAPI are usable from userspace.

5.7.3 mmap

A process can mmap the per-process MMIO area for interactions with the AFU.

CHAPTER

SIX

IOCTLS

6.1 loctl Numbers

19 October 1999

Michael Elizabeth Chastain <mec@shout.net>

If you are adding new ioctl's to the kernel, you should use the _IO macros defined in ux/ioctl.h>:

_IO	an	ioctl with no parameters
IOW	an	ioctl with write parameters (copy_from_user)
_IOR	an	ioctl with read parameters (copy_to_user)
_IOWR	an	ioctl with both write and read parameters.

'Write' and 'read' are from the user' s point of view, just like the system calls 'write' and 'read'. For example, a SET_FOO ioctl would be _IOW, although the kernel would actually read data from user space; a GET_FOO ioctl would be _IOR, although the kernel would actually write data to user space.

The first argument to _IO, _IOW, _IOR, or _IOWR is an identifying letter or number from the table below. Because of the large number of drivers, many drivers share a partial letter with other drivers.

If you are writing a driver for a new device and need a letter, pick an unused block with enough room for expansion: 32 to 256 ioctl commands. You can register the block by patching this file and submitting the patch to Linus Torvalds. Or you can e-mail me at <mec@shout.net> and I' ll register one for you.

The second argument to _IO, _IOW, _IOR, or _IOWR is a sequence number to distinguish ioctls from each other. The third argument to _IOW, _IOR, or _IOWR is the type of the data going into the kernel or coming out of the kernel (e.g. 'int' or 'struct foo'). NOTE! Do NOT use sizeof(arg) as the third argument as this results in your ioctl thinking it passes an argument of type size_t.

Some devices use their major number as the identifier; this is OK, as long as it is unique. Some devices are irregular and don't follow any convention at all.

Following this convention is good because:

(1) Keeping the ioctl's globally unique helps error checking: if a program calls an ioctl on the wrong device, it will get an error rather than some unexpected behaviour.

- (2) The 'strace' build procedure automatically finds ioctl numbers defined with _IO, _IOW, _IOR, or _IOWR.
- (3) 'strace' can decode numbers back into useful names when the numbers are unique.
- (4) People looking for ioctls can grep for them more easily when this convention is used to define the ioctl numbers.
- (5) When following the convention, the driver code can use generic code to copy the parameters between user and kernel space.

This table lists ioctls visible from user land for Linux/x86. It contains most drivers up to 2.6.31, but I know I am missing some. There has been no attempt to list non-X86 architectures or ioctls from drivers/staging/.

	Cr	ode Seq# (hex) Include File Comments	S	
0x00	00-1F	linux/fs.h	conflict!	!
0x00	00-1F	scsi/scsi_ioctl.h	conflict!	
0x00	00-1F	linux/fb.h	conflict!	
0x00	00-1F	linux/wavefront.h	conflict!	!
0x02	all	linux/fd.h		
0x03	all	linux/hdreg.h		
0x04	D2-DC	linux/umsdos_fs.h	Dead sir	nce 2.6.11, but don't r
0x06	all	linux/lp.h		
0x09	all	linux/raid/md_u.h		
0x10	00-0F	drivers/char/s390/vmcp.h		
0x10	10-1F	arch/s390/include/uapi/sclp_ctl.h		
0x10	20-2F	arch/s390/include/uapi/asm/hypfs.h		
0x12	all	linux/fs.h linux/blkpg.h		
0x1b	all		InfiniBa	and Subsystem <http: i<="" td=""></http:>
0x20	all	drivers/cdrom/cm206.h		
0x22	all	scsi/sg.h		
'!'	00-1F	uapi/linux/seccomp.h		
' #'	00-3F		IEEE 13	394 Subsystem Block for
' \$'	00-0F	linux/perf_counter.h, linux/perf_event.h		
'%'	00-0F	include/uapi/linux/stm.h	System	Trace Module subsyste
' &'	00-07	drivers/firewire/nosy-user.h		
'1'	00-1F	linux/timepps.h		PPS kit from Ulrich W
'2'	01-04	linux/i2o.h		
'3'	00-0F	drivers/s390/char/raw3270.h		conflict!
'3'	00-1F	linux/suspend_ioctls.h, kernel/power/use	er.c	conflict!
<u>'8'</u>	all			SNP8023 advanced N
;	64-7F	linux/vfio.h		
'@'	00-0F	linux/radeonfb.h		conflict!
'@'	00-0F	drivers/video/aty/aty128fb.c		conflict!
ʻA'	00-1F	linux/apm_bios.h		conflict!
'A'	00-0F	linux/agpgart.h, drivers/char/agp/compa	t_ioctl.h	conflict!
'A'	00-7F	sound/asound.h		conflict!
'B'	00-1F	linux/cciss_ioctl.h		conflict!
'B'	00-0F	include/linux/pmu.h		conflict!
L	·	Continued on next page		

Continued on next page

		Table 1 – continued from previous page	
	Г	Code Seg# (hex) Include File Comments	
'B'	C0-FF	advanced bbus	<mailto:maassen@un< th=""></mailto:maassen@un<>
ʻC'	all	linux/soundcard.h	conflict!
ʻC'	01-2F	linux/capi.h	conflict!
ʻC'	F0-FF	drivers/net/wan/cosa.h	conflict!
'D'	all	arch/s390/include/asm/dasd.h	
ʻD'	40-5F	drivers/scsi/dpt/dtpi_ioctl.h	
'D'	05	drivers/scsi/pmcraid.h	
' E'	all	linux/input.h	conflict!
'Е'	00-0F	xen/evtchn.h	conflict!
'F'	all	linux/fb.h	conflict!
'F'	01-02	drivers/scsi/pmcraid.h	conflict!
'F'	20	drivers/video/fsl-diu-fb.h	conflict!
'F'	20	drivers/video/intelfb/intelfb.h	conflict!
'F'	20	linux/ivtvfb.h	conflict!
'F'	20	linux/matroxfb.h	conflict!
'F'	20	drivers/video/aty/atyfb_base.c	conflict!
'F'	00-0F	video/da8xx-fb.h	conflict!
'F'	80-8F	linux/arcfb.h	conflict!
'F'	DD	video/sstfb.h	conflict!
'G'	00-3F	drivers/misc/sgi-gru/grulib.h	conflict!
'H'	00-7F	linux/hiddev.h	conflict!
'H'	00-0F	linux/hidraw.h	conflict!
'H'	01	linux/mei.h	conflict!
'H'	02	linux/mei.h	conflict!
'H'	02	linux/mei.h	conflict!
'H'	00-0F	sound/asound.h	conflict!
'H'	20-40	sound/asound_fm.h	conflict!
'H'	80-8F	sound/asound_ini.ii	conflict!
'H'	10-8F	sound/smt_mo.n	conflict!
'H'	10-8F 10-1F	sound/sb16_csp.h	conflict!
'H'	10-11 ⁻ 10-1F	sound/hda_hwdep.h	conflict!
'H'	40-4F	sound/hda_nwdep.n sound/hdspm.h	conflict!
Ή'	40-4F	sound/hdsp.h	conflict!
н 'Н'	<u>40-4</u> 90	sound/usp.n sound/usb/usx2y/usb_stream.h	
Ή'	90 00-0F	uapi/misc/habanalabs.h	conflict!
н 'Н'	A0	uapi/inisc/nabanalabs.n uapi/linux/usb/cdc-wdm.h	
н 'H'	C0-F0	net/bluetooth/hci.h	conflict!
н 'Н'	C0-F0 C0-DF		conflict!
		net/bluetooth/hidp/hidp.h	
'H'	CO-DF	net/bluetooth/cmtp/cmtp.h	conflict!
'H'	CO-DF	net/bluetooth/bnep/bnep.h	conflict!
'H'	F1	linux/hid-roccat.h	<mailto:erazor_de@u< td=""></mailto:erazor_de@u<>

Continued on next page

F8-FA

00-0F

40-4F

00-1F

all

all

sound/firewire.h

linux/mISDNif.h

drivers/scsi/gdth_ioctl.h

drivers/isdn/divert/isdn divert.h

linux/isdn.h

linux/kd.h

'H'

ʻI'

ʻľ

ʻI'

'J'

"K'

conflict!

conflict!

conflict!

		code Seq# (hex) Include File Comments	
ʻL'	00-1F	linux/loop.h	conflict!
Ľ,	10-1F	drivers/scsi/mpt3sas/mpt3sas_ctl.h	conflict!
Ľ,	20-2F	linux/lightnvm.h	
Ľ,	E0-FF	linux/ppdd.h	encrypted disk device
'M'	all	linux/soundcard.h	conflict!
'M'	01-16 and	mtd/mtd-abi.h drivers/mtd/mtdchar.c	conflict!
'M'	01-03	drivers/scsi/megaraid/megaraid_sas.h	
'M'	00-0F	drivers/video/fsl-diu-fb.h	conflict!
'N'	00-01 00-1F	drivers/usb/scanner.h	
'N'	40-7F	drivers/block/nvme.c	
·O'	00-06	mtd/ubi-user.h	UBI
'P'	all	linux/soundcard.h	conflict!
·P'	60-6F	sound/sscape ioctl.h	conflict!
'P'	00-0F	drivers/usb/class/usblp.c	conflict!
'P'	01-09	drivers/misc/pci_endpoint_test.c	conflict!
'Q'	all	linux/soundcard.h	
'R'	00-1F	linux/random.h	conflict!
'R'	01	linux/rfkill.h	conflict!
'R'	C0-DF	net/bluetooth/rfcomm.h	
'S'	all	linux/cdrom.h	conflict!
'S'	80-81	scsi/scsi ioctl.h	conflict!
'S'	82-FF	scsi/scsi.h	conflict!
'S'	00-7F	sound/asequencer.h	conflict!
3 'T'	all	linux/soundcard.h	conflict!
T'	00-AF	sound/asound.h	conflict!
T'	all	arch/x86/include/asm/ioctls.h	conflict!
T'	C0-DF	linux/if tun.h	conflict!
'U'	all	sound/asound.h	conflict!
·U'	00-CF	linux/uinput.h	conflict!
·U'	00-EF	linux/umput.m linux/usbdevice fs.h	
Ú'Ú'	C0-CF	drivers/bluetooth/hci uart.h	
·V'	all	linux/vt.h	conflict!
· ·V'	all	linux/videodev2.h	conflict!
· ·V'		linux/vtueouev2.n	conflict!
· ·V'	C0	linux/ivtv.h	conflict!
· ·V'	C0	media/davinci/vpfe capture.h	conflict!
· ·V'	C0	media/si4713.h	conflict!
'W'	00-1F	linux/watchdog.h	conflict!
'W'	00-1F	linux/watchdog.n	conflict! (pre 3.9)
'W'	00-3F	sound/asound.h	
'W'	40-5F	drivers/pci/switch/switchtec.c	
'W'	60-61	linux/watch queue.h	
'X'	all	fs/xfs/xfs fs.h, fs/xfs/linux-2.6/xfs ioctl32.h, inc	Jude/linux/falloc.h. linux/fs
'X'	all	fs/ocfs2/ocfs fs.h	luuo/ miua/ ransen,
'X'	01	linux/pktcdvd.h	
'Y'	all	linux/cyclades.h	
ʻZ'	14-15	drivers/message/fusion/mptctl.h	
<u> </u>		Continued on next page	

Table 1 - continued from previous page

		Table 1 – continued from previous page
		Code Seq# (hex) Include File Comments
·['	00-3F	linux/usb/tmc.h
'a'	all	linux/atm*.h, linux/sonet.h
'a'	00-0F	drivers/crypto/qat/qat_common/adf_cfg_common.h
ʻb'	00-FF	
ʻc'	all	linux/cm4000_cs.h
ʻc'	00-7F	linux/comstats.h
ʻc'	00-7F	linux/coda.h
ʻc'	00-1F	linux/chio.h
ʻc'	80-9F	arch/s390/include/asm/chsc.h
ʻc'	A0-AF	arch/x86/include/asm/msr.h conflict!
'd'	00-FF	linux/char/drm/drm.h
'd'	02-40	pcmcia/ds.h
'd'	F0-FF	linux/digi1.h
'e'	all	linux/digi1.h
'f'	00-1F	linux/ext2_fs.h
'f'	00-1F	linux/ext3_fs.h
'f'	00-0F	fs/jfs/jfs_dinode.h
'f'	00-0F	fs/ext4/ext4.h
'f'	00-0F	linux/fs.h
'f'	00-0F	fs/ocfs2/ocfs2_fs.h
'f'	13-27	linux/fscrypt.h
'f'	81-8F	linux/fsverity.h
ʻg'	00-0F	linux/usb/gadgetfs.h
ʻg' ʻg'	20-2F	linux/usb/g_printer.h
ʻh'	00-7F	
ʻh'	00-1F	linux/hpet.h
ʻh'	80-8F	fs/hfsplus/ioctl.c
ʻi'	00-3F	linux/i2o-dev.h
ʻi'	0B-1F	linux/ipmi.h
ʻi'	80-8F	linux/i8k.h
ʻj'	00-3F	linux/joystick.h
'k'	00-0F	linux/spi/spidev.h
'k'	00-05	video/kyro.h
'k'	10-17	linux/hsi/hsi_char.h
ʻl'	00-3F	linux/tcfs_fs.h
ʻl'	40-7F	linux/udf_fs_i.h
ʻm'	00-09	linux/mmtimer.h
ʻm'	all	linux/mtio.h
'm'	all	linux/soundcard.h
ʻm'	all	linux/synclink.h
ʻm'	00-19	drivers/message/fusion/mptctl.h
ʻm'	00	drivers/scsi/megaraid/megaraid_ioctl.h
'n'	00-7F	linux/ncp_fs.h and fs/ncpfs/ioctl.c
'n'	80-8F	uapi/linux/nilfs2_api.h
'n'	E0-FF	linux/matroxfb.h
ʻ0'	00-1F	fs/ocfs2/ocfs2_fs.h
ʻ0'	00-03	mtd/ubi-user.h
		Continued on post page

Table 1 – continued from previous page

Continued on next page

		Table 1 - continued from previous page
		Code Seq# (hex) Include File Comments
<u>'0'</u>	40-41	mtd/ubi-user.h
ʻ0'	01-A1	linux/dvb/*.h
ʻp'	00-0F	linux/phantom.h
ʻp'	00-1F	linux/rtc.h
ʻp'	40-7F	linux/nvram.h
ʻp'	80-9F	linux/ppdev.h
ʻp'	A1-A5	linux/pps.h
<pre>'p' 'p' 'p' 'p' 'p' 'p' 'q' 'q' 'q' 'r'</pre>	00-1F	linux/serio.h
ʻq'	80-FF	linux/telephony.h linux/ixjuser.h
	00-1F	linux/msdos_fs.h and fs/fat/dir.c
's'	all	linux/cdk.h
't'	00-7F	linux/ppp-ioctl.h
't'	80-8F	linux/isdn_ppp.h
't'	90-91	linux/toshiba.h
'u'	00-1F	linux/smb_fs.h
'u'	20-3F	linux/uvcvideo.h
'u'	40-4f	linux/udmabuf.h
ʻv'	00-1F	linux/ext2_fs.h
ʻv'	00-1F	linux/fs.h
'v'	00-0F	linux/sonypi.h
ʻv'	00-0F	media/v4l2-subdev.h
ʻv'	20-27	arch/powerpc/include/uapi/asm/vas-api.h
ʻv'	C0-FF	linux/meye.h
'w'	all	
ʻy'	00-1F	
ʻz'	00-3F	
ʻz'	40-7F	
ʻz'	10-4F	drivers/s390/crypto/zcrypt_api.h
' '	00-7F	linux/media.h
0x80	00-1F	linux/fb.h
	00-06	arch/x86/include/asm/sockios.h
0x89	0B-DF	linux/sockios.h
0x89	E0-EF	linux/sockios.h
0x89	E0-EF	linux/dn.h
0x89	F0-FF	linux/sockios.h
0x8B	all	linux/wireless.h
0x8C	00-3F	
0x90	00	drivers/cdrom/sbpcd.h
0x92	00-0F	drivers/usb/mon/mon_bin.c
0x93	60-7F	linux/auto_fs.h
0x94	all	fs/btrfs/ioctl.h and linux/fs.h
0x97	00-7F	fs/ceph/ioctl.h
0x99	00-0F	
0xA0	all	linux/sdp/sdp.h
0xA1	0	linux/vtpm_proxy.h
0xA3	80-8F	
	90-9F	linux/dtlk.h
0xA3	1 30-31	1111UA/UUIA.11

Table	1 – continued from previous page

Continued on next page

		lable 1 – continued from previous page
		Code Seq# (hex) Include File Comments
0xA4	00-1F	uapi/linux/tee.h
0xAA	00-3F	linux/uapi/linux/userfaultfd.h
0xAB	00-1F	linux/nbd.h
0xAC	00-1F	linux/raw.h
0xAD	00	
0xAE	all	linux/kvm.h
0xAF	00-1F	linux/fsl_hypervisor.h
0xB0	all	
0xB1	00-1F	
0xB3	00	linux/mmc/ioctl.h
0xB4	00-0F	linux/gpio.h
0xB5	00-0F	uapi/linux/rpmsg.h
0xB6	all	linux/fpga-dfl.h
0xC0	00-0F	linux/usb/iowarrior.h
0xCA	00-0F	uapi/misc/cxl.h
0xCA	10-2F	uapi/misc/ocxl.h
0xCA	80-BF	uapi/scsi/cxlflash_ioctl.h
0xCB	00-1F	
0xCC	00-0F	drivers/misc/ibmvmc.h
0xCD	01	linux/reiserfs_fs.h
0xCF	02	fs/cifs/ioctl.c
0xDB	00-0F	drivers/char/mwave/mwavepub.h
0xDD	00-3F	
0xE5	00-3F	linux/fuse.h
0xEC	00-01	drivers/platform/chrome/cros_ec_dev.h
0xF3	00-3F	drivers/usb/misc/sisusbvga/sisusb.h
0xF4	00-1F	video/mbxfb.h
0xF6	all	
0xFD	all	linux/dm-ioctl.h
0xFE	all	linux/isst_if.h

Table 1 – continued from previous page

6.2 Decoding an IOCTL Magic Number

To decode a hex IOCTL code:

Most architectures use this generic format, but check include/ARCH/ioctl.h for specifics, e.g. powerpc uses 3 bits to encode read/write and 13 bits for size.

bits	meaning
31-	00 - no parameters: uses _IO macro 10 - read: _IOR 01 - write:
30	_IOW 11 - read/write: _IOWR
29-	size of arguments
16	
15-	ascii character supposedly unique to each driver
8	
7-0	function #

So for example 0x82187201 is a read with arg length of 0x218, character 'r' function 1. Grepping the source reveals this is:

#define VFAT_IOCTL_READDIR_BOTH __IOR('r', 1, struct dirent [2])

6.3 Summary of CDROM ioctl calls

• Edward A. Falk <efalk@google.com>

November, 2004

This document attempts to describe the ioctl(2) calls supported by the CDROM layer. These are by-and-large implemented (as of Linux 2.6) in drivers/cdrom/cdrom.c and drivers/block/scsi_ioctl.c

ioctl values are listed in linux/cdrom.h>. As of this writing, they are as follows:

CDROMPAUSE Pa		ise Audio Operation		
		sume paused Audio Operation		
		y Audio MSF (struct cdrom msf)		
		y Audio Track/index (struct cdrom ti)		
		ad TOC header (struct cdrom tochdr)		
		ad TOC entry (struct cdrom_tocentry)		
		p the cdrom drive		
CDROMSTART Sta		rt the cdrom drive		
CDROMEJECT Ej		cts the cdrom media		
CDROMVOLCTRL Co		ntrol output volume (struct cdrom_volctrl)		
CDROMSUBCHNL Re		ad subchannel data (struct cdrom_subchnl)		
CDROMREADMODE2 Re		ad CDROM mode 2 data (2336 Bytes) (struct cdrom_read)		
CDROMREADMODE1 Re		ad CDROM mode 1 data (2048 Bytes) (struct cdrom_read)		
CDROMREADAUDIO (st		ruct cdrom_read_audio)		
CDROMEJECT_SW ena		ble(1)/disable(0) auto-ejecting		
CDROMMULTISESSION Ob		tain the start-of-last-session address of multi session disks (str		
CDROM_GET_MCN	Obt	tain the "Universal Product Code" if available (struct cdrom_		
		precated, use CDROM_GET_MCN instead.		
		d-reset the drive		
CDROMVOLREAD Ge		the drive's volume setting (struct cdrom_volctrl)		
CDROMREADRAW		read data in raw mode (2352 Bytes) (struct cdrom_read)		
CDROMREADCOOKED		read data in cooked mode		
CDROMSEEK		seek msf address		
CDROMPLAYBLK		scsi-cd only, (struct cdrom_blk)		
CDROMREADALL		read all 2646 bytes		
CDROMGETSPINDOWN		return 4-bit spindown value		
CDROMSETSPINDOWN		set 4-bit spindown value		
CDROMCLOSETRAY		pendant of CDROMEJECT		
CDROM_SET_OPTIONS		Set behavior options		
CDROM_CLEAR_OPTIONS		Clear behavior options		
CDROM_SELECT_SPEED		Set the CD-ROM speed		
CDROM_SELECT_DISC		Select disc (for juke-boxes)		
Continued on next page				

Continued on next page

lable 2 – continued from previous page	
CDROM_MEDIA_CHANGED	Check is media changed
CDROM_DRIVE_STATUS	Get tray position, etc.
CDROM_DISC_STATUS	Get disc type, etc.
CDROM_CHANGER_NSLOTS	Get number of slots
CDROM_LOCKDOOR	lock or unlock door
CDROM_DEBUG	Turn debug messages on/off
CDROM_GET_CAPABILITY	get capabilities
CDROMAUDIOBUFSIZ	set the audio buffer size
DVD_READ_STRUCT	Read structure
DVD_WRITE_STRUCT	Write structure
DVD_AUTH	Authentication
CDROM_SEND_PACKET	send a packet to the drive
CDROM_NEXT_WRITABLE	get next writable block
CDROM_LAST_WRITTEN	get last block written on disc

Table 2 - continued from previous page

The information that follows was determined from reading kernel source code. It is likely that some corrections will be made over time.

General:

Unless otherwise specified, all ioctl calls return 0 on success and -1 with errno set to an appropriate value on error. (Some ioctls return non-negative data values.)

Unless otherwise specified, all ioctl calls return -1 and set errno to EFAULT on a failed attempt to copy data to or from user address space.

Individual drivers may return error codes not listed here.

Unless otherwise specified, all data structures and constants are defined in <linux/cdrom.h>

CDROMPAUSE Pause Audio Operation

usage:

ioctl(fd, CDROMPAUSE, 0);

inputs: none

outputs: none

error return:

• ENOSYS cd drive not audio-capable.

CDROMRESUME Resume paused Audio Operation

usage:

ioctl(fd, CDROMRESUME, 0);

inputs: none

outputs: none

error return:

• ENOSYS cd drive not audio-capable.

CDROMPLAYMSF Play Audio MSF

(struct cdrom_msf)

usage:

struct cdrom_msf msf;

ioctl(fd, CDROMPLAYMSF, &msf);

inputs: cdrom_msf structure, describing a segment of music to play

outputs: none

error return:

• ENOSYS cd drive not audio-capable.

notes:

- MSF stands for minutes-seconds-frames
- LBA stands for logical block address
- Segment is described as start and end times, where each time is described as minutes:seconds:frames. A frame is 1/75 of a second.

CDROMPLAYTRKIND Play Audio Track/index

```
(struct cdrom_ti)
```

usage:

struct cdrom_ti ti;

ioctl(fd, CDROMPLAYTRKIND, &ti);

inputs: cdrom_ti structure, describing a segment of music to play

outputs: none

error return:

• ENOSYS cd drive not audio-capable.

notes:

• Segment is described as start and end times, where each time is described as a track and an index.

CDROMREADTOCHDR Read TOC header

(struct cdrom_tochdr)

usage:

cdrom_tochdr header;

ioctl(fd, CDROMREADTOCHDR, &header);

inputs: cdrom_tochdr structure

outputs: cdrom_tochdr structure

error return:

• ENOSYS cd drive not audio-capable.

CDROMREADTOCENTRY Read TOC entry

(struct cdrom_tocentry)

usage:

struct cdrom_tocentry entry;

ioctl(fd, CDROMREADTOCENTRY, &entry);

inputs: cdrom_tocentry structure

outputs: cdrom_tocentry structure

error return:

- ENOSYS cd drive not audio-capable.
- EINVAL entry.cdte_format not CDROM_MSF or CDROM_LBA
- EINVAL requested track out of bounds
- EIO I/O error reading TOC

notes:

- TOC stands for Table Of Contents
- MSF stands for minutes-seconds-frames
- LBA stands for logical block address

CDROMSTOP Stop the cdrom drive

usage:

ioctl(fd, CDROMSTOP, 0);

inputs: none

outputs: none

error return:

• ENOSYS cd drive not audio-capable.

notes:

• Exact interpretation of this ioctl depends on the device, but most seem to spin the drive down.

CDROMSTART Start the cdrom drive

usage:

ioctl(fd, CDROMSTART, 0);

inputs: none

outputs: none

error return:

• ENOSYS cd drive not audio-capable.

notes:

• Exact interpretation of this ioctl depends on the device, but most seem to spin the drive up and/or close the tray. Other devices ignore the ioctl completely.

CDROMEJECT

• Ejects the cdrom media

usage:

ioctl(fd, CDROMEJECT, 0);

inputs: none

outputs: none

error returns:

- ENOSYS cd drive not capable of ejecting
- EBUSY other processes are accessing drive, or door is locked

notes:

• See CDROM LOCKDOOR, below.

CDROMCLOSETRAY pendant of CDROMEJECT

usage:

ioctl(fd, CDROMCLOSETRAY, 0);

inputs: none

outputs: none

error returns:

- ENOSYS cd drive not capable of closing the tray
- EBUSY other processes are accessing drive, or door is locked

notes:

• See CDROM_LOCKDOOR, below.

CDROMVOLCTRL Control output volume (struct cdrom_volctrl)

usage:

```
struct cdrom_volctrl volume;
```

```
ioctl(fd, CDROMVOLCTRL, &volume);
```

inputs: cdrom_volctrl structure containing volumes for up to 4 channels.

outputs: none

error return:

• ENOSYS cd drive not audio-capable.

CDROMVOLREAD Get the drive' s volume setting

(struct cdrom_volctrl)

usage:

struct cdrom_volctrl volume;

ioctl(fd, CDROMVOLREAD, &volume);

inputs: none

outputs: The current volume settings.

error return:

• ENOSYS cd drive not audio-capable.

CDROMSUBCHNL Read subchannel data

(struct cdrom subchnl)

usage:

struct cdrom_subchnl q;

ioctl(fd, CDROMSUBCHNL, &q);

inputs: cdrom_subchnl structure

outputs: cdrom_subchnl structure

error return:

- ENOSYS cd drive not audio-capable.
- EINVAL format not CDROM_MSF or CDROM_LBA

notes:

• Format is converted to CDROM_MSF or CDROM_LBA as per user request on return

CDROMREADRAW read data in raw mode (2352 Bytes)

(struct cdrom_read)

usage:

inputs: cdrom_msf structure indicating an address to read.

Only the start values are significant.

outputs: Data written to address provided by user.

error return:

- EINVAL address less than 0, or msf less than 0:2:0
- ENOMEM out of memory

notes:

- As of 2.6.8.1, comments in <linux/cdrom.h> indicate that this ioctl accepts a cdrom_read structure, but actual source code reads a cdrom_msf structure and writes a buffer of data to the same address.
- MSF values are converted to LBA values via this formula:

```
lba = (((m * CD_SECS) + s) * CD_FRAMES + f) - CD_MSF_OFFSET;
```

CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes)

(struct cdrom_read)

- **notes:** Identical to CDROMREADRAW except that block size is CD_FRAMESIZE (2048) bytes
- CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes)

(struct cdrom_read)

notes: Identical to CDROMREADRAW except that block size is CD_FRAMESIZE_RAW0 (2336) bytes

CDROMREADAUDIO (struct cdrom_read_audio)

usage:

struct cdrom_read_audio ra;

ioctl(fd, CDROMREADAUDIO, &ra);

 $inputs: \ cdrom_read_audio \ structure \ containing \ read \ start \ point \ and \ length$

outputs: audio data, returned to buffer indicated by ra

error return:

- EINVAL format not CDROM_MSF or CDROM_LBA
- EINVAL nframes not in range [1 75]
- ENXIO drive has no queue (probably means invalid fd)

• ENOMEM out of memory

CDROMEJECT_SW enable(1)/disable(0) auto-ejecting

usage:

```
int val;
```

ioctl(fd, CDROMEJECT_SW, val);

inputs: Flag specifying auto-eject flag.

outputs: none

error return:

- ENOSYS Drive is not capable of ejecting.
- EBUSY Door is locked

CDROMMULTISESSION Obtain the start-of-last-session address of multi session disks

(struct cdrom_multisession)

usage:

struct cdrom_multisession ms_info;

```
ioctl(fd, CDROMMULTISESSION, &ms_info);
```

inputs:

cdrom multisession structure containing desired

format.

outputs: cdrom_multisession structure is filled with last_session information.

error return:

• EINVAL format not CDROM_MSF or CDROM_LBA

CDROM_GET_MCN Obtain the "Universal Product Code" if available

(struct cdrom_mcn)

usage:

struct cdrom_mcn mcn;

ioctl(fd, CDROM_GET_MCN, &mcn);

inputs: none

outputs: Universal Product Code

error return:

• ENOSYS Drive is not capable of reading MCN data.

notes:

• Source code comments state:

The following function is implemented, although very few audio discs give Universal Product Code information, which should just be the Medium Catalog Number on the box. Note, that the way the code is written on the CD is /not/ uniform across all discs!

CDROM_GET_UPC CDROM_GET_MCN (deprecated)

Not implemented, as of 2.6.8.1

CDROMRESET hard-reset the drive

usage:

ioctl(fd, CDROMRESET, 0);

inputs: none

outputs: none

error return:

- EACCES Access denied: requires CAP_SYS_ADMIN
- ENOSYS Drive is not capable of resetting.

CDROMREADCOOKED read data in cooked mode

usage:

u8 buffer[CD_FRAMESIZE]

ioctl(fd, CDROMREADCOOKED, buffer);

inputs: none

outputs: 2048 bytes of data, "cooked" mode.

notes: Not implemented on all drives.

CDROMREADALL read all 2646 bytes

Same as CDROMREADCOOKED, but reads 2646 bytes.

CDROMSEEK seek msf address

usage:

struct cdrom_msf msf;

ioctl(fd, CDROMSEEK, &msf);

inputs: MSF address to seek to.

outputs: none

CDROMPLAYBLK scsi-cd only

(struct cdrom_blk)

usage:

struct cdrom_blk blk;

ioctl(fd, CDROMPLAYBLK, &blk);

inputs: Region to play

outputs: none

CDROMGETSPINDOWN usage:

char spindown;

ioctl(fd, CDROMGETSPINDOWN, &spindown);

inputs: none

outputs: The value of the current 4-bit spindown value.

CDROMSETSPINDOWN usage:

char spindown

ioctl(fd, CDROMSETSPINDOWN, &spindown);

inputs: 4-bit value used to control spindown (TODO: more detail here)

outputs: none

CDROM_SET_OPTIONS Set behavior options

usage:

int options;

ioctl(fd, CDROM_SET_OPTIONS, options);

inputs:

New values for drive options. The logical 'or' of:

CDO_AUTO_CLOSE	close tray on first open(2)
CDO_AUTO_EJECT	open tray on last release
CDO_USE_FFLAGS	use O_NONBLOCK information on open
CDO_LOCK	lock tray on open files
CDO_CHECK_TYPE	check type on open for data

outputs: Returns the resulting options settings in the ioctl return value. Returns -1 on error.

error return:

• ENOSYS selected option(s) not supported by drive.

CDROM_CLEAR_OPTIONS Clear behavior options

Same as CDROM_SET_OPTIONS, except that selected options are turned off.

CDROM_SELECT_SPEED Set the CD-ROM speed

usage:

int speed;

ioctl(fd, CDROM_SELECT_SPEED, speed);

inputs: New drive speed.

outputs: none

error return:

• ENOSYS speed selection not supported by drive.

CDROM SELECT DISC Select disc (for juke-boxes)

usage:

int disk;

ioctl(fd, CDROM_SELECT_DISC, disk);

inputs: Disk to load into drive.

outputs: none

error return:

• EINVAL Disk number beyond capacity of drive

CDROM_MEDIA_CHANGED Check is media changed

usage:

int slot;

ioctl(fd, CDROM_MEDIA_CHANGED, slot);

inputs: Slot number to be tested, always zero except for jukeboxes.

May also be special values CDSL_NONE or CDSL_CURRENT

outputs:

Ioctl return value is 0 or 1 depending on whether the media

has been changed, or -1 on error.

error returns:

- ENOSYS Drive can't detect media change
- EINVAL Slot number beyond capacity of drive
- ENOMEM Out of memory

CDROM_DRIVE_STATUS Get tray position, etc.

usage:

```
int slot;
```

ioctl(fd, CDROM_DRIVE_STATUS, slot);

inputs: Slot number to be tested, always zero except for jukeboxes.

May also be special values CDSL_NONE or CDSL_CURRENT

outputs:

Ioctl return value will be one of the following values from <linux/cdrom.h>:

CDS_NO_INFO	Information not available.
CDS_NO_DISC	
CDS_TRAY_OPEN	
CDS_DRIVE_NOT_READY	
CDS_DISC_OK	
-1	error

error returns:

- ENOSYS Drive can't detect drive status
- EINVAL Slot number beyond capacity of drive
- ENOMEM Out of memory

CDROM_DISC_STATUS Get disc type, etc.

usage:

ioctl(fd, CDROM_DISC_STATUS, 0);

inputs: none

outputs:

Ioctl return value will be one of the following values

from <linux/cdrom.h>:

- CDS NO INFO
- CDS AUDIO
- CDS MIXED
- CDS_XA_2_2
- CDS XA 2 1
- CDS DATA 1

error returns: none at present

notes:

• Source code comments state:

```
Ok, this is where problems start. The current interface for
the CDROM_DISC_STATUS ioctl is flawed. It makes the false
assumption that CDs are all CDS_DATA_1 or all CDS_AUDIO, etc.
Unfortunately, while this is often the case, it is also
```

(continues on next page)

(continued from previous page)

very common for CDs to have some tracks with data, and some tracks with audio. Just because I feel like it, I declare the following to be the best way to cope. If the CD has ANY data tracks on it, it will be returned as a data CD. If it has any XA tracks, I will return it as that. Now I could simplify this interface by combining these returns with the above, but this more clearly demonstrates the problem with the current interface. Too bad this wasn't designed to use bitmasks... -Erik Well, now we have the option CDS_MIXED: a mixed-type CD. User level programmers might feel the ioctl is not very useful.

---david

CDROM_CHANGER_NSLOTS Get number of slots

usage:

ioctl(fd, CDROM_CHANGER_NSLOTS, 0);

inputs: none

outputs: The ioctl return value will be the number of slots in a CD changer. Typically 1 for non-multi-disk devices.

error returns: none

CDROM_LOCKDOOR lock or unlock door

usage:

int lock;

ioctl(fd, CDROM_LOCKDOOR, lock);

inputs: Door lock flag, 1=lock, 0=unlock

outputs: none

error returns:

• EDRIVE_CANT_DO_THIS

Door lock function not supported.

• EBUSY

Attempt to unlock when multiple users have the drive open and not CAP_SYS_ADMIN

notes: As of 2.6.8.1, the lock flag is a global lock, meaning that all CD drives will be locked or unlocked together. This is probably a bug.

The EDRIVE_CANT_DO_THIS value is defined in <linux/cdrom.h> and is currently (2.6.8.1) the same as EOPNOTSUPP

CDROM_DEBUG Turn debug messages on/off

usage:

int debug;

ioctl(fd, CDROM_DEBUG, debug);

inputs: Cdrom debug flag, 0=disable, 1=enable

outputs: The ioctl return value will be the new debug flag.

error return:

• EACCES Access denied: requires CAP_SYS_ADMIN

CDROM_GET_CAPABILITY get capabilities

usage:

```
ioctl(fd, CDROM_GET_CAPABILITY, 0);
```

inputs: none

outputs: The ioctl return value is the current device capability flags. See CDC_CLOSE_TRAY, CDC_OPEN_TRAY, etc.

CDROMAUDIOBUFSIZ set the audio buffer size

usage:

int arg;

```
ioctl(fd, CDROMAUDIOBUFSIZ, val);
```

inputs: New audio buffer size

outputs: The ioctl return value is the new audio buffer size, or -1 on error.

error return:

• ENOSYS Not supported by this driver.

notes: Not supported by all drivers.

DVD_READ_STRUCT Read structure

usage:

```
dvd_struct s;
```

```
ioctl(fd, DVD_READ_STRUCT, &s);
```

inputs:

dvd_struct structure, containing:

type	specifies the information desired, one of
	DVD_STRUCT_PHYSICAL, DVD_STRUCT_COPYRIGHT,
	DVD STRUCT DISCKEY, DVD STRUCT BCA,
	DVD_STRUCT_MANUFACT
physi-	desired layer, indexed from 0
cal.laye	r_num
copy-	desired layer, indexed from 0
right.lay	er_num
dis-	
ckey.agi	d

outputs:

dvd_struct structure, containing:

physical	for type == DVD_STRUCT_PHYSICAL
copyright	for type == DVD_STRUCT_COPYRIGHT
disckey.value	for type == DVD_STRUCT_DISCKEY
bca.{len,value}	for type == DVD_STRUCT_BCA
manufact.{len,valu}	for type == DVD_STRUCT_MANUFACT

error returns:

- EINVAL physical.layer_num exceeds number of layers
- EIO Received invalid response from drive

DVD_WRITE_STRUCT Write structure

Not implemented, as of 2.6.8.1

DVD_AUTH Authentication

usage:

dvd_authinfo ai;

```
ioctl(fd, DVD_AUTH, &ai);
```

inputs: dvd_authinfo structure. See <linux/cdrom.h>

outputs: dvd_authinfo structure.

error return:

• ENOTTY ai.type not recognized.

CDROM_SEND_PACKET send a packet to the drive

usage:

```
struct cdrom_generic_command cgc;
```

ioctl(fd, CDROM_SEND_PACKET, &cgc);

inputs: cdrom_generic_command structure containing the packet to send.

outputs:

none

cdrom_generic_command structure containing results.

error return:

• EIO

command failed.

• EPERM

Operation not permitted, either because a write command was attempted on a drive which is opened read-only, or because the command requires CAP_SYS_RAWIO

• EINVAL

cgc.data_direction not set

CDROM_NEXT_WRITABLE get next writable block

usage:

long next;

ioctl(fd, CDROM_NEXT_WRITABLE, &next);

inputs: none

outputs: The next writable block.

notes:

If the device does not support this ioctl directly, the

ioctl will return CDROM LAST WRITTEN + 7.

CDROM_LAST_WRITTEN get last block written on disc

usage:

```
long last;
```

ioctl(fd, CDROM_LAST_WRITTEN, &last);

inputs: none

outputs: The last block written on disc

notes: If the device does not support this ioctl directly, the result is derived from the disc' s table of contents. If the table of contents can' t be read, this ioctl returns an error.

6.4 Summary of HDIO_ ioctl calls

• Edward A. Falk <efalk@google.com>

November, 2004

This document attempts to describe the ioctl(2) calls supported by the HD/IDE layer. These are by-and-large implemented (as of Linux 2.6) in drivers/ide/ide.c and drivers/block/scsi_ioctl.c

ioctl values are listed in linux/hdreg.h>. As of this writing, they are as follows:

ioctls that pass argument pointers to user space:

HDIO_GETGEOget device geometryHDIO_GET_UNMASKINTRget current unmask settingHDIO_GET_MULTCOUNTget current IDE blockmode set- tingHDIO_GET_QDMAget use-qdma flagHDIO_SET_XFERset transfer rate via procHDIO_OBSOLETE_IDENTIONSOLETE, DO NOT USEHDIO_GET_KEEPSETTINGGet keep-settings-on-reset flagHDIO_GET_32BITget current io_32bit settingHDIO_GET_NOWERRget ignore-write-error flagHDIO_GET_IDENTITYget nice flagsHDIO_GET_MCACHEget write cache mode on offHDIO_GET_ADDRESSget sector addressing modeHDIO_GET_BUSSTATEHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKFILEexecute task and special drive commandHDIO_DRIVE_CMD_AEBHDIO_DRIVE_CMD_AEBHDIO_DRIVE_TASK		
HDIO_GET_MULTCOUNTget current IDE blockmode set- tingHDIO_GET_QDMAget use-qdma flagHDIO_SET_XFERset transfer rate via procHDIO_OBSOLETE_IDENTIODSOLETE, DO NOT USEHDIO_GET_KEEPSETTINGSet keep-settings-on-reset flagHDIO_GET_32BITget current io_32bit settingHDIO_GET_NOWERRget ignore-write-error flagHDIO_GET_DMAget use-dma flagHDIO_GET_NICEget nice flagsHDIO_GET_NICEget write cache mode on offHDIO_GET_ACOUSTICget acoustic valueHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKFILEexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	_	5 5
tingHDIO_GET_QDMAget use-qdma flagHDIO_SET_XFERset transfer rate via procHDIO_OBSOLETE_IDENTIONSOLETE, DO NOT USEHDIO_GET_KEEPSETTINCSet keep-settings-on-reset flagHDIO_GET_32BITget current io_32bit settingHDIO_GET_NOWERRget ignore-write-error flagHDIO_GET_DMAget use-dma flagHDIO_GET_IDENTITYget lDE identification infoHDIO_GET_MICEget write cache mode on offHDIO_GET_WCACHEget write cache mode on offHDIO_GET_ACOUSTICget acoustic valueHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKFILEexecute raw taskfileHDIO_DRIVE_CMDexecute a special drive command		5
HDIO_GET_QDMAget use-qdma flagHDIO_SET_XFERset transfer rate via procHDIO_OBSOLETE_IDENTIONSOLETE, DO NOT USEHDIO_GET_KEEPSETTINOSet keep-settings-on-reset flagHDIO_GET_32BITget current io_32bit settingHDIO_GET_NOWERRget ignore-write-error flagHDIO_GET_DMAget use-dma flagHDIO_GET_IDENTITYget IDE identification infoHDIO_GET_MCACHEget write cache mode on offHDIO_GET_ACOUSTICget acoustic valueHDIO_GET_ADDRESSget sector addressing modeHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKFILEexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_GET_MULTCOUNT	get current IDE blockmode set-
HDIO_SET_XFERset transfer rate via procHDIO_OBSOLETE_IDENTIONSOLETE, DO NOT USEHDIO_GET_KEEPSETTINHDIO_GET_32BITget current io_32bit settingHDIO_GET_NOWERRget ignore-write-error flagHDIO_GET_DMAget use-dma flagHDIO_GET_IDENTITYget IDE identification infoHDIO_GET_WCACHEHDIO_GET_ACOUSTICget sector addressing modeHDIO_GET_BUSSTATEHDIO_GET_BUSSTATEHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKHDIO_DRIVE_CMDHDIO_DRIVE_CMDexecute a special drive commandHDIO_DRIVE_CMD		ting
HDIO_OBSOLETE_IDENT IOBSOLETE, DO NOT USEHDIO_GET_KEEPSETTINGet keep-settings-on-reset flagHDIO_GET_32BITget current io_32bit settingHDIO_GET_NOWERRget ignore-write-error flagHDIO_GET_DMAget use-dma flagHDIO_GET_IDENTITYget IDE identification infoHDIO_GET_WCACHEget sector addressing modeHDIO_GET_ADDRESSget sector addressing modeHDIO_GET_BUSSTATEHDIO_DRIVE_RESETexecute a channel tristateHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command		get use-qdma flag
HDIO_GET_KEEPSETTINGget keep-settings-on-reset flagHDIO_GET_32BITget current io_32bit settingHDIO_GET_NOWERRget ignore-write-error flagHDIO_GET_DMAget use-dma flagHDIO_GET_NICEget nice flagsHDIO_GET_IDENTITYget IDE identification infoHDIO_GET_WCACHEget write cache mode on offHDIO_GET_ACOUSTICget sector addressing modeHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_TRISTATE_HWIFexecute a channel tristateHDIO_DRIVE_TASKFILEexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_SET_XFER	set transfer rate via proc
HDIO_GET_32BITget current io_32bit settingHDIO_GET_NOWERRget ignore-write-error flagHDIO_GET_DMAget use-dma flagHDIO_GET_NICEget nice flagsHDIO_GET_IDENTITYget IDE identification infoHDIO_GET_WCACHEget write cache mode on offHDIO_GET_ACOUSTICget sector addressing modeHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_OBSOLETE_IDENT	I ØB SOLETE, DO NOT USE
HDIO_GET_NOWERRget ignore-write-error flagHDIO_GET_DMAget use-dma flagHDIO_GET_NICEget nice flagsHDIO_GET_IDENTITYget IDE identification infoHDIO_GET_WCACHEget write cache mode on offHDIO_GET_ACOUSTICget acoustic valueHDIO_GET_ADDRESSget sector addressing modeHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command		Gset keep-settings-on-reset flag
HDIO_GET_DMAget use-dma flagHDIO_GET_NICEget nice flagsHDIO_GET_IDENTITYget IDE identification infoHDIO_GET_WCACHEget write cache mode on offHDIO_GET_ACOUSTICget acoustic valueHDIO_GET_ADDRESSget sector addressing modeHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_TRISTATE_HWIFexecute a channel tristateHDIO_DRIVE_RESETexecute raw taskfileHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_GET_32BIT	get current io_32bit setting
HDIO_GET_NICEget nice flagsHDIO_GET_IDENTITYget IDE identification infoHDIO_GET_WCACHEget write cache mode on offHDIO_GET_ACOUSTICget acoustic valueHDIO_GET_ADDRESSget sector addressing modeHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_TRISTATE_HWIFexecute a channel tristateHDIO_DRIVE_RESETexecute raw taskfileHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_GET_NOWERR	get ignore-write-error flag
HDIO_GET_IDENTITYget IDE identification infoHDIO_GET_WCACHEget write cache mode on offHDIO_GET_ACOUSTICget acoustic valueHDIO_GET_ADDRESSget sector addressing modeHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_TRISTATE_HWIFexecute a channel tristateHDIO_DRIVE_RESETexecute raw taskfileHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_GET_DMA	get use-dma flag
HDIO_GET_WCACHEget write cache mode on offHDIO_GET_ACOUSTICget acoustic valueHDIO_GET_ADDRESSget sector addressing modeHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_TRISTATE_HWIFexecute a channel tristateHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKFILEexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_GET_NICE	get nice flags
HDIO_GET_ACOUSTICget acoustic valueHDIO_GET_ADDRESSget sector addressing modeHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_TRISTATE_HWIFexecute a channel tristateHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKFILEexecute raw taskfileHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_GET_IDENTITY	get IDE identification info
HDIO_GET_ADDRESSget sector addressing modeHDIO_GET_BUSSTATEget the bus state of the hwifHDIO_TRISTATE_HWIFexecute a channel tristateHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKFILEexecute raw taskfileHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_GET_WCACHE	get write cache mode on off
HDIO_GET_BUSSTATEget the bus state of the hwifHDIO_TRISTATE_HWIFexecute a channel tristateHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKFILEexecute raw taskfileHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_GET_ACOUSTIC	get acoustic value
HDIO_TRISTATE_HWIFexecute a channel tristateHDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKFILEexecute raw taskfileHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_GET_ADDRESS	get sector addressing mode
HDIO_DRIVE_RESETexecute a device resetHDIO_DRIVE_TASKFILEexecute raw taskfileHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_GET_BUSSTATE	get the bus state of the hwif
HDIO_DRIVE_TASKFILEexecute raw taskfileHDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_TRISTATE_HWIF	execute a channel tristate
HDIO_DRIVE_TASKexecute task and special drive commandHDIO_DRIVE_CMDexecute a special drive command	HDIO_DRIVE_RESET	execute a device reset
command HDIO_DRIVE_CMD execute a special drive command	HDIO_DRIVE_TASKFILE	execute raw taskfile
HDIO_DRIVE_CMD execute a special drive command	HDIO_DRIVE_TASK	execute task and special drive
HDIO_DRIVE_CMD_AEB HDIO_DRIVE_TASK	HDIO_DRIVE_CMD	execute a special drive command
	HDIO_DRIVE_CMD_AEB	HDIO_DRIVE_TASK

ioctls that pass non-pointer values:

HDIO_SET_MULTCOUNT	change IDE blockmode
HDIO_SET_UNMASKINTR	permit other irqs during I/O
HDIO_SET_KEEPSETTINGS	Skeep ioctl settings on reset
HDIO_SET_32BIT	change io_32bit flags
HDIO_SET_NOWERR	change ignore-write-error flag
HDIO_SET_DMA	change use-dma flag
HDIO_SET_PIO_MODE	reconfig interface to new speed
HDIO_SCAN_HWIF	register and (re)scan interface
HDIO_SET_NICE	set nice flags
HDIO_UNREGISTER_HWIF	unregister interface
HDIO_SET_WCACHE	change write cache enable-
	disable
HDIO_SET_ACOUSTIC	change acoustic behavior
HDIO_SET_BUSSTATE	set the bus state of the hwif
HDIO_SET_QDMA	change use-qdma flag
HDIO_SET_ADDRESS	change lba addressing modes
HDIO_SET_IDE_SCSI	Set scsi emulation mode on/off
HDIO_SET_SCSI_IDE	not implemented yet

The information that follows was determined from reading kernel source code. It is likely that some corrections will be made over time.

General:

Unless otherwise specified, all ioctl calls return 0 on success and -1 with errno set to an appropriate value on error.

Unless otherwise specified, all ioctl calls return -1 and set errno to EFAULT on a failed attempt to copy data to or from user address space.

Unless otherwise specified, all data structures and constants are defined in linux/hdreg.h>

HDIO_GETGEO get device geometry

usage:

struct hd_geometry geom;

ioctl(fd, HDI0_GETGE0, &geom);

inputs: none

outputs:

hd_geometry structure containing:

heads	number of heads
sectors	number of sectors/track
cylinders	number of cylinders, mod 65536
start	starting sector of this partition.

error returns:

• EINVAL

if the device is not a disk drive or floppy drive, or if the user passes a null pointer

notes: Not particularly useful with modern disk drives, whose geometry is a polite fiction anyway. Modern drives are addressed purely by sector number nowadays (lba addressing), and the drive geometry is an abstraction which is actually subject to change. Currently (as of Nov 2004), the geometry values are the "bios" values – presumably the values the drive had when Linux first booted.

In addition, the cylinders field of the hd_geometry is an unsigned short, meaning that on most architectures, this ioctl will not return a meaning-ful value on drives with more than 65535 tracks.

The start field is unsigned long, meaning that it will not contain a meaningful value for disks over 219 Gb in size.

HDIO_GET_UNMASKINTR get current unmask setting

usage:

long val;

```
ioctl(fd, HDI0_GET_UNMASKINTR, &val);
```

inputs: none

outputs: The value of the drive's current unmask setting

HDIO_SET_UNMASKINTR permit other irqs during I/O

usage:

unsigned long val;

```
ioctl(fd, HDI0_SET_UNMASKINTR, val);
```

inputs: New value for unmask flag

outputs: none

error return:

- EINVAL (bdev != bdev->bd contains) (not sure what this means)
- EACCES Access denied: requires CAP SYS ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy

```
HDIO_GET_MULTCOUNT get current IDE blockmode setting
```

usage:

long val;

ioctl(fd, HDI0_GET_MULTCOUNT, &val);

inputs: none

outputs: The value of the current IDE block mode setting. This controls how many sectors the drive will transfer per interrupt.

HDIO_SET_MULTCOUNT change IDE blockmode

usage:

int val;

ioctl(fd, HDIO SET MULTCOUNT, val);

inputs: New value for IDE block mode setting. This controls how many sectors the drive will transfer per interrupt.

outputs: none

error return:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range supported by disk.
- EBUSY Controller busy or blockmode already set.
- EIO Drive did not accept new block mode.

notes: Source code comments read:

```
This is tightly woven into the driver->do_special cannot touch. DON'T do it again until a total personality rewrite is committed.
```

If blockmode has already been set, this ioctl will fail with -EBUSY

HDIO_GET_QDMA get use-qdma flag

Not implemented, as of 2.6.8.1

HDIO_SET_XFER set transfer rate via proc

Not implemented, as of 2.6.8.1

HDIO_OBSOLETE_IDENTITY OBSOLETE, DO NOT USE

Same as HDIO_GET_IDENTITY (see below), except that it only returns the first 142 bytes of drive identity information.

HDIO_GET_IDENTITY get IDE identification info

usage:

```
unsigned char identity[512];
```

ioctl(fd, HDI0_GET_IDENTITY, identity);

inputs: none

outputs: ATA drive identity information. For full description, see the IDEN-TIFY DEVICE and IDENTIFY PACKET DEVICE commands in the ATA specification.

error returns:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- ENOMSG IDENTIFY DEVICE information not available
- **notes:** Returns information that was obtained when the drive was probed. Some of this information is subject to change, and this ioctl does not reprobe the drive to update the information.

This information is also available from /proc/ide/hdX/identify

HDIO_GET_KEEPSETTINGS get keep-settings-on-reset flag

usage:

```
long val;
```

ioctl(fd, HDI0_GET_KEEPSETTINGS, &val);

inputs: none

```
outputs: The value of the current "keep settings" flag
```

notes: When set, indicates that kernel should restore settings after a drive reset.

HDIO_SET_KEEPSETTINGS keep ioctl settings on reset

usage:

```
long val;
```

ioctl(fd, HDI0_SET_KEEPSETTINGS, val);

inputs: New value for keep_settings flag

outputs: none

error return:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy

HDIO_GET_32BIT get current io_32bit setting

usage:

```
long val;
```

```
ioctl(fd, HDI0_GET_32BIT, &val);
```

inputs: none

outputs: The value of the current io_32bit setting

notes: 0=16-bit, 1=32-bit, 2,3 = 32bit+sync

HDIO_GET_NOWERR get ignore-write-error flag

usage:

long val;

ioctl(fd, HDIO_GET_NOWERR, &val);

inputs: none

outputs: The value of the current ignore-write-error flag

HDIO_GET_DMA get use-dma flag

usage:

long val;

ioctl(fd, HDI0_GET_DMA, &val);

inputs: none

outputs: The value of the current use-dma flag

HDIO_GET_NICE get nice flags

usage:

long nice;

ioctl(fd, HDI0_GET_NICE, &nice);

inputs: none

outputs: The drive's "nice" values.

notes: Per-drive flags which determine when the system will give more bandwidth to other devices sharing the same IDE bus.

See <linux/hdreg.h>, near symbol IDE_NICE_DSC_OVERLAP.

HDIO_SET_NICE set nice flags

usage:

unsigned long nice;

ioctl(fd, HDIO SET NICE, nice);

inputs: bitmask of nice flags.

outputs: none

error returns:

- EACCES Access denied: requires CAP_SYS_ADMIN
- EPERM Flags other than DSC_OVERLAP and NICE_1 set.

• EPERM DSC_OVERLAP specified but not supported by drive

notes: This ioctl sets the DSC_OVERLAP and NICE_1 flags from values provided by the user.

Nice flags are listed in <linux/hdreg.h>, starting with IDE_NICE_DSC_OVERLAP. These values represent shifts.

HDIO_GET_WCACHE get write cache mode on|off

usage:

```
long val;
```

```
ioctl(fd, HDI0_GET_WCACHE, &val);
```

inputs: none

outputs: The value of the current write cache mode

HDIO_GET_ACOUSTIC get acoustic value

usage:

long val;

ioctl(fd, HDI0_GET_ACOUSTIC, &val);

inputs: none

outputs: The value of the current acoustic settings

notes: See HDIO_SET_ACOUSTIC

HDIO_GET_ADDRESS usage:

long val;

```
ioctl(fd, HDI0_GET_ADDRESS, &val);
```

inputs: none

outputs:

The value of the current addressing mode:

0	28-bit
1	48-bit
2	48-bit doing 28-bit
3	64-bit

HDIO_GET_BUSSTATE get the bus state of the hwif

usage:

```
long state;
```

ioctl(fd, HDI0_SCAN_HWIF, &state);

inputs: none

outputs: Current power state of the IDE bus. One of BUSSTATE_OFF, BUSSTATE_ON, or BUSSTATE_TRISTATE

error returns:

• EACCES Access denied: requires CAP_SYS_ADMIN

HDIO_SET_BUSSTATE set the bus state of the hwif

usage:

```
int state;
...
ioctl(fd, HDIO SCAN HWIF, state);
```

inputs: Desired IDE power state. One of BUSSTATE_OFF, BUSSTATE_ON, or BUSSTATE_TRISTATE

outputs: none

error returns:

- EACCES Access denied: requires CAP_SYS_RAWIO
- EOPNOTSUPP Hardware interface does not support bus power control

HDIO_TRISTATE_HWIF execute a channel tristate

Not implemented, as of 2.6.8.1. See HDIO_SET_BUSSTATE

HDIO_DRIVE_RESET execute a device reset

usage:

```
int args[3]
```

```
...
ioctl(fd, HDIO DRIVE RESET, args);
```

inputs: none

outputs: none

error returns:

- EACCES Access denied: requires CAP_SYS_ADMIN
- ENXIO No such device: phy dead or ctl addr == 0
- EIO I/O error: reset timed out or hardware error

notes:

- Execute a reset on the device as soon as the current IO operation has completed.
- Executes an ATAPI soft reset if applicable, otherwise executes an ATA soft reset on the controller.

HDIO_DRIVE_TASKFILE execute raw taskfile

Note: If you don't have a copy of the ANSI ATA specification handy, you should probably ignore this ioctl.

• Execute an ATA disk command directly by writing the "taskfile" registers of the drive. Requires ADMIN and RAWIO access privileges.

```
usage:
```

```
struct {
    ide_task_request_t req_task;
    u8 outbuf[OUTPUT_SIZE];
    u8 inbuf[INPUT_SIZE];
} task;
memset(&task.req_task, 0, sizeof(task.req_task));
task.req_task.out_size = sizeof(task.outbuf);
task.req_task.in_size = sizeof(task.inbuf);
...
ioctl(fd, HDI0_DRIVE_TASKFILE, &task);
...
```

inputs:

(See below for details on memory area passed to ioctl.)

io ports[8]	values to be written to taskfile registers
hob ports[8]	high-order bytes, for extended commands.
out flags	flags indicating which registers are valid
in_flags	flags indicating which registers should be returned
data_phase	see below
req_cmd	command type to be executed
out_size	size of output buffer
outbuf	buffer of data to be transmitted to disk
inbuf	buffer of data to be received from disk (see [1])

outputs:

io_ports[]	values returned in the taskfile registers
hob_ports[]	high-order bytes, for extended commands.
out_flags	flags indicating which registers are valid (see [2])
in_flags	flags indicating which registers should be returned
outbuf	buffer of data to be transmitted to disk (see [1])
inbuf	buffer of data to be received from disk

error returns:

- EACCES CAP_SYS_ADMIN or CAP_SYS_RAWIO privilege not set.
- ENOMSG Device is not a disk drive.
- ENOMEM Unable to allocate memory for task
- EFAULT req_cmd == TASKFILE_IN_OUT (not implemented as of 2.6.8)
- EPERM

 $req_cmd == TASKFILE_MULTI_OUT$ and drive multi-count not yet set.

• EIO Drive failed the command.

notes:

[1] READ THE FOLLOWING NOTES CAREFULLY. THIS IOCTL IS FULL OF GOTCHAS. Extreme caution should be used with using this ioctl. A mistake can easily corrupt data or hang the system.

[2] Both the input and output buffers are copied from the user and written back to the user, even when not used.

[3] If one or more bits are set in out_flags and in_flags is zero, the following values are used for in_flags.all and written back into in_flags on completion.

- IDE_TASKFILE_STD_IN_FLAGS | (IDE_HOB_STD_IN_FLAGS << 8) if LBA48 addressing is enabled for the drive
- IDE_TASKFILE_STD_IN_FLAGS if CHS/LBA28

The association between in_flags.all and each enable bitfield flips depending on endianness; fortunately, TASKFILE only uses in-flags.b.data bit and ignores all other bits. The end result is that, on any endian machines, it has no effect other than modifying in_flags on completion.

[4] The default value of SELECT is (0xa0|DEV_bit|LBA_bit) except for four drives per port chipsets. For four drives per port chipsets, it's (0xa0|DEV_bit|LBA_bit) for the first pair and (0x80|DEV_bit|LBA_bit) for the second pair.

[5] The argument to the ioctl is a pointer to a region of memory containing a ide_task_request_t structure, followed by an optional buffer of data to be transmitted to the drive, followed by an optional buffer to receive data from the drive.

Command is passed to the disk drive via the ide_task_request_t structure, which contains these fields:

io ports[8]ues for the taskfile registers
hob_porthis(ba) order bytes, for extended commands
out_flags indicating which entries in the io_ports[]
and hob_ports[] arrays contain valid values. Type
ide_reg_valid_t.
in_flagsflags indicating which entries in the io_ports[] and
hob_ports[] arrays are expected to contain valid
values on return.
data_ph ⅇ below
req_cmcCommand type, see below
out_sizeoutput (user->drive) buffer size, bytes
in_size input (drive->user) buffer size, bytes

When out_flags is zero, the following registers are loaded.

HOB_FE	ATILIRE drive supports LBA48
HOB_NS	EIITEORdrive supports LBA48
HOB_SE	CTICtRe drive supports LBA48
HOB_LC	YIIf the drive supports LBA48
HOB_HC	YIf the drive supports LBA48
FEA-	
TURE	
NSEC-	
TOR	
SEC-	
TOR	
LCYL	
HCYL	
SE-	First, masked with 0xE0 if LBA48, 0xEF other-
LECT	wise; then, or' ed with the default value of SE-
	LECT.

If any bit in out_flags is set, the following registers are loaded.

HOB D	AllfAout flags.b.data is set. HOB DATA will travel on							
	DD8-DD15 on little endian machines and on DD0-							
	DD7 on big endian machines.							
DATA	If out_flags.b.data is set. DATA will travel on DD0-							
	DD7 on little endian machines and on DD8-DD15							
	on big endian machines.							
HOB_N	SEGTORags.b.nsector_hob is set							
	Eff EQR_flags.b.sector_hob is set							
HOB_L	CMflout_flags.b.lcyl_hob is set							
HOB_H	Offbut_flags.b.hcyl_hob is set							
FEA-	If out_flags.b.feature is set							
TURE								
NSEC-	If out_flags.b.nsector is set							
TOR								
SEC-	If out_flags.b.sector is set							
TOR								
LCYL	If out_flags.b.lcyl is set							
HCYL	If out_flags.b.hcyl is set							
SE-	Or'ed with the default value of SELECT and loaded							
LECT	regardless of out_flags.b.select.							

Taskfile registers are read back from the drive into {io|hob}_ports[] after the command completes iff one of the following conditions is met; otherwise, the original values will be written back, unchanged.

- 1. The drive fails the command (EIO).
- 2. One or more than one bits are set in out_flags.
- 3. The requested data_phase is TASKFILE_NO_DATA.

HOB DA	TAin flags.b.data is set. It will contain DD8-DD15				
_	on little endian machines and DD0-DD7 on big en-				
	dian machines.				
DATA	If in_flags.b.data is set. It will contain DD0-DD7				
	on little endian machines and DD8-DD15 on big				
	endian machines.				
HOB_FE	AT the Edrive supports LBA48				
HOB_NS	SECCHORITIVE supports LBA48				
HOB_SE	Coff Content of the supports LBA48				
HOB_LCML the drive supports LBA48					
HOB_HCMLthe drive supports LBA48					
NSEC-					
TOR					
SEC-					
TOR					
LCYL					
HCYL					

The data_phase field describes the data transfer to be performed. Value is one of:

TASKFILE_IN	
TASKFILE_MULTI_IN	
TASKFILE_OUT	
TASK-	
FILE_MULTI_OUT	
TASKFILE_IN_OUT	
TASKFILE_IN_DMA	
TASKFILE_IN_DMAQ	== IN_DMA (queueing not sup-
	ported)
TASK-	
FILE_OUT_DMA	
TASK-	== OUT_DMA (queueing not sup-
FILE_OUT_DMAQ	ported)
TASKFILE_P_IN	unimplemented
TASK-	unimplemented
FILE_P_IN_DMA	
TASK-	unimplemented
FILE_P_IN_DMAQ	
TASKFILE_P_OUT	unimplemented
TASK-	unimplemented
FILE_P_OUT_DMA	
TASK-	unimplemented
FILE_P_OUT_DMAQ	

The req_cmd field classifies the command type. It may be one of:

IDE_DRIVE_TASK_NO_DATA	
IDE_DRIVE_TASK_SET_XFER	unimplemented
IDE_DRIVE_TASK_IN	
IDE_DRIVE_TASK_OUT	unimplemented
IDE_DRIVE_TASK_RAW_WRITE	

[6] Do not access $\{in|out\}_flags->all except for resetting all the bits. Always access individual bit fields. ->all value will flip depending on endianness. For the same reason, do not use IDE_{TASKFILE|HOB}_STD_{OUT|IN}_FLAGS constants defined in hdreg.h.$

HDIO_DRIVE_CMD execute a special drive command

Note: If you don't have a copy of the ANSI ATA specification handy, you should probably ignore this ioctl.

usage:

```
u8 args[4+XFER_SIZE];
```

ioctl(fd, HDIO DRIVE CMD, args);

inputs: Commands other than WIN_SMART:

args[0]	COMMAND
args[1]	NSECTOR
args[2]	FEATURE
args[3]	NSECTOR

WIN_SMART:

args[0]	COMMAND
args[1]	SECTOR
args[2]	FEATURE
args[3]	NSECTOR

outputs:

args[] buffer is filled with register values followed by any data returned by the disk.

args[0]	status
args[1]	error
args[2]	NSECTOR
args[3]	undefined
args[4+]	NSECTOR * 512 bytes of data returned by the com-
	mand.

error returns:

- EACCES Access denied: requires CAP_SYS_RAWIO
- ENOMEM Unable to allocate memory for task
- EIO Drive reports error

notes:

[1] For commands other than WIN_SMART, args[1] should equal args[3]. SECTOR, LCYL and HCYL are undefined. For WIN_SMART, 0x4f and 0xc2 are loaded into LCYL and HCYL respectively. In both cases SELECT will contain the default value for the drive. Please refer to HDIO_DRIVE_TASKFILE notes for the default value of SELECT.

[2] If NSECTOR value is greater than zero and the drive sets DRQ when interrupting for the command, NSECTOR * 512 bytes are read from the device into the area following NSECTOR. In the above example, the area would be args[4..4+XFER_SIZE]. 16bit PIO is used regardless of HDIO_SET_32BIT setting.

[3] If COMMAND == WIN_SETFEATURES && FEATURE == SET-FEATURES_XFER && NSECTOR >= XFER_SW_DMA_0 && the drive supports any DMA mode, IDE driver will try to tune the transfer mode of the drive accordingly.

HDIO_DRIVE_TASK execute task and special drive command

Note: If you don't have a copy of the ANSI ATA specification handy, you should probably ignore this ioctl.

usage:

```
u8 args[7];
...
ioctl(fd, HDI0 DRIVE TASK, args);
```

inputs: Taskfile register values:

args[0]	COMMAND
args[1]	FEATURE
args[2]	NSECTOR
args[3]	SECTOR
args[4]	LCYL
args[5]	HCYL
args[6]	SELECT

outputs: Taskfile register values:

args[0]	status
args[1]	error
args[2]	NSECTOR
args[3]	SECTOR
args[4]	LCYL
args[5]	HCYL
args[6]	SELECT

error returns:

- EACCES Access denied: requires CAP_SYS_RAWIO
- ENOMEM Unable to allocate memory for task
- ENOMSG Device is not a disk drive.
- EIO Drive failed the command.

notes:

[1] DEV bit (0x10) of SELECT register is ignored and the appropriate value for the drive is used. All other bits are used unaltered.

HDIO_DRIVE_CMD_AEB HDIO_DRIVE_TASK

Not implemented, as of 2.6.8.1

HDIO_SET_32BIT change io_32bit flags

usage:

```
int val;
```

ioctl(fd, HDI0_SET_32BIT, val);

inputs: New value for io_32bit flag

outputs: none

error return:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 3]
- EBUSY Controller busy

HDIO_SET_NOWERR change ignore-write-error flag

usage:

```
int val;
```

```
ioctl(fd, HDI0_SET_NOWERR, val);
```

inputs:

New value for ignore-write-error flag. Used for ignoring

WRERR_STAT

outputs: none

error return:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy

HDIO_SET_DMA change use-dma flag

usage:

```
long val;
```

```
ioctl(fd, HDI0_SET_DMA, val);
```

inputs: New value for use-dma flag

outputs: none

error return:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy

HDIO_SET_PIO_MODE reconfig interface to new speed

usage:

```
long val;
```

ioctl(fd, HDI0_SET_PI0_MODE, val);

inputs: New interface speed.

outputs: none

error return:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 255]
- EBUSY Controller busy

HDIO_SCAN_HWIF register and (re)scan interface

usage:

```
int args[3]
```

ioctl(fd, HDI0_SCAN_HWIF, args);

inputs:

args[0]	io address to probe
args[1]	control address to probe
args[2]	irq number

outputs: none

error returns:

- EACCES Access denied: requires CAP_SYS_RAWIO
- EIO Probe failed.
- **notes:** This ioctl initializes the addresses and irq for a disk controller, probes for drives, and creates /proc/ide interfaces as appropriate.

HDIO_UNREGISTER_HWIF unregister interface

usage:

int	index;							
					_			

```
ioctl(fd, HDI0_UNREGISTER_HWIF, index);
```

inputs: index index of hardware interface to unregister

outputs: none

error returns:

• EACCES Access denied: requires CAP_SYS_RAWIO

notes: This ioctl removes a hardware interface from the kernel.

Currently (2.6.8) this ioctl silently fails if any drive on the interface is busy.

HDIO_SET_WCACHE change write cache enable-disable

usage:

```
int val;
```

ioctl(fd, HDI0_SET_WCACHE, val);

inputs: New value for write cache enable

outputs: none

error return:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN

- EINVAL value out of range [0 1]
- EBUSY Controller busy

HDIO_SET_ACOUSTIC change acoustic behavior

usage:

```
int val;
```

ioctl(fd, HDI0_SET_ACOUSTIC, val);

inputs: New value for drive acoustic settings

outputs: none

error return:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 254]
- EBUSY Controller busy

HDIO_SET_QDMA change use-qdma flag

Not implemented, as of 2.6.8.1

HDIO_SET_ADDRESS change lba addressing modes

usage:

```
int val;
```

```
ioctl(fd, HDI0_SET_ADDRESS, val);
```

inputs:

New value for addressing mode

0	28-bit
1	48-bit
2	48-bit doing 28-bit

outputs: none

error return:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 2]
- EBUSY Controller busy
- EIO Drive does not support lba48 mode.

HDIO_SET_IDE_SCSI usage:

```
long val;
```

ioctl(fd, HDI0_SET_IDE_SCSI, val);

inputs: New value for scsi emulation mode (?)

outputs: none

error return:

- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy

HDIO_SET_SCSI_IDE Not implemented, as of 2.6.8.1

LINUX MEDIA INFRASTRUCTURE USERSPACE API

This section contains the driver development information and Kernel APIs used by media devices.

Please see:

- /admin-guide/media/index for usage information about media subsystem and supported drivers;
- /driver-api/media/index for driver development information and Kernel APIs used by media devices;

7.1 Introduction

This document covers the Linux Kernel to Userspace API's used by video and radio streaming devices, including video cameras, analog and digital TV receiver cards, AM/FM receiver cards, Software Defined Radio (SDR), streaming capture and output devices, codec devices and remote controllers.

A typical media device hardware is shown at Typical Media Device.

The media infrastructure API was designed to control such devices. It is divided into five parts.

- 1. The first part covers radio, video capture and output, cameras, analog TV devices and codecs.
- The second part covers the API used for digital TV and Internet reception via one of the several digital tv standards. While it is called as DVB API, in fact it covers several different video standards including DVB-T/T2, DVB-S/S2, DVB-C, ATSC, ISDB-T, ISDB-S, DTMB, etc. The complete list of supported standards can be found at fe_delivery_system.
- 3. The third part covers the Remote Controller API.
- 4. The fourth part covers the Media Controller API.
- 5. The fifth part covers the CEC (Consumer Electronics Control) API.

It should also be noted that a media device may also have audio components, like mixers, PCM capture, PCM playback, etc, which are controlled via ALSA API. For additional information and for the latest development code, see: https://linuxtv. org. For discussing improvements, reporting troubles, sending new drivers, etc, please mail to: Linux Media Mailing List (LMML).

```
<?xml version="1.0" encoding="UTF-8"?>
<!--
    Permission is granted to copy, distribute and/or modify this
    document under the terms of the GNU Free Documentation License,
    Version 1.1 or any later version published by the Free Software
    Foundation, with no Invariant Sections, no Front-Cover Texts
    and no Back-Cover Texts. A copy of the license is included at
    Documentation/userspace-api/media/fdl-appendix.rst.
    TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
- ->
<svg id="svg2" width="235mm" height="179mm" clip-path="url(#a)" fill-rule=</pre>
Get a stroke - line join = "round" stroke - width = "28.222",

→preserveAspectRatio="xMidYMid" version="1.2" viewBox="0 0 22648.239

→17899.829" xml:space="preserve" xmlns="http://www.w3.org/2000/svg"
→xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/
→elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
→<metadata id="metadata1533"><rdf:RDF><cc:Work rdf:about=""><dc:format>
--image/svg+xml</dc:format><dc:type rdf:resource="http://purl.org/dc/</pre>
→dcmitype/StillImage"/><dc:title/></cc:Work></rdf:RDF></metadata><defs id=
→ "defs4"><clipPath id="a"><rect id="rect7" width="28000" height="21000"/>
→</clipPath></defs><path id="path11" d="m10146 2636c-518.06 0-1035.1 515-
→1035.1 1031v4124c0 516 517.06 1032 1035.1 1032h8572.2c518.06 0 1036.1-
→516 1036.1-1032v-4124c0-516-518.06-1031-1036.1-1031h-8572.2z"
fill="#fcf" style=""/><path id="path15" d="m1505.5 13443c-293 0-585 292-
→585 585v2340c0 293 292 586 585 586h3275c293 0 586-293 586-586v-2340c0-
→293-293-585-586-585h-3275z" fill="#ffc" style=""/><path id="path19" d=
→"m517.15 22.013c-461 0-922 461-922 922v11169c0 461 461 923 922,
→923h3692c461 0 922-462 922-923v-11169c0-461-461-922-922-922h-3692z" fill=
→ "#e6e6e6" style=""/><path id="path23" d="m2371.5 6438h-2260v-
→1086h4520v1086h-2260z" fill="#ff8080" style=""/><path id="path25" d=
→ "m2371.5 6438h-2260v-1086h4520v1086h-2260z" fill="none" stroke="#3465af"
→ style=""/><text id="text27" class="TextShape" x="-2089.4541" y="-2163.
→9871" font-family="Serif, serif" font-size="493.88px"><tspan id="tspan29

→ " class="TextParagraph" font-family="Serif, serif" font-size="493.88px">
→<tspan id="tspan31" class="TextPosition" x="489.5459" y="6111.0132" font-
→family="Serif, serif" font-size="493.88px"><tspan id="tspan33"</pre>
fill="#0000000" font-family="Serif, serif" font-size="493.88px">Audio
→decoder</tspan></tspan></tspan></text>
<path id="path37" d="m2371.5 9608h-2260v-1270h4520v1270h-2260z" fill="</pre>
→#ff8080" style=""/><path id="path39" d="m2371.5 9608h-2260v-
→1270h4520v1270h-2260z" fill="none" stroke="#3465af" style=""/><text id=
→ "text41" class="TextShape" x="-2089.4541" y="-2163.9871" font-family=
→"Serif, serif" font-size="493.88px"><tspan id="tspan43" class=
→ "TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan
→id="tspan45" class="TextPosition" x="527.5459" y="9189.0127" font-family=
Serif, serif" font-size="493.88px"><tspan id="tspan47" fill="#000000".</pre>
→font-family="Serif, serif" font-size="493.88px">Video decoder</tspan></
→tspan></tspan></text>
<path id="path51" d="m2363.5 8053h-2269v-1224h4537v1224h-2268z" fill="</pre>
→#ff8080" style=""/><path id="path53" d="m2363.5 8053h-2269v-
→1224h4537v1224h-2268z" fill="none" stroke="#3465af" style=""/><text id=
→ "text55" class="TextShape" x="-2089.4541" y="-2163.9871" font-family=
Serif, serif" font-size="493.88px"><tspan id="tspan57" class=</pre>
→"TextParagraph" font-family="Serif, serif" font-size="493.88px"><tspan_</pre>
→id="tspan59" class="TextPosition" x="481.5459" y="7657.0132" font-family=
→"Serif, serif" font-size="493.88px"><tspan id="tspan61" fill="#000000"...
→font-family="Serif, serif" font-size="493.88px">Audio encoder</tspan></
→tspan></tspan></text>
<path id="path65" d="m13622 10386h-3810y-1281h7620v1281h-3810z" fill="#cfc
68' style=""/><path id=path67" d=im13622 60380h-3810V-1281h7026V1281h
68' style=""/><path id=path67" d=im13622 60380h-3810V-1281h7026V1281h
68' style=""/><path id=path67" d=im13622 60380h-3810V-1281h7026V1281h
68' style=""/>
→3810z" fill="none" stroke="#3465af" style=""/><text id="text69" class=
→ "TextShape" x="-2089.4541" y="-2446.187" font-family="Serif, serif" font-
→size="493.88px"><tspan id="tspan71" class="TextParagraph" font-family=
```

7.2 Part I - Video for Linux API

This part describes the Video for Linux API version 2 (V4L2 API) specification.

Revision 4.5

7.2.1 Common API Elements

Programming a V4L2 device consists of these steps:

- Opening the device
- Changing device properties, selecting a video and audio input, video standard, picture brightness a. o.
- Negotiating a data format
- Negotiating an input/output method
- The actual input/output loop
- Closing the device

In practice most steps are optional and can be executed out of order. It depends on the V4L2 device type, you can read about the details in Interfaces. In this chapter we will discuss the basic concepts applicable to all devices.

Opening and Closing Devices

Device Naming

V4L2 drivers are implemented as kernel modules, loaded manually by the system administrator or automatically when a device is first discovered. The driver modules plug into the "videodev" kernel module. It provides helper functions and a common application interface specified in this document.

Each driver thus loaded registers one or more device nodes with major number 81 and a minor number between 0 and 255. Minor numbers are allocated dynamically unless the kernel is compiled with the kernel option CON-FIG_VIDEO_FIXED_MINOR_RANGES. In that case minor numbers are allocated in ranges depending on the device node type (video, radio, etc.).

Many drivers support "video_nr", "radio_nr" or "vbi_nr" module options to select specific video/radio/vbi node numbers. This allows the user to request that the device node is named e.g. /dev/video5 instead of leaving it to chance. When the driver supports multiple devices of the same type more than one device node number can be assigned, separated by commas:

modprobe mydriver video_nr=0,1 radio_nr=0,1

In /etc/modules.conf this may be written as:

```
options mydriver video_nr=0,1 radio_nr=0,1
```

When no device node number is given as module option the driver supplies a default.

Normally udev will create the device nodes in /dev automatically for you. If udev is not installed, then you need to enable the CON-FIG_VIDEO_FIXED_MINOR_RANGES kernel option in order to be able to correctly relate a minor number to a device node number. I.e., you need to be certain that minor number 5 maps to device node name video5. With this kernel option different device types have different minor number ranges. These ranges are listed in Interfaces.

The creation of character special files (with mknod) is a privileged operation and devices cannot be opened by major and minor number. That means applications cannot reliably scan for loaded or installed drivers. The user must enter a device name, or the application can try the conventional device names.

Related Devices

Devices can support several functions. For example video capturing, VBI capturing and radio support.

The V4L2 API creates different nodes for each of these functions.

The V4L2 API was designed with the idea that one device node could support all functions. However, in practice this never worked: this 'feature' was never used by applications and many drivers did not support it and if they did it was certainly never tested. In addition, switching a device node between different functions only works when using the streaming I/O API, not with the read()/write() API.

Today each device node supports just one function.

Besides video input or output the hardware may also support audio sampling or playback. If so, these functions are implemented as ALSA PCM devices with optional ALSA audio mixer devices.

One problem with all these devices is that the V4L2 API makes no provisions to find these related devices. Some really complex devices use the Media Controller (see Part IV - Media Controller API) which can be used for this purpose. But most drivers do not use it, and while some code exists that uses sysfs to discover related devices (see libmedia_dev in the v4l-utils git repository), there is no library yet that can provide a single API towards both Media Controller-based devices and devices that do not use the Media Controller. If you want to work on this please write to the linux-media mailing list: https://linuxtv.org/lists.php.

Multiple Opens

V4L2 devices can be opened more than once.¹ When this is supported by the driver, users can for example start a "panel" application to change controls like brightness or audio volume, while another application captures video and audio. In other words, panel applications are comparable to an ALSA audio mixer application. Just opening a V4L2 device should not change the state of the device.²

Once an application has allocated the memory buffers needed for streaming data (by calling the ioctl VIDIOC_REQBUFS or ioctl VIDIOC_CREATE_BUFS ioctls, or implicitly by calling the read() or write() functions) that application (filehandle) becomes the owner of the device. It is no longer allowed to make changes that would affect the buffer sizes (e.g. by calling the VIDIOC_S_FMT ioctl) and other applications are no longer allowed to allocate buffers or start or stop streaming. The EBUSY error code will be returned instead.

Merely opening a V4L2 device does not grant exclusive access.³ Initiating data exchange however assigns the right to read or write the requested type of data, and to change related properties, to this file descriptor. Applications can request additional access privileges using the priority mechanism described in Application Priority.

Shared Data Streams

V4L2 drivers should not support multiple applications reading or writing the same data stream on a device by copying buffers, time multiplexing or similar means. This is better handled by a proxy application in user space.

¹ There are still some old and obscure drivers that have not been updated to allow for multiple opens. This implies that for such drivers open() can return an EBUSY error code when the device is already in use.

² Unfortunately, opening a radio device often switches the state of the device to radio mode in many drivers. This behavior should be fixed eventually as it violates the V4L2 specification.

 $^{^3}$ Drivers could recognize the 0_EXCL open flag. Presently this is not required, so applications cannot know if it really works.

Functions

To open and close V4L2 devices applications use the open() and close() function, respectively. Devices are programmed using the ioctl() function as explained in the following sections.

Querying Capabilities

Because V4L2 covers a wide variety of devices not all aspects of the API are equally applicable to all types of devices. Furthermore devices of the same type have different capabilities and this specification permits the omission of a few complicated and less important parts of the API.

The ioctl VIDIOC_QUERYCAP ioctl is available to check if the kernel device is compatible with this specification, and to query the functions and I/O methods supported by the device.

Starting with kernel version 3.1, ioctl VIDIOC_QUERYCAP will return the V4L2 API version used by the driver, with generally matches the Kernel version. There's no need of using ioctl VIDIOC_QUERYCAP to check if a specific ioctl is supported, the V4L2 core now returns ENOTTY if a driver doesn't provide support for an ioctl.

Other features can be queried by calling the respective ioctl, for example ioctl VIDIOC_ENUMINPUT to learn about the number, types and names of video connectors on the device. Although abstraction is a major objective of this API, the ioctl VIDIOC_QUERYCAP ioctl also allows driver specific applications to reliably identify the driver.

All V4L2 drivers must support ioctl VIDIOC_QUERYCAP. Applications should always call this ioctl after opening the device.

Application Priority

When multiple applications share a device it may be desirable to assign them different priorities. Contrary to the traditional "rm -rf /" school of thought, a video recording application could for example block other applications from changing video controls or switching the current TV channel. Another objective is to permit low priority applications working in background, which can be preempted by user controlled applications and automatically regain control of the device at a later time.

Since these features cannot be implemented entirely in user space V4L2 defines the VIDIOC_G_PRIORITY and VIDIOC_S_PRIORITY ioctls to request and query the access priority associate with a file descriptor. Opening a device assigns a

medium priority, compatible with earlier versions of V4L2 and drivers not supporting these ioctls. Applications requiring a different priority will usually call VIDIOC_S_PRIORITY after verifying the device with the ioctl VIDIOC_QUERYCAP ioctl.

Ioctls changing driver properties, such as VIDIOC_S_INPUT, return an EBUSY error code after another application obtained higher priority.

Video Inputs and Outputs

Video inputs and outputs are physical connectors of a device. These can be for example: RF connectors (antenna/cable), CVBS a.k.a. Composite Video, S-Video and RGB connectors. Camera sensors are also considered to be a video input. Video and VBI capture devices have inputs. Video and VBI output devices have outputs, at least one each. Radio devices have no video inputs or outputs.

To learn about the number and attributes of the available inputs and outputs applications can enumerate them with the ioctl VIDIOC_ENUMINPUT and ioctl VID-IOC_ENUMOUTPUT ioctl, respectively. The struct v4l2_input returned by the ioctl VIDIOC_ENUMINPUT ioctl also contains signal status information applicable when the current video input is queried.

The VIDIOC_G_INPUT and VIDIOC_G_OUTPUT ioctls return the index of the current video input or output. To select a different input or output applications call the VIDIOC_S_INPUT and VIDIOC_S_OUTPUT ioctls. Drivers must implement all the input ioctls when the device has one or more inputs, all the output ioctls when the device has one or more inputs, all the output ioctls when the device has one or more outputs.

Example: Information about the current video input

```
struct v4l2_input input;
int index;
if (-1 == ioctl(fd, VIDIOC_G_INPUT, &index)) {
    perror("VIDIOC_G_INPUT");
    exit(EXIT_FAILURE);
}
memset(&input, 0, sizeof(input));
input.index = index;
if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
    perror("VIDIOC_ENUMINPUT");
    exit(EXIT_FAILURE);
}
printf("Current input: %s\\n", input.name);
```

Example: Switching to the first video input

```
int index;
index = 0;
if (-1 == ioctl(fd, VIDIOC_S_INPUT, &index)) {
    perror("VIDIOC_S_INPUT");
    exit(EXIT_FAILURE);
}
```

Audio Inputs and Outputs

Audio inputs and outputs are physical connectors of a device. Video capture devices have inputs, output devices have outputs, zero or more each. Radio devices have no audio inputs or outputs. They have exactly one tuner which in fact is an audio source, but this API associates tuners with video inputs or outputs only, and radio devices have none of these.¹ A connector on a TV card to loop back the received audio signal to a sound card is not considered an audio output.

Audio and video inputs and outputs are associated. Selecting a video source also selects an audio source. This is most evident when the video and audio source is a tuner. Further audio connectors can combine with more than one video input or output. Assumed two composite video inputs and two audio inputs exist, there may be up to four valid combinations. The relation of video and audio connectors is defined in the audioset field of the respective struct v4l2_input or struct v4l2_output, where each bit represents the index number, starting at zero, of one audio input or output.

To learn about the number and attributes of the available inputs and outputs applications can enumerate them with the ioctl VIDIOC_ENUMAUDIO and VID-IOC_ENUMAUDOUT ioctl, respectively. The struct v4l2_audio returned by the ioctl VIDIOC_ENUMAUDIO ioctl also contains signal status information applicable when the current audio input is queried.

The VIDIOC_G_AUDIO and VIDIOC_G_AUDOUT ioctls report the current audio input and output, respectively.

Note: Note that, unlike VIDIOC_G_INPUT and VIDIOC_G_OUTPUT these ioctls return a structure as ioctl VIDIOC_ENUMAUDIO and VIDIOC_ENUMAUDOUT do, not just an index.

To select an audio input and change its properties applications call the VID-IOC_S_AUDIO ioctl. To select an audio output (which presently has no changeable properties) applications call the VIDIOC_S_AUDOUT ioctl.

Drivers must implement all audio input ioctls when the device has multiple selectable audio inputs, all audio output ioctls when the device has multiple selectable audio outputs. When the device has any audio inputs or outputs the driver

¹ Actually struct v4l2_audio ought to have a tuner field like struct v4l2_input, not only making the API more consistent but also permitting radio devices with multiple tuners.

must set the V4L2_CAP_AUDIO flag in the struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.

Example: Information about the current audio input

```
struct v4l2_audio audio;
memset(&audio, 0, sizeof(audio));
if (-1 == ioctl(fd, VIDIOC_G_AUDIO, &audio)) {
    perror("VIDIOC_G_AUDIO");
    exit(EXIT_FAILURE);
}
printf("Current input: %s\\n", audio.name);
```

Example: Switching to the first audio input

```
struct v4l2_audio audio;
memset(&audio, 0, sizeof(audio)); /* clear audio.mode, audio.reserved */
audio.index = 0;
if (-1 == ioctl(fd, VIDIOC_S_AUDIO, &audio)) {
    perror("VIDIOC_S_AUDIO");
    exit(EXIT_FAILURE);
}
```

Tuners and Modulators

Tuners

Video input devices can have one or more tuners demodulating a RF signal. Each tuner is associated with one or more video inputs, depending on the number of RF connectors on the tuner. The type field of the respective struct v4l2_input returned by the ioctl VIDIOC_ENUMINPUT ioctl is set to V4L2_INPUT_TYPE_TUNER and its tuner field contains the index number of the tuner.

Radio input devices have exactly one tuner with index zero, no video inputs.

To query and change tuner properties applications use the VIDIOC_G_TUNER and VIDIOC_S_TUNER ioctls, respectively. The struct v4l2_tuner returned by VIDIOC_G_TUNER also contains signal status information applicable when the tuner of the current video or radio input is queried.

Note: VIDIOC_S_TUNER does not switch the current tuner, when there is more than one. The tuner is solely determined by the current video input. Drivers must support both ioctls and set the V4L2_CAP_TUNER flag in the struct v4l2_capability

returned by the ioctl $\ensuremath{\text{VIDIOC_QUERYCAP}}$ ioctl when the device has one or more tuners.

Modulators

Video output devices can have one or more modulators, that modulate a video signal for radiation or connection to the antenna input of a TV set or video recorder. Each modulator is associated with one or more video outputs, depending on the number of RF connectors on the modulator. The type field of the respective struct v4l2_output returned by the ioctl VIDIOC_ENUMOUTPUT ioctl is set to V4L2_OUTPUT_TYPE_MODULATOR and its modulator field contains the index number of the modulator.

Radio output devices have exactly one modulator with index zero, no video outputs.

A video or radio device cannot support both a tuner and a modulator. Two separate device nodes will have to be used for such hardware, one that supports the tuner functionality and one that supports the modulator functionality. The reason is a limitation with the VIDIOC_S_FREQUENCY ioctl where you cannot specify whether the frequency is for a tuner or a modulator.

To query and change modulator properties applications use the VID-IOC_G_MODULATOR and VIDIOC_S_MODULATOR ioctl. Note that VID-IOC_S_MODULATOR does not switch the current modulator, when there is more than one at all. The modulator is solely determined by the current video output. Drivers must support both ioctls and set the V4L2_CAP_MODULATOR flag in the struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl when the device has one or more modulators.

Radio Frequency

To get and set the tuner or modulator radio frequency applications use the VID- $IOC_G_FREQUENCY$ and VIDIOC_S_FREQUENCY ioctl which both take a pointer to a struct v4l2_frequency. These ioctls are used for TV and radio devices alike. Drivers must support both ioctls when the tuner or modulator ioctls are supported, or when the device is a radio device.

Video Standards

Video devices typically support one or more different video standards or variations of standards. Each video input and output may support another set of standards. This set is reported by the std field of struct v4l2_input and struct v4l2_output returned by the ioctl VIDIOC_ENUMINPUT and ioctl VIDIOC_ENUMOUTPUT ioctls, respectively.

V4L2 defines one bit for each analog video standard currently in use worldwide, and sets aside bits for driver defined standards, e. g. hybrid standards to watch NTSC video tapes on PAL TVs and vice versa. Applications can use the predefined bits to select a particular standard, although presenting the user a menu of supported standards is preferred. To enumerate and query the attributes

of the supported standards applications use the ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD ioctl.

Many of the defined standards are actually just variations of a few major standards. The hardware may in fact not distinguish between them, or do so internal and switch automatically. Therefore enumerated standards also contain sets of one or more standard bits.

Assume a hypothetic tuner capable of demodulating B/PAL, G/PAL and I/PAL signals. The first enumerated standard is a set of B and G/PAL, switched automatically depending on the selected radio frequency in UHF or VHF band. Enumeration gives a "PAL-B/G" or "PAL-I" choice. Similar a Composite input may collapse standards, enumerating "PAL-B/G/H/I", "NTSC-M" and "SECAM-D/K".¹

To query and select the standard used by the current video input or output applications call the VIDIOC_G_STD and VIDIOC_S_STD ioctl, respectively. The received standard can be sensed with the ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD ioctl.

Note: The parameter of all these ioctls is a pointer to a v4l2_std_id type (a standard set), not an index into the standard enumeration. Drivers must implement all video standard ioctls when the device has one or more video inputs or outputs.

Special rules apply to devices such as USB cameras where the notion of video standards makes little sense. More generally for any capture or output device which is:

- incapable of capturing fields or frames at the nominal rate of the video standard, or
- that does not support the video standard formats at all.

Here the driver shall set the std field of struct v4l2_input and struct v4l2_output to zero and the VIDIOC_G_STD, VIDIOC_S_STD, ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD and ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD ioctls shall return the ENOTTY error code or the EINVAL error code.

Applications can make use of the Input capabilities and Output capabilities flags to determine whether the video standard ioctls can be used with the given input or output.

 $^{^1}$ Some users are already confused by technical terms PAL, NTSC and SECAM. There is no point asking them to distinguish between B, G, D, or K when the software or hardware can do that automatically.

Example: Information about the current video standard

```
v4l2 std id std id;
struct v4l2 standard standard;
if (-1 == ioctl(fd, VIDIOC G STD, &std id)) {
    /* Note when VIDIOC ENUMSTD always returns ENOTTY this
       is no video device or it falls under the USB exception,
       and VIDIOC G STD returning ENOTTY is no error. */
    perror("VIDIOC G STD");
    exit(EXIT FAILURE);
}
memset(&standard, 0, sizeof(standard));
standard.index = 0;
while (0 == ioctl(fd, VIDIOC ENUMSTD, &standard)) {
    if (standard.id & std id) {
           printf("Current video standard: %s\\n", standard.name);
           exit(EXIT SUCCESS);
    }
    standard.index++;
}
/* EINVAL indicates the end of the enumeration, which cannot be
   empty unless this device falls under the USB exception. */
if (errno == EINVAL || standard.index == 0) {
    perror("VIDIOC ENUMSTD");
    exit(EXIT FAILURE);
}
```

Example: Listing the video standards supported by the current input

```
struct v4l2_input input;
struct v4l2_standard standard;
memset(&input, 0, sizeof(input));
if (-1 == ioctl(fd, VIDIOC_G_INPUT, &input.index)) {
    perror("VIDIOC_G_INPUT");
    exit(EXIT_FAILURE);
}
if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
    perror("VIDIOC_ENUM_INPUT");
    exit(EXIT_FAILURE);
}
printf("Current input %s supports:\\n", input.name);
memset(&standard, 0, sizeof(standard));
```

(continued from previous page)

```
standard.index = 0;
while (0 == ioctl(fd, VIDIOC_ENUMSTD, &standard)) {
    if (standard.id & input.std)
        printf("%s\\n", standard.name);
    standard.index++;
}
/* EINVAL indicates the end of the enumeration, which cannot be
    empty unless this device falls under the USB exception. */
if (errno != EINVAL || standard.index == 0) {
    perror("VIDIOC_ENUMSTD");
    exit(EXIT_FAILURE);
}
```

Example: Selecting a new video standard

```
struct v4l2 input input;
v4l2 std id std id;
memset(&input, 0, sizeof(input));
if (-1 == ioctl(fd, VIDIOC G INPUT, &input.index)) {
    perror("VIDIOC G INPUT");
    exit(EXIT_FAILURE);
}
if (-1 == ioctl(fd, VIDIOC_ENUMINPUT, &input)) {
    perror("VIDIOC_ENUM_INPUT");
    exit(EXIT FAILURE);
}
if (0 == (input.std \& V4L2 STD PAL BG)) {
    fprintf(stderr, "Oops. B/G PAL is not supported.\\n");
    exit(EXIT FAILURE);
}
/* Note this is also supposed to work when only B
   or G/PAL is supported. */
std_id = V4L2_STD_PAL_BG;
if (-1 == ioctl(fd, VIDIOC_S_STD, &std_id)) {
    perror("VIDIOC_S_STD");
    exit(EXIT FAILURE);
}
```

Digital Video (DV) Timings

The video standards discussed so far have been dealing with Analog TV and the corresponding video timings. Today there are many more different hardware interfaces such as High Definition TV interfaces (HDMI), VGA, DVI connectors etc., that carry video signals and there is a need to extend the API to select the video timings for these interfaces. Since it is not possible to extend the v4l2_std_id due to the limited bits available, a new set of ioctls was added to set/get video timings at the input and output.

These ioctls deal with the detailed digital video timings that define each video format. This includes parameters such as the active video width and height, signal polarities, frontporches, backporches, sync widths etc. The linux/v4l2-dv-timings.h header can be used to get the timings of the formats in the CEA-861-E and VESA DMT standards.

To enumerate and query the attributes of the DV timings supported by a device applications use the ioctl VIDIOC_ENUM_DV_TIMINGS, VID-IOC_SUBDEV_ENUM_DV_TIMINGS and ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP ioctls. To set DV timings for the device applications use the VIDIOC_S_DV_TIMINGS ioctl and to get current DV timings they use the VIDIOC_G_DV_TIMINGS ioctl. To detect the DV timings as seen by the video receiver applications use the ioctl VIDIOC_QUERY_DV_TIMINGS ioctl.

Applications can make use of the Input capabilities and Output capabilities flags to determine whether the digital video ioctls can be used with the given input or output.

User Controls

Devices typically have a number of user-settable controls such as brightness, saturation and so on, which would be presented to the user on a graphical user interface. But, different devices will have different controls available, and furthermore, the range of possible values, and the default value will vary from device to device. The control ioctls provide the information and a mechanism to create a nice user interface for these controls that will work correctly with any device.

All controls are accessed using an ID value. V4L2 defines several IDs for specific purposes. Drivers can also implement their own custom controls using V4L2_CID_PRIVATE_BASE¹ and higher values. The pre-defined control IDs have the prefix V4L2_CID_, and are listed in Control IDs. The ID is used when querying the attributes of a control, and when getting or setting the current value.

Generally applications should present controls to the user without assumptions about their purpose. Each control comes with a name string the user is supposed

¹ The use of V4L2_CID_PRIVATE_BASE is problematic because different drivers may use the same V4L2_CID_PRIVATE_BASE ID for different controls. This makes it hard to programmatically set such controls since the meaning of the control with that ID is driver dependent. In order to resolve this drivers use unique IDs and the V4L2_CID_PRIVATE_BASE IDs are mapped to those unique IDs by the kernel. Consider these V4L2_CID_PRIVATE_BASE IDs as aliases to the real IDs.

Many applications today still use the V4L2_CID_PRIVATE_BASE IDs instead of using ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU with the V4L2_CTRL_FLAG_NEXT_CTRL flag to enumerate all IDs, so support for V4L2_CID_PRIVATE_BASE is still around.

to understand. When the purpose is non-intuitive the driver writer should provide a user manual, a user interface plug-in or a driver specific panel application. Predefined IDs were introduced to change a few controls programmatically, for example to mute a device during a channel switch.

Drivers may enumerate different controls after switching the current video input or output, tuner or modulator, or audio input or output. Different in the sense of other bounds, another default and current value, step size or other menu items. A control with a certain custom ID can also change name and type.

If a control is not applicable to the current configuration of the device (for example, it doesn' t apply to the current video input) drivers set the V4L2_CTRL_FLAG_INACTIVE flag.

Control values are stored globally, they do not change when switching except to stay within the reported bounds. They also do not change e.g. when the device is opened or closed, when the tuner radio frequency is changed or generally never without application request.

V4L2 specifies an event mechanism to notify applications when controls change value (see ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT, event V4L2_EVENT_CTRL), panel applications might want to make use of that in order to always reflect the correct control value.

All controls use machine endianness.

Control IDs

- V4L2_CID_BASE First predefined ID, equal to V4L2_CID_BRIGHTNESS.
- V4L2_CID_USER_BASE Synonym of V4L2_CID_BASE.
- V4L2_CID_BRIGHTNESS (integer) Picture brightness, or more precisely, the black level.
- V4L2_CID_CONTRAST (integer) Picture contrast or luma gain.
- V4L2_CID_SATURATION (integer) Picture color saturation or chroma gain.
- V4L2_CID_HUE (integer) Hue or color balance.
- V4L2_CID_AUDIO_VOLUME (integer) Overall audio volume. Note some drivers also provide an OSS or ALSA mixer interface.
- V4L2_CID_AUDIO_BALANCE (integer) Audio stereo balance. Minimum corresponds to all the way left, maximum to right.
- V4L2_CID_AUDIO_BASS (integer) Audio bass adjustment.
- V4L2_CID_AUDIO_TREBLE (integer) Audio treble adjustment.
- V4L2_CID_AUDIO_MUTE (boolean) Mute audio, i. e. set the volume to zero, however without affecting V4L2_CID_AUDIO_VOLUME. Like ALSA drivers, V4L2 drivers must mute at load time to avoid excessive noise. Actually the entire device should be reset to a low power consumption state.
- V4L2_CID_AUDIO_LOUDNESS (boolean) Loudness mode (bass boost).

- V4L2_CID_BLACK_LEVEL (integer) Another name for brightness (not a synonym of V4L2_CID_BRIGHTNESS). This control is deprecated and should not be used in new drivers and applications.
- V4L2_CID_AUT0_WHITE_BALANCE (boolean) Automatic white balance (cameras).
- V4L2_CID_DO_WHITE_BALANCE (button) This is an action control. When set (the value is ignored), the device will do a white balance and then hold the current setting. Contrast this with the boolean V4L2_CID_AUTO_WHITE_BALANCE, which, when activated, keeps adjusting the white balance.
- V4L2_CID_RED_BALANCE (integer) Red chroma balance.
- V4L2_CID_BLUE_BALANCE (integer) Blue chroma balance.
- V4L2_CID_GAMMA (integer) Gamma adjust.
- V4L2_CID_WHITENESS (integer) Whiteness for grey-scale devices. This is a synonym for V4L2_CID_GAMMA. This control is deprecated and should not be used in new drivers and applications.
- V4L2_CID_EXPOSURE (integer) Exposure (cameras). [Unit?]
- V4L2_CID_AUTOGAIN (boolean) Automatic gain/exposure control.
- V4L2_CID_GAIN (integer) Gain control.

Primarily used to control gain on e.g. TV tuners but also on webcams. Most devices control only digital gain with this control but on some this could include analogue gain as well. Devices that recognise the difference between digital and analogue gain use controls V4L2_CID_DIGITAL_GAIN and V4L2_CID_ANALOGUE_GAIN.

- V4L2_CID_HFLIP (boolean) Mirror the picture horizontally.
- V4L2_CID_VFLIP (boolean) Mirror the picture vertically.
- V4L2_CID_POWER_LINE_FREQUENCY (enum) Enables a power line frequency filter to avoid flicker. Possible values for enum v4l2_power_line_frequency are: V4L2_CID_POWER_LINE_FREQUENCY_DISABLED (0), V4L2_CID_POWER_LINE_FREQUENCY_50HZ (1), V4L2_CID_POWER_LINE_FREQUENCY_60HZ (2) and V4L2_CID_POWER_LINE_FREQUENCY_AUTO (3).
- V4L2_CID_HUE_AUTO (boolean) Enables automatic hue control by the device. The effect of setting V4L2_CID_HUE while automatic hue control is enabled is undefined, drivers should ignore such request.
- V4L2_CID_WHITE_BALANCE_TEMPERATURE (integer) This control specifies the white balance settings as a color temperature in Kelvin. A driver should have a minimum of 2800 (incandescent) to 6500 (daylight). For more information about color temperature see Wikipedia.
- V4L2_CID_SHARPNESS (integer) Adjusts the sharpness filters in a camera. The minimum value disables the filters, higher values give a sharper picture.
- V4L2_CID_BACKLIGHT_COMPENSATION (integer) Adjusts the backlight compensation in a camera. The minimum value disables backlight compensation.
- V4L2_CID_CHROMA_AGC (boolean) Chroma automatic gain control.

- V4L2_CID_CHROMA_GAIN (integer) Adjusts the Chroma gain control (for use when chroma AGC is disabled).
- V4L2_CID_COLOR_KILLER (boolean) Enable the color killer (i. e. force a black & white image in case of a weak video signal).
- V4L2_CID_COLORFX (enum) Selects a color effect. The following values are defined:

V4L2_COLORFX_NONE	Color effect is disabled.
V4L2_COLORFX_ANTIQUE	An aging (old photo) effect.
V4L2_C0L0RFX_ART_FREEZE	Frost color effect.
V4L2_COLORFX_AQUA	Water color, cool tone.
V4L2_COLORFX_BW	Black and white.
V4L2_C0L0RFX_EMB0SS	Emboss, the highlights and shadows replace light/dark bound-
	aries and low contrast areas are set to a gray background.
V4L2_C0L0RFX_GRASS_GREEN	Grass green.
V4L2_COLORFX_NEGATIVE	Negative.
V4L2_COLORFX_SEPIA	Sepia tone.
V4L2_C0L0RFX_SKETCH	Sketch.
V4L2_COLORFX_SKIN_WHITEN	Skin whiten.
V4L2_COLORFX_SKY_BLUE	Sky blue.
V4L2_COLORFX_SOLARIZATION	
	values above or below a certain threshold are inverted.
V4L2_COLORFX_SILHOUETTE	Silhouette (outline).
V4L2_COLORFX_VIVID	Vivid colors.
V4L2_COLORFX_SET_CBCR	The Cb and Cr chroma components are replaced by fixed co-
	efficients determined by V4L2_CID_COLORFX_CBCR control.

- V4L2_CID_COLORFX_CBCR (integer) Determines the Cb and Cr coefficients for V4L2_COLORFX_SET_CBCR color effect. Bits [7:0] of the supplied 32 bit value are interpreted as Cr component, bits [15:8] as Cb component and bits [31:16] must be zero.
- V4L2_CID_AUTOBRIGHTNESS (boolean) Enable Automatic Brightness.
- V4L2_CID_ROTATE (integer) Rotates the image by specified angle. Common angles are 90, 270 and 180. Rotating the image to 90 and 270 will reverse the height and width of the display window. It is necessary to set the new height and width of the picture using the VIDIOC_S_FMT ioctl according to the rotation angle selected.
- V4L2_CID_BG_COLOR (integer) Sets the background color on the current output device. Background color needs to be specified in the RGB24 format. The supplied 32 bit value is interpreted as bits 0-7 Red color information, bits 8-15 Green color information, bits 16-23 Blue color information and bits 24-31 must be zero.
- V4L2_CID_ILLUMINATORS_1 V4L2_CID_ILLUMINATORS_2 (boolean) Switch on or off the illuminator 1 or 2 of the device (usually a microscope).
- V4L2_CID_MIN_BUFFERS_FOR_CAPTURE (integer) This is a read-only control that can be read by the application and used as a hint to determine the number of CAPTURE buffers to pass to REQBUFS. The value is the minimum number of

CAPTURE buffers that is necessary for hardware to work.

- V4L2_CID_MIN_BUFFERS_FOR_OUTPUT (integer) This is a read-only control that can be read by the application and used as a hint to determine the number of OUTPUT buffers to pass to REQBUFS. The value is the minimum number of OUTPUT buffers that is necessary for hardware to work.
- V4L2_CID_ALPHA_COMPONENT (integer) Sets the alpha color component. When a capture device (or capture queue of a mem-to-mem device) produces a frame format that includes an alpha component (e.g. packed RGB image formats) and the alpha value is not defined by the device or the mem-to-mem input data this control lets you select the alpha component value of all pixels. When an output device (or output queue of a mem-to-mem device) consumes a frame format that doesn' t include an alpha component and the device supports alpha channel processing this control lets you set the alpha component value of all pixels for further processing in the device.
- **V4L2_CID_LASTP1** End of the predefined control IDs (currently V4L2_CID_ALPHA_COMPONENT + 1).
- V4L2_CID_PRIVATE_BASE ID of the first custom (driver specific) control. Applications depending on particular custom controls should check the driver name and version, see Querying Capabilities.

Applications can enumerate the available controls with the ioctls VID-IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU and VIDIOC_QUERYMENU ioctls, get and set a control value with the VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls. Drivers must implement VIDIOC_QUERYCTRL, VIDIOC_G_CTRL and VIDIOC_S_CTRL when the device has one or more controls, VIDIOC_QUERYMENU when it has one or more menu type controls.

Example: Enumerating all controls

```
struct v4l2 queryctrl queryctrl;
struct v4l2 querymenu querymenu;
static void enumerate menu( u32 id)
{
    printf(" Menu items:\\n");
    memset(&querymenu, 0, sizeof(querymenu));
    querymenu.id = id;
    for (querymenu.index = queryctrl.minimum;
         querymenu.index <= gueryctrl.maximum;</pre>
         querymenu.index++) {
        if (0 == ioctl(fd, VIDIOC QUERYMENU, &querymenu)) {
            printf(" %s\\n", guerymenu.name);
        }
    }
}
memset(&queryctrl, 0, sizeof(queryctrl));
```

(continued from previous page)

```
queryctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {
    if (!(queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)) {
        printf("Control %s\\n", queryctrl.name);
        if (queryctrl.type == V4L2_CTRL_TYPE_MENU)
            enumerate_menu(queryctrl.id);
    }
    queryctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;
}
if (errno != EINVAL) {
    perror("VIDIOC_QUERYCTRL");
    exit(EXIT_FAILURE);
}
```

Example: Enumerating all controls including compound controls

```
struct v4l2 query ext ctrl query ext ctrl;
memset(&query ext ctrl, 0, sizeof(query ext ctrl));
query_ext_ctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL | V4L2_CTRL_FLAG_NEXT_
\rightarrow COMPOUND;
while (0 == ioctl(fd, VIDIOC QUERY EXT CTRL, &query ext ctrl)) {
    if (!(guery ext ctrl.flags & V4L2 CTRL FLAG DISABLED)) {
        printf("Control %s\\n", query_ext_ctrl.name);
        if (query ext ctrl.type == V4L2 CTRL TYPE MENU)
            enumerate_menu(query_ext_ctrl.id);
    }
    query ext ctrl.id |= V4L2 CTRL FLAG NEXT CTRL | V4L2 CTRL FLAG NEXT
\rightarrow COMPOUND;
if (errno != EINVAL) {
    perror("VIDIOC QUERY EXT CTRL");
    exit(EXIT FAILURE);
}
```

Example: Enumerating all user controls (old style)

```
memset(&queryctrl, 0, sizeof(queryctrl));
for (queryctrl.id = V4L2_CID_BASE;
    queryctrl.id < V4L2_CID_LASTP1;
    queryctrl.id++) {
    if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {
        if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)
            continue;
    }
}</pre>
```

```
(continued from previous page)
```

```
printf("Control %s\\n", queryctrl.name);
        if (queryctrl.type == V4L2 CTRL TYPE MENU)
            enumerate menu(queryctrl.id);
    } else {
        if (errno == EINVAL)
            continue;
        perror("VIDIOC QUERYCTRL");
        exit(EXIT FAILURE);
    }
}
for (queryctrl.id = V4L2 CID PRIVATE BASE;;
     queryctrl.id++) {
    if (0 == ioctl(fd, VIDIOC_QUERYCTRL, &queryctrl)) {
        if (queryctrl.flags & V4L2_CTRL_FLAG_DISABLED)
            continue;
        printf("Control %s\\n", queryctrl.name);
        if (queryctrl.type == V4L2 CTRL TYPE MENU)
            enumerate menu(queryctrl.id);
    } else {
        if (errno == EINVAL)
            break;
        perror("VIDIOC QUERYCTRL");
        exit(EXIT FAILURE);
   }
}
```

Example: Changing controls

```
struct v4l2 gueryctrl gueryctrl;
struct v4l2 control control;
memset(&queryctrl, 0, sizeof(queryctrl));
queryctrl.id = V4L2 CID BRIGHTNESS;
if (-1 == ioctl(fd, VIDIOC QUERYCTRL, &queryctrl)) {
    if (errno != EINVAL) {
        perror("VIDIOC_QUERYCTRL");
        exit(EXIT_FAILURE);
    } else {
        printf("V4L2 CID BRIGHTNESS is not supportedn");
    }
} else if (queryctrl.flags & V4L2 CTRL FLAG DISABLED) {
    printf("V4L2 CID BRIGHTNESS is not supportedn");
} else {
    memset(&control, 0, sizeof (control));
    control.id = V4L2 CID BRIGHTNESS;
    control.value = queryctrl.default value;
```

(continued from previous page)

```
if (-1 == ioctl(fd, VIDIOC S CTRL, &control)) {
        perror("VIDIOC S CTRL");
        exit(EXIT_FAILURE);
    }
}
memset(&control, 0, sizeof(control));
control.id = V4L2_CID_CONTRAST;
if (0 == ioctl(fd, VIDIOC G CTRL, &control)) {
    control.value += 1;
    /* The driver may clamp the value or return ERANGE, ignored here */
    if (-1 == ioctl(fd, VIDIOC S CTRL, &control)
        && errno != ERANGE) {
        perror("VIDIOC S CTRL");
        exit(EXIT FAILURE);
    }
/* Ignore if V4L2 CID CONTRAST is unsupported */
} else if (errno != EINVAL) {
    perror("VIDIOC_G_CTRL");
    exit(EXIT_FAILURE);
}
control.id = V4L2 CID AUDIO MUTE;
control.value = 1; /* silence */
/* Errors ignored */
ioctl(fd, VIDIOC S CTRL, &control);
```

Extended Controls API

Introduction

The control mechanism as originally designed was meant to be used for user settings (brightness, saturation, etc). However, it turned out to be a very useful model for implementing more complicated driver APIs where each driver implements only a subset of a larger API.

The MPEG encoding API was the driving force behind designing and implementing this extended control mechanism: the MPEG standard is quite large and the currently supported hardware MPEG encoders each only implement a subset of this standard. Further more, many parameters relating to how the video is encoded into an MPEG stream are specific to the MPEG encoding chip since the MPEG standard only defines the format of the resulting MPEG stream, not how the video is actually encoded into that format.

Unfortunately, the original control API lacked some features needed for these new uses and so it was extended into the (not terribly originally named) extended control API.

Even though the MPEG encoding API was the first effort to use the Extended Con-

trol API, nowadays there are also other classes of Extended Controls, such as Camera Controls and FM Transmitter Controls. The Extended Controls API as well as all Extended Controls classes are described in the following text.

The Extended Control API

Three new ioctls are available: VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS. These ioctls act on arrays of controls (as opposed to the VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls that act on a single control). This is needed since it is often required to atomically change several controls at once.

Each of the new ioctls expects a pointer to a struct v4l2_ext_controls. This structure contains a pointer to the control array, a count of the number of controls in that array and a control class. Control classes are used to group similar controls into a single class. For example, control class V4L2_CTRL_CLASS_USER contains all user controls (i. e. all controls that can also be set using the old VIDIOC_S_CTRL ioctl). Control class V4L2_CTRL_CLASS_MPEG contains all controls relating to MPEG encoding, etc.

All controls in the control array must belong to the specified control class. An error is returned if this is not the case.

It is also possible to use an empty control array (count == 0) to check whether the specified control class is supported.

The control array is a struct v4l2_ext_control array. The struct v4l2_ext_control is very similar to struct v4l2_control, except for the fact that it also allows for 64-bit values and pointers to be passed.

Since the struct v4l2_ext_control supports pointers it is now also possible to have controls with compound types such as N-dimensional arrays and/or structures. You need to specify the V4L2_CTRL_FLAG_NEXT_COMPOUND when enumerating controls to actually be able to see such compound controls. In other words, these controls with compound types should only be used programmatically.

Since such compound controls need to expose more information about themselves than is possible with VIDIOC_QUERYCTRL the VIDIOC_QUERY_EXT_CTRL ioctl was added. In particular, this ioctl gives the dimensions of the N-dimensional array if this control consists of more than one element.

Note:

- 1. It is important to realize that due to the flexibility of controls it is necessary to check whether the control you want to set actually is supported in the driver and what the valid range of values is. So use ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU to check this.
- 2. It is possible that some of the menu indices in a control of type V4L2_CTRL_TYPE_MENU may not be supported (VIDIOC_QUERYMENU will return an error). A good example is the list of supported MPEG audio bitrates. Some drivers only support one or two bitrates, others support a wider range.

All controls use machine endianness.

Enumerating Extended Controls

The recommended way to enumerate over the extended controls is by using ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU in combination with the V4L2_CTRL_FLAG_NEXT_CTRL flag:

```
struct v4l2_queryctrl qctrl;
qctrl.id = V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl (fd, VIDIOC_QUERYCTRL, &qctrl)) {
    /* ... */
    qctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;
}
```

The initial control ID is set to 0 ORed with the V4L2_CTRL_FLAG_NEXT_CTRL flag. The VIDIOC_QUERYCTRL ioctl will return the first control with a higher ID than the specified one. When no such controls are found an error is returned.

If you want to get all controls within a specific control class, then you can set the initial qctrl.id value to the control class and add an extra check to break out of the loop when a control of another control class is found:

```
qctrl.id = V4L2_CTRL_CLASS_MPEG | V4L2_CTRL_FLAG_NEXT_CTRL;
while (0 == ioctl(fd, VIDIOC_QUERYCTRL, &qctrl)) {
    if (V4L2_CTRL_ID2CLASS(qctrl.id) != V4L2_CTRL_CLASS_MPEG)
        break;
    /* ... */
    qctrl.id |= V4L2_CTRL_FLAG_NEXT_CTRL;
}
```

The 32-bit qctrl.id value is subdivided into three bit ranges: the top 4 bits are reserved for flags (e. g. V4L2_CTRL_FLAG_NEXT_CTRL) and are not actually part of the ID. The remaining 28 bits form the control ID, of which the most significant 12 bits define the control class and the least significant 16 bits identify the control within the control class. It is guaranteed that these last 16 bits are always non-zero for controls. The range of 0x1000 and up are reserved for driver-specific controls. The macro V4L2_CTRL_ID2CLASS(id) returns the control class ID based on a control ID.

If the driver does not support extended controls, then VIDIOC_QUERYCTRL will fail when used in combination with V4L2_CTRL_FLAG_NEXT_CTRL. In that case the old method of enumerating control should be used (see Example: Enumerating all controls). But if it is supported, then it is guaranteed to enumerate over all controls, including driver-private controls.

Creating Control Panels

It is possible to create control panels for a graphical user interface where the user can select the various controls. Basically you will have to iterate over all controls using the method described above. Each control class starts with a control of type V4L2_CTRL_TYPE_CTRL_CLASS. VIDIOC_QUERYCTRL will return the name of this control class which can be used as the title of a tab page within a control panel.

The flags field of struct v4l2_queryctrl also contains hints on the behavior of the control. See the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU documentation for more details.

Camera Control Reference

The Camera class includes controls for mechanical (or equivalent digital) features of a device such as controllable lenses or sensors.

Camera Control IDs

- V4L2_CID_CAMERA_CLASS (class) The Camera class descriptor. Calling ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VID-IOC_QUERYMENU for this control will return a description of this control class.
- V4L2_CID_EXPOSURE_AUT0 (enum)
- **enum v4l2_exposure_auto_type -** Enables automatic adjustments of the exposure time and/or iris aperture. The effect of manual changes of the exposure time or iris aperture while these features are enabled is undefined, drivers should ignore such requests. Possible values are:

V4L2_EXPOSURE_AUT0	Automatic exposure time, automatic iris	
	aperture.	
V4L2_EXPOSURE_MANUAL	Manual exposure time, manual iris.	
V4L2_EXPOSURE_SHUTTER_PRIORITYManual exposure time, auto iris.		
V4L2_EXPOSURE_APERTURE_PRIORITATuto exposure time, manual iris.		

- V4L2_CID_EXPOSURE_ABSOLUTE (integer) Determines the exposure time of the camera sensor. The exposure time is limited by the frame interval. Drivers should interpret the values as 100 µs units, where the value 1 stands for 1/10000th of a second, 10000 for 1 second and 100000 for 10 seconds.
- V4L2_CID_EXPOSURE_AUTO_PRIORITY (boolean) When V4L2_CID_EXPOSURE_AUTO is set to AUTO or APERTURE_PRIORITY, this control determines if the device may dynamically vary the frame rate. By default this feature is disabled (0) and the frame rate must remain constant.
- V4L2_CID_AUT0_EXPOSURE_BIAS (integer menu) Determines the automatic exposure compensation, it is effective only when V4L2_CID_EXPOSURE_AUT0 control is set to AUT0, SHUTTER_PRIORITY or APERTURE_PRIORITY. It is expressed in terms of EV, drivers should interpret the values as 0.001 EV units, where the value 1000 stands for +1 EV.

Increasing the exposure compensation value is equivalent to decreasing the exposure value (EV) and will increase the amount of light at the image sensor. The camera performs the exposure compensation by adjusting absolute exposure time and/or aperture.

V4L2_CID_EXPOSURE_METERING (enum)

enum v4l2_exposure_metering - Determines how the camera measures the amount of light available for the frame exposure. Possible values are:

V4L2_EXPOSURE_METERING_AVERAGE	Use the light information coming from the en-
	tire frame and average giving no weighting to
	any particular portion of the metered area.
V4L2_EXPOSURE_METERING_CENTER_WEIGHTED	5 5 5
	the entire frame giving priority to the center
	of the metered area.
V4L2_EXPOSURE_METERING_SPOT	Measure only very small area at the center of
	the frame.
V4L2_EXPOSURE_METERING_MATRIX	A multi-zone metering. The light intensity is
	measured in several points of the frame and
	the results are combined. The algorithm of
	the zones selection and their significance in
	calculating the final value is device depen-
	dent.

- V4L2_CID_PAN_RELATIVE (integer) This control turns the camera horizontally by the specified amount. The unit is undefined. A positive value moves the camera to the right (clockwise when viewed from above), a negative value to the left. A value of zero does not cause motion. This is a write-only control.
- V4L2_CID_TILT_RELATIVE (integer) This control turns the camera vertically by the specified amount. The unit is undefined. A positive value moves the camera up, a negative value down. A value of zero does not cause motion. This is a write-only control.
- V4L2_CID_PAN_RESET (button) When this control is set, the camera moves horizontally to the default position.
- V4L2_CID_TILT_RESET (button) When this control is set, the camera moves vertically to the default position.
- V4L2_CID_PAN_ABSOLUTE (integer) This control turns the camera horizontally to the specified position. Positive values move the camera to the right (clockwise when viewed from above), negative values to the left. Drivers should interpret the values as arc seconds, with valid values between -180 * 3600 and +180 * 3600 inclusive.
- V4L2_CID_TILT_ABSOLUTE (integer) This control turns the camera vertically to the specified position. Positive values move the camera up, negative values down. Drivers should interpret the values as arc seconds, with valid values between -180 * 3600 and +180 * 3600 inclusive.
- V4L2_CID_FOCUS_ABSOLUTE (integer) This control sets the focal point of the camera to the specified position. The unit is undefined. Positive values set the focus closer to the camera, negative values towards infinity.

- V4L2_CID_FOCUS_RELATIVE (integer) This control moves the focal point of the camera by the specified amount. The unit is undefined. Positive values move the focus closer to the camera, negative values towards infinity. This is a write-only control.
- V4L2_CID_FOCUS_AUTO (boolean) Enables continuous automatic focus adjustments. The effect of manual focus adjustments while this feature is enabled is undefined, drivers should ignore such requests.
- V4L2_CID_AUT0_FOCUS_START (button) Starts single auto focus process. The effect of setting this control when V4L2_CID_FOCUS_AUT0 is set to TRUE (1) is undefined, drivers should ignore such requests.
- V4L2_CID_AUT0_FOCUS_STOP (button) Aborts automatic focusing started with V4L2_CID_AUT0_FOCUS_START control. It is effective only when the continuous autofocus is disabled, that is when V4L2_CID_FOCUS_AUT0 control is set to FALSE (0).
- V4L2_CID_AUT0_FOCUS_STATUS (bitmask) The automatic focus status. This is a read-only control.

Setting V4L2_LOCK_FOCUS lock bit of the V4L2_CID_3A_LOCK control may stop updates of the V4L2_CID_AUT0_FOCUS_STATUS control value.

V4L2 AUTO FOCUS STATUS IDLE	Automatic focus is not active.
	Automatic focusing is in progress.
V4L2_AUTO FOCUS STATUS REACHED	5 1 5
V4L2_AUTU_FUCUS_STATUS_FAILED	Automatic focus has failed, the driver will not transition
	from this state until another action is performed by an
	application.

V4L2_CID_AUT0_FOCUS_RANGE (enum)

enum v4l2_auto_focus_range - Determines auto focus distance range for which lens may be adjusted.

V4L2_AUT0_F0CUS_RANGE_AUT0	The camera automatically selects the focus range.	
V4L2_AUT0_F0CUS_RANGE_N0RMAL	Normal distance range, limited for best automatic focus	
	performance.	
V4L2_AUT0_F0CUS_RANGE_MACR0	Macro (close-up) auto focus. The camera will use its	
	minimum possible distance for auto focus.	
V4L2_AUT0_FOCUS_RANGE_INFINITY	The lens is set to focus on an object at infinite distance.	

- V4L2_CID_ZOOM_ABSOLUTE (integer) Specify the objective lens focal length as an absolute value. The zoom unit is driver-specific and its value should be a positive integer.
- V4L2_CID_ZOOM_RELATIVE (integer) Specify the objective lens focal length relatively to the current value. Positive values move the zoom lens group towards the telephoto direction, negative values towards the wide-angle direction. The zoom unit is driver-specific. This is a write-only control.
- V4L2_CID_ZOOM_CONTINUOUS (integer) Move the objective lens group at the specified speed until it reaches physical device limits or until an explicit request to stop the movement. A positive value moves the zoom lens group

towards the telephoto direction. A value of zero stops the zoom lens group movement. A negative value moves the zoom lens group towards the wideangle direction. The zoom speed unit is driver-specific.

- V4L2_CID_IRIS_ABSOLUTE (integer) This control sets the camera's aperture to the specified value. The unit is undefined. Larger values open the iris wider, smaller values close it.
- V4L2_CID_IRIS_RELATIVE (integer) This control modifies the camera' s aperture by the specified amount. The unit is undefined. Positive values open the iris one step further, negative values close it one step further. This is a write-only control.
- V4L2_CID_PRIVACY (boolean) Prevent video from being acquired by the camera. When this control is set to TRUE (1), no image can be captured by the camera. Common means to enforce privacy are mechanical obturation of the sensor and firmware image processing, but the device is not restricted to these methods. Devices that implement the privacy control must support read access and may support write access.
- V4L2_CID_BAND_STOP_FILTER (integer) Switch the band-stop filter of a camera sensor on or off, or specify its strength. Such band-stop filters can be used, for example, to filter out the fluorescent light component.
- V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE (enum)
- **enum v4l2_auto_n_preset_white_balance -** Sets white balance to automatic, manual or a preset. The presets determine color temperature of the light as a hint to the camera for white balance adjustments resulting in most accurate color representation. The following white balance presets are listed in order of increasing color temperature.

V4L2_WHITE_BALANCE_MANUAL	Manual white balance.
V4L2_WHITE_BALANCE_AUT0	Automatic white balance adjustments.
V4L2_WHITE_BALANCE_INCANDESCENT	White balance setting for incandescent (tungsten)
	lighting. It generally cools down the colors and cor-
	responds approximately to 2500…3500 K color tem-
	perature range.
V4L2_WHITE_BALANCE_FLUORESCENT	White balance preset for fluorescent lighting. It cor-
	responds approximately to 4000…5000 K color tem-
	perature.
V4L2_WHITE_BALANCE_FLUORESCENT_H	With this setting the camera will compensate for flu-
	orescent H lighting.
V4L2_WHITE_BALANCE_HORIZON	White balance setting for horizon daylight. It corre-
	sponds approximately to 5000 K color temperature.
V4L2_WHITE_BALANCE_DAYLIGHT	White balance preset for daylight (with clear sky).
	It corresponds approximately to 5000…6500 K color
	temperature.
V4L2_WHITE_BALANCE_FLASH	With this setting the camera will compensate for the
	flash light. It slightly warms up the colors and corre-
	sponds roughly to 5000…5500 K color temperature.
V4L2_WHITE_BALANCE_CLOUDY	White balance preset for moderately overcast sky.
	This option corresponds approximately to 6500
	8000 K color temperature range.
V4L2_WHITE_BALANCE_SHADE	White balance preset for shade or heavily overcast
	sky. It corresponds approximately to 9000…10000 K
	color temperature.

- V4L2_CID_WIDE_DYNAMIC_RANGE (boolean) Enables or disables the camera's wide dynamic range feature. This feature allows to obtain clear images in situations where intensity of the illumination varies significantly throughout the scene, i.e. there are simultaneously very dark and very bright areas. It is most commonly realized in cameras by combining two subsequent frames with different exposure times.¹
- V4L2_CID_IMAGE_STABILIZATION (boolean) Enables or disables image stabilization.
- V4L2_CID_ISO_SENSITIVITY (integer menu) Determines ISO equivalent of an image sensor indicating the sensor's sensitivity to light. The numbers are expressed in arithmetic scale, as per ISO 12232:2006 standard, where doubling the sensor sensitivity is represented by doubling the numerical ISO value. Applications should interpret the values as standard ISO values multiplied by 1000, e.g. control value 800 stands for ISO 0.8. Drivers will usually support only a subset of standard ISO values. The effect of setting this control while the V4L2_CID_ISO_SENSITIVITY_AUT0 control is set to a value other than V4L2_CID_ISO_SENSITIVITY_MANUAL is undefined, drivers should ignore such requests.
- V4L2_CID_ISO_SENSITIVITY_AUTO (enum)
- **enum v4l2_iso_sensitivity_type -** Enables or disables automatic ISO sensitivity adjustments.

¹ This control may be changed to a menu control in the future, if more options are required.

V4L2_CID_IS0_SENSITIVITY_MANUAL	Manual ISO sensitivity.
V4L2_CID_IS0_SENSITIVITY_AUT0	Automatic ISO sensitivity adjustments.

V4L2_CID_SCENE_MODE (enum)

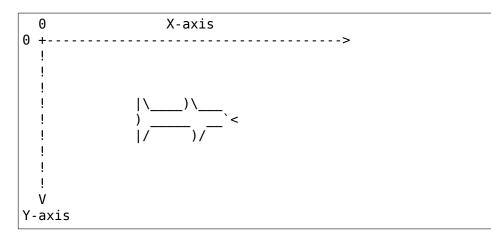
enum v4l2_scene_mode - This control allows to select scene programs as the camera automatic modes optimized for common shooting scenes. Within these modes the camera determines best exposure, aperture, focusing, light metering, white balance and equivalent sensitivity. The controls of those parameters are influenced by the scene mode control. An exact behavior in each mode is subject to the camera specification.

When the scene mode feature is not used, this control should be set to V4L2_SCENE_MODE_NONE to make sure the other possibly related controls are accessible. The following scene programs are defined:

V4L2 SCENE MODE NONE	The scene mode feature is disabled.
V4L2_SCENE_MODE_NONE V4L2_SCENE_MODE_BACKLIGHT	Backlight. Compensates for dark shadows when light is coming
V4L2_SCENE_MODE_BACKLIGHT	
	from behind a subject, also by automatically turning on the flash.
V4L2_SCENE_MODE_BEACH_SNOW	Beach and snow. This mode compensates for all-white or bright
	scenes, which tend to look gray and low contrast, when camera'
	s automatic exposure is based on an average scene brightness.
	To compensate, this mode automatically slightly overexposes the
	frames. The white balance may also be adjusted to compensate
VALO CCENE MODE CANDLEL TOUT	for the fact that reflected snow looks bluish rather than white.
V4L2_SCENE_MODE_CANDLELIGHT	Candle light. The camera generally raises the ISO sensitivity and
	lowers the shutter speed. This mode compensates for relatively
	close subject in the scene. The flash is disabled in order to pre-
	serve the ambiance of the light.
V4L2_SCENE_MODE_DAWN_DUSK	Dawn and dusk. Preserves the colors seen in low natural light
	before dusk and after down. The camera may turn off the flash,
	and automatically focus at infinity. It will usually boost saturation
	and lower the shutter speed.
V4L2_SCENE_MODE_FALL_COLORS	Fall colors. Increases saturation and adjusts white balance for
	color enhancement. Pictures of autumn leaves get saturated reds
MALO CCENE MODE ETDEMODIC	and yellows.
V4L2_SCENE_MODE_FIREWORKS	Fireworks. Long exposure times are used to capture the expand-
	ing burst of light from a firework. The camera may invoke image
	stabilization.
V4L2_SCENE_MODE_LANDSCAPE	Landscape. The camera may choose a small aperture to provide
	deep depth of field and long exposure duration to help capture
	detail in dim light conditions. The focus is fixed at infinity. Suit-
MALO CCENE MODE NICUT	able for distant and wide scenery.
V4L2_SCENE_MODE_NIGHT	Night, also known as Night Landscape. Designed for low light
	conditions, it preserves detail in the dark areas without blowing
	out bright objects. The camera generally sets itself to a medium-
	to-high ISO sensitivity, with a relatively long exposure time, and
	turns flash off. As such, there will be increased image noise and
VALO CCENE MODE DADTY INDOOD	the possibility of blurred image.
V4L2_SCENE_MODE_PARTY_INDOOR	Party and indoor. Designed to capture indoor scenes that are lit
	by indoor background lighting as well as the flash. The camera
	usually increases ISO sensitivity, and adjusts exposure for the low
	light conditions.
V4L2_SCENE_MODE_PORTRAIT	Portrait. The camera adjusts the aperture so that the depth
	of field is reduced, which helps to isolate the subject against a
	smooth background. Most cameras recognize the presence of
	faces in the scene and focus on them. The color hue is adjusted
	to enhance skin tones. The intensity of the flash is often reduced.
V4L2_SCENE_MODE_SPORTS	Sports. Significantly increases ISO and uses a fast shutter speed
	to freeze motion of rapidly-moving subjects. Increased image
	noise may be seen in this mode.
V4L2_SCENE_MODE_SUNSET	Sunset. Preserves deep hues seen in sunsets and sunrises. It
	bumps up the saturation.
V4L2_SCENE_MODE_TEXT	Text. It applies extra contrast and sharpness, it is typically a
	black-and-white mode optimized for readability. Automatic fo-
	cus may be switched to close-up mode and this setting may also
	involve some lens-distortion correction.

V4L2_CID_3A_LOCK (bitmask) This control locks or unlocks the automatic focus, exposure and white balance. The automatic adjustments can be paused independently by setting the corresponding lock bit to 1. The camera then retains the settings until the lock bit is cleared. The following lock bits are defined: When a given algorithm is not enabled, drivers should ignore requests to lock it and should return no error. An example might be an application setting bit V4L2_LOCK_WHITE_BALANCE when the V4L2_CID_AUTO_WHITE_BALANCE control is set to FALSE. The value of this control may be changed by exposure, white balance or focus controls.

V4L2_L0CK_EXP0SURE	Automatic exposure adjustments lock.
V4L2_LOCK_WHITE_BALANCE	Automatic white balance adjustments lock.
V4L2_LOCK_FOCUS	Automatic focus lock.

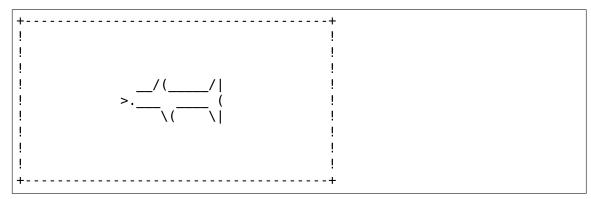

- V4L2_CID_PAN_SPEED (integer) This control turns the camera horizontally at the specific speed. The unit is undefined. A positive value moves the camera to the right (clockwise when viewed from above), a negative value to the left. A value of zero stops the motion if one is in progress and has no effect otherwise.
- V4L2_CID_TILT_SPEED (integer) This control turns the camera vertically at the specified speed. The unit is undefined. A positive value moves the camera up, a negative value down. A value of zero stops the motion if one is in progress and has no effect otherwise.
- V4L2_CID_CAMERA_ORIENTATION (menu) This read-only control describes the camera orientation by reporting its mounting position on the device where the camera is installed. The control value is constant and not modifiable by software. This control is particularly meaningful for devices which have a well defined orientation, such as phones, laptops and portable devices since the control is expressed as a position relative to the device' s intended usage orientation. For example, a camera installed on the user-facing side of a phone, a tablet or a laptop device is said to be have V4L2_CAMERA_ORIENTATION_FRONT orientation, while a camera installed on the opposite side of the front one is said to be have V4L2_CAMERA_ORIENTATION_BACK orientation. Camera sensors not directly attached to the device, or attached in a way that allows them to move freely, such as webcams and digital cameras, are said to have the V4L2_CAMERA_ORIENTATION_EXTERNAL orientation.

V4L2_CAMERA_ORIENTATION_	FIRCENT camera is oriented towards the user facing
	side of the device.
V4L2_CAMERA_ORIENTATION	BAGK camera is oriented towards the back facing
	side of the device.
V4L2_CAMERA_ORIENTATION	EXTERNALera is not directly attached to the device
	and is freely movable.

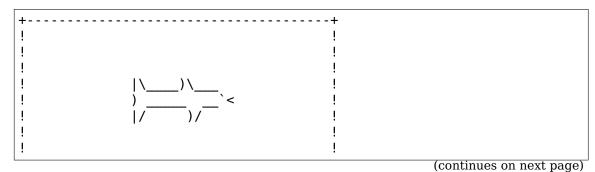
V4L2_CID_CAMERA_SENSOR_ROTATION (integer) This read-only control describes the rotation correction in degrees in the counter-clockwise direction to be applied to the captured images once captured to memory to compensate for the camera sensor mounting rotation.

For a precise definition of the sensor mounting rotation refer to the extensive description of the 'rotation' properties in the device tree bindings file 'video-interfaces.txt'.

A few examples are below reported, using a shark swimming from left to right in front of the user as the example scene to capture.



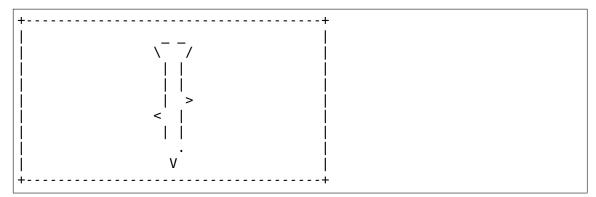
Example one - Webcam


Assuming you can bring your laptop with you while swimming with sharks, the camera module of the laptop is installed on the user facing part of a laptop screen casing, and is typically used for video calls. The captured images are meant to be displayed in landscape mode (width > height) on the laptop screen.

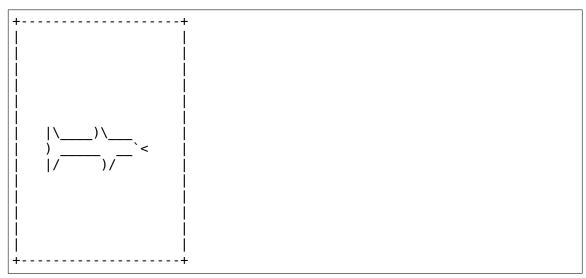
The camera is typically mounted upside-down to compensate the lens optical inversion effect. In this case the value of the V4L2_CID_CAMERA_SENSOR_ROTATION control is 0, no rotation is required to display images correctly to the user.

If the camera sensor is not mounted upside-down it is required to compensate the lens optical inversion effect and the value of the V4L2_CID_CAMERA_SENSOR_ROTATION control is 180 degrees, as images will result rotated when captured to memory.

A software rotation correction of 180 degrees has to be applied to correctly display the image on the user screen.


	(continued from previous page)
!	!
+	-+

Example two - Phone camera


It is more handy to go and swim with sharks with only your mobile phone with you and take pictures with the camera that is installed on the back side of the device, facing away from the user. The captured images are meant to be displayed in portrait mode (height > width) to match the device screen orientation and the device usage orientation used when taking the picture.

The camera sensor is typically mounted with its pixel array longer side aligned to the device longer side, upside-down mounted to compensate for the lens optical inversion effect.

The images once captured to memory will be rotated and the value of the V4L2_CID_CAMERA_SENSOR_ROTATION will report a 90 degree rotation.

A correction of 90 degrees in counter-clockwise direction has to be applied to correctly display the image in portrait mode on the device screen.

Flash Control Reference

The V4L2 flash controls are intended to provide generic access to flash controller devices. Flash controller devices are typically used in digital cameras.

The interface can support both LED and xenon flash devices. As of writing this, there is no xenon flash driver using this interface.

Supported use cases

Unsynchronised LED flash (software strobe)

Unsynchronised LED flash is controlled directly by the host as the sensor. The flash must be enabled by the host before the exposure of the image starts and disabled once it ends. The host is fully responsible for the timing of the flash.

Example of such device: Nokia N900.

Synchronised LED flash (hardware strobe)

The synchronised LED flash is pre-programmed by the host (power and timeout) but controlled by the sensor through a strobe signal from the sensor to the flash.

The sensor controls the flash duration and timing. This information typically must be made available to the sensor.

LED flash as torch

LED flash may be used as torch in conjunction with another use case involving camera or individually.

Flash Control IDs

V4L2_CID_FLASH_CLASS (class) The FLASH class descriptor.

V4L2_CID_FLASH_LED_MODE (menu) Defines the mode of the flash LED, the highpower white LED attached to the flash controller. Setting this control may not be possible in presence of some faults. See V4L2_CID_FLASH_FAULT.

V4L2_FLASH_LED_MODE_NON	lEOff.
V4L2_FLASH_LED_MODE_FLA	SFflash mode.
V4L2_FLASH_LED_MODE_TOR	CHorch mode. See V4L2_CID_FLASH_TORCH_INTENSITY.

V4L2_CID_FLASH_STROBE_SOURCE (menu) Defines the source of the flash LED strobe.

V4L2_FLASH_STROBE_SOURCE_SOFTWARE	E The flash strobe is triggered by using the	
	V4L2_CID_FLASH_STROBE control.	
V4L2_FLASH_STROBE_SOURCE_EXTERNAL	The flash strobe is triggered by an external source.	
	Typically this is a sensor, which makes it possible to	
	synchronise the flash strobe start to exposure start.	

- V4L2_CID_FLASH_STROBE (button) Strobe flash. Valid when V4L2_CID_FLASH_LED_MODE is set to V4L2_FLASH_LED_MODE_FLASH and V4L2_CID_FLASH_STROBE_SOURCE is set to V4L2_FLASH_STROBE_SOURCE_SOFTWARE. Setting this control may not be possible in presence of some faults. See V4L2_CID_FLASH_FAULT.
- V4L2_CID_FLASH_STROBE_STOP (button) Stop flash strobe immediately.
- V4L2_CID_FLASH_STROBE_STATUS (boolean) Strobe status: whether the flash is strobing at the moment or not. This is a read-only control.
- V4L2_CID_FLASH_TIMEOUT (integer) Hardware timeout for flash. The flash strobe is stopped after this period of time has passed from the start of the strobe.
- V4L2_CID_FLASH_INTENSITY (integer) Intensity of the flash strobe when the flash LED is in flash mode (V4L2_FLASH_LED_MODE_FLASH). The unit should be milliamps (mA) if possible.
- V4L2_CID_FLASH_TORCH_INTENSITY (integer) Intensity of the flash LED in torch mode (V4L2_FLASH_LED_MODE_TORCH). The unit should be milliamps (mA) if possible. Setting this control may not be possible in presence of some faults. See V4L2_CID_FLASH_FAULT.
- V4L2_CID_FLASH_INDICATOR_INTENSITY (integer) Intensity of the indicator LED. The indicator LED may be fully independent of the flash LED. The unit should be microamps (uA) if possible.
- V4L2_CID_FLASH_FAULT (bitmask) Faults related to the flash. The faults tell about specific problems in the flash chip itself or the LEDs attached to it. Faults may prevent further use of some of the flash controls. In particular, V4L2_CID_FLASH_LED_MODE is set to V4L2_FLASH_LED_MODE_NONE if the fault affects the flash LED. Exactly which faults have such an effect is chip dependent. Reading the faults resets the control and returns the chip to a usable state if possible.

	Elash controller coltans to the flesh IED has
V4L2_FLASH_FAULT_OVER_VOLTAGE	Flash controller voltage to the flash LED has
	exceeded the limit specific to the flash con-
	troller.
V4L2_FLASH_FAULT_TIMEOUT	The flash strobe was still on when the timeout
	set by the user –V4L2 CID FLASH TIMEOUT
	control —has expired. Not all flash controllers
	may set this in all such conditions.
V4L2_FLASH_FAULT_OVER_TEMPERATURE	The flash controller has overheated.
V4L2_FLASH_FAULT_SHORT_CIRCUIT	The short circuit protection of the flash con-
	troller has been triggered.
V4L2_FLASH_FAULT_OVER_CURRENT	Current in the LED power supply has exceeded
	the limit specific to the flash controller.
V4L2_FLASH_FAULT_INDICATOR	The flash controller has detected a short or
	open circuit condition on the indicator LED.
V4L2 FLASH FAULT UNDER VOLTAGE	Flash controller voltage to the flash LED has
	been below the minimum limit specific to the
	flash controller.
V4L2 FLASH FAULT INPUT VOLTAGE	The input voltage of the flash controller is be-
V4L2_I LASII_I AUEI_INFUI_VUEIAUE	
	low the limit under which strobing the flash at
	full current will not be possible. The condition
	persists until this flag is no longer set.
V4L2_FLASH_FAULT_LED_OVER_TEMPERATURE	The temperature of the LED has exceeded its
	allowed upper limit.
	11 1 1

- V4L2_CID_FLASH_CHARGE (boolean) Enable or disable charging of the xenon flash capacitor.
- V4L2_CID_FLASH_READY (boolean) Is the flash ready to strobe? Xenon flashes require their capacitors charged before strobing. LED flashes often require a cooldown period after strobe during which another strobe will not be possible. This is a read-only control.

Image Source Control Reference

The Image Source control class is intended for low-level control of image source devices such as image sensors. The devices feature an analogue to digital converter and a bus transmitter to transmit the image data out of the device.

Image Source Control IDs

- V4L2_CID_IMAGE_SOURCE_CLASS (class) The IMAGE_SOURCE class descriptor.
- V4L2_CID_VBLANK (integer) Vertical blanking. The idle period after every frame during which no image data is produced. The unit of vertical blanking is a line. Every line has length of the image width plus horizontal blanking at the pixel rate defined by V4L2_CID_PIXEL_RATE control in the same sub-device.
- V4L2_CID_HBLANK (integer) Horizontal blanking. The idle period after every line of image data during which no image data is produced. The unit of horizontal blanking is pixels.

- V4L2_CID_ANALOGUE_GAIN (integer) Analogue gain is gain affecting all colour components in the pixel matrix. The gain operation is performed in the analogue domain before A/D conversion.
- V4L2_CID_TEST_PATTERN_RED (integer) Test pattern red colour component.
- V4L2_CID_TEST_PATTERN_GREENR (integer) Test pattern green (next to red) colour component.
- V4L2_CID_TEST_PATTERN_BLUE (integer) Test pattern blue colour component.
- V4L2_CID_TEST_PATTERN_GREENB (integer) Test pattern green (next to blue) colour component.
- V4L2_CID_UNIT_CELL_SIZE (struct) This control returns the unit cell size in nanometers. The struct v4l2_area provides the width and the height in separate fields to take into consideration asymmetric pixels. This control does not take into consideration any possible hardware binning. The unit cell consists of the whole area of the pixel, sensitive and non-sensitive. This control is required for automatic calibration of sensors/cameras.

Image Process Control Reference

The Image Process control class is intended for low-level control of image processing functions. Unlike V4L2_CID_IMAGE_SOURCE_CLASS, the controls in this class affect processing the image, and do not control capturing of it.

Image Process Control IDs

V4L2_CID_IMAGE_PROC_CLASS (class) The IMAGE_PROC class descriptor.

- V4L2_CID_LINK_FREQ (integer menu) Data bus frequency. Together with the media bus pixel code, bus type (clock cycles per sample), the data bus frequency defines the pixel rate (V4L2_CID_PIXEL_RATE) in the pixel array (or possibly elsewhere, if the device is not an image sensor). The frame rate can be calculated from the pixel clock, image width and height and horizontal and vertical blanking. While the pixel rate control may be defined elsewhere than in the subdev containing the pixel array, the frame rate cannot be obtained from that information. This is because only on the pixel array it can be assumed that the vertical and horizontal blanking information is exact: no other blanking is allowed in the pixel array. The selection of frame rate is performed by selecting the desired horizontal and vertical blanking. The unit of this control is Hz.
- V4L2_CID_PIXEL_RATE (64-bit integer) Pixel rate in the source pads of the subdev. This control is read-only and its unit is pixels / second.
- V4L2_CID_TEST_PATTERN (menu) Some capture/display/sensor devices have the capability to generate test pattern images. These hardware specific test patterns can be used to test if a device is working properly.
- V4L2_CID_DEINTERLACING_MODE (menu) The video deinterlacing mode (such as Bob, Weave, …). The menu items are driver specific and are documented in uapi-v4l-drivers.

V4L2_CID_DIGITAL_GAIN (integer) Digital gain is the value by which all colour components are multiplied by. Typically the digital gain applied is the control value divided by e.g. 0x100, meaning that to get no digital gain the control value needs to be 0x100. The no-gain configuration is also typically the default.

Codec Control Reference

Below all controls within the Codec control class are described. First the generic controls, then controls specific for certain hardware.

Note: These controls are applicable to all codecs and not just MPEG. The defines are prefixed with V4L2_CID_MPEG/V4L2_MPEG as the controls were originally made for MPEG codecs and later extended to cover all encoding formats.

Generic Codec Controls

Codec Control IDs

V4L2_CID_MPEG_CLASS (class) The Codec class descriptor. Calling ioctls VID-IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this control class. This description can be used as the caption of a Tab page in a GUI, for example.

V4L2_CID_MPEG_STREAM_TYPE (enum)

enum v4l2_mpeg_stream_type - The MPEG-1, -2 or -4 output stream type. One cannot assume anything here. Each hardware MPEG encoder tends to support different subsets of the available MPEG stream types. This control is specific to multiplexed MPEG streams. The currently defined stream types are:

V4L2_MPEG_STREAM_TYPE_MPEG2_PS	MPEG-2 program stream
V4L2_MPEG_STREAM_TYPE_MPEG2_TS	MPEG-2 transport stream
V4L2_MPEG_STREAM_TYPE_MPEG1_SS	MPEG-1 system stream
	MPEG-2 DVD-compatible stream
V4L2_MPEG_STREAM_TYPE_MPEG1_VCD	MPEG-1 VCD-compatible stream
V4L2_MPEG_STREAM_TYPE_MPEG2_SVCD	MPEG-2 SVCD-compatible stream

- V4L2_CID_MPEG_STREAM_PID_PMT (integer) Program Map Table Packet ID for the MPEG transport stream (default 16)
- V4L2_CID_MPEG_STREAM_PID_AUDIO (integer) Audio Packet ID for the MPEG transport stream (default 256)
- V4L2_CID_MPEG_STREAM_PID_VIDE0 (integer) Video Packet ID for the MPEG transport stream (default 260)
- V4L2_CID_MPEG_STREAM_PID_PCR (integer) Packet ID for the MPEG transport stream carrying PCR fields (default 259)

V4L2_CID_MPEG_STREAM_PES_ID_AUDIO (integer) Audio ID for MPEG PES

V4L2_CID_MPEG_STREAM_PES_ID_VIDE0 (integer) Video ID for MPEG PES

V4L2_CID_MPEG_STREAM_VBI_FMT (enum)

enum v4l2_mpeg_stream_vbi_fmt - Some cards can embed VBI data (e.g. Closed Caption, Teletext) into the MPEG stream. This control selects whether VBI data should be embedded, and if so, what embedding method should be used. The list of possible VBI formats depends on the driver. The currently defined VBI format types are:

V4L2_MPEG_STREAM_VBI_FMT_NONE	No VBI in the MPEG stream	
V4L2_MPEG_STREAM_VBI_FMT_IVTV	STREAM_VBI_FMT_IVTV VBI in private packets, IVTV format (documented	
in the kernel sources in the file Documentation/		
	<pre>userspace-api/media/drivers/cx2341x-uapi.rst)</pre>	

V4L2_CID_MPEG_AUDIO_SAMPLING_FREQ (enum)

enum v4l2_mpeg_audio_sampling_freq - MPEG Audio sampling frequency. Possible values are:

V4L2_MPEG_AUDI0_SAMPLING_FREQ_44100	44.1 kHz
V4L2_MPEG_AUDI0_SAMPLING_FREQ_48000	48 kHz
V4L2_MPEG_AUDI0_SAMPLING_FREQ_32000	32 kHz

V4L2_CID_MPEG_AUDIO_ENCODING (enum)

enum v4l2_mpeg_audio_encoding - MPEG Audio encoding. This control is specific to multiplexed MPEG streams. Possible values are:

V4L2_MPEG_AUDI0_ENCODING_LAYER_1	MPEG-1/2 Layer I encoding
V4L2_MPEG_AUDI0_ENCODING_LAYER_2	MPEG-1/2 Layer II encoding
V4L2_MPEG_AUDI0_ENCODING_LAYER_3	MPEG-1/2 Layer III encoding
V4L2_MPEG_AUDI0_ENCODING_AAC	MPEG-2/4 AAC (Advanced Audio Cod-
	ing)
V4L2_MPEG_AUDI0_ENCODING_AC3	AC-3 aka ATSC A/52 encoding

V4L2_CID_MPEG_AUDIO_L1_BITRATE (enum)

enum v4l2_mpeg_audio_l1_bitrate - MPEG-1/2 Layer I bitrate. Possible values are:

V4L2_MPEG_AUDI0_L1_BITRATE_32K	32 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_64K	64 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_96K	96 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_128K	128 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_160K	160 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_192K	192 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_224K	224 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_256K	256 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_288K	288 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_320K	320 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_352K	352 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_384K	384 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_416K	416 kbit/s
V4L2_MPEG_AUDI0_L1_BITRATE_448K	448 kbit/s

V4L2_CID_MPEG_AUDIO_L2_BITRATE (enum)

enum v4l2_mpeg_audio_l2_bitrate - MPEG-1/2 Layer II bitrate. Possible values are:

V4L2_MPEG_AUDI0_L2_BITRATE_32K	32 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_48K	48 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_56K	56 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_64K	64 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_80K	80 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_96K	96 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_112K	112 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_128K	128 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_160K	160 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_192K	192 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_224K	224 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_256K	256 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_320K	320 kbit/s
V4L2_MPEG_AUDI0_L2_BITRATE_384K	384 kbit/s

V4L2_CID_MPEG_AUDIO_L3_BITRATE (enum)

enum v4l2_mpeg_audio_l3_bitrate - MPEG-1/2 Layer III bitrate. Possible values are:

32 kbit/s
40 kbit/s
48 kbit/s
56 kbit/s
64 kbit/s
80 kbit/s
96 kbit/s
112 kbit/s
128 kbit/s
160 kbit/s
192 kbit/s
224 kbit/s
256 kbit/s
320 kbit/s

V4L2_CID_MPEG_AUDIO_AAC_BITRATE (integer) AAC bitrate in bits per second. V4L2_CID_MPEG_AUDIO_AC3_BITRATE (enum)

enum v4l2_mpeg_audio_ac3_bitrate - AC-3 bitrate. Possible values are:

V4L2_MPEG_AUDI0_AC3_BITRATE_32K	32 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_40K	40 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_48K	48 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_56K	56 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_64K	64 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_80K	80 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_96K	96 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_112K	112 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_128K	128 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_160K	160 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_192K	192 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_224K	224 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_256K	256 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_320K	320 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_384K	384 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_448K	448 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_512K	512 kbit/s
V4L2_MPEG_AUDIO_AC3_BITRATE_576K	576 kbit/s
V4L2_MPEG_AUDI0_AC3_BITRATE_640K	640 kbit/s
	1

V4L2_CID_MPEG_AUDIO_MODE (enum)

enum v4l2_mpeg_audio_mode - MPEG Audio mode. Possible values are:

V4L2_MPEG_AUDI0_MODE_STERE0	Stereo
V4L2_MPEG_AUDI0_MODE_J0INT_STERE0	Joint Stereo
V4L2_MPEG_AUDI0_MODE_DUAL	Bilingual
V4L2_MPEG_AUDI0_MODE_MON0	Mono

V4L2_CID_MPEG_AUDIO_MODE_EXTENSION (enum)

enum v4l2_mpeg_audio_mode_extension - Joint Stereo audio mode extension. In Layer I and II they indicate which subbands are in intensity stereo. All other subbands are coded in stereo. Layer III is not (yet) supported. Possible values are:

V4L2_MPEG_AUDIO_MODE_EXTENSION_BOUND_4	Subbands 4-31 in intensity stereo
V4L2_MPEG_AUDI0_MODE_EXTENSION_BOUND_8	Subbands 8-31 in intensity stereo
V4L2_MPEG_AUDI0_MODE_EXTENSION_BOUND_3	2Subbands 12-31 in intensity
	stereo
V4L2_MPEG_AUDI0_MODE_EXTENSION_BOUND_1	6Subbands 16-31 in intensity
	stereo

V4L2_CID_MPEG_AUDIO_EMPHASIS (enum)

enum v4l2_mpeg_audio_emphasis - Audio Emphasis. Possible values are:

V4L2_MPEG_AUDI0_EMPHASIS_NONE	None
V4L2_MPEG_AUDI0_EMPHASIS_50_DIV_15_uS	50/15 microsecond emphasis
V4L2_MPEG_AUDI0_EMPHASIS_CCITT_J17	CCITT J.17

V4L2_CID_MPEG_AUDIO_CRC (enum)

enum v4l2_mpeg_audio_crc - CRC method. Possible values are:

V4L2_MPEG_AUDI0_CRC_NONE	None
V4L2_MPEG_AUDI0_CRC_CRC16	16 bit parity check

V4L2_CID_MPEG_AUDIO_MUTE (boolean) Mutes the audio when capturing. This is
 not done by muting audio hardware, which can still produce a slight hiss, but
 in the encoder itself, guaranteeing a fixed and reproducible audio bitstream.
 0 = unmuted, 1 = muted.

V4L2_CID_MPEG_AUDIO_DEC_PLAYBACK (enum)

enum v4l2_mpeg_audio_dec_playback - Determines how monolingual audio
 should be played back. Possible values are:

V4L2_MPEG_AUDI0_DEC_PLAYBACK_AUT0	Automatically determines the best play-
	back mode.
V4L2_MPEG_AUDI0_DEC_PLAYBACK_STERE0	Stereo playback.
V4L2_MPEG_AUDI0_DEC_PLAYBACK_LEFT	Left channel playback.
V4L2_MPEG_AUDI0_DEC_PLAYBACK_RIGHT	Right channel playback.
V4L2_MPEG_AUDI0_DEC_PLAYBACK_MON0	Mono playback.
V4L2_MPEG_AUDI0_DEC_PLAYBACK_SWAPPED_STERE0	Stereo playback with swapped left and
	right channels.

V4L2_CID_MPEG_AUDIO_DEC_MULTILINGUAL_PLAYBACK (enum)

- enum v4l2_mpeg_audio_dec_playback Determines how multilingual audio should be played back.
- V4L2_CID_MPEG_VIDEO_ENCODING (enum)

enum v4l2_mpeg_video_encoding - MPEG Video encoding method. This control is specific to multiplexed MPEG streams. Possible values are:

V4L2_MPEG_VIDE0_ENCODING_MPEG_1	MPEG-1 Video encoding	
V4L2_MPEG_VIDE0_ENCODING_MPEG_2	MPEG-2 Video encoding	
V4L2_MPEG_VIDEO_ENCODING_MPEG_4_AVC	MPEG-4 AVC (H.264) Video encod-	
	ing	

V4L2_CID_MPEG_VIDEO_ASPECT (enum)

enum v4l2_mpeg_video_aspect - Video aspect. Possible values are:

V4L2_MPEG_VIDE0_ASPECT_1x1
V4L2_MPEG_VIDE0_ASPECT_4x3
V4L2_MPEG_VIDE0_ASPECT_16x9
V4L2_MPEG_VIDE0_ASPECT_221x100

- V4L2_CID_MPEG_VIDEO_B_FRAMES (integer) Number of B-Frames (default 2)
- V4L2_CID_MPEG_VIDEO_GOP_SIZE (integer) GOP size (default 12)

V4L2_CID_MPEG_VIDEO_GOP_CLOSURE (boolean) GOP closure (default 1)

V4L2_CID_MPEG_VIDEO_PULLDOWN (boolean) Enable 3:2 pulldown (default 0)

- V4L2_CID_MPEG_VIDEO_BITRATE_MODE (enum)

V4L2_MPEG_VIDE0_BITRATE_MODE_VBR Variable bitrate V4L2_MPEG_VIDE0_BITRATE_MODE_CBR Constant bitrate

- V4L2_CID_MPEG_VIDEO_BITRATE (integer) Video bitrate in bits per second.
- V4L2_CID_MPEG_VIDEO_BITRATE_PEAK (integer) Peak video bitrate in bits per second. Must be larger or equal to the average video bitrate. It is ignored if the video bitrate mode is set to constant bitrate.
- V4L2_CID_MPEG_VIDE0_TEMPORAL_DECIMATION (integer) For every captured frame, skip this many subsequent frames (default 0).
- V4L2_CID_MPEG_VIDE0_MUTE (boolean) "Mutes" the video to a fixed color when capturing. This is useful for testing, to produce a fixed video bitstream. 0 = unmuted, 1 = muted.
- V4L2_CID_MPEG_VIDEO_MUTE_YUV (integer) Sets the "mute" color of the video. The supplied 32-bit integer is interpreted as follows (bit 0 = least significant bit):

Bit 0:7	V chrominance information	
Bit 8:15	U chrominance information	
Bit 16:23	Y luminance information	
Bit 24:31	Must be zero.	

- V4L2_CID_MPEG_VIDEO_DEC_PTS (integer64) This read-only control returns the 33-bit video Presentation Time Stamp as defined in ITU T-REC-H.222.0 and ISO/IEC 13818-1 of the currently displayed frame. This is the same PTS as is used in ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD.
- V4L2_CID_MPEG_VIDEO_DEC_FRAME (integer64) This read-only control returns the frame counter of the frame that is currently displayed (decoded). This value is reset to 0 whenever the decoder is started.
- V4L2_CID_MPEG_VIDE0_DECODER_SLICE_INTERFACE (boolean) If enabled the decoder expects to receive a single slice per buffer, otherwise the decoder expects a single frame in per buffer. Applicable to the decoder, all codecs.
- V4L2_CID_MPEG_VIDE0_H264_VUI_SAR_ENABLE (boolean) Enable writing sample aspect ratio in the Video Usability Information. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDE0_H264_VUI_SAR_IDC (enum)
- enum v4l2_mpeg_video_h264_vui_sar_idc VUI sample aspect ratio indicator for H.264 encoding. The value is defined in the table E-1 in the standard. Applicable to the H264 encoder.

V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_UNSPECIFIED	Unspecified
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_1x1	1x1
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_12x11	12x11
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_10×11	10x11
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_16x11	16x11
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_40x33	40x33
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_24x11	24x11
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_20x11	20x11
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_32x11	32x11
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_80x33	80x33
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_18x11	18x11
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_15x11	15x11
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_64x33	64x33
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_160x99	160x99
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_4x3	4x3
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_3x2	3x2
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_2x1	2x1
V4L2_MPEG_VIDE0_H264_VUI_SAR_IDC_EXTENDED	Extended SAR

- V4L2_CID_MPEG_VIDE0_H264_VUI_EXT_SAR_WIDTH (integer) Extended sample aspect ratio width for H.264 VUI encoding. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDE0_H264_VUI_EXT_SAR_HEIGHT (integer) Extended sample aspect ratio height for H.264 VUI encoding. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDE0_H264_LEVEL (enum)
- enum v4l2_mpeg_video_h264_level The level information for the H264 video elementary stream. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDE0_H264_LEVEL_1_0Level 1.0V4L2_MPEG_VIDE0_H264_LEVEL_1BLevel 1.1V4L2_MPEG_VIDE0_H264_LEVEL_1_1Level 1.1V4L2_MPEG_VIDE0_H264_LEVEL_1_2Level 1.2V4L2_MPEG_VIDE0_H264_LEVEL_1_3Level 1.3V4L2_MPEG_VIDE0_H264_LEVEL_2_0Level 2.0V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.1V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.2V4L2_MPEG_VIDE0_H264_LEVEL_2_2Level 2.2V4L2_MPEG_VIDE0_H264_LEVEL_3_0Level 3.0V4L2_MPEG_VIDE0_H264_LEVEL_3_1Level 3.1V4L2_MPEG_VIDE0_H264_LEVEL_3_2Level 3.2V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1		
V4L2_MPEG_VIDE0_H264_LEVEL_1_1Level 1.1V4L2_MPEG_VIDE0_H264_LEVEL_1_2Level 1.2V4L2_MPEG_VIDE0_H264_LEVEL_1_3Level 1.3V4L2_MPEG_VIDE0_H264_LEVEL_2_0Level 2.0V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.1V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.1V4L2_MPEG_VIDE0_H264_LEVEL_2_2Level 2.2V4L2_MPEG_VIDE0_H264_LEVEL_3_0Level 3.0V4L2_MPEG_VIDE0_H264_LEVEL_3_1Level 3.1V4L2_MPEG_VIDE0_H264_LEVEL_3_2Level 3.2V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_1_0	Level 1.0
V4L2_MPEG_VIDE0_H264_LEVEL_1_2Level 1.2V4L2_MPEG_VIDE0_H264_LEVEL_1_3Level 1.3V4L2_MPEG_VIDE0_H264_LEVEL_2_0Level 2.0V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.1V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.1V4L2_MPEG_VIDE0_H264_LEVEL_2_2Level 3.0V4L2_MPEG_VIDE0_H264_LEVEL_3_0Level 3.0V4L2_MPEG_VIDE0_H264_LEVEL_3_1Level 3.1V4L2_MPEG_VIDE0_H264_LEVEL_3_2Level 3.2V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1		Level 1B
V4L2_MPEG_VIDE0_H264_LEVEL_1_3Level 1.3V4L2_MPEG_VIDE0_H264_LEVEL_2_0Level 2.0V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.1V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.2V4L2_MPEG_VIDE0_H264_LEVEL_3_0Level 3.0V4L2_MPEG_VIDE0_H264_LEVEL_3_1Level 3.1V4L2_MPEG_VIDE0_H264_LEVEL_3_2Level 3.2V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_1_1	Level 1.1
V4L2_MPEG_VIDE0_H264_LEVEL_2_0Level 2.0V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.1V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.1V4L2_MPEG_VIDE0_H264_LEVEL_2_2Level 2.2V4L2_MPEG_VIDE0_H264_LEVEL_3_0Level 3.0V4L2_MPEG_VIDE0_H264_LEVEL_3_1Level 3.1V4L2_MPEG_VIDE0_H264_LEVEL_3_2Level 3.2V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_1_2	Level 1.2
V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.1V4L2_MPEG_VIDE0_H264_LEVEL_2_1Level 2.2V4L2_MPEG_VIDE0_H264_LEVEL_3_0Level 3.0V4L2_MPEG_VIDE0_H264_LEVEL_3_1Level 3.1V4L2_MPEG_VIDE0_H264_LEVEL_3_1Level 3.1V4L2_MPEG_VIDE0_H264_LEVEL_3_2Level 3.2V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_1_3	Level 1.3
V4L2_MPEG_VIDE0_H264_LEVEL_2_2Level 2.2V4L2_MPEG_VIDE0_H264_LEVEL_3_0Level 3.0V4L2_MPEG_VIDE0_H264_LEVEL_3_1Level 3.1V4L2_MPEG_VIDE0_H264_LEVEL_3_2Level 3.2V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_2_0	Level 2.0
V4L2_MPEG_VIDE0_H264_LEVEL_3_0Level 3.0V4L2_MPEG_VIDE0_H264_LEVEL_3_1Level 3.1V4L2_MPEG_VIDE0_H264_LEVEL_3_2Level 3.2V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_2_1	Level 2.1
V4L2_MPEG_VIDE0_H264_LEVEL_3_1Level 3.1V4L2_MPEG_VIDE0_H264_LEVEL_3_2Level 3.2V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_2_2	Level 2.2
V4L2_MPEG_VIDE0_H264_LEVEL_3_2Level 3.2V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_3_0	Level 3.0
V4L2_MPEG_VIDE0_H264_LEVEL_4_0Level 4.0V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_3_1	Level 3.1
V4L2_MPEG_VIDE0_H264_LEVEL_4_1Level 4.1V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_3_2	Level 3.2
V4L2_MPEG_VIDE0_H264_LEVEL_4_2Level 4.2V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_4_0	Level 4.0
V4L2_MPEG_VIDE0_H264_LEVEL_5_0Level 5.0V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_4_1	Level 4.1
V4L2_MPEG_VIDE0_H264_LEVEL_5_1Level 5.1V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_4_2	Level 4.2
V4L2_MPEG_VIDE0_H264_LEVEL_5_2Level 5.2V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_5_0	Level 5.0
V4L2_MPEG_VIDE0_H264_LEVEL_6_0Level 6.0V4L2_MPEG_VIDE0_H264_LEVEL_6_1Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_5_1	Level 5.1
V4L2_MPEG_VIDE0_H264_LEVEL_6_1 Level 6.1	V4L2_MPEG_VIDE0_H264_LEVEL_5_2	Level 5.2
	V4L2_MPEG_VIDE0_H264_LEVEL_6_0	Level 6.0
V4L2_MPEG_VIDE0_H264_LEVEL_6_2 Level 6.2	V4L2_MPEG_VIDE0_H264_LEVEL_6_1	Level 6.1
	V4L2_MPEG_VIDE0_H264_LEVEL_6_2	Level 6.2

V4L2_CID_MPEG_VIDE0_MPEG2_LEVEL (enum)

enum v4l2_mpeg_video_mpeg2_level - The level information for the MPEG2 elementary stream. Applicable to MPEG2 codecs. Possible values are:

V4L2_MPEG_VIDE0_MPEG2_LEVEL_LOW	Low Level (LL)
V4L2_MPEG_VIDE0_MPEG2_LEVEL_MAIN	Main Level (ML)
V4L2_MPEG_VIDE0_MPEG2_LEVEL_HIGH_1440 High-1440 Level (H	
V4L2_MPEG_VIDE0_MPEG2_LEVEL_HIGH	High Level (HL)

V4L2_CID_MPEG_VIDE0_MPEG4_LEVEL (enum)

enum v4l2_mpeg_video_mpeg4_level - The level information for the MPEG4 elementary stream. Applicable to the MPEG4 encoder. Possible values are:

V4L2_MPEG_VIDE0_MPEG4_LEVEL_0	Level 0
V4L2_MPEG_VIDE0_MPEG4_LEVEL_0B	Level 0b
V4L2_MPEG_VIDE0_MPEG4_LEVEL_1	Level 1
V4L2_MPEG_VIDE0_MPEG4_LEVEL_2	Level 2
V4L2_MPEG_VIDE0_MPEG4_LEVEL_3	Level 3
V4L2_MPEG_VIDE0_MPEG4_LEVEL_3B	Level 3b
V4L2_MPEG_VIDE0_MPEG4_LEVEL_4	Level 4
V4L2_MPEG_VIDE0_MPEG4_LEVEL_5	Level 5

V4L2_CID_MPEG_VIDE0_H264_PROFILE (enum)

enum v4l2_mpeg_video_h264_profile - The profile information for H264. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDE0_H264_PROFILE_BASELINE	Baseline profile	
V4L2_MPEG_VIDE0_H264_PROFILE_CONSTRAINED_BASELCIONEStrained Baseline		
	profile	
V4L2_MPEG_VIDE0_H264_PROFILE_MAIN	Main profile	
V4L2_MPEG_VIDE0_H264_PROFILE_EXTENDED	Extended profile	
V4L2_MPEG_VIDE0_H264_PROFILE_HIGH	High profile	
V4L2_MPEG_VIDE0_H264_PROFILE_HIGH_10	High 10 profile	
V4L2_MPEG_VIDE0_H264_PROFILE_HIGH_422	High 422 profile	
V4L2_MPEG_VIDE0_H264_PROFILE_HIGH_444_PREDICT	₩fgh 444 Predictive pro-	
	file	
V4L2_MPEG_VIDE0_H264_PROFILE_HIGH_10_INTRA	High 10 Intra profile	
V4L2_MPEG_VIDE0_H264_PROFILE_HIGH_422_INTRA	High 422 Intra profile	
V4L2_MPEG_VIDE0_H264_PROFILE_HIGH_444_INTRA	High 444 Intra profile	
V4L2_MPEG_VIDE0_H264_PROFILE_CAVLC_444_INTRA	CAVLC 444 Intra profile	
V4L2_MPEG_VIDE0_H264_PROFILE_SCALABLE_BASELIN	Escalable Baseline profile	
V4L2_MPEG_VIDE0_H264_PROFILE_SCALABLE_HIGH	Scalable High profile	
V4L2_MPEG_VIDE0_H264_PROFILE_SCALABLE_HIGH_IN	TSRA alable High Intra pro-	
	file	
V4L2_MPEG_VIDE0_H264_PROFILE_STERE0_HIGH	Stereo High profile	
V4L2_MPEG_VIDE0_H264_PROFILE_MULTIVIEW_HIGH	Multiview High profile	
V4L2_MPEG_VIDE0_H264_PROFILE_CONSTRAINED_HIGH	Constrained High profile	

V4L2_CID_MPEG_VIDE0_MPEG2_PROFILE (enum)

enum v4l2_mpeg_video_mpeg2_profile - The profile information for MPEG2. Applicable to MPEG2 codecs. Possible values are:

V4L2_MPEG_VIDE0_MPEG2_PROFILE_SIMPLE	Simple profile (SP)	
V4L2_MPEG_VIDE0_MPEG2_PROFILE_MAIN	Main profile (MP)	
V4L2_MPEG_VIDE0_MPEG2_PROFILE_SNR_SCALABLE	SNR Scalable profile	
	(SNR)	
V4L2_MPEG_VIDE0_MPEG2_PROFILE_SPATIALLY_SCA	SCALSA Blattially Scalable profile	
	(Spt)	
V4L2_MPEG_VIDE0_MPEG2_PROFILE_HIGH	High profile (HP)	
V4L2_MPEG_VIDE0_MPEG2_PROFILE_MULTIVIEW	Multi-view profile (MVP)	

V4L2_CID_MPEG_VIDE0_MPEG4_PROFILE (enum)

enum v4l2_mpeg_video_mpeg4_profile - The profile information for MPEG4. Applicable to the MPEG4 encoder. Possible values are:

V4L2_MPEG_VIDE0_MPEG4_PROFILE_SIMPLE	Simple profile
V4L2_MPEG_VIDE0_MPEG4_PROFILE_ADVANCED_SIMPLE	Advanced Simple
	profile
V4L2_MPEG_VIDE0_MPEG4_PROFILE_CORE	Core profile
V4L2_MPEG_VIDE0_MPEG4_PROFILE_SIMPLE_SCALABLE	Simple Scalable pro-
	file
V4L2_MPEG_VIDE0_MPEG4_PROFILE_ADVANCED_CODING_EFI	FICIENCY

V4L2_CID_MPEG_VIDEO_MAX_REF_PIC (integer) The maximum number of refer-

ence pictures used for encoding. Applicable to the encoder.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE (enum)

enum v4l2_mpeg_video_multi_slice_mode - Determines how the encoder should handle division of frame into slices. Applicable to the encoder. Possible values are:

V4L2_MPEG_VIDE0_MULTI_SLICE_MODE_SINGLE	Single slice per frame.
V4L2_MPEG_VIDE0_MULTI_SLICE_MODE_MAX_MB	Multiple slices with set maximum num-
	ber of macroblocks per slice.
V4L2_MPEG_VIDE0_MULTI_SLICE_MODE_MAX_BYTES	Multiple slice with set maximum size in
	bytes per slice.

V4L2 CID MPEG VIDEO MULTI SLICE MAX MB (integer) The maxmacroblocks Used imum number of in slice. а when V4L2 CID MPEG VIDEO MULTI SLICE MODE is to set V4L2 MPEG VIDEO MULTI SLICE MODE MAX MB. Applicable to the encoder.

V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES (integer) The maximum size of a slice in bytes. Used when V4L2_CID_MPEG_VIDE0_MULTI_SLICE_MODE is set to V4L2_MPEG_VIDE0_MULTI_SLICE_MODE_MAX_BYTES. Applicable to the encoder.

V4L2_CID_MPEG_VIDE0_H264_L00P_FILTER_MODE (enum)

enum v4l2_mpeg_video_h264_loop_filter_mode - Loop filter mode for H264 encoder. Possible values are:

V4L2_MPEG_VIDE0_H264_L00P_FILTER_MODE_ENABLED	Loop filter is enabled.
V4L2_MPEG_VIDE0_H264_L00P_FILTER_MODE_DISABLED	Loop filter is disabled.
V4L2_MPEG_VIDE0_H264_L00P_FILTER_MODE_DISABLED_AT_SLICE_BOUNDARY	Loop filter is disabled
	at the slice boundary.

- V4L2_CID_MPEG_VIDE0_H264_L00P_FILTER_ALPHA (integer) Loop filter alpha coefficient, defined in the H264 standard. This value corresponds to the slice_alpha_c0_offset_div2 slice header field, and should be in the range of -6 to +6, inclusive. The actual alpha offset FilterOffsetA is twice this value. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDE0_H264_L00P_FILTER_BETA (integer) Loop filter beta coefficient, defined in the H264 standard. This corresponds to the slice_beta_offset_div2 slice header field, and should be in the range of -6 to +6, inclusive. The actual beta offset FilterOffsetB is twice this value. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDE0_H264_ENTROPY_MODE (enum)
- enum v4l2_mpeg_video_h264_entropy_mode Entropy coding mode for H264 - CABAC/CAVALC. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDE0_H264_ENTROPY_MODE_CAVLC	Use CAVLC entropy coding.
V4L2_MPEG_VIDE0_H264_ENTROPY_MODE_CABAC	Use CABAC entropy coding.

V4L2_CID_MPEG_VIDE0_H264_8X8_TRANSFORM (boolean) Enable 8X8 transform for H264. Applicable to the H264 encoder.

- V4L2_CID_MPEG_VIDE0_H264_CONSTRAINED_INTRA_PREDICTION (boolean) Enable constrained intra prediction for H264. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDE0_H264_CHROMA_QP_INDEX_OFFSET (integer) Specify the offset that should be added to the luma quantization parameter to determine the chroma quantization parameter. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB (integer) Cyclic intra macroblock refresh. This is the number of continuous macroblocks refreshed every frame. Each frame a successive set of macroblocks is refreshed until the cycle completes and starts from the top of the frame. Applicable to H264, H263 and MPEG4 encoder.
- V4L2_CID_MPEG_VIDE0_FRAME_RC_ENABLE (boolean) Frame level rate control enable. If this control is disabled then the quantization parameter for each frame type is constant and set with appropriate controls (e.g. V4L2_CID_MPEG_VIDE0_H263_I_FRAME_QP). If frame rate control is enabled then quantization parameter is adjusted to meet the chosen bitrate. Minimum and maximum value for the quantization parameter can be set with appropriate controls (e.g. V4L2_CID_MPEG_VIDE0_H263_MIN_QP). Applicable to encoders.
- V4L2_CID_MPEG_VIDE0_MB_RC_ENABLE (boolean) Macroblock level rate control enable. Applicable to the MPEG4 and H264 encoders.
- V4L2_CID_MPEG_VIDE0_MPEG4_QPEL (boolean) Quarter pixel motion estimation for MPEG4. Applicable to the MPEG4 encoder.
- V4L2_CID_MPEG_VIDE0_H263_I_FRAME_QP (integer) Quantization parameter for an I frame for H263. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDE0_H263_MIN_QP (integer) Minimum quantization parameter for H263. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDE0_H263_MAX_QP (integer) Maximum quantization parameter for H263. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDE0_H263_P_FRAME_QP (integer) Quantization parameter for an P frame for H263. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDE0_H263_B_FRAME_QP (integer) Quantization parameter for an B frame for H263. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDE0_H264_I_FRAME_QP (integer) Quantization parameter for an I frame for H264. Valid range: from 0 to 51.
- V4L2_CID_MPEG_VIDE0_H264_MIN_QP (integer) Minimum quantization parameter for H264. Valid range: from 0 to 51.
- V4L2_CID_MPEG_VIDE0_H264_MAX_QP (integer) Maximum quantization parameter for H264. Valid range: from 0 to 51.
- V4L2_CID_MPEG_VIDE0_H264_P_FRAME_QP (integer) Quantization parameter for an P frame for H264. Valid range: from 0 to 51.
- V4L2_CID_MPEG_VIDE0_H264_B_FRAME_QP (integer) Quantization parameter for an B frame for H264. Valid range: from 0 to 51.

- V4L2_CID_MPEG_VIDE0_H264_I_FRAME_MIN_QP (integer) Minimum quantization parameter for the H264 I frame to limit I frame quality to a range. Valid range: from 0 to 51. If V4L2_CID_MPEG_VIDEO_H264_MIN_QP is also set, the quantization parameter should be chosen to meet both requirements.
- V4L2_CID_MPEG_VIDEO_H264_I_FRAME_MAX_QP (integer) Maximum quantization parameter for the H264 I frame to limit I frame quality to a range. Valid range: from 0 to 51. If V4L2_CID_MPEG_VIDEO_H264_MAX_QP is also set, the quantization parameter should be chosen to meet both requirements.
- V4L2_CID_MPEG_VIDEO_H264_P_FRAME_MIN_QP (integer) Minimum quantization parameter for the H264 P frame to limit P frame quality to a range. Valid range: from 0 to 51. If V4L2_CID_MPEG_VIDEO_H264_MIN_QP is also set, the quantization parameter should be chosen to meet both requirements.
- V4L2_CID_MPEG_VIDEO_H264_P_FRAME_MAX_QP (integer) Maximum quantization parameter for the H264 P frame to limit P frame quality to a range. Valid range: from 0 to 51. If V4L2_CID_MPEG_VIDEO_H264_MAX_QP is also set, the quantization parameter should be chosen to meet both requirements.
- V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP (integer) Quantization parameter for an I frame for MPEG4. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDE0_MPEG4_MIN_QP (integer) Minimum quantization parameter for MPEG4. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDE0_MPEG4_MAX_QP (integer) Maximum quantization parameter for MPEG4. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP (integer) Quantization parameter for an P frame for MPEG4. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDEO_MPEG4_B_FRAME_QP (integer) Quantization parameter for an B frame for MPEG4. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDEO_VBV_SIZE (integer) The Video Buffer Verifier size in kilobytes, it is used as a limitation of frame skip. The VBV is defined in the standard as a mean to verify that the produced stream will be successfully decoded. The standard describes it as "Part of a hypothetical decoder that is conceptually connected to the output of the encoder. Its purpose is to provide a constraint on the variability of the data rate that an encoder or editing process may produce.". Applicable to the MPEG1, MPEG2, MPEG4 encoders.
- V4L2_CID_MPEG_VIDEO_VBV_DELAY (integer) Sets the initial delay in milliseconds for VBV buffer control.
- V4L2_CID_MPEG_VIDEO_MV_H_SEARCH_RANGE (integer) Horizontal search range defines maximum horizontal search area in pixels to search and match for the present Macroblock (MB) in the reference picture. This V4L2 control macro is used to set horizontal search range for motion estimation module in video encoder.
- V4L2_CID_MPEG_VIDEO_MV_V_SEARCH_RANGE (integer) Vertical search range defines maximum vertical search area in pixels to search and match for the present Macroblock (MB) in the reference picture. This V4L2 control macro is used to set vertical search range for motion estimation module in video encoder.

- V4L2_CID_MPEG_VIDE0_FORCE_KEY_FRAME (button) Force a key frame for the next queued buffer. Applicable to encoders. This is a general, codec-agnostic keyframe control.
- V4L2_CID_MPEG_VIDEO_H264_CPB_SIZE (integer) The Coded Picture Buffer size in kilobytes, it is used as a limitation of frame skip. The CPB is defined in the H264 standard as a mean to verify that the produced stream will be successfully decoded. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDEO_H264_I_PERIOD (integer) Period between I-frames in the open GOP for H264. In case of an open GOP this is the period between two I-frames. The period between IDR (Instantaneous Decoding Refresh) frames is taken from the GOP_SIZE control. An IDR frame, which stands for Instantaneous Decoding Refresh is an I-frame after which no prior frames are referenced. This means that a stream can be restarted from an IDR frame without the need to store or decode any previous frames. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDEO_HEADER_MODE (enum)

enum v4l2_mpeg_video_header_mode - Determines whether the header is returned as the first buffer or is it returned together with the first frame. Applicable to encoders. Possible values are:

V4L2 MPEG VIDEO HEADER MODE SEPARATE	The stream header is returned sepa-
	rately in the first buffer.
V4L2_MPEG_VIDE0_HEADER_MODE_J0INED_WITH_1ST_FRAME	
	with the first encoded frame.

- V4L2_CID_MPEG_VIDE0_REPEAT_SEQ_HEADER (boolean) Repeat the video sequence headers. Repeating these headers makes random access to the video stream easier. Applicable to the MPEG1, 2 and 4 encoder.
- V4L2_CID_MPEG_VIDE0_DECODER_MPEG4_DEBLOCK_FILTER (boolean) Enabled the deblocking post processing filter for MPEG4 decoder. Applicable to the MPEG4 decoder.

V4L2_CID_MPEG_VIDE0_MPEG4_V0P_TIME_RES (integer)

vop_time_increment_resolution value for MPEG4. Applicable to the MPEG4 encoder.

- V4L2_CID_MPEG_VIDEO_MPEG4_VOP_TIME_INC (integer) vop_time_increment value for MPEG4. Applicable to the MPEG4 encoder.
- V4L2_CID_MPEG_VIDE0_H264_SEI_FRAME_PACKING (boolean) Enable generation of frame packing supplemental enhancement information in the encoded bitstream. The frame packing SEI message contains the arrangement of L and R planes for 3D viewing. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDE0_H264_SEI_FP_CURRENT_FRAME_0 (boolean) Sets current frame as frame0 in frame packing SEI. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDE0_H264_SEI_FP_ARRANGEMENT_TYPE (enum)
- enum v4l2_mpeg_video_h264_sei_fp_arrangement_type Frame packing arrangement type for H264 SEI. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDE0_H264_SEI_FP_ARRANGEMENT_TYPE_CHEKERBOARD	Pixels are alternatively from L
	and R.
V4L2_MPEG_VIDE0_H264_SEI_FP_ARRANGEMENT_TYPE_COLUMN	L and R are interlaced by col-
	umn.
V4L2_MPEG_VIDE0_H264_SEI_FP_ARRANGEMENT_TYPE_ROW	L and R are interlaced by row.
V4L2_MPEG_VIDE0_H264_SEI_FP_ARRANGEMENT_TYPE_SIDE_BY_SIDE	L is on the left, R on the right.
V4L2_MPEG_VIDE0_H264_SEI_FP_ARRANGEMENT_TYPE_TOP_BOTTOM	L is on top, R on bottom.
V4L2_MPEG_VIDE0_H264_SEI_FP_ARRANGEMENT_TYPE_TEMPORAL	One view per frame.

V4L2_CID_MPEG_VIDE0_H264_FM0 (boolean) Enables flexible macroblock ordering in the encoded bitstream. It is a technique used for restructuring the ordering of macroblocks in pictures. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDE0_H264_FM0_MAP_TYPE (enum)

enum v4l2_mpeg_video_h264_fmo_map_type - When using FMO, the map type divides the image in different scan patterns of macroblocks. Applicable to the H264 encoder. Possible values are:

VALO MEES VIDES HOSA ENO MAD TYDE INTERLEAVED STORES	
V4L2_MPEG_VIDE0_H264_FM0_MAP_TYPE_INTERLEAVED_SLICES	Slices are interleaved
	one after other with mac-
	roblocks in run length
	order.
V4L2 MPEG VIDEO H264 FMO MAP TYPE SCATTERED SLICES	Scatters the macroblocks
	based on a mathematical
	function known to both en-
	coder and decoder.
V4L2_MPEG_VIDE0_H264_FM0_MAP_TYPE_FOREGROUND_WITH_LEFT_OVER	Macroblocks arranged
	in rectangular areas or
	regions of interest.
V4L2 MPEG VIDEO H264 FMO MAP TYPE BOX OUT	Slice groups grow in a cyclic
	way from centre to out-
	wards.
V4L2_MPEG_VIDE0_H264_FM0_MAP_TYPE_RASTER_SCAN	Slice groups grow in raster
	scan pattern from left to
	right.
V4L2 MPEG VIDEO H264 FMO MAP TYPE WIPE SCAN	Slice groups grow in wipe
	scan pattern from top to bot-
	tom.
V4L2_MPEG_VIDE0_H264_FM0_MAP_TYPE_EXPLICIT	User defined map type.

V4L2_CID_MPEG_VIDE0_H264_FM0_SLICE_GROUP (integer) Number of slice groups in FMO. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDE0_H264_FM0_CHANGE_DIRECTION (enum)

enum v4l2_mpeg_video_h264_fmo_change_dir - Specifies a direction of the
 slice group change for raster and wipe maps. Applicable to the H264 en coder. Possible values are:

V4L2_MPEG_VIDE0_H264_FM0_CHANGE_DIR_RIGH	TRaster scan or wipe right.
V4L2_MPEG_VIDE0_H264_FM0_CHANGE_DIR_LEFT	Reverse raster scan or wipe
	left.

V4L2_CID_MPEG_VIDE0_H264_FM0_CHANGE_RATE (integer) Specifies the size of the first slice group for raster and wipe map. Applicable to the H264 encoder.

- V4L2_CID_MPEG_VIDE0_H264_FM0_RUN_LENGTH (integer) Specifies the number of consecutive macroblocks for the interleaved map. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDE0_H264_AS0 (boolean) Enables arbitrary slice ordering in encoded bitstream. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDE0_H264_AS0_SLICE_ORDER (integer) Specifies the slice order in ASO. Applicable to the H264 encoder. The supplied 32-bit integer is interpreted as follows (bit 0 = least significant bit):

Bit 0:15	Slice ID
Bit 16:32	Slice position or order

V4L2_CID_MPEG_VIDE0_H264_HIERARCHICAL_CODING (boolean) Enables H264 hierarchical coding. Applicable to the H264 encoder.

V4L2_CID_MPEG_VIDE0_H264_HIERARCHICAL_CODING_TYPE (enum)

enum v4l2_mpeg_video_h264_hierarchical_coding_type - Specifies the hierarchical coding type. Applicable to the H264 encoder. Possible values are:

V4L2_MPEG_VIDE0_H264_HIERARCHICAL_CODING_B Hierarchical B coding. V4L2_MPEG_VIDE0_H264_HIERARCHICAL_CODING_P Hierarchical P coding.

- V4L2_CID_MPEG_VIDE0_H264_HIERARCHICAL_CODING_LAYER (integer) Specifies the number of hierarchical coding layers. Applicable to the H264 encoder.
- V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_LAYER_QP (integer) Specifies a user defined QP for each layer. Applicable to the H264 encoder. The supplied 32-bit integer is interpreted as follows (bit 0 = least significant bit):

Bit 0:15	QP value
Bit 16:32	Layer number

V4L2_CID_MPEG_VIDEO_H264_SPS (struct) Specifies the sequence parameter set (as extracted from the bitstream) for the associated H264 slice data. This includes the necessary parameters for configuring a stateless hardware decoding pipeline for H264. The bitstream parameters are defined according to ITU-T Rec. H.264 Specification (04/2017 Edition), section 7.4.2.1.1 "Sequence Parameter Set Data Semantics". For further documentation, refer to the above specification, unless there is an explicit comment stating otherwise.

Note: This compound control is not yet part of the public kernel API and it is expected to change.

v4l2_ctrl_h264_sps

	u8	profile_idc	
Ī	_u8	<pre>constraint_set_flags</pre>	See Sequence Parameter Set Constrain
	_u8	level_idc	
	_u8	<pre>seq_parameter_set_id</pre>	
	_u8	chroma_format_idc	
	_u8	<pre>bit_depth_luma_minus8</pre>	
	_u8	<pre>bit_depth_chroma_minus8</pre>	
	_u8	log2_max_frame_num_minus4	
	_u8	<pre>pic_order_cnt_type</pre>	
	_u8	<pre>log2_max_pic_order_cnt_lsb_minus4</pre>	
	_u8	<pre>max_num_ref_frames</pre>	
	_u8	<pre>num_ref_frames_in_pic_order_cnt_cycle</pre>	
	_s32	offset_for_ref_frame[255]	
	_s32	offset_for_non_ref_pic	
	_s32	<pre>offset_for_top_to_bottom_field</pre>	
	_u16	<pre>pic_width_in_mbs_minus1</pre>	
	_u16	<pre>pic_height_in_map_units_minus1</pre>	
	u32	flags	See Sequence Parameter Set Flags

Table 1: struct v4l2_ctrl_h264_sps

Sequence Parameter Set Constraints Set Flags

V4L2_H264_SPS_CONSTRAINT_SET0_FLAG	0x0000001
V4L2_H264_SPS_CONSTRAINT_SET1_FLAG	0x0000002
V4L2_H264_SPS_CONSTRAINT_SET2_FLAG	
V4L2_H264_SPS_CONSTRAINT_SET3_FLAG	0x0000008
V4L2_H264_SPS_CONSTRAINT_SET4_FLAG	0x00000010
V4L2_H264_SPS_CONSTRAINT_SET5_FLAG	0x0000020

Sequence Parameter Set Flags

V4L2_H264_SPS_FLAG_SEPARATE_COLOUR_PLANE	0x0000001	
V4L2_H264_SPS_FLAG_QPPRIME_Y_ZER0_TRANSFORM_BYPASS	0x0000002	
V4L2_H264_SPS_FLAG_DELTA_PIC_ORDER_ALWAYS_ZER0	0x00000004	
V4L2_H264_SPS_FLAG_GAPS_IN_FRAME_NUM_VALUE_ALLOWED	0x0000008	
V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY	0x00000010	
V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD	0x0000020	
V4L2_H264_SPS_FLAG_DIRECT_8X8_INFERENCE	0x00000040	

V4L2_CID_MPEG_VIDEO_H264_PPS (struct) Specifies the picture parameter set (as extracted from the bitstream) for the associated H264 slice data. This includes the necessary parameters for configuring a stateless hardware decoding pipeline for H264. The bitstream parameters are defined according to ITU-T Rec. H.264 Specification (04/2017 Edition), section 7.4.2.2 "Picture Parameter Set RBSP Semantics". For further documentation, refer to the above specification, unless there is an explicit comment stating otherwise.

Note: This compound control is not yet part of the public kernel API and it

is expected to change.

v4l2_ctrl_h264_pps

Table 4: struct v4l2_ctrl_h264_pps

_u8	pic_parameter_set_id	
_u8	<pre>seq_parameter_set_id</pre>	
_u8	<pre>num_slice_groups_minus1</pre>	
_u8	<pre>num_ref_idx_l0_default_active_minus1</pre>	
_u8	<pre>num_ref_idx_l1_default_active_minus1</pre>	
_u8	<pre>weighted_bipred_idc</pre>	
s8	pic_init_qp_minus26	
s8	<pre>pic_init_qs_minus26</pre>	
s8	<pre>chroma_qp_index_offset</pre>	
s8	<pre>second_chroma_qp_index_offset</pre>	
u16	flags	See Picture Parameter Set Flags

Picture Parameter Set Flags

V4L2_H264_PPS_FLAG_ENTROPY_CODING_MODE	0x0000001	
V4L2_H264_PPS_FLAG_BOTTOM_FIELD_PIC_ORDER_IN_FRAME_PRESENT	0x0000002	
V4L2_H264_PPS_FLAG_WEIGHTED_PRED	0x00000004	
V4L2_H264_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT	0x0000008	
V4L2_H264_PPS_FLAG_CONSTRAINED_INTRA_PRED	0x00000010	
V4L2_H264_PPS_FLAG_REDUNDANT_PIC_CNT_PRESENT	0x0000020	
V4L2_H264_PPS_FLAG_TRANSFORM_8X8_MODE	0x00000040	
V4L2_H264_PPS_FLAG_PIC_SCALING_MATRIX_PRESENT	0x0000080	

V4L2_CID_MPEG_VIDE0_H264_SCALING_MATRIX (struct) Specifies the scaling matrix (as extracted from the bitstream) for the associated H264 slice data. The bitstream parameters are defined according to ITU-T Rec. H.264 Specification (04/2017 Edition), section 7.4.2.1.1.1 "Scaling List Semantics" . For further documentation, refer to the above specification, unless there is an explicit comment stating otherwise.

Note: This compound control is not yet part of the public kernel API and it is expected to change.

v4l2_ctrl_h264_scaling_matrix

Table 6: struct v4l2_ctrl_h264_scaling_matrix

u8	<pre>scaling_list_4x4[6][16]</pre>	Scaling matrix after applying the inverse scanning proce
u8	<pre>scaling_list_8x8[6][64]</pre>	Scaling matrix after applying the inverse scanning proce

V4L2_CID_MPEG_VIDEO_H264_SLICE_PARAMS (struct) Specifies the slice parameters (as extracted from the bitstream) for the associated H264 slice data. This includes the necessary parameters for configuring a stateless hardware decoding pipeline for H264. The bitstream parameters are defined accord-

ing to ITU-T Rec. H.264 Specification (04/2017 Edition), section 7.4.3 "Slice Header Semantics". For further documentation, refer to the above specification, unless there is an explicit comment stating otherwise.

Note: This compound control is not yet part of the public kernel API and it is expected to change.

This structure is expected to be passed as an array, with one entry for each slice included in the bitstream buffer.

v4l2_ctrl_h264_slice_params

		I
u32	size	<u> </u>
u32	start_byte_offset Offset (in bytes) fr	0
	to the start of the slice. If the slice st	
	offset to such start code. When opera	
	v4l2_mpeg_video_h264_decode_mode),	
	erating in frame-based decoding mode,	this field sho
u32	header_bit_size	
u16	first_mb_in_slice	
u8	slice_type	
u8	<pre>pic_parameter_set_id</pre>	
u8	colour_plane_id	
u8	<pre>redundant_pic_cnt</pre>	
u16	frame_num	
u16	idr_pic_id	
u16	pic_order_cnt_lsb	
s32	delta_pic_order_cnt_bottom	
s32	delta_pic_order_cnt0	
s32	delta_pic_order_cnt1	
<pre>struct v4l2_h264_pred_weight_table</pre>	<pre>pred_weight_table</pre>	
u32	<pre>dec_ref_pic_marking_bit_size</pre>	Size in bits
u32	<pre>pic_order_cnt_bit_size</pre>	
u8	cabac_init_idc	
s8	slice_qp_delta	
	slice_qs_delta	
	disable_deblocking_filter_idc	
	slice_alpha_c0_offset_div2	
	slice_beta_offset_div2	
 	num_ref_idx_l0_active_minus1	If num ref
 	num ref idx l1 active minus1	If num ref
 	slice_group_change_cycle	
 	ref pic list0[32]	Reference p
	ref_pic_list1[32]	Reference p
	flags	See Slice Pa

Table 7: struct v4l2	ctrl	h264	slice	params
----------------------	------	------	-------	--------

Slice Parameter Set Flags

V4L2_H264_SLICE_FLAG_FIELD_PIC	0x0000001
V4L2_H264_SLICE_FLAG_BOTTOM_FIELD	0x0000002
V4L2_H264_SLICE_FLAG_DIRECT_SPATIAL_MV_PRED	0x00000004
V4L2_H264_SLICE_FLAG_SP_FOR_SWITCH	0x0000008

Prediction Weight Table

The bitstream parameters are defined according to ITU-T Rec. H.264 Specification (04/2017 Edition), section 7.4.3.2 "Prediction Weight Table Semantics". For further documentation, refer to the above specification, unless there is an explicit comment stating otherwise.

v4l2_h264_pred_weight_table

Table 9: struct v4l2_h264_pred_weight_table

u16	luma_log2_weight_denom	
u16	chroma_log2_weight_denom	
<pre>struct v4l2_h264_weight_factors</pre>	<pre>weight_factors[2]</pre>	The weight factors at ind

v4l2_h264_weight_factors

Table 10: struct v4l2	h264	weight	factors
-----------------------	------	--------	---------

s16	luma_weight[32]	
s16	s16 luma_offset[32]	
s16	_s16 chroma_weight[32][2]	
s16 chroma_offset[32][2]		

V4L2_CID_MPEG_VIDE0_H264_DECODE_PARAMS (struct) Specifies the decode parameters (as extracted from the bitstream) for the associated H264 slice data. This includes the necessary parameters for configuring a stateless hardware decoding pipeline for H264. The bitstream parameters are defined according to ITU-T Rec. H.264 Specification (04/2017 Edition). For further documentation, refer to the above specification, unless there is an explicit comment stating otherwise.

Note: This compound control is not yet part of the public kernel API and it is expected to change.

v4l2_ctrl_h264_decode_params

Table 11: struct v4l2_ctrl_h264_decode_params

	<pre>struct v4l2_h264_dpb_entry</pre>	dpb[16]	
	u16	num_slices	Number of slices needed to decod
	u16	nal_ref_idc	NAL reference ID value coming fr
-	s32	<pre>top_field_order_cnt</pre>	Picture Order Count for the coded
	s32	<pre>bottom_field_order_cnt</pre>	Picture Order Count for the coded
	u32	flags	See Decode Parameters Flags

Decode Parameters Flags

V4L2_H264_DECODE_PARAM_FLAG_IDR_PIC | 0x00000001 | That picture is an IDR picture

v4l2_h264_dpb_entry

Table 13: struct v4l2_h264_dpb_entry

_u64	reference_ts	Timestamp of the V4L2 capture buffer to use as referenc
_u16	frame_num	
_u16	pic_num	
_s32	top_field_order_cnt	
_s32	<pre>bottom_field_order_cnt</pre>	
u32	flags	See DPB Entry Flags

DPB Entries Flags

V4L2_H264_DPB_ENTRY_FLAG_VALID	0x0000001	The DPB entry is valid and shoul
V4L2_H264_DPB_ENTRY_FLAG_ACTIVE		The DPB entry is currently being
V4L2_H264_DPB_ENTRY_FLAG_LONG_TERM	0x00000004	The DPB entry is a long term ref
V4L2_H264_DPB_ENTRY_FLAG_FIELD	0x0000008	The DPB entry is a field referend
V4L2_H264_DPB_ENTRY_FLAG_BOTTOM_FIELD	0x00000010	The DPB entry is a bottom field r

V4L2_CID_MPEG_VIDEO_H264_DECODE_MODE (enum) Specifies the decoding mode to use. Currently exposes slice-based and frame-based decoding but new modes might be added later on. This control is used as a modifier for V4L2_PIX_FMT_H264_SLICE pixel format. Applications that support V4L2_PIX_FMT_H264_SLICE are required to set this control in order to specify the decoding mode that is expected for the buffer. Drivers may expose a single or multiple decoding modes, depending on what they can support.

Note: This menu control is not yet part of the public kernel API and it is expected to change.

v4l2_mpeg_video_h264_decode_mode

V4L2_MPEG_VIDE0_H264_DECODE_MODE_SLICE_BASED		
V4L2_MPEG_VIDE0_H264_DECODE_MODE_FRAME_BASED	1	Decoding is done at the frame gran

V4L2_CID_MPEG_VIDEO_H264_START_CODE (enum) Specifies the H264 slice start code expected for each slice. This control is used as a modifier for V4L2_PIX_FMT_H264_SLICE pixel format. Applications that support V4L2_PIX_FMT_H264_SLICE are required to set this control in order to specify the start code that is expected for the buffer. Drivers may expose a single or multiple start codes, depending on what they can support.

Note: This menu control is not yet part of the public kernel API and it is expected to change.

v4l2_mpeg_video_h264_start_code

V4L2_MPEG_VIDE0_H264_START_CODE_NONE	0	Selecting this value specifies that H264 s
V4L2_MPEG_VIDE0_H264_START_CODE_ANNEX_B	1	Selecting this value specifies that H264 s

V4L2_CID_MPEG_VIDEO_MPEG2_SLICE_PARAMS (struct) Specifies the slice parameters (as extracted from the bitstream) for the associated MPEG-2 slice data. This includes the necessary parameters for configuring a stateless hardware decoding pipeline for MPEG-2. The bitstream parameters are defined according to ISO 13818-2.

Note: This compound control is not yet part of the public kernel API and it is expected to change.

v4l2_ctrl_mpeg2_slice_params

u32	bit_size	Size (in bits) of the current slice
		data.
u32	data_bit_offset	Offset (in bits) to the video data in the current slice data.
<pre>struct v4l2_mpeg2_sequence</pre>	sequence	Structure with MPEG-2 sequence metadata, merging relevant fields from the sequence header and se- quence extension parts of the bit- stream.
<pre>struct v4l2_mpeg2_picture</pre>	picture	Structure with MPEG-2 picture metadata, merging relevant fields from the picture header and pic- ture coding extension parts of the bitstream.
u64	backward_ref_ts	Timestamp of the V4L2 capture buffer to use as backward refer- ence, used with B-coded and P- coded frames. The timestamp refers to the timestamp field in struct v4l2_buffer. Use the v4l2_timeval_to_ns() function to convert the struct timeval in struct v4l2_buffer to a _u64.
u64	forward_ref_ts	Timestamp for the V4L2 cap- ture buffer to use as forward reference, used with B-coded frames. The timestamp refers to the timestamp field in struct v4l2_buffer. Use the v4l2_timeval_to_ns() function to convert the struct timeval in struct v4l2_buffer to a _u64.
u32	<pre>quantiser_scale_code</pre>	Code used to determine the quan- tization scale to use for the IDCT.

Table 17: struct v4l2_ctrl_mpeg2_slice_params

v4l2_mpeg2_sequence

_u16	horizontal_size	The width of the displayable part of the frame's	
		luminance component.	
u16	vertical_size	The height of the displayable part of the frame'	
		s luminance component.	
u32	vbv_buffer_size	Used to calculate the required size of the video	
		buffering verifier, defined (in bits) as: 16 * 1024	
		* vbv_buffer_size.	
u16	<pre>profile_and_level_indication</pre>	The current profile and level indication as ex-	
		tracted from the bitstream.	
u8	progressive_sequence	Indication that all the frames for the sequence	
		are progressive instead of interlaced.	
u8	chroma_format	The chrominance sub-sampling format (1: 4:2:0,	
		2: 4:2:2, 3: 4:4:4).	

Table 18: str	ruct v4l2_mpeg	2_sequence
---------------	----------------	------------

v4l2_mpeg2_picture

	lable 19: struct v412_	mpeg2_picture
_u8	<pre>picture_coding_type</pre>	Picture coding type for the frame
		covered by the current slice
		(V4L2_MPEG2_PICTURE_CODING_TYPE_I,
		V4L2_MPEG2_PICTURE_CODING_TYPE_P or
		V4L2_MPEG2_PICTURE_CODING_TYPE_B).
u8	f_code[2][2]	Motion vector codes.
_u8	intra_dc_precision	Precision of Discrete Cosine transform (0: 8 bits
		precision, 1: 9 bits precision, 2: 10 bits preci-
		sion, 3: 11 bits precision).
u8	picture_structure	Picture structure (1: interlaced top field, 2: in-
		terlaced bottom field, 3: progressive frame).
u8	top_field_first	If set to 1 and interlaced stream, top field is out-
		put first.
u8	<pre>frame_pred_frame_dct</pre>	If set to 1, only frame-DCT and frame prediction
		are used.
u8	<pre>concealment_motion_vectors</pre>	If set to 1, motion vectors are coded for intra
		macroblocks.
u8	<pre>q_scale_type</pre>	This flag affects the inverse quantization pro-
		cess.
u8	intra_vlc_format	This flag affects the decoding of transform coef-
		ficient data.
_u8	alternate_scan	This flag affects the decoding of transform coef-
		ficient data.
_u8	<pre>repeat_first_field</pre>	This flag affects the decoding process of progres-
		sive frames.
u16	progressive_frame	Indicates whether the current frame is progres-
		sive.
.		

Table 19: struct v4l2_mpeg2_picture

V4L2_CID_MPEG_VIDE0_MPEG2_QUANTIZATION (struct) Specifies quantization matrices (as extracted from the bitstream) for the associated MPEG-2 slice data. **Note:** This compound control is not yet part of the public kernel API and it is expected to change.

v4l2_ctrl_mpeg2_quantization

Table 20: struct v4l2_ctrl_	_mpeg2_quantization
-----------------------------	---------------------

u8 Load_intra_quantiser_matrix One bit to indicate whether to load the intra_quantiser_matrix data. _u8 load_chroma_intra_quantiser_matrix One bit to indicate whether to load the non_intra_quantiser_matrix data. _u8 load_chroma_intra_quantiser_matrix One bit to indicate whether to load the chroma_intra_quantiser_matrix data. _u8 load_chroma_non_intra_quantiser_matrix One bit to indicate whether to load the chroma_intra_quantiser_matrix data. _u8 load_chroma_non_intra_quantiser_matrix One bit to indicate whether to load the chroma_non_intra_quantiser_matrix data. _u8 intra_quantiser_matrix[64] The quantization matrix coefficients for intra-coded frames, in zigzag scanning or der. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formats. _u8 non_intra_quantiser_matrix[64] The quantization matrix coefficients for non-4:2:0 YUV formats. _u8 non_intra_quantiser_matrix[64] The quantization matrix coefficients for non-4:2:0 YUV formats. _u8 non_intra_quantiser_matrix[64] The quantization matrix coefficients for non-4:2:0 YUV formats. _u8 chroma_intra_quantiser_matrix[64] The quantization matrix coefficients for the chroma-specific matrix for non-4:2:0 YUV formats. _u8 chroma_intra_quantiser_matrix[64] The quantization matrix coefficients for the chr			
_u8 load_non_intra_quantiser_matrix One bit to indicate whether to load the non_intra_quantiser_matrix data. _u8 load_chroma_intra_quantiser_matrix One bit to indicate whether to load the chroma_intra_quantiser_matrix data, only relevant for non-4:2:0 YUV formats. _u8 load_chroma_non_intra_quantiser_matrix One bit to indicate whether to load the chroma_non_intra_quantiser_matrix data, only relevant for non-4:2:0 YUV formats. _u8 load_chroma_non_intra_quantiser_matrix One bit to indicate whether to load the chroma_non_intra_quantiser_matrix data, only relevant for non-4:2:0 YUV formats. _u8 intra_quantiser_matrix[64] The quantization matrix coefficients for intra-coded frames, in zigzag scanning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formats. _u8 non_intra_quantiser_matrix[64] The quantization matrix coefficients for non-4:2:0 YUV formats. _u8 chroma_intra_quantiser_matrix[64] The quantization matrix coefficients for non-4:2:0 YUV formats. _u8 chroma_intra_quantiser_matrix[64] The quantization matrix coefficients for non-4:2:0 YUV formats. _u8 chroma_intra_quantiser_matrix[64] The quantization matrix coefficients for the chrominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formats. _u8 chroma_non_intra_quantiser_matrix[64] The quantization ma	u8	load_intra_quantiser_matrix	One bit to indicate whether to load the
_u8load_chroma_intra_quantiser_matrixOne bit to indicate whether to load the chroma_intra_quantiser_matrix data, only relevant for non-4:2:0 YUV formatsu8load_chroma_non_intra_quantiser_matrixOne bit to indicate whether to load the chroma_non_intra_quantiser_matrix data, only relevant for non-4:2:0 YUV formatsu8intra_quantiser_matrix[64]The quantization matrix coefficients for intra-coded frames, in zigzag scanning or- der. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formatsu8non_intra_quantiser_matrix[64]The quantization matrix coefficients for non-intra-coded frames, in zigzag scan- ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chroma-specific matrix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-intra- coded frames, in zigzag scanning order.	u8	load_non_intra_quantiser_matrix	
	u8	load_chroma_intra_quantiser_matrix	
_u8 load_chroma_non_intra_quantiser_matrix One bit to indicate whether to load the chroma_non_intra_quantiser_matrix data, only relevant for non-4:2:0 YUV formats. _u8 intra_quantiser_matrix[64] The quantization matrix coefficients for intra-coded frames, in zigzag scanning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formats. _u8 non_intra_quantiser_matrix[64] The quantization matrix coefficients for non-4:2:0 YUV formats. _u8 non_intra_quantiser_matrix[64] The quantization matrix coefficients for non-4:2:0 YUV formats. _u8 chroma_intra_quantiser_matrix[64] The quantization matrix coefficients for the chroma-specific matrix for non-4:2:0 YUV formats. _u8 chroma_intra_quantiser_matrix[64] The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formats. _u8 chroma_non_intra_quantiser_matrix[64] The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formats. _u8 chroma_non_intra_quantiser_matrix[64] The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formats.			
data, only relevant for non-4:2:0 YUV formatsu8intra_quantiser_matrix[64]The quantization matrix coefficients for intra-coded frames, in zigzag scanning or- der. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formatsu8non_intra_quantiser_matrix[64]The quantization matrix coefficients for non-intra-coded frames, in zigzag scan- ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formats.	u8	load_chroma_non_intra_quantiser_matrix	
u8intra_quantiser_matrix[64]formatsu8intra_quantiser_matrix[64]The quantization matrix coefficients for intra-coded frames, in zigzag scanning or- der. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formatsu8non_intra_quantiser_matrix[64]The quantization matrix coefficients for non-intra-coded frames, in zigzag scan- ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra- coded frames, in zigzag scanning order.			
u8intra_quantiser_matrix[64]The quantization matrix coefficients for intra-coded frames, in zigzag scanning or- der. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formatsu8non_intra_quantiser_matrix[64]The quantization matrix coefficients for non-intra-coded frames, in zigzag scan- ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chromiance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chromiance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chromiance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formats.			
u8non_intra_quantiser_matrix[64]intra-coded frames, in zigzag scanning or- der. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formatsu8non_intra_quantiser_matrix[64]The quantization matrix coefficients for non-intra-coded frames, in zigzag scan- ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formats.			
der. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formatsu8non_intra_quantiser_matrix[64]The quantization matrix coefficients for non-intra-coded frames, in zigzag scan- ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra- coded frames, in zigzag scanning order.	_u8	intra_quantiser_matrix[64]	
u8non_intra_quantiser_matrix[64]chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formatsu8non_intra_quantiser_matrix[64]The quantization matrix coefficients for non-intra-coded frames, in zigzag scan- ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra- coded frames, in zigzag scanning order.			
superseded by the chroma-specific matrix for non-4:2:0 YUV formatsu8non_intra_quantiser_matrix[64]The quantization matrix coefficients for non-intra-coded frames, in zigzag scan- ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra- coded frames, in zigzag scanning order.			
u8non_intra_quantiser_matrix[64]The quantization matrix coefficients for non-intra-coded frames, in zigzag scan- ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra- coded frames, in zigzag scanning order.			
_u8non_intra_quantiser_matrix[64]The quantization matrix coefficients for non-intra-coded frames, in zigzag scan- ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra- coded frames, in zigzag scanning order.			
non-intra-coded frames, in zigzag scanning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific matrix for non-4:2:0 YUV formatsChroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsChroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsThe quantization matrix coefficients for the chrominance component of non-intra-coded frames, in zigzag scanning order.			
u8chroma_intra_quantiser_matrix[64]ning order. It is relevant for both luma and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra- coded frames, in zigzag scanning order.	u8	<pre>non_intra_quantiser_matrix[64]</pre>	
and chroma components, although it can be superseded by the chroma-specific ma- trix for non-4:2:0 YUV formatsu8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra- coded frames, in zigzag scanning order.			
u8chroma_intra_quantiser_matrix[64]be superseded by the chroma-specific matrix for non-4:2:0 YUV formats.u8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formats.u8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra-coded frames, in zigzag scanning order.			
u8 chroma_intra_quantiser_matrix[64] trix for non-4:2:0 YUV formats. u8 chroma_intra_quantiser_matrix[64] The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formats. u8 chroma_non_intra_quantiser_matrix[64] The quantization matrix coefficients for the chrominance component of non-intra-coded frames, in zigzag scanning order.			1 0
u8chroma_intra_quantiser_matrix[64]The quantization matrix coefficients for the chominance component of intra-coded frames, in zigzag scanning order. Only relevant for non-4:2:0 YUV formatsu8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra- coded frames, in zigzag scanning order.			
	u8	chroma_intra_quantiser_matrix[64]	
u8chroma_non_intra_quantiser_matrix[64]The quantization matrix coefficients for the chrominance component of non-intra- coded frames, in zigzag scanning order.			
the chrominance component of non-intra- coded frames, in zigzag scanning order.			
coded frames, in zigzag scanning order.		chroma_non_intra_quantiser_matrix[64]	
Only relevant for non-4:2:0 YUV formats.			
			Only relevant for non-4:2:0 YUV formats.

- V4L2_CID_FWHT_I_FRAME_QP (integer) Quantization parameter for an I frame for FWHT. Valid range: from 1 to 31.
- V4L2_CID_FWHT_P_FRAME_QP (integer) Quantization parameter for a P frame for FWHT. Valid range: from 1 to 31.
- V4L2_CID_MPEG_VIDE0_VP8_FRAME_HEADER (struct) Specifies the frame parameters for the associated VP8 parsed frame data. This includes the necessary parameters for configuring a stateless hardware decoding pipeline for VP8. The bitstream parameters are defined according to VP8.

Note: This compound control is not yet part of the public kernel API and it is expected to change.

v4l2_ctrl_vp8_frame_header

	uct v412_ctrl_vp8_frame_he	
<pre>struct v4l2_vp8_segment_header</pre>	segment_header	Structure with segment-based ad- justments metadata.
<pre>struct v4l2_vp8_loopfilter_hea</pre>	dæoopfilter_header	Structure with loop filter level adjust- ments metadata.
<pre>struct v4l2_vp8_quantization_h</pre>	e qde nt_header	Structure with VP8 dequantization indices metadata.
<pre>struct v4l2_vp8_entropy_header</pre>		Structure with VP8 entropy coder probabilities metadata.
<pre>struct v4l2_vp8_entropy_coder_</pre>	s tate r_state	Structure with VP8 entropy coder state.
u16	width	The width of the frame. Must be set for all frames.
u16	height	The height of the frame. Must be set for all frames.
u8	horizontal_scale	Horizontal scaling factor.
u8	vertical_scaling factor	Vertical scale.
u8	version	Bitstream version.
u8	prob_skip_false	Indicates the probability that the macroblock is not skipped.
u8	prob_intra	Indicates the probability that a mac- roblock is intra-predicted.
u8	prob_last	Indicates the probability that the last reference frame is used for inter- prediction
u8	prob_gf	Indicates the probability that the golden reference frame is used for inter-prediction
u8	num_dct_parts	Number of DCT coefficients partitions. Must be one of: 1, 2, 4, or 8.
u32	first_part_size	Size of the first partition, i.e. the con- trol partition.
u32	<pre>first_part_header_bits</pre>	Size in bits of the first partition header portion.
u32	<pre>dct_part_sizes[8]</pre>	DCT coefficients sizes.
u64	last_frame_ts	Timestamp for the V4L2 capture buffer to use as last reference frame, used with inter-coded frames. The timestamp refers to the timestamp field in struct v4l2_buffer. Use the v4l2_timeval_to_ns() function to convert the struct timeval in struct v4l2_buffer to au64.
u64	golden_frame_ts	Timestamp for the V4L2 capture buffer to use as last reference frame, used with inter-coded frames. The timestamp refers to the timestamp field in struct v4l2_buffer. Use the v4l2_timeval_to_ns() function to convert the struct timeval in struct v4l2_buffer to au64.
u64	alt_frame_ts	Timestamp for the V4L2 capture buffer to use as alternate ref- erence frame, used with inter- coded frames. The timestamp refers to the timestamp field in struct v4l2_buffer. Use the
128 Chapter	7. Linux Media Infrastru	to convert the struct timeval in struct v412 buffer to a u64.
u64	flags	See Frame Header Flags
uv 1		

Table 21: struct v4l2_ctrl_vp8_frame_header

Frame Header Flags

	V4L2_VP8_FRAME_HEADER_FLAG_KEY_FRAME		Indicates if the frame is a key frame.
	V4L2_VP8_FRAME_HEADER_FLAG_EXPERIMENTAL		Experimental bitstream.
	V4L2_VP8_FRAME_HEADER_FLAG_SHOW_FRAME	0x04	Show frame flag, indicates if the frame is
	V4L2_VP8_FRAME_HEADER_FLAG_MB_N0_SKIP_COEFF	0x08	Enable/disable skipping of macroblocks w
Ī	V4L2_VP8_FRAME_HEADER_FLAG_SIGN_BIAS_GOLDEN		Sign of motion vectors when the golden f
	V4L2_VP8_FRAME_HEADER_FLAG_SIGN_BIAS_ALT	0x20	Sign of motion vectors when the alt frame

v4l2_vp8_entropy_coder_state

Table 23: struct v4l2_vp8_entropy_coder_state

u8	range	
u8	value	
_u8	bit_count	
_u8	padding	Applications and drivers must set this to zero.

v4l2_vp8_segment_header

Table 24: struct v4l2_vp8_segment_header

		_ 0 _
s8	<pre>quant_update[4]</pre>	Signed quantizer value update.
s8	lf_update[4]	Signed loop filter level value update.
u8	<pre>segment_probs[3]</pre>	Segment probabilities.
u8	padding	Applications and drivers must set this to zero.
u32	flags	See Segment Header Flags

Segment Header Flags

V4L2_VP8_SEGMENT_HEADER_FLAG_ENABLED	0x01	Enable/disable segment-based adju
V4L2_VP8_SEGMENT_HEADER_FLAG_UPDATE_MAP	0x02	Indicates if the macroblock segmen
V4L2_VP8_SEGMENT_HEADER_FLAG_UPDATE_FEATURE_DATA	0x04	Indicates if the segment feature dat
V4L2_VP8_SEGMENT_HEADER_FLAG_DELTA_VALUE_MODE	0x08	If is set, the segment feature data n

v4l2_vp8_loopfilter_header

Table 26: struct v4l2_vp8	loopfilter_header
---------------------------	-------------------

s8	ref_frm_delta[4]	Reference adjustment (signed) delta value.		
s8	<pre>mb_mode_delta[4]</pre>	Macroblock prediction mode adjustment (signed)		
		delta value.		
u8	sharpness_level	Sharpness level		
u8	level	Filter level		
u16	padding	Applications and drivers must set this to zero.		
u32	flags	See Loopfilter Header Flags		

Loopfilter Header Flags

V4L2_VP8_LF_HEADER_ADJ_ENABLE	0x01	Enable/disable macroblock-level loop filter adjustment.
V4L2_VP8_LF_HEADER_DELTA_UPDATE	0x02	Indicates if the delta values used in an adjustment are u
V4L2_VP8_LF_FILTER_TYPE_SIMPLE	0x04	If set, indicates the filter type is simple. If cleared, the

v4l2_vp8_quantization_header

u8	y_ac_qi	Luma AC coefficient table index.	
s8	y_dc_delta	Luma DC delta vaue.	
s8	y2_dc_delta	Y2 block DC delta value.	
s8	y2_ac_delta	Y2 block AC delta value.	
s8	uv_dc_delta	Chroma DC delta value.	
s8	uv_ac_delta	Chroma AC delta value.	
u16	padding	Applications and drivers must set this to zero.	

v4l2_vp8_entropy_header

Table 29: struct v412_vp8_entropy_neader			
_u8	coeff_probs[4][8][3][11]	Coefficient update probabilities.	
u8	y_mode_probs[4]	Luma mode update probabilities.	
u8	uv_mode_probs[3]	Chroma mode update probabilities.	
u8 mv_probs[2][19] MV decoding update probabilities.			
u8	padding[3]	Applications and drivers must set this to zero.	

Table 29: struct v4l2 vp8 entropy header

MFC 5.1 MPEG Controls

The following MPEG class controls deal with MPEG decoding and encoding settings that are specific to the Multi Format Codec 5.1 device present in the S5P family of SoCs by Samsung.

MFC 5.1 Control IDs

V4L2_CID_MPEG_MFC51_VIDE0_DECODER_H264_DISPLAY_DELAY_ENABLE (boolean) If the display delay is enabled then the decoder is forced to return a CAPTURE buffer (decoded frame) after processing a certain number of OUTPUT buffers. The delay can be set through V4L2_CID_MPEG_MFC51_VIDE0_DECODER_H264_DISPLAY_DELAY. This feature can be used for example for generating thumbnails of videos. Applicable to the H264 decoder.

V4L2_CID_MPEG_MFC51_VIDE0_DECODER_H264_DISPLAY_DELAY (integer)

Display delay value for H264 decoder. The decoder is forced to return a decoded frame after the set 'display delay' number of frames. If this number is low it may result in frames returned out of display order, in addition the hardware may still be using the returned buffer as a reference picture for subsequent frames.

- V4L2_CID_MPEG_MFC51_VIDEO_H264_NUM_REF_PIC_FOR_P (integer) The number of reference pictures used for encoding a P picture. Applicable to the H264 encoder.
- V4L2_CID_MPEG_MFC51_VIDEO_PADDING (boolean) Padding enable in the encoder use a color instead of repeating border pixels. Applicable to encoders.
- V4L2_CID_MPEG_MFC51_VIDE0_PADDING_YUV (integer) Padding color in the encoder. Applicable to encoders. The supplied 32-bit integer is interpreted as follows (bit 0 = least significant bit):

Bit 0:7	V chrominance information
Bit 8:15	U chrominance information
Bit 16:23	Y luminance information
Bit 24:31	Must be zero.

V4L2_CID_MPEG_MFC51_VIDEO_RC_REACTION_COEFF (integer) Reaction coefficient for MFC rate control. Applicable to encoders.

Note:

- 1. Valid only when the frame level RC is enabled.
- 2. For tight CBR, this field must be small (ex. $2 \sim 10$). For VBR, this field must be large (ex. $100 \sim 1000$).
- 3. It is not recommended to use the greater number than FRAME_RATE * $(10^9 / BIT_RATE)$.
- V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_DARK (boolean) Adaptive rate control for dark region. Valid only when H.264 and macroblock level RC is enabled (V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264 encoder.
- V4L2_CID_MPEG_MFC51_VIDE0_H264_ADAPTIVE_RC_SMOOTH (boolean) Adaptive
 rate control for smooth region. Valid only when H.264 and macroblock level
 RC is enabled (V4L2_CID_MPEG_VIDE0_MB_RC_ENABLE). Applicable to the
 H264 encoder.
- V4L2_CID_MPEG_MFC51_VIDEO_H264_ADAPTIVE_RC_STATIC (boolean) Adaptive rate control for static region. Valid only when H.264 and macroblock level RC is enabled (V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE). Applicable to the H264 encoder.
- V4L2_CID_MPEG_MFC51_VIDE0_H264_ADAPTIVE_RC_ACTIVITY (boolean)
 Adaptive rate control for activity region. Valid only when H.264 and
 macroblock level RC is enabled (V4L2_CID_MPEG_VIDE0_MB_RC_ENABLE).
 Applicable to the H264 encoder.
- V4L2_CID_MPEG_MFC51_VIDE0_FRAME_SKIP_MODE (enum)
- **enum v4l2_mpeg_mfc51_video_frame_skip_mode** Indicates in what conditions the encoder should skip frames. If encoding a frame would cause the encoded stream to be larger then a chosen data limit then the frame will be skipped. Possible values are:

V4L2_MPEG_MFC51_FRAME_SKIP_MODE_DISABLED	Frame skip mode is disabled.
V4L2_MPEG_MFC51_FRAME_SKIP_MODE_LEVEL_LIMIT	Frame skip mode enabled and buffer limit is
	set by the chosen level and is defined by the
	standard.
V4L2_MPEG_MFC51_FRAME_SKIP_MODE_BUF_LIMIT	Frame skip mode enabled and buffer limit is set
	by the VBV (MPEG1/2/4) or CPB (H264) buffer
	size control.

V4L2_CID_MPEG_MFC51_VIDEO_RC_FIXED_TARGET_BIT (integer) Enable ratecontrol with fixed target bit. If this setting is enabled, then the rate control logic of the encoder will calculate the average bitrate for a GOP and keep it below or equal the set bitrate target. Otherwise the rate control logic calculates the overall average bitrate for the stream and keeps it below or equal to the set bitrate. In the first case the average bitrate for the whole stream will be smaller then the set bitrate. This is caused because the average is calculated for smaller number of frames, on the other hand enabling this setting will ensure that the stream will meet tight bandwidth constraints. Applicable to encoders.

V4L2_CID_MPEG_MFC51_VIDE0_FORCE_FRAME_TYPE (enum)

V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_DISABLED	Forcing a specific frame type disabled.
V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_I_FRAME	Force an I-frame.
V4L2_MPEG_MFC51_FORCE_FRAME_TYPE_NOT_CODED	Force a non-coded frame.

V4L2_CID_MPEG_VIDEO_FWHT_PARAMS (struct) Specifies the fwht parameters (as extracted from the bitstream) for the associated FWHT data. This includes the necessary parameters for configuring a stateless hardware decoding pipeline for FWHT.

Note: This compound control is not yet part of the public kernel API and it is expected to change.

v4l2_ctrl_fwht_params

Table 30: struct v4l2_ctrl_fwht_params

u64	backward_ref_ts	Timestamp of the V4L2 capture buffer to use as back		
		ward reference, used with P-coded frames. The timestam		
		refers to the timestamp field in struct v4l2_buffer. Use		
		the v4l2_timeval_to_ns() function to convert the struct		
		timeval in struct v4l2_buffer to au64.		
_u32	version	The version of the codec		
_u32	width	The width of the frame		
_u32	height	The height of the frame		
_u32	flags	The flags of the frame, see FWHT Flags.		
_u32	colorspace	The colorspace of the frame, from enum v4l2_colorspace.		
_u32	xfer_func	The transfer function, from enum v4l2_xfer_func.		
_u32	ycbcr_enc	The Y' CbCr encoding, from enum v4l2_ycbcr_encoding.		
_u32	quantization	The quantization range, from enum v4l2_quantization.		

FWHT Flags

FWHT_FL_IS_INTERLACED	0x0000001	Set if this is an interlaced format
FWHT_FL_IS_BOTTOM_FIRST	0x0000002	Set if this is a bottom-first (NTSC) inter
		laced format
FWHT_FL_IS_ALTERNATE	0x0000004	Set if each 'frame' contains just one field
FWHT_FL_IS_BOTTOM_FIELD	0x0000008	If FWHT_FL_IS_ALTERNATE was set, then
		this is set if this 'frame' is the bottom field
		else it is the top field.
FWHT_FL_LUMA_IS_UNCOMPRESSED	0x00000010	Set if the luma plane is uncompressed
FWHT_FL_CB_IS_UNCOMPRESSED	0x0000020	Set if the cb plane is uncompressed
FWHT_FL_CR_IS_UNCOMPRESSED	0x00000040	Set if the cr plane is uncompressed
FWHT_FL_CHROMA_FULL_HEIGHT	0x0000080	Set if the chroma plane has the same
		height as the luma plane, else the chroma
		plane is half the height of the luma plane
FWHT_FL_CHROMA_FULL_WIDTH	0x00000100	Set if the chroma plane has the same width
		as the luma plane, else the chroma plane is
		half the width of the luma plane
FWHT_FL_ALPHA_IS_UNCOMPRESSED	0x00000200	Set if the alpha plane is uncompressed
FWHT_FL_I_FRAME	0x00000400	Set if this is an I-frame
FWHT_FL_COMPONENTS_NUM_MSK	0x00070000	A 4-values flag - the number of components
		- 1
FWHT_FL_PIXENC_YUV	0x00080000	Set if the pixel encoding is YUV
FWHT_FL_PIXENC_RGB	0x00100000	Set if the pixel encoding is RGB
FWHT_FL_PIXENC_HSV	0x00180000	Set if the pixel encoding is HSV
	1	1

CX2341x MPEG Controls

The following MPEG class controls deal with MPEG encoding settings that are specific to the Conexant CX23415 and CX23416 MPEG encoding chips.

CX2341x Control IDs

V4L2_CID_MPEG_CX2341X_VIDE0_SPATIAL_FILTER_MODE (enum)

enum v4l2_mpeg_cx2341x_video_spatial_filter_mode - Sets the Spatial Filter
mode (default MANUAL). Possible values are:

V4L2_MPEG_CX2341X_VIDE0_SPATIAL_FILTER_MODE_MANdAse the filter manually V4L2_MPEG_CX2341X_VIDE0_SPATIAL_FILTER_MODE_ADD does the filter automatically

V4L2_CID_MPEG_CX2341X_VIDE0_SPATIAL_FILTER (integer (0-15)) The setting for the Spatial Filter. 0 = off, 15 = maximum. (Default is 0.)

V4L2_CID_MPEG_CX2341X_VIDE0_LUMA_SPATIAL_FILTER_TYPE (enum)

enum v4l2_mpeg_cx2341x_video_luma_spatial_filter_type - Select the algorithm to use for the Luma Spatial Filter (default 1D_HOR). Possible values:

V4L2_MPEG_CX2341X_VIDE0_LUMA_SPATIAL_FILTER_TYPE_OFF	No filter
V4L2_MPEG_CX2341X_VIDE0_LUMA_SPATIAL_FILTER_TYPE_1D_HOR	One-dimensional
	horizontal
V4L2_MPEG_CX2341X_VIDE0_LUMA_SPATIAL_FILTER_TYPE_1D_VERT	One-dimensional
	vertical
V4L2_MPEG_CX2341X_VIDE0_LUMA_SPATIAL_FILTER_TYPE_2D_HV_SEPARABLE	Two-
	dimensional
	separable
V4L2_MPEG_CX2341X_VIDE0_LUMA_SPATIAL_FILTER_TYPE_2D_SYM_NON_SEPARABLE	Two-
	dimensional
	symmetrical
	non-separable

V4L2_CID_MPEG_CX2341X_VIDE0_CHROMA_SPATIAL_FILTER_TYPE (enum)

enum v4l2_mpeg_cx2341x_video_chroma_spatial_filter_type - Select the algorithm for the Chroma Spatial Filter (default 1D_HOR). Possible values are:

V4L2_MPEG_CX2341X_VIDE0_CHROMA_SPATIAL_FILTER_TYPE_OFF	No filter
V4L2_MPEG_CX2341X_VIDE0_CHROMA_SPATIAL_FILTER_TYPE_1D_HOR	One-dimensional
	horizontal

V4L2_CID_MPEG_CX2341X_VIDE0_TEMPORAL_FILTER_MODE (enum)

enum v4l2_mpeg_cx2341x_video_temporal_filter_mode - Sets the Temporal Filter mode (default MANUAL). Possible values are:

V4L2_MPEG_CX2341X_VIDE0_TEMPORAL_FILTER_MODE ______MODE ______MODE the filter manually V4L2_MPEG_CX2341X_VIDE0_TEMPORAL_FILTER_MODE ______MODE ______ ically

V4L2_CID_MPEG_CX2341X_VIDE0_TEMPORAL_FILTER (integer (0-31)) The setting for the Temporal Filter. 0 = off, 31 = maximum. (Default is 8 for full-scale capturing and 0 for scaled capturing.)

V4L2_CID_MPEG_CX2341X_VIDE0_MEDIAN_FILTER_TYPE (enum)

enum v4l2_mpeg_cx2341x_video_median_filter_type - Median Filter Type
 (default 0FF). Possible values are:

V4L2_MPEG_CX2341X_VIDE0_MEDIAN_FILTER_TYPE_0FFNo filter
V4L2_MPEG_CX2341X_VIDE0_MEDIAN_FILTER_TYPE_H0RHorizontal filter
V4L2_MPEG_CX2341X_VIDE0_MEDIAN_FILTER_TYPE_VERVertical filter
V4L2_MPEG_CX2341X_VIDE0_MEDIAN_FILTER_TYPE_H0RHMERET and vertical
filter
V4L2_MPEG_CX2341X_VIDE0_MEDIAN_FILTER_TYPE_DIADiagonal filter

- V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_MEDIAN_FILTER_BOTTOM (integer (0-255)) Threshold above which the luminance median filter is enabled (default 0)
- V4L2_CID_MPEG_CX2341X_VIDEO_LUMA_MEDIAN_FILTER_TOP (integer (0-255)) Threshold below which the luminance median filter is enabled (default 255)

- V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_MEDIAN_FILTER_BOTTOM (integer (0-255)) Threshold above which the chroma median filter is enabled (default 0)
- V4L2_CID_MPEG_CX2341X_VIDEO_CHROMA_MEDIAN_FILTER_TOP (integer (0-255)) Threshold below which the chroma median filter is enabled (default 255)
- V4L2_CID_MPEG_CX2341X_STREAM_INSERT_NAV_PACKETS (boolean) The CX2341X MPEG encoder can insert one empty MPEG-2 PES packet into the stream between every four video frames. The packet size is 2048 bytes, including the packet_start_code_prefix and stream_id fields. The stream_id is 0xBF (private stream 2). The payload consists of 0x00 bytes, to be filled in by the application. 0 = do not insert, 1 = insert packets.

VPX Control Reference

The VPX controls include controls for encoding parameters of VPx video codec.

VPX Control IDs

V4L2_CID_MPEG_VIDEO_VPX_NUM_PARTITIONS (enum)

enum v4l2_vp8_num_partitions - The number of token partitions to use in VP8 encoder. Possible values are:

V4L2_CID_MPEG_VIDE0_VPX_1_PARTITION	1 coefficient partition
V4L2_CID_MPEG_VIDE0_VPX_2_PARTITIONS	2 coefficient partitions
V4L2_CID_MPEG_VIDE0_VPX_4_PARTITIONS 4 coefficient partition	
V4L2_CID_MPEG_VIDE0_VPX_8_PARTITIONS	8 coefficient partitions

V4L2_CID_MPEG_VIDE0_VPX_IMD_DISABLE_4X4 (boolean) Setting this prevents intra 4x4 mode in the intra mode decision.

V4L2_CID_MPEG_VIDEO_VPX_NUM_REF_FRAMES (enum)

enum v4l2_vp8_num_ref_frames - The number of reference pictures for encoding P frames. Possible values are:

V4L2_CID_MPEG_VIDE0_VPX_1_REF_FRAME	Last encoded frame will be searched
V4L2_CID_MPEG_VIDE0_VPX_2_REF_FRAME	Two frames will be searched among the last encoded
	frame, the golden frame and the alternate reference
	(altref) frame. The encoder implementation will de-
	cide which two are chosen.
V4L2_CID_MPEG_VIDE0_VPX_3_REF_FRAME	The last encoded frame, the golden frame and the al-
	tref frame will be searched.

- V4L2_CID_MPEG_VIDE0_VPX_FILTER_LEVEL (integer) Indicates the loop filter level. The adjustment of the loop filter level is done via a delta value against a baseline loop filter value.
- V4L2_CID_MPEG_VIDE0_VPX_FILTER_SHARPNESS (integer) This parameter affects the loop filter. Anything above zero weakens the deblocking effect on the loop filter.

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD (integer) Sets the refresh period for the golden frame. The period is defined in number of frames. For a value of 'n', every nth frame starting from the first key frame will be taken as a golden frame. For eg. for encoding sequence of 0, 1, 2, 3, 4, 5, 6, 7 where the golden frame refresh period is set as 4, the frames 0, 4, 8 etc will be taken as the golden frames as frame 0 is always a key frame.

V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_SEL (enum)

enum v4l2_vp8_golden_frame_sel - Selects the golden frame for encoding. Possible values are:

V4L2_CID_MPEG_VIDE0_VPX_GOLDEN_FRAME_USE_PREV	Use the (n-2)th frame as a golden frame, current frame index being 'n'.
V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_USE_REF_PERIOD	Use the previous specific frame indicated by V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD as a golden frame.

- V4L2_CID_MPEG_VIDEO_VPX_MIN_QP (integer) Minimum quantization parameter for VP8.
- V4L2_CID_MPEG_VIDEO_VPX_MAX_QP (integer) Maximum quantization parameter for VP8.
- V4L2_CID_MPEG_VIDEO_VPX_I_FRAME_QP (integer) Quantization parameter for an I frame for VP8.
- V4L2_CID_MPEG_VIDEO_VPX_P_FRAME_QP (integer) Quantization parameter for a P frame for VP8.
- V4L2_CID_MPEG_VIDEO_VP8_PROFILE (enum)
- **enum v4l2_mpeg_video_vp8_profile -** This control allows selecting the profile for VP8 encoder. This is also used to enumerate supported profiles by VP8 encoder or decoder. Possible values are:

V4L2_MPEG_VIDE0_VP8_PROFILE_0	Profile 0
V4L2_MPEG_VIDE0_VP8_PROFILE_1	Profile 1
V4L2_MPEG_VIDE0_VP8_PROFILE_2	Profile 2
V4L2_MPEG_VIDE0_VP8_PROFILE_3	Profile 3

V4L2_CID_MPEG_VIDEO_VP9_PROFILE (enum)

enum v4l2_mpeg_video_vp9_profile - This control allows selecting the profile for VP9 encoder. This is also used to enumerate supported profiles by VP9 encoder or decoder. Possible values are:

V4L2_MPEG_VIDE0_VP9_PROFILE_0	Profile 0
V4L2_MPEG_VIDE0_VP9_PROFILE_1	Profile 1
V4L2_MPEG_VIDE0_VP9_PROFILE_2	Profile 2
V4L2_MPEG_VIDE0_VP9_PROFILE_3	Profile 3

High Efficiency Video Coding (HEVC/H.265) Control Reference

The HEVC/H.265 controls include controls for encoding parameters of HEVC/H.265 video codec.

HEVC/H.265 Control IDs

- V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP (integer) Minimum quantization parameter for HEVC. Valid range: from 0 to 51.
- V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP (integer) Maximum quantization parameter for HEVC. Valid range: from 0 to 51.
- V4L2_CID_MPEG_VIDEO_HEVC_I_FRAME_QP (integer) Quantization parameter for an I frame for HEVC. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP, V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].
- V4L2_CID_MPEG_VIDEO_HEVC_P_FRAME_QP (integer) Quantization parameter for a P frame for HEVC. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP, V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].
- V4L2_CID_MPEG_VIDEO_HEVC_B_FRAME_QP (integer) Quantization parameter for a B frame for HEVC. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP, V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].
- V4L2_CID_MPEG_VIDEO_HEVC_HIER_QP (boolean) HIERARCHICAL_QP allows the host to specify the quantization parameter values for each temporal layer through HIERARCHICAL_QP_LAYER. This is valid only if HIERAR-CHICAL_CODING_LAYER is greater than 1. Setting the control value to 1 enables setting of the QP values for the layers.

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_TYPE (enum)

enum v4l2_mpeg_video_hevc_hier_coding_type - Selects the hierarchical coding type for encoding. Possible values are:

V4L2_MPEG_VIDE0_HEVC_HIERARCHICAL_CODING_B	Use the B frame for hierarchical coding.
V4L2_MPEG_VIDE0_HEVC_HIERARCHICAL_CODING_P	Use the P frame for hierarchical coding.

- V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_LAYER (integer) Selects the hierarchical coding layer. In normal encoding (non-hierarchial coding), it should be zero. Possible values are [0, 6]. 0 indicates HIERARCHICAL CODING LAYER 0, 1 indicates HIERARCHICAL CODING LAYER 1 and so on.
- V4L2_CID_MPEG_VIDE0_HEVC_HIER_CODING_L0_QP (integer) Indicates
 quantization parameter for hierarchical coding layer
 0. Valid range: [V4L2_CID_MPEG_VIDE0_HEVC_MIN_QP,
 V4L2_CID_MPEG_VIDE0_HEVC_MAX_QP].
- V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L1_QP (integer) Indicates quantization parameter for hierarchical coding layer 1. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP, V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].
- V4L2_CID_MPEG_VIDE0_HEVC_HIER_CODING_L2_QP (integer) Indicates quantization parameter for hierarchical coding layer

2. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP, V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L3_QP (integer) Indicates
 quantization parameter for hierarchical coding layer
 3. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
 V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L4_QP (integer) Indicates quantization parameter for hierarchical coding layer 4. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP, V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L5_QP (integer) Indicates
 quantization parameter for hierarchical coding layer
 5. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP,
 V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L6_QP (integer) Indicates quantization parameter for hierarchical coding layer 6. Valid range: [V4L2_CID_MPEG_VIDEO_HEVC_MIN_QP, V4L2_CID_MPEG_VIDEO_HEVC_MAX_QP].

V4L2_CID_MPEG_VIDEO_HEVC_PROFILE (enum)

enum v4l2_mpeg_video_hevc_profile - Select the desired profile for HEVC encoder.

V4L2_MPEG_VIDE0_HEVC_PROFILE_MAIN	Main profile.
V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_STILL_PICTURE	Main still picture profile.
V4L2_MPEG_VIDE0_HEVC_PROFILE_MAIN_10	Main 10 profile.

V4L2_CID_MPEG_VIDEO_HEVC_LEVEL (enum)

enum v4l2_mpeg_video_hevc_level - Selects the desired level for HEVC encoder.

V4L2_MPEG_VIDE0_HEVC_LEVEL_1	Level 1.0
V4L2_MPEG_VIDE0_HEVC_LEVEL_2	Level 2.0
V4L2_MPEG_VIDE0_HEVC_LEVEL_2_1	Level 2.1
V4L2_MPEG_VIDE0_HEVC_LEVEL_3	Level 3.0
V4L2_MPEG_VIDE0_HEVC_LEVEL_3_1	Level 3.1
V4L2_MPEG_VIDE0_HEVC_LEVEL_4	Level 4.0
V4L2_MPEG_VIDE0_HEVC_LEVEL_4_1	Level 4.1
V4L2_MPEG_VIDE0_HEVC_LEVEL_5	Level 5.0
V4L2_MPEG_VIDE0_HEVC_LEVEL_5_1	Level 5.1
V4L2_MPEG_VIDE0_HEVC_LEVEL_5_2	Level 5.2
V4L2_MPEG_VIDE0_HEVC_LEVEL_6	Level 6.0
V4L2_MPEG_VIDE0_HEVC_LEVEL_6_1	Level 6.1
V4L2_MPEG_VIDE0_HEVC_LEVEL_6_2	Level 6.2

V4L2_CID_MPEG_VIDEO_HEVC_FRAME_RATE_RESOLUTION (integer) Indicates the number of evenly spaced subintervals, called ticks, within one second. This is a 16 bit unsigned integer and has a maximum value up to 0xffff and a minimum value of 1.

V4L2_CID_MPEG_VIDEO_HEVC_TIER (enum)

enum v4l2_mpeg_video_hevc_tier - TIER_FLAG specifies tiers information of the HEVC encoded picture. Tier were made to deal with applications that differ in terms of maximum bit rate. Setting the flag to 0 selects HEVC tier as Main tier and setting this flag to 1 indicates High tier. High tier is for applications requiring high bit rates.

V4L2_MPEG_VIDEO_HEVC_TIER_MAIN	Main tier.
V4L2_MPEG_VIDE0_HEVC_TIER_HIGH	High tier.

V4L2_CID_MPEG_VIDEO_HEVC_MAX_PARTITION_DEPTH (integer) Selects HEVC maximum coding unit depth.

V4L2 CID MPEG VIDEO HEVC LOOP FILTER MODE (enum)

enum v4l2_mpeg_video_hevc_loop_filter_mode - Loop filter mode for HEVC
 encoder. Possible values are:

V4L2_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE_DISABLED	Loop filter is disabled.
V4L2_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE_ENABLED	Loop filter is enabled.
V4L2_MPEG_VIDEO_HEVC_LOOP_FILTER_MODE_DISABLED_AT_SLICE_BOUNDARY	Loop filter is disabled at the slice
	boundary.

- V4L2_CID_MPEG_VIDEO_HEVC_LF_BETA_OFFSET_DIV2 (integer) Selects HEVC loop filter beta offset. The valid range is [-6, +6].
- V4L2_CID_MPEG_VIDEO_HEVC_LF_TC_OFFSET_DIV2 (integer) Selects HEVC loop filter tc offset. The valid range is [-6, +6].

V4L2_CID_MPEG_VIDEO_HEVC_REFRESH_TYPE (enum)

enum v4l2_mpeg_video_hevc_hier_refresh_type - Selects refresh type for HEVC encoder. Host has to specify the period into V4L2_CID_MPEG_VIDEO_HEVC_REFRESH_PERIOD.

V4L2_MPEG_VIDE0_HEVC_REFRESH_NONE	Use the B frame for hierarchical coding.
V4L2_MPEG_VIDE0_HEVC_REFRESH_CRA	Use CRA (Clean Random Access Unit) picture encoding.
V4L2_MPEG_VIDE0_HEVC_REFRESH_IDR	Use IDR (Instantaneous Decoding Refresh) picture en- coding.

- V4L2_CID_MPEG_VIDEO_HEVC_REFRESH_PERIOD (integer) Selects the refresh period for HEVC encoder. This specifies the number of I pictures between two CRA/IDR pictures. This is valid only if REFRESH_TYPE is not 0.
- V4L2_CID_MPEG_VIDE0_HEVC_LOSSLESS_CU (boolean) Indicates HEVC lossless encoding. Setting it to 0 disables lossless encoding. Setting it to 1 enables lossless encoding.
- V4L2_CID_MPEG_VIDEO_HEVC_CONST_INTRA_PRED (boolean) Indicates constant intra prediction for HEVC encoder. Specifies the constrained intra prediction in which intra largest coding unit (LCU) prediction is performed by using residual data and decoded samples of neighboring intra LCU only. Setting the value to 1 enables constant intra prediction and setting the value to 0 disables constant intra prediction.
- V4L2_CID_MPEG_VIDEO_HEVC_WAVEFRONT (boolean) Indicates wavefront parallel processing for HEVC encoder. Setting it to 0 disables the feature and setting it to 1 enables the wavefront parallel processing.

- V4L2_CID_MPEG_VIDEO_HEVC_GENERAL_PB (boolean) Setting the value to 1 enables combination of P and B frame for HEVC encoder.
- V4L2_CID_MPEG_VIDEO_HEVC_TEMPORAL_ID (boolean) Indicates temporal identifier for HEVC encoder which is enabled by setting the value to 1.
- V4L2_CID_MPEG_VIDEO_HEVC_STRONG_SMOOTHING (boolean) Indicates bi-linear interpolation is conditionally used in the intra prediction filtering process in the CVS when set to 1. Indicates bi-linear interpolation is not used in the CVS when set to 0.
- V4L2_CID_MPEG_VIDEO_HEVC_MAX_NUM_MERGE_MV_MINUS1 (integer) Indicates maximum number of merge candidate motion vectors. Values are from 0 to 4.
- V4L2_CID_MPEG_VIDEO_HEVC_TMV_PREDICTION (boolean) Indicates temporal motion vector prediction for HEVC encoder. Setting it to 1 enables the prediction. Setting it to 0 disables the prediction.
- V4L2_CID_MPEG_VIDEO_HEVC_WITHOUT_STARTCODE (boolean) Specifies if HEVC generates a stream with a size of the length field instead of start code pattern. The size of the length field is configurable through the V4L2_CID_MPEG_VIDEO_HEVC_SIZE_OF_LENGTH_FIELD control. Setting the value to 0 disables encoding without startcode pattern. Setting the value to 1 will enables encoding without startcode pattern.
- V4L2_CID_MPEG_VIDEO_HEVC_SIZE_OF_LENGTH_FIELD (enum)
- **enum v4l2_mpeg_video_hevc_size_of_length_field -** Indicates the size of length field. This is valid when encoding WITHOUT_STARTCODE_ENABLE is enabled.

V4L2_MPEG_VIDE0_HEVC_SIZE_0	Generate start code pattern (Normal).
V4L2_MPEG_VIDE0_HEVC_SIZE_1	Generate size of length field instead of start code pattern and length
	is 1.
V4L2_MPEG_VIDE0_HEVC_SIZE_2	Generate size of length field instead of start code pattern and length
	is 2.
V4L2_MPEG_VIDE0_HEVC_SIZE_4	Generate size of length field instead of start code pattern and length
	is 4.

- V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L0_BR (integer) Indicates bit rate for hierarchical coding layer 0 for HEVC encoder.
- V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L1_BR (integer) Indicates bit rate for hierarchical coding layer 1 for HEVC encoder.
- V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L2_BR (integer) Indicates bit rate for hierarchical coding layer 2 for HEVC encoder.
- V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L3_BR (integer) Indicates bit rate for hierarchical coding layer 3 for HEVC encoder.
- V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L4_BR (integer) Indicates bit rate for hierarchical coding layer 4 for HEVC encoder.
- V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L5_BR (integer) Indicates bit rate for hierarchical coding layer 5 for HEVC encoder.

- V4L2_CID_MPEG_VIDEO_HEVC_HIER_CODING_L6_BR (integer) Indicates bit rate for hierarchical coding layer 6 for HEVC encoder.
- V4L2_CID_MPEG_VIDEO_REF_NUMBER_FOR_PFRAMES (integer) Selects number of P reference pictures required for HEVC encoder. P-Frame can use 1 or 2 frames for reference.
- V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR (integer) Indicates whether to generate SPS and PPS at every IDR. Setting it to 0 disables generating SPS and PPS at every IDR. Setting it to one enables generating SPS and PPS at every IDR.
- V4L2_CID_MPEG_VIDEO_HEVC_SPS (struct) Specifies the Sequence Parameter Set fields (as extracted from the bitstream) for the associated HEVC slice data. These bitstream parameters are defined according to ITU H.265/HEVC. They are described in section 7.4.3.2 "Sequence parameter set RBSP semantics" of the specification.

v4l2_ctrl_hevc_sps

	u16			
	u16	<pre>pic_height_in_luma_samples</pre>		
	u8	<pre>bit_depth_luma_minus8</pre>		
	u8	<pre>bit_depth_chroma_minus8</pre>		
	u8	<pre>log2_max_pic_order_cnt_lsb_minus4</pre>		
	u8	<pre>sps_max_dec_pic_buffering_minus1</pre>		
	u8	<pre>sps_max_num_reorder_pics</pre>		
	u8	<pre>sps_max_latency_increase_plus1</pre>		
	u8	<pre>log2_min_luma_coding_block_size_minus3</pre>		
	u8	<pre>log2_diff_max_min_luma_coding_block_si</pre>		
	u8	<pre>log2_min_luma_transform_block_size_min</pre>		
	u8	<pre>log2_diff_max_min_luma_transform_block</pre>		
	u8	<pre>max_transform_hierarchy_depth_inter</pre>		
	u8	<pre>max_transform_hierarchy_depth_intra</pre>		
	u8	<pre>pcm_sample_bit_depth_luma_minus1</pre>		
	u8	<pre>pcm_sample_bit_depth_chroma_minus1</pre>		
	u8	<pre>log2_min_pcm_luma_coding_block_size_mi</pre>		
	u8	<pre>log2_diff_max_min_pcm_luma_coding_bloc</pre>		
	u8	<pre>num_short_term_ref_pic_sets</pre>		
	u8	num_long_term_ref_pics_sps		
_u8	chroma_format_idc			
_u64	flags		See Sec	quence Parameter Set F

Table 31: struct v4l2 ctrl hevc sps

Sequence Parameter Set Flags

V4L2_HEVC_SPS_FLAG_SEPARATE_COLOUR_PLANE	0x0000001
V4L2_HEVC_SPS_FLAG_SCALING_LIST_ENABLED	0x0000002
V4L2_HEVC_SPS_FLAG_AMP_ENABLED	0x00000004
V4L2_HEVC_SPS_FLAG_SAMPLE_ADAPTIVE_OFFSET	0x0000008
V4L2_HEVC_SPS_FLAG_PCM_ENABLED	0x00000010
Continued on next page	

V4L2_HEVC_SPS_FLAG_PCM_LOOP_FILTER_DISABLED	0x0000020
V4L2_HEVC_SPS_FLAG_LONG_TERM_REF_PICS_PRESENT	0x00000040
V4L2_HEVC_SPS_FLAG_SPS_TEMPORAL_MVP_ENABLED	0x0000080
V4L2_HEVC_SPS_FLAG_STRONG_INTRA_SMOOTHING_ENABLED	0x00000100

V4L2_CID_MPEG_VIDEO_HEVC_PPS (struct) Specifies the Picture Parameter Set fields (as extracted from the bitstream) for the associated HEVC slice data. These bitstream parameters are defined according to ITU H.265/HEVC. They are described in section 7.4.3.3 "Picture parameter set RBSP semantics" of the specification.

v4l2_ctrl_hevc_pps

Table 33: struct v4l2_ctrl_hevc_pps

	—	
_u8	<pre>num_extra_slice_header_bits</pre>	
s8	init_qp_minus26	
_u8	diff_cu_qp_delta_depth	
s8	pps_cb_qp_offset	
s8	pps_cr_qp_offset	
_u8	num_tile_columns_minus1	
_u8	num_tile_rows_minus1	
_u8	column_width_minus1[20]	
_u8	<pre>row_height_minus1[22]</pre>	
s8	<pre>pps_beta_offset_div2</pre>	
s8	<pre>pps_tc_offset_div2</pre>	
_u8	<pre>log2_parallel_merge_level_minus2</pre>	
u8	padding[4]	Applications and drivers must set this to zero
u64	flags	See Picture Parameter Set Flags

Picture Parameter Set Flags

V4L2_HEVC_PPS_FLAG_DEPENDENT_SLICE_SEGMENT	0x0000001
V4L2_HEVC_PPS_FLAG_OUTPUT_FLAG_PRESENT	0x0000002
V4L2_HEVC_PPS_FLAG_SIGN_DATA_HIDING_ENABLED	0x0000004
V4L2_HEVC_PPS_FLAG_CABAC_INIT_PRESENT	0x0000008
V4L2_HEVC_PPS_FLAG_CONSTRAINED_INTRA_PRED	0x0000010
V4L2_HEVC_PPS_FLAG_TRANSFORM_SKIP_ENABLED	0x0000020
V4L2_HEVC_PPS_FLAG_CU_QP_DELTA_ENABLED	0x0000040
V4L2_HEVC_PPS_FLAG_PPS_SLICE_CHROMA_QP_OFFSETS_PRESENT	0x0000080
V4L2_HEVC_PPS_FLAG_WEIGHTED_PRED	0x00000100
V4L2_HEVC_PPS_FLAG_WEIGHTED_BIPRED	0x0000200
V4L2_HEVC_PPS_FLAG_TRANSQUANT_BYPASS_ENABLED	0x00000400
V4L2_HEVC_PPS_FLAG_TILES_ENABLED	0x00000800
V4L2_HEVC_PPS_FLAG_ENTROPY_CODING_SYNC_ENABLED	0x00001000
V4L2_HEVC_PPS_FLAG_LOOP_FILTER_ACROSS_TILES_ENABLED	0x00002000
V4L2_HEVC_PPS_FLAG_PPS_LOOP_FILTER_ACROSS_SLICES_ENABLED	0x00004000
V4L2_HEVC_PPS_FLAG_DEBLOCKING_FILTER_OVERRIDE_ENABLED	0x00008000
V4L2_HEVC_PPS_FLAG_PPS_DISABLE_DEBLOCKING_FILTER	0x00010000
Continued on next page	· ·

Table 34 – continued from previous page

V4L2_HEVC_PPS_FLAG_LISTS_MODIFICATION_PRESENT	0x00020000	
V4L2_HEVC_PPS_FLAG_SLICE_SEGMENT_HEADER_EXTENSION_PRESENT	0x00040000	

V4L2_CID_MPEG_VIDEO_HEVC_SLICE_PARAMS (struct) Specifies various slicespecific parameters, especially from the NAL unit header, general slice segment header and weighted prediction parameter parts of the bitstream. These bitstream parameters are defined according to ITU H.265/HEVC. They are described in section 7.4.7 "General slice segment header semantics" of the specification.

v4l2_ctrl_hevc_slice_params

	Table 35: Struct V412_C	un_	nevc_snce_params	
_u32	bit_size	_	Size (in bits) of the current slice data.	
_u32	data_bit_offset		Offset (in bits) to the video data in the curren	t sl
_u8	<pre>nal_unit_type</pre>			
_u8	<pre>nuh_temporal_id_plus1</pre>			
_u8	slice_type		(V4L2_HEVC_SLICE_TYPE_I, V4L2_HEVC_SL	ICI
_u8	colour_plane_id			
_u16	<pre>slice_pic_order_cnt</pre>			
_u8	<pre>num_ref_idx_l0_active_minus</pre>			
_u8	<pre>num_ref_idx_l1_active_minus</pre>	1		
_u8	<pre>collocated_ref_idx</pre>			
_u8	five_minus_max_num_merge_ca	nd		
s8	slice_qp_delta			
s8	<pre>slice_cb_qp_offset</pre>			
s8	<pre>slice_cr_qp_offset</pre>			
s8	<pre>slice_act_y_qp_offset</pre>			
s8	<pre>slice_act_cb_qp_offset</pre>			
s8	<pre>slice_act_cr_qp_offset</pre>			
s8	<pre>slice_beta_offset_div2</pre>			
s8	<pre>slice_tc_offset_div2</pre>			
_u8	pic_struct			
_u8			<pre>m_active_dpb_entries</pre>	T
_u8			<pre>f_idx_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]</pre>	T]
u8			<pre>f_idx_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]</pre>	T
u8		nur	<pre>n_rps_poc_st_curr_before</pre>	T
u8			<pre>n_rps_poc_st_curr_after</pre>	T]
u8			n_rps_poc_lt_curr	T]
u8			dding[7]	A
	v4l2_hevc_dpb_entry		<pre>b[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]</pre>	T]
	v4l2_hevc_pred_weight_table		ed_weight_table	T]
u64		fla	ags	S

Table 35: struct v4l2 ctrl hevc slice params

Slice Parameters Flags

V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_SA0_LUMA	0x0000001
V4L2_HEVC_SLICE_PARAMS_FLAG_SLICE_SA0_CHROMA	0x0000002
Continued on next page	

0x0000004
0x00000008
0x00000010
0x00000020
0x00000040
0x0000080
0x00000100

Table 36 - continued from previous page

v4l2_hevc_dpb_entry

Table 37: struct v4l2 hevc dpb entry

_	_u64	timestamp	Timestamp of the V4L2 capture buffer to use as reference, used
_	_u8	rps	The reference set for the reference frame (V4L2_HEVC_DPB_EN
	_u8	field_pic	Whether the reference is a field picture or a frame.
	_u16	<pre>pic_order_cnt[2]</pre>	The picture order count of the reference. Only the first element
_	_u8	padding[2]	Applications and drivers must set this to zero.

v4l2_hevc_pred_weight_table

Table 38: struct v4l2_hevc_pred_weight_table

u8	luma_log2_weight_denom	
s8	delta_chroma_log2_weight_denom	
s8	<pre>delta_luma_weight_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]</pre>	
s8	luma_offset_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]	
s8	<pre>delta_chroma_weight_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]</pre>	
s8	chroma_offset_l0[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]	
s8	<pre>delta_luma_weight_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]</pre>	
s8	luma_offset_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX]	
s8	<pre>delta_chroma_weight_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]</pre>	
s8	<pre>chroma_offset_l1[V4L2_HEVC_DPB_ENTRIES_NUM_MAX][2]</pre>	
u8	padding[6]	Applications and o

V4L2_CID_MPEG_VIDEO_HEVC_DECODE_MODE (enum) Specifies the decoding mode to use. Currently exposes slice-based and frame-based decoding but new modes might be added later on. This control is used as a modifier for V4L2_PIX_FMT_HEVC_SLICE pixel format. Applications that support V4L2_PIX_FMT_HEVC_SLICE are required to set this control in order to specify the decoding mode that is expected for the buffer. Drivers may expose a single or multiple decoding modes, depending on what they can support.

Note: This menu control is not yet part of the public kernel API and it is expected to change.

v4l2_mpeg_video_hevc_decode_mode

V4L2_MPEG_VIDE0_HEVC_DECODE_MODE_SLICE_BASED 0 Decoding is done at the slice granu Continued on next page Table 39 – continued from previous page

V4L2_MPEG_VIDE0_HEVC_DECODE_MODE_FRAME_BASED | 1 | Decoding is done at the frame gran

V4L2_CID_MPEG_VIDEO_HEVC_START_CODE (enum) Specifies the HEVC slice start code expected for each slice. This control is used as a modifier for V4L2_PIX_FMT_HEVC_SLICE pixel format. Applications that support V4L2_PIX_FMT_HEVC_SLICE are required to set this control in order to specify the start code that is expected for the buffer. Drivers may expose a single or multiple start codes, depending on what they can support.

Note: This menu control is not yet part of the public kernel API and it is expected to change.

v4l2_mpeg_video_hevc_start_code

V4L2_MPEG_VIDE0_HEVC_START_CODE_NONE	0	Selecting this value specifies that HEVC s
V4L2_MPEG_VIDE0_HEVC_START_CODE_ANNEX_B	1	Selecting this value specifies that HEVC s

JPEG Control Reference

The JPEG class includes controls for common features of JPEG encoders and decoders. Currently it includes features for codecs implementing progressive baseline DCT compression process with Huffman entrophy coding.

JPEG Control IDs

- V4L2_CID_JPEG_CLASS (class) The JPEG class descriptor. Calling ioctls VID-IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this control class.
- V4L2_CID_JPEG_CHROMA_SUBSAMPLING (menu) The chroma subsampling factors describe how each component of an input image is sampled, in respect to maximum sample rate in each spatial dimension. See ITU-T.81, clause A.1.1. for more details. The V4L2_CID_JPEG_CHROMA_SUBSAMPLING control determines how Cb and Cr components are downsampled after converting an input image from RGB to Y' CbCr color space.

V4L2_JPEG_CHROMA_SUBSAMPLING_444	No chroma subsampling, each pixel has Y, Cr and
	Cb values.
V4L2_JPEG_CHROMA_SUBSAMPLING_422	Horizontally subsample Cr, Cb components by a fac-
	tor of 2.
V4L2_JPEG_CHROMA_SUBSAMPLING_420	Subsample Cr, Cb components horizontally and ver-
	tically by 2.
V4L2_JPEG_CHROMA_SUBSAMPLING_411	Horizontally subsample Cr, Cb components by a fac-
	tor of 4.
V4L2_JPEG_CHROMA_SUBSAMPLING_410	Subsample Cr, Cb components horizontally by 4 and
	vertically by 2.
V4L2_JPEG_CHROMA_SUBSAMPLING_GRAY	Use only luminance component.

- V4L2_CID_JPEG_RESTART_INTERVAL (integer) The restart interval determines an interval of inserting RSTm markers (m = 0..7). The purpose of these markers is to additionally reinitialize the encoder process, in order to process blocks of an image independently. For the lossy compression processes the restart interval unit is MCU (Minimum Coded Unit) and its value is contained in DRI (Define Restart Interval) marker. If V4L2_CID_JPEG_RESTART_INTERVAL control is set to 0, DRI and RSTm markers will not be inserted.
- V4L2_CID_JPEG_COMPRESSION_QUALITY (integer) V4L2_CID_JPEG_COMPRESSION_QUALITY control determines trade-off between image quality and size. It provides simpler method for applications to control image quality, without a need for direct reconfiguration of luminance and chrominance quantization tables. In cases where a driver uses quantization tables configured directly by an application, using interfaces defined elsewhere, V4L2 CID JPEG COMPRESSION QUALITY control should be set by driver to 0.

The value range of this control is driver-specific. Only positive, non-zero values are meaningful. The recommended range is 1 - 100, where larger values correspond to better image quality.

V4L2_CID_JPEG_ACTIVE_MARKER (bitmask) Specify which JPEG markers are included in compressed stream. This control is valid only for encoders.

V4L2_JPEG_ACTIVE_MARKER_APP0	Application data segment APP ₀ .
V4L2_JPEG_ACTIVE_MARKER_APP1	Application data segment APP ₁ .
V4L2_JPEG_ACTIVE_MARKER_COM	Comment segment.
V4L2_JPEG_ACTIVE_MARKER_DQT	Quantization tables segment.
V4L2_JPEG_ACTIVE_MARKER_DHT	Huffman tables segment.

For more details about JPEG specification, refer to ITU-T.81, JFIF, W3C JPEG JFIF.

Digital Video Control Reference

The Digital Video control class is intended to control receivers and transmitters for VGA, DVI (Digital Visual Interface), HDMI (HDMI) and DisplayPort (DP). These controls are generally expected to be private to the receiver or transmitter subdevice that implements them, so they are only exposed on the /dev/v4l-subdev* device node.

Note: Note that these devices can have multiple input or output pads which are hooked up to e.g. HDMI connectors. Even though the subdevice will receive or transmit video from/to only one of those pads, the other pads can still be active when it comes to EDID (Extended Display Identification Data, EDID) and HDCP (High-bandwidth Digital Content Protection System, HDCP) processing, allowing the device to do the fairly slow EDID/HDCP handling in advance. This allows for quick switching between connectors.

These pads appear in several of the controls in this section as bitmasks, one bit for each pad. Bit 0 corresponds to pad 0, bit 1 to pad 1, etc. The maximum value of the control is the set of valid pads.

Digital Video Control IDs

- V4L2_CID_DV_CLASS (class) The Digital Video class descriptor.
- V4L2_CID_DV_TX_HOTPLUG (bitmask) Many connectors have a hotplug pin which is high if EDID information is available from the source. This control shows the state of the hotplug pin as seen by the transmitter. Each bit corresponds to an output pad on the transmitter. If an output pad does not have an associated hotplug pin, then the bit for that pad will be 0. This read-only control is applicable to DVI-D, HDMI and DisplayPort connectors.
- V4L2_CID_DV_TX_RXSENSE (bitmask) Rx Sense is the detection of pull-ups on the TMDS clock lines. This normally means that the sink has left/entered standby (i.e. the transmitter can sense that the receiver is ready to receive video). Each bit corresponds to an output pad on the transmitter. If an output pad does not have an associated Rx Sense, then the bit for that pad will be 0. This read-only control is applicable to DVI-D and HDMI devices.
- V4L2_CID_DV_TX_EDID_PRESENT (bitmask) When the transmitter sees the hotplug signal from the receiver it will attempt to read the EDID. If set, then the transmitter has read at least the first block (= 128 bytes). Each bit corresponds to an output pad on the transmitter. If an output pad does not support EDIDs, then the bit for that pad will be 0. This read-only control is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_MODE (enum)

- enum v4l2_dv_tx_mode HDMI transmitters can transmit in DVI-D mode
 (just video) or in HDMI mode (video + audio + auxiliary data).
 This control selects which mode to use: V4L2_DV_TX_MODE_DVI_D or
 V4L2_DV_TX_MODE HDMI. This control is applicable to HDMI connectors.
- V4L2_CID_DV_TX_RGB_RANGE (enum)
- **enum v4l2_dv_rgb_range** Select the quantization range for RGB output. V4L2_DV_RANGE_AUTO follows the RGB quantization range specified in the standard for the video interface (ie. CEA-861-E for HDMI). V4L2_DV_RANGE_LIMITED and V4L2_DV_RANGE_FULL override the standard to be compatible with sinks that have not implemented the standard correctly (unfortunately quite common for HDMI and DVI-D). Full range allows all possible values to be used whereas limited range sets the range to (16 << (N-8)) (235 << (N-8)) where N is the number of bits per component. This control is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_TX_IT_CONTENT_TYPE (enum)

enum v4l2_dv_it_content_type - Configures the IT Content Type of the transmitted video. This information is sent over HDMI and DisplayPort connectors as part of the AVI InfoFrame. The term 'IT Content' is used for content that originates from a computer as opposed to content from a TV broadcast or an analog source. The enum v4l2_dv_it_content_type defines the possible content types:

V4L2_DV_IT_CONTENT_TYPE_GRAPHICS	Graphics content. Pixel data should be passed unfil-
	tered and without analog reconstruction.
V4L2_DV_IT_CONTENT_TYPE_PHOTO	Photo content. The content is derived from digital still
	pictures. The content should be passed through with
	minimal scaling and picture enhancements.
V4L2_DV_IT_CONTENT_TYPE_CINEMA	Cinema content.
V4L2_DV_IT_CONTENT_TYPE_GAME	Game content. Audio and video latency should be min-
	imized.
V4L2_DV_IT_CONTENT_TYPE_N0_ITC	No IT Content information is available and the ITC bit
	in the AVI InfoFrame is set to 0.

V4L2_CID_DV_RX_POWER_PRESENT (bitmask) Detects whether the receiver receives power from the source (e.g. HDMI carries 5V on one of the pins). This is often used to power an eeprom which contains EDID information, such that the source can read the EDID even if the sink is in standby/power off. Each bit corresponds to an input pad on the receiver. If an input pad cannot detect whether power is present, then the bit for that pad will be 0. This read-only control is applicable to DVI-D, HDMI and DisplayPort connectors.

V4L2_CID_DV_RX_RGB_RANGE (enum)

enum v412_dv_rgb_range - Select the quantization range for RGB input. V4L2_DV_RANGE_AUTO follows the RGB quantization range specified in the standard for the video interface (ie. CEA-861-E for HDMI). V4L2_DV_RANGE_LIMITED and V4L2_DV_RANGE_FULL override the standard to be compatible with sources that have not implemented the standard correctly (unfortunately quite common for HDMI and DVI-D). Full range allows all possible values to be used whereas limited range sets the range to (16 << (N-8)) - (235 << (N-8)) where N is the number of bits per component. This control is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.

V4L2_CID_DV_RX_IT_CONTENT_TYPE (enum)

enum v4l2_dv_it_content_type - Reads the IT Content Type of the received video. This information is sent over HDMI and DisplayPort connectors as part of the AVI InfoFrame. The term 'IT Content' is used for content that originates from a computer as opposed to content from a TV broadcast or an analog source. See V4L2_CID_DV_TX_IT_CONTENT_TYPE for the available content types.

RF Tuner Control Reference

The RF Tuner (RF_TUNER) class includes controls for common features of devices having RF tuner.

In this context, RF tuner is radio receiver circuit between antenna and demodulator. It receives radio frequency (RF) from the antenna and converts that received signal to lower intermediate frequency (IF) or baseband frequency (BB). Tuners that could do baseband output are often called Zero-IF tuners. Older tuners were typically simple PLL tuners inside a metal box, while newer ones are highly integrated chips without a metal box "silicon tuners". These controls are mostly applicable for new feature rich silicon tuners, just because older tuners does not have much adjustable features.

For more information about RF tuners see Tuner (radio) and RF front end from Wikipedia.

RF_TUNER Control IDs

- V4L2_CID_RF_TUNER_CLASS (class) The RF_TUNER class descriptor. Calling ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VID-IOC_QUERYMENU for this control will return a description of this control class.
- V4L2_CID_RF_TUNER_BANDWIDTH_AUTO (boolean) Enables/disables tuner radio channel bandwidth configuration. In automatic mode bandwidth configuration is performed by the driver.
- V4L2_CID_RF_TUNER_BANDWIDTH (integer) Filter(s) on tuner signal path are used to filter signal according to receiving party needs. Driver configures filters to fulfill desired bandwidth requirement. Used when V4L2_CID_RF_TUNER_BANDWIDTH_AUTO is not set. Unit is in Hz. The range and step are driver-specific.
- V4L2_CID_RF_TUNER_LNA_GAIN_AUTO (boolean) Enables/disables LNA automatic gain control (AGC)
- V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO (boolean) Enables/disables mixer automatic gain control (AGC)
- V4L2_CID_RF_TUNER_IF_GAIN_AUTO (boolean) Enables/disables IF automatic gain control (AGC)
- V4L2_CID_RF_TUNER_RF_GAIN (integer) The RF amplifier is the very first amplifier on the receiver signal path, just right after the antenna input. The difference between the LNA gain and the RF gain in this document is that the LNA gain is integrated in the tuner chip while the RF gain is a separate chip. There may be both RF and LNA gain controls in the same device. The range and step are driver-specific.
- V4L2_CID_RF_TUNER_LNA_GAIN (integer) LNA (low noise amplifier) gain is first gain stage on the RF tuner signal path. It is located very close to tuner antenna input. Used when V4L2_CID_RF_TUNER_LNA_GAIN_AUTO is not set. See V4L2_CID_RF_TUNER_RF_GAIN to understand how RF gain and LNA gain differs from the each others. The range and step are driver-specific.
- V4L2_CID_RF_TUNER_MIXER_GAIN (integer) Mixer gain is second gain stage on the RF tuner signal path. It is located inside mixer block, where RF signal is down-converted by the mixer. Used when V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO is not set. The range and step are driver-specific.
- V4L2_CID_RF_TUNER_IF_GAIN (integer) IF gain is last gain stage on the RF tuner signal path. It is located on output of RF tuner. It controls signal level of intermediate frequency output or baseband output. Used when V4L2_CID_RF_TUNER_IF_GAIN_AUTO is not set. The range and step are driverspecific.

V4L2_CID_RF_TUNER_PLL_LOCK (boolean) Is synthesizer PLL locked? RF tuner is receiving given frequency when that control is set. This is a read-only control.

FM Transmitter Control Reference

The FM Transmitter (FM_TX) class includes controls for common features of FM transmissions capable devices. Currently this class includes parameters for audio compression, pilot tone generation, audio deviation limiter, RDS transmission and tuning power features.

FM_TX Control IDs

- V4L2_CID_FM_TX_CLASS (class) The FM_TX class descriptor. Calling ioctls VID-IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this control class.
- V4L2_CID_RDS_TX_DEVIATION (integer) Configures RDS signal frequency deviation level in Hz. The range and step are driver-specific.
- V4L2_CID_RDS_TX_PI (integer) Sets the RDS Programme Identification field for transmission.
- V4L2_CID_RDS_TX_PTY (integer) Sets the RDS Programme Type field for transmission. This encodes up to 31 pre-defined programme types.
- V4L2_CID_RDS_TX_PS_NAME (string) Sets the Programme Service name (PS_NAME) for transmission. It is intended for static display on a receiver. It is the primary aid to listeners in programme service identification and selection. In Annex E of IEC 62106, the RDS specification, there is a full description of the correct character encoding for Programme Service name strings. Also from RDS specification, PS is usually a single eight character text. However, it is also possible to find receivers which can scroll strings sized as 8 x N characters. So, this control must be configured with steps of 8 characters. The result is it must always contain a string with size multiple of 8.
- V4L2_CID_RDS_TX_RADIO_TEXT (string) Sets the Radio Text info for transmission. It is a textual description of what is being broadcasted. RDS Radio Text can be applied when broadcaster wishes to transmit longer PS names, programme-related information or any other text. In these cases, RadioText should be used in addition to V4L2_CID_RDS_TX_PS_NAME. The encoding for Radio Text strings is also fully described in Annex E of IEC 62106. The length of Radio Text strings depends on which RDS Block is being used to transmit it, either 32 (2A block) or 64 (2B block). However, it is also possible to find receivers which can scroll strings sized as 32 x N or 64 x N characters. So, this control must be configured with steps of 32 or 64 characters. The result is it must always contain a string with size multiple of 32 or 64.
- V4L2_CID_RDS_TX_MONO_STEREO (boolean) Sets the Mono/Stereo bit of the Decoder Identification code. If set, then the audio was recorded as stereo.
- V4L2_CID_RDS_TX_ARTIFICIAL_HEAD (boolean) Sets the Artificial Head bit of the Decoder Identification code. If set, then the audio was recorded using an

artificial head.

- V4L2_CID_RDS_TX_COMPRESSED (boolean) Sets the Compressed bit of the Decoder Identification code. If set, then the audio is compressed.
- V4L2_CID_RDS_TX_DYNAMIC_PTY (boolean) Sets the Dynamic PTY bit of the Decoder Identification code. If set, then the PTY code is dynamically switched.
- V4L2_CID_RDS_TX_TRAFFIC_ANNOUNCEMENT (boolean) If set, then a traffic announcement is in progress.
- V4L2_CID_RDS_TX_TRAFFIC_PROGRAM (boolean) If set, then the tuned programme carries traffic announcements.
- V4L2_CID_RDS_TX_MUSIC_SPEECH (boolean) If set, then this channel broadcasts music. If cleared, then it broadcasts speech. If the transmitter doesn't make this distinction, then it should be set.
- V4L2_CID_RDS_TX_ALT_FREQS_ENABLE (boolean) If set, then transmit alternate frequencies.
- V4L2_CID_RDS_TX_ALT_FREQS (__u32 array) The alternate frequencies in kHz units. The RDS standard allows for up to 25 frequencies to be defined. Drivers may support fewer frequencies so check the array size.
- V4L2_CID_AUDIO_LIMITER_ENABLED (boolean) Enables or disables the audio deviation limiter feature. The limiter is useful when trying to maximize the audio volume, minimize receiver-generated distortion and prevent overmodulation.
- V4L2_CID_AUDIO_LIMITER_RELEASE_TIME (integer) Sets the audio deviation limiter feature release time. Unit is in useconds. Step and range are driverspecific.
- V4L2_CID_AUDIO_LIMITER_DEVIATION (integer) Configures audio frequency deviation level in Hz. The range and step are driver-specific.
- V4L2_CID_AUDIO_COMPRESSION_ENABLED (boolean) Enables or disables the audio compression feature. This feature amplifies signals below the threshold by a fixed gain and compresses audio signals above the threshold by the ratio of Threshold/(Gain + Threshold).
- V4L2_CID_AUDIO_COMPRESSION_GAIN (integer) Sets the gain for audio compression feature. It is a dB value. The range and step are driver-specific.
- V4L2_CID_AUDIO_COMPRESSION_THRESHOLD (integer) Sets the threshold level for audio compression freature. It is a dB value. The range and step are driver-specific.
- V4L2_CID_AUDIO_COMPRESSION_ATTACK_TIME (integer) Sets the attack time for audio compression feature. It is a useconds value. The range and step are driver-specific.
- V4L2_CID_AUDIO_COMPRESSION_RELEASE_TIME (integer) Sets the release time for audio compression feature. It is a useconds value. The range and step are driver-specific.
- V4L2_CID_PILOT_TONE_ENABLED (boolean) Enables or disables the pilot tone generation feature.

- V4L2_CID_PILOT_TONE_DEVIATION (integer) Configures pilot tone frequency deviation level. Unit is in Hz. The range and step are driver-specific.
- V4L2_CID_PILOT_TONE_FREQUENCY (integer) Configures pilot tone frequency value. Unit is in Hz. The range and step are driver-specific.
- V4L2_CID_TUNE_PREEMPHASIS (enum)
- **enum v4l2_preemphasis -** Configures the pre-emphasis value for broadcasting. A pre-emphasis filter is applied to the broadcast to accentuate the high audio frequencies. Depending on the region, a time constant of either 50 or 75 useconds is used. The enum v4l2_preemphasis defines possible values for pre-emphasis. Here they are:

V4L2_PREEMPHASIS_DISABLED	No pre-emphasis is applied.
V4L2_PREEMPHASIS_50_uS	A pre-emphasis of 50 uS is used.
V4L2_PREEMPHASIS_75_uS	A pre-emphasis of 75 uS is used.

- V4L2_CID_TUNE_POWER_LEVEL (integer) Sets the output power level for signal transmission. Unit is in dBuV. Range and step are driver-specific.
- V4L2_CID_TUNE_ANTENNA_CAPACITOR (integer) This selects the value of antenna tuning capacitor manually or automatically if set to zero. Unit, range and step are driver-specific.

For more details about RDS specification, refer to IEC 62106 document, from CEN-ELEC.

FM Receiver Control Reference

The FM Receiver (FM_RX) class includes controls for common features of FM Reception capable devices.

FM_RX Control IDs

- V4L2_CID_FM_RX_CLASS (class) The FM_RX class descriptor. Calling ioctls VID-IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this control class.
- V4L2_CID_RDS_RECEPTION (boolean) Enables/disables RDS reception by the radio tuner
- V4L2_CID_RDS_RX_PTY (integer) Gets RDS Programme Type field. This encodes up to 31 pre-defined programme types.
- V4L2_CID_RDS_RX_PS_NAME (string) Gets the Programme Service name (PS_NAME). It is intended for static display on a receiver. It is the primary aid to listeners in programme service identification and selection. In Annex E of IEC 62106, the RDS specification, there is a full description of the correct character encoding for Programme Service name strings. Also from RDS specification, PS is usually a single eight character text. However, it is also possible to find receivers which can scroll strings sized as 8 x N characters. So, this control must be configured with steps of 8 characters. The result is it must always contain a string with size multiple of 8.

- V4L2_CID_RDS_RX_RADIO_TEXT (string) Gets the Radio Text info. It is a textual description of what is being broadcasted. RDS Radio Text can be applied when broadcaster wishes to transmit longer PS names, programme-related information or any other text. In these cases, RadioText can be used in addition to V4L2_CID_RDS_RX_PS_NAME. The encoding for Radio Text strings is also fully described in Annex E of IEC 62106. The length of Radio Text strings depends on which RDS Block is being used to transmit it, either 32 (2A block) or 64 (2B block). However, it is also possible to find receivers which can scroll strings sized as 32 x N or 64 x N characters. So, this control must be configured with steps of 32 or 64 characters. The result is it must always contain a string with size multiple of 32 or 64.
- V4L2_CID_RDS_RX_TRAFFIC_ANNOUNCEMENT (boolean) If set, then a traffic announcement is in progress.
- V4L2_CID_RDS_RX_TRAFFIC_PROGRAM (boolean) If set, then the tuned programme carries traffic announcements.
- V4L2_CID_RDS_RX_MUSIC_SPEECH (boolean) If set, then this channel broadcasts music. If cleared, then it broadcasts speech. If the transmitter doesn't make this distinction, then it will be set.
- V4L2_CID_TUNE_DEEMPHASIS (enum)
- **enum v4l2_deemphasis -** Configures the de-emphasis value for reception. A de-emphasis filter is applied to the broadcast to accentuate the high audio frequencies. Depending on the region, a time constant of either 50 or 75 useconds is used. The enum v4l2_deemphasis defines possible values for de-emphasis. Here they are:

V4L2_DEEMPHASIS_DISABLED	No de-emphasis is applied.
V4L2_DEEMPHASIS_50_uS	A de-emphasis of 50 uS is used.
V4L2_DEEMPHASIS_75_uS	A de-emphasis of 75 uS is used.

Detect Control Reference

The Detect class includes controls for common features of various motion or object detection capable devices.

Detect Control IDs

- V4L2_CID_DETECT_CLASS (class) The Detect class descriptor. Calling ioctls VID-IOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU for this control will return a description of this control class.
- V4L2_CID_DETECT_MD_MODE (menu) Sets the motion detection mode.

V4L2_DETECT_MD_MODE_DISABLED	Disable motion detection.
V4L2_DETECT_MD_MODE_GLOBAL	Use a single motion detection threshold.
V4L2_DETECT_MD_MODE_THRESHOLD_GRID	The image is divided into a grid, each
	cell with its own motion detection thresh-
	old. These thresholds are set through the
	V4L2_CID_DETECT_MD_THRESHOLD_GRID matrix
	control.
V4L2_DETECT_MD_MODE_REGION_GRID	The image is divided into a grid, each cell with
	its own region value that specifies which per-
	region motion detection thresholds should be
	used. Each region has its own thresholds. How
	these per-region thresholds are set up is driver-
	specific. The region values for the grid are set
	through the V4L2_CID_DETECT_MD_REGION_GRID
	matrix control.

- V4L2_CID_DETECT_MD_GLOBAL_THRESHOLD (integer) Sets the global motion detection threshold to be used with the V4L2_DETECT_MD_MODE_GLOBAL motion detection mode.
- V4L2_CID_DETECT_MD_THRESHOLD_GRID (__u16 matrix) Sets the motion detection thresholds for each cell in the grid. To be used with the V4L2_DETECT_MD_MODE_THRESHOLD_GRID motion detection mode. Matrix element (0, 0) represents the cell at the top-left of the grid.
- V4L2_CID_DETECT_MD_REGION_GRID (__u8 matrix) Sets the motion detection region value for each cell in the grid. To be used with the V4L2_DETECT_MD_MODE_REGION_GRID motion detection mode. Matrix element (0, 0) represents the cell at the top-left of the grid.

Guidelines for Video4Linux pixel format 4CCs

Guidelines for Video4Linux 4CC codes defined using v4l2_fourcc() are specified in this document. First of the characters defines the nature of the pixel format, compression and colour space. The interpretation of the other three characters depends on the first one.

Existing 4CCs may not obey these guidelines.

Raw bayer

The following first characters are used by raw bayer formats:

- B: raw bayer, uncompressed
- b: raw bayer, DPCM compressed
- a: A-law compressed
- u: u-law compressed

2nd character: pixel order

• B: BGGR

- G: GBRG
- g: GRBG
- R: RGGB

3rd character: uncompressed bits-per-pixel 0-9, A-

4th character: compressed bits-per-pixel 0-9, A-

Data Formats

Data Format Negotiation

Different devices exchange different kinds of data with applications, for example video images, raw or sliced VBI data, RDS datagrams. Even within one kind many different formats are possible, in particular there is an abundance of image formats. Although drivers must provide a default and the selection persists across closing and reopening a device, applications should always negotiate a data format before engaging in data exchange. Negotiation means the application asks for a particular format and the driver selects and reports the best the hardware can do to satisfy the request. Of course applications can also just query the current selection.

A single mechanism exists to negotiate all data formats using the aggregate struct v4l2_format and the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls. Additionally the VIDIOC_TRY_FMT ioctl can be used to examine what the hardware could do, without actually selecting a new data format. The data formats supported by the V4L2 API are covered in the respective device section in Interfaces. For a closer look at image formats see Image Formats.

The VIDIOC_S_FMT ioctl is a major turning-point in the initialization sequence. Prior to this point multiple panel applications can access the same device concurrently to select the current input, change controls or modify other properties. The first VIDIOC_S_FMT assigns a logical stream (video data, VBI data etc.) exclusively to one file descriptor.

Exclusive means no other application, more precisely no other file descriptor, can grab this stream or change device properties inconsistent with the negotiated parameters. A video standard change for example, when the new standard uses a different number of scan lines, can invalidate the selected image format. Therefore only the file descriptor owning the stream can make invalidating changes. Accordingly multiple file descriptors which grabbed different logical streams prevent each other from interfering with their settings. When for example video overlay is about to start or already in progress, simultaneous video capturing may be restricted to the same cropping and image size.

When applications omit the VIDIOC_S_FMT ioctl its locking side effects are implied by the next step, the selection of an I/O method with the ioctl VIDIOC_REQBUFS ioctl or implicit with the first read() or write() call.

Generally only one logical stream can be assigned to a file descriptor, the exception being drivers permitting simultaneous video capturing and overlay using the same file descriptor for compatibility with V4L and earlier versions of V4L2. Switching

the logical stream or returning into "panel mode" is possible by closing and reopening the device. Drivers may support a switch using VIDIOC_S_FMT.

All drivers exchanging data with applications must support the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl. Implementation of the VIDIOC_TRY_FMT is highly recommended but optional.

Image Format Enumeration

Apart of the generic format negotiation functions a special ioctl to enumerate all image formats supported by video capture, overlay or output devices is available.¹

The ioctl VIDIOC_ENUM_FMT ioctl must be supported by all drivers exchanging image data with applications.

Important: Drivers are not supposed to convert image formats in kernel space. They must enumerate only formats directly supported by the hardware. If necessary driver writers should publish an example conversion routine or library for integration into applications.

Single- and multi-planar APIs

Some devices require data for each input or output video frame to be placed in discontiguous memory buffers. In such cases, one video frame has to be addressed using more than one memory address, i.e. one pointer per "plane". A plane is a sub-buffer of the current frame. For examples of such formats see Image Formats.

Initially, V4L2 API did not support multi-planar buffers and a set of extensions has been introduced to handle them. Those extensions constitute what is being referred to as the "multi-planar API".

Some of the V4L2 API calls and structures are interpreted differently, depending on whether single- or multi-planar API is being used. An application can choose whether to use one or the other by passing a corresponding buffer type to its ioctl calls. Multi-planar versions of buffer types are suffixed with an _MPLANE string. For a list of available multi-planar buffer types see enum v4l2_buf_type.

Multi-planar formats

Multi-planar API introduces new multi-planar formats. Those formats use a separate set of FourCC codes. It is important to distinguish between the multi-planar API and a multi-planar format. Multi-planar API calls can handle all single-planar formats as well (as long as they are passed in multi-planar API structures), while the single-planar API cannot handle multi-planar formats.

¹ Enumerating formats an application has no a-priori knowledge of (otherwise it could explicitly ask for them and need not enumerate) seems useless, but there are applications serving as proxy between drivers and the actual video applications for which this is useful.

Calls that distinguish between single and multi-planar APIs

- **VIDIOC_QUERYCAP** Two additional multi-planar capabilities are added. They can be set together with non-multi-planar ones for devices that handle both single- and multi-planar formats.
- VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT New structures for describing multi-planar formats are added: struct v4l2_pix_format_mplane and struct v4l2_plane_pix_format. Drivers may define new multi-planar formats, which have distinct FourCC codes from the existing single-planar ones.
- VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_QUERYBUF A new struct v4l2_plane structure for describing planes is added. Arrays of this structure are passed in the new m.planes field of struct v4l2_buffer.

VIDIOC_REQBUFS Will allocate multi-planar buffers as requested.

Cropping, composing and scaling - the SELECTION API

Introduction

Some video capture devices can sample a subsection of a picture and shrink or enlarge it to an image of arbitrary size. Next, the devices can insert the image into larger one. Some video output devices can crop part of an input image, scale it up or down and insert it at an arbitrary scan line and horizontal offset into a video signal. We call these abilities cropping, scaling and composing.

On a video capture device the source is a video signal, and the cropping target determine the area actually sampled. The sink is an image stored in a memory buffer. The composing area specifies which part of the buffer is actually written to by the hardware.

On a video output device the source is an image in a memory buffer, and the cropping target is a part of an image to be shown on a display. The sink is the display or the graphics screen. The application may select the part of display where the image should be displayed. The size and position of such a window is controlled by the compose target.

Rectangles for all cropping and composing targets are defined even if the device does supports neither cropping nor composing. Their size and position will be fixed in such a case. If the device does not support scaling then the cropping and composing rectangles have the same size.

Selection targets

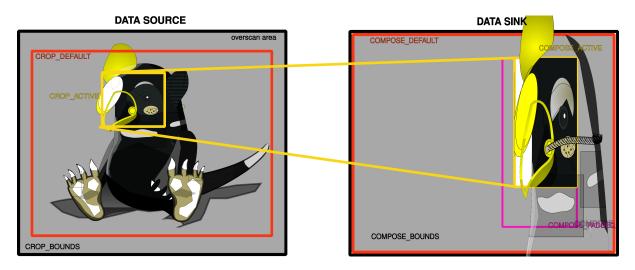


Fig. 2: Cropping and composing targets Targets used by a cropping, composing and scaling process

See Selection targets for more information.

Configuration

Applications can use the selection API to select an area in a video signal or a buffer, and to query for default settings and hardware limits.

Video hardware can have various cropping, composing and scaling limitations. It may only scale up or down, support only discrete scaling factors, or have different scaling abilities in the horizontal and vertical directions. Also it may not support scaling at all. At the same time the cropping/composing rectangles may have to be aligned, and both the source and the sink may have arbitrary upper and lower size limits. Therefore, as usual, drivers are expected to adjust the requested parameters and return the actual values selected. An application can control the rounding behaviour using constraint flags.

Configuration of video capture

See figure Cropping and composing targets for examples of the selection targets available for a video capture device. It is recommended to configure the cropping targets before to the composing targets.

The range of coordinates of the top left corner, width and height of areas that can be sampled is given by the V4L2_SEL_TGT_CROP_BOUNDS target. It is recommended for the driver developers to put the top/left corner at position (0,0). The rectangle's coordinates are expressed in pixels.

The top left corner, width and height of the source rectangle, that is the area actually sampled, is given by the V4L2_SEL_TGT_CROP target. It uses the same coordinate system as V4L2_SEL_TGT_CROP_BOUNDS. The active cropping area must lie completely inside the capture boundaries. The driver may further adjust the requested size and/or position according to hardware limitations.

Each capture device has a default source rectangle, given by the V4L2_SEL_TGT_CROP_DEFAULT target. This rectangle shall cover what the driver writer considers the complete picture. Drivers shall set the active crop rectangle to the default when the driver is first loaded, but not later.

The composing targets refer to a memory buffer. The limits of composing coordinates are obtained using V4L2_SEL_TGT_COMPOSE_BOUNDS. All coordinates are expressed in pixels. The rectangle' s top/left corner must be located at position (0,0). The width and height are equal to the image size set by VIDIOC_S_FMT.

The part of a buffer into which the image is inserted by the hardware is controlled by the V4L2_SEL_TGT_COMPOSE target. The rectangle's coordinates are also expressed in the same coordinate system as the bounds rectangle. The composing rectangle must lie completely inside bounds rectangle. The driver must adjust the composing rectangle to fit to the bounding limits. Moreover, the driver can perform other adjustments according to hardware limitations. The application can control rounding behaviour using constraint flags.

For capture devices the default composing rectangle is queried using V4L2_SEL_TGT_COMPOSE_DEFAULT. It is usually equal to the bounding rectangle.

The part of a buffer that is modified by the hardware is given by V4L2_SEL_TGT_COMPOSE_PADDED. It contains all pixels defined using V4L2_SEL_TGT_COMPOSE plus all padding data modified by hardware during insertion process. All pixels outside this rectangle must not be changed by the hardware. The content of pixels that lie inside the padded area but outside active area is undefined. The application can use the padded and active rectangles to detect where the rubbish pixels are located and remove them if needed.

Configuration of video output

For output devices targets and ioctls are used similarly to the video capture case. The composing rectangle refers to the insertion of an image into a video signal. The cropping rectangles refer to a memory buffer. It is recommended to configure the composing targets before to the cropping targets.

The cropping targets refer to the memory buffer that contains an image to be inserted into a video signal or graphical screen. The limits of cropping coordinates are obtained using V4L2_SEL_TGT_CROP_BOUNDS. All coordinates are expressed in pixels. The top/left corner is always point (0,0). The width and height is equal to the image size specified using VIDIOC_S_FMT ioctl.

The top left corner, width and height of the source rectangle, that is the area from which image date are processed by the hardware, is given by the V4L2_SEL_TGT_CROP. Its coordinates are expressed in in the same coordinate system as the bounds rectangle. The active cropping area must lie completely inside the crop boundaries and the driver may further adjust the requested size and/or position according to hardware limitations.

For output devices the default cropping rectangle is queried using V4L2_SEL_TGT_CROP_DEFAULT. It is usually equal to the bounding rectangle.

The part of a video signal or graphics display where the image is inserted by the hardware is controlled by $V4L2_SEL_TGT_COMPOSE$ target. The rectangle's coordi-

nates are expressed in pixels. The composing rectangle must lie completely inside the bounds rectangle. The driver must adjust the area to fit to the bounding limits. Moreover, the driver can perform other adjustments according to hardware limitations.

The device has a default composing rectangle, given by the V4L2_SEL_TGT_COMPOSE_DEFAULT target. This rectangle shall cover what the driver writer considers the complete picture. It is recommended for the driver developers to put the top/left corner at position (0,0). Drivers shall set the active composing rectangle to the default one when the driver is first loaded.

The devices may introduce additional content to video signal other than an image from memory buffers. It includes borders around an image. However, such a padded area is driver-dependent feature not covered by this document. Driver developers are encouraged to keep padded rectangle equal to active one. The padded target is accessed by the V4L2_SEL_TGT_COMPOSE_PADDED identifier. It must contain all pixels from the V4L2_SEL_TGT_COMPOSE target.

Scaling control

An application can detect if scaling is performed by comparing the width and the height of rectangles obtained using V4L2_SEL_TGT_CROP and V4L2_SEL_TGT_COMPOSE targets. If these are not equal then the scaling is applied. The application can compute the scaling ratios using these values.

Comparison with old cropping API

The selection API was introduced to cope with deficiencies of the older CROP API, that was designed to control simple capture devices. Later the cropping API was adopted by video output drivers. The ioctls are used to select a part of the display were the video signal is inserted. It should be considered as an API abuse because the described operation is actually the composing. The selection API makes a clear distinction between composing and cropping operations by setting the appropriate targets.

The CROP API lacks any support for composing to and cropping from an image inside a memory buffer. The application could configure a capture device to fill only a part of an image by abusing V4L2 API. Cropping a smaller image from a larger one is achieved by setting the field bytesperline at struct v4l2_pix_format. Introducing an image offsets could be done by modifying field m_userptr at struct v4l2_buffer before calling VIDIOC_QBUF. Those operations should be avoided because they are not portable (endianness), and do not work for macroblock and Bayer formats and mmap buffers.

The selection API deals with configuration of buffer cropping/composing in a clear, intuitive and portable way. Next, with the selection API the concepts of the padded target and constraints flags are introduced. Finally, struct v4l2_crop and struct v4l2_cropcap have no reserved fields. Therefore there is no way to extend their functionality. The new struct v4l2_selection provides a lot of place for future extensions.

Driver developers are encouraged to implement only selection API. The former cropping API would be simulated using the new one.

Examples

(A video capture device is assumed; change V4L2_BUF_TYPE_VIDEO_CAPTURE for other devices; change target to V4L2_SEL_TGT_COMPOSE_* family to configure composing area)

Example: Resetting the cropping parameters

```
struct v4l2_selection sel = {
    .type = V4L2_BUF_TYPE_VIDE0_CAPTURE,
    .target = V4L2_SEL_TGT_CROP_DEFAULT,
};
ret = ioctl(fd, VIDIOC_G_SELECTION, &sel);
if (ret)
    exit(-1);
sel.target = V4L2_SEL_TGT_CROP;
ret = ioctl(fd, VIDIOC_S_SELECTION, &sel);
if (ret)
    exit(-1);
```

Setting a composing area on output of size of at most half of limit placed at a center of a display.

Example: Simple downscaling

```
struct v4l2 selection sel = {
    .type = V4L2 BUF TYPE VIDEO OUTPUT,
    .target = V4L2 SEL TGT COMPOSE BOUNDS,
};
struct v4l2_rect r;
ret = ioctl(fd, VIDIOC G SELECTION, &sel);
if (ret)
    exit(-1);
/* setting smaller compose rectangle */
r.width = sel.r.width / 2;
r.height = sel.r.height / 2;
r.left = sel.r.width / 4;
r.top = sel.r.height / 4;
sel.r = r;
sel.target = V4L2 SEL TGT COMPOSE;
sel.flags = V4L2 SEL FLAG LE;
ret = ioctl(fd, VIDIOC S SELECTION, &sel);
if (ret)
    exit(-1);
```

A video output device is assumed; change V4L2_BUF_TYPE_VIDE0_0UTPUT for other devices

Example: Querying for scaling factors

```
struct v4l2 selection compose = {
    .type = V4L2 BUF TYPE VIDEO OUTPUT,
    .target = V4L2 SEL TGT COMPOSE,
};
struct v4l2 selection crop = {
    .type = V4L2_BUF_TYPE_VIDE0_0UTPUT,
    .target = V4L2 SEL TGT CROP,
};
double hscale, vscale;
ret = ioctl(fd, VIDIOC_G_SELECTION, &compose);
if (ret)
   exit(-1);
ret = ioctl(fd, VIDIOC G SELECTION, &crop);
if (ret)
    exit(-1);
/* computing scaling factors */
hscale = (double)compose.r.width / crop.r.width;
vscale = (double)compose.r.height / crop.r.height;
```

Image Cropping, Insertion and Scaling - the CROP API

Note: The CROP API is mostly superseded by the newer SELECTION API. The new API should be preferred in most cases, with the exception of pixel aspect ratio detection, which is implemented by VIDIOC_CROPCAP and has no equivalent in the SELECTION API. See Comparison with old cropping API for a comparison of the two APIs.

Some video capture devices can sample a subsection of the picture and shrink or enlarge it to an image of arbitrary size. We call these abilities cropping and scaling. Some video output devices can scale an image up or down and insert it at an arbitrary scan line and horizontal offset into a video signal.

Applications can use the following API to select an area in the video signal, query the default area and the hardware limits.

Note: Despite their name, the VIDIOC_CROPCAP, VIDIOC_G_CROP and VID-IOC_S_CROP ioctls apply to input as well as output devices.

Scaling requires a source and a target. On a video capture or overlay device the source is the video signal, and the cropping ioctls determine the area actually sampled. The target are images read by the application or overlaid onto the graphics screen. Their size (and position for an overlay) is negotiated with the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls.

On a video output device the source are the images passed in by the application, and their size is again negotiated with the VIDIOC_G_FMT and VIDIOC_S_FMT

ioctls, or may be encoded in a compressed video stream. The target is the video signal, and the cropping ioctls determine the area where the images are inserted.

Source and target rectangles are defined even if the device does not support scaling or the VIDIOC_G_CROP and VIDIOC_S_CROP ioctls. Their size (and position where applicable) will be fixed in this case.

Note: All capture and output devices that support the CROP or SELECTION API will also support the VIDIOC_CROPCAP ioctl.

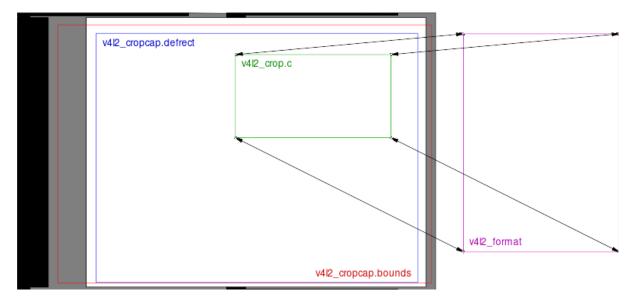


Fig. 3: Image Cropping, Insertion and Scaling The cropping, insertion and scaling process

For capture devices the coordinates of the top left corner, width and height of the area which can be sampled is given by the bounds substructure of the struct v412_cropcap returned by the VIDIOC_CROPCAP ioctl. To support a wide range of hardware this specification does not define an origin or units. However by convention drivers should horizontally count unscaled samples relative to 0H (the leading edge of the horizontal sync pulse, see Figure 4.1. Line synchronization). Vertically ITU-R line numbers of the first field (see ITU R-525 line numbering for 525 lines and for 625 lines), multiplied by two if the driver can capture both fields.

The top left corner, width and height of the source rectangle, that is the area actually sampled, is given by struct v4l2_crop using the same coordinate system as struct v4l2_cropcap. Applications can use the VIDIOC_G_CROP and VIDIOC_S_CROP ioctls to get and set this rectangle. It must lie completely within the capture boundaries and the driver may further adjust the requested size and/or position according to hardware limitations.

Each capture device has a default source rectangle, given by the defrect substructure of struct v4l2_cropcap. The center of this rectangle shall align with the center of the active picture area of the video signal, and cover what the driver writer considers the complete picture. Drivers shall reset the source rectangle to the default when the driver is first loaded, but not later.

For output devices these structures and ioctls are used accordingly, defining the target rectangle where the images will be inserted into the video signal.

Scaling Adjustments

Video hardware can have various cropping, insertion and scaling limitations. It may only scale up or down, support only discrete scaling factors, or have different scaling abilities in horizontal and vertical direction. Also it may not support scaling at all. At the same time the struct v4l2_crop rectangle may have to be aligned, and both the source and target rectangles may have arbitrary upper and lower size limits. In particular the maximum width and height in struct v4l2_crop may be smaller than the struct v4l2_cropcap. bounds area. Therefore, as usual, drivers are expected to adjust the requested parameters and return the actual values selected.

Applications can change the source or the target rectangle first, as they may prefer a particular image size or a certain area in the video signal. If the driver has to adjust both to satisfy hardware limitations, the last requested rectangle shall take priority, and the driver should preferably adjust the opposite one. The VID-IOC_TRY_FMT ioctl however shall not change the driver state and therefore only adjust the requested rectangle.

Suppose scaling on a video capture device is restricted to a factor 1:1 or 2:1 in either direction and the target image size must be a multiple of 16×16 pixels. The source cropping rectangle is set to defaults, which are also the upper limit in this example, of 640×400 pixels at offset 0, 0. An application requests an image size of 300×225 pixels, assuming video will be scaled down from the "full picture" accordingly. The driver sets the image size to the closest possible values 304×224 , then chooses the cropping rectangle closest to the requested size, that is 608×224 ($224 \times 2:1$ would exceed the limit 400). The offset 0, 0 is still valid, thus unmodified. Given the default cropping rectangle reported by VIDIOC_CROPCAP the application can easily propose another offset to center the cropping rectangle.

Now the application may insist on covering an area using a picture aspect ratio closer to the original request, so it asks for a cropping rectangle of 608×456 pixels. The present scaling factors limit cropping to 640×384 , so the driver returns the cropping size 608×384 and adjusts the image size to closest possible 304×192 .

Examples

Source and target rectangles shall remain unchanged across closing and reopening a device, such that piping data into or out of a device will work without special preparations. More advanced applications should ensure the parameters are suitable before starting I/O.

Note: On the next two examples, a video capture device is assumed; change

V4L2_BUF_TYPE_VIDE0_CAPTURE for other types of device.

Example: Resetting the cropping parameters

```
struct v4l2_cropcap cropcap;
struct v4l2 crop crop;
memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
if (-1 == ioctl (fd, VIDIOC CROPCAP, &cropcap)) {
    perror ("VIDIOC CROPCAP");
    exit (EXIT FAILURE);
}
memset (&crop, 0, sizeof (crop));
crop.type = V4L2 BUF TYPE VIDEO CAPTURE;
crop.c = cropcap.defrect;
/* Ignore if cropping is not supported (EINVAL). */
if (-1 == ioctl (fd, VIDIOC S CROP, &crop)
   && errno != EINVAL) {
    perror ("VIDIOC S CROP");
    exit (EXIT FAILURE);
}
```

Example: Simple downscaling

```
struct v4l2_cropcap cropcap;
struct v4l2_format format;
reset_cropping_parameters ();
/* Scale down to 1/4 size of full picture. */
memset (&format, 0, sizeof (format)); /* defaults */
format.type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
format.fmt.pix.width = cropcap.defrect.width >> 1;
format.fmt.pix.width = cropcap.defrect.height >> 1;
format.fmt.pix.height = cropcap.defrect.height >> 1;
format.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;
if (-1 == ioctl (fd, VIDIOC_S_FMT, &format)) {
    perror ("VIDIOC_S_FORMAT");
    exit (EXIT_FAILURE);
}
/* We could check the actual image size now, the actual scaling factor
    or if the driver can scale at all. */
```

Example: Selecting an output area

Note: This example assumes an output device.

```
struct v4l2 cropcap cropcap;
struct v4l2 crop crop;
memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2 BUF TYPE VIDEO OUTPUT;
if (-1 == ioctl (fd, VIDIOC_CROPCAP;, &cropcap)) {
    perror ("VIDIOC CROPCAP");
    exit (EXIT FAILURE);
}
memset (&crop, 0, sizeof (crop));
crop.type = V4L2 BUF TYPE VIDEO OUTPUT;
crop.c = cropcap.defrect;
/* Scale the width and height to 50 % of their original size
   and center the output. */
crop.c.width /= 2;
crop.c.height /= 2;
crop.c.left += crop.c.width / 2;
crop.c.top += crop.c.height / 2;
/* Ignore if cropping is not supported (EINVAL). */
if (-1 == ioctl (fd, VIDIOC S CROP, &crop)
   && errno != EINVAL) {
    perror ("VIDIOC S CROP");
    exit (EXIT FAILURE);
}
```

Example: Current scaling factor and pixel aspect

Note: This example assumes a video capture device.

```
struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format format;
double hscale, vscale;
double aspect;
int dwidth, dheight;
memset (&cropcap, 0, sizeof (cropcap));
cropcap.type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
```

(continues on next page)

(continued from previous page)

```
if (-1 == ioctl (fd, VIDIOC_CROPCAP, &cropcap)) {
    perror ("VIDIOC CROPCAP");
    exit (EXIT_FAILURE);
}
memset (&crop, 0, sizeof (crop));
crop.type = V4L2 BUF TYPE VIDEO CAPTURE;
if (-1 == ioctl (fd, VIDIOC G CROP, &crop)) {
    if (errno != EINVAL) {
        perror ("VIDIOC G CROP");
        exit (EXIT_FAILURE);
    }
    /* Cropping not supported. */
    crop.c = cropcap.defrect;
}
memset (&format, 0, sizeof (format));
format.fmt.type = V4L2 BUF TYPE VIDEO CAPTURE;
if (-1 == ioctl (fd, VIDIOC G FMT, &format)) {
    perror ("VIDIOC_G_FMT");
    exit (EXIT FAILURE);
}
/* The scaling applied by the driver. */
hscale = format.fmt.pix.width / (double) crop.c.width;
vscale = format.fmt.pix.height / (double) crop.c.height;
aspect = cropcap.pixelaspect.numerator /
     (double) cropcap.pixelaspect.denominator;
aspect = aspect * hscale / vscale;
/* Devices following ITU-R BT.601 do not capture
   square pixels. For playback on a computer monitor
   we should scale the images to this size. */
dwidth = format.fmt.pix.width / aspect;
dheight = format.fmt.pix.height;
```

Streaming Parameters

Streaming parameters are intended to optimize the video capture process as well as I/O. Presently applications can request a high quality capture mode with the VIDIOC_S_PARM ioctl.

The current video standard determines a nominal number of frames per second. If less than this number of frames is to be captured or output, applications can request frame skipping or duplicating on the driver side. This is especially useful when using the read() or write(), which are not augmented by timestamps or sequence counters, and to avoid unnecessary data copying.

Finally these ioctls can be used to determine the number of buffers used internally

by a driver in read/write mode. For implications see the section discussing the read() function.

To get and set the streaming parameters applications call the VIDIOC_G_PARM and VIDIOC_S_PARM ioctl, respectively. They take a pointer to a struct v4l2_streamparm, which contains a union holding separate parameters for input and output devices.

These ioctls are optional, drivers need not implement them. If so, they return the EINVAL error code.

7.2.2 Image Formats

The V4L2 API was primarily designed for devices exchanging image data with applications. The struct v4l2_pix_format and struct v4l2_pix_format_mplane structures define the format and layout of an image in memory. The former is used with the single-planar API, while the latter is used with the multi-planar version (see Single- and multi-planar APIs). Image formats are negotiated with the VIDIOC_S_FMT ioctl. (The explanations here focus on video capturing and output, for overlay frame buffer formats see also VIDIOC_G_FBUF.)

Single-planar format structure

v4l2_pix_format

	u32	width	Image width in pixels.
Ī	u32	height	Image height in pixels. If field is one
			of V4L2_FIELD_TOP, V4L2_FIELD_BOTTOM or
			V4L2_FIELD_ALTERNATE then height refers to the
			number of lines in the field, otherwise it refers to the
			number of lines in the frame (which is twice the field
			height for interlaced formats).
	Applications set these	fields to reque	st an image size, drivers return the closest possible values
	In case of planar form	nats the width	and height applies to the largest plane. To avoid ambi
		. 1	

Table 41: struct v4l2 pix format

Applications set these fields to request an image size, drivers return the closest possible values. In case of planar formats the width and height applies to the largest plane. To avoid ambiguities drivers must return values rounded up to a multiple of the scale factor of any smalle planes. For example when the image format is YUV 4:2:0, width and height must be multiple of two.

For compressed formats that contain the resolution information encoded inside the stream when fed to a stateful mem2mem decoder, the fields may be zero to rely on the decoder to detect the right values. For more details see Memory-to-Memory Stateful Video Decoder Interface and format descriptions.

1		
u32	pixelformat	The pixel format or type of compression, set by the appli
		cation. This is a little endian four character code. V4L2
		defines standard RGB formats in RGB Formats, YUV for
		mats in YUV Formats, and reserved codes in Reserved
		Image Formats
0		

Continued on next page

Idi		ded nom previous page
u32	field	Field order, from enum v4l2_field. Video images are
		typically interlaced. Applications can request to capture
		or output only the top or bottom field, or both fields inter
		laced or sequentially stored in one buffer or alternating
		in separate buffers. Drivers return the actual field orde
		selected. For more details on fields see Field Order.
u32	bytesperline	Distance in bytes between the leftmost pixels in two ad
		jacent lines.

Table 41 - continued from previous page

Both applications and drivers can set this field to request padding bytes at the end of each line Drivers however may ignore the value requested by the application, returning width times bytes per pixel or a larger value required by the hardware. That implies applications can jus set this field to zero to get a reasonable default.

Video hardware may access padding bytes, therefore they must reside in accessible memory Consider cases where padding bytes after the last line of an image cross a system page bound ary. Input devices may write padding bytes, the value is undefined. Output devices ignore the contents of padding bytes.

When the image format is planar the bytesperline value applies to the first plane and is divided by the same factor as the width field for the other planes. For example the Cb and Cr planes of a YUV 4:2:0 image have half as many padding bytes following each line as the Y plane. To avoid ambiguities drivers must return a bytesperline value rounded up to a multiple of the scale factor.

For compressed formats the bytesperline value makes no sense. Applications and drivers must set this to 0 in that case.

u32	sizeimage	Size in bytes of the buffer to hold a complete image, se by the driver. Usually this is bytesperline times height When the image consists of variable length compressed data this is the number of bytes required by the codec to support the worst-case compression scenario.
		The driver will set the value for uncompressed images. Clients are allowed to set the sizeimage field
		for variable length compressed data flagged with V4L2_FMT_FLAG_COMPRESSED at ioctl VID IOC ENUM FMT, but the driver may ignore it and
		set the value itself, or it may modify the provided value based on alignment requirements or minimum/maximum
		size requirements. If the client wants to leave this to the driver, then it should set sizeimage to 0.
u32	colorspace	Image colorspace, from enum v4l2_colorspace. This in formation supplements the pixelformat and must be se by the driver for capture streams and by the application
	<u> </u>	for output streams, see Colorspaces.

Continued on next page

Tal	ole 41 – contin	ued from previous page
u32	priv	This field indicates whether the remaining fields of the
		<pre>struct v4l2_pix_format, also called the extended fields</pre>
		are valid. When set to V4L2_PIX_FMT_PRIV_MAGIC, it in
		dicates that the extended fields have been correctly ini
		tialized. When set to any other value it indicates that the
		extended fields contain undefined values.
		Applications that wish to use the pixel forma
		extended fields must first ensure that the fea
		ture is supported by querying the device for the
		V4L2_CAP_EXT_PIX_FORMAT capability. If the capa
		bility isn't set the pixel format extended fields are no
		supported and using the extended fields will lead to
		undefined results.
		To use the extended fields, applications must set the priv
		field to V4L2_PIX_FMT_PRIV_MAGIC, initialize all the ex
		tended fields and zero the unused bytes of the struc
		v4l2_format raw_data field.
		When the priv field isn't set to
		V4L2_PIX_FMT_PRIV_MAGIC drivers must act as if al
		the extended fields were set to zero. On return drivers
		<pre>must set the priv field to V4L2_PIX_FMT_PRIV_MAGIC</pre>
		and all the extended fields to applicable values.
u32	flags	Flags set by the application or driver, see Format Flags
union {	(anonymous)	•
_u32	ycbcr_enc	Y' CbCr encoding, from enum v4l2_ycbcr_encoding
		This information supplements the colorspace and mus
		be set by the driver for capture streams and by the ap
		plication for output streams, see Colorspaces.
u32	hsv_enc	HSV encoding, from enum v4l2_hsv_encoding. This in
		formation supplements the colorspace and must be se
		by the driver for capture streams and by the application
		for output streams, see Colorspaces.
}	<u>augati - ati - 4</u>	Quantization range from any v112 supplication
u32	quantization	Quantization range, from enum v4l2_quantization
		This information supplements the colorspace and mus
		be set by the driver for capture streams and by the ap
	vfor func	plication for output streams, see Colorspaces.
u32	xfer_func	Transfer function, from enum v4l2_xfer_func. This in formation supplements the colorspace and must be as
		formation supplements the colorspace and must be se
		by the driver for capture streams and by the application
		for output streams, see Colorspaces.

Table 41 – continued from previous page

Multi-planar format structures

The struct v4l2_plane_pix_format structures define size and layout for each of the planes in a multi-planar format. The struct v4l2_pix_format_mplane structure contains information common to all planes (such as image width and height) and an array of struct v4l2_plane_pix_format structures, describing all planes of that format.

v4l2_plane_pix_format

	_1	
u32	sizeimage	Maximum size in bytes required for image data in this plane, set by the driver. When the image consists of variable length com pressed data this is the number of bytes re quired by the codec to support the worst-case compression scenario. The driver will set the value for uncom pressed images. Clients are allowed to set the sizeimage field for variable length compressed data flagged with V4L2_FMT_FLAG_COMPRESSED at ioct VIDIOC_ENUM_FMT, but the driver may ig nore it and set the value itself, or it may mod ify the provided value based on alignmen requirements or minimum/maximum size re quirements. If the client wants to leave this to the driver, then it should set sizeimage to 0.
u32	bytesperline	Distance in bytes between the leftmost pix els in two adjacent lines. See struc v4l2_pix_format.
u16	reserved[6]	Reserved for future extensions. Should be zeroed by drivers and applications.

Table 42: struct v4l2_plane_pix_format

v4l2_pix_format_mplane

u32widthImage width in pixels. v4l2_pix_formatu32heightImage height in pixels. v4l2_pix_formatu32pixelformatThe pixel format. Both sir planar four character codeu32fieldField order, from enum v4 struct v4l2_pix_formatu32colorspaceColorspace encoding, v4l2 colorspace.	See	struc
		otres -
planar four character codeu32fieldu32fieldu32colorspaceColorspacecolorspacecolorspacecolorspace		struc
struct v4l2_pix_formatu32colorspaceColorspaceencoding,	es can be	used.
v4l2_pix_format.	from See	enun struc
structplane_fmt[VIDE0_MAX_PLANES]An array of structures des of each plane this pixel for The number of valid entrie has to be put in the num_pl	mat const es in this lanes fiel	ists of arra d.
u8 num_planes Number of planes (i.e. se buffers) for this format and valid entries in the plane_	d the num fmt array	nber o 7.
u8 flags Flags set by the applicatio Format Flags.	n or driv	er, se
union { (anonymous)		
u8 ycbcr_enc Y' CbCr encoding, v4l2_ycbcr_encoding. tion supplements the co must be set by the driv streams and by the applica streams, see Colorspaces.	ver for cation for	e an aptur
	ire strean	nust b ns an
supplements the colorspa set by the driver for captu by the application for outp Colorspaces.	ire strean out strean	nust bo ns ano ns, seo
u8 xfer_func Transfer function, v4l2_xfer_func. This in plements the colorspace a by the driver for capture s the application for outpu Colorspaces.	streams a	be se and b
u8 reserved[7] Reserved for future extens	ions. Sho lications.	ould b

Table 43: struct v4l2_pix_format_mplane

Standard Image Formats

In order to exchange images between drivers and applications, it is necessary to have standard image data formats which both sides will interpret the same way. V4L2 includes several such formats, and this section is intended to be an unambiguous specification of the standard image data formats in V4L2.

V4L2 drivers are not limited to these formats, however. Driver-specific formats are possible. In that case the application may depend on a codec to convert images to one of the standard formats when needed. But the data can still be stored and retrieved in the proprietary format. For example, a device may support a proprietary compressed format. Applications can still capture and save the data in the compressed format, saving much disk space, and later use a codec to convert the images to the X Windows screen format when the video is to be displayed.

Even so, ultimately, some standard formats are needed, so the V4L2 specification would not be complete without well-defined standard formats.

The V4L2 standard formats are mainly uncompressed formats. The pixels are always arranged in memory from left to right, and from top to bottom. The first byte of data in the image buffer is always for the leftmost pixel of the topmost row. Following that is the pixel immediately to its right, and so on until the end of the top row of pixels. Following the rightmost pixel of the row there may be zero or more bytes of padding to guarantee that each row of pixel data has a certain alignment. Following the pad bytes, if any, is data for the leftmost pixel of the second row from the top, and so on. The last row has just as many pad bytes after it as the other rows.

In V4L2 each format has an identifier which looks like PIX_FMT_XXX, defined in the videodev2.h header file. These identifiers represent four character (FourCC) codes which are also listed below, however they are not the same as those used in the Windows world.

For some formats, data is stored in separate, discontiguous memory buffers. Those formats are identified by a separate set of FourCC codes and are referred to as "multi-planar formats". For example, a YUV422 frame is normally stored in one memory buffer, but it can also be placed in two or three separate buffers, with Y component in one buffer and CbCr components in another in the 2-planar version or with each component in its own buffer in the 3-planar case. Those sub-buffers are referred to as "planes".

Indexed Format

In this format each pixel is represented by an 8 bit index into a 256 entry ARGB palette. It is intended for Video Output Overlays only. There are no ioctls to access the palette, this must be done with ioctls of the Linux framebuffer API.

				5						
Identifier	Code		Byt	e 0						
		Bit	7	6	5	4	3	2	1	0
V4L2_PIX_FMT_PAL8	'PAL8'		i7	i ₆	i_5	i4	i ₃	i_2	i ₁	i ₀

Table 44: Indexed Image Format

RGB Formats

Description

These formats are designed to match the pixel formats of typical PC graphics frame buffers. They occupy 8, 16, 24 or 32 bits per pixel. These are all packed-pixel formats, meaning all the data for a pixel lie next to each other in memory.

Identifier	Code	Bv	ter) in	mei			ole 4	45:		B Ir yte		ge F	ori	mat	ts			Byt	e 2							Bv	te 3						
				5		3		1	0				5 4		3	2	1	0	7		5	4	3 1	2	1	0				4	3	2	1	0
V4L2_PIX_FMT_RGB332	'RGB1'			r ₀												-	-			<u> </u>		·		-	-		1.		5			-	-	-
V4L2_PIX_FMT_ARGB444	'AR12'									0 0 a	3 a		a ₁ a	L	r ₂	r ₂	r ₁	ro																
V4L2_PIX_FMT_XRGB444	'XR12'			g ₁						-	-	-	-	-		_	r ₁																	
V4L2_PIX_FMT_RGBA444	'RA12'											, r	r ₁ r	1		2	-																	
V4L2_PIX_FMT_RGBX444	'RX12'			b ₁		-	-	-	-				1 r				g ₁																	
V4L2_PIX_FMT_ABGR444	'AB12'	g ₃	g ₂	g ₁	g ₀	r ₃	r ₂	r ₁	r	0 a	3 a	2 8	а ₁ а	u0 1	b ₃	b ₂	b ₁	b ₀																
V4L2_PIX_FMT_XBGR444	'XB12'			g ₁						-	-			-			b ₁																	
V4L2_PIX_FMT_BGRA444	'BA12'			r ₁				2 a1			3 b	2 k	01 k			2	g ₁																	
V4L2_PIX_FMT_BGRX444	'BX12'			r ₁		-	-	-	-	b			b_1 k																					
V4L2_PIX_FMT_ARGB555	'AR15'			g ₀		b ₃	b	b	1 b	í	1		3 r				g ₄																	
V4L2_PIX_FMT_XRGB555	'XR15'			g ₀						-			3 r				g ₄																	
V4L2_PIX_FMT_RGBA555	'RA15'	g ₁		b ₄					6	a r			°2 r				-																	
V4L2_PIX_FMT_RGBX555	'RX15'			b ₄	b ₃	b ₂	b	b(0 -	r			2 r				g ₃															-		
V4L2_PIX_FMT_ABGR555	'AB15'	g ₂	g ₁	g ₀	r ₄	r ₃	r ₂	r ₁	r	0	1	Т	03 b				g4	g ₃																
V4L2_PIX_FMT_XBGR555	'XB15'	g ₂		g ₀				r ₁		-			53 b																			-		
V4L2_PIX_FMT_BGRA555	'BA15'	g ₁	g ₀	r ₄	r ₃	r ₂	r ₁	r	6	a b			b_2 h																					
V4L2_PIX_FMT_BGRX555	'BX15'	g ₁	g ₀	r4	r ₃	r ₂	r ₁	r	, -	b	4 b	3 ł	b_2 k	5 1	b ₀	g ₄	g ₃	g ₂																
V4L2_PIX_FMT_RGB565	'RGBP'	g ₂	g ₁	g ₀	b ₄	b ₃	b	b	1 b	0 r	4 r	3 r	2 r	1	r ₀	g ₅	g4	g ₃																
V4L2_PIX_FMT_ARGB555X	'AR15' (1 << 31)		r ₄	r ₃	r ₂	r ₁	r	g	4 g	3 g	2 g	1 g	J ₀ Ł	₄	b ₃	b ₂	b_1	b ₀																
V4L2_PIX_FMT_XRGB555X	'XR15' (1 << 31)	-											J ₀ Ł					b ₀																
V4L2_PIX_FMT_RGB565X	'RGBR'	r ₄	r ₃	r ₂	r ₁	r ₀	g	5 g.	4 g	3 g	2 g	1 9	10 b	04	b ₃	b ₂	b_1	b ₀																
V4L2_PIX_FMT_BGR24	'BGR3'	b ₇	b ₆	b ₅	b ₄	b ₃													r ₇	r ₆	r ₅	r ₄	r ₃	r ₂	r ₁	r ₀								
V4L2_PIX_FMT_RGB24	'RGB3'	r ₇	r ₆	r ₅	r ₄	r ₃	r ₂	r ₁	r	0 g	7 g	6 g	J ₅ g	14	g ₃	g ₂	g_1	g ₀	b ₇	b ₆	b ₅	b_4	b ₃	b ₂	b ₁	b ₀			T			,		
V4L2_PIX_FMT_BGR666	'BGRH'	b ₅	b ₄	b ₃	b ₂	b ₁	b) g	5 g	4 g	3 g	2 0	J ₁ 9	10	r ₅	r4	r ₃	r ₂	r ₁	r ₀	-	-	-	-	-	-	-	-	-	-	-	-	-	-
V4L2_PIX_FMT_ABGR32	'AR24'	b ₇	b ₆	b ₅	b ₄	b ₃	b	2 b	1 b	0 g	7 g	6 <u>c</u>	J ₅ 9	4	g ₃	g ₂	g ₁	g ₀	r ₇	r ₆	r ₅	r ₄	r ₃	r ₂	r ₁	r ₀	a7	a ₆	a ₅	a ₄	a ₃	a ₂	a ₁	a ₀
V4L2_PIX_FMT_XBGR32	'XR24'	b ₇	b ₆	b ₅	b ₄	b ₃	b	2 b	1 b	0 g	7 g	6 g	J ₅ g	4	g ₃	g ₂	g_1	g ₀	r ₇	r ₆	r ₅	r ₄	r ₃	r ₂	r ₁	r ₀	-	-	-	-	-	-	-	-
V4L2_PIX_FMT_BGRA32	'RA24'	a ₇	a ₆	a ₅	a ₄	a ₃	a	a a	1 a	0 b	7 b	6 k	5 k	₄	b ₃	b ₂	b_1	b ₀	g ₇	g ₆	g ₅	g_4	g ₃	g ₂	g ₁	g ₀	r ₇	r ₆	r ₅	r ₄	r ₃	r ₂	r ₁	r ₀
V4L2_PIX_FMT_BGRX32	'RX24'	-	-	-	-	-	-	-	-	-									g ₇								r ₇					r ₂	r ₁	r ₀
V4L2_PIX_FMT_RGBA32	'AB24'	r ₇	r ₆	r ₅	r ₄	r ₃	r ₂	r ₁	r				J5 9						b ₇								a7				a3	a ₂	a ₁	a ₀
V4L2_PIX_FMT_RGBX32	'XB24'			r ₅															b7		b ₅					b ₀	-	-	-	-	-	-	-	-
V4L2_PIX_FMT_ARGB32	'BA24'	a ₇		a ₅						0 r									g ₇							g ₀	b ₇	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b ₀
V4L2_PIX_FMT_XRGB32	'BX24'	-	-	-	-	-	-	-	-	r									g ₇								b ₇					b ₂		

Note:	Bit 7 is the most significant bit.
-------	------------------------------------

The usage and value of the alpha bits (a) in the ARGB and ABGR formats (collectively referred to as alpha formats) depend on the device type and hardware

operation. Capture devices (including capture queues of mem-to-mem devices) fill the alpha component in memory. When the device outputs an alpha channel the alpha component will have a meaningful value. Otherwise, when the device doesn' t output an alpha channel but can set the alpha bit to a user-configurable value, the V4L2_CID_ALPHA_COMPONENT control is used to specify that alpha value, and the alpha component of all pixels will be set to the value specified by that control. Otherwise a corresponding format without an alpha component (XRGB or XBGR) must be used instead of an alpha format.

Output devices (including output queues of mem-to-mem devices and video output overlay devices) read the alpha component from memory. When the device processes the alpha channel the alpha component must be filled with meaningful values by applications. Otherwise a corresponding format without an alpha component (XRGB or XBGR) must be used instead of an alpha format.

The XRGB and XBGR formats contain undefined bits (-). Applications, devices and drivers must ignore those bits, for both Video Capture Interface and Video Output Interface devices.

Byte Order. Each cell is one byte.

					5							
start + 0:	B ₀₀	G ₀₀	R ₀₀	B ₀₁	G ₀₁	R ₀₁	B ₀₂	G ₀₂	R ₀₂	B ₀₃	G ₀₃	R ₀₃
start + 12:	B ₁₀	G ₁₀	R ₁₀	B ₁₁	G ₁₁	R ₁₁	B ₁₂	G ₁₂	R ₁₂	B ₁₃	G ₁₃	R ₁₃
start + 24:	B ₂₀	G ₂₀	R ₂₀	B ₂₁	G ₂₁	R ₂₁	B ₂₂	G ₂₂	R ₂₂	B ₂₃	G ₂₃	R ₂₃
start + 36:	B ₃₀	G ₃₀	R ₃₀	B ₃₁	G ₃₁	R ₃₁	B ₃₂	G ₃₂	R ₃₂	B ₃₃	G ₃₃	R ₃₃

Table 46: RGB byte order

Formats defined in Deprecated Packed RGB Image Formats are deprecated and must not be used by new drivers. They are documented here for reference. The meaning of their alpha bits (a) are ill-defined and interpreted as in either the corresponding ARGB or XRGB format, depending on the driver.

Identifier	Code	Byte 0 in memory								Byte 1									Byte 2							Byte 3							
		7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
V4L2_PIX_FMT_RGB444	'R444'	g ₃	g_2	g_1	g ₀	b ₃	b ₂	b ₁	b ₀	a ₃	a ₂	a_1	a ₀	r ₃	r ₂	r ₁	r ₀																
V4L2_PIX_FMT_RGB555	'RGBO'	g ₂	g_1	g ₀	b ₄	b ₃	b ₂	b_1	b ₀	a	r ₄	r ₃	r ₂	r ₁	r ₀	g ₄	g ₃																
V4L2_PIX_FMT_RGB555X	'RGBQ'	a	r ₄	r ₃	r ₂	r ₁	r ₀	g ₄	g ₃	g ₂	g ₁	g ₀	b ₄	b ₃	b ₂	b ₁	b ₀																
V4L2_PIX_FMT_BGR32	'BGR4'	b ₇	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b ₀	g ₇	g ₆	g 5	g4	g3	g ₂	g ₁	g0	r ₇	r ₆	r ₅	r4	r ₃	r ₂	r ₁	r ₀	a ₇	a ₆	a ₅	a ₄	a ₃	a ₂	a ₁	a ₀
V4L2_PIX_FMT_RGB32	'RGB4'	a ₇	a ₆	a ₅	a ₄	a ₃	a ₂	a ₁	a ₀	r ₇	r ₆	r ₅	r4	r ₃	r ₂	r ₁	r ₀	g7	g ₆	g ₅	g4	g ₃	g ₂	g ₁	g0	b ₇	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b ₀

 Table 47: Deprecated Packed RGB Image Formats

A test utility to determine which RGB formats a driver actually supports is available from the LinuxTV v4l-dvb repository. See https://linuxtv.org/repo/ for access instructions.

Raw Bayer Formats

Description

The raw Bayer formats are used by image sensors before much if any processing is performed on the image. The formats contain green, red and blue components, with alternating lines of red and green, and blue and green pixels in different orders. See also the Wikipedia article on Bayer filter.

V4L2_PIX_FMT_SRGGB8 ('RGGB'), V4L2_PIX_FMT_SGRBG8 ('GRBG'), V4L2_PIX_FMT_SGBRG8 ('GBRG'), V4L2_PIX_FMT_SBGGR8 ('BA81'),

8-bit Bayer formats

Description

These four pixel formats are raw sRGB / Bayer formats with 8 bits per sample. Each sample is stored in a byte. Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating red and blue rows. They are conventionally described as GRGR…BGBG…, RGRG…GBGB…, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR8 image:

Byte Order. Each cell is one byte.

start + 0:	B ₀₀	G ₀₁	B ₀₂	G ₀₃
start + 4:	G ₁₀	R ₁₁	G ₁₂	R ₁₃
start + 8:	B ₂₀	G ₂₁	B ₂₂	G ₂₃
start + 12:	G ₃₀	R ₃₁	G ₃₂	R ₃₃

V4L2_PIX_FMT_SRGGB10 ('RG10'), V4L2_PIX_FMT_SGRBG10 ('BA10'), V4L2_PIX_FMT_SGBRG10 ('GB10'), V4L2_PIX_FMT_SBGGR10 ('BG10'),

V4L2_PIX_FMT_SGRBG10_V4L2_PIX_FMT_SGBRG10_V4L2_PIX_FMT_SBGGR10 10-bit Bayer formats expanded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per sample. Each sample is stored in a 16-bit word, with 6 unused high bits filled with zeros. Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating red and blue rows. Bytes are stored in memory in little endian order. They are conventionally described as GRGR…BGBG…, RGRG…GBGB…, etc. Below is an example of one of these formats:

Byte Order. Each cell is one byte, the 6 most significant bits in the high bytes are 0.

start + 0:	B _{00low}	B_{00high}	G _{01low}	G_{01high}	B _{02low}	B _{02high}	G _{03low}	G_{03high}
start + 8:	G _{10low}	G _{10high}	R _{11low}	R_{11high}	G _{12low}	G _{12high}	R _{13low}	R_{13high}
start + 16:	B _{20low}	B_{20high}	G _{21low}	G_{21high}	B _{22low}	B _{22high}	G _{23low}	G _{23high}
start + 24:	G _{30low}	G _{30high}	R _{31low}	R_{31high}	G _{32low}	G _{32high}	R _{33low}	R _{33high}

V4L2_PIX_FMT_SRGGB10P('pRAA'), V4L2_PIX_FMT_SGRBG10P('pgAA'), V4L2_PIX_FMT_SGBRG10P('pGAA'), V4L2_PIX_FMT_SBGGR10P('pBAA'),

V4L2_PIX_FMT_SGRBG10P V4L2_PIX_FMT_SGBRG10P V4L2_PIX_FMT_SBGGR10P 10-bit packed Bayer formats

Description

These four pixel formats are packed raw sRGB / Bayer formats with 10 bits per sample. Every four consecutive samples are packed into 5 bytes. Each of the first 4 bytes contain the 8 high order bits of the pixels, and the 5th byte contains the 2 least significants bits of each pixel, in the same order.

Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating green-red and green-blue rows. They are conventionally described as GRGR…BGBG…, RGRG…GBGB…, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR10P image:

start + 0:	B _{00high}	G _{01high}	B_{02high}	G _{03high}	G_{03low} (bits 7-6) B_{02low} (bits 5-4)
	_	_	-	_	G _{01low} (bits 3-2) B _{00low} (bits 1-0)
start + 5:	G _{10high}	R_{11high}	G_{12high}	R _{13high}	R _{13low} (bits 7-6) G _{12low} (bits 5-4)
					R _{11low} (bits 3–2) G _{10low} (bits 1–0)
start + 10:	B _{20high}	G _{21high}	B _{22high}	G _{23high}	G _{23low} (bits 7-6) B _{22low} (bits 5-4)
					G _{21low} (bits 3-2) B _{20low} (bits 1-0)
start + 15:	G _{30high}	R _{31high}	G _{32high}	R _{33high}	R _{33low} (bits 7-6) G _{32low} (bits 5-4)
					R _{31low} (bits 3–2) G _{30low} (bits 1–0)

Byte Order. Each cell is one byte.

V4L2_PIX_FMT_SBGGR10ALAW8 ('aBA8'), V4L2_PIX_FMT_SGBRG10ALAW8 ('aGA8'), V4L2_PIX_FMT_SGRBG10ALAW8 ('agA8'), V4L2_PIX_FMT_SRGGB10ALAW8 ('aRA8'),

V4L2_PIX_FMT_SGBRG10ALAW8 V4L2_PIX_FMT_SGRBG10ALAW8 V4L2_PIX_FMT_SRGGB10ALAW8 10-bit Bayer formats compressed to 8 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per color compressed to 8 bits each, using the A-LAW algorithm. Each color component consumes 8 bits of memory. In other respects this format is similar to V4L2_PIX_FMT_SRGGB8 ('RGGB'), V4L2_PIX_FMT_SGRBG8 ('GRBG'), V4L2_PIX_FMT_SGBRG8 ('BA81'),.

V4L2_PIX_FMT_SBGGR10DPCM8 ('bBA8'), V4L2_PIX_FMT_SGBRG10DPCM8 ('bGA8'), V4L2_PIX_FMT_SGRBG10DPCM8 ('BD10'), V4L2_PIX_FMT_SRGGB10DPCM8 ('bRA8'),

man V4L2_PIX_FMT_SBGGR10DPCM8(2)

V4L2_PIX_FMT_SGBRG10DPCM8 V4L2_PIX_FMT_SGRBG10DPCM8 V4L2_PIX_FMT_SRGGB10DPCM8 10-bit Bayer formats compressed to 8 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 10 bits per colour compressed to 8 bits each, using DPCM compression. DPCM, differential pulse-code modulation, is lossy. Each colour component consumes 8 bits of memory. In other respects this format is similar to V4L2_PIX_FMT_SRGGB10 ('RG10'), V4L2_PIX_FMT_SGRBG10 ('BA10'), V4L2_PIX_FMT_SGBRG10 ('GB10'), V4L2_PIX_FMT_SBGGR10 ('BG10'),

V4L2_PIX_FMT_IPU3_SBGGR10 ('ip3b'), V4L2_PIX_FMT_IPU3_SGBRG10 ('ip3g'), V4L2_PIX_FMT_IPU3_SGRBG10 ('ip3G'), V4L2_PIX_FMT_IPU3_SRGGB10 ('ip3r')

10-bit Bayer formats

Description

These four pixel formats are used by Intel IPU3 driver, they are raw sRGB / Bayer formats with 10 bits per sample with every 25 pixels packed to 32 bytes leaving 6 most significant bits padding in the last byte. The format is little endian.

In other respects this format is similar to V4L2_PIX_FMT_SRGGB10 ('RG10'), V4L2_PIX_FMT_SGRBG10 ('BA10'), V4L2_PIX_FMT_SGBRG10 ('GB10'), V4L2_PIX_FMT_SBGGR10 ('BG10'),. Below is an example of a small image in V4L2_PIX_FMT_IPU3_SBGGR10 format.

start + 0:	B _{0000low}	G _{0001low} (bits 7-2) B _{0000high} (bits 1-0)	B _{0002low} (bits 7-4) G _{0001high} (bits 3-0)	G _{0003low} (bits 7-6) B _{0002high} (bits 5-0)
start + 4:	G _{0003high}	B _{0004low}	G _{0005low} (bits 7-2) B _{0004high} (bits 1-0)	B _{0006low} (bits 7-4) G _{0005high} (bits 3-0)
start + 8:	$B_{0006high}$ (bits 5-0)	G _{0007high}	B _{0008low}	G _{0009low} (bits 7-2) B _{0008high} (bits 1-0)
start + 12:	$G_{0009high}$ (bits 3-0)	G _{0011low} (bits 7-6) B _{0010high} (bits 5-0)	G _{0011high}	B _{0012low}
start + 16:	$B_{0012high}$ (bits 1-0)	B _{0014low} (bits 7-4) G _{0013high} (bits 3-0)	G _{0015low} (bits 7-6) B _{0014high} (bits 5-0)	G _{0015high}
start + 20		G _{0017low} (bits 7-2) B _{0016high} (bits 1-0)	B _{0018low} (bits 7-4) G _{0017high} (bits 3-0)	G _{0019low} (bits 7-6) B _{0018high} (bits 5-0)
start + 24:		B _{0020low}	G _{0021low} (bits 7-2) B _{0020high} (bits 1-0)	B _{0022low} (bits 7-4) G _{0021high} (bits 3-0)
start + 28:	B _{0022high} (bits 5-0)	G _{0023high}	B _{0024low}	B _{0024high} (bits 1-0)
start + 32:		R _{0101low} (bits 7-2) G _{0100high} (bits 1-0)	G _{0102low} (bits 7-4) R _{0101high} (bits 3-0)	R _{0103low} (bits 7-6) G _{0102high} (bits 5-0)
start + 36:		G _{0104low}	R _{0105low} (bits 7-2) G _{0104high} (bits 1-0)	G _{0106low} (bits 7-4) R _{0105high} (bits 3-0)
start + 40:	$G_{0106high}$ (bits 5–0)	R _{0107high}	G _{0108low}	R _{0109low} (bits 7–2) G _{0108high} (bits 1–0)
start + 44:	$R_{0109high}$ (bits 3-0)	R _{0111low} (bits 7-6) G _{0110high} (bits 5-0)	R _{0111high}	G _{0112low}
start + 48:	$\begin{array}{c} R_{0113low}(\text{bits 7-2}) \\ G_{0112high}(\text{bits 1-0}) \end{array}$	G _{0114low} (bits 7-4) R _{0113high} (bits 3-0)	$\begin{array}{c} R_{0115low}(\text{bits 7-6}) \\ G_{0114high}(\text{bits 5-0}) \end{array}$	R _{0115high}
start + 52:	G _{0116low}	R _{0117low} (bits 7-2) G _{0116high} (bits 1-0)	G _{0118low} (bits 7-4) R _{0117high} (bits 3-0)	$R_{0119low}$ (bits 7-6) $G_{0118high}$ (bits 5-0)
start + 56:	R _{0119high}	G _{0120low}	R _{0121low} (bits 7–2) G _{0120high} (bits 1–0)	G _{0122low} (bits 7-4) R _{0121high} (bits 3-0)
start + 60:	R _{0123low} (bits 7-6) G _{0122high} (bits 5-0)	R _{0123high}	G _{0124low}	G _{0124high} (bits 1-0)
	Continued	on next page		

Continued on next page

	Table 48	B – continued from prev	vious page	
start + 64:	B _{0200low}	G _{0201low} (bits 7-2) B _{0200high} (bits 1-0)	B _{0202low} (bits 7-4) G _{0201high} (bits 3-0)	G _{0203low} (bits 7-6) B _{0202high} (bits 5-0)
54: start + 68:	G _{0203high}	B _{0204low}	G _{0205low} (bits 7–2) B _{0204high} (bits 1–0)	B _{0206low} (bits 7-4) G _{0205high} (bits 3-0)
start + 72:	G _{0207low} (bits 7-6) B _{0206high} (bits 5-0)	G _{0207high}	B _{0208low}	G _{0209low} (bits 7-2) B _{0208high} (bits 1-0)
start + 76:	B _{0210low} (bits 7-4) G _{0209high} (bits 3-0)	G _{0211low} (bits 7-6) B _{0210high} (bits 5-0)	G _{0211high}	B _{0212low}
start + 80:	G _{0213low} (bits 7-2) B _{0212high} (bits 1-0)	$B_{0214low}$ (bits 7-4) G _{0213high} (bits 3-0)	$G_{0215low}$ (bits 7-6) $B_{0214high}$ (bits 5-0)	G _{0215high}
start + 84:	B _{0216low}	G _{0217low} (bits 7-2) B _{0216high} (bits 1-0)	$\begin{array}{c} B_{0218low}({\rm bits}\ 7-4)\\ G_{0217high}({\rm bits}\ 3-0) \end{array}$	$G_{0219low}$ (bits 7-6) $B_{0218high}$ (bits 5-0)
start + 88:	G _{0219high}	B _{0220low}	G _{0221low} (bits 7-2) B _{0220high} (bits 1-0)	$B_{0222low}$ (bits 7-4) $G_{0221high}$ (bits 3-0)
start + 92:	G _{0223low} (bits 7-6) B _{0222high} (bits 5-0)	G _{0223high}	B _{0224low}	B _{0224high} (bits 1-0)
start + 96:	G _{0300low}	R _{0301low} (bits 7-2) G _{0300high} (bits 1-0)	G _{0302low} (bits 7-4) R _{0301high} (bits 3-0)	R _{0303low} (bits 7-6) G _{0302high} (bits 5-0)
start + 100:	R _{0303high}	G _{0304low}	R _{0305low} (bits 7-2) G _{0304high} (bits 1-0)	G _{0306low} (bits 7-4) R _{0305high} (bits 3-0)
start + 104:	$R_{0307low}$ (bits 7-6) $G_{0306high}$ (bits 5-0)	R _{0307high}	G _{0308low}	$\begin{array}{c} R_{0309low}(bits \ 7-2) \\ G_{0308high}(bits \ 1-0) \end{array}$
start + 108:	G _{0310low} (bits 7-4) R _{0309high} (bits 3-0)	R _{0311low} (bits 7-6) G _{0310high} (bits 5-0)	R _{0311high}	G _{0312low}
start + 112:	R _{0313low} (bits 7-2) G _{0312high} (bits 1-0)	G _{0314low} (bits 7-4) R _{0313high} (bits 3-0)	R _{0315low} (bits 7–6) G _{0314high} (bits 5–0)	R _{0315high}
start + 116:	G _{0316low}	R _{0317low} (bits 7-2) G _{0316high} (bits 1-0)	G _{0318low} (bits 7-4) R _{0317high} (bits 3-0)	R _{0319low} (bits 7-6) G _{0318high} (bits 5-0)
start + 120:	R _{0319high}	G _{0320low}	R _{0321low} (bits 7-2) G _{0320high} (bits 1-0)	G _{0322low} (bits 7-4) R _{0321high} (bits 3-0)
start + 124:	R _{0323low} (bits 7-6) G _{0322high} (bits 5-0)	R _{0323high}	G _{0324low}	G _{0324high} (bits 1-0)
		,J		

Table 48 – continued from previous page

V4L2_PIX_FMT_SRGGB12 ('RG12'), V4L2_PIX_FMT_SGRBG12 ('BA12'), V4L2_PIX_FMT_SGBRG12 ('GB12'), V4L2_PIX_FMT_SBGGR12 ('BG12'),

V4L2_PIX_FMT_SGRBG12_V4L2_PIX_FMT_SGBRG12_V4L2_PIX_FMT_SBGGR12 12-bit Bayer formats expanded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 12 bits per colour. Each colour component is stored in a 16-bit word, with 4 unused high bits filled with zeros. Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating red and blue rows. Bytes are stored in memory in little endian order. They are conventionally described as GRGR…BGBG…, RGRG…GBGB …, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR12 image:

Byte Order. Each cell is one byte, the 4 most significant bits in the high bytes are 0.

start + 0:	B _{00low}	B_{00high}	G _{01low}	G_{01high}	B _{02low}	B_{02high}	G _{03low}	G_{03high}
start + 8:	G _{10low}	G _{10high}	R _{11low}	R_{11high}	G _{12low}	G _{12high}	R _{13low}	R _{13high}
start + 16:	B _{20low}	B _{20high}	G _{21low}	G _{21high}	B _{22low}	B _{22high}	G _{23low}	G _{23high}
start + 24:	G _{30low}	G _{30high}	R _{31low}	R_{31high}	G _{32low}	G _{32high}	R _{33low}	R _{33high}

V4L2_PIX_FMT_SRGGB12P ('pRCC'), V4L2_PIX_FMT_SGRBG12P ('pgCC'), V4L2_PIX_FMT_SGBRG12P ('pGCC'), V4L2_PIX_FMT_SBGGR12P ('pBCC'),

12-bit packed Bayer formats

Description

These four pixel formats are packed raw sRGB / Bayer formats with 12 bits per colour. Every two consecutive samples are packed into three bytes. Each of the first two bytes contain the 8 high order bits of the pixels, and the third byte contains the four least significants bits of each pixel, in the same order.

Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating green-red and green-blue rows. They are conventionally described as GRGR…BGBG…, RGRG…GBGB…, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR12P image:

start + 0:	B _{00high}	G_{01high}	G _{01low} (bits 7-4)	B _{02high}	G_{03high}	G _{03low} (bits 7-4)
			B _{00low} (bits 3-0)			B_{02low} (bits 3-0)
start + 6:	G _{10high}	R_{11high}	R _{11low} (bits 7-4)	G _{12high}	R_{13high}	R _{13low} (bits 3-2)
			G _{10low} (bits 3-0)			G_{12low} (bits 3-0)
start + 12:	B _{20high}	G_{21high}	G _{21low} (bits 7-4)	B _{22high}	G _{23high}	G _{23low} (bits 7-4)
			B _{20low} (bits 3-0)			B_{22low} (bits 3–0)
start + 18:	G _{30high}	R_{31high}		G _{32high}	R _{33high}	R _{33low} (bits 3-2)
			G _{30low} (bits 3-0)			G _{32low} (bits 3-0)

V4L2_PIX_FMT_SRGGB14 ('RG14'), V4L2_PIX_FMT_SGRBG14 ('GR14'), V4L2_PIX_FMT_SGBRG14 ('GB14'), V4L2_PIX_FMT_SBGGR14 ('BG14'),

14-bit Bayer formats expanded to 16 bits

Description

These four pixel formats are raw sRGB / Bayer formats with 14 bits per colour. Each sample is stored in a 16-bit word, with two unused high bits filled with zeros. Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating red and blue rows. Bytes are stored in memory in little endian order. They are conventionally described as GRGR…BGBG…, RGRG…GBGB…, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR14 image:

Byte Order. Each cell is one byte, the two most significant bits in the high bytes are zero.

start + 0:	B _{00low}	B _{00high}	G _{01low}	G_{01high}	B _{02low}	B_{02high}	G _{03low}	G_{03high}
start + 8:	G _{10low}	G _{10high}	R _{11low}	R_{11high}	G _{12low}	G_{12high}	R _{13low}	R_{13high}
start + 16:	B _{20low}	B _{20high}	G _{21low}	G_{21high}	B _{22low}	B_{22high}	G _{23low}	G_{23high}
start + 24:	G _{30low}	G _{30high}	R _{31low}	R_{31high}	G _{32low}	G _{32high}	R _{33low}	R _{33high}

V4L2_PIX_FMT_SRGGB14P ('pREE'), V4L2_PIX_FMT_SGRBG14P ('pgEE'), V4L2_PIX_FMT_SGBRG14P ('pGEE'), V4L2_PIX_FMT_SBGGR14P ('pBEE'),

man V4L2_PIX_FMT_SRGGB14P(2)

V4L2_PIX_FMT_SGRBG14P V4L2_PIX_FMT_SGBRG14P V4L2_PIX_FMT_SBGGR14P 14-bit packed Bayer formats

Description

These four pixel formats are packed raw sRGB / Bayer formats with 14 bits per colour. Every four consecutive samples are packed into seven bytes. Each of the first four bytes contain the eight high order bits of the pixels, and the three following bytes contains the six least significants bits of each pixel, in the same order.

Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating green-red and green-blue rows. They are conventionally described as GRGR…BGBG…, RGRG…GBGB…, etc. Below is an example of one of these formats:

start + 0	B_{00high}	G _{01high}	B _{02high}	G _{03high}	$G_{01low bits 1-0}$ (bits 7-6)	$R_{02low bits 3-0}$ (bits 7-4)	G _{03low bits 5-0} (bits '
					$B_{00low bits 5-0}$ (bits 5-0)	$G_{01low bits 5-2}$ (bits 3-0)	R _{02low bits 5-4} (bits
start + 7	G _{00high}	R _{01high}	G _{02high}	R _{03high}	R _{01low bits 1-0} (bits 7-6)	G _{02low bits 3-0} (bits 7-4)	R _{03low bits 5-0} (bits '
					G _{00low bits 5-0} (bits 5-0)	$R_{01low bits 5-2}$ (bits 3-0)	G _{02low bits 5-4} (bits
start + 14	B _{20high}	G _{21high}	B _{22high}	G _{23high}	G _{21low bits 1-0} (bits 7-6)	R _{22low bits 3-0} (bits 7-4)	G _{23low bits 5-0} (bits '
					$B_{20low bits 5-0}$ (bits 5-0)	$G_{21low bits 5-2}$ (bits 3-0)	R _{22low bits 5-4} (bits 1
start + 21	G _{30high}	R _{31high}	G _{32high}	R _{33high}	R _{31low bits 1-0} (bits 7-6)	G _{32low bits 3-0} (bits 7-4)	R _{33low bits 5-0} (bits '
					G _{30low bits 5-0} (bits 5-0)	R _{31low bits 5-2} (bits 3-0)	G _{32low bits 5-4} (bits 2

Byte Order. Each cell is one byte.

V4L2_PIX_FMT_SRGGB16 ('RG16'), V4L2_PIX_FMT_SGRBG16 ('GR16'), V4L2_PIX_FMT_SGBRG16 ('GB16'), V4L2_PIX_FMT_SBGGR16 ('BYR2'),

16-bit Bayer formats

Description

These four pixel formats are raw sRGB / Bayer formats with 16 bits per sample. Each sample is stored in a 16-bit word. Each n-pixel row contains n/2 green samples and n/2 blue or red samples, with alternating red and blue rows. Bytes are stored in memory in little endian order. They are conventionally described as GRGR…BGBG…, RGRG…GBGB…, etc. Below is an example of a small V4L2_PIX_FMT_SBGGR16 image:

start + 0:	B _{00low}	B _{00high}	G _{01low}	G_{01high}	B _{02low}	B _{02high}	G _{03low}	G _{03high}
start + 8:	G _{10low}	G _{10high}	R _{11low}	R_{11high}	G _{12low}	G _{12high}	R _{13low}	R_{13high}
start + 16:	B _{20low}	B _{20high}	G _{21low}	G _{21high}	B _{22low}	B _{22high}	G _{23low}	G _{23high}
start + 24:	G _{30low}	G _{30high}	R _{31low}	R _{31high}	G _{32low}	G _{32high}	R _{33low}	R _{33high}

YUV Formats

YUV is the format native to TV broadcast and composite video signals. It separates the brightness information (Y) from the color information (U and V or Cb and Cr). The color information consists of red and blue color difference signals, this way the green component can be reconstructed by subtracting from the brightness component. See Colorspaces for conversion examples. YUV was chosen because early television would only transmit brightness information. To add color in a way compatible with existing receivers a new signal carrier was added to transmit the color difference signals. Secondary in the YUV format the U and V components usually have lower resolution than the Y component. This is an analog video compression technique taking advantage of a property of the human visual system, being more sensitive to brightness information.

Packed YUV formats

Description

Similar to the packed RGB formats these formats store the Y, Cb and Cr component of each pixel in one 16 or 32 bit word.

															<i>.</i>																		
Identifier	Code	Byt	e 0 i	n me	emor	У				Byt	e 1							Byt	e 2							Byt	e 3						
		7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
V4L2_PIX_FMT_YUV444	'Y444'	Cb3	Cb ₂	Cb	Cb	Cr3	Cr ₂	Cr1	Cr ₀	a3	a ₂	a1	a ₀	Y'	Y'	Y'	Y'																
V4L2_PIX_FMT_YUV555	YUVO'	Cb ₂	Cb1	Cb	Cr4	Cr ₃	Cr ₂	Cr ₁	Cr ₀	a	Y'	Y'	Y'	3 Y'	2 Y'	T Cb4	0 Cb3																
V4L2_PIX_FMT_YUV565		Cb ₂	Cb ₁	Cb	Cr4	Cr ₃	Cr ₂	Cr ₁	Cr ₀	Y'	4 Y'	3 Y'	2 Y'	1 Y'	0 Cb ₅	Cb4	Cb3																
	'YUVP'									4	3	2	1	0																			
V4L2_PIX_FMT_YUV32	'YUV4'	a7	a ₆	a ₅	a4	a ₃	a ₂	a ₁	a ₀	Y' 7	Y' 6	Y' 5	Y' 4	Y' 3	Y' 2	Y'	Y' 0	Cb7	Cb ₆	Cb ₅	Cb4	Cb3	Cb ₂	Cb	Cb	Cr7	Cr ₆	Cr ₅	Cr4	Cr ₃	Cr ₂	Cr ₁	Cr
V4L2_PIX_FMT_AYUV32	'AYUV'	a7	a6	a5	a4	a3	a2	a1	a ₀	Y' 7	Y' 6	Y'	Y' 4	Y' 3	Y'	Y'		Cb7	Cb6	Cb5	Cb4	Cb3	Cb2	Cb	Cbo	Cr7	Cr ₆	Cr5	Cr4	Cr3	Cr ₂	Cr1	Cr
V4L2_PIX_FMT_XYUV32	'XYUV'									Y' 7	Y' 6	Y' 5	Y' 4	Y' 3	Y'	Y'	Y' 0	Cb7	Cb ₆	Cb ₅	Cb4	Cb3	Cb ₂	Cb	Cb	Cr7	Cr ₆	Cr ₅	Cr4	Cr3	Cr ₂	Cr ₁	Cr
V4L2_PIX_FMT_VUYA32	'VUYA'	Cr7	Cr ₆	Cr ₅	Cr ₄	Cr ₃	Cr ₂	Cr ₁	Cr ₀	Cb7	-		Cb4	Cb ₃	Cb ₂	Cb	, .	Y' 7	Y' 6	Y' 5	Y' 4	Y' 3	Y' 2	Y' 1	Y' 0	a7	a ₆	a ₅	a4	a ₃	a ₂	a ₁	a ₀
V4L2_PIX_FMT_VUYX32	'VUYX'	Cr7	Cr ₆	Cr5	Cr4	Cr3	Cr ₂	Cr1	Cr ₀	Cb7	Cbe	Cb5	Cb4	Cb3	Cb2	Cb	Cbo	Y' 7	Y' 6	Y' 5	Y' 4	Y' 3	Y'	Y'	Y' 0								

Table 49: Packed YUV Image Formats

Note:

- 1) Bit 7 is the most significant bit;
- 2) The value of a = alpha bits is undefined when reading from the driver, ignored when writing to the driver, except when alpha blending has been negotiated for a Video Overlay or Video Output Overlay for the formats Y444, YUV555 and YUV4. However, for formats AYUV32 and VUYA32, the alpha component is expected to contain a meaningful value that can be used by drivers and applications. And, the formats XYUV32 and VUYX32 contain undefined alpha values that must be ignored by all applications and drivers.

V4L2_PIX_FMT_GREY ('GREY')

Grey-scale image

Description

This is a grey-scale image. It is really a degenerate Y' CbCr format which simply contains no Cb or Cr data.

Byte Order. Each cell is one byte.

start + 0:	Y'	00	Y'	01	Y'	02	Y'	03
start + 4:	Y'	10	Y'	11	Y'	12	Y'	13
start + 8:	Y'	20	Y'	21	Y'	22	Y'	23
start + 12:	Y'	30	Y'	31	Y'	32	Y'	33

V4L2_PIX_FMT_Y10 ('Y10 ')

Grey-scale image

Description

This is a grey-scale image with a depth of 10 bits per pixel. Pixels are stored in 16-bit words with unused high bits padded with 0. The least significant byte is stored at lower memory addresses (little-endian).

Byte Order. Each cell is one byte.

start	+	Y' _{00low}	Y'	Y' _{01low}	Y'	Y' _{02low}	Y'	Y' _{03low}	Y'
0:			00high		01high		02high		03high
start	+	Y' _{10low}	Y'	Y' _{11low}	Y'	Y' _{12low}	Y'	Y' _{13low}	Y'
8:			10high		11high		12high		13high
start	+	Y' _{20low}	Y'	Y' _{21low}	Y'	Y' _{22low}	Y'	Y' _{23low}	Y'
16:			20high		21high		22high		23high
start	+	Y' _{30low}	Y'	Y' _{31low}	Y'	Y' _{32low}	Y'	Y' _{33low}	Y'
24:			30high		31high		32high		33high

V4L2_PIX_FMT_Y12 ('Y12 ')

Grey-scale image

Description

This is a grey-scale image with a depth of 12 bits per pixel. Pixels are stored in 16-bit words with unused high bits padded with 0. The least significant byte is stored at lower memory addresses (little-endian).

start	+	Y'00low	Y'	Y'01low	Y'	Y'02low	Y'	Y'03low	Y'
0:			00high		01high		02high		03high
start	+	Y' _{10low}	Y'	Y' _{11low}	Y'	Y' _{12low}	Y'	Y' _{13low}	Y'
8:			10high		11high		12high		13high
start	+	Y' _{20low}	Y'	Y' _{21low}	Y'	Y' _{22low}	Y'	Y' _{23low}	Y'
16:			20high		21high		22high		23high
start	+	Y' _{30low}	Y'	Y' _{31low}	Y'	Y' _{32low}	Y'	Y' _{33low}	Y'
24:			30high		31high		32high		33high

Byte Order. Each cell is one byte.

V4L2_PIX_FMT_Y14 ('Y14 ')

Grey-scale image

Description

This is a grey-scale image with a depth of 14 bits per pixel. Pixels are stored in 16-bit words with unused high bits padded with 0. The least significant byte is stored at lower memory addresses (little-endian).

Byte Order. Each cell is one byte.

start	+	Y' _{00low}	Y'	Y'01low	Y'	Y' _{02low}	Y'	Y' _{03low}	Y'
0:			00high		01high		02high		03high
start	+	Y' _{10low}	Y'	Y' _{11low}	Y'	Y' _{12low}	Y'	Y' _{13low}	Y'
8:			10high		11high		12high		13high
start	+	Y' _{20low}	Y'	Y' _{21low}	Y'	Y' _{22low}	Y'	Y' _{23low}	Y'
16:			20high		21high		22high		23high
start	+	Y' _{30low}	Y'	Y' _{31low}	Y'	Y' _{32low}	Y'	Y' _{33low}	Y'
24:			30high		31high		32high		33high

V4L2_PIX_FMT_Y10BPACK ('Y10B')

Grey-scale image as a bit-packed array

Description

This is a packed grey-scale image format with a depth of 10 bits per pixel. Pixels are stored in a bit-packed array of 10bit bits per pixel, with no padding between them and with the most significant bits coming first from the left.

Bit-packed representation.

pixels cross the byte boundary and have a ratio of 5 bytes for each 4 pixels.

|--|

V4L2_PIX_FMT_Y10P ('Y10P')

Grey-scale image as a MIPI RAW10 packed array

Description

This is a packed grey-scale image format with a depth of 10 bits per pixel. Every four consecutive pixels are packed into 5 bytes. Each of the first 4 bytes contain the 8 high order bits of the pixels, and the 5th byte contains the 2 least significants bits of each pixel, in the same order.

Bit-packed representation.

Y	Y'	Y'	Y'	Y' _{03[1:0]} (bits 7-6)
00[9:2]	01[9:2]	02[9:2]	03[9:2]	Y' _{02[1:0]} (bits 5-4) Y' _{01[1:0]} (bits 3-2)
				Y' _{00[1:0]} (bits 1-0)

V4L2_PIX_FMT_Y16 ('Y16 ')

Grey-scale image

Description

This is a grey-scale image with a depth of 16 bits per pixel. The least significant byte is stored at lower memory addresses (little-endian).

Note: The actual sampling precision may be lower than 16 bits, for example 10 bits per pixel with values in range 0 to 1023.

start	+	Y'00low	Y'	Y'01low	Y'	Y' _{02low}	Y'	Y'03low	Y'
0:			00high		01high		02high		03high
start	+	Y' _{10low}	Y'	Y' _{11low}	Y'	Y' _{12low}	Y'	Y' _{13low}	Y'
8:			10high		11high		12high		13high
start	+	Y' _{20low}	Y'	Y' _{21low}	Y'	Y' _{22low}	Y'	Y' _{23low}	Y'
16:			20high		21high		22high		23high
start	+	Y' _{30low}	Y'	Y' _{31low}	Y'	Y' _{32low}	Y'	Y' _{33low}	Y'
24:			30high		31high		32high		33high

V4L2_PIX_FMT_Y16_BE ('Y16 '| (1 << 31))

Grey-scale image

Description

This is a grey-scale image with a depth of 16 bits per pixel. The most significant byte is stored at lower memory addresses (big-endian).

Note: The actual sampling precision may be lower than 16 bits, for example 10 bits per pixel with values in range 0 to 1023.

Byte Order.	Each cell	is one byte.
-------------	-----------	--------------

start	+	Y'	Y' _{00low}	Y'	Y'01low	Y'	Y' _{02low}	Y'	Y' _{03low}
0:		00high		01high		02high		03high	
start	+	Y'	Y' _{10low}	Y'	Y' _{11low}	Y'	Y' _{12low}	Y'	Y' _{13low}
8:		10high		11high		12high		13high	
start	+	Y'	Y' _{20low}	Y'	Y' _{21low}	Y'	Y' _{22low}	Y'	Y' _{23low}
16:		20high		21high		22high		23high	
start	+	Y'	Y' _{30low}	Y'	Y' _{31low}	Y'	Y' _{32low}	Y'	Y' _{33low}
24:		30high		31high		32high		33high	

V4L2_PIX_FMT_Y8I ('Y8I ')

Interleaved grey-scale image, e.g. from a stereo-pair

Description

This is a grey-scale image with a depth of 8 bits per pixel, but with pixels from 2 sources interleaved. Each pixel is stored in a 16-bit word. E.g. the R200 RealSense camera stores pixel from the left sensor in lower and from the right sensor in the higher 8 bits.

Byte Order. Each cell is one byte.

start	+	Y'	Y'	Y'	Y'	Y'	Y'	Y'	Y'
0:		00left	00right	01left	01right	02left	02right	03left	03right
start	+	Y'	Y'	Y'	Y'	Y'	Y'	Y'	Y'
8:		10left	10right	11left	11right	12left	12right	13left	13right
start	+	Y'	Y'	Y'	Y'	Y'	Y'	Y'	Y'
16:		20left	20right	21left	21right	22left	22right	23left	23right
start	+	Y'	Y'	Y'	Y'	Y'	Y'	Y'	Y'
24:		30left	30right	31left	31right	32left	32right	33left	33right

V4L2_PIX_FMT_Y12I ('Y12I')

Interleaved grey-scale image, e.g. from a stereo-pair

Description

This is a grey-scale image with a depth of 12 bits per pixel, but with pixels from 2 sources interleaved and bit-packed. Each pixel is stored in a 24-bit word in the little-endian order. On a little-endian machine these pixels can be deinterlaced using

```
__u8 *buf;
left0 = 0xfff & *(__u16 *)buf;
right0 = *( u16 *)(buf + 1) >> 4;
```

Bit-packed representation. pixels cross the byte boundary and have a ratio of 3 bytes for each interleaved pixel.

```
 \begin{array}{c|cccc} Y' & & \\ 0 & \text{left}[7:0] \end{array} & Y' & & \\ 0 & \text{oright}[3:0] Y' & & 0 \\ 0 & \text{left}[11:8] \end{array} & Y' & & 0 \\ 0 & \text{oright}[11:4] \end{array}
```

V4L2_PIX_FMT_UV8 ('UV8')

UV plane interleaved

Description

In this format there is no Y plane, Only CbCr plane. ie (UV interleaved)

Byte Order. Each cell is one byte.

start + 0:	Cb ₀₀	Cr ₀₀	Cb_{01}	Cr ₀₁
start + 4:	Cb ₁₀	Cr ₁₀	Cb ₁₁	Cr ₁₁
start + 8:	Cb_{20}	Cr ₂₀	Cb_{21}	Cr ₂₁
start + 12:	Cb ₃₀	Cr ₃₀	Cb_{31}	Cr ₃₁

V4L2_PIX_FMT_YUYV ('YUYV')

Packed format with $\frac{1}{2}$ horizontal chroma resolution, also known as YUV 4:2:2

Description

In this format each four bytes is two pixels. Each four bytes is two Y's, a Cb and a Cr. Each Y goes to one of the pixels, and the Cb and Cr belong to both pixels. As you can see, the Cr and Cb components have half the horizontal resolution of the Y component. V4L2_PIX_FMT_YUYV is known in the Windows environment as YUY2.

Byte Order. Each cell is one byte.

start + 0:	Y' 00	Cb ₀₀	Y' 01	Cr ₀₀	Y' 02	Cb_{01}	Y' ₀₃	Cr ₀₁
start + 8:	Y' 10	Cb ₁₀	Y' 11	Cr ₁₀	Y' 12	Cb_{11}	Y' 13	Cr ₁₁
start + 16:	Y' 20	Cb ₂₀	Y' 21	Cr ₂₀	Y' 22	Cb_{21}	Y' 23	Cr_{21}
start + 24:	Y' 30	Cb ₃₀	Y' 31	Cr ₃₀	Y' 32	Cb_{31}	Y' 33	Cr ₃₁

Color Sample Location:

	0		1	2		3
0	Y	С	Y	Y	С	Y
1	Y	С	Y	Y	С	Y
2	Y	С	Y	Y	С	Y
3	Y	С	Y	Y	С	Y

V4L2_PIX_FMT_UYVY ('UYVY')

Variation of V4L2_PIX_FMT_YUYV with different order of samples in memory

Description

In this format each four bytes is two pixels. Each four bytes is two Y's, a Cb and a Cr. Each Y goes to one of the pixels, and the Cb and Cr belong to both pixels. As you can see, the Cr and Cb components have half the horizontal resolution of the Y component.

Byte Order. Each cell is one byte.

start + 0:	Cb ₀₀	Y' 00	Cr ₀₀	Y' 01	Cb ₀₁	Y' 02	Cr ₀₁	Y' 03
start + 8:	Cb ₁₀	Y' 10	Cr ₁₀	Y' 11	Cb ₁₁	Y' 12	Cr ₁₁	Y' 13
start + 16:	Cb ₂₀	Y' 20	Cr ₂₀	Y' 21	Cb ₂₁	Y' 22	Cr ₂₁	Y' 23
start + 24:	Cb ₃₀	Y' 30	Cr ₃₀	Y' 31	Cb ₃₁	Y' 32	Cr ₃₁	Y' 33

Color Sample Location:

	0		1	2		3
0	Y	С	Y	Y	С	Y
1	Y	С	Y	Y	С	Y
2	Y	С	Y	Y	С	Y
3	Y	С	Y	Y	С	Y

V4L2_PIX_FMT_YVYU ('YVYU')

Variation of V4L2_PIX_FMT_YUYV with different order of samples in memory

Description

In this format each four bytes is two pixels. Each four bytes is two Y's, a Cb and a Cr. Each Y goes to one of the pixels, and the Cb and Cr belong to both pixels. As you can see, the Cr and Cb components have half the horizontal resolution of the Y component.

Byte Order. Each cell is one byte.

start + 0:	Y' 00	Cr ₀₀	Y' 01	Cb_{00}	Y' 02	Cr ₀₁	Y' 03	Cb ₀₁
start + 8:	Y' 10	Cr ₁₀	Y' 11	Cb_{10}	Y' 12	Cr ₁₁	Y' 13	Cb ₁₁
start + 16:	Y' 20	Cr ₂₀	Y' 21	Cb_{20}	Y' 22	Cr_{21}	Y' 23	Cb_{21}
start + 24:	Y' 30	Cr ₃₀	Y' 31	Cb_{30}	Y' 32	Cr_{31}	Y' 33	Cb ₃₁

Color Sample Location:

	0		1	2		3
0	Y	С	Y	Y	С	Y
1	Y	С	Y	Y	С	Y
2	Y	С	Y	Y	С	Y
3	Y	С	Y	Y	С	Y

V4L2_PIX_FMT_VYUY ('VYUY')

Variation of V4L2_PIX_FMT_YUYV with different order of samples in memory

Description

In this format each four bytes is two pixels. Each four bytes is two Y's, a Cb and a Cr. Each Y goes to one of the pixels, and the Cb and Cr belong to both pixels. As you can see, the Cr and Cb components have half the horizontal resolution of the Y component.

Byte Order. Each cell is one byte.

			Cb ₀₀		Cr ₀₁			Y' 03
start + 8:	Cr ₁₀	Y' 10	Cb ₁₀	Y' 11	Cr ₁₁	Y' 12	Cb ₁₁	Y' 13
start + 16:	Cr ₂₀	Y' 20	Cb ₂₀	Y' 21	Cr ₂₁	Y' 22	Cb ₂₁	Y' 23
start + 24:	Cr ₃₀	Y' 30	Cb ₃₀	Y' 31	Cr ₃₁	Y' 32	Cb ₃₁	Y' 33

Color Sample Location:

	0		1		2	3
0	Y	С	Y	Y	С	Y
1	Y	С	Y	Y	С	Y
2	Y	С	Y	Y	С	Y
3	Y	С	Y	Y	С	Y

V4L2_PIX_FMT_Y41P ('Y41P')

Format with ¼ horizontal chroma resolution, also known as YUV 4:1:1

Description

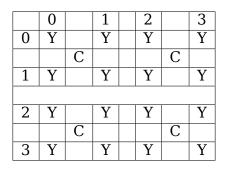
In this format each 12 bytes is eight pixels. In the twelve bytes are two CbCr pairs and eight Y's. The first CbCr pair goes with the first four Y's, and the second CbCr pair goes with the other four Y's. The Cb and Cr components have one fourth the horizontal resolution of the Y component.

Do not confuse this format with V4L2_PIX_FMT_YUV411P. Y41P is derived from "YUV 4:1:1 packed", while YUV411P stands for "YUV 4:1:1 planar".

start + 0:	Cb ₀₀	Y' ₀₀	Cr ₀₀	Y' ₀₁	Cb_{01}	Y' ₀₂	Cr ₀₁	Y' ₀₃	Y' ₀₄	Y' ₀₅	Y'06	Y' ₀₇
start + 12:	Cb ₁₀	Y' ₁₀	Cr ₁₀	Y' ₁₁	Cb ₁₁	Y' ₁₂	Cr ₁₁	Y' ₁₃	Y' ₁₄	Y' ₁₅	Y' ₁₆	Y' ₁₇
start + 24:		Y' ₂₀										Y' ₂₇
start + 36:	Cb ₃₀	Y' ₃₀	Cr ₃₀	Y' ₃₁	Cb_{31}	Y' ₃₂	Cr ₃₁	Y' ₃₃	Y' ₃₄	Y' ₃₅	Y' ₃₆	Y' ₃₇

	0	1		2	3	4	5		6	7
0	Y	Y	-	-	-	-	Y	-	Y	Y
1	Y	-						С		Y
2	Y	Y	С	Y	Y	Y		С		Y
3	Y	Y	С	Y	Y	Y	Y	С	Y	Y

V4L2_PIX_FMT_YVU420 ('YV12'), V4L2_PIX_FMT_YUV420 ('YU12')


V4L2_PIX_FMT_YUV420 Planar formats with $^{1\!\!/_2}$ horizontal and vertical chroma resolution, also known as YUV 4:2:0

Description

These are planar formats, as opposed to a packed format. The three components are separated into three sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YVU420, the Cr plane immediately follows the Y plane in memory. The Cr plane is half the width and half the height of the Y plane (and of the image). Each Cr belongs to four pixels, a two-by-two square of the image. For example, Cr₀ belongs to Y' $_{00}$, Y' $_{01}$, Y' $_{10}$, and Y' $_{11}$. Following the Cr plane is the Cb plane, just like the Cr plane. V4L2_PIX_FMT_YUV420 is the same except the Cb plane comes first, then the Cr plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have half as many pad bytes after their rows. In other words, two Cx rows (including padding) is exactly as long as one Y row (including padding).

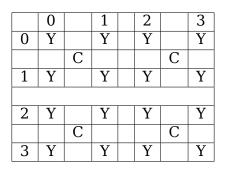
start + 0:	Y' 00	Y' 01	Y' 02	Y' ₀₃	
start + 4:	Y' 10	Y' 11	Y' 12	Y' 13	
start + 8:	Y' 20	Y' 21	Y' 22	Y' 23	
start + 12:	Y' 30	Y' 31	Y' 32	Y' 33	
start + 16:	Cr ₀₀	Cr ₀₁			
start + 18:	Cr ₁₀	Cr ₁₁			
start + 20:	Cb_{00}	Cb ₀₁			
start + 22:	Cb_{10}	Cb ₁₁			

V4L2_PIX_FMT_YUV420M ('YM12'), V4L2_PIX_FMT_YVU420M ('YM21')

V4L2_PIX_FMT_YVU420M Variation of V4L2_PIX_FMT_YUV420 and V4L2_PIX_FMT_YVU420 with planes non contiguous in memory.

Description

This is a multi-planar format, as opposed to a packed format. The three components are separated into three sub-images or planes.


The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YUV420M the Cb data constitutes the second plane which is half the width and half the height of the Y plane (and of the image). Each Cb belongs to four pixels, a two-by-two square of the image. For example, Cb₀ belongs to Y' $_{00}$, Y' $_{01}$, Y' $_{10}$, and Y' $_{11}$. The Cr data, just like the Cb plane, is in the third plane.

 $V4L2_PIX_FMT_YVU420M$ is the same except the Cr data is stored in the second plane and the Cb data in the third plane.

If the Y plane has pad bytes after each row, then the Cb and Cr planes have half as many pad bytes after their rows. In other words, two Cx rows (including padding) is exactly as long as one Y row (including padding).

V4L2_PIX_FMT_YUV420M and V4L2_PIX_FMT_YVU420M are intended to be used only in drivers and applications that support the multi-planar API, described in Singleand multi-planar APIs.

start0 + 0:	Y' 00	Y' 01	Y' 02	Y' 03
start0 + 4:	Y' ₁₀	Y' 11	Y' 12	Y' 13
start0 + 8:	Y' 20	Y' 21	Y' 22	Y' 23
start0 + 12:	Y' 30	Y' 31	Y' 32	Y' ₃₃
start1 + 0:	Cb_{00}	Cb ₀₁		
start1 + 2:	Cb_{10}	Cb ₁₁		
start2 + 0:	Cr ₀₀	Cr ₀₁		
start2 + 2:	Cr ₁₀	Cr ₁₁		

V4L2_PIX_FMT_YUV422M ('YM16'), V4L2_PIX_FMT_YVU422M ('YM61')

V4L2_PIX_FMT_YVU422M Planar formats with $^{1\!\!/_2}$ horizontal resolution, also known as YUV and YVU 4:2:2

Description

This is a multi-planar format, as opposed to a packed format. The three components are separated into three sub-images or planes.

The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YUV422M the Cb data constitutes the second plane which is half the width of the Y plane (and of the image). Each Cb belongs to two pixels. For example, Cb₀ belongs to Y' $_{00}$, Y' $_{01}$. The Cr data, just like the Cb plane, is in the third plane.

 $V4L2_PIX_FMT_YVU422M$ is the same except the Cr data is stored in the second plane and the Cb data in the third plane.

If the Y plane has pad bytes after each row, then the Cb and Cr planes have half as many pad bytes after their rows. In other words, two Cx rows (including padding) is exactly as long as one Y row (including padding).

V4L2_PIX_FMT_YUV422M and V4L2_PIX_FMT_YVU422M are intended to be used only in drivers and applications that support the multi-planar API, described in Singleand multi-planar APIs.

start0 + 0:	Y' ₀₀	Y' ₀₁	Y' 02	Y' ₀₃
start0 + 4:	Y' 10	Y' 11	Y' 12	Y' 13
start0 + 8:	Y' ₂₀	Y' 21	Y' 22	Y' 23
start0 + 12:	Y' 30	Y' 31	Y' 32	Y' 33
start1 + 0:	Cb_{00}	Cb_{01}		
start1 + 2:	Cb ₁₀	Cb ₁₁		
start1 + 4:	Cb_{20}	Cb_{21}		
start1 + 6:	Cb ₃₀	Cb ₃₁		
start2 + 0:	Cr ₀₀	Cr ₀₁		
start2 + 2:	Cr ₁₀	Cr ₁₁		
start2 + 4:	Cr ₂₀	Cr_{21}		
start2 + 6:	Cr ₃₀	Cr ₃₁		

	0		1	2		3
0	Y	С	Y	Y	С	Y
1	Y	С	Y	Y	С	Y
2	Y	С	Y	Y	С	Y
3	Y	С	Y	Y	С	Y

V4L2_PIX_FMT_YUV444M ('YM24'), V4L2_PIX_FMT_YVU444M ('YM42')

V4L2_PIX_FMT_YVU444M Planar formats with full horizontal resolution, also known as YUV and YVU 4:4:4

Description

This is a multi-planar format, as opposed to a packed format. The three components are separated into three sub-images or planes.

The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YUV444M the Cb data constitutes the second plane which is the same width and height as the Y plane (and as the image). The Cr data, just like the Cb plane, is in the third plane.

 $V4L2_PIX_FMT_YVU444M$ is the same except the Cr data is stored in the second plane and the Cb data in the third plane.

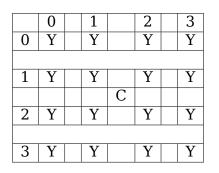
If the Y plane has pad bytes after each row, then the Cb and Cr planes have the same number of pad bytes after their rows.

V4L2_PIX_FMT_YUV444M and V4L2_PIX_FMT_YUV444M are intended to be used only in drivers and applications that support the multi-planar API, described in Singleand multi-planar APIs.

Y' 00	Y' 01	Y' 02	Y' ₀₃	
Y' 10	Y' 11	Y' 12	Y' 13	
Y' 20	Y' 21	Y' 22	Y' 23	
Y' 30	Y' 31	Y' 32	Y' 33	
Cb ₀₀	Cb ₀₁	Cb ₀₂	Cb ₀₃	
Cb ₁₀	Cb ₁₁	Cb ₁₂	Cb ₁₃	
Cb ₂₀	Cb ₂₁	Cb ₂₂	Cb ₂₃	
Cb ₂₀	Cb ₂₁	Cb ₃₂	Cb ₃₃	
Cr ₀₀	Cr ₀₁	Cr ₀₂	Cr ₀₃	
Cr ₁₀	Cr ₁₁	Cr ₁₂	Cr ₁₃	
Cr ₂₀	Cr ₂₁	Cr ₂₂	Cr ₂₃	
Cr ₃₀	Cr ₃₁	Cr ₃₂	Cr ₃₃	
	$\begin{array}{c c} Y & 00 \\ Y & 10 \\ Y & 20 \\ Y & 30 \\ \hline \\ Cb_{00} \\ Cb_{10} \\ Cb_{20} \\ \hline \\ Cb_{20} \\ \hline \\ Cb_{20} \\ \hline \\ Cr_{00} \\ Cr_{10} \\ \hline \\ Cr_{20} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

	0	1	2	3
0	YC	YC	YC	YC
1	YC	YC	YC	YC
2	YC	YC	YC	YC
3	YC	YC	YC	YC

V4L2_PIX_FMT_YVU410 ('YVU9'), V4L2_PIX_FMT_YUV410 ('YUV9')


V4L2_PIX_FMT_YUV410 Planar formats with $^{1}\!\!\!/_4$ horizontal and vertical chroma resolution, also known as YUV 4:1:0

Description

These are planar formats, as opposed to a packed format. The three components are separated into three sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_YVU410, the Cr plane immediately follows the Y plane in memory. The Cr plane is ¹/₄ the width and ¹/₄ the height of the Y plane (and of the image). Each Cr belongs to 16 pixels, a four-by-four square of the image. Following the Cr plane is the Cb plane, just like the Cr plane. V4L2_PIX_FMT_YUV410 is the same, except the Cb plane comes first, then the Cr plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have $\frac{1}{4}$ as many pad bytes after their rows. In other words, four Cx rows (including padding) are exactly as long as one Y row (including padding).

start + 0:	Y' 00	Y' 01	Y' 02	Y' 03
start + 4:	Y' 10	Y' 11	Y' 12	Y' 13
start + 8:	Y' 20	Y' 21	Y' 22	Y' 23
start + 12:	Y' 30	Y' 31	Y' 32	Y' 33
start + 16:	Cr ₀₀			
start + 17:	Cb_{00}			

V4L2_PIX_FMT_YUV422P ('422P')

Format with $\frac{1}{2}$ horizontal chroma resolution, also known as YUV 4:2:2. Planar layout as opposed to V4L2_PIX_FMT_YUYV

Description

This format is not commonly used. This is a planar version of the YUYV format. The three components are separated into three sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. The Cb plane immediately follows the Y plane in memory. The Cb plane is half the width of the Y plane (and of the image). Each Cb belongs to two pixels. For example, Cb₀ belongs to Y' $_{00}$, Y' $_{01}$. Following the Cb plane is the Cr plane, just like the Cb plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have half as many pad bytes after their rows. In other words, two Cx rows (including padding) is exactly as long as one Y row (including padding).

		-		
start + 0:	Y' 00	Y' 01	Y' 02	Y' ₀₃
start + 4:	Y' 10	Y' 11	Y' 12	Y' 13
start + 8:	Y' 20	Y' 21	Y' 22	Y' 23
start + 12:	Y' 30	Y' 31	Y' 32	Y' 33
start + 16:	Cb_{00}	Cb_{01}		
start + 18:	Cb ₁₀	Cb ₁₁		
start + 20:	Cb ₂₀	Cb ₂₁		
start + 22:	Cb ₃₀	Cb ₃₁		
start + 24:	Cr ₀₀	Cr ₀₁		
start + 26:	Cr ₁₀	Cr ₁₁		
start + 28:	Cr ₂₀	Cr ₂₁		
start + 30:	Cr ₃₀	Cr ₃₁		

	0		1	2		3
0	Y	С	Y	Y	С	Y
1	Y	С	Y	Y	С	Y
2	Y	С	Y	Y	С	Y
3	Y	С	Y	Y	С	Y

V4L2_PIX_FMT_YUV411P ('411P')

Format with $^{1}\!\!\!/_4$ horizontal chroma resolution, also known as YUV 4:1:1. Planar layout as opposed to V4L2_PIX_FMT_Y41P

Description

This format is not commonly used. This is a planar format similar to the 4:2:2 planar format except with half as many chroma. The three components are separated into three sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. The Cb plane immediately follows the Y plane in memory. The Cb plane is $\frac{1}{4}$ the width of the Y plane (and of the image). Each Cb belongs to 4 pixels all on the same row. For example, Cb₀ belongs to Y' ₀₀, Y' ₀₁, Y' ₀₂ and Y' ₀₃. Following the Cb plane is the Cr plane, just like the Cb plane.

If the Y plane has pad bytes after each row, then the Cr and Cb planes have $\frac{1}{4}$ as many pad bytes after their rows. In other words, four C x rows (including padding) is exactly as long as one Y row (including padding).

start + 0:	Y' 00 Y' 01 Y' 02 Y' 03
start + 4:	Y' 10 Y' 11 Y' 12 Y' 13
start + 8:	Y' 20 Y' 21 Y' 22 Y' 23
start + 12:	Y' 30 Y' 31 Y' 32 Y' 33
start + 16:	Cb ₀₀
start + 17:	Cb ₁₀
start + 18:	Cb ₂₀
start + 19:	Cb ₃₀
start + 20:	Cr ₀₀
start + 21:	Cr ₁₀
start + 22:	Cr ₂₀
start + 23:	Cr ₃₀

	0	1		2	3
0	Y	Y	С	Y	Y
1	Y	Y	С	Y	Y
2	Y	Y	С	Y	Y
3	Y	Y	С	Y	Y

V4L2_PIX_FMT_NV12 ('NV12'), V4L2_PIX_FMT_NV21 ('NV21')

V4L2_PIX_FMT_NV21 Formats with $^{1\!/_2}$ horizontal and vertical chroma resolution, also known as YUV 4:2:0. One luminance and one chrominance plane with alternating chroma samples as opposed to V4L2_PIX_FMT_YVU420

Description

These are two-plane versions of the YUV 4:2:0 format. The three components are separated into two sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_NV12, a combined CbCr plane immediately follows the Y plane in memory. The CbCr plane is the same width, in bytes, as the Y plane (and of the image), but is half as tall in pixels. Each CbCr pair belongs to four pixels. For example, Cb_0/Cr_0 belongs to Y' $_{00}$, Y' $_{01}$, Y' $_{10}$, Y' $_{11}$. V4L2_PIX_FMT_NV21 is the same except the Cb and Cr bytes are swapped, the CrCb plane starts with a Cr byte.

If the Y plane has pad bytes after each row, then the CbCr plane has as many pad bytes after its rows.

start + 0:	Y' 00	Y' 01	Y' 02	Y' 03
start + 4:	Y' 10	Y' 11	Y' 12	Y' ₁₃
start + 8:	Y' 20	Y' 21	Y' 22	Y' ₂₃
start + 12:	Y' 30	Y' 31	Y' 32	Y' 33
start + 16:	Cb_{00}	Cr ₀₀	Cb ₀₁	Cr ₀₁
start + 20:	Cb ₁₀	Cr ₁₀	Cb ₁₁	Cr ₁₁

	0		1	2		3
0	Y		Y	Y		Y
		С			С	
1	Y		Y	Y		Y
2	Y		Y	Y		Y
		С			С	
3	Y		Y	Y		Y

V4L2_PIX_FMT_NV12M ('NM12'), V4L2_PIX_FMT_NV21M ('NM21'), V4L2_PIX_FMT_NV12MT_16X16

 $\label{eq:V4L2_PIX_FMT_NV21M} V4L2_PIX_FMT_NV12MT_16X16 \quad Variation \quad of \\ V4L2_PIX_FMT_NV12 \ and \ V4L2_PIX_FMT_NV21 \ with \ planes \ non \ contiguous \ in \\ memory.$

Description

This is a multi-planar, two-plane version of the YUV 4:2:0 format. The three components are separated into two sub-images or planes. V4L2_PIX_FMT_NV12M differs from V4L2_PIX_FMT_NV12 in that the two planes are non-contiguous in memory, i.e. the chroma plane do not necessarily immediately follows the luma plane. The luminance data occupies the first plane. The Y plane has one byte per pixel. In the second plane there is a chrominance data with alternating chroma samples. The CbCr plane is the same width, in bytes, as the Y plane (and of the image), but is half as tall in pixels. Each CbCr pair belongs to four pixels. For example, Cb₀/Cr₀ belongs to Y' ₀₀, Y' ₀₁, Y' ₁₀, Y' ₁₁. V4L2_PIX_FMT_NV12MT_16X16 is the tiled version of V4L2_PIX_FMT_NV12M with 16x16 macroblock tiles. Here pixels are arranged in 16x16 2D tiles and tiles are arranged in linear order in memory. V4L2_PIX_FMT_NV21M is the same as V4L2_PIX_FMT_NV12M except the Cb and Cr bytes are swapped, the CrCb plane starts with a Cr byte.

V4L2_PIX_FMT_NV12M is intended to be used only in drivers and applications that support the multi-planar API, described in Single- and multi-planar APIs.

If the Y plane has pad bytes after each row, then the CbCr plane has as many pad bytes after its rows.

start0 + 0:	Y' 00	Y' 01	Y' 02	Y' 03
start0 + 4:	Y' 10	Y' 11	Y' 12	Y' 13
start0 + 8:	Y' 20	Y' 21	Y' 22	Y' 23
start0 + 12:	Y' 30	Y' 31	Y' 32	Y' 33
start1 + 0:	Cb_{00}	Cr ₀₀	Cb ₀₁	Cr ₀₁
start1 + 4:	Cb_{10}	Cr ₁₀	Cb ₁₁	Cr ₁₁

	0		1	2		3
0	Y		Y	Y		Y
		C			C	
1	Y		Y	Y		Y
2	Y		Y	Y		Y
		С				C
3	Y		Y	Y		Y

V4L2_PIX_FMT_NV12MT ('TM12')

Formats with $\frac{1}{2}$ horizontal and vertical chroma resolution. This format has two planes - one for luminance and one for chrominance. Chroma samples are interleaved. The difference to V4L2_PIX_FMT_NV12 is the memory layout. Pixels are grouped in macroblocks of 64x32 size. The order of macroblocks in memory is also not standard.

Description

This is the two-plane versions of the YUV 4:2:0 format where data is grouped into 64x32 macroblocks. The three components are separated into two sub-images or planes. The Y plane has one byte per pixel and pixels are grouped into 64x32 macroblocks. The CbCr plane has the same width, in bytes, as the Y plane (and the image), but is half as tall in pixels. The chroma plane is also grouped into 64x32 macroblocks.

Width of the buffer has to be aligned to the multiple of 128, and height alignment is 32. Every four adjacent buffers - two horizontally and two vertically are grouped together and are located in memory in Z or flipped Z order.

Layout of macroblocks in memory is presented in the following figure.

The requirement that width is multiple of 128 is implemented because, the Z shape cannot be cut in half horizontally. In case the vertical resolution of macroblocks is odd then the last row of macroblocks is arranged in a linear order.

In case of chroma the layout is identical. Cb and Cr samples are interleaved. Height of the buffer is aligned to 32.

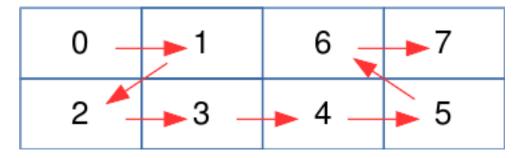


Fig. 4: V4L2_PIX_FMT_NV12MT macroblock Z shape memory layout

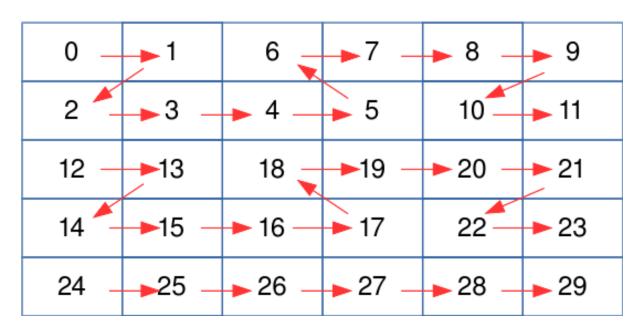


Fig. 5: Example V4L2_PIX_FMT_NV12MT memory layout of macroblocks

Memory layout of macroblocks of V4L2_PIX_FMT_NV12MT format in most extreme case.

V4L2_PIX_FMT_NV16 ('NV16'), V4L2_PIX_FMT_NV61 ('NV61')

V4L2_PIX_FMT_NV61 Formats with $\frac{1}{2}$ horizontal chroma resolution, also known as YUV 4:2:2. One luminance and one chrominance plane with alternating chroma samples as opposed to V4L2_PIX_FMT_YVU420

Description

These are two-plane versions of the YUV 4:2:2 format. The three components are separated into two sub-images or planes. The Y plane is first. The Y plane has one byte per pixel. For V4L2_PIX_FMT_NV16, a combined CbCr plane immediately follows the Y plane in memory. The CbCr plane is the same width and height, in bytes, as the Y plane (and of the image). Each CbCr pair belongs to two pixels. For example, Cb_0/Cr_0 belongs to Y' $_{00}$, Y' $_{01}$. V4L2_PIX_FMT_NV61 is the same except the Cb and Cr bytes are swapped, the CrCb plane starts with a Cr byte.

If the Y plane has pad bytes after each row, then the CbCr plane has as many pad bytes after its rows.

Byte Order. Each cell is one byte.

start + 0:	Y' 00	Y' 01	Y' 02	Y' 03
start + 4:	Y' 10	Y' 11	Y' 12	Y' 13
start + 8:	Y' 20	Y' 21	Y' 22	Y' 23
start + 12:	Y' 30	Y' 31	Y' 32	Y' 33
start + 16:	Cb_{00}	Cr ₀₀	Cb ₀₁	Cr ₀₁
start + 20:	Cb ₁₀	Cr ₁₀	Cb ₁₁	Cr ₁₁
start + 24:	Cb ₂₀	Cr ₂₀	Cb ₂₁	Cr ₂₁
start + 28:	Cb ₃₀	Cr ₃₀	Cb ₃₁	Cr ₃₁

Color Sample Location:

	0		1	2		3
0	Y		Y	Y		Y
		С			С	
1	Y		Y	Y		Y
		С			С	
2	Y		Y	Y		Y
		С			С	
3	Y		Y	Y		Y
		С			С	

V4L2_PIX_FMT_NV16M ('NM16'), V4L2_PIX_FMT_NV61M ('NM61')

V4L2_PIX_FMT_NV61M Variation of V4L2_PIX_FMT_NV16 and V4L2_PIX_FMT_NV61 with planes non contiguous in memory.

Description

This is a multi-planar, two-plane version of the YUV 4:2:2 format. The three components are separated into two sub-images or planes. V4L2_PIX_FMT_NV16M differs from V4L2_PIX_FMT_NV16 in that the two planes are non-contiguous in memory, i.e. the chroma plane does not necessarily immediately follow the luma plane. The luminance data occupies the first plane. The Y plane has one byte per pixel. In the second plane there is chrominance data with alternating chroma samples. The CbCr plane is the same width and height, in bytes, as the Y plane. Each CbCr pair belongs to two pixels. For example, Cb₀/Cr₀ belongs to Y' ₀₀, Y' ₀₁. V4L2_PIX_FMT_NV16IM is the same as V4L2_PIX_FMT_NV16M except the Cb and Cr bytes are swapped, the CrCb plane starts with a Cr byte.

V4L2_PIX_FMT_NV16M and V4L2_PIX_FMT_NV61M are intended to be used only in drivers and applications that support the multi-planar API, described in Single-and multi-planar APIs.

Byte Order. Each cell is one byte.

start0 + 0:	Y' 00	Y' 01	Y' 02	Y' 03
start0 + 4:	Y' 10	Y' 11	Y' 12	Y' 13
start0 + 8:	Y' 20	Y' 21	Y' 22	Y' ₂₃
start0 + 12:	Y' 30	Y' 31	Y' 32	Y' ₃₃
start1 + 0:	Cb_{00}	Cr ₀₀	Cb ₀₂	Cr ₀₂
start1 + 4:	Cb ₁₀	Cr ₁₀	Cb ₁₂	Cr ₁₂
start1 + 8:	Cb ₂₀	Cr ₂₀	Cb ₂₂	Cr ₂₂
start1 + 12:	Cb ₃₀	Cr ₃₀	Cb ₃₂	Cr ₃₂

Color Sample Location:

	0		1	2		3
0	Y		Y	Y		Y
		С			С	
1	Y		Y	Y		Y
		С			С	
2	Y		Y	Y		Y
		C			C	
3	Y		Y	Y		Y
		С			С	

V4L2_PIX_FMT_NV24 ('NV24'), V4L2_PIX_FMT_NV42 ('NV42')

V4L2_PIX_FMT_NV42 Formats with full horizontal and vertical chroma resolutions, also known as YUV 4:4:4. One luminance and one chrominance plane with alternating chroma samples as opposed to V4L2_PIX_FMT_YVU420

Description

These are two-plane versions of the YUV 4:4:4 format. The three components are separated into two sub-images or planes. The Y plane is first, with each Y sample stored in one byte per pixel. For V4L2_PIX_FMT_NV24, a combined CbCr plane immediately follows the Y plane in memory. The CbCr plane has the same width and height, in pixels, as the Y plane (and the image). Each line contains one CbCr pair per pixel, with each Cb and Cr sample stored in one byte. V4L2_PIX_FMT_NV42 is the same except that the Cb and Cr samples are swapped, the CrCb plane starts with a Cr sample.

If the Y plane has pad bytes after each row, then the CbCr plane has twice as many pad bytes after its rows.

Byte Order. Each cell is one byte.

start + 0:	Y' 00	Y' 01	Y' 02	Y' 03				
start + 4:	Y' 10	Y' 11	Y' 12	Y' 13				
start + 8:	Y' 20	Y' 21	Y' 22	Y' 23				
start + 12:	Y' 30	Y' 31	Y' 32	Y' 33				
start + 16:	Cb ₀₀	Cr ₀₀	Cb ₀₁	Cr ₀₁	Cb ₀₂	Cr ₀₂	Cb ₀₃	Cr ₀₃
start + 24:	Cb ₁₀	Cr ₁₀	Cb ₁₁	Cr ₁₁	Cb ₁₂	Cr ₁₂	Cb ₁₃	Cr ₁₃
start + 32:	Cb ₂₀	Cr ₂₀	Cb ₂₁	Cr ₂₁	Cb ₂₂	Cr ₂₂	Cb ₂₃	Cr ₂₃
start + 40:	Cb ₃₀	Cr ₃₀	Cb ₃₁	Cr ₃₁	Cb ₃₂	Cr ₃₂	Cb ₃₃	Cr ₃₃

V4L2_PIX_FMT_M420 ('M420')

Format with $\frac{1}{2}$ horizontal and vertical chroma resolution, also known as YUV 4:2:0. Hybrid plane line-interleaved layout.

Description

M420 is a YUV format with $\frac{1}{2}$ horizontal and vertical chroma subsampling (YUV 4:2:0). Pixels are organized as interleaved luma and chroma planes. Two lines of luma data are followed by one line of chroma data.

The luma plane has one byte per pixel. The chroma plane contains interleaved CbCr pixels subsampled by $\frac{1}{2}$ in the horizontal and vertical directions. Each CbCr pair belongs to four pixels. For example, Cb₀/Cr₀ belongs to Y' ₀₀, Y' ₀₁, Y' ₁₀, Y' ₁₁.

All line lengths are identical: if the Y lines include pad bytes so do the CbCr lines.

start + 0:	Y' 00	Y' 01	Y' 02	Y' 03
start + 4:	Y' ₁₀	Y' 11	Y' 12	Y' 13
start + 8:	Cb_{00}	Cr_{00}	Cb ₀₁	Cr ₀₁
start + 16:	Y' 20	Y' 21	Y' 22	Y' 23
start + 20:	Y' 30	Y' 31	Y' 32	Y' 33
start + 24:	Cb_{10}	Cr ₁₀	Cb ₁₁	Cr ₁₁

	0		1	2		3
0	Y		Y	Y		Y
		С			С	
1	Y		Y	Y		Y
2	Y		Y	Y		Y
		С			С	
3	Y		Y	Y		Y

HSV Formats

These formats store the color information of the image in a geometrical representation. The colors are mapped into a cylinder, where the angle is the HUE, the height is the VALUE and the distance to the center is the SATURATION. This is a very useful format for image segmentation algorithms.

Packed HSV formats

Description

The hue (h) is measured in degrees, the equivalence between degrees and LSBs depends on the hsv-encoding used, see Colorspaces. The saturation (s) and the value (v) are measured in percentage of the cylinder: 0 being the smallest value and 255 the maximum.

The values are packed in 24 or 32 bit formats.

			T	aı	16	- L	50	•	La		76	u.	11,	5 v	1.	1110	ay	е	T.C	11	110	103	>											
Identifier	Code		By	te C) in	mei	mor	ъ			By	/te :	1						By	te 2							By	te 3	5				-	
		Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
V4L2_PIX_FMT_HSV32	'HSV4'										h ₇	h ₆	h ₅	h ₄	h ₃	h ₂	h ₁	h ₀	s ₇	s ₆	s_5	s_4	s ₃	s ₂	s_1	s ₀	v ₇	v ₆	v ₅	v ₄	v ₃	v ₂	\mathbf{v}_1	\mathbf{v}_0
V4L2_PIX_FMT_HSV24	'HSV3'		h ₇	h ₆	h ₅	h_4	h ₃	h ₂	h	h	s7	s ₆	s ₅	s ₄	s ₃	s ₂	s ₁	s ₀	v7	v ₆	v_5	v ₄	v ₃	v ₂	v ₁	v ₀								

Table 50: Packed HSV Image Formats

Bit 7 is the most significant bit.

Depth Formats

Depth data provides distance to points, mapped onto the image plane

V4L2_PIX_FMT_INZI ('INZI')

Infrared 10-bit linked with Depth 16-bit images

Description

Proprietary multi-planar format used by Intel SR300 Depth cameras, comprise of Infrared image followed by Depth data. The pixel definition is 32-bpp, with the Depth and Infrared Data split into separate continuous planes of identical dimensions.

The first plane - Infrared data - is stored according to V4L2_PIX_FMT_Y10 greyscale format. Each pixel is 16-bit cell, with actual data stored in the 10 LSBs with values in range 0 to 1023. The six remaining MSBs are padded with zeros.

The second plane provides 16-bit per-pixel Depth data arranged in V4L2-PIX-FMT-Z16 format.

Frame Structure. Each cell is a 16-bit word with more significant data stored at higher memory address (byte order is little-endian).

Ir _{0,0}	Ir _{0,1}	Ir _{0,2}		•••	
Infrared Data					
			Ir _{n-1,n-3}	Ir _{n-1,n-2}	Ir _{n-1,n-1}
Depth _{0,0}	Depth _{0,1}	Depth _{0,2}		•••	
Depth Data					
•••					
•••	•••	•••	Depth _{n-1,n-3}	Depth _{n-1,n-2}	Depth _{n-1,n-1}

V4L2_PIX_FMT_Z16 ('Z16 ')

16-bit depth data with distance values at each pixel

Description

This is a 16-bit format, representing depth data. Each pixel is a distance to the respective point in the image coordinates. Distance unit can vary and has to be negotiated with the device separately. Each pixel is stored in a 16-bit word in the little endian byte order.

start + 0:	Z _{00low}	Z _{00high}	Z _{01low}	Z _{01high}	Z _{02low}	Z _{02high}	Z _{03low}	Z _{03high}
start + 8:	Z _{10low}	Z_{10high}	Z _{11low}	Z_{11high}	Z _{12low}	Z _{12high}	Z _{13low}	Z _{13high}
start + 16:	Z _{20low}	Z _{20high}	Z _{21low}	Z _{21high}	Z _{22low}	Z _{22high}	Z _{23low}	Z _{23high}
start + 24:	Z _{30low}	Z _{30high}	Z _{31low}	Z _{31high}	Z _{32low}	Z _{32high}	Z _{33low}	Z _{33high}

V4L2_PIX_FMT_CNF4 ('CNF4')

Depth sensor confidence information as a 4 bits per pixel packed array

Description

Proprietary format used by Intel RealSense Depth cameras containing depth confidence information in range 0-15 with 0 indicating that the sensor was unable to resolve any signal and 15 indicating maximum level of confidence for the specific sensor (actual error margins might change from sensor to sensor).

Every two consecutive pixels are packed into a single byte. Bits 0-3 of byte n refer to confidence value of depth pixel 2*n, bits 4-7 to confidence value of depth pixel 2*n+1.

Bit-packed representation.

Y' _{01[3:0]}(bits 7-4) Y' _{00[3:0]}(bits 3-0) Y' _{03[3:0]}(bits 7-4) Y' _{02[3:0]}(bits 3-0)

Compressed Formats

	pressed Imag	-
Identifier	Code	Details
V4L2_PIX_FMT_JPEG	'JPEG'	TBD. See also VIDIOC_G_JPEGCOMP, VID IOC_S_JPEGCOMP.
V4L2_PIX_FMT_MPEG	'MPEG'	MPEG multiplexed stream. The actual format is determined by extended control V4L2_CID_MPEG_STREAM_TYPE, see Code Control IDs.
V4L2_PIX_FMT_H264	ʻH264'	H264 Access Unit. The decoder expects one Access Unit per buffer. The encoder generates one Access Unit per buffer. If ioctl VIDIOC_ENUM_FMT report V4L2_FMT_FLAG_CONTINUOUS_BYTESTREAM then the decoder has no requirements since it can parse all the information from the raw bytestream.
V4L2_PIX_FMT_H264_N0_SC	'AVC1'	H264 video elementary stream without star codes.
V4L2_PIX_FMT_H264_MVC	'M264'	H264 MVC video elementary stream.
V4L2_PIX_FMT_H264_SLICE	ʻS264'	H264 parsed slice data, including slic headers, either with or without the star code, as extracted from the H264 bit stream. This format is adapted for state less video decoders that implement at H264 pipeline (using the Video Memory To-Memory Interface and Request API) This pixelformat has two modifiers that must be set at least once through th V4L2_CID_MPEG_VIDE0_H264_DECODE_MODE and V4L2_CID_MPEG_VIDE0_H264_START_CO controls. In addition, metadata as sociated with the frame to decod are required to be passed throug the V4L2_CID_MPEG_VIDE0_H264_SCALING_MATF V4L2_CID_MPEG_VIDE0_H264_SCALING_MATF V4L2_CID_MPEG_VIDE0_H264_SLICE_PARAMS and V4L2_CID_MPEG_VIDE0_H264_SLICE_PARAMS and V4L2_CID_MPEG_VIDE0_H264_DECODE_P, controls. See the associated Codec Contro IDs. Exactly one output and one captur buffer must be provided for use with thi pixel format. The output buffer must contait the appropriate number of macroblocks t decode a full corresponding frame to th matching capture buffer. The syntax for this format is documenter
210 Chapter 7. I	linux Media.	Infrastructure users pace APA In Tru-T Rec. M.204 Specification (04/201 Edition), section 7.3.2.8 "Slice layer withou
		partitioning RBSP syntax" and the followin

Table 51: Compressed Image Formats

SDR Formats

These formats are used for SDR interface only.

V4L2_SDR_FMT_CU8 ('CU08')

Complex unsigned 8-bit IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two parts, called In-phase and Quadrature (IQ). Both I and Q are represented as a 8 bit unsigned number. I value comes first and Q value after that.

Byte Order. Each cell is one byte.

start + 0:	I' 0
start + 1:	Q' ₀

V4L2_SDR_FMT_CU16LE ('CU16')

Complex unsigned 16-bit little endian IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two parts, called In-phase and Quadrature (IQ). Both I and Q are represented as a 16 bit unsigned little endian number. I value comes first and Q value after that.

Byte Order. Each cell is one byte.

start + 0:	I' (0[7:0]	I'	0[15:8]
start + 2:	Q'	0[7:0]	Q'	0[15:8]

V4L2_SDR_FMT_CS8 ('CS08')

Complex signed 8-bit IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two parts, called In-phase and Quadrature (IQ). Both I and Q are represented as a 8 bit signed number. I value comes first and Q value after that.

Byte Order. Each cell is one byte.

start + 0:	I' ₀
start + 1:	Q' ₀

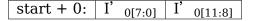
V4L2_SDR_FMT_CS14LE ('CS14')

Complex signed 14-bit little endian IQ sample

Description

This format contains sequence of complex number samples. Each complex number consist two parts, called In-phase and Quadrature (IQ). Both I and Q are represented as a 14 bit signed little endian number. I value comes first and Q value after that. 14 bit value is stored in 16 bit space with unused high bits padded with 0.

Byte Order. Each cell is one byte.


start + 0:	I'	0[7:0]	I'	0[13:8]
start + 2:	Q'	0[7:0]	Q'	0[13:8]

V4L2_SDR_FMT_RU12LE ('RU12')

Real unsigned 12-bit little endian sample

Description

This format contains sequence of real number samples. Each sample is represented as a 12 bit unsigned little endian number. Sample is stored in 16 bit space with unused high bits padded with 0.

V4L2_SDR_FMT_PCU16BE ('PC16')

Planar complex unsigned 16-bit big endian IQ sample

Description

This format contains a sequence of complex number samples. Each complex number consist of two parts called In-phase and Quadrature (IQ). Both I and Q are represented as a 16 bit unsigned big endian number stored in 32 bit space. The remaining unused bits within the 32 bit space will be padded with 0. I value starts first and Q value starts at an offset equalling half of the buffer size (i.e.) offset = buffersize/2. Out of the 16 bits, bit 15:2 (14 bit) is data and bit 1:0 (2 bit) can be any value.

Offset:	Byte B0	Byte B1	Byte B2	Byte B3
start + 0:	I' _{0[13:6]}	I' 0[5:0]; B1[1:0]=pad	pad	pad
start + 4:	I' _{1[13:6]}	I' 1[5:0]; B1[1:0]=pad	pad	pad
•••				
start + offset:	Q' 0[13:6]	Q' 0[5:0]; B1[1:0]=pad	pad	pad
start + offset + 4:	Q' 1[13:6]	Q' 1[5:0]; B1[1:0]=pad	pad	pad

Byte Order. Each cell is one byte.

V4L2_SDR_FMT_PCU18BE ('PC18')

Planar complex unsigned 18-bit big endian IQ sample

Description

This format contains a sequence of complex number samples. Each complex number consist of two parts called In-phase and Quadrature (IQ). Both I and Q are represented as a 18 bit unsigned big endian number stored in 32 bit space. The remaining unused bits within the 32 bit space will be padded with 0. I value starts first and Q value starts at an offset equalling half of the buffer size (i.e.) offset = buffersize/2. Out of the 18 bits, bit 17:2 (16 bit) is data and bit 1:0 (2 bit) can be any value.

Byte Order. Each cell is one byte.

Offset:	Byte B0	Byte B1	Byte B2	Byte B3
start + 0:	I' _{0[17:10]}	I' _{0[9:2]}	I' 0[1:0]; B2[5:0]=pad	pad
start + 4:	I' _{1[17:10]}	I' _{1[9:2]}	I' 1[1:0]; B2[5:0]=pad	pad
start + offset:	Q' 0[17:10]	Q' 0[9:2]	Q' 0[1:0]; B2[5:0]=pad	pad
start + offset + 4:	Q' 1[17:10]	Q' 1[9:2]	Q' 1[1:0]; B2[5:0]=pad	pad

V4L2_SDR_FMT_PCU20BE ('PC20')

Planar complex unsigned 20-bit big endian IQ sample

Description

This format contains a sequence of complex number samples. Each complex number consist of two parts called In-phase and Quadrature (IQ). Both I and Q are represented as a 20 bit unsigned big endian number stored in 32 bit space. The remaining unused bits within the 32 bit space will be padded with 0. I value starts first and Q value starts at an offset equalling half of the buffer size (i.e.) offset = buffersize/2. Out of the 20 bits, bit 19:2 (18 bit) is data and bit 1:0 (2 bit) can be any value.

Offset:	Byte B0	Byte B1	Byte B2	Byte B3
start + 0:	I' _{0[19:12]}	I' _{0[11:4]}	I' 0[3:0]; B2[3:0]=pad	pad
start + 4:	I' _{1[19:12]}	I' _{1[11:4]}	I' _{1[3:0]; B2[3:0]=pad}	pad
•••				
start + offset:	Q' 0[19:12]	Q' _{0[11:4]}	Q' 0[3:0]; B2[3:0]=pad	pad
start + offset + 4:	Q' 1[19:12]	Q' 1[11:4]	Q' 1[3:0]; B2[3:0]=pad	pad

Byte Order. Each cell is one byte.

Touch Formats

These formats are used for Touch Devices interface only.

V4L2_TCH_FMT_DELTA_TD16 ('TD16')

man V4L2_TCH_FMT_DELTA_TD16(2)

16-bit signed little endian Touch Delta

Description

This format represents delta data from a touch controller.

Delta values may range from -32768 to 32767. Typically the values will vary through a small range depending on whether the sensor is touched or not. The full value may be seen if one of the touchscreen nodes has a fault or the line is not connected.

Byte Order. Each cell is one byte.

start	+	D'	D'	D'	D'	D'	D'	D'	D'
0:		00low	00high	01low	01high	02low	02high	03low	03high
start	+	D'	D'	D'	D'	D'	D'	D'	D'
8:		10low	10high	11low	11high	12low	12high	13low	13high
start	+	D'	D'	D'	D'	D'	D'	D'	D'
16:		20low	20high	21low	21high	22low	22high	23low	23high
start	+	D'	D'	D'	D'	D'	D'	D'	D'
24:		30low	30high	31low	31high	32low	32high	33low	33high

V4L2_TCH_FMT_DELTA_TD08 ('TD08')

man V4L2_TCH_FMT_DELTA_TD08(2)
8-bit signed Touch Delta

Description

This format represents delta data from a touch controller.

Delta values may range from -128 to 127. Typically the values will vary through a small range depending on whether the sensor is touched or not. The full value may be seen if one of the touchscreen nodes has a fault or the line is not connected.

Byte Order. Each cell is one byte.

start + 0:	D' 00	D' 01	D' 02	D' ₀₃
start + 4:	D' 10	D' 11	D' 12	D' 13
start + 8:	D' 20	D' ₂₁	D' 22	D' ₂₃
start + 12:	D' 30	D' ₃₁	D' 32	D' 33

V4L2_TCH_FMT_TU16 ('TU16')

man V4L2_TCH_FMT_TU16(2)

16-bit unsigned little endian raw touch data

Description

This format represents unsigned 16-bit data from a touch controller.

This may be used for output for raw and reference data. Values may range from 0 to 65535.

Byte Order. Each cell is one byte.

start	+	R'	R'	R'	R'	R'	R'	R'	R'
0:		00low	00high	01low	01high	02low	02high	03low	03high
start	+	R'	R'	R'	R'	R'	R'	R'	R'
8:		10low	10high	11low	11high	12low	12high	13low	13high
start	+	R'	R'	R'	R'	R'	R'	R'	R'
16:		20low	20high	21low	21high	22low	22high	23low	23high
start	+	R'	R'	R'	R'	R'	R'	R'	R'
24:		30low	30high	31low	31high	32low	32high	33low	33high

V4L2_TCH_FMT_TU08 ('TU08')

man V4L2_TCH_FMT_TU08(2)8-bit unsigned raw touch data

Description

This format represents unsigned 8-bit data from a touch controller.

This may be used for output for raw and reference data. Values may range from 0 to 255.

Byte Order. Each cell is one byte.

start + 0:	R' 00	R' ₀₁	R' ₀₂	R' ₀₃
start + 4:	R' 10	R' 11	R' ₁₂	R' ₁₃
start + 8:	R' ₂₀	R' ₂₁	R' 22	R' ₂₃
start + 12:	R' ₃₀	R' ₃₁	R' 32	R' 33

Metadata Formats

These formats are used for the Metadata Interface interface only.

V4L2_META_FMT_D4XX ('D4XX')

Intel D4xx UVC Cameras Metadata

Description

Intel D4xx (D435 and other) cameras include per-frame metadata in their UVC payload headers, following the Microsoft(R) UVC extension proposal [1]. That means, that the private D4XX metadata, following the standard UVC header, is organised in blocks. D4XX cameras implement several standard block types, proposed by Microsoft, and several proprietary ones. Supported standard metadata types are MetadataId_CaptureStats (ID 3), MetadataId_CameraExtrinsics (ID 4), and MetadataId_CameraIntrinsics (ID 5). For their description see [1]. This document describes proprietary metadata types, used by D4xx cameras.

V4L2_META_FMT_D4XX buffers follow the metadata buffer layout of V4L2_META_FMT_UVC with the only difference, that it also includes proprietary payload header data. D4xx cameras use bulk transfers and only send one payload per frame, therefore their headers cannot be larger than 255 bytes.

Below are proprietary Microsoft style metadata types, used by D4xx cameras, where all fields are in little endian order:

Field	Description
Depth Control	
u32 ID	0x8000000
u32 Size	Size in bytes (currently 56)
u32 Version	Version of this structure. The documentation herein corresponds
	to version xxx. The version number will be incremented when
	new fields are added.
u32 Flags	A bitmask of flags: see [2] below
u32 Gain	Gain value in internal units, same as the V4L2_CID_GAIN con-
	trol, used to capture the frame
u32 Exposure	Exposure time (in microseconds) used to capture the frame
u32 Laser power	Power of the laser LED 0-360, used for depth measurement
u32 AE mode	0: manual; 1: automatic exposure
u32 Exposure priority	Exposure priority value: 0 - constant frame rate
u32 AE ROI left	Left border of the AE Region of Interest (all ROI values are in
	pixels and lie between 0 and maximum width or height respec-
	tively)
u32 AE ROI right	Right border of the AE Region of Interest
u32 AE ROI top	Top border of the AE Region of Interest
u32 AE ROI bottom	Bottom border of the AE Region of Interest
u32 Preset	Preset selector value, default: 0, unless changed by the user
u32 Laser mode	0: off, 1: on
Capture Timing	
u32 ID	0x80000001
u32 Size	Size in bytes (currently 40)
u32 Version	Version of this structure. The documentation herein corresponds
	to version xxx. The version number will be incremented when
	new fields are added.
u32 Flags	A bitmask of flags: see [3] below
u32 Frame counter	Monotonically increasing counter
u32 Optical time	Time in microseconds from the beginning of a frame till its mid-
	dle
u32 Readout time	Time, used to read out a frame in microseconds
u32 Exposure time	Frame exposure time in microseconds
u32 Frame interval	In microseconds = 1000000 / framerate
u32 Pipe latency	Time in microseconds from start of frame to data in USB buffer
Configuration	
u32 ID	0x80000002
u32 Size	Size in bytes (currently 40)
	Continued on payt page

Table 52: D4xx metadata

Continued on next page

	able 52 - continued nom previous page
Field	Description
u32 Version	Version of this structure. The documentation herein corresponds
	to version xxx. The version number will be incremented when
	new fields are added.
u32 Flags	A bitmask of flags: see [4] below
u8 Hardware type	Camera hardware version [5]
_u8 SKU ID	Camera hardware configuration [6]
u32 Cookie	Internal synchronisation
u16 Format	Image format code [7]
u16 Width	Width in pixels
u16 Height	Height in pixels
u16 Framerate	Requested frame rate per second
u16 Trigger	Byte 0: bit 0: depth and RGB are synchronised, bit 1: external
	trigger

Table52 - continued from previous page

[1] https://docs.microsoft.com/en-us/windows-hardware/drivers/stream/ uvc-extensions-1-5

[2] Depth Control flags specify which fields are valid:

0x00000001 Gain 0x00000002 Exposure 0x00000004 Laser power 0x00000008 AE mode 0x00000010 Exposure priority 0x00000020 AE ROI 0x00000040 Preset

[3] Capture Timing flags specify which fields are valid:

0x00000001 Frame counter 0x00000002 Optical time 0x000000004 Readout time 0x00000008 Exposure time 0x00000010 Frame interval 0x00000020 Pipe latency

[4] Configuration flags specify which fields are valid:

0x00000001 Hardware type 0x00000002 SKU ID 0x00000004 Cookie 0x00000008 Format 0x00000010 Width 0x000000020 Height 0x00000040 Framerate 0x00000080 Trigger 0x00000100 Cal count

[5] Camera model:

0 DS5 1 IVCAM2 [6] 8-bit camera hardware configuration bitfield:

[1:0]	depthCamera
	00: no depth
	01: standard depth
	10: wide depth
	11: reserved
[2]	depthIsActive - has a laser projector
[3]	RGB presence
[4]	Inertial Measurement Unit (IMU) presence
[5]	projectorType
	0: HPTG
	1: Princeton
[6]	0: a projector, 1: an LED
[7]	reserved

[7] Image format codes per video streaming interface:

Depth:

1 Z16			
2 Z			

Left sensor:

1 Y8

2 UYVY

- 3 R8L8
- 4 Calibration 5 W10

Fish Eye sensor:

1 RAW8

V4L2_META_FMT_IPU3_PARAMS ('ip3p'), V4L2_META_FMT_IPU3_3A ('ip3s')

3A statistics

The IPU3 ImgU 3A statistics accelerators collect different statistics over an input Bayer frame. Those statistics are obtained from the "ipu3-imgu [01] 3a stat" metadata capture video nodes, using the v4l2_meta_format interface. They are formatted as described by the ipu3_uapi_stats_3a structure.

The statistics collected are AWB (Auto-white balance) RGBS (Red, Green, Blue and Saturation measure) cells, AWB filter response, AF (Auto-focus) filter response, and AE (Auto-exposure) histogram.

The struct ipu3_uapi_4a_config saves all configurable parameters.

```
struct ipu3_uapi_af_raw_buffer af_raw_buffer;
struct ipu3_uapi_awb_fr_raw_buffer awb_fr_raw_buffer;
struct ipu3_uapi_4a_config stats_4a_config;
__u32 ae_join_buffers;
__u8 padding[28];
struct ipu3_uapi_stats_3a_bubble_info_per_stripe stats_3a_bubble_
→per_stripe;
struct ipu3_uapi_ff_status stats_3a_status;
};
```

Pipeline parameters

The pipeline parameters are passed to the "ipu3-imgu [01] parameters" metadata output video nodes, using the v4l2_meta_format interface. They are formatted as described by the ipu3_uapi_params structure.

Both 3A statistics and pipeline parameters described here are closely tied to the underlying camera sub-system (CSS) APIs. They are usually consumed and produced by dedicated user space libraries that comprise the important tuning tools, thus freeing the developers from being bothered with the low level hardware and algorithm details.

```
struct ipu3_uapi_params {
    /* Flags which of the settings below are to be applied */
    struct ipu3_uapi_flags use;
    /* Accelerator cluster parameters */
    struct ipu3_uapi_acc_param acc_param;
    /* ISP vector address space parameters */
    struct ipu3_uapi_isp_lin_vmem_params lin_vmem_params;
    struct ipu3_uapi_isp_tnr3_vmem_params tnr3_vmem_params;
    struct ipu3_uapi_isp_tnr3_vmem_params xnr3_vmem_params;
    /* ISP data memory (DMEM) parameters */
    struct ipu3_uapi_isp_tnr3_params tnr3_dmem_params;
    struct ipu3_uapi_isp_xnr3_params xnr3_dmem_params;
    /* Optical black level compensation */
    struct ipu3_uapi_obgrid_param obgrid_param;
};
```

Intel IPU3 ImgU uAPI data types

```
struct ipu3_uapi_grid_config
Grid plane config
```

Definition

```
struct ipu3_uapi_grid_config {
    __u8 width;
```

```
__u8 height;
__u16 block_width_log2:3;
__u16 block_height_log2:3;
__u16 height_per_slice:8;
__u16 x_start;
__u16 y_start;
__u16 x_end;
__u16 y_end;
};
```

Members

width Grid horizontal dimensions, in number of grid blocks(cells).

height Grid vertical dimensions, in number of grid cells.

- **block_width_log2** Log2 of the width of each cell in pixels. for (2^3, 2^4, 2^5, 2^6, 2^7), values [3, 7].
- **block_height_log2** Log2 of the height of each cell in pixels. for (2^3, 2^4, 2^5, 2^6, 2^7), values [3, 7].

height_per_slice The number of blocks in vertical axis per slice. Default 2.

x_start X value of top left corner of Region of Interest(ROI).

y_start Y value of top left corner of ROI

x_end X value of bottom right corner of ROI

y_end Y value of bottom right corner of ROI

Description

Due to the size of total amount of collected data, most statistics create a grid-based output, and the data is then divided into "slices".

struct ipu3_uapi_awb_raw_buffer AWB raw buffer

Definition

```
struct ipu3_uapi_awb_raw_buffer {
    __u8 meta_data[IPU3_UAPI_AWB_MAX_BUFFER_SIZE] ;
};
```

Members

meta_data buffer to hold auto white balance meta data which is the average values for each color channel.

```
struct ipu3_uapi_awb_config_s
        AWB config
```

Definition

```
struct ipu3_uapi_awb_config_s {
    __u16 rgbs_thr_gr;
    __u16 rgbs_thr_r;
```

```
__ul6 rgbs_thr_gb;
__ul6 rgbs_thr_b;
struct ipu3_uapi_grid_config grid;
};
```

Members

rgbs_thr_gr gr threshold value.

rgbs_thr_r Red threshold value.

rgbs_thr_gb gb threshold value.

rgbs_thr_b Blue threshold value.

grid ipu3_uapi_grid_config, the default grid resolution is 16x16 cells.

Description

The threshold is a saturation measure range [0, 8191], 8191 is default. Values over threshold may be optionally rejected for averaging.

```
struct ipu3_uapi_awb_config
AWB config wrapper
```

Definition

```
struct ipu3_uapi_awb_config {
   struct ipu3_uapi_awb_config_s config ;
};
```

Members

config config for auto white balance as defined by ipu3_uapi_awb_config_s

```
struct ipu3_uapi_ae_raw_buffer
```

AE global weighted histogram

Definition

```
struct ipu3_uapi_ae_raw_buffer {
    __u32 vals[IPU3_UAPI_AE_BINS * IPU3_UAPI_AE_COLORS];
};
```

Members

vals Sum of IPU3_UAPI_AE_COLORS in cell

Each histogram contains IPU3_UAPI_AE_BINS bins. Each bin has 24 bit unsigned for counting the number of the pixel.

```
struct ipu3_uapi_ae_raw_buffer_aligned
```

AE raw buffer

```
struct ipu3_uapi_ae_raw_buffer_aligned {
   struct ipu3_uapi_ae_raw_buffer buff ;
};
```

Members

buff ipu3_uapi_ae_raw_buffer to hold full frame meta data.

struct ipu3_uapi_ae_grid_config AE weight grid

Definition

```
struct ipu3_uapi_ae_grid_config {
    __u8 width;
    __u8 height;
    _u8 block_width_log2:4;
    _u8 block_height_log2:4;
    _u8 reserved0:5;
    _u8 ae_en:1;
    _u8 rst_hist_array:1;
    _u8 done_rst_hist_array:1;
    _u16 x_start;
    _u16 y_start;
    _u16 x_end;
    _u16 y_end;
};
```

Members

width Grid horizontal dimensions. Value: [16, 32], default 16.

height Grid vertical dimensions. Value: [16, 24], default 16.

block_width_log2 Log2 of the width of the grid cell, value: [3, 7].

block_height_log2 Log2 of the height of the grid cell, value: [3, 7]. default is 3
 (cell size 8x8), 4 cell per grid.

reserved0 reserved

rst_hist_array write 1 to trigger histogram array reset.

done_rst_hist_array flag for histogram array reset done.

x_start X value of top left corner of ROI, default 0.

y_start Y value of top left corner of ROI, default 0.

x_end X value of bottom right corner of ROI

y_end Y value of bottom right corner of ROI

Description

The AE block accumulates 4 global weighted histograms(R, G, B, Y) over a defined ROI within the frame. The contribution of each pixel into the histogram, defined by ipu3_uapi_ae_weight_elem LUT, is indexed by a grid.

struct ipu3_uapi_ae_weight_elem
 AE weights LUT

```
struct ipu3_uapi_ae_weight_elem {
    __u32 cell0:4;
    __u32 cell1:4;
    __u32 cell2:4;
    __u32 cell3:4;
    __u32 cell4:4;
    __u32 cell5:4;
    __u32 cell6:4;
    __u32 cell7:4;
};
```

Members

cell0 weighted histogram grid value.

cell1 weighted histogram grid value.

cell2 weighted histogram grid value.

cell3 weighted histogram grid value.

cell4 weighted histogram grid value.

cell5 weighted histogram grid value.

cell6 weighted histogram grid value.

cell7 weighted histogram grid value.

Description

Use weighted grid value to give a different contribution factor to each cell. Precision u4, range [0, 15].

struct ipu3_uapi_ae_ccm AE coefficients for WB and CCM

Definition

```
struct ipu3_uapi_ae_ccm {
    __u16 gain_gr;
    __u16 gain_r;
    __u16 gain_b;
    __u16 gain_gb;
    __s16 mat[16];
};
```

Members

gain_gr WB gain factor for the gr channels. Default 256.

gain_r WB gain factor for the r channel. Default 256.

gain_b WB gain factor for the b channel. Default 256.

gain_gb WB gain factor for the gb channels. Default 256.

mat 4x4 matrix that transforms Bayer quad output from WB to RGB+Y.

Description

Default: 128, 0, 0, 0, 0, 128, 0, 0, 0, 0, 128, 0, 0, 0, 0, 128,

As part of the raw frame pre-process stage, the WB and color conversion need to be applied to expose the impact of these gain operations.

```
struct ipu3_uapi_ae_config
    AE config
```

Definition

```
struct ipu3_uapi_ae_config {
   struct ipu3_uapi_ae_grid_config grid_cfg ;
   struct ipu3_uapi_ae_weight_elem weights[ IPU3_UAPI_AE_WEIGHTS] ;
   struct ipu3_uapi_ae_ccm ae_ccm ;
};
```

Members

- grid_cfg config for auto exposure statistics grid. See struct ipu3_uapi_ae_grid_config
- weights IPU3_UAPI_AE_WEIGHTS is based on 32x24 blocks in the grid. Each grid cell has a corresponding value in weights LUT called grid value, global histogram is updated based on grid value and pixel value.

ae_ccm Color convert matrix pre-processing block.

Description

Calculate AE grid from image resolution, resample ae weights.

struct ipu3_uapi_af_filter_config

AF 2D filter for contrast measurements

Definition

```
struct ipu3 uapi af filter config {
 struct {
    u8 al;
    u8 a2;
    u8 a3;
     u8 a4;
 } y1_coeff_0;
 struct {
    u8 a5;
    __u8 a6;
    __u8 a7;
     u8 a8;
 } y1 coeff 1;
 struct {
    u8 a9;
    ___u8 a10;
    ___u8 all;
    __u8 a12;
 } y1 coeff 2;
   u32 y1 sign vec;
 struct {
     u8 al;
      u8 a2;
      u8 a3;
      u8 a4;
```

<pre>} y2_coeff_0;</pre>
struct {
u8 a5;
u8_a6;
u8 a7;
u8_a8;
} $\overline{y2}$ coeff 1;
struct {
u8 a9;
u8 a10;
u8 all;
u8 a12;
<pre>} y2_coeff_2;</pre>
u32 y2 sign vec;
struct {
u8 y_gen_rate_gr;
u8 y_gen_rate_r;
u8 y_gen_rate_b;
u8 y_gen_rate_gb;
<pre>} y_calc;</pre>
struct {
u32 reserved0:8;
u32 reserved1:4;
u32 y2_nf:4;
u32 reserved2:12;
} nf;
}; };

Members

- y1_coeff_0 filter Y1, structure: 3x11, support both symmetry and anti-symmetry type. A12 is center, A1-A11 are neighbours. for analyzing low frequency content, used to calculate sum of gradients in x direction.
- y1_coeff_0.a1 filter1 coefficients A1, u8, default 0.
- y1_coeff_0.a2 filter1 coefficients A2, u8, default 0.
- y1_coeff_0.a3 filter1 coefficients A3, u8, default 0.
- y1_coeff_0.a4 filter1 coefficients A4, u8, default 0.
- y1_coeff_1 Struct
- y1_coeff_1.a5 filter1 coefficients A5, u8, default 0.
- y1_coeff_1.a6 filter1 coefficients A6, u8, default 0.
- y1_coeff_1.a7 filter1 coefficients A7, u8, default 0.
- y1_coeff_1.a8 filter1 coefficients A8, u8, default 0.
- y1_coeff_2 Struct
- y1_coeff_2.a9 filter1 coefficients A9, u8, default 0.
- y1_coeff_2.a10 filter1 coefficients A10, u8, default 0.
- y1_coeff_2.all filter1 coefficients A11, u8, default 0.

- y1_coeff_2.a12 filter1 coefficients A12, u8, default 128.
- y1_sign_vec Each bit corresponds to one coefficient sign bit, 0: positive, 1: negative, default 0.
- y2_coeff_0 Y2, same structure as Y1. For analyzing high frequency content.
- y2_coeff_0.a1 filter2 coefficients A1, u8, default 0.
- y2_coeff_0.a2 filter2 coefficients A2, u8, default 0.
- y2_coeff_0.a3 filter2 coefficients A3, u8, default 0.
- y2_coeff_0.a4 filter2 coefficients A4, u8, default 0.
- y2_coeff_1 Struct
- y2_coeff_1.a5 filter2 coefficients A5, u8, default 0.
- y2_coeff_1.a6 filter2 coefficients A6, u8, default 0.
- y2_coeff_1.a7 filter2 coefficients A7, u8, default 0.
- y2_coeff_1.a8 filter2 coefficients A8, u8, default 0.
- y2_coeff_2 Struct
- y2_coeff_2.a9 filter1 coefficients A9, u8, default 0.
- y2_coeff_2.a10 filter1 coefficients A10, u8, default 0.
- y2_coeff_2.all filter1 coefficients A11, u8, default 0.
- y2_coeff_2.al2 filter1 coefficients A12, u8, default 128.
- y2_sign_vec Each bit corresponds to one coefficient sign bit, 0: positive, 1: negative, default 0.
- y_calc Pre-processing that converts Bayer quad to RGB+Y values to be used for building histogram. Range [0, 32], default 8. Rule: y_gen_rate_gr + y_gen_rate_r + y_gen_rate_b + y_gen_rate_gb = 32 A single Y is calculated based on sum of Gr/R/B/Gb based on their contribution ratio.
- y_calc.y_gen_rate_gr Contribution ratio Gr for Y
- y_calc.y_gen_rate_r Contribution ratio R for Y
- y_calc.y_gen_rate_b Contribution ratio B for Y
- y_calc.y_gen_rate_gb Contribution ratio Gb for Y
- **nf** The shift right value that should be applied during the Y1/Y2 filter to make sure the total memory needed is 2 bytes per grid cell.
- nf.reserved0 reserved
- **nf.yl_nf** Normalization factor for the convolution coeffs of y1, should be log2 of the sum of the abs values of the filter coeffs, default 7 (2^7 = 128).
- nf.reserved1 reserved
- **nf.y2_nf** Normalization factor for y2, should be log2 of the sum of the abs values of the filter coeffs.
- nf.reserved2 reserved

struct ipu3_uapi_af_raw_buffer AF meta data

Definition

```
struct ipu3_uapi_af_raw_buffer {
    __u8 y_table[IPU3_UAPI_AF_Y_TABLE_MAX_SIZE] ;
};
```

Members

y_table Each color component will be convolved separately with filter1 and filter2 and the result will be summed out and averaged for each cell.

Definition

```
struct ipu3_uapi_af_config_s {
   struct ipu3_uapi_af_filter_config filter_config ;
   __u8 padding[4];
   struct ipu3_uapi_grid_config grid_cfg ;
};
```

Members

filter_config AF uses Y1 and Y2 filters as configured in ipu3_uapi_af_filter_config

padding paddings

grid_cfg See ipu3_uapi_grid_config, default resolution 16x16. Use large grid size for large image and vice versa.

struct ipu3_uapi_awb_fr_raw_buffer AWB filter response meta data

Definition

```
struct ipu3_uapi_awb_fr_raw_buffer {
    __u8 meta_data[IPU3_UAPI_AWB_FR_BAYER_TABLE_MAX_SIZE] ;
};
```

Members

meta_data Statistics output on the grid after convolving with 1D filter.

struct ipu3_uapi_awb_fr_config_s AWB filter response config

Definition

```
struct ipu3_uapi_awb_fr_config_s {
   struct ipu3_uapi_grid_config grid_cfg;
   __u8 bayer_coeff[6];
   __u16 reserved1;
   __u32 bayer_sign;
   __u8 bayer_nf;
```

_u8 reserved2[7];

};

Members

grid_cfg grid config, default 16x16.

bayer_coeff 1D Filter 1x11 center symmetry/anti-symmetry. coefficients defaults
{ 0, 0, 0, 0, 0, 128 }. Applied on whole image for each Bayer channel separately by a weighted sum of its 11x1 neighbors.

reserved1 reserved

bayer_sign sign of filter coefficients, default 0.

bayer_nf normalization factor for the convolution coeffs, to make sure total memory needed is within pre-determined range. NF should be the log2 of the sum of the abs values of the filter coeffs, range [7, 14], default 7.

```
reserved2 reserved
```

struct ipu3_uapi_4a_config 4A config

Definition

```
struct ipu3_uapi_4a_config {
   struct ipu3_uapi_awb_config_s awb_config ;
   struct ipu3_uapi_ae_grid_config ae_grd_config;
   __u8 padding[20];
   struct ipu3_uapi_af_config_s af_config;
   struct ipu3_uapi_awb_fr_config_s awb_fr_config ;
};
```

Members

awb_config ipu3_uapi_awb_config_s, default resolution 16x16

ae_grd_config auto exposure statistics ipu3_uapi_ae_grid_config

padding paddings

af_config auto focus config ipu3_uapi_af_config_s

awb_fr_config ipu3_uapi_awb_fr_config_s, default resolution 16x16

struct **ipu3_uapi_bubble_info** Bubble info for host side debugging

Definition

```
struct ipu3_uapi_bubble_info {
    __u32 num_of_stripes ;
    __u8 padding[28];
    __u32 num_sets;
    __u8 padding1[28];
    __u32 size_of_set;
    __u8 padding2[28];
    __u32 bubble_size;
```

```
_u8 padding3[28];
```

};

Members

num_of_stripes A single frame is divided into several parts called stripes due to limitation on line buffer memory. The separation between the stripes is vertical. Each such stripe is processed as a single frame by the ISP pipe.

padding padding bytes.

num_sets number of sets.

padding1 padding bytes.

size_of_set set size.

padding2 padding bytes.

 ${\tt bubble_size}$ is the amount of padding in the bubble expressed in "sets" .

padding3 padding bytes.

struct **ipu3_uapi_ff_status** Enable bits for each 3A fixed function

Definition

```
struct ipu3_uapi_ff_status {
    __u32 awb_en ;
    __u8 padding[28];
    __u32 ae_en;
    __u8 padding1[28];
    __u32 af_en;
    __u8 padding2[28];
    __u32 awb_fr_en;
    __u8 padding3[28];
};
```

Members

awb_en auto white balance enable

padding padding config

ae_en auto exposure enable

padding1 padding config

af_en auto focus enable

padding2 padding config

awb_fr_en awb filter response enable bit

padding3 padding config

struct **ipu3_uapi_stats_3a** 3A statistics

```
struct ipu3_uapi_stats_3a {
   struct ipu3_uapi_awb_raw_buffer awb_raw_buffer;
   struct ipu3_uapi_ae_raw_buffer_aligned ae_raw_buffer[IPU3_UAPI_MAX_
   STRIPES];
   struct ipu3_uapi_af_raw_buffer af_raw_buffer;
   struct ipu3_uapi_awb_fr_raw_buffer awb_fr_raw_buffer;
   struct ipu3_uapi_4a_config stats_4a_config;
   __u32 ae_join_buffers;
   __u8 padding[28];
   struct ipu3_uapi_stats_3a_bubble_info_per_stripe stats_3a_bubble_per_
   stripe;
   struct ipu3_uapi_ff_status stats_3a_status;
};
```

Members

awb_raw_buffer auto white balance meta data ipu3_uapi_awb_raw_buffer

ae_raw_buffer auto exposure raw data ipu3_uapi_ae_raw_buffer_aligned

af_raw_buffer ipu3_uapi_af_raw_buffer for auto focus meta data

awb_fr_raw_buffer value as specified by ipu3_uapi_awb_fr_raw_buffer

stats_4a_config 4a statistics config as defined by ipu3_uapi_4a_config.

ae_join_buffers 1 to use ae_raw_buffer.

padding padding config

stats_3a_bubble_per_stripe aipu3_uapi_stats_3a_bubble_info_per_stripe

stats_3a_status 3a statistics status set in ipu3_uapi_ff_status

```
struct ipu3_uapi_bnr_static_config_wb_gains_config
    White balance gains
```

Definition

```
struct ipu3_uapi_bnr_static_config_wb_gains_config {
    __ul6 gr;
    __ul6 r;
    __ul6 b;
    __ul6 gb;
};
```

Members

 ${\boldsymbol{\mathsf{gr}}}$ white balance gain for Gr channel.

r white balance gain for R channel.

b white balance gain for B channel.

gb white balance gain for Gb channel.

Description

Precision u3.13, range [0, 8). White balance correction is done by applying a multiplicative gain to each color channels prior to BNR.

struct ipu3_uapi_bnr_static_config_wb_gains_thr_config
Threshold config

Definition

```
struct ipu3_uapi_bnr_static_config_wb_gains_thr_config {
    __u8 gr;
    __u8 r;
    __u8 b;
    __u8 gb;
};
```

Members

gr white balance threshold gain for Gr channel.

 $\boldsymbol{\mathsf{r}}$ white balance threshold gain for R channel.

b white balance threshold gain for B channel.

gb white balance threshold gain for Gb channel.

Description

Defines the threshold that specifies how different a defect pixel can be from its neighbors.(used by dynamic defect pixel correction sub block) Precision u4.4 range [0, 8].

```
struct ipu3_uapi_bnr_static_config_thr_coeffs_config
```

Noise model coefficients that controls noise threshold

Definition

```
struct ipu3_uapi_bnr_static_config_thr_coeffs_config {
    __u32 cf:13;
    __u32 reserved0:3;
    __u32 cg:5;
    __u32 ci:5;
    __u32 reserved1:1;
    __u32 r_nf:5;
};
```

Members

cf Free coefficient for threshold calculation, range [0, 8191], default 0.

reserved0 reserved

cg Gain coefficient for threshold calculation, [0, 31], default 8.

ci Intensity coefficient for threshold calculation. range [0, 0x1f] default 6. format: u3.2 (3 most significant bits represent whole number, 2 least significant bits represent the fractional part with each count representing 0.25) e.g. 6 in binary format is 00110, that translates to 1.5

reserved1 reserved

r_nf Normalization shift value for r^2 calculation, range [12, 20] where r is a radius of pixel [row, col] from centor of sensor. default 14.

Description

Threshold used to distinguish between noise and details.

struct ipu3_uapi_bnr_static_config_thr_ctrl_shd_config Shading config

Definition

```
struct ipu3_uapi_bnr_static_config_thr_ctrl_shd_config {
    __u8 gr;
    __u8 r;
    __u8 b;
    __u8 gb;
};
```

Members

gr Coefficient defines lens shading gain approximation for gr channel

 ${\bf r}$ Coefficient defines lens shading gain approximation for ${\bf r}$ channel

b Coefficient defines lens shading gain approximation for **b** channel

gb Coefficient defines lens shading gain approximation for gb channel

Description

Parameters for noise model (NM) adaptation of BNR due to shading correction. All above have precision of u3.3, default to 0.

Definition

```
struct ipu3_uapi_bnr_static_config_opt_center_config {
    __s32 x_reset:13;
    __u32 reserved0:3;
    __s32 y_reset:13;
    __u32 reserved2:3;
};
```

Members

x_reset Reset value of X (col start - X center). Precision s12.0.

reserved0 reserved

y_reset Reset value of Y (row start - Y center). Precision s12.0.

reserved2 reserved

Description

Distance from corner to optical center for NM adaptation due to shading correction (should be calculated based on shading tables)

struct ipu3_uapi_bnr_static_config_lut_config

BNR square root lookup table

```
struct ipu3_uapi_bnr_static_config_lut_config {
    __u8 values[IPU3_UAPI_BNR_LUT_SIZE];
..
```

};

Members

values pre-calculated values of square root function.

Description

LUT implementation of square root operation.

```
struct ipu3_uapi_bnr_static_config_bp_ctrl_config
    Detect bad pixels (bp)
```

Definition

```
struct ipu3_uapi_bnr_static_config_bp_ctrl_config {
    __u32 bp_thr_gain:5;
    __u32 reserved0:2;
    __u32 defect_mode:1;
    __u32 bp_gain:6;
    __u32 reserved1:18;
    __u32 w0_coeff:4;
    __u32 reserved2:4;
    __u32 w1_coeff:4;
    __u32 reserved3:20;
};
```

Members

bp_thr_gain Defines the threshold that specifies how different a defect pixel can be from its neighbors. Threshold is dependent on de-noise threshold calculated by algorithm. Range [4, 31], default 4.

reserved0 reserved

- **bp_gain** Defines how 2nd derivation that passes through a defect pixel is different from 2nd derivations that pass through neighbor pixels. u4.2, range [0, 256], default 8.

reserved1 reserved

reserved2 reserved

w1_coeff Enable influence of incorrect defect pixel correction to be avoided. Precision u4, range [1, 8], default 8.

reserved3 reserved

```
struct ipu3_uapi_bnr_static_config_dn_detect_ctrl_config {
    __u32 alpha:4;
    __u32 beta:4;
    __u32 gamma:4;
    __u32 reserved0:4;
    __u32 max_inf:4;
    __u32 reserved1:7;
    __u32 gd_enable:1;
    __u32 bpc_enable:1;
    __u32 bnr_enable:1;
    __u32 ff_enable:1;
    __u32 reserved2:1;
}
```

```
};
```

Members

alpha Weight of central element of smoothing filter.

beta Weight of peripheral elements of smoothing filter, default 4.

gamma Weight of diagonal elements of smoothing filter, default 4.

```
reserved0 reserved
```

reserved1 reserved

gd_enable Green disparity enable control, 0 - disable, 1 - enable.

bpc_enable Bad pixel correction enable control, 0 - disable, 1 - enable.

bnr_enable Bayer noise removal enable control, 0 - disable, 1 - enable.

ff_enable Fixed function enable, 0 - disable, 1 - enable.

reserved2 reserved

Description

```
beta and gamma parameter define the strength of the noise removal filter.
All above has precision u0.4, range [0, 0xf] format: u0.4 (no / zero bits represent whole number, 4 bits represent the fractional part with each count representing 0.0625) e.g. 0xf translates to 0.0625x15 = 0.9375
```

```
struct ipu3_uapi_bnr_static_config_opt_center_sqr_config
BNR optical square
```

Definition

```
struct ipu3_uapi_bnr_static_config_opt_center_sqr_config {
    __u32 x_sqr_reset;
    __u32 y_sqr_reset;
};
```

Members

x_sqr_reset Reset value of X^2.

```
y_sqr_reset Reset value of Y^2.
```

Description

Please note:

- 1. X and Y ref to ipu3_uapi_bnr_static_config_opt_center_config
- 2. Both structs are used in threshold formula to calculate r^2 , where r is a radius of pixel [row, col] from centor of sensor.

```
struct ipu3_uapi_bnr_static_config
BNR static config
```

Definition

```
struct ipu3_uapi_bnr_static_config {
    struct ipu3_uapi_bnr_static_config_wb_gains_config wb_gains;
    struct ipu3_uapi_bnr_static_config_wb_gains_thr_config wb_gains_thr;
    struct ipu3_uapi_bnr_static_config_thr_coeffs_config thr_coeffs;
    struct ipu3_uapi_bnr_static_config_thr_ctrl_shd_config thr_ctrl_shd;
    struct ipu3_uapi_bnr_static_config_opt_center_config opt_center;
    struct ipu3_uapi_bnr_static_config_lut_config lut;
    struct ipu3_uapi_bnr_static_config_bp_ctrl_config bp_ctrl;
    struct ipu3_uapi_bnr_static_config_dn_detect_ctrl_config dn_detect_ctrl;
    __u32 column_size;
    struct ipu3_uapi_bnr_static_config_opt_center_sqr_config opt_center_sqr;
};
```

```
Members
```

wb_gains white balance gains ipu3_uapi_bnr_static_config_wb_gains_config

- wb_gains_thr white balance gains threshold as defined by ipu3_uapi_bnr_static_config_wb_gains_thr_config
- thr_coeffs coefficients of threshold ipu3_uapi_bnr_static_config_thr_coeffs_config

thr_ctrl_shd control of shading threshold ipu3_uapi_bnr_static_config_thr_ctrl_shd_control

opt_center optical center ipu3_uapi_bnr_static_config_opt_center_config

```
lut lookup table ipu3_uapi_bnr_static_config_lut_config
```

bp_ctrl detect and remove bad pixels as defined in struct ipu3_uapi_bnr_static_config_bp_ctrl_config

dn_detect_ctrl detect and remove noise. ipu3_uapi_bnr_static_config_dn_detect_ctrl_d

column_size The number of pixels in column.

```
opt_center_sqr Reset value of r^2 to optical center, see
ipu3_uapi_bnr_static_config_opt_center_sqr_config.
```

Description

Above parameters and opt_center_sqr are used for white balance and shading.

struct ipu3_uapi_bnr_static_config_green_disparity

Correct green disparity

```
struct ipu3 uapi bnr static config green disparity {
  _u32 gd_red:6;
    u32 reserved0:2;
   u32 gd green:6;
   _u32 reserved1:2;
   _u32 gd_blue:6;
    u32 reserved2:10;
   u32 gd black:14;
   u32 reserved3:2:
    u32 gd shading:7;
    u32 reserved4:1;
   u32 gd support:2;
   _u32 reserved5:1;
   u32 gd clip:1;
   u32 gd central weight:4;
};
```

Members

 gd_red Shading gain coeff for gr disparity level in bright red region. Precision u0.6, default 4(0.0625).

```
reserved0 reserved
```

- **gd_green** Shading gain coeff for gr disparity level in bright green region. Precision u0.6, default 4(0.0625).
- reserved1 reserved
- gd_blue Shading gain coeff for gr disparity level in bright blue region. Precision u0.6, default 4(0.0625).
- reserved2 reserved
- **gd_black** Maximal green disparity level in dark region (stronger disparity assumed to be image detail). Precision u14, default 80.
- reserved3 reserved
- **gd_shading** Change maximal green disparity level according to square distance from image center.
- reserved4 reserved
- **gd_support** Lower bound for the number of second green color pixels in current pixel neighborhood with less than threshold difference from it.
- reserved5 reserved

gd_clip Turn green disparity clip on/off, [0, 1], default 1.

gd_central_weight Central pixel weight in 9 pixels weighted sum.

Description

The shading gain coeff of red, green, blue and black are used to calculate threshold given a pixel's color value and its coordinates in the image.

struct ipu3_uapi_dm_config De-mosaic parameters

<pre>struct ipu3_uapi_dm_config {</pre>	[
u32 dm_en:1;	
u32 ch_ar_en:1;	
u32 fcc_en:1;	
u32 reserved0:13;	
u32 frame_width:16;	
u32 gamma_sc:5;	
u32 reserved1:3;	
u32 lc_ctrl:5;	
u32 reserved2:3;	
u32 cr_param1:5;	
u32 reserved3:3;	
u32 cr_param2:5;	
u32 reserved4:3;	
u32 coring param:5;	
u32 reserved5:27;	
};	

Members

dm_en de-mosaic enable.

ch_ar_en Checker artifacts removal enable flag. Default 0.

fcc_en False color correction (FCC) enable flag. Default 0.

reserved0 reserved

frame_width do not care

- gamma_sc Sharpening coefficient (coefficient of 2-d derivation of complementary color in Hamilton-Adams interpolation). u5, range [0, 31], default 8.
- reserved1 reserved
- **lc_ctrl** Parameter that controls weights of Chroma Homogeneity metric in calculation of final homogeneity metric. u5, range [0, 31], default 7.
- reserved2 reserved
- cr_param1 First parameter that defines Checker artifact removal feature gain. Precision u5, range [0, 31], default 8.
- reserved3 reserved
- cr_param2 Second parameter that defines Checker artifact removal feature gain. Precision u5, range [0, 31], default 8.
- reserved4 reserved
- **coring_param** Defines power of false color correction operation. low for preserving edge colors, high for preserving gray edge artifacts. Precision u1.4, range [0, 1.9375], default 4 (0.25).

reserved5 reserved

Description

The demosaic fixed function block is responsible to covert Bayer(mosaiced) images into color images based on demosaicing algorithm.

```
struct ipu3_uapi_ccm_mat_config
Color correction matrix
```

Definition

```
struct ipu3_uapi_ccm_mat_config {
    __s16 coeff_m11;
    __s16 coeff_m12;
    _s16 coeff_m13;
    _s16 coeff_o_r;
    _s16 coeff_m21;
    _s16 coeff_m22;
    _s16 coeff_m23;
    _s16 coeff_m31;
    _s16 coeff_m32;
    _s16 coeff_m33;
    _s16 coeff_o_b;
};
```

Members

coeff_m11 CCM 3x3 coefficient, range [-65536, 65535]

coeff_m12 CCM 3x3 coefficient, range [-8192, 8191]

coeff_m13 CCM 3x3 coefficient, range [-32768, 32767]

coeff_o_r Bias 3x1 coefficient, range [-8191, 8181]

coeff_m21 CCM 3x3 coefficient, range [-32767, 32767]

coeff_m22 CCM 3x3 coefficient, range [-8192, 8191]

coeff_m23 CCM 3x3 coefficient, range [-32768, 32767]

- coeff_o_g Bias 3x1 coefficient, range [-8191, 8181]
- coeff_m31 CCM 3x3 coefficient, range [-32768, 32767]

coeff_m32 CCM 3x3 coefficient, range [-8192, 8191]

coeff_m33 CCM 3x3 coefficient, range [-32768, 32767]

coeff_o_b Bias 3x1 coefficient, range [-8191, 8181]

Description

Transform sensor specific color space to standard sRGB by applying 3x3 matrix and adding a bias vector O. The transformation is basically a rotation and translation in the 3-dimensional color spaces. Here are the defaults:

9775, -2671, 1087, 0 -1071, 8303, 815, 0 -23, -7887, 16103, 0

```
struct ipu3_uapi_gamma_corr_ctrl
```

Gamma correction

Definition

```
struct ipu3_uapi_gamma_corr_ctrl {
    u32 enable:1;
```

_u32 reserved:31;

};

Members

enable gamma correction enable.

reserved reserved

struct **ipu3_uapi_gamma_corr_lut** Per-pixel tone mapping implemented as LUT.

Definition

```
struct ipu3_uapi_gamma_corr_lut {
    __u16 lut[IPU3_UAPI_GAMMA_CORR_LUT_ENTRIES];
};
```

Members

lut 256 tabulated values of the gamma function. LUT[1].. LUT[256] format u13.0, range [0, 8191].

Description

The tone mapping operation is done by a Piece wise linear graph that is implemented as a lookup table(LUT). The pixel component input intensity is the X-axis of the graph which is the table entry.

struct ipu3_uapi_gamma_config Gamma config

Definition

```
struct ipu3_uapi_gamma_config {
   struct ipu3_uapi_gamma_corr_ctrl gc_ctrl ;
   struct ipu3_uapi_gamma_corr_lut gc_lut ;
};
```

Members

gc_ctrl control of gamma correction ipu3_uapi_gamma_corr_ctrl

gc_lut lookup table of gamma correction ipu3_uapi_gamma_corr_lut

```
struct ipu3_uapi_csc_mat_config
```

Color space conversion matrix config

Definition

```
struct ipu3_uapi_csc_mat_config {
    __s16 coeff_c11;
    __s16 coeff_c12;
    __s16 coeff_c13;
    __s16 coeff_b1;
    __s16 coeff_c21;
    __s16 coeff_c22;
    __s16 coeff_c23;
```

```
__s16 coeff_b2;
__s16 coeff_c31;
__s16 coeff_c32;
__s16 coeff_c33;
__s16 coeff_b3;
};
```

Members

coeff_c11 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff c12 Conversion matrix value, format s0.14, range [-8192, 8191].

coeff_c13 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_b1 Bias 3x1 coefficient, s13.0 range [-8192, 8191].

coeff_c21 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_c22 Conversion matrix value, format s0.14, range [-8192, 8191].

coeff_c23 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_b2 Bias 3x1 coefficient, s13.0 range [-8192, 8191].

coeff_c31 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_c32 Conversion matrix value, format s0.14, range [-8192, 8191].

coeff_c33 Conversion matrix value, format s0.14, range [-16384, 16383].

coeff_b3 Bias 3x1 coefficient, s13.0 range [-8192, 8191].

Description

To transform each pixel from RGB to YUV (Y - brightness/luminance, UV -chroma) by applying the pixel's values by a 3x3 matrix and adding an optional bias 3x1 vector. Here are the default values for the matrix:

4898, 9617, 1867, 0, -2410, -4732, 7143, 0, 10076, -8437, -1638, 0,

(i.e. for real number 0.299, 0.299 * 2^14 becomes 4898.)

struct ipu3_uapi_cds_params

Chroma down-scaling

Definition

```
struct ipu3_uapi_cds_params {
    __u32 ds_c00:2;
    __u32 ds_c01:2;
    __u32 ds_c02:2;
    __u32 ds_c03:2;
    __u32 ds_c10:2;
    __u32 ds_c11:2;
    __u32 ds_c12:2;
    __u32 ds_c13:2;
    __u32 ds_nf:5;
    __u32 reserved0:3;
    __u32 csc_en:1;
    __u32 uv_bin_output:1;
```

```
_u32 reserved1:6;
```

};

Members

- ds_c00 range [0, 3]
 ds_c01 range [0, 3]
 ds_c02 range [0, 3]
 ds_c03 range [0, 3]
 ds_c10 range [0, 3]
 ds_c11 range [0, 3]
 ds_c12 range [0, 3]
 ds_c13 range [0, 3]
- ds_nf Normalization factor for Chroma output downscaling filter, range 0,4, default 2.

reserved0 reserved

csc_en Color space conversion enable

uv_bin_output 0: output YUV 4.2.0, 1: output YUV 4.2.2(default).

reserved1 reserved

Description

In case user does not provide, above 4x2 filter will use following defaults: 1, 3, 3, 1, 1, 3, 3, 1,

struct ipu3_uapi_shd_grid_config
 Bayer shading(darkening) correction

Definition

```
struct ipu3_uapi_shd_grid_config {
    __u8 width;
    __u8 height;
    __u8 block_width_log2:3;
    __u8 reserved0:1;
    __u8 block_height_log2:3;
    __u8 reserved1:1;
    __u8 grid_height_per_slice;
    __s16 x_start;
    __s16 y_start;
};
```

Members

width Grid horizontal dimensions, u8, [8, 128], default 73

height Grid vertical dimensions, u8, [8, 128], default 56

reserved0 reserved

reserved1 reserved

- grid_height_per_slice SHD_MAX_CELLS_PER_SET/width. (with SHD_MAX_CELLS_PER_SET = 146).
- x_start X value of top left corner of sensor relative to ROI s13, [-4096, 0], default
 0, only negative values.
- y_start Y value of top left corner of sensor relative to ROI s13, [-4096, 0], default
 0, only negative values.
- struct ipu3_uapi_shd_general_config Shading general config

Definition

```
struct ipu3_uapi_shd_general_config {
    __u32 init_set_vrt_offst_ul:8;
    __u32 shd_enable:1;
    __u32 gain_factor:2;
    __u32 reserved:21;
};
```

Members

init_set_vrt_offst_ul set vertical offset, y_start >> block_height_log2 %
 grid_height_per_slice.

shd_enable shading enable.

gain_factor Gain factor. Shift calculated anti shading value. Precision u2. 0x0 gain factor [1, 5], means no shift interpolated value. 0x1 - gain factor [1, 9], means shift interpolated by 1. 0x2 - gain factor [1, 17], means shift interpolated by 2.

reserved reserved

Description

Correction is performed by multiplying a gain factor for each of the 4 Bayer channels as a function of the pixel location in the sensor.

struct ipu3_uapi_shd_black_level_config Black level correction

Definition

```
struct ipu3_uapi_shd_black_level_config {
    __s16 bl_r;
    __s16 bl_gr;
    __s16 bl_gb;
    __s16 bl_b;
};
```

Members

bl_r Bios values for green red. s11 range [-2048, 2047].

bl_gr Bios values for green blue. s11 range [-2048, 2047].

bl_gb Bios values for red. s11 range [-2048, 2047].

bl_b Bios values for blue. s11 range [-2048, 2047].

```
struct ipu3_uapi_shd_config_static
    Shading config static
```

Definition

```
struct ipu3_uapi_shd_config_static {
   struct ipu3_uapi_shd_grid_config grid;
   struct ipu3_uapi_shd_general_config general;
   struct ipu3_uapi_shd_black_level_config black_level;
};
```

Members

grid shading grid config ipu3_uapi_shd_grid_config

general shading general config ipu3_uapi_shd_general_config

black_level black level config for shading correction as defined by
ipu3_uapi_shd_black_level_config

```
struct ipu3_uapi_shd_lut
```

Shading gain factor lookup table.

Definition

```
struct ipu3_uapi_shd_lut {
    struct {
        ___u16 r;
        ___u16 gr;
    } r_and_gr[IPU3_UAPI_SHD_MAX_CELLS_PER_SET];
    __u8 reserved1[24];
    struct {
        __u16 gb;
        __u16 b;
    } gb_and_b[IPU3_UAPI_SHD_MAX_CELLS_PER_SET];
    __u8 reserved2[24];
    } sets[IPU3_UAPI_SHD_MAX_CFG_SETS];
};
```

Members

sets array

sets.r_and_gr Red and GreenR Lookup table.

sets.r_and_gr.r Red shading factor.

sets.r_and_gr.gr GreenR shading factor.

sets.reserved1 reserved

sets.gb_and_b GreenB and Blue Lookup table.

sets.gb_and_b.gb GreenB shading factor.

sets.gb_and_b.b Blue shading factor.

sets.reserved2 reserved

Description

Map to shading correction LUT register set.

struct ipu3_uapi_shd_config Shading config

Definition

```
struct ipu3_uapi_shd_config {
   struct ipu3_uapi_shd_config_static shd ;
   struct ipu3_uapi_shd_lut shd_lut ;
};
```

Members

shd shading static config, see ipu3_uapi_shd_config_static

shd_lut shading lookup table ipu3_uapi_shd_lut

struct ipu3_uapi_iefd_cux2 IEFd Config Unit 2 parameters

Definition

```
struct ipu3_uapi_iefd_cux2 {
    __u32 x0:9;
    __u32 x1:9;
    __u32 a01:9;
    __u32 b01:5;
};
```

Members

x0 X0 point of Config Unit, u9.0, default 0.

x1 X1 point of Config Unit, u9.0, default 0.

a01 Slope A of Config Unit, s4.4, default 0.

b01 Slope B, always 0.

Description

Calculate weight for blending directed and non-directed denoise elements

All CU inputs are unsigned, they will be converted to signed when written to register, i.e. a01 will be written to 9 bit register in s4.4 format. The data precision s4.4 means 4 bits for integer parts and 4 bits for the fractional part, the first bit indicates positive or negative value. For userspace software (commonly the imaging library), the computation for the CU slope values should be based on the slope resolution 1/16 (binary 0.0001 - the minimal interval value), the slope value range is [-256, +255]. This applies to ipu3_uapi_iefd_cux6_ed, ipu3_uapi_iefd_cux2_1, ipu3_uapi_iefd_cux2_1, ipu3_uapi_iefd_cux4 and ipu3_uapi_iefd_cux6_rad.

Note

Each instance of Config Unit needs X coordinate of n points and slope A factor between points calculated by driver based on calibration parameters.

struct ipu3_uapi_iefd_cux6_ed

Calculate power of non-directed sharpening element, Config Unit 6 for edge detail (ED).

Definition

struct ipu3 uapi iefd cux6 ed { __u32 x0:9; u32 x1:9; u32 x2:9; u32 reserved0:5; u32 x3:9; u32 x4:9; u32 x5:9; u32 reserved1:5; u32 a01:9; u32 a12:9; u32 a23:9; u32 reserved2:5; u32 a34:9; u32 a45:9; u32 reserved3:14; u32 b01:9; u32 b12:9; u32 b23:9; u32 reserved4:5; u32 b34:9: u32 b45:9; u32 reserved5:14; };

Members

x0 X coordinate of point 0, u9.0, default 0.

x1 X coordinate of point 1, u9.0, default 0.

x2 X coordinate of point 2, u9.0, default 0.

reserved0 reserved

x3 X coordinate of point 3, u9.0, default 0.

x4 X coordinate of point 4, u9.0, default 0.

x5 X coordinate of point 5, u9.0, default 0.

reserved1 reserved

a01 slope A points 01, s4.4, default 0.

a12 slope A points 12, s4.4, default 0.

a23 slope A points 23, s4.4, default 0.

reserved2 reserved

a34 slope A points 34, s4.4, default 0.

a45 slope A points 45, s4.4, default 0.

reserved3 reserved

b01 slope B points 01, s4.4, default 0.

b12 slope B points 12, s4.4, default 0.

b23 slope B points 23, s4.4, default 0.

reserved4 reserved

b34 slope B points 34, s4.4, default 0.

b45 slope B points 45, s4.4, default 0.

reserved5 reserved.

struct **ipu3_uapi_iefd_cux2_1** Calculate power of non-directed denoise element apply.

Definition

```
struct ipu3_uapi_iefd_cux2_1 {
    __u32 x0:9;
    __u32 x1:9;
    __u32 a01:9;
    __u32 reserved1:5;
    __u32 b01:8;
    __u32 reserved2:24;
};
```

Members

x0 X0 point of Config Unit, u9.0, default 0.

x1 X1 point of Config Unit, u9.0, default 0.

a01 Slope A of Config Unit, s4.4, default 0.

reserved1 reserved

b01 offset B0 of Config Unit, u7.0, default 0.

reserved2 reserved

```
struct ipu3_uapi_iefd_cux4
Calculate power of non-directed sharpening element.
```

Definition

```
struct ipu3_uapi_iefd_cux4 {
    __u32 x0:9;
    __u32 x1:9;
    __u32 x2:9;
    __u32 reserved0:5;
    __u32 a01:9;
    __u32 a12:9;
    __u32 reserved1:5;
    __u32 a23:9;
    __u32 b01:8;
```

```
__u32 b12:8;
__u32 reserved2:7;
__u32 b23:8;
__u32 reserved3:24;
};
```

Members

x0 X0 point of Config Unit, u9.0, default 0.

x1 X1 point of Config Unit, u9.0, default 0.

x2 X2 point of Config Unit, u9.0, default 0.

reserved0 reserved

x3 X3 point of Config Unit, u9.0, default 0.

a01 Slope A0 of Config Unit, s4.4, default 0.

a12 Slope A1 of Config Unit, s4.4, default 0.

reserved1 reserved

a23 Slope A2 of Config Unit, s4.4, default 0.

b01 Offset B0 of Config Unit, s7.0, default 0.

b12 Offset B1 of Config Unit, s7.0, default 0.

reserved2 reserved

b23 Offset B2 of Config Unit, s7.0, default 0.

reserved3 reserved

struct ipu3_uapi_iefd_cux6_rad Radial Config Unit (CU)

Definition

```
struct ipu3_uapi_iefd_cux6_rad {
  __u32 x0:8;
   u32 x1:8;
   u32 x2:8;
   u32 x3:8;
   u32 x4:8;
   u32 x5:8;
   u32 reserved1:16;
   u32 a01:16;
   u32 a12:16;
   u32 a23:16;
   u32 a34:16;
   u32 a45:16;
   u32 reserved2:16;
   u32 b01:10;
   u32 b12:10;
   u32 b23:10;
   u32 reserved4:2;
   u32 b34:10;
```

(continued from previous page)

```
__u32 b45:10;
__u32 reserved5:12;
};
```

x0 x0 points of Config Unit radial, u8.0

Members

x1 x1 points of Config Unit radial, u8.0 x2 x2 points of Config Unit radial, u8.0 **x3** x3 points of Config Unit radial, u8.0 x4 x4 points of Config Unit radial, u8.0 **x5** x5 points of Config Unit radial, u8.0 reserved1 reserved **a01** Slope A of Config Unit radial, s7.8 al2 Slope A of Config Unit radial, s7.8 **a23** Slope A of Config Unit radial, s7.8 a34 Slope A of Config Unit radial, s7.8 **a45** Slope A of Config Unit radial, s7.8 reserved2 reserved **b01** Slope B of Config Unit radial, s9.0 **b12** Slope B of Config Unit radial, s9.0 **b23** Slope B of Config Unit radial, s9.0 reserved4 reserved **b34** Slope B of Config Unit radial, s9.0 **b45** Slope B of Config Unit radial, s9.0 reserved5 reserved struct ipu3 uapi yuvp1 iefd cfg units IEFd Config Units parameters Definition struct ipu3 uapi yuvp1 iefd cfg units { struct ipu3 uapi iefd cux2 cu 1; struct ipu3 uapi iefd cux6 ed cu ed; struct ipu3 uapi iefd cux2 cu 3; struct ipu3_uapi_iefd_cux2_1 cu_5; struct ipu3_uapi_iefd_cux4 cu_6; struct ipu3_uapi_iefd_cux2 cu_7; struct ipu3 uapi iefd cux4 cu unsharp; struct ipu3 uapi iefd cux6 rad cu radial; struct ipu3 uapi iefd cux2 cu vssnlm;

};

Members

- cu_1 calculate weight for blending directed and non-directed denoise elements. See ipu3_uapi_iefd_cux2
- cu_ed calculate power of non-directed sharpening element, see ipu3_uapi_iefd_cux6_ed
- cu_5 calculate power of non-directed denoise element apply, use ipu3_uapi_iefd_cux2_1
- cu_6 calculate power of non-directed sharpening element. See ipu3_uapi_iefd_cux4
- cu_7 calculate weight for blending directed and non-directed denoise elements.
 Use ipu3_uapi_iefd_cux2
- cu_unsharp Config Unit of unsharp ipu3_uapi_iefd_cux4
- cu_radial Config Unit of radial ipu3_uapi_iefd_cux6_rad

```
cu_vssnlm Config Unit of vssnlm ipu3_uapi_iefd_cux2
```

Definition

```
struct ipu3_uapi_yuvp1_iefd_config_s {
    __u32 horver_diag_coeff:7;
    __u32 reserved0:1;
    __u32 clamp_stitch:6;
    __u32 reserved1:2;
    __u32 direct_metric_update:5;
    __u32 reserved2:3;
    __u32 ed_horver_diag_coeff:7;
    __u32 reserved3:1;
};
```

Members

horver_diag_coeff Gradient compensation. Compared with vertical / horizontal (0 / 90 degree), coefficient of diagonal (45 / 135 degree) direction should be corrected by approx. 1/sqrt(2).

reserved0 reserved

clamp_stitch Slope to stitch between clamped and unclamped edge values

reserved1 reserved

direct_metric_update Update coeff for direction metric

reserved2 reserved

ed_horver_diag_coeff Radial Coefficient that compensates for different distance for vertical/horizontal and diagonal gradient calculation (approx. 1/sqrt(2))

reserved3 reserved

Definition

```
struct ipu3_uapi_yuvp1_iefd_control {
    __u32 iefd_en:1;
    __u32 denoise_en:1;
    __u32 direct_smooth_en:1;
    __u32 rad_en:1;
    __u32 vssnlm_en:1;
    __u32 reserved:27;
};
```

Members

iefd_en Enable IEFd

denoise_en Enable denoise

direct_smooth_en Enable directional smooth

rad en Enable radial update

vssnlm_en Enable VSSNLM output filter

reserved reserved

```
struct ipu3_uapi_sharp_cfg
Sharpening config
```

Definition

```
struct ipu3_uapi_sharp_cfg {
    __u32 nega_lmt_txt:13;
    __u32 reserved0:19;
    __u32 posi_lmt_txt:13;
    __u32 reserved1:19;
    __u32 nega_lmt_dir:13;
    __u32 reserved2:19;
    __u32 posi_lmt_dir:13;
    __u32 reserved3:19;
};
```

Members

nega_lmt_txt Sharpening limit for negative overshoots for texture.

reserved0 reserved

posi_lmt_txt Sharpening limit for positive overshoots for texture.

reserved1 reserved

nega_lmt_dir Sharpening limit for negative overshoots for direction (edge).

reserved2 reserved

posi_lmt_dir Sharpening limit for positive overshoots for direction (edge).

reserved3 reserved

Description

Fixed point type u13.0, range [0, 8191].

struct ipu3_uapi_far_w
 Sharpening config for far sub-group

Definition

```
struct ipu3_uapi_far_w {
    __u32 dir_shrp:7;
    __u32 reserved0:1;
    __u32 dir_dns:7;
    __u32 reserved1:1;
    __u32 ndir_dns_powr:7;
    __u32 reserved2:9;
};
```

Members

dir_shrp Weight of wide direct sharpening, u1.6, range [0, 64], default 64.

reserved0 reserved

dir_dns Weight of wide direct denoising, u1.6, range [0, 64], default 0.

reserved1 reserved

ndir_dns_powr Power of non-direct denoising, Precision u1.6, range [0, 64], default 64.

reserved2 reserved

struct ipu3_uapi_unsharp_cfg Unsharp config

Definition

```
struct ipu3_uapi_unsharp_cfg {
    __u32 unsharp_weight:7;
    __u32 reserved0:1;
    __u32 unsharp_amount:9;
    __u32 reserved1:15;
};
```

Members

unsharp_weight Unsharp mask blending weight. u1.6, range [0, 64], default 16. 0 - disabled, 64 - use only unsharp.

reserved0 reserved

unsharp_amount Unsharp mask amount, u4.5, range [0, 511], default 0.

reserved1 reserved

Definition

```
struct ipu3_uapi_yuvp1_iefd_shrp_cfg {
   struct ipu3_uapi_sharp_cfg cfg;
   struct ipu3_uapi_far_w far_w;
   struct ipu3_uapi_unsharp_cfg unshrp_cfg;
};
```

Members

cfg sharpness config ipu3_uapi_sharp_cfg

far_w wide range config, value as specified by ipu3_uapi_far_w: The 5x5 environment is separated into 2 sub-groups, the 3x3 nearest neighbors (8 pixels called Near), and the second order neighborhood around them (16 pixels called Far).

unshrp_cfg unsharpness config. ipu3_uapi_unsharp_cfg

struct ipu3_uapi_unsharp_coef0

Unsharp mask coefficients

Definition

```
struct ipu3_uapi_unsharp_coef0 {
    __u32 c00:9;
    __u32 c01:9;
    __u32 c02:9;
    __u32 reserved:5;
};
```

Members

c00 Coeff11, s0.8, range [-255, 255], default 1.

c01 Coeff12, s0.8, range [-255, 255], default 5.

c02 Coeff13, s0.8, range [-255, 255], default 9.

reserved reserved

Description

Configurable registers for common sharpening support.

```
struct ipu3_uapi_unsharp_coef1
Unsharp mask coefficients
```

Definition

```
struct ipu3_uapi_unsharp_coef1 {
    __u32 c11:9;
    __u32 c12:9;
    __u32 c22:9;
    __u32 reserved:5;
};
```

Members

c11 Coeff22, s0.8, range [-255, 255], default 29.

c12 Coeff23, s0.8, range [-255, 255], default 55.

c22 Coeff33, s0.8, range [-255, 255], default 96.

reserved reserved

struct ipu3_uapi_yuvp1_iefd_unshrp_cfg Unsharp mask config

Definition

```
struct ipu3_uapi_yuvp1_iefd_unshrp_cfg {
   struct ipu3_uapi_unsharp_coef0 unsharp_coef0;
   struct ipu3_uapi_unsharp_coef1 unsharp_coef1;
};
```

Members

unsharp_coef0 unsharp coefficient 0 config. See ipu3_uapi_unsharp_coef0

unsharp_coef1 unsharp coefficient 1 config. See ipu3_uapi_unsharp_coef1

struct ipu3_uapi_radial_reset_xy Radial coordinate reset

Definition

```
struct ipu3_uapi_radial_reset_xy {
    __s32 x:13;
    __u32 reserved0:3;
    __s32 y:13;
    __u32 reserved1:3;
};
```

Members

x Radial reset of x coordinate. Precision s12, [-4095, 4095], default 0.

reserved0 reserved

y Radial center y coordinate. Precision s12, [-4095, 4095], default 0.

reserved1 reserved

```
struct ipu3_uapi_radial_reset_x2
Radial X^2 reset
```

Definition

```
struct ipu3_uapi_radial_reset_x2 {
    __u32 x2:24;
    __u32 reserved:8;
};
```

Members

x2 Radial reset of x^2 coordinate. Precision u24, default 0.

reserved reserved

```
struct ipu3_uapi_radial_reset_y2
Radial Y^2 reset
```

Definition

```
struct ipu3_uapi_radial_reset_y2 {
    __u32 y2:24;
    __u32 reserved:8;
};
```

Members

y2 Radial reset of y² coordinate. Precision u24, default 0.

reserved reserved

struct ipu3_uapi_radial_cfg Radial config

Definition

```
struct ipu3_uapi_radial_cfg {
    __u32 rad_nf:4;
    __u32 reserved0:4;
    __u32 rad_inv_r2:7;
    __u32 reserved1:17;
};
```

Members

rad_nf Radial. R^2 normalization factor is scale down by 2⁻ (15 + scale)

reserved0 reserved

rad_inv_r2 Radial R^-2 normelized to (0.5..1). Precision u7, range [0, 127].

reserved1 reserved

struct ipu3_uapi_rad_far_w Radial FAR sub-group

Definition

```
struct ipu3_uapi_rad_far_w {
    __u32 rad_dir_far_sharp_w:8;
    __u32 rad_dir_far_dns_w:8;
    __u32 rad_ndir_far_dns_power:8;
    __u32 reserved:8;
};
```

Members

- rad_dir_far_sharp_w Weight of wide direct sharpening, u1.6, range [0, 64], default 64.

reserved reserved

```
struct ipu3_uapi_cu_cfg0
Radius Config Unit cfg0 register
```

Definition

```
struct ipu3_uapi_cu_cfg0 {
    __u32 cu6_pow:7;
    __u32 reserved0:1;
    __u32 cu_unsharp_pow:7;
    __u32 reserved1:1;
    __u32 rad_cu6_pow:7;
    __u32 reserved2:1;
    __u32 rad_cu_unsharp_pow:6;
    __u32 reserved3:2;
};
```

Members

cu6_pow Power of CU6. Power of non-direct sharpening, u3.4.

reserved0 reserved

cu_unsharp_pow Power of unsharp mask, u2.4.

reserved1 reserved

rad_cu6_pow Radial/corner CU6. Directed sharpening power, u3.4.

reserved2 reserved

rad_cu_unsharp_pow Radial power of unsharp mask, u2.4.

reserved3 reserved

struct **ipu3_uapi_cu_cfg1** Radius Config Unit cfg1 register

Definition

```
struct ipu3_uapi_cu_cfg1 {
    __u32 rad_cu6_x1:9;
    __u32 reserved0:1;
    __u32 rad_cu_unsharp_x1:9;
    __u32 reserved1:13;
};
```

Members

rad_cu6_x1 X1 point of Config Unit 6, precision u9.0.

reserved0 reserved

rad_cu_unsharp_x1 X1 point for Config Unit unsharp for radial/corner point precision u9.0.

reserved1 reserved

```
struct ipu3_uapi_yuvp1_iefd_rad_cfg
```

IEFd parameters changed radially over the picture plane.

Definition

```
struct ipu3_uapi_yuvp1_iefd_rad_cfg {
    struct ipu3_uapi_radial_reset_xy reset_xy;
```

(continues on next page)

(continued from previous page)

```
struct ipu3_uapi_radial_reset_x2 reset_x2;
struct ipu3_uapi_radial_reset_y2 reset_y2;
struct ipu3_uapi_radial_cfg cfg;
struct ipu3_uapi_rad_far_w rad_far_w;
struct ipu3_uapi_cu_cfg0 cu_cfg0;
struct ipu3_uapi_cu_cfg1 cu_cfg1;
};
```

Members

- reset_xy reset xy value in radial calculation. ipu3_uapi_radial_reset_xy
- reset_x2 reset x square value in radial calculation. See struct ipu3_uapi_radial_reset_x2
- reset_y2 reset y square value in radial calculation. See struct ipu3_uapi_radial_reset_y2

cfg radial config defined in ipu3_uapi_radial_cfg

rad_far_w weight for wide range radial. ipu3_uapi_rad_far_w

cu_cfg0 configuration unit 0. See ipu3_uapi_cu_cfg0

cu_cfgl configuration unit 1. See ipu3_uapi_cu_cfg1

struct ipu3_uapi_vss_lut_x Vssnlm LUT x0/x1/x2

Definition

```
struct ipu3_uapi_vss_lut_x {
    __u32 vs_x0:8;
    __u32 vs_x1:8;
    __u32 vs_x2:8;
    __u32 reserved2:8;
};
```

Members

vs_x0 Vssnlm LUT x0, precision u8, range [0, 255], default 16.

vs_x1 Vssnlm LUT x1, precision u8, range [0, 255], default 32.

vs_x2 Vssnlm LUT x2, precision u8, range [0, 255], default 64.

reserved2 reserved

struct ipu3_uapi_vss_lut_y Vssnlm LUT y0/y1/y2

Definition

```
struct ipu3_uapi_vss_lut_y {
    __u32 vs_y1:4;
    __u32 reserved0:4;
    __u32 vs_y2:4;
    __u32 reserved1:4;
    __u32 vs_y3:4;
```

(continues on next page)

(continued from previous page)

_u32 reserved2:12;

};

Members

vs_y1 Vssnlm LUT y1, precision u4, range [0, 8], default 1.

reserved0 reserved

vs_y2 Vssnlm LUT y2, precision u4, range [0, 8], default 3.

reserved1 reserved

vs_y3 Vssnlm LUT y3, precision u4, range [0, 8], default 8.

reserved2 reserved

struct ipu3_uapi_yuvp1_iefd_vssnlm_cfg IEFd Vssnlm Lookup table

Definition

```
struct ipu3_uapi_yuvp1_iefd_vssnlm_cfg {
   struct ipu3_uapi_vss_lut_x vss_lut_x;
   struct ipu3_uapi_vss_lut_y vss_lut_y;
};
```

Members

vss_lut_x vss lookup table. See ipu3_uapi_vss_lut_x description

vss_lut_y vss lookup table. See ipu3_uapi_vss_lut_y description

Definition

```
struct ipu3_uapi_yuvp1_iefd_config {
   struct ipu3_uapi_yuvp1_iefd_cfg_units units;
   struct ipu3_uapi_yuvp1_iefd_config_s config;
   struct ipu3_uapi_yuvp1_iefd_control control;
   struct ipu3_uapi_yuvp1_iefd_shrp_cfg sharp;
   struct ipu3_uapi_yuvp1_iefd_rad_cfg rad;
   struct ipu3_uapi_yuvp1_iefd_vssnlm_cfg vsslnm;
};
```

Members

units configuration unit setting, ipu3_uapi_yuvp1_iefd_cfg_units config configuration, as defined by ipu3_uapi_yuvp1_iefd_config_s control control setting, as defined by ipu3_uapi_yuvp1_iefd_control sharp sharpness setting, as defined by ipu3_uapi_yuvp1_iefd_shrp_cfg unsharp unsharpness setting, as defined by ipu3_uapi_yuvp1_iefd_unshrp_cfg rad radial setting, as defined by ipu3_uapi_yuvp1_iefd_rad_cfg vsslnm vsslnm setting, as defined by ipu3_uapi_yuvp1_iefd_vssnlm_cfg

Definition

```
struct ipu3_uapi_yuvp1_yds_config {
    __u32 c00:2;
    __u32 c01:2;
    __u32 c02:2;
    __u32 c03:2;
    __u32 c10:2;
    __u32 c11:2;
    __u32 c12:2;
    __u32 c13:2;
    __u32 norm_factor:5;
    __u32 reserved0:4;
    __u32 bin_output:1;
    __u32 reserved1:6;
};
```

Members

c00 range [0, 3], default 0x0

c01 range [0, 3], default 0x1

c02 range [0, 3], default 0x1

- **c03** range [0, 3], default 0x0
- **c10** range [0, 3], default 0x0
- **c11** range [0, 3], default 0x1
- **c12** range [0, 3], default 0x1
- **c13** range [0, 3], default 0x0

reserved0 reserved

bin_output Down sampling on Luma channel in two optional modes 0 - Bin output 4.2.0 (default), 1 output 4.2.2.

reserved1 reserved

Description

Above are 4x2 filter coefficients for chroma output downscaling.

```
struct ipu3_uapi_yuvp1_chnr_enable_config
Chroma noise reduction enable
```

Definition

```
struct ipu3_uapi_yuvp1_chnr_enable_config {
    __u32 enable:1;
    __u32 yuv_mode:1;
```

(continues on next page)

(continued from previous page)

```
__u32 reserved0:14;
__u32 col_size:12;
__u32 reserved1:4;
};
```

Members

enable enable/disable chroma noise reduction

yuv_mode 0 - YUV420, 1 - YUV422

reserved0 reserved

col_size number of columns in the frame, max width is 2560

reserved1 reserved

Definition

```
struct ipu3_uapi_yuvp1_chnr_coring_config {
    __u32 u:13;
    __u32 reserved0:3;
    __u32 v:13;
    __u32 reserved1:3;
};
```

Members

u U coring level, u0.13, range [0.0, 1.0], default 0.0

reserved0 reserved

v V coring level, u0.13, range [0.0, 1.0], default 0.0

reserved1 reserved

Definition

```
struct ipu3_uapi_yuvp1_chnr_sense_gain_config {
    __u32 vy:8;
    __u32 vv:8;
    __u32 vv:8;
    __u32 reserved0:8;
    __u32 hy:8;
    __u32 hu:8;
    __u32 hv:8;
    __u32 reserved1:8;
};
```

Members

vy Sensitivity of horizontal edge of Y, default 100

 \boldsymbol{vu} Sensitivity of horizontal edge of U, default 100

vv Sensitivity of horizontal edge of V, default 100

reserved0 reserved

hy Sensitivity of vertical edge of Y, default 50

hu Sensitivity of vertical edge of U, default 50

hv Sensitivity of vertical edge of V, default 50

reserved1 reserved

Description

All sensitivity gain parameters have precision u13.0, range [0, 8191].

struct ipu3_uapi_yuvp1_chnr_iir_fir_config Chroma IIR/FIR filter config

Definition

```
struct ipu3_uapi_yuvp1_chnr_iir_fir_config {
    __u32 fir_0h:6;
    __u32 reserved0:2;
    __u32 fir_1h:6;
    __u32 reserved1:2;
    __u32 fir_2h:6;
    __u32 dalpha_clip_val:9;
    __u32 reserved2:1;
};
```

Members

fir_0h Value of center tap in horizontal FIR, range [0, 32], default 8.

reserved0 reserved

fir_1h Value of distance 1 in horizontal FIR, range [0, 32], default 12.

reserved1 reserved

fir_2h Value of distance 2 tap in horizontal FIR, range [0, 32], default 0.

dalpha_clip_val weight for previous row in IIR, range [1, 256], default 0.

reserved2 reserved

```
struct ipu3_uapi_yuvp1_chnr_config
Chroma noise reduction config
```

Definition

```
struct ipu3_uapi_yuvp1_chnr_config {
   struct ipu3_uapi_yuvp1_chnr_enable_config enable;
   struct ipu3_uapi_yuvp1_chnr_coring_config coring;
   struct ipu3_uapi_yuvp1_chnr_sense_gain_config sense_gain;
   struct ipu3_uapi_yuvp1_chnr_iir_fir_config iir_fir;
};
```

Members

enable chroma noise reduction enable, see ipu3_uapi_yuvp1_chnr_enable_config

- coring config for chroma noise reduction, see ipu3_uapi_yuvp1_chnr_coring_config
- sense_gain sensitivity config for chroma noise reduction, see
 ipu3_uapi_yuvp1_chnr_sense_gain_config
- iir_fir iir and fir config for chroma noise reduction, see ipu3_uapi_yuvp1_chnr_iir_fir_config

```
struct ipu3_uapi_yuvp1_y_ee_nr_lpf_config
    Luma(Y) edge enhancement low-pass filter coefficients
```

Definition

```
struct ipu3_uapi_yuvp1_y_ee_nr_lpf_config {
    __u32 a_diag:5;
    __u32 reserved0:3;
    __u32 a_periph:5;
    __u32 reserved1:3;
    __u32 a_cent:5;
    __u32 reserved2:9;
    __u32 enable:1;
};
```

Members

a_diag Smoothing diagonal coefficient, u5.0.

reserved0 reserved

a_periph Image smoothing perpherial, u5.0.

reserved1 reserved

a_cent Image Smoothing center coefficient, u5.0.

reserved2 reserved

enable 0: Y_EE_NR disabled, output = input; 1: Y_EE_NR enabled.

```
struct ipu3_uapi_yuvp1_y_ee_nr_sense_config
    Luma(Y) edge enhancement noise reduction sensitivity gains
```

Definition

```
struct ipu3_uapi_yuvp1_y_ee_nr_sense_config {
    __u32 edge_sense_0:13;
    __u32 reserved0:3;
    __u32 delta_edge_sense:13;
    __u32 reserved1:3;
    __u32 corner_sense_0:13;
    __u32 reserved2:3;
    __u32 delta_corner_sense:13;
    __u32 reserved3:3;
};
```

Members

edge_sense_0 Sensitivity of edge in dark area. u13.0, default 8191.

reserved0 reserved

- reserved1 reserved

corner_sense_0 Sensitivity of corner in dark area. u13.0, default 0.

reserved2 reserved

delta_corner_sense Difference in the sensitivity of corners between the bright and dark areas. u13.0, default 8191.

reserved3 reserved

```
struct ipu3_uapi_yuvp1_y_ee_nr_gain_config
    Luma(Y) edge enhancement noise reduction gain config
```

Definition

```
struct ipu3_uapi_yuvp1_y_ee_nr_gain_config {
    __u32 gain_pos_0:5;
    __u32 reserved0:3;
    __u32 delta_gain_posi:5;
    __u32 reserved1:3;
    __u32 gain_neg_0:5;
    __u32 reserved2:3;
    __u32 delta_gain_neg:5;
    __u32 reserved3:3;
};
```

Members

gain_pos_0 Gain for positive edge in dark area. u5.0, [0, 16], default 2.

reserved0 reserved

- **delta_gain_posi** Difference in the gain of edges between the bright and dark areas for positive edges. u5.0, [0, 16], default 0.
- reserved1 reserved

gain_neg_0 Gain for negative edge in dark area. u5.0, [0, 16], default 8.

reserved2 reserved

delta_gain_neg Difference in the gain of edges between the bright and dark areas for negative edges. u5.0, [0, 16], default 0.

```
reserved3 reserved
```

struct ipu3_uapi_yuvp1_y_ee_nr_clip_config
 Luma(Y) edge enhancement noise reduction clipping config

Definition

```
struct ipu3_uapi_yuvp1_y_ee_nr_clip_config {
    __u32 clip_pos_0:5;
    __u32 reserved0:3;
    __u32 delta_clip_posi:5;
    __u32 reserved1:3;
    __u32 clip_neg_0:5;
```

(continues on next page)

(continued from previous page)

```
__u32 reserved2:3;
__u32 delta_clip_neg:5;
__u32 reserved3:3;
};
```

Members

clip_pos_0 Limit of positive edge in dark area u5, value [0, 16], default 8.

reserved0 reserved

delta_clip_posi Difference in the limit of edges between the bright and dark areas for positive edges. u5, value [0, 16], default 8.

reserved1 reserved

clip_neg_0 Limit of negative edge in dark area u5, value [0, 16], default 8.

reserved2 reserved

delta_clip_neg Difference in the limit of edges between the bright and dark areas for negative edges. u5, value [0, 16], default 8.

reserved3 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_frng_config

Luma(Y) edge enhancement noise reduction fringe config

Definition

```
struct ipu3_uapi_yuvp1_y_ee_nr_frng_config {
    __u32 gain_exp:4;
    __u32 reserved0:28;
    __u32 min_edge:13;
    __u32 reserved1:3;
    __u32 lin_seg_param:4;
    __u32 lin_seg_param:4;
    __u32 t1:1;
    __u32 t2:1;
    __u32 reserved3:6;
};
```

Members

gain_exp Common exponent of gains, u4, [0, 8], default 2.

reserved0 reserved

min_edge Threshold for edge and smooth stitching, u13.

reserved1 reserved

lin_seg_param Power of LinSeg, u4.

reserved2 reserved

t1 Parameter for enabling/disabling the edge enhancement, u1.0, [0, 1], default 1.

t2 Parameter for enabling/disabling the smoothing, u1.0, [0, 1], default 1.

reserved3 reserved

```
struct ipu3_uapi_yuvp1_y_ee_nr_diag_config
```

Luma(Y) edge enhancement noise reduction diagonal config

Definition

```
struct ipu3_uapi_yuvp1_y_ee_nr_diag_config {
    __u32 diag_disc_g:4;
    __u32 reserved0:4;
    __u32 hvw_hor:4;
    __u32 dw_hor:4;
    __u32 dw_diag:4;
    __u32 dw_diag:4;
    __u32 reserved1:8;
};
```

Members

diag_disc_g Coefficient that prioritize diagonal edge direction on horizontal or vertical for final enhancement. u4.0, [1, 15], default 1.

reserved0 reserved

- hvw_hor Weight of horizontal/vertical edge enhancement for hv edge. u2.2, [1,
 15], default 4.
- hvw_diag Weight of horizontal/vertical edge enhancement for diagonal edge. u2.2, [1, 15], default 1.

reserved1 reserved

struct ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config

Luma(Y) edge enhancement noise reduction false color correction (FCC) coring config

Definition

```
struct ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config {
    __u32 pos_0:13;
    __u32 reserved0:3;
    __u32 pos_delta:13;
    __u32 reserved1:3;
    __u32 neg_0:13;
    __u32 reserved2:3;
    __u32 neg_delta:13;
    __u32 reserved3:3;
};
```

Members

pos_0 Gain for positive edge in dark, u13.0, [0, 16], default 0.

reserved0 reserved

- reserved1 reserved
- **neg_0** Gain for negative edge in dark area, u13.0, range [0, 16], default 0.
- reserved2 reserved

reserved3 reserved

Description

Coring is a simple soft thresholding technique.

```
struct ipu3_uapi_yuvp1_y_ee_nr_config
```

Edge enhancement and noise reduction

Definition

```
struct ipu3_uapi_yuvp1_y_ee_nr_config {
   struct ipu3_uapi_yuvp1_y_ee_nr_lpf_config lpf;
   struct ipu3_uapi_yuvp1_y_ee_nr_sense_config sense;
   struct ipu3_uapi_yuvp1_y_ee_nr_gain_config gain;
   struct ipu3_uapi_yuvp1_y_ee_nr_clip_config clip;
   struct ipu3_uapi_yuvp1_y_ee_nr_frng_config frng;
   struct ipu3_uapi_yuvp1_y_ee_nr_diag_config diag;
   struct ipu3_uapi_yuvp1_y_ee_nr_fc_coring_config fc_coring;
};
```

Members

```
struct ipu3_uapi_yuvp2_tcc_gen_control_static_config
Total color correction general control config
```

Definition

```
struct ipu3_uapi_yuvp2_tcc_gen_control_static_config {
    __u32 en:1;
    __u32 blend_shift:3;
    __u32 gain_according_to_y_only:1;
    __u32 reserved0:11;
    __s32 gamma:5;
    __u32 reserved1:3;
```

(continues on next page)

(continued from previous page)

```
___s32 delta:5;
___u32 reserved2:3;
};
```

Members

en 0 - TCC disabled. Output = input 1 - TCC enabled.

blend_shift blend shift, Range[3, 4], default NA.

gain_according_to_y_only 0: Gain is calculated according to YUV, 1: Gain is
 calculated according to Y only

reserved0 reserved

gamma Final blending coefficients. Values[-16, 16], default NA.

reserved1 reserved

delta Final blending coefficients. Values[-16, 16], default NA.

reserved2 reserved

struct ipu3_uapi_yuvp2_tcc_macc_elem_static_config

Total color correction multi-axis color control (MACC) config

Definition

```
struct ipu3_uapi_yuvp2_tcc_macc_elem_static_config {
    __s32 a:12;
    __u32 reserved0:4;
    __s32 b:12;
    __u32 reserved1:4;
    __s32 c:12;
    __u32 reserved2:4;
    __s32 d:12;
    __u32 reserved3:4;
}
```

```
};
```

Members

a a coefficient for 2x2 MACC conversion matrix.

reserved0 reserved

b b coefficient 2x2 MACC conversion matrix.

reserved1 reserved

c c coefficient for 2x2 MACC conversion matrix.

reserved2 reserved

d d coefficient for 2x2 MACC conversion matrix.

reserved3 reserved

struct ipu3_uapi_yuvp2_tcc_macc_table_static_config
Total color correction multi-axis color control (MACC) table array

Definition

Members

entries config for multi axis color correction, as specified by ipu3_uapi_yuvp2_tcc_macc_elem_static_config

struct ipu3_uapi_yuvp2_tcc_inv_y_lut_static_config

Total color correction inverse y lookup table

Definition

```
struct ipu3_uapi_yuvp2_tcc_inv_y_lut_static_config {
    __u16 entries[IPU3_UAPI_YUVP2_TCC_INV_Y_LUT_ELEMENTS];
};
```

Members

entries lookup table for inverse y estimation, and use it to estimate the ratio between luma and chroma. Chroma by approximate the absolute value of the radius on the chroma plane ($R = sqrt(u^2+v^2)$) and luma by approximate by 1/Y.

struct ipu3_uapi_yuvp2_tcc_gain_pcwl_lut_static_config
Total color correction lookup table for PCWL

Definition

```
struct ipu3_uapi_yuvp2_tcc_gain_pcwl_lut_static_config {
    __u16 entries[IPU3_UAPI_YUVP2_TCC_GAIN_PCWL_LUT_ELEMENTS];
};
```

Members

entries lookup table for gain piece wise linear transformation (PCWL)

struct ipu3_uapi_yuvp2_tcc_r_sqr_lut_static_config
Total color correction lookup table for r square root

Definition

```
struct ipu3_uapi_yuvp2_tcc_r_sqr_lut_static_config {
    __s16 entries[IPU3_UAPI_YUVP2_TCC_R_SQR_LUT_ELEMENTS];
};
```

Members

entries lookup table for r square root estimation

```
struct ipu3_uapi_yuvp2_tcc_static_config
Total color correction static
```

Definition

```
struct ipu3_uapi_yuvp2_tcc_static_config {
    struct ipu3_uapi_yuvp2_tcc_gen_control_static_config gen_control;
    struct ipu3_uapi_yuvp2_tcc_macc_table_static_config macc_table;
    struct ipu3_uapi_yuvp2_tcc_inv_y_lut_static_config inv_y_lut;
    struct ipu3_uapi_yuvp2_tcc_gain_pcwl_lut_static_config gain_pcwl;
    struct ipu3_uapi_yuvp2_tcc_r_sqr_lut_static_config r_sqr_lut;
};
```

Members

gen_control general config for Total Color Correction

macc_table config for multi axis color correction

inv_y_lut lookup table for inverse y estimation

gain_pcwl lookup table for gain PCWL

r_sqr_lut lookup table for r square root estimation.

```
struct ipu3_uapi_anr_transform_config
Advanced noise reduction transform
```

Definition

```
struct ipu3 uapi anr transform config {
  __u32 enable:1;
   _u32 adaptive_treshhold_en:1;
   u32 reserved1:30;
   u8 reserved2[44];
  struct ipu3 uapi anr alpha alpha[3];
  struct ipu3 uapi anr beta beta[3];
  struct ipu3 uapi anr plane color color[3];
  __u16 sqrt_lut[IPU3_UAPI_ANR LUT SIZE];
  ___s16 xreset:13;
  __u16 reserved3:3;
   _s16 yreset:13;
   u16 reserved4:3;
   _u32 x_sqr_reset:24;
    u32 r normfactor:5;
    u32 reserved5:3;
    _u32 y_sqr_reset:24;
   _u32 gain_scale:8;
};
```

Members

enable advanced noise reduction enabled.

adaptive_treshhold_en On IPU3, adaptive threshold is always enabled.

reserved1 reserved

reserved2 reserved

alpha using following defaults: 13, 13, 13, 13, 0, 0, 0, 0 11, 11, 11, 11, 0, 0, 0, 0 14, 14, 14, 14, 0, 0, 0, 0

beta use following defaults: 24, 24, 24, 24, 24 21, 20, 20, 21 25, 25, 25, 25

color use defaults defined in driver/media/pci/intel/ipu3-tables.c

sqrt_lut 11 bits per element, values = [724 768 810 849 887 923 958 991 1024
1056 1116 1145 1173 1201 1086 1228 1254 1280 1305 1330 1355 1379 1402
1425 1448]

xreset Reset value of X for r² calculation Value: col_start-X_center Constraint: Xreset + FrameWdith=4095 Xreset= -4095, default -1632.

reserved3 reserved

yreset Reset value of Y for r² calculation Value: row_start-Y_center Constraint: Yreset + FrameHeight=4095 Yreset= -4095, default -1224.

reserved4 reserved

x_sqr_reset Reset value of X^2 for r^2 calculation Value = (Xreset)^2

r_normfactor Normalization factor for R. Default 14.

reserved5 reserved

y_sqr_reset Reset value of Y^2 for r^2 calculation Value = (Yreset)^2

gain_scale Parameter describing shading gain as a function of distance from the image center. A single value per frame, loaded by the driver. Default 115.

struct ipu3_uapi_anr_stitch_pyramid

ANR stitch pyramid

Definition

```
struct ipu3_uapi_anr_stitch_pyramid {
    __u32 entry0:6;
    __u32 entry1:6;
    __u32 entry2:6;
    __u32 reserved:14;
};
```

Members

entry0 pyramid LUT entry0, range [0x0, 0x3f]

entry1 pyramid LUT entry1, range [0x0, 0x3f]

entry2 pyramid LUT entry2, range [0x0, 0x3f]

reserved reserved

Definition

```
struct ipu3_uapi_anr_stitch_config {
    __u32 anr_stitch_en;
    __u8 reserved[44];
    struct ipu3_uapi_anr_stitch_pyramid pyramid[IPU3_UAPI_ANR_PYRAMID_SIZE];
};
```

Members

anr_stitch_en enable stitch. Enabled with 1.

reserved reserved

pyramid pyramid table as defined by ipu3_uapi_anr_stitch_pyramid default values: { 1, 3, 5 }, { 7, 7, 5 }, { 3, 1, 3 }, { 9, 15, 21 }, { 21, 15, 9 }, { 3, 5, 15 }, { 25, 35, 35 }, { 25, 15, 5 }, { 7, 21, 35 }, { 49, 49, 35 }, { 21, 7, 7 }, { 21, 35, 49 }, { 49, 35, 21 }, { 7, 5, 15 }, { 25, 35, 35 }, { 25, 15, 5 }, { 3, 9, 15 }, { 21, 21, 15 }, { 9, 3, 1 }, { 3, 5, 7 }, { 7, 5, 3}, { 1 }

struct ipu3_uapi_anr_config

ANR config

Definition

```
struct ipu3_uapi_anr_config {
   struct ipu3_uapi_anr_transform_config transform ;
   struct ipu3_uapi_anr_stitch_config stitch ;
};
```

Members

transform advanced noise reduction transform config as specified by ipu3_uapi_anr_transform_config

stitch create 4x4 patch from 4 surrounding 8x8 patches.

struct ipu3_uapi_acc_param

Accelerator cluster parameters

Definition

```
struct ipu3 uapi acc param {
  struct ipu3 uapi bnr static config bnr;
  struct ipu3_uapi_bnr_static_config_green_disparity green disparity ;
  struct ipu3_uapi_dm_config dm ;
  struct ipu3_uapi_ccm_mat_config ccm ;
  struct ipu3_uapi_gamma_config gamma ;
  struct ipu3_uapi_csc_mat_config csc ;
  struct ipu3_uapi_cds_params cds ;
  struct ipu3 uapi shd config shd ;
  struct ipu3 uapi yuvp1 iefd config iefd ;
  struct ipu3_uapi_yuvp1_yds_config yds_c0 ;
  struct ipu3 uapi yuvp1 chnr config chnr c0 ;
  struct ipu3 uapi yuvp1 y ee nr config y ee nr ;
  struct ipu3_uapi_yuvp1_yds_config yds ;
  struct ipu3_uapi_yuvp1_chnr_config chnr ;
  struct ipu3 uapi yuvp1 yds config yds2 ;
  struct ipu3 uapi yuvp2 tcc static config tcc ;
  struct ipu3 uapi anr config anr;
 struct ipu3 uapi awb fr config s awb fr;
 struct ipu3 uapi ae config ae;
  struct ipu3_uapi_af_config_s af;
  struct ipu3 uapi awb config awb;
```

};

Members

- bnr parameters for bayer noise reduction static config. See ipu3_uapi_bnr_static_config
- green_disparity disparity static config between gr and gb channel. See ipu3_uapi_bnr_static_config_green_disparity

dm de-mosaic config. See ipu3 uapi dm config ccm color correction matrix. See ipu3 uapi ccm mat config gamma gamma correction config. See ipu3 uapi gamma config csc color space conversion matrix. See ipu3 uapi csc mat config cds color down sample config. See ipu3 uapi cds params shd lens shading correction config. See ipu3 uapi shd config iefd Image enhancement filter and denoise config. ipu3 uapi yuvp1 iefd config yds c0 y down scaler config. ipu3 uapi yuvp1 yds config chnr_c0 chroma noise reduction config. ipu3_uapi_yuvp1_chnr_config y ee nr v edge enhancement and noise reduction config. ipu3 uapi yuvp1 y ee nr config yds y down scaler config. See ipu3 uapi yuvp1 yds config chnr chroma noise reduction config. See ipu3 uapi yuvp1 chnr config yds2 y channel down scaler config. See ipu3_uapi_yuvp1_yds_config tcc total color correction config defined as in struct ipu3_uapi_yuvp2_tcc_static_config anr advanced noise reduction config.See ipu3 uapi anr config awb fr AWB filter response config. See ipu3 uapi awb fr config ae auto exposure config As specified by ipu3 uapi ae config af auto focus config. As specified by ipu3 uapi af config awb auto white balance config. As specified by ipu3 uapi awb config

Description

ACC refers to the HW cluster containing all Fixed Functions (FFs). Each FF implements a specific algorithm.

struct ipu3_uapi_isp_lin_vmem_params Linearization parameters

Definition

```
struct ipu3_uapi_isp_lin_vmem_params {
    __s16 lin_lutlow_gr[IPU3_UAPI_LIN_LUT_SIZE];
    __s16 lin_lutlow_b[IPU3_UAPI_LIN_LUT_SIZE];
    __s16 lin_lutlow_gb[IPU3_UAPI_LIN_LUT_SIZE];
    __s16 lin_lutdif_gr[IPU3_UAPI_LIN_LUT_SIZE];
    __s16 lin_lutdif_r[IPU3_UAPI_LIN_LUT_SIZE];
    __s16 lin_lutdif_b[IPU3_UAPI_LIN_LUT_SIZE];
    __s16 lin_lutdif_b[IPU3_UAPI_LIN_LUT_SIZE];
    __s16 lin_lutdif_gb[IPU3_UAPI_LIN_LUT_SIZE];
};
```

Members

lin_lutlow_gr linearization look-up table for GR channel interpolation.

lin_lutlow_r linearization look-up table for R channel interpolation.

lin_lutlow_b linearization look-up table for B channel interpolation.

lin_lutlow_gb linearization look-up table for GB channel interpolation. lin_lutlow_gr/lin_lutlow_r/lin_lutlow_b/lin_lutlow_gb <= LIN_MAX_VALUE - 1.

lin_lutdif_gr lin_lutlow_gr[i+1] - lin_lutlow_gr[i].

lin_lutdif_r lin_lutlow_r[i+1] - lin_lutlow_r[i].

lin_lutdif_b lin_lutlow_b[i+1] - lin_lutlow_b[i].

lin_lutdif_gb lin_lutlow_gb[i+1] - lin_lutlow_gb[i].

struct ipu3_uapi_isp_tnr3_vmem_params

Temporal noise reduction vector memory parameters

Definition

```
struct ipu3_uapi_isp_tnr3_vmem_params {
    __u16 slope[IPU3_UAPI_ISP_TNR3_VMEM_LEN];
    __u16 reserved1[IPU3_UAPI_ISP_VEC_ELEMS - IPU3_UAPI_ISP_TNR3_VMEM_LEN];
    __u16 sigma[IPU3_UAPI_ISP_TNR3_VMEM_LEN];
    __u16 reserved2[IPU3_UAPI_ISP_VEC_ELEMS - IPU3_UAPI_ISP_TNR3_VMEM_LEN];
};
```

Members

slope slope setting in interpolation curve for temporal noise reduction.

reserved1 reserved

sigma knee point setting in interpolation curve for temporal noise reduction.

reserved2 reserved

```
struct ipu3_uapi_isp_tnr3_params
```

Temporal noise reduction v3 parameters

Definition

```
struct ipu3_uapi_isp_tnr3_params {
    __u32 knee_y1;
    __u32 knee_y2;
    __u32 maxfb_y;
    __u32 maxfb_u;
    __u32 maxfb_v;
    __u32 round_adj_y;
    __u32 round_adj_u;
    __u32 round_adj_v;
    __u32 ref_buf_select;
}
```

};

Members

knee_y1 Knee point TNR3 assumes standard deviation of Y,U and V at Y1 are TnrY1_Sigma_Y, U and V. knee_y2 Knee point TNR3 assumes standard deviation of Y,U and V at Y2 are TnrY2_Sigma_Y, U and V.

- maxfb_y Max feedback gain for Y
- maxfb_u Max feedback gain for U
- maxfb_v Max feedback gain for V
- round_adj_y rounding Adjust for Y
- round_adj_u rounding Adjust for U
- round_adj_v rounding Adjust for V

ref_buf_select selection of the reference frame buffer to be used.

```
struct ipu3_uapi_isp_xnr3_vmem_params
```

Extreme noise reduction v3 vector memory parameters

Definition

```
struct ipu3_uapi_isp_xnr3_vmem_params {
    __u16 x[IPU3_UAPI_ISP_VEC_ELEMS];
    __u16 a[IPU3_UAPI_ISP_VEC_ELEMS];
    __u16 b[IPU3_UAPI_ISP_VEC_ELEMS];
    __u16 c[IPU3_UAPI_ISP_VEC_ELEMS];
};
```

Members

- x xnr3 parameters.
- a xnr3 parameters.
- **b** xnr3 parameters.
- c xnr3 parameters.

struct ipu3_uapi_xnr3_alpha_params

Extreme noise reduction v3 alpha tuning parameters

Definition

```
struct ipu3_uapi_xnr3_alpha_params {
    __u32 y0;
    __u32 u0;
    __u32 v0;
    __u32 ydiff;
    __u32 udiff;
    __u32 vdiff;
}
```

```
};
```

Members

y0 Sigma for Y range similarity in dark area.

u0 Sigma for U range similarity in dark area.

v0 Sigma for V range similarity in dark area.

ydiff Sigma difference for Y between bright area and dark area.

udiff Sigma difference for U between bright area and dark area.

vdiff Sigma difference for V between bright area and dark area.

struct ipu3_uapi_xnr3_coring_params

Extreme noise reduction v3 coring parameters

Definition

```
struct ipu3_uapi_xnr3_coring_params {
    __u32 u0;
    __u32 v0;
    __u32 udiff;
    __u32 vdiff;
};
```

Members

u0 Coring Threshold of U channel in dark area.

v0 Coring Threshold of V channel in dark area.

udiff Threshold difference of U channel between bright and dark area.

vdiff Threshold difference of V channel between bright and dark area.

struct ipu3_uapi_xnr3_blending_params Blending factor

Definition

```
struct ipu3_uapi_xnr3_blending_params {
    __u32 strength;
};
```

Members

strength The factor for blending output with input. This is tuning parameter-Higher values lead to more aggressive XNR operation.

```
struct ipu3_uapi_isp_xnr3_params
```

Extreme noise reduction v3 parameters

Definition

struct ipu3_uapi_isp_xnr3_params {
 struct ipu3_uapi_xnr3_alpha_params alpha;
 struct ipu3_uapi_xnr3_coring_params coring;
 struct ipu3_uapi_xnr3_blending_params blending;
};

Members

alpha parameters for xnr3 alpha. See ipu3_uapi_xnr3_alpha_params

coring parameters for xnr3 coring. See ipu3_uapi_xnr3_coring_params

blending parameters for xnr3 blending. See ipu3_uapi_xnr3_blending_params

struct ipu3_uapi_obgrid_param

Optical black level compensation parameters

Definition

```
struct ipu3_uapi_obgrid_param {
    __u16 gr;
    __u16 r;
    __u16 b;
    __u16 gb;
};
```

Members

 ${\rm gr}\,$ Grid table values for color GR

 ${\boldsymbol r}\,$ Grid table values for color R

b Grid table values for color B

gb Grid table values for color GB

Description

Black level is different for red, green, and blue channels. So black level compensation is different per channel.

struct ipu3_uapi_flags

bits to indicate which pipeline needs update

Definition

```
struct ipu3 uapi flags {
  u32 gdc:1;
   u32 obgrid:1;
  ___u32 reserved1:30;
   _u32 acc_bnr:1;
   u32 acc green disparity:1;
   u32 acc dm:1;
   u32 acc ccm:1;
    u32 acc gamma:1;
   u32 acc csc:1;
   _u32 acc_cds:1;
   _u32 acc_shd:1;
   u32 reserved2:2;
   u32 acc iefd:1;
   u32 acc yds c0:1;
   _u32 acc_chnr_c0:1;
   _u32 acc_y_ee_nr:1;
   _u32 acc_yds:1;
   _u32 acc_chnr:1;
   _u32 acc_ytm:1;
   u32 acc yds2:1;
    u32 acc tcc:1;
    _u32 acc_dpc:1;
    u32 acc bds:1;
    u32 acc anr:1;
   _u32 acc_awb_fr:1;
   _u32 acc_ae:1;
    _u32 acc_af:1;
   u32 acc awb:1;
   u32 reserved3:4;
```

(continues on next page)

(continued from previous page)

Members

```
gdc 0 = no update, 1 = update.
obgrid 0 = no update, 1 = update.
reserved1 Not used.
acc bnr 0 = no update, 1 = update.
acc green disparity 0 = no update, 1 = update.
acc dm 0 = no update, 1 = update.
acc ccm 0 = no update, 1 = update.
acc gamma 0 = no update, 1 = update.
acc csc 0 = no update, 1 = update.
acc cds 0 = no update, 1 = update.
acc shd 0 = no update, 1 = update.
reserved2 Not used.
acc iefd 0 = no update, 1 = update.
acc yds c0 0 =  no update, 1 =  update.
acc chnr c0 0 = no update, 1 = update.
acc y ee nr 0 = no update, 1 = update.
acc yds 0 = no update, 1 = update.
acc chnr 0 = no update, 1 = update.
acc_ytm 0 = no update, 1 = update.
acc yds2 0 = no update, 1 = update.
acc tcc 0 = no update, 1 = update.
acc dpc 0 = no update, 1 = update.
acc bds 0 = no update, 1 = update.
acc anr 0 = no update, 1 = update.
acc awb fr 0 = no update, 1 = update.
acc_ae 0 = no update, 1 = update.
```

acc_af 0 =no update, 1 =update.

acc_awb 0 = no update, 1 = update.

reserved3 Not used.

lin_vmem_params 0 = no update, 1 = update.

tnr3_vmem_params 0 = no update, 1 = update.

xnr3_vmem_params 0 = no update, 1 = update.

tnr3_dmem_params 0 = no update, 1 = update.

xnr3_dmem_params 0 = no update, 1 = update.

reserved4 Not used.

obgrid_param 0 = no update, 1 = update.

reserved5 Not used.

struct ipu3_uapi_params V4L2_META_FMT_IPU3_PARAMS

Definition

```
struct ipu3_uapi_params {
   struct ipu3_uapi_flags use ;
   struct ipu3_uapi_acc_param acc_param;
   struct ipu3_uapi_isp_lin_vmem_params lin_vmem_params;
   struct ipu3_uapi_isp_tnr3_vmem_params tnr3_vmem_params;
   struct ipu3_uapi_isp_tnr3_params tnr3_dmem_params;
   struct ipu3_uapi_isp_xnr3_params xnr3_dmem_params;
   struct ipu3_uapi_isp_xnr3_params xnr3_dmem_params;
   struct ipu3_uapi_obgrid_param obgrid_param;
};
```

Members

use select which parameters to apply, see ipu3_uapi_flags

acc_param ACC parameters, as specified by ipu3_uapi_acc_param

lin_vmem_params linearization VMEM, as specified by
ipu3_uapi_isp_lin_vmem_params

tnr3_vmem_params tnr3 VMEM as specified by ipu3_uapi_isp_tnr3_vmem_params

xnr3_vmem_params xnr3 VMEM as specified by ipu3_uapi_isp_xnr3_vmem_params

tnr3_dmem_params tnr3 DMEM as specified by ipu3_uapi_isp_tnr3_params

xnr3_dmem_params xnr3 DMEM as specified by ipu3_uapi_isp_xnr3_params

obgrid_param obgrid parameters as specified by ipu3_uapi_obgrid_param

Description

The video queue "parameters" is of format V4L2_META_FMT_IPU3_PARAMS. This is a "single plane" v4l2_meta_format using V4L2_BUF_TYPE_META_OUTPUT.

struct ipu3_uapi_params as defined below contains a lot of parameters and ipu3_uapi_flags selects which parameters to apply.

V4L2_META_FMT_UVC ('UVCH')

UVC Payload Header Data

Description

This format describes standard UVC metadata, extracted from UVC packet headers and provided by the UVC driver through metadata video nodes. That data includes exact copies of the standard part of UVC Payload Header contents and auxiliary timing information, required for precise interpretation of timestamps, contained in those headers. See section "2.4.3.3 Video and Still Image Payload Headers" of the "UVC 1.5 Class specification" for details.

Each UVC payload header can be between 2 and 12 bytes large. Buffers can contain multiple headers, if multiple such headers have been transmitted by the camera for the respective frame. However, the driver may drop headers when the buffer is full, when they contain no useful information (e.g. those without the SCR field or with that field identical to the previous header), or generally to perform rate limiting when the device sends a large number of headers.

Each individual block contains the following fields:

Field	Description
u64 ts;	system timestamp in host byte order, measured by the driver upon
	reception of the payload
u16 sof;	USB Frame Number in host byte order, also obtained by the driver
	as close as possible to the above timestamp to enable correlation
	between them
The rest is a	n exact copy of the UVC payload header:
_u8	length of the rest of the block, including this field
length;	
u8 flags;	Flags, indicating presence of other standard UVC fields
u8 buf[];	The rest of the header, possibly including UVC PTS and SCR fields

Table 53: UVC Metadata Block

V4L2_META_FMT_VSP1_HGO ('VSPH')

Renesas R-Car VSP1 1-D Histogram Data

Description

This format describes histogram data generated by the Renesas R-Car VSP1 1-D Histogram (HGO) engine.

The VSP1 HGO is a histogram computation engine that can operate on RGB, YCrCb or HSV data. It operates on a possibly cropped and subsampled input image and computes the minimum, maximum and sum of all pixels as well as per-channel histograms.

The HGO can compute histograms independently per channel, on the maximum of the three channels (RGB data only) or on the Y channel only (YCbCr only). It can additionally output the histogram with 64 or 256 bins, resulting in four possible modes of operation.

- In 64 bins normal mode, the HGO operates on the three channels independently to compute three 64-bins histograms. RGB, YCbCr and HSV image formats are supported.
- In 64 bins maximum mode, the HGO operates on the maximum of the (R, G, B) channels to compute a single 64-bins histogram. Only the RGB image format is supported.
- In 256 bins normal mode, the HGO operates on the Y channel to compute a single 256-bins histogram. Only the YCbCr image format is supported.
- In 256 bins maximum mode, the HGO operates on the maximum of the (R, G, B) channels to compute a single 256-bins histogram. Only the RGB image format is supported.

Byte Order. All data is stored in memory in little endian format. Each cell in the tables contains one byte.

/02 by 000	,					
Memory						
[31:24]	[23:16]	[15:8]	[7:0]			
	R/Cr/H max [7:0]		R/Cr/H min [7:0]			
	G/Y/S max [7:0]		G/Y/S min [7:0]			
	B/Cb/V max [7:0]		B/Cb/V min [7:0]			
R/Cr/H s	sum [31:0]					
G/Y/S su	m [31:0]					
B/Cb/V s	sum [31:0]					
R/Cr/H bin 0 [31:0]						
R/Cr/H k	oin 63 [31:0]					
G/Y/S bit	n 0 [31:0]					
G/Y/S bin 63 [31:0]						
B/Cb/V bin 0 [31:0]						
B/Cb/V bin 63 [31:0]						
	Memory [31:24] R/Cr/H s G/Y/S su B/Cb/V s R/Cr/H h R/Cr/H h G/Y/S bit G/Y/S bit B/Cb/V h 	Memory [31:24] [23:16] R/Cr/H max [7:0] G/Y/S max [7:0] B/Cb/V max [7:0] R/Cr/H sum [31:0] G/Y/S sum [31:0] G/Y/S sum [31:0] B/Cb/V sum [31:0] R/Cr/H bin 0 [31:0] R/Cr/H bin 63 [31:0] G/Y/S bin 0 [31:0] G/Y/S bin 63 [31:0] B/Cb/V bin 0 [31:0]	Memory [31:24] [23:16] [15:8] R/Cr/H max [7:0] G/Y/S max [7:0] B/Cb/V max [7:0] R/Cr/H sum [31:0] G/Y/S sum [31:0] B/Cb/V sum [31:0] R/Cr/H bin 0 [31:0] ···· R/Cr/H bin 63 [31:0] G/Y/S bin 0 [31:0] ···· B/Cb/V bin 0 [31:0]			

Table 54: VSP1 HGO Data - 64 Bins, Normal Mode (792 bytes)

Table 55: VSP1 HGO Data - 64 Bins, Max Mode (264 bytes)

Offset	Memory						
	[31:24]	[23:16]	[15:8]	[7:0]			
0	max(R,G,B) max [7:0] max(R,G,B) min [7:0]						
4	max(R,G,B) sum [31:0]						
8	max(R,G,B) bin 0 [31:0]						
260	max(R,G,B) bin 63 [31:0]						

Table 56: VSP1 HGO Data - 256 Bins, Normal Mode (1032 bytes)

Offset	Memory						
	[31:24]	[23:16]	[15:8]	[7:0]			
0		Y max [7:0]		Y min [7:0]			
4	Y sum [31:0]						
8	Y bin 0 [Y bin 0 [31:0]					
1028	Y bin 255 [31:0]						

Table 57: VSP1 HGO Data - 256 Bins, Max Mode (1032 bytes)

Offset	Memory						
	[31:24]	[23:16]	[15:8]	[7:0]			
0	max(R,G,B) max [7:0] max(R,G,B) min [7:0]						
4	max(R,G,B) sum [31:0]						
8	max(R,G,B) bin 0 [31:0]						
1028	max(R,G,B) bin 255 [31:0]						

V4L2_META_FMT_VSP1_HGT ('VSPT')

Renesas R-Car VSP1 2-D Histogram Data

Description

This format describes histogram data generated by the Renesas R-Car VSP1 2-D Histogram (HGT) engine.

The VSP1 HGT is a histogram computation engine that operates on HSV data. It operates on a possibly cropped and subsampled input image and computes the sum, maximum and minimum of the S component as well as a weighted frequency histogram based on the H and S components.

The histogram is a matrix of 6 Hue and 32 Saturation buckets, 192 in total. Each HSV value is added to one or more buckets with a weight between 1 and 16 depending on the Hue areas configuration. Finding the corresponding buckets is done by inspecting the H and S value independently.

The Saturation position ${\bf n}$ (0 - 31) of the bucket in the matrix is found by the expression:

n = S / 8

The Hue position \mathbf{m} (0 - 5) of the bucket in the matrix depends on how the HGT Hue areas are configured. There are 6 user configurable Hue Areas which can be configured to cover overlapping Hue values:

Area ⊶Area 5	0 Area	1 Area	2 Area	3 Area	4 <u> </u>
$\begin{array}{c} \rightarrow \\ \hline \\ \uparrow \\ \rightarrow \\ \Rightarrow \\ \end{array} \right) $	\ /	\ /	\ /	\ /	\ / _
$\left \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	\ /	\ /	\ /	\ /	\ / 🔒
$\begin{vmatrix} & X \\ \rightarrow & & X \end{vmatrix}$	X	X	X	X	X 🔒
	/ \	/ \	/ \	/ \	/ \ 🔒
$\begin{vmatrix} \gamma & 1 \\ \gamma & 1 \end{vmatrix}$	/ \	/ \	/ \	/ \	/ \ <mark>⊔</mark>
50 0L → 50 0L	0U 1L	1U 2L	2U 3L	3U 4L	4U 5L 🔒
<pre></pre>			Hue Value		

When two consecutive areas don't overlap (n+1L is equal to nU) the boundary value is considered as part of the lower area.

Pixels with a hue value included in the centre of an area (between nL and nU included) are attributed to that single area and given a weight of 16. Pixels with a hue value included in the overlapping region between two areas (between n+1L and nU excluded) are attributed to both areas and given a weight for each of these areas proportional to their position along the diagonal lines (rounded down).

The Hue area setup must match one of the following constrains:

0L	<=	0U	<=	1L	<=	1U	<=	2L	<=	2U	<=	3L	<=	3U	<=	4L	<=	4U	<=	5L	<=	50
0U	<=	1L	<=	1U	<=	2L	<=	2U	<=	3L	<=	3U	<=	4L	<=	40	<=	5L	<=	50	<=	0L

Byte Order. All data is stored in memory in little endian format. Each cell in the tables contains one byte.

Offset	Memory								
	[31:24]	[23:16]	[15:8]	[7:0]					
0	•	S max [7:0]	•	S min [7:0]					
4	S sum [31:0								
8		ucket (m=0, 1	n=0) [31:0]						
12	0	ucket (m=0, 1							
			,						
132	Histogram b	ucket (m=0, 1	n=31) [31:0]						
136	0	Histogram bucket $(m=1, n=0)$ [31:0]							
264	Histogram b	ucket (m=2, i	n=0) [31:0]						
392	Histogram b	ucket (m=3, 1	n=0) [31:0]						
	•••								
520	Histogram b	ucket (m=4, 1	n=0) [31:0]						
	•••								
648	Histogram b	Histogram bucket (m=5, n=0) [31:0]							
	•••								
772	Histogram b	ucket (m=5, 1	n=31) [31:0]						

Table 58: VSP1 HGT Data - (776 bytes)

V4L2_META_FMT_VIVID ('VIVD')

VIVID Metadata Format

Description

This describes metadata format used by the vivid driver.

It sets Brightness, Saturation, Contrast and Hue, each of which maps to corresponding controls of the vivid driver with respect to the range and default values.

It contains the following fields:

Field	Description
u16 bright-	Image brightness, the value is in the range 0 to 255, with the
ness;	default value as 128.
u16 con-	Image contrast, the value is in the range 0 to 255, with the default
trast;	value as 128.
u16 satura-	Image color saturation, the value is in the range 0 to 255, with the
tion;	default value as 128.
s16 hue;	Image color balance, the value is in the range -128 to 128, with
	the default value as 0.

Table 59: VIVID Metadata

Reserved Format Identifiers

These formats are not defined by this specification, they are just listed for reference and to avoid naming conflicts. If you want to register your own format, send an e-mail to the linux-media mailing list https://linuxtv.org/lists.php for inclusion in the videodev2.h file. If you want to share your format with other developers add a link to your documentation and send a copy to the linux-media mailing list for inclusion in this section. If you think your format should be listed in a standard format section please make a proposal on the linux-media mailing list.

		u maye rormats
Identifier	Code	Details
V4L2_PIX_FMT_DV	'dvsd'	unknown
V4L2_PIX_FMT_ET61X251	'E625'	Compressed format of the ET61X251 driver
V4L2_PIX_FMT_HI240	'HI24'	8 bit RGB format used by the BTTV driver.
V4L2_PIX_FMT_HM12	'HM12'	YUV 4:2:0 format used by the IVTV driver.
		The format is documented in the ker
		nel sources in the file Documentation,
		userspace-api/media/drivers/
		cx2341x-uapi.rst
V4L2_PIX_FMT_CPIA1	'CPIA'	YUV format used by the gspca cpia1 driver.
V4L2_PIX_FMT_JPGL	'JPGL'	JPEG-Light format (Pegasus Lossless JPEG
		used in Divio webcams NW 80x.
V4L2_PIX_FMT_SPCA501	'S501'	YUYV per line used by the gspca driver.
V4L2_PIX_FMT_SPCA505	'S505'	YYUV per line used by the gspca driver.
V4L2_PIX_FMT_SPCA508	'S508'	YUVY per line used by the gspca driver.
V4L2_PIX_FMT_SPCA561	'S561'	Compressed GBRG Bayer format used by the
		gspca driver.
V4L2_PIX_FMT_PAC207	'P207'	Compressed BGGR Bayer format used by the
		gspca driver.
V4L2_PIX_FMT_MR97310A	'M310'	Compressed BGGR Bayer format used by the
		gspca driver.
V4L2_PIX_FMT_JL2005BCD	'JL20'	JPEG compressed RGGB Bayer format used
		by the gspca driver.
V4L2_PIX_FMT_0V511	ʻ0511'	OV511 JPEG format used by the gspca driver
V4L2_PIX_FMT_0V518	'O518'	OV518 JPEG format used by the gspca driver
V4L2_PIX_FMT_PJPG	'PJPG'	Pixart 73xx JPEG format used by the gspca
		driver.
V4L2_PIX_FMT_SE401	'S401'	Compressed RGB format used by the gspca
		se401 driver
V4L2_PIX_FMT_SQ905C	'905C'	Compressed RGGB bayer format used by the
		gspca driver.
V4L2_PIX_FMT_MJPEG	'MJPG'	Compressed format used by the Zoran drive
V4L2_PIX_FMT_PWC1	'PWC1'	Compressed format of the PWC driver.
V4L2_PIX_FMT_PWC2	'PWC2'	Compressed format of the PWC driver.
V4L2_PIX_FMT_SN9C10X	'S910'	Compressed format of the SN9C102 driver.
V4L2_PIX_FMT_SN9C20X_I420	'S920'	YUV 4:2:0 format of the gspca sn9c20
		driver.

Table 60: Reserved Image Formats

Continued on next page

Identifier	Code	Details		
V4L2_PIX_FMT_SN9C2028	'SONX'	Compressed GBRG bayer format of the		
		gspca sn9c2028 driver.		
V4L2_PIX_FMT_STV0680	'S680'	Bayer format of the gspca stv0680 driver.		
V4L2_PIX_FMT_WNVA	'WNVA'	Used by the Winnov Videum driver, http:/		
		www.thedirks.org/winnov/		
V4L2_PIX_FMT_TM6000	'TM60'	Used by Trident tm6000		
V4L2_PIX_FMT_CIT_YYVYUY	'CITV'	Used by xirlink CIT, found at IBM webcams		
		Uses one line of Y then 1 line of VYUY		
V4L2_PIX_FMT_KONICA420	'KONI'	Used by Konica webcams.		
		YUV420 planar in blocks of 256 pixels.		
V4L2_PIX_FMT_YYUV	'YYUV'	unknown		
V4L2_PIX_FMT_Y4	'Y04 '	Old 4-bit greyscale format. Only the mos		
		significant 4 bits of each byte are used, the		
		other bits are set to 0.		
V4L2_PIX_FMT_Y6	'Y06'	Old 6-bit greyscale format. Only the mos		
		significant 6 bits of each byte are used, the		
		other bits are set to 0.		

Table	60 -	continued	from	previous page
-------	------	-----------	------	---------------

		from previous page
Identifier	Code	Details
		Details Two-planar format used by Samsung S5C73MX cameras. The first plane contains interleaved JPEG and UYVY image data followed by meta data in form of an array of offsets to the UYVY data blocks. The actual pointer array follows immediately the interleaved JPEG/UYVY data, the number of entries in this array equals the heigh of the UYVY image. Each entry is a 4-byte unsigned integer in big endian order and it's an offset to a single pixel line of the
		UYVY image. The first plane can start either with JPEG or UYVY data chunk. The size o a single UYVY block equals the UYVY image s width multiplied by 2. The size of a JPEC chunk depends on the image and can vary with each line. The second plane, at an offset of 4084 bytes
		contains a 4-byte offset to the pointer array in the first plane. This offset is followed by a 4-byte value indicating size of the pointer ar ray. All numbers in the second plane are also in big endian order. Remaining data in the second plane is undefined. The information in the second plane allows to easily find loca tion of the pointer array, which can be differ
		ent for each frame. The size of the pointer ar ray is constant for given UYVY image height In order to extract UYVY and JPEG frames an application can initially set a data pointer to the start of first plane and then add an offset from the first entry of the pointers ta ble. Such a pointer indicates start of an
		UYVY image pixel line. Whole UYVY line can be copied to a separate buffer. These steps should be repeated for each line, i.e the number of entries in the pointer array Anything what's in between the UYVY lines is JPEG data and should be concatenated to form the JPEG stream.
V4L2_PIX_FMT_MT21C	'MT21'	Compressed two-planar YVU420 forma used by Mediatek MT8173. The compres sion is lossless. It is an opaque interme diate format and the MDP hardware mus be used to convert V4L2_PIX_FMT_MT210 to V4L2_PIX_FMT_YUV420M or V4L2_PIX_FMT_YUV420.

Table 60 – continued from previous page

	e continueu	nom previous page
Identifier	Code	Details
V4L2_PIX_FMT_SUNXI_TILED_NV12	'ST12'	Two-planar NV12-based format used by the
		video engine found on Allwinner (codenamed
		sunxi) platforms, with 32x32 tiles for the
		luminance plane and 32x64 tiles for the
		chrominance plane. The data in each tile is
		stored in linear order, within the tile bounds
		Each tile follows the previous one linearly in
		memory (from left to right, top to bottom).
		The associated buffer dimensions are aligned
		to match an integer number of tiles, result
		ing in 32-aligned resolutions for the lumi
		nance plane and 16-aligned resolutions for
		the chrominance plane (with 2x2 subsam
		pling).

Table 60 – continued from previous page

		· · · · · · · · · · · · · · · · · · ·	
	V4L2_PIX_FMT_FLAG_PREMUL_ALPHA 0x	0x00000001 The color values are premultiplied by t	he al
		pha channel value. For example, if a	ligh
		blue pixel with 50% transparency wa	as de
		scribed by RGBA values (128, 192, 255,	128)
		the same pixel described with premult	iplie
		colors would be described by RGBA v	-
		(64, 96, 128, 128)	
1			

Colorspaces

'Color' is a very complex concept and depends on physics, chemistry and biology. Just because you have three numbers that describe the 'red', 'green' and 'blue' components of the color of a pixel does not mean that you can accurately display that color. A colorspace defines what it actually means to have an RGB value of e.g. (255, 0, 0). That is, which color should be reproduced on the screen in a perfectly calibrated environment.

In order to do that we first need to have a good definition of color, i.e. some way to uniquely and unambiguously define a color so that someone else can reproduce it. Human color vision is trichromatic since the human eye has color receptors that are sensitive to three different wavelengths of light. Hence the need to use three numbers to describe color. Be glad you are not a mantis shrimp as those are sensitive to 12 different wavelengths, so instead of RGB we would be using the ABCDEFGHIJKL colorspace...

Color exists only in the eye and brain and is the result of how strongly color receptors are stimulated. This is based on the Spectral Power Distribution (SPD) which is a graph showing the intensity (radiant power) of the light at wavelengths covering the visible spectrum as it enters the eye. The science of colorimetry is about the relationship between the SPD and color as perceived by the human brain.

Since the human eye has only three color receptors it is perfectly possible that

different SPDs will result in the same stimulation of those receptors and are perceived as the same color, even though the SPD of the light is different.

In the 1920s experiments were devised to determine the relationship between SPDs and the perceived color and that resulted in the CIE 1931 standard that defines spectral weighting functions that model the perception of color. Specifically that standard defines functions that can take an SPD and calculate the stimulus for each color receptor. After some further mathematical transforms these stimuli are known as the CIE XYZ tristimulus values and these X, Y and Z values describe a color as perceived by a human unambiguously. These X, Y and Z values are all in the range $[0\cdots 1]$.

The Y value in the CIE XYZ colorspace corresponds to luminance. Often the CIE XYZ colorspace is transformed to the normalized CIE xyY colorspace:

x = X / (X + Y + Z)y = Y / (X + Y + Z)

The x and y values are the chromaticity coordinates and can be used to define a color without the luminance component Y. It is very confusing to have such similar names for these colorspaces. Just be aware that if colors are specified with lower case 'x' and 'y', then the CIE xyY colorspace is used. Upper case 'X' and 'Y' refer to the CIE XYZ colorspace. Also, y has nothing to do with luminance. Together x and y specify a color, and Y the luminance. That is really all you need to remember from a practical point of view. At the end of this section you will find reading resources that go into much more detail if you are interested.

A monitor or TV will reproduce colors by emitting light at three different wavelengths, the combination of which will stimulate the color receptors in the eye and thus cause the perception of color. Historically these wavelengths were defined by the red, green and blue phosphors used in the displays. These color primaries are part of what defines a colorspace.

Different display devices will have different primaries and some primaries are more suitable for some display technologies than others. This has resulted in a variety of colorspaces that are used for different display technologies or uses. To define a colorspace you need to define the three color primaries (these are typically defined as x, y chromaticity coordinates from the CIE xyY colorspace) but also the white reference: that is the color obtained when all three primaries are at maximum power. This determines the relative power or energy of the primaries. This is usually chosen to be close to daylight which has been defined as the CIE D65 Illuminant.

To recapitulate: the CIE XYZ colorspace uniquely identifies colors. Other colorspaces are defined by three chromaticity coordinates defined in the CIE xyY colorspace. Based on those a 3x3 matrix can be constructed that transforms CIE XYZ colors to colors in the new colorspace.

Both the CIE XYZ and the RGB colorspace that are derived from the specific chromaticity primaries are linear colorspaces. But neither the eye, nor display technology is linear. Doubling the values of all components in the linear colorspace will not be perceived as twice the intensity of the color. So each colorspace also defines a transfer function that takes a linear color component value and transforms it to the non-linear component value, which is a closer match to the non-linear performance of both the eye and displays. Linear component values are denoted RGB, non-linear are denoted as R' G' B'. In general colors used in graphics are all R' G' B', except in openGL which uses linear RGB. Special care should be taken when dealing with openGL to provide linear RGB colors or to use the built-in openGL support to apply the inverse transfer function.

The final piece that defines a colorspace is a function that transforms non-linear R' G' B' to non-linear Y' CbCr. This function is determined by the so-called luma coefficients. There may be multiple possible Y' CbCr encodings allowed for the same colorspace. Many encodings of color prefer to use luma (Y') and chroma (CbCr) instead of R' G' B'. Since the human eye is more sensitive to differences in luminance than in color this encoding allows one to reduce the amount of color information compared to the luma data. Note that the luma (Y') is unrelated to the Y in the CIE XYZ colorspace. Also note that Y' CbCr is often called YCbCr or YUV even though these are strictly speaking wrong.

Sometimes people confuse Y' CbCr as being a colorspace. This is not correct, it is just an encoding of an R' G' B' color into luma and chroma values. The underlying colorspace that is associated with the R' G' B' color is also associated with the Y' CbCr color.

The final step is how the RGB, R' G' B' or Y' CbCr values are quantized. The CIE XYZ colorspace where X, Y and Z are in the range $[0\cdots1]$ describes all colors that humans can perceive, but the transform to another colorspace will produce colors that are outside the $[0\cdots1]$ range. Once clamped to the $[0\cdots1]$ range those colors can no longer be reproduced in that colorspace. This clamping is what reduces the extent or gamut of the colorspace. How the range of $[0\cdots1]$ is translated to integer values in the range of $[0\cdots255]$ (or higher, depending on the color depth) is called the quantization. This is not part of the colorspace definition. In practice RGB or R' G' B' values are full range, i.e. they use the full $[0\cdots255]$ range. Y' CbCr values on the other hand are limited range with Y' using $[16\cdots235]$ and Cb and Cr using $[16\cdots240]$.

Unfortunately, in some cases limited range RGB is also used where the components use the range [16 \cdots 235]. And full range Y' CbCr also exists using the [0 \cdots 255] range.

In order to correctly interpret a color you need to know the quantization range, whether it is R' G' B' or Y' CbCr, the used Y' CbCr encoding and the colorspace. From that information you can calculate the corresponding CIE XYZ color and map that again to whatever colorspace your display device uses.

The colorspace definition itself consists of the three chromaticity primaries, the white reference chromaticity, a transfer function and the luma coefficients needed to transform R' G' B' to Y' CbCr. While some colorspace standards correctly define all four, quite often the colorspace standard only defines some, and you have to rely on other standards for the missing pieces. The fact that colorspaces are often a mix of different standards also led to very confusing naming conventions where the name of a standard was used to name a colorspace when in fact that standard was part of various other colorspaces as well.

If you want to read more about colors and colorspaces, then the following resources are useful: poynton is a good practical book for video engineers, colimg has a much broader scope and describes many more aspects of color (physics, chemistry, biology, etc.). The http://www.brucelindbloom.com website is an excellent resource, especially with respect to the mathematics behind colorspace conversions. The wikipedia CIE 1931 colorspace article is also very useful.

Defining Colorspaces in V4L2

v4l2 colorspace

In V4L2 colorspaces are defined by four values. The first is the colorspace identifier (enum v4l2_colorspace) which defines the chromaticities, the default transfer function, the default Y' CbCr encoding and the default quantization method. The second is the transfer function identifier (enum v4l2_xfer_func) to specify non-standard transfer functions. The third is the Y' CbCr encoding identifier (enum v4l2_ycbcr_encoding) to specify non-standard Y' CbCr encodings and the fourth is the quantization identifier (enum v4l2_quantization) to specify nonstandard quantization methods. Most of the time only the colorspace field of struct v4l2_pix_format or struct v4l2_pix_format_mplane needs to be filled in.

On HSV formats the Hue is defined as the angle on the cylindrical color representation. Usually this angle is measured in degrees, i.e. 0-360. When we map this angle value into 8 bits, there are two basic ways to do it: Divide the angular value by 2 (0-179), or use the whole range, 0-255, dividing the angular value by 1.41. The enum v412_hsv_encoding specifies which encoding is used.

Note: The default R' G' B' quantization is full range for all colorspaces except for BT.2020 which uses limited range R' G' B' quantization.

Table 62: V4L2 Colorspaces				
Identifier	Details			
V4L2_COLORSPACE_DEFAULT	The default colorspace. This can be used by applications			
	to let the driver fill in the colorspace.			
V4L2_COLORSPACE_SMPTE170M	See Colorspace SMPTE 170M			
	(V4L2_COLORSPACE_SMPTE170M).			
V4L2_COLORSPACE_REC709	See Colorspace Rec. 709			
	(V4L2_COLORSPACE_REC709).			
V4L2_COLORSPACE_SRGB	See Colorspace sRGB (V4L2_COLORSPACE_SRGB).			
V4L2_COLORSPACE_OPRGB	See Colorspace opRGB (V4L2_COLORSPACE_OPRGB).			
V4L2_COLORSPACE_BT2020	See Colorspace BT.2020 (V4L2_COLORSPACE_BT2020).			
V4L2_COLORSPACE_DCI_P3	See Colorspace DCI-P3 (V4L2_COLORSPACE_DCI_P3).			
V4L2_COLORSPACE_SMPTE240M	See Colorspace SMPTE 240M			
	(V4L2_COLORSPACE_SMPTE240M).			
V4L2_COLORSPACE_470_SYSTEM_M	See Colorspace NTSC 1953			
	(V4L2_COLORSPACE_470_SYSTEM_M).			
V4L2_COLORSPACE_470_SYSTEM_BG	See Colorspace EBU Tech. 3213			
	(V4L2_COLORSPACE_470_SYSTEM_BG).			
V4L2_COLORSPACE_JPEG	See Colorspace JPEG (V4L2_COLORSPACE_JPEG).			
V4L2_COLORSPACE_RAW	The raw colorspace. This is used for raw image capture			
	where the image is minimally processed and is using			
	the internal colorspace of the device. The software that			
	processes an image using this 'colorspace' will have to			
	know the internals of the capture device.			

Table 62. V4I 2 Colorspaces

v4l2_xfer_func

Identifier	Details
V4L2_XFER_FUNC_DEFAULT	Use the default transfer function as defined by the colorspace.
V4L2_XFER_FUNC_709	Use the Rec. 709 transfer function.
V4L2_XFER_FUNC_SRGB	Use the sRGB transfer function.
V4L2_XFER_FUNC_0PRGB	Use the opRGB transfer function.
V4L2_XFER_FUNC_SMPTE240M	Use the SMPTE 240M transfer function.
V4L2_XFER_FUNC_NONE	Do not use a transfer function (i.e. use linear RGB values).
V4L2_XFER_FUNC_DCI_P3	Use the DCI-P3 transfer function.
V4L2_XFER_FUNC_SMPTE2084	Use the SMPTE 2084 transfer function. See Transfer Function
	SMPTE 2084 (V4L2_XFER_FUNC_SMPTE2084).

Table 63: V4L2 Transfer Function

v4l2_ycbcr_encoding

Identifier	Details
V4L2_YCBCR_ENC_DEFAULT	Use the default Y' CbCr encoding as defined by the
	colorspace.
V4L2_YCBCR_ENC_601	Use the BT.601 Y' CbCr encoding.
V4L2_YCBCR_ENC_709	Use the Rec. 709 Y' CbCr encoding.
V4L2_YCBCR_ENC_XV601	Use the extended gamut xvYCC BT.601 encoding.
V4L2_YCBCR_ENC_XV709	Use the extended gamut xvYCC Rec. 709 encoding.
V4L2_YCBCR_ENC_BT2020	Use the default non-constant luminance BT.2020 Y'
	CbCr encoding.
V4L2_YCBCR_ENC_BT2020_CONST_LUM	Use the constant luminance BT.2020 Yc' CbcCrc en-
	coding.
V4L2_YCBCR_ENC_SMPTE_240M	Use the SMPTE 240M Y' CbCr encoding.

v4l2_hsv_encoding

Table	65:	V41.2	HSV	Encodings
TUDIO	00.	V ILL	110 .	Liioounigo

	0
Identifier	Details
V4L2_HSV_ENC_180	For the Hue, each LSB is two degrees.
V4L2_HSV_ENC_256	For the Hue, the 360 degrees are mapped into 8 bits, i.e.
	each LSB is roughly 1.41 degrees.

v4l2_quantization

Identifier	Details
V4L2_QUANTIZATION_DEFAULT	Use the default quantization encoding as defined by the
	colorspace. This is always full range for R'G'B' (except
	for the BT.2020 colorspace) and HSV. It is usually limited
	range for Y'CbCr.
V4L2_QUANTIZATION_FULL_RANGE	Use the full range quantization encoding. I.e. the range
	[0…1] is mapped to [0…255] (with possible clipping to
	[1254] to avoid the 0x00 and 0xff values). Cb and Cr
	are mapped from [-0.5…0.5] to [0…255] (with possible
	clipping to $[1 \cdots 254]$ to avoid the 0x00 and 0xff values).
V4L2_QUANTIZATION_LIM_RANGE	Use the limited range quantization encoding. I.e. the
	range $[0\cdots 1]$ is mapped to $[16\cdots 235]$. Cb and Cr are
	mapped from [-0.5…0.5] to [16…240].

Table 66: V4L2 Quantization Methods

Detailed Colorspace Descriptions

Colorspace SMPTE 170M (V4L2_COLORSPACE_SMPTE170M)

The SMPTE 170M standard defines the colorspace used by NTSC and PAL and by SDTV in general. The default transfer function is V4L2_XFER_FUNC_709. The default Y'CbCr encoding is V4L2_YCBCR_ENC_601. The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

Color		x	У
Red		0.630	0.340
Green		0.310	0.595
Blue		0.155	0.070
White	Reference	0.3127	0.3290
(D65)			

Table 67: SMPTE 170M Chromaticities	Table 67	: SMPTE	170M	Chromaticities
-------------------------------------	----------	---------	------	----------------

The red, green and blue chromaticities are also often referred to as the SMPTE C set, so this colorspace is sometimes called SMPTE C as well.

The transfer function defined for SMPTE 170M is the same as the one defined in Rec. 709.

$$L' = -1.099(-L)^{0.45} + 0.099$$
, for $L \le -0.018$
 $L' = 4.5L$, for $-0.018 < L < 0.018$
 $L' = 1.099L^{0.45} - 0.099$, for $L \ge 0.018$

Inverse Transfer function:

$$L = -\left(\frac{L' - 0.099}{-1.099}\right)^{\frac{1}{0.45}}, \text{ for } L' \le -0.081$$
$$L = \frac{L'}{4.5}, \text{ for } -0.081 < L' < 0.081$$
$$L = \left(\frac{L' + 0.099}{1.099}\right)^{\frac{1}{0.45}}, \text{ for } L' \ge 0.081$$

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601 encoding:

$$Y' = 0.2990R' + 0.5870G' + 0.1140B'$$

$$Cb = -0.1687R' - 0.3313G' + 0.5B'$$

$$Cr = 0.5R' - 0.4187G' - 0.0813B'$$

Y' is clamped to the range $[0\cdots 1]$ and Cb and Cr are clamped to the range $[-0.5\cdots 0.5]$. This conversion to Y' CbCr is identical to the one defined in the ITU BT.601 standard and this colorspace is sometimes called BT.601 as well, even though BT.601 does not mention any color primaries.

The default quantization is limited range, but full range is possible although rarely seen.

Colorspace Rec. 709 (V4L2_COLORSPACE_REC709)

The ITU BT.709 standard defines the colorspace used by HDTV in general. The default transfer function is V4L2_XFER_FUNC_709. The default Y' CbCr encoding is V4L2_YCBCR_ENC_709. The default Y' CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

	-		
Color		x	У
Red		0.640	0.330
Green		0.300	0.600
Blue		0.150	0.060
White	Reference	0.3127	0.3290
(D65)			

Table 68: Rec. 709 Chromaticities

The full name of this standard is Rec. ITU-R BT.709-5.

Transfer function. Normally L is in the range $[0\cdots 1]$, but for the extended gamut xvYCC encoding values outside that range are allowed.

$$L' = -1.099(-L)^{0.45} + 0.099$$
, for $L \le -0.018$
 $L' = 4.5L$, for $-0.018 < L < 0.018$
 $L' = 1.099L^{0.45} - 0.099$, for $L \ge 0.018$

Inverse Transfer function:

$$L = -\left(\frac{L' - 0.099}{-1.099}\right)^{\frac{1}{0.45}}, \text{ for } L' \le -0.081$$
$$L = \frac{L'}{4.5}, \text{ for } -0.081 < L' < 0.081$$
$$L = \left(\frac{L' + 0.099}{1.099}\right)^{\frac{1}{0.45}}, \text{ for } L' \ge 0.081$$

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_709 encoding:

$$Y' = 0.2126R' + 0.7152G' + 0.0722B'$$

$$Cb = -0.1146R' - 0.3854G' + 0.5B'$$

$$Cr = 0.5R' - 0.4542G' - 0.0458B'$$

Y' is clamped to the range $[0\cdots 1]$ and Cb and Cr are clamped to the range $[-0.5\cdots 0.5]$.

The default quantization is limited range, but full range is possible although rarely seen.

The V4L2_YCBCR_ENC_709 encoding described above is the default for this colorspace, but it can be overridden with V4L2_YCBCR_ENC_601, in which case the BT.601 Y' CbCr encoding is used.

Two additional extended gamut Y' CbCr encodings are also possible with this colorspace:

The xvYCC 709 encoding (V4L2_YCBCR_ENC_XV709, xvYCC) is similar to the Rec. 709 encoding, but it allows for R', G' and B' values that are outside the range $[0\cdots 1]$. The resulting Y', Cb and Cr values are scaled and offset according to the limited range formula:

$$Y' = \frac{219}{256} * (0.2126R' + 0.7152G' + 0.0722B') + \frac{16}{256}$$
$$Cb = \frac{224}{256} * (-0.1146R' - 0.3854G' + 0.5B')$$
$$Cr = \frac{224}{256} * (0.5R' - 0.4542G' - 0.0458B')$$

The xvYCC 601 encoding (V4L2_YCBCR_ENC_XV601, xvYCC) is similar to the BT.601 encoding, but it allows for R', G' and B' values that are outside the range [0 \cdots 1]. The resulting Y', Cb and Cr values are scaled and offset according to the limited range formula:

$$Y' = \frac{219}{256} * (0.2990R' + 0.5870G' + 0.1140B') + \frac{16}{256}$$
$$Cb = \frac{224}{256} * (-0.1687R' - 0.3313G' + 0.5B')$$
$$Cr = \frac{224}{256} * (0.5R' - 0.4187G' - 0.0813B')$$

Y' is clamped to the range $[0\cdots 1]$ and Cb and Cr are clamped to the range $[-0.5 \cdots 0.5]$ and quantized without further scaling or offsets. The non-standard xvYCC

709 or xvYCC 601 encodings can be used by selecting V4L2_YCBCR_ENC_XV709 or V4L2_YCBCR_ENC_XV601. As seen by the xvYCC formulas these encodings always use limited range quantization, there is no full range variant. The whole point of these extended gamut encodings is that values outside the limited range are still valid, although they map to R', G' and B' values outside the [0…1] range and are therefore outside the Rec. 709 colorspace gamut.

Colorspace sRGB (V4L2_COLORSPACE_SRGB)

The sRGB standard defines the colorspace used by most webcams and computer graphics. The default transfer function is V4L2_XFER_FUNC_SRGB. The default Y' CbCr encoding is V4L2_YCBCR_ENC_601. The default Y' CbCr quantization is limited range.

Note that the sYCC standard specifies full range quantization, however all current capture hardware supported by the kernel convert R' G' B' to limited range Y' CbCr. So choosing full range as the default would break how applications interpret the quantization range.

The chromaticities of the primary colors and the white reference are:

Color		x	У
Red		0.640	0.330
Green		0.300	0.600
Blue		0.150	0.060
White	Reference	0.3127	0.3290
(D65)			

 Table 69: sRGB Chromaticities

These chromaticities are identical to the Rec. 709 colorspace.

Transfer function. Note that negative values for L are only used by the Y' CbCr conversion.

$$L' = -1.055(-L)^{\frac{1}{2.4}} + 0.055$$
, for $L < -0.0031308$
 $L' = 12.92L$, for $-0.0031308 \le L \le 0.0031308$
 $L' = 1.055L^{\frac{1}{2.4}} - 0.055$, for $0.0031308 \le L \le 1$

Inverse Transfer function:

$$\begin{split} L &= -((-L'+0.055)/1.055)^{2.4}, \text{ for } L' < -0.04045\\ L &= L'/12.92, \text{ for } -0.04045 \leq L' \leq 0.04045\\ L &= ((L'+0.055)/1.055)^{2.4}, \text{ for } L' > 0.04045 \end{split}$$

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601 encoding as defined by sYCC:

$$Y' = 0.2990R' + 0.5870G' + 0.1140B'$$

$$Cb = -0.1687R' - 0.3313G' + 0.5B'$$

$$Cr = 0.5R' - 0.4187G' - 0.0813B'$$

Y' is clamped to the range $[0\cdots 1]$ and Cb and Cr are clamped to the range $[-0.5 \cdots 0.5]$. This transform is identical to one defined in SMPTE 170M/BT.601. The Y' CbCr quantization is limited range.

Colorspace opRGB (V4L2_COLORSPACE_OPRGB)

The opRGB standard defines the colorspace used by computer graphics that use the opRGB colorspace. The default transfer function is V4L2_XFER_FUNC_OPRGB. The default Y' CbCr encoding is V4L2_YCBCR_ENC_601. The default Y' CbCr quantization is limited range.

Note that the opRGB standard specifies full range quantization, however all current capture hardware supported by the kernel convert R' G' B' to limited range Y' CbCr. So choosing full range as the default would break how applications interpret the quantization range.

The chromaticities of the primary colors and the white reference are:

		-	
Color		X	У
Red		0.6400	0.3300
Green		0.2100	0.7100
Blue		0.1500	0.0600
White	Reference	0.3127	0.3290
(D65)			

Table 70: opRGB Chromaticities

Transfer function:

$$L' = L^{\frac{1}{2.19921875}}$$

Inverse Transfer function:

$$L = L^{\prime(2.19921875)}$$

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601 encoding:

Y' = 0.2990R' + 0.5870G' + 0.1140B' Cb = -0.1687R' - 0.3313G' + 0.5B'Cr = 0.5R' - 0.4187G' - 0.0813B'

Y' is clamped to the range $[0\cdots 1]$ and Cb and Cr are clamped to the range $[-0.5 \cdots 0.5]$. This transform is identical to one defined in SMPTE 170M/BT.601. The Y' CbCr quantization is limited range.

Colorspace BT.2020 (V4L2_COLORSPACE_BT2020)

The ITU BT.2020 standard defines the colorspace used by Ultra-high definition television (UHDTV). The default transfer function is V4L2_XFER_FUNC_709. The default Y'CbCr encoding is V4L2_YCBCR_ENC_BT2020. The default R'G'B'quantization is limited range (!), and so is the default Y'CbCr quantization. The chromaticities of the primary colors and the white reference are:

Color		x	У
Red		0.708	0.292
Green		0.170	0.797
Blue		0.131	0.046
White	Reference	0.3127	0.3290
(D65)			

Table 71: BT.2020 Chromaticities

Transfer function (same as Rec. 709):

$$L' = 4.5L$$
, for $0 \le L < 0.018$
 $L' = 1.099L^{0.45} - 0.099$, for $0.018 \le L \le 1$

Inverse Transfer function:

$$L = L'/4.5, \text{ for } L' < 0.081$$

$$L = \left(\frac{L' + 0.099}{1.099}\right)^{\frac{1}{0.45}}, \text{ for } L' \ge 0.081$$

Please note that while Rec. 709 is defined as the default transfer function by the ITU BT.2020 standard, in practice this colorspace is often used with the Transfer Function SMPTE 2084 (V4L2_XFER_FUNC_SMPTE2084). In particular Ultra HD Blu-ray discs use this combination.

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_BT2020 encoding:

$$Y' = 0.2627R' + 0.6780G' + 0.0593B'$$

$$Cb = -0.1396R' - 0.3604G' + 0.5B'$$

$$Cr = 0.5R' - 0.4598G' - 0.0402B'$$

Y' is clamped to the range $[0\cdots 1]$ and Cb and Cr are clamped to the range $[-0.5\cdots 0.5]$. The Y' CbCr quantization is limited range.

There is also an alternate constant luminance R' G' B' to Yc' CbcCrc (V4L2_YCBCR_ENC_BT2020_CONST_LUM) encoding:

Luma:

$$Yc' = (0.2627R + 0.6780G + 0.0593B)'$$

$$B' - Yc' \le 0:$$

$$Cbc = (B' - Yc')/1.9404$$

$$B' - Yc' > 0:$$

$$Cbc = (B' - Yc')/1.5816$$

$$R' - Yc' \le 0:$$

$$Crc = (R' - Y')/1.7184$$

$$R' - Yc' > 0:$$

$$Crc = (R' - Y')/0.9936$$

Yc' is clamped to the range $[0\cdots 1]$ and Cbc and Crc are clamped to the range $[-0.5 \cdots 0.5]$. The Yc' CbcCrc quantization is limited range.

Colorspace DCI-P3 (V4L2_COLORSPACE_DCI_P3)

The SMPTE RP 431-2 standard defines the colorspace used by cinema projectors that use the DCI-P3 colorspace. The default transfer function is V4L2_XFER_FUNC_DCI_P3. The default Y' CbCr encoding is V4L2_YCBCR_ENC_709. The default Y' CbCr quantization is limited range.

Note: Note that this colorspace standard does not specify a Y' CbCr encoding since it is not meant to be encoded to Y' CbCr. So this default Y' CbCr encoding was picked because it is the HDTV encoding.

The chromaticities of the primary colors and the white reference are:

Color	X	У
Red	0.6800	0.3200
Green	0.2650	0.6900
Blue	0.1500	0.0600
White Reference	0.3140	0.3510

Table 72: DCI-P3 Chromaticities

Transfer function:

$$L' = L^{\frac{1}{2.6}}$$

Inverse Transfer function:

$$L = L'^{(2.6)}$$

Y' CbCr encoding is not specified. V4L2 defaults to Rec. 709.

Colorspace SMPTE 240M (V4L2_COLORSPACE_SMPTE240M)

The SMPTE 240M standard was an interim standard used during the early days of HDTV (1988-1998). It has been superseded by Rec. 709. The default transfer function is V4L2_XFER_FUNC_SMPTE240M. The default Y' CbCr encoding is V4L2_YCBCR_ENC_SMPTE240M. The default Y' CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

Color		x	У	
Red		0.630	0.340	
Green		0.310	0.595	
Blue		0.155	0.070	
White	Reference	0.3127	0.3290	
(D65)				

Table 73: SMPTE 240M Chromaticities

These chromaticities are identical to the SMPTE 170M colorspace.

Transfer function:

$$L' = 4L$$
, for $0 \le L < 0.0228$
 $L' = 1.1115L^{0.45} - 0.1115$, for $0.0228 \le L \le 1$

Inverse Transfer function:

$$L = \frac{L'}{4}, \text{ for } 0 \le L' < 0.0913$$
$$L = \left(\frac{L' + 0.1115}{1.1115}\right)^{\frac{1}{0.45}}, \text{ for } L' \ge 0.0913$$

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_SMPTE240M encoding:

$$Y' = 0.2122R' + 0.7013G' + 0.0865B'$$

$$Cb = -0.1161R' - 0.3839G' + 0.5B'$$

$$Cr = 0.5R' - 0.4451G' - 0.0549B'$$

Y' is clamped to the range $[0\cdots 1]$ and Cb and Cr are clamped to the range $[-0.5\cdots 0.5]$. The Y' CbCr quantization is limited range.

Colorspace NTSC 1953 (V4L2_COLORSPACE_470_SYSTEM_M)

This standard defines the colorspace used by NTSC in 1953. In practice this colorspace is obsolete and SMPTE 170M should be used instead. The default transfer function is V4L2_XFER_FUNC_709. The default Y' CbCr encoding is V4L2_YCBCR_ENC_601. The default Y' CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

		·
Color	x	У
Red	0.67	0.33
Green	0.21	0.71
Blue	0.14	0.08
White Reference (C)	0.310	0.316

Table 74: NTSC 1953 Chromaticities

Note: This colorspace uses Illuminant C instead of D65 as the white reference. To correctly convert an image in this colorspace to another that uses D65 you need to apply a chromatic adaptation algorithm such as the Bradford method.

The transfer function was never properly defined for NTSC 1953. The Rec. 709 transfer function is recommended in the literature:

$$L' = 4.5L$$
, for $0 \le L < 0.018$
 $L' = 1.099L^{0.45} - 0.099$, for $0.018 \le L \le 1$

Inverse Transfer function:

$$L = \frac{L'}{4.5}, \text{ for } L' < 0.081$$
$$L = \left(\frac{L' + 0.099}{1.099}\right)^{\frac{1}{0.45}}, \text{ for } L' \ge 0.081$$

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601 encoding:

$$Y' = 0.2990R' + 0.5870G' + 0.1140B'$$

$$Cb = -0.1687R' - 0.3313G' + 0.5B'$$

$$Cr = 0.5R' - 0.4187G' - 0.0813B'$$

Y' is clamped to the range $[0\cdots 1]$ and Cb and Cr are clamped to the range $[-0.5\cdots 0.5]$. The Y' CbCr quantization is limited range. This transform is identical to one defined in SMPTE 170M/BT.601.

Colorspace EBU Tech. 3213 (V4L2_COLORSPACE_470_SYSTEM_BG)

The EBU Tech 3213 standard defines the colorspace used by PAL/SECAM in 1975. In practice this colorspace is obsolete and SMPTE 170M should be used instead. The default transfer function is V4L2_XFER_FUNC_709. The default Y' CbCr encoding is V4L2_YCBCR_ENC_601. The default Y' CbCr quantization is limited range. The chromaticities of the primary colors and the white reference are:

Color		x	У		
Red		0.64	0.33		
Green		0.29	0.60		
Blue		0.15	0.06		
White	Reference	0.3127	0.3290		
(D65)					

The transfer function was never properly defined for this colorspace. The Rec. 709 transfer function is recommended in the literature:

$$L' = 4.5L$$
, for $0 \le L < 0.018$
 $L' = 1.099L^{0.45} - 0.099$, for $0.018 \le L \le 1$

Inverse Transfer function:

$$L = \frac{L'}{4.5}, \text{ for } L' < 0.081$$

$$L = \left(\frac{L' + 0.099}{1.099}\right)^{\frac{1}{0.45}}, \text{ for } L' \ge 0.081$$

The luminance (Y') and color difference (Cb and Cr) are obtained with the following V4L2_YCBCR_ENC_601 encoding:

$$Y' = 0.2990R' + 0.5870G' + 0.1140B'$$

$$Cb = -0.1687R' - 0.3313G' + 0.5B'$$

$$Cr = 0.5R' - 0.4187G' - 0.0813B'$$

Y' is clamped to the range $[0\cdots 1]$ and Cb and Cr are clamped to the range $[-0.5\cdots 0.5]$. The Y' CbCr quantization is limited range. This transform is identical to one defined in SMPTE 170M/BT.601.

Colorspace JPEG (V4L2_COLORSPACE_JPEG)

This colorspace defines the colorspace used by most (Motion-)JPEG formats. The chromaticities of the primary colors and the white reference are identical to sRGB. The transfer function use is V4L2_XFER_FUNC_SRGB. The Y' CbCr encoding is V4L2_YCBCR_ENC_601 with full range quantization where Y' is scaled to [0… 255] and Cb/Cr are scaled to [-128…128] and then clipped to [-128…127].

Note: The JPEG standard does not actually store colorspace information. So if something other than sRGB is used, then the driver will have to set that information explicitly. Effectively V4L2_COLORSPACE_JPEG can be considered to be an abbreviation for V4L2_COLORSPACE_SRGB, V4L2_YCBCR_ENC_601 and V4L2_QUANTIZATION_FULL_RANGE.

Detailed Transfer Function Descriptions

Transfer Function SMPTE 2084 (V4L2_XFER_FUNC_SMPTE2084)

The SMPTE ST 2084 standard defines the transfer function used by High Dynamic Range content.

Constants: m1 = (2610 / 4096) / 4

m2 = (2523 / 4096) * 128

c1 = 3424 / 4096

c2 = (2413 / 4096) * 32

$$c3 = (2392 / 4096) * 32$$

Transfer function: L' = $((c1 + c2 * L^{m1}) / (1 + c3 * L^{m1}))^{m2}$

Inverse Transfer function: $L = (max(L' \ ^{1/m2} - c1, 0) / (c2 - c3 * L' \ ^{1/m2}))^{1/m1}$

Take care when converting between this transfer function and non-HDR transfer functions: the linear RGB values $[0\cdots 1]$ of HDR content map to a luminance range of 0 to 10000 cd/m² whereas the linear RGB values of non-HDR (aka Standard Dynamic Range or SDR) map to a luminance range of 0 to 100 cd/m².

To go from SDR to HDR you will have to divide L by 100 first. To go in the other direction you will have to multiply L by 100. Of course, this clamps all luminance values over 100 cd/m^2 to 100 cd/m^2 .

There are better methods, see e.g. colimg for more in-depth information about this.

7.2.3 Input/Output

The V4L2 API defines several different methods to read from or write to a device. All drivers exchanging data with applications must support at least one of them.

The classic I/O method using the read() and write() function is automatically selected after opening a V4L2 device. When the driver does not support this method attempts to read or write will fail at any time.

Other methods must be negotiated. To select the streaming I/O method with memory mapped or user buffers applications call the ioctl VIDIOC_REQBUFS ioctl. The asynchronous I/O method is not defined yet.

Video overlay can be considered another I/O method, although the application does not directly receive the image data. It is selected by initiating video overlay with the VIDIOC S FMT ioctl. For more information see Video Overlay Interface.

Generally exactly one I/O method, including overlay, is associated with each file descriptor. The only exceptions are applications not exchanging data with a driver ("panel applications", see Opening and Closing Devices) and drivers permitting simultaneous video capturing and overlay using the same file descriptor, for compatibility with V4L and earlier versions of V4L2.

VIDIOC_S_FMT and ioctl VIDIOC_REQBUFS would permit this to some degree, but for simplicity drivers need not support switching the I/O method (after first switching away from read/write) other than by closing and reopening the device.

The following sections describe the various I/O methods in more detail.

Read/Write

Input and output devices support the read() and write() function, respectively, when the V4L2_CAP_READWRITE flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl is set.

Drivers may need the CPU to copy the data, but they may also support DMA to or from user memory, so this I/O method is not necessarily less efficient than other methods merely exchanging buffer pointers. It is considered inferior though because no meta-information like frame counters or timestamps are passed. This information is necessary to recognize frame dropping and to synchronize with other data streams. However this is also the simplest I/O method, requiring little or no setup to exchange data. It permits command line stunts like this (the vidctrl tool is fictitious):

```
$ vidctrl /dev/video --input=0 --format=YUYV --size=352x288
$ dd if=/dev/video of=myimage.422 bs=202752 count=1
```

To read from the device applications use the read() function, to write the write() function. Drivers must implement one I/O method if they exchange data with applications, but it need not be this.¹ When reading or writing is supported, the driver must also support the select() and poll() function.²

 $^{^1}$ It would be desirable if applications could depend on drivers supporting all I/O interfaces, but as much as the complex memory mapping I/O can be inadequate for some devices we have no reason to require this interface, which is most useful for simple applications capturing still images.

 $^{^{2}}$ At the driver level select() and poll() are the same, and select() is too important to be optional.

Streaming I/O (Memory Mapping)

Input and output devices support this I/O method when the V4L2_CAP_STREAMING flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl is set. There are two streaming methods, to determine if the memory mapping flavor is supported applications must call the ioctl VID-IOC_REQBUFS ioctl with the memory type set to V4L2_MEMORY_MMAP.

Streaming is an I/O method where only pointers to buffers are exchanged between application and driver, the data itself is not copied. Memory mapping is primarily intended to map buffers in device memory into the application's address space. Device memory can be for example the video memory on a graphics card with a video capture add-on. However, being the most efficient I/O method available for a long time, many other drivers support streaming as well, allocating buffers in DMA-able main memory.

A driver can support many sets of buffers. Each set is identified by a unique buffer type value. The sets are independent and each set can hold a different type of data. To access different sets at the same time different file descriptors must be used.¹

To allocate device buffers applications call the ioctl VIDIOC_REQBUFS ioctl with the desired number of buffers and buffer type, for example V4L2_BUF_TYPE_VIDEO_CAPTURE. This ioctl can also be used to change the number of buffers or to free the allocated memory, provided none of the buffers are still mapped.

Before applications can access the buffers they must map them into their address space with the mmap() function. The location of the buffers in device memory can be determined with the ioctl VIDIOC_QUERYBUF ioctl. In the single-planar API case, the m.offset and length returned in a struct v4l2_buffer are passed as sixth and second parameter to the mmap() function. When using the multi-planar API, struct v4l2_buffer contains an array of struct v4l2_plane structures, each containing its own m.offset and length. When using the multi-planar API, every plane of every buffer has to be mapped separately, so the number of calls to mmap() should be equal to number of buffers times number of planes in each buffer. The offset and length values must not be modified. Remember, the buffers are allocated in physical memory, as opposed to virtual memory, which can be swapped out to disk. Applications should free the buffers as soon as possible with the munmap() function.

¹ One could use one file descriptor and set the buffer type field accordingly when calling ioctl VIDIOC_QBUF, VIDIOC_DQBUF etc., but it makes the select() function ambiguous. We also like the clean approach of one file descriptor per logical stream. Video overlay for example is also a logical stream, although the CPU is not needed for continuous operation.

Example: Mapping buffers in the single-planar API

```
struct v4l2 requestbuffers reqbuf;
struct {
    void *start:
    size t length;
} *buffers;
unsigned int i;
memset(&reqbuf, 0, sizeof(reqbuf));
reqbuf.type = V4L2 BUF TYPE VIDEO CAPTURE;
regbuf.memory = V4L2 MEMORY MMAP;
reqbuf.count = 20;
if (-1 == ioctl (fd, VIDIOC REQBUFS, &reqbuf)) {
    if (errno == EINVAL)
        printf("Video capturing or mmap-streaming is not supported\\n");
    else
        perror("VIDIOC REQBUFS");
   exit(EXIT FAILURE);
}
/* We want at least five buffers. */
if (regbuf.count < 5) {</pre>
    /* You may need to free the buffers here. */
    printf("Not enough buffer memory\\n");
    exit(EXIT FAILURE);
}
buffers = calloc(reqbuf.count, sizeof(*buffers));
assert(buffers != NULL);
for (i = 0; i < regbuf.count; i++) {
    struct v4l2 buffer buffer;
    memset(&buffer, 0, sizeof(buffer));
    buffer.type = regbuf.type;
    buffer.memory = V4L2_MEMORY MMAP;
    buffer.index = i;
    if (-1 == ioctl (fd, VIDIOC QUERYBUF, &buffer)) {
        perror("VIDIOC QUERYBUF");
        exit(EXIT FAILURE);
    }
    buffers[i].length = buffer.length; /* remember for munmap() */
    buffers[i].start = mmap(NULL, buffer.length,
                PROT_READ | PROT_WRITE, /* recommended */
                                         /* recommended */
                MAP SHARED,
                fd, buffer.m.offset);
    if (MAP FAILED == buffers[i].start) {
        /* If you do not exit here you should unmap() and free()
                                                          (continues on next page)
```

(continued from previous page)

```
the buffers mapped so far. */
perror("mmap");
exit(EXIT_FAILURE);
}
/* Cleanup. */
for (i = 0; i < reqbuf.count; i++)
munmap(buffers[i].start, buffers[i].length);</pre>
```

Example: Mapping buffers in the multi-planar API

```
struct v4l2 requestbuffers reqbuf;
/* Our current format uses 3 planes per buffer */
#define FMT NUM PLANES = 3
struct {
    void *start[FMT NUM PLANES];
    size t length[FMT NUM PLANES];
} *buffers;
unsigned int i, j;
memset(&reqbuf, 0, sizeof(reqbuf));
reqbuf.type = V4L2 BUF TYPE VIDEO CAPTURE MPLANE;
regbuf.memory = V4L2 MEMORY MMAP;
reqbuf.count = 20;
if (ioctl(fd, VIDIOC REQBUFS, &reqbuf) < 0) {</pre>
    if (errno == EINVAL)
        printf("Video capturing or mmap-streaming is not supported\\n");
    else
        perror("VIDIOC REQBUFS");
    exit(EXIT FAILURE);
}
/* We want at least five buffers. */
if (reqbuf.count < 5) {</pre>
    /* You may need to free the buffers here. */
    printf("Not enough buffer memory\\n");
    exit(EXIT_FAILURE);
}
buffers = calloc(regbuf.count, sizeof(*buffers));
assert(buffers != NULL);
for (i = 0; i < regbuf.count; i++) {
    struct v4l2 buffer buffer;
    struct v4l2_plane planes[FMT NUM PLANES];
    memset(&buffer, 0, sizeof(buffer));
```

(continues on next page)

```
(continued from previous page)
```

```
buffer.type = regbuf.type;
    buffer.memory = V4L2 MEMORY MMAP;
    buffer.index = i;
    /* length in struct v4l2 buffer in multi-planar API stores the size
     * of planes array. */
    buffer.length = FMT NUM PLANES;
    buffer.m.planes = planes;
    if (ioctl(fd, VIDIOC QUERYBUF, &buffer) < 0) {</pre>
        perror("VIDIOC QUERYBUF");
        exit(EXIT FAILURE);
    }
    /* Every plane has to be mapped separately */
    for (j = 0; j < FMT_NUM_PLANES; j++) {
        buffers[i].length[j] = buffer.m.planes[j].length; /* remember for_
→munmap() */
        buffers[i].start[j] = mmap(NULL, buffer.m.planes[j].length,
                 PROT READ | PROT WRITE, /* recommended */
                                         /* recommended */
                 MAP SHARED,
                 fd, buffer.m.planes[j].m.offset);
        if (MAP FAILED == buffers[i].start[j]) {
            /* If you do not exit here you should unmap() and free()
               the buffers and planes mapped so far. */
            perror("mmap");
            exit(EXIT FAILURE);
        }
    }
}
/* Cleanup. */
for (i = 0; i < regbuf.count; i++)
    for (j = 0; j < FMT NUM PLANES; j++)
        munmap(buffers[i].start[j], buffers[i].length[j]);
```

Conceptually streaming drivers maintain two buffer queues, an incoming and an outgoing queue. They separate the synchronous capture or output operation locked to a video clock from the application which is subject to random disk or network delays and preemption by other processes, thereby reducing the probability of data loss. The queues are organized as FIFOs, buffers will be output in the order enqueued in the incoming FIFO, and were captured in the order dequeued from the outgoing FIFO.

The driver may require a minimum number of buffers enqueued at all times to function, apart of this no limit exists on the number of buffers applications can enqueue in advance, or dequeue and process. They can also enqueue in a different order than buffers have been dequeued, and the driver can fill enqueued empty buffers in any order.² The index number of a buffer (struct v4l2_buffer index)

 $^{^2}$ Random enqueue order permits applications processing images out of order (such as video codecs) to return buffers earlier, reducing the probability of data loss. Random fill order allows drivers to reuse buffers on a LIFO-basis, taking advantage of caches holding scatter-gather lists and the like.

plays no role here, it only identifies the buffer.

Initially all mapped buffers are in dequeued state, inaccessible by the driver. For capturing applications it is customary to first enqueue all mapped buffers, then to start capturing and enter the read loop. Here the application waits until a filled buffer can be dequeued, and re-enqueues the buffer when the data is no longer needed. Output applications fill and enqueue buffers, when enough buffers are stacked up the output is started with VIDIOC_STREAMON. In the write loop, when the application runs out of free buffers, it must wait until an empty buffer can be dequeued and reused.

To enqueue and dequeue a buffer applications use the VIVIOC_QBUF and VID-IOC_DQBUF ioctl. The status of a buffer being mapped, enqueued, full or empty can be determined at any time using the ioctl VIDIOC_QUERYBUF ioctl. Two methods exist to suspend execution of the application until one or more buffers can be dequeued. By default VIDIOC_DQBUF blocks when no buffer is in the outgoing queue. When the **0_NONBLOCK** flag was given to the open() function, VID-IOC_DQBUF returns immediately with an EAGAIN error code when no buffer is available. The select() or poll() functions are always available.

To start and stop capturing or output applications call the VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctl.

Drivers implementing memory mapping I/O must support the VIDIOC_REQBUFS, VIDIOC_QUERYBUF, VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls, the mmap(), munmap(), select() and poll() function.³

[capture example]

Streaming I/O (User Pointers)

Input and output devices support this I/O method when the V4L2_CAP_STREAMING flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl is set. If the particular user pointer method (not only memory mapping) is supported must be determined by calling the ioctl VID-IOC_REQBUFS ioctl with the memory type set to V4L2_MEMORY_USERPTR.

This I/O method combines advantages of the read/write and memory mapping methods. Buffers (planes) are allocated by the application itself, and can reside for example in virtual or shared memory. Only pointers to data are exchanged, these pointers and meta-information are passed in struct v4l2_buffer (or in struct v4l2_plane in the multi-planar API case). The driver must be switched into user pointer I/O mode by calling the ioctl VIDIOC_REQBUFS with the desired buffer type. No buffers (planes) are allocated beforehand, consequently they are not indexed and cannot be queried like mapped buffers with the VIDIOC_QUERYBUF ioctl.

³ At the driver level select() and poll() are the same, and select() is too important to be optional. The rest should be evident.

Example: Initiating streaming I/O with user pointers

```
struct v4l2_requestbuffers reqbuf;
memset (&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_USERPTR;
if (ioctl (fd, VIDIOC_REQBUFS, &reqbuf) == -1) {
    if (errno == EINVAL)
        printf ("Video capturing or user pointer streaming is not_
        supported\\n");
    else
        perror ("VIDIOC_REQBUFS");
    exit (EXIT_FAILURE);
}
```

Buffer (plane) addresses and sizes are passed on the fly with the VIDIOC_QBUF ioctl. Although buffers are commonly cycled, applications can pass different addresses and sizes at each VIDIOC_QBUF call. If required by the hardware the driver swaps memory pages within physical memory to create a continuous area of memory. This happens transparently to the application in the virtual memory subsystem of the kernel. When buffer pages have been swapped out to disk they are brought back and finally locked in physical memory for DMA.¹

Filled or displayed buffers are dequeued with the VIDIOC_DQBUF ioctl. The driver can unlock the memory pages at any time between the completion of the DMA and this ioctl. The memory is also unlocked when VIDIOC_STREAMOFF is called, ioctl VIDIOC_REQBUFS, or when the device is closed. Applications must take care not to free buffers without dequeuing. Firstly, the buffers remain locked for longer, wasting physical memory. Secondly the driver will not be notified when the memory is returned to the application' s free list and subsequently reused for other purposes, possibly completing the requested DMA and overwriting valuable data.

For capturing applications it is customary to enqueue a number of empty buffers, to start capturing and enter the read loop. Here the application waits until a filled buffer can be dequeued, and re-enqueues the buffer when the data is no longer needed. Output applications fill and enqueue buffers, when enough buffers are stacked up output is started. In the write loop, when the application runs out of free buffers it must wait until an empty buffer can be dequeued and reused. Two methods exist to suspend execution of the application until one or more buffers can be dequeued. By default VIDIOC_DQBUF blocks when no buffer is in the outgoing queue. When the **0_NONBLOCK** flag was given to the open() function, VID-IOC DQBUF returns immediately with an EAGAIN error code when no buffer is

¹ We expect that frequently used buffers are typically not swapped out. Anyway, the process of swapping, locking or generating scatter-gather lists may be time consuming. The delay can be masked by the depth of the incoming buffer queue, and perhaps by maintaining caches assuming a buffer will be soon enqueued again. On the other hand, to optimize memory usage drivers can limit the number of buffers locked in advance and recycle the most recently used buffers first. Of course, the pages of empty buffers in the incoming queue need not be saved to disk. Output buffers must be saved on the incoming and outgoing queue because an application may share them with other processes.

available. The select() or poll() function are always available.

To start and stop capturing or output applications call the $\mbox{VIDIOC_STREAMON}$ and $\mbox{VIDIOC_STREAMOFF}$ ioctl.

Note: VIDIOC_STREAMOFF removes all buffers from both queues and unlocks all buffers as a side effect. Since there is no notion of doing anything "now" on a multi-tasking system, if an application needs to synchronize with another event it should examine the struct v4l2_buffer timestamp of captured or outputted buffers.

Drivers implementing user pointer I/O must support the VIDIOC_REQBUFS, VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls, the select() and poll() function.²

Streaming I/O (DMA buffer importing)

The DMABUF framework provides a generic method for sharing buffers between multiple devices. Device drivers that support DMABUF can export a DMA buffer to userspace as a file descriptor (known as the exporter role), import a DMA buffer from userspace using a file descriptor previously exported for a different or the same device (known as the importer role), or both. This section describes the DMABUF importer role API in V4L2.

Refer to DMABUF exporting for details about exporting V4L2 buffers as DMABUF file descriptors.

Input and output devices support the streaming I/O method when the V4L2_CAP_STREAMING flag in the capabilities field of struct v4l2_capability returned by the VIDIOC_QUERYCAP ioctl is set. Whether importing DMA buffers through DMABUF file descriptors is supported is determined by calling the VID-IOC_REQBUFS ioctl with the memory type set to V4L2_MEMORY_DMABUF.

This I/O method is dedicated to sharing DMA buffers between different devices, which may be V4L devices or other video-related devices (e.g. DRM). Buffers (planes) are allocated by a driver on behalf of an application. Next, these buffers are exported to the application as file descriptors using an API which is specific for an allocator driver. Only such file descriptor are exchanged. The descriptors and meta-information are passed in struct v4l2_buffer (or in struct v4l2_plane in the multi-planar API case). The driver must be switched into DMABUF I/O mode by calling the VIDIOC REQBUFS with the desired buffer type.

 $^{^2}$ At the driver level select() and poll() are the same, and select() is too important to be optional. The rest should be evident.

Example: Initiating streaming I/O with DMABUF file descriptors

```
struct v4l2_requestbuffers reqbuf;
memset(&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
reqbuf.memory = V4L2_MEMORY_DMABUF;
reqbuf.count = 1;
if (ioctl(fd, VIDIOC_REQBUFS, &reqbuf) == -1) {
    if (errno == EINVAL)
        printf("Video capturing or DMABUF streaming is not supported\\n");
    else
        perror("VIDIOC_REQBUFS");
    exit(EXIT_FAILURE);
}
```

The buffer (plane) file descriptor is passed on the fly with the VIDIOC_QBUF ioctl. In case of multiplanar buffers, every plane can be associated with a different DMABUF descriptor. Although buffers are commonly cycled, applications can pass a different DMABUF descriptor at each VIDIOC_QBUF call.

Example: Queueing DMABUF using single plane API

```
int buffer_queue(int v4lfd, int index, int dmafd)
{
    struct v4l2_buffer buf;
    memset(&buf, 0, sizeof buf);
    buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
    buf.memory = V4L2_MEMORY_DMABUF;
    buf.index = index;
    buf.m.fd = dmafd;
    if (ioctl(v4lfd, VIDIOC_QBUF, &buf) == -1) {
        perror("VIDIOC_QBUF");
        return -1;
    }
    return 0;
}
```

Example 3.6. Queueing DMABUF using multi plane API

```
int buffer_queue_mp(int v4lfd, int index, int dmafd[], int n_planes)
{
    struct v4l2_buffer buf;
    struct v4l2_plane planes[VIDE0_MAX_PLANES];
    int i;
    memset(&buf, 0, sizeof buf);
```

(continues on next page)

(continued from previous page)

```
buf.type = V4L2_BUF_TYPE_VIDE0_CAPTURE_MPLANE;
buf.memory = V4L2_MEMORY_DMABUF;
buf.index = index;
buf.index = planes;
buf.length = n_planes;
memset(&planes, 0, sizeof planes);
for (i = 0; i < n_planes; ++i)
buf.m.planes[i].m.fd = dmafd[i];
if (ioctl(v4lfd, VIDIOC_QBUF, &buf) == -1) {
    perror("VIDIOC_QBUF");
    return -1;
}
return 0;
}
```

Captured or displayed buffers are dequeued with the VIDIOC_DQBUF ioctl. The driver can unlock the buffer at any time between the completion of the DMA and this ioctl. The memory is also unlocked when VIDIOC_STREAMOFF is called, VID-IOC_REQBUFS, or when the device is closed.

For capturing applications it is customary to enqueue a number of empty buffers, to start capturing and enter the read loop. Here the application waits until a filled buffer can be dequeued, and re-enqueues the buffer when the data is no longer needed. Output applications fill and enqueue buffers, when enough buffers are stacked up output is started. In the write loop, when the application runs out of free buffers it must wait until an empty buffer can be dequeued and reused. Two methods exist to suspend execution of the application until one or more buffers can be dequeued. By default VIDIOC_DQBUF blocks when no buffer is in the outgoing queue. When the **0_NONBLOCK** flag was given to the open() function, VID-IOC_DQBUF returns immediately with an EAGAIN error code when no buffer is available. The select() and poll() functions are always available.

To start and stop capturing or displaying applications call the VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls.

Note: VIDIOC_STREAMOFF removes all buffers from both queues and unlocks all buffers as a side effect. Since there is no notion of doing anything "now" on a multi-tasking system, if an application needs to synchronize with another event it should examine the struct v4l2_buffer timestamp of captured or outputted buffers.

Drivers implementing DMABUF importing I/O must support the VID-IOC_REQBUFS, VIDIOC_QBUF, VIDIOC_DQBUF, VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctls, and the select() and poll() functions.

Asynchronous I/O

This method is not defined yet.

Buffers

A buffer contains data exchanged by application and driver using one of the Streaming I/O methods. In the multi-planar API, the data is held in planes, while the buffer structure acts as a container for the planes. Only pointers to buffers (planes) are exchanged, the data itself is not copied. These pointers, to-gether with meta-information like timestamps or field parity, are stored in a struct v4l2_buffer, argument to the ioctl VIDIOC_QUERYBUF, VIDIOC_QBUF and VID-IOC_DQBUF ioctl. In the multi-planar API, some plane-specific members of struct v4l2_buffer, such as pointers and sizes for each plane, are stored in struct struct v4l2_plane instead. In that case, struct struct v4l2_buffer contains an array of plane structures.

Dequeued video buffers come with timestamps. The driver decides at which part of the frame and with which clock the timestamp is taken. Please see flags in the masks V4L2_BUF_FLAG_TIMESTAMP_MASK and V4L2_BUF_FLAG_TSTAMP_SRC_MASK in Buffer Flags. These flags are always valid and constant across all buffers during the whole video stream. Changes in these flags may take place as a side effect of VIDIOC_S_INPUT or VIDIOC_S_OUTPUT however. The V4L2_BUF_FLAG_TIMESTAMP_COPY timestamp type which is used by e.g. on memto-mem devices is an exception to the rule: the timestamp source flags are copied from the OUTPUT video buffer to the CAPTURE video buffer.

Interactions between formats, controls and buffers

V4L2 exposes parameters that influence the buffer size, or the way data is laid out in the buffer. Those parameters are exposed through both formats and controls. One example of such a control is the V4L2_CID_ROTATE control that modifies the direction in which pixels are stored in the buffer, as well as the buffer size when the selected format includes padding at the end of lines.

The set of information needed to interpret the content of a buffer (e.g. the pixel format, the line stride, the tiling orientation or the rotation) is collectively referred to in the rest of this section as the buffer layout.

Controls that can modify the buffer layout shall set the V4L2_CTRL_FLAG_MODIFY_LAYOUT flag.

Modifying formats or controls that influence the buffer size or layout require the stream to be stopped. Any attempt at such a modification while the stream is active shall cause the ioctl setting the format or the control to return the EBUSY error code. In that case drivers shall also set the V4L2_CTRL_FLAG_GRABBED flag when calling VIDIOC_QUERYCTRL() or VIDIOC_QUERY_EXT_CTRL() for such a control while the stream is active.

Note: The VIDIOC_S_SELECTION() ioctl can, depending on the hardware (for instance if the device doesn' t include a scaler), modify the format in addition

to the selection rectangle. Similarly, the VIDIOC_S_INPUT(), VIDIOC_S_OUTPUT(), VIDIOC_S_STD() and VIDIOC_S_DV_TIMINGS() ioctls can also modify the format and selection rectangles. When those ioctls result in a buffer size or layout change, drivers shall handle that condition as they would handle it in the VIDIOC_S_FMT() ioctl in all cases described in this section.

Controls that only influence the buffer layout can be modified at any time when the stream is stopped. As they don't influence the buffer size, no special handling is needed to synchronize those controls with buffer allocation and the V4L2_CTRL_FLAG_GRABBED flag is cleared once the stream is stopped.

Formats and controls that influence the buffer size interact with buffer allocation. The simplest way to handle this is for drivers to always require buffers to be reallocated in order to change those formats or controls. In that case, to perform such changes, userspace applications shall first stop the video stream with the VIDIOC_STREAMOFF() ioctl if it is running and free all buffers with the VIDIOC_REQBUFS() ioctl if they are allocated. After freeing all buffers the V4L2_CTRL_FLAG_GRABBED flag for controls is cleared. The format or controls can then be modified, and buffers shall then be reallocated and the stream restarted. A typical ioctl sequence is

- 1. VIDIOC_STREAMOFF
- 2. VIDIOC_REQBUFS(0)
- 3. VIDIOC_S_EXT_CTRLS
- 4. VIDIOC_S_FMT
- 5. VIDIOC_REQBUFS(n)
- 6. VIDIOC_QBUF
- 7. VIDIOC_STREAMON

The second VIDIOC_REQBUFS() call will take the new format and control value into account to compute the buffer size to allocate. Applications can also retrieve the size by calling the VIDIOC_G_FMT() ioctl if needed.

Note: The API doesn' t mandate the above order for control (3.) and format (4.) changes. Format and controls can be set in a different order, or even interleaved, depending on the device and use case. For instance some controls might behave differently for different pixel formats, in which case the format might need to be set first.

When reallocation is required, any attempt to modify format or controls that influences the buffer size while buffers are allocated shall cause the format or control set ioctl to return the EBUSY error. Any attempt to queue a buffer too small for the current format or controls shall cause the <code>VIDIOC_QBUF()</code> ioctl to return a <code>EINVAL</code> error.

Buffer reallocation is an expensive operation. To avoid that cost, drivers can (and are encouraged to) allow format or controls that influence the buffer size to be changed with buffers allocated. In that case, a typical ioctl sequence to modify format and controls is

- 1. VIDIOC_STREAMOFF
- 2. VIDIOC_S_EXT_CTRLS
- 3. VIDIOC_S_FMT
- 4. VIDIOC_QBUF
- 5. VIDIOC_STREAMON

For this sequence to operate correctly, queued buffers need to be large enough for the new format or controls. Drivers shall return a ENOSPC error in response to format change (VIDIOC_S_FMT()) or control changes (VIDIOC_S_CTRL() or VIDIOC_S_EXT_CTRLS()) if buffers too small for the new format are currently queued. As a simplification, drivers are allowed to return a EBUSY error from these ioctls if any buffer is currently queued, without checking the queued buffers sizes.

Additionally, drivers shall return a EINVAL error from the VIDIOC_QBUF() ioctl if the buffer being queued is too small for the current format or controls. Together, these requirements ensure that queued buffers will always be large enough for the configured format and controls.

Userspace applications can query the buffer size required for a given format and controls by first setting the desired control values and then trying the desired format. The $VIDIOC_TRY_FMT()$ ioctl will return the required buffer size.

- 1. VIDIOC_S_EXT_CTRLS(x)
- 2. VIDIOC_TRY_FMT()
- 3. VIDIOC_S_EXT_CTRLS(y)
- 4. VIDIOC_TRY_FMT()

The VIDIOC_CREATE_BUFS() ioctl can then be used to allocate buffers based on the queried sizes (for instance by allocating a set of buffers large enough for all the desired formats and controls, or by allocating separate set of appropriately sized buffers for each use case).

v4l2_buffer

struct v4l2_buffer

Table 76: struct v4l2_buffer			
u32	index	Number	
	2110107	of the	
		buffer,	
		set by	
		the	
		appli-	
		cation	
		except	
		when	
		calling	
		VID-	
		IOC_DQBUF,	
		then it	
		is set	
		by the	
		driver.	
		This	
		field	
		can	
		range	
		from	
		zero	
		to the	
		num-	
		ber of	
		buffers	
		allo-	
		cated	
		with	
		the ioctl	
		VID-	
		IOC_REQBUFS	
		ioctl	
		(struct	
		v4l2_requestbuffers	
		count),	
		plus any	
		buffers	
		allo-	
		cated	
		with	
		ioctl	
		VID-	
		IOC_CREATE_BUFS	
		minus	
		one.	
Continued on ne	xt page		

Table 76: struct v4l2 buffer

	continued from pre	nous page
u32	type	Туре
		of the
		buffer,
		same as
		struct
		v4l2_format
		type or
		struct
		v4l2_requestbuffers
		type,
		set by
		the
		appli-
		cation.
		See
		v4l2_buf_type

Table 76 - continued from previous page

Table	76 - continued from pre	evious page	
u32	2 bytesused	The	_
		number	
		of bytes	
		occu-	
		pied by	
		the data	
		in the	
		buffer.	
		It de-	
		pends	
		on the	
		nego-	
		tiated	
		data	
		format	
		and	
		may	
		change	
		with	
		each	
		buffer	
		for com-	
		pressed	
		variable	
		size	
		data	
		like	
		JPEG	
		images.	
		Drivers	
		must	
		set this	
		field	
		when	
		type	
		refers	
		to a	
		capture	
		stream,	
		appli-	
		cations	
		when it	
		refers	
		to an	
		output	
		stream.	
		If the	
		appli-	
		cation	
		sets	
		this to	
		0 for an	
7.2. Part I - Video for	Linux API	output	317
		stream,	
		then	
		bvtesused	

Table 76 - continued from previous page

	Table 76 – cont		
u32 field the applica- tion or driver, see Buffer Flags. u32 field Indicates the field order of the image in the buffer, see v412_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output	u32	flags	Flags
			set by
u32 field tion or driver, see Buffer Flags. u32 field Indicates the field order of the image in the buffer, see v412_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			the
u32 field tion or driver, see Buffer Flags. u32 field Indicates the field order of the image in the buffer, see v412_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			applica-
u32 field Indicates Buffer Flags. u32 field Indicates the field order of the image in the buffer, see v412_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
u32 field Indicates the field order of the image in the buffer, see v412_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
the field order of the image in the buffer, see v4l2_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output	1130	fiold	
order of the image in the buffer, see v4l2_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output	u3z	TTELU	
of the image in the buffer, see v4l2_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
image in the buffer, see v4l2_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
in the buffer, see v4l2_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
buffer, see v4l2_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			-
see v4l2_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
v4l2_field. This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
This field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
field is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
is not used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
used when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			field
when the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			is not
the buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			used
buffer con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			when
Con- tains VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			the
tainsVBIdata.Driversmustsetitwhentypereferstoacapturestream,appli-cationswhen itreferstoanoutput			buffer
tainsVBIdata.Driversmustsetitwhentypereferstoacapturestream,appli-cationswhen itreferstoanoutput			con-
VBI data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			tains
data. Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
Drivers must set it when type refers to a capture stream, appli- cations when it refers to an output			
must set it when type refers to a capture stream, appli- cations when it refers to an output			
set it when type refers to a capture stream, appli- cations when it refers to an output			
when type refers to a capture stream, appli- cations when it refers to an output			
type refers to a capture stream, appli- cations when it refers to an output			
refers to a capture stream, appli- cations when it refers to an output			
to a capture stream, appli- cations when it refers to an output			
capture stream, appli- cations when it refers to an output			
stream, appli- cations when it refers to an output			
appli- cations when it refers to an output			
cations when it refers to an output			
when it refers to an output			
refers to an output			
to an output			
output			
stream.			
			stream.

 Table
 76 - continued from previous page

Table 76 – cont		vious page	
struct timeval	timestamp	For	
		capture	
		streams	
		this is	
		time	
		when	
		the first	
		data	
		byte	
		was	
		cap-	
		tured,	
		as re-	
		turned	
		by the	
		clock_ge	ttime()
		func-	
		tion for	
		the rel-	
		evant	
		clock	
		id; see	
			_FLAG_TIMESTAMP_*
		in –	
		Buffer	
		Flags.	
		For	
		output	
		streams	
		the	
		driver	
		stores	
		the	
		time at	
		which	
		the last	
		data	
		byte	
		was	
		actually	
		sent out	
		in the	
		timestam	р
		field.	
		This	
		permits	
		applica-	
		tions to	
		moni-	
		tor the	
		drift be-	
		tween	
7.2. Part I - Video for Linux AP		the	319
		video	
		and	
		svstem	

Table 76 – continued from previous page

Table 76 - conti	nued from prev	ious page
struct	timecode	When
v4l2_timecode		the
		V4L2_BUF_FLAG_TIMECODE
		flag is
		set in
		flags,
		this
		struc-
		ture
		con-
		tains a
		frame
		time-
		code. In
		V4L2_FIELD_ALTERNATE
		mode
		the top
		and
		bottom
		field
		con-
		tain the
		same
		time-
		code.
		Time-
		codes
		are in-
		tended
		to help
		video
		editing
		and are
		typ-
		ically recorded
		on video
		tapes,
		but also
		embed-
		ded in
		com-
		pressed
		formats
		like
		MPEG.
		This
		field is
		inde-
		pendent
		of the
Chapter 7.	Linux Media I	nfiastrux fure userspace API
		and
		sequence
 		fields.

Table 76 – continued from previous page

Table 76 – cont	inued from prev	vious page
_u32	sequence	Set
		by the
		driver,
		count-
		ing the
		frames
		(not
		fields!)
		in se-
		quence.
		This
		field is
		set for
		both in-
		put and
		output
		devices.
In V4L2_FIELD_		-
and bottom fi		
quence numbe		
zero and includ		-
frames. A drop	-	
by an input d		
stored due to la		
A repeated fra		-
by an output d cation did not p		
	ass new data n	i time.
Note: This m	ay count the fi	ramos ro-
	er USB, witho	
into account th		0
remote hardwa		
pression through		
These devices i		
ing any video st		
dards.		

Table 76 - continued from previous page

		· · · · J ·
u32	memory	This
		field
		must be
		set by
		appli-
		cations
		and/or
		drivers
		in ac-
		cor-
		dance
		with
		the se-
		lected
		I/O
		method.
		See
		v4l2_memory
union {	m	

Table76 - continued from previous page

Table 76 – conti		
u32	offset	For the
		single-
		planar
		API and
		when
		memory
		is
		V4L2_MEMORY_MMAP
		this is
		the
		offset
		of the
		buffer
		from
		the
		start
		of the
		device
		mem-
		ory.
		The
		value
		is re-
		turned
		by the
		driver
		and
		apart of
		serving
		as pa-
		rameter
		to the
		mmap()
		func-
		tion not
		use-
		ful for
		appli-
		cations.
		See
		Stream-
		ing I/O
		(Mem-
		ory
		Map-
		ping)
		for
		details

unsigned long	userntr	For the
unsigned tony	userpti	single-
		planar
		API and
		when
		memory
		is
		V4L2_MEMORY_USERPTR
		this is a
		pointer
		to the
		buffer
		(casted
		to un-
		signed
		long
		type) in
		virtual
		mem-
		ory, set
		by the
		appli-
		cation.
		See
		Stream-
		ing I/O
		(User
		Point-
		ers) for
		details.
Continued on next i		

Table 76 - continued from previous page

Table 76 - conti struct	*planes	When
v4l2_plane		using
		the
		multi-
		planar
		API,
		con-
		tains a
		userspace
		pointer
		to an
		array of
		struct
		v4l2_plane.
		The size
		of the
		array
		should
		be put
		in the
		length
		field
		of this
		struct
		v4l2_buffer
		struc-
		ture.
int	fd	For the
		single-
		plane
		API and
		when
		memory
		is
		V4L2_MEMORY_DMABL
		this is
		the
		file de-
		scriptor
		asso-
		ciated
		with a
		DMABUF
		buffer.
		2 dilloit

 Table 76 - continued from previous page

Table 76 – conti		
u32	length	Size
		of the
		buffer
		(not the
		pay-
		load) in
		bytes
		for the
		single-
		planar
		API.
		This
		is set
		by the
		driver
		based
		on the
		calls
		to ioctl
		VID-
		IOC_REQBUFS
		and/or
		ioctl
		VID-
		IOC_CREATE_BUFS.
		For the
		multi-
		planar
		API the
		appli-
		cation
		sets this
		to the
		number
		of ele-
		ments
		in the
		planes
		array.
		The
		driver
		will fill
		in the
		actual
		num-
		ber of
		valid el-
		ements
		in that
Continued on next		array.
CONTINUED ON NEAL	Juge	

 Table 76 - continued from previous page

	nueu nom piev	ious page
u32	reserved2	A place
		holder
		for fu-
		ture
		exten-
		sions.
		Drivers
		and
		appli-
		cations
		must
		set this
		to 0.

Table76 - continued from previous page

	Table 76 - conti	nued from prev	ious page
ſ	u32	request_fd	The file
			descrip-
			tor of
			the re-
			quest to
			queue
			the
			buffer
			to. If
			the flag
			V4L2_BUF_FLAG_REQUEST_FD
			is set,
			then the
			buffer
			will be
			queued
			to this
			re-
			quest.
			If the
			flag is
			not set,
			then
			this
			field
			will
			be ig-
			nored.
			The
			V4L2_BUF_FLAG_REQUEST_FD
			flag and
			this
			field
			are only used
			by ioctl
			VID-
			IOC QBUF
			and ig-
			nored
			by other
			ioctls
			that
			take a
			v4l2_buffer
			as argu-
			ment.
			Applications
			should
			not set
			V4L2_BUF_FLAG_REQUEST_FD
			for any
	Chapter 7.	Linux Media I	nifraistructure userspace API
			other
			than
			VID-

Table 76 – continued from previous page

Table 76 – continued from previous page

v4l2_plane

struct v4l2_plane

u32	bytesused	The number of bytes occupied by data in the plane (its payload). Drivers must set this field when type refers to a capture stream, applications when it refers to an output stream. If the application sets this to 0 for an output stream, then bytesused will be set to the size of the plane (see the length field of this struct) by the driver.
		that the actual image data starts at data_offset which may not be 0.
u32 uion {	length	Size in bytes of the plane (not its payload). This is set by the driver based on the calls to ioctl VID- IOC_REQBUFS and/or ioctl VID- IOC_CREATE_BUFS.
Continued on		

u32	mem offset	When the mem-
^{U32}		
		ory type in the
		containing struct v4l2 buffer is
		V4L2_MEMORY_MMAP,
		this is the value
		that should
		be passed to
		mmap(), similar
		to the offset
		field in struct
		v4l2_buffer.
unsigned long	userptr	When the mem-
		ory type in the
		containing struct
		v4l2_buffer is
		V4L2_MEMORY_USERPTR,
		this is a userspace
		pointer to the
		memory allocated
		for this plane by
		an application.
int	fd	When the mem-
		ory type in the
		containing struct
		v4l2_buffer is
		V4L2_MEMORY_DMABUF,
		this is a file de-
		scriptor asso-
		ciated with a
		DMABUF buffer,
		similar to the fd
		field in struct
		v4l2_buffer.
}		
Continued on	novt pag	

Table 77 – continued from previous page

0.0	continued nom pre	
_u32	data_offset	Offset in bytes to
		video data in the
		plane. Drivers
		must set this field
		when type refers
		to a capture
		stream, appli-
		cations when
		it refers to an
		output stream.
		Note: That
		data offset
		is included in
		bytesused. So
		the size of the im-
		age in the plane
		is bytesused-
		data_offset
		at offset
		data_offset
		from the start of
		the plane.
	reconved[11]	
_u32	reserved[11]	Reserved for fu-
u32		Reserved for fu- ture use. Should
_u32	reserved[11]	
u32	reserved[11]	ture use. Should
u32	reserved[11]	ture use. Should be zeroed by

Table 77 – continued from previous page

v4l2_buf_type

enum v4l2_buf_type

V4L2_BUF_TYPE_VIDE0_CAPTURE	1	Buffer of a single-planar video capture stream
		see Video Capture Interface.
V4L2_BUF_TYPE_VIDE0_CAPTURE_MPLANE	9	Buffer of a multi-planar video capture stream
		see Video Capture Interface.
V4L2_BUF_TYPE_VIDE0_0UTPUT	2	Buffer of a single-planar video output stream
		see Video Output Interface.
V4L2_BUF_TYPE_VIDE0_OUTPUT_MPLANE	10	Buffer of a multi-planar video output stream
		see Video Output Interface.
V4L2_BUF_TYPE_VIDE0_0VERLAY	3	Buffer for video overlay, see Video Overlay In
		terface.
V4L2_BUF_TYPE_VBI_CAPTURE	4	Buffer of a raw VBI capture stream, see Rav
		VBI Data Interface.
V4L2_BUF_TYPE_VBI_OUTPUT	5	Buffer of a raw VBI output stream, see Raw VB
		Data Interface.
V4L2_BUF_TYPE_SLICED_VBI_CAPTURE	6	Buffer of a sliced VBI capture stream, see
		Sliced VBI Data Interface.
V4L2_BUF_TYPE_SLICED_VBI_OUTPUT	7	Buffer of a sliced VBI output stream, see Sliced
		VBI Data Interface.
V4L2_BUF_TYPE_VIDE0_0UTPUT_0VERLAY	8	Buffer for video output overlay (OSD), see
		Video Output Overlay Interface.
V4L2_BUF_TYPE_SDR_CAPTURE	11	Buffer for Software Defined Radio (SDR) cap
		ture stream, see Software Defined Radio Inter
		face (SDR).
V4L2_BUF_TYPE_SDR_OUTPUT	12	Buffer for Software Defined Radio (SDR) out
		put stream, see Software Defined Radio Inter
		face (SDR).
V4L2_BUF_TYPE_META_CAPTURE	13	Buffer for metadata capture, see Metadata In
		terface.
V4L2_BUF_TYPE_META_OUTPUT	14	Buffer for metadata output, see Metadata In
		terface.

Buffer Flags

V4L2_BUF_FLAG_MAPPED 0x0	The buffer resides in device memory at has been mapped into the application's a dress space, see Streaming I/O (Memo Mapping) for details. Drivers set or cle this flag when the ioctl VIDIOC_QUERYBU ioctl VIDIOC_QBUF, VIDIOC_DQBUF or VI IOC DQBUF ioctl is called. Set by the driver.
--------------------------	---

Table 78 – continued from previous page					
V4L2_BUF_FLAG_QUEUED		Internally drivers maintain two buffer queues			
	0x0000002	an incoming and outgoing queue. When thi			
		flag is set, the buffer is currently on the in			
		coming queue. It automatically moves to			
		the outgoing queue after the buffer has been			
		filled (capture devices) or displayed (output de			
		vices). Drivers set or clear this flag when the			
		VIDIOC_QUERYBUF ioctl is called. After (success			
		ful) calling the VIDIOC_QBUFioctl it is always se			
		and after VIDIOC_DQBUF always cleared.			
V4L2_BUF_FLAG_DONE		When this flag is set, the buffer is cur			
	0x00000004	rently on the outgoing queue, ready to be			
		dequeued from the driver. Drivers set o			
		clear this flag when the VIDIOC_QUERYBUF ioct			
		is called. After calling the VIDIOC_QBUF or			
		VIDIOC_DQBUF it is always cleared. Of course			
		a buffer cannot be on both queues at the			
		same time, the V4L2_BUF_FLAG_QUEUED and			
		V4L2_BUF_FLAG_DONE flag are mutually exclu			
		sive. They can be both cleared however, then			
		the buffer is in "dequeued" state, in the appli			
		cation domain so to say.			
V4L2_BUF_FLAG_ERROR		When this flag is set, the buffer has been de			
	0x00000040	queued successfully, although the data migh			
		have been corrupted. This is recoverable			
		streaming may continue as normal and the			
		buffer may be reused normally. Drivers set this			
		flag when the VIDIOC_DQBUF ioctl is called.			
V4L2_BUF_FLAG_IN_REQUEST		This buffer is part of a request that hasn't been			
	0x0000080	queued yet.			
V4L2_BUF_FLAG_KEYFRAME		Drivers set or clear this flag when calling the			
	0x0000008	VIDIOC_DQBUF ioctl. It may be set by video cap			
		ture devices when the buffer contains a com			
		pressed image which is a key frame (or field), i			
		e. can be decompressed on its own. Also known			
		as an I-frame. Applications can set this bit when			
		type refers to an output stream.			
V4L2_BUF_FLAG_PFRAME	000000010	Similar to V4L2_BUF_FLAG_KEYFRAME this flag:			
	0x00000010	predicted frames or fields which contain only			
		differences to a previous key frame. Applica			
		tions can set this bit when type refers to an out			
		put stream.			
V4L2_BUF_FLAG_BFRAME	000000000	Similar to V4L2_BUF_FLAG_KEYFRAME this flag:			
	0x00000020	a bi-directional predicted frame or field which			
		contains only the differences between the cur			
		rent frame and both the preceding and follow			
		ing key frames to specify its content. Applica			
		tions can set this bit when type refers to an out			
		put stream.			
V4L2_BUF_FLAG_TIMECODE	000000100	The timecode field is valid. Drivers set o			
	0x00000100	clear this flag when the VIDIOC_DQBUF ioctl is			
		called. Applications can set this bit and the			
		corresponding timecode structure when type			
Continued on next pa		refers to an output stream.			
	108				

Table 78 – continued from previous page

Table 78 – continued from previous page					
V4L2_BUF_FLAG_PREPARED		The buffer has been prepared for I/O and can be			
	0x00000400	queued by the application. Drivers set or clea			
		this flag when the ioctl VIDIOC_QUERYBUF			
		VIDIOC_PREPARE_BUF, ioctl VIDIOC_QBUF			
		VIDIOC_DQBUF or VIDIOC_DQBUF ioctl is			
		called.			
V4L2_BUF_FLAG_N0_CACHE_INVALIDATE	0x00000800	Caches do not have to be invalidated for this buffer. Typically applications shall use this flag			
	0x000000000	if the data captured in the buffer is not going to			
		be touched by the CPU, instead the buffer will			
		probably, be passed on to a DMA-capable hard			
		ware unit for further processing or output.			
V4L2_BUF_FLAG_N0_CACHE_CLEAN		Caches do not have to be cleaned for this			
	0x00001000	buffer. Typically applications shall use this flag			
		for output buffers if the data in this buffer ha			
		not been created by the CPU but by some DMA			
		capable unit, in which case caches have no			
V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF		been used. Only valid if V4L2 BUF CAP SUPPORTS M2M HOL			
	0x00000200	is set. It is typically used with stateless de			
	0X00000200	coders where multiple output buffers each			
		decode to a slice of the decoded frame. Ap			
		plications can set this flag when queueing			
		the output buffer to prevent the driver fron			
		dequeueing the capture buffer after the outpu			
		buffer has been decoded (i.e. the capture			
		buffer is 'held'). If the timestamp of this			
		output buffer differs from that of the previous			
		output buffer, then that indicates the start o a new frame and the previously held capture			
		buffer is dequeued.			
V4L2_BUF_FLAG_LAST		Last buffer produced by the hardware			
	0x00100000	mem2mem codec drivers set this flag on the			
		capture queue for the last buffer when the ioct			
		VIDIOC_QUERYBUF or VIDIOC_DQBUF ioctl i			
		called. Due to hardware limitations, the las			
		buffer may be empty. In this case the drive			
		will set the bytesused field to 0, regardless o			
		the format. Any Any subsequent call to the VID IOC DQBUF ioctl will not block anymore, bu			
		return an EPIPE error code.			
V4L2_BUF_FLAG_REQUEST_FD		The request_fd field contains a valid file de			
· ·· _· ··· ·· ·· ·· ·· ·· ·· ·· ·· · · · · ·	0x00800000	scriptor.			
V4L2_BUF_FLAG_TIMESTAMP_MASK		Mask for timestamp types below. To test the			
	0x0000e000	timestamp type, mask out bits not belonging t			
		timestamp type by performing a logical and op			
		eration with buffer flags and timestamp mask.			
Continued on next pa	age				

Table 78 - continued from previous page

	Table 78 – continued from previous page					
Γ	V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN		Unknown timestamp type. This type is			
		0x00000000	used by drivers before Linux 3.9 and may			
			be either monotonic (see below) or realtime			
			(wall clock). Monotonic clock has been			
			favoured in embedded systems whereas mos			
			of the drivers use the realtime clock. Ei			
			ther kinds of timestamps are available in			
			<pre>user space via clock_gettime() using clocl</pre>			
			IDs CLOCK_MONOTONIC and CLOCK_REALTIME, re			
			spectively.			
	V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC		The buffer timestamp has been taken from the			
		0x00002000	CLOCK_MONOTONIC clock. To access the same			
			<pre>clock outside V4L2, use clock_gettime().</pre>			
	V4L2_BUF_FLAG_TIMESTAMP_COPY	0.00004000	The CAPTURE buffer timestamp has been			
		0x00004000	taken from the corresponding OUTPUT buffer			
			This flag applies only to mem2mem devices.			
	V4L2_BUF_FLAG_TSTAMP_SRC_MASK	0 00070000	Mask for timestamp sources below. The			
		0x00070000	timestamp source defines the point of time the			
			timestamp is taken in relation to the frame			
			Logical 'and' operation between the flag			
			field and V4L2_BUF_FLAG_TSTAMP_SRC_MASE produces the value of the timestamp source			
			Applications must set the timestamp source			
			when type refers to an output stream and			
			V4L2 BUF FLAG TIMESTAMP COPY is set.			
╞	V4L2 BUF FLAG TSTAMP SRC EOF		End Of Frame. The buffer timestamp has been			
		0x00000000	taken when the last pixel of the frame has been			
		04000000000	received or the last pixel of the frame has been			
			transmitted. In practice, software generated			
			timestamps will typically be read from the cloc			
			a small amount of time after the last pixel has			
			been received or transmitten, depending on the			
			system and other activity in it.			
F	V4L2 BUF FLAG TSTAMP SRC SOE		Start Of Exposure. The buffer timestam			
		0x00010000	has been taken when the exposure of the			
			frame has begun. This is only valid for the			
			V4L2_BUF_TYPE_VIDE0_CAPTURE buffer type.			
-						

Table 78 - continued from previous page

v4l2_memory

enum v4l2_memory

V4L2_MEMORY_MMAP	1	The buffer is used for memory mapping I/O.
V4L2_MEMORY_USERPTR	2	The buffer is used for user pointer I/O.
V4L2_MEMORY_OVERLAY	3	[to do]
V4L2_MEMORY_DMABUF	4	The buffer is used for DMA shared buffer I/O.

Timecodes

The v4l2_buffer_timecode structure is designed to hold a SMPTE 12M or similar timecode. (struct timeval timestamps are stored in the struct v4l2_buffer timestamp field.)

v4l2_timecode

struct v4l2_timecode

u32	type	Frame rate the timecodes are based on, see Timecode Types.
_u32	flags	Timecode flags, see Timecode Flags.
_u8	frames	Frame count, 0 …23/24/29/49/59, depending on the type of
		timecode.
_u8	seconds	Seconds count, 0 …59. This is a binary, not BCD number.
_u8	minutes	Minutes count, 0 …59. This is a binary, not BCD number.
_u8	hours	Hours count, 0 …29. This is a binary, not BCD number.
_u8	userbits[4]	The "user group" bits from the timecode.

Timecode Types

V4L2_TC_TYPE_24FPS	1	24 frames per second, i. e. film.
V4L2_TC_TYPE_25FPS	2	25 frames per second, i. e. PAL or SECAM video.
V4L2_TC_TYPE_30FPS	3	30 frames per second, i. e. NTSC video.
V4L2_TC_TYPE_50FPS	4	
V4L2_TC_TYPE_60FPS	5	

Timecode Flags

	0 0004	
V4L2_TC_FLAG_DR0PFRAME	0x0001	Indicates "drop frame" semantics for counting
		frames in 29.97 fps material. When set, frame
		numbers 0 and 1 at the start of each minute, ex
		cept minutes 0, 10, 20, 30, 40, 50 are omittee
		from the count.
V4L2_TC_FLAG_COLORFRAME	0x0002	The "color frame" flag.
V4L2_TC_USERBITS_field	0x000C	Field mask for the "binary group flags".
V4L2_TC_USERBITS_USERDEFINED	0x0000	Unspecified format.
V4L2_TC_USERBITS_8BITCHARS	0x0008	8-bit ISO characters.

Field Order

We have to distinguish between progressive and interlaced video. Progressive video transmits all lines of a video image sequentially. Interlaced video divides an image into two fields, containing only the odd and even lines of the image, respectively. Alternating the so called odd and even field are transmitted, and due to a small delay between fields a cathode ray TV displays the lines interleaved, yield-ing the original frame. This curious technique was invented because at refresh rates similar to film the image would fade out too quickly. Transmitting fields reduces the flicker without the necessity of doubling the frame rate and with it the bandwidth required for each channel.

It is important to understand a video camera does not expose one frame at a time, merely transmitting the frames separated into fields. The fields are in fact captured at two different instances in time. An object on screen may well move between one field and the next. For applications analysing motion it is of paramount importance to recognize which field of a frame is older, the temporal order.

When the driver provides or accepts images field by field rather than interleaved, it is also important applications understand how the fields combine to frames. We distinguish between top (aka odd) and bottom (aka even) fields, the spatial order: The first line of the top field is the first line of an interlaced frame, the first line of the bottom field is the second line of that frame.

However because fields were captured one after the other, arguing whether a frame commences with the top or bottom field is pointless. Any two successive top and bottom, or bottom and top fields yield a valid frame. Only when the source was progressive to begin with, e. g. when transferring film to video, two fields may come from the same frame, creating a natural order.

Counter to intuition the top field is not necessarily the older field. Whether the older field contains the top or bottom lines is a convention determined by the video standard. Hence the distinction between temporal and spatial order of fields. The diagrams below should make this clearer.

In V4L it is assumed that all video cameras transmit fields on the media bus in the same order they were captured, so if the top field was captured first (is the older field), the top field is also transmitted first on the bus.

All video capture and output devices must report the current field order. Some drivers may permit the selection of a different order, to this end applications initialize the field field of struct v4l2_pix_format before calling the VIDIOC_S_FMT ioctl. If this is not desired it should have the value V4L2_FIELD_ANY (0).

enum v4l2_field

v4l2_field

V4L2_FIELD_ANY	0	Applications request this field order when any field for mat is acceptable. Drivers choose depending on hard ware capabilities or e.g. the requested image size, and return the actual field order. Drivers must never re turn V4L2_FIELD_ANY. If multiple field orders are possi ble the driver must choose one of the possible field or ders during VIDIOC_S_FMT or VIDIOC_TRY_FMT. struc v4l2_buffer field can never be V4L2_FIELD_ANY.
V4L2_FIELD_NONE	1	Images are in progressive (frame-based) format, not in terlaced (field-based).
V4L2_FIELD_TOP	2	Images consist of the top (aka odd) field only.
V4L2_FIELD_BOTTOM	3	Images consist of the bottom (aka even) field only. Ap plications may wish to prevent a device from capturing interlaced images because they will have "comb" or "feath ering" artefacts around moving objects.
V4L2_FIELD_INTERLACED	4	Images contain both fields, interleaved line by line. The temporal order of the fields (whether the top or botton field is older) depends on the current video standard. In M/NTSC the bottom field is the older field. In all othe standards the top field is the older field.
V4L2_FIELD_SEQ_TB	5	Images contain both fields, the top field lines are stored first in memory, immediately followed by the bottom field lines. Fields are always stored in temporal order, the older one first in memory. Image sizes refer to the frame not fields.
V4L2_FIELD_SEQ_BT	6	Images contain both fields, the bottom field lines are stored first in memory, immediately followed by the top field lines. Fields are always stored in temporal order the older one first in memory. Image sizes refer to the frame, not fields.
V4L2_FIELD_ALTERNATE	7	The two fields of a frame are passed in separate buffers in temporal order, i. e. the older one first. To indi cate the field parity (whether the current field is a top or bottom field) the driver or application, depending or data direction, must set struct v4l2_buffer field to V4L2_FIELD_TOP or V4L2_FIELD_BOTTOM. Any two succes sive fields pair to build a frame. If fields are succes sive, without any dropped fields between them (fields can drop individually), can be determined from the struc v4l2_buffer sequence field. This format cannot be se lected when using the read/write I/O method since there is no way to communicate if a field was a top or botton field.
V4L2_FIELD_INTERLACED_TB	8	Images contain both fields, interleaved line by line, top field first. The top field is the older field.
V4L2_FIELD_INTERLACED_BT	9	Images contain both fields, interleaved line by line, top field first. The bottom field is the older field.

		- - -

Field Order, Top Field First Transmitted

Fig. 6: Field Order, Top Field First Transmitted

Field Order, Bottom Field First Transmitted

7.2.4 Interfaces

Video Capture Interface

Video capture devices sample an analog video signal and store the digitized images in memory. Today nearly all devices can capture at full 25 or 30 frames/second.

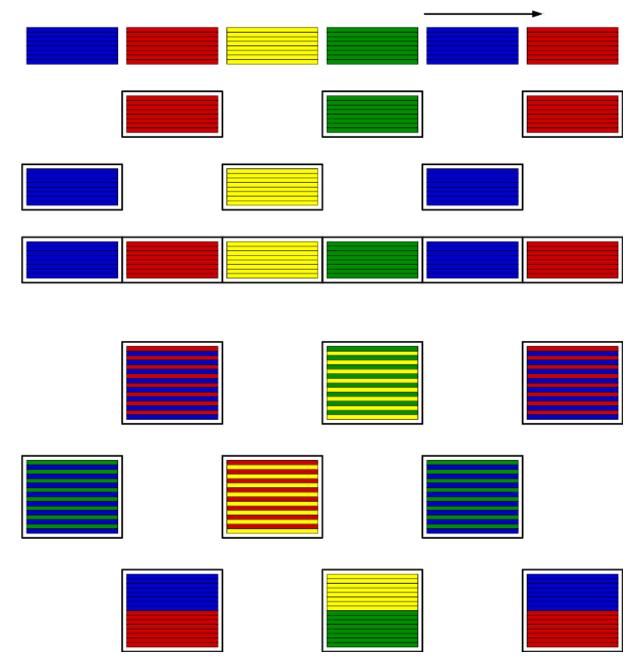


Fig. 7: Field Order, Bottom Field First Transmitted

With this interface applications can control the capture process and move images from the driver into user space.

Conventionally V4L2 video capture devices are accessed through character device special files named /dev/video and /dev/video0 to /dev/video63 with major number 81 and minor numbers 0 to 63. /dev/video is typically a symbolic link to the preferred video device.

Note: The same device file names are used for video output devices.

Querying Capabilities

Devices supporting the video capture interface set the V4L2_CAP_VIDEO_CAPTURE or V4L2_CAP_VIDEO_CAPTURE_MPLANE flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. As secondary device functions they may also support the video overlay (V4L2_CAP_VIDEO_OVERLAY) and the raw VBI capture (V4L2_CAP_VBI_CAPTURE) interface. At least one of the read/write or streaming I/O methods must be supported. Tuners and audio inputs are optional.

Supplemental Functions

Video capture devices shall support audio input, Tuners and Modulators, controls, cropping and scaling and streaming parameter ioctls as needed. The video input ioctls must be supported by all video capture devices.

Image Format Negotiation

The result of a capture operation is determined by cropping and image format parameters. The former select an area of the video picture to capture, the latter how images are stored in memory, i. e. in RGB or YUV format, the number of bits per pixel or width and height. Together they also define how images are scaled in the process.

As usual these parameters are not reset at open() time to permit Unix tool chains, programming a device and then reading from it as if it was a plain file. Well written V4L2 applications ensure they really get what they want, including cropping and scaling.

Cropping initialization at minimum requires to reset the parameters to defaults. An example is given in Image Cropping, Insertion and Scaling – the CROP API.

query image То the current format applications set the type to V4L2_BUF_TYPE_VIDE0_CAPTURE v4l2 format field of a struct or V4L2 BUF TYPE VIDEO CAPTURE MPLANE and call the VIDIOC G FMT ioctl with a pointer to this structure. Drivers fill the struct v4l2 pix format pix or the struct v4l2 pix format mplane pix mp member of the fmt union.

To request different parameters applications set the type field of a struct v4l2_format as above and initialize all fields of the struct v4l2_pix_format vbi

member of the fmt union, or better just modify the results of VIDIOC_G_FMT, and call the VIDIOC_S_FMT ioctl with a pointer to this structure. Drivers may adjust the parameters and finally return the actual parameters as VIDIOC_G_FMT does.

Like VIDIOC_S_FMT the VIDIOC_TRY_FMT ioctl can be used to learn about hardware limitations without disabling I/O or possibly time consuming hardware preparations.

The contents of struct v4l2_pix_format and struct v4l2_pix_format_mplane are discussed in Image Formats. See also the specification of the VIDIOC_G_FMT, VIDIOC_S_FMT and VIDIOC_TRY_FMT ioctls for details. Video capture devices must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl, even if VIDIOC_S_FMT ignores all requests and always returns default parameters as VIDIOC_G_FMT does. VIDIOC_TRY_FMT is optional.

Reading Images

A video capture device may support the read() function and/or streaming (memory mapping or user pointer) I/O. See Input/Output for details.

Video Overlay Interface

Also known as Framebuffer Overlay or Previewing.

Video overlay devices have the ability to genlock (TV-)video into the (VGA-)video signal of a graphics card, or to store captured images directly in video memory of a graphics card, typically with clipping. This can be considerable more efficient than capturing images and displaying them by other means. In the old days when only nuclear power plants needed cooling towers this used to be the only way to put live video into a window.

Video overlay devices are accessed through the same character special files as video capture devices.

Note: The default function of a /dev/video device is video capturing. The overlay function is only available after calling the VIDIOC_S_FMT ioctl.

The driver may support simultaneous overlay and capturing using the read/write and streaming I/O methods. If so, operation at the nominal frame rate of the video standard is not guaranteed. Frames may be directed away from overlay to capture, or one field may be used for overlay and the other for capture if the capture parameters permit this.

Applications should use different file descriptors for capturing and overlay. This must be supported by all drivers capable of simultaneous capturing and overlay. Optionally these drivers may also permit capturing and overlay with a single file descriptor for compatibility with V4L and earlier versions of V4L2.¹

 $^{^1}$ A common application of two file descriptors is the XFree86 Xv/V4L interface driver and a V4L2 application. While the X server controls video overlay, the application can take advantage of memory mapping and DMA.

In the opinion of the designers of this API, no driver writer taking the efforts to support simultane-

Querying Capabilities

Devices supporting the video overlay interface set the V4L2_CAP_VIDE0_OVERLAY flag in the capabilities field of struct v4l2_capability returned by the ioctl VID-IOC_QUERYCAP ioctl. The overlay I/O method specified below must be supported. Tuners and audio inputs are optional.

Supplemental Functions

Video overlay devices shall support audio input, Tuners and Modulators, controls, cropping and scaling and streaming parameter ioctls as needed. The video input and video standard ioctls must be supported by all video overlay devices.

Setup

Before overlay can commence applications must program the driver with frame buffer parameters, namely the address and size of the frame buffer and the image format, for example RGB 5:6:5. The VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctls are available to get and set these parameters, respectively. The VIDIOC_S_FBUF ioctl is privileged because it allows to set up DMA into physical memory, bypassing the memory protection mechanisms of the kernel. Only the superuser can change the frame buffer address and size. Users are not supposed to run TV applications as root or with SUID bit set. A small helper application with suitable privileges should query the graphics system and program the V4L2 driver at the appropriate time.

Some devices add the video overlay to the output signal of the graphics card. In this case the frame buffer is not modified by the video device, and the frame buffer address and pixel format are not needed by the driver. The VIDIOC_S_FBUF ioctl is not privileged. An application can check for this type of device by calling the VIDIOC_G_FBUF ioctl.

A driver may support any (or none) of five clipping/blending methods:

- 1. Chroma-keying displays the overlaid image only where pixels in the primary graphics surface assume a certain color.
- 2. A bitmap can be specified where each bit corresponds to a pixel in the overlaid image. When the bit is set, the corresponding video pixel is displayed, otherwise a pixel of the graphics surface.
- 3. A list of clipping rectangles can be specified. In these regions no video is displayed, so the graphics surface can be seen here.
- 4. The framebuffer has an alpha channel that can be used to clip or blend the framebuffer with the video.
- 5. A global alpha value can be specified to blend the framebuffer contents with video images.

ous capturing and overlay will restrict this ability by requiring a single file descriptor, as in V4L and earlier versions of V4L2. Making this optional means applications depending on two file descriptors need backup routines to be compatible with all drivers, which is considerable more work than using two fds in applications which do not. Also two fd's fit the general concept of one file descriptor for each logical stream. Hence as a complexity trade-off drivers must support two file descriptors and may support single fd operation.

When simultaneous capturing and overlay is supported and the hardware prohibits different image and frame buffer formats, the format requested first takes precedence. The attempt to capture (VIDIOC_S_FMT) or overlay (VIDIOC_S_FBUF) may fail with an EBUSY error code or return accordingly modified parameters..

Overlay Window

The overlaid image is determined by cropping and overlay window parameters. The former select an area of the video picture to capture, the latter how images are overlaid and clipped. Cropping initialization at minimum requires to reset the parameters to defaults. An example is given in Image Cropping, Insertion and Scaling – the CROP API.

The overlay window is described by a struct v4l2_window. It defines the size of the image, its position over the graphics surface and the clipping to be applied. To get the current parameters applications set the type field of a struct v4l2_format to V4L2_BUF_TYPE_VIDE0_0VERLAY and call the VIDIOC_G_FMT ioctl. The driver fills the struct v4l2_window substructure named win. It is not possible to retrieve a previously programmed clipping list or bitmap.

To program the overlay window applications set the type field of a struct v4l2_format to V4L2_BUF_TYPE_VIDEO_OVERLAY, initialize the win substructure and call the VIDIOC_S_FMT ioctl. The driver adjusts the parameters against hardware limits and returns the actual parameters as VIDIOC_G_FMT does. Like VIDIOC_S_FMT, the VIDIOC_TRY_FMT ioctl can be used to learn about driver capabilities without actually changing driver state. Unlike VIDIOC_S_FMT this also works after the overlay has been enabled.

The scaling factor of the overlaid image is implied by the width and height given in struct v4l2_window and the size of the cropping rectangle. For more information see Image Cropping, Insertion and Scaling – the CROP API.

When simultaneous capturing and overlay is supported and the hardware prohibits different image and window sizes, the size requested first takes precedence. The attempt to capture or overlay as well (VIDIOC_S_FMT) may fail with an EBUSY error code or return accordingly modified parameters.

v4l2_window

struct v4l2_window

- struct v4l2_rect w Size and position of the window relative to the top, left corner of the frame buffer defined with VIDIOC_S_FBUF. The window can extend the frame buffer width and height, the x and y coordinates can be negative, and it can lie completely outside the frame buffer. The driver clips the window accordingly, or if that is not possible, modifies its size and/or position.
- enum v4l2_field field Applications set this field to determine which video field
 shall be overlaid, typically one of V4L2_FIELD_ANY (0), V4L2_FIELD_TOP,
 V4L2_FIELD_BOTTOM or V4L2_FIELD_INTERLACED. Drivers may have to choose
 a different field order and return the actual setting here.

- _u32 chromakey When chroma-keying has been negotiated with VID-IOC_S_FBUF applications set this field to the desired pixel value for the chroma key. The format is the same as the pixel format of the framebuffer (struct v4l2_framebuffer fmt.pixelformat field), with bytes in host order. E. g. for V4L2_PIX_FMT_BGR24 the value should be 0xRRGGBB on a little endian, 0xBBGGRR on a big endian host.
- struct v4l2_clip * clips When chroma-keying has not been negotiated and VIDIOC_G_FBUF indicated this capability, applications can set this field to point to an array of clipping rectangles.

Like the window coordinates w, clipping rectangles are defined relative to the top, left corner of the frame buffer. However clipping rectangles must not extend the frame buffer width and height, and they must not overlap. If possible applications should merge adjacent rectangles. Whether this must create x-y or y-x bands, or the order of rectangles, is not defined. When clip lists are not supported the driver ignores this field. Its contents after calling VIDIOC_S_FMT are undefined.

- **____u32 clipcount** When the application set the clips field, this field must contain the number of clipping rectangles in the list. When clip lists are not supported the driver ignores this field, its contents after calling VIDIOC_S_FMT are undefined. When clip lists are supported but no clipping is desired this field must be set to zero.
- void * bitmap When chroma-keying has not been negotiated and VID-IOC_G_FBUF indicated this capability, applications can set this field to point to a clipping bit mask.

It must be of the same size as the window, w.width and w.height. Each bit corresponds to a pixel in the overlaid image, which is displayed only when the bit is set. Pixel coordinates translate to bits like:

 $((_u8 *) bitmap)[w.width * y + x / 8] \& (1 << (x \& 7))$

where $0 \le x < w$.width and $0 \le y < w$.height.²

When a clipping bit mask is not supported the driver ignores this field, its contents after calling VIDIOC_S_FMT are undefined. When a bit mask is supported but no clipping is desired this field must be set to NULL.

Applications need not create a clip list or bit mask. When they pass both, or despite negotiating chroma-keying, the results are undefined. Regardless of the chosen method, the clipping abilities of the hardware may be limited in quantity or quality. The results when these limits are exceeded are undefined.³

____u8 global_alpha The global alpha value used to blend the framebuffer with video images, if global alpha blending has been negotiated (V4L2_FBUF_FLAG_GLOBAL_ALPHA, see VIDIOC_S_FBUF, Frame Buffer Flags).

Note: This field was added in Linux 2.6.23, extending the structure. However

 $^{^{2}}$ Should we require w.width to be a multiple of eight?

³ When the image is written into frame buffer memory it will be undesirable if the driver clips out less pixels than expected, because the application and graphics system are not aware these regions need to be refreshed. The driver should clip out more pixels or not write the image at all.

the VIDIOC_[G|S|TRY]_FMT ioctls, which take a pointer to a v4l2_format parent structure with padding bytes at the end, are not affected.

v4l2_clip

struct v4l2_clip⁴

- struct v4l2_rect c Coordinates of the clipping rectangle, relative to the top, left corner of the frame buffer. Only window pixels outside all clipping rectangles are displayed.
- struct v4l2_clip * next Pointer to the next clipping rectangle, NULL when this
 is the last rectangle. Drivers ignore this field, it cannot be used to pass a
 linked list of clipping rectangles.

v4l2_rect

struct v4l2_rect

- **___s32 left** Horizontal offset of the top, left corner of the rectangle, in pixels.
- **_____S32 top** Vertical offset of the top, left corner of the rectangle, in pixels. Offsets increase to the right and down.
- **____u32 width** Width of the rectangle, in pixels.
- ___u32 height Height of the rectangle, in pixels.

Enabling Overlay

To start or stop the frame buffer overlay applications call the ioctl VID- $\rm IOC_OVERLAY$ ioctl.

Video Output Interface

Video output devices encode stills or image sequences as analog video signal. With this interface applications can control the encoding process and move images from user space to the driver.

Conventionally V4L2 video output devices are accessed through character device special files named /dev/video and /dev/video0 to /dev/video63 with major number 81 and minor numbers 0 to 63. /dev/video is typically a symbolic link to the preferred video device.

Note: The same device file names are used also for video capture devices.

⁴ The X Window system defines "regions" which are vectors of struct BoxRec { short x1, y1, x2, y2; } with width = x2 - x1 and height = y2 - y1, so one cannot pass X11 clip lists directly.

Querying Capabilities

Devices supporting the video output interface set the V4L2_CAP_VIDEO_OUTPUT or V4L2_CAP_VIDEO_OUTPUT_MPLANE flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. As secondary device functions they may also support the raw VBI output (V4L2_CAP_VBI_OUTPUT) interface. At least one of the read/write or streaming I/O methods must be supported. Modulators and audio outputs are optional.

Supplemental Functions

Video output devices shall support audio output, modulator, controls, cropping and scaling and streaming parameter ioctls as needed. The video output ioctls must be supported by all video output devices.

Image Format Negotiation

The output is determined by cropping and image format parameters. The former select an area of the video picture where the image will appear, the latter how images are stored in memory, i. e. in RGB or YUV format, the number of bits per pixel or width and height. Together they also define how images are scaled in the process.

As usual these parameters are not reset at open() time to permit Unix tool chains, programming a device and then writing to it as if it was a plain file. Well written V4L2 applications ensure they really get what they want, including cropping and scaling.

Cropping initialization at minimum requires to reset the parameters to defaults. An example is given in Image Cropping, Insertion and Scaling – the CROP API.

То auerv the current image format applications set the tvpe v4l2 format V4L2 BUF TYPE VIDEO OUTPUT field of struct to а or V4L2 BUF TYPE VIDEO OUTPUT MPLANE and call the VIDIOC G FMT ioctl with a pointer to this structure. Drivers fill the struct v4l2_pix_format pix or the struct v4l2 pix format mplane pix mp member of the fmt union.

To request different parameters applications set the type field of a struct v4l2_format as above and initialize all fields of the struct v4l2_pix_format vbi member of the fmt union, or better just modify the results of VIDIOC_G_FMT, and call the VIDIOC_S_FMT ioctl with a pointer to this structure. Drivers may adjust the parameters and finally return the actual parameters as VIDIOC_G_FMT does.

Like VIDIOC_S_FMT the VIDIOC_TRY_FMT ioctl can be used to learn about hardware limitations without disabling I/O or possibly time consuming hardware preparations.

The contents of struct v4l2_pix_format and struct v4l2_pix_format_mplane are discussed in Image Formats. See also the specification of the VIDIOC_G_FMT, VIDIOC_S_FMT and VIDIOC_TRY_FMT ioctls for details. Video output devices must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl, even if VID-

 $\rm IOC_S_FMT$ ignores all requests and always returns default parameters as VID-IOC_G_FMT does. VIDIOC_TRY_FMT is optional.

Writing Images

A video output device may support the write() function and/or streaming (memory mapping or user pointer) I/O. See Input/Output for details.

Video Output Overlay Interface

Also known as On-Screen Display (OSD)

Some video output devices can overlay a framebuffer image onto the outgoing video signal. Applications can set up such an overlay using this interface, which borrows structures and ioctls of the Video Overlay interface.

The OSD function is accessible through the same character special file as the Video Output function.

Note: The default function of such a /dev/video device is video capturing or output. The OSD function is only available after calling the VIDIOC_S_FMT ioctl.

Querying Capabilities

Devices supporting the Video Output Overlay interface set the V4L2_CAP_VIDEO_OUTPUT_OVERLAY flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.

Framebuffer

Contrary to the Video Overlay interface the framebuffer is normally implemented on the TV card and not the graphics card. On Linux it is accessible as a framebuffer device (/dev/fbN). Given a V4L2 device, applications can find the corresponding framebuffer device by calling the VIDIOC_G_FBUF ioctl. It returns, amongst other information, the physical address of the framebuffer in the base field of struct v4l2_framebuffer. The framebuffer device ioctl FBI0GET_FSCREENINF0 returns the same address in the smem_start field of struct struct fb_fix_screeninfo. The FBI0GET_FSCREENINF0 ioctl and struct fb_fix_screeninfo are defined in the linux/fb.h header file.

The width and height of the framebuffer depends on the current video standard. A V4L2 driver may reject attempts to change the video standard (or any other ioctl which would imply a framebuffer size change) with an EBUSY error code until all applications closed the framebuffer device.

Example: Finding a framebuffer device for OSD

```
#include <linux/fb.h>
struct v4l2 framebuffer fbuf;
unsigned int i;
int fb_fd;
if (-1 == ioctl(fd, VIDIOC_G_FBUF, &fbuf)) {
    perror("VIDIOC G FBUF");
    exit(EXIT_FAILURE);
}
for (i = 0; i < 30; i++) {
    char dev name[16];
    struct fb_fix_screeninfo si;
    snprintf(dev name, sizeof(dev name), "/dev/fb%u", i);
    fb fd = open(dev name, 0 RDWR);
    if (-1 == fb fd) {
        switch (errno) {
        case ENOENT: /* no such file */
        case ENXIO: /* no driver */
            continue;
        default:
            perror("open");
            exit(EXIT_FAILURE);
        }
    }
    if (0 == ioctl(fb_fd, FBIOGET_FSCREENINFO, &si)) {
        if (si.smem start == (unsigned long)fbuf.base)
            break;
    } else {
        /* Apparently not a framebuffer device. */
    }
   close(fb fd);
    fb fd = -1;
}
/* fb fd is the file descriptor of the framebuffer device
   for the video output overlay, or -1 if no device was found. */
```

Overlay Window and Scaling

The overlay is controlled by source and target rectangles. The source rectangle selects a subsection of the framebuffer image to be overlaid, the target rectangle an area in the outgoing video signal where the image will appear. Drivers may or may not support scaling, and arbitrary sizes and positions of these rectangles. Further drivers may support any (or none) of the clipping/blending methods defined for the Video Overlay interface.

A struct v4l2_window defines the size of the source rectangle, its position in the framebuffer and the clipping/blending method to be used for the overlay. To get the current parameters applications set the type field of a struct v4l2_format to V4L2_BUF_TYPE_VIDE0_0UTPUT_0VERLAY and call the VIDIOC_G_FMT ioctl. The driver fills the struct v4l2_window substructure named win. It is not possible to retrieve a previously programmed clipping list or bitmap.

To program the source rectangle applications set the type field of a struct v4l2_format to V4L2_BUF_TYPE_VIDE0_0UTPUT_OVERLAY, initialize the win substructure and call the VIDIOC_S_FMT ioctl. The driver adjusts the parameters against hardware limits and returns the actual parameters as VIDIOC_G_FMT does. Like VIDIOC_S_FMT, the VIDIOC_TRY_FMT ioctl can be used to learn about driver capabilities without actually changing driver state. Unlike VIDIOC_S_FMT this also works after the overlay has been enabled.

A struct v4l2_crop defines the size and position of the target rectangle. The scaling factor of the overlay is implied by the width and height given in struct v4l2_window and struct v4l2_crop. The cropping API applies to Video Output and Video Output Overlay devices in the same way as to Video Capture and Video Overlay devices, merely reversing the direction of the data flow. For more information see Image Cropping, Insertion and Scaling – the CROP API.

Enabling Overlay

There is no V4L2 ioctl to enable or disable the overlay, however the framebuffer interface of the driver may support the FBIOBLANK ioctl.

Video Memory-To-Memory Interface

A V4L2 memory-to-memory device can compress, decompress, transform, or otherwise convert video data from one format into another format, in memory. Such memory-to-memory devices set the V4L2_CAP_VIDE0_M2M or V4L2_CAP_VIDE0_M2M_MPLANE capability. Examples of memory-to-memory devices are codecs, scalers, deinterlacers or format converters (i.e. converting from YUV to RGB).

A memory-to-memory video node acts just like a normal video node, but it supports both output (sending frames from memory to the hardware) and capture (receiving the processed frames from the hardware into memory) stream I/O. An application will have to setup the stream I/O for both sides and finally call VIDIOC_STREAMON for both capture and output to start the hardware.

Memory-to-memory devices function as a shared resource: you can open the video node multiple times, each application setting up their own properties that are local to the file handle, and each can use it independently from the others. The driver will arbitrate access to the hardware and reprogram it whenever another file handler gets access. This is different from the usual video node behavior where the video properties are global to the device (i.e. changing something through one file handle is visible through another file handle).

One of the most common memory-to-memory device is the codec. Codecs are more complicated than most and require additional setup for their codec parameters. This is done through codec controls. See Codec Control Reference. More details on how to use codec memory-to-memory devices are given in the following sections.

Memory-to-Memory Stateful Video Decoder Interface

A stateful video decoder takes complete chunks of the bytestream (e.g. Annex-B H.264/HEVC stream, raw VP8/9 stream) and decodes them into raw video frames in display order. The decoder is expected not to require any additional information from the client to process these buffers.

Performing software parsing, processing etc. of the stream in the driver in order to support this interface is strongly discouraged. In case such operations are needed, use of the Stateless Video Decoder Interface (in development) is strongly advised.

Conventions and Notations Used in This Document

- 1. The general V4L2 API rules apply if not specified in this document otherwise.
- 2. The meaning of words "must", "may", "should", etc. is as per RFC 2119.
- 3. All steps not marked "optional" are required.
- VIDIOC_G_EXT_CTRLS() and VIDIOC_S_EXT_CTRLS() may be used interchangeably with VIDIOC_G_CTRL() and VIDIOC_S_CTRL(), unless specified otherwise.
- 5. Single-planar API (see Single- and multi-planar APIs) and applicable structures may be used interchangeably with multi-planar API, unless specified otherwise, depending on decoder capabilities and following the general V4L2 guidelines.
- 6. i = [a..b]: sequence of integers from a to b, inclusive, i.e. i = [0..2]: i = 0, 1, 2.
- 7. Given an OUTPUT buffer A, then A' represents a buffer on the CAPTURE queue containing data that resulted from processing buffer A.

Glossary

- CAPTURE the destination buffer queue; for decoders, the queue of buffers containing decoded frames; for encoders, the queue of buffers containing an encoded bytestream; V4L2_BUF_TYPE_VIDE0_CAPTURE or V4L2_BUF_TYPE_VIDE0_CAPTURE_MPLANE; data is captured from the hardware into CAPTURE buffers.
- **client** the application communicating with the decoder or encoder implementing this interface.
- **coded format** encoded/compressed video bytestream format (e.g. H.264, VP8, etc.); see also: raw format.
- coded height height for given coded resolution.
- **coded resolution** stream resolution in pixels aligned to codec and hardware requirements; typically visible resolution rounded up to full macroblocks; see also: visible resolution.
- coded width width for given coded resolution.
- decode order the order in which frames are decoded; may differ from display order if the coded format includes a feature of frame reordering; for decoders, OUTPUT buffers must be queued by the client in decode order; for encoders CAPTURE buffers must be returned by the encoder in decode order.
- destination data resulting from the decode process; see CAPTURE.
- **display order** the order in which frames must be displayed; for encoders, OUTPUT buffers must be queued by the client in display order; for decoders, CAPTURE buffers must be returned by the decoder in display order.
- **DPB** Decoded Picture Buffer; an H.264/HEVC term for a buffer that stores a decoded raw frame available for reference in further decoding steps.
- EOS end of stream.
- **IDR** Instantaneous Decoder Refresh; a type of a keyframe in an H.264/HEVCencoded stream, which clears the list of earlier reference frames (DPBs).
- **keyframe** an encoded frame that does not reference frames decoded earlier, i.e. can be decoded fully on its own.
- **macroblock** a processing unit in image and video compression formats based on linear block transforms (e.g. H.264, VP8, VP9); codec-specific, but for most of popular codecs the size is 16x16 samples (pixels).
- **OUTPUT** the source buffer queue; for decoders, the queue of buffers containing an encoded bytestream; for encoders, the queue of buffers containing raw frames; V4L2_BUF_TYPE_VIDEO_OUTPUT or V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; the hardware is fed with data from OUTPUT buffers.
- **PPS** Picture Parameter Set; a type of metadata entity in an H.264/HEVC bytestream.
- **raw format** uncompressed format containing raw pixel data (e.g. YUV, RGB formats).

- **resume point** a point in the bytestream from which decoding may start/continue, without any previous state/data present, e.g.: a keyframe (VP8/VP9) or SPS/PPS/IDR sequence (H.264/HEVC); a resume point is required to start decode of a new stream, or to resume decoding after a seek.
- source data fed to the decoder or encoder; see OUTPUT.
- **source height** height in pixels for given source resolution; relevant to encoders only.
- **source resolution** resolution in pixels of source frames being source to the encoder and subject to further cropping to the bounds of visible resolution; relevant to encoders only.
- **source width** width in pixels for given source resolution; relevant to encoders only.
- **SPS** Sequence Parameter Set; a type of metadata entity in an H.264/HEVC bytestream.
- **stream metadata** additional (non-visual) information contained inside encoded bytestream; for example: coded resolution, visible resolution, codec profile.
- visible height height for given visible resolution; display height.
- **visible resolution** stream resolution of the visible picture, in pixels, to be used for display purposes; must be smaller or equal to coded resolution; display resolution.
- visible width width for given visible resolution; display width.

State Machine

Querying Capabilities

- 1. To enumerate the set of coded formats supported by the decoder, the client may call VIDIOC_ENUM_FMT() on OUTPUT.
 - The full set of supported formats will be returned, regardless of the format set on CAPTURE.
 - Check the flags field of v4l2_fmtdesc for more information about the decoder' s capabilities with respect to each coded format. In particular whether or not the decoder has a full-fledged bytestream parser and if the decoder supports dynamic resolution changes.
- 2. To enumerate the set of supported raw formats, the client may call VIDIOC_ENUM_FMT() on CAPTURE.
 - Only the formats supported for the format currently active on OUTPUT will be returned.
 - In order to enumerate raw formats supported by a given coded format, the client must first set that coded format on OUTPUT and then enumerate formats on CAPTURE.

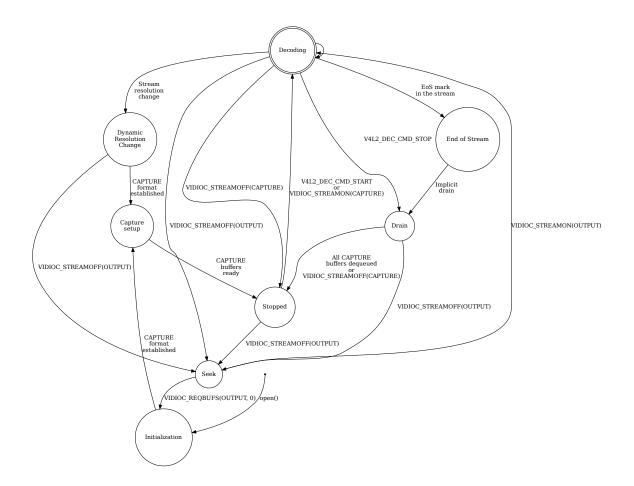


Fig. 8: Decoder State Machine

- The client may use VIDIOC_ENUM_FRAMESIZES() to detect supported resolutions for a given format, passing desired pixel format in v4l2_frmsizeenum pixel_format.
 - Values returned by VIDIOC_ENUM_FRAMESIZES() for a coded pixel format will include all possible coded resolutions supported by the decoder for given coded pixel format.
 - Values returned by VIDIOC_ENUM_FRAMESIZES() for a raw pixel format will include all possible frame buffer resolutions supported by the decoder for given raw pixel format and the coded format currently set on OUTPUT.
- Supported profiles and levels for the coded format currently set on OUTPUT, if applicable, may be queried using their respective controls via VIDIOC_QUERYCTRL().

Initialization

- 1. Set the coded format on OUTPUT via $VIDIOC_S_FMT()$
 - Required fields:

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

pixelformat a coded pixel format.

- width, height coded resolution of the stream; required only if it cannot be parsed from the stream for the given coded format; otherwise the decoder will use this resolution as a placeholder resolution that will likely change as soon as it can parse the actual coded resolution from the stream.
- **sizeimage** desired size of OUTPUT buffers; the decoder may adjust it to match hardware requirements.

other fields follow standard semantics.

• Return fields:

sizeimage adjusted size of OUTPUT buffers.

• The CAPTURE format will be updated with an appropriate frame buffer resolution instantly based on the width and height returned by VIDIOC_S_FMT(). However, for coded formats that include stream resolution information, after the decoder is done parsing the information from the stream, it will update the CAPTURE format with new values and signal a source change event, regardless of whether they match the values set by the client or not.

Important: Changing the OUTPUT format may change the currently set CAPTURE format. How the new CAPTURE format is determined is up to the decoder and the client must ensure it matches its needs afterwards.

2. Allocate source (bytestream) buffers via VIDIOC_REQBUFS() on OUTPUT.

• Required fields:

count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

memory follows standard semantics.

• Return fields:

count the actual number of buffers allocated.

Warning: The actual number of allocated buffers may differ from the count given. The client must check the updated value of count after the call returns.

Alternatively, VIDIOC_CREATE_BUFS() on the OUTPUT queue can be used to have more control over buffer allocation.

• Required fields:

count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

memory follows standard semantics.

format follows standard semantics.

• Return fields:

count adjusted to the number of allocated buffers.

Warning: The actual number of allocated buffers may differ from the count given. The client must check the updated value of count after the call returns.

- 3. Start streaming on the OUTPUT queue via VIDIOC_STREAMON().
- 4. This step only applies to coded formats that contain resolution information in the stream. Continue queuing/dequeuing bytestream buffers to/from the OUTPUT queue via VIDIOC_QBUF() and VIDIOC_DQBUF(). The buffers will be processed and returned to the client in order, until required metadata to configure the CAPTURE queue are found. This is indicated by the decoder sending a V4L2_EVENT_SOURCE_CHANGE event with changes set to V4L2_EVENT_SRC_CH_RESOLUTION.
 - It is not an error if the first buffer does not contain enough data for this to occur. Processing of the buffers will continue as long as more data is needed.
 - If data in a buffer that triggers the event is required to decode the first frame, it will not be returned to the client, until the initialization sequence completes and the frame is decoded.
 - If the client has not set the coded resolution of the stream on its own, calling VIDIOC_G_FMT(), VIDIOC_S_FMT(), VIDIOC_TRY_FMT() or

<code>VIDIOC_REQBUFS()</code> on the <code>CAPTURE</code> queue will not return the real values for the stream until a <code>V4L2_EVENT_SOURCE_CHANGE</code> event with <code>changes</code> set to <code>V4L2_EVENT_SRC_CH_RESOLUTION</code> is signaled.

Important: Any client query issued after the decoder queues the event will return values applying to the just parsed stream, including queue formats, selection rectangles and controls.

Note: A client capable of acquiring stream parameters from the bytestream on its own may attempt to set the width and height of the OUTPUT format to non-zero values matching the coded size of the stream, skip this step and continue with the Capture Setup sequence. However, it must not rely on any driver queries regarding stream parameters, such as selection rectangles and controls, since the decoder has not parsed them from the stream yet. If the values configured by the client do not match those parsed by the decoder, a Dynamic Resolution Change will be triggered to reconfigure them.

Note: No decoded frames are produced during this phase.

5. Continue with the Capture Setup sequence.

Capture Setup

- 1. Call $\mbox{VIDIOC_G_FMT}$ () on the CAPTURE queue to get format for the destination buffers parsed/decoded from the bytestream.
 - Required fields:

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

• Return fields:

width, height frame buffer resolution for the decoded frames.

pixelformat pixel format for decoded frames.

- num_planes (for _MPLANE type only) number of planes for pixelformat.
- **sizeimage, bytesperline** as per standard semantics; matching frame buffer format.

Note: The value of pixelformat may be any pixel format supported by the decoder for the current stream. The decoder should choose a pre-ferred/optimal format for the default configuration. For example, a YUV format may be preferred over an RGB format if an additional conversion step would be required for the latter.

2. **Optional.** Acquire the visible resolution via VIDIOC_G_SELECTION().

• Required fields:

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

target set to V4L2_SEL_TGT_COMPOSE.

• Return fields:

- r.left, r.top, r.width, r.height the visible rectangle; it must fit within the frame buffer resolution returned by VIDIOC_G_FMT() on CAPTURE.
- The following selection targets are supported on CAPTURE:
 - V4L2_SEL_TGT_CROP_BOUNDS corresponds to the coded resolution of the stream.
 - V4L2_SEL_TGT_CROP_DEFAULT the rectangle covering the part of the CAPTURE buffer that contains meaningful picture data (visible area); width and height will be equal to the visible resolution of the stream.
 - V4L2_SEL_TGT_CROP the rectangle within the coded resolution to be output to CAPTURE; defaults to V4L2_SEL_TGT_CROP_DEFAULT; read-only on hardware without additional compose/scaling capabilities.
 - V4L2_SEL_TGT_COMPOSE_BOUNDS the maximum rectangle within a CAPTURE buffer, which the cropped frame can be composed into; equal to V4L2_SEL_TGT_CROP if the hardware does not support compose/scaling.
 - V4L2_SEL_TGT_COMPOSE_DEFAULT equal to V4L2_SEL_TGT_CROP.
 - V4L2_SEL_TGT_COMPOSE the rectangle inside a CAPTURE buffer into which the cropped frame is written; defaults to V4L2_SEL_TGT_COMPOSE_DEFAULT; read-only on hardware without additional compose/scaling capabilities.
 - V4L2_SEL_TGT_COMPOSE_PADDED the rectangle inside a CAPTURE buffer which is overwritten by the hardware; equal to V4L2_SEL_TGT_COMPOSE if the hardware does not write padding pixels.

Warning: The values are guaranteed to be meaningful only after the decoder successfully parses the stream metadata. The client must not rely on the query before that happens.

3. **Optional.** Enumerate CAPTURE formats via VIDIOC_ENUM_FMT() on the CAPTURE queue. Once the stream information is parsed and known, the client may use this ioctl to discover which raw formats are supported for given stream and select one of them via VIDIOC_S_FMT().

Important: The decoder will return only formats supported for the currently established coded format, as per the OUTPUT format and/or stream metadata parsed in this initialization sequence, even if more formats may be supported

by the decoder in general. In other words, the set returned will be a subset of the initial query mentioned in the Querying Capabilities section.

For example, a decoder may support YUV and RGB formats for resolutions 1920x1088 and lower, but only YUV for higher resolutions (due to hardware limitations). After parsing a resolution of 1920x1088 or lower, VIDIOC_ENUM_FMT() may return a set of YUV and RGB pixel formats, but after parsing resolution higher than 1920x1088, the decoder will not return RGB, unsupported for this resolution.

However, subsequent resolution change event triggered after discovering a resolution change within the same stream may switch the stream into a lower resolution and ${\tt VIDIOC_ENUM_FMT}()$ would return RGB formats again in that case.

- 4. **Optional.** Set the CAPTURE format via VIDIOC_S_FMT() on the CAPTURE queue. The client may choose a different format than selected/suggested by the decoder in VIDIOC_G_FMT().
 - Required fields:

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

pixelformat a raw pixel format.

- width, height frame buffer resolution of the decoded stream; typically
 unchanged from what was returned with VIDIOC_G_FMT(), but it may
 be different if the hardware supports composition and/or scaling.
- Setting the CAPTURE format will reset the compose selection rectangles to their default values, based on the new resolution, as described in the previous step.
- 5. **Optional.** Set the compose rectangle via VIDIOC_S_SELECTION() on the CAPTURE queue if it is desired and if the decoder has compose and/or scaling capabilities.
 - Required fields:

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

target set to V4L2_SEL_TGT_COMPOSE.

- r.left, r.top, r.width, r.height the rectangle inside a CAPTURE buffer into which the cropped frame is written; defaults to V4L2_SEL_TGT_COMPOSE_DEFAULT; read-only on hardware without additional compose/scaling capabilities.
- Return fields:
 - r.left, r.top, r.width, r.height the visible rectangle; it must fit within the frame buffer resolution returned by VIDIOC_G_FMT() on CAPTURE.

Warning: The decoder may adjust the compose rectangle to the nearest supported one to meet codec and hardware requirements. The client needs to check the adjusted rectangle returned by VIDIOC_S_SELECTION().

- 6. If all the following conditions are met, the client may resume the decoding instantly:
 - sizeimage of the new format (determined in previous steps) is less than or equal to the size of currently allocated buffers,
 - the number of buffers currently allocated is greater than or equal to the minimum number of buffers acquired in previous steps. To fulfill this requirement, the client may use VIDIOC_CREATE_BUFS() to add new buffers.

In that case, the remaining steps do not apply and the client may resume the decoding by one of the following actions:

- if the CAPTURE queue is streaming, call <code>VIDIOC_DECODER_CMD()</code> with the <code>V4L2_DEC_CMD_START</code> command,
- if the CAPTURE queue is not streaming, call VIDIOC_STREAMON() on the CAPTURE queue.

However, if the client intends to change the buffer set, to lower memory usage or for any other reasons, it may be achieved by following the steps below.

- 7. **If the** CAPTURE **queue is streaming**, keep queuing and dequeuing buffers on the CAPTURE queue until a buffer marked with the V4L2_BUF_FLAG_LAST flag is dequeued.
- 8. **If the** CAPTURE **queue is streaming**, call VIDIOC_STREAMOFF() on the CAPTURE queue to stop streaming.

Warning: The OUTPUT queue must remain streaming. Calling VIDIOC_STREAMOFF() on it would abort the sequence and trigger a seek.

9. If the CAPTURE queue has buffers allocated, free the CAPTURE buffers using VIDIOC_REQBUFS().

• Required fields:

 $\textbf{count} \ \text{set to} \ 0.$

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

memory follows standard semantics.

10. Allocate CAPTURE buffers via VIDIOC_REQBUFS() on the CAPTURE queue.

• Required fields:

count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

memory follows standard semantics.

• Return fields:

count actual number of buffers allocated.

Warning: The actual number of allocated buffers may differ from the count given. The client must check the updated value of count after the call returns.

Note: To allocate more than the minimum number of buffers (for pipeline depth), the client may query the V4L2_CID_MIN_BUFFERS_FOR_CAPTURE control to get the minimum number of buffers required, and pass the obtained value plus the number of additional buffers needed in the count field to VIDIOC_REQBUFS().

Alternatively, VIDIOC_CREATE_BUFS() on the CAPTURE queue can be used to have more control over buffer allocation. For example, by allocating buffers larger than the current CAPTURE format, future resolution changes can be accommodated.

• Required fields:

count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

memory follows standard semantics.

format a format representing the maximum framebuffer resolution to be accommodated by newly allocated buffers.

• Return fields:

count adjusted to the number of allocated buffers.

Warning: The actual number of allocated buffers may differ from the count given. The client must check the updated value of count after the call returns.

Note: To allocate buffers for a format different than parsed from the stream metadata, the client must proceed as follows, before the metadata parsing is initiated:

- set width and height of the OUTPUT format to desired coded resolution to let the decoder configure the CAPTURE format appropriately,
- query the CAPTURE format using $\mbox{VIDIOC}_G_\mbox{FMT}(\)$ and save it until this step.

The format obtained in the query may be then used with VIDIOC_CREATE_BUFS() in this step to allocate the buffers.

11. Call VIDIOC_STREAMON() on the CAPTURE queue to start decoding frames.

Decoding

This state is reached after the Capture Setup sequence finishes successfully. In this state, the client queues and dequeues buffers to both queues via $VIDIOC_QBUF()$ and $VIDIOC_DQBUF()$, following the standard semantics.

The content of the source OUTPUT buffers depends on the active coded pixel format and may be affected by codec-specific extended controls, as stated in the documentation of each format.

Both queues operate independently, following the standard behavior of V4L2 buffer queues and memory-to-memory devices. In addition, the order of decoded frames dequeued from the CAPTURE queue may differ from the order of queuing coded frames to the OUTPUT queue, due to properties of the selected coded format, e.g. frame reordering.

The client must not assume any direct relationship between CAPTURE and OUTPUT buffers and any specific timing of buffers becoming available to dequeue. Specifically:

- a buffer queued to OUTPUT may result in no buffers being produced on CAPTURE (e.g. if it does not contain encoded data, or if only metadata syntax structures are present in it),
- a buffer queued to OUTPUT may result in more than one buffer produced on CAPTURE (if the encoded data contained more than one frame, or if returning a decoded frame allowed the decoder to return a frame that preceded it in decode, but succeeded it in the display order),
- a buffer queued to OUTPUT may result in a buffer being produced on CAPTURE later into decode process, and/or after processing further OUTPUT buffers, or be returned out of order, e.g. if display reordering is used,
- buffers may become available on the CAPTURE queue without additional buffers queued to OUTPUT (e.g. during drain or EOS), because of the OUTPUT buffers queued in the past whose decoding results are only available at later time, due to specifics of the decoding process.

Note: To allow matching decoded CAPTURE buffers with OUTPUT buffers they originated from, the client can set the timestamp field of the v4l2_buffer struct when queuing an OUTPUT buffer. The CAPTURE buffer(s), which resulted from decoding that OUTPUT buffer will have their timestamp field set to the same value when dequeued.

In addition to the straightforward case of one OUTPUT buffer producing one CAPTURE buffer, the following cases are defined:

• one OUTPUT buffer generates multiple CAPTURE buffers: the same OUTPUT timestamp will be copied to multiple CAPTURE buffers.

- multiple OUTPUT buffers generate one CAPTURE buffer: timestamp of the OUTPUT buffer queued first will be copied.
- the decoding order differs from the display order (i.e. the CAPTURE buffers are out-of-order compared to the OUTPUT buffers): CAPTURE timestamps will not retain the order of OUTPUT timestamps.

During the decoding, the decoder may initiate one of the special sequences, as listed below. The sequences will result in the decoder returning all the CAPTURE buffers that originated from all the OUTPUT buffers processed before the sequence started. Last of the buffers will have the V4L2_BUF_FLAG_LAST flag set. To determine the sequence to follow, the client must check if there is any pending event and:

- if a V4L2_EVENT_SOURCE_CHANGE event with changes set to V4L2_EVENT_SRC_CH_RESOLUTION is pending, the Dynamic Resolution Change sequence needs to be followed,
- if a V4L2_EVENT_EOS event is pending, the End of Stream sequence needs to be followed.

Some of the sequences can be intermixed with each other and need to be handled as they happen. The exact operation is documented for each sequence.

Should a decoding error occur, it will be reported to the client with the level of details depending on the decoder capabilities. Specifically:

- the CAPTURE buffer that contains the results of the failed decode operation will be returned with the V4L2_BUF_FLAG_ERROR flag set,
- if the decoder is able to precisely report the OUTPUT buffer that triggered the error, such buffer will be returned with the V4L2_BUF_FLAG_ERROR flag set.

In case of a fatal failure that does not allow the decoding to continue, any further operations on corresponding decoder file handle will return the -EIO error code. The client may close the file handle and open a new one, or alternatively reinitialize the instance by stopping streaming on both queues, releasing all buffers and performing the Initialization sequence again.

Seek

Seek is controlled by the OUTPUT queue, as it is the source of coded data. The seek does not require any specific operation on the CAPTURE queue, but it may be affected as per normal decoder operation.

- 1. Stop the OUTPUT queue to begin the seek sequence via ${\tt VIDIOC_STREAMOFF()}.$
 - Required fields:

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

- The decoder will drop all the pending OUTPUT buffers and they must be treated as returned to the client (following standard semantics).
- 2. Restart the OUTPUT queue via VIDIOC_STREAMON()

• Required fields:

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

- The decoder will start accepting new source bytestream buffers after the call returns.
- 3. Start queuing buffers containing coded data after the seek to the OUTPUT queue until a suitable resume point is found.

Note: There is no requirement to begin queuing coded data starting exactly from a resume point (e.g. SPS or a keyframe). Any queued OUTPUT buffers will be processed and returned to the client until a suitable resume point is found. While looking for a resume point, the decoder should not produce any decoded frames into CAPTURE buffers.

Some hardware is known to mishandle seeks to a non-resume point. Such an operation may result in an unspecified number of corrupted decoded frames being made available on the CAPTURE queue. Drivers must ensure that no fatal decoding errors or crashes occur, and implement any necessary handling and workarounds for hardware issues related to seek operations.

Warning: In case of the H.264/HEVC codec, the client must take care not to seek over a change of SPS/PPS. Even though the target frame could be a keyframe, the stale SPS/PPS inside decoder state would lead to undefined results when decoding. Although the decoder must handle that case without a crash or a fatal decode error, the client must not expect a sensible decode output.

If the hardware can detect such corrupted decoded frames, then corresponding buffers will be returned to the client with the V4L2_BUF_FLAG_ERROR set. See the Decoding section for further description of decode error reporting.

4. After a resume point is found, the decoder will start returning CAPTURE buffers containing decoded frames.

Important: A seek may result in the Dynamic Resolution Change sequence being initiated, due to the seek target having decoding parameters different from the part of the stream decoded before the seek. The sequence must be handled as per normal decoder operation.

Warning: It is not specified when the CAPTURE queue starts producing buffers containing decoded data from the OUTPUT buffers queued after the seek, as it operates independently from the OUTPUT queue.

The decoder may return a number of remaining CAPTURE buffers containing decoded frames originating from the ${\tt OUTPUT}$ buffers queued before the seek

sequence is performed.

The VIDIOC_STREAMOFF operation discards any remaining queued OUTPUT buffers, which means that not all of the OUTPUT buffers queued before the seek sequence may have matching CAPTURE buffers produced. For example, given the sequence of operations on the OUTPUT queue:

QBUF(A), QBUF(B), STREAMOFF(), STREAMON(), QBUF(G), QBUF(H),

any of the following results on the CAPTURE queue is allowed:

 $\{A', B', G', H'\}, \{A', G', H'\}, \{G', H'\}.$

To determine the CAPTURE buffer containing the first decoded frame after the seek, the client may observe the timestamps to match the CAPTURE and OUTPUT buffers or use V4L2_DEC_CMD_STOP and V4L2_DEC_CMD_START to drain the decoder.

Note: To achieve instantaneous seek, the client may restart streaming on the CAPTURE queue too to discard decoded, but not yet dequeued buffers.

Dynamic Resolution Change

Streams that include resolution metadata in the bytestream may require switching to a different resolution during the decoding.

Note: Not all decoders can detect resolution changes. Those that do set the V4L2_FMT_FLAG_DYN_RESOLUTION flag for the coded format when VIDIOC_ENUM_FMT() is called.

The sequence starts when the decoder detects a coded frame with one or more of the following parameters different from those previously established (and reflected by corresponding queries):

- coded resolution (OUTPUT width and height),
- visible resolution (selection rectangles),
- the minimum number of buffers needed for decoding.

Whenever that happens, the decoder must proceed as follows:

1. After encountering a resolution change in the stream, the decoder sends a V4L2_EVENT_SOURCE_CHANGE event with changes set to V4L2_EVENT_SRC_CH_RESOLUTION.

Important: Any client query issued after the decoder queues the event will return values applying to the stream after the resolution change, including queue formats, selection rectangles and controls.

- 2. The decoder will then process and decode all remaining buffers from before the resolution change point.
 - The last buffer from before the change must be marked with the V4L2_BUF_FLAG_LAST flag, similarly to the Drain sequence above.

Warning: The last buffer may be empty (with v4l2_buffer bytesused = 0) and in that case it must be ignored by the client, as it does not contain a decoded frame.

Note: Any attempt to dequeue more CAPTURE buffers beyond the buffer marked with V4L2_BUF_FLAG_LAST will result in a -EPIPE error from VIDIOC_DQBUF().

The client must continue the sequence as described below to continue the decoding process.

1. Dequeue the source change event.

Important: A source change triggers an implicit decoder drain, similar to the explicit Drain sequence. The decoder is stopped after it completes. The decoding process must be resumed with either a pair of calls to VIDIOC_STREAMOFF() and VIDIOC_STREAMON() on the CAPTURE queue, or a call to VIDIOC_DECODER_CMD() with the V4L2_DEC_CMD_START command.

2. Continue with the Capture Setup sequence.

Note: During the resolution change sequence, the OUTPUT queue must remain streaming. Calling VIDIOC_STREAMOFF() on the OUTPUT queue would abort the sequence and initiate a seek.

In principle, the OUTPUT queue operates separately from the CAPTURE queue and this remains true for the duration of the entire resolution change sequence as well.

The client should, for best performance and simplicity, keep queuing/dequeuing buffers to/from the OUTPUT queue even while processing this sequence.

Drain

To ensure that all queued OUTPUT buffers have been processed and related CAPTURE buffers are given to the client, the client must follow the drain sequence described below. After the drain sequence ends, the client has received all decoded frames for all OUTPUT buffers queued before the sequence was started.

- 1. Begin drain by issuing VIDIOC_DECODER_CMD().
 - Required fields:

cmd set to V4L2_DEC_CMD_STOP.

flags set to 0.
pts set to 0.

Warning: The sequence can be only initiated if both OUTPUT and CAPTURE queues are streaming. For compatibility reasons, the call to VIDIOC_DECODER_CMD() will not fail even if any of the queues is not streaming, but at the same time it will not initiate the Drain sequence and so the steps described below would not be applicable.

- 2. Any OUTPUT buffers queued by the client before the VIDIOC_DECODER_CMD() was issued will be processed and decoded as normal. The client must continue to handle both queues independently, similarly to normal decode operation. This includes:
 - handling any operations triggered as a result of processing those buffers, such as the Dynamic Resolution Change sequence, before continuing with the drain sequence,
 - queuing and dequeuing CAPTURE buffers, until a buffer marked with the V4L2_BUF_FLAG_LAST flag is dequeued,

Warning: The last buffer may be empty (with v4l2_buffer bytesused = 0) and in that case it must be ignored by the client, as it does not contain a decoded frame.

Note: Any attempt to dequeue more CAPTURE buffers beyond the buffer marked with V4L2_BUF_FLAG_LAST will result in a -EPIPE error from VIDIOC_DQBUF().

- dequeuing processed OUTPUT buffers, until all the buffers queued before the V4L2_DEC_CMD_STOP command are dequeued,
- dequeuing the V4L2_EVENT_EOS event, if the client subscribed to it.

Note: For backwards compatibility, the decoder will signal a V4L2_EVENT_EOS event when the last frame has been decoded and all frames are ready to be dequeued. It is a deprecated behavior and the client must not rely on it. The V4L2_BUF_FLAG_LAST buffer flag should be used instead.

- 3. Once all the OUTPUT buffers queued before the V4L2_DEC_CMD_STOP call are dequeued and the last CAPTURE buffer is dequeued, the decoder is stopped and it will accept, but not process, any newly queued OUTPUT buffers until the client issues any of the following operations:
 - V4L2_DEC_CMD_START the decoder will not be reset and will resume operation normally, with all the state from before the drain,

- a pair of VIDIOC_STREAMOFF() and VIDIOC_STREAMON() on the CAPTURE queue the decoder will resume the operation normally, however any CAPTURE buffers still in the queue will be returned to the client,
- a pair of VIDIOC_STREAMOFF() and VIDIOC_STREAMON() on the OUTPUT queue any pending source buffers will be returned to the client and the Seek sequence will be triggered.

Note: Once the drain sequence is initiated, the client needs to drive it to completion, as described by the steps above, unless it aborts the process by issuing VIDIOC_STREAMOFF() on any of the OUTPUT or CAPTURE queues. The client is not allowed to issue V4L2_DEC_CMD_START or V4L2_DEC_CMD_STOP again while the drain sequence is in progress and they will fail with -EBUSY error code if attempted.

Although mandatory, the availability of decoder commands may be queried using $VIDIOC_TRY_DECODER_CMD()$.

End of Stream

If the decoder encounters an end of stream marking in the stream, the decoder will initiate the Drain sequence, which the client must handle as described above, skipping the initial VIDIOC_DECODER_CMD().

Commit Points

Setting formats and allocating buffers trigger changes in the behavior of the decoder.

- 1. Setting the format on the OUTPUT queue may change the set of formats supported/advertised on the CAPTURE queue. In particular, it also means that the CAPTURE format may be reset and the client must not rely on the previously set format being preserved.
- 2. Enumerating formats on the CAPTURE queue always returns only formats supported for the current OUTPUT format.
- 3. Setting the format on the CAPTURE queue does not change the list of formats available on the OUTPUT queue. An attempt to set a CAPTURE format that is not supported for the currently selected OUTPUT format will result in the decoder adjusting the requested CAPTURE format to a supported one.
- 4. Enumerating formats on the OUTPUT queue always returns the full set of supported coded formats, irrespectively of the current CAPTURE format.
- 5. While buffers are allocated on any of the OUTPUT or CAPTURE queues, the client must not change the format on the OUTPUT queue. Drivers will return the EBUSY error code for any such format change attempt.

To summarize, setting formats and allocation must always start with the OUTPUT queue and the OUTPUT queue is the master that governs the set of supported formats for the CAPTURE queue.

Memory-to-memory Stateless Video Decoder Interface

A stateless decoder is a decoder that works without retaining any kind of state between processed frames. This means that each frame is decoded independently of any previous and future frames, and that the client is responsible for maintaining the decoding state and providing it to the decoder with each decoding request. This is in contrast to the stateful video decoder interface, where the hardware and driver maintain the decoding state and all the client has to do is to provide the raw encoded stream and dequeue decoded frames in display order.

This section describes how user-space ("the client") is expected to communicate with stateless decoders in order to successfully decode an encoded stream. Compared to stateful codecs, the decoder/client sequence is simpler, but the cost of this simplicity is extra complexity in the client which is responsible for maintaining a consistent decoding state.

Stateless decoders make use of the Request API. A stateless decoder must expose the V4L2_BUF_CAP_SUPPORTS_REQUESTS capability on its OUTPUT queue when VIDIOC_REQBUFS() or VIDIOC_CREATE_BUFS() are invoked.

Depending on the encoded formats supported by the decoder, a single decoded frame may be the result of several decode requests (for instance, H.264 streams with multiple slices per frame). Decoders that support such formats must also expose the V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF capability on their OUTPUT queue.

Querying capabilities

- 1. To enumerate the set of coded formats supported by the decoder, the client calls VIDIOC_ENUM_FMT() on the OUTPUT queue.
 - The driver must always return the full set of supported OUTPUT formats, irrespective of the format currently set on the CAPTURE queue.
 - Simultaneously, the driver must restrain the set of values returned by codec-specific capability controls (such as H.264 profiles) to the set actually supported by the hardware.
- 2. To enumerate the set of supported raw formats, the client calls VIDIOC_ENUM_FMT() on the CAPTURE queue.
 - The driver must return only the formats supported for the format currently active on the OUTPUT queue.
 - Depending on the currently set OUTPUT format, the set of supported raw formats may depend on the value of some codec-dependent controls. The client is responsible for making sure that these controls are set before querying the CAPTURE queue. Failure to do so will result in the default values for these controls being used, and a returned set of formats that may not be usable for the media the client is trying to decode.
- The client may use VIDIOC_ENUM_FRAMESIZES() to detect supported resolutions for a given format, passing desired pixel format in v4l2_frmsizeenum' s pixel_format.

4. Supported profiles and levels for the current OUTPUT format, if applicable, may be queried using their respective controls via VIDIOC_QUERYCTRL().

Initialization

- 1. Set the coded format on the OUTPUT queue via VIDIOC_S_FMT().
 - Required fields:

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

pixelformat a coded pixel format.

width, height coded width and height parsed from the stream.

other fields follow standard semantics.

Note: Changing the OUTPUT format may change the currently set CAPTURE format. The driver will derive a new CAPTURE format from the OUTPUT format being set, including resolution, colorimetry parameters, etc. If the client needs a specific CAPTURE format, it must adjust it afterwards.

- 2. Call VIDIOC_S_EXT_CTRLS() to set all the controls (parsed headers, etc.) required by the OUTPUT format to enumerate the CAPTURE formats.
- 3. Call VIDIOC_G_FMT() for CAPTURE queue to get the format for the destination buffers parsed/decoded from the bytestream.
 - Required fields:

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

• Returned fields:

width, height frame buffer resolution for the decoded frames.

pixelformat pixel format for decoded frames.

- num_planes (for _MPLANE type only) number of planes for pixelformat.
- sizeimage, bytesperline as per standard semantics; matching frame buffer format.

Note: The value of pixelformat may be any pixel format supported for the OUTPUT format, based on the hardware capabilities. It is suggested that the driver chooses the preferred/optimal format for the current configuration. For example, a YUV format may be preferred over an RGB format, if an additional conversion step would be required for RGB.

4. [optional] Enumerate CAPTURE formats via VIDIOC_ENUM_FMT() on the CAPTURE queue. The client may use this ioctl to discover which alternative raw formats are supported for the current OUTPUT format and select one of them via VIDIOC_S_FMT(). **Note:** The driver will return only formats supported for the currently selected OUTPUT format and currently set controls, even if more formats may be supported by the decoder in general.

For example, a decoder may support YUV and RGB formats for resolutions 1920x1088 and lower, but only YUV for higher resolutions (due to hardware limitations). After setting a resolution of 1920x1088 or lower as the OUTPUT format, VIDIOC_ENUM_FMT() may return a set of YUV and RGB pixel formats, but after setting a resolution higher than 1920x1088, the driver will not return RGB pixel formats, since they are unsupported for this resolution.

5. [optional] Choose a different CAPTURE format than suggested via VIDIOC_S_FMT() on CAPTURE queue. It is possible for the client to choose a different format than selected/suggested by the driver in VIDIOC_G_FMT().

• Required fields:

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

pixelformat a raw pixel format.

width, height frame buffer resolution of the decoded stream; typically
 unchanged from what was returned with VIDIOC_G_FMT(), but it may
 be different if the hardware supports composition and/or scaling.

After performing this step, the client must perform step 3 again in order to obtain up-to-date information about the buffers size and layout.

6. Allocate source (bytestream) buffers via VIDIOC_REQBUFS() on OUTPUT queue.

• Required fields:

count requested number of buffers to allocate; greater than zero.

type a V4L2_BUF_TYPE_* enum appropriate for OUTPUT.

memory follows standard semantics.

• Return fields:

count actual number of buffers allocated.

- If required, the driver will adjust count to be equal or bigger to the minimum of required number of OUTPUT buffers for the given format and requested count. The client must check this value after the ioctl returns to get the actual number of buffers allocated.
- 7. Allocate destination (raw format) buffers via $\ensuremath{\mathsf{VIDIOC_REQBUFS}}$ () on the CAPTURE queue.

• Required fields:

count requested number of buffers to allocate; greater than zero. The client is responsible for deducing the minimum number of buffers required for the stream to be properly decoded (taking e.g. reference frames into account) and pass an equal or bigger number.

type a V4L2_BUF_TYPE_* enum appropriate for CAPTURE.

memory follows standard semantics. V4L2_MEMORY_USERPTR is not supported for CAPTURE buffers.

- Return fields:
 - **count** adjusted to allocated number of buffers, in case the codec requires more buffers than requested.
- The driver must adjust count to the minimum of required number of CAPTURE buffers for the current format, stream configuration and requested count. The client must check this value after the ioctl returns to get the number of buffers allocated.
- 8. Allocate requests (likely one per OUTPUT buffer) via MEDIA_IOC_REQUEST_ALLOC() on the media device.
- 9. Start streaming on both OUTPUT and CAPTURE queues via VIDIOC STREAMON().

Decoding

For each frame, the client is responsible for submitting at least one request to which the following is attached:

- The amount of encoded data expected by the codec for its current configuration, as a buffer submitted to the OUTPUT queue. Typically, this corresponds to one frame worth of encoded data, but some formats may allow (or require) different amounts per unit.
- All the metadata needed to decode the submitted encoded data, in the form of controls relevant to the format being decoded.

The amount of data and contents of the source OUTPUT buffer, as well as the controls that must be set on the request, depend on the active coded pixel format and might be affected by codec-specific extended controls, as stated in documentation of each format.

If there is a possibility that the decoded frame will require one or more decode requests after the current one in order to be produced, then the client must set the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag on the OUTPUT buffer. This will result in the (potentially partially) decoded CAPTURE buffer not being made available for dequeueing, and reused for the next decode request if the timestamp of the next OUTPUT buffer has not changed.

A typical frame would thus be decoded using the following sequence:

1. Queue an OUTPUT buffer containing one unit of encoded bytestream data for the decoding request, using VIDIOC_QBUF().

• Required fields:

index index of the buffer being queued.

type type of the buffer.

bytesused number of bytes taken by the encoded data frame in the buffer.

- flags the V4L2_BUF_FLAG_REQUEST_FD flag must be set. Additionally, if we are not sure that the current decode request is the last one needed to produce a fully decoded frame, then V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF must also be set.
- request_fd must be set to the file descriptor of the decoding request.
- **timestamp** must be set to a unique value per frame. This value will be propagated into the decoded frame's buffer and can also be used to use this frame as the reference of another. If using multiple decode requests per frame, then the timestamps of all the OUTPUT buffers for a given frame must be identical. If the timestamp changes, then the currently held CAPTURE buffer will be made available for dequeuing and the current request will work on a new CAPTURE buffer.
- 2. Set the codec-specific controls for the decoding request, using VIDIOC_S_EXT_CTRLS().
 - Required fields:

which must be V4L2_CTRL_WHICH_REQUEST_VAL.

request_fd must be set to the file descriptor of the decoding request.

other fields other fields are set as usual when setting controls. The controls array must contain all the codec-specific controls required to decode a frame.

Note: It is possible to specify the controls in different invocations of VIDIOC_S_EXT_CTRLS(), or to overwrite a previously set control, as long as request_fd and which are properly set. The controls state at the moment of request submission is the one that will be considered.

Note: The order in which steps 1 and 2 take place is interchangeable.

3. Submit the request by invoking ${\tt MEDIA_REQUEST_IOC_QUEUE()}$ on the request FD.

If the request is submitted without an OUTPUT buffer, or if some of the required controls are missing from the request, then MEDIA_REQUEST_IOC_QUEUE() will return -ENOENT. If more than one OUTPUT buffer is queued, then it will return -EINVAL. MEDIA_REQUEST_IOC_QUEUE() returning non-zero means that no CAPTURE buffer will be produced for this request.

CAPTURE buffers must not be part of the request, and are queued independently. They are returned in decode order (i.e. the same order as coded frames were submitted to the OUTPUT queue).

Runtime decoding errors are signaled by the dequeued CAPTURE buffers carrying the V4L2_BUF_FLAG_ERROR flag. If a decoded reference frame has an error, then all following decoded frames that refer to it also have the V4L2_BUF_FLAG_ERROR flag set, although the decoder will still try to produce (likely corrupted) frames.

Buffer management while decoding

Contrary to stateful decoders, a stateless decoder does not perform any kind of buffer management: it only guarantees that dequeued CAPTURE buffers can be used by the client for as long as they are not queued again. "Used" here encompasses using the buffer for compositing or display.

A dequeued capture buffer can also be used as the reference frame of another buffer.

A frame is specified as reference by converting its timestamp into nanoseconds, and storing it into the relevant member of a codec-dependent control structure. The v4l2_timeval_to_ns() function must be used to perform that conversion. The timestamp of a frame can be used to reference it as soon as all its units of encoded data are successfully submitted to the OUTPUT queue.

A decoded buffer containing a reference frame must not be reused as a decoding target until all the frames referencing it have been decoded. The safest way to achieve this is to refrain from queueing a reference buffer until all the decoded frames referencing it have been dequeued. However, if the driver can guarantee that buffers queued to the CAPTURE queue are processed in queued order, then user-space can take advantage of this guarantee and queue a reference buffer when the following conditions are met:

- 1. All the requests for frames affected by the reference frame have been queued, and
- 2. A sufficient number of CAPTURE buffers to cover all the decoded referencing frames have been queued.

When queuing a decoding request, the driver will increase the reference count of all the resources associated with reference frames. This means that the client can e.g. close the DMABUF file descriptors of reference frame buffers if it won't need them afterwards.

Seeking

In order to seek, the client just needs to submit requests using input buffers corresponding to the new stream position. It must however be aware that resolution may have changed and follow the dynamic resolution change sequence in that case. Also depending on the codec used, picture parameters (e.g. SPS/PPS for H.264) may have changed and the client is responsible for making sure that a valid state is sent to the decoder.

The client is then free to ignore any returned CAPTURE buffer that comes from the pre-seek position.

Pausing

In order to pause, the client can just cease queuing buffers onto the OUTPUT queue. Without source bytestream data, there is no data to process and the codec will remain idle.

Dynamic resolution change

If the client detects a resolution change in the stream, it will need to perform the initialization sequence again with the new resolution:

- 1. If the last submitted request resulted in a CAPTURE buffer being held by the use of the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag, then the last frame is not available on the CAPTURE queue. In this case, a V4L2_DEC_CMD_FLUSH command shall be sent. This will make the driver dequeue the held CAPTURE buffer.
- 2. Wait until all submitted requests have completed and dequeue the corresponding output buffers.
- 3. Call VIDIOC_STREAMOFF() on both the OUTPUT and CAPTURE queues.
- 4. Free all CAPTURE buffers by calling VIDIOC_REQBUFS() on the CAPTURE queue with a buffer count of zero.
- 5. Perform the initialization sequence again (minus the allocation of OUTPUT buffers), with the new resolution set on the OUTPUT queue. Note that due to resolution constraints, a different format may need to be picked on the CAPTURE queue.

Drain

If the last submitted request resulted in a CAPTURE buffer being held by the use of the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag, then the last frame is not available on the CAPTURE queue. In this case, a V4L2_DEC_CMD_FLUSH command shall be sent. This will make the driver dequeue the held CAPTURE buffer.

After that, in order to drain the stream on a stateless decoder, the client just needs to wait until all the submitted requests are completed.

Raw VBI Data Interface

VBI is an abbreviation of Vertical Blanking Interval, a gap in the sequence of lines of an analog video signal. During VBI no picture information is transmitted, allowing some time while the electron beam of a cathode ray tube TV returns to the top of the screen. Using an oscilloscope you will find here the vertical synchronization pulses and short data packages ASK modulated¹ onto the video signal. These are transmissions of services such as Teletext or Closed Caption.

Subject of this interface type is raw VBI data, as sampled off a video signal, or to be added to a signal for output. The data format is similar to uncompressed video

¹ ASK: Amplitude-Shift Keying. A high signal level represents a '1' bit, a low level a '0' bit.

images, a number of lines times a number of samples per line, we call this a VBI image.

Conventionally V4L2 VBI devices are accessed through character device special files named /dev/vbi and /dev/vbi0 to /dev/vbi31 with major number 81 and minor numbers 224 to 255. /dev/vbi is typically a symbolic link to the preferred VBI device. This convention applies to both input and output devices.

To address the problems of finding related video and VBI devices VBI capturing and output is also available as device function under /dev/video. To capture or output raw VBI data with these devices applications must call the VIDIOC_S_FMT ioctl. Accessed as /dev/vbi, raw VBI capturing or output is the default device function.

Querying Capabilities

Devices supporting the raw VBI capturing or output API set the V4L2_CAP_VBI_CAPTURE or V4L2_CAP_VBI_OUTPUT flags, respectively, in the capabilities field of struct v4l2_capability returned by the ioctl VID-IOC_QUERYCAP ioctl. At least one of the read/write, streaming or asynchronous I/O methods must be supported. VBI devices may or may not have a tuner or modulator.

Supplemental Functions

VBI devices shall support video input or output, tuner or modulator, and controls ioctls as needed. The video standard ioctls provide information vital to program a VBI device, therefore must be supported.

Raw VBI Format Negotiation

Raw VBI sampling abilities can vary, in particular the sampling frequency. To properly interpret the data V4L2 specifies an ioctl to query the sampling parameters. Moreover, to allow for some flexibility applications can also suggest different parameters.

As usual these parameters are not reset at open() time to permit Unix tool chains, programming a device and then reading from it as if it was a plain file. Well written V4L2 applications should always ensure they really get what they want, requesting reasonable parameters and then checking if the actual parameters are suitable.

To query the current raw VBI capture parameters applications set the type field of a struct v4l2_format to V4L2_BUF_TYPE_VBI_CAPTURE or V4L2_BUF_TYPE_VBI_OUTPUT, and call the VIDIOC_G_FMT ioctl with a pointer to this structure. Drivers fill the struct v4l2_vbi_format vbi member of the fmt union.

To request different parameters applications set the type field of a struct v4l2_format as above and initialize all fields of the struct v4l2_vbi_format vbi member of the fmt union, or better just modify the results of VIDIOC_G_FMT, and call the VIDIOC_S_FMT ioctl with a pointer to this structure. Drivers return

an EINVAL error code only when the given parameters are ambiguous, otherwise they modify the parameters according to the hardware capabilities and return the actual parameters. When the driver allocates resources at this point, it may return an EBUSY error code to indicate the returned parameters are valid but the required resources are currently not available. That may happen for instance when the video and VBI areas to capture would overlap, or when the driver supports multiple opens and another process already requested VBI capturing or output. Anyway, applications must expect other resource allocation points which may return EBUSY, at the ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF ioctl and the first read(), write() and select() calls.

VBI devices must implement both the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl, even if VIDIOC_S_FMT ignores all requests and always returns default parameters as VIDIOC_G_FMT does. VIDIOC_TRY_FMT is optional.

v4l2_vbi_format

	10,510 001	
u32	sampling_rate	Samples per second, i. e. unit 1 Hz.
u32	offset	Horizontal offset of the VBI image, relative to the leading edge of the line synchronization pulse and counted in sam ples: The first sample in the VBI image will be located offset / sampling_rate seconds following the leading edge. See also Figure 4.1. Line synchronization.
u32	<pre>samples_per_line</pre>	
u32	sample_format	Defines the sample format as in Image Formats, a four character-code. ² Usually this is V4L2_PIX_FMT_GREY, i. e each sample consists of 8 bits with lower values oriented to wards the black level. Do not assume any other correlation of values with the signal level. For example, the MSB does not necessarily indicate if the signal is 'high' or 'low' be cause 128 may not be the mean value of the signal. Drivers shall not convert the sample format by software.
u32	start ²	This is the scanning system line number associated with the first line of the VBI image, of the first and the second field respectively. See Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line num bering for valid values. The V4L2_VBI_ITU_525_F1_START V4L2_VBI_ITU_525_F2_START, V4L2_VBI_ITU_625_F1_STAR and V4L2_VBI_ITU_625_F2_START defines give the start line numbers for each field for each 525 or 625 line format as a convenience. Don' t forget that ITU line numbering starts at 1, not 0. VBI input drivers can return start values 0 i the hardware cannot reliable identify scanning lines, VB acquisition may not require this information.
_u32	count ²	The number of lines in the first and second field image, re
		spectively.
	Continued on nex	

Table 80:	struct v4l2	vbi format

Continued on next page

Table80 - continued from previous page

Drivers should be as flexibility as possible. For example, it may be possible to extend or move the VBI capture window down to the picture area, implementing a 'full field mode' to capture data service transmissions embedded in the picture.

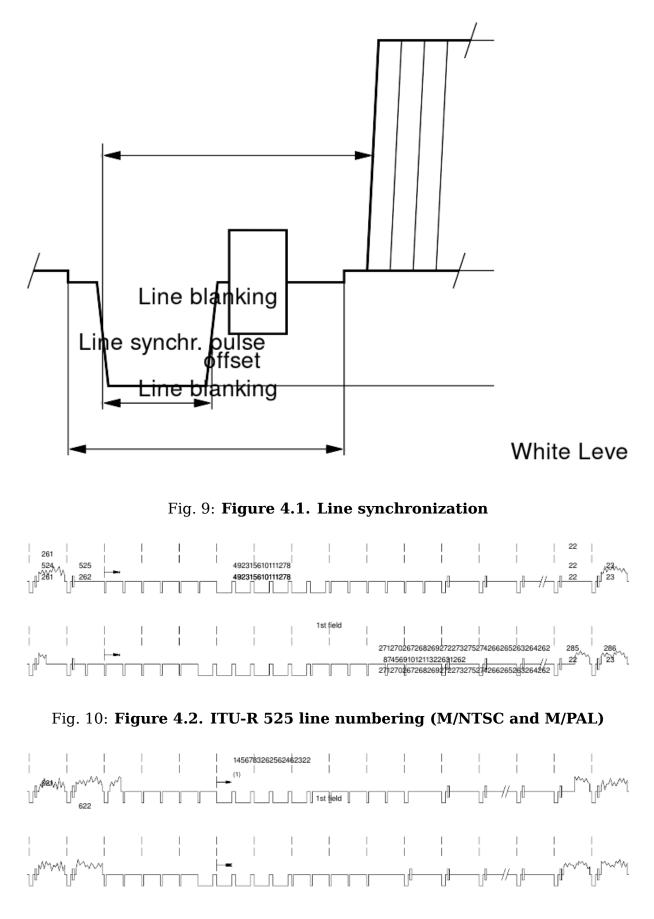
An application can set the first or second count value to zero if no data is required from the respective field; count[1] if the scanning system is progressive, i. e. not interlaced. The corresponding start value shall be ignored by the application and driver. Anyway, drivers may not support single field capturing and return both count values non-zero.

Both count values set to zero, or line numbers are outside the bounds depicted⁴, or a field image covering lines of two fields, are invalid and shall not be returned by the driver.

To initialize the start and count fields, applications must first determine the current video standard selection. The v4l2_std_id or the framelines field of struct v4l2_standard can be evaluated for this purpose.

_u32	flags	See Raw VBI Format Flags below. Currently only drivers se
		flags, applications must set this field to zero.
_u32	reserved ²	This array is reserved for future extensions. Drivers and ap
		plications must set it to zero.

V4L2_VBI_UNSYNC	0x0001	This flag indicates hardware which does not properly dis tinguish between fields. Normally the VBI image stores the first field (lower scanning line numbers) first in memory This may be a top or bottom field depending on the video standard. When this flag is set the first or second field may be stored first, however the fields are still in correct tempo ral order with the older field first in memory. ³
V4L2_VBI_INTERLACED	0x0002	By default the two field images will be passed sequen tially; all lines of the first field followed by all lines o the second field (compare Field Order V4L2_FIELD_SEQ_TE and V4L2_FIELD_SEQ_BT, whether the top or bottom field is first in memory depends on the video standard) When this flag is set, the two fields are interlaced (cf V4L2_FIELD_INTERLACED). The first line of the first field fol lowed by the first line of the second field, then the two sec ond lines, and so on. Such a layout may be necessary when the hardware has been programmed to capture or output in terlaced video images and is unable to separate the fields for VBI capturing at the same time. For simplicity setting this flag implies that both count values are equal and non-zero


Table 81: Raw VBI Format Flags

Remember the VBI image format depends on the selected video standard, therefore the application must choose a new standard or query the current standard first. Attempts to read or write data ahead of format negotiation, or after switching the video standard which may invalidate the negotiated VBI parameters, should

 $^{^{2}}$ A few devices may be unable to sample VBI data at all but can extend the video capture window to the VBI region.

⁴ The valid values ar shown at Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line numbering.

³ Most VBI services transmit on both fields, but some have different semantics depending on the field number. These cannot be reliable decoded or encoded when V4L2_VBI_UNSYNC is set.

be refused by the driver. A format change during active I/O is not permitted.

Reading and writing VBI images

To assure synchronization with the field number and easier implementation, the smallest unit of data passed at a time is one frame, consisting of two fields of VBI images immediately following in memory.

The total size of a frame computes as follows:

(count[0] + count[1]) * samples_per_line * sample size in bytes

The sample size is most likely always one byte, applications must check the sample_format field though, to function properly with other drivers.

A VBI device may support read/write and/or streaming (memory mapping or user pointer) I/O. The latter bears the possibility of synchronizing video and VBI data by using buffer timestamps.

Remember the VIDIOC_STREAMON ioctl and the first read(), write() and select() call can be resource allocation points returning an EBUSY error code if the required hardware resources are temporarily unavailable, for example the device is already in use by another process.

Sliced VBI Data Interface

VBI stands for Vertical Blanking Interval, a gap in the sequence of lines of an analog video signal. During VBI no picture information is transmitted, allowing some time while the electron beam of a cathode ray tube TV returns to the top of the screen.

Sliced VBI devices use hardware to demodulate data transmitted in the VBI. V4L2 drivers shall not do this by software, see also the raw VBI interface. The data is passed as short packets of fixed size, covering one scan line each. The number of packets per video frame is variable.

Sliced VBI capture and output devices are accessed through the same character special files as raw VBI devices. When a driver supports both interfaces, the default function of a /dev/vbi device is raw VBI capturing or output, and the sliced VBI function is only available after calling the VIDIOC_S_FMT ioctl as defined below. Likewise a /dev/video device may support the sliced VBI API, however the default function here is video capturing or output. Different file descriptors must be used to pass raw and sliced VBI data simultaneously, if this is supported by the driver.

Querying Capabilities

Devices supporting the sliced VBI capturing or output API set the V4L2_CAP_SLICED_VBI_CAPTURE or V4L2_CAP_SLICED_VBI_OUTPUT flag respectively, in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. At least one of the read/write, streaming or asynchronous I/O methods must be supported. Sliced VBI devices may have a tuner or modulator.

Supplemental Functions

Sliced VBI devices shall support video input or output and tuner or modulator ioctls if they have these capabilities, and they may support User Controls ioctls. The video standard ioctls provide information vital to program a sliced VBI device, therefore must be supported.

Sliced VBI Format Negotiation

To find out which data services are supported by the hardware applications can call the VIDIOC_G_SLICED_VBI_CAP ioctl. All drivers implementing the sliced VBI interface must support this ioctl. The results may differ from those of the VIDIOC_S_FMT ioctl when the number of VBI lines the hardware can capture or output per frame, or the number of services it can identify on a given line are limited. For example on PAL line 16 the hardware may be able to look for a VPS or Teletext signal, but not both at the same time.

To determine the currently selected services applications set the type field of struct v4l2_format to V4L2_BUF_TYPE_SLICED_VBI_CAPTURE or V4L2_BUF_TYPE_SLICED_VBI_OUTPUT, and the VIDIOC_G_FMT ioctl fills the fmt.sliced member, a struct v4l2_sliced_vbi_format.

Applications can request different parameters by initializing or modifying the fmt. sliced member and calling the VIDIOC_S_FMT ioctl with a pointer to the struct v4l2_format structure.

The sliced VBI API is more complicated than the raw VBI API because the hardware must be told which VBI service to expect on each scan line. Not all services may be supported by the hardware on all lines (this is especially true for VBI output where Teletext is often unsupported and other services can only be inserted in one specific line). In many cases, however, it is sufficient to just set the service_set field to the required services and let the driver fill the service_lines array according to hardware capabilities. Only if more precise control is needed should the programmer set the service_lines array explicitly.

The VIDIOC_S_FMT ioctl modifies the parameters according to hardware capabilities. When the driver allocates resources at this point, it may return an EBUSY error code if the required resources are temporarily unavailable. Other resource allocation points which may return EBUSY can be the ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF ioctl and the first read(), write() and select() call.

v4l2_sliced_vbi_format

struct v4l2_sliced_vbi_format

u32	service_set	If service_set is non-zero when passed with VIDIOC_S_FMT or VIDIOC_TRY_FMT, the service_lines array will be filled by the driver according to the services specified in this field. For example, if service_set is initialized with V4L2_SLICED_TELETEXT_B V4L2_SLICED_WSS_625, a driver for the cx25840 video decoder sets lines 7-22 of both fields ¹ to V4L2_SLICED_TELETEXT_B and line 23 of the first field to V4L2_SLICED_WSS_625. If service_set is set to zero, then the values of service_lines will be used instead. On return the driver sets this field to the union of all elements of the returned service_lines array. It may contain less services than requested, perhaps just one, if the hardware cannot handle more services simultaneously. It may be empty (zero) if none of the requested services are supported by the hardware.		
_u16	<pre>service_lines[2][24]</pre>			driver shall look for or insert on
				vers return the requested set, a
				hen the hardware cannot handle
		which service the driver choose		No assumptions can be made on
				map to ITU-R line numbers ² as
		follows:	iced vbi services. Array mulces	map to 110-1 mile numbers as
		Element	525 line systems	625 line systems
		service lines[0][1]	1	1
		service lines[0][23]	23	23
		service lines[1][1]	264	314
		service lines[1][23]	286	336
			lines [0][0] and service_	lines[1][0] to zero. The
		V4L2 VBI ITU 525 F1 START,	V4L2 VBI ITU 525 F2 START,	V4L2 VBI ITU 625 F1 START
		and V4L2_VBI_ITU_625_F2_START defines give the start line numbers for each field for each		
		525 or 625 line format as a convenience. Don't forget that ITU line numbering starts at 1, not		
		0.		
u32	io_size			, and the buffer size in bytes for
		the ioctl VIDIOC_QBUF, VIDIOC	C_DQBUF and VIDIOC_DQBUF i	ioctl. Drivers set this field to the
				n-zero elements in the returned
	101	service_lines array (that is the number of lines potentially carrying data).		
u32	reserved[2]	This array is reserved for futur		
		Applications and drivers must s	set it to zero.	

Sliced VBI services

SymbolValueReferenceLines, usuallyPayloadV4L2_SLICED_TELETEXT_B0x0001ETS 300 706,PAL/SECAMLast 42 of the 45 byte Teletext packet,(Teletext System B)ITU BT.653line7-22,out clock run-in and framing code, is			
(Teletext System B) ITU BT.653 line 7-22, out clock run-in and framing code, ls	b first tra		
320-335 (sec- mitted.			
ond field			
7-22)			
V4L2_SLICED_VPS0x0400ETS 300 231PAL line 16Byte number 3 to 15 according to Fig	ure 9 of E		
300 231, lsb first transmitted.			
V4L2_SLICED_CAPTION_525 0x1000 CEA 608-E NTSC line 21, Two bytes in transmission order, incl	uding pa		
284 (second bit, lsb first transmitted.			
field 21)			
V4L2_SLICED_WSS_625 0x4000 ITU BT.1119, PAL/SECAM			
EN 200 204			
EN 300 294 Inne 25 Byte 0	1		
msb lsb msb			
l sb			
Bit 76543210 x x	13 12		
→11 10 9			
VAL2 SLIGED VDT 525 0x1000 Set of comises applicable to 525 line systems			
	Set of services applicable to 525 line systems.		
V4L2_SLICED_VBI_625 0x4401 Set of services applicable to 625 line systems.			

 $^{-1}$ According to ETS 300 706 lines 6-22 of the first field and lines 5-22 of the second field may carry Teletext data.

 2 See also Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line numbering.

Drivers may return an EINVAL error code when applications attempt to read or write data without prior format negotiation, after switching the video standard (which may invalidate the negotiated VBI parameters) and after switching the video input (which may change the video standard as a side effect). The VID-IOC_S_FMT ioctl may return an EBUSY error code when applications attempt to change the format while i/o is in progress (between a ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF and VIDIOC_STREAMOFF call, and after the first read() or write() call).

Reading and writing sliced VBI data

A single read() or write() call must pass all data belonging to one video frame. That is an array of struct v4l2_sliced_vbi_data structures with one or more elements and a total size not exceeding io_size bytes. Likewise in streaming I/O mode one buffer of io_size bytes must contain data of one video frame. The id of unused struct v4l2_sliced_vbi_data elements must be zero.

v4l2_sliced_vbi_data

struct v4l2_sliced_vbi_data

u32	id	A flag from Sliced VBI services identifying
		the type of data in this packet. Only a single
		bit must be set. When the id of a captured
		packet is zero, the packet is empty and the
		contents of other fields are undefined. Ap
		plications shall ignore empty packets. When
		the id of a packet for output is zero the con
		tents of the data field are undefined and the
		driver must no longer insert data on the re
		quested field and line.
u32	field	The video field number this data has been
		captured from, or shall be inserted at. 0 for
		the first field, 1 for the second field.
u32	line	The field (as opposed to frame) line number
		this data has been captured from, or shall be
		inserted at. See Figure 4.2. ITU-R 525 line
		numbering (M/NTSC and M/PAL) and Figure
		4.3. ITU-R 625 line numbering for valid val
		ues. Sliced VBI capture devices can set the
		line number of all packets to 0 if the hard
		ware cannot reliably identify scan lines. The
		field number must always be valid.
u32	reserved	This field is reserved for future extensions
		Applications and drivers must set it to zero.
u8	data[48]	The packet payload. See Sliced VBI services
		for the contents and number of bytes passed
		for each data type. The contents of padding
		bytes at the end of this array are undefined
		drivers and applications shall ignore them.

Packets are always passed in ascending line number order, without duplicate line numbers. The write() function and the ioctl VIDIOC_QBUF, VIDIOC_DQBUF ioctl must return an EINVAL error code when applications violate this rule. They must also return an EINVAL error code when applications pass an incorrect field or line number, or a combination of field, line and id which has not been negotiated with the VIDIOC_G_FMT or VIDIOC_S_FMT ioctl. When the line numbers are unknown the driver must pass the packets in transmitted order. The driver can insert empty packets with id set to zero anywhere in the packet array.

To assure synchronization and to distinguish from frame dropping, when a captured frame does not carry any of the requested data services drivers must pass one or more empty packets. When an application fails to pass VBI data in time for output, the driver must output the last VPS and WSS packet again, and disable the output of Closed Caption and Teletext data, or output data which is ignored by Closed Caption and Teletext decoders.

A sliced VBI device may support read/write and/or streaming (memory mapping and/or user pointer) I/O. The latter bears the possibility of synchronizing video and VBI data by using buffer timestamps.

Sliced VBI Data in MPEG Streams

If a device can produce an MPEG output stream, it may be capable of providing negotiated sliced VBI services as data embedded in the MPEG stream. Users or applications control this sliced VBI data insertion with the V4L2_CID_MPEG_STREAM_VBI_FMT control.

If the driver does not provide the V4L2_CID_MPEG_STREAM_VBI_FMT control, or only allows that control to be set to V4L2_MPEG_STREAM_VBI_FMT_NONE, then the device cannot embed sliced VBI data in the MPEG stream.

The V4L2_CID_MPEG_STREAM_VBI_FMT control does not implicitly set the device driver to capture nor cease capturing sliced VBI data. The control only indicates to embed sliced VBI data in the MPEG stream, if an application has negotiated sliced VBI service be captured.

It may also be the case that a device can embed sliced VBI data in only certain types of MPEG streams: for example in an MPEG-2 PS but not an MPEG-2 TS. In this situation, if sliced VBI data insertion is requested, the sliced VBI data will be embedded in MPEG stream types when supported, and silently omitted from MPEG stream types where sliced VBI data insertion is not supported by the device.

The following subsections specify the format of the embedded sliced VBI data.

MPEG Stream Embedded, Sliced VBI Data Format: NONE

The V4L2_MPEG_STREAM_VBI_FMT_NONE embedded sliced VBI format shall be interpreted by drivers as a control to cease embedding sliced VBI data in MPEG streams. Neither the device nor driver shall insert "empty" embedded sliced VBI data packets in the MPEG stream when this format is set. No MPEG stream data structures are specified for this format.

MPEG Stream Embedded, Sliced VBI Data Format: IVTV

The V4L2_MPEG_STREAM_VBI_FMT_IVTV embedded sliced VBI format, when supported, indicates to the driver to embed up to 36 lines of sliced VBI data per frame in an MPEG-2 Private Stream 1 PES packet encapsulated in an MPEG-2 Program Pack in the MPEG stream.

Historical context: This format specification originates from a custom, embedded, sliced VBI data format used by the ivtv driver. This format has already been informally specified in the kernel sources in the file Documentation/userspace-api/media/drivers/cx2341x-uapi.rst. The maximum size of the payload and other aspects of this format are driven by the CX23415 MPEG decoder's capabilities and limitations with respect to extracting, decoding, and displaying sliced VBI data embedded within an MPEG stream.

This format's use is not exclusive to the ivtv driver nor exclusive to CX2341x devices, as the sliced VBI data packet insertion into the MPEG stream is implemented in driver software. At least the cx18 driver provides sliced VBI data insertion into an MPEG-2 PS in this format as well.

The following definitions specify the payload of the MPEG-2 Private Stream 1 PES packets that contain sliced VBI data when V4L2_MPEG_STREAM_VBI_FMT_IVTV is set. (The MPEG-2 Private Stream 1 PES packet header and encapsulating MPEG-2 Program Pack header are not detailed here. Please refer to the MPEG-2 specifications for details on those packet headers.)

The payload of the MPEG-2 Private Stream 1 PES packets that contain sliced VBI data is specified by struct v4l2_mpeg_vbi_fmt_ivtv. The payload is variable length, depending on the actual number of lines of sliced VBI data present in a video frame. The payload may be padded at the end with unspecified fill bytes to align the end of the payload to a 4-byte boundary. The payload shall never exceed 1552 bytes (2 fields with 18 lines/field with 43 bytes of data/line and a 4 byte magic number).

v4l2_mpeg_vbi_fmt_ivtv

struct v4l2_mpeg_vbi_fmt_ivtv

		magic[4]	A	
			"magic	"
			con-	
			stant	
			from	
			Magic	
			Con-	
			stants	
			for	
			struct	
				an a grada i farat i star
				ipeg_vbi_fmt_ivtv
			magic	
			field	
			that	
			indi-	
			cates	
			this	
			is a	
			valid	
			sliced	
			VBI	
			data	
			pay-	
			load	
			and	
			also	
			indi-	
			cates	
			which	
			mem-	
			ber	
			of	
			the	
			anony-	
			mous	
			union,	
			itv0	
			or	
			ITV0,	
			to	
			use	
			for	
			the	
			pay-	
			load	
			data.	
	union	(anonymous)	1	
	{			
	struct	itv0	The	
			pri-	
7.2. Part I - Video fo	br Linu	x API	mary	387
			form	
			of	
			01 the	

Magic Constants for struct v4l2_mpeg_vbi_fmt_ivtv magic field

Defined Symbol	Value	Description
V4L2_MPEG_VBI_IVTV_MAGIC0	"itv0"	Indicates the itv0 member of the union in
		<pre>struct v4l2_mpeg_vbi_fmt_ivtv is valid.</pre>
V4L2_MPEG_VBI_IVTV_MAGIC1	"ITV0"	Indicates the ITV0 member of the union in
		<pre>struct v4l2_mpeg_vbi_fmt_ivtv is valid and</pre>
		that 36 lines of sliced VBI data are present.

v4l2_mpeg_vbi_itv0

v4l2_mpeg_vbi_ITV0

structs v4l2_mpeg_vbi_itv0 and v4l2_mpeg_vbi_ITV0

_le32	linemask[2]	Bitmasks indicating the VBI service lines present These linemask values are stored in little endiar byte order in the MPEG stream. Some reference linemask bit positions with their corresponding VBI line number and video field are given below b ₀ indicates the least significant bit of a linemask value: linemask[0] b0: line 6 first field linemask[0] b17: line 23 first field linemask[0] b18: line 6 second field linemask[0] b31: line 19 second field linemask[1] b0: line 20 second field linemask[1] b3: line 23 second field linemask[1] b4-b31: unused and set to 0
<pre>struct v4l2_mpeg_vbi_itv0_line</pre>	line[35]	This is a variable length array that holds from 1 to 35 lines of sliced VBI data. The sliced VBI data line present correspond to the bits set in the linemas array, starting from b_0 of linemask[0] up through b_{31} of linemask[0], and from b_0 of linemask[1] up through b_3 of linemask[1]. line[0] correspond to the first bit found set in the linemask array line[1] corresponds to the second bit found set in the linemask array, etc. If no linemask array bit are set, then line[0] may contain one line of un specified data that should be ignored by applica- tions.

struct v4l2_mpeg_vbi_ITV0

<pre>struct v4l2_mpeg_vbi_itv0_line</pre>	line[36]	A fixed length array of 36 lines of sliced VBI data line[0] through line[17] correspond to lines 6 through 23 of the first field. line[18] through line[35] corresponds to lines 6 through 23 of the second field.
---	----------	--

v4l2_mpeg_vbi_itv0_line

struct v4l2_mpeg_vbi_itv0_line

u8		A line identifier value from Line Identifiers for struct v4l2_mpeg_vbi_itv0_line id field that indicates the type of sliced VBI data
		stored on this line.
_u8	data[42]	The sliced VBI data for the line.

Line Identifiers for struct v4l2_mpeg_vbi_itv0_line id field

Defined Symbol	Value	Description	
V4L2_MPEG_VBI_IVTV_TELETEXT_B	1	Refer to Sliced VBI services for a descriptio	
		of the line payload.	
V4L2_MPEG_VBI_IVTV_CAPTION_525	4	Refer to Sliced VBI services for a description	
		of the line payload.	
V4L2_MPEG_VBI_IVTV_WSS_625	5	Refer to Sliced VBI services for a description	
		of the line payload.	
V4L2_MPEG_VBI_IVTV_VPS	7	Refer to Sliced VBI services for a description	
		of the line payload.	

Radio Interface

This interface is intended for AM and FM (analog) radio receivers and transmitters.

Conventionally V4L2 radio devices are accessed through character device special files named /dev/radio and /dev/radio0 to /dev/radio63 with major number 81 and minor numbers 64 to 127.

Querying Capabilities

Devices supporting the radio interface set the V4L2_CAP_RADIO and V4L2_CAP_TUNER or V4L2_CAP_MODULATOR flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. Other combinations of capability flags are reserved for future extensions.

Supplemental Functions

Radio devices can support controls, and must support the tuner or modulator ioctls.

They do not support the video input or output, audio input or output, video standard, cropping and scaling, compression and streaming parameter, or overlay ioctls. All other ioctls and I/O methods are reserved for future extensions.

Programming

Radio devices may have a couple audio controls (as discussed in User Controls) such as a volume control, possibly custom controls. Further all radio devices have one tuner or modulator (these are discussed in Tuners and Modulators) with index number zero to select the radio frequency and to determine if a monaural or FM stereo program is received/emitted. Drivers switch automatically between AM and FM depending on the selected frequency. The VIDIOC_G_TUNER or VID-IOC_G_MODULATOR ioctl reports the supported frequency range.

RDS Interface

The Radio Data System transmits supplementary information in binary format, for example the station name or travel information, on an inaudible audio subcarrier of a radio program. This interface is aimed at devices capable of receiving and/or transmitting RDS information.

For more information see the core RDS standard IEC 62106 and the RBDS standard NRSC-4-B.

Note: Note that the RBDS standard as is used in the USA is almost identical to the RDS standard. Any RDS decoder/encoder can also handle RBDS. Only some of the fields have slightly different meanings. See the RBDS standard for more information.

The RBDS standard also specifies support for MMBS (Modified Mobile Search). This is a proprietary format which seems to be discontinued. The RDS interface does not support this format. Should support for MMBS (or the so-called 'E blocks' in general) be needed, then please contact the linux-media mailing list: https://linuxtv.org/lists.php.

Querying Capabilities

Devices supporting the RDS capturing API set the V4L2_CAP_RDS_CAPTURE flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. Any tuner that supports RDS will set the V4L2_TUNER_CAP_RDS flag in the capability field of struct v4l2_tuner. If the driver only passes RDS blocks without interpreting the data the V4L2_TUNER_CAP_RDS_BLOCK_IO flag has to be set, see Reading RDS data. For future use the flag V4L2_TUNER_CAP_RDS_CONTROLS has also been defined. However, a driver for a radio tuner with this capability does not yet exist, so if you are planning to write such a driver you should discuss this on the linux-media mailing list: https://linuxtv.org/lists.php.

Whether an RDS signal is present can be detected by looking at the <code>rxsubchans</code> field of struct v4l2_tuner: the V4L2_TUNER_SUB_RDS will be set if RDS data was detected.

Devices supporting the RDS output API set the V4L2_CAP_RDS_OUTPUT flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. Any modulator that supports RDS will set the V4L2_TUNER_CAP_RDS flag in the capability field of struct v4l2_modulator. In order to enable the RDS transmission one must set the V4L2_TUNER_SUB_RDS bit in the txsubchans field of struct v4l2_modulator. If the driver only passes RDS blocks without interpreting the data the V4L2_TUNER_CAP_RDS_BLOCK_IO flag has to be set. If the tuner is capable of handling RDS entities like program identification codes and radio text, the flag V4L2_TUNER_CAP_RDS_CONTROLS should be set, see Writing RDS data and FM Transmitter Control Reference.

Reading RDS data

RDS data can be read from the radio device with the read() function. The data is packed in groups of three bytes.

Writing RDS data

RDS data can be written to the radio device with the write() function. The data is packed in groups of three bytes, as follows:

RDS datastructures

v4l2_rds_data

_u8	lsb	Least Significant Byte of RDS Block		
_u8	msb	Most Significant Byte of RDS Block		
u8	block	Block description		

Table 83: struct v4l2_rds_data

Bits 0-2	Block (aka offset) of the received data.
Bits 3-5	Deprecated. Currently identical to bits 0-2. Do not use these bits.
Bit 6	Corrected bit. Indicates that an error was corrected for this data block.
Bit 7	Error bit. Indicates that an uncorrectable error occurred during reception
	of this block.

Table 84: Block description

V4L2_RDS_BLOCK_MSK		7	Mask for bits 0-2 to get the block ID.
V4L2_RDS_BLOCK_A		0	Block A.
V4L2_RDS_BLOCK_B		1	Block B.
V4L2_RDS_BLOCK_C		2	Block C.
V4L2_RDS_BLOCK_D		3	Block D.
V4L2_RDS_BLOCK_C_ALT		4	Block C'.
V4L2_RDS_BLOCK_INVALID	read-only	7	An invalid block.
V4L2_RDS_BLOCK_CORRECTED	read-only	0x40	A bit error was detected but correcte
V4L2_RDS_BLOCK_ERROR	read-only	0x80	An uncorrectable error occurred.

Table 85: Block defines

Software Defined Radio Interface (SDR)

SDR is an abbreviation of Software Defined Radio, the radio device which uses application software for modulation or demodulation. This interface is intended for controlling and data streaming of such devices.

SDR devices are accessed through character device special files named /dev/ swradio0 to /dev/swradio255 with major number 81 and dynamically allocated minor numbers 0 to 255.

Querying Capabilities

Devices supporting the SDR receiver interface set the V4L2_CAP_SDR_CAPTURE and V4L2_CAP_TUNER flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. That flag means the device has an Analog to Digital Converter (ADC), which is a mandatory element for the SDR receiver.

Devices supporting the SDR transmitter interface set the V4L2_CAP_SDR_OUTPUT and V4L2_CAP_MODULATOR flag in the capabilities field of struct v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl. That flag means the device has an Digital to Analog Converter (DAC), which is a mandatory element for the SDR transmitter.

At least one of the read/write, streaming or asynchronous I/O methods must be supported.

Supplemental Functions

SDR devices can support controls, and must support the Tuners and Modulators ioctls. Tuner ioctls are used for setting the ADC/DAC sampling rate (sampling frequency) and the possible radio frequency (RF).

The V4L2_TUNER_SDR tuner type is used for setting SDR device ADC/DAC frequency, and the V4L2_TUNER_RF tuner type is used for setting radio frequency. The tuner index of the RF tuner (if any) must always follow the SDR tuner index. Normally the SDR tuner is #0 and the RF tuner is #1.

The ioctl VIDIOC_S_HW_FREQ_SEEK ioctl is not supported.

Data Format Negotiation

The SDR device uses the Data Formats ioctls to select the capture and output format. Both the sampling resolution and the data streaming format are bound to that selectable format. In addition to the basic Data Formats ioctls, the ioctl VIDIOC_ENUM_FMT ioctl must be supported as well.

To use the Data Formats ioctls applications set the type field of a struct v4l2_format to V4L2_BUF_TYPE_SDR_CAPTURE or V4L2_BUF_TYPE_SDR_OUTPUT and use the struct v4l2_sdr_format sdr member of the fmt union as needed per the desired operation. Currently there is two fields, pixelformat and buffersize, of struct struct v4l2_sdr_format which are used. Content of the pixelformat is V4L2 FourCC code of the data format. The buffersize field is maximum buffer size in bytes required for data transfer, set by the driver in order to inform application.

v4l2_sdr_format

u32	pixelformat	The data format or type of compression, se
		by the application. This is a little endian fou
		character code. V4L2 defines SDR format
		in SDR Formats.
u32	buffersize	Maximum size in bytes required for data
		Value is set by the driver.
u8	reserved[24]	This array is reserved for future extensions
		Drivers and applications must set it to zero.

Table 86: struct v4l2 sdr format

An SDR device may support read/write and/or streaming (memory mapping or user pointer) I/O.

Touch Devices

Touch devices are accessed through character device special files named /dev/v4l-touch0 to /dev/v4l-touch255 with major number 81 and dynamically allocated minor numbers 0 to 255.

Overview

Sensors may be Optical, or Projected Capacitive touch (PCT).

Processing is required to analyse the raw data and produce input events. In some systems, this may be performed on the ASIC and the raw data is purely a sidechannel for diagnostics or tuning. In other systems, the ASIC is a simple analogue front end device which delivers touch data at high rate, and any touch processing must be done on the host.

For capacitive touch sensing, the touchscreen is composed of an array of horizontal and vertical conductors (alternatively called rows/columns, X/Y lines, or tx/rx). Mutual Capacitance measured is at the nodes where the conductors cross. Alternatively, Self Capacitance measures the signal from each column and row independently.

A touch input may be determined by comparing the raw capacitance measurement to a no-touch reference (or "baseline") measurement:

Delta = Raw - Reference

The reference measurement takes account of variations in the capacitance across the touch sensor matrix, for example manufacturing irregularities, environmental or edge effects.

Querying Capabilities

Devices supporting the touch interface set the V4L2_CAP_VIDEO_CAPTURE flag and the V4L2_CAP_TOUCH flag in the capabilities field of v4l2_capability returned by the ioctl VIDIOC_QUERYCAP ioctl.

At least one of the read/write or streaming I/O methods must be supported.

The formats supported by touch devices are documented in Touch Formats.

Data Format Negotiation

A touch device may support any I/O method.

Event Interface

The V4L2 event interface provides a means for a user to get immediately notified on certain conditions taking place on a device. This might include start of frame or loss of signal events, for example. Changes in the value or state of a V4L2 control can also be reported through events.

To receive events, the events the user is interested in first must be subscribed using the ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT ioctl. Once an event is subscribed, the events of subscribed types are dequeueable using the ioctl VIDIOC_DQEVENT ioctl. Events may be unsubscribed using VID-IOC_UNSUBSCRIBE_EVENT ioctl. The special event type V4L2_EVENT_ALL may be used to unsubscribe all the events the driver supports.

The event subscriptions and event queues are specific to file handles. Subscribing an event on one file handle does not affect other file handles.

The information on dequeueable events is obtained by using select or poll system calls on video devices. The V4L2 events use POLLPRI events on poll system call and exceptions on select system call.

Starting with kernel 3.1 certain guarantees can be given with regards to events:

- 1. Each subscribed event has its own internal dedicated event queue. This means that flooding of one event type will not interfere with other event types.
- 2. If the internal event queue for a particular subscribed event becomes full, then the oldest event in that queue will be dropped.
- 3. Where applicable, certain event types can ensure that the payload of the oldest event that is about to be dropped will be merged with the payload of the next oldest event. Thus ensuring that no information is lost, but only an intermediate step leading up to that information. See the documentation for the event you want to subscribe to whether this is applicable for that event or not.

Sub-device Interface

The complex nature of V4L2 devices, where hardware is often made of several integrated circuits that need to interact with each other in a controlled way, leads to complex V4L2 drivers. The drivers usually reflect the hardware model in software, and model the different hardware components as software blocks called sub-devices.

V4L2 sub-devices are usually kernel-only objects. If the V4L2 driver implements the media device API, they will automatically inherit from media entities. Applications will be able to enumerate the sub-devices and discover the hardware topology using the media entities, pads and links enumeration API.

In addition to make sub-devices discoverable, drivers can also choose to make them directly configurable by applications. When both the sub-device driver and the V4L2 device driver support this, sub-devices will feature a character device node on which ioctls can be called to

• query, read and write sub-devices controls

- subscribe and unsubscribe to events and retrieve them
- negotiate image formats on individual pads

Sub-device character device nodes, conventionally named /dev/v4l-subdev*, use major number 81.

Drivers may opt to limit the sub-device character devices to only expose operations that do not modify the device state. In such a case the sub-devices are referred to as read-only in the rest of this documentation, and the related restrictions are documented in individual ioctls.

Controls

Most V4L2 controls are implemented by sub-device hardware. Drivers usually merge all controls and expose them through video device nodes. Applications can control all sub-devices through a single interface.

Complex devices sometimes implement the same control in different pieces of hardware. This situation is common in embedded platforms, where both sensors and image processing hardware implement identical functions, such as contrast adjustment, white balance or faulty pixels correction. As the V4L2 controls API doesn't support several identical controls in a single device, all but one of the identical controls are hidden.

Applications can access those hidden controls through the sub-device node with the V4L2 control API described in User Controls. The ioctls behave identically as when issued on V4L2 device nodes, with the exception that they deal only with controls implemented in the sub-device.

Depending on the driver, those controls might also be exposed through one (or several) V4L2 device nodes.

Events

V4L2 sub-devices can notify applications of events as described in Event Interface. The API behaves identically as when used on V4L2 device nodes, with the exception that it only deals with events generated by the sub-device. Depending on the driver, those events might also be reported on one (or several) V4L2 device nodes.

Pad-level Formats

Warning: Pad-level formats are only applicable to very complex devices that need to expose low-level format configuration to user space. Generic V4L2 applications do not need to use the API described in this section.

Note: For the purpose of this section, the term format means the combination of media bus data format, frame width and frame height.

Image formats are typically negotiated on video capture and output devices using the format and selection ioctls. The driver is responsible for configuring every block in the video pipeline according to the requested format at the pipeline input and/or output.

For complex devices, such as often found in embedded systems, identical image sizes at the output of a pipeline can be achieved using different hardware configurations. One such example is shown on Image Format Negotiation on Pipelines, where image scaling can be performed on both the video sensor and the host image processing hardware.

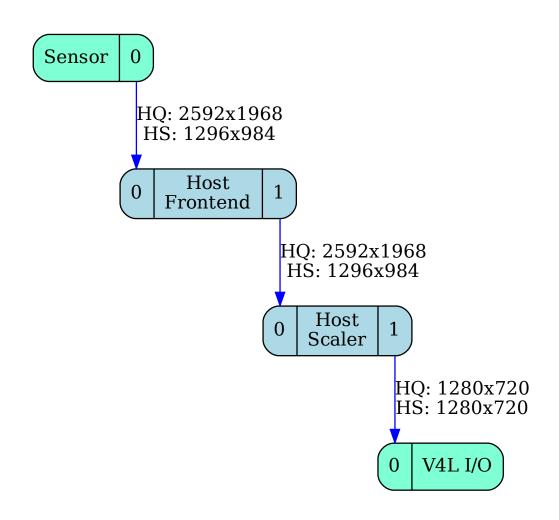


Fig. 12: Image Format Negotiation on Pipelines High quality and high speed pipeline configuration

The sensor scaler is usually of less quality than the host scaler, but scaling on the sensor is required to achieve higher frame rates. Depending on the use case (quality vs. speed), the pipeline must be configured differently. Applications need to configure the formats at every point in the pipeline explicitly.

Drivers that implement the media API can expose pad-level image format configuration to applications. When they do, applications can use the VID-

IOC_SUBDEV_G_FMT and VIDIOC_SUBDEV_S_FMT ioctls. to negotiate formats on a per-pad basis.

Applications are responsible for configuring coherent parameters on the whole pipeline and making sure that connected pads have compatible formats. The pipeline is checked for formats mismatch at VIDIOC_STREAMON time, and an EPIPE error code is then returned if the configuration is invalid.

Pad-level image format configuration support can be tested by calling the ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT ioctl on pad 0. If the driver returns an EINVAL error code pad-level format configuration is not supported by the sub-device.

Format Negotiation

Acceptable formats on pads can (and usually do) depend on a number of external parameters, such as formats on other pads, active links, or even controls. Finding a combination of formats on all pads in a video pipeline, acceptable to both application and driver, can't rely on formats enumeration only. A format negotiation mechanism is required.

Central to the format negotiation mechanism are the get/set format operations. When called with the which argument set to V4L2_SUBDEV_FORMAT_TRY, the VIDIOC_SUBDEV_G_FMT and VIDIOC_SUBDEV_S_FMT ioctls operate on a set of formats parameters that are not connected to the hardware configuration. Modi-fying those 'try' formats leaves the device state untouched (this applies to both the software state stored in the driver and the hardware state stored in the device itself).

While not kept as part of the device state, try formats are stored in the sub-device file handles. A VIDIOC_SUBDEV_G_FMT call will return the last try format set on the same sub-device file handle. Several applications querying the same sub-device at the same time will thus not interact with each other.

To find out whether a particular format is supported by the device, applications use the VIDIOC_SUBDEV_S_FMT ioctl. Drivers verify and, if needed, change the requested format based on device requirements and return the possibly modified value. Applications can then choose to try a different format or accept the returned value and continue.

Formats returned by the driver during a negotiation iteration are guaranteed to be supported by the device. In particular, drivers guarantee that a returned format will not be further changed if passed to an VIDIOC_SUBDEV_S_FMT call as-is (as long as external parameters, such as formats on other pads or links' configuration are not changed).

Drivers automatically propagate formats inside sub-devices. When a try or active format is set on a pad, corresponding formats on other pads of the same sub-device can be modified by the driver. Drivers are free to modify formats as required by the device. However, they should comply with the following rules when possible:

• Formats should be propagated from sink pads to source pads. Modifying a format on a source pad should not modify the format on any sink pad.

• Sub-devices that scale frames using variable scaling factors should reset the scale factors to default values when sink pads formats are modified. If the 1:1 scaling ratio is supported, this means that source pads formats should be reset to the sink pads formats.

Formats are not propagated across links, as that would involve propagating them from one sub-device file handle to another. Applications must then take care to configure both ends of every link explicitly with compatible formats. Identical formats on the two ends of a link are guaranteed to be compatible. Drivers are free to accept different formats matching device requirements as being compatible.

Sample Pipeline Configuration shows a sample configuration sequence for the pipeline described in Image Format Negotiation on Pipelines (table columns list entity names and pad numbers).

	Tuble	07. Sumple 11	penne coninge			
	Sensor/0	Frontend/0	Frontend/1	Scaler/0	Scaler/0	Scaler/1
	format	format	format	format	compose selec-	format
					tion rectangle	
Initial state	2048x1536	(default)	(default)	(default)	(default)	(default)
	SGRBG8_1X8					
Configure	2048x1536	2048x1536	2046x1534	(default)	(default)	(default)
frontend sink	SGRBG8 1X8	SGRBG8 1X8	SGRBG8 1X8			
format	_	_	_			
Configure	2048x1536	2048x1536	2046x1534	2046x1534	0,0/2046x1534	2046x1534
scaler sink	SGRBG8 1X8	SGRBG8 1X8	SGRBG8 1X8	SGRBG8 1X8		SGRBG8 1X8
format	_	_	_	_		_
Configure	2048x1536	2048x1536	2046x1534	2046x1534	0,0/1280x960	1280x960
scaler sink	SGRBG8 1X8	SGRBG8 1X8	SGRBG8 1X8	SGRBG8 1X8		SGRBG8 1X8
compose	_	-	-	-		-
selection						
	i					

Table 87: Sample Pipeline Configuration

- 1. Initial state. The sensor source pad format is set to its native 3MP size and V4L2_MBUS_FMT_SGRBG8_1X8 media bus code. Formats on the host frontend and scaler sink and source pads have the default values, as well as the compose rectangle on the scaler's sink pad.
- 2. The application configures the frontend sink pad format's size to 2048x1536 and its media bus code to V4L2_MBUS_FMT_SGRBG_1X8. The driver propagates the format to the frontend source pad.
- 3. The application configures the scaler sink pad format's size to 2046x1534 and the media bus code to V4L2_MBUS_FMT_SGRBG_1X8 to match the frontend source size and media bus code. The media bus code on the sink pad is set to V4L2_MBUS_FMT_SGRBG_1X8. The driver propagates the size to the compose selection rectangle on the scaler's sink pad, and the format to the scaler source pad.
- 4. The application configures the size of the compose selection rectangle of the scaler's sink pad 1280x960. The driver propagates the size to the scaler's source pad format.

When satisfied with the try results, applications can set the active formats by setting the which argument to V4L2_SUBDEV_FORMAT_ACTIVE. Active formats are changed exactly as try formats by drivers. To avoid modifying the hardware state during format negotiation, applications should negotiate try formats first and then modify the active settings using the try formats returned during the last negotiation iteration. This guarantees that the active format will be applied as-is by the driver without being modified.

Selections: cropping, scaling and composition

Many sub-devices support cropping frames on their input or output pads (or possible even on both). Cropping is used to select the area of interest in an image, typically on an image sensor or a video decoder. It can also be used as part of digital zoom implementations to select the area of the image that will be scaled up.

Crop settings are defined by a crop rectangle and represented in a struct v4l2_rect by the coordinates of the top left corner and the rectangle size. Both the coordinates and sizes are expressed in pixels.

As for pad formats, drivers store try and active rectangles for the selection targets Common selection definitions.

On sink pads, cropping is applied relative to the current pad format. The pad format represents the image size as received by the sub-device from the previous block in the pipeline, and the crop rectangle represents the sub-image that will be transmitted further inside the sub-device for processing.

The scaling operation changes the size of the image by scaling it to new dimensions. The scaling ratio isn't specified explicitly, but is implied from the original and scaled image sizes. Both sizes are represented by struct v4l2_rect.

Scaling support is optional. When supported by a subdev, the crop rectangle on the subdev's sink pad is scaled to the size configured using the VID-IOC_SUBDEV_S_SELECTION IOCTL using V4L2_SEL_TGT_COMPOSE selection target on the same pad. If the subdev supports scaling but not composing, the top and left values are not used and must always be set to zero.

On source pads, cropping is similar to sink pads, with the exception that the source size from which the cropping is performed, is the COMPOSE rectangle on the sink pad. In both sink and source pads, the crop rectangle must be entirely contained inside the source image size for the crop operation.

The drivers should always use the closest possible rectangle the user requests on all selection targets, unless specifically told otherwise. V4L2_SEL_FLAG_GE and V4L2_SEL_FLAG_LE flags may be used to round the image size either up or down. Selection flags

Types of selection targets

Actual targets

Actual targets (without a postfix) reflect the actual hardware configuration at any point of time. There is a BOUNDS target corresponding to every actual target.

BOUNDS targets

BOUNDS targets is the smallest rectangle that contains all valid actual rectangles. It may not be possible to set the actual rectangle as large as the BOUNDS rectangle, however. This may be because e.g. a sensor's pixel array is not rectangular but cross-shaped or round. The maximum size may also be smaller than the BOUNDS rectangle.

Order of configuration and format propagation

Inside subdevs, the order of image processing steps will always be from the sink pad towards the source pad. This is also reflected in the order in which the configuration must be performed by the user: the changes made will be propagated to any subsequent stages. If this behaviour is not desired, the user must set V4L2_SEL_FLAG_KEEP_CONFIG flag. This flag causes no propagation of the changes are allowed in any circumstances. This may also cause the accessed rectangle to be adjusted by the driver, depending on the properties of the underlying hardware.

The coordinates to a step always refer to the actual size of the previous step. The exception to this rule is the sink compose rectangle, which refers to the sink compose bounds rectangle —if it is supported by the hardware.

- 1. Sink pad format. The user configures the sink pad format. This format defines the parameters of the image the entity receives through the pad for further processing.
- 2. Sink pad actual crop selection. The sink pad crop defines the crop performed to the sink pad format.
- 3. Sink pad actual compose selection. The size of the sink pad compose rectangle defines the scaling ratio compared to the size of the sink pad crop rectangle. The location of the compose rectangle specifies the location of the actual sink compose rectangle in the sink compose bounds rectangle.
- 4. Source pad actual crop selection. Crop on the source pad defines crop performed to the image in the sink compose bounds rectangle.
- 5. Source pad format. The source pad format defines the output pixel format of the subdev, as well as the other parameters with the exception of the image width and height. Width and height are defined by the size of the source pad actual crop selection.

Accessing any of the above rectangles not supported by the subdev will return EINVAL. Any rectangle referring to a previous unsupported rectangle coordinates will instead refer to the previous supported rectangle. For example, if sink crop is not supported, the compose selection will refer to the sink pad format dimensions instead.

In the above example, the subdev supports cropping on its sink pad. To configure it, the user sets the media bus format on the subdev's sink pad. Now the actual crop rectangle can be set on the sink pad —the location and size of this rectangle reflect the location and size of a rectangle to be cropped from the sink format. The size of the sink crop rectangle will also be the size of the format of the subdev's source pad.

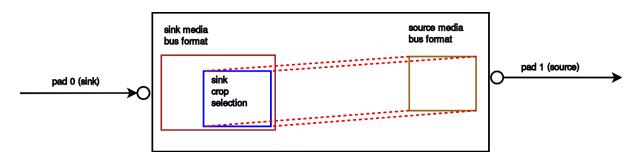


Fig. 13: Figure 4.5. Image processing in subdevs: simple crop example

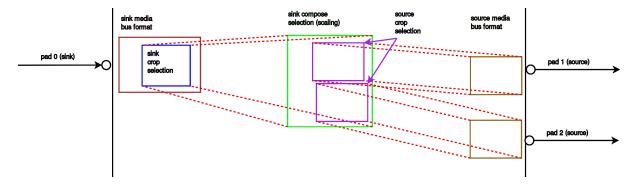
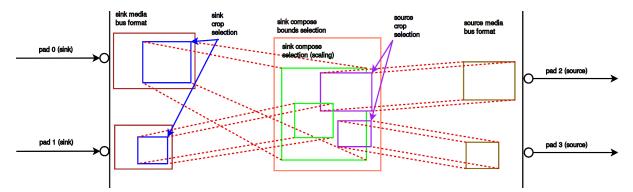



Fig. 14: Figure 4.6. Image processing in subdevs: scaling with multiple sources

In this example, the subdev is capable of first cropping, then scaling and finally cropping for two source pads individually from the resulting scaled image. The location of the scaled image in the cropped image is ignored in sink compose target. Both of the locations of the source crop rectangles refer to the sink scaling rectangle, independently cropping an area at location specified by the source crop rectangle from it.

Fig. 15: Figure 4.7. Image processing in subdevs: scaling and composition with multiple sinks and sources

The subdev driver supports two sink pads and two source pads. The images from both of the sink pads are individually cropped, then scaled and further composed on the composition bounds rectangle. From that, two independent streams are cropped and sent out of the subdev from the source pads.

Media Bus Formats

v4l2_mbus_framefmt

	Table 88: struct v412_m	bus_trametmt
u32	width	Image width in pixels.
u32	height	Image height in pixels. If field is one of V4L2_FIELD_TOP, V4L2_FIELD_BOTTOM of V4L2_FIELD_ALTERNATE then height refers to the number of lines in the field, otherwise it refers to the number of lines in the frame (which is twice the field height for interlaced formats).
u32	code	Format code, from enum v4l2_mbus_pixelcode.
u32	field	Field order, from enum v4l2_field. See Field Order for details.
u32	colorspace	Image colorspace, from enum v4l2_colorspace. See Colorspaces for details.
u16	ycbcr_enc	Y' CbCr encoding, from enum v4l2_ycbcr_encoding. This information supplements the colorspace and must be set by the driver for capture streams and by the application for output streams, see Colorspaces.
u16	quantization	Quantization range, from enum v4l2_quantization. This information supplements the colorspace and must be set by the driver for capture streams and by the application for output streams, see Colorspaces.
u16	xfer_func	Transfer function, from enum v4l2_xfer_func. This information sup plements the colorspace and must be se by the driver for capture streams and by the application for output streams, see Colorspaces.
u16	reserved[11]	Reserved for future extensions. Applications and drivers must set the array to zero.

Table 88: struct v4l2 mbus framefmt

Media Bus Pixel Codes

The media bus pixel codes describe image formats as flowing over physical buses (both between separate physical components and inside SoC devices). This should not be confused with the V4L2 pixel formats that describe, using four character codes, image formats as stored in memory.

While there is a relationship between image formats on buses and image formats in memory (a raw Bayer image won't be magically converted to JPEG just by storing it to memory), there is no one-to-one correspondence between them.

The media bus pixel codes document parallel formats. Should the pixel data be transported over a serial bus, the media bus pixel code that describes a parallel format that transfers a sample on a single clock cycle is used. For instance, both MEDIA_BUS_FMT_BGR888_1X24 and MEDIA_BUS_FMT_BGR888_3X8 are used on parallel busses for transferring an 8 bits per sample BGR data, whereas on serial busses the data in this format is only referred to using ME-DIA_BUS_FMT_BGR888_1X24. This is because there is effectively only a single way to transport that format on the serial busses.

Packed RGB Formats

Those formats transfer pixel data as red, green and blue components. The format code is made of the following information.

- The red, green and blue components order code, as encoded in a pixel sample. Possible values are RGB and BGR.
- The number of bits per component, for each component. The values can be different for all components. Common values are 555 and 565.
- The number of bus samples per pixel. Pixels that are wider than the bus width must be transferred in multiple samples. Common values are 1 and 2.
- The bus width.
- For formats where the total number of bits per pixel is smaller than the number of bus samples per pixel times the bus width, a padding value stating if the bytes are padded in their most high order bits (PADHI) or low order bits (PADLO). A "C" prefix is used for component-wise padding in the most high order bits (CPADHI) or low order bits (CPADLO) of each separate component.
- For formats where the number of bus samples per pixel is larger than 1, an endianness value stating if the pixel is transferred MSB first (BE) or LSB first (LE).

For instance, a format where pixels are encoded as 5-bits red, 5-bits green and 5-bit blue values padded on the high bit, transferred as 2 8-bit samples per pixel with the most significant bits (padding, red and half of the green value) transferred first will be named MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE.

The following tables list existing packed RGB formats.

									abi	le 8	9: F	KGI	BIC	orn	lats																				
Identifier	Code	Bit		ta o 30					5 2 ⁵	5 2	4 23	312	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MEDIA_BUS_FMT_RGB444_1X12										-	-										_						-	-							
MEDIA BUS FMT RGB444 2X8 PAD	0x1016									-	_	+	+											r3	r ₂	r1	r ₀	g3 0			g0 0) b3	b ₂	b ₁	b ₀
	0x1001																															r ₃	r ₂	r_1	r ₀
																												g 3	g2	g 1	g 0) b3	b ₂	b1	b ₀
MEDIA_BUS_FMT_RGB444_2X8_PAD	HI_LE 0x1002																											d a	a.	α1	a	b3	b ₂	b1	bo
										-		+	+																			r3			
MEDIA_BUS_FMT_RGB555_2X8_PAD	HI_BE 0x1003																											0	n .	-	n -		-	<i>a</i> .	
	0x1003									+	-	+	+										_					q 2				r ₁ b3			g ₃
MEDIA_BUS_FMT_RGB555_2X8_PAD																												-							
	0x1004									+	_	+	+																			b3			0d
MEDIA_BUS_FMT_RGB565_1X16												+	+															-							
	0x1017																			r4	r3	r ₂	r1	r ₀	g 5	g4	g 3	g 2	g 1	g 0	b4	b3	b ₂	b1	b ₀
MEDIA_BUS_FMT_BGR565_2X8_BE	0x1005																											bл	ba	b ₂	bı	b ₀	g ₅	αı	g ₃
																																r ₃			
MEDIA_BUS_FMT_BGR565_2X8_LE	0x1006																											a	<i>a</i> .	a	r .	ra	ro	re	ro
	001000									+		+	+																			r ₃		r ₁	r ₀
MEDIA_BUS_FMT_RGB565_2X8_BE																																			
	0x1007								-	-		+	+																			r ₀			
MEDIA_BUS_FMT_RGB565_2X8_LE												+	+										_					92	91	90	54	103	102	51	100
	0x1008																															b3			
MEDIA BUS FMT RGB666 1X18									-	-	-	-	+															г4	r ₃	r ₂	г1	r ₀	g 5	<u>g</u> 4	g 3
	0x1009																	r5	r4	r3	r_2	r1	r ₀	g 5	g 4	g 3	g 2	g 1	g0	b5	b4	b3	b ₂	b_1	b ₀
MEDIA_BUS_FMT_RBG888_1X24	0x100e										r ₇	, r	6	re	ra	ra	r _n	r ₁	ro	h7	b ₆	h-	h	ha	ha	h1	b_0	a-1	ac	a-		g3	a	a 1	n o
MEDIA BUS FMT RGB666 1X24 CP										+	0		0	15	14	13	12	11	10	0	0	D 5	54	D 3	D2	51	<u>D</u> 0	0	0	95	94	93	92	91	190
MEDIA DUC ENT DODOGO 1924	0x1015												1	r ₅	r4	r ₃	r ₂	r_1	r ₀			g 5	g4	g 3	g_2	g_1	g ₀			b ₅	b ₄	b3	b ₂	b ₁	b ₀
MEDIA_BUS_FMT_BGR888_1X24	0x1013										b	7 b	26	b5	bл	bз	b2	bı	bo	α 7	αe	α5	α4	aз	a 2	α1	au	r7	re	r5	r4	r3	r ₂	r1	ro
MEDIA_BUS_FMT_BGR888_3X8										+		1			~ 1					9,	90	35	94	35	92	91	90								
	0x101b								_	_	_		_																			b3 g3			b ₀ g0
										+	-	+	+										_					g7 r7				r3			
MEDIA_BUS_FMT_GBR888_1X24	0 1014																			,	,	,	,	,	,	,	,								
MEDIA BUS FMT RGB888 1X24	0x1014								-	+	g	7 9	J6 !	g 5	g 4	g 3	<u>g</u> 2	g 1	g0	₇ מ	D6	D 5	D4	<u>د</u> م	D 2	D1	0a	Г7	r ₆	r ₅	г4	r ₃	<u>r2</u>	r ₁	r ₀
	0x100a										r7	r	6	r5	r4	r3	r ₂	r_1	r ₀	g 7	g 6	g 5	g4	g3	g 2	g 1	g 0	b7	b ₆	b5	b4	b3	b ₂	b_1	b ₀
MEDIA_BUS_FMT_RGB888_2X12_BE	0x100b																							ra	ra	r-	r.	ra	ro	re	ro	0.0		<i>a</i> -	<i>a</i> .
	0X100D									+		+	+												r ₆ q ₂							g7 b3			g4 b0
MEDIA_BUS_FMT_RGB888_2X12_LE												1	+												-	-									
	0x100c								-	-		+	+											g3 r7	g ₂	g1						b3			b ₀ g4
MEDIA_BUS_FMT_RGB888_3X8		_			_			-	+	+	+	+	+			-			-		_		_	1/	10	12	14	13	12	11	10	19/	96	95	94
	0x101c																															r ₃		\mathbf{r}_1	r ₀
		_			_			-	+	-	_	+	+				-	-	-				_									g3 b3			
MEDIA_BUS_FMT_ARGB888_1X32								-	+	+	+	+	+																						
MEDIA BUS FMT RGB888 1X32 PA	0x100d		a ₇ 0	a ₆ 0	a5 0	a4		a ₂				7 r	6	r ₅	r4	r ₃	r ₂	r ₁	r ₀	g 7	g ₆	g 5	g4	g ₃	g 2	g ₁	g ₀	b7	b ₆	b ₅	b ₄	b3	b ₂	b ₁	b ₀
MEDIA_DUS_PMI1_KGD000_1A32_PA	0x100f		U	U	U	U	0		0	1	' r7	r	6	r5	r4	r3	r2	r ₁	r ₀	g7	g6	g 5	g4	g3	g 2	g1	g0	b7	b ₆	b5	b4	b3	b2	b1	bo
MEDIA_BUS_FMT_RGB101010_1X30			0	0					1			Т																							
	0x1018				r9	r ₈	r7	r ₆	r ₅	$ \mathbf{r}_{\ell} $	$1 r_3$	3 r	2	r_1	r ₀	g 9	g 8	g 7	g 6	g 5	g_4	g ₃	g_2	g_1	g_0	b9	b8	b7	b ₆	b5	b4	b3	b ₂	b ₁	b ₀

Table 89: RGB formats

The following table list existing packed 36bit wide RGB formats.

Table 90: 36bit RGB formats

Identifier	Code		Da	ita o	rga	niza	tior	۱																													
		Bit	t 35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
MEDIA_BUS_FMT_RGB121212_1X36	0x1019	,	r ₁₁	r ₁₀	r9	r ₈	r7	r ₆	r ₅	r4	r3	r ₂	r ₁	r ₀	g11	g10	g9 9	J 8	g7	g ₆	g 5	g 4	g3	g 2	g 1	g0	b11	b10	b9	b ₈	b7	b ₆	b ₅	b ₄	4 b3	b ₂	b ₁

The following table list existing packed 48bit wide RGB formats.

Table 91: 48bit RGB formats

Identifier	Code		Da	ta c	rga	niza	tio	n																										
		Bit																	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
			31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MEDIA_BUS_FMT_RGB161616_1X48	0x101a																		r ₁₅	r ₁₄	r ₁₃	r ₁₂	r11	r ₁₀	r9	r ₈	r7	r ₆	r ₅	r4	r ₃	r ₂	r ₁	r ₀
			g1:	5 g 14	1g 13	3 g 12	g11	.g1¢	g 9	g ₈	g 7	g 6	g 5	g_4	g 3	g ₂	g ₁	g 0	b15	;b ₁₄	b13	3b12	2b11	1 b1(b9	b ₈	b ₇	b ₆	b ₅	b ₄	b ₃	b_2	b1	b ₀

On LVDS buses, usually each sample is transferred serialized in seven time slots per pixel clock, on three (18-bit) or four (24-bit) differential data pairs at the same time. The remaining bits are used for control signals as defined by SPWG/PSWG/VESA or JEIDA standards. The 24-bit RGB format serialized in

seven time slots on four lanes using JEIDA defined bit mapping will be named MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, for example.

Identifier	Code			Data c	organizat	ion	
		Timeslot	Lane	3	2	1	0
MEDIA_BUS_FMT_RGB666_1X7X3_SPWG	0x1010	0			d	b ₁	g0
		1			d	b ₀	r ₅
		2			d	g 5	r4
		3			b5	g 4	r3
		4			b ₄	g 3	r ₂
		5			b ₃	g ₂	r ₁
		6			b ₂	g 1	r ₀
MEDIA_BUS_FMT_RGB888_1X7X4_SPWG	0x1011	0		d	d	b ₁	g0
		1		b ₇	d	b ₀	r ₅
		2		b ₆	d	g 5	r4
		3		g 7	b5	g 4	r3
		4		g 6	b ₄	g 3	r ₂
		5		r7	b ₃	g ₂	r ₁
		6		r ₆	b2	g1	r ₀
MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA	0x1012	0		d	d	b ₃	g 2
		1		b ₁	d	b ₂	r7
		2		b ₀	d	g 7	r ₆
		3		g1	b ₇	g 6	r ₅
		4		g 0	b ₆	g 5	r4
		5		r ₁	b5	g 4	r3
		6		r ₀	b ₄	g 3	r ₂

Table 92: LVDS RGB formats

Bayer Formats

Those formats transfer pixel data as red, green and blue components. The format code is made of the following information.

- The red, green and blue components order code, as encoded in a pixel sample. The possible values are shown in Figure 4.8 Bayer Patterns.
- The number of bits per pixel component. All components are transferred on the same number of bits. Common values are 8, 10 and 12.
- The compression (optional). If the pixel components are ALAW- or DPCMcompressed, a mention of the compression scheme and the number of bits per compressed pixel component.
- The number of bus samples per pixel. Pixels that are wider than the bus width must be transferred in multiple samples. Common values are 1 and 2.
- The bus width.
- For formats where the total number of bits per pixel is smaller than the number of bus samples per pixel times the bus width, a padding value stating if the bytes are padded in their most high order bits (PADHI) or low order bits (PADLO).
- For formats where the number of bus samples per pixel is larger than 1, an endianness value stating if the pixel is transferred MSB first (BE) or LSB first (LE).

For instance, a format with uncompressed 10-bit Bayer components arranged in a red, green, green, blue pattern transferred as 2 8-bit samples per pixel with the least significant bits transferred first will be named MEDIA_BUS_FMT_SRGGB10_2X8_PADHI_LE.

The following table lists existing packed Bayer formats. The data organization is given as an example for the first pixel only.

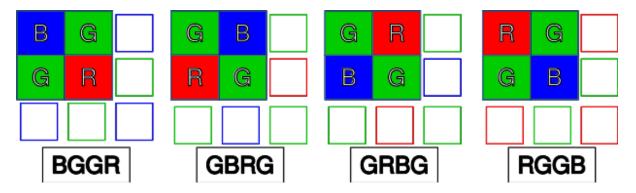


Fig. 16: Figure 4.8 Bayer Patterns

Code	1	_				s											
			ta c						~	_		-	_				_
02001		15	14	13	12	11	10	9	8	7	6 1	5	4	3	2	1	0
																	b
										-							g
																	r
3_1X8													_				b
3_1X8																	g
3_1X8																	g
3_1X8										r7							r ₀
										b7						b ₁	b
										g7							g
8_1X8 0x3009										g7							g
										r ₇	r ₆	r ₅	r4	r ₃	r ₂	r ₁	r ₀
										0	0	0	0	0	0	b9	b
DHI LE										b7	b ₆	b ₅	b ₄	b3	b ₂		b(
0x3004										b7 0	b ₆ 0	b5 0	b4 0	b3 0	b ₂ 0	b ₁ b ₉	b ₍
										b9	b8	b7	b ₆	b ₅	b4	b ₃	b
ADLO LE										b1	b ₀	0	0	0	0	0	0
												b7	b ₆	b5	b4	b3	b ₂
								b9	b ₈	b7	b ₆	b ₅	b ₄			b ₁	b
																	g
																	g
						he	h					_	_				r ₀ b ₀
																	g
																	g
																	r ₀
				b1'	b1'												b
																	g
0x301b																	g
0x301c									r ₈	r ₇	r ₆	r5	r4	r ₃	r2	r ₁	r ₀
0x301d		b ₁	5b12						b ₈		b ₆						b(
0x301e																	g
0x301f									g8	g7	g6	g 5	g4			g1	g
	0x3013 0x3002 0x3014 1X8 0x3015 1X8 0x3016 1X8 0x3017 1X8 0x3017 1X8 0x3017 1X8 0x3017 1X8 0x3018 1X8 0x3006 1X8 0x3006 0x3006 0x3007 0x3007 0x3006 0x3007 0x3007 0x3006 0x3007 0x307	0x3015 1X8 0x3016 3 1X8 0x3017 3 1X8 0x3018 8 1X8 0x300b 8 1X8 0x300b 8 1X8 0x300b 8 1X8 0x300c 8 1X8 0x300d 0x3003 0x3004 DHI BE 0x3004 DHI DE 0x3006 0x3007 0x3008 0x3007 0x3008 0x3007 0x3008 0x30010 0x3011 0x3012 0x3013 0x3014 0x3015	0x3013	0x3013	0x3013 0 0 97 0x3013 0 0 97 0x3014 0 0 97 0x3014 0 0 97 0x3015 0 0 97 0x3016 0 0 97 0x3017 0 0 97 0x3018 0 0 97 0x30018 0 0 97 0x30018 0 0 97 0x3000 0 0 97 8 1X8 0 97 0x3000 0 0 97 8 1X8 0 0 0x3000 0 0 97 8 1X8 0 0 0x3000 0 0 97 8 1X8 0 0 0x3000 0 0 0 0x3004 0 0 0 0x3004	0x3013 0 <td>0x3013 0x3014 0x3015 0x3015 0x3015 0x3015 0x3016 0x7 06 05 0x3013 0x3016 0x3017 0x3016 0x7 06 05 0x3016 0x3017 0x3016 0x7 06 05 0x3018 0x3017 0x3016 0x7 06 05 0x3000 0x3000 0x7 06 05 0 07 06 05 0x3000 0x3000 0x7 0</td> <td>0x3013 0<td>0x3013 0<td>0x3013 0 0 0 0 0 0 0 0 0 0 0x3002 0 <</td><td>0x3013 0<!--</td--></td></td></td>	0x3013 0x3014 0x3015 0x3015 0x3015 0x3015 0x3016 0x7 06 05 0x3013 0x3016 0x3017 0x3016 0x7 06 05 0x3016 0x3017 0x3016 0x7 06 05 0x3018 0x3017 0x3016 0x7 06 05 0x3000 0x3000 0x7 06 05 0 07 06 05 0x3000 0x3000 0x7 0	0x3013 0 <td>0x3013 0<td>0x3013 0 0 0 0 0 0 0 0 0 0 0x3002 0 <</td><td>0x3013 0<!--</td--></td></td>	0x3013 0 <td>0x3013 0 0 0 0 0 0 0 0 0 0 0x3002 0 <</td> <td>0x3013 0<!--</td--></td>	0x3013 0 0 0 0 0 0 0 0 0 0 0x3002 0 <	0x3013 0 </td						

Table	93 - co	ntinu	ued	fror	n pi	revi	ous	pag	ge									
Identifier	Code		Da	ta c	rga	niza	atio	n										
		Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MEDIA_BUS_FMT_SRGGB16_1X16	0x3020		r ₁₅	r ₁₄	r ₁₃	r ₁₂	r ₁₁	r ₁₀	r9	r ₈	r7	r ₆	r ₅	r4	r3	r ₂	r ₁	r ₀

Packed YUV Formats

Those data formats transfer pixel data as (possibly downsampled) Y, U and V components. Some formats include dummy bits in some of their samples and are collectively referred to as "YDYC" (Y-Dummy-Y-Chroma) formats. One cannot rely on the values of these dummy bits as those are undefined.

The format code is made of the following information.

- The Y, U and V components order code, as transferred on the bus. Possible values are YUYV, UYVY, YVYU and VYUY for formats with no dummy bit, and YDYUYDYV, YDYVYDYU, YUYDYVYD and YVYDYUYD for YDYC formats.
- The number of bits per pixel component. All components are transferred on the same number of bits. Common values are 8, 10 and 12.
- The number of bus samples per pixel. Pixels that are wider than the bus width must be transferred in multiple samples. Common values are 0.5 (encoded as 0_5 ; in this case two pixels are transferred per bus sample), 1, 1.5 (encoded as 1_5) and 2.
- The bus width. When the bus width is larger than the number of bits per pixel component, several components are packed in a single bus sample. The components are ordered as specified by the order code, with components on the left of the code transferred in the high order bits. Common values are 8 and 16.

For instance, a format where pixels are encoded as 8-bit YUV values downsampled to 4:2:2 and transferred as 2 8-bit bus samples per pixel in the U, Y, V, Y order will be named MEDIA_BUS_FMT_UYVY8_2X8.

YUV Formats lists existing packed YUV formats and describes the organization of each pixel data in each sample. When a format pattern is split across multiple samples each of the samples in the pattern is described.

The role of each bit transferred over the bus is identified by one of the following codes.

- y_x for luma component bit number x
- $\boldsymbol{u}_{\boldsymbol{x}}$ for blue chroma component bit number \boldsymbol{x}
- $v_{\boldsymbol{x}}$ for red chroma component bit number \boldsymbol{x}
- a_x for alpha component bit number x
- for non-available bits (for positions higher than the bus width)
- d for dummy bits

								10	ible	94	: 10	JVI	1107	nau	5																			
Identifier	Code		Da	ita c	orga	niza	atio	n																										
		Bi	t 31	30	29	28	27	26	25	24	23	22	21	10	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MEDIA_BUS_FMT_Y8_1X8																																		
	0x2001	L																									y 7	<u>У</u> 6	y 5	y 4	y3	y2	y 1	y0
																												Cor	ntin	ued	on	nex	t pa	ige

Table 04 VIIV Formate

Identifier	Code		Dat	a c		Tab niza			- C	ont	inu	led	fro	m	ore	vio	us	pag	je																	
MEDIA BUS FMT UV8 1X8		Bit	31						5 2	5 2	24	23	22	2	1	0 1	9	18	17	16	15	14	13	3 12	2 1	1 1	0 9	8	7	6	5	4	3	2	1	0
	0x2015																																u3			
MEDIA_BUS_FMT_UYVY8_1_5X8	02002									-				\vdash	+	+	+						$\left \right $				+	+								
	0x2002			_																									y'	7 ye	5 Y5	y4	u3 y3	y2	y 1	<u>у</u> 0
										+	-				-	-	+		_					-			+	+					y3 v3			
								-		-	_				+	-	-		_			-	-			_	+	+					y3 y3			
MEDIA_BUS_FMT_VYUY8_1_5X8	0x2003														1																		v3			
																	+												y.	7 ye	5 Y5	y4	y3	y2	У1	У0
																	+												u	7 U	5 u 5	i u4	1 U3	u2	u1	u ₀
																																	y3 y3			
MEDIA_BUS_FMT_YUYV8_1_5X8	0x2004																																y3			
											_						-		_							_	-	-					y3 1 u3			
																										_		_	y.	7 ye	5 Y5	y4	y3	y2	У1	y0
MEDIA_BUS_FMT_YVYU8_1_5X8											1						+																v3			
MEDIA_D03_FM1_FV100_1_5X0	0x2005																																y3			
																													V	7 V(5 V5	V4	y3 v3	v2	v_1	v ₀
							-			-	_			-		+	+		_			-				-	-	-					y3			
MEDIA BUS FMT UYVY8 2X8											_						_									_							1 U3			
	0x2006																																1 U3			
																													V	7 V(5 V5	V4	y3	v2	V 1	V0
MEDIA_BUS_FMT_VYUY8_2X8										+							+							-		-	+	+					y3			
	0x2007						-	-		+	+			-		+	+	_	-		-	-	-	-		_	+	+					v3 y3			
											_						-		_									-	u	7 u	5 u 5	; u4	1 U3 . Y3	u2	u1	u ₀
MEDIA_BUS_FMT_YUYV8_2X8	0x2008										1						1																			
	0.2000																												u	7 u	5 u	5 U4	y3 1 u3	u2	u 1	u0
																																	y3 v3			
MEDIA_BUS_FMT_YVYU8_2X8	0x2009																												y.	7 ye	5 y5	y4	y3	y2	У1	y0
											_						_		_							_		-					v3 y3			
MEDIA BUS FMT Y10 1X10																													u	7 U	5 u ₅	; u ₄	1 u3	u2	u ₁	u ₀
MEDIA BUS FMT Y10 2X8 PADHI	0x200a																										y	y ya	3 y	7 ye	5 y5	y4	y3	y ₂	y1	y0
MEDIA_BOS_FM1_110_2X6_FAD111_	0x202c																												y'	7 ye	5 y5	y4	y3	y2	y1	yo
MEDIA_BUS_FMT_UYVY10_2X10							-				-					-	+										-	-					0			
	0x2018						-			-	_			-		-	+		_			-				-	u y	9 U8	3 U 3 Y	7 U 7 Ye	5 U5 5 V5	5 U4	u3 y3	u2 y2	u1 У1	<u>u</u> 0 <u>y</u> 0
											_					-	-	_					-				Vg	9 V8	3 V	7 V(5 V5	V4	v3	v2	v1	v ₀
MEDIA_BUS_FMT_VYUY10_2X10	0x2019										1						1																v3			
	0.2013																										y y	9 ya	3 Y	7 Y6	5 y5	y4	y3	y2	y 1	y0
																																	1 U3 . У3			
MEDIA_BUS_FMT_YUYV10_2X10	0x200b																										y	9 ya	3 y	7 ye	5 y5	y4	y3	y2	У1	y0
										-	_					_	_	_	_								u v	$\frac{1}{2}$ $\frac{1}{2}$	3 U	7 U	5 U5	u4	1 u3 3 y3	u2	u1 V1	u ₀ v0
MEDIA BUS FMT YVYU10 2X10																											Ve) V	3 V	7 V(5 V5	V4	v ₃	v ₂	v ₁	v ₀
	0x200c										_																						y3			
																											y	9 ya	3 Y	7 ye	5 Y5	y4	v3 y3	y2	У1	У0
MEDIA_BUS_FMT_Y12_1X12			$\left - \right $				+	+	+	+	+			+	+	+	+	-			\vdash	\vdash	+	+	+	+	u g	9 u	3 u	7 u	5 u 5	5 U4	1 U3	u2	u1	u0
MEDIA BUS FMT UYVY12 2X12	0x2013		\vdash				-		+	+	+			-	+	+	+	-				-	\vdash	+	y	11 y	10 Y	9 ya	3 y	7 y e	5 y5	y 4	<u>y</u> 3	y2	y1	y0
	0x201c							-			+	_		-	-	_	+					-	-										u3 y3			
											1			E		+	+								V	11 V	10 V	9 V8	3 V'	7 V(5 V5	V4	v3	v2	v1	V ₀
MEDIA_BUS_FMT_VYUY12_2X12	0								+	+	+	_		\vdash	+	+	+					\vdash	\vdash										. Уз			
	0x201d																								y	11 Y	10 Y	9 ya	3 Y	7 ye	5 Y5	y 4	v3 y3	y2	У1	y0
			$ \overline{ }$	_		_			F	Ŧ	$\overline{+}$		_	F	F	F	+	-	-			\vdash	\vdash	F	u	11 u	1¢u	9 u	3 u	7 u	5 u 5	5 U4	1 U3 . Y3	u2	u 1	u0
MEDIA_BUS_FMT_YUYV12_2X12	0x201e						1				1				1	1	1																y3			
	0.1.0010			-	-	-	1	+	+	-	-		-	-	+	+	-	-			-	1	+	+			10 y:									

Continued on next page

Linux Userspace-api Documentation

bit 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 21 21 10 9 7 6 7 6 7 5 4 3 2 1 0 0 1 1 9 7 16 15 14 13 12 11 10 9 7 6 7 6 5 4 3 2 1 0 1 9 17 10 9 7 6 7 6 5 4 3 2 1 0 1 9 17 10 9 7 6 7 6 5 4 3 2 1 0 1 9 17 10 9 7 6 7 6 7 7 9 7 5 7 7 9 7 7 7 7 7 7 7 7 7 7 7 7	Identifier	Code		Da	ta o					2.51					,	viou		-90																	
MEDIA, BUS_FMT_VVVU12_2X12 0x2011 0										25	24	23	22	2 2	1 1	0 19	1	3 17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2		
MEDIA_BUS_FMT_VYVU12_2X12 0.2011																								Y11	y10	y 9	y 8	y 7	У6	У5	У4	y3	y 2	У1	У0
0.2011 0.201 0.201 0.201 0.202 0.20 0.20																								v11	V1(v 9	v ₈	v 7	v ₆	v5	v_4	v ₃	v ₂	v_1	v ₀
MEDIA_BUS_FMT_Y14_X14 0.2004 <t< td=""><td>MEDIA_BUS_FMT_YVYU12_2X12</td><td>0.201f</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	MEDIA_BUS_FMT_YVYU12_2X12	0.201f																																	
MEDIA, BUS_FMT_Y14_1X14 0 <td></td> <td>0x2011</td> <td></td> <td>-</td> <td>-</td> <td>+</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>y11</td> <td></td>		0x2011											-	-	+		-							y11											
MEDIA BUS FMT YIATIXI 0x2001 0														-	+		+																		
MEDIA, BUS, FMT, YI4, IX14 0x2024 0x204 0x204 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td></td><td>-</td><td>+</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														-	+		-	+					_												
MEDIA,BUS_FMT_UYVY8_IX16 0x2016	MEDIA_BUS_FMT_Y14_1X14	0x202d																				174													
MEDIA, BUS_FMT_VVUY8_1X16 O <td>MEDIA_BUS_FMT_UYVY8_1X16</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>+</td> <td>+</td> <td></td> <td>+</td> <td></td>	MEDIA_BUS_FMT_UYVY8_1X16		-									-		+	+		+																		
MEDIA_BUS_FMT_VVUY8_1X16 0x2010 0x1 0x2010 0x1		0x200f										-		-		_	+	+																	
MEDIA_BOUS_FMT_YUYUB_IXI6 V<	MEDIA_BUS_FMT_VYUY8_1X16																													-					
MEDIA, BUS, FMT_YUYQB_IXI6 0x2011 0x2014		0x2010												_	_	_	_			_															
0x2011 0x2011 0x2011 0x2012 0x10 0x10 <td>MEDIA BUS EMT VUVV8 1X16</td> <td></td> <td>+</td> <td>-</td> <td>_</td> <td>-</td> <td>-</td> <td></td> <td>u7</td> <td>u₆</td> <td>u5</td> <td>u4</td> <td>u3</td> <td>u₂</td> <td><u>u</u>1</td> <td>u₀</td> <td>У7</td> <td><u>У6</u></td> <td>У5</td> <td>У4</td> <td><u>y</u>3</td> <td><u>y</u>2</td> <td>У1</td> <td><u>y</u>0</td>	MEDIA BUS EMT VUVV8 1X16													+	-	_	-	-		u7	u ₆	u5	u4	u3	u ₂	<u>u</u> 1	u ₀	У7	<u>У6</u>	У5	У4	<u>y</u> 3	<u>y</u> 2	У1	<u>y</u> 0
MEDIA, BUS, FMT_YYU98_IX16 0x2012 x x x x x x y	MEDIA_B03_FMT_T0TV0_TAT0	0x2011																																	
0x2012 0x2014	MEDIA DUC EMT VANUO 1V16													_	_		-			<u>У</u> 7	У6	У5	У4	У3	У2	y1	<u>у</u> 0	v 7	v ₆	v ₅	v4	v ₃	v ₂	v ₁	v ₀
MEDIA BUS_FMT_YDYUYUY0121X21 MEDIA BUS_FMT_YDYUYUY0121X21 MEDIA BUS_FMT_YDYUY0101X20 MEDIA MEDIA BUS_FMT_YUY0101X20 MEDIA MEDIA BUS_FMT_YUY0101X20 MEDIA MEDIA <td>MEDIA_BUS_FM1_1V108_1X16</td> <td>0x2012</td> <td></td> <td>y7</td> <td>y6</td> <td>y5</td> <td>y4</td> <td>уз</td> <td>y2</td> <td>y1</td> <td>y0</td> <td>v7</td> <td>v₆</td> <td>v5</td> <td>v4</td> <td>v₃</td> <td>v2</td> <td>v_1</td> <td>v₀</td>	MEDIA_BUS_FM1_1V108_1X16	0x2012																		y7	y 6	y 5	y4	уз	y 2	y1	y0	v 7	v ₆	v5	v4	v ₃	v2	v_1	v ₀
m 0x2014 0x2014 0x																				y 7	У6	y 5	y 4	У3	y 2	y 1	У 0	u7	u ₆	u_5	u4	u ₃	u ₂	u1	u ₀
Image: Section of the section of th	MEDIA_BUS_FMT_YDYUYDYV8_1X16	5 0x2014																		V7	ve	V5	VA	V3	vo	V1	vo	d	d	d	d	d	d	d	d
Image: Marrier		042011	-		-									+	+		-			V7	V6	y5	94 V4	<u>y</u> 3 V3	y 2 V2	V1	V0	u7	u ₆	u5	u ₄	u ₃	u ₂	u1	u ₀
MEDIA_BUS_FMT_UYUY01_0X20 Model and															+					y7	<u>у</u> 6	y5	y4	y3	y2	y1	y0	d	d	d	d	d	d	d	d
0.2011 0.2014																																			
MEDIA_BUS_FMT_VYUY10_IX20 Ox201h	MEDIA_BUS_FMT_UYVY10_1X20	0x201a																		11-	11.4	110	110	114	110	No	No	Ne	Va	1/-		Vo	Vo	N.	No
MEDIA BUS_FMT_VVUY10_1X20 0x201b 0 <		0x201a									-	-	-	+	+																				
0x201b 0x200b 0x20b 0x20b<	MEDIA BUS FMT VYUY10 1X20													+	+	• • •	1 1	, v/	vo	•5	v 4	v3	V2	V I	vu	99	yo	y /	90	y5	y4	193	<u> </u>	y 1	yu
MEDIA_BUS_FMT_VUYU10_1X20 0x200d 0x20d 0x200d 0x20d		0x201b																							v0	y 9	y8	y 7	<u>у</u> 6	y 5	У4	y3	y2	y1	y0
Image: Control in the state of the stat	MEDIA DUS EMT VIIVI10 1920													_	_	ug) u	3 u7	u ₆	u5	u 4	u3	u ₂	u 1	u ₀	<u>y</u> 9	<u>y</u> 8	y 7	<u>У</u> 6	<u>у</u> 5	y 4	y3	y2	y 1	<u>y</u> 0
MEDIA_BUS_FMT_YVYU10_1X20 0x200e 0x200e 0x200e 0x201e 0x202e 0x1e 0x1e 0x2e	MEDIA_B03_FM1_101V10_1X20	0x200d																																	
0x200e 0x200e 0x200e 0x200e 0x200e 0x201a																yg	y y	3 Y7	У6	y5	У4	у3	У2	У1	y0	V 9	v ₈	v 7	v ₆	v_5	v_4	v ₃	v_2	v_1	v ₀
MEDIA_BUS_FMT_VUY8_1X24 Ox201a V7 V6 V5 V4 V3 V2 V1 V0 V7 V6 V5 V4 V3	MEDIA_BUS_FMT_YVYU10_1X20	0x200e														vo	V	v7	V6	V5	V4	V3	V 2	V1	vo	vo	V8	V 7	V6	V5	V4	V3	V2	V1	vo
MEDIA_BUS_FMT_VUY8_1X24 0x201a 0x201a 0x201a 0x201a 0x001a														+	+	yg	y	3 Y7	<u>У</u> 6	y5	y4	y3	y2	y1	y0	<u>u</u> 9	u ₈	u ₇	u ₆	u5	u4	u ₃	u2	u ₁	<u>u</u> 0
MEDIA_BUS_FMT_YUV8_1X24 Ox2025 Ox2025 Ox2025 Ox2025 Ox2025 Ox2026 Ox2027 Ox2026 Ox2027	MEDIA_BUS_FMT_VUY8_1X24																																		
MEDIA_BUS_FMT_UYVY8_0_5X24 0x2025 0x2026 0x206	MEDIA BUS EMT VIVA 1824	0x201a										V 7	ve	5 V5	5 V	4 V3	V2	2 V1	V0	u7	u6	u5	u4	u3	u2	<u>u</u> 1	u0	y 7	<u>У</u> 6	<u>у</u> 5	y 4	y3	y2	y 1	<u>y</u> 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MEDIA_B03_FM1_1076_1X24	0x2025										y7	ye	5 y 5	5 y	4 V3	y2	y1	yo	u7	u ₆	u_5	u4	u3	u_2	u1	u ₀	v7	v ₆	v5	v4	v ₃	v ₂	V1	v ₀
0x2026 0x2026 0x	MEDIA BUS FMT UYYVYY8 0 5X24															1 00				Ĺ	-	0	-										Ť		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0x2026	i																																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MEDIA DUC ENT INUMA 1924											v 7	ve	5 V5	5 V	4 V3	V ₂	v1	v ₀	<u>У</u> 7	У6	У5	У4	У3	y 2	<u>y</u> 1	<u>У</u> 0	У7	У6	У5	У4	y3	<u>y</u> 2	У1	<u>У</u> 0
MEDIA_BUS_FMT_VYUY12_1X24 0x2021 v1	MEDIA_BUS_FM1_UYVY12_1X24	0x2020										111	1111			0 11-		115	114	112	110	111	110	V11	V10	VO	Vo	V7	VC	VE	VA	V2	VO	V1	VO
MEDIA_BUS_FMT_VYUY12_1X24 0x2021 0x2021 0x2021 0x2021 0x1 v1 v1 v v v v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v1 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v1 v		UALULU																																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MEDIA_BUS_FMT_VYUY12_1X24																																		
MEDIA_BUS_FMT_YUYU12_1X24 0x2022 v <		0x2021										v_1	1 V 1	10 V 9) v	8 V7	ve	5 V5	v4	v ₃	\mathbf{v}_2	\mathbf{v}_1	v ₀	y11	У10	y9	y 8	y 7	У6	У5	У4	У3	y ₂	У1	y0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MEDIA DUS EMT VIIV/12 1V24											u 1	<u>1 u 1</u>	1 0 U9	9 U	18 U7	<u>u</u>	5 u5	u4	u3	u ₂	u 1	u ₀	y11	y10) y 9	y 8	y 7	<u>У</u> 6	<u>у</u> 5	y 4	y3	y2	У1	<u>y</u> 0
MEDIA_BUS_FMT_YVYU12_1X24 0x2023 x <	MEDIA_003_FM1_101V12_1X24	0x2022										y1	1 Y 1	1 0 ys	y y	8 y7	ye	5 y5	У4	y3	y2	У1	y0	u ₁₁	u ₁₍	u9	u8	u7	u ₆	u5	u4	u ₃	u ₂	u1	u ₀
0x2023 v <td></td> <td>y1</td> <td>1 y1</td> <td>10 y 9</td> <td>9 y</td> <td>8 Y7</td> <td>ye</td> <td>5 y5</td> <td>У4</td> <td>У3</td> <td>y2</td> <td>y1</td> <td>y0</td> <td>v11</td> <td>V1(</td> <td>v9</td> <td>v8</td> <td>V7</td> <td>v6</td> <td>v5</td> <td>V4</td> <td>v3</td> <td>\mathbf{v}_2</td> <td>v1</td> <td>v₀</td>												y 1	1 y1	1 0 y 9	9 y	8 Y7	ye	5 y 5	У4	У3	y 2	y 1	y0	v11	V1(v 9	v8	V 7	v 6	v 5	V4	v 3	\mathbf{v}_2	v 1	v ₀
MEDIA_BUS_FMT_YUV10_1X30 0x2016 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u1 u1 u0 u2 u1 u0 0x2016 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u1 u1 u0 u2 u1 u0 MEDIA_BUS_FMT_UYVY10_0_5X30 0x2027 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 u2 u1 u0 v9 v8 v7 v6 v5 v4 u3 u2 u1 v0 v8 v7 v6 v5 v4 v3 v2 v1 v0 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 v8 v7 v6 v5 v4 v3 v2 v1 v0 v8 v7 v6 v5 v4 v3 v2 v1 v0	MEDIA_BUS_FMT_YVYU12_1X24	0,2022										Tre								NG	Vo		vo	17.4	W.	Nr.	NC	VE	N.C.	1/-		Nr.	NG		1
MEDIA_BUS_FMT_YUV10_1X30 0x2016 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7		0x2023	-					-	-		-																								
Ox2016 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y3 y2	MEDIA BUS FMT YUV10 1X30		-				-			-	-	91	<u>i y 1</u>	1998	, <u>y</u>	<u>5 y/</u>	1 1	, yo	94	13	уZ	<i>y</i> 1	<i>y</i> U	u1.		<i>y</i> u 9	40	u/	100	45	4	143	142	41	- 40
0x2027 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3						<u>y</u> 9	<u>y</u> 8	y7	У6	<u>y</u> 5	<u>y</u> 4	<u>y</u> 3	y ₂	2 <u>y</u> 1	y	0 ug) u	3 u7	u ₆	u5	u_4	u3	u_2	u1	u0	v9	v_8	v ₇	v ₆	v_5	v_4	v ₃	v_2	v_1	v ₀
v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 y8 y7 y6 y5 y4 y3 y2 v1 v0 y8 y7 y6 y5 y4 y3 y2 v1 v0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7 y6 y5 y4 y3 y2 y1 y0 y8 y7<	MEDIA_BUS_FMT_UYYVYY10_0_5X3	0																																	
MEDIA BUS FMT AYUV8 1X32		0x2027	-																																
0x2017 a7 a6 a5 a4 a3 a2 a1 a0 y7 y6 y5 y4 y3 y2 y1 y0 u7 u6 u5 u4 u3 u2 u1 u0 v7 v6 v5 v4 v3 v2 v1 v0 v3 v2 v1 v0 v3 v2 v1 v0 v3 v3 v3 v3 v3 v3 v3	MEDIA BUS FMT AYUV8 1X32		-			vy	84	V 7	V6	¥5	<u> *4</u>	<u>v3</u>	<u>v2</u>	2 1 1	-	0 99	1 78	s y7	<u>96</u>	<u>95</u>	У4	y3	<u>y2</u>	<u>у</u> 1	<u>у0</u>	19	198	y 7	196	<u>y5</u>	<u>y4</u>	193	<u>y2</u>	y1	<u>y0</u>
		0x2017		a7	a ₆	a ₅	a4	a ₃	a ₂	a ₁	a ₀	y 7	Уe	5 y 5	5 y	4 y 3	y ₂	y ₁	У0	u7	u ₆	u_5	u_4	u ₃	u_2	u1	u ₀	v 7	v ₆	v_5	v_4	v ₃	v_2	v_1	v ₀

Table 94 - continued from previous page

The following table list existing packed 36bit wide YUV formats.

Table 95: 36bit YUV Formats

Identifier	Code				rga																																
		Bit	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	10	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
MEDIA_BUS_FMT_UYYVYY12_0_5X36	0x2028		u ₁₁	u ₁₀) u 9	u8	u7	u ₆	u5	u4	u3	u ₂ 1	1 ₁	u0]	y11	y10	y 9	y8	y 7	У6	y5	y4	y 3	y2	y1	y0	y11	y10	y9	y8	y7	У6	y 5	y4	y3	y2	y 1
			V11	V1(v 9	v8	V 7	v 6	V 5	V4	V3	v2 1	V1 '	V0	y11	y10	y 9	y8	y 7	У6	y 5	y 4	У3	y 2	y 1	y0	y11	y10	y 9	y 8	y 7	<u>у</u> 6	y 5	y 4	У3	y2	y 1
MEDIA_BUS_FMT_YUV12_1X36	0x2029		y11	y10) y 9	y8	y 7	У6	y5	y4	y3	y2 y	1	y ₀	u11	u10	u9	u8	u7	u ₆	u ₅	u4	u3	u ₂	u ₁	u ₀	v11	v10	v9	v ₈	v 7	v ₆	v_5	v4	v ₃	v ₂	v ₁

The following table list existing packed 48bit wide YUV formats.

Identifier	Code		Da	ta d	orga	niz	atio	n																										_
		Bit																								40	39	38	37	36	35	34	33	3
			31	30	29	28	27	26	5 25	24	23	22	21	10	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MEDIA_BUS_FMT_YUV16_1X48	0x202a																		y15	y14	y13	y12	y1	у1	y 8	y8	У7	У6	y5	У4	y3	y2	У1	y
			u ₁	5u1	4u1	₃u1	2u₁	1 u 1	¢u9	u ₈	u7	u ₆	u ₅	u4	u ₃	u ₂	u_1	u ₀	v15	V14	v13	v12	v1	v1	∮V9	v8	v 7	v ₆	v_5	V4	v ₃	v_2	v_1	V
MEDIA_BUS_FMT_UYYVYY16_0_5X48	0x202b																		u11	;u ₁₄	1u1:	3u1	2u1	1 u 1	0u9	u8	u7	u ₆	u ₅	u4	u3	u ₂	u_1	u
			y15	y1	4 Y 1	3 Y 1	2 y 1	1 Y 1	ø y9	y8	y 7	<u>у</u> 6	y 5	y 4	y 3	y2	y 1	y0	y15	y14	y13	y12	y1	y 1	9 y8	y 8	y 7	<u>У</u> 6	y 5	y 4	y 3	y 2	y 1	y
																			V15	V14	V13	v12	v1	v1	∮V9	v ₈	v 7	v ₆	v5	v4	v3	\mathbf{v}_2	v_1	V
			y15	y1	4 Y 1	3 Y 1	2 Y1	1 Y 1	¢У9	y8	Y 7	У6	y5	У4	У3	y2	У1	Уо	y15	y14	y13	y12	y1	y 1	9 Y8	y 8	y 7	У6	У5	У4	y 3	У2	У1	y

Table 96: 48bit YUV Formats

HSV/HSL Formats

Those formats transfer pixel data as RGB values in a cylindrical-coordinate system using Hue-Saturation-Value or Hue-Saturation-Lightness components. The format code is made of the following information.

- The hue, saturation, value or lightness and optional alpha components order code, as encoded in a pixel sample. The only currently supported value is AHSV.
- The number of bits per component, for each component. The values can be different for all components. The only currently supported value is 8888.
- The number of bus samples per pixel. Pixels that are wider than the bus width must be transferred in multiple samples. The only currently supported value is 1.
- The bus width.
- For formats where the total number of bits per pixel is smaller than the number of bus samples per pixel times the bus width, a padding value stating if the bytes are padded in their most high order bits (PADHI) or low order bits (PADLO).
- For formats where the number of bus samples per pixel is larger than 1, an endianness value stating if the pixel is transferred MSB first (BE) or LSB first (LE).

The following table lists existing HSV/HSL formats.

			Id	DI	e	91	•	п	5	1/1	10	ᇿ	10)[]	110	au	5															
Identifier	Code			ta o																												
		Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	Τ
MEDIA_BUS_FMT_AHSV8888_1X32	0x6001		a7	a ₆	a5	a4	a ₃	a ₂	a ₁	a ₀	h7	h ₆	h5	h4	h3	h ₂	h ₁	h ₀	s 7	s ₆	s 5	s4	s3	s ₂	s ₁	s ₀	v7	v ₆	v ₅	v4	v ₃	Ι

Table 97: HSV/HSL formats

JPEG Compressed Formats

Those data formats consist of an ordered sequence of 8-bit bytes obtained from JPEG compression process. Additionally to the _JPEG postfix the format code is made of the following information.

- The number of bus samples per entropy encoded byte.
- The bus width.

For instance, for a JPEG baseline process and an 8-bit bus width the format will be named $MEDIA_BUS_FMT_JPEG_1X8$.

The following table lists existing JPEG compressed formats.

	J	
Identifier	Code	Remarks
MEDIA_BUS_FMT_JPEG_1X8		Besides of its usage for the parallel bus this for- mat is recommended for transmission of JPEG data over MIPI CSI bus using the User Defined 8-bit Data types.

Table 98: JPEG Formats

Vendor and Device Specific Formats

This section lists complex data formats that are either vendor or device specific.

The following table lists the existing vendor and device specific formats.

	ovice op	001110 101111405
Identifier	Code	Comments
MEDIA_BUS_FMT_S5C_UYVY_JPEG_1X8		Interleaved raw UYVY and JPEG image format with embedded meta-data used by Samsung S3C73MX camera sensors.

Metadata Interface

Metadata refers to any non-image data that supplements video frames with additional information. This may include statistics computed over the image, frame capture parameters supplied by the image source or device specific parameters for specifying how the device processes images. This interface is intended for transfer of metadata between the userspace and the hardware and control of that operation.

The metadata interface is implemented on video device nodes. The device can be dedicated to metadata or can support both video and metadata as specified in its reported capabilities.

Querying Capabilities

Device nodes supporting the metadata capture interface set the V4L2_CAP_META_CAPTURE flag in the device_caps field of the v4l2_capability structure returned by the VIDIOC_QUERYCAP() ioctl. That flag means the device can capture metadata to memory. Similarly, device nodes supporting metadata output interface set the V4L2_CAP_META_OUTPUT flag in the device_caps field of v4l2_capability structure. That flag means the device can read metadata from memory.

At least one of the read/write or streaming I/O methods must be supported.

Data Format Negotiation

The metadata device uses the Data Formats ioctls to select the capture format. The metadata buffer content format is bound to that selected format. In addition to the basic Data Formats ioctls, the VIDIOC_ENUM_FMT() ioctl must be supported as well.

To use the Data Formats ioctls applications set the type field of the v4l2_format structure to V4L2_BUF_TYPE_META_CAPTURE or to V4L2_BUF_TYPE_META_OUTPUT and use the v4l2_meta_format meta member of the fmt union as needed per the desired operation. Both drivers and applications must set the remainder of the v4l2_format structure to 0.

v4l2_meta_format

Table 100: struct v4l2_meta_format

_u32	dataformat	The data format, set by the application. This is a little endian four char-
		acter code. V4L2 defines metadata formats in Metadata Formats.
_u32	buffersize	Maximum buffer size in bytes required for data. The value is set by the
		driver.

7.2.5 Libv4l Userspace Library

Introduction

libv4l is a collection of libraries which adds a thin abstraction layer on top of video4linux2 devices. The purpose of this (thin) layer is to make it easy for application writers to support a wide variety of devices without having to write separate code for different devices in the same class.

An example of using libv4l is provided by v4l2grab.

libv4l consists of 3 different libraries:

libv4lconvert

libv4lconvert is a library that converts several different pixelformats found in V4L2 drivers into a few common RGB and YUY formats.

It currently accepts the following V4L2 driver formats: V4L2 PIX FMT BGR24, V4L2 PIX FMT HM12, V4L2 PIX FMT JPEG, V4L2 PIX FMT MJPEG, V4L2 PIX FMT MR97310A, V4L2 PIX FMT OV511, V4L2 PIX FMT OV518, V4L2 PIX FMT PIPG. V4L2 PIX FMT PAC207. V4L2 PIX FMT RGB24. V4L2 PIX FMT SBGGR8, V4L2 PIX FMT SGBRG8, V4L2 PIX FMT SGRBG8, V4L2 PIX FMT SN9C10X, V4L2 PIX FMT SN9C20X I420, V4L2 PIX FMT SPCA501, V4L2 PIX FMT SPCA505, V4L2 PIX FMT SPCA508, V4L2 PIX FMT SPCA561, V4L2 PIX FMT SQ905C, V4L2 PIX FMT SRGGB8, V4L2 PIX FMT UYVY, V4L2 PIX FMT YUV420, V4L2 PIX FMT YUYV, V4L2 PIX FMT YVU420, and V4L2 PIX FMT YVYU.

Later on libv4lconvert was expanded to also be able to do various video processing functions to improve webcam video quality. The video processing is split in to 2 parts: libv4lconvert/control and libv4lconvert/processing.

The control part is used to offer video controls which can be used to control the video processing functions made available by libv4lconvert/processing. These controls are stored application wide (until reboot) by using a persistent shared memory object.

libv4lconvert/processing offers the actual video processing functionality.

libv4l1

This library offers functions that can be used to quickly make v4l1 applications work with v4l2 devices. These functions work exactly like the normal open/close/etc, except that libv4l1 does full emulation of the v4l1 api on top of v4l2 drivers, in case of v4l1 drivers it will just pass calls through.

Since those functions are emulations of the old V4L1 API, it shouldn't be used for new applications.

libv4l2

This library should be used for all modern V4L2 applications.

It provides handles to call V4L2 open/ioctl/close/poll methods. Instead of just providing the raw output of the device, it enhances the calls in the sense that it will use libv4lconvert to provide more video formats and to enhance the image quality.

In most cases, libv4l2 just passes the calls directly through to the v4l2 driver, intercepting the calls to VIDIOC_TRY_FMT, VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS in order to emulate the formats V4L2_PIX_FMT_BGR24, V4L2_PIX_FMT_RGB24, V4L2_PIX_FMT_YUV420, and V4L2_PIX_FMT_YUV420, if they aren' t available in the driver. VIDIOC_ENUM_FMT keeps enumerating the hardware supported formats, plus the emulated formats offered by libv4l at the end.

Libv4l device control functions

The common file operation methods are provided by libv4l.

Those functions operate just like the gcc function dup() and V4L2 functions open(), close(), ioctl(), read(), mmap() and munmap():

```
int v4l2_open(const char *file, int oflag, ...)
        operates like the open() function.
```

- int v4l2_close(int fd)
 operates like the close() function.
- int v4l2_dup(int fd)

operates like the libc dup() function, duplicating a file handler.

```
int v4l2_ioctl(int fd, unsigned long int request, ...)
        operates like the ioctl() function.
```

- int v4l2_read(int fd, void* buffer, size_t n)
 operates like the read() function.
- int v4l2_munmap(void *_start, size_t length);
 operates like the munmap() function.

Those functions provide additional control:

```
int v4l2_fd_open(int fd, int v4l2_flags)
```

opens an already opened fd for further use through v4l2lib and possibly modify libv4l2's default behavior through the v4l2_flags argument. Currently, v4l2_flags can be V4L2_DISABLE_CONVERSION, to disable format conversion.

int v4l2_set_control(int fd, int cid, int value)

This function takes a value of 0 - 65535, and then scales that range to the actual range of the given v4l control id, and then if the cid exists and is not locked sets the cid to the scaled value.

int v4l2_get_control(int fd, int cid)

This function returns a value of 0 - 65535, scaled to from the actual range of the given v4l control id. when the cid does not exist, could not be accessed for some reason, or some error occurred 0 is returned.

v4l1compat.so wrapper library

This library intercepts calls to open(), close(), ioctl(), mmap() and munmap() operations and redirects them to the libv4l counterparts, by using LD_PRELOAD=/usr/lib/v4l1compat.so. It also emulates V4L1 calls via V4L2 API.

It allows usage of binary legacy applications that still don't use libv4l.

7.2.6 Changes

The following chapters document the evolution of the V4L2 API, errata or extensions. They are also intended to help application and driver writers to port or update their code.

Differences between V4L and V4L2

The Video For Linux API was first introduced in Linux 2.1 to unify and replace various TV and radio device related interfaces, developed independently by driver writers in prior years. Starting with Linux 2.5 the much improved V4L2 API replaces the V4L API. The support for the old V4L calls were removed from Kernel, but the library Libv4l Userspace Library supports the conversion of a V4L API system call into a V4L2 one.

Opening and Closing Devices

For compatibility reasons the character device file names recommended for V4L2 video capture, overlay, radio and raw vbi capture devices did not change from those used by V4L. They are listed in Interfaces and below in V4L Device Types, Names and Numbers.

The teletext devices (minor range 192-223) have been removed in V4L2 and no longer exist. There is no hardware available anymore for handling pure teletext. Instead raw or sliced VBI is used.

The V4L videodev module automatically assigns minor numbers to drivers in load order, depending on the registered device type. We recommend that V4L2 drivers by default register devices with the same numbers, but the system administrator can assign arbitrary minor numbers using driver module options. The major device number remains 81.

Device Type	File Name	Minor Num-
		bers
Video capture and overlay	<pre>/dev/video and /dev/bttv0¹, /dev/video0 to /dev/video63</pre>	0-63
Radio receiver	/dev/radio ² , /dev/radio0 to /dev/radio63	64-127
Raw VBI capture	/dev/vbi,/dev/vbi0 to/dev/vbi31	224-255

Table 101: V4L Device Types, Names and Numbers

V4L prohibits (or used to prohibit) multiple opens of a device file. V4L2 drivers may support multiple opens, see Opening and Closing Devices for details and consequences.

V4L drivers respond to V4L2 ioctls with an EINVAL error code.

Querying Capabilities

The V4L VIDIOCGCAP ioctl is equivalent to V4L2' s ioctl VIDIOC_QUERYCAP.

The name field in struct video_capability became card in struct v4l2_capability, type was replaced by capabilities. Note V4L2 does not distinguish between device types like this, better think of basic video input, video output and radio devices supporting a set of related functions like video capturing, video overlay and VBI capturing. See Opening and Closing Devices for an introduction.

<pre>struct video_capability</pre>	struct v4l2_capability	Purpose
type	capabilities flags	
VID_TYPE_CAPTURE	V4L2_CAP_VIDE0_CAPTURE	The video capture interface
		is supported.

Continued on next page

¹ According to Documentation/admin-guide/devices.rst these should be symbolic links to /dev/ video0. Note the original bttv interface is not compatible with V4L or V4L2.

² According to Documentation/admin-guide/devices.rst a symbolic link to /dev/radio0.

Tab	le 102 – continued from previous p	bage
<pre>struct video_capability</pre>	struct v4l2_capability	Purpose
type	capabilities flags	
VID_TYPE_TUNER	V4L2_CAP_TUNER	The device has a tuner or
		modulator.
VID_TYPE_TELETEXT	V4L2_CAP_VBI_CAPTURE	The raw VBI capture inter-
		face is supported.
VID_TYPE_OVERLAY	V4L2_CAP_VIDE0_0VERLAY	The video overlay interface
		is supported.
VID_TYPE_CHROMAKEY	V4L2_FBUF_CAP_CHROMAKEY	Whether chromakey overlay
	in field capability of struct	is supported. For more
	v4l2_framebuffer	information on overlay see
		Video Overlay Interface.
VID_TYPE_CLIPPING	V4L2_FBUF_CAP_LIST_CLIPPING	Whether clipping the over-
	and V4L2_FBUF_CAP_BITMAP_CLIF	PaiNG image is supported, see
	in field capability of struct	Video Overlay Interface.
	v4l2_framebuffer	
VID_TYPE_FRAMERAM	V4L2_FBUF_CAP_EXTERNOVERLAY	Whether overlay overwrites
	not set in field capability of	frame buffer memory, see
	<pre>struct v4l2_framebuffer</pre>	Video Overlay Interface.
VID_TYPE_SCALES	-	This flag indicates if the
		hardware can scale im-
		ages. The V4L2 API implies
		the scale factor by setting
		the cropping dimensions
		and image size with the
		VIDIOC_S_CROP and VID-
		IOC_S_FMT ioctl, respec-
		tively. The driver returns
		the closest sizes possible.
		For more information on
		cropping and scaling see
		Image Cropping, Insertion
		and Scaling - the CROP API.
VID_TYPE_MONOCHROME	-	Applications can enumerate
		the supported image for-
		mats with the ioctl VID-
		IOC_ENUM_FMT ioctl to de-
		termine if the device sup-
		ports grey scale capturing
		only. For more information
		on image formats see Image
		Formats.
		Continued on post page

ntinued from provid T.I.I. 100

Continued on next page

100	$C_{102} = Continu$	ieu nom previous p	lage
<pre>struct video_capability</pre>		v4l2_capability	Purpose
type	capabilities	flags	
VID_TYPE_SUBCAPTURE	-		Applications can call the VIDIOC_G_CROP ioctl to de- termine if the device sup- ports capturing a subsection of the full picture ("crop- ping" in V4L2). If not, the ioctl returns the EINVAL er- ror code. For more informa- tion on cropping and scaling see Image Cropping, Inser- tion and Scaling - the CROP API.
VID_TYPE_MPEG_DECODER	-		Applications can enumerate the supported image for- mats with the ioctl VID- IOC_ENUM_FMT ioctl to de- termine if the device sup- ports MPEG streams.
VID_TYPE_MPEG_ENCODER	-		See above.
VID_TYPE_MJPEG_DECODER	-		See above.
VID_TYPE_MJPEG_ENCODER	-		See above.

Table	102	- continued	from	previous page	
i a bi c	TOT	continueu		previous page	

The audios field was replaced by capabilities flag V4L2_CAP_AUDIO, indicating if the device has any audio inputs or outputs. To determine their number applications can enumerate audio inputs with the VIDIOC_G_AUDIO ioctl. The audio ioctls are described in Audio Inputs and Outputs.

The maxwidth, maxheight, minwidth and minheight fields were removed. Calling the VIDIOC_S_FMT or VIDIOC_TRY_FMT ioctl with the desired dimensions returns the closest size possible, taking into account the current video standard, cropping and scaling limitations.

Video Sources

V4L provides the VIDIOCGCHAN and VIDIOCSCHAN ioctl using struct video_channel to enumerate the video inputs of a V4L device. The equivalent V4L2 ioctls are ioctl VIDIOC_ENUMINPUT, VIDIOC_G_INPUT and VIDIOC_S_INPUT using struct v4l2_input as discussed in Video Inputs and Outputs.

The channel field counting inputs was renamed to index, the video input types were renamed as follows:

<pre>struct video_channel type</pre>	<pre>struct v4l2_input type</pre>
VIDE0_TYPE_TV	V4L2_INPUT_TYPE_TUNER
VIDE0_TYPE_CAMERA	V4L2_INPUT_TYPE_CAMERA

Unlike the tuners field expressing the number of tuners of this input, V4L2 assumes each video input is connected to at most one tuner. However a tuner can

have more than one input, i. e. RF connectors, and a device can have multiple tuners. The index number of the tuner associated with the input, if any, is stored in field tuner of struct v4l2_input. Enumeration of tuners is discussed in Tuners and Modulators.

The redundant VIDEO_VC_TUNER flag was dropped. Video inputs associated with a tuner are of type V4L2_INPUT_TYPE_TUNER. The VIDEO_VC_AUDIO flag was replaced by the audioset field. V4L2 considers devices with up to 32 audio inputs. Each set bit in the audioset field represents one audio input this video input combines with. For information about audio inputs and how to switch between them see Audio Inputs and Outputs.

The norm field describing the supported video standards was replaced by std. The V4L specification mentions a flag VIDEO_VC_NORM indicating whether the standard can be changed. This flag was a later addition together with the norm field and has been removed in the meantime. V4L2 has a similar, albeit more comprehensive approach to video standards, see Video Standards for more information.

Tuning

The V4L VIDIOCGTUNER and VIDIOCSTUNER ioctl and struct video_tuner can be used to enumerate the tuners of a V4L TV or radio device. The equivalent V4L2 ioctls are VIDIOC_G_TUNER and VIDIOC_S_TUNER using struct v4l2_tuner. Tuners are covered in Tuners and Modulators.

The tuner field counting tuners was renamed to index. The fields name, rangelow and rangehigh remained unchanged.

The VIDEO_TUNER_PAL, VIDEO_TUNER_NTSC and VIDEO_TUNER_SECAM flags indicating the supported video standards were dropped. This information is now contained in the associated struct v4l2_input. No replacement exists for the VIDEO_TUNER_NORM flag indicating whether the video standard can be switched. The mode field to select a different video standard was replaced by a whole new set of ioctls and structures described in Video Standards. Due to its ubiquity it should be mentioned the BTTV driver supports several standards in addition to the regular VIDEO_MODE_PAL (0), VIDEO_MODE_NTSC, VIDEO_MODE_SECAM and VIDEO_MODE_AUTO (3). Namely N/PAL Argentina, M/PAL, N/PAL, and NTSC Japan with numbers 3-6 (sic).

The VIDEO_TUNER_STEREO_ON flag indicating stereo reception became V4L2_TUNER_SUB_STEREO in field rxsubchans. This field also permits the detection of monaural and bilingual audio, see the definition of struct v4l2_tuner for details. Presently no replacement exists for the VIDEO_TUNER_RDS_ON and VIDEO_TUNER_MBS_ON flags.

The VIDEO_TUNER_LOW flag was renamed to V4L2_TUNER_CAP_LOW in the struct v4l2_tuner capability field.

The VIDIOCGFREQ and VIDIOCSFREQ ioctl to change the tuner frequency where renamed to VIDIOC_G_FREQUENCY and VIDIOC_S_FREQUENCY. They take a pointer to a struct v4l2_frequency instead of an unsigned long integer.

Image Properties

V4L2 has no equivalent of the VIDIOCGPICT and VIDIOCSPICT ioctl and struct video_picture. The following fields where replaced by V4L2 controls accessible with the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU, VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls:

struct video_picture	
brightness	V4L2_CID_BRIGHTNESS
	V4L2_CID_HUE
colour	V4L2_CID_SATURATION
contrast	V4L2_CID_CONTRAST
whiteness	V4L2_CID_WHITENESS

The V4L picture controls are assumed to range from 0 to 65535 with no particular reset value. The V4L2 API permits arbitrary limits and defaults which can be queried with the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU ioctl. For general information about controls see User Controls.

The depth (average number of bits per pixel) of a video image is implied by the selected image format. V4L2 does not explicitly provide such information assuming applications recognizing the format are aware of the image depth and others need not know. The palette field moved into the struct v4l2_pix_format:

·	<pre>struct v4l2_pix_format pixfmt</pre>
VIDE0_PALETTE_GREY	V4L2_PIX_FMT_GREY
VIDE0_PALETTE_HI240	V4L2_PIX_FMT_HI240 ³
VIDE0_PALETTE_RGB565	V4L2_PIX_FMT_RGB565
VIDE0_PALETTE_RGB555	V4L2_PIX_FMT_RGB555
VIDE0_PALETTE_RGB24	V4L2_PIX_FMT_BGR24
VIDE0_PALETTE_RGB32	V4L2_PIX_FMT_BGR32 ⁴
VIDE0_PALETTE_YUV422	V4L2_PIX_FMT_YUYV
VIDE0_PALETTE_YUYV ⁵	V4L2_PIX_FMT_YUYV
VIDE0_PALETTE_UYVY	V4L2_PIX_FMT_UYVY
VIDE0_PALETTE_YUV420	None
VIDE0_PALETTE_YUV411	V4L2_PIX_FMT_Y41P ⁶
VIDE0_PALETTE_RAW	None ⁷
VIDE0_PALETTE_YUV422P	V4L2_PIX_FMT_YUV422P
VIDE0_PALETTE_YUV411P	V4L2_PIX_FMT_YUV411P ⁸
VIDE0_PALETTE_YUV420P	V4L2_PIX_FMT_YVU420
VIDE0_PALETTE_YUV410P	V4L2_PIX_FMT_YVU410

 $^{^{3}}$ This is a custom format used by the BTTV driver, not one of the V4L2 standard formats.

⁴ Presumably all V4L RGB formats are little-endian, although some drivers might interpret them according to machine endianness. V4L2 defines little-endian, big-endian and red/blue swapped variants. For details see RGB Formats.

⁵ VIDE0_PALETTE_YUV422 and VIDE0_PALETTE_YUYV are the same formats. Some V4L drivers re-

V4L2 image formats are defined in Image Formats. The image format can be selected with the VIDIOC_S_FMT ioctl.

Audio

The VIDIOCGAUDIO and VIDIOCSAUDIO ioctl and struct video_audio are used to enumerate the audio inputs of a V4L device. The equivalent V4L2 ioctls are VID-IOC_G_AUDIO and VIDIOC_S_AUDIO using struct v4l2_audio as discussed in Audio Inputs and Outputs.

The audio "channel number" field counting audio inputs was renamed to index.

On VIDIOCSAUDIO the mode field selects one of the VIDEO_SOUND_MONO, VIDEO_SOUND_STEREO, VIDEO_SOUND_LANG1 or VIDEO_SOUND_LANG2 audio demodulation modes. When the current audio standard is BTSC VIDEO_SOUND_LANG2 refers to SAP and VIDEO_SOUND_LANG1 is meaningless. Also undocumented in the V4L specification, there is no way to query the selected mode. On VIDIOCGAUDIO the driver returns the actually received audio programmes in this field. In the V4L2 API this information is stored in the struct v4l2_tuner rxsubchans and audmode fields, respectively. See Tuners and Modulators for more information on tuners. Related to audio modes struct v4l2_audio also reports if this is a mono or stereo input, regardless if the source is a tuner.

The following fields where replaced by V4L2 controls accessible with the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU, VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls:

struct video_audio	V4L2 Control ID
volume	V4L2_CID_AUDI0_V0LUME
bass	V4L2_CID_AUDI0_BASS
treble	V4L2_CID_AUDI0_TREBLE
balance	V4L2_CID_AUDI0_BALANCE

To determine which of these controls are supported by a driver V4L provides the flags VIDEO_AUDIO_VOLUME, VIDEO_AUDIO_BASS, VIDEO_AUDIO_TREBLE and VIDEO_AUDIO_BALANCE. In the V4L2 API the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU ioctl reports if the respective control is supported. Accordingly the VIDEO_AUDIO_MUTABLE and VIDEO_AUDIO_MUTE flags where replaced by the boolean V4L2_CID_AUDIO_MUTE control.

All V4L2 controls have a step attribute replacing the struct video_audio step field. The V4L audio controls are assumed to range from 0 to 65535 with no particular reset value. The V4L2 API permits arbitrary limits and defaults which can be queried with the ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU ioctl. For general information about controls see User Controls.

spond to one, some to the other.

⁶ Not to be confused with V4L2_PIX_FMT_YUV411P, which is a planar format.

⁷ V4L explains this as: "RAW capture (BT848)"

⁸ Not to be confused with V4L2_PIX_FMT_Y41P, which is a packed format.

Frame Buffer Overlay

The V4L2 ioctls equivalent to VIDIOCGFBUF and VIDIOCSFBUF are VIDIOC_G_FBUF and VIDIOC_S_FBUF. The base field of struct video_buffer remained unchanged, except V4L2 defines a flag to indicate non-destructive overlays instead of a NULL pointer. All other fields moved into the struct v4l2_pix_format fmt substructure of struct v4l2_framebuffer. The depth field was replaced by pixelformat. See RGB Formats for a list of RGB formats and their respective color depths.

Instead of the special ioctls VIDIOCGWIN and VIDIOCSWIN V4L2 uses the generalpurpose data format negotiation ioctls VIDIOC_G_FMT and VIDIOC_S_FMT. They take a pointer to a struct v4l2_format as argument. Here the win member of the fmt union is used, a struct v4l2_window.

The x, y, width and height fields of struct video_window moved into struct v4l2_rect substructure w of struct v4l2_window. The chromakey, clips, and clipcount fields remained unchanged. Struct video_clip was renamed to struct v4l2_clip, also containing a struct v4l2_rect, but the semantics are still the same.

The VIDEO_WINDOW_INTERLACE flag was dropped. Instead applications must set the field field to V4L2_FIELD_ANY or V4L2_FIELD_INTERLACED. The VIDEO_WINDOW_CHROMAKEY flag moved into struct v4l2_framebuffer, under the new name V4L2_FBUF_FLAG_CHROMAKEY.

In V4L, storing a bitmap pointer in clips and setting clipcount to VIDEO_CLIP_BITMAP (-1) requests bitmap clipping, using a fixed size bitmap of 1024×625 bits. Struct v4l2_window has a separate bitmap pointer field for this purpose and the bitmap size is determined by w.width and w.height.

The VIDIOCCAPTURE ioctl to enable or disable overlay was renamed to ioctl VID-IOC_OVERLAY.

Cropping

To capture only a subsection of the full picture V4L defines the VIDIOCGCAPTURE and VIDIOCSCAPTURE ioctls using struct video_capture. The equivalent V4L2 ioctls are VIDIOC_G_CROP and VIDIOC_S_CROP using struct v4l2_crop, and the related ioctl VIDIOC_CROPCAP ioctl. This is a rather complex matter, see Image Cropping, Insertion and Scaling - the CROP API for details.

The x, y, width and height fields moved into struct v4l2_rect substructure c of struct v4l2_crop. The decimation field was dropped. In the V4L2 API the scaling factor is implied by the size of the cropping rectangle and the size of the captured or overlaid image.

The VIDEO_CAPTURE_ODD and VIDEO_CAPTURE_EVEN flags to capture only the odd or even field, respectively, were replaced by V4L2_FIELD_TOP and V4L2_FIELD_BOTTOM in the field named field of struct v4l2_pix_format and struct v4l2_window. These structures are used to select a capture or overlay format with the VIDIOC_S_FMT ioctl.

Reading Images, Memory Mapping

Capturing using the read method

There is no essential difference between reading images from a V4L or V4L2 device using the read() function, however V4L2 drivers are not required to support this I/O method. Applications can determine if the function is available with the ioctl VIDIOC_QUERYCAP ioctl. All V4L2 devices exchanging data with applications must support the select() and poll() functions.

To select an image format and size, V4L provides the VIDIOCSPICT and VIDIOCSWIN ioctls. V4L2 uses the general-purpose data format negotiation ioctls VID-IOC_G_FMT and VIDIOC_S_FMT. They take a pointer to a struct v4l2_format as argument, here the struct v4l2_pix_format named pix of its fmt union is used.

For more information about the V4L2 read interface see Read/Write.

Capturing using memory mapping

Applications can read from V4L devices by mapping buffers in device memory, or more often just buffers allocated in DMA-able system memory, into their address space. This avoids the data copying overhead of the read method. V4L2 supports memory mapping as well, with a few differences.

V4L	V4L2
	The image format must be selected before
	buffers are allocated, with the VIDIOC S FMT
	ioctl. When no format is selected the driver may
	use the last, possibly by another application re-
	quested format.
Applications cannot change the	The ioctl VIDIOC REQBUFS ioctl allocates the
	desired number of buffers, this is a required
	step in the initialization sequence.
a module option to change the	
number when the driver module	
is loaded.	
	Buffers are individually mapped. The offset and
	size of each buffer can be determined with the
The VIDIOCGMBUF ioctl is avail-	
able to query the number of	
buffers, the offset of each buffer	
from the start of the virtual file,	
and the overall amount of mem-	
ory used, which can be used as	
arguments for the mmap() func-	
tion.	
	Drivers maintain an incoming and outgoing
	queue. ioctl VIDIOC QBUF, VIDIOC DQBUF
	enqueues any empty buffer into the incom-
	ing queue. Filled buffers are dequeued from
	the outgoing queue with the VIDIOC DQBUF
	ioctl. To wait until filled buffers become avail-
	able this function, select() or poll() can be
-	used. The ioctl VIDIOC STREAMON, VID-
	IOC_STREAMOFF ioctl must be called once af-
	ter enqueuing one or more buffers to start cap-
	turing. Its counterpart VIDIOC STREAMOFF
capture requests.	stops capturing and dequeues all buffers from
	both queues. Applications can query the
	signal status, if known, with the ioctl VID-
buffer has been filled.	IOC ENUMINPUT ioctl.

For a more in-depth discussion of memory mapping and examples, see Streaming I/O (Memory Mapping).

Reading Raw VBI Data

Originally the V4L API did not specify a raw VBI capture interface, only the device file /dev/vbi was reserved for this purpose. The only driver supporting this interface was the BTTV driver, de-facto defining the V4L VBI interface. Reading from the device yields a raw VBI image with the following parameters:

struct	V4L, BTTV driver	
v4l2_vbi_format		
sampling_rate	28636363 Hz NTSC (or any other 525-line standard); 35468950	
	Hz PAL and SECAM (625-line standards)	
offset	?	
sam-	2048	
ples_per_line		
sample_format	V4L2_PIX_FMT_GREY. The last four bytes (a machine endianness	
	integer) contain a frame counter.	
start[]	10, 273 NTSC; 22, 335 PAL and SECAM	
count[]	16, 16 ⁹	
flags	0	

Undocumented in the V4L specification, in Linux 2.3 the VIDIOCGVBIFMT and VIDIOCSVBIFMT ioctls using struct vbi_format were added to determine the VBI image parameters. These ioctls are only partially compatible with the V4L2 VBI interface specified in Raw VBI Data Interface.

An offset field does not exist, sample_format is supposed to be VIDEO_PALETTE_RAW, equivalent to V4L2_PIX_FMT_GREY. The remaining fields are probably equivalent to struct v4l2_vbi_format.

Apparently only the Zoran (ZR 36120) driver implements these ioctls. The semantics differ from those specified for V4L2 in two ways. The parameters are reset on open() and VIDIOCSVBIFMT always returns an EINVAL error code if the parameters are invalid.

Miscellaneous

V4L2 has no equivalent of the VIDIOCGUNIT ioctl. Applications can find the VBI device associated with a video capture device (or vice versa) by reopening the device and requesting VBI data. For details see Opening and Closing Devices.

No replacement exists for VIDIOCKEY, and the V4L functions for microcode programming. A new interface for MPEG compression and playback devices is documented in Extended Controls API.

 $^{^9}$ Old driver versions used different values, eventually the custom <code>BTTV_VBISIZE</code> ioctl was added to query the correct values.

Changes of the V4L2 API

Soon after the V4L API was added to the kernel it was criticised as too inflexible. In August 1998 Bill Dirks proposed a number of improvements and began to work on documentation, example drivers and applications. With the help of other volunteers this eventually became the V4L2 API, not just an extension but a replacement for the V4L API. However it took another four years and two stable kernel releases until the new API was finally accepted for inclusion into the kernel in its present form.

Early Versions

1998-08-20: First version.

1998-08-27: The select() function was introduced.

1998-09-10: New video standard interface.

1998-09-18: The VIDIOC_NONCAP ioctl was replaced by the otherwise meaningless O_TRUNC open() flag, and the aliases O_NONCAP and O_NOIO were defined. Applications can set this flag if they intend to access controls only, as opposed to capture applications which need exclusive access. The VIDEO_STD_XXX identifiers are now ordinals instead of flags, and the video_std_construct() helper function takes id and transmission arguments.

1998-09-28: Revamped video standard. Made video controls individually enumerable.

1998-10-02: The id field was removed from struct struct video_standard and the color subcarrier fields were renamed. The ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD ioctl was renamed to ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD, VIDIOC_G_INPUT to ioctl VIDIOC_ENUMINPUT. A first draft of the Codec API was released.

1998-11-08: Many minor changes. Most symbols have been renamed. Some material changes to struct v4l2_capability.

1998-11-12: The read/write directon of some ioctls was misdefined.

1998-11-14: V4L2_PIX_FMT_RGB24 changed to V4L2_PIX_FMT_BGR24, and V4L2_PIX_FMT_RGB32 changed to V4L2_PIX_FMT_BGR32. Audio controls are now accessible with the VIDIOC_G_CTRL and VIDIOC_S_CTRL ioctls under names starting with V4L2_CID_AUDI0. The V4L2_MAJOR define was removed from videodev.h since it was only used once in the videodev kernel module. The YUV422 and YUV411 planar image formats were added.

1998-11-28: A few ioctl symbols changed. Interfaces for codecs and video output devices were added.

1999-01-14: A raw VBI capture interface was added.

1999-01-19: The VIDIOC_NEXTBUF ioctl was removed.

V4L2 Version 0.16 1999-01-31

1999-01-27: There is now one QBUF ioctl, VIDIOC_QWBUF and VIDIOC_QRBUF are gone. VIDIOC_QBUF takes a v4l2_buffer as a parameter. Added digital zoom (cropping) controls.

V4L2 Version 0.18 1999-03-16

Added a v4l to V4L2 ioctl compatibility layer to videodev.c. Driver writers, this changes how you implement your ioctl handler. See the Driver Writer's Guide. Added some more control id codes.

V4L2 Version 0.19 1999-06-05

1999-03-18: Fill in the category and catname fields of v4l2_queryctrl objects before passing them to the driver. Required a minor change to the VID-IOC_QUERYCTRL handlers in the sample drivers.

1999-03-31: Better compatibility for v4l memory capture ioctls. Requires changes to drivers to fully support new compatibility features, see Driver Writer's Guide and v4l2cap.c. Added new control IDs: V4L2_CID_HFLIP, _VFLIP. Changed V4L2_PIX_FMT_YUV422P to _YUV422P, and _YUV411P to _YUV411P.

1999-04-04: Added a few more control IDs.

1999-04-07: Added the button control type.

1999-05-02: Fixed a typo in videodev.h, and added the V4L2_CTRL_FLAG_GRAYED (later V4L2_CTRL_FLAG_GRABBED) flag.

1999-05-20: Definition of VIDIOC_G_CTRL was wrong causing a malfunction of this ioctl.

1999-06-05: Changed the value of V4L2 CID WHITENESS.

V4L2 Version 0.20 (1999-09-10)

Version 0.20 introduced a number of changes which were not backward compatible with 0.19 and earlier versions. Purpose of these changes was to simplify the API, while making it more extensible and following common Linux driver API conventions.

- 1. Some typos in V4L2_FMT_FLAG symbols were fixed. struct v4l2_clip was changed for compatibility with v4l. (1999-08-30)
- 2. V4L2_TUNER_SUB_LANG1 was added. (1999-09-05)
- 3. All ioctl() commands that used an integer argument now take a pointer to an integer. Where it makes sense, ioctls will return the actual new value in the integer pointed to by the argument, a common convention in the V4L2 API. The affected ioctls are: VIDIOC_PREVIEW, VIDIOC_STREAMON, VID-IOC_STREAMOFF, VIDIOC_S_FREQ, VIDIOC_S_INPUT, VIDIOC_S_OUTPUT, VIDIOC_S_EFFECT. For example

err = ioctl (fd, VIDIOC_XXX, V4L2_XXX);

becomes

int a = V4L2_XXX; err = ioctl(fd, VIDIOC_XXX, &a);

4. All the different get- and set-format commands were swept into one VID-IOC_G_FMT and VIDIOC_S_FMT ioctl taking a union and a type field selecting the union member as parameter. Purpose is to simplify the API by eliminating several ioctls and to allow new and driver private data streams without adding new ioctls.

This change obsoletes the following ioctls: VIDIOC_S_INFMT, VIDIOC_G_INFMT, VIDIOC_S_OUTFMT, VIDIOC_G_OUTFMT, VIDIOC_S_VBIFMT and VIDIOC_G_VBIFMT. The image format structure struct v4l2_format was renamed to struct v4l2_pix_format, while struct v4l2_format is now the envelopping structure for all format negotiations.

5. Similar to the changes above, the VIDIOC_G_PARM and VIDIOC_S_PARM ioctls were merged with VIDIOC_G_OUTPARM and VIDIOC_S_OUTPARM. A type field in the new struct v4l2_streamparm selects the respective union member.

This change obsoletes the VIDIOC_G_OUTPARM and VIDIOC_S_OUTPARM ioctls.

6. Control enumeration was simplified, and two new control flags were introduced and one dropped. The catname field was replaced by a group field.

Drivers can now flag unsupported and temporarily unavailable controls with V4L2_CTRL_FLAG_DISABLED and V4L2_CTRL_FLAG_GRABBED respectively. The group name indicates a possibly narrower classification than the category. In other words, there may be multiple groups within a category. Controls within a group would typically be drawn within a group box. Controls in different categories might have a greater separation, or may even appear in separate windows.

- 7. The struct v4l2 buffer timestamp was changed to a 64 bit integer, containing the sampling or output time of the frame in nanoseconds. Additionally timestamps will be in absolute system time, not starting from zero at the beginning of a stream. The data type name for timestamps is stamp t, defined as a signed 64-bit integer. Output devices should not send a buffer out until the time in the timestamp field has arrived. I would like to follow SGI' s lead, and adopt a multimedia timestamping system like their UST (Unadjusted System Time). See http://web.archive.org/web/*/http://reality.sgi.com /cpirazzi engr/lg/time/intro.html. UST uses timestamps that are 64-bit signed integers (not struct timeval's) and given in nanosecond units. The UST clock starts at zero when the system is booted and runs continuously and uniformly. It takes a little over 292 years for UST to overflow. There is no way to set the UST clock. The regular Linux time-of-day clock can be changed periodically, which would cause errors if it were being used for timestamping a multimedia stream. A real UST style clock will require some support in the kernel that is not there yet. But in anticipation, I will change the timestamp field to a 64-bit integer, and I will change the v4l2 masterclock gettime() function (used only by drivers) to return a 64-bit integer.
- 8. A sequence field was added to struct v4l2_buffer. The sequence field counts

captured frames, it is ignored by output devices. When a capture driver drops a frame, the sequence number of that frame is skipped.

V4L2 Version 0.20 incremental changes

1999-12-23: In struct v4l2_vbi_format the reserved1 field became offset. Previously drivers were required to clear the reserved1 field.

2000-01-13: The V4L2_FMT_FLAG_NOT_INTERLACED flag was added.

2000-07-31: The linux/poll.h header is now included by videodev.h for compatibility with the original videodev.h file.

2000-11-20: V4L2_TYPE_VBI_OUTPUT and V4L2_PIX_FMT_Y41P were added.

2000-11-25: V4L2_TYPE_VBI_INPUT was added.

2000-12-04: A couple typos in symbol names were fixed.

2001-01-18: To avoid namespace conflicts the fourcc macro defined in the videodev.h header file was renamed to v4l2_fourcc.

2001-01-25: A possible driver-level compatibility problem between the videodev. h file in Linux 2.4.0 and the videodev.h file included in the videodevX patch was fixed. Users of an earlier version of videodevX on Linux 2.4.0 should recompile their V4L and V4L2 drivers.

2001-01-26: A possible kernel-level incompatibility between the videodev.h file in the videodevX patch and the videodev.h file in Linux 2.2.x with devfs patches applied was fixed.

2001-03-02: Certain V4L ioctls which pass data in both direction although they are defined with read-only parameter, did not work correctly through the backward compatibility layer. [Solution?]

2001-04-13: Big endian 16-bit RGB formats were added.

2001-09-17: New YUV formats and the VIDIOC_G_FREQUENCY and VID-IOC_S_FREQUENCY ioctls were added. (The old VIDIOC_G_FREQ and VIDIOC_S_FREQ ioctls did not take multiple tuners into account.)

2000-09-18: V4L2_BUF_TYPE_VBI was added. This may break compatibility as the VIDIOC_G_FMT and VIDIOC_S_FMT ioctls may fail now if the struct struct v4l2_fmt type field does not contain V4L2_BUF_TYPE_VBI. In the documentation of the struct v4l2_vbi_format offset field the ambiguous phrase "rising edge" was changed to "leading edge".

V4L2 Version 0.20 2000-11-23

A number of changes were made to the raw VBI interface.

- Figures clarifying the line numbering scheme were added to the V4L2 API specification. The start[0] and start[1] fields no longer count line numbers beginning at zero. Rationale: a) The previous definition was unclear. b) The start[] values are ordinal numbers. c) There is no point in inventing a new line numbering scheme. We now use line number as defined by ITU-R, period. Compatibility: Add one to the start values. Applications depending on the previous semantics may not function correctly.
- 2. The restriction "count[0] > 0 and count[1] > 0" has been relaxed to "(count[0] + count[1]) > 0". Rationale: Drivers may allocate resources at scan line granularity and some data services are transmitted only on the first field. The comment that both count values will usually be equal is misleading and pointless and has been removed. This change breaks compatibility with earlier versions: Drivers may return EINVAL, applications may not function correctly.
- 3. Drivers are again permitted to return negative (unknown) start values as proposed earlier. Why this feature was dropped is unclear. This change may break compatibility with applications depending on the start values being positive. The use of EBUSY and EINVAL error codes with the VIDIOC_S_FMT ioctl was clarified. The EBUSY error code was finally documented, and the reserved2 field which was previously mentioned only in the videodev.h header file.
- 4. New buffer types V4L2_TYPE_VBI_INPUT and V4L2_TYPE_VBI_OUTPUT were added. The former is an alias for the old V4L2_TYPE_VBI, the latter was missing in the videodev.h file.

V4L2 Version 0.20 2002-07-25

Added sliced VBI interface proposal.

V4L2 in Linux 2.5.46, 2002-10

Around October-November 2002, prior to an announced feature freeze of Linux 2.5, the API was revised, drawing from experience with V4L2 0.20. This unnamed version was finally merged into Linux 2.5.46.

- 1. As specified in Related Devices, drivers must make related device functions available under all minor device numbers.
- 2. The open() function requires access mode 0_RDWR regardless of the device type. All V4L2 drivers exchanging data with applications must support the 0_NONBLOCK flag. The 0_NOIO flag, a V4L2 symbol which aliased the meaning-less 0_TRUNC to indicate accesses without data exchange (panel applications) was dropped. Drivers must stay in "panel mode" until the application attempts to initiate a data exchange, see Opening and Closing Devices.
- 3. The struct v4l2_capability changed dramatically. Note that also the size of the structure changed, which is encoded in the ioctl request code, thus

older V4L2 devices will respond with an EINVAL error code to the new ioctl VIDIOC_QUERYCAP ioctl.

There are new fields to identify the driver, a new RDS device function V4L2_CAP_RDS_CAPTURE, the V4L2_CAP_AUDIO flag indicates if the device has any audio connectors, another I/O capability V4L2_CAP_ASYNCIO can be flagged. In response to these changes the type field became a bit set and was merged into the flags field. V4L2_FLAG_TUNER was renamed to V4L2_CAP_TUNER, V4L2_CAP_VIDEO_OVERLAY replaced V4L2_FLAG_PREVIEW and V4L2_CAP_VBI_CAPTURE and V4L2_CAP_VBI_OUTPUT replaced V4L2_FLAG_DATA_SERVICE. V4L2_FLAG_READ and V4L2_FLAG_WRITE were merged into V4L2_CAP_READWRITE.

The redundant fields inputs, outputs and audios were removed. These properties can be determined as described in Video Inputs and Outputs and Audio Inputs and Outputs.

The somewhat volatile and therefore barely useful fields maxwidth, maxheight, minwidth, minheight, maxframerate were removed. This information is available as described in Data Formats and Video Standards.

V4L2_FLAG_SELECT was removed. We believe the select() function is important enough to require support of it in all V4L2 drivers exchanging data with applications. The redundant V4L2_FLAG_MONOCHROME flag was removed, this information is available as described in Data Formats.

4. In struct v4l2_input the assoc_audio field and the capability field and its only flag V4L2_INPUT_CAP_AUDIO was replaced by the new audioset field. Instead of linking one video input to one audio input this field reports all audio inputs this video input combines with.

New fields are tuner (reversing the former link from tuners to video inputs), std and status.

Accordingly struct v4l2_output lost its capability and assoc_audio fields. audioset, modulator and std where added instead.

5. The struct v4l2_audio field audio was renamed to index, for consistency with other structures. A new capability flag V4L2_AUDCAP_STEREO was added to indicated if the audio input in question supports stereo sound. V4L2_AUDCAP_EFFECTS and the corresponding V4L2_AUDMODE flags where removed. This can be easily implemented using controls. (However the same applies to AVL which is still there.)

Again for consistency the struct v4l2_audioout field audio was renamed to index.

6. The struct v4l2_tuner input field was replaced by an index field, permitting devices with multiple tuners. The link between video inputs and tuners is now reversed, inputs point to their tuner. The std substructure became a simple set (more about this below) and moved into struct v4l2_input. A type field was added.

Accordingly in struct v4l2_modulator the output was replaced by an index field.

In struct v4l2_frequency the port field was replaced by a tuner field containing the respective tuner or modulator index number. A tuner type field was added and the reserved field became larger for future extensions (satellite tuners in particular).

7. The idea of completely transparent video standards was dropped. Experience showed that applications must be able to work with video standards beyond presenting the user a menu. Instead of enumerating supported standards with an ioctl applications can now refer to standards by v4l2_std_id and symbols defined in the videodev2.h header file. For details see Video Standards. The VIDIOC_G_STD and VIDIOC_S_STD now take a pointer to this type as argument. ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD was added to autodetect the received standard, if the hardware has this capability. In struct v4l2_standard an index field was added for ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD. A v4l2_std_id field named id was added as machine readable identifier, also replacing the transmission field. The misleading framerate field was renamed to frameperiod. The now obsolete colorstandard information, originally needed to distguish between variations of standards, were removed.

Struct v4l2_enumstd ceased to be. ioctl VIDIOC_ENUMSTD, VID-IOC_SUBDEV_ENUMSTD now takes a pointer to a struct v4l2_standard directly. The information which standards are supported by a particular video input or output moved into struct v4l2_input and struct v4l2_output fields named std, respectively.

- 8. The struct v4l2_queryctrl fields category and group did not catch on and/or were not implemented as expected and therefore removed.
- 9. The VIDIOC_TRY_FMT ioctl was added to negotiate data formats as with VID-IOC_S_FMT, but without the overhead of programming the hardware and regardless of I/O in progress.

In struct v4l2_format the fmt union was extended to contain struct v4l2_window. All image format negotiations are now possible with VIDIOC_G_FMT, VIDIOC_S_FMT and VIDIOC_TRY_FMT; ioctl. The VIDIOC_G_WIN and VIDIOC_S_WIN ioctls to prepare for a video overlay were removed. The type field changed to type enum v4l2_buf_type and the buffer type names changed as follows.

Old defines	enum v4l2_buf_type
V4L2_BUF_TYPE_CAPTURE	V4L2_BUF_TYPE_VIDE0_CAPTURE
V4L2_BUF_TYPE_CODECIN	Omitted for now
V4L2_BUF_TYPE_CODECOUT	Omitted for now
V4L2_BUF_TYPE_EFFECTSIN	Omitted for now
V4L2_BUF_TYPE_EFFECTSIN2	Omitted for now
V4L2_BUF_TYPE_EFFECTSOUT	Omitted for now
V4L2_BUF_TYPE_VIDE00UT	V4L2_BUF_TYPE_VIDE0_OUTPUT
-	V4L2_BUF_TYPE_VIDE0_0VERLAY
-	V4L2_BUF_TYPE_VBI_CAPTURE
-	V4L2_BUF_TYPE_VBI_OUTPUT
-	V4L2_BUF_TYPE_SLICED_VBI_CAPTURE
-	V4L2_BUF_TYPE_SLICED_VBI_OUTPUT
V4L2_BUF_TYPE_PRIVATE_BAS	₩4L2_BUF_TYPE_PRIVATE (but this is depre-
	cated)

- 10. In struct v4l2_fmtdesc a enum v4l2_buf_type field named type was added as in struct v4l2_format. The VIDIOC_ENUM_FBUFFMT ioctl is no longer needed and was removed. These calls can be replaced by ioctl VID-IOC_ENUM_FMT with type V4L2_BUF_TYPE_VIDEO_OVERLAY.
- 11. In struct v4l2_pix_format the depth field was removed, assuming applications which recognize the format by its four-character-code already know the color depth, and others do not care about it. The same rationale lead to the removal of the V4L2_FMT_FLAG_COMPRESSED flag. The V4L2_FMT_FLAG_SWCONVECOMPRESSED flag was removed because drivers are not supposed to convert images in kernel space. A user library of conversion functions should be provided instead. The V4L2_FMT_FLAG_BYTESPERLINE flag was redundant. Applications can set the bytesperline field to zero to get a reasonable default. Since the remaining flags were replaced as well, the flags field itself was removed.

The interlace flags were replaced by a enum v4l2_field value in a newly added field field.

Old flag	enum v4l2 field
V4L2_FMT_FLAG_NOT_INTERLACED	?
V4L2_FMT_FLAG_INTERLACED	<pre>= V4L2_FIELD_INTERLACED</pre>
V4L2_FMT_FLAG_COMBINED	
V4L2_FMT_FLAG_TOPFIELD	= V4L2_FIELD_TOP
V4L2_FMT_FLAG_ODDFIELD	
V4L2_FMT_FLAG_BOTFIELD	= V4L2_FIELD_BOTTOM
V4L2_FMT_FLAG_EVENFIELD	
-	V4L2_FIELD_SEQ_TB
-	V4L2_FIELD_SEQ_BT
-	V4L2_FIELD_ALTERNATE

The color space flags were replaced by a enum v4l2_colorspace value in a newly added colorspace field, where one of V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_BT878, V4L2_COLORSPACE_470_SYSTEM_M or

V4L2_COLORSPACE_470_SYSTEM_BG replaces V4L2_FMT_CS_601YUV.

- 12. In struct v4l2_requestbuffers the type field was properly defined as enum v4l2_buf_type. Buffer types changed as mentioned above. A new memory field of type enum v4l2_memory was added to distinguish between I/O methods using buffers allocated by the driver or the application. See Input/Output for details.
- 13. In struct v4l2_buffer the type field was properly defined as enum v4l2_buf_type. Buffer types changed as mentioned above. A field field of type enum v4l2_field was added to indicate if a buffer contains a top or bottom field. The old field flags were removed. Since no unadjusted system time clock was added to the kernel as planned, the timestamp field changed back from type stamp_t, an unsigned 64 bit integer expressing the sample time in nanoseconds, to struct timeval. With the addition of a second memory mapping method the offset field moved into union m, and a new memory field of type enum v4l2_memory was added to distinguish between I/O methods. See Input/Output for details.

The V4L2_BUF_REQ_CONTIG flag was used by the V4L compatibility layer, after changes to this code it was no longer needed. The V4L2_BUF_ATTR_DEVICEMEM flag would indicate if the buffer was indeed allocated in device memory rather than DMA-able system memory. It was barely useful and so was removed.

- 14. In struct v4l2 framebuffer the base[3] array anticipating doubleand triple-buffering in off-screen video memory, however without a synchronization mechanism, was replaced by a single defining The V4L2_FBUF_CAP_SCALEUP and V4L2_FBUF_CAP_SCALEDOWN pointer. flags were removed. Applications can determine this capability more accurately using the new cropping and scaling in-V4L2_FBUF_CAP_CLIPPING terface. flag replaced The was bv V4L2 FBUF CAP LIST CLIPPING and V4L2 FBUF CAP BITMAP CLIPPING.
- 15. In struct v4l2_clip the x, y, width and height field moved into a c substructure of type struct v4l2_rect. The x and y fields were renamed to left and top, i. e. offsets to a context dependent origin.
- 16. In struct v4l2_window the x, y, width and height field moved into a w substructure as above. A field field of type v4l2_field was added to distinguish between field and frame (interlaced) overlay.
- 17. The digital zoom interface, including struct struct v4l2_zoomcap, struct struct v4l2_zoom, V4L2_ZOOM_NONCAP and V4L2_ZOOM_WHILESTREAMING was replaced by a new cropping and scaling interface. The previously unused struct struct v4l2_cropcap and struct v4l2_crop where redefined for this purpose. See Image Cropping, Insertion and Scaling the CROP API for details.
- 18. In struct v4l2_vbi_format the SAMPLE_FORMAT field now contains a four-character-code as used to identify video image formats and V4L2_PIX_FMT_GREY replaces the V4L2_VBI_SF_UBYTE define. The reserved field was extended.
- 19. In struct v4l2_captureparm the type of the timeperframe field changed from unsigned long to struct v4l2_fract. This allows the accurate expression of

multiples of the NTSC-M frame rate 30000 / 1001. A new field readbuffers was added to control the driver behaviour in read I/O mode.

Similar changes were made to struct v4l2_outputparm.

- 20. The struct v4l2_performance and VIDIOC_G_PERF ioctl were dropped. Except when using the read/write I/O method, which is limited anyway, this information is already available to applications.
- 21. The example transformation from RGB to YCbCr color space in the old V4L2 documentation was inaccurate, this has been corrected in Image Formats.

V4L2 2003-06-19

- 1. A new capability flag V4L2_CAP_RADIO was added for radio devices. Prior to this change radio devices would identify solely by having exactly one tuner whose type field reads V4L2_TUNER_RADIO.
- 2. An optional driver access priority mechanism was added, see Application Priority for details.
- 3. The audio input and output interface was found to be incomplete.

Previously the VIDIOC_G_AUDIO ioctl would enumerate the available audio inputs. An ioctl to determine the current audio input, if more than one combines with the current video input, did not exist. So VIDIOC_G_AUDIO was renamed to VIDIOC_G_AUDIO_OLD, this ioctl was removed on Kernel 2.6.39. The ioctl VIDIOC_ENUMAUDIO ioctl was added to enumerate audio inputs, while VIDIOC_G_AUDIO now reports the current audio input.

The same changes were made to VIDIOC_G_AUDOUT and VID-IOC_ENUMAUDOUT.

Until further the "videodev" module will automatically translate between the old and new ioctls, but drivers and applications must be updated to successfully compile again.

- 4. The ioctl VIDIOC_OVERLAY ioctl was incorrectly defined with write-read parameter. It was changed to write-only, while the write-read version was renamed to VIDIOC_OVERLAY_OLD. The old ioctl was removed on Kernel 2.6.39. Until further the "videodev" kernel module will automatically translate to the new version, so drivers must be recompiled, but not applications.
- 5. Video Overlay Interface incorrectly stated that clipping rectangles define regions where the video can be seen. Correct is that clipping rectangles define regions where no video shall be displayed and so the graphics surface can be seen.
- 6. The VIDIOC_S_PARM and VIDIOC_S_CTRL ioctls were defined with writeonly parameter, inconsistent with other ioctls modifying their argument. They were changed to write-read, while a _OLD suffix was added to the writeonly versions. The old ioctls were removed on Kernel 2.6.39. Drivers and applications assuming a constant parameter need an update.

V4L2 2003-11-05

1. In RGB Formats the following pixel formats were incorrectly transferred from Bill Dirks' V4L2 specification. Descriptions below refer to bytes in memory, in ascending address order.

Symbol	In this document prior to revision 0.5	Corrected
V4L2_PIX_FMT_RGB24		R, G, B
V4L2_PIX_FMT_BGR24	R, G, B	B, G, R
V4L2_PIX_FMT_RGB32	B, G, R, X	R, G, B, X
V4L2_PIX_FMT_BGR32	R, G, B, X	B, G, R, X

The V4L2_PIX_FMT_BGR24 example was always correct.

In Image Properties the mapping of the V4L VIDEO_PALETTE_RGB24 and VIDEO_PALETTE_RGB32 formats to V4L2 pixel formats was accordingly corrected.

2. Unrelated to the fixes above, drivers may still interpret some V4L2 RGB pixel formats differently. These issues have yet to be addressed, for details see RGB Formats.

V4L2 in Linux 2.6.6, 2004-05-09

1. The ioctl VIDIOC_CROPCAP ioctl was incorrectly defined with read-only parameter. It is now defined as write-read ioctl, while the read-only version was renamed to VIDIOC_CROPCAP_OLD. The old ioctl was removed on Kernel 2.6.39.

V4L2 in Linux 2.6.8

 A new field input (former reserved[0]) was added to the struct v4l2_buffer structure. Purpose of this field is to alternate between video inputs (e. g. cameras) in step with the video capturing process. This function must be enabled with the new V4L2_BUF_FLAG_INPUT flag. The flags field is no longer read-only.

V4L2 spec erratum 2004-08-01

- 1. The return value of the V4L2 open() function was incorrectly documented.
- 2. Audio output ioctls end in -AUDOUT, not -AUDIOOUT.
- 3. In the Current Audio Input example the $\mbox{VIDIOC}_G_\mbox{AUDIO}$ ioctl took the wrong argument.
- 4. The documentation of the ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VID-IOC_DQBUF ioctls did not mention the struct v4l2_buffer memory field. It was also missing from examples. Also on the VIDIOC_DQBUF page the EIO error code was not documented.

1. A new sliced VBI interface was added. It is documented in Sliced VBI Data Interface and replaces the interface first proposed in V4L2 specification 0.8.

V4L2 in Linux 2.6.15

- 1. The ioctl VIDIOC LOG STATUS ioctl was added.
- New video standards V4L2_STD_NTSC_443, V4L2_STD_SECAM_LC, V4L2_STD_SECAM_DK (a set of SECAM D, K and K1), and V4L2_STD_ATSC (a set of V4L2_STD_ATSC_8_VSB and V4L2_STD_ATSC_16_VSB) were defined. Note the V4L2_STD_525_60 set now includes V4L2_STD_NTSC_443. See also typedef v4l2_std_id.
- 3. The VIDIOC_G_COMP and VIDIOC_S_COMP ioctl were renamed to VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP respectively. Their argument was replaced by a struct v4l2_mpeg_compression pointer. (The VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls where removed in Linux 2.6.25.)

V4L2 spec erratum 2005-11-27

The capture example in Video Capture Example called the VIDIOC_S_CROP ioctl without checking if cropping is supported. In the video standard selection example in Video Standards the VIDIOC_S_STD call used the wrong argument type.

V4L2 spec erratum 2006-01-10

- 1. The V4L2_IN_ST_COLOR_KILL flag in struct v4l2_input not only indicates if the color killer is enabled, but also if it is active. (The color killer disables color decoding when it detects no color in the video signal to improve the image quality.)
- 2. VIDIOC_S_PARM is a write-read ioctl, not write-only as stated on its reference page. The ioctl changed in 2003 as noted above.

V4L2 spec erratum 2006-02-03

1. In struct v4l2_captureparm and struct v4l2_outputparm the timeperframe field gives the time in seconds, not microseconds.

V4L2 spec erratum 2006-02-04

 The clips field in struct v4l2_window must point to an array of struct v4l2_clip, not a linked list, because drivers ignore the struct struct v4l2_clip. next pointer.

V4L2 in Linux 2.6.17

- New video standard macros were added: V4L2_STD_NTSC_M_KR (NTSC M South Korea), and the sets V4L2_STD_MN, V4L2_STD_B, V4L2_STD_GH and V4L2_STD_DK. The V4L2_STD_NTSC and V4L2_STD_SECAM sets now include V4L2_STD_NTSC_M_KR and V4L2_STD_SECAM_LC respectively.
- 2. A new V4L2_TUNER_MODE_LANG1_LANG2 was defined to record both languages of a bilingual program. The use of V4L2_TUNER_MODE_STERE0 for this purpose is deprecated now. See the VIDIOC_G_TUNER section for details.

V4L2 spec erratum 2006-09-23 (Draft 0.15)

- 1. In various places V4L2_BUF_TYPE_SLICED_VBI_CAPTURE and V4L2_BUF_TYPE_SLICED_VBI_OUTPUT of the sliced VBI interface were not mentioned along with other buffer types.
- 2. In VIDIOC_G_AUDIO it was clarified that the struct v4l2_audio mode field is a flags field.
- 3. ioctl VIDIOC_QUERYCAP did not mention the sliced VBI and radio capability flags.
- 4. In VIDIOC_G_FREQUENCY it was clarified that applications must initialize the tuner type field of struct v4l2_frequency before calling VID-IOC_S_FREQUENCY.
- 5. The reserved array in struct v4l2_requestbuffers has 2 elements, not 32.
- 6. In Video Output Interface and Raw VBI Data Interface the device file names /dev/vout which never caught on were replaced by /dev/video.
- With Linux 2.6.15 the possible range for VBI device minor numbers was extended from 224-239 to 224-255. Accordingly device file names /dev/vbi0 to /dev/vbi31 are possible now.

V4L2 in Linux 2.6.18

 New ioctls VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS and VID-IOC_TRY_EXT_CTRLS were added, a flag to skip unsupported controls with ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU, new control types V4L2_CTRL_TYPE_INTEGER64 and V4L2_CTRL_TYPE_CTRL_CLASS (v4l2_ctrl_type), and new control flags V4L2_CTRL_FLAG_READ_ONLY, V4L2_CTRL_FLAG_UPDATE, V4L2_CTRL_FLAG_INACTIVE and V4L2_CTRL_FLAG_SLIDER (Control Flags). See Extended Controls API for details.

- 1. In struct v4l2_sliced_vbi_cap a buffer type field was added replacing a reserved field. Note on architectures where the size of enum types differs from int types the size of the structure changed. The VIDIOC_G_SLICED_VBI_CAP ioctl was redefined from being read-only to write-read. Applications must initialize the type field and clear the reserved fields now. These changes may break the compatibility with older drivers and applications.
- 2. The ioctls ioctl VIDIOC_ENUM_FRAMESIZES and ioctl VID-IOC_ENUM_FRAMEINTERVALS were added.
- 3. A new pixel format V4L2_PIX_FMT_RGB444 (RGB Formats) was added.

V4L2 spec erratum 2006-10-12 (Draft 0.17)

1. V4L2_PIX_FMT_HM12 (Reserved Image Formats) is a YUV 4:2:0, not 4:2:2 format.

V4L2 in Linux 2.6.21

1. The videodev2.h header file is now dual licensed under GNU General Public License version two or later, and under a 3-clause BSD-style license.

V4L2 in Linux 2.6.22

- 1. Two new field orders V4L2_FIELD_INTERLACED_TB and V4L2_FIELD_INTERLACED_BT were added. See v4l2_field for details.
- 2. Three new clipping/blending methods with a global or straight or inverted local alpha value were added to the video overlay interface. See the description of the VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctls for details.

A new global_alpha field was added to v4l2_window, extending the structure. This may break compatibility with applications using a struct struct v4l2_window directly. However the VIDIOC_G/S/TRY_FMT ioctls, which take a pointer to a v4l2_format parent structure with padding bytes at the end, are not affected.

3. The format of the chromakey field in struct v4l2_window changed from "host order RGB32" to a pixel value in the same format as the framebuffer. This may break compatibility with existing applications. Drivers supporting the "host order RGB32" format are not known.

1. The pixel formats V4L2_PIX_FMT_PAL8, V4L2_PIX_FMT_YUV444, V4L2_PIX_FMT_YUV555, V4L2_PIX_FMT_YUV565 and V4L2_PIX_FMT_YUV32 were added.

V4L2 in Linux 2.6.25

- 1. The pixel formats V4L2_PIX_FMT_Y16 and V4L2_PIX_FMT_SBGGR16 were added.
- 2. New controls V4L2_CID_POWER_LINE_FREQUENCY, V4L2_CID_HUE_AUTO, V4L2_CID_WHITE_BALANCE_TEMPERATURE, V4L2_CID_SHARPNESS and V4L2_CID_BACKLIGHT_COMPENSATION were added. The controls V4L2_CID_BLACK_LEVEL, V4L2_CID_WHITENESS, V4L2_CID_HCENTER and V4L2_CID_VCENTER were deprecated.
- 3. A Camera controls class was added. with the new con-V4L2 CID EXPOSURE AUTO, V4L2 CID EXPOSURE ABSOLUTE, trols V4L2 CID EXPOSURE AUTO PRIORITY, V4L2 CID PAN RELATIVE, V4L2_CID_TILT_RELATIVE, V4L2_CID_PAN_RESET, V4L2 CID TILT RESET, V4L2 CID PAN ABSOLUTE, V4L2 CID TILT ABSOLUTE, V4L2_CID_FOCUS ABSOLUTE, V4L2 CID FOCUS RELATIVE and V4L2 CID FOCUS AUTO.
- 4. The VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls, which were superseded by the extended controls interface in Linux 2.6.18, where finally removed from the videodev2.h header file.

V4L2 in Linux 2.6.26

- 1. The pixel formats V4L2_PIX_FMT_Y16 and V4L2_PIX_FMT_SBGGR16 were added.
- 2. Added user controls V4L2_CID_CHROMA_AGC and V4L2_CID_COLOR_KILLER.

V4L2 in Linux 2.6.27

- 1. The ioctl VIDIOC_S_HW_FREQ_SEEK ioctl and the V4L2_CAP_HW_FREQ_SEEK capability were added.
- 2. The pixel formats V4L2_PIX_FMT_YVYU, V4L2_PIX_FMT_PCA501, V4L2_PIX_FMT_PCA505, V4L2_PIX_FMT_PCA508, V4L2_PIX_FMT_PCA561, V4L2_PIX_FMT_SGBRG8, V4L2_PIX_FMT_PAC207 and V4L2_PIX_FMT_PJPG were added.

- 1. Added V4L2_MPEG_AUDI0_ENCODING_AAC and V4L2_MPEG_AUDI0_ENCODING_AC3 MPEG audio encodings.
- 2. Added V4L2_MPEG_VIDE0_ENCODING_MPEG_4_AVC MPEG video encoding.
- 3. The pixel formats V4L2_PIX_FMT_SGRBG10 and V4L2_PIX_FMT_SGRBG10DPCM8 were added.

V4L2 in Linux 2.6.29

- 1. The VIDIOC_G_CHIP_IDENT ioctl was renamed to VIDIOC_G_CHIP_IDENT_OLD and VIDIOC_DBG_G_CHIP_IDENT was introduced in its place. The old struct struct v4l2_chip_ident was renamed to struct v4l2_chip_ident_old.
- 2. The pixel formats V4L2_PIX_FMT_VYUY, V4L2_PIX_FMT_NV16 and V4L2_PIX_FMT_NV61 were added.
- 3. Added camera controls V4L2_CID_Z00M_ABSOLUTE, V4L2_CID_Z00M_RELATIVE, V4L2_CID_Z00M_CONTINUOUS and V4L2_CID_PRIVACY.

V4L2 in Linux 2.6.30

- 1. New control flag V4L2_CTRL_FLAG_WRITE_ONLY was added.
- 2. New control V4L2_CID_COLORFX was added.

V4L2 in Linux 2.6.32

- 1. In order to be easier to compare a V4L2 API and a kernel version, now V4L2 API is numbered using the Linux Kernel version numeration.
- 2. Finalized the RDS capture API. See RDS Interface for more information.
- 3. Added new capabilities for modulators and RDS encoders.
- 4. Add description for libv4l API.
- 5. Added support for string controls via new type V4L2_CTRL_TYPE_STRING.
- 6. Added V4L2_CID_BAND_STOP_FILTER documentation.
- 7. Added FM Modulator (FM TX) Extended Control Class: V4L2_CTRL_CLASS_FM_TX and their Control IDs.
- 8. Added FM Receiver (FM RX) Extended Control Class: V4L2_CTRL_CLASS_FM_RX and their Control IDs.
- 9. Added Remote Controller chapter, describing the default Remote Controller mapping for media devices.

1. Added support for Digital Video timings in order to support HDTV receivers and transmitters.

V4L2 in Linux 2.6.34

1. Added V4L2_CID_IRIS_ABSOLUTE and V4L2_CID_IRIS_RELATIVE controls to the Camera controls class.

V4L2 in Linux 2.6.37

1. Remove the vtx (videotext/teletext) API. This API was no longer used and no hardware exists to verify the API. Nor were any userspace applications found that used it. It was originally scheduled for removal in 2.6.35.

V4L2 in Linux 2.6.39

- 1. The old VIDIOC_*_OLD symbols and V4L1 support were removed.
- 2. Multi-planar API added. Does not affect the compatibility of current drivers and applications. See multi-planar API for details.

V4L2 in Linux 3.1

1. VIDIOC_QUERYCAP now returns a per-subsystem version instead of a perdriver one.

Standardize an error code for invalid ioctl.

Added V4L2_CTRL_TYPE_BITMASK.

V4L2 in Linux 3.2

- 1. V4L2_CTRL_FLAG_VOLATILE was added to signal volatile controls to userspace.
- 2. Add selection API for extended control over cropping and composing. Does not affect the compatibility of current drivers and applications. See selection API for details.

V4L2 in Linux 3.3

- 1. Added V4L2_CID_ALPHA_COMPONENT control to the User controls class.
- 2. Added the device_caps field to struct v4l2_capabilities and added the new V4L2_CAP_DEVICE_CAPS capability.

V4L2 in Linux 3.4

- 1. Added JPEG compression control class.
- 2. Extended the DV Timings API: ioctl VIDIOC_ENUM_DV_TIMINGS, VID-IOC_SUBDEV_ENUM_DV_TIMINGS, ioctl VIDIOC_QUERY_DV_TIMINGS and ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP.

V4L2 in Linux 3.5

- 1. Added integer menus, the new type will be V4L2_CTRL_TYPE_INTEGER_MENU.
- 2. Added selection API for V4L2 subdev interface: ioctl VID-IOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION and VID-IOC_SUBDEV_S_SELECTION.
- 3. Added V4L2_COLORFX_ANTIQUE, V4L2_COLORFX_ART_FREEZE, V4L2_COLORFX_AQUA, V4L2_COLORFX_SILHOUETTE, V4L2_COLORFX_SOLARIZATION, V4L2_COLORFX_VIVID and V4L2_COLORFX_ARBITRARY_CBCR menu items to the V4L2_CID_COLORFX control.
- 4. Added V4L2_CID_COLORFX_CBCR control.
- 5. Added camera controls V4L2_CID_AUT0_EXPOSURE_BIAS, V4L2_CID_AUT0_N_PRESET_WHITE_BALANCE, V4L2_CID_IMAGE_STABILIZATION, V4L2_CID_IS0_SENSITIVITY, V4L2_CID_IS0_SENSITIVITY_AUT0, V4L2_CID_EXPOSURE_METERING, V4L2_CID_SCENE_MODE, V4L2_CID_3A_LOCK, V4L2_CID_AUT0_FOCUS_START, V4L2_CID_AUT0_FOCUS_STOP, V4L2_CID_AUT0_FOCUS_STATUS and V4L2_CID_AUT0_FOCUS_RANGE.

V4L2 in Linux 3.6

- 1. Replaced input in struct v4l2_buffer by reserved2 and removed V4L2_BUF_FLAG_INPUT.
- 2. Added V4L2_CAP_VIDEO_M2M and V4L2_CAP_VIDEO_M2M_MPLANE capabilities.
- 3. Added support for frequency band enumerations: ioctl VID-IOC_ENUM_FREQ_BANDS.

V4L2 in Linux 3.9

- 1. Added timestamp types to flags field in struct v4l2_buffer. See Buffer Flags.
- 2. Added V4L2_EVENT_CTRL_CH_RANGE control event changes flag. See Control Changes.

V4L2 in Linux 3.10

- 1. Removed obsolete and unused DV_PRESET ioctls VIDIOC_G_DV_PRESET, VIDIOC_S_DV_PRESET, VIDIOC_QUERY_DV_PRESET and VID-IOC_ENUM_DV_PRESET. Remove the related v4l2_input/output capability flags V4L2_IN_CAP_PRESETS and V4L2_OUT_CAP_PRESETS.
- 2. Added new debugging ioctl ioctl VIDIOC_DBG_G_CHIP_INFO.

V4L2 in Linux 3.11

1. Remove obsolete VIDIOC_DBG_G_CHIP_IDENT ioctl.

V4L2 in Linux 3.14

1. In struct v4l2_rect, the type of width and height fields changed from _s32 to _u32.

V4L2 in Linux 3.15

1. Added Software Defined Radio (SDR) Interface.

V4L2 in Linux 3.16

1. Added event V4L2_EVENT_SOURCE_CHANGE.

V4L2 in Linux 3.17

- 1. Extended struct v4l2_pix_format. Added format flags.
- 2. Added compound control types and VIDIOC_QUERY_EXT_CTRL.

V4L2 in Linux 3.18

1. Added V4L2_CID_PAN_SPEED and V4L2_CID_TILT_SPEED camera controls.

V4L2 in Linux 3.19

 Rewrote Colorspace chapter, added new enum v4l2_ycbcr_encoding and enum v4l2_quantization fields to struct v4l2_pix_format, struct v4l2_pix_format_mplane and struct v4l2_mbus_framefmt.

V4L2 in Linux 4.4

- 1. Renamed V4L2_TUNER_ADC to V4L2_TUNER_SDR. The use of V4L2_TUNER_ADC is deprecated now.
- 2. Added V4L2_CID_RF_TUNER_RF_GAIN RF Tuner control.
- 3. Added transmitter support for Software Defined Radio (SDR) Interface.

Relation of V4L2 to other Linux multimedia APIs

X Video Extension

The X Video Extension (abbreviated XVideo or just Xv) is an extension of the X Window system, implemented for example by the XFree86 project. Its scope is similar to V4L2, an API to video capture and output devices for X clients. Xv allows applications to display live video in a window, send window contents to a TV output, and capture or output still images in XPixmaps¹. With their implementation XFree86 makes the extension available across many operating systems and architectures.

Because the driver is embedded into the X server Xv has a number of advantages over the V4L2 video overlay interface. The driver can easily determine the overlay target, i. e. visible graphics memory or off-screen buffers for a destructive overlay. It can program the RAMDAC for a non-destructive overlay, scaling or color-keying, or the clipping functions of the video capture hardware, always in sync with drawing operations or windows moving or changing their stacking order.

To combine the advantages of Xv and V4L a special Xv driver exists in XFree86 and XOrg, just programming any overlay capable Video4Linux device it finds. To enable it /etc/X11/XF86Config must contain these lines:

```
Section "Module"
Load "v4l"
EndSection
```

As of XFree86 4.2 this driver still supports only V4L ioctls, however it should work just fine with all V4L2 devices through the V4L2 backward-compatibility layer. Since V4L2 permits multiple opens it is possible (if supported by the V4L2 driver)

¹ This is not implemented in XFree86.

to capture video while an X client requested video overlay. Restrictions of simultaneous capturing and overlay are discussed in Video Overlay Interface apply.

Only marginally related to V4L2, XFree86 extended Xv to support hardware YUV to RGB conversion and scaling for faster video playback, and added an interface to MPEG-2 decoding hardware. This API is useful to display images captured with V4L2 devices.

Digital Video

V4L2 does not support digital terrestrial, cable or satellite broadcast. A separate project aiming at digital receivers exists. You can find its homepage at https://linuxtv.org. The Linux DVB API has no connection to the V4L2 API except that drivers for hybrid hardware may support both.

Audio Interfaces

[to do - OSS/ALSA]

Experimental API Elements

The following V4L2 API elements are currently experimental and may change in the future.

- ioctl VIDIOC_DBG_G_REGISTER, VIDIOC_DBG_S_REGISTER and VIDIOC_DBG_S_REGISTER ioctls.
- ioctl VIDIOC_DBG_G_CHIP_INFO ioctl.

Obsolete API Elements

The following V4L2 API elements were superseded by new interfaces and should not be implemented in new drivers.

- VIDIOC_G_MPEGCOMP and VIDIOC_S_MPEGCOMP ioctls. Use Extended Controls, Extended Controls API.
- VIDIOC_G_DV_PRESET, VIDIOC_S_DV_PRESET, VID-IOC_ENUM_DV_PRESETS and VIDIOC_QUERY_DV_PRESET ioctls. Use the DV Timings API (Digital Video (DV) Timings).
- VIDIOC_SUBDEV_G_CROP and VIDIOC_SUBDEV_S_CROP ioctls. Use VIDIOC_SUBDEV_G_SELECTION and VIDIOC_SUBDEV_S_SELECTION, ioctl VIDIOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION.

7.2.7 Function Reference

V4L2 close()

Name

v4l2-close - Close a V4L2 device

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

Closes the device. Any I/O in progress is terminated and resources associated with the file descriptor are freed. However data format parameters, current input or output, control values or other properties remain unchanged.

Return Value

The function returns 0 on success, -1 on failure and the errno is set appropriately. Possible error codes:

EBADF fd is not a valid open file descriptor.

V4L2 ioctl()

Name

v4l2-ioctl - Program a V4L2 device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().

- request V4L2 ioctl request code as defined in the videodev2.h header file, for example VIDIOC_QUERYCAP.
- **argp** Pointer to a function parameter, usually a structure.

Description

The ioctl() function is used to program V4L2 devices. The argument fd must be an open file descriptor. An ioctl request has encoded in it whether the argument is an input, output or read/write parameter, and the size of the argument argp in bytes. Macros and defines specifying V4L2 ioctl requests are located in the videodev2. h header file. Applications should use their own copy, not include the version in the kernel sources on the system they compile on. All V4L2 ioctl requests, their respective function and parameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

When an ioctl that takes an output or read/write parameter fails, the parameter remains unmodified.

ioctl VIDIOC_CREATE_BUFS

Name

<code>VIDIOC_CREATE_BUFS</code> - Create buffers for Memory Mapped or User Pointer or DMA Buffer I/O

Synopsis

int ioctl(int fd, VIDIOC_CREATE_BUFS, struct v4l2_create_buffers *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_create_buffers.

Description

This ioctl is used to create buffers for memory mapped or user pointer or DMA buffer I/O. It can be used as an alternative or in addition to the ioctl VID-IOC_REQBUFS ioctl, when a tighter control over buffers is required. This ioctl can be called multiple times to create buffers of different sizes.

To allocate the device buffers applications must initialize the relevant fields of the struct v4l2_create_buffers structure. The count field must be set to the number of requested buffers, the memory field specifies the requested I/O method and the reserved array must be zeroed.

The format field specifies the image format that the buffers must be able to handle. The application has to fill in this struct v4l2_format. Usually this will be done using the VIDIOC_TRY_FMT or VIDIOC_G_FMT ioctls to ensure that the requested format is supported by the driver. Based on the format's type field the requested buffer size (for single-planar) or plane sizes (for multi-planar formats) will be used for the allocated buffers. The driver may return an error if the size(s) are not supported by the hardware (usually because they are too small).

The buffers created by this ioctl will have as minimum size the size defined by the format.pix.sizeimage field (or the corresponding fields for other format types). Usually if the format.pix.sizeimage field is less than the minimum required for the given format, then an error will be returned since drivers will typically not allow this. If it is larger, then the value will be used as-is. In other words, the driver may reject the requested size, but if it is accepted the driver will use it unchanged.

When the ioctl is called with a pointer to this structure the driver will attempt to allocate up to the requested number of buffers and store the actual number allocated and the starting index in the count and the index fields respectively. On return count can be smaller than the number requested.

v4l2_create_buffers

u32	index	The starting buffer index, returned by the			
u32	TIMEX	driver.			
22					
u32	count	The number of buffers requested or			
		granted. If $count == 0$, then ioctl VID-			
		IOC_CREATE_BUFS will set index to the			
		current number of created buffers, and it			
		will check the validity of memory and format.			
		type. If those are invalid -1 is returned and			
		errno is set to EINVAL error code, otherwise			
		ioctl VIDIOC_CREATE_BUFS returns 0. It			
		will never set errno to EBUSY error code in			
		this particular case.			
u32	memory	Applications set this field to			
		V4L2_MEMORY_MMAP, V4L2_MEMORY_DMABUF or			
		V4L2_MEMORY_USERPTR. See v4l2_memory			
struct v4l2_format	format	Filled in by the application, preserved by the			
		driver.			
u32	capabilities	Set by the driver. If 0, then the driver doesn'			
		t support capabilities. In that case all you			
		know is that the driver is guaranteed to sup-			
		port V4L2_MEMORY_MMAP and might support			
		other v4l2_memory types. It will not support			
		any other capabilities. See here for a list of			
		the capabilities.			
		If you want to just query the capabilities			
		without making any other changes, then set			
		count to 0, memory to V4L2_MEMORY_MMAP and			
		format.type to the buffer type.			
u32	reserved[7]	A place holder for future extensions. Drivers			
		and applications must set the array to zero.			

Table 103: struct v4l2_create_buffers

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ENOMEM No memory to allocate buffers for memory mapped I/O.

EINVAL The buffer type (format.type field), requested I/O method (memory) or format (format field) is not valid.

ioctl VIDIOC_CROPCAP

Name

VIDIOC_CROPCAP - Information about the video cropping and scaling abilities

Synopsis

int ioctl(int fd, VIDIOC_CROPCAP, struct v4l2_cropcap *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_cropcap.

Description

Applications use this function to query the cropping limits, the pixel aspect of images and to calculate scale factors. They set the type field of a v4l2_cropcap structure to the respective buffer (stream) type and call the ioctl VIDIOC_CROPCAP ioctl with a pointer to this structure. Drivers fill the rest of the structure. The results are constant except when switching the video standard. Remember this switch can occur implicit when switching the video input or output.

This ioctl must be implemented for video capture or output devices that support cropping and/or scaling and/or have non-square pixels, and for overlay devices.

v4l2_cropcap

u32	type	Type of the data stream, set by the ap- plication. Only these types are valid here: V4L2_BUF_TYPE_VIDE0_CAPTURE, V4L2_BUF_TYPE_VIDE0_CAPTURE_MPLANE, V4L2_BUF_TYPE_VIDE0_OUTPUT, V4L2_BUF_TYPE_VIDE0_OUTPUT_MPLANE and V4L2_BUF_TYPE_VIDE0_OVERLAY. See v4l2_buf_type and the note below.	
struct v4l2_rect	bounds	Defines the window within capturing or out- put is possible, this may exclude for exam- ple the horizontal and vertical blanking ar- eas. The cropping rectangle cannot exceed these limits. Width and height are defined in pixels, the driver writer is free to choose ori- gin and units of the coordinate system in the analog domain.	
struct v4l2_rect	defrect	Default cropping rectangle, it shall cover the "whole picture" . Assuming pixel aspect 1/1 this could be for example a 640 × 480 rect- angle for NTSC, a 768 × 576 rectangle for PAL and SECAM centered over the active pic- ture area. The same co-ordinate system as for bounds is used.	
struct v4l2_fract	pixelaspect	This is the pixel aspect (y / x) when no scaling is applied, the ratio of the actual sampling frequency and the frequency required to get square pixels. When cropping coordinates refer to square pixels, the driver sets pixelaspect to 1/1. Other common values are 54/59 for PAL and SECAM, 11/10 for NTSC sampled according to [ITU BT.601].	

Table 104: struct v4l2 cropcap

Note: Unfortunately in the case of multiplanar buffer types (V4L2_BUF_TYPE_VIDE0_CAPTURE_MPLANE and V4L2_BUF_TYPE_VIDE0_OUTPUT_MPLANE) this API was messed up with regards to how the v4l2_cropcap type field should be filled in. Some drivers only accepted the _MPLANE buffer type while other drivers only accepted a non-multiplanar buffer type (i.e. without the _MPLANE at the end).

Starting with kernel 4.13 both variations are allowed.

		—
_s32	left	Horizontal offset of the top, left corner of the
		rectangle, in pixels.
_s32	top	Vertical offset of the top, left corner of the
		rectangle, in pixels.
_u32	width	Width of the rectangle, in pixels.
_u32	height	Height of the rectangle, in pixels.

Table	105:	struct v4l2	rect
10010	±00.	001000 111	1000

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_cropcap type is invalid.

ENODATA Cropping is not supported for this input or output.

ioctl VIDIOC_DBG_G_CHIP_INFO

Name

VIDIOC_DBG_G_CHIP_INFO - Identify the chips on a TV card

Synopsis

int **ioctl**(int fd, VIDIOC_DBG_G_CHIP_INFO, struct v4l2 dbg chip info *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dbg_chip_info.

Description

Note: This is an Experimental API Elements interface and may change in the future.

For driver debugging purposes this ioctl allows test applications to query the driver about the chips present on the TV card. Regular applications must not use it. When you found a chip specific bug, please contact the linux-media mailing list (https://linuxtv.org/lists.php) so it can be fixed.

Additionally the Linux kernel must be compiled with the CONFIG_VIDEO_ADV_DEBUG option to enable this ioctl.

To query the driver applications must initialize the match.type and match. addr or match.name fields of a struct v4l2_dbg_chip_info and call ioctl VID-IOC_DBG_G_CHIP_INFO with a pointer to this structure. On success the driver stores information about the selected chip in the name and flags fields.

When match.type is V4L2_CHIP_MATCH_BRIDGE, match.addr selects the nth bridge 'chip' on the TV card. You can enumerate all chips by starting at zero and incrementing match.addr by one until ioctl VIDIOC_DBG_G_CHIP_INFO fails with an EINVAL error code. The number zero always selects the bridge chip itself, e. g. the chip connected to the PCI or USB bus. Non-zero numbers identify specific parts of the bridge chip such as an AC97 register block.

When match.type is V4L2_CHIP_MATCH_SUBDEV, match.addr selects the nth subdevice. This allows you to enumerate over all sub-devices.

On success, the name field will contain a chip name and the flags field will contain V4L2_CHIP_FL_READABLE if the driver supports reading registers from the device or V4L2_CHIP_FL_WRITABLE if the driver supports writing registers to the device.

We recommended the v4l2-dbg utility over calling this ioctl directly. It is available from the LinuxTV v4l-dvb repository; see https://linuxtv.org/repo/ for access instructions.

u32	type	See Chip Match Types for a list of
		possible types.
union {	(anonymous)	
u32	addr	Match a chip by this number, in- terpreted accord- ing to the type field.
char	name[32]	Match a chip by this name, inter- preted according to the type field. Currently un- used.
}		

Table 106: struct v4l2_dbg_match

v4l2_dbg_chip_info

struct	match	How to match the chip, see struct
v4l2_dbg_match		v4l2_dbg_match.
char	name[32]	The name of the chip.
u32	flags	Set by the driver. If V4L2_CHIP_FL_READABLE
		is set, then the driver supports read-
		ing registers from the device. If
		V4L2_CHIP_FL_WRITABLE is set, then it
		supports writing registers.
u32	reserved[8]	Reserved fields, both application and driver
		must set these to 0.

Table 107:	struct v4l2	dba	chip	info
10010 10/1	0010000111	ang	omp	11110

Table 108: Chip Match Types

V4L2_CHIP_MATCH_BRIDGE	0	Match the nth chip on the card, zero for the
		bridge chip. Does not match sub-devices.
V4L2_CHIP_MATCH_SUBDEV	4	Match the nth sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The match_type is invalid or no device could be matched.

ioctl VIDIOC_DBG_G_REGISTER, VIDIOC_DBG_S_REGISTER

Name

 $\label{eq:vidio} VIDIOC_DBG_G_REGISTER \text{-} VIDIOC_DBG_S_REGISTER \text{-} Read or write hardware registers}$

Synopsis

int ioctl (int fd,	VIDIOC_DBG_G_REGISTER,		
v4l2_dbg_reg	ister *argp)		
int ioctl (int fd, VIDIOC_DBG_S_REGISTER, const v4l2 dbg register *argp)			struct
· ··· _ _a			

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dbg_register.

Description

Note: This is an Experimental API Elements interface and may change in the future.

For driver debugging purposes these ioctls allow test applications to access hardware registers directly. Regular applications must not use them.

Since writing or even reading registers can jeopardize the system security, its stability and damage the hardware, both ioctls require superuser privileges. Additionally the Linux kernel must be compiled with the CONFIG_VIDEO_ADV_DEBUG option to enable these ioctls.

To write a register applications must initialize all fields of a struct v4l2_dbg_register except for size and call VIDIOC_DBG_S_REGISTER with a pointer to this structure. The match.type and match.addr or match.name fields select a chip on the TV card, the reg field specifies a register number and the val field the value to be written into the register.

To read a register applications must initialize the match.type, match.addr or match.name and reg fields, and call VIDIOC_DBG_G_REGISTER with a pointer to this structure. On success the driver stores the register value in the val field and the size (in bytes) of the value in size.

When match.type is V4L2_CHIP_MATCH_BRIDGE, match.addr selects the nth nonsub-device chip on the TV card. The number zero always selects the host chip, e. g. the chip connected to the PCI or USB bus. You can find out which chips are present with the ioctl VIDIOC_DBG_G_CHIP_INFO ioctl.

When match.type is V4L2_CHIP_MATCH_SUBDEV, match.addr selects the nth subdevice.

These ioctls are optional, not all drivers may support them. However when a driver supports these ioctls it must also support ioctl VIDIOC_DBG_G_CHIP_INFO. Conversely it may support VIDIOC_DBG_G_CHIP_INFO but not these ioctls.

VIDIOC_DBG_G_REGISTER and VIDIOC_DBG_S_REGISTER were introduced in Linux 2.6.21, but their API was changed to the one described here in kernel 2.6.29.

We recommended the v4l2-dbg utility over calling these ioctls directly. It is available from the LinuxTV v4l-dvb repository; see https://linuxtv.org/repo/ for access instructions.

v4l2_dbg_match

		<u> </u>
u32	type	See Chip Match
		Types for a list of
		possible types.
union {	(anonymous)	
u32	addr	Match a chip by
		this number, in-
		terpreted accord-
		ing to the type
		field.
char	name[32]	Match a chip by
		this name, inter-
		preted according
		to the type field.
		Currently un-
		used.
}		·

Table 109: struct v4l2_dbg_match

v4l2_dbg_register

Table 110: struct v4l2_dbg_register

struct	match	How to match the chip, see v4l2_dbg_match.
v4l2_dbg_match		
_u32	size	The register size in bytes.
u64	reg	A register number.
u64	val	The value read from, or to be written into the regis-
		ter.

Table 111: Chip Match Types

V4L2_CHIP_MATCH_BRIDGE	0	Match the nth chip on the card, zero for the
		bridge chip. Does not match sub-devices.
V4L2_CHIP_MATCH_SUBDEV	4	Match the nth sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EPERM Insufficient permissions. Root privileges are required to execute these ioctls.

ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD

Name

 $\label{eq:vidio} VIDIOC_DECODER_CMD$ - $VIDIOC_TRY_DECODER_CMD$ - Execute an decoder command

Synopsis

Arguments

fd File descriptor returned by open().

argp pointer to struct v4l2_decoder_cmd.

Description

These ioctls control an audio/video (usually MPEG-) decoder. VIDIOC_DECODER_CMD sends a command to the decoder, VIDIOC_TRY_DECODER_CMD can be used to try a command without actually executing it. To send a command applications must initialize all fields of a struct v4l2_decoder_cmd and call VIDIOC_DECODER_CMD or VIDIOC_TRY_DECODER_CMD with a pointer to this structure.

The cmd field must contain the command code. Some commands use the flags field for additional information.

A write() or ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF call sends an implicit START command to the decoder if it has not been started yet. Applies to both queues of mem2mem decoders.

A close() or VIDIOC_STREAMOFF call of a streaming file descriptor sends an implicit immediate STOP command to the decoder, and all buffered data is discarded. Applies to both queues of mem2mem decoders.

In principle, these ioctls are optional, not all drivers may support them. They were introduced in Linux 3.3. They are, however, mandatory for stateful mem2mem decoders (as further documented in Memory-to-Memory Stateful Video Decoder Interface).

v4l2_decoder_cmd

	iubic i		12_u00		A
	_u32	cmd –		The	
				decoder	
				com-	
				mand,	
				see De-	
				coder	
				Com-	
				mands.	
	_u32	flags		Flags	_
				to go	
				with the	
				com-	
				mand.	
				If no	
				flags	
				are de-	
				fined	
				for this	
				com-	
				mand,	
				drivers	
				and	
				appli-	
				cations	
				must	
				set this	
				field to	
				zero.	
	union	(anonymous)			_
	{				_
	struct	start		Structur	е
				contain-	
				ing	
				addi-	
				tional	
				data	
				for the	
					C_CMD_START
				com-	
				mand.	_
·		· · · · · · · · · · · · · · · · · · ·			

Table 112:	struct v4l2	decoder	cmd

Continued on next page

Tab	le 112	2 – cor	tinued		revious pa	
		s32		speed	Playback	5
					speed	
					and di-	
					rection.	
					The	
					play-	
					back	
					speed	
					is de-	
					fined as	
					speed/10	00
					of the	
					normal	
					speed.	
					So 1000	
					is nor-	
					mal	
					play-	
					back.	
					Neg-	
					ative	
					num-	
					bers	
					denote	
					reverse	
					play-	
					back, so	
					-1000	
					does	
					reverse	
					play-	
					back at	
					normal	
					speed.	
					Speeds	
					-1, 0	
					and 1	
					have	
					special	
					mean-	
					ings:	
					speed 0 is short-	
					hand	
					for	
					1000	
					(normal	
					play-	
					back).	
					A speed	
					of 1	
					steps	
	Chapte	er 7.	Linux	Media		ucture userspace API
					frame	
					for-	
					ward. a	

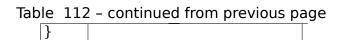

Table 112 – continued		
u32	formatFormat	
	restric-	
	tions.	
	This	
	field	
	is set	
	by the	
	driver,	
	not the	
	appli-	
	cation.	
	Possible	
	val-	
	ues are	
	V4L2_DEC_START_FMT_NONE	
	if there	
	are no	
	format	
	restric-	
	tions or	
	V4L2_DEC_START_FMT_GOP	
	decoder	
	oper-	
	ates	
	on full	
	GOPs	
	(Group	
	Of Pic-	
	tures).	
	This is	
	usually	
	the case	
	for re-	
	verse	
	play-	
	back:	
	the de-	
	coder	
	needs	
	full	
	GOPs,	
	which	
	it can	
	then	
	play in	
	reverse	
	order.	
	So to	
	imple-	
	ment	
	reverse	_
7.2. Part I - Video for Linux API	play- 461	L
	back	
	the	
	appli-	

Table 112 - continued from previous page

Tab	le 112	2 – continued	from pi	evious pag	ge
	struct	stop		Structure	
				contain-	
				ing	
				addi-	
				tional	
				data	
				for the	
					_CMD_STOP
				com-	
				mand.	
		u64	pts	Stop	
			•	play-	
				back	
				at this	
				pts or	
				imme-	
				diately	
				if the	
				play-	
				back is	
				already	
				past	
				that	
				times-	
				tamp.	
				Leave	
				to 0	
				if you	
				want	
				to stop	
				after	
				the last	
				frame	
				was de-	
				coded.	
	otruot	row		coueu.	
	struct	u32	data[1	Reserved	
		u52	υαια[]	for fu-	
				ture	
				exten-	
				sions.	
				Drivers	
				and	
				appli-	
				cations	
				must	
				set the	
				array to	
				zero.	
าธาท	illed or	n next page			

Table 112 - continued from previous page

Continued on next page

V4L2_DEC_CMD_START 0 Start the decoder: When the decoder is already running or paused, this command will just change the playback speed. That means that calling V4L2_DEC_CMD_START when the decoder was paused will not resume the decoder. You have to explicitly call V4L2_DEC_CMD_RESUME for that. This command has one flag: V4L2_DEC_CMD_RESUME for that. This command has one flag: V4L2_DEC_CMD_START_MUTE_AUDIO. If set, then audio will be muted when playing back at a non-standard speed. For a device implementing the Memory-to-Memory State-ful Video Decoder Interface, once the drain sequence is in progress will trigger an EBUSY error code. The command may be also used to restart the decoder in case of an implicit stop initiated by the decoder is already stopped, this command has two flags: if V4L2_DEC_CMD_STOP being called explicitly. See Memory-to-Memory Stateful Video Decoder Interface for more details. V4L2_DEC_CMD_STOP 1 Stop the decoder. When the decoder is already stopped, this command has two flags: if V4L2_DEC_CMD_STOP_IO_BLACK is set, then the decoder stops immediately (ignoring the pts value), otherwise the decoder stops immediately (ignoring the pts value), otherwise the decoder. Stops immediately (ignoring the Memory-to-Memory Stateful Video Decoder Interface. No flags or other arguments are accepted interface. No flags or other arguments are accepted in this case. Any attempt to invoke the command agein before the sequence. Sumpt to invoke the command has one flag: yet, the driver will return an EPERM error code. V4L2_DEC_CMD_FAUSE 2 Pause the decoder is already values the decoder is already values the decoder is already value the decoder is already value the drive the drive will return an EPERM error code. When the decoder has not bead is will tiger an EBUSY error code.			
V4L2_DEC_CMD_PAUSE2Pause the decoder. When the decoder is already paused. this command has the decoder is already running, this command does nothing. This command has two flags: if V4L2_DEC_CMD_STOP_TO_BLACK is set, then the decoding. Otherwise the last image will repeat. If V4L2_DEC_CMD_STOP_IMMEDIATELY is set, then the decoder stops immediately (ignoring the pts value), otherwise it will keep decoding until timestamp >= pts or until the last of the pending data from its internal buffers was decoded. For a device implementing the Memory-to-Memory State- ful Video Decoder Interface, the command will initiate the drain sequence as documented in Memory-to-Memory Stateful Video Decoder Interface. No flags or other argu- ments are accepted in this case. Any attempt to invoke the command again before the sequence completes will trig- ger an EBUSY error code.V4L2_DEC_CMD_PAUSE2Pause the decoder. When the decoder has not been started yet, the driver will return an EPERM error code. When the decoder is already paused, this com- mand does nothing. This command. When the de- coder nutput to black when paused.V4L2_DEC_CMD_RESUME3Resume decoding after a PAUSE command. When the de- coder has not been started yet, the driver will return an EPERM error code. When the decoder is already running, this command does nothing. No flags are defined for this command.V4L2_DEC_CMD_FLUSH4Flush any held capture buffers. Only valid for stateless decoders. This command is typically used when the appli- cation reached the end of the stream and the last output buffer had the V4L2_BUF_FLAG_MD_HOLD_CAPTURE_BUF flag set. This would prevent dequeueing the capture buffer cation reached the end of the stream and the last output buffer had the V4L2_BUF_FLAG_MD_HOLD_CAPTURE_BUF flag set. This wou		0	paused, this command will just change the playback speed. That means that calling V4L2_DEC_CMD_START when the de- coder was paused will not resume the decoder. You have to explicitly call V4L2_DEC_CMD_RESUME for that. This com- mand has one flag: V4L2_DEC_CMD_START_MUTE_AUDIO. If set, then audio will be muted when playing back at a non- standard speed. For a device implementing the Memory-to-Memory State- ful Video Decoder Interface, once the drain sequence is initiated with the V4L2_DEC_CMD_STOP command, it must be driven to completion before this command can be in- voked. Any attempt to invoke the command while the drain sequence is in progress will trigger an EBUSY error code. The command may be also used to restart the decoder in case of an implicit stop initiated by the decoder itself, with- out the V4L2_DEC_CMD_STOP being called explicitly. See Memory-to-Memory Stateful Video Decoder Interface for more details.
Startedyet, the driver will return an EPERM error code. When the decoder is already paused, this com- mand does nothing. This command has one flag: if V4L2_DEC_CMD_PAUSE_T0_BLACK is set, then set the de- coder output to black when paused.V4L2_DEC_CMD_RESUME3Resume decoding after a PAUSE command. When the de- coder has not been started yet, the driver will return an EPERM error code. When the decoder is already running, this command does nothing. No flags are defined for this command.V4L2_DEC_CMD_FLUSH4Flush any held capture buffers. Only valid for stateless decoders. This command is typically used when the appli- cation reached the end of the stream and the last output buffer had the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag set. This would prevent dequeueing the capture buffer cdinuxi Media Infrastructur fuserspacetARI command can be used to explicitly flush that final decoded frame. This command does nothing if there are no held capture	V4L2_DEC_CMD_STOP	1	this command does nothing. This command has two flags: if V4L2_DEC_CMD_STOP_TO_BLACK is set, then the decoder will set the picture to black after it stopped decoding. Otherwise the last image will repeat. If V4L2_DEC_CMD_STOP_IMMEDIATELY is set, then the decoder stops immediately (ignoring the pts value), otherwise it will keep decoding until timestamp >= pts or until the last of the pending data from its internal buffers was decoded. For a device implementing the Memory-to-Memory State- ful Video Decoder Interface, the command will initiate the drain sequence as documented in Memory-to-Memory Stateful Video Decoder Interface. No flags or other argu- ments are accepted in this case. Any attempt to invoke the command again before the sequence completes will trig- ger an EBUSY error code.
V4L2_DEC_CMD_RESUME 3 Resume decoding after a PAUSE command. When the decoder has not been started yet, the driver will return an EPERM error code. When the decoder is already running, this command does nothing. No flags are defined for this command. V4L2_DEC_CMD_FLUSH 4 Flush any held capture buffers. Only valid for stateless decoders. This command is typically used when the application reached the end of the stream and the last output buffer had the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag set. This would prevent dequeueing the capture buffer cd.inuxiMedia Infrastructureruser.spacetARI command can be used to explicitly flush that final decoded frame. This command does nothing if there are no held capture	V4L2_DEC_CMD_PAUSE	2	Pause the decoder. When the decoder has not been started yet, the driver will return an EPERM error code. When the decoder is already paused, this com- mand does nothing. This command has one flag: if V4L2_DEC_CMD_PAUSE_T0_BLACK is set, then set the de-
 decoders. This command is typically used when the application reached the end of the stream and the last output buffer had the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF flag set. This would prevent dequeueing the capture buffer cditouxinMedia InstastructureruserspagetABI command can be used to explicitly flush that final decoded frame. This command does nothing if there are no held capture 	V4L2_DEC_CMD_RESUME	3	Resume decoding after a PAUSE command. When the de- coder has not been started yet, the driver will return an EPERM error code. When the decoder is already running, this command does nothing. No flags are defined for this
464 Chapter 7. cdimuxi Media Infrastructureruserspacet ABI command can be used to explicitly flush that final decoded frame. This command does nothing if there are no held capture	V4L2_DEC_CMD_FLUSH	4	decoders. This command is typically used when the appli- cation reached the end of the stream and the last output buffer had the V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF
can be used to explicitly flush that final decoded frame. This command does nothing if there are no held capture	464 Chapte	er 7	
			can be used to explicitly flush that final decoded frame.

Table 113: Decoder Commands

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EBUSY** A drain sequence of a device implementing the Memory-to-Memory Stateful Video Decoder Interface is still in progress. It is not allowed to issue another decoder command until it completes.
- **EINVAL** The cmd field is invalid.
- **EPERM** The application sent a PAUSE or RESUME command when the decoder was not running.

ioctl VIDIOC_DQEVENT

Name

VIDIOC_DQEVENT - Dequeue event

Synopsis

int ioctl(int fd, VIDIOC_DQEVENT, struct v4l2_event *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_event.

Description

Dequeue an event from a video device. No input is required for this ioctl. All the fields of the struct v4l2_event structure are filled by the driver. The file handle will also receive exceptions which the application may get by e.g. using the select system call.

v4l2_event

	type	-]
u32	type	Type of the event,	
union {	u	Types.	
struct		Event data	
	vsync	for event	
v4l2_event_vs	ync	V4L2_EVENT	
struct	ctrl	Event data	T
	-		
v4l2_event_ct	I L		
atmiat	frame sync	V4L2_EVENT_ Event data	T Contraction of the second seco
struct	frame_sync		
v4l2_event_fr	ame_sync	for event V4I 2 EVENT	FRAME_SYNC.
struct	motion det	Event data	
v4l2_event_mo		for event	
			I MOTION DET.
struct	src change	Event data	
v4l2_event_sr		for event	
v4t2_event_st			I SOURCE CHANGE.
u8	data[64]	Event data.	
uo		Defined	
		by the	
		event type.	
		The union	
		should be	
		used to de-	
		fine easily	
		accessible	
		type for events.	
1		events.	
} u32	pending	Number	
u32	pending	of pending	
		events ex-	
		cluding this one.	
u32	sequence	Event se-	
uJZ	Jequence	quence	
		number.	
		The se-	
		quence number	
		is incre-	
		mented	
		for every subscribed	
		event that	
		takes place.	
		If sequence numbers	
Chapte	r 7. Linux Media Infr	astructure.u	serspace API
		tiguous it	
		means that	
		means that	

Table 114: struct v4l2_event

Table 115: Event Types

for VIDIOC_UNSUBSCRIBE_EVENT for unsubscribing all events at once. V4L2_EVENT_VSYNC 1 This event is triggered on the vertical sync. This event has a struct v4l2_event_vsync associated with it. V4L2_EVENT_EOS 2 This event is triggered when the end of a stream is reached. This is typically used with MPEG decoders to report to the application when the last of the MPEG stream has been decoded.	eldel	e 115: Event	Types
V4L2_EVENT_VSYNC 1 This event is triggered on the vertical sync. This event has a struct v4l2_event_vsync associated with it. V4L2_EVENT_E0S 2 This event is triggered when the end of a stream is reached. This is typically used with MPEG decoders to report to the application when the last of the MPEG stream has been decoded. V4L2_EVENT_CTRL 3 This event requires that the id matches the control ID from which you want to receive events. This event is triggered if the con- trol's value changes, if a button control is pressed or if the control's flags change. This event has a struct v4l2_event_ctrl associ- ated with it. This struct contains much of the same information as struct v4l2_queryctrl and struct v4l2_control. If the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v4l2_event_ctrl of the second- oldest event is ORed with the changes field of the oldest event. V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sync will not be incre- mented. This causes two consecutive frame sequence enumbers to have n times frame is sequence numbers to have n times frame is	V4L2_EVENT_ALL	0 -	
V4L2_EVENT_VSYNC 1 This event is triggered on the vertical sync. This event has a struct v4L2_event_vsync associated with it. V4L2_EVENT_EOS 2 This event is triggered when the end of a stream is reached. This is typically used with MPEG decoders to report to the application when the last of the MPEG stream has been decoded. V4L2_EVENT_CTRL 3 This event requires that the id matches the control ID from which you want to receive events. This event is triggered if the con- trol's value changes, if a button control is pressed or if the control's flags change. This event has a struct v4L2_event_ctrl associ- ated with it. This struct contains much of the same information as struct v4L2_query_ctrl and struct v4L2_control. If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v4L2_event_trl of the second- oldest event is Rept, but the changes field of the second-oldest event. V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception of a frame has begun. This event has a struct v4L2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4L2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame is			
V4L2_EVENT_EOS2This event is triggered when the end of a stream is reached. This is typically used with MPEG decoders to report to the application when the last of the MPEG stream has been decoded.V4L2_EVENT_CTRL3This event requires that the id matches the control ID from which you want to receive events. This event is triggered if the con- trol's value changes, if a button control is pressed or if the control's flags change. This event has a struct v412_event_ctrl associ- ated with it. This struct contains much of the same information as struct v412_queryctrl and struct v412_control. If the event will not be sent to the file handle that called the ioot function. This event type will ensure that on infor- mation is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second- oldest event is Rept, but the changes field of the second- oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the cases the frame_sequence field in struct v412_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence mumbers to have n times frame in sequence mented this event are nimes frame a sequence field in struct v412_event_frame_sync avent type will not be incre- mented. This causes two consecutive frame sequence field in struct v412_event_frame_sync avent is in the field in struct v412_event_frame sync avent is made in struct v412_event_frame sync avent is made in struct v412_event_frame_sync avent is made in struct v412_event_frame_sync avent is in the sequence made in the sequence field in struct v412_event_frame_sync avent is made in the<			5
v4L2_EVENT_EOS 2 This event is triggered when the end of a stream is reached. This is typically used with MPEG decoders to report to the application when the last of the MPEG stream has been decoded. v4L2_EVENT_CTRL 3 This event requires that the id matches the control ID from which you want to receive events. This event is triggered if the control's slags change. This event has a struct v4l2_event_ctrl associated with it. This struct contains much of the same information as struct v4l2_queryctrl and struct v4l2_control. If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the icotl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event tis room internally. In that case the struct v4l2_event_ctrl of the second-oldest event. V4L2_EVENT_FRAME_SYNC 4 V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incremented. This causes two consecutive frame sequence mumbers to have n times frame in-	V4L2_EVENT_VSYNC	1	
V4L2_EVENT_EOS 2 This event is triggered when the end of a stream is reached. This is typically used with MPEG decoders to report to the application when the last of the MPEG stream has been decoded. V4L2_EVENT_CTRL 3 This event requires that the id matches the control ID from which you want to receive events. This event is triggered if the control's value changes, if a button control is pressed or if the control is flags change. This event has a struct v412_event_ctrl associated with it. This struct contains much of the same information as struct v412 queryctrl and struct v412_control. If the event is generated due to a call to VIDIOC_S_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second-oldest event is NGRed with the changes field of the oldest event. V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v412_event frame_spnc will not be incremented. This causes two consecutive frame sequence numbers to have n times frame in-			
V4L2_EVENT_CTRL 3 This event requires that the id matches the control ID from which you want to receive events. This event is triggered if the control's value changes, if a button control is pressed or if the control's flags change. This event has a struct v412_event_ctrl associated with it. This struct contains much of the same information as struct v412_queryctrl and struct v412_control. If the event is generated due to a call to VIDIOC S_CTRL or VIDIOC S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no information is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second-oldest event is ORed with the changes field of the oldest event. V4L2_EVENT_FRAME_SYNC 4 V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrunt it might not be able to generate this event. In such cases the frame_squence field in struct v412_event frame_sync will not be incremented. This causes two consecutive frame is event can make the secure numbers to have n times frame in-			associated with it.
WPEG decoders to report to the application when the last of the MPEG stream has been decoded.V4L2_EVENT_CTRL3This event requires that the id matches the control ID from which you want to receive events. This event is triggered if the con- trol's value changes, if a button control is pressed or if the control's flags change. This event has a struct v412_event_ctrl associ- ated with it. This struct contains much of the same information as struct v412_queryctrl and struct v412_control. If the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event is room internally. In that case the struct v412_event_ctrl of the second- oldest event is lock with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the cases of a buffer underrun it might not be able to generate field in struct v412_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-	V4L2_EVENT_EOS	2	This event is triggered when the end of a
V4L2_EVENT_CTRL 3 This event requires that the id matches the control ID from which you want to receive events. This event is triggered if the control's value changes, if a button control is pressed or if the control's flags change. This event has a struct v412_event_ctrl associated with it. This struct contains much of the same information as struct v412_queryctrl and struct v412_control. If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents masty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no information is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second-oldest event is ORed with the changes field of the oldest event. V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception of a frame has begun. This event this event the struct v412_event_trl of the second-oldest event. Is off an struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v412_event_frame sequence field in struct v412_event_frame in-			stream is reached. This is typically used with
V4L2_EVENT_CTRL3This event requires that the id matches the control ID from which you want to receive events. This event is triggered if the con- trol's value changes, if a button control is pressed or if the control"s flags change. This event has a struct v412_event_ctrl associ- ated with it. This struct contains much of the same information as struct v412_queryctrl and struct v412_control. If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This event has a struct v412_event_then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event is kept, but the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of 			MPEG decoders to report to the application
V4L2_EVENT_CTRL3This event requires that the id matches the control ID from which you want to receive events. This event is triggered if the con- trol's value changes, if a button control is pressed or if the control's flags change. This event has a struct v412_event_ctrl associ- ated with it. This struct contains much of the same information as struct v412_queryctrl and struct v412_control. If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event is kept, but the changes field of the second-oldest event is kept, but the changes field of the second-oldest event. Is oRed with the changes field of the lodest event.V4L2_EVENT_FRAME_SYNC44Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_squence field in struct v412_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in sequence numbers to have n times frame is 			when the last of the MPEG stream has been
velt2_EVENT_FRAME_SYNC4control ID from which you want to receive events. This event is triggered if the con- trol's value changes, if a button control is pressed or if the control's flags change. This event has a struct v4l2_event_ctrl associ- ated with it. This struct contains much of the same information as struct v4l2_queryctrl and struct v4l2_control. If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v4l2_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC44Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in sequence numbers to have n times frame			decoded.
velt2_EVENT_FRAME_SYNC4control ID from which you want to receive events. This event is triggered if the con- trol's value changes, if a button control is pressed or if the control's flags change. This event has a struct v4l2_event_ctrl associ- ated with it. This struct contains much of the same information as struct v4l2_queryctrl and struct v4l2_control. If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v4l2_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC44Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in sequence numbers to have n times frame	V4L2_EVENT_CTRL	3	This event requires that the id matches the
trol' s value changes, if a button control is pressed or if the control's flags change. This event has a struct v412_event_ctrl associated with it. This struct contains much of the same information as struct v412_queryctrl and struct v412_control. If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no information is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second-oldest event is ORed with the changes field of the oldest event. V4L2_EVENT_FRAME_SYNC 4 A Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v412_event_frame_spnc will not be incremented. This causes two consecutive frame sequence numbers to have n times frame in-			
trol' s value changes, if a button control is pressed or if the control's flags change. This event has a struct v412_event_ctrl associated with it. This struct contains much of the same information as struct v412_queryctrl and struct v412_control. If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no information is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second-oldest event is ORed with the changes field of the oldest event. V4L2_EVENT_FRAME_SYNC 4 A Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v412_event_frame_spnc will not be incremented. This causes two consecutive frame sequence numbers to have n times frame in-			events. This event is triggered if the con-
V4L2_EVENT_FRAME_SYNC4V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame_sequence field in structv4L2_event_frame_sync will not be is structv4L2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
v4L2_EVENT_FRAME_SYNC4V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sequence field in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two onsecutive frame sequence numbers to have n times frame in- case to have n times frame in-			
ated with it. This struct contains much of the same information as struct v4l2_queryctrl and struct v4l2_control.If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v4l2_event_ctrl of the second- oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
and struct v4l2_control.If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v4l2_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
and struct v4l2_control.If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v4l2_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			same information as struct v4l2 queryctrl
V4L2_EVENT_FRAME_SYNC4If the event is generated due to a call to VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
 VIDIOC_S_CTRL or VIDIOC_S_EXT_CTRLS, then the event will not be sent to the file handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no information is lost when more events are raised than there is room internally. In that case the struct v4L2_event_ctrl of the second-oldest event is kept, but the changes field of the second-oldest event. V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception of a frame has begun. This event has a struct v4L2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_squence field in struct v4L2_event_frame_sync will not be incremented. This causes two consecutive frame sequence numbers to have n times frame in- 			
V4L2_EVENT_FRAME_SYNC4V4L2_EVENT_FRAME_SYNC4then the ardware needs to be stopped in the case of a buffer underrun it might not be stopped in the case of a buffer underrun it might not be able to generate this event. This causes two consecutive frame sequence numbers to have n times frame in-			0
File handle that called the ioctl function. This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v412_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
This prevents nasty feedback loops. If you do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v4l2_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
do want to get the event, then set the V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC44Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v412_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
V4L2_EVENT_SUB_FL_ALLOW_FEEDBACK flag. This event type will ensure that no infor- mation is lost when more events are raised than there is room internally. In that case the struct v4l2_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
This event type will ensure that no information is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v412_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			5
mation is lost when more events are raised than there is room internally. In that case the struct v412_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v412_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v412_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
than there is room internally. In that case the struct v4l2_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
the struct v4l2_event_ctrl of the second- oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
V4L2_EVENT_FRAME_SYNC4oldest event is kept, but the changes field of the second-oldest event is ORed with the changes field of the oldest event.V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			5
V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
V4L2_EVENT_FRAME_SYNC4Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
V4L2_EVENT_FRAME_SYNC 4 Triggered immediately when the reception of a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
a frame has begun. This event has a struct v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-	VAL2 EVENT ERAME SYNC	1	<u> </u>
v4l2_event_frame_sync associated with it. If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-		T	
If the hardware needs to be stopped in the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
the case of a buffer underrun it might not be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
be able to generate this event. In such cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			
cases the frame_sequence field in struct v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			5
v4l2_event_frame_sync will not be incre- mented. This causes two consecutive frame sequence numbers to have n times frame in-			-
mented. This causes two consecutive frame sequence numbers to have n times frame in-			
sequence numbers to have n times frame in-			
terval in between them.			
Continued on next page	Continued of the	<u> </u>	

Continued on next page

V4L2_EVENT_SOURCE_CHANGE	5	This event is triggered when a source param- eter change is detected during runtime by the video device. It can be a runtime reso- lution change triggered by a video decoder or the format change happening on an input connector. This event requires that the id
		matches the input index (when used with a video device node) or the pad index (when used with a subdevice node) from which you want to receive events.
		This event has a struct v4l2_event_src_change associated with it. The changes bitfield denotes what has changed for the subscribed pad. If multiple events occurred before application could dequeue them, then the changes will have
V4L2_EVENT_MOTION_DET	6	the ORed value of all the events generated. Triggered whenever the motion detec-
V4LZ_LVENI_NUIIUN_DEI	0	tion state for one or more of the re- gions changes. This event has a struct v412_event_motion_det associated with it.
V4L2_EVENT_PRIVATE_START	0x0800000	Base event number for driver-private events.

Table 115 - continued from previous page

v4l2_event_vsync

Tahlo	116.	struct v4l2	ovent	vevne
Table	110:	SULUCE V412	event	vSync

	_	_ 5		
u8	field	The upcoming field.	See enum v4l2_f	ield.

v4l2_event_ctrl

Table 117: s	truct v4l2_event	_ctrl		
u32	changes	A bit-		
	5	mask		
		that tells		
		what has		
		changed.		
		See		
		Control		
		Changes.		
u32	type	The type		
		of the		
		con-		
		trol. See		
		enum		
			1 +\/no	
		v4l2_ctr	L_Lype.	
union {	(anonymous)			
s32	value	The 32-		
		bit value		
		of the		
		control		
		for 32-bit		
		control		
		types.		
		-		
		0 for		
		string		
		controls		
		since the		
		value of		
		a string		
		can-		
		not be		
		passed		
		using		
		ioctl		
		VID-		
		IOC_DQE	VENI.	
s64	value64	The 64-		
		bit value		
		of the		
		control		
		for 64-bit		
		control		
		types.		
}		0,10001		
u32	flags	The		
	rtays			
		control		
		flags.		
		See		
		Control		
		Flags.		
s32	minimum	The min-		
7.2. Part I - Video for Linux API		imum	4	l69
		value of		
		the con-		
		trol See		
		Frai Saa		

Table 117: struct v4l2 event ctrl

v4l2_event_frame_sync

Table 118: struct v4l2_event_frame_sync

u32 frame_sequence	The sequence number of the frame being re- ceived.
--------------------	---

v4l2_event_src_change

Table 119: struct v4l2_event_src_change

u32	changes	A bitmask that tells what has changed.	See
		Source Changes.	

v4l2_event_motion_det

Tal	ole 120: struct v4l2_eve	ent_motion_det
_u32	flags	Currently only one flag is available: if
		V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ is set,
		then the frame_sequence field is valid, oth-
		erwise that field should be ignored.
u32	frame_sequence	The sequence number of the frame
		being received. Only valid if the
		V4L2_EVENT_MD_FL_HAVE_FRAME_SEQ flag
		was set.
u32	region_mask	The bitmask of the regions that re-
		ported motion. There is at least one
		region. If this field is 0, then no mo-
		tion was detected at all. If there is no
		V4L2_CID_DETECT_MD_REGION_GRID control
		(see Detect Control Reference) to assign a
		different region to each cell in the motion
		detection grid, then that all cells are au-
		tomatically assigned to the default region

Table 121: Control Changes

		9
V4L2_EVENT_CTRL_CH_VALUE	0x0001	This control event was triggered because
		the value of the control changed. Spe-
		cial cases: Volatile controls do no gen-
		erate this event; If a control has the
		V4L2_CTRL_FLAG_EXECUTE_ON_WRITE flag
		set, then this event is sent as well, regard-
		less its value.
V4L2_EVENT_CTRL_CH_FLAGS	0x0002	This control event was triggered because the
		control flags changed.
V4L2_EVENT_CTRL_CH_RANGE	0x0004	This control event was triggered because
		the minimum, maximum, step or the default
		value of the control changed.

0.

V4L2_EVENT_SRC_CH_RESOLUTION 0x0001 This event gets triggered when a resolution change is detected at an input. This can come from an input connector or from a video decoder. Applications will have to query the new resolution (if any, the signal may also have been lost). For stateful decoders follow the guide lines in Memory-to-Memory Stateful Video Decoder Interface.
come from an input connector or from a video decoder. Applications will have to query the new resolution (if any, the signal may also have been lost). For stateful decoders follow the guide lines in Memory-to-Memory Stateful Video
decoder. Applications will have to query the new resolution (if any, the signal may also have been lost). For stateful decoders follow the guide lines in Memory-to-Memory Stateful Video
new resolution (if any, the signal may also have been lost). For stateful decoders follow the guide lines in Memory-to-Memory Stateful Video
new resolution (if any, the signal may also have been lost). For stateful decoders follow the guide lines in Memory-to-Memory Stateful Video
have been lost). For stateful decoders follow the guide lines in Memory-to-Memory Stateful Video
For stateful decoders follow the guide lines in Memory-to-Memory Stateful Video
lines in Memory-to-Memory Stateful Video
vices have to query the new timings using
ioctl VIDIOC QUERY DV TIMINGS or VID
IOC QUERYSTD.
Important: even if the new video timings
appear identical to the old ones, receiving
this event indicates that there was an issue
with the video signal and you must stop and
restart streaming (VIDIOC_STREAMOFF fol
lowed by VIDIOC_STREAMON). The reason
is that many Video Capture devices are no
able to recover from a temporary loss of sig
nal and so restarting streaming I/O is re
quired in order for the hardware to synchro
nize to the video signal.

Table 122: Source Changes

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP

Name

VIDIOC_DV_TIMINGS_CAP - VIDIOC_SUBDEV_DV_TIMINGS_CAP - The capabilities of the Digital Video receiver/transmitter

Synopsis

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dv_timings_cap.

Description

To query the capabilities of the DV receiver/transmitter applications initialize the pad field to 0, zero the reserved array of struct v4l2 dv timings cap and call the VIDIOC DV TIMINGS CAP ioctl on a video node and the driver will fill in the structure.

Drivers may return different values after switching the video input or Note: output.

When implemented by the driver DV capabilities of subdevices can be queried by calling the VIDIOC SUBDEV DV TIMINGS CAP ioctl directly on a subdevice node. The capabilities are specific to inputs (for DV receivers) or outputs (for DV transmitters), applications must specify the desired pad number in the struct v4l2 dv timings cap pad field and zero the reserved array. Attempts to query capabilities on a pad that doesn't support them will return an EINVAL error code.

v4l2 bt timings cap

	Т	able 123: struct v4l2_bt_timings_cap
u32	min_width	Minimum width of the active video in pixels.
_u32	max_width	Maximum width of the active video in pixels.
_u32	min_height	Minimum height of the active video in lines.
_u32	max_height	Maximum height of the active video in lines.
u64	min_pixelcloc	Minimum pixelclock frequency in Hz.
u64	<pre>max_pixelcloc</pre>	Maximum pixelclock frequency in Hz.
_u32	standards	The video standard(s) supported by the hardware. See DV BT Timing
		standards for a list of standards.
_u32	capabilities	Several flags giving more information about the capabilities. See DV
		BT Timing capabilities for a description of the flags.
u32	reserved[16]	Reserved for future extensions. Drivers must set the array to zero.

v4l2_dv_timings_cap

	_	<u>a</u>
u32	type	Type of DV tim-
		ings as listed in
		DV Timing types.
u32	pad	Pad number as
		reported by the
		media controller
		API. This field is
		only used when
		operating on a
		subdevice node.
		When operating
		on a video node
		applications must
		set this field to
		zero.
u32	reserved[2]	Reserved for fu-
		ture extensions.
		Drivers and appli-
		cations must set
		the array to zero.
union	(anonymous)	
{	-	
struc	bt	BT.656/1120 tim-
v4l2_	<pre>bt_timings_cap</pre>	ings capabilities
		of the hardware.
u32	raw_data[32]	<u> </u>
}		
L	1	

Table 124: struct v4l2_dv_timings_cap

Table 125: DV BT Timing capabilities

Flag	Description
V4L2_DV_BT_CAP_INTERLACED	Interlaced formats are supported.
V4L2_DV_BT_CAP_PROGRESSIVE	Progressive formats are supported.
V4L2_DV_BT_CAP_REDUCED_BLANKING	CVT/GTF specific: the timings can make use of re-
	duced blanking (CVT) or the 'Secondary GTF' curve
	(GTF).
V4L2_DV_BT_CAP_CUSTOM	Can support non-standard timings, i.e. timings not be-
	longing to the standards set in the standards field.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_ENCODER_CMD, VIDIOC_TRY_ENCODER_CMD

Name

 $\label{eq:vidio} VIDIOC_ENCODER_CMD$ - $VIDIOC_TRY_ENCODER_CMD$ - $Execute \ an \ encoder \ command$

Synopsis

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_encoder_cmd.

Description

These ioctls control an audio/video (usually MPEG-) encoder. VIDIOC_ENCODER_CMD sends a command to the encoder, VIDIOC_TRY_ENCODER_CMD can be used to try a command without actually executing it.

To send a command applications must initialize all fields of a struct v4l2_encoder_cmd and call VIDIOC_ENCODER_CMD or VIDIOC_TRY_ENCODER_CMD with a pointer to this structure.

The cmd field must contain the command code. The flags field is currently only used by the STOP command and contains one bit: If the V4L2_ENC_CMD_STOP_AT_GOP_END flag is set, encoding will continue until the end of the current Group Of Pictures, otherwise it will stop immediately.

A read() or VIDIOC_STREAMON call sends an implicit START command to the encoder if it has not been started yet. After a STOP command, read() calls will read the remaining data buffered by the driver. When the buffer is empty, read() will return zero and the next read() call will restart the encoder.

A close() or VIDIOC_STREAMOFF call of a streaming file descriptor sends an implicit immediate STOP to the encoder, and all buffered data is discarded.

These ioctls are optional, not all drivers may support them. They were introduced in Linux 2.6.21.

v4l2_encoder_cmd

u32	cmd	The encoder command, see Encoder Com-	
		mands.	
u32	flags	Flags to go with the command, see Encoder	
		Command Flags. If no flags are defined for	
		this command, drivers and applications must	
		set this field to zero.	
u32	data[8]	Reserved for future extensions. Drivers and	
		applications must set the array to zero.	

Table 126: struct v4l2 encoder cmd

V4L2_ENC_CMD_START	0	Start the encoder. When the encoder is al- ready running or paused, this command does nothing. No flags are defined for this com- mand.
V4L2_ENC_CMD_STOP	1	Stop the encoder. When the V4L2_ENC_CMD_STOP_AT_GOP_END flag is set, encoding will continue until the end of the current Group Of Pictures, otherwise encoding will stop immediately. When the encoder is already stopped, this command does nothing. mem2mem encoders will send a V4L2_EVENT_EOS event when the last frame has been encoded and all frames are ready to be dequeued and will set the V4L2_BUF_FLAG_LAST buffer flag on the last buffer of the capture queue to indicate there will be no new buffers produced to dequeue. This buffer may be empty, indicated by the driver setting the bytesused field to 0. Once the V4L2_BUF_FLAG_LAST flag was set, the VIDIOC_DQBUF ioctl will not block anymore, but return an EPIPE error code.
V4L2_ENC_CMD_PAUSE	2	Pause the encoder. When the encoder has not been started yet, the driver will return an EPERM error code. When the encoder is already paused, this command does nothing. No flags are defined for this command.
V4L2_ENC_CMD_RESUME	3	Resume encoding after a PAUSE command. When the encoder has not been started yet, the driver will return an EPERM error code. When the encoder is already running, this command does nothing. No flags are defined for this command.

14010 120: 1	liioodoi	Sommand Flags
V4L2_ENC_CMD_STOP_AT_GOP_END	0x0001	Stop encoding at the end of the current
		Group Of Pictures, rather than immediately.

Table 128: Encoder Command Flags

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The cmd field is invalid.

EPERM The application sent a PAUSE or RESUME command when the encoder was not running.

ioctl VIDIOC_ENUMAUDIO

Name

VIDIOC_ENUMAUDIO - Enumerate audio inputs

Synopsis

int ioctl(int fd, VIDIOC_ENUMAUDIO, struct v4l2_audio *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audio.

Description

To query the attributes of an audio input applications initialize the index field and zero out the reserved array of a struct v4l2_audio and call the ioctl VID-IOC_ENUMAUDIO ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To enumerate all audio inputs applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

See VIDIOC_G_AUDIO for a description of struct v4l2_audio.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The number of the audio input is out of bounds.

ioctl VIDIOC_ENUMAUDOUT

Name

VIDIOC_ENUMAUDOUT - Enumerate audio outputs

Synopsis

int ioctl(int fd, VIDIOC_ENUMAUDOUT, struct v4l2_audioout *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audioout.

Description

To query the attributes of an audio output applications initialize the index field and zero out the reserved array of a struct v4l2_audioout and call the VIDIOC_G_AUDOUT ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To enumerate all audio outputs applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

Note: Connectors on a TV card to loop back the received audio signal to a sound card are not audio outputs in this sense.

See VIDIOC_G_AUDIOout for a description of struct v4l2_audioout.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The number of the audio output is out of bounds.

ioctl VIDIOC_ENUM_DV_TIMINGS, VIDIOC_SUBDEV_ENUM_DV_TIMINGS

Name

VIDIOC_ENUM_DV_TIMINGS - VIDIOC_SUBDEV_ENUM_DV_TIMINGS - Enumerate supported Digital Video timings

Synopsis

VIDIOC_ENUM_DV_TIMINGS,	struct
dv_timings *argp)	
	struct
	VIDIOC_ENUM_DV_TIMINGS, dv_timings *argp) VIDIOC_SUBDEV_ENUM_DV_TIMINGS, dv_timings *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_enum_dv_timings.

Description

While some DV receivers or transmitters support a wide range of timings, others support only a limited number of timings. With this ioctl applications can enumerate a list of known supported timings. Call ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP to check if it also supports other standards or even custom timings that are not in this list.

To query the available timings, applications initialize the index field, set the pad field to 0, zero the reserved array of struct v4l2_enum_dv_timings and call the VIDIOC_ENUM_DV_TIMINGS ioctl on a video node with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To enumerate all supported DV timings, applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

Note: Drivers may enumerate a different set of DV timings after switching the video input or output.

When implemented by the driver DV timings of subdevices can be queried by calling the VIDIOC_SUBDEV_ENUM_DV_TIMINGS ioctl directly on a subdevice node. The DV timings are specific to inputs (for DV receivers) or outputs (for DV transmitters), applications must specify the desired pad number in the struct v4l2_enum_dv_timings pad field. Attempts to enumerate timings on a pad that doesn't support them will return an EINVAL error code.

v4l2_enum_dv_timings

_u32	index	Number of the DV timings, set by the appli-
		cation.
u32	pad	Pad number as reported by the media con- troller API. This field is only used when op- erating on a subdevice node. When operat- ing on a video node applications must set this field to zero.
u32	reserved[2]	Reserved for future extensions. Drivers and applications must set the array to zero.
struct v4l2_dv_timings	timings	The timings.

Table 129: struct v4l2_enum_dv_timings

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_enum_dv_timings index is out of bounds or the pad number is invalid.

ENODATA Digital video presets are not supported for this input or output.

ioctl VIDIOC_ENUM_FMT

Name

VIDIOC_ENUM_FMT - Enumerate image formats

Synopsis

int ioctl(int fd, VIDIOC_ENUM_FMT, struct v4l2_fmtdesc *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_fmtdesc.

Description

To enumerate image formats applications initialize the type, mbus_code and index fields of struct v4l2_fmtdesc and call the ioctl VIDIOC_ENUM_FMT ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code. All formats are enumerable by beginning at index zero and incrementing by one until EINVAL is returned. If applicable, drivers shall return formats in preference order, where preferred formats are returned before (that is, with lower index value) less-preferred formats.

Depending on the V4L2_CAP_I0_MC capability, the mbus_code field is handled differently:

1) V4L2_CAP_I0_MC is not set (also known as a 'video-node-centric' driver)

Applications shall initialize the mbus_code field to zero and drivers shall ignore the value of the field.

Drivers shall enumerate all image formats.

Note: After switching the input or output the list of enumerated image formats may be different.

2) V4L2_CAP_I0_MC is set (also known as an 'MC-centric' driver)

If the mbus_code field is zero, then all image formats shall be enumerated.

If the mbus_code field is initialized to a valid (non-zero) media bus format code, then drivers shall restrict enumeration to only the image formats that can produce (for video output devices) or be produced from (for video capture devices) that media bus code. If the mbus_code is unsupported by the driver, then EINVAL shall be returned.

Regardless of the value of the mbus_code field, the enumerated image formats shall not depend on the active configuration of the video device or device pipeline.

v4l2_fmtdesc

u32	index	Number of the format in the enumeration, set
		by the application. This is in no way related
		to the pixelformat field.
u32	type	Type of the data stream, set by the ap-
		plication. Only these types are valid
		here: V4L2_BUF_TYPE_VIDE0_CAPTURE,
		V4L2_BUF_TYPE_VIDE0_CAPTURE_MPLANE,
		V4L2_BUF_TYPE_VIDE0_OUTPUT,
		V4L2_BUF_TYPE_VIDE0_OUTPUT_MPLANE,
		V4L2_BUF_TYPE_VIDE0_OVERLAY,
		V4L2 BUF TYPE SDR CAPTURE,
		V4L2 BUF TYPE SDR OUTPUT,
		V4L2 BUF TYPE META CAPTURE and
		V4L2_BUF_TYPE_META_OUTPUT. See
		v4l2 buf type.
u32	flags	See Image Format Description Flags
u32 u8	description[32]	Description of the format, a NUL-terminated
		ASCII string. This information is intended for
		the user, for example: "YUV 4:2:2".
u32	pixelformat	The image format identifier. This is a
u32	pixetionmat	four character code as computed by the
		v4l2_fourcc() macro:
#define v4l2_fourc	c(a,b,c,d)	
		32)(c)<<16) ((u32)(d)<<24))
		y this specification in Image Formats.
Several mage format	s are arready defined by	and specification in mage 1 or mats.
Attention: These of	codes are not the same a	as those used in the Windows world.
u32	mbus_code	Media bus code restricting the enumer-
		ated formats, set by the application. Only
		applicable to drivers that advertise the
		V4L2_CAP_I0_MC capability, shall be 0 other-
		wise.
_u32	reserved[3]	Reserved for future extensions. Drivers must

set the array to zero.

Table	130:	struct v4l2	fmtdesc
101010		0010000.11	0000000

Table 151. Image Format Description Flags			
V4L2_FMT_FLAG_COMPRESSED	0x0001	This is a compressed format.	
V4L2_FMT_FLAG_EMULATED	0x0002	This format is not native to the device but	
		emulated through software (usually libv4l2),	
		where possible try to use a native format in-	
		stead for better performance.	
V4L2_FMT_FLAG_CONTINUOUS_BYTE	977RIDAM	The hardware decoder for this compressed	
		bytestream format (aka coded format) is ca-	
		pable of parsing a continuous bytestream.	
		Applications do not need to parse the	
		bytestream themselves to find the bound-	
		aries between frames/fields. This flag	
		can only be used in combination with the	
		V4L2_FMT_FLAG_COMPRESSED flag, since this	
		applies to compressed formats only. This flag	
		is valid for stateful decoders only.	
V4L2_FMT_FLAG_DYN_RESOLUTION	0x0008	Dynamic resolution switching is sup-	
		ported by the device for this compressed	
		bytestream format (aka coded format).	
		It will notify the user via the event	
		V4L2_EVENT_SOURCE_CHANGE when changes	
		in the video parameters are detected. This	
		flag can only be used in combination with	
		the V4L2_FMT_FLAG_COMPRESSED flag, since	
		this applies to compressed formats only. It	
		is also only applies to stateful codecs.	

Table 131: Image Format Description Flags

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_fmtdesc type is not supported or the index is out of bounds.

If V4L2_CAP_I0_MC is set and the specified <code>mbus_code</code> is unsupported, then also return this error code.

ioctl VIDIOC_ENUM_FRAMESIZES

Name

VIDIOC_ENUM_FRAMESIZES - Enumerate frame sizes

Synopsis

int **ioctl**(int fd, VIDIOC_ENUM_FRAMESIZES, struct v4l2_frmsizeenum *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frmsizeenum that contains an index and pixel format and receives a frame width and height.

Description

This ioctl allows applications to enumerate all frame sizes (i. e. width and height in pixels) that the device supports for the given pixel format.

The supported pixel formats can be obtained by using the ioctl VID- $\rm IOC_ENUM_FMT$ function.

The return value and the content of the v4l2_frmsizeenum.type field depend on the type of frame sizes the device supports. Here are the semantics of the function for the different cases:

- **Discrete:** The function returns success if the given index value (zerobased) is valid. The application should increase the index by one for each call until EINVAL is returned. The v4l2_frmsizeenum.type field is set to V4L2_FRMSIZE_TYPE_DISCRETE by the driver. Of the union only the discrete member is valid.
- **Step-wise:** The function returns success if the given index value is zero and EINVAL for any other index value. The v4l2_frmsizeenum.type field is set to V4L2_FRMSIZE_TYPE_STEPWISE by the driver. Of the union only the stepwise member is valid.
- **Continuous:** This is a special case of the step-wise type above. The function returns success if the given index value is zero and EINVAL for any other index value. The v4l2_frmsizeenum.type field is set to V4L2_FRMSIZE_TYPE_CONTINUOUS by the driver. Of the union only the stepwise member is valid and the step_width and step_height values are set to 1.

When the application calls the function with index zero, it must check the type field to determine the type of frame size enumeration the device supports. Only for the V4L2_FRMSIZE_TYPE_DISCRETE type does it make sense to increase the index value to receive more frame sizes.

Note: The order in which the frame sizes are returned has no special meaning. In particular does it not say anything about potential default format sizes.

Applications can assume that the enumeration data does not change without any interaction from the application itself. This means that the enumeration data is

consistent if the application does not perform any other ioctl calls while it runs the frame size enumeration.

Structs

In the structs below, IN denotes a value that has to be filled in by the application, OUT denotes values that the driver fills in. The application should zero out all members except for the IN fields.

v4l2_frmsize_discrete

Table 132: struct v4l2 frmsize discrete

	-	—
u32	width	Width of the frame [pixel].
u32	height	Height of the frame [pixel].

v4l2_frmsize_stepwise

	—	_ i
u32	min_width	Minimum frame width [pixel].
u32	max_width	Maximum frame width [pixel].
u32	step_width	Frame width step size [pixel].
u32	min_height	Minimum frame height [pixel].
u32	max_height	Maximum frame height [pixel].
u32	step_height	Frame height step size [pixel].

Table 133: struct v4l2_frmsize_stepwise

v4l2_frmsizeenum

_	
index	IN: Index
	of the given
	frame size
	in the enu-
	meration.
pixel_format	IN: Pixel
	format for
	which the
	frame sizes
	are enu-
	merated.
type	OUT:
	Frame
	size type
	the device
	supports.
(anonymous)	OUT:
	Frame
	size with
	the given
	index.
discrete	
rmsize_discrete	
rmsize_stepwise	
reserved[2]	Reserved
	space for
	future use.
	Must be
	zeroed by
	drivers and
	- · ·
	applica-
	(anonymous) discrete rmsize_discrete stepwise rmsize_stepwise

Table 134: struct v4l2_frmsizeenum

Enums

v4l2_frmsizetypes

Table 135: enum v4l2_frmsizetypes

V4L2_FRMSIZE_TYPE_DISCRETE	1	Discrete frame size.
V4L2_FRMSIZE_TYPE_CONTINUOUS	2	Continuous frame size.
V4L2_FRMSIZE_TYPE_STEPWISE	3	Step-wise defined frame size.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_ENUM_FRAMEINTERVALS

Name

VIDIOC_ENUM_FRAMEINTERVALS - Enumerate frame intervals

Synopsis

int **ioctl**(int fd, VIDIOC_ENUM_FRAMEINTERVALS, struct v4l2_frmivalenum *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frmivalenum that contains a pixel format and size and receives a frame interval.

Description

This ioctl allows applications to enumerate all frame intervals that the device supports for the given pixel format and frame size.

The supported pixel formats and frame sizes can be obtained by using the ioctl VIDIOC_ENUM_FMT and ioctl VIDIOC_ENUM_FRAMESIZES functions.

The return value and the content of the v4l2_frmivalenum.type field depend on the type of frame intervals the device supports. Here are the semantics of the function for the different cases:

- **Discrete:** The function returns success if the given index value (zerobased) is valid. The application should increase the index by one for each call until EINVAL is returned. The v4l2_frmivalenum.type field is set to V4L2_FRMIVAL_TYPE_DISCRETE by the driver. Of the union only the discrete member is valid.
- **Step-wise:** The function returns success if the given index value is zero and EINVAL for any other index value. The v4l2_frmivalenum.type field is set to V4L2_FRMIVAL_TYPE_STEPWISE by the driver. Of the union only the stepwise member is valid.
- **Continuous:** This is a special case of the step-wise type above. The function returns success if the given index value is zero and EINVAL for any other index value. The v4l2_frmivalenum.type field is set to

V4L2_FRMIVAL_TYPE_CONTINUOUS by the driver. Of the union only the stepwise member is valid and the step value is set to 1.

When the application calls the function with index zero, it must check the type field to determine the type of frame interval enumeration the device supports. Only for the V4L2_FRMIVAL_TYPE_DISCRETE type does it make sense to increase the index value to receive more frame intervals.

Note: The order in which the frame intervals are returned has no special meaning. In particular does it not say anything about potential default frame intervals.

Applications can assume that the enumeration data does not change without any interaction from the application itself. This means that the enumeration data is consistent if the application does not perform any other ioctl calls while it runs the frame interval enumeration.

Note: Frame intervals and frame rates: The V4L2 API uses frame intervals instead of frame rates. Given the frame interval the frame rate can be computed as follows:

frame_rate = 1 / frame_interval

Structs

In the structs below, IN denotes a value that has to be filled in by the application, OUT denotes values that the driver fills in. The application should zero out all members except for the IN fields.

v4l2_frmival_stepwise

struct v4l2_fract	min	Minimum frame interval [s].
struct v4l2_fract	max	Maximum frame interval [s].
<pre>struct v4l2_fract</pre>	step	Frame interval step size [s].

Table 136: struct v4l2 frmival stepwise

v4l2_frmivalenum

index	IN: Index of the given frame interval in the enumeration.	
<pre>pixel_format</pre>	IN: Pixel format for which the frame intervals are enumer-	
	ated.	
width	IN: Frame width for which the frame intervals are enumer-	
	ated.	
height	IN: Frame height for which the frame intervals are enumer-	
	ated.	
type	OUT: Frame interval type the device supports.	
(anonymous)	OUT: Frame interval with the given index.	
discrete	Frame interval [s].	
ct		
stepwise		
ival_stepwise		
reserved[2]	Reserved space for future use. Must be ze-	
	roed by drivers and applications.	
	pixel_format width height type (anonymous) discrete ct stepwise ival_stepwise	

Table 137: struct v4l2 frmivalenum

Enums

v4l2_frmivaltypes

Table 138: enum v4l2_frmivaltypes

	_	
V4L2_FRMIVAL_TYPE_DISCRETE	1	Discrete frame interval.
V4L2_FRMIVAL_TYPE_CONTINUOUS	2	Continuous frame interval.
V4L2_FRMIVAL_TYPE_STEPWISE	3	Step-wise defined frame interval.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_ENUM_FREQ_BANDS

Name

VIDIOC_ENUM_FREQ_BANDS - Enumerate supported frequency bands

Synopsis

int **ioctl**(int fd, VIDIOC_ENUM_FREQ_BANDS, struct v4l2_frequency_band *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frequency_band.

Description

Enumerates the frequency bands that a tuner or modulator supports. To do this applications initialize the tuner, type and index fields, and zero out the reserved array of a struct v4l2_frequency_band and call the ioctl VID-IOC_ENUM_FREQ_BANDS ioctl with a pointer to this structure.

This ioctl is supported if the V4L2_TUNER_CAP_FREQ_BANDS capability of the corresponding tuner/modulator is set.

v4l2_frequency_band

		. struct v+12_irequency_band
u32	tuner	The tuner or modulator index number. This is the same value as in the struct v4l2_input tuner field and the struct
		v4l2_tuner index field, or the struct v4l2_output modulator
		field and the struct v4l2_modulator index field.
u32	type	The tuner type. This is the same value as in the
		struct v4l2_tuner type field. The type must be set to
		V4L2_TUNER_RADIO for /dev/radioX device nodes, and to
		V4L2_TUNER_ANALOG_TV for all others. Set this field to
		V4L2_TUNER_RADIO for modulators (currently only radio mod-
		ulators are supported). See v4l2_tuner_type
u32	index	Identifies the frequency band, set by the application.
u32	capability	The tuner/modulator capability flags for this frequency
		band, see Tuner and Modulator Capability Flags. The
		V4L2_TUNER_CAP_LOW or V4L2_TUNER_CAP_1HZ capability must
		be the same for all frequency bands of the selected
		tuner/modulator. So either all bands have that capability set,
		or none of them have that capability.
u32	rangelow	The lowest tunable frequency in units of 62.5 kHz, or if the
		capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5
		Hz, for this frequency band. A 1 Hz unit is used when the
		capability flag V4L2_TUNER_CAP_1HZ is set.
_u32	rangehigh	The highest tunable frequency in units of 62.5 kHz, or if the
		capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5
		Hz, for this frequency band. A 1 Hz unit is used when the
		capability flag V4L2_TUNER_CAP_1HZ is set.
u32	modulation	The supported modulation systems of this frequency band.
		See Band Modulation Systems.
		Note: Currently only one modulation system per frequency
		band is supported. More work will need to be done if mul-
		tiple modulation systems are possible. Contact the linux-
		media mailing list (https://linuxtv.org/lists.php) if you need
		such functionality.
u32	reserved[9]	Reserved for future extensions.
u52		Applications and drivers must set the array to zero.
		rippinouilono una arreito muor ser une array to zero.

Table 139: struct v4l2_	frequency_band
-------------------------	----------------

Table 140: Band Modulation Systems

		5
V4L2_BAND_MODULATION_VSB	0x02	Vestigial Sideband modulation, used for ana-
		log TV.
V4L2_BAND_MODULATION_FM	0x04	Frequency Modulation, commonly used for
		analog radio.
V4L2_BAND_MODULATION_AM	0x08	Amplitude Modulation, commonly used for
		analog radio.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The tuner or index is out of bounds or the type field is wrong.

ioctl VIDIOC_ENUMINPUT

Name

VIDIOC_ENUMINPUT - Enumerate video inputs

Synopsis

int ioctl(int fd, VIDIOC_ENUMINPUT, struct v4l2_input *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_input.

Description

To query the attributes of a video input applications initialize the index field of struct v4l2_input and call the ioctl VIDIOC_ENUMINPUT with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To enumerate all inputs applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

v4l2_input

	Table 141: struc	
u32	index	Identifies the input, set by the application.
u8	name[32]	Name of the video input, a NUL-terminated ASCII string, for example: "Vin (Composite 2)". This information is intended for the user, preferably the connector label on the device
		itself.
u32	type	Type of the input, see Input Types.
u32	audioset	 Drivers can enumerate up to 32 video and audio inputs. This field shows which audio inputs were selectable as audio source if this was the currently selected video input. It is a bit mask. The LSB corresponds to audio input 0, the MSB to input 31. Any number of bits can be set, or none. When the driver does not enumerate audio inputs no bits must be set. Applications shall not interpret this as lack of audio support. Some drivers automatically select audio sources and do not enumerate them since there is no choice anyway. For details on audio inputs and how to select the current input see Audio Inputs and Outputs.
u32	tuner	Capture devices can have zero or more tuners (RF demodulators). When the type is set to V4L2_INPUT_TYPE_TUNER this is an RF connector and this field identifies the tuner. It corresponds to struct v4l2_tuner field index. For details on tuners see Tuners and Modulators.
v4l2_std_id	std	Every video input supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dards.
u32	status	This field provides status information about the input. See Input Status Flags for flags. With the exception of the sensor orientation bits status is only valid when this is the cur- rent input.
u32	capabilities	This field provides capabilities for the input. See Input capabilities for flags.
u32	reserved[3]	Reserved for future extensions. Drivers must set the array to zero.

Table 141: struct v4l2_input

V4L2_INPUT_TYPE_TUNER	1	This input uses a tuner (RF demodulator).
V4L2_INPUT_TYPE_CAMERA	2	Any non-tuner video input, for example Com-
		posite Video, S-Video, HDMI, camera sensor.
		The naming as _TYPE_CAMERA is historical, to-
		day we would have called it _TYPE_VIDE0.
V4L2_INPUT_TYPE_TOUCH	3	This input is a touch device for capturing raw
		touch data.

Table 142: Input Types

Table 143: Input Status Flags

General			
V4L2_IN_ST_N0_POWER	0x0000001	Attached device is off.	
V4L2_IN_ST_N0_SIGNAL	0x0000002		
V4L2_IN_ST_N0_COLOR	0x00000004	The hardware supports color decoding, but does not	
		detect color modulation in the signal.	
Sensor Orientation	1		
V4L2_IN_ST_HFLIP	0x00000010	The input is connected to a device that produces a	
		signal that is flipped horizontally and does not cor-	
		rect this before passing the signal to userspace.	
V4L2_IN_ST_VFLIP	0x0000020	The input is connected to a device that produces a	
		signal that is flipped vertically and does not correct	
		this before passing the signal to userspace note::	
		A 180 degree rotation is the same as HFLIP VFLIP	
Analog Video	1		
V4L2_IN_ST_N0_H_LOCK	0x00000100	No horizontal sync lock.	
V4L2_IN_ST_COLOR_KILL	0x00000200	A color killer circuit automatically disables color de-	
		coding when it detects no color modulation. When	
		this flag is set the color killer is enabled and has shut	
		off color decoding.	
V4L2_IN_ST_N0_V_LOCK		No vertical sync lock.	
V4L2_IN_ST_N0_STD_LOC	Ю x00000800	No standard format lock in case of auto-detection	
		format by the component.	
Digital Video			
V4L2_IN_ST_N0_SYNC	0x00010000	No synchronization lock.	
V4L2_IN_ST_N0_EQU	0x00020000	No equalizer lock.	
V4L2_IN_ST_N0_CARRIER	0x00040000	Carrier recovery failed.	
VCR and Set-Top Box			
V4L2_IN_ST_MACROVISIO	N0x01000000	Macrovision is an analog copy prevention sys-	
		tem mangling the video signal to confuse video	
		recorders. When this flag is set Macrovision has	
		been detected.	
V4L2_IN_ST_N0_ACCESS	0x02000000	Conditional access denied.	
V4L2 IN ST VTR	0x04000000	VTR time constant. [?]	

V4L2_IN_CAP_DV_TIMINGS	0x0000002This input supports setting video timings by
V4L2 IN CAP STD	using VIDIOC_S_DV_TIMINGS. 0x0000004This input supports setting the TV standard
V4L2_IN_CAF_STD	by using VIDIOC_S_STD.
V4L2_IN_CAP_NATIVE_SIZE	0x0000008This input supports setting the native size
	using the V4L2_SEL_TGT_NATIVE_SIZE selec-
	tion target, see Common selection defini-
	tions.

Table 144: Input capabilities

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_input index is out of bounds.

ioctl VIDIOC_ENUMOUTPUT

Name

VIDIOC_ENUMOUTPUT - Enumerate video outputs

Synopsis

int ioctl(int fd, VIDIOC_ENUMOUTPUT, struct v4l2_output *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_output.

Description

To query the attributes of a video outputs applications initialize the index field of struct v4l2_output and call the ioctl VIDIOC_ENUMOUTPUT with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To enumerate all outputs applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

v4l2_output

ASCII string, for example: "Vout". This information is intended for the user, preferably the connector label on the device itself. u32 type u32 audioset Drivers can enumerate up to 32 video and audio outputs. This field shows which audio outputs were selectable as the current output if this was the current velocity output. It is a bit mask. The LSB corresponds to audio output 0, the MSB to output 31. Any number of bits can be set, or none. When the driver does not enumerate audio outputs without enumerating them. For details on audio outputs and how to select the current output see Audio Inputs and Outputs. u32 modulator Output Quitator Output outputs. modulator Output doublator Quitator Output Quitator Output Quitator	u32		Identifies the output, set by the application.
	u8	name[32]	
u32 type Type of the output, see Output Type. u32 audioset Drivers can enumerate up to 32 video and audio outputs. This field shows which audio outputs were selectable as the current output if this was the currently selected video output. It is a bit mask. The LSB corresponds to audio output 0, the MSB to output 31. Any number of bits can be set, or none. When the driver does not enumerate audio outputs without enumerating them. For details on audio outputs without enumerating them.			
_u32 type Type of the output, see Output Type. _u32 audioset Drivers can enumerate up to 32 video and audio outputs. This field shows which audio outputs were selectable as the current output if this was the currently selected video output. It is a bit mask. The LSB corresponds to audio output 0, the MSB to output 31. Any number of bits can be set, or none. When the driver does not enumerate audio outputs without enumerating them. When the driver does not enumerate audio outputs without enumerating them. _u32 modulator Output devices can have zero or more RF modulators. When the type is V4L2_0UTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on audioautors. v4l2_std_id std Every video output supports one or more different video standards. For details on ideo standards. For details on audio supports on the output. See Cuput capabilities for the output. See Cuput capabilities for the output.			formation is intended for the user, preferably
u32 audioset Drivers can enumerate up to 32 video and audio outputs. This field shows which audio outputs were selectable as the current output if this was the currently selected video output. It is a bit mask. The LSB corresponds to audio output 0, the MSB to output 31. Any number of bits can be set, or none. When the driver does not enumerate audio outputs no bits must be set. Applications shall not interpret this as lack of audio support. Drivers may automatically select audio outputs. u32 modulator Output devices can have zero or more RF modulators. When the type is V4L2_0UTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators. v4l2_std_id std Every video output supports one or more different video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Standards. This field provides capabilities for the output. See Output capabilities for the output. See Output capabilities for flags.			the connector label on the device itself.
audio outputs. This field shows which audio outputs were selectable as the current output if this was the currently selected video output. It is a bit mask. The LSB corresponds to audio output 0, the MSB to output 31. Any number of bits can be set, or none. When the driver does not enumerate audio outputs no bits must be set. Applications shall not interpret this as lack of audio support. Drivers may automatically select audio outputs.	_u32	type	Type of the output, see Output Type.
ultiput outputs were selectable as the current output if this was the currently selected video output. It is a bit mask. The LSB corresponds to audio output 0, the MSB to output 31. Any number of bits can be set, or none. When the driver does not enumerate audio outputs no bits must be set. Applications shall not interpret this as lack of audio support. Drivers may automatically select audio outputs without enumerating them. For details on audio outputs and how to select the current output see Audio Inputs and Outputs. _u32 modulator Output devices can have zero or more RF modulators. When the type is V4L2_0UTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators see Tuners and Modulators. v4l2_std_id std Every video output supports one or more different video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Standards. _u32 capabilities This field provides capabilities for the output. See Output capabilities for flags.	_u32	audioset	Drivers can enumerate up to 32 video and
uild if this was the currently selected video output. It is a bit mask. The LSB corresponds to audio output 0, the MSB to output 31. Any number of bits can be set, or none. When the driver does not enumerate audio outputs no bits must be set. Applications shall not interpret this as lack of audio sup- port. Drivers may automatically select audio outputs without enumerating them. For details on audio outputs and how to se- lect the current output see Audio Inputs and Outputsu32modulatorOutput devices can have zero or more RF modulators. When the type is V4L2_0UTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator see Tuners and Modulators.v4l2_std_idstdEvery video output supports one or more dif ferent video standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output.			audio outputs. This field shows which audio
uiput. It is a bit mask. The LSB corresponds to audio output 0, the MSB to output 31. Any number of bits can be set, or none. When the driver does not enumerate audio outputs no bits must be set. Applications shall not interpret this as lack of audio sup- port. Drivers may automatically select audio outputs without enumerating them. For details on audio outputs and how to se- lect the current output see Audio Inputs and Outputs. _uillator Output devices can have zero or more RF modulators. When the type is V4L2_OUTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator field index. For details on modulators see Tuners and Modulators. v4l2_std_id std Every video output supports one or more dif- ferent video standards. This field is a set of all supported standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dards. _uill capabilities This field provides capabilities for the output. See Output capabilities for flags. _uill reserved[3] Reserved for future extensions. Drivers must			outputs were selectable as the current out-
v4l2_std_idstdv4l2_std_idstdLu32capabilitiesLu32capabilitiesLu32reserved[3]Reserved for future extensions. Drivers may			put if this was the currently selected video
number of bits can be set, or none. When the driver does not enumerate audio outputs no bits must be set. Applications shall not interpret this as lack of audio sup- port. Drivers may automatically select audio outputs without enumerating them. For details on audio outputs and how to se- lect the current output see Audio Inputs and Outputsu32modulatorOutput devices can have zero or more RF modulators. When the type is V4L2_OUTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v4l2_modulator field index. For details on modulators.v4l2_std_idstdEvery video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			output. It is a bit mask. The LSB corresponds
when the driver does not enumerate audio outputs no bits must be set. Applications shall not interpret this as lack of audio sup- port. Drivers may automatically select audio outputs without enumerating them. For details on audio outputs and how to se- lect the current output see Audio Inputs and Outputsu32modulatorOutput devices can have zero or more RF modulators. When the type is V4L2_OUTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators see Tuners and Modulators.v412_std_idstdEvery video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			to audio output 0, the MSB to output 31. Any
outputs no bits must be set. Applications shall not interpret this as lack of audio sup- port. Drivers may automatically select audio outputs without enumerating them. For details on audio outputs and how to se- lect the current output see Audio Inputs and Outputsu32modulatorOutput devices can have zero or more RF modulators. When the type is V4L2_OUTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator see Tuners and Modulators.v4l2_std_idstdEvery video output supports one or more dif- ferent video standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			number of bits can be set, or none.
u32modulatorshall not interpret this as lack of audio support. Drivers may automatically select audio outputs without enumerating them. For details on audio outputs and how to select the current output see Audio Inputs and Outputsu32modulatorOutput devices can have zero or more RF modulators. When the type is V4L2_0UTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators see Tuners and Modulators.v4l2_std_idstdEvery video output supports one or more different video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Standardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			When the driver does not enumerate audio
port. Drivers may automatically select audio outputs without enumerating them. For details on audio outputs and how to se- lect the current output see Audio Inputs and Outputsu32modulatorOutput devices can have zero or more RF modulators. When the type is V4L2_OUTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators see Tuners and Modulators.v4l2_std_idstdEvery video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			outputs no bits must be set. Applications
outputs without enumerating them. For details on audio outputs and how to se- lect the current output see Audio Inputs and Outputsu32modulatorOutput devices can have zero or more RF modulators. When the type is V4L2_0UTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators see Tuners and Modulators.v412_std_idstdEvery video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			shall not interpret this as lack of audio sup-
For details on audio outputs and how to select the current output see Audio Inputs and Outputsu32modulatorOutput devices can have zero or more RF modulators. When the type is V4L2_OUTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators see Tuners and Modulators.v4l2_std_idstdEvery video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			port. Drivers may automatically select audio
_u32 modulator Output devices can have zero or more RF modulators. When the type is V4L2_OUTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators see Tuners and Modulators. v412_std_id std Every video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dards. _u32 capabilities This field provides capabilities for the output. See Output capabilities for flags. _u32 reserved[3] Reserved for future extensions. Drivers must			For details on audio outputs and how to se-
u32modulatorOutput devices can have zero or more RF modulators. When the type is V4L2_OUTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators see Tuners and Modulators.v412_std_idstdEvery video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			lect the current output see Audio Inputs and
RF modulators.When the type is V4L2_OUTPUT_TYPE_MODULATOR this is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators see Tuners and Modulators.v412_std_idstdEvery video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			Outputs.
V4L2_OUTPUT_TYPE_MODULATORthis is an RF connector and this field identifies the modulator. It corresponds to struct v412_modulator field index. For details on modulators see Tuners and Modulators.v412_std_idstdEvery video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must	_u32	modulator	Output devices can have zero or more
RFconnectorandthisfieldidentifiesv4l2_std_idstdItcorrespondstostructv4l2_std_idstdEvery video output supports one or more different video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Standardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			RF modulators. When the type is
the modulator.It corresponds to struct v4l2_modulator field index. For details on modulators see Tuners and Modulators.v4l2_std_idstdEvery video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			V4L2_OUTPUT_TYPE_MODULATOR this is an
v4l2_modulator field index. For details on modulators see Tuners and Modulators.v4l2_std_idstdstdEvery video output supports one or more dif- ferent video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilities_u32reserved[3]Reserved for future extensions. Drivers must			RF connector and this field identifies
w4l2_std_idstdmodulators see Tuners and Modulators.v4l2_std_idstdEvery video output supports one or more different video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Standardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			the modulator. It corresponds to struct
v4l2_std_idstdEvery video output supports one or more different video standards. This field is a set of all supported standards. For details on video standards and how to switch see Video Standardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			v4l2_modulator field index. For details on
			modulators see Tuners and Modulators.
all supported standards. For details on video standards and how to switch see Video Stan- dardsu32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must	v4l2_std_id	std	
standards and how to switch see Video Standardsu32capabilitiesu32reserved[3]Reserved for future extensions. Drivers must			ferent video standards. This field is a set of
dards. u32 capabilities This field provides capabilities for the output. See Output capabilities for flags. u32 reserved[3] Reserved for future extensions. Drivers must			all supported standards. For details on video
u32capabilitiesThis field provides capabilities for the output. See Output capabilities for flagsu32reserved[3]Reserved for future extensions. Drivers must			standards and how to switch see Video Stan-
See Output capabilities for flags.			dards.
u32 reserved[3] Reserved for future extensions. Drivers must	_u32	capabilities	This field provides capabilities for the output.
			See Output capabilities for flags.
set the array to zero.	u32	reserved[3]	Reserved for future extensions. Drivers must
			set the array to zero.

Table 146: Output Type

V4L2_OUTPUT_TYPE_MODULATOR	1	This output is an analog TV modulator.
V4L2_OUTPUT_TYPE_ANALOG	2	Any non-modulator video output, for example
		Composite Video, S-Video, HDMI. The nam-
		ing as _TYPE_ANALOG is historical, today we
		would have called it _TYPE_VIDE0.
V4L2_0UTPUT_TYPE_ANAL0GVGA0VER	A Y	The video output will be copied to a video
		overlay.

V4L2 OUT CAP DV TIMINGS	0x0000002This output supports setting video timings by
	using VIDIOC_S_DV_TIMINGS.
V4L2_OUT_CAP_STD	0x00000004This output supports setting the TV standard
	by using VIDIOC_S_STD.
V4L2_OUT_CAP_NATIVE_SIZE	0x0000008This output supports setting the native size
	using the V4L2_SEL_TGT_NATIVE_SIZE selec-
	tion target, see Common selection defini-
	tions.

Table 147: Output capabilities

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_output index is out of bounds.

ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD

Name

 $\label{eq:video} VIDIOC_ENUMSTD \ \ \ video standards$

Synopsis

int ioctl(int fd, VIDIOC_ENUMSTD, struct v4l2_standard *argp)
int ioctl(int fd, VIDIOC_SUBDEV_ENUMSTD, struct v4l2_standard *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_standard.

Description

To query the attributes of a video standard, especially a custom (driver defined) one, applications initialize the index field of struct v4l2_standard and call the ioctl VIDIOC_ENUMSTD, VIDIOC_SUBDEV_ENUMSTD ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To enumerate all standards applications shall begin at index zero, incrementing by one until the driver returns EINVAL. Drivers may enumerate a different set of standards after switching the video input or output.¹

 $^{^{1}}$ The supported standards may overlap and we need an unambiguous set to find the current standard returned by VIDIOC_G_STD.

v4l2_standard

	10010 1 10. 501000	
u32	index	Number of the video standard, set by the ap-
		plication.
v4l2_std_id	id	The bits in this field identify the standard as
		one of the common standards listed in type-
		def v4l2_std_id, or if bits 32 to 63 are set
		as custom standards. Multiple bits can be
		set if the hardware does not distinguish be-
		tween these standards, however separate in-
		dices do not indicate the opposite. The id
		must be unique. No other enumerated struct
		v4l2_standard structure, for this input or
		output anyway, can contain the same set of
		bits.
_u8	name[24]	Name of the standard, a NUL-terminated
		ASCII string, for example: "PAL-B/G", "NTSC
		Japan" . This information is intended for the
		user.
<pre>struct v4l2_fract</pre>	frameperiod	The frame period (not field period) is numer-
		ator / denominator. For example M/NTSC
		has a frame period of 1001 / 30000 seconds.
_u32	framelines	Total lines per frame including blanking, e.
		g. 625 for B/PAL.
_u32	reserved[4]	Reserved for future extensions. Drivers must
		set the array to zero.

Table 148: struct v4l2_standard

v4l2_fract

Table 149: struct v4l2_fract

u32	numerator	
u32	denominator	

Table 150: typedef v4l2_std_id

_u64	v4l2_std_id	This type is a set, each bit representing an-
		other video standard as listed below and in
		Video Standards (based on itu470). The 32
		most significant bits are reserved for custom
		(driver defined) video standards.

<pre>#define V4L2_STD_PAL_B</pre>	((v4l2_std_id)0x00000001)	
<pre>#define V4L2_STD_PAL_B1</pre>	((v4l2_std_id)0x00000002)	
<pre>#define V4L2_STD_PAL_G</pre>	((v4l2_std_id)0x00000004)	
<pre>#define V4L2_STD_PAL_H</pre>	((v4l2_std_id)0x0000008)	
<pre>#define V4L2_STD_PAL_I</pre>	((v4l2_std_id)0x00000010)	
<pre>#define V4L2_STD_PAL_D</pre>	((v4l2_std_id)0x00000020)	
<pre>#define V4L2_STD_PAL_D1</pre>	((v4l2_std_id)0x00000040)	
<pre>#define V4L2_STD_PAL_K</pre>	((v4l2_std_id)0x00000080)	

(continues on next page)

(continued from previous page)

#define V4L2 STD PAL M	((v4l2 std id)0x00000100)
<pre>#define V4L2_STD_PAL_N</pre>	((v4l2_std_id)0x00000200)
<pre>#define V4L2_STD_PAL_Nc</pre>	((v4l2_std_id)0x00000400)
#define V4L2_STD_PAL_60	((v4l2_std_id)0x00000800)

V4L2_STD_PAL_60 is a hybrid standard with 525 lines, 60 Hz refresh rate, and PAL color modulation with a 4.43 MHz color subcarrier. Some PAL video recorders can play back NTSC tapes in this mode for display on a 50/60 Hz agnostic PAL TV.

#define V	4L2_STD_	NTSC_M	((v4l2_std_id)0x00001000)
#define V	'4L2_STD_	NTSC_M_JP	((v4l2_std_id)0x00002000)
#define V	4L2_STD_	NTSC_443	((v4l2_std_id)0x00004000)

V4L2_STD_NTSC_443 is a hybrid standard with 525 lines, 60 Hz refresh rate, and NTSC color modulation with a 4.43 MHz color subcarrier.

<pre>#define V4L2_STD_NTSC_M_KR</pre>	((v4l2_std_id)0x00008000)
<pre>#define V4L2_STD_SECAM_B #define V4L2_STD_SECAM_D #define V4L2_STD_SECAM_G #define V4L2_STD_SECAM_H #define V4L2_STD_SECAM_K #define V4L2_STD_SECAM_K1 #define V4L2_STD_SECAM_L #define V4L2_STD_SECAM_LC</pre>	<pre>((v4l2_std_id)0x00010000) ((v4l2_std_id)0x00020000) ((v4l2_std_id)0x00040000) ((v4l2_std_id)0x00080000) ((v4l2_std_id)0x00100000) ((v4l2_std_id)0x00200000) ((v4l2_std_id)0x00400000) ((v4l2_std_id)0x00800000)</pre>
/* ATSC/HDTV */ #define V4L2_STD_ATSC_8_VSB #define V4L2_STD_ATSC_16_VSB	((v4l2_std_id)0x01000000) ((v4l2_std_id)0x02000000)

V4L2_STD_ATSC_8_VSB and V4L2_STD_ATSC_16_VSB are U.S. terrestrial digital TV standards. Presently the V4L2 API does not support digital TV. See also the Linux DVB API at https://linuxtv.org.

#define V4	4L2 STD	PAL BG (V4L2 STD PAL B	
		V4L2 STD PAL B1	I
		V4L2_STD_PAL_G)	
#define V4	4L2_STD_	B (V4L2_STD_PAL_B	
		V4L2_STD_PAL_B1	
		V4L2_STD_SECAM_B)	
#define V4		GH (V4L2_STD_PAL_G	
		V4L2_STD_PAL_H	
		V4L2_STD_SECAM_G	
		V4L2_STD_SECAM_H)	
#define V4		PAL_DK (V4L2_STD_PAL_D	
		V4L2_STD_PAL_D1	
		V4L2_STD_PAL_K)	
#define V4		PAL (V4L2_STD_PAL_BG	I
		V4L2_STD_PAL_DK	
		V4L2_STD_PAL_H	
#dofine W		V4L2_STD_PAL_I)	
#define V4	4LZ_SID_	NTSC (V4L2_STD_NTSC_M	I
		V4L2_STD_NTSC_M_JP	(continues on next nage)

(continues on next page)

(continued from previous page)

			· · ·	1 0
#define		V4L2_STD_NTSC_M_KR) MN (V4L2_STD_PAL_M V4L2_STD_PAL_N	I	
#define	V4L2_STD_	V4L2_STD_PAL_Nc V4L2_STD_NTSC) SECAM_DK (V4L2_STD_SECAM_D V4L2_STD_SECAM_K V4L2_STD_SECAM_K1)	I	
#define		DK (V4L2_STD_PAL_DK V4L2_STD_SECAM_DK)	Ι	
#define		SECAM (V4L2_STD_SECAM_B V4L2_STD_SECAM_G V4L2_STD_SECAM_H V4L2_STD_SECAM_DK V4L2_STD_SECAM_L V4L2_STD_SECAM_LC)	I	
#define		_525_60 (V4L2_STD_PAL_M V4L2_STD_PAL_60 V4L2_STD_NTSC V4L2_STD_NTSC_443)	Ι	
#define		625_50 (V4L2_STD_PAL V4L2_STD_PAL_N V4L2_STD_PAL_Nc V4L2_STD_SECAM)	I	
#define #define	V4L2_STD V4L2_STD_	_UNKNOWN 0 _ALL (V4L2_STD_525_60 V4L2_STD_625_50)	Ι	

Table 151: Video Standards	(based on ITU BT.470)
----------------------------	-----------------------

Characteristic	sM/NTSC ²	M/PAL	N/PAL ³	B, B1, G/PAL	D, K/PAL	D1,	H/PAL	I/PAL	B, G/SECAM	D, K/SECAM	K1/SECAM	L/SECAM
Frame lines	525		625						•			
Frame pe- riod (s)	1001/30000		1/25									
Chrominance sub-carrier frequency (Hz)	3579545 ± 10	3579611.49 ± 10	$\begin{array}{rrrr} 4433618.75 & \pm \\ 5 \\ (3582056.25 & \pm \\ 5) \end{array}$	4433618.75 ± 5					$ \begin{array}{c} 4433618.75 \pm \\ 1 \end{array} $	$f_{OR} = 440$ $f_{OB} = 425$	$6250 \pm 200 \\ 0000 \pm 200$	0, 0
Nominal radio- frequency channel bandwidth (MHz)	6	6	6	B: 7; B1, G: 8	8		8	8	8	8	8	8
Sound car- rier relative to vision car- rier (MHz)	4.5	4.5	4.5	${\begin{array}{c} 5.5 \\ 0.001^{4567} \end{array}} \pm$	6.5 0.001	±	5.5	5.9996 ± 0.0005	5.5 ± 0.001	${}^{6.5}_{0.001}$ \pm	6.5	6.5 ⁸

² Japan uses a standard similar to M/NTSC (V4L2 STD NTSC M JP).

 3 The values in brackets apply to the combination N/PAL a.k.a. $N_{\rm C}$ used in Argentina (V4L2 STD PAL Nc).

⁴ In the Federal Republic of Germany, Austria, Italy, the Netherlands, Slovakia and Switzerland a system of two sound carriers is used, the frequency of the second carrier being 242.1875 kHz above the frequency of the first sound carrier. For stereophonic sound transmissions a similar system is used in Australia.

 5 New Zealand uses a sound carrier displaced 5.4996 \pm 0.0005 MHz from the vision carrier.

⁶ In Denmark, Finland, New Zealand, Sweden and Spain a system of two sound carriers is used. In Iceland, Norway and Poland the same system is being introduced. The second carrier is 5.85 MHz above the vision carrier and is DQPSK modulated with 728 kbit/s sound and data multiplex.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_standard index is out of bounds.

ENODATA Standard video timings are not supported for this input or output.

ioctl VIDIOC_EXPBUF

Name

VIDIOC_EXPBUF - Export a buffer as a DMABUF file descriptor.

Synopsis

int ioctl(int fd, VIDIOC_EXPBUF, struct v4l2_exportbuffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_exportbuffer.

Description

This ioctl is an extension to the memory mapping I/O method, therefore it is available only for V4L2_MEMORY_MMAP buffers. It can be used to export a buffer as a DMABUF file at any time after buffers have been allocated with the ioctl VID-IOC_REQBUFS ioctl.

To export a buffer, applications fill struct v4l2_exportbuffer. The type field is set to the same buffer type as was previously used with struct v4l2_requestbuffers type. Applications must also set the index field. Valid index numbers range from zero to the number of buffers allocated with ioctl VIDIOC_REQBUFS (struct v4l2_requestbuffers count) minus one. For the multi-planar API, applications set the plane field to the index of the plane to be exported. Valid planes range from zero to the maximal number of valid planes for the currently active format. For the single-planar API, applications must set plane to zero. Additional flags may

⁽NICAM system)

 $^{^7}$ In the United Kingdom, a system of two sound carriers is used. The second sound carrier is 6.552 MHz above the vision carrier and is DQPSK modulated with a 728 kbit/s sound and data multiplex able to carry two sound channels. (NICAM system)

⁸ In France, a digital carrier 5.85 MHz away from the vision carrier may be used in addition to the main sound carrier. It is modulated in differentially encoded QPSK with a 728 kbit/s sound and data multiplexer capable of carrying two sound channels. (NICAM system)

be posted in the flags field. Refer to a manual for open() for details. Currently only O_CLOEXEC, O_RDONLY, O_WRONLY, and O_RDWR are supported. All other fields must be set to zero. In the case of multi-planar API, every plane is exported separately using multiple ioctl VIDIOC_EXPBUF calls.

After calling ioctl VIDIOC_EXPBUF the fd field will be set by a driver. This is a DMABUF file descriptor. The application may pass it to other DMABUF-aware devices. Refer to DMABUF importing for details about importing DMABUF files into V4L2 nodes. It is recommended to close a DMABUF file when it is no longer used to allow the associated memory to be reclaimed.

Examples

```
int buffer_export(int v4lfd, enum v4l2_buf_type bt, int index, int *dmafd)
{
    struct v4l2_exportbuffer expbuf;
    memset(&expbuf, 0, sizeof(expbuf));
    expbuf.type = bt;
    expbuf.index = index;
    if (ioctl(v4lfd, VIDIOC_EXPBUF, &expbuf) == -1) {
        perror("VIDIOC_EXPBUF");
        return -1;
    }
    *dmafd = expbuf.fd;
    return 0;
}
```

```
int buffer export mp(int v4lfd, enum v4l2 buf type bt, int index,
    int dmafd[], int n planes)
{
    int i;
    for (i = 0; i < n planes; ++i) {</pre>
        struct v4l2 exportbuffer expbuf;
        memset(&expbuf, 0, sizeof(expbuf));
        expbuf.type = bt;
        expbuf.index = index;
        expbuf.plane = i;
        if (ioctl(v4lfd, VIDIOC_EXPBUF, &expbuf) == -1) {
            perror("VIDIOC EXPBUF");
            while (i)
                close(dmafd[--i]);
            return -1;
        }
        dmafd[i] = expbuf.fd;
    }
    return 0;
}
```

v4l2_exportbuffer

u32	type	Type of the buffer, same as
		struct v4l2_format type or struct
		v4l2_requestbuffers type, set by the
		application. See v4l2_buf_type
_u32	index	Number of the buffer, set by the applica-
		tion. This field is only used for memory
		mapping I/O and can range from zero to
		the number of buffers allocated with the
		ioctl VIDIOC REQBUFS and/or ioctl VID-
		IOC_CREATE_BUFS ioctls.
_u32	plane	Index of the plane to be exported when using
		the multi-planar API. Otherwise this value
		must be set to zero.
u32	flags	Flags for the newly created file, currently
	_	only 0_CLOEXEC, 0_RDONLY, 0_WRONLY, and
		0_RDWR are supported, refer to the manual of
		open() for more details.
s32	fd	The DMABUF file descriptor associated with
		a buffer. Set by the driver.
_u32	reserved[11]	Reserved field for future use. Drivers and ap-
		plications must set the array to zero.

Table 152: struct v4l2_exportbuffer

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL A queue is not in MMAP mode or DMABUF exporting is not supported or flags or type or index or plane fields are invalid.

ioctl VIDIOC_G_AUDIO, VIDIOC_S_AUDIO

Name

 $VIDIOC_G_AUDIO$ - $VIDIOC_S_AUDIO$ - Query or select the current audio input and its attributes

Synopsis

int ioctl(int fd, VIDIOC_G_AUDIO, struct v4l2_audio *argp)
int ioctl(int fd, VIDIOC_S_AUDIO, const struct v4l2_audio *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audio.

Description

To query the current audio input applications zero out the reserved array of a struct v4l2_audio and call the VIDIOC_G_AUDIO ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the device has no audio inputs, or none which combine with the current video input.

Audio inputs have one writable property, the audio mode. To select the current audio input and change the audio mode, applications initialize the index and mode fields, and the reserved array of a struct v4l2_audio structure and call the VID-IOC_S_AUDIO ioctl. Drivers may switch to a different audio mode if the request cannot be satisfied. However, this is a write-only ioctl, it does not return the actual new audio mode.

v4l2_audio

u32	index	Identifies the audio input, set by the driver	
		or application.	
_u8	name[32]	Name of the audio input, a NUL-terminated	
		ASCII string, for example: "Line In". This in-	
		formation is intended for the user, preferably	
		the connector label on the device itself.	
u32	capability	Audio capability flags, see Audio Capability	
		Flags.	
u32	mode	Audio mode flags set by drivers and applica-	
		tions (on VIDIOC_S_AUDIO ioctl), see Audio	
		Mode Flags.	
u32	reserved[2]	Reserved for future extensions. Drivers and	
		applications must set the array to zero.	

Table 153: struct v4l2 audio

Table 154: Audio	Capability 1	Flags
------------------	--------------	-------

V4L2_AUDCAP_STERE0		This is a stereo input. The flag is intended to automatically disable stereo recording etc. when the signal is always monaural. The API provides no means to detect if stereo is re-
		ceived, unless the audio input belongs to a
		tuner.
V4L2_AUDCAP_AVL	0x00002	Automatic Volume Level mode is supported.

Table	155:	Audio	Mode	Flags
-------	------	-------	------	-------

		-
V4L2_AUDMODE_AVL	0x00001	AVL mode is on.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL No audio inputs combine with the current video input, or the number of the selected audio input is out of bounds or it does not combine.

ioctl VIDIOC_G_AUDOUT, VIDIOC_S_AUDOUT

Name

 $\label{eq:VIDIOC_G_AUDOUT-VIDIOC_S_AUDOUT-Query\ or\ select\ the\ current\ audio\ output$

Synopsis

int ioctl(int fd, VIDIOC_G_AUDOUT, struct v4l2_audioout *argp)
int ioctl(int fd, VIDIOC_S_AUDOUT, const struct v4l2_audioout *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_audioout.

Description

To query the current audio output applications zero out the reserved array of a struct v4l2_audioout and call the VIDIOC_G_AUDOUT ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the device has no audio inputs, or none which combine with the current video output.

Audio outputs have no writable properties. Nevertheless, to select the current audio output applications can initialize the index field and reserved array (which in the future may contain writable properties) of a struct v4l2_audioout structure and call the VIDIOC_S_AUDOUT ioctl. Drivers switch to the requested output or return the EINVAL error code when the index is out of bounds. This is a write-only ioctl, it does not return the current audio output attributes as VIDIOC_G_AUDOUT does.

Note: Connectors on a TV card to loop back the received audio signal to a sound card are not audio outputs in this sense.

v4l2_audioout

		—
u32	index	Identifies the audio output, set by the driver
		or application.
u8	name[32]	Name of the audio output, a NUL-terminated
		ASCII string, for example: "Line Out" . This
		information is intended for the user, prefer-
		ably the connector label on the device itself.
u32	capability	Audio capability flags, none defined yet.
		Drivers must set this field to zero.
u32	mode	Audio mode, none defined yet. Drivers and
		applications (on VIDIOC_S_AUDOUT) must set
		this field to zero.
u32	reserved[2]	Reserved for future extensions. Drivers and
		applications must set the array to zero.

Table 156: struct v4l2_audioout

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL No audio outputs combine with the current video output, or the number of the selected audio output is out of bounds or it does not combine.

ioctl VIDIOC_G_CROP, VIDIOC_S_CROP

Name

VIDIOC_G_CROP - VIDIOC_S_CROP - Get or set the current cropping rectangle

Synopsis

int ioctl(int fd, VIDIOC_G_CROP, struct v4l2_crop *argp)
int ioctl(int fd, VIDIOC_S_CROP, const struct v4l2_crop *argp)

Arguments

fd File descriptor returned by open().
argp Pointer to struct v4l2_crop.

Description

To query the cropping rectangle size and position applications set the type field of a struct v4l2_crop structure to the respective buffer (stream) type and call the VIDIOC_G_CROP ioctl with a pointer to this structure. The driver fills the rest of the structure or returns the EINVAL error code if cropping is not supported.

To change the cropping rectangle applications initialize the type and struct v4l2_rect substructure named c of a v4l2_crop structure and call the VID-IOC_S_CROP ioctl with a pointer to this structure.

The driver first adjusts the requested dimensions against hardware limits, i. e. the bounds given by the capture/output window, and it rounds to the closest possible values of horizontal and vertical offset, width and height. In particular the driver must round the vertical offset of the cropping rectangle to frame lines modulo two, such that the field order cannot be confused.

Second the driver adjusts the image size (the opposite rectangle of the scaling process, source or target depending on the data direction) to the closest size possible while maintaining the current horizontal and vertical scaling factor.

Finally the driver programs the hardware with the actual cropping and image parameters. VIDIOC_S_CROP is a write-only ioctl, it does not return the actual parameters. To query them applications must call VIDIOC_G_CROP and ioctl VID-IOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT. When the parameters are unsuitable the application may modify the cropping or image parameters and repeat the cycle until satisfactory parameters have been negotiated.

When cropping is not supported then no parameters are changed and VID-IOC_S_CROP returns the EINVAL error code.

v4l2_crop

_u32	type	Type of the data stream, set by the ap-	
		plication. Only these types are valid	
		here: V4L2_BUF_TYPE_VIDE0_CAPTURE,	
		V4L2_BUF_TYPE_VIDE0_CAPTURE_MPLANE,	
		V4L2_BUF_TYPE_VIDE0_OUTPUT,	
		V4L2_BUF_TYPE_VIDE0_OUTPUT_MPLANE	
		and V4L2_BUF_TYPE_VIDE0_0VERLAY. See	
		v4l2_buf_type and the note below.	
struct v4l2_rect	С	Cropping rectangle. The same co-ordinate	
		system as for struct v4l2_cropcap bounds is	
		used.	

Table 157: struct v4l2 crop

Note: Unfortunately in the case of multiplanar buffer types (V4L2_BUF_TYPE_VIDE0_CAPTURE_MPLANE and V4L2_BUF_TYPE_VIDE0_OUTPUT_MPLANE) this API was messed up with regards to how the v4l2_crop type field should be filled in. Some drivers only accepted the _MPLANE buffer type while other drivers only accepted a non-multiplanar buffer type (i.e. without the _MPLANE at the end).

Starting with kernel 4.13 both variations are allowed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ENODATA Cropping is not supported for this input or output.

ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL

Name

VIDIOC_G_CTRL - VIDIOC_S_CTRL - Get or set the value of a control

Synopsis

int ioctl(int fd, VIDIOC_G_CTRL, struct v4l2_control *argp)
int ioctl(int fd, VIDIOC_S_CTRL, struct v4l2_control *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_control.

Description

To get the current value of a control applications initialize the id field of a struct v4l2_control and call the VIDIOC_G_CTRL ioctl with a pointer to this structure. To change the value of a control applications initialize the id and value fields of a struct v4l2_control and call the VIDIOC_S_CTRL ioctl.

When the id is invalid drivers return an EINVAL error code. When the value is out of bounds drivers can choose to take the closest valid value or return an ERANGE error code, whatever seems more appropriate. However, VIDIOC_S_CTRL is a write-only ioctl, it does not return the actual new value. If the value is inappropriate for the control (e.g. if it refers to an unsupported menu index of a menu control), then EINVAL error code is returned as well.

These ioctls work only with user controls. For other control classes the VID-IOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS or VIDIOC_TRY_EXT_CTRLS must be used.

v4l2_control

		—
u32	id	Identifies the control, set by the application.
_s32	value	New value or current value.

Table 1	158:	struct v4l2	control

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EINVAL** The struct v4l2_control id is invalid or the value is inappropriate for the given control (i.e. if a menu item is selected that is not supported by the driver according to VIDIOC_QUERYMENU).
- **ERANGE** The struct v4l2_control value is out of bounds.
- **EBUSY** The control is temporarily not changeable, possibly because another applications took over control of the device function this control belongs to.
- **EACCES** Attempt to set a read-only control or to get a write-only control.

ioctl VIDIOC_G_DV_TIMINGS, VIDIOC_S_DV_TIMINGS

Name

VIDIOC_G_DV_TIMINGS - VIDIOC_S_DV_TIMINGS - VID-IOC_SUBDEV_G_DV_TIMINGS - VIDIOC_SUBDEV_S_DV_TIMINGS - Get or set DV timings for input or output

Synopsis

int ioctl (int fd, VIDIOC_	G_DV_TIMINGS, struct v4l2_dv_timings *arg	Jb)
int ioctl (int fd, VIDIOC_	S_DV_TIMINGS, struct v4l2_dv_timings *arg	lb)
int ioctl (int fd, v4l2_dv_timings	VIDIOC_SUBDEV_G_DV_TIMINGS, s *argp)	struct
int ioctl (int fd, v4l2_dv_timings	VIDIOC_SUBDEV_S_DV_TIMINGS, s *argp)	struct

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dv_timings.

Description

To set DV timings for the input or output, applications use the VID-IOC_S_DV_TIMINGS ioctl and to get the current timings, applications use the VIDIOC_G_DV_TIMINGS ioctl. The detailed timing information is filled in using the structure struct v4l2_dv_timings. These ioctls take a pointer to the struct v4l2_dv_timings structure as argument. If the ioctl is not supported or the timing values are not correct, the driver returns EINVAL error code.

Calling VIDIOC_SUBDEV_S_DV_TIMINGS on a subdev device node that has been registered in read-only mode is not allowed. An error is returned and the errno variable is set to -EPERM.

The linux/v4l2-dv-timings.h header can be used to get the timings of the formats in the CEA-861-E and VESA DMT standards. If the current input or output does not support DV timings (e.g. if ioctl VIDIOC_ENUMINPUT does not set the V4L2_IN_CAP_DV_TIMINGS flag), then ENODATA error code is returned.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL This ioctl is not supported, or the VIDIOC_S_DV_TIMINGS parameter was unsuitable.

ENODATA Digital video timings are not supported for this input or output.

EBUSY The device is busy and therefore can not change the timings.

EPERM VIDIOC_SUBDEV_S_DV_TIMINGS has been called on a read-only subdevice.

v4l2_bt_timings

u32	width	Width of the active video in pixels.
<u>u32</u> u32	height	Height of the active video frame in lines. So
		for interlaced formats the height of the active
		video in each field is height/2.
u32	interlaced	Progressive (V4L2_DV_PROGRESSIVE) or in-
		terlaced (V4L2 DV INTERLACED).
u32	polarities	This is a bit mask that defines polarities of
	p	sync signals. bit 0 (V4L2 DV VSYNC POS POL)
		is for vertical sync polarity and bit 1
		(V4L2 DV HSYNC POS POL) is for horizontal
		sync polarity. If the bit is set (1) it is positive
		polarity and if is cleared (0), it is negative po-
		larity.
u64	pixelclock	Pixel clock in Hz. Ex. 74.25MHz->74250000
 u32	hfrontporch	Horizontal front porch in pixels
	hsync	Horizontal sync length in pixels
u32	hbackporch	Horizontal back porch in pixels
u32	vfrontporch	Vertical front porch in lines. For interlaced
		formats this refers to the odd field (aka field
		1).
_u32	vsync	Vertical sync length in lines. For interlaced
		formats this refers to the odd field (aka field
		1).
u32	vbackporch	Vertical back porch in lines. For interlaced
		formats this refers to the odd field (aka field
		1).
u32	il_vfrontporch	Vertical front porch in lines for the even field
		(aka field 2) of interlaced field formats. Must
		be 0 for progressive formats.
u32	il_vsync	Vertical sync length in lines for the even field
		(aka field 2) of interlaced field formats. Must
	il	be 0 for progressive formats.
u32	il_vbackporch	Vertical back porch in lines for the even field
		(aka field 2) of interlaced field formats. Must
	standards	be 0 for progressive formats.
u32	standards	The video standard(s) this format belongs to.
		This will be filled in by the driver. Applica- tions must set this to 0. See DV BT Timing
		standards for a list of standards.
u32	flags	Several flags giving more information about
		the format. See DV BT Timing flags for a de-
		scription of the flags.
struct v4l2_fract	picture_aspect	The picture aspect if the pixels
	preture_aspece	are not square. Only valid if the
		V4L2 DV FL HAS PICTURE ASPECT flag is
		set.
u8	cea861 vic	The Video Identification Code according to
	_	the CEA-861 standard. Only valid if the
		V4L2_DV_FL_HAS_CEA861_VIC flag is set.
u8	hdmi_vic	The Video Identification Code according to
510	Chapter 7. Linux M	edia Infrastructure userspace API V4L2_DV_FL_HAS_HDM1_VIC flag is set.
u8	reserved[46]	Reserved for future extensions. Drivers and
		applications must set the array to zero.
	1	V

Table 159: struct v4l2_bt_timings

v4l2_dv_timings

Table 100. Struct V412_uv_thinings				
u32	type Type of DV timings as listed in D			
		Timing types.		
union {	(anonymous)			
struct	bt	Timings defined by BT.656/1120		
v4l2_bt_timings		specifications		
_u32	reserved[32]			
}				

Table 160: struct v4l2 dv timings

Table 161: DV Timing types

Timing type	value	Description
V4L2_DV_BT_656_1120	0	BT.656/1120 timings

Table 162: DV BT Timing standards

Timing standard	Description
V4L2_DV_BT_STD_CEA86	The timings follow the CEA-861 Digital TV Profile standard
V4L2_DV_BT_STD_DMT	The timings follow the VESA Discrete Monitor Timings standard
	The timings follow the VESA Coordinated Video Timings standard
V4L2_DV_BT_STD_GTF	The timings follow the VESA Generalized Timings Formula stan-
	dard
V4L2_DV_BT_STD_SDI	The timings follow the SDI Timings standard. There are no hori-
	zontal syncs/porches at all in this format. Total blanking timings
	must be set in hsync or vsync fields only.

Flag	Description
V4L2_DV_FL_REDUCED_BLANKING	CVT/GTF specific: the timings use reduced blanking
	(CVT) or the 'Secondary GTF' curve (GTF). In both
	cases the horizontal and/or vertical blanking intervals
	are reduced, allowing a higher resolution over the
	same bandwidth. This is a read-only flag, applications
	must not set this.
V4L2_DV_FL_CAN_REDUCE_FPS	CEA-861 specific: set for CEA-861 formats with a
	framerate that is a multiple of six. These formats can
	be optionally played at 1 / 1.001 speed to be compati-
	ble with 60 Hz based standards such as NTSC and PAL-
	M that use a framerate of 29.97 frames per second. If
	the transmitter can't generate such frequencies, then
	the flag will also be cleared. This is a read-only flag,
	applications must not set this.
V4L2_DV_FL_REDUCED_FPS	CEA-861 specific: only valid for video trans-
	mitters or video receivers that have the
	V4L2 DV FL CAN DETECT REDUCED FPS set. This
	flag is cleared otherwise. It is also only valid for
	formats with the V4L2 DV FL CAN REDUCE FPS flag
	set, for other formats the flag will be cleared by the
	driver.
	If the application sets this flag for a transmitter, then
	the pixelclock used to set up the transmitter is divided
	by 1.001 to make it compatible with NTSC framerates.
	If the transmitter can't generate such frequencies,
	then the flag will be cleared.
	If a video receiver detects that the format uses a re-
	duced framerate, then it will set this flag to signal this
	to the application.
V4L2_DV_FL_HALF_LINE	Specific to interlaced formats: if set, then the vertical
	frontporch of field 1 (aka the odd field) is really one
	half-line longer and the vertical backporch of field 2
	(aka the even field) is really one half-line shorter, so
	each field has exactly the same number of half-lines.
	Whether half-lines can be detected or used depends on the hardware.
V4L2_DV_FL_IS_CE_VIDE0	If set, then this is a Consumer Electronics (CE) video
	format. Such formats differ from other formats (com-
	monly called IT formats) in that if R' G' B' encoding
	is used then by default the R' G' B' values use lim-
	ited range (i.e. 16-235) as opposed to full range (i.e.
	0-255). All formats defined in CEA-861 except for the
	640x480p59.94 format are CE formats.
V4L2 DV FL FIRST FIFID FXTRA I	186 me formats like SMPTE-125M have an interlaced
	signal with a odd total height. For these formats, if
	this flag is set, the first field has the extra line. Else,
	it is the second field.
V4L2 DV FL HAS PICTURE ASPECT	If set, then the picture_aspect field is valid. Otherwise
	assume that the pixels are square, so the picture as-
	pect ratio is the same as the width to height ratio.
5422_DV_FL_HAS_CEASO1apter 7. L	must, Marcia tinfrastrur-turenuserspase ARd contains
	the Video Identification Code as per the CEA-861 stan-
	dard.
VALO DV EL HAS HOMT VIC	If sot than the helmi wie field is walid and contains the

Table 163: DV BT Timing flags

ioctl VIDIOC_G_EDID, VIDIOC_S_EDID, VIDIOC_SUBDEV_G_EDID, VID-IOC_SUBDEV_S_EDID

Name

VIDIOC_G_EDID - VIDIOC_S_EDID - VIDIOC_SUBDEV_G_EDID - VID-IOC_SUBDEV_S_EDID - Get or set the EDID of a video receiver/transmitter

Synopsis

int ioctl(int fd, VIDIOC_G_EDID, struct v4l2_edid *argp)
int ioctl(int fd, VIDIOC_S_EDID, struct v4l2_edid *argp)
int ioctl(int fd, VIDIOC_SUBDEV_G_EDID, struct v4l2_edid *argp)
int ioctl(int fd, VIDIOC_SUBDEV_S_EDID, struct v4l2_edid *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_edid.

Description

These ioctls can be used to get or set an EDID associated with an input from a receiver or an output of a transmitter device. They can be used with subdevice nodes (/dev/v4l-subdevX) or with video nodes (/dev/videoX).

When used with video nodes the pad field represents the input (for video capture devices) or output (for video output devices) index as is returned by ioctl VIDIOC_ENUMINPUT and ioctl VIDIOC_ENUMOUTPUT respectively. When used with subdevice nodes the pad field represents the input or output pad of the subdevice. If there is no EDID support for the given pad value, then the EINVAL error code will be returned.

To get the EDID data the application has to fill in the pad, start_block, blocks and edid fields, zero the reserved array and call VIDIOC_G_EDID. The current EDID from block start_block and of size blocks will be placed in the memory edid points to. The edid pointer must point to memory at least blocks * 128 bytes large (the size of one block is 128 bytes).

If there are fewer blocks than specified, then the driver will set blocks to the actual number of blocks. If there are no EDID blocks available at all, then the error code ENODATA is set.

If blocks have to be retrieved from the sink, then this call will block until they have been read.

If start_block and blocks are both set to 0 when VIDIOC_G_EDID is called, then the driver will set blocks to the total number of available EDID blocks and it will

return 0 without copying any data. This is an easy way to discover how many EDID blocks there are.

Note: If there are no EDID blocks available at all, then the driver will set **blocks** to 0 and it returns 0.

To set the EDID blocks of a receiver the application has to fill in the pad, blocks and edid fields, set start_block to 0 and zero the reserved array. It is not possible to set part of an EDID, it is always all or nothing. Setting the EDID data is only valid for receivers as it makes no sense for a transmitter.

The driver assumes that the full EDID is passed in. If there are more EDID blocks than the hardware can handle then the EDID is not written, but instead the error code E2BIG is set and blocks is set to the maximum that the hardware supports. If start_block is any value other than 0 then the error code EINVAL is set.

To disable an EDID you set blocks to 0. Depending on the hardware this will drive the hotplug pin low and/or block the source from reading the EDID data in some way. In any case, the end result is the same: the EDID is no longer available.

v4l2_edid

pad	Pad for which to get/set the EDID blocks.		
	When used with a video device node the		
	pad represents the input or output index as		
	returned by ioctl VIDIOC_ENUMINPUT and		
	ioctl VIDIOC_ENUMOUTPUT respectively.		
start_block	Read the EDID from starting with this block.		
	Must be 0 when setting the EDID.		
blocks	The number of blocks to get or set. Must be		
	less or equal to 256 (the maximum number		
	of blocks as defined by the standard). When		
	you set the EDID and blocks is 0, then the		
	EDID is disabled or erased.		
reserved[5]	Reserved for future extensions. Applications		
	and drivers must set the array to zero.		
edid	Pointer to memory that contains the EDID.		
	The minimum size is blocks * 128.		
	pad start_block blocks reserved[5]		

Table 164: struct v4l2 edid

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ENODATA The EDID data is not available.

E2BIG The EDID data you provided is more than the hardware can handle.

ioctl VIDIOC_G_ENC_INDEX

Name

VIDIOC_G_ENC_INDEX - Get meta data about a compressed video stream

Synopsis

int ioctl(int fd, VIDIOC_G_ENC_INDEX, struct v4l2_enc_idx *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_enc_idx.

Description

The VIDIOC_G_ENC_INDEX ioctl provides meta data about a compressed video stream the same or another application currently reads from the driver, which is useful for random access into the stream without decoding it.

To read the data applications must call VIDIOC_G_ENC_INDEX with a pointer to a struct v4l2_enc_idx. On success the driver fills the entry array, stores the number of elements written in the entries field, and initializes the entries_cap field.

Each element of the entry array contains meta data about one picture. A VID-IOC_G_ENC_INDEX call reads up to V4L2_ENC_IDX_ENTRIES entries from a driver buffer, which can hold up to entries_cap entries. This number can be lower or higher than V4L2_ENC_IDX_ENTRIES, but not zero. When the application fails to read the meta data in time the oldest entries will be lost. When the buffer is empty or no capturing/encoding is in progress, entries will be zero.

Currently this ioctl is only defined for MPEG-2 program streams and video elementary streams.

v4l2_enc_idx

u32	entries	The number of entries the driver stored in
		the entry array.
u32	entries_cap	The number of entries the driver can
		buffer. Must be greater than zero.
u32	reserved[4]	Reserved for future extensions. Drivers
		must set the array to zero.
struct	<pre>entry[V4L2_ENC_IDX_ENTRIE</pre>	M eta data about a compressed video
v4l2_enc_idx_entr	У	stream. Each element of the array corre-
		sponds to one picture, sorted in ascending
		order by their offset.

Table 165: struct v4l2 enc idx

v4l2_enc_idx_entry

u64	offset	The offset in bytes from the beginning of the		
		compressed video stream to the beginning of		
		this picture, that is a PES packet header as		
		defined in ISO 13818-1 or a picture header as		
		defined in ISO 13818-2. When the encoder is		
		stopped, the driver resets the offset to zero.		
u64	pts	The 33 bit Presentation Time Stamp of this		
		picture as defined in ISO 13818-1.		
_u32	length	The length of this picture in bytes.		
_u32	flags	Flags containing the coding type of this pic-		
		ture, see Index Entry Flags.		
_u32	reserved[2]	Reserved for future extensions. Drivers must		
		set the array to zero.		

Table 166: struct v4l2_enc_idx_entry

Table	167:	Index	Entry	Flags
rubio	107.	maon	LITCLY	I Iugo

		5 5
V4L2_ENC_IDX_FRAME_I	0x00	This is an Intra-coded picture.
V4L2_ENC_IDX_FRAME_P	0x01	This is a Predictive-coded picture.
V4L2_ENC_IDX_FRAME_B	0x02	This is a Bidirectionally predictive-coded pic-
		ture.
V4L2_ENC_IDX_FRAME_MASK	0x0F	AND the flags field with this mask to obtain
		the picture coding type.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS, VIDIOC_TRY_EXT_CTRLS

Name

 $\label{eq:vidioc_g_ext_ctrls} $$ - VIDIOC_S_EXT_CTRLS - VIDIOC_TRY_EXT_CTRLS - Get or set the value of several controls, try control values \\$

Synopsis

int ioctl(int fd, VIDIOC_G_EXT_CTRLS, struct v4l2_ext_controls *argp)
int ioctl(int fd, VIDIOC_S_EXT_CTRLS, struct v4l2_ext_controls *argp)
int ioctl(int fd, VIDIOC_TRY_EXT_CTRLS, struct v4l2_ext_controls *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_ext_controls.

Description

These ioctls allow the caller to get or set multiple controls atomically. Control IDs are grouped into control classes (see Control classes) and all controls in the control array must belong to the same control class.

Applications must always fill in the count, which, controls and reserved fields of struct v4l2_ext_controls, and initialize the struct v4l2_ext_control array pointed to by the controls fields.

To get the current value of a set of controls applications initialize the id, size and reserved2 fields of each struct v4l2_ext_control and call the VID-IOC_G_EXT_CTRLS ioctl. String controls controls must also set the string field. Controls of compound types (V4L2_CTRL_FLAG_HAS_PAYLOAD is set) must set the ptr field.

If the size is too small to receive the control result (only relevant for pointertype controls like strings), then the driver will set size to a valid value and return an ENOSPC error code. You should re-allocate the memory to this new size and try again. For the string type it is possible that the same issue occurs again if the string has grown in the meantime. It is recommended to call ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VIDIOC_QUERYMENU first and use maximum+1 as the new size value. It is guaranteed that that is sufficient memory.

N-dimensional arrays are set and retrieved row-by-row. You cannot set a partial array, all elements have to be set or retrieved. The total size is calculated as elems * elem_size. These values can be obtained by calling VIDIOC_QUERY_EXT_CTRL.

To change the value of a set of controls applications initialize the id, size, reserved2 and value/value64/string/ptr fields of each struct v4l2_ext_control and call the VIDIOC_S_EXT_CTRLS ioctl. The controls will only be set if all control values are valid.

To check if a set of controls have correct values applications initialize the id, size, reserved2 and value/value64/string/ptr fields of each struct v4l2_ext_control and call the VIDIOC_TRY_EXT_CTRLS ioctl. It is up to the driver whether wrong values are automatically adjusted to a valid value or if an error is returned.

When the id or which is invalid drivers return an EINVAL error code. When the value is out of bounds drivers can choose to take the closest valid value or return an ERANGE error code, whatever seems more appropriate. In the first case the new value is set in struct v4l2_ext_control. If the new control value is inappropriate (e.g. the given menu index is not supported by the menu control), then this will also result in an EINVAL error code error.

If request_fd is set to a not-yet-queued request file descriptor and which is set to V4L2_CTRL_WHICH_REQUEST_VAL, then the controls are not applied immediately

when calling VIDIOC_S_EXT_CTRLS, but instead are applied by the driver for the buffer associated with the same request. If the device does not support requests, then EACCES will be returned. If requests are supported but an invalid request file descriptor is given, then EINVAL will be returned.

An attempt to call VIDIOC_S_EXT_CTRLS for a request that has already been queued will result in an EBUSY error.

If request_fd is specified and which is set to V4L2_CTRL_WHICH_REQUEST_VAL during a call to VIDIOC_G_EXT_CTRLS, then it will return the values of the controls at the time of request completion. If the request is not yet completed, then this will result in an EACCES error.

The driver will only set/get these controls if all control values are correct. This prevents the situation where only some of the controls were set/get. Only low-level errors (e. g. a failed i2c command) can still cause this situation.

v4l2_ext_control

Т	able 16	68: struct v4l2_e	xt contro	ol	
	_u32		Identifie		
		20	the		
			con-		
			trol,		
			set by		
			the		
			appli-		
			cation.		
	1132	size	The	-	
	u52	SIZE			
			total size in		
			bytes		
			of the		
			pay-		
			load		
			of this		
			con-		
			trol.		
			This		
			is nor-		
			mally		
			0, but		
			for		
			pointer		
			con-		
			trols		
			this		
			should		
			be set		
			to the		
			size		
			of the		
			mem-		
			ory		
			con-		
			taining		
			the		
			pay-		
			load,		
			or that		
			will		
			receive		
			the		
			pay-		
			load.		
			If VID-		
				EXT_CTRLS	
			finds	_	
			that		
			this		
			value		
7.2. Part I - Video for	Linux	API	is less	5	19
			than		-
			is re-		
			auired		

v4l2_ext_controls

union {	(anonymous)
u32	ctrl_classThe con-
	trol class
	to which
	all con-
	trols be-
	long, see
	Control
	classes.
	Drivers
	that use
	a kernel frame-
	work for
	handling
	controls
	will also
	accept a
	value of
	0 here,
	meaning
	that the
	controls
	can be-
	long to
	any con-
	trol class.
	Whether
	drivers
	support
	this can
	be tested
	by setting
	ctrl_class
	to 0 and
	calling VID-
	IOC_TRY_EXT_CTRLS
	count of
	0. If that
	succeeds,
	then the
	driver sup-
	ports this
	feature.

Table 169: struct v4l2_ext_controls

Table 169 – continu	ed from prev	vious page	
u32	which	Which	Γ
		value of	
		the con-	
		trol to	
		get/set/try.	
			WHICH_CUR_VAL
		will return	
		the cur-	
		rent value	
		of the	
		control,	
		V4L2_CTRL	WHICH_DEF_VAL
		will return	
		the default	
		value of	
		the con-	
		trol and	
			WHICH_REQUEST_VAL
		indicates	
		that these	
		controls	
		have to be	
		retrieved	
		from a	
		request or	
		tried/set	
		for a re-	
		quest. In	
		the latter	
		case the	4
		request_f	
		tains the	
		file de-	
		scriptor	
		of the re-	
		quest that	
		should be	
		used. If	
		the device	
		does not	
		support	
		requests,	
		then	
		EACCES	
		will be	
		returned.	
		Note:	
		When	
		using	
			WHICH_DEF_VAL
7.2. Part I - Video for Linux API		be aware	521
		that you	
		can only	
		aet the de-	1

Table 169 – continued from previous page

}		
u32	count	The num-
		ber of
		controls
		in the
		controls
		array.
		May also
		be zero.

Table 169 - continued from previous page

Table 169 – continue	ed from prev	vious page	
		Set by the	_
	—	driver in	
		case of an	
		error. If	
		the error	
		is associ-	
		ated with	
		a partic-	
		ular con-	
		trol, then	
		error_idx	
		is set to	
		the index	
		of that	
		control. If	
		the error	
		is not re-	
		lated to	
		a specific	
		control,	
		or the	
		validation	
		step failed	
		(see be-	
		low), then	
		error_idx	
		is set to	
		count.	
		The value	
		is unde-	
		fined if	
		the ioctl	
		returned 0	
		(success).	
		Before	
		controls	
		are read	
		from/writte	n
		to hard-	
		ware a	
		validation	
		step takes	
		place: this	
		checks if	
		all con-	
		trols in	
		the list are	
		valid con-	
		trols, if no	
		attempt is	
		made to	
		write to a	
7.2. Part I - Video for Linux API		read-only	523
		control	
		or read	
		from a	

Table	169 - continued from	n previous page
labic		i picvious puge

C < /		1	Г
_s32	request_fd		
		scriptor	
		of the re-	
		quest to	
		be used	
		by this	
		operation.	
		Only valid	
		if which	
		is set to	
			WHICH_REQUEST_VAL
		If the de-	
		vice does	
		not sup-	
		port re-	
		quests,	
		then	
		EACCES	
		will be	
		returned.	
		If requests	
		are sup-	
		ported but	
		an invalid	
		request	
		file de-	
		scriptor is	
		given,	
		then	
		EINVAL	
		will be	
		returned.	
_u32	reserved[1	Reserved	
		for future	
		exten-	
		sions.	
		Drivers	
		and ap-	
		plications	
		phoutions	
		-	
		must set the array	

 Table 169 - continued from previous page

struct	controls	Pointer to
v4l2_ext_control		an array
*		of count
		v4l2_ext_control
		struc-
		tures.
		Ignored
		if count
		equals
		zero.

Table 169 - continued from previous page

Table 170: Control classes

V4L2_CTRL_CLASS_USER	0x980000	The class containing user controls. These controls are described in User Controls. All controls that can be set using the VID-IOC_S_CTRL and VIDIOC_G_CTRL ioctl belong to this class.
V4L2_CTRL_CLASS_MPEG	0x990000	The class containing MPEG compression controls. These controls are described in Codec Control Reference.
V4L2_CTRL_CLASS_CAMERA	0x9a0000	The class containing camera controls. These controls are described in Camera Control Reference.
V4L2_CTRL_CLASS_FM_TX	0x9b0000	The class containing FM Transmitter (FM TX) controls. These controls are described in FM Transmitter Control Reference.
V4L2_CTRL_CLASS_FLASH	0x9c0000	The class containing flash device controls. These controls are described in Flash Con- trol Reference.
V4L2_CTRL_CLASS_JPEG	0x9d0000	The class containing JPEG compression con- trols. These controls are described in JPEG Control Reference.
V4L2_CTRL_CLASS_IMAGE_SOURCE	0x9e0000	The class containing image source con- trols. These controls are described in Image Source Control Reference.
V4L2_CTRL_CLASS_IMAGE_PROC	0x9f0000	The class containing image processing con- trols. These controls are described in Image Process Control Reference.
V4L2_CTRL_CLASS_FM_RX	0xa10000	The class containing FM Receiver (FM RX) controls. These controls are described in FM Receiver Control Reference.
V4L2_CTRL_CLASS_RF_TUNER	0xa20000	The class containing RF tuner controls. These controls are described in RF Tuner Control Reference.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EINVAL** The struct v4l2_ext_control id is invalid, or the struct v4l2_ext_controls which is invalid, or the struct v4l2_ext_control value was inappropriate (e.g. the given menu index is not supported by the driver), or the which field was set to V4L2_CTRL_WHICH_REQUEST_VAL but the given request_fd was invalid or V4L2_CTRL_WHICH_REQUEST_VAL is not supported by the kernel. This error code is also returned by the VIDIOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS ioctls if two or more control values are in conflict.
- **ERANGE** The struct v4l2_ext_control value is out of bounds.
- **EBUSY** The control is temporarily not changeable, possibly because another applications took over control of the device function this control belongs to, or (if the which field was set to V4L2_CTRL_WHICH_REQUEST_VAL) the request was queued but not yet completed.
- **ENOSPC** The space reserved for the control's payload is insufficient. The field size is set to a value that is enough to store the payload and this error code is returned.
- **EACCES** Attempt to try or set a read-only control, or to get a write-only control, or to get a control from a request that has not yet been completed.

Or the which field was set to V4L2_CTRL_WHICH_REQUEST_VAL but the device does not support requests.

ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF

Name

VIDIOC_G_FBUF - VIDIOC_S_FBUF - Get or set frame buffer overlay parameters

Synopsis

int ioctl(int fd, VIDIOC_G_FBUF, struct v4l2_framebuffer *argp)

int ioctl(int fd, VIDIOC_S_FBUF, const struct v4l2_framebuffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_framebuffer.

Description

Applications can use the VIDIOC_G_FBUF and VIDIOC_S_FBUF ioctl to get and set the framebuffer parameters for a Video Overlay or Video Output Overlay (OSD). The type of overlay is implied by the device type (capture or output device) and can be determined with the ioctl VIDIOC_QUERYCAP ioctl. One /dev/videoN device must not support both kinds of overlay.

The V4L2 API distinguishes destructive and non-destructive overlays. A destructive overlay copies captured video images into the video memory of a graphics card. A non-destructive overlay blends video images into a VGA signal or graphics into a video signal. Video Output Overlays are always non-destructive.

To get the current parameters applications call the VIDIOC_G_FBUF ioctl with a pointer to a struct v4l2_framebuffer structure. The driver fills all fields of the structure or returns an EINVAL error code when overlays are not supported.

To set the parameters for a Video Output Overlay, applications must initialize the flags field of a struct v4l2_framebuffer. Since the framebuffer is implemented on the TV card all other parameters are determined by the driver. When an application calls VIDIOC_S_FBUF with a pointer to this structure, the driver prepares for the overlay and returns the framebuffer parameters as VIDIOC_G_FBUF does, or it returns an error code.

To set the parameters for a non-destructive Video Overlay, applications must initialize the flags field, the fmt substructure, and call VIDIOC_S_FBUF. Again the driver prepares for the overlay and returns the framebuffer parameters as VID-IOC_G_FBUF does, or it returns an error code.

For a destructive Video Overlay applications must additionally provide a base address. Setting up a DMA to a random memory location can jeopardize the system security, its stability or even damage the hardware, therefore only the superuser can set the parameters for a destructive video overlay.

v4l2_framebuffer

		- <u>_</u>
u32	capability	Overlay capability flags set by the driver, see Frame Buffer Capability Flags.
u32	flags	Overlay control flags set by appli- cation and driver, see Frame Buffer Flags

Table 171: struct v4l2_framebuffer

··· · · · · · · · · · · · · · · · · ·		nued from previou	
void *	base		Physical base address of the frame-
			buffer, that is the address of the
			pixel in the top left corner of the
			framebuffer. ¹
			This field is irrelevant to non-
			destructive Video Overlays. For
			destructive Video Overlays applica-
			tions must provide a base address.
			The driver may accept only base ad-
			dresses which are a multiple of two,
			four or eight bytes. For Video Out-
			put Overlays the driver must return
			a valid base address, so applications
			can find the corresponding Linux
			framebuffer device (see Video Out-
			put Overlay Interface).
struct	fmt		Layout of the frame buffer.
Siluci	u32	width	Width of the frame buffer in pixels.
	u32	height	-
	u32	pixelformat	Height of the frame buffer in pixels.
	U32	pixecionnac	The pixel format of the framebuffer.
			For non-destructive Video Overlays
			this field only defines a format for
			the struct v4l2_window chromakey
			field.
			For destructive Video Overlays ap-
			plications must initialize this field.
			For Video Output Overlays the
			driver must return a valid format.
			Usually this is an RGB format (for
			example V4L2_PIX_FMT_RGB565)
			but YUV formats (only packed
			YUV formats when chroma
			keying is used, not includ-
			ing V4L2_PIX_FMT_YUYV and
			V4L2_PIX_FMT_UYVY) and the
			V4L2 PIX FMT PAL8 format are
			also permitted. The behavior of the
			driver when an application requests
			a compressed format is undefined.
			See Image Formats for information
			on pixel formats.
	enum v4l2_field	field	Drivers and applications shall ig-
			nore this field. If applicable, the
			field order is selected with the VID-
			IOC S FMT ioctl, using the field
			field of struct v412 window.
i la			—
	1132	hvtesnerline	Distance in hutes hetween the left.
	u32	bytesperline	Distance in bytes between the left- most pixels in two adjacent lines.

Table 171 – continued from previous page

Table 171 – continued from previous page

This field is irrelevant to non-destructive Video Overlays.

For destructive Video Overlays both applications and drivers can set this field to request padding bytes at the end of each line. Drivers however may ignore the requested value, returning width times bytes-per-pixel or a larger value required by the hardware. That implies applications can just set this field to zero to get a reasonable default.

For Video Output Overlays the driver must return a valid value.

Video hardware may access padding bytes, therefore they must reside in accessible memory. Consider for example the case where padding bytes after the last line of an image cross a system page boundary. Capture devices may write padding bytes, the value is undefined. Output devices ignore the contents of padding bytes.

When the image format is planar the bytesperline value applies to the first plane and is divided by the same factor as the width field for the other planes. For example the Cb and Cr planes of a YUV 4:2:0 image have half as many padding bytes following each line as the Y plane. To avoid ambiguities drivers must return a bytesperline value rounded up to a multiple of the scale factor.

u32	sizeimage	This field is irrelevant to non- destructive Video Overlays. For destructive Video Overlays applica- tions must initialize this field. For Video Output Overlays the driver must return a valid format. Together with base it defines the framebuffer memory accessible by the driver.
enum v4l2_colorspace	colorspace	This information supplements the pixelformat and must be set by the driver, see Colorspaces.
u32	priv	Reserved. Drivers and applications must set this field to zero.

 $^{^1}$ A physical base address may not suit all platforms. GK notes in theory we should pass something like PCI device + memory region + offset instead. If you encounter problems please discuss on the linux-media mailing list: https://linuxtv.org/lists.php.

V4L2_FBUF_CAP_EXTERNOVERLAY	0x0001	The device is capable of non-destructive overlays. When the driver clears this flag, only destructive overlays are supported. There are no drivers yet which support both destructive and non-destructive over- lays. Video Output Overlays are in practice always non-destructive.
V4L2_FBUF_CAP_CHROMAKEY	0x0002	The device supports clipping by chroma- keying the images. That is, image pixels replace pixels in the VGA or video signal only where the latter assume a certain color. Chroma-keying makes no sense for destruc- tive overlays.
V4L2_FBUF_CAP_LIST_CLIPPING	0x0004	The device supports clipping using a list of clip rectangles.
V4L2_FBUF_CAP_BITMAP_CLIPPING	0x0008	The device supports clipping using a bit mask.
V4L2_FBUF_CAP_LOCAL_ALPHA	0x0010	The device supports clipping/blending using the alpha channel of the framebuffer or VGA signal. Alpha blending makes no sense for destructive overlays.
V4L2_FBUF_CAP_GLOBAL_ALPHA	0x0020	The device supports alpha blending using a global alpha value. Alpha blending makes no sense for destructive overlays.
V4L2_FBUF_CAP_LOCAL_INV_ALPHA		The device supports clipping/blending using the inverted alpha channel of the framebuffer or VGA signal. Alpha blending makes no sense for destructive overlays.
V4L2_FBUF_CAP_SRC_CHROMAKEY	0x0080	The device supports Source Chroma-keying. Video pixels with the chroma-key colors are replaced by framebuffer pixels, which is ex- actly opposite of V4L2_FBUF_CAP_CHROMAKEY

Table 172: Frame Buffer Capability Flags

Table 173: Frame Buffer Flags

		5
V4L2_FBUF_FLAG_PRIMARY	$0 \times 00 \overline{0} 1$	The framebuffer is the primary graph-
		ics surface. In other words, the over-
		lay is destructive. This flag is typi-
		cally set by any driver that doesn't have
		the V4L2_FBUF_CAP_EXTERNOVERLAY capabil-
		ity and it is cleared otherwise.

	If this flag is set for a video capture device, then the driver will set the initial overlay size to cover the full framebuffer size, other-			
	wise the existing overlay size (as set by VID- IOC_S_FMT) will be used. Only one video capture driver (bttv) supports this flag. The use of this flag for capture devices is dep- recated. There is no way to detect which drivers support this flag, so the only reliable method of setting the overlay size is through VIDIOC_S_FMT. If this flag is set for a video output device, then the video output overlay window is relative to the top-left corner of the framebuffer and restricted to the size of the framebuffer. If it is cleared, then the video output device, window is relative to the video output device, then the video output overlay window is relative.			
V4L2_FBUF_FLAG_CHROMAKEY 0x0004	Use chroma-keying. The chroma-key color is determined by the chromakey field of struct v4l2_window and negotiated with the VID- IOC_S_FMT ioctl, see Video Overlay Inter- face and Video Output Overlay Interface.			
There are no flags to enable clipping using a list of clip rectangles or a bitmap. These methods are negotiated with the VIDIOC_S_FMT ioctl, see Video Overlay Interface and Video				
Output Overlay Interface.				
	Use the alpha channel of the framebuffer to clip or blend framebuffer pixels with video images. The blend function is: output = framebuffer pixel * alpha + video pixel * (1 - alpha). The actual alpha depth depends on the framebuffer pixel format.			
	Use a global alpha value to blend the frame- buffer with video images. The blend func- tion is: output = (framebuffer pixel * alpha + video pixel * (255 - alpha)) / 255. The alpha value is determined by the global_alpha field of struct v412_window and negotiated with the VIDIOC_S_FMT ioctl, see Video Overlay Interface and Video Output Overlay Interface.			
	Like V4L2_FBUF_FLAG_LOCAL_ALPHA, use the alpha channel of the framebuffer to clip or blend framebuffer pixels with video images, but with an inverted alpha value. The blend function is: output = framebuffer pixel * (1 - alpha) + video pixel * alpha. The actual al- pha depth depends on the framebuffer pixel format.			

Tahle	173 – continued from	nrevious nage
IUDIC	\mathbf{T}	picvious page

V4L2_FBUF_FLAG_SRC_CHROMAKEY 0x	0040 Use source chroma-keying. The source
	chroma-key color is determined by the
	chromakey field of struct v4l2_window and
	negotiated with the VIDIOC_S_FMT ioctl, see
	Video Overlay Interface and Video Output
	Overlay Interface. Both chroma-keying are
	mutual exclusive to each other, so same
	chromakey field of struct v4l2 window is be-
	ing used.

Table 173 - continued from previous page

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EPERM** VIDIOC_S_FBUF can only be called by a privileged user to negotiate the parameters for a destructive overlay.
- **EINVAL** The VIDIOC_S_FBUF parameters are unsuitable.

ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT

Name

 $VIDIOC_G_FMT$ - $VIDIOC_S_FMT$ - $VIDIOC_TRY_FMT$ - Get or set the data format, try a format

Synopsis

int ioctl(int fd, VIDIOC_G_FMT, struct v4l2_format *argp)
int ioctl(int fd, VIDIOC_S_FMT, struct v4l2_format *argp)
int ioctl(int fd, VIDIOC TRY FMT, struct v4l2_format *argp)

Arguments

fd File descriptor returned by open().
argp Pointer to struct v4l2_format.

Description

These ioctls are used to negotiate the format of data (typically image format) exchanged between driver and application.

To query the current parameters applications set the type field of a struct v4l2 format to the respective buffer (stream) type. For example video capture devices use V4L2 BUF TYPE VIDEO CAPTURE or V4L2 BUF TYPE VIDEO CAPTURE MPLANE. When the application calls the VID-IOC G FMT ioctl with a pointer to this structure the driver fills the respective member of the fmt union. In case of video capture devices that is either the struct v4l2 pix format pix or the struct v4l2 pix format mplane pix mp member. When the requested buffer type is not supported drivers return an EINVAL error code.

To change the current format parameters applications initialize the type field and all fields of the respective fmt union member. For details see the documentation of the various devices types in Interfaces. Good practice is to query the current parameters first, and to modify only those parameters not suitable for the application. When the application calls the VIDIOC S FMT ioctl with a pointer to a struct v4l2 format structure the driver checks and adjusts the parameters against hardware abilities. Drivers should not return an error code unless the type field is invalid, this is a mechanism to fathom device capabilities and to approach parameters acceptable for both the application and driver. On success the driver may program the hardware, allocate resources and generally prepare for data exchange. Finally the VIDIOC S FMT ioctl returns the current format parameters as VIDIOC G FMT does. Very simple, inflexible devices may even ignore all input and always return the default parameters. However all V4L2 devices exchanging data with the application must implement the VIDIOC G FMT and VIDIOC S FMT ioctl. When the requested buffer type is not supported drivers return an EINVAL error code on a VIDIOC S FMT attempt. When I/O is already in progress or the resource is not available for other reasons drivers return the EBUSY error code.

The VIDIOC_TRY_FMT ioctl is equivalent to VIDIOC_S_FMT with one exception: it does not change driver state. It can also be called at any time, never returning EBUSY. This function is provided to negotiate parameters, to learn about hardware limitations, without disabling I/O or possibly time consuming hardware preparations. Although strongly recommended drivers are not required to implement this ioctl.

The format as returned by VIDIOC_TRY_FMT must be identical to what VID-IOC_S_FMT returns for the same input or output.

v4l2_format

Table 174: struct v4	ll2_format	
u32 type	Type of	
	the data	
	stream, see	
	v4l2_buf_type	
union fmt		
{		
struct pix	Definition of an	
v4l2_pix_format	image format,	
	see Image For-	
	mats, used by	
	video capture	
	and output	
	devices.	
struct pix_mp	Definition of an	
v4l2_pix_format_mplane	image format,	
	see Image For-	
	mats, used by	
	video capture	
	and output	
	devices that	
	support the	
	multi-planar	
	version of the	
	API.	
struct win	Definition of	
v4l2 window	an overlaid im-	
	age, see Video	
	Overlay Inter-	
	face, used by	
	video overlay	
	devices.	
struct vbi	Raw VBI cap-	
v4l2_vbi_format	ture or output	
	parameters.	
	This is dis-	
	cussed in more	
	detail in Raw	
	VBI Data In-	
	terface. Used	
	by raw VBI	
	5	
	capture and	
atmust clicad	output devices.	
struct sliced	Sliced VBI cap-	
v4l2_sliced_vbi_format	ture or output	
	parameters.	
	See Sliced VBI	
	Data Interface	
	for details.	
	Used by sliced	
	VBI capture	
and output Chapter 7. Linux Mediadufrastructure userspace A		
struct sdr	Definition of a	
v4l2_sdr_format	data format,	
	soo Imago For-	
	ISAA IMAGA HOR-I	

Table 174: struct v4l2 format

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EINVAL** The struct v4l2_format type field is invalid or the requested buffer type not supported.
- **EBUSY** The device is busy and cannot change the format. This could be because or the device is streaming or buffers are allocated or queued to the driver. Relevant for VIDIOC_S_FMT only.

ioctl VIDIOC_G_FREQUENCY, VIDIOC_S_FREQUENCY

Name

 $\label{eq:VIDIOC_G_FREQUENCY-VIDIOC_S_FREQUENCY-Get\ or\ set\ tuner\ or\ modulator\ radio\ frequency$

Synopsis

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_frequency.

Description

To get the current tuner or modulator radio frequency applications set the tuner field of a struct v4l2_frequency to the respective tuner or modulator number (only input devices have tuners, only output devices have modulators), zero out the reserved array and call the VIDIOC_G_FREQUENCY ioctl with a pointer to this structure. The driver stores the current frequency in the frequency field.

To change the current tuner or modulator radio frequency applications initialize the tuner, type and frequency fields, and the reserved array of a struct v4l2_frequency and call the VIDIOC_S_FREQUENCY ioctl with a pointer to this structure. When the requested frequency is not possible the driver assumes the closest possible value. However VIDIOC_S_FREQUENCY is a write-only ioctl, it does not return the actual new frequency.

v4l2_frequency

u32	tuner	The tuner or modulator index number. This is the same value as in the struct v4l2_input tuner field and the struct v4l2_tuner index field, or the struct v4l2_output modulator field and the struct v4l2_modulator index field.
u32	type	The tuner type. This is the same value as in the struct v4l2_tuner type field. The type must be set to V4L2_TUNER_RADIO for /dev/radioX device nodes, and to V4L2_TUNER_ANALOG_TV for all others. Set this field to V4L2_TUNER_RADIO for modu- lators (currently only radio modulators are supported). See v4l2 tuner type
u32	frequency	Tuning frequency in units of 62.5 kHz, or if the struct v4l2_tuner or struct v4l2_modulator capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz. A 1 Hz unit is used when the capability flag V4L2_TUNER_CAP_1HZ is set.
u32	reserved[8]	Reserved for future extensions. Drivers and applications must set the array to zero.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The tuner index is out of bounds or the value in the type field is wrong.

EBUSY A hardware seek is in progress.

ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT

Name

 $VIDIOC_G_INPUT$ - $VIDIOC_S_INPUT$ - Query or select the current video input

Synopsis

int ioctl(int fd, VIDIOC_G_INPUT, int *argp)
int ioctl(int fd, VIDIOC_S_INPUT, int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer an integer with input index.

Description

To query the current video input applications call the VIDIOC_G_INPUT ioctl with a pointer to an integer where the driver stores the number of the input, as in the struct v4l2_input index field. This ioctl will fail only when there are no video inputs, returning EINVAL.

To select a video input applications store the number of the desired input in an integer and call the VIDIOC_S_INPUT ioctl with a pointer to this integer. Side effects are possible. For example inputs may support different video standards, so the driver may implicitly switch the current standard. Because of these possible side effects applications must select an input before querying or negotiating any other parameters.

Information about video inputs is available using the ioctl VIDIOC_ENUMINPUT ioctl.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The number of the video input is out of bounds.

ioctl VIDIOC_G_JPEGCOMP, VIDIOC_S_JPEGCOMP

Name

VIDIOC_G_JPEGCOMP - VIDIOC_S_JPEGCOMP

Synopsis

int ioctl(int fd, VIDIOC_G_JPEGCOMP, v4l2_jpegcompression *argp)
int ioctl(int fd, VIDIOC_S_JPEGCOMP, const v4l2_jpegcompression *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_jpegcompression.

Description

These ioctls are **deprecated**. New drivers and applications should use JPEG class controls for image quality and JPEG markers control.

[to do]

Ronald Bultje elaborates:

APP is some application-specific information. The application can set it itself, and it'll be stored in the JPEG-encoded fields (eg; interlacing information for in an AVI or so). COM is the same, but it's comments, like 'encoded by me' or so.

jpeg_markers describes whether the huffman tables, quantization tables and the restart interval information (all JPEG-specific stuff) should be stored in the JPEG-encoded fields. These define how the JPEG field is encoded. If you omit them, applications assume you' ve used standard encoding. You usually do want to add them.

v4l2_jpegcompression

int	quality	Deprecated. If V4L2_CID_JPEG_COMPRESSION_QUALITY control
		is exposed by a driver applications should use it instead and ignore
		this field.
int	APPn	
int	APP_len	
char	APP_data[60]	
int	COM_len	
char	COM_data[60]	
u32	jpeg_markers	See JPEG Markers Flags. Deprecated. If
		V4L2_CID_JPEG_ACTIVE_MARKER control is exposed by a driver
		applications should use it instead and ignore this field.

Table 176: struct v4l2_jpegcompression

Table 177: JPEG Markers Flags

Table 177. Ji Le Transler Trage				
V4L2_JPEG_MARKER_DHT	(1<<3)	Define Huffman Tables		
V4L2_JPEG_MARKER_DQT	(1<<4)	Define Quantization Tables		
V4L2_JPEG_MARKER_DRI	(1<<5)	Define Restart Interval		
V4L2_JPEG_MARKER_COM	(1<<6)	Comment segment		
V4L2_JPEG_MARKER_APP	(1<<7)	App segment, driver will always use APP0		

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_G_MODULATOR, VIDIOC_S_MODULATOR

Name

 $VIDIOC_G_MODULATOR$ - $VIDIOC_S_MODULATOR$ - Get or set modulator attributes

Synopsis

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_modulator.

Description

To query the attributes of a modulator applications initialize the index field and zero out the reserved array of a struct v4l2_modulator and call the VID-IOC_G_MODULATOR ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To enumerate all modulators applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

Modulators have two writable properties, an audio modulation set and the radio frequency. To change the modulated audio subprograms, applications initialize the index and txsubchans fields and the reserved array and call the VID-IOC_S_MODULATOR ioctl. Drivers may choose a different audio modulation if the request cannot be satisfied. However this is a write-only ioctl, it does not return the actual audio modulation selected.

SDR specific modulator types are V4L2_TUNER_SDR and V4L2_TUNER_RF. For SDR devices txsubchans field must be initialized to zero. The term 'modulator' means SDR transmitter in this context.

To change the radio frequency the VIDIOC_S_FREQUENCY ioctl is available.

v4l2_modulator

u32	index	Identifies the modulator, set by the application.		
u8	name[32]	Name of the modulator, a NUL-terminated ASCII string. This information is intended for the user.		
u32	capability	Modulator capability flags. No flags are defined for this field, the tuner flags in struct v4l2_tuner are used accordingly. The audio flags indicate the ability to encode audio subprograms. They will not change for example with the current video stan- dard.		
u32	rangelow	The lowest tunable frequency in units of 62.5 KHz, or if the capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz, or if the capability flag V4L2_TUNER_CAP_1HZ is set, in units of 1 Hz.		
u32	rangehigh	The highest tunable frequency in units of 62.5 KHz, or if the capability flag V4L2_TUNER_CAP_LOW is set, in units of 62.5 Hz, or if the capability flag V4L2_TUNER_CAP_1HZ is set, in units of 1 Hz.		
u32	txsubchans	With this field applications can determine how audio sub- carriers shall be modulated. It contains a set of flags as de- fined in Modulator Audio Transmission Flags.		
		Note: The tuner rxsubchans flags are reused, but the semantics are different. Video output devices are assumed to have an analog or PCM audio input with 1-3 channels. The txsubchans flags select one or more channels for modulation, together with some audio subprogram indicator, for example, a stereo pilot tone.		
u32	type	Type of the modulator, see v4l2_tuner_type.		
	reserved[3]	Reserved for future extensions.		
		Drivers and applications must set the array to zero.		

Table 178: struct v4l2_modulator

Table 179. Modul	ator Audio	ransmission Flags
V4L2_TUNER_SUB_MONO	0x0001	Modulate channel 1 as mono audio, when the input has more channels, a down-mix of channel 1 and 2. This flag does not combine with V4L2_TUNER_SUB_STERE0 or V4L2_TUNER_SUB_LANG1.
V4L2_TUNER_SUB_STERE0	0x0002	Modulate channel 1 and 2 as left and right channel of a stereo audio signal. When the input has only one channel or two channels and V4L2_TUNER_SUB_SAP is also set, channel 1 is encoded as left and right channel. This flag does not combine with V4L2_TUNER_SUB_MONO or V4L2_TUNER_SUB_LANG1. When the driver does not support stereo audio it shall fall back to mono.
V4L2_TUNER_SUB_LANG1	0x0008	Modulate channel 1 and 2 as primary and secondary language of a bilingual au- dio signal. When the input has only one channel it is used for both languages. It is not possible to encode the primary or secondary language only. This flag does not combine with V4L2_TUNER_SUB_MONO, V4L2_TUNER_SUB_STERE0 or V4L2_TUNER_SUB_SAP. If the hardware does not support the respective audio matrix, or the current video standard does not permit bilingual audio the VIDIOC_S_MODULATOR ioctl shall return an EINVAL error code and the driver shall fall back to mono or stereo mode.
VAL2 TUNER SUB LANG2	$0 \times 0 0 0 4$	
V4L2_TUNER_SUB_LANG2 V4L2_TUNER_SUB_SAP 7.2. Part I - Video for Linux AP	0x0004 0x0004	Same effect as V4L2_TUNER_SUB_SAP. When combined with V4L2_TUNER_SUB_MONO the first channel is encoded as mono audio, the last channel as Second Audio Program. When the input has only one channel it is used for both audio tracks. When the in- put has three channels the mono track is a down-mix of channel 1 and 2. When com- bined with V4L2_TUNER_SUB_STEREO chan- nel 1 and 2 are encoded as left and right stereo audio, channel 3 as Second Audio Pro- gram. When the input has only two chan- nels, the first is encoded as left and right channel and the second as SAP. When the input has only one channel it is used for all audio tracks. It is not possible to en- code a Second Audio Program only. This flag must combine with V4L2_TUNER_SUB_MONO or V4L2_TUNER_SUB_STEREO. If the hardware does not support the respective audio matrix, or the current video standard does not permit
7.2. Fail - Video for Linux AP		SAP the VIDIOC_S_MODULAT 541 ioctl shall return an EINVAL error code and driver shall fall back to mono or stereo mode.
V4L2 TUNER SUB RDS	0x0010	Enable the RDS encoder for a radio FM trans-

Table 179: Modulator Audio Transmission Flags

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_modulator index is out of bounds.

ioctl VIDIOC_G_OUTPUT, VIDIOC_S_OUTPUT

Name

 $VIDIOC_G_OUTPUT$ - $VIDIOC_S_OUTPUT$ - Query or select the current video output

Synopsis

int ioctl(int fd, VIDIOC_G_OUTPUT, int *argp)
int ioctl(int fd, VIDIOC_S_OUTPUT, int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer with output index.

Description

To query the current video output applications call the VIDIOC_G_OUTPUT ioctl with a pointer to an integer where the driver stores the number of the output, as in the struct v4l2_output index field. This ioctl will fail only when there are no video outputs, returning the EINVAL error code.

To select a video output applications store the number of the desired output in an integer and call the VIDIOC_S_OUTPUT ioctl with a pointer to this integer. Side effects are possible. For example outputs may support different video standards, so the driver may implicitly switch the current standard. standard. Because of these possible side effects applications must select an output before querying or negotiating any other parameters.

Information about video outputs is available using the ioctl VID-IOC_ENUMOUTPUT ioctl.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The number of the video output is out of bounds, or there are no video outputs at all.

ioctl VIDIOC_G_PARM, VIDIOC_S_PARM

Name

VIDIOC_G_PARM - VIDIOC_S_PARM - Get or set streaming parameters

Synopsis

int ioctl(int fd, VIDIOC_G_PARM, v4l2_streamparm *argp)
int ioctl(int fd, VIDIOC_S_PARM, v4l2_streamparm *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_streamparm.

Description

The current video standard determines a nominal number of frames per second. If less than this number of frames is to be captured or output, applications can request frame skipping or duplicating on the driver side. This is especially useful when using the read() or write(), which are not augmented by timestamps or sequence counters, and to avoid unnecessary data copying.

Changing the frame interval shall never change the format. Changing the format, on the other hand, may change the frame interval.

Further these ioctls can be used to determine the number of buffers used internally by a driver in read/write mode. For implications see the section discussing the read() function.

To get and set the streaming parameters applications call the VIDIOC_G_PARM and VIDIOC_S_PARM ioctl, respectively. They take a pointer to a struct v4l2_streamparm which contains a union holding separate parameters for input and output devices.

v4l2_streamparm

	_		
u32	type	The buffer	
		(stream) type,	
		same as struct	
		v4l2_format	
		type, set by the	
		application. See	
		v4l2_buf_type.	
union {	parm	1	
struct	capture	Parameters for	
v4l2_capturepar	n	capture devices,	
		used when type is	
		V4L2_BUF_TYPE_V	IDE0_CAPTURE
		or	_
		V4L2_BUF_TYPE_V	IDEO_CAPTURE_MPLANE.
struct	output	Parameters for	
v4l2 outputparm		output devices,	
		used when type is	
		V4L2 BUF TYPE V	IDEO OUTPUT
		or	—
		V4L2_BUF_TYPE_V	IDE0_OUTPUT_MPLANE.
u8	raw_data[200]	A place holder for	
		future extensions.	
}			

Table 180: struct v4l2_streamparm

v4l2_captureparm

u32	capability	See Streaming Parameters Capabilities.
 u32	capturemode	Set by drivers and applications, see Capture
		Parameters Flags.
struct v4l2 fract	timeperframe	This is the desired period between succes-
—		sive frames captured by the driver, in sec-
		onds. The field is intended to skip frames on
		the driver side, saving I/O bandwidth.
		Applications store here the desired frame
		period, drivers return the actual frame pe-
		riod, which must be greater or equal to the
		nominal frame period determined by the cur-
		rent video standard (struct v4l2_standard
		frameperiod field). Changing the video stan-
		dard (also implicitly by switching the video
		input) may reset this parameter to the nomi-
		nal frame period. To reset manually applica-
		tions can just set this field to zero.
		Drivers support this function only when they
		set the V4L2_CAP_TIMEPERFRAME flag in the
		capability field.
u32	extendedmode	Custom (driver specific) streaming parame-
		ters. When unused, applications and drivers
		must set this field to zero. Applications us-
		ing this field should check the driver name
22		and version, see Querying Capabilities.
u32	readbuffers	Applications set this field to the desired num-
		ber of buffers used internally by the driver in
		read() mode. Drivers return the actual num-
		ber of buffers. When an application requests zero buffers, drivers should just return the
		current setting rather than the minimum or
		an error code. For details see Read/Write.
u32	reserved[4]	Reserved for future extensions. Drivers and
^{u02}		applications must set the array to zero.
		applications must set the array to zero.

Table 181:	struct v4l2	captureparm
------------	-------------	-------------

v4l2_outputparm

u32	capability	See Streaming Parameters Capabilities.		
u32	outputmode	Set by drivers and applications, see Capture		
		Parameters Flags.		
struct v4l2_fract	timeperframe	This is the desired period between succes-		
		sive frames output by the driver, in seconds.		

Table 182:	struct v4l2_	outputparm
------------	--------------	------------

The field is intended to repeat frames on the driver side in write() mode (in streaming mode timestamps can be used to throttle the output), saving I/O bandwidth.

Applications store here the desired frame period, drivers return the actual frame period, which must be greater or equal to the nominal frame period determined by the current video standard (struct v4l2_standard frameperiod field). Changing the video standard (also implicitly by switching the video output) may reset this parameter to the nominal frame period. To reset manually applications can just set this field to zero.

Drivers support this function only when they set the V4L2_CAP_TIMEPERFRAME flag in the capability field.

,		
_u32	extendedmode	Custom (driver specific) streaming parame-
		ters. When unused, applications and drivers
		must set this field to zero. Applications us-
		ing this field should check the driver name
		and version, see Querying Capabilities.
_u32	writebuffers	Applications set this field to the desired num-
		ber of buffers used internally by the driver in
		write() mode. Drivers return the actual num-
		ber of buffers. When an application requests
		zero buffers, drivers should just return the
		current setting rather than the minimum or
		an error code. For details see Read/Write.
_u32	reserved[4]	Reserved for future extensions. Drivers and
		applications must set the array to zero.

Table 183: Streaming Parameters Capabilities

	5	1
V4L2_CAP_TIMEPERFRAME	0x1000	The frame skipping/repeating controlled by
		the timeperframe field is supported.

Table 104. Capture Fatallieters Flags			
V4L2_MODE_HIGHQUALITY	0x0001	High quality imaging mode. High quality	
		mode is intended for still imaging applica-	
		tions. The idea is to get the best possible	
		image quality that the hardware can deliver.	
		It is not defined how the driver writer may	
		achieve that; it will depend on the hardware	
		and the ingenuity of the driver writer. High	
		quality mode is a different mode from the	
		regular motion video capture modes. In high	
		quality mode:	
		• The driver may be able to capture	
		higher resolutions than for motion cap-	
		ture.	
		• The driver may support fewer pixel for-	
		mats than motion capture (eg; true	
		color).	
		• The driver may capture and arithmeti-	
		cally combine multiple successive fields	
		or frames to remove color edge artifacts	
		and reduce the noise in the video data.	
		• The driver may capture images in slices	
		like a scanner in order to handle larger	
		format images than would otherwise be	
		possible.	
		• An image capture operation may be sig-	
		nificantly slower than motion capture.	
		Moving objects in the image might have	
		excessive motion blur.	
		• Capture might only work through the	
		read() call.	

Table 184: Capture Parameters Flags

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_G_PRIORITY, VIDIOC_S_PRIORITY

Name

 $VIDIOC_G_PRIORITY$ - $VIDIOC_S_PRIORITY$ - Query or request the access priority associated with a file descriptor

Synopsis

int ioctl(int fd, VIDIOC_G_PRIORITY, enum v4l2_priority *argp)
int ioctl(int fd, VIDIOC_S_PRIORITY, const enum v4l2_priority *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an enum v4l2_priority type.

Description

To query the current access priority applications call the VIDIOC_G_PRIORITY ioctl with a pointer to an enum v4l2_priority variable where the driver stores the current priority.

To request an access priority applications store the desired priority in an enum v4l2_priority variable and call VIDIOC_S_PRIORITY ioctl with a pointer to this variable.

v4l2_priority

V4L2_PRIORITY_UNSET	0	
V4L2_PRIORITY_BACKGROUND	1	Lowest priority, usually applications running in background, for example monitoring VBI transmissions. A proxy application running in user space will be necessary if multiple ap- plications want to read from a device at this priority.
V4L2_PRIORITY_INTERACTIVE	2	
V4L2_PRIORITY_DEFAULT	2	Medium priority, usually applications started and interactively controlled by the user. For example TV viewers, Teletext browsers, or just "panel" applications to change the chan- nel or video controls. This is the default pri- ority unless an application requests another.
V4L2_PRIORITY_RECORD	3	Highest priority. Only one file descriptor can have this priority, it blocks any other fd from changing device properties. Usually appli- cations which must not be interrupted, like video recording.

Table 185: enum v4l2 priority

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The requested priority value is invalid.

EBUSY Another application already requested higher priority.

ioctl VIDIOC_G_SELECTION, VIDIOC_S_SELECTION

Name

 $VIDIOC_G_SELECTION$ - $VIDIOC_S_SELECTION$ - Get or set one of the selection rectangles

Synopsis

int ioctl(int fd, VIDIOC_G_SELECTION, struct v4l2_selection *argp)
int ioctl(int fd, VIDIOC_S_SELECTION, struct v4l2_selection *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_selection.

Description

The ioctls are used to query and configure selection rectangles.

To query the cropping (composing) rectangle set struct v4l2_selection type field to the respective buffer type. The next step is setting the value of struct v4l2_selection target field to V4L2_SEL_TGT_CROP (V4L2_SEL_TGT_COMPOSE). Please refer to table Common selection definitions or Cropping, composing and scaling - the SELECTION API for additional targets. The flags and reserved fields of struct v4l2_selection are ignored and they must be filled with zeros. The driver fills the rest of the structure or returns EINVAL error code if incorrect buffer type or target was used. If cropping (composing) is not supported then the active rectangle is not mutable and it is always equal to the bounds rectangle. Finally, the struct v4l2_rect r rectangle is filled with the current cropping (composing) coordinates. The coordinates are expressed in driver-dependent units. The only exception are rectangles for images in raw formats, whose coordinates are always expressed in pixels.

To change the cropping (composing) rectangle set the struct v4l2_selection type field to the respective buffer type. The next step is setting the value of struct v4l2_selection target to V4L2_SEL_TGT_CROP (V4L2_SEL_TGT_COMPOSE). Please refer to table Common selection definitions or Cropping, composing and scaling

- the SELECTION API for additional targets. The struct v4l2_rect r rectangle need to be set to the desired active area. Field struct v4l2_selection reserved is ignored and must be filled with zeros. The driver may adjust coordinates of the requested rectangle. An application may introduce constraints to control rounding behaviour. The struct v4l2_selection flags field must be set to one of the following:

- θ The driver can adjust the rectangle size freely and shall choose a crop/compose rectangle as close as possible to the requested one.
- V4L2_SEL_FLAG_GE The driver is not allowed to shrink the rectangle. The original rectangle must lay inside the adjusted one.
- V4L2_SEL_FLAG_LE The driver is not allowed to enlarge the rectangle. The adjusted rectangle must lay inside the original one.
- V4L2_SEL_FLAG_GE | V4L2_SEL_FLAG_LE The driver must choose the size exactly the same as in the requested rectangle.

Please refer to Size adjustments with constraint flags..

The driver may have to adjusts the requested dimensions against hardware limits and other parts as the pipeline, i.e. the bounds given by the capture/output window or TV display. The closest possible values of horizontal and vertical offset and sizes are chosen according to following priority:

- 1. Satisfy constraints from struct v4l2_selection flags.
- 2. Adjust width, height, left, and top to hardware limits and alignments.
- 3. Keep center of adjusted rectangle as close as possible to the original one.
- 4. Keep width and height as close as possible to original ones.
- 5. Keep horizontal and vertical offset as close as possible to original ones.

On success the struct v4l2_rect r field contains the adjusted rectangle. When the parameters are unsuitable the application may modify the cropping (composing) or image parameters and repeat the cycle until satisfactory parameters have been negotiated. If constraints flags have to be violated at then ERANGE is returned. The error indicates that there exist no rectangle that satisfies the constraints.

Selection targets and flags are documented in Common selection definitions.

v4l2_selection

u32	type	Type of the buffer (from enum		
		v4l2_buf_type).		
u32	target	Used to select between cropping and com-		
		posing rectangles.		
_u32	flags	Flags controlling the selection rectangle ad-		
		justments, refer to selection flags.		
struct v4l2_rect	r	The selection rectangle.		
u32	reserved[9]	Reserved fields for future use. Drivers and		
		applications must zero this array.		

Table 186: struct v4l2 selection

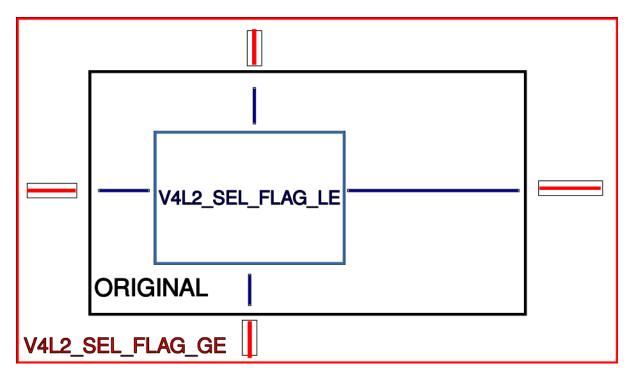


Fig. 17: Size adjustments with constraint flags. Behaviour of rectangle adjustment for different constraint flags.

Note: Unfortunately in the case of multiplanar buffer types (V4L2_BUF_TYPE_VIDE0_CAPTURE_MPLANE and V4L2_BUF_TYPE_VIDE0_OUTPUT_MPLANE) this API was messed up with regards to how the v4l2_selection type field should be filled in. Some drivers only accepted the _MPLANE buffer type while other drivers only accepted a non-multiplanar buffer type (i.e. without the _MPLANE at the end).

Starting with kernel 4.13 both variations are allowed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EINVAL** Given buffer type type or the selection target target is not supported, or the flags argument is not valid.
- **ERANGE** It is not possible to adjust struct v4l2_rect r rectangle to satisfy all constraints given in the flags argument.

ENODATA Selection is not supported for this input or output.

EBUSY It is not possible to apply change of the selection rectangle at the moment. Usually because streaming is in progress.

ioctl VIDIOC_G_SLICED_VBI_CAP

Name

VIDIOC_G_SLICED_VBI_CAP - Query sliced VBI capabilities

Synopsis

int **ioctl** (int fd, VIDIOC_G_SLICED_VBI_CAP, struct v4l2 sliced vbi cap *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_sliced_vbi_cap.

Description

To find out which data services are supported by a sliced VBI capture or output device, applications initialize the type field of a struct v4l2_sliced_vbi_cap, clear the reserved array and call the VIDIOC_G_SLICED_VBI_CAP ioctl. The driver fills in the remaining fields or returns an EINVAL error code if the sliced VBI API is unsupported or type is invalid.

Note: The type field was added, and the ioctl changed from read-only to write-read, in Linux 2.6.19.

v4l2_sliced_vbi_cap

u16	service_set	A set of all data services supported by the driver.				
		Equal to the union of all elements of the service_lines array.				
u16	service_lines[2][24]					
			-	ticular scan line. Data		
				es. Array indices map		
		to ITU-R line number	rs ¹ as follows:			
		Element	Element 525 line systems 625 line systems			
		<pre>service_lines[0][1]</pre>		1		
		<pre>service_lines[0][23</pre>	323	23		
		<pre>service_lines[1][1]</pre>	264	314		
		service_lines[1][23]286 336				
		<u></u>	<u>_</u>			
		The number of VBI lines the hardware can capture or output per				
		frame, or the number of services it can identify on a given line				
		may be limited. For example on PAL line 16 the hardware may				
		be able to look for a VPS or Teletext signal, but not both at the				
		same time. Applications can learn about these limits using the				
		VIDIOC_S_FMT ioctl as described in Sliced VBI Data Interface.				
		Drivers must set service_lines [0][0] and service_lines[1][0]				
		to zero.				
u32	type	Type of the data stream, see v4l2_buf_type.				
		Should be V4L2_BUF_TYPE_SLICED_VBI_CAPTURE or				
		V4L2_BUF_TYPE_SLIC				
u32	reserved[3]	This array is reserved	d for future extension	IS.		
		Applications and driv	vers must set it to zer	0.		
		<u>.</u>				

Table 187:	struct v4l2	sliced	vbi cap
	-		+

Table 188: Sliced VBI services

Symbol	Value	Reference	Lines, usually	Payload					
V4L2_SLICED_TELETEXT_	B0x0001	ETS 300 706,	PAL/SECAM	Last 42 of t	the 45 byte	Teletex	t packet	, that i	s without
(Teletext System B)		ITU BT.653	line 7-22,	clock run-in	ı and framin	g code,	lsb first	transm	itted.
			320-335 (sec-						
			ond field						
			7-22)						
V4L2 SLICED VPS	0x0400	ETS 300 231	PAL line 16	Byte numbe	er 3 to 15 a	cording	g to Figu	re 9 of	ETS 300
				231, lsb firs	st transmitte	d.	5 0		
V4L2_SLICED_CAPTION_5	205 x1000	CEA 608-E	NTSC line 21,	Two bytes ir	n transmissi	on orde	r, includ	ing pari	ty bit, lsb
			284 (second					51	5
			field 21)						
V4L2 SLICED WSS 625	0x4000	EN 300 294,	PAL/SECAM						
···		ITU BT.1119	line 23	D t	0			- 1	
				Byte	Θ			T	
				msb)	lsb	msb		
				 →lsb					
				Bit 7 6	5432	10	хх	13 12	11
				→10 9					
V4L2_SLICED_VBI_525	0x1000	Set of services	applicable to 5	25 line syste	ems.				
V4L2_SLICED_VBI_625	0x4401	Set of services applicable to 625 line systems.							
		1							

¹ See also Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL) and Figure 4.3. ITU-R 625 line numbering.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The value in the type field is wrong.

ioctl VIDIOC_G_STD, VIDIOC_S_STD, VIDIOC_SUBDEV_G_STD, VID-IOC_SUBDEV_S_STD

Name

 $VIDIOC_G_STD$ - $VIDIOC_S_STD$ - $VIDIOC_SUBDEV_G_STD$ - $VIDIOC_SUBDEV_S_STD$ - Query or select the video standard of the current input

Synopsis

int ioctl(int fd, VIDIOC_G_STD, v4l2_std_id *argp)
int ioctl(int fd, VIDIOC_S_STD, const v4l2_std_id *argp)
int ioctl(int fd, VIDIOC_SUBDEV_G_STD, v4l2_std_id *argp)
int ioctl(int fd, VIDIOC_SUBDEV_S_STD, const v4l2_std_id *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to v4l2_std_id.

Description

To query and select the current video standard applications use the VIDIOC_G_STD and VIDIOC_S_STD ioctls which take a pointer to a v4l2_std_id type as argument. VIDIOC_G_STD can return a single flag or a set of flags as in struct v4l2_standard field id. The flags must be unambiguous such that they appear in only one enumerated struct v4l2_standard structure.

VIDIOC_S_STD accepts one or more flags, being a write-only ioctl it does not return the actual new standard as VIDIOC_G_STD does. When no flags are given or the current input does not support the requested standard the driver returns an EINVAL error code. When the standard set is ambiguous drivers may return EINVAL or choose any of the requested standards. If the current input or output does not support standard video timings (e.g. if ioctl VIDIOC_ENUMINPUT does not set the V4L2_IN_CAP_STD flag), then ENODATA error code is returned.

Calling VIDIOC_SUBDEV_S_STD on a subdev device node that has been registered in read-only mode is not allowed. An error is returned and the errno variable is set to -EPERM.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The VIDIOC_S_STD parameter was unsuitable.

ENODATA Standard video timings are not supported for this input or output.

EPERM VIDIOC_SUBDEV_S_STD has been called on a read-only subdevice.

ioctl VIDIOC_G_TUNER, VIDIOC_S_TUNER

Name

VIDIOC_G_TUNER - VIDIOC_S_TUNER - Get or set tuner attributes

Synopsis

int ioctl(int fd, VIDIOC_G_TUNER, struct v4l2_tuner *argp)
int ioctl(int fd, VIDIOC_S_TUNER, const struct v4l2_tuner *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_tuner.

Description

To query the attributes of a tuner applications initialize the index field and zero out the reserved array of a struct v4l2_tuner and call the VIDIOC_G_TUNER ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds. To enumerate all tuners applications shall begin at index zero, incrementing by one until the driver returns EINVAL.

Tuners have two writable properties, the audio mode and the radio frequency. To change the audio mode, applications initialize the index, audmode and reserved fields and call the VIDIOC_S_TUNER ioctl. This will not change the current tuner, which is determined by the current video input. Drivers may choose a different audio mode if the requested mode is invalid or unsupported. Since this is a write-only ioctl, it does not return the actually selected audio mode.

SDR specific tuner types are V4L2_TUNER_SDR and V4L2_TUNER_RF. For SDR devices audmode field must be initialized to zero. The term 'tuner' means SDR receiver in this context.

To change the radio frequency the VIDIOC_S_FREQUENCY ioctl is available.

v4l2_tuner

0	index	Identifies the tuner, set by the application.				
u8	name[32]		Name of the tuner, a NUL-terminated ASCII string.			
		This information is intended for t				
u32	type	Type of the tuner, see v4l2_tune				
u32	capability	Tuner capability flags, see Tuner and Modulator Capability Flags.				
			o decode audio subprograms. They			
		will not change, for example with				
		When the structure refer				
			V4L2_TUNER_CAP_LANG2 and			
		V4L2_TUNER_CAP_NORM flags can'				
			supported, then capability is the			
		union of all capability fields of e	each struct v4l2_frequency_band.			
_u32	rangelow	The lowest tunable frequency	in units of 62.5 kHz, or if the			
		capability flag V4L2_TUNER_CAP	LOW is set, in units of 62.5 Hz, or if			
		the capability flag V4L2_TUNER_	_CAP_1HZ is set, in units of 1 Hz. If			
		multiple frequency bands are sup	ported, then rangelow is the lowest			
		frequency of all the frequency ba	nds.			
_u32	rangehigh		in units of 62.5 kHz, or if the			
			P_LOW is set, in units of 62.5 Hz, or if			
		the capability flag V4L2_TUNER_	_CAP_1HZ is set, in units of 1 Hz. If			
			ported, then rangehigh is the high-			
		est frequency of all the frequency				
_u32	rxsubchans		n determine the received audio sub-			
		programs by analyzing audio carriers, pilot tones or other indicators.				
		_	To pass this information drivers set flags defined in Tuner Audio Re-			
		ception Flags in this field. For exa	-			
		V4L2_TUNER_SUB_MONO	receiving mono audio			
		STEREO SAP	receiving stereo audio and a sec-			
			ondary audio program			
		MONO STEREO	receiving mono or stereo audio,			
			the hardware cannot distinguish			
		LANG1 LANG2	receiving bilingual audio			
		MONO STEREO LANG1	receiving mono, stereo or bilin-			
		LANG2	gual audio			
			EO, _LANG1, _LANG2 or _SAP flag is			
			he corresponding V4L2_TUNER_SUB_			
		flag must not be set here.				
		-	ne tuner of the current video input,			
		or when the structure refers to a				
u32	audmode		aner Audio Modes for valid values.			
			idio subprogram detection, and like			
			atically change unless the requested			
			See Tuner Audio Matrix for possible			
			eived audio programs do not match.			
		•	f struct struct v4l2_tuner applica-			
		tions can change.				
	Conti	nued on next page				

Table 189: struct v4l2 tuner

Continued on next page

	100	ie 105 continued nom previous page
_u32	signal	The signal strength if known.
		Ranging from 0 to 65535. Higher values indicate a better signal.
_s32	afc	Automatic frequency control.
		When the afc value is negative, the frequency is too low, when posi-
		tive too high.
_u32	reserved[4]	Reserved for future extensions.
		Drivers and applications must set the array to zero.

Table 189 - continued from previous page

v4l2_tuner_type

Table 190:	enum v4l2	_tuner_type	
------------	-----------	-------------	--

	-	
V4L2_TUNER_RADI0	1	Tuner supports radio
V4L2_TUNER_ANALOG_TV	2	Tuner supports analog TV
V4L2_TUNER_SDR	4	Tuner controls the A/D and/or D/A block of a
		Software Digital Radio (SDR)
V4L2_TUNER_RF	5	Tuner controls the RF part of a Software Dig-
		ital Radio (SDR)

Table 191: Tuner and Modulator Capability Flags

V4L2_TUNER_CAP_LOW	$0 x 0 0 \overline{0} 1$	When set, tuning frequencies are expressed
		in units of 62.5 Hz instead of 62.5 kHz.
V4L2_TUNER_CAP_NORM	0x0002	This is a multi-standard tuner; the video
		standard can or must be switched. (B/G
		PAL tuners for example are typically not
		considered multi-standard because the video
		standard is automatically determined from
		the frequency band.) The set of supported
		video standards is available from the struct
		v4l2_input pointing to this tuner, see the de-
		scription of ioctl ioctl VIDIOC_ENUMINPUT
		for details. Only V4L2_TUNER_ANALOG_TV
		tuners can have this capability.
V4L2_TUNER_CAP_HWSEEK_BOUNDED	0x0004	If set, then this tuner supports the hardware
		seek functionality where the seek stops when
		it reaches the end of the frequency range.
V4L2_TUNER_CAP_HWSEEK_WRAP	0x0008	If set, then this tuner supports the hardware
		seek functionality where the seek wraps
		around when it reaches the end of the fre-
		quency range.
V4L2_TUNER_CAP_STERE0	0x0010	Stereo audio reception is supported.
Continued on nex	t page	

Continued on next page

		n previous page
V4L2_TUNER_CAP_LANG1	0x0040	Reception of the primary language of a bilin- gual audio program is supported. Bilingual audio is a feature of two-channel systems, transmitting the primary language monaural on the main audio carrier and a secondary language monaural on a second carrier. Only V4L2_TUNER_ANALOG_TV tuners can have this capability.
V4L2_TUNER_CAP_LANG2	0x0020	Reception of the secondary language of a bilingual audio program is supported. Only V4L2_TUNER_ANALOG_TV tuners can have this capability.
V4L2_TUNER_CAP_SAP	0x0020	Reception of a secondary audio program is supported. This is a feature of the BTSC system which accompanies the NTSC video standard. Two audio carriers are available for mono or stereo transmissions of a primary language, and an independent third carrier for a monaural secondary language. Only V4L2_TUNER_ANALOG_TV tuners can have this capability.
		Note: The V4L2_TUNER_CAP_LANG2 and V4L2_TUNER_CAP_SAP flags are synonyms. V4L2_TUNER_CAP_SAP applies when the tuner supports the V4L2_STD_NTSC_M video standard.
V4L2_TUNER_CAP_RDS	0x0080	RDS capture is supported. This capability is only valid for radio tuners.
V4L2_TUNER_CAP_RDS_BLOCK_I0	0x0100	The RDS data is passed as unparsed RDS blocks.
V4L2_TUNER_CAP_RDS_CONTROLS	0x0200	The RDS data is parsed by the hardware and set via controls.
V4L2_TUNER_CAP_FREQ_BANDS	0x0400	The ioctl VIDIOC_ENUM_FREQ_BANDS ioctl can be used to enumerate the available frequency bands.
V4L2_TUNER_CAP_HWSEEK_PROG_L	I 10 x0800	The range to search when using the hard- ware seek functionality is programmable, see ioctl VIDIOC_S_HW_FREQ_SEEK for de- tails.
V4L2_TUNER_CAP_1HZ	0x1000	When set, tuning frequencies are expressed in units of 1 Hz instead of 62.5 kHz.

Table 191 - continued from previous page

	1 0
0x0001	The tuner receives a mono audio signal.
0x0002	The tuner receives a stereo audio signal.
0x0008	The tuner receives the primary language of
	a bilingual audio signal. Drivers must clear
	this flag when the current video standard is
	V4L2_STD_NTSC_M.
0x0004	The tuner receives the secondary language
	of a bilingual audio signal (or a second audio
	program).
0x0004	The tuner receives a Second Audio Program.
	Note: The V4L2_TUNER_SUB_LANG2
	and V4L2_TUNER_SUB_SAP flags are syn-
	onyms. The V4L2_TUNER_SUB_SAP flag
	applies when the current video standard is
	V4L2_STD_NTSC_M.
0x0010	The tuner receives an RDS channel.
	0x0002 0x0008 0x0004 0x0004

Table 192: Tuner Audio Reception Flags

	3: Tuner Au	
V4L2_TUNER_MODE_MONO	0	Play mono audio. When the tuner receives a stereo signal this a down-mix of the left and right channel. When the tuner receives a bilingual or SAP signal this mode selects the primary language.
V4L2_TUNER_MODE_STERE0	1	Play stereo audio. When the tuner receives bilingual audio it may play different lan- guages on the left and right channel or the primary language is played on both channels. Playing different languages in this mode is deprecated. New drivers should do this only in MODE_LANG1_LANG2. When the tuner receives no stereo signal or does not support stereo reception the driver shall fall back to MODE_MONO.
V4L2_TUNER_MODE_LANG1	3	Play the primary language, mono or stereo. Only V4L2_TUNER_ANALOG_TV tuners support this mode.
V4L2_TUNER_MODE_LANG2	2	Play the secondary language, mono. When the tuner receives no bilingual audio or SAP, or their reception is not supported the driver shall fall back to mono or stereo mode. Only V4L2_TUNER_ANALOG_TV tuners support this mode.
V4L2_TUNER_MODE_SAP	2	Play the Second Audio Program. When the tuner receives no bilingual audio or SAP, or their reception is not supported the driver shall fall back to mono or stereo mode. Only V4L2_TUNER_ANALOG_TV tuners support this mode.
		Note: The V4L2_TUNER_MODE_LANG2 and V4L2_TUNER_MODE_SAP are synonyms.
V4L2_TUNER_MODE_LANG1_LANG2	4	Play the primary language on the left channel, the secondary language on the right channel. When the tuner receives no bilingual audio or SAP, it shall fall back to MODE_LANG1 or MODE_MONO. Only V4L2_TUNER_ANALOG_TV tuners support this mode.

Table 193: Tuner Audio Modes

	Selected V4L2_TUNER_MODE_								
	MONO	STERE0	LANG1		LANG2 = S	SAP	LANG1_LANG	2 ¹	
V4L2_TUNER_SUB_									
MONO	Mono	Mono/Mono	Mono		Mono		Mono/Mono		
MONO	Mono	Mono/Mono	Mono		SAP		Mono/SAP		
SAP							(preferred)		or
							Mono/Mono		
STERE0	L+R	L/R	Stereo L/R	(pre-	Stereo I	L/R (pre-		red)	or
			ferred) or	Mono	ferred) (or Mono	L+R/L+R		
			L+R		L+R				
STERE0	L+R	L/R	Stereo L/R	(pre-	SAP		L+R/SAP	(p	ore-
SAP			ferred) or	Mono			ferred) or	L/R	or
			L+R				L+R/L+R		
LANG1	Language	Lang1/Lang2	Language 1		Language 2		Lang1/Lang	2	
LANG2	1	(deprecated ²) or					(preferred)		or
		Lang1/Lang1					Lang1/Lang	1	

Table 194: Tuner Audio Matrix

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_tuner index is out of bounds.

ioctl VIDIOC_LOG_STATUS

Name

VIDIOC_LOG_STATUS - Log driver status information

Synopsis

int ioctl(int fd, VIDIOC_LOG_STATUS)

Arguments

fd File descriptor returned by open().

¹ This mode has been added in Linux 2.6.17 and may not be supported by older drivers.

 $^{^2}$ Playback of both languages in MODE_STEREO is deprecated. In the future drivers should produce only the primary language in this mode. Applications should request MODE_LANG1_LANG2 to record both languages or a stereo signal.

Description

As the video/audio devices become more complicated it becomes harder to debug problems. When this ioctl is called the driver will output the current device status to the kernel log. This is particular useful when dealing with problems like no sound, no video and incorrectly tuned channels. Also many modern devices autodetect video and audio standards and this ioctl will report what the device thinks what the standard is. Mismatches may give an indication where the problem is.

This ioctl is optional and not all drivers support it. It was introduced in Linux 2.6.15.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_OVERLAY

Name

VIDIOC_OVERLAY - Start or stop video overlay

Synopsis

int ioctl(int fd, VIDIOC_OVERLAY, const int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer.

Description

This ioctl is part of the video overlay I/O method. Applications call ioctl VID-IOC_OVERLAY to start or stop the overlay. It takes a pointer to an integer which must be set to zero by the application to stop overlay, to one to start.

Drivers do not support ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF or VID-IOC_STREAMOFF with V4L2_BUF_TYPE_VIDEO_OVERLAY.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The overlay parameters have not been set up. See Video Overlay Interface for the necessary steps.

ioctl VIDIOC_PREPARE_BUF

Name

VIDIOC_PREPARE_BUF - Prepare a buffer for I/O

Synopsis

int ioctl(int fd, VIDIOC_PREPARE_BUF, struct v4l2_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_buffer.

Description

Applications can optionally call the ioctl VIDIOC_PREPARE_BUF ioctl to pass ownership of the buffer to the driver before actually enqueuing it, using the VID-IOC_QBUF ioctl, and to prepare it for future I/O. Such preparations may include cache invalidation or cleaning. Performing them in advance saves time during the actual I/O.

The struct v4l2_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EBUSY File I/O is in progress.

EINVAL The buffer type is not supported, or the index is out of bounds, or no buffers have been allocated yet, or the userptr or length are invalid.

ioctl VIDIOC_QBUF, VIDIOC_DQBUF

Name

VIDIOC_QBUF - VIDIOC_DQBUF - Exchange a buffer with the driver

Synopsis

int ioctl(int fd, VIDIOC_QBUF, struct v4l2_buffer *argp)
int ioctl(int fd, VIDIOC_DQBUF, struct v4l2_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_buffer.

Description

Applications call the VIDIOC_QBUF ioctl to enqueue an empty (capturing) or filled (output) buffer in the driver's incoming queue. The semantics depend on the selected I/O method.

To enqueue a buffer applications set the type field of a struct v4l2 buffer to the same buffer type as was previously used with struct v4l2 format type and struct v4l2 requestbuffers type. Applications must also set the index Valid index numbers range from zero to the number of buffers allofield. cated with ioctl VIDIOC REQBUFS (struct v4l2 requestbuffers count) mi-The contents of the struct v4l2 buffer returned by a ioctl VIDnus one. IOC QUERYBUF ioctl will do as well. When the buffer is intended for output (type is V4L2_BUF_TYPE_VIDE0_OUTPUT, V4L2_BUF_TYPE_VIDE0_OUTPUT_MPLANE, or V4L2 BUF TYPE VBI OUTPUT) applications must also initialize the bytesused, field and timestamp fields, see Buffers for details. Applications must also set flags to 0. The reserved2 and reserved fields must be set to 0. When using the multi-planar API, the m.planes field must contain a userspace pointer to a filledin array of struct v4l2 plane and the length field must be set to the number of elements in that array.

To enqueue a memory mapped buffer applications set the memory field to V4L2_MEMORY_MMAP. When VIDIOC_QBUF is called with a pointer to this structure the driver sets the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_QUEUED flags and clears the V4L2_BUF_FLAG_DONE flag in the flags field, or it returns an EINVAL error code.

To enqueue a user pointer buffer applications set the memory field to V4L2_MEMORY_USERPTR, the m.userptr field to the address of the buffer and length to its size. When the multi-planar API is used, m.userptr and length members of the passed array of struct v4l2_plane have to be used instead. When VIDIOC_QBUF is called with a pointer to this structure the driver sets the V4L2_BUF_FLAG_QUEUED flag and clears the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_DONE flags in the

flags field, or it returns an error code. This ioctl locks the memory pages of the buffer in physical memory, they cannot be swapped out to disk. Buffers remain locked until dequeued, until the VIDIOC_STREAMOFF or ioctl VIDIOC_REQBUFS ioctl is called, or until the device is closed.

To enqueue a DMABUF buffer applications set the memory field to V4L2_MEMORY_DMABUF and the m.fd field to a file descriptor associated with a DMABUF buffer. When the multi-planar API is used the m.fd fields of the passed array of struct v4l2_plane have to be used instead. When VIDIOC_QBUF is called with a pointer to this structure the driver sets the V4L2_BUF_FLAG_QUEUED flag and clears the V4L2_BUF_FLAG_MAPPED and V4L2_BUF_FLAG_DONE flags in the flags field, or it returns an error code. This ioctl locks the buffer. Locking a buffer means passing it to a driver for a hardware access (usually DMA). If an application accesses (reads/writes) a locked buffer then the result is undefined. Buffers remain locked until dequeued, until the VIDIOC_STREAMOFF or ioctl VIDIOC_REQBUFS ioctl is called, or until the device is closed.

The request_fd field can be used with the VIDIOC_QBUF ioctl to specify the file descriptor of a request, if requests are in use. Setting it means that the buffer will not be passed to the driver until the request itself is queued. Also, the driver will apply any settings associated with the request for this buffer. This field will be ignored unless the V4L2_BUF_FLAG_REQUEST_FD flag is set. If the device does not support requests, then EBADR will be returned. If requests are supported but an invalid request file descriptor is given, then EINVAL will be returned.

Caution: It is not allowed to mix queuing requests with queuing buffers directly. EBUSY will be returned if the first buffer was queued directly and then the application tries to queue a request, or vice versa. After closing the file descriptor, calling VIDIOC_STREAMOFF or calling ioctl VIDIOC_REQBUFS the check for this will be reset.

For memory-to-memory devices you can specify the request_fd only for output buffers, not for capture buffers. Attempting to specify this for a capture buffer will result in an EBADR error.

Applications call the VIDIOC_DQBUF ioctl to dequeue a filled (capturing) or displayed (output) buffer from the driver' s outgoing queue. They just set the type, memory and reserved fields of a struct v412_buffer as above, when VIDIOC_DQBUF is called with a pointer to this structure the driver fills the remaining fields or returns an error code. The driver may also set V4L2_BUF_FLAG_ERROR in the flags field. It indicates a non-critical (recoverable) streaming error. In such case the application may continue as normal, but should be aware that data in the dequeued buffer might be corrupted. When using the multi-planar API, the planes array must be passed in as well.

If the application sets the memory field to V4L2_MEMORY_DMABUF to dequeue a DMABUF buffer, the driver fills the m.fd field with a file descriptor numerically the same as the one given to VIDIOC_QBUF when the buffer was enqueued. No new file descriptor is created at dequeue time and the value is only for the application convenience. When the multi-planar API is used the m.fd fields of the passed array of struct v4l2_plane are filled instead.

By default VIDIOC_DQBUF blocks when no buffer is in the outgoing queue. When the O_NONBLOCK flag was given to the open() function, VIDIOC_DQBUF returns immediately with an EAGAIN error code when no buffer is available.

The struct v4l2_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EAGAIN** Non-blocking I/O has been selected using 0_NONBLOCK and no buffer was in the outgoing queue.
- EINVAL The buffer type is not supported, or the index is out of bounds, or no buffers have been allocated yet, or the userptr or length are invalid, or the V4L2_BUF_FLAG_REQUEST_FD flag was set but the the given request_fd was invalid, or m.fd was an invalid DMABUF file descriptor.
- **EIO** VIDIOC_DQBUF failed due to an internal error. Can also indicate temporary problems like signal loss.

Note: The driver might dequeue an (empty) buffer despite returning an error, or even stop capturing. Reusing such buffer may be unsafe though and its details (e.g. index) may not be returned either. It is recommended that drivers indicate recoverable errors by setting the V4L2_BUF_FLAG_ERROR and returning 0 instead. In that case the application should be able to safely reuse the buffer and continue streaming.

- **EPIPE** VIDIOC_DQBUF returns this on an empty capture queue for mem2mem codecs if a buffer with the V4L2_BUF_FLAG_LAST was already dequeued and no new buffers are expected to become available.
- **EBADR** The V4L2_BUF_FLAG_REQUEST_FD flag was set but the device does not support requests for the given buffer type, or the V4L2_BUF_FLAG_REQUEST_FD flag was not set but the device requires that the buffer is part of a request.
- **EBUSY** The first buffer was queued via a request, but the application now tries to queue it directly, or vice versa (it is not permitted to mix the two APIs).

ioctl VIDIOC_QUERYBUF

Name

VIDIOC_QUERYBUF - Query the status of a buffer

Synopsis

int ioctl(int fd, VIDIOC_QUERYBUF, struct v4l2_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_buffer.

Description

This ioctl is part of the streaming I/O method. It can be used to query the status of a buffer at any time after buffers have been allocated with the ioctl VID-IOC_REQBUFS ioctl.

Applications set the type field of a struct v4l2_buffer to the same buffer type as was previously used with struct v4l2_format type and struct v4l2_requestbuffers type, and the index field. Valid index numbers range from zero to the number of buffers allocated with ioctl VIDIOC_REQBUFS (struct v4l2_requestbuffers count) minus one. The reserved and reserved2 fields must be set to 0. When using the multi-planar API, the m.planes field must contain a userspace pointer to an array of struct v4l2_plane and the length field has to be set to the number of elements in that array. After calling ioctl VIDIOC_QUERYBUF with a pointer to this structure drivers return an error code or fill the rest of the structure.

In the flags field the V4L2_BUF_FLAG_MAPPED, V4L2_BUF_FLAG_PREPARED, V4L2_BUF_FLAG_QUEUED and V4L2_BUF_FLAG_DONE flags will be valid. The memory field will be set to the current I/O method. For the single-planar API, the m. offset contains the offset of the buffer from the start of the device memory, the length field its size. For the multi-planar API, fields m.mem_offset and length in the m.planes array elements will be used instead and the length field of struct v4l2_buffer is set to the number of filled-in array elements. The driver may or may not set the remaining fields and flags, they are meaningless in this context.

The struct v4l2_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The buffer type is not supported, or the index is out of bounds.

ioctl VIDIOC_QUERYCAP

Name

VIDIOC_QUERYCAP - Query device capabilities

Synopsis

int ioctl(int fd, VIDIOC_QUERYCAP, struct v4l2_capability *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_capability.

Description

All V4L2 devices support the VIDIOC_QUERYCAP ioctl. It is used to identify kernel devices compatible with this specification and to obtain information about driver and hardware capabilities. The ioctl takes a pointer to a struct v4l2_capability which is filled by the driver. When the driver is not compatible with this specification the ioctl returns an EINVAL error code.

v4l2_capability

-	· · ·	
u8	driver[16]	Name of the driver, a unique NUL-terminated ASCII string. For ex-
		ample: "bttv". Driver specific applications can use this information
		to verify the driver identity. It is also useful to work around known
		bugs, or to identify drivers in error reports.
		Storing strings in fixed sized arrays is bad practice but unavoidable
		here. Drivers and applications should take precautions to never
		read or write beyond the end of the array and to make sure the
		strings are properly NUL-terminated.
_u8	card[32]	Name of the device, a NUL-terminated UTF-8 string. For example:
		"Yoyodyne TV/FM" . One driver may support different brands or
		models of video hardware. This information is intended for users,
		for example in a menu of available devices. Since multiple TV cards
		of the same brand may be installed which are supported by the
		same driver, this name should be combined with the character de-
		vice file name (e. g. /dev/video2) or the bus_info string to avoid
		ambiguities.
u8	bus_info[32	Location of the device in the system, a NUL-terminated ASCII
		string. For example: "PCI:0000:05:06.0". This information is in-
		tended for users, to distinguish multiple identical devices. If no
		such information is available the field must simply count the de-
		vices controlled by the driver ("platform:vivid-000"). The bus_info
		must start with "PCI:" for PCI boards, "PCIe:" for PCI Express
		boards, "usb-" for USB devices, "I2C:" for i2c devices, "ISA:" for
		ISA devices, "parport" for parallel port devices and "platform:" for
		platform devices.
u32	version	Version number of the driver.
		Starting with kernel 3.1, the version reported is provided by the
		V4L2 subsystem following the kernel numbering scheme. How-
		ever, it may not always return the same version as the kernel if,
		for example, a stable or distribution-modified kernel uses the V4L2
		stack from a newer kernel.
		The version number is formatted using the KERNEL_VERSION()
		macro. For example if the media stack corresponds to the V4L2
		version shipped with Kernel 4.14, it would be equivalent to:
		SION(a,b,c) (((a) << 16) + ((b) << 8) + (c))
		RNEL_VERSION(4, 14, 0);
	•	%u.%u.%u\\n",
		0xFF, (version >> 8) & 0xFF, version & 0xFF);
u32	capabilitie	Available capabilities of the physical device as a whole, see Device
		Capabilities Flags. The same physical device can export multiple
		devices in /dev (e.g. /dev/videoX, /dev/vbiY and /dev/radioZ). The
		capabilities field should contain a union of all capabilities avail-
		able around the several V4L2 devices exported to userspace. For
		all those devices the capabilities field returns the same set of ca-
		pabilities. This allows applications to open just one of the devices
		(typically the video device) and discover whether video, vbi and/or
		radio are also supported.
_u32	device_caps	Device capabilities of the opened device, see Device Capabilities
		Flags. Should contain the available capabilities of that specific de-
		vice node. So, for example, device_caps of a radio device will
		only contain radio related capabilities and no video or vbi capabil-
/.2. Pa	art I - Video f	Price number of the capabilities field confains the
		V4L2_CAP_DEVICE_CAPS capability. Only the capabilities field
		can have the V4L2_CAP_DEVICE_CAPS capability, device_caps will
		DOVER SET V/12 CAP DEVICE CAPS

Table 195: struct v4l2_capability

		pablitues riags
V4L2_CAP_VIDE0_CAPTURE	0x0000000	The device supports the single-planar API through the Video Capture interface.
	NE0000100	The device supports the multi-planar API through the Video Capture interface.
V4L2_CAP_VIDE0_OUTPUT	0x0000000	The device supports the single-planar API through the Video Output interface.
V4L2_CAP_VIDE0_OUTPUT_MPLAN	⊕ x0000200	The device supports the multi-planar API through the Video Output interface.
V4L2_CAP_VIDE0_M2M		The device supports the single-planar API through the Video Memory-To-Memory inter-face.
V4L2_CAP_VIDE0_M2M_MPLANE	0x0000800	The device supports the multi-planar API through the Video Memory-To-Memory inter-face.
V4L2_CAP_VIDE0_0VERLAY	0x00000004	The device supports the Video Overlay inter- face. A video overlay device typically stores captured images directly in the video mem- ory of a graphics card, with hardware clip- ping and scaling.
V4L2_CAP_VBI_CAPTURE	0x0000001	The device supports the Raw VBI Capture in- terface, providing Teletext and Closed Cap- tion data.
V4L2_CAP_VBI_OUTPUT	0x0000002	The device supports the Raw VBI Output in- terface.
V4L2_CAP_SLICED_VBI_CAPTURE	0x0000004	The device supports the Sliced VBI Capture interface.
V4L2_CAP_SLICED_VBI_OUTPUT	0x000008	The device supports the Sliced VBI Output interface.
V4L2_CAP_RDS_CAPTURE	0x0000010	The device supports the RDS capture inter- face.
V4L2_CAP_VIDE0_OUTPUT_OVERI		The device supports the Video Output Over- lay (OSD) interface. Unlike the Video Over- lay interface, this is a secondary function of video output devices and overlays an im- age onto an outgoing video signal. When the driver sets this flag, it must clear the V4L2_CAP_VIDEO_OVERLAY flag and vice versa. ¹
V4L2_CAP_HW_FREQ_SEEK	0x0000040	The device supports the ioctl VID- IOC_S_HW_FREQ_SEEK ioctl for hardware frequency seeking.
V4L2_CAP_RDS_OUTPUT	0x000080	The device supports the RDS output inter- face.
V4L2_CAP_TUNER	0x0001000	The device has some sort of tuner to receive RF-modulated video signals. For more infor- mation about tuner programming see Tuners and Modulators.

Table 196: Device Capabilities Flags

Continued on next page

Table 196 -	 continued fr 	om previous page
V4L2_CAP_AUDIO	0x00020000	The device has audio inputs or outputs. It
		may or may not support audio recording or
		playback, in PCM or compressed formats.
		PCM audio support must be implemented as
		ALSA or OSS interface. For more informa-
		tion on audio inputs and outputs see Audio
		Inputs and Outputs.
V4L2_CAP_RADI0		This is a radio receiver.
V4L2 CAP MODULATOR		The device has some sort of modulator to
	0.0000000000000000000000000000000000000	emit RF-modulated video/audio signals. For
		more information about modulator program-
		ming see Tuners and Modulators.
		The device supports the SDR Capture inter-
V4L2_CAP_SDR_CAPTURE		face.
	0x00200000	
V4L2_CAP_EXT_PIX_FORMAT		11
		v4l2_pix_format extended fields.
V4L2_CAP_SDR_OUTPUT		The device supports the SDR Output inter-
		face.
V4L2_CAP_META_CAPTURE		The device supports the Metadata Interface
		capture interface.
V4L2_CAP_READWRITE		The device supports the read() and/or write()
		I/O methods.
V4L2_CAP_ASYNCI0		The device supports the asynchronous I/O
		methods.
V4L2_CAP_STREAMING	0x0400000	The device supports the streaming I/O
		method.
V4L2_CAP_META_OUTPUT	0x0800000	The device supports the Metadata Interface
		output interface.
V4L2 CAP TOUCH	0x1000000	This is a touch device.
V4L2_CAP_I0_MC		There is only one input and/or output seen
		from userspace. The whole video topology
		configuration, including which I/O entity is
		routed to the input/output, is configured by
		userspace via the Media Controller. See Part
		IV - Media Controller API.
V4L2 CAP DEVICE CAPS	0x8000000	
		This capability can only appear in the
		capabilities field and never in the
		device_caps field.
		uevice_caps lielu.

Table 196 – continued from previous page

¹ The struct v4l2_framebuffer lacks an enum v4l2_buf_type field, therefore the type of overlay is implied by the driver capabilities.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctls VIDIOC_QUERYCTRL, VIDIOC_QUERY_EXT_CTRL and VID-IOC_QUERYMENU

Name

VIDIOC_QUERYCTRL - VIDIOC_QUERY_EXT_CTRL - VIDIOC_QUERYMENU - Enumerate controls and menu control items

Synopsis

int ioctl(int fd, int VIDIOC_QUERYCTRL, struct v4l2_queryctrl *argp)

int **ioctl**(int fd, VIDIOC_QUERY_EXT_CTRL, struct v4l2_query_ext_ctrl *argp)

int ioctl(int fd, VIDIOC_QUERYMENU, struct v4l2_querymenu *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_queryctrl, v4l2_query_ext_ctrl or v4l2_querymenu (depending on the ioctl).

Description

To query the attributes of a control applications set the id field of a struct v4l2_queryctrl and call the VIDIOC_QUERYCTRL ioctl with a pointer to this structure. The driver fills the rest of the structure or returns an EINVAL error code when the id is invalid.

It is possible to enumerate controls by calling VIDIOC_QUERYCTRL with successive id values starting from V4L2_CID_BASE up to and exclusive V4L2_CID_LASTP1. Drivers may return EINVAL if a control in this range is not supported. Further applications can enumerate private controls, which are not defined in this specification, by starting at V4L2_CID_PRIVATE_BASE and incrementing id until the driver returns EINVAL.

In both cases, when the driver sets the V4L2_CTRL_FLAG_DISABLED flag in the flags field this control is permanently disabled and should be ignored by the application.¹

¹ V4L2_CTRL_FLAG_DISABLED was intended for two purposes: Drivers can skip predefined controls not supported by the hardware (although returning EINVAL would do as well), or disable predefined and private controls after hardware detection without the trouble of reordering control arrays and indices (EINVAL cannot be used to skip private controls because it would prematurely end the enu-

When the application ORs id with V4L2_CTRL_FLAG_NEXT_CTRL the driver returns the next supported non-compound control, or EINVAL if there is none. In addition, the V4L2_CTRL_FLAG_NEXT_COMPOUND flag can be specified to enumerate all compound controls (i.e. controls with type \geq V4L2_CTRL_COMPOUND_TYPES and/or array control, in other words controls that contain more than one value). Specify both V4L2_CTRL_FLAG_NEXT_CTRL and V4L2_CTRL_FLAG_NEXT_COMPOUND in order to enumerate all controls, compound or not. Drivers which do not support these flags yet always return EINVAL.

The VIDIOC_QUERY_EXT_CTRL ioctl was introduced in order to better support controls that can use compound types, and to expose additional control information that cannot be returned in struct v4l2_queryctrl since that structure is full.

VIDIOC_QUERY_EXT_CTRL is used in the same way as VIDIOC_QUERYCTRL, except that the reserved array must be zeroed as well.

Additional information is required for menu controls: the names of the menu items. To query them applications set the id and index fields of struct v4l2_querymenu and call the VIDIOC_QUERYMENU ioctl with a pointer to this structure. The driver fills the rest of the structure or returns an EINVAL error code when the id or index is invalid. Menu items are enumerated by calling VIDIOC_QUERYMENU with successive index values from struct v4l2_queryctrl minimum to maximum, inclusive.

Note: It is possible for VIDIOC_QUERYMENU to return an EINVAL error code for some indices between minimum and maximum. In that case that particular menu item is not supported by this driver. Also note that the minimum value is not necessarily 0.

See also the examples in User Controls.

u32		Identifies the control, set by the application. See Con- trol IDs for predefined IDs. When the ID is ORed with V4L2_CTRL_FLAG_NEXT_CTRL the driver clears the flag and re- turns the first control with a higher ID. Drivers which do not sup- port this flag yet always return an EINVAL error code.
u32	type	Type of control, see v4l2_ctrl_type.
u8	name[32]	Name of the control, a NUL-terminated ASCII string. This infor-
		mation is intended for the user.
_s32	minimum	Minimum value, inclusive. This field gives a lower bound for the
		control. See enum v4l2_ctrl_type how the minimum value is to
		be used for each possible control type. Note that this a signed
		32-bit value.
_s32	maximum	Maximum value, inclusive. This field gives an upper bound for the
		control. See enum v4l2_ctrl_type how the maximum value is to
		be used for each possible control type. Note that this a signed
		32-bit value.
L		

Table 197: struct v4l2_queryctrl

Continued on next page

meration).

	lubic	157 continued nom previous page
s32	step	This field gives a step size for the control. See enum v412_ctrl_type how the step value is to be used for each possible control type. Note that this an unsigned 32-bit value. Generally drivers should not scale hardware control values. It may be necessary for example when the name or id imply a particular unit and the hardware actually accepts only multiples of said unit. If so, drivers must take care values are properly rounded when scaling, such that errors will not accumulate on repeated read-write cycles. This field gives the smallest change of an integer control actually affecting hardware. Often the information is needed when the user can change controls by keyboard or GUI buttons, rather than a slider. When for example a hardware register accepts values 0-511 and the driver reports 0-65535, step should be 128.
s32	default_value	Note that although signed, the step value is supposed to be always positive. The default value of a V4L2_CTRL_TYPE_INTEGER, _BOOLEAN, _BITMASK, _MENU or _INTEGER_MENU control. Not valid for other types of controls. Note: Drivers reset controls to their default value only when the driver is first loaded, never afterwards.
_u32	flags	Control flags, see Control Flags.
u32	reserved[2]	Reserved for future extensions. Drivers must set the array to zero.

Table 197 – continued from previous page

Table 198: struct v4l2_query_ext_ctrl

u32	id	Identifies the control, set by the application. See Control IDs for predefined IDs. When the ID is ORed with V4L2_CTRL_FLAG_NEXT_CTRL the driver clears the flag and returns the first non-compound con- trol with a higher ID. When the ID is ORed with V4L2_CTRL_FLAG_NEXT_COMPOUND the driver clears the flag and returns the first compound control with a higher ID. Set both to get the first control (compound or not) with a higher ID.
1122	11/20	5
	type	Type of control, see v4l2_ctrl_type.
char	name[32]	Name of the control, a NUL-terminated ASCII string. This
		information is intended for the user.
s64	minimum	Minimum value, inclusive. This field gives a lower bound
		for the control. See enum v4l2 ctrl type how the min-
		imum value is to be used for each possible control type.
		Note that this a signed 64-bit value.
s64	maximum	Maximum value, inclusive. This field gives an upper bound
		for the control. See enum v4l2_ctrl_type how the max-
		imum value is to be used for each possible control type.
		Note that this a signed 64-bit value.
	Continued on no	

	lable 198 – C	continued from previous page
	step default_value	This field gives a step size for the control. See enum v4l2_ctrl_type how the step value is to be used for each possible control type. Note that this an unsigned 64-bit value. Generally drivers should not scale hardware control val- ues. It may be necessary for example when the name or id imply a particular unit and the hardware actually ac- cepts only multiples of said unit. If so, drivers must take care values are properly rounded when scaling, such that errors will not accumulate on repeated read-write cycles. This field gives the smallest change of an integer con- trol actually affecting hardware. Often the information is needed when the user can change controls by keyboard or GUI buttons, rather than a slider. When for example a hardware register accepts values 0-511 and the driver reports 0-65535, step should be 128. The default value of a V4L2_CTRL_TYPE_INTEGER, _INTEGER64, _BOOLEAN, _BITMASK, _MENU, _INTEGER_MENU, _U8 or _U16 control. Not valid for other types of controls. Note: Drivers reset controls to their default value only when the driver is first loaded, never afterwards.
1133	flags	Control flags, son Control Flags
	elem size	Control flags, see Control Flags. The size in bytes of a single element of the array. Given a
		char pointer p to a 3-dimensional array you can find the po- sition of cell (z, y, x) as follows: $p + ((z * dims[1] + y) * dims[0] + x) * elem_size. elem_size is alwaysvalid, also when the control isn' t an array. For stringcontrols elem_size is equal to maximum + 1.$
u32	elems	The number of elements in the N-dimensional array. If this control is not an array, then elems is 1. The elems field can never be 0.
u32	nr_of_dims	The number of dimension in the N-dimensional array. If this control is not an array, then this field is 0.
u32	dims[V4L2 CTRL MAX DIM	S he size of each dimension. The first nr_of_dims elements
		of this array must be non-zero, all remaining elements must be zero.
_u32	reserved[32]	Reserved for future extensions. Applications and drivers must set the array to zero.
•	•	

Table 198 - continued from previous page

_u32 1d Identifies _u32 id Identifies _u41 id appli- _u32 indexIndex of _u32 indexIndex of _u32 indexIndex of _u32 indexIndex of _u33 indexIndex of _u14 _u14 applica- _u16 _u14 applica- _u16 _u14 applica- _u16 _u14 applica- _u16 anter[324]me of _u18 name[324]me of _u48 name[324]me of _u48 name[324]me of _u48 anter[324]me of _u49 the anter[344]me _u40 field is of _u414 <th>Table</th> <th></th> <th></th> <th>412_query</th> <th></th>	Table			412_query	
Image: set by the appli- cation from the resspective struct w412_queryctrl id. u32 indexIndex of the menu item, start- ing at zero, set by the application. u132 indexIndex of the menu item, atart- ing at zero, set by the application. u131 (anorymous) { u132 u132 indexIndex of the menu item, atart- ing at zero, set by the application. u131 (anorymous) { u132 u131 inder[SQ]me u131 of the menu item, a NUL- terminated u131 Infor- mation is infor- mation is infor- mation is infor- mation is valid for the user. u14 u14 u254 u24 u264 u264 u275 u275 u28 Inder[SQ]me u28 Inder[SQ]me u28 Inder[SQ]me u39 Infor- u39 Infor- u48 Infor u58 Infor u49 Infor u59 Infor u414 Infor u564 ValueValue u60		u32	id		
<pre>by the appli- cation from the re- spective struct v4l2_queryctrl idu32 indexIndex of the menu item, start- ing at zero, set by the applica- ion. union (anonymous) {u8 name[32]me of the menu item, a NUL- terminated ASCII string. This infor- mation is in- tended for the ASCII string. This infor- mation is in- tended for the user. This field is valid for </pre>					
appli- cation from the re- spective struct v4l2 queryctrl id. _u32 indexIndex of the menu item, start- ion _ui32 indexIndex of the applica- tion. _union (anonymous) { _uii0					
<pre>cation from the re- spective struct v4l2_queryctrl idu32 indexIndex of the menu item, start- ing at zero, set by the applica- tion. union (anonymous) {u8 name[302]me of the menu item, a NUL- terminated ASCII string. This infor- mation is in- tended for the user. This field is valid for v4L2_CTRL_TYPE_MENU type con- trolss64 valueValue of the integer menu item. Chapter 7. Linux Magia Infrastructure userspace API field is valid for</pre>				-	
<pre>from the re- spective struct v4l2_queryctrl id. </pre>					
<pre>the re- spective struct v4l2_queryctrl idu32 indexIndex of the menu item, start- ing at zero, set by the applica- tion. union (anonymous) {u8 name[302me of the menu item, a NUL- terminated ASCII string. This infor- mation is in- tended for the user. This field is valid for V4L2_CTRL_TYPE_MENU type con- trolss64 valueValue of the integer menu item. </pre>					
<pre>spective struct v4l2_queryctrl id. _u32 indexIndex of the menu item, start- ing at zero, set by the applica- tion. union (anonymous) { _u8 name[32dme of the menu item, a NUL- terminated ASCII string. This infor- mation is in- tended for the user. This field is valid for V4L2_CTRL_TYPE_MENU type con- trols. _s64 valueValue of the integer menu item.</pre>					
<pre>struct v4l2_queryctrl id. u32 indexIndex of the menu item, start- ing at zero, set by the applica- tion. union (anonymous) { u8 name[32dme of the menu item, a NUL- terminated ASCII string. This infor- mation is in- tended for the user. This field is valid for V4L2_CTRL_TYPE_MENU type con- trols. s64 valueValue of the integer menu item.</pre>					
<pre>v412_queryctrl idu32 indexIndex of the menu item, start- ing at zero, set by the applica- tion. union (anonymous) { _u8 name[322]me of the menu item, a NUL- terminated ASCII string. This infor- mation is in- tended for the user. This infor- mation is in- tended for the user. This ifeld is valid for v4L2_CTRL_TYPE_MENU type con trolss64 valueValue of the integer menu item. Chapter 7. Linux Media Infrastructure userspace API field is valid for</pre>				-	
id. _u32 indexIndex of the menu item, start- ing at zero, set by the applica- tion. union (anonymous) { _u8 name[32]me of the menu item, a NUL- terminated ASCII string. This infor- mation is in- tended for the user. This field is valid for _u8 name[32]me of the menu item, a NUL- terminated _u8 name[32]me of the menu item, a NUL- terminated _u8 name[32]me of the user. This field is valid for _u9 _u9					
u32 indexIndex of the menu item, start- ing at zero, set by the applica- tion. union (anonymous) {					ryctrl
<pre></pre>					
menu item, ing at zero, set by the applica- ion. anorymous) {		u32	inde		
<pre>item, start- ing at zero, set by the applica- tion. union (anonymous) { </pre>					
start- ing at zero, set by the applica- tion. union (anonymous) { u8 name[322]me of the menu item, a NUL- terminated ASCII string. This infor- mation is in- tended for the user. This field is valid for V4L2_CTRL_TYPE_MENU type con- trols. s64 valueValue of the integer menu item. s64 valueValue of the integer menu s64 valueValue of the integer menu s64 valueValue of the integer menu s64 valueValue of the integer menu					
ing at zero, set by the application. union (anonymous) -u8 name[322]me of the menu item, a a NUL- terminated ASCII string. This infor- mation is in- is in- is in- value is value of string. This infor- mation is in- tended for field is value value string. This field is value of type con- trols.					
zero, set by the applica- tion. union (anonymous) { _u8 name[322mme of the menu item, a NUL- terminated ASCII string. This infor- mation is is infor- mation is is infor- mation is infor- mation is infor- mation is infor- mation is infeld is valid for V4L2_CTRL_TYPE_MENU type con- trols.					
by the application. union (anonymous) { 					
application. union (anonymous) { u8 name[322]me of the menu item, a NUL-terminated ASCII string. This infor-mation is in-tended for the user. This infor-mation is in-tended for the user. This infor-mation is in-tended for the user. This inforber V4L2_CTRL_TYPE_MENU type con-trols. s64 value of the integer menu item. Chapter 7. Linux Magia Infrastructure userspace API field is valid for					
union (anonymous) { uu8 uu8 name[322]me of the menu item, item, a NUL- terminated ASCII string. This infor- mation is is in- tended for for the user. This field is valid for valid for valid for valid for valid for value of trols. con-				by the	
union (anonymous) { u8 u8 name[322]me of the menu item, a NUL- terminated ASCII string. This infor- mation is is ifeld is valid for V4L2_CTRL_TYPE_MENU type con- trols. s64 valueValue of the item. Chapter 7. Linux Magia Infrastructure userspace API field is valid for				applica-	
<pre>{ u8 name[322]me of the menu item, a NUL- terminated ASCII string, This infor- mation is in- tended for the user. This field is valid for V4L2_CTRL_TYPE_MENU type con- trols. s64 valueValue of the integer menu item. Chapter 7. Linux Wegia Infrastructure userspace API field is valid for </pre>				tion.	
_u8 name[322]me of the menu item, a NUL- terminated ASCII string. This infor- mation is is infor- mation is is infor- mation is is infor mation is is infor mation is is infor mation is is is is valid for V4L2_CTRL_TYPE_MENU type con- trols.		union	(anon	ymous)	
of the menu item, a NUL-terminated ASCII string. This infor-mation is intended for the user. This field is valid for V4L2_CTRL_TYPE_MENU type controls.		{			
menu item, a NUL- terminated ASCII string. This infor- mation is is infor- mation is is infor- mation is is infeld valid for V4L2_CTRL_TYPE_MENU type con- trols.		u8	name[3N2dme	
item, a NUL- terminated ASCII string. This infor- mation is in- tended for the user. This This field is valid for V4L2_CTRL_TYPE_MENU type con- trols. con-				of the	
A NUL- terminated ASCII string. This infor- mation is in- tended for the user. This field is valid for valid for valid for valid for type con- con- trols.				menu	
Image: string in the string is in the str				item,	
ASCII string. This infor- mation is is infor- mation is valid for value value of integer menu item. Chapter 7. Linux Matia Infrastructure userspace API field is valid for				a NUL-	
string. This infor- mation is in- tended for the user. This field is valid for valid for valid valid type con- trols. con-				terminate	ed
This This infor- mation is in- tended for for the user. This field is valid for V4L2_CTRL_TYPE_MENU type con- trols.				ASCII	
This This infor- mation is in- tended for for the user. This field is valid for V4L2_CTRL_TYPE_MENU type con- trols.				string.	
Imation is in- is in- tended for the is in- is is is is				This	
is in- is in- tended for for the user. This field is valid for V4L2_CTRL_TYPE_MENU type con- trols.				infor-	
chapter 7. Linux tended for the user. This field is valid for V4L2_CTRL_TYPE_MENU type con- trols. con- integer menu item. the field is value value value of the integer menu item. Chapter 7. Linux Madia Infrastructure uid for				mation	
for the user. This field is valid for V4L2_CTRL_TYPE_MENU V4L2_CTRL_TYPE_MENU type con- trols.				is in-	
Image:				tended	
Image:				for the	
Image: solution of the integer menu item. Image: solution of the integer menu item. Chapter 7. Linux Maggia Infrastructure userspace API field is valid for				user.	
valid for v4L2_CTRL_TYPE_MENU type con- trols.				This	
V4L2_CTRL_TYPE_MENU type con- trols. s64 value of the integer menu item. Chapter 7. Linux Markia Infrastructure userspace API field is valid for				field is	
integer integer item. item. Chapter 7. Linux Madia Infrastructure userspace API field is valid for				valid for	
integer integer item. item. Chapter 7. Linux Madia Infrastructure userspace API field is valid for				V4L2 CTR	L TYPE MENU
Con- trols. 					
Image: set					
Chapter 7. Linux Madia Infrastructure userspace API field is valid for		s64	value		
Chapter 7. Linux Media Infrastructure userspace API field is valid for					
menu menu item. field item. Chapter 7. Linux Magia Infrastructure userspace API field is valid for					
Chapter 7. Linux Media Infrastructure userspace API field is valid for					
Chapter 7. Linux Magia Infrastructure userspace API field is valid for					
field is valid for	Chapte	er 7. L	inux		frastructure userspace API
valid for	•				-
					I TYPE INTEGER MENII

Table 199: struct v4l2_querymenu

v4l2_ctrl_type

Туре	minimu	mstep	maximu	Description
V4L2_CTRL_TYPE_INTEGER	any	any	any	An integer-valued control ranging from minimum to maximum inclu- sive. The step value indicates the increment between values.
V4L2_CTRL_TYPE_BOOLEAN	0	1	1	A boolean-valued control. Zero cor- responds to "disabled", and one means "enabled".
V4L2_CTRL_TYPE_MENU	≥ 0	1	N-1	The control has a menu of N choices. The names of the menu items can be enumerated with the VIDIOC_QUERYMENU ioctl.
V4L2_CTRL_TYPE_INTEGER_ME	NEU O	1	N-1	The control has a menu of N choices. The values of the menu items can be enumerated with the VIDIOC_QUERYMENU ioctl. This is similar to V4L2_CTRL_TYPE_MENU except that instead of strings, the menu items are signed 64-bit integers.
V4L2_CTRL_TYPE_BITMASK	0	n/a	any	A bitmask field. The maximum value is the set of bits that can be used, all other bits are to be 0. The maximum value is interpreted as a U32, allowing the use of bit 31 in the bitmask.
V4L2_CTRL_TYPE_BUTTON	0	0	0	A control which performs an action when set. Drivers must ignore the value passed with VIDIOC_S_CTRL and return an EACCES error code on a VIDIOC_G_CTRL attempt.
V4L2_CTRL_TYPE_INTEGER64	any	any	any	A 64-bit integer valued con- trol. Minimum, maximum and step size cannot be queried using VIDIOC_QUERYCTRL. Only VIDIOC_QUERY_EXT_CTRL can re- trieve the 64-bit min/max/step val- ues, they should be interpreted as n/a when using VIDIOC_QUERYCTRL.

Table 200: enum v4l2_ctrl_type

Туре	minimur	nstep	maximu	Description	
V4L2_CTRL_TYPE_STRING	≥ 0	≥ 1	≥ 0	The minimum and maximum string	
				lengths. The step size means that	
				the string must be (minimum +	
				N * step) characters long for N	
				\geq 0. These lengths do not in-	
				clude the terminating zero, so in	
				order to pass a string of length 8	
				to VIDIOC_S_EXT_CTRLS you need	
				to set the size field of struct	
				v4l2_ext_control to 9. For VID-	
				IOC_G_EXT_CTRLS you can set the	
				size field to maximum + 1. Which	
				character encoding is used will de-	
				pend on the string control itself and	
				should be part of the control docu- mentation.	
V4L2_CTRL_TYPE_CTRL_CLASS	n/2	n/a	n/a	This is not a control. When	
V+L2_CINL_IIFL_CINL_CLASS	11/a	11/a	11/a	VIDIOC_QUERYCTRL is called with a	
				control ID equal to a control class	
				code (see Control classes) $+ 1$, the	
				ioctl returns the name of the con-	
				trol class and this control type.	
				Older drivers which do not support	
				this feature return an EINVAL error	
				code.	
V4L2_CTRL_TYPE_U8	any	any	any	An unsigned 8-bit valued control	
		0		ranging from minimum to maxi-	
				mum inclusive. The step value in-	
				dicates the increment between val-	
				ues.	
V4L2_CTRL_TYPE_U16	any	any	any	An unsigned 16-bit valued control	
				ranging from minimum to maxi-	
				mum inclusive. The step value in-	
				dicates the increment between val-	
	0.0077	0.00	0.000	ues.	
V4L2_CTRL_TYPE_U32	any	any	any	An unsigned 32-bit valued control	
				ranging from minimum to maxi- mum inclusive. The step value in-	
				dicates the increment between val-	
				ues.	
V4L2_CTRL_TYPE_MPEG2_SLIC	Fn/PAARΔM	§ກ/a	n/a	A struct v4l2_ctrl_mpeg2_slice_par	ams
		a 1/ u	ii, u	containing MPEG-2 slice parame-	and,
				ters for stateless video decoders.	
V4L2_CTRL_TYPE_MPEG2_QUAN	MIZATIO	Mh∕a	n/a	A struct v4l2_ctrl_mpeg2_quantizat	ion
			-	containing MPEG-2 quantization	
				matrices for stateless video de-	
				coders.	
	1		I	Continued on next name	

Table 200 - continued from previous page

lable 200 - continued from previous page					
Туре		-		Description	
V4L2_CTRL_TYPE_AREA	n/a	n/a	n/a	A struct v4l2_area, containing the	
	/		'	width and the height of a rectangu-	
	!		1	lar area. Units depend on the use	
	1		'	case.	
V4L2_CTRL_TYPE_H264_SPS	n/a	n/a	n/a	A struct v4l2_ctrl_h264_sps, con-	
			1	taining H264 sequence parameters	
	!			for stateless video decoders.	
V4L2_CTRL_TYPE_H264_PPS	n/a	n/a	n/a	A struct v4l2_ctrl_h264_pps, con-	
			1	taining H264 picture parameters	
			1	for stateless video decoders.	
V4L2_CTRL_TYPE_H264_SCALI	NnG/ <u>a</u> MATR	lm∦a	n/a	Astructv4l2_ctrl_h264_scaling_matrix	
			1	containing H264 scaling matrices	
			1	for stateless video decoders.	
V4L2_CTRL_TYPE_H264_SLICE	ı₽/A aRAMS	n/a	n/a	Astructv4l2_ctrl_h264_slice_params,	
	ſ '		1	containing H264 slice parameters	
	!		1	for stateless video decoders.	
V4L2_CTRL_TYPE_H264_DECOD	En/RARAM	Sn∕a	n/a	Astructv4l2_ctrl_h264_decode_params,	
	()		1	containing H264 decode parame-	
			1	ters for stateless video decoders.	
V4L2_CTRL_TYPE_HEVC_SPS	n/a	n/a	n/a	A struct v4l2_ctrl_hevc_sps, con-	
			1	taining HEVC Sequence Parameter	
			1	Set for stateless video decoders.	
V4L2_CTRL_TYPE_HEVC_PPS	n/a	n/a	n/a	A struct v4l2_ctrl_hevc_pps, con-	
			1	taining HEVC Picture Parameter	
			1	Set for stateless video decoders.	
V4L2_CTRL_TYPE_HEVC_SLICE	112/AaRAMS	n/a	n/a	Astructv4l2_ctrl_hevc_slice_params,	
	Γ '		1	containing HEVC slice parameters	
			1	for stateless video decoders.	
			·		

Table 200 - continued from previous page

Table 201: Control Flags

V4L2_CTRL_FLAG_DISABLED	0x0001	This control is permanently disabled and should be ignored by the application. Any at- tempt to change the control will result in an EINVAL error code.			
V4L2_CTRL_FLAG_GRABBED	0x0002	This control is temporarily unchangeable, for example because another application took over control of the respective resource. Such controls may be displayed specially in a user interface. Attempts to change the control may result in an EBUSY error code.			
V4L2_CTRL_FLAG_READ_ONLY	0x0004	This control is permanently readable only. Any attempt to change the control will result in an EINVAL error code.			
V4L2_CTRL_FLAG_UPDATE	0x0008	A hint that changing this control may affect the value of other controls within the same control class. Applications should update their user interface accordingly.			
Continued on pext page					

lable 201 - co		
V4L2_CTRL_FLAG_INACTIVE	0x0010	This control is not applicable to the current configuration and should be displayed ac- cordingly in a user interface. For example the flag may be set on a MPEG audio level 2 bitrate control when MPEG audio encoding level 1 was selected with another control.
V4L2_CTRL_FLAG_SLIDER	0x0020	A hint that this control is best represented as a slider-like element in a user interface.
V4L2_CTRL_FLAG_WRITE_ONLY	0x0040	This control is permanently writable only. Any attempt to read the control will result in an EACCES error code error code. This flag is typically present for relative controls or ac- tion controls where writing a value will cause the device to carry out a given action (e. g. motor control) but no meaningful value can be returned.
V4L2_CTRL_FLAG_VOLATILE	0x0080	This control is volatile, which means that the value of the control changes continuously. A typical example would be the current gain value if the device is in auto-gain mode. In such a case the hardware calculates the gain value based on the lighting conditions which can change over time.
		Note: Setting a new value for a volatile control will be ignored unless V4L2_CTRL_FLAG_EXECUTE_ON_WRITE is also set. Setting a new value for a volatile control will never trigger a V4L2_EVENT_CTRL_CH_VALUE event.
V4L2_CTRL_FLAG_HAS_PAYLOAD	0x0100	This control has a pointer type, so its value has to be accessed using one of the pointer fields of struct v4l2_ext_control. This flag is set for controls that are an array, string, or have a compound type. In all cases you have to set a pointer to memory containing the payload of the control.
V4L2_CTRL_FLAG_EXECUTE_ON_WR		The value provided to the control will be propagated to the driver even if it remains constant. This is required when the control represents an action on the hardware. For example: clearing an error flag or trigger- ing the flash. All the controls of the type V4L2_CTRL_TYPE_BUTTON have this flag set.
	llbaue	

Table 201 – continued from previous page

	lable 201 - continued nom previous page					
V4L2_CTRL_FLAG_MODIFY_LAYOUT 0x0400 Changing this control value may modify the						
		layout of the buffer (for video devices) or the				
		media bus format (for sub-devices).				
		A typical example would be the				
		V4L2_CID_R0TATE control.				
		Note that typically controls with this flag will				
		also set the V4L2 CTRL FLAG GRABBED flag				
		when buffers are allocated or streaming is in				
		progress since most drivers do not support				
		changing the format in that case.				

Table 201 - continued from previous page

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_queryctrl id is invalid. The struct v4l2_querymenu id is invalid or index is out of range (less than minimum or greater than maximum) or this particular menu item is not supported by the driver.

EACCES An attempt was made to read a write-only control.

ioctl VIDIOC_QUERY_DV_TIMINGS

Name

 $\label{eq:vidio} VIDIOC_QUERY_DV_TIMINGS \ - \ VIDIOC_SUBDEV_QUERY_DV_TIMINGS \ - \ Sense the \ DV \ preset \ received \ by \ the \ current \ input$

Synopsis

int ioctl (int fd,	VIDIOC_QUERY_DV_TIMINGS,	struct			
v4l2_dv_timings *argp)					
int ioctl (int fd,	VIDIOC_SUBDEV_QUERY_DV_TIMINGS,	struct			
v4l2_dv_timings *argp)					

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_dv_timings.

Description

The hardware may be able to detect the current DV timings automatically, similar to sensing the video standard. To do so, applications call ioctl VID-IOC_QUERY_DV_TIMINGS with a pointer to a struct v4l2_dv_timings. Once the hardware detects the timings, it will fill in the timings structure.

Note: Drivers shall not switch timings automatically if new timings are detected. Instead, drivers should send the V4L2_EVENT_SOURCE_CHANGE event (if they support this) and expect that userspace will take action by calling ioctl VID-IOC_QUERY_DV_TIMINGS. The reason is that new timings usually mean different buffer sizes as well, and you cannot change buffer sizes on the fly. In general, applications that receive the Source Change event will have to call ioctl VID-IOC_QUERY_DV_TIMINGS, and if the detected timings are valid they will have to stop streaming, set the new timings, allocate new buffers and start streaming again.

If the timings could not be detected because there was no signal, then ENOLINK is returned. If a signal was detected, but it was unstable and the receiver could not lock to the signal, then ENOLCK is returned. If the receiver could lock to the signal, but the format is unsupported (e.g. because the pixelclock is out of range of the hardware capabilities), then the driver fills in whatever timings it could find and returns ERANGE. In that case the application can call ioctl VIDIOC_DV_TIMINGS_CAP, VIDIOC_SUBDEV_DV_TIMINGS_CAP to compare the found timings with the hardware' s capabilities in order to give more precise feedback to the user.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **ENODATA** Digital video timings are not supported for this input or output.
- **ENOLINK** No timings could be detected because no signal was found.
- **ENOLCK** The signal was unstable and the hardware could not lock on to it.
- **ERANGE** Timings were found, but they are out of range of the hardware capabilities.

ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD

Name

 $VIDIOC_QUERYSTD$ - $VIDIOC_SUBDEV_QUERYSTD$ - Sense the video standard received by the current input

Synopsis

int ioctl(int fd, VIDIOC_QUERYSTD, v4l2_std_id *argp)
int ioctl(int fd, VIDIOC_SUBDEV_QUERYSTD, v4l2_std_id *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to v4l2_std_id.

Description

The hardware may be able to detect the current video standard automatically. To do so, applications call ioctl VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD with a pointer to a v4l2_std_id type. The driver stores here a set of candidates, this can be a single flag or a set of supported standards if for example the hardware can only distinguish between 50 and 60 Hz systems. If no signal was detected, then the driver will return V4L2_STD_UNKNOWN. When detection is not possible or fails, the set must contain all standards supported by the current video input or output.

Note: Drivers shall not switch the video standard automatically if a new video standard is detected. Instead, drivers should send the V4L2_EVENT_SOURCE_CHANGE event (if they support this) and expect that userspace will take action by calling ioctl VIDIOC_QUERYSTD, VID-IOC_SUBDEV_QUERYSTD. The reason is that a new video standard can mean different buffer sizes as well, and you cannot change buffer sizes on the fly. In general, applications that receive the Source Change event will have to call ioctl VIDIOC_QUERYSTD, VIDIOC_QUERYSTD, VIDIOC_SUBDEV_QUERYSTD, and if the detected video standard is valid they will have to stop streaming, set the new standard, allocate new buffers and start streaming again.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ENODATA Standard video timings are not supported for this input or output.

ioctl VIDIOC_REQBUFS

Name

VIDIOC_REQBUFS - Initiate Memory Mapping, User Pointer I/O or DMA buffer I/O

Synopsis

int ioctl(int fd, VIDIOC_REQBUFS, struct v4l2_requestbuffers *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_requestbuffers.

Description

This ioctl is used to initiate memory mapped, user pointer or DMABUF based I/O. Memory mapped buffers are located in device memory and must be allocated with this ioctl before they can be mapped into the application's address space. User buffers are allocated by applications themselves, and this ioctl is merely used to switch the driver into user pointer I/O mode and to setup some internal structures. Similarly, DMABUF buffers are allocated by applications through a device driver, and this ioctl only configures the driver into DMABUF I/O mode without performing any direct allocation.

To allocate device buffers applications initialize all fields of the struct v4l2_requestbuffers structure. They set the type field to the respective stream or buffer type, the count field to the desired number of buffers, memory must be set to the requested I/O method and the reserved array must be zeroed. When the ioctl is called with a pointer to this structure the driver will attempt to allocate the requested number of buffers and it stores the actual number allocated in the count field. It can be smaller than the number requested, even zero, when the driver runs out of free memory. A larger number is also possible when the driver requires more buffers to function correctly. For example video output requires at least two buffers, one displayed and one filled by the application.

When the I/O method is not supported the ioctl returns an EINVAL error code.

Applications can call ioctl VIDIOC_REQBUFS again to change the number of buffers. Note that if any buffers are still mapped or exported via DMABUF, then ioctl VIDIOC_REQBUFS can only succeed if the V4L2_BUF_CAP_SUPPORTS_ORPHANED_BUFS capability is set. Otherwise ioctl VIDIOC_REQBUFS will return the EBUSY error code. If V4L2_BUF_CAP_SUPPORTS_ORPHANED_BUFS is set, then these buffers are orphaned and will be freed when they are unmapped or when the exported DMABUF fds are closed. A count value of zero frees or orphans all buffers, after aborting or finishing any DMA in progress, an implicit VIDIOC_STREAMOFF.

v4l2_requestbuffers

00		
u32	count	The number of buffers requested or granted.
u32	type	Type of the stream or buffers, this is the same
		as the struct v4l2_format type field. See
		v4l2_buf_type for valid values.
u32	memory	Applications set this field to
		V4L2_MEMORY_MMAP, V4L2_MEMORY_DMABUF or
		V4L2_MEMORY_USERPTR. See v4l2_memory.
u32	capabilities	Set by the driver. If 0, then the driver doesn'
		t support capabilities. In that case all you
		know is that the driver is guaranteed to sup-
		port V4L2_MEMORY_MMAP and might support
		other v4l2_memory types. It will not support
		any other capabilities.
		If you want to query the capabilities with
		a minimum of side-effects, then this can be
		called with count set to 0, memory set to
		V4L2 MEMORY MMAP and type set to the buffer
		type. This will free any previously allocated
		buffers, so this is typically something that
		will be done at the start of the application.
u32	reserved[1]	A place holder for future extensions. Drivers
		and applications must set the array to zero.
	1	

Table 202: struct v4l2_requestbuffers

Table 203: V4L2 Buffer Capabilities Flags

V4L2_BUF_CAP_SUPPORTS_MMAP 0x0000	001This buffer type supports	the
	V4L2_MEMORY_MMAP streaming mode.	
V4L2_BUF_CAP_SUPPORTS_USERPOR0000		the
	V4L2_MEMORY_USERPTR streaming mode.	
V4L2_BUF_CAP_SUPPORTS_DMABU0x0000	004This buffer type supports	the
	V4L2_MEMORY_DMABUF streaming mode.	
V4L2_BUF_CAP_SUPPORTS_REQUE0x000		
V4L2_BUF_CAP_SUPPORTS_ORPHAN€DOBO	\$ 10The kernel allows calling ioctl	VID-
	IOC_REQBUFS while buffers are	still
	mapped or exported via DMABUF. Th	nese
	orphaned buffers will be freed when they	are
	unmapped or when the exported DMA	BUF
	fds are closed.	
V4L2_BUF_CAP_SUPPORTS_M2M_H0kD_00	TURE_new F valid for stateless decod	lers.
	If set, then userspace can set	the
	V4L2_BUF_FLAG_M2M_H0LD_CAPTURE_BUF	
	to hold off on returning the capture bu	ıffer
	until the OUTPUT timestamp changes.	

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The buffer type (type field) or the requested I/O method (memory) is not supported.

ioctl VIDIOC_S_HW_FREQ_SEEK

Name

VIDIOC_S_HW_FREQ_SEEK - Perform a hardware frequency seek

Synopsis

int **ioctl**(int fd, VIDIOC_S_HW_FREQ_SEEK, struct v4l2 hw freq seek *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_hw_freq_seek.

Description

Start a hardware frequency seek from the current frequency. To do this applications initialize the tuner, type, seek_upward, wrap_around, spacing, rangelow and rangehigh fields, and zero out the reserved array of a struct v4l2_hw_freq_seek and call the VIDIOC_S_HW_FREQ_SEEK ioctl with a pointer to this structure.

The rangelow and rangehigh fields can be set to a non-zero value to tell the driver to search a specific band. If the struct v4l2_tuner capability field has the V4L2_TUNER_CAP_HWSEEK_PROG_LIM flag set, these values must fall within one of the bands returned by ioctl VIDIOC_ENUM_FREQ_BANDS. If the V4L2_TUNER_CAP_HWSEEK_PROG_LIM flag is not set, then these values must exactly match those of one of the bands returned by ioctl VIDIOC_ENUM_FREQ_BANDS. If the current frequency of the tuner does not fall within the selected band it will be clamped to fit in the band before the seek is started.

If an error is returned, then the original frequency will be restored.

This ioctl is supported if the V4L2_CAP_HW_FREQ_SEEK capability is set.

If this ioctl is called from a non-blocking filehandle, then EAGAIN error code is returned and no seek takes place.

v4l2_hw_freq_seek

		+
u32	tuner	The tuner index number. This is the same
		value as in the struct v4l2_input tuner field
		and the struct v4l2_tuner index field.
_u32	type	The tuner type. This is the same value as
		in the struct v4l2_tuner type field. See
		v4l2_tuner_type
u32	seek upward	If non-zero, seek upward from the current
	·	frequency, else seek downward.
u32	wrap_around	If non-zero, wrap around when at the end of
		the frequency range, else stop seeking. The
		struct v4l2_tuner capability field will tell
		you what the hardware supports.
u32	spacing	If non-zero, defines the hardware seek res-
		olution in Hz. The driver selects the nearest
		value that is supported by the device. If spac-
		ing is zero a reasonable default value is used.
u32	rangelow	If non-zero, the lowest tunable frequency
	langeten	of the band to search in units of 62.5 kHz,
		or if the struct v4l2 tuner capability
		field has the V4L2_TUNER_CAP_LOW flag
		set, in units of 62.5 Hz or if the struct
		v4l2_tuner capability field has the
		V4L2_TUNER_CAP_1HZ flag set, in units of
		1 Hz. If rangelow is zero a reasonable
		default value is used.
u32	rangehigh	If non-zero, the highest tunable frequency
		of the band to search in units of 62.5 kHz,
		or if the struct v4l2_tuner capability
		field has the V4L2_TUNER_CAP_LOW flag
		set, in units of 62.5 Hz or if the struct
		v4l2_tuner capability field has the
		V4L2_TUNER_CAP_1HZ flag set, in units of
		1 Hz. If rangehigh is zero a reasonable
		default value is used.
u32	reserved[5]	Reserved for future extensions. Applications
		must set the array to zero.

Table 204: struct v4l2_hw_freq_seek

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EINVAL** The tuner index is out of bounds, the wrap_around value is not supported or one of the values in the type, rangelow or rangehigh fields is wrong.
- $\label{eq:exact_state} \textbf{EAGAIN} \mbox{ Attempted to call VIDIOC_S_HW_FREQ_SEEK with the filehandle in non-blocking mode.}$
- **ENODATA** The hardware seek found no channels.

EBUSY Another hardware seek is already in progress.

ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF

Name

VIDIOC_STREAMON - VIDIOC_STREAMOFF - Start or stop streaming I/O

Synopsis

int ioctl(int fd, VIDIOC_STREAMON, const int *argp)
int ioctl(int fd, VIDIOC_STREAMOFF, const int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer.

Description

The VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctl start and stop the capture or output process during streaming (memory mapping, user pointer or DMABUF) I/O.

Capture hardware is disabled and no input buffers are filled (if there are any empty buffers in the incoming queue) until VIDIOC_STREAMON has been called. Output hardware is disabled and no video signal is produced until VIDIOC_STREAMON has been called. The ioctl will succeed when at least one output buffer is in the incoming queue.

Memory-to-memory devices will not start until VIDIOC_STREAMON has been called for both the capture and output stream types.

If VIDIOC_STREAMON fails then any already queued buffers will remain queued.

The VIDIOC_STREAMOFF ioctl, apart of aborting or finishing any DMA in progress, unlocks any user pointer buffers locked in physical memory, and it removes all buffers from the incoming and outgoing queues. That means all images captured but not dequeued yet will be lost, likewise all images enqueued for output but not transmitted yet. I/O returns to the same state as after calling ioctl VID-IOC_REQBUFS and can be restarted accordingly.

If buffers have been queued with ioctl VIDIOC_QBUF, VIDIOC_DQBUF and VIDIOC_STREAMOFF is called without ever having called VIDIOC_STREAMON, then those queued buffers will also be removed from the incoming queue and all are returned to the same state as after calling ioctl VIDIOC_REQBUFS and can be restarted accordingly.

Both ioctls take a pointer to an integer, the desired buffer or stream type. This is the same as struct v4l2_requestbuffers type.

If VIDIOC_STREAMON is called when streaming is already in progress, or if VIDIOC_STREAMOFF is called when streaming is already stopped, then 0 is returned. Nothing happens in the case of VIDIOC_STREAMON, but VIDIOC_STREAMOFF will return queued buffers to their starting state as mentioned above.

Note: Applications can be preempted for unknown periods right before or after the VIDIOC_STREAMON or VIDIOC_STREAMOFF calls, there is no notion of starting or stopping "now". Buffer timestamps can be used to synchronize with other events.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EINVAL** The buffer type is not supported, or no buffers have been allocated (memory mapping) or enqueued (output) yet.
- **EPIPE** The driver implements pad-level format configuration and the pipeline configuration is invalid.
- **ENOLINK** The driver implements Media Controller interface and the pipeline link configuration is invalid.

ioctl VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL

Name

VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL - Enumerate frame intervals

Synopsis

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_frame_interval_enum.

Description

This ioctl lets applications enumerate available frame intervals on a given subdevice pad. Frame intervals only makes sense for sub-devices that can control the frame period on their own. This includes, for instance, image sensors and TV tuners.

For the common use case of image sensors, the frame intervals available on the sub-device output pad depend on the frame format and size on the same pad. Applications must thus specify the desired format and size when enumerating frame intervals.

To enumerate frame intervals applications initialize the index, pad, which, code, width and height fields of struct v4l2_subdev_frame_interval_enum and call the ioctl VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code if one of the input fields is invalid. All frame intervals are enumerable by beginning at index zero and incrementing by one until EINVAL is returned.

Available frame intervals may depend on the current 'try' formats at other pads of the sub-device, as well as on the current active links. See ioctl VID-IOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT for more information about the try formats.

Sub-devices that support the frame interval enumeration ioctl should implemented it on a single pad only. Its behaviour when supported on multiple pads of the same sub-device is not defined.

v4l2	subdev	frame	interval	enum

u32	index	Number of the format in the enumeration, set
		by the application.
u32	pad	Pad number as reported by the media con-
		troller API.
u32	code	The media bus format code, as defined in Me-
		dia Bus Formats.
u32	width	Frame width, in pixels.
u32	height	Frame height, in pixels.
struct v4l2_fract	interval	Period, in seconds, between consecutive
		video frames.
u32	which	Frame intervals to be enumerated, from
		enum v4l2_subdev_format_whence.
u32	reserved[8]	Reserved for future extensions. Applications
		and drivers must set the array to zero.

Table 205: struct v4l2 subdev frame interval enum

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_subdev_frame_interval_enum pad references a nonexisting pad, one of the code, width or height fields are invalid for the given pad or the index field is out of bounds.

ioctl VIDIOC_SUBDEV_ENUM_FRAME_SIZE

Name

VIDIOC_SUBDEV_ENUM_FRAME_SIZE - Enumerate media bus frame sizes

Synopsis

int **ioctl**(int fd, VIDIOC_SUBDEV_ENUM_FRAME_SIZE, struct v4l2_subdev_frame_size_enum * argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_frame_size_enum.

Description

This ioctl allows applications to enumerate all frame sizes supported by a subdevice on the given pad for the given media bus format. Supported formats can be retrieved with the ioctl VIDIOC_SUBDEV_ENUM_MBUS_CODE ioctl.

To enumerate frame sizes applications initialize the pad, which , code and index fields of the struct v4l2_subdev_mbus_code_enum and call the ioctl VID-IOC_SUBDEV_ENUM_FRAME_SIZE ioctl with a pointer to the structure. Drivers fill the minimum and maximum frame sizes or return an EINVAL error code if one of the input parameters is invalid.

Sub-devices that only support discrete frame sizes (such as most sensors) will return one or more frame sizes with identical minimum and maximum values.

Not all possible sizes in given [minimum, maximum] ranges need to be supported. For instance, a scaler that uses a fixed-point scaling ratio might not be able to produce every frame size between the minimum and maximum values. Applications must use the VIDIOC_SUBDEV_S_FMT ioctl to try the sub-device for an exact supported frame size.

Available frame sizes may depend on the current 'try' formats at other pads of the sub-device, as well as on the current active links and the current values of V4L2 $\,$

controls. See ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT for more information about try formats.

v4l2_subdev_frame_size_enum

Table 206: struct v4l2_subdev_frame_size_enum		
u32	index	Number of the format in the enumeration, set
		by the application.
_u32	pad	Pad number as reported by the media con-
		troller API.
_u32	code	The media bus format code, as defined in Me-
		dia Bus Formats.
_u32	min_width	Minimum frame width, in pixels.
_u32	max_width	Maximum frame width, in pixels.
_u32	min_height	Minimum frame height, in pixels.
_u32	<pre>max_height</pre>	Maximum frame height, in pixels.
u32	which	Frame sizes to be enumerated, from enum
		v4l2_subdev_format_whence.
u32	reserved[8]	Reserved for future extensions. Applications
		and drivers must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_subdev_frame_size_enum pad references a non-existing pad, the code is invalid for the given pad or the index field is out of bounds.

ioctl VIDIOC_SUBDEV_ENUM_MBUS_CODE

Name

VIDIOC_SUBDEV_ENUM_MBUS_CODE - Enumerate media bus formats

Synopsis

int **ioctl**(int fd, VIDIOC_SUBDEV_ENUM_MBUS_CODE, struct v4l2_subdev_mbus_code_enum * argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_mbus_code_enum.

Description

To enumerate media bus formats available at a given sub-device pad applications initialize the pad, which and index fields of struct v4l2_subdev_mbus_code_enum and call the ioctl VIDIOC_SUBDEV_ENUM_MBUS_CODE ioctl with a pointer to this structure. Drivers fill the rest of the structure or return an EINVAL error code if either the pad or index are invalid. All media bus formats are enumerable by beginning at index zero and incrementing by one until EINVAL is returned.

Available media bus formats may depend on the current 'try' formats at other pads of the sub-device, as well as on the current active links. See ioctl VID-IOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT for more information about the try formats.

v4l2_subdev_mbus_code_enum

u32	pad	Pad number as reported by the media con-
		troller API.
u32	index	Number of the format in the enumeration, set
		by the application.
u32	code	The media bus format code, as defined in Me-
		dia Bus Formats.
u32	which	Media bus format codes to be enumerated,
		from enum v4l2_subdev_format_whence.
u32	reserved[8]	Reserved for future extensions. Applications
		and drivers must set the array to zero.

Table 207: struct v4l2 subdev mbus code enum

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct v4l2_subdev_mbus_code_enum pad references a non-existing pad, or the index field is out of bounds.

ioctl VIDIOC_SUBDEV_G_CROP, VIDIOC_SUBDEV_S_CROP

Name

 $VIDIOC_SUBDEV_G_CROP$ - $VIDIOC_SUBDEV_S_CROP$ - Get or set the crop rectangle on a subdev pad

Synopsis

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_crop.

Description

Note: This is an Obsolete API Elements interface and may be removed in the future. It is superseded by the selection API.

To retrieve the current crop rectangle applications set the pad field of a struct v4l2_subdev_crop to the desired pad number as reported by the media API and the which field to V4L2_SUBDEV_FORMAT_ACTIVE. They then call the VIDIOC_SUBDEV_G_CROP ioctl with a pointer to this structure. The driver fills the members of the rect field or returns EINVAL error code if the input arguments are invalid, or if cropping is not supported on the given pad.

To change the current crop rectangle applications set both the pad and which fields and all members of the rect field. They then call the VIDIOC_SUBDEV_S_CROP ioctl with a pointer to this structure. The driver verifies the requested crop rectangle, adjusts it based on the hardware capabilities and configures the device. Upon return the struct v4l2_subdev_crop contains the current format as would be returned by a VIDIOC_SUBDEV_G_CROP call. Applications can query the device capabilities by setting the which to V4L2_SUBDEV_FORMAT_TRY. When set, 'try'crop rectangles are not applied to the device by the driver, but are mangled exactly as active crop rectangles and stored in the sub-device file handle. Two applications querying the same sub-device would thus not interact with each other.

If the subdev device node has been registered in read-only mode, calls to VIDIOC_SUBDEV_S_CROP are only valid if the which field is set to V4L2_SUBDEV_FORMAT_TRY, otherwise an error is returned and the errno variable is set to -EPERM.

Drivers must not return an error solely because the requested crop rectangle doesn' t match the device capabilities. They must instead modify the rectangle to match what the hardware can provide. The modified format should be as close as possible to the original request.

v4l2_subdev_crop

u32	pad	Pad number as reported by the media frame- work.
u32	which	Crop rectangle to get or set, from enum v4l2_subdev_format_whence.
struct v4l2_rect	rect	Crop rectangle boundaries, in pixels.
u32	reserved[8]	Reserved for future extensions. Applications
		and drivers must set the array to zero.

Table 208: struct v4l2 subdev crop

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EBUSY** The crop rectangle can't be changed because the pad is currently busy. This can be caused, for instance, by an active video stream on the pad. The ioctl must not be retried without performing another action to fix the problem first. Only returned by VIDIOC_SUBDEV_S_CROP
- **EINVAL** The struct v4l2_subdev_crop pad references a non-existing pad, the which field references a non-existing format, or cropping is not supported on the given subdev pad.
- **EPERM** The VIDIOC_SUBDEV_S_CROP ioctl has been called on a read-only subdevice and the which field is set to V4L2_SUBDEV_FORMAT_ACTIVE.

ioctl VIDIOC_SUBDEV_G_FMT, VIDIOC_SUBDEV_S_FMT

Name

 $VIDIOC_SUBDEV_G_FMT$ - $VIDIOC_SUBDEV_S_FMT$ - Get or set the data format on a subdev pad

Synopsis

int ioctl (int fd,	VIDIOC_SUBDEV_G_FMT,	struct	
v4l2_subdev_format	v4l2_subdev_format *argp)		
int ioctl (int fd,	VIDIOC_SUBDEV_S_FMT,	struct	
v4l2_subdev_format	*argp)		

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_format.

Description

These ioctls are used to negotiate the frame format at specific subdev pads in the image pipeline.

To retrieve the current format applications set the pad field of a struct v4l2_subdev_format to the desired pad number as reported by the media API and the which field to V4L2_SUBDEV_FORMAT_ACTIVE. When they call the VIDIOC_SUBDEV_G_FMT ioctl with a pointer to this structure the driver fills the members of the format field.

To change the current format applications set both the pad and which fields and all members of the format field. When they call the VIDIOC_SUBDEV_S_FMT ioctl with a pointer to this structure the driver verifies the requested format, adjusts it based on the hardware capabilities and configures the device. Upon return the struct v4l2_subdev_format contains the current format as would be returned by a VIDIOC_SUBDEV_G_FMT call.

Applications can query the device capabilities by setting the which to V4L2_SUBDEV_FORMAT_TRY. When set, 'try' formats are not applied to the device by the driver, but are changed exactly as active formats and stored in the sub-device file handle. Two applications querying the same sub-device would thus not interact with each other.

For instance, to try a format at the output pad of a sub-device, applications would first set the try format at the sub-device input with the VIDIOC_SUBDEV_S_FMT ioctl. They would then either retrieve the default format at the output pad with the VIDIOC_SUBDEV_G_FMT ioctl, or set the desired output pad format with the VIDIOC_SUBDEV_S_FMT ioctl and check the returned value.

Try formats do not depend on active formats, but can depend on the current links configuration or sub-device controls value. For instance, a low-pass noise filter might crop pixels at the frame boundaries, modifying its output frame size.

If the subdev device node has been registered in read-only mode, calls to VIDIOC_SUBDEV_S_FMT are only valid if the which field is set to V4L2_SUBDEV_FORMAT_TRY, otherwise an error is returned and the errno variable is set to -EPERM.

Drivers must not return an error solely because the requested format doesn't match the device capabilities. They must instead modify the format to match what the hardware can provide. The modified format should be as close as possible to the original request.

v4l2_subdev_format

1	Table 209: Struct v412_Subdev_format		
u32	pad	Pad number as reported by the media con-	
		troller API.	
u32	which	Format to modified, from enum	
		v4l2_subdev_format_whence.	
struct	format	Definition of an image format, see	
v4l2_mbus_framefmt		v4l2_mbus_framefmt for details.	
u32	reserved[8]	Reserved for future extensions. Applications	
		and drivers must set the array to zero.	

Table 209: struct v4l2 subdev format

Table 210: enum v4l2 subdev format whence

V4L2_SUBDEV_FORMAT_TRY	0	Try formats, used for querying device capa- bilities.
V4L2_SUBDEV_FORMAT_ACTIVE	1	Active formats, applied to the hardware.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EBUSY** The format can't be changed because the pad is currently busy. This can be caused, for instance, by an active video stream on the pad. The ioctl must not be retried without performing another action to fix the problem first. Only returned by VIDIOC_SUBDEV_S_FMT
- **EINVAL** The struct v4l2_subdev_format pad references a non-existing pad, or the which field references a non-existing format.
- **EPERM** The VIDIOC_SUBDEV_S_FMT ioctl has been called on a read-only subdevice and the which field is set to V4L2_SUBDEV_FORMAT_ACTIVE.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl VIDIOC_SUBDEV_G_FRAME_INTERVAL, VIDIOC_SUBDEV_S_FRAME_INTERVAL

Name

VIDIOC_SUBDEV_G_FRAME_INTERVAL - VIDIOC_SUBDEV_S_FRAME_INTERVAL - Get or set the frame interval on a subdev pad

Synopsis

int ioctl(int fd, VIDIOC_SUBDEV_G_FRAME_INTERVAL, struct v4l2_subdev_frame_interval *argp) int ioctl(int fd, VIDIOC_SUBDEV_S_FRAME_INTERVAL, struct v4l2_subdev_frame_interval *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_frame_interval.

Description

These ioctls are used to get and set the frame interval at specific subdev pads in the image pipeline. The frame interval only makes sense for sub-devices that can control the frame period on their own. This includes, for instance, image sensors and TV tuners. Sub-devices that don't support frame intervals must not implement these ioctls.

To retrieve the current frame interval applications set the pad field of a struct v4l2_subdev_frame_interval to the desired pad number as reported by the media controller API. When they call the VIDIOC_SUBDEV_G_FRAME_INTERVAL ioctl with a pointer to this structure the driver fills the members of the interval field.

To change the current frame interval applications set both the pad field and all members of the interval field. When they call the VIDIOC_SUBDEV_S_FRAME_INTERVAL ioctl with a pointer to this structure the driver verifies the requested interval, adjusts it based on the hardware capabilities and configures the device. Upon return the struct v4l2_subdev_frame_interval contains the current frame interval as would be returned by a VIDIOC_SUBDEV_G_FRAME_INTERVAL call.

Calling VIDIOC_SUBDEV_S_FRAME_INTERVAL on a subdev device node that has been registered in read-only mode is not allowed. An error is returned and the errno variable is set to -EPERM.

Drivers must not return an error solely because the requested interval doesn't match the device capabilities. They must instead modify the interval to match what the hardware can provide. The modified interval should be as close as possible to the original request.

Changing the frame interval shall never change the format. Changing the format, on the other hand, may change the frame interval.

Sub-devices that support the frame interval ioctls should implement them on a single pad only. Their behaviour when supported on multiple pads of the same sub-device is not defined.

v4l2_subdev_frame_interval

10.01			
u32	pad	Pad number as reported by the media con-	
		troller API.	
struct v4l2_fract	interval	Period, in seconds, between consecutive	
		video frames.	
u32	reserved[9]	Reserved for future extensions. Applications	
		and drivers must set the array to zero.	

Table 211: struct v4l2 subdev frame interval

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EBUSY** The frame interval can't be changed because the pad is currently busy. This can be caused, for instance, by an active video stream on the pad. The ioctl must not be retried without performing another action to fix the problem first. Only returned by VIDIOC_SUBDEV_S_FRAME_INTERVAL
- **EINVAL** The struct v4l2_subdev_frame_interval pad references a non-existing pad, or the pad doesn' t support frame intervals.
- **EPERM** The VIDIOC_SUBDEV_S_FRAME_INTERVAL ioctl has been called on a readonly subdevice.

ioctl VIDIOC_SUBDEV_G_SELECTION, VIDIOC_SUBDEV_S_SELECTION

Name

 $\label{eq:vidio} VIDIOC_SUBDEV_G_SELECTION \mbox{-} VIDIOC_SUBDEV_S_SELECTION \mbox{-} Get \mbox{ or set selection rectangles on a subdev pad}$

Synopsis

int ioctl (int fd,	VIDIOC_SUBDEV_G_SELECTION,		
v4l2_subdev_selection *argp)			
int ioctl (int fd,	VIDIOC_SUBDEV_S_SELECTION,	struct	
v4l2 subdev selection *argp)			

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_selection.

Description

The selections are used to configure various image processing functionality performed by the subdevs which affect the image size. This currently includes cropping, scaling and composition.

The selection API replaces the old subdev crop API. All the function of the crop API, and more, are supported by the selections API.

See Sub-device Interface for more information on how each selection target affects the image processing pipeline inside the subdevice.

If the subdev device node has been registered in read-only mode, calls to VIDIOC_SUBDEV_S_SELECTION are only valid if the which field is set to V4L2_SUBDEV_FORMAT_TRY, otherwise an error is returned and the errno variable is set to -EPERM.

Types of selection targets

There are two types of selection targets: actual and bounds. The actual targets are the targets which configure the hardware. The BOUNDS target will return a rectangle that contain all possible actual rectangles.

Discovering supported features

To discover which targets are supported, the user can perform $\tt VIDIOC_SUBDEV_G_SELECTION$ on them. Any unsupported target will return $\tt EINVAL.$

Selection targets and flags are documented in Common selection definitions.

v4l2_subdev_selection

u32	which	Active or try selection, from enum
		v4l2_subdev_format_whence.
u32	pad	Pad number as reported by the media frame-
		work.
u32	target	Target selection rectangle. See Common se-
		lection definitions.
_u32	flags	Flags. See Selection flags.
struct v4l2_rect	r	Selection rectangle, in pixels.
u32	reserved[8]	Reserved for future extensions. Applications
		and drivers must set the array to zero.

Table 212: struct v4l2_subdev_selection

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EBUSY** The selection rectangle can't be changed because the pad is currently busy. This can be caused, for instance, by an active video stream on the pad. The ioctl must not be retried without performing another action to fix the problem first. Only returned by VIDIOC_SUBDEV_S_SELECTION
- **EINVAL** The struct v4l2_subdev_selection pad references a non-existing pad, the which field references a non-existing format, or the selection target is not supported on the given subdev pad.
- **EPERM** The VIDIOC_SUBDEV_S_SELECTION ioctl has been called on a read-only subdevice and the which field is set to V4L2_SUBDEV_FORMAT_ACTIVE.

ioctl VIDIOC_SUBDEV_QUERYCAP

Name

VIDIOC_SUBDEV_QUERYCAP - Query sub-device capabilities

Synopsis

int **ioctl**(int fd, VIDIOC_SUBDEV_QUERYCAP, struct v4l2_subdev_capability *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_subdev_capability.

Description

All V4L2 sub-devices support the VIDIOC_SUBDEV_QUERYCAP ioctl. It is used to identify kernel devices compatible with this specification and to obtain information about driver and hardware capabilities. The ioctl takes a pointer to a struct v4l2_subdev_capability which is filled by the driver. When the driver is not compatible with this specification the ioctl returns ENOTTY error code.

v4l2_subdev_capability

u32	version	Version number of the driver.	
		The version reported is provided by the V4L2 subsystem follow-	
		ing the kernel numbering scheme. However, it may not always	
		return the same version as the kernel if, for example, a stable or	
		distribution-modified kernel uses the V4L2 stack from a newer ker-	
		nel.	
		The version number is formatted using the KERNEL_VERSION()	
		macro:	
#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))			
u32 version = KERNEL_VERSION(0, 8, 1);			
(version >> 16) & 0xFF, (version >> 8) & 0xFF, version & 0xFF);			
_u32	capabilitie	Sub-device capabilities of the opened device, see Sub-Device Capa-	
		bilities Flags.	
_u32	reserved[14	Reserved for future extensions. Set to 0 by the V4L2 core.	

Table 213: struct v4l2_subdev_capability

Table 214: Sub-Device Capabilities Flags

V4L2_SUBDEV_CAP_RO_SUBD**EX**0000001The sub-device device node is registered in read-only mode. Access to the sub-device ioctls that modify the device state is restricted. Refer to each individual subdevice ioctl documentation for a description of which restrictions apply to a read-only sub-device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ENOTTY The device node is not a V4L2 sub-device.

ioctl VIDIOC_SUBSCRIBE_EVENT, VIDIOC_UNSUBSCRIBE_EVENT

Name

 $\label{eq:vidio} VIDIOC_SUBSCRIBE_EVENT - VIDIOC_UNSUBSCRIBE_EVENT - Subscribe \ or \ unsubscribe \ event$

Synopsis

int ioctl (int fd,	VIDIOC_SUBSCRIBE_EVENT,		
v4l2_event_subscription *argp)			
int ioctl (int fd,	VIDIOC_UNSUBSCRIBE_EVENT,	struct	
v4l2_event_subscription *argp)			

Arguments

fd File descriptor returned by open().

argp Pointer to struct v4l2_event_subscription.

Description

Subscribe or unsubscribe V4L2 event. Subscribed events are dequeued by using the ioctl $\ensuremath{\mathsf{VIDIOC_DQEVENT}}$ ioctl.

v4l2_event_subscription

u32	type	Type of the event, see Event Types.
		Note: V4L2_EVENT_ALL can be used with VIDIOC_UNSUBSCRIBE_EVENT for unsubscribing all events at once.
u32	id	ID of the event source. If there is no ID as- sociated with the event source, then set this to 0. Whether or not an event needs an ID depends on the event type.
u32	flags	Event flags, see Event Flags.
_u32	reserved[5]	Reserved for future extensions. Drivers and
		applications must set the array to zero.

Table 215: struct v4l2 event subscription

001 When this event is subscribed an initial
event will be sent containing the current
status. This only makes sense for events
that are triggered by a status change such
as V4L2_EVENT_CTRL. Other events will ig-
nore this flag.
002 If set, then events directly caused by an
ioctl will also be sent to the filehandle that
called that ioctl. For example, changing
a control using VIDIOC_S_CTRL will cause
a V4L2_EVENT_CTRL to be sent back to
that same filehandle. Normally such events
are suppressed to prevent feedback loops
where an application changes a control to
a one value and then another, and then re-
ceives an event telling it that that control
has changed to the first value.
Since it can't tell whether that event was
caused by another application or by the
VIDIOC S CTRL call it is hard to decide
whether to set the control to the value in
the event, or ignore it.
Think carefully when you set this flag so you
won't get into situations like that.

Table 216: Event Flags

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

V4L2 mmap()

Name

v4l2-mmap - Map device memory into application address space

Synopsis

```
#include <unistd.h>
#include <sys/mman.h>
```

void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset)

Arguments

- start Map the buffer to this address in the application' s address space. When the MAP_FIXED flag is specified, start must be a multiple of the pagesize and mmap will fail when the specified address cannot be used. Use of this option is discouraged; applications should just specify a NULL pointer here.
- length Length of the memory area to map. This must be the same value as returned by the driver in the struct v4l2_buffer length field for the singleplanar API, and the same value as returned by the driver in the struct v4l2_plane length field for the multi-planar API.
- prot The prot argument describes the desired memory protection. Regardless
 of the device type and the direction of data exchange it should be set to
 PROT_READ | PROT_WRITE, permitting read and write access to image buffers.
 Drivers should support at least this combination of flags.

Note:

- 1. The Linux videobuf kernel module, which is used by some drivers supports only PROT_READ | PROT_WRITE. When the driver does not support the desired protection, the mmap() function fails.
- 2. Device memory accesses (e.g. the memory on a graphics card with video capturing hardware) may incur a performance penalty compared to main memory accesses, or reads may be significantly slower than writes or vice versa. Other I/O methods may be more efficient in such case.
- **flags** The flags parameter specifies the type of the mapped object, mapping options and whether modifications made to the mapped copy of the page are private to the process or are to be shared with other references.

MAP_FIXED requests that the driver selects no other address than the one specified. If the specified address cannot be used, mmap() will fail. If MAP_FIXED is specified, start must be a multiple of the pagesize. Use of this option is discouraged.

One of the MAP_SHARED or MAP_PRIVATE flags must be set. MAP_SHARED allows applications to share the mapped memory with other (e. g. child-) processes.

Note: The Linux videobuf module which is used by some drivers supports only MAP_SHARED. MAP_PRIVATE requests copy-on-write semantics. V4L2 applications should not set the MAP_PRIVATE, MAP_DENYWRITE, MAP_EXECUTABLE or MAP_ANON flags.

- **fd** File descriptor returned by open().
- offset Offset of the buffer in device memory. This must be the same value as
 returned by the driver in the struct v4l2_buffer m union offset field for the
 single-planar API, and the same value as returned by the driver in the struct
 v4l2_plane m union mem_offset field for the multi-planar API.

Description

The mmap() function asks to map length bytes starting at offset in the memory of the device specified by fd into the application address space, preferably at address start. This latter address is a hint only, and is usually specified as 0.

Suitable length and offset parameters are queried with the ioctl VID-IOC_QUERYBUF ioctl. Buffers must be allocated with the ioctl VIDIOC_REQBUFS ioctl before they can be queried.

To unmap buffers the munmap() function is used.

Return Value

On success mmap() returns a pointer to the mapped buffer. On error MAP_FAILED (-1) is returned, and the errno variable is set appropriately. Possible error codes are:

EBADF fd is not a valid file descriptor.

EACCES fd is not open for reading and writing.

EINVAL The start or length or offset are not suitable. (E. g. they are too large, or not aligned on a PAGESIZE boundary.)

The flags or prot value is not supported.

No buffers have been allocated with the ioctl VIDIOC REQBUFS ioctl.

ENOMEM Not enough physical or virtual memory was available to complete the request.

V4L2 munmap()

Name

v4l2-munmap - Unmap device memory

Synopsis

#include <unistd.h>
#include <sys/mman.h>

int munmap(void *start, size_t length)

Arguments

start Address of the mapped buffer as returned by the mmap() function.

length Length of the mapped buffer. This must be the same value as given to mmap() and returned by the driver in the struct v4l2_buffer length field for the single-planar API and in the struct v4l2_plane length field for the multi-planar API.

Description

Unmaps a previously with the mmap() function mapped buffer and frees it, if possible.

Return Value

On success munmap() returns 0, on failure -1 and the errno variable is set appropriately:

EINVAL The start or length is incorrect, or no buffers have been mapped yet.

V4L2 open()

Name

v4l2-open - Open a V4L2 device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.

flags Open flags. Access mode must be **0_RDWR**. This is just a technicality, input devices still support only reading and output devices only writing.

When the O_NONBLOCK flag is given, the read() function and the VID-IOC_DQBUF ioctl will return the EAGAIN error code when no data is available or no buffer is in the driver outgoing queue, otherwise these functions block until data becomes available. All V4L2 drivers exchanging data with applications must support the O_NONBLOCK flag.

Other flags have no effect.

Description

To open a V4L2 device applications call open() with the desired device name. This function has no side effects; all data format parameters, current input or output, control values or other properties remain unchanged. At the first open() call after loading the driver they will be reset to default values, drivers are never in an undefined state.

Return Value

On success open() returns the new file descriptor. On error -1 is returned, and the errno variable is set appropriately. Possible error codes are:

- **EACCES** The caller has no permission to access the device.
- **EBUSY** The driver does not support multiple opens and the device is already in use.

ENXIO No device corresponding to this device special file exists.

ENOMEM Not enough kernel memory was available to complete the request.

- **EMFILE** The process already has the maximum number of files open.
- **ENFILE** The limit on the total number of files open on the system has been reached.

V4L2 poll()

Name

v4l2-poll - Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

Description

With the poll() function applications can suspend execution until the driver has captured data or is ready to accept data for output.

When streaming I/O has been negotiated this function waits until a buffer has been filled by the capture device and can be dequeued with the VIDIOC_DQBUF ioctl. For output devices this function waits until the device is ready to accept a new buffer to be queued up with the VIDIOC_QBUF ioctl for display. When buffers are

already in the outgoing queue of the driver (capture) or the incoming queue isn't full (display) the function returns immediately.

On success poll() returns the number of file descriptors that have been selected (that is, file descriptors for which the revents field of the respective struct pollfd() structure is non-zero). Capture devices set the POLLIN and POLLRDNORM flags in the revents field, output devices the POLLOUT and POLLWRNORM flags. When the function timed out it returns a value of zero, on failure it returns -1 and the errno variable is set appropriately. When the application did not call VID-IOC_STREAMON the poll() function succeeds, but sets the POLLERR flag in the revents field. When the application has called VIDIOC_STREAMON for a capture device but hasn' t yet called VIDIOC_QBUF, the poll() function succeeds and sets the POLLERR flag in the revents field. For output devices this same situation will cause poll() to succeed as well, but it sets the POLLOUT and POLLWRNORM flags in the revents field.

If an event occurred (see ioctl VIDIOC_DQEVENT) then POLLPRI will be set in the revents field and poll() will return.

When use of the read() function has been negotiated and the driver does not capture yet, the poll() function starts capturing. When that fails it returns a POLLERR as above. Otherwise it waits until data has been captured and can be read. When the driver captures continuously (as opposed to, for example, still images) the function may return immediately.

When use of the write() function has been negotiated and the driver does not stream yet, the poll() function starts streaming. When that fails it returns a POLLERR as above. Otherwise it waits until the driver is ready for a non-blocking write() call.

If the caller is only interested in events (just POLLPRI is set in the events field), then poll() will not start streaming if the driver does not stream yet. This makes it possible to just poll for events and not for buffers.

All drivers implementing the read() or write() function or streaming I/O must also support the poll() function.

For more details see the poll() manual page.

Return Value

On success, poll() returns the number structures which have non-zero revents fields, or zero if the call timed out. On error -1 is returned, and the errno variable is set appropriately:

EBADF One or more of the ufds members specify an invalid file descriptor.

EBUSY The driver does not support multiple read or write streams and the device is already in use.

EFAULT ufds references an inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds value exceeds the RLIMIT_NOFILE value. Use getrlimit() to obtain this value.

V4L2 read()

Name

v4l2-read - Read from a V4L2 device

Synopsis

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().buf Buffer to be filledcount Max number of bytes to read

Description

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf. The layout of the data in the buffer is discussed in the respective device interface section, see ##. If count is zero, read() returns zero and has no other results. If count is greater than SSIZE_MAX, the result is unspecified. Regardless of the count value each read() call will provide at most one frame (two fields) worth of data.

By default read() blocks until data becomes available. When the O_NONBLOCK flag was given to the open() function it returns immediately with an EAGAIN error code when no data is available. The select() or poll() functions can always be used to suspend execution until data becomes available. All drivers supporting the read() function must also support select() and poll().

Drivers can implement read functionality in different ways, using a single or multiple buffers and discarding the oldest or newest frames once the internal buffers are filled.

read() never returns a "snapshot" of a buffer being filled. Using a single buffer the driver will stop capturing when the application starts reading the buffer until the read is finished. Thus only the period of the vertical blanking interval is available for reading, or the capture rate must fall below the nominal frame rate of the video standard.

The behavior of read() when called during the active picture period or the vertical blanking separating the top and bottom field depends on the discarding policy. A driver discarding the oldest frames keeps capturing into an internal buffer, continuously overwriting the previously, not read frame, and returns the frame being received at the time of the read() call as soon as it is complete.

A driver discarding the newest frames stops capturing until the next read() call. The frame being received at read() time is discarded, returning the following frame instead. Again this implies a reduction of the capture rate to one half or less of the nominal frame rate. An example of this model is the video read mode of the bttv driver, initiating a DMA to user memory when read() is called and returning when the DMA finished.

In the multiple buffer model drivers maintain a ring of internal buffers, automatically advancing to the next free buffer. This allows continuous capturing when the application can empty the buffers fast enough. Again, the behavior when the driver runs out of free buffers depends on the discarding policy.

Applications can get and set the number of buffers used internally by the driver with the VIDIOC_G_PARM and VIDIOC_S_PARM ioctls. They are optional, however. The discarding policy is not reported and cannot be changed. For minimum requirements see Interfaces.

Return Value

On success, the number of bytes read is returned. It is not an error if this number is smaller than the number of bytes requested, or the amount of data required for one frame. This may happen for example because read() was interrupted by a signal. On error, -1 is returned, and the errno variable is set appropriately. In this case the next read will start at the beginning of a new frame. Possible error codes are:

- **EAGAIN** Non-blocking I/O has been selected using O_NONBLOCK and no data was immediately available for reading.
- **EBADF** fd is not a valid file descriptor or is not open for reading, or the process already has the maximum number of files open.
- **EBUSY** The driver does not support multiple read streams and the device is already in use.
- EFAULT buf references an inaccessible memory area.
- **EINTR** The call was interrupted by a signal before any data was read.
- **EIO** I/O error. This indicates some hardware problem or a failure to communicate with a remote device (USB camera etc.).
- **EINVAL** The read() function is not supported by this driver, not on this device, or generally not on this type of device.

V4L2 select()

Name

v4l2-select - Synchronous I/O multiplexing

Synopsis

```
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
```

Arguments

nfds The highest-numbered file descriptor in any of the three sets, plus 1.

readfds File descriptions to be watched if a read() call won't block.

writefds File descriptions to be watched if a write() won't block.

exceptfds File descriptions to be watched for V4L2 events.

timeout Maximum time to wait.

Description

With the select() function applications can suspend execution until the driver has captured data or is ready to accept data for output.

When streaming I/O has been negotiated this function waits until a buffer has been filled or displayed and can be dequeued with the VIDIOC_DQBUF ioctl. When buffers are already in the outgoing queue of the driver the function returns immediately.

On success select() returns the total number of bits set in struct fd_set(). When the function timed out it returns a value of zero. On failure it returns -1 and the errno variable is set appropriately. When the application did not call ioctl VID-IOC_QBUF, VIDIOC_DQBUF or ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF yet the select() function succeeds, setting the bit of the file descriptor in readfds or writefds, but subsequent VIDIOC_DQBUF calls will fail.¹

When use of the read() function has been negotiated and the driver does not capture yet, the select() function starts capturing. When that fails, select() returns successful and a subsequent read() call, which also attempts to start capturing, will return an appropriate error code. When the driver captures continuously (as opposed to, for example, still images) and data is already available the select() function returns immediately.

 $^{^1}$ The Linux kernel implements select() like the poll() function, but select() cannot return a <code>POLLERR</code>.

When use of the write() function has been negotiated the select() function just waits until the driver is ready for a non-blocking write() call.

All drivers implementing the read() or write() function or streaming I/O must also support the select() function.

For more details see the select() manual page.

Return Value

On success, select() returns the number of descriptors contained in the three returned descriptor sets, which will be zero if the timeout expired. On error -1 is returned, and the errno variable is set appropriately; the sets and timeout are undefined. Possible error codes are:

- **EBADF** One or more of the file descriptor sets specified a file descriptor that is not open.
- **EBUSY** The driver does not support multiple read or write streams and the device is already in use.
- **EFAULT** The readfds, writefds, exceptfds or timeout pointer references an inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds argument is less than zero or greater than FD_SETSIZE.

V4L2 write()

Name

v4l2-write - Write to a V4L2 device

Synopsis

#include <unistd.h>

ssize_t write(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().

buf Buffer with data to be written

 $\ensuremath{\textit{count}}$ Number of bytes at the buffer

Description

write() writes up to count bytes to the device referenced by the file descriptor fd from the buffer starting at buf. When the hardware outputs are not active yet, this function enables them. When count is zero, write() returns 0 without any other effect.

When the application does not provide more data in time, the previous video frame, raw VBI image, sliced VPS or WSS data is displayed again. Sliced Teletext or Closed Caption data is not repeated, the driver inserts a blank line instead.

Return Value

On success, the number of bytes written are returned. Zero indicates nothing was written. On error, -1 is returned, and the errno variable is set appropriately. In this case the next write will start at the beginning of a new frame. Possible error codes are:

- **EAGAIN** Non-blocking I/O has been selected using the O_NONBLOCK flag and no buffer space was available to write the data immediately.
- **EBADF** fd is not a valid file descriptor or is not open for writing.
- **EBUSY** The driver does not support multiple write streams and the device is already in use.
- EFAULT buf references an inaccessible memory area.
- **EINTR** The call was interrupted by a signal before any data was written.
- EIO I/O error. This indicates some hardware problem.
- **EINVAL** The write() function is not supported by this driver, not on this device, or generally not on this type of device.

7.2.8 Common definitions for V4L2 and V4L2 subdev interfaces

Common selection definitions

While the V4L2 selection API and V4L2 subdev selection APIs are very similar, there's one fundamental difference between the two. On sub-device API, the selection rectangle refers to the media bus format, and is bound to a sub-device's pad. On the V4L2 interface the selection rectangles refer to the in-memory pixel format.

This section defines the common definitions of the selection interfaces on the two APIs.

Selection targets

The precise meaning of the selection targets may be dependent on which of the two interfaces they are used.

To make a second state in the second state of							
Target name	id	Definition	Valid	Valid			
			for	for			
			V4L2	V4L2			
				subdev			
V4L2_SEL_TGT_CR0P	0x0000	Crop rectangle. Defines the cropped	Yes	Yes			
		area.					
V4L2_SEL_TGT_CROP_DEFAULT	0x0001	Suggested cropping rectangle that	Yes	Yes			
		covers the "whole picture". This in-					
		cludes only active pixels and excludes					
		other non-active pixels such as black					
		pixels.					
V4L2_SEL_TGT_CROP_BOUNDS	0x0002	-	Yes	Yes			
	ONCOOL	valid crop rectangles fit inside the	100	100			
		crop bounds rectangle.					
V4L2_SEL_TGT_NATIVE_SIZE	020003	The native size of the device, e.g. a	Voc	Yes			
V4L2_3LL_101_NATIVL_312L	0x0003	sensor's pixel array. left and top		162			
		1 5 1					
	0.0100	fields are zero for this target.	37	N 7			
V4L2_SEL_TGT_COMPOSE	0x0100	Compose rectangle. Used to config-	Yes	Yes			
		ure scaling and composition.					
V4L2_SEL_TGT_COMPOSE_DEFAU	LØx0101	Suggested composition rectangle that	Yes	No			
		covers the "whole picture".					
V4L2_SEL_TGT_COMPOSE_BOUND	S 0x0102	Bounds of the compose rectangle. All	Yes	Yes			
		valid compose rectangles fit inside the					
		compose bounds rectangle.					
V4L2 SEL TGT COMPOSE PADDE	0x0103	The active area and all padding pixels	Yes	No			
		that are inserted or modified by hard-					
		ware.					

Selection flags

Flag name	id	Definition	Valid	Valid for
			for	V4L2
			V4L2	subdev
V4L2_SEL_FLAG_GE	(1 << 0)	Suggest the driver it should	Yes	Yes
		choose greater or equal rectan-		
		gle (in size) than was requested.		
		Albeit the driver may choose a		
		lesser size, it will only do so due		
		to hardware limitations. Without		
		this flag (and V4L2_SEL_FLAG_LE)		
		the behaviour is to choose the		
	(1 1)	closest possible rectangle.	Voc	Vee
V4L2_SEL_FLAG_LE	(1 << 1)	Suggest the driver it should choose lesser or equal rectan-	res	Yes
		gle (in size) than was requested.		
		Albeit the driver may choose a		
		greater size, it will only do so due		
		to hardware limitations.		
V4L2_SEL_FLAG_KEEP_CONF	IG << 2)	The configuration must not be	No	Yes
		propagated to any further pro-		
		cessing steps. If this flag is not		
		given, the configuration is propa-		
		gated inside the subdevice to all		
		further processing steps.		

Table 218: Selection flag definitions

7.2.9 Video For Linux Two Header File

videodev2.h

```
/* SPDX-License-Identifier: ((GPL-2.0+ WITH Linux-syscall-note) OR.
→BSD-3-Clause) */
/*
 *
   Video for Linux Two header file
 *
 *
    Copyright (C) 1999-2012 the contributors
 *
 *
   This program is free software; you can redistribute it and/or.
→modify
    it under the terms of the GNU General Public License as,
 *
→published by
*
   the Free Software Foundation; either version 2 of the License,
-→0r
 *
    (at your option) any later version.
 *
 *
   This program is distributed in the hope that it will be useful,
 *
    but WITHOUT ANY WARRANTY; without even the implied warranty of
```

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * Alternatively you can redistribute this file under the terms of \rightarrow the BSD license as stated below: * Redistribution and use in source and binary forms, with or, →without modification, are permitted provided that the following, →conditions are met: * 1. Redistributions of source code must retain the above. →copyright notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above \rightarrow copyright * notice, this list of conditions and the following disclaimer. ⇒in the documentation and/or other materials provided with the * distribution. * 3. The names of its contributors may not be used to endorse or →promote products derived from this software without specific prior, →written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND, → CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT. →NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND, * \rightarrow FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE, →COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,... \rightarrow INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT, →NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE ... * →DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY. * →THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT, \rightarrow (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF. * →THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Header file for v4l or V4L2 drivers and applications * with public API.

```
* All kernel-specific stuff were moved to media/v4l2-dev.h, so
 * no #if KERNEL tests are allowed here
 *
 *
        See https://linuxtv.org for more info
 *
 *
       Author: Bill Dirks <bill@thedirks.org>
 *
                Justin Schoeman
 *
                Hans Verkuil <hverkuil@xs4all.nl>
 *
                et al.
 */
#ifndef UAPI LINUX VIDEODEV2 H
#define _UAPI LINUX VIDEODEV2 H
#ifndef __KERNEL__
#include <sys/time.h>
#endif
#include <linux/compiler.h>
#include <linux/ioctl.h>
#include <linux/types.h>
#include <linux/v4l2-common.h>
#include <linux/v4l2-controls.h>
/*
 * Common stuff for both V4L1 and V4L2
* Moved from videodev.h
 */
#define VIDE0 MAX FRAME
                                      32
#define VIDE0 MAX PLANES
                                       8
/*
 *
       MISCELLANEOUS
*/
/* Four-character-code (FOURCC) */
#define v4l2 fourcc(a, b, c, d)\
        ((__u32)(a) | ((__u32)(b) << 8) | ((__u32)(c) << 16) | ((__
→u32)(d) << 24))
#define v4l2 fource be(a, b, c, d) (v4l2 fource(a, b, c, d) |
\rightarrow (1U << 31))
/*
 *
        ENUMS
*/
enum v4l2 field {
       V4L2 FIELD ANY
                                = 0, /* driver can choose from
\rightarrow none,
                                         top, bottom, interlaced
                                         depending on whatever it.
→thinks
                                         is approximate ... */
        V4L2_FIELD_NONE
                         = 1, /* this device has no fields .
```

→.. */ V4L2_FIELD_TOP = 2, /* top field only */
V4L2_FIELD_BOTTOM = 3, /* bottom field only */
V4L2_FIELD_INTERLACED = 4, /* both fields interlaced */
V4L2_FIELD_SEQ_TB = 5, /* both fields sequential_ V4L2 FIELD TOP = 2, /* top field only */ = 5, /* both fields sequential V4L2 FIELD SEQ TB ⇒into one buffer, top-bottom order */ V4L2_FIELD SEQ BT = 6, /* same as above + bottom-top, →order */ V4L2 FIELD ALTERNATE = 7, /* both fields alternating. →into separate buffers */ V4L2 FIELD INTERLACED TB = 8, /* both fields interlaced,... →top field first and the top field is transmitted first */ V4L2_FIELD_INTERLACED_BT = 9, /* both fields interlaced, →top field first and the bottom field, ⇒is transmitted first */ }; #define V4L2 FIELD HAS TOP(field) \ ((field) == V4L2 FIELD TOP |||(field) == V4L2 FIELD INTERLACED ||\ (field) == V4L2 FIELD INTERLACED TB ||\ (field) == V4L2_FIELD_INTERLACED_BT ||\ (field) == V4L2 FIELD SEQ TB $||\rangle$ (field) == V4L2 FIELD SEQ BT) #define V4L2 FIELD HAS BOTTOM(field) ((field) == V4L2 FIELD BOTTOM $||\rangle$ (field) == V4L2 FIELD INTERLACED ||\ (field) == V4L2 FIELD INTERLACED TB ||\ (field) == V4L2 FIELD INTERLACED BT ||\ (field) == V4L2 FIELD SEQ TB $||\rangle$ (field) == V4L2 FIELD SEQ BT) #define V4L2 FIELD HAS BOTH(field) \ ((field) == V4L2_FIELD_INTERLACED ||\ (field) == V4L2_FIELD_INTERLACED_TB ||\ (field) == V4L2 FIELD INTERLACED_BT ||\ (field) == V4L2 FIELD SEQ TB ||\ (field) == V4L2 FIELD SEQ BT) #define V4L2 FIELD HAS T OR B(field) ((field) == V4L2 FIELD BOTTOM ||\ (field) == V4L2 FIELD TOP ||\ (field) == V4L2 FIELD ALTERNATE) #define V4L2 FIELD IS INTERLACED(field) \ ((field) == V4L2 FIELD INTERLACED ||\ (field) == V4L2 FIELD INTERLACED_TB ||\ (field) == V4L2 FIELD INTERLACED BT) #define V4L2_FIELD_IS_SEQUENTIAL(field) \

((field) == V4L2 FIELD SEQ TB ||\ (field) == V4L2 FIELD SEQ BT) enum v4l2 buf type { V4L2_BUF_TYPE_VIDE0_CAPTURE = 1, V4L2 BUF TYPE VIDEO OUTPUT = 2, V4L2_BUF_TYPE_VIDE0_OVERLAY = 3, = 4, = 5, V4L2 BUF TYPE VBI CAPTURE V4L2 BUF TYPE_VBI_OUTPUT V4L2 BUF TYPE SLICED VBI CAPTURE = 6, V4L2 BUF TYPE SLICED VBI OUTPUT = 7, V4L2 BUF_TYPE_VIDE0_OUTPUT_OVERLAY = 8, V4L2 BUF TYPE VIDEO CAPTURE MPLANE = 9, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE = 10, V4L2 BUF TYPE SDR CAPTURE = 11, - II, V4L2_BUF_TYPE_SDR_OUTPUT = 12, V4L2_BUF_TYPE_META_CAPTURE = 13, V4L2_BUF_TYPE_META_OUTPUT = 14, /* Deprecated, do not use */ V4L2_BUF_TYPE_PRIVATE = 0×80, }; #define V4L2 TYPE IS MULTIPLANAR(type) ١ ((type) == V4L2_BUF_TYPE_VIDE0 CAPTURE MPLANE || (type) == V4L2 BUF TYPE VIDEO OUTPUT MPLANE) #define V4L2 TYPE IS OUTPUT(type) \ ((type) == V4L2 BUF TYPE VIDEO OUTPUT (type) == V4L2_BUF_TYPE_VIDE0_OUTPUT_MPLANE ١ || (type) == V4L2 BUF TYPE VIDEO OVERLAY ١ (type) == V4L2 BUF TYPE VIDEO OUTPUT OVERLAY ١ || (type) == V4L2 BUF TYPE VBI OUTPUT ١ (type) == V4L2 BUF TYPE SLICED VBI OUTPUT ١ (type) == V4L2_BUF_TYPE_SDR_OUTPUT || (type) == V4L2 BUF TYPE META OUTPUT) enum v4l2 tuner type { V4L2_TUNER_RADIO V4L2_TUNER_ANALOG_TV = 2, V4L2_TUNER_DIGITAL_TV = 3, = 4, = 5, V4L2 TUNER RF }; /* Deprecated, do not use */ #define V4L2 TUNER ADC V4L2 TUNER SDR enum v4l2 memory { = 1, = 2, V4L2 MEMORY MMAP V4L2_MEMORY_USERPTR V4L2_MEMORY_OVERLAY = 3,

V4L2 MEMORY DMABUF = 4, }; /* see also http://vektor.theorem.ca/graphics/ycbcr/ */ enum v4l2_colorspace { /* * Default colorspace, i.e. let the driver figure it out. * Can only be used with video capture. */ V4L2 COLORSPACE DEFAULT = 0, /* SMPTE 170M: used for broadcast NTSC/PAL SDTV */ V4L2 COLORSPACE SMPTE170M = 1, /* Obsolete pre-1998 SMPTE 240M HDTV standard, superseded →by Rec 709 */ V4L2 COLORSPACE SMPTE240M = 2. /* Rec.709: used for HDTV */ V4L2 COLORSPACE_REC709 = 3, /* * Deprecated, do not use. No driver will ever return this. →This was * based on a misunderstanding of the bt878 datasheet. */ V4L2 COLORSPACE BT878 = 4, /* * NTSC 1953 colorspace. This only makes sense when dealing. →with * really, really old NTSC recordings. Superseded by SMPTE, →170M. */ V4L2 COLORSPACE 470 SYSTEM M = 5, /* * EBU Tech 3213 PAL/SECAM colorspace. This only makes \rightarrow sense when * dealing with really old PAL/SECAM recordings. Superseded, →by * SMPTE 170M. */ V4L2 COLORSPACE 470 SYSTEM BG = 6, /* * Effectively shorthand for V4L2 COLORSPACE SRGB, V4L2 \rightarrow YCBCR ENC 601 * and V4L2 QUANTIZATION FULL RANGE. To be used for \rightarrow (Motion-)JPEG. */

V4L2 COLORSPACE JPEG = 7, /* For RGB colorspaces such as produces by most webcams. */ V4L2 COLORSPACE SRGB = 8, /* opRGB colorspace */ V4L2 COLORSPACE OPRGB = 9, /* BT.2020 colorspace, used for UHDTV. */ V4L2 COLORSPACE BT2020 = 10,/* Raw colorspace: for RAW unprocessed images */ V4L2 COLORSPACE RAW = 11, /* DCI-P3 colorspace, used by cinema projectors */ V4L2 COLORSPACE DCI P3 = 12. }; /* * Determine how COLORSPACE DEFAULT should map to a proper. →colorspace. * This depends on whether this is a SDTV image (use SMPTE 170M), an * HDTV image (use Rec. 709), or something else (use sRGB). */ #define V4L2 MAP COLORSPACE DEFAULT(is sdtv, is hdtv) \ ((is sdtv) ? V4L2 COLORSPACE SMPTE170M : \ ((is hdtv) ? V4L2_COLORSPACE_REC709 : V4L2_COLORSPACE_ \rightarrow SRGB)) enum v4l2 xfer func { /* * Mapping of V4L2 XFER FUNC DEFAULT to actual transfer. \rightarrow functions * for the various colorspaces: * * V4L2 COLORSPACE SMPTE170M, V4L2 COLORSPACE 470 SYSTEM M, * V4L2 COLORSPACE 470 SYSTEM BG, V4L2 COLORSPACE REC709 and * V4L2 COLORSPACE BT2020: V4L2 XFER FUNC 709 * V4L2 COLORSPACE SRGB, V4L2 COLORSPACE JPEG: V4L2 XFER → FUNC SRGB * V4L2 COLORSPACE OPRGB: V4L2 XFER FUNC OPRGB * * V4L2 COLORSPACE SMPTE240M: V4L2 XFER FUNC SMPTE240M * V4L2 COLORSPACE RAW: V4L2 XFER FUNC NONE * V4L2 COLORSPACE DCI P3: V4L2 XFER FUNC DCI P3 */ V4L2_XFER_FUNC_DEFAULT = 0,

```
V4L2 XFER FUNC 709
                                    = 1,
        V4L2 XFER FUNC SRGB
                                    = 2,
                                    = 3,
        V4L2 XFER FUNC OPRGB
        V4L2 XFER FUNC SMPTE240M
                                    = 4,
                                    = 5,
        V4L2 XFER FUNC NONE
        V4L2 XFER FUNC DCI P3
                                    = 6,
        V4L2 XFER FUNC SMPTE2084
                                    = 7.
};
/*
 * Determine how XFER FUNC DEFAULT should map to a proper transfer.
\rightarrow function.
 * This depends on the colorspace.
 */
#define V4L2 MAP XFER FUNC DEFAULT(colsp) \
        ((colsp) == V4L2 COLORSPACE OPRGB ? V4L2 XFER FUNC OPRGB : \
         ((colsp) == V4L2 COLORSPACE SMPTE240M ? V4L2 XFER FUNC
→SMPTE240M : \
          ((colsp) == V4L2 COLORSPACE DCI P3 ? V4L2 XFER FUNC DCI
→P3 : \
           ((colsp) == V4L2 COLORSPACE RAW ? V4L2 XFER FUNC NONE : \
            ((colsp) == V4L2_COLORSPACE_SRGB || (colsp) == V4L2_
\rightarrow COLORSPACE JPEG ? \
             V4L2 XFER FUNC SRGB : V4L2 XFER FUNC 709)))))
enum v4l2_ycbcr_encoding {
        /*
         * Mapping of V4L2 YCBCR ENC DEFAULT to actual encodings.
\rightarrow for the
         * various colorspaces:
         * V4L2 COLORSPACE SMPTE170M, V4L2 COLORSPACE 470 SYSTEM M,
         * V4L2 COLORSPACE 470 SYSTEM BG, V4L2 COLORSPACE SRGB,
         * V4L2 COLORSPACE OPRGB and V4L2 COLORSPACE JPEG: V4L2
→YCBCR ENC 601
         * V4L2 COLORSPACE REC709 and V4L2 COLORSPACE DCI P3: V4L2
→YCBCR ENC 709
         *
         * V4L2 COLORSPACE BT2020: V4L2 YCBCR ENC BT2020
         * V4L2 COLORSPACE SMPTE240M: V4L2 YCBCR ENC SMPTE240M
         */
        V4L2 YCBCR ENC DEFAULT
                                       = 0,
        /* ITU-R 601 -- SDTV */
        V4L2 YCBCR ENC 601
                                       = 1,
        /* Rec. 709 -- HDTV */
        V4L2 YCBCR ENC 709
                                       = 2,
```

```
/* ITU-R 601/EN 61966-2-4 Extended Gamut -- SDTV */
        V4L2 YCBCR ENC XV601
                                      = 3.
        /* Rec. 709/EN 61966-2-4 Extended Gamut -- HDTV */
        V4L2 YCBCR ENC XV709
                                      = 4.
#ifndef KERNEL
        /*
         * sYCC (Y'CbCr encoding of sRGB), identical to ENC 601. It,
→was added
         * originally due to a misunderstanding of the sYCC,
→standard. It should
         * not be used, instead use V4L2 YCBCR ENC 601.
         */
        V4L2 YCBCR ENC SYCC
                                      = 5,
#endif
        /* BT.2020 Non-constant Luminance Y'CbCr */
        V4L2 YCBCR ENC BT2020
                                      = 6,
        /* BT.2020 Constant Luminance Y'CbcCrc */
        V4L2_YCBCR_ENC_BT2020_CONST_LUM = 7,
        /* SMPTE 240M -- Obsolete HDTV */
        V4L2 YCBCR ENC SMPTE240M
                                      = 8,
};
/*
 * enum v4l2 hsv encoding values should not collide with the ones
→from
* enum v4l2 ycbcr encoding.
*/
enum v4l2 hsv encoding {
        /* Hue mapped to 0 - 179 */
        V4L2 HSV ENC 180
                                        = 128,
        /* Hue mapped to 0-255 */
        V4L2_HSV_ENC_256
                                        = 129,
};
/*
 * Determine how YCBCR ENC DEFAULT should map to a proper Y'CbCr
→encodina.
* This depends on the colorspace.
 */
#define V4L2 MAP YCBCR ENC DEFAULT(colsp) \
        (((colsp) == V4L2_COLORSPACE_REC709 || \
          (colsp) == V4L2 COLORSPACE DCI P3) ? V4L2 YCBCR ENC 709 :...
\rightarrow
         ((colsp) == V4L2 COLORSPACE BT2020 ? V4L2 YCBCR ENC BT2020,
```

→: \ ((colsp) == V4L2 COLORSPACE SMPTE240M ? V4L2 YCBCR ENC →SMPTE240M : \ V4L2 YCBCR ENC 601))) enum v4l2_quantization { * The default for R'G'B' quantization is always full range, → except * for the BT2020 colorspace. For Y'CbCr the quantization ⇒is always * limited range, except for COLORSPACE JPEG: this is full, \rightarrow range. */ V4L2 QUANTIZATION DEFAULT = 0, V4L2 QUANTIZATION FULL RANGE = 1. V4L2 QUANTIZATION LIM RANGE = 2. }; /* * Determine how QUANTIZATION DEFAULT should map to a proper. → quantization. * This depends on whether the image is RGB or not, the colorspace. \rightarrow and the * Y'CbCr encoding. */ #define V4L2 MAP QUANTIZATION DEFAULT(is rgb or hsv, colsp, ycbcr →enc) \ (((is rgb or hsv) && (colsp) == V4L2 COLORSPACE BT2020) ? \ V4L2 QUANTIZATION LIM RANGE : \ (((is rqb or hsv) || (colsp) == V4L2 COLORSPACE JPEG) ? \ V4L2 QUANTIZATION FULL RANGE : V4L2 QUANTIZATION LIM →RANGE)) /* * Deprecated names for opRGB colorspace (IEC 61966-2-5) * WARNING: Please don't use these deprecated defines in your code,... →as * there is a chance we have to remove them in the future. */ #ifndef KERNEL #define V4L2 COLORSPACE ADOBERGB V4L2 COLORSPACE OPRGB #define V4L2 XFER FUNC ADOBERGB V4L2 XFER FUNC OPRGB #endif enum v4l2 priority { V4L2 PRIORITY UNSET = 0, /* not initialized */ V4L2 PRIORITY BACKGROUND = 1, V4L2 PRIORITY INTERACTIVE = 2, V4L2 PRIORITY RECORD = 3,

```
V4L2 PRIORITY DEFAULT = V4L2 PRIORITY INTERACTIVE,
};
struct v4l2 rect {
       ___s32
               left;
        s32
               top;
         u32
               width;
         u32
               height;
};
struct v4l2 fract {
       ___u32
               numerator;
        u32
               denominator;
};
struct v4l2 area {
        u32 width;
        u32 height;
};
/**
  * struct v4l2 capability - Describes V4L2 device caps returned by
→VIDIOC QUERYCAP
 *
 * @driver:
                  name of the driver module (e.g. "bttv")
 * @card:
* @bus_info:
                  name of the card (e.g. "Hauppauge WinTV")
                  name of the bus (e.g. "PCI:" + pci name(pci dev)...
→ )
               KERNEL VERSION
 * @version:
 * @capabilities: capabilities of the physical device as a whole
 * @device caps: capabilities accessed via this particular device
\rightarrow (node)
  * @reserved: reserved fields for future extensions
  */
struct v4l2 capability {
        u8
               driver[16];
         u8
               card[32];
               bus_info[32];
         u8
         u32 version;
               capabilities;
         u32
         u32
               device caps;
               reserved[3];
        u32
};
/* Values for 'capabilities' field */
#define V4L2_CAP_VIDE0_CAPTURE
                                       0x00000001 /* Is a video
→capture device */
#define V4L2 CAP VIDE0 OUTPUT
                                       0x00000002 /* Is a video.
→output device */
#define V4L2_CAP_VIDE0_OVERLAY
                                       0x00000004 /* Can do video
→overlay */
```

#define V4L2 CAP VBI CAPTURE 0x00000010 /* Is a raw VBI →capture device */ #define V4L2 CAP VBI OUTPUT 0x00000020 /* Is a raw VBI. →output device */ #define V4L2_CAP_SLICED_VBI_CAPTURE 0x00000040 /* Is a sliced, →VBI capture device */ #define V4L2 CAP SLICED VBI OUTPUT 0x00000080 /* Is a sliced. →VBI output device */ 0x00000100 #define V4L2 CAP RDS CAPTURE /* RDS data →capture */ #define V4L2 CAP VIDE0 OUTPUT OVERLAY /* Can do video. 0x00000200 →output overlay */ #define V4L2 CAP HW FREQ SEEK 0x00000400 /* Can do →hardware frequency seek */ #define V4L2 CAP RDS OUTPUT 0x00000800 /* Is an RDS, →encoder */ /* Is a video capture device that supports multiplanar formats */#define V4L2 CAP VIDE0 CAPTURE MPLANE 0x00001000 /* Is a video output device that supports multiplanar formats */ #define V4L2 CAP VIDE0 OUTPUT MPLANE 0x00002000 /* Is a video mem-to-mem device that supports multiplanar formats */ #define V4L2 CAP VIDE0 M2M MPLANE 0x00004000 /* Is a video mem-to-mem device */ #define V4L2 CAP VIDE0 M2M 0x00008000 #define V4L2 CAP TUNER 0x00010000 /* has a tuner, **→***/ /* has audio 0x00020000 #define V4L2 CAP AUDI0 →support */ #define V4L2 CAP RADIO /* is a radio 0x00040000 →device */ #define V4L2 CAP MODULATOR 0x00080000 /* has a →modulator */ #define V4L2_CAP_SDR_CAPTURE /* Is a SDR, 0x00100000 →capture device */ #define V4L2_CAP_EXT_PIX_FORMAT 0x00200000 /* Supports the →extended pixel format */ #define V4L2 CAP SDR OUTPUT /* Is a SDR, 0x00400000 →output device */ #define V4L2 CAP META CAPTURE /* Is a. 0x00800000 →metadata capture device */ #define V4L2 CAP READWRITE 0x01000000 /* read/write →systemcalls */ #define V4L2 CAP ASYNCIO /* async I/0 */ 0x02000000 #define V4L2 CAP STREAMING 0x04000000 /* streaming I/ $\rightarrow 0$ ioctls */ #define V4L2 CAP META OUTPUT 0x08000000 /* Is a, →metadata output device */

#define V4L2_CAP TOUCH 0x10000000 /* Is a touch. →device */ #define V4L2_CAP_I0_MC 0x20000000 /* Is input/ \rightarrow output controlled by the media controller */ #define V4L2 CAP DEVICE CAPS 0x80000000 /* sets device →capabilities field */ /* * VIDEO IMAGE FORMAT */ struct v4l2_pix_format { u32 width; u32 height; u32 pixelformat; u32 field; /* enum v4l2 field _×/ u32 bytesperline; /* for padding, →zero if unused */ u32 sizeimage; u32 colorspace; /* enum v4l2 →colorspace */ /* private data,... u32 priv; →depends on pixelformat */ /* format flags u32 flags; →(V4L2 PIX FMT FLAG *) */ union { /* enum v4l2 ycbcr encoding */ u32 ycbcr enc; /* enum v4l2 hsv encoding */ u32 hsv enc; }; quantization; /* enum v4l2_ u32 → quantization */ xfer func; /* enum v4l2 xfer _u32 \rightarrow func */ }; /* Pixel format FOURCC depth _ →Description */ /* RGB formats */ #define V4L2 PIX FMT RGB332 v4l2 fourcc('R', 'G', 'B', '1') /* 8 */ →RGB-3-3-2 #define V4L2 PIX FMT RGB444 v4l2 fourcc('R', '4', '4', '4') /* 16 →xxxxrrrr ggggbbbb */ #define V4L2 PIX FMT ARGB444 v4l2 fourcc('A', 'R', '1', '2') /* 16 →aaaarrrr ggggbbbb */ #define V4L2_PIX_FMT_XRGB444 v4l2_fourcc('X', 'R', '1', '2') /* 16

→xxxxrrrr ggggbbbb */ #define V4L2 PIX FMT RGBA444 v4l2 fourcc('R', 'A', '1', '2') /* 16 ¬rrrgggg bbbbaaaa */ #define V4L2 PIX FMT RGBX444 v4l2 fourcc('R', 'X', '1', '2') /* 16 ¬rrrqqqq bbbbxxxx */ #define V4L2 PIX FMT ABGR444 v4l2 fourcc('A', 'B', '1', '2') /* 16 ... →aaaabbbb ggggrrrr */ #define V4L2 PIX FMT XBGR444 v4l2 fourcc('X', 'B', '1', '2') /* 16 →xxxxbbbb ggggrrrr */ /* \ast Originally this had 'BA12' as fourcc, but this clashed with the →older * V4L2 PIX FMT SGRBG12 which inexplicably used that same fourcc. * So use 'GA12' instead for V4L2 PIX FMT BGRA444. */ #define V4L2 PIX FMT BGRA444 v4l2 fourcc('G', 'A', '1', '2') /* 16 →bbbbgggg rrrraaaa */ #define V4L2 PIX FMT BGRX444 v4l2_fourcc('B', 'X', '1', '2') /* 16 →bbbbgggg rrrrxxxx */ #define V4L2 PIX FMT RGB555 v4l2 fourcc('R', 'G', 'B', '0') /* 16 →RGB-5-5-5 */ #define V4L2 PIX FMT ARGB555 v4l2 fourcc('A', 'R', '1', '5') /* 16 */ →ARGB-1-5-5-5 #define V4L2_PIX_FMT_XRGB555 v4l2_fourcc('X', 'R', '1', '5') /* 16 →XRGB-1-5-5-5 */ #define V4L2 PIX FMT RGBA555 v4l2 fourcc('R', 'A', '1', '5') /* 16 →RGBA-5-5-5-1 */ #define V4L2 PIX FMT RGBX555 v4l2 fourcc('R', 'X', '1', '5') /* 16 →RGBX-5-5-1 */ #define V4L2 PIX FMT ABGR555 v4l2 fourcc('A', 'B', '1', '5') /* 16 ... →ABGR-1-5-5-5 */ #define V4L2 PIX FMT XBGR555 v4l2 fourcc('X', 'B', '1', '5') /* 16 ... →XBGR-1-5-5-5 */ #define V4L2_PIX_FMT_BGRA555 v4l2_fourcc('B', 'A', '1', '5') /* 16 ... →BGRA-5-5-5-1 */ #define V4L2_PIX_FMT_BGRX555 v4l2_fourcc('B', 'X', '1', '5') /* 16 →BGRX-5-5-5-1 */ #define V4L2_PIX_FMT_RGB565 v4l2_fourcc('R', 'G', 'B', 'P') /* 16 →RGB-5-6-5 */ #define V4L2_PIX_FMT_RGB555X v4l2_fourcc('R', 'G', 'B', 'Q') /* 16 →RGB-5-5-5 BE */ #define V4L2 PIX FMT ARGB555X v4l2 fourcc be('A', 'R', '1', '5') /*... →16 ARGB-5-5-5 BE */ #define V4L2 PIX FMT XRGB555X v4l2 fourcc be('X', 'R', '1', '5') /*... →16 XRGB-5-5-5 BE */ #define V4L2 PIX FMT RGB565X v4l2 fourcc('R', 'G', 'B', 'R') /* 16 */ →RGB-5-6-5 BE #define V4L2 PIX FMT BGR666 v4l2 fourcc('B', 'G', 'R', 'H') /* 18 ... \rightarrow BGR-6-6-6 */ #define V4L2_PIX_FMT_BGR24 v4l2_fourcc('B', 'G', 'R', '3') /* 24 _

→BGR-8-8-8 */		
#define V4L2_PIX_FMT_RGB24	v4l2 fourcc('R',	'G', 'B', '3') /* 24 🖬
→RGB-8-8-8 */		
<pre>#define V4L2_PIX_FMT_BGR32</pre>	v4l2_fourcc('B',	'G', 'R', '4') /* 32 🖬
→BGR-8-8-8-8 */		
<pre>#define V4L2_PIX_FMT_ABGR32</pre>	v4l2_fourcc('A',	'R', '2', '4') /* 32 🔒
→BGRA-8-8-8-8 */		
<pre>#define V4L2_PIX_FMT_XBGR32</pre>	v4l2_fourcc('X',	'R', '2', '4') /* 32 🔒
→BGRX-8-8-8-8 */		
<pre>#define V4L2_PIX_FMT_BGRA32</pre>	v4l2_fourcc('R',	'A', '2', '4') /* 32 🖬
\rightarrow ABGR-8-8-8-8 */	$\sqrt{12}$ fourse(1D)	'X', '2', '4') /* 32 🔒
#define V4L2_PIX_FMT_BGRX32 →XBGR-8-8-8-8 */	V4LZ_TOUTCC(R ,	Λ, Ζ, 4)/* 32 υ
#define V4L2_PIX_FMT_RGB32	v/12 fource('R'	'G', 'B', '4') /* 32 <mark>_</mark>
→RGB-8-8-8-8 */	V4C2_TOUTCC(K ,	0, 0, 4)/ J2 U
#define V4L2 PIX FMT RGBA32	v412 fource('A'	'B', '2', '4') /* 32 🔒
→RGBA-8-8-8-8 */		5, 2, 1, , , 52
<pre>#define V4L2_PIX_FMT_RGBX32</pre>	v4l2 fourcc('X',	'B', '2', '4') /* 32 🖬
→RGBX-8-8-8-8 */		
<pre>#define V4L2_PIX_FMT_ARGB32</pre>	v4l2_fourcc('B',	'A', '2', '4') /* 32 🔒
→ARGB-8-8-8-8 */		
<pre>#define V4L2_PIX_FMT_XRGB32</pre>	v4l2_fourcc('B',	'X', '2', '4') /* 32 🔒
→XRGB-8-8-8-8 */		
(* Crow formate */		
/* Grey formats */	v/12 fource('C'	'R', 'E', 'Y') /* 8 <mark>.</mark>
#define V4L2_PIX_FMT_GREY →Greyscale */	vatz_louice(0,	к, с, т) / [.] о _ц
#define V4L2_PIX_FMT_Y4	v412 fource('Y'	'0', '4', ' ') /* 4 <mark>_</mark>
Greyscale */	v+c2_rource(r ,	0, +,), + <mark>1</mark>
<pre>#define V4L2_PIX_FMT_Y6</pre>	v4l2 fourcc('Y'.	'0', '6', ' ') /* 6 <mark>.</mark>
→Greyscale */		-, -, ,, ,
<pre>#define V4L2_PIX_FMT_Y10</pre>	v4l2 fourcc('Y',	'1', '0', ' ') /* 10 <mark>_</mark>
⊸Greyscale — — — — — — — — — — — — — — — — — — —		
<pre>#define V4L2_PIX_FMT_Y12</pre>	v4l2_fourcc('Y',	'1', '2', ' ') /* 12 🔒
⊶Greyscale */		
<pre>#define V4L2_PIX_FMT_Y14</pre>	v4l2_fourcc('Y',	'1', '4', ' ') /* 14 <mark>_</mark>
⊶Greyscale */		
<pre>#define V4L2_PIX_FMT_Y16</pre>		'1', '6', ' ') /* 16 <mark>.</mark>
#define V4L2_PIX_FMT_Y16 →Greyscale */	v4l2_fourcc('Y',	'1', '6', ' ') /* 16 <mark>_</mark>
<pre>#define V4L2_PIX_FMT_Y16 Greyscale */ #define V4L2_PIX_FMT_Y16_BE</pre>	v4l2_fourcc('Y',	
#define V4L2_PIX_FMT_Y16 →Greyscale */	v4l2_fourcc('Y',	'1', '6', ' ') /* 16 <mark>_</mark>
<pre>#define V4L2_PIX_FMT_Y16 Greyscale */ #define V4L2_PIX_FMT_Y16_BE 16 Greyscale BE */</pre>	v4l2_fourcc('Y', v4l2_fourcc_be('`	'1', '6', ' ') /* 16 <mark>_</mark>
<pre>#define V4L2_PIX_FMT_Y16 Greyscale */ #define V4L2_PIX_FMT_Y16_BE 16 Greyscale BE */ /* Grey bit-packed formats *,</pre>	v4l2_fourcc('Y', v4l2_fourcc_be('` /	'1', '6', ' ') /* 16 <mark>.</mark> Y', '1', '6', ' ') /* <mark>.</mark>
<pre>#define V4L2_PIX_FMT_Y16 Greyscale */ #define V4L2_PIX_FMT_Y16_BE 16 Greyscale BE */ /* Grey bit-packed formats *, #define V4L2_PIX_FMT_Y10BPACH</pre>	v4l2_fourcc('Y', v4l2_fourcc_be('` / K v4l2_fourcc('1', '6', ' ') /* 16 <mark>.</mark> Y', '1', '6', ' ') /* <mark>.</mark>
<pre>#define V4L2_PIX_FMT_Y16 Greyscale */ #define V4L2_PIX_FMT_Y16_BE 16 Greyscale BE */ /* Grey bit-packed formats *, #define V4L2_PIX_FMT_Y10BPACH 10 Greyscale bit-packed *,</pre>	v4l2_fourcc('Y', v4l2_fourcc_be('` / / / v4l2_fourcc(/	'1', '6', ' ') /* 16 Y', '1', '6', ' ') /*」 'Y', '1', '0', 'B') /*」
<pre>#define V4L2_PIX_FMT_Y16 Greyscale */ #define V4L2_PIX_FMT_Y16_BE 16 Greyscale BE */ /* Grey bit-packed formats *, #define V4L2_PIX_FMT_Y10BPACH</pre>	<pre>v4l2_fourcc('Y', v4l2_fourcc_be(') /</pre>	'1', '6', ' ') /* 16 Y', '1', '6', ' ') /*」 'Y', '1', '0', 'B') /*」
<pre>#define V4L2_PIX_FMT_Y16 Greyscale */ #define V4L2_PIX_FMT_Y16_BE 16 Greyscale BE */ /* Grey bit-packed formats *, #define V4L2_PIX_FMT_Y10BPACH 10 Greyscale bit-packed *, #define V4L2_PIX_FMT_Y10P</pre>	<pre>v4l2_fourcc('Y', v4l2_fourcc_be(') /</pre>	'1', '6', ' ') /* 16 Y', '1', '6', ' ') /*」 'Y', '1', '0', 'B') /*」
<pre>#define V4L2_PIX_FMT_Y16 Greyscale */ #define V4L2_PIX_FMT_Y16_BE 16 Greyscale BE */ /* Grey bit-packed formats *, #define V4L2_PIX_FMT_Y10BPACH 10 Greyscale bit-packed *, #define V4L2_PIX_FMT_Y10P Greyscale, MIPI RAW10 packed /* Palette formats */</pre>	v4l2_fourcc('Y', v4l2_fourcc_be('` / / v4l2_fourcc(v4l2_fourcc('Y', ed */	'1', '6', ' ') /* 16 Y', '1', '6', ' ') /* 'Y', '1', '0', 'B') /* '1', '0', 'P') /* 10
<pre>#define V4L2_PIX_FMT_Y16 Greyscale */ #define V4L2_PIX_FMT_Y16_BE 16 Greyscale BE */ /* Grey bit-packed formats *, #define V4L2_PIX_FMT_Y10BPACH 10 Greyscale bit-packed *, #define V4L2_PIX_FMT_Y10P Greyscale, MIPI RAW10 packed /* Palette formats */ #define V4L2_PIX_FMT_PAL8</pre>	v4l2_fourcc('Y', v4l2_fourcc_be('` / / v4l2_fourcc(v4l2_fourcc('Y', ed */	'1', '6', ' ') /* 16 Y', '1', '6', ' ') /*」 'Y', '1', '0', 'B') /*」
<pre>#define V4L2_PIX_FMT_Y16 Greyscale */ #define V4L2_PIX_FMT_Y16_BE 16 Greyscale BE */ /* Grey bit-packed formats *, #define V4L2_PIX_FMT_Y10BPACH 10 Greyscale bit-packed *, #define V4L2_PIX_FMT_Y10P Greyscale, MIPI RAW10 packed /* Palette formats */</pre>	v4l2_fourcc('Y', v4l2_fourcc_be('` / / v4l2_fourcc(v4l2_fourcc('Y', ed */	'1', '6', ' ') /* 16 Y', '1', '6', ' ') /* 'Y', '1', '0', 'B') /* '1', '0', 'P') /* 10

/* Chrominance formats */ #define V4L2_PIX_FMT_UV8 →UV 4:4 */	v4l2_fourcc('U',	'V', '8',	'')/* 8 <mark>.</mark>
<pre>/* Luminance+Chrominance for</pre>	mats */		
#define V4L2_PIX_FMT_YUYV →YUV 4:2:2 */	v4l2_fourcc('Y',	'U', 'Y',	'V') /* 16 <mark>_</mark>
#define V4L2_PIX_FMT_YYUV →YUV 4:2:2 */	v4l2_fourcc('Y',	'Y', 'U',	'V') /* 16 <mark>_</mark>
#define V4L2_PIX_FMT_YVYU →YVU 4:2:2 */	v4l2_fourcc('Y',	'V', 'Y',	'U') /* 16 <mark>.</mark>
<pre>#define V4L2_PIX_FMT_UYVY</pre>	v4l2_fourcc('U',	'Y', 'V',	'Y') /* 16 山
→YUV 4:2:2 */ #define V4L2_PIX_FMT_VYUY	v4l2_fourcc('V',	'Y', 'U',	'Y') /* 16 山
→YUV 4:2:2 */ #define V4L2_PIX_FMT_Y41P	v4l2_fourcc('Y',	'4', '1',	'P') /* 12 🔒
→YUV 4:1:1 */ #define V4L2_PIX_FMT_YUV444	v4l2_fourcc('Y',	'4', '4',	'4') /* 16 <mark>_</mark>
→xxxxyyyy uuuuvvvv */ #define V4L2_PIX_FMT_YUV555	v4l2_fourcc('Y',	'U', 'V',	'0') /* 16 🔒
→YUV-5-5-5 */ #define V4L2_PIX_FMT_YUV565	v4l2_fourcc('Y',	'U', 'V',	'P') /* 16 🔒
→YUV-5-6-5 */ #define V4L2_PIX_FMT_YUV32	v4l2_fourcc('Y',	'U', 'V',	'4') /* 32 🔒
→YUV-8-8-8-8 */ #define V4L2_PIX_FMT_AYUV32	v4l2_fourcc('A',		
→AYUV-8-8-8-8 */			
<pre>#define V4L2_PIX_FMT_XYUV32</pre>	v4l2_fourcc('X',	'Y', 'U',	'V') /* 32 <mark>u</mark>
<pre>#define V4L2_PIX_FMT_VUYA32</pre>	v4l2_fourcc('V',	'U', 'Y',	'A') /* 32 🔒
→VUYA-8-8-8-8 */ #define V4L2_PIX_FMT_VUYX32	v4l2_fourcc('V',	'U'. 'Y'.	'X') /* 32
→VUYX-8-8-8-8 */	,	- , - ,	,,
<pre>#define V4L2_PIX_FMT_HI240 % bit color */</pre>	v4l2_fourcc('H',	'I', '2',	'4') /* 8 <mark>.</mark>
<pre></pre>	v412 fourcc('H'.	'M'. '1'.	'2')/* 8 <mark>_</mark>
→YUV 4:2:0 16x16 macroblock		, _,	
<pre>#define V4L2_PIX_FMT_M420</pre>			'0') /* 12 🖬
⊶YUV 4:2:0 2 lines y, 1 lin	e uv interleaved *	</td <td></td>	
/* two planes one Y, one	(r + (h interleave	* h	
#define V4L2_PIX_FMT_NV12			'2') /* 12 📊
→Y/CbCr 4:2:0 */			
#define V4L2_PIX_FMT_NV21 →Y/CrCb 4:2:0 */	v4l2_fourcc('N',	'V', '2',	'1') /* 12 <mark>_</mark>
<pre>#define V4L2_PIX_FMT_NV16</pre>	v4l2_fourcc('N',	'V', '1',	'6') /* 16 <mark>⊔</mark>
→Y/CbCr 4:2:2 */ #define V4L2_PIX_FMT_NV61	v4l2_fourcc('N',	'V'. '6'.	'1') /* 16
⊶Y/CrCb 4:2:2 */			
<pre>#define V4L2_PIX_FMT_NV24</pre>	v4l2_fourcc('N',	'V', '2',	'4') /* 24 <mark>u</mark>

→Y/CbCr 4:4:4 */ #define V4L2 PIX FMT NV42 v4l2 fourcc('N', 'V', '4', '2') /* 24 →Y/CrCb 4:4:4 */ /* two non contiguous planes - one Y, one Cr + Cb interleaved */ v4l2 fourcc('N', 'M', '1', '2') /* 12 ... #define V4L2 PIX FMT NV12M →Y/CbCr 4:2:0 */ #define V4L2 PIX FMT NV21M v4l2_fourcc('N', 'M', '2', '1') /* 21 →Y/CrCb 4:2:0 */ #define V4L2 PIX FMT NV16M v4l2_fourcc('N', 'M', '1', '6') /* 16 →Y/CbCr 4:2:2 */ v4l2_fourcc('N', 'M', '6', '1') /* 16 #define V4L2 PIX FMT NV61M →Y/CrCb 4:2:2 */ #define V4L2_PIX_FMT_NV12MT v4l2_fourcc('T', 'M', '1', '2') /* 12 _ →Y/CbCr 4:2:0 64x32 macroblocks */ #define V4L2 PIX FMT NV12MT 16X16 v4l2 fourcc('V', 'M', '1', '2') / →* 12 Y/CbCr 4:2:0 16x16 macroblocks */ /* three planes - Y Cb, Cr */ #define V4L2 PIX FMT YUV410 v4l2 fourcc('Y', 'U', 'V', '9') /* 9 */ →YUV 4:1:0 #define V4L2_PIX_FMT_YVU410 v4l2_fourcc('Y', 'V', 'U', '9') /* 9 →YVU 4:1:0 */ #define V4L2_PIX_FMT_YUV411P v4l2_fourcc('4', '1', '1', 'P') /* 12 _ →YVU411 planar */ #define V4L2_PIX_FMT_YUV420 v4l2_fourcc('Y', 'U', '1', '2') /* 12 _ →YUV 4:2:0 */ #define V4L2 PIX FMT YVU420 v4l2 fourcc('Y', 'V', '1', '2') /* 12 →YVU 4:2:0 */ #define V4L2 PIX FMT YUV422P v4l2 fourcc('4', '2', '2', 'P') /* 16 →YVU422 planar */ /* three non contiguous planes - Y, Cb, Cr */ #define V4L2_PIX_FMT_YUV420M v4l2_fourcc('Y', 'M', '1', '2') /* 12 →YUV420 planar */ #define V4L2_PIX_FMT_YVU420M v4l2_fourcc('Y', 'M', '2', '1') /* 12 \rightarrow YVU420 planar */ #define V4L2 PIX FMT_YUV422M v4l2_fourcc('Y', 'M', '1', '6') /* 16 →YUV422 planar */ #define V4L2 PIX FMT YVU422M v4l2 fourcc('Y', 'M', '6', '1') /* 16 \rightarrow YVU422 planar */ #define V4L2 PIX FMT YUV444M v4l2 fourcc('Y', 'M', '2', '4') /* 24 →YUV444 planar */ #define V4L2 PIX FMT YVU444M v4l2 fourcc('Y', 'M', '4', '2') /* 24 →YVU444 planar */ /* Bayer formats - see http://www.siliconimaging.com/RGB%20Bayer. →htm */ #define V4L2 PIX FMT SBGGR8 v4l2 fourcc('B', 'A', '8', '1') /* 8 →BGBG.. GRGR.. */ #define V4L2_PIX_FMT_SGBRG8 v4l2_fourcc('G', 'B', 'R', 'G') /* 8

→GBGB.. RGRG.. */ #define V4L2 PIX FMT SGRBG8 v4l2 fourcc('G', 'R', 'B', 'G') /* 8 ... →GRGR.. BGBG.. */ #define V4L2 PIX FMT SRGGB8 v4l2 fourcc('R', 'G', 'G', 'B') /* 8 🔒 →RGRG.. GBGB.. */ #define V4L2 PIX FMT SBGGR10 v4l2 fourcc('B', 'G', '1', '0') /* 10 ... →BGBG.. GRGR.. */ #define V4L2 PIX FMT SGBRG10 v4l2 fourcc('G', 'B', '1', '0') /* 10 →GBGB.. RGRG.. */ #define V4L2 PIX FMT SGRBG10 v4l2 fourcc('B', 'A', '1', '0') /* 10 →GRGR.. BGBG.. */ #define V4L2 PIX FMT SRGGB10 v4l2 fourcc('R', 'G', '1', '0') /* 10 →RGRG.. GBGB.. */ /* 10bit raw bayer packed, 5 bytes for every 4 pixels */ #define V4L2_PIX_FMT_SBGGR10P v4l2_fourcc('p', 'B', 'A', 'A') #define V4L2_PIX_FMT_SGBRG10P v4l2_fourcc('p', 'G', 'A', 'A') #define V4L2_PIX_FMT_SGRBG10P v4l2_fourcc('p', 'g', 'A', 'A') #define V4L2_PIX_FMT_SRGGB10P v4l2_fourcc('p', 'R', 'A', 'A') /* 10bit raw bayer a-law compressed to 8 bits */ #define V4L2_PIX_FMT_SBGGR10ALAW8 v4l2_fourcc('a', 'B', 'A', '8') #define V4L2_PIX_FMT_SGBRG10ALAW8 v4l2_fourcc('a', 'G', 'A', '8') #define V4L2_PIX_FMT_SGRBG10ALAW8 v4l2_fourcc('a', 'g', 'A', '8') #define V4L2 PIX FMT SRGGB10ALAW8 v4l2 fourcc('a', 'R', 'A', '8') /* 10bit raw bayer DPCM compressed to 8 bits */ #define V4L2_PIX_FMT_SBGGR10DPCM8 v4l2_fourcc('b', 'B', 'A', '8') #define V4L2_PIX_FMT_SGBRG10DPCM8 v4l2_fourcc('b', 'G', 'A', '8') #define V4L2_PIX_FMT_SGRBG10DPCM8 v4l2_fourcc('B', 'D', '1', '0') #define V4L2_PIX_FMT_SRGGB10DPCM8 v4l2_fourcc('b', 'R', 'A', '8') #define V4L2_PIX_FMT_SBGGR12 v4l2_fourcc('B', 'G', '1', '2') /* 12 _ →BGBG.. GRGR.. */ #define V4L2 PIX FMT SGBRG12 v4l2 fourcc('G', 'B', '1', '2') /* 12 ... →GBGB.. RGRG.. */ #define V4L2 PIX FMT SGRBG12 v4l2 fourcc('B', 'A', '1', '2') /* 12 →GRGR.. BGBG.. */ #define V4L2 PIX FMT SRGGB12 v4l2 fourcc('R', 'G', '1', '2') /* 12 →RGRG.. GBGB.. */ /* 12bit raw bayer packed, 6 bytes for every 4 pixels */ #define V4L2_PIX_FMT_SBGGR12P v4l2_fourcc('p', 'B', 'C', 'C') #define V4L2_PIX_FMT_SGBRG12P v4l2_fourcc('p', 'G', 'C', 'C')
#define V4L2_PIX_FMT_SGRBG12P v4l2_fourcc('p', 'g', 'C', 'C') . 'C' 'C') #define V4L2_PIX_FMT_SBGGR14 v4l2_fourcc('B', 'G', '1', '4') /* 14 _ →BGBG.. GRGR.. */ #define V4L2 PIX FMT SGBRG14 v4l2 fourcc('G', 'B', '1', '4') /* 14 →GBGB.. RGRG.. */ #define V4L2 PIX FMT SGRBG14 v4l2 fourcc('G', 'R', '1', '4') /* 14 →GRGR.. BGBG.. */ #define V4L2 PIX FMT SRGGB14 v4l2 fourcc('R', 'G', '1', '4') /* 14 ... →RGRG.. GBGB.. */ /* 14bit raw bayer packed, 7 bytes for every 4 pixels */ #define V4L2_PIX_FMT_SBGGR14P v4l2_fourcc('p', 'B', 'E', 'E')

#define V4L2_PIX_FMT_SGBRG14P v4l2_fourcc('p', 'G', 'E', 'E') #define V4L2_PIX_FMT_SGRBG14P v4l2_fourcc('p', 'g', 'E', 'E') #define V4L2_PIX_FMT_SRGGB14P v4l2_fourcc('p', 'R', 'E', 'E') #define V4L2_PIX_FMT_SBGGR16 v4l2_fourcc('B', 'Y', 'R', '2') /* 16 →BGBG.. GRGR.. */ #define V4L2 PIX FMT SGBRG16 v4l2 fourcc('G', 'B', '1', '6') /* 16 ... →GBGB.. RGRG.. */ #define V4L2 PIX FMT SGRBG16 v4l2 fourcc('G', 'R', '1', '6') /* 16 →GRGR.. BGBG.. */ #define V4L2 PIX FMT SRGGB16 v4l2 fourcc('R', 'G', '1', '6') /* 16 →RGRG.. GBGB.. */ /* HSV formats */ #define V4L2_PIX_FMT_HSV24 v4l2_fourcc('H', 'S', 'V', '3') #define V4L2_PIX_FMT_HSV32 v4l2_fourcc('H', 'S', 'V', '4') /* compressed formats */ v4l2 fourcc('M', 'J', 'P', 'G') /* #define V4L2 PIX FMT MJPEG */ → Motion-JPEG #define V4L2 PIX FMT JPEG v4l2 fourcc('J', 'P', 'E', 'G') /*, */ →JFIF JPEG v4l2_fourcc('d', 'v', 's', 'd') /* #define V4L2_PIX_FMT_DV →1394 */ v4l2_fourcc('M', 'P', 'E', 'G') /* #define V4L2 PIX FMT MPEG →MPEG-1/2/4 Multiplexed */ #define V4L2 PIX FMT H264 v4l2_fourcc('H', '2', '6', '4') /* →H264 with start codes */ #define V4L2 PIX FMT H264 NO SC v4l2 fourcc('A', 'V', 'C', '1') /*... →H264 without start codes */ #define V4L2 PIX FMT H264 MVC v4l2 fourcc('M', '2', '6', '4') /*... →H264 MVC */ #define V4L2_PIX_FMT_H263 v4l2 fourcc('H', '2', '6', '3') /* →H263 */ v4l2_fourcc('M', 'P', 'G', '1') /* #define V4L2 PIX FMT MPEG1 */ \rightarrow MPEG-1 ES #define V4L2_PIX_FMT_MPEG2 v4l2_fourcc('M', 'P', 'G', '2') /* */ \rightarrow MPEG-2 ES #define V4L2 PIX FMT_MPEG2_SLICE v4l2_fourcc('M', 'G', '2', 'S') /*_ →MPEG-2 parsed slice data */ v4l2_fourcc('M', 'P', 'G', '4') /* #define V4L2 PIX FMT MPEG4 →MPEG-4 part 2 ES */ v4l2 fourcc('X', 'V', 'I', 'D') /*... #define V4L2 PIX FMT XVID →Xvid */ #define V4L2 PIX FMT VC1 ANNEX G v4l2 fourcc('V', 'C', '1', 'G') /*... →SMPTE 421M Annex G compliant stream */ #define V4L2_PIX_FMT_VC1_ANNEX_L v4l2_fourcc('V', 'C', '1', 'L') /*_ →SMPTE 421M Annex L compliant stream */ #define V4L2 PIX FMT VP8 v4l2 fourcc('V', 'P', '8', '0') /*... →VP8 */ #define V4L2 PIX FMT VP9 v4l2 fourcc('V', 'P', '9', '0') /*... →VP9 */

#define V4L2 PIX FMT HEVC v4l2_fourcc('H', 'E', 'V', 'C') /* →HEVC aka H.265 */ v4l2 fourcc('F', 'W', 'H', 'T') /*... #define V4L2 PIX FMT FWHT →Fast Walsh Hadamard Transform (vicodec) */ #define V4L2_PIX_FMT_FWHT_STATELESS v4l2_fourcc('S', 'F', 'W', → 'H') /* Stateless FWHT (vicodec) */ /* Vendor-specific formats */ v4l2_fourcc('C', 'P', 'I', 'A') /*_ #define V4L2 PIX FMT CPIA1 →cpial YUV */ v4l2_fourcc('W', 'N', 'V', 'A') /* #define V4L2 PIX FMT WNVA →Winnov hw compress */ v4l2_fourcc('S', '9', '1', '0') /* #define V4L2 PIX FMT SN9C10X →SN9C10x compression */ #define V4L2_PIX_FMT_SN9C20X_I420 v4l2_fourcc('S', '9', '2', '0') / →* SN9C20x YUV 4:2:0 */ #define V4L2 PIX FMT PWC1 v4l2_fourcc('P', 'W', 'C', '1') /* →pwc older webcam */ #define V4L2 PIX FMT PWC2 v4l2_fourcc('P', 'W', 'C', '2') /* →pwc newer webcam */ #define V4L2_PIX_FMT_ET61X251 v4l2_fourcc('E', '6', '2', '5') /*_ →ET61X251 compression */ #define V4L2 PIX FMT SPCA501 v4l2_fourcc('S', '5', '0', '1') /* \rightarrow YUYV per line */ #define V4L2 PIX FMT SPCA505 v4l2_fourcc('S', '5', '0', '5') /* →YYUV per line */ #define V4L2 PIX FMT SPCA508 v4l2_fourcc('S', '5', '0', '8') /* →YUVY per line */ #define V4L2 PIX FMT SPCA561 v4l2_fourcc('S', '5', '6', '1') /* →compressed GBRG bayer */ #define V4L2 PIX FMT PAC207 v4l2_fourcc('P', '2', '0', '7') /* →compressed BGGR bayer */ #define V4L2_PIX_FMT_MR97310A v4l2_fourcc('M', '3', '1', '0') /*_ →compressed BGGR bayer */ #define V4L2_PIX_FMT_JL2005BCD v4l2_fourcc('J', 'L', '2', '0') /*_ →compressed RGGB bayer */ #define V4L2 PIX_FMT_SN9C2028 v4l2_fourcc('S', '0', 'N', 'X') /*_ →compressed GBRG bayer */ #define V4L2_PIX_FMT_SQ905C v4l2_fourcc('9', '0', '5', 'C') /* →compressed RGGB bayer */ #define V4L2 PIX FMT PJPG v4l2_fourcc('P', 'J', 'P', 'G') /* →Pixart 73xx JPEG */ #define V4L2 PIX FMT 0V511 v4l2_fourcc('0', '5', '1', '1') /* →ov511 JPEG */ #define V4L2_PIX_FMT_0V518 v4l2_fourcc('0', '5', '1', '8') /* →ov518 JPEG */ v4l2_fourcc('S', '6', '8', '0') /* #define V4L2 PIX FMT STV0680 →stv0680 bayer */ #define V4L2 PIX FMT TM6000 v4l2 fourcc('T', 'M', '6', '0') /*... →tm5600/tm60x0 */ #define V4L2_PIX_FMT_CIT_YYVYUY v4l2_fourcc('C', 'I', 'T', 'V') /*_

 \rightarrow one line of Y then 1 line of VYUY */ #define V4L2 PIX FMT KONICA420 v4l2 fourcc('K', '0', 'N', 'I') /*... →YUV420 planar in blocks of 256 pixels */ #define V4L2 PIX FMT JPGL v4l2 fourcc('J', 'P', 'G', 'L') /* \rightarrow JPEG-Lite */ #define V4L2 PIX FMT SE401 v4l2 fourcc('S', '4', '0', '1') /* →se401 janggu compressed rgb */ #define V4L2 PIX FMT_S5C_UYVY_JPG v4l2_fourcc('S', '5', 'C', 'I') / →* S5C73M3 interleaved UYVY/JPEG */ #define V4L2 PIX FMT Y8I v4l2 fourcc('Y', '8', 'I', ' ') /*... →Greyscale 8-bit L/R interleaved */ #define V4L2 PIX FMT Y12I v4l2_fourcc('Y', '1', '2', 'I') /* →Greyscale 12-bit L/R interleaved */ #define V4L2_PIX_FMT_Z16 v4l2_fourcc('Z', '1', '6', ' ') /* →Depth data 16-bit */ #define V4L2 PIX FMT MT21C v4l2 fourcc('M', 'T', '2', '1') /* →Mediatek compressed block mode */ v4l2 fourcc('I', 'N', 'Z', 'I') /* #define V4L2 PIX FMT INZI →Intel Planar Greyscale 10-bit and Depth 16-bit */ #define V4L2 PIX FMT SUNXI TILED NV12 v4l2 fourcc('S', 'T', '1', → '2') /* Sunxi Tiled NV12 Format */ v4l2_fourcc('C', 'N', 'F', '4') /* #define V4L2_PIX_FMT_CNF4 →Intel 4-bit packed depth confidence information */ /* 10bit raw bayer packed, 32 bytes for every 25 pixels, last LSB 6. →bits unused */ #define V4L2 PIX FMT IPU3 SBGGR10 v4l2_fourcc('i', 'p', '3', → 'b') /* IPU3 packed 10-bit BGGR bayer */ #define V4L2 PIX FMT IPU3 SGBRG10 v4l2_fourcc('i', 'p', '3', \rightarrow 'q') /* IPU3 packed 10-bit GBRG bayer */ #define V4L2 PIX FMT IPU3 SGRBG10 v4l2_fourcc('i', 'p', '3', \rightarrow 'G') /* IPU3 packed 10-bit GRBG bayer */ #define V4L2 PIX FMT IPU3 SRGGB10 v4l2_fourcc('i', 'p', '3', →'r') /* IPU3 packed 10-bit RGGB bayer */ /* SDR formats - used only for Software Defined Radio devices */ #define V4L2 SDR FMT CU8 v4l2 fourcc('C', 'U', '0', '8') / →* IQ u8 */ v4l2_fourcc('C', 'U', '1', '6') / #define V4L2_SDR_FMT_CU16LE →* IQ u16le */ #define V4L2 SDR FMT CS8 v4l2_fourcc('C', 'S', '0', '8') / \rightarrow^* complex s8 */ v4l2_fourcc('C', 'S', '1', '4') / #define V4L2 SDR FMT CS14LE \rightarrow^* complex s14le */ #define V4L2_SDR_FMT_RU12LE v4l2_fourcc('R', 'U', '1', '2') / \rightarrow * real u12le */ #define V4L2 SDR FMT PCU16BE v4l2_fourcc('P', 'C', '1', '6') / \rightarrow^* planar complex u16be */ #define V4L2 SDR FMT PCU18BE v4l2_fourcc('P', 'C', '1', '8') / \rightarrow * planar complex u18be */ #define V4L2_SDR_FMT_PCU20BE v4l2_fourcc('P', 'C', '2', '0') /

 \rightarrow * planar complex u20be */ /* Touch formats - used for Touch devices */ #define V4L2 TCH FMT DELTA TD16 v4l2 fourcc('T', 'D', '1', '6') /*... \rightarrow 16-bit signed deltas */ #define V4L2 TCH FMT DELTA TD08 v4l2 fourcc('T', 'D', '0', '8') /*... \rightarrow 8-bit signed deltas */ #define V4L2 TCH FMT TU16 v4l2_fourcc('T', 'U', '1', '6') /* →16-bit unsigned touch data */ #define V4L2 TCH FMT TU08 v4l2_fourcc('T', 'U', '0', '8') /* \rightarrow 8-bit unsigned touch data */ /* Meta-data formats */ #define V4L2_META_FMT_VSP1_HG0 v4l2_fourcc('V', 'S', 'P', 'H') / →* R-Car VSP1 1-D Histogram */ v4l2 fourcc('V', 'S', 'P', 'T') / #define V4L2 META FMT VSP1 HGT →* R-Car VSP1 2-D Histogram */ #define V4L2 META FMT UVC v4l2 fourcc('U', 'V', 'C', 'H') / →* UVC Payload Header metadata */ #define V4L2 META FMT D4XX v4l2 fourcc('D', '4', 'X', 'X') / →* D4XX Payload Header metadata */ v4l2_fourcc('V', 'I', 'V', 'D') / #define V4L2_META_FMT_VIVID →* Vivid Metadata */ /* priv field value to indicates that subsequent fields are valid... **→***/ #define V4L2 PIX FMT PRIV MAGIC 0xfeedcafe /* Flags */ #define V4L2 PIX FMT FLAG PREMUL ALPHA 0x00000001 /* * FORMAT ENUMERATION */ struct v4l2 fmtdesc { index; /* Format number u32 → */ /* enum v4l2 buf type; _u32 →type */ u32 flags; description[32]; /* Description... u8 \rightarrow string */ pixelformat; /* Format fourcc u32 ш mbus code; /* Media bus code u32 → */ u32 reserved[3]; }; #define V4L2 FMT FLAG COMPRESSED 0x0001 #define V4L2_FMT_FLAG_EMULATED 0x0002

```
#define V4L2 FMT FLAG CONTINUOUS BYTESTREAM
                                                0x0004
#define V4L2 FMT FLAG DYN RESOLUTION
                                                0x0008
        /* Frame Size and frame rate enumeration */
/*
*
        FRAME SIZE ENUMERATION
*/
enum v4l2 frmsizetypes {
        V4L2_FRMSIZE_TYPE_DISCRETE
                                        = 1,
        V4L2 FRMSIZE TYPE CONTINUOUS
                                        = 2,
        V4L2 FRMSIZE TYPE STEPWISE
                                        = 3.
};
struct v4l2_frmsize_discrete {
          u32
                                width;
                                               /* Frame width
\rightarrow[pixel] */
                                                /* Frame height...
          u32
                                height;
\rightarrow [pixel] */
};
struct v4l2_frmsize_stepwise {
         u32
                                min_width;
                                                /* Minimum frame
→width [pixel] */
                                max width;
                                                /* Maximum frame
         u32
→width [pixel] */
                                                /* Frame width step...
        u32
                                step_width;
→size [pixel] */
                                min height;
                                                /* Minimum frame
         u32
→height [pixel] */
                                               /* Maximum frame,
                                max height;
         u32
→height [pixel] */
                                                /* Frame height
                                step height;
         u32
→step size [pixel] */
};
struct v4l2 frmsizeenum {
          u32
                                index;
                                                /* Frame size
→number */
                                pixel_format;
                                                /* Pixel format */
         u32
                                                /* Frame size type...
         u32
                                type;
\rightarrow the device supports. */
        union {
                                                /* Frame size */
                struct v4l2_frmsize discrete
                                                discrete;
                struct v4l2 frmsize stepwise
                                                stepwise;
        };
                                                /* Reserved space.
         u32
                reserved[2];
→for future use */
};
```

```
/*
       FRAME RATE ENUMERATION
 *
*/
enum v4l2 frmivaltypes {
       V4L2_FRMIVAL_TYPE_DISCRETE
                                       = 1,
                                       = 2,
       V4L2 FRMIVAL TYPE CONTINUOUS
       V4L2 FRMIVAL TYPE STEPWISE
                                       = 3,
};
struct v4l2_frmival_stepwise {
        struct v4l2 fract
                               min;
                                               /* Minimum frame,
→interval [s] */
        struct v4l2_fract
                                               /* Maximum frame,
                               max;
→interval [s] */
        struct v4l2 fract
                               step;
                                               /* Frame interval...
→step size [s] */
};
struct v4l2 frmivalenum {
         u32
                               index;
                                               /* Frame format
→index */
         u32
                               pixel_format;
                                               /* Pixel format */
         u32
                               width;
                                               /* Frame width */
                                               /* Frame height */
         u32
                               height;
                                               /* Frame interval...
         u32
                               type;
→type the device supports. */
       union {
                                               /* Frame interval */
               struct v4l2_fract
                                               discrete;
               struct v4l2 frmival stepwise
                                               stepwise;
        };
        u32 reserved[2];
                                               /* Reserved space
→for future use */
};
/*
 *
       TIMECODE
*/
struct v4l2 timecode {
        u32
               type;
         u32
               flags;
         u8
               frames;
         u8
               seconds;
         u8
               minutes;
         u8
               hours;
         u8
               userbits[4];
};
/* Type */
#define V4L2_TC_TYPE_24FPS
                                       1
```

#define V4L2 TC TYPE 25FPS 2 #define V4L2 TC TYPE 30FPS 3 #define V4L2_TC_TYPE_50FPS 4 #define V4L2 TC TYPE 60FPS 5 /* Flags */ #define V4L2_TC_FLAG_DROPFRAME 0x0001 /* "drop-frame" mode **→***/ #define V4L2_TC_FLAG_COLORFRAME 0x0002 #define V4L2 TC USERBITS field 0x000C #define V4L2 TC USERBITS USERDEFINED 0x0000 #define V4L2 TC USERBITS 8BITCHARS 0x0008 /* The above is based on SMPTE timecodes */ struct v4l2 jpegcompression { int quality; int APPn; /* Number of APP segment to be \rightarrow written, * must be 0..15 */ int APP len; /* Length of data in JPEG APPn, →segment */ char APP data[60]; /* Data in the JPEG APPn segment. */ /* Length of data in JPEG COM int COM len; →segment */ char COM data[60]; /* Data in JPEG COM segment */ u32 jpeg markers; /* Which markers should go into the →JPEG * output. Unless you exactly know. →what * you do, leave them untouched. * Including less markers will make, →the * resulting code smaller, but. →there will * be fewer applications which can, \rightarrow read it. * The presence of the APP and COM. →marker * is influenced by APP len and COM →len * ONLY, not by this property! */ #define V4L2 JPEG MARKER DHT (1<<3)</pre> /* Define Huffman Tables */ #define V4L2 JPEG MARKER DQT (1<<4)</pre> /* Define Quantization... →Tables */ #define V4L2 JPEG MARKER DRI (1<<5)</pre> /* Define Restart Interval */ #define V4L2_JPEG_MARKER_COM (1<<6)</pre> /* Comment segment */ #define V4L2 JPEG MARKER APP (1<<7)</pre> /* App segment, driver will

```
* always use APP0 */
};
/*
 *
       MEMORY-MAPPING BUFFERS
 */
#ifdef __KERNEL__
/*
 * This corresponds to the user space version of timeval
 * for 64-bit time t. sparc64 is different from everyone
 * else, using the microseconds in the wrong half of the
 * second 64-bit word.
 */
struct kernel v4l2 timeval {
        long long
                      tv sec;
#if defined(__sparc__) && defined(__arch64__)
        int
                       tv usec;
        int
                       __pad;
#else
        long long
                     tv usec;
#endif
};
#endif
struct v4l2 requestbuffers {
         u32
                               count;
                                               /* enum v4l2 buf
         u32
                               type;
→type */
                                               /* enum v4l2_memory
                               memory;
         u32
<u> +*/</u>
                               capabilities;
         u32
         u32
                               reserved[1];
};
/* capabilities for struct v4l2 requestbuffers and v4l2 create
→buffers */
#define V4L2_BUF_CAP_SUPPORTS_MMAP
                                                       (1 << 0)
#define V4L2_BUF_CAP_SUPPORTS_USERPTR
                                                       (1 << 1)
#define V4L2 BUF CAP SUPPORTS DMABUF
                                                       (1 << 2)
#define V4L2_BUF_CAP_SUPPORTS_REQUESTS
                                                       (1 << 3)
#define V4L2 BUF CAP SUPPORTS ORPHANED BUFS
                                                       (1 << 4)
#define V4L2 BUF CAP SUPPORTS M2M HOLD CAPTURE BUF
                                                       (1 << 5)
/**
 * struct v4l2 plane - plane info for multi-planar buffers
 * @bytesused:
                      number of bytes occupied by data in the
→plane (payload)
 * @length:
                      size of this plane (NOT the payload) in
→bytes
 * @mem_offset: when memory in the associated struct v4l2_
```

```
→buffer is
                         V4L2 MEMORY MMAP, equals the offset from.
\rightarrow the start of
                         the device memory for this plane (or is a,
→"cookie" that
                         should be passed to mmap() called on the,
→video node)
 * @userptr:
                        when memory is V4L2 MEMORY USERPTR, a.,
→userspace pointer
                         pointing to this plane
 * @fd:
                         when memory is V4L2 MEMORY DMABUF, a.,
→userspace file
                         descriptor associated with this plane
 * @data_offset:
                         offset in the plane to the start of data;
\rightarrowusually 0,
 *
                         unless there is a header in front of the
→data
 * Multi-planar buffers consist of one or more planes, e.g. an.
→YCbCr buffer
 * with two planes can have one plane for Y, and another for
→interleaved CbCr
 * components. Each plane can reside in a separate memory buffer,
→or even in
 * a completely separate memory node (e.g. in embedded devices).
 */
struct v4l2 plane {
         u32
                                 bytesused;
         u32
                                 length;
        union {
                                 mem offset;
                  u32
                unsigned long
                                 userptr;
                                 fd;
                s32
        } m;
                                 data offset;
          u32
                                 reserved[11];
         u32
};
/**
 * struct v4l2 buffer - video buffer info
 * @index:
                id number of the buffer
 * @type:
                enum v4l2 buf type; buffer type (type == * MPLANE,
→for
                multiplanar buffers);
 * @bytesused:
                number of bytes occupied by data in the buffer.
\rightarrow (payload);
 *
                unused (set to 0) for multiplanar buffers
                buffer informational flags
 * @flags:
 * @field:
                enum v4l2 field; field order of the image in the
→buffer
 * @timestamp:
               frame timestamp
```

```
* @timecode:
                frame timecode
 * @sequence:
                sequence count of this frame
                enum v4l2 memory; the method, in which the actual,
 * @memory:
→video data is
                passed
 * @offset:
                for non-multiplanar buffers with memory == V4L2
→ MEMORY MMAP;
                offset from the start of the device memory for this,
→plane,
 *
                (or a "cookie" that should be passed to mmap() as,
\rightarrow offset)
                for non-multiplanar buffers with memory == V4L2
 * @userptr:
→ MEMORY USERPTR;
                a userspace pointer pointing to this buffer
 * @fd:
                for non-multiplanar buffers with memory == V4L2
→ MEMORY DMABUF;
 *
                a userspace file descriptor associated with this
→buffer
 * @planes:
                for multiplanar buffers; userspace pointer to the
→array of plane
                info structs for this buffer
 * @length:
                size in bytes of the buffer (NOT its payload) for
buffers (when type != * MPLANE); number of elements...
\rightarrow in the
 *
                planes array for multi-plane buffers
 * @request fd: fd of the request that this buffer should use
 * Contains data exchanged by application and driver using one of
\rightarrow the Streaming
 * I/O methods.
 */
struct v4l2 buffer {
          u32
                                 index;
          u32
                                 type;
          u32
                                 bytesused;
                                 flags;
          u32
          u32
                                 field;
#ifdef
       KERNEL
        struct kernel v4l2 timeval timestamp;
#else
        struct timeval
                                 timestamp;
#endif
        struct v4l2 timecode
                                 timecode;
        u32
                                 sequence;
        /* memory location */
         u32
                                 memory;
        union {
                                 offset;
                  u32
                unsigned long
                                 userptr;
```

struct v4l2 plane *planes; fd: s32 } m; ___u32 length; u32 reserved2; union { request fd; s32 reserved; u32 }; }; #ifndef __KERNEL__ /** * v4l2_timeval_to_ns - Convert timeval to nanoseconds * @ts: pointer to the timeval variable to be converted * * Returns the scalar nanosecond representation of the timeval * parameter. */ static inline u64 v4l2 timeval to ns(const struct timeval *tv) { return (__u64)tv->tv_sec * 100000000ULL + tv->tv_usec *_ \rightarrow 1000; } #endif /* Flags for 'flags' field */ /* Buffer is mapped (flag) */ #define V4L2 BUF FLAG MAPPED 0x00000001 /* Buffer is queued for processing */ #define V4L2 BUF FLAG QUEUED 0x0000002 /* Buffer is ready */ #define V4L2 BUF FLAG DONE 0x00000004 /* Image is a keyframe (I-frame) */ #define V4L2 BUF FLAG KEYFRAME 0x0000008 /* Image is a P-frame */ #define V4L2 BUF FLAG PFRAME 0x0000010 /* Image is a B-frame */ #define V4L2_BUF_FLAG_BFRAME 0x00000020 /* Buffer is ready, but the data contained within is corrupted. */ #define V4L2 BUF FLAG ERROR 0x00000040 /* Buffer is added to an ungueued request */ #define V4L2 BUF FLAG IN REQUEST 0x0000080 /* timecode field is valid */ #define V4L2 BUF FLAG TIMECODE 0x00000100 /* Don't return the capture buffer until OUTPUT timestamp changes */ #define V4L2 BUF FLAG M2M HOLD CAPTURE BUF 0x00000200 /* Buffer is prepared for queuing */ #define V4L2 BUF FLAG PREPARED 0x00000400 /* Cache handling flags */ #define V4L2_BUF_FLAG_N0_CACHE_INVALIDATE 0x00000800

```
#define V4L2 BUF FLAG NO CACHE CLEAN
                                                 0x00001000
/* Timestamp type */
#define V4L2 BUF FLAG TIMESTAMP MASK
                                                 0x0000e000
#define V4L2 BUF FLAG TIMESTAMP UNKNOWN
                                                 0x00000000
#define V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC
                                                 0x00002000
#define V4L2 BUF FLAG TIMESTAMP COPY
                                                 0x00004000
/* Timestamp sources. */
#define V4L2 BUF FLAG TSTAMP SRC MASK
                                                 0x00070000
#define V4L2_BUF_FLAG_TSTAMP_SRC_EOF
                                                 0x00000000
#define V4L2 BUF FLAG TSTAMP SRC SOE
                                                 0x00010000
/* mem2mem encoder/decoder */
#define V4L2 BUF FLAG LAST
                                                 0x00100000
/* request fd is valid */
#define V4L2 BUF FLAG REQUEST FD
                                                 0x00800000
/**
 * struct v4l2 exportbuffer - export of video buffer as DMABUF file,
→descriptor
 * @index:
                id number of the buffer
                enum v4l2 buf type; buffer type (type == *_MPLANE_
 * @type:
→for
                multiplanar buffers);
 *
 * @plane:
                index of the plane to be exported, 0 for single.
→plane queues
                flags for newly created file, currently only 0
 * @flags:
→CLOEXEC is
                supported, refer to manual of open syscall for more,
→details
                file descriptor associated with DMABUF (set by
 * @fd:
→driver)
 *
 * Contains data used for exporting a video buffer as DMABUF file.
→descriptor.
 * The buffer is identified by a 'cookie' returned by VIDIOC
→ QUERYBUF
 * (identical to the cookie used to mmap() the buffer to userspace).
→ All
 * reserved fields must be set to zero. The field reserved0 is.
\rightarrow expected to
 * become a structure 'type' allowing an alternative layout of the
\rightarrow structure
 * content. Therefore this field should not be used for any other
\rightarrow extensions.
 */
struct v4l2 exportbuffer {
         u32
                        type; /* enum v4l2 buf type */
          u32
                         index;
          u32
                         plane;
          u32
                         flags;
                         fd;
          s32
```

```
u32
                        reserved[11];
};
/*
 *
        OVERLAY PREVIEW
 */
struct v4l2 framebuffer {
         u32
                                capability;
         u32
                                flags;
/* FIXME: in theory we should pass something like PCI device +...
→memory
 * region + offset instead of some physical address */
        void
                                *base;
        struct {
                  u32
                                width;
                  u32
                                height;
                  u32
                                pixelformat;
                  u32
                                field;
                                                 /* enum v4l2 field
→*/
                  u32
                                bytesperline;
                                                /* for padding,
→zero if unused */
                  u32
                                sizeimage;
                  u32
                                colorspace;
                                                 /* enum v4l2
→colorspace */
                                                 /* reserved field,
                  u32
                                priv;
\rightarrow set to 0 */
        } fmt;
};
/* Flags for the 'capability' field. Read only */
#define V4L2 FBUF CAP EXTERNOVERLAY
                                         0x0001
#define V4L2 FBUF CAP CHROMAKEY
                                         0x0002
#define V4L2 FBUF CAP LIST CLIPPING
                                         0x0004
#define V4L2 FBUF CAP BITMAP CLIPPING
                                         0x0008
#define V4L2_FBUF_CAP_LOCAL_ALPHA
                                         0x0010
#define V4L2 FBUF CAP GLOBAL ALPHA
                                         0x0020
#define V4L2 FBUF CAP LOCAL INV ALPHA
                                         0x0040
#define V4L2 FBUF CAP SRC CHROMAKEY
                                         0x0080
/* Flags for the 'flags' field. */
#define V4L2_FBUF_FLAG_PRIMARY
                                         0x0001
#define V4L2 FBUF FLAG OVERLAY
                                         0x0002
#define V4L2_FBUF_FLAG_CHROMAKEY
                                         0x0004
#define V4L2 FBUF FLAG LOCAL ALPHA
                                         0x0008
#define V4L2 FBUF FLAG GLOBAL ALPHA
                                         0x0010
#define V4L2 FBUF FLAG LOCAL INV ALPHA
                                         0x0020
#define V4L2_FBUF_FLAG_SRC CHROMAKEY
                                         0x0040
struct v4l2 clip {
        struct v4l2 rect
                                c:
        struct v4l2 clip
                                user *next;
};
```

struct v4l2_window { struct v4l2 rect W; field; /* enum v4l2 field */ u32 u32 chromakey; struct v4l2_clip _user *clips; clipcount; u32 user *bitmap; void global alpha; ___u8 }; /* * CAPTURE PARAMETERS */ struct v4l2_captureparm { u32 capability; /* Supported modes */ u32 capturemode; /* Current mode */ struct v4l2_fract timeperframe; Time per frame in /* →seconds */ u32 extendedmode; /* Driver-specific... \rightarrow extensions */ /* # of buffers for read, u32 readbuffers; **→***/ u32 reserved[4]; }; /* Flags for 'capability' and 'capturemode' fields */ #define V4L2 MODE HIGHQUALITY 0x0001 /* High quality imaging... →mode */ #define V4L2_CAP_TIMEPERFRAME 0x1000 /* timeperframe field is_ \rightarrow supported */ struct v4l2 outputparm { /* u32 capability; Supported modes */ /* Current mode */ outputmode; u32 struct v4l2_fract timeperframe; /* Time per frame in →seconds */ extendedmode; /* Driver-specific_ u32 →extensions */ writebuffers; /* # of buffers for write_ ___u32 →*/ reserved[4]; ___u32 }; /* * INPUT IMAGE CROPPING */ struct v4l2 cropcap { u32 /* enum v4l2 buf type */ type; struct v4l2 rect bounds; defrect; struct v4l2 rect struct v4l2_fract pixelaspect;

}; struct v4l2 crop { type; /* enum v4l2 buf type */ u32 struct v4l2 rect C; }; /** * struct v4l2 selection - selection info buffer type (do not use * MPLANE types) * @type: * @target: Selection target, used to choose one of possible, \rightarrow rectangles; defined in v4l2-common.h; V4L2 SEL TGT * . * @flags: constraints flags, defined in v4l2-common.h; V4L2 \rightarrow SEL FLAG *. coordinates of selection window * @r: * @reserved: for future use, rounds structure size to 64 bytes, set to zero * Hardware may use multiple helper windows to process a video. →stream. * The structure is used to exchange this selection areas between * an application and a driver. */ struct v4l2 selection { u32 type; u32 target; u32 flags; struct v4l2 rect r; reserved[9]; u32 }; /* ANALOG VIDEO STANDARD * */ typedef u64 v4l2 std id; /* * Attention: Keep the V4L2 STD * bit definitions in sync with * include/dt-bindings/display/sdtv-standards.h SDTV STD * bit. \rightarrow definitions. */ /* one bit for each */ #define V4L2 STD PAL B ((v4l2 std id)0x00000001) #define V4L2_STD_PAL_B1 ((v4l2 std id)0x0000002) #define V4L2_STD PAL G ((v4l2 std id)0x00000004) #define V4L2 STD PAL H ((v4l2 std id)0x0000008) #define V4L2 STD PAL I ((v4l2 std id)0x00000010) #define V4L2 STD PAL D ((v4l2 std id)0x00000020) #define V4L2_STD_PAL_D1 ((v4l2 std id)0x00000040)

#define V4L2 STD PAL K ((v4l2 std id)0x00000080) #define V4L2 STD PAL M ((v4l2 std id)0x00000100) #define V4L2 STD PAL N ((v4l2 std id)0x00000200) #define V4L2 STD PAL Nc ((v4l2 std id)0x00000400) #define V4L2 STD PAL 60 ((v4l2 std id)0x00000800) /*⊔ ((v4l2 std id)0x00001000) #define V4L2 STD NTSC M →BTSC */ #define V4L2 STD NTSC M JP ((v4l2 std id)0x00002000) /*.. →EIA-J */ #define V4L2 STD NTSC 443 ((v4l2 std id)0x00004000) /* #define V4L2 STD NTSC M KR ((v4l2 std id)0x00008000) →FM A2 */ #define V4L2 STD SECAM B ((v4l2 std id)0x00010000) #define V4L2 STD SECAM D ((v4l2 std id)0x00020000) #define V4L2 STD SECAM G ((v4l2 std id)0x00040000) #define V4L2 STD SECAM H ((v4l2 std id)0x00080000) #define V4L2 STD SECAM K ((v4l2 std id)0x00100000) #define V4L2 STD SECAM K1 ((v4l2 std id)0x00200000) #define V4L2_STD_SECAM_L ((v4l2 std id)0x00400000) #define V4L2 STD SECAM LC ((v4l2 std id)0x00800000) /* ATSC/HDTV */ #define V4L2_STD_ATSC_8_VSB
#define V4L2_STD_ATSC_16_VSB ((v4l2 std id)0x01000000) ((v4l2 std id)0x02000000) /* FIXME: Although std id is 64 bits, there is an issue on PPC32. \rightarrow architecture that makes switch(__u64) to break. So, there's a hack on v4l2-common. \rightarrow c rounding this value to 32 bits. As, currently, the max value is for V4L2 STD ATSC 16 VSB (30, \rightarrow bits wide), it should work fine. However, if needed to add more than two. \rightarrow standards, v4l2-common.c should be fixed. */ /* * Some macros to merge video standards in order to make live, \rightarrow easier for the * drivers and V4L2 applications */ /* * "Common" NTSC/M - It should be noticed that V4L2 STD NTSC 443 is * Missing here. */

<pre>#define V4L2_STD_NTSC</pre>	(V4L2_STD_NTSC_M V4L2_STD_NTSC_M_JP V4L2_STD_NTSC_M_KR)	X X	
/* Secam macros */ #define V4L2_STD_SECAM_DK	(V4L2_STD_SECAM_D V4L2_STD_SECAM_K V4L2_STD_SECAM_K1)	\ \	
<pre>/* All Secam Standards */ #define V4L2_STD_SECAM /* PAL macros */</pre>	(V4L2_STD_SECAM_B V4L2_STD_SECAM_G V4L2_STD_SECAM_H V4L2_STD_SECAM_DK V4L2_STD_SECAM_L V4L2_STD_SECAM_LC)	\ \ \ \ \	
#define V4L2_STD_PAL_BG	(V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_PAL_G)	X X	
<pre>#define V4L2_STD_PAL_DK</pre>	(V4L2_STD_PAL_D V4L2_STD_PAL_D1 V4L2_STD_PAL_K)	\ \	
<pre>/* * "Common" PAL - This macro is there to be compatible with the old * V4L1 concept of "PAL": /BGDKHI. * Several PAL standards are missing here: /M, /N and /Nc */</pre>			
#define V4L2_STD_PAL	(V4L2_STD_PAL_BG V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I)	\ \ \	
#define V4L2_STD_PAL	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I)	ΪN	
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */		
#define V4L2_STD_PAL	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B)		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_PAL_G		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_SECAM_G)		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_SECAM_G) (V4L2_STD_PAL_H		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_SECAM_G) (V4L2_STD_PAL_H V4L2_STD_SECAM_H)		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_PAL_G (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_H) (V4L2_STD_SECAM_L		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H #define V4L2_STD_L</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_H) (V4L2_STD_SECAM_L V4L2_STD_SECAM_LC)		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_PAL_G V4L2_STD_SECAM_G) (V4L2_STD_SECAM_H) (V4L2_STD_SECAM_L V4L2_STD_SECAM_LC) (V4L2_STD_G		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H #define V4L2_STD_L #define V4L2_STD_GH</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_SECAM_B) (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_H) (V4L2_STD_SECAM_L V4L2_STD_SECAM_L V4L2_STD_SECAM_LC) (V4L2_STD_G V4L2_STD_H)		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H #define V4L2_STD_L</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_SECAM_G) (V4L2_STD_SECAM_H) (V4L2_STD_SECAM_L V4L2_STD_SECAM_L V4L2_STD_SECAM_LC) (V4L2_STD_G V4L2_STD_PAL_DK		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H #define V4L2_STD_L #define V4L2_STD_GH #define V4L2_STD_DK</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_SECAM_G) (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_L V4L2_STD_SECAM_LC) (V4L2_STD_G V4L2_STD_H) (V4L2_STD_PAL_DK V4L2_STD_SECAM_DK)		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H #define V4L2_STD_L #define V4L2_STD_GH</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_SECAM_G) (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_L V4L2_STD_SECAM_L V4L2_STD_SECAM_LC) (V4L2_STD_G V4L2_STD_H) (V4L2_STD_PAL_DK V4L2_STD_SECAM_DK) (V4L2_STD_B		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H #define V4L2_STD_L #define V4L2_STD_GH #define V4L2_STD_DK</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_SECAM_G) (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_L V4L2_STD_SECAM_LC) (V4L2_STD_G V4L2_STD_H) (V4L2_STD_PAL_DK V4L2_STD_SECAM_DK)	\ \ \ \ \ \ \ \ \	
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H #define V4L2_STD_L #define V4L2_STD_GH #define V4L2_STD_DK #define V4L2_STD_BG</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_PAL_G V4L2_STD_SECAM_G) (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_L V4L2_STD_SECAM_L V4L2_STD_SECAM_LC) (V4L2_STD_G V4L2_STD_PAL_DK V4L2_STD_PAL_DK V4L2_STD_SECAM_DK) (V4L2_STD_B V4L2_STD_G)	IN IN IN IN IN IN IN IN IN	
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H #define V4L2_STD_L #define V4L2_STD_GH #define V4L2_STD_DK #define V4L2_STD_BG</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_SECAM_G) (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_L V4L2_STD_SECAM_L V4L2_STD_SECAM_LC) (V4L2_STD_G V4L2_STD_PAL_DK V4L2_STD_SECAM_DK) (V4L2_STD_G) (V4L2_STD_G) (V4L2_STD_G) (V4L2_STD_PAL_M V4L2_STD_PAL_M		
<pre>#define V4L2_STD_PAL /* Chroma "agnostic" standards #define V4L2_STD_B #define V4L2_STD_G #define V4L2_STD_H #define V4L2_STD_L #define V4L2_STD_GH #define V4L2_STD_DK #define V4L2_STD_BG</pre>	V4L2_STD_PAL_DK V4L2_STD_PAL_H V4L2_STD_PAL_I) */ (V4L2_STD_PAL_B V4L2_STD_PAL_B1 V4L2_STD_SECAM_B) (V4L2_STD_SECAM_B) (V4L2_STD_PAL_G V4L2_STD_SECAM_G) (V4L2_STD_SECAM_G) (V4L2_STD_SECAM_L V4L2_STD_SECAM_L V4L2_STD_SECAM_LC) (V4L2_STD_G V4L2_STD_PAL_DK V4L2_STD_SECAM_DK) (V4L2_STD_B V4L2_STD_G) (V4L2_STD_G) (V4L2_STD_G) (V4L2_STD_G)	IN IN IN IN IN IN IN IN IN	

/* Standards where MTS/BTSC stereo could be found */ #define V4L2 STD MTS (V4L2 STD NTSC M $| \rangle$ V4L2 STD PAL M $|\rangle$ V4L2 STD PAL N $|\rangle$ V4L2 STD PAL Nc) /* Standards for Countries with 60Hz Line frequency */ #define V4L2 STD 525 60 (V4L2 STD PAL M $| \rangle$ V4L2_STD_PAL_60 $|\rangle$ V4L2 STD NTSC $|\rangle$ V4L2 STD NTSC 443) /* Standards for Countries with 50Hz Line frequency */ (V4L2 STD PAL #define V4L2_STD_625_50 $|\rangle$ V4L2 STD_PAL_N $|\rangle$ V4L2 STD PAL Nc $|\rangle$ V4L2 STD SECAM) #define V4L2 STD ATSC (V4L2 STD ATSC 8 VSB $|\rangle$ V4L2 STD ATSC 16 VSB) /* Macros with none and all analog standards */ #define V4L2 STD UNKNOWN 0 #define V4L2_STD_ALL (V4L2_STD_525_60 $| \rangle$ V4L2 STD 625 50) struct v4l2 standard { u32 index; v4l2 std id id; name[241: u8 struct v4l2_fract frameperiod; /* Frames, not fields */ framelines; u32 u32 reserved[4]; }; /* * Dν ВТ TIMINGS */ /** struct v4l2 bt timings - BT.656/BT.1120 timing data * @width: total width of the active video in pixels * @height: total height of the active video in lines * @interlaced: Interlaced or progressive * Opolarities: Positive or negative polarities * @pixelclock: Pixel clock in HZ. Ex. 74.25MHz->74250000 * @hfrontporch:Horizontal front porch in pixels * @hsync: Horizontal Sync length in pixels * @hbackporch: Horizontal back porch in pixels * @vfrontporch:Vertical front porch in lines * @vsync: Vertical Sync length in lines * @vbackporch: Vertical back porch in lines * @il vfrontporch:Vertical front porch for the even field (aka field 2) of interlaced field formats

```
* @il vsync:
                Vertical Sync length for the even field
                (aka field 2) of interlaced field formats
 * @il vbackporch:Vertical back porch for the even field
 *
                (aka field 2) of interlaced field formats
 * @standards:
                Standards the timing belongs to
 * @flags:
                Flags
 * @picture aspect: The picture aspect ratio (hor/vert).
 * @cea861 vic: VIC code as per the CEA-861 standard.
               VIC code as per the HDMI standard.
 * @hdmi vic:
                Reserved fields, must be zeroed.
 * @reserved:
 *
 * A note regarding vertical interlaced timings: height refers to,
\rightarrow the total
 * height of the active video frame (= two fields). The blanking,
→timings refer
 * to the blanking of each field. So the height of the total frame,
⇒is
 * calculated as follows:
 *
 * tot height = height + vfrontporch + vsync + vbackporch +
 *
                         il vfrontporch + il vsync + il vbackporch
 *
 * The active height of each field is height / 2.
 */
struct v4l2 bt timings {
          u32
                width;
          u32
                height;
          u32
                interlaced;
          u32
                polarities;
                pixelclock;
          u64
                hfrontporch;
          u32
          u32
                hsync;
          u32
                hbackporch;
         u32
                vfrontporch;
         u32
                vsync;
          u32
                vbackporch;
                il vfrontporch;
          u32
         u32
                il vsync;
                il vbackporch;
         u32
         u32
                standards;
         u32
                flags;
        struct v4l2 fract picture aspect;
                cea861 vic;
          u8
          u8
                hdmi vic;
          u8
                reserved[46];
} attribute ((packed));
/* Interlaced or progressive format */
#define V4L2 DV PROGRESSIVE
                                0
#define V4L2 DV INTERLACED
                                1
```

```
/* Polarities. If bit is not set, it is assumed to be negative.
→polarity */
#define V4L2 DV VSYNC POS POL
                                0x00000001
#define V4L2 DV HSYNC POS POL
                                0x0000002
/* Timings standards */
#define V4L2 DV BT STD CEA861 (1 << 0) /* CEA-861 Digital TV.
→Profile */
                                (1 << 1) /* VESA Discrete Monitor
#define V4L2_DV_BT_STD_DMT
→Timings */
                                (1 << 2) /* VESA Coordinated Video..</pre>
#define V4L2_DV_BT_STD_CVT
→Timings */
#define V4L2 DV BT STD GTF
                           (1 << 3) /* VESA Generalized
→Timings Formula */
#define V4L2 DV BT STD SDI (1 << 4) /* SDI Timings */</pre>
/* Flags */
/*
* CVT/GTF specific: timing uses reduced blanking (CVT) or the
\rightarrow 'Secondary
* GTF' curve (GTF). In both cases the horizontal and/or vertical,
→blankinɑ
 * intervals are reduced, allowing a higher resolution over the same
* bandwidth. This is a read-only flag.
 */
#define V4L2 DV FL REDUCED BLANKING
                                                 (1 << 0)
/*
 * CEA-861 specific: set for CEA-861 formats with a framerate of a
→multiple
* of six. These formats can be optionally played at 1 / 1.001.
\rightarrow speed.
 * This is a read-only flag.
 */
#define V4L2 DV FL CAN REDUCE FPS
                                                 (1 << 1)
/*
 * CEA-861 specific: only valid for video transmitters, the flag is,
⊶cleared
 * by receivers.
 * If the framerate of the format is a multiple of six, then the...
→pixelclock
 * used to set up the transmitter is divided by 1.001 to make it.
→compatible
 * with 60 Hz based standards such as NTSC and PAL-M that use a.
\rightarrow framerate of
 * 29.97 Hz. Otherwise this flag is cleared. If the transmitter,
→can't generate
 * such frequencies, then the flag will also be cleared.
 */
#define V4L2 DV FL REDUCED FPS
                                                 (1 << 2)
/*
```

* Specific to interlaced formats: if set, then field 1 is really. \rightarrow one half-line * longer and field 2 is really one half-line shorter, so each, →field has * exactly the same number of half-lines. Whether half-lines can be \rightarrow detected * or used depends on the hardware. */ (1 << 3)#define V4L2 DV FL HALF LINE /* * If set, then this is a Consumer Electronics (CE) video format... → Such formats * differ from other formats (commonly called IT formats) in that, ⇒if RGB * encoding is used then by default the RGB values use limited. →range (i.e. * use the range 16-235) as opposed to 0-255. All formats defined, \rightarrow in CEA-861 * except for the 640x480 format are CE formats. */ #define V4L2 DV FL IS CE VIDE0 (1 << 4)/* Some formats like SMPTE-125M have an interlaced signal with a odd * total height. For these formats, if this flag is set, the first * field has the extra line. If not, it is the second field. */ #define V4L2 DV FL FIRST FIELD EXTRA LINE (1 << 5)/* * If set, then the picture aspect field is valid. Otherwise assume, \rightarrow that the * pixels are square, so the picture aspect ratio is the same as \rightarrow the width to * height ratio. */ #define V4L2 DV FL HAS PICTURE ASPECT (1 << 6)/* * If set, then the cea861 vic field is valid and contains the Video * Identification Code as per the CEA-861 standard. */ #define V4L2_DV_FL_HAS_CEA861_VIC (1 << 7)/* * If set, then the hdmi vic field is valid and contains the Video * Identification Code as per the HDMI standard (HDMI Vendor, → Specific * InfoFrame). */ #define V4L2 DV FL HAS HDMI VIC (1 << 8)/* * CEA-861 specific: only valid for video receivers. * If set, then HW can detect the difference between regular FPS and * 1000/1001 FPS. Note: This flag is only valid for HDMI VIC codes. →with

```
* the V4L2 DV FL CAN REDUCE FPS flag set.
 */
#define V4L2 DV FL CAN DETECT REDUCED FPS (1 << 9)</pre>
/* A few useful defines to calculate the total blanking and frame,
→sizes */
#define V4L2 DV BT BLANKING WIDTH(bt) \
        ((bt)->hfrontporch + (bt)->hsync + (bt)->hbackporch)
#define V4L2 DV BT FRAME WIDTH(bt) \
        ((bt)->width + V4L2 DV BT BLANKING WIDTH(bt))
#define V4L2 DV BT BLANKING HEIGHT(bt) \
        ((bt)->vfrontporch + (bt)->vsync + (bt)->vbackporch + \
         (bt)->il vfrontporch + (bt)->il vsync + (bt)->il
→vbackporch)
#define V4L2 DV BT FRAME HEIGHT(bt) \
        ((bt)->height + V4L2 DV BT BLANKING HEIGHT(bt))
/** struct v4l2 dv timings - DV timings
 * @type: the type of the timings
 * @bt: BT656/1120 timings
 */
struct v4l2_dv_timings {
        u32 type;
       union {
               struct v4l2 bt timings bt;
                u32 reserved[32];
        };
} attribute ((packed));
/* Values for the type field */
#define V4L2 DV BT 656 1120 0 /* BT.656/1120 timing type
→*/
/** struct v4l2 enum dv timings - DV timings enumeration
 * @index:
               enumeration index
 * @pad:
               the pad number for which to enumerate timings (used,
→with
               v4l-subdev nodes only)
 * @reserved:
               must be zeroed
 * @timings: the timings for the given index
 */
struct v4l2 enum dv timings {
       __u32 index;
       ___u32 pad;
        u32 reserved[2];
       struct v4l2 dv timings timings;
};
/** struct v4l2_bt_timings_cap - BT.656/BT.1120 timing capabilities
 * @min_width: width in pixels
 * @max width:
                      width in pixels
```

```
* @min height:
                        height in lines
 * @max height:
                        height in lines
                        Pixel clock in HZ. Ex. 74.25MHz->74250000
 * @min pixelclock:
 * @max pixelclock:
                        Pixel clock in HZ. Ex. 74.25MHz->74250000
 * @standards:
                        Supported standards
                        Supported capabilities
 * @capabilities:
 * @reserved:
                        Must be zeroed
 */
struct v4l2_bt_timings_cap {
          u32
                min width;
                max width;
          u32
          u32
                min_height;
                max_height;
          u32
          u64
                min_pixelclock;
          u64
                max pixelclock;
         u32
                standards;
          u32
                capabilities;
          u32
                reserved[16];
} attribute ((packed));
/* Supports interlaced formats */
#define V4L2_DV_BT_CAP_INTERLACED
                                        (1 << 0)
/* Supports progressive formats */
#define V4L2_DV_BT_CAP_PROGRESSIVE
                                        (1 << 1)
/* Supports CVT/GTF reduced blanking */
#define V4L2_DV_BT_CAP_REDUCED_BLANKING (1 << 2)</pre>
/* Supports custom formats */
#define V4L2 DV BT CAP CUSTOM
                                        (1 << 3)
/** struct v4l2 dv timings cap - DV timings capabilities
                the type of the timings (same as in struct v4l2 dv
 * @type:
→timings)
                the pad number for which to query capabilities.
 * @pad:
\rightarrow (used with
                v4l-subdev nodes only)
 *
 * @bt:
                the BT656/1120 timings capabilities
 */
struct v4l2_dv_timings_cap {
         _u32 type;
         u32 pad;
        __u32 reserved[2];
        union {
                struct v4l2_bt_timings_cap bt;
                u32 raw data[32];
        };
};
/*
 *
        VIDEO INPUTS
*/
struct v4l2_input {
```

/* u32 index; Which input */ name[32]; /* Label */ u8 u32 /* Type of input */ type; u32 audioset; /* Associated audios. \rightarrow (bitfield) */ /* enum v4l2 tuner type */ u32 tuner; v4l2 std id std; status; u32 u32 capabilities; u32 reserved[3]; }; /* Values for the 'type' field */ #define V4L2_INPUT_TYPE_TUNER 1 #define V4L2 INPUT TYPE CAMERA 2 #define V4L2 INPUT TYPE TOUCH 3 /* field 'status' - general */ #define V4L2 IN ST NO POWER 0x00000001 /* Attached device is. →off */ #define V4L2 IN ST NO SIGNAL 0x0000002 #define V4L2_IN_ST_N0_COLOR 0x00000004 /* field 'status' - sensor orientation */ /* If sensor is mounted upside down set both bits */ #define V4L2 IN ST HFLIP 0x00000010 /* Frames are flipped →horizontally */ #define V4L2 IN ST VFLIP 0x00000020 /* Frames are flipped \rightarrow vertically */ /* field 'status' - analog */ #define V4L2 IN ST NO H LOCK 0x00000100 /* No horizontal sync. →lock */ #define V4L2 IN ST COLOR KILL 0x00000200 /* Color killer is, →active */ #define V4L2 IN ST NO V LOCK 0x00000400 /* No vertical sync lock. **→***/ #define V4L2 IN ST NO STD LOCK 0x00000800 /* No standard format, →lock */ /* field 'status' - digital */ #define V4L2 IN ST NO SYNC 0x00010000 /* No synchronization →lock */ #define V4L2 IN ST NO EQU 0x00020000 /* No equalizer lock */ #define V4L2 IN ST NO CARRIER 0x00040000 /* Carrier recovery →failed */ /* field 'status' - VCR and set-top box */ #define V4L2 IN ST MACROVISION 0x01000000 /* Macrovision detected **→***/ #define V4L2_IN_ST_N0_ACCESS 0x02000000 /* Conditional access

→denied */ #define V4L2 IN ST VTR 0x04000000 /* VTR time constant */ /* capabilities flags */ #define V4L2_IN_CAP_DV_TIMINGS 0x00000002 /* Supports S DV \rightarrow TIMINGS */ #define V4L2_IN_CAP_CUSTOM_TIMINGS V4L2 IN CAP DV TIMINGS /*... →For compatibility */ #define V4L2 IN CAP STD 0x00000004 /* Supports S →STD */ #define V4L2 IN CAP NATIVE SIZE 0x0000008 /* Supports. →setting native size */ /* * VIDEO OUTPUTS */ struct v4l2_output { /* Which output */ u32 index; /* Label */ u8 name[32]; u32 /* Type of output */ type; /* Associated audios u32 audioset; \rightarrow (bitfield) */ modulator; /* Associated modulator */ u32 v4l2_std_id std; capabilities; u32 u32 reserved[3]; }; /* Values for the 'type' field */ #define V4L2_OUTPUT_TYPE_MODULATOR 1 #define V4L2 OUTPUT TYPE ANALOG 2 #define V4L2 OUTPUT TYPE ANALOGVGAOVERLAY 3 /* capabilities flags */ #define V4L2_OUT_CAP_DV_TIMINGS 0x00000002 /* Supports S DV \rightarrow TIMINGS */ #define V4L2 OUT CAP CUSTOM TIMINGS V4L2 OUT CAP DV TIMINGS /*... →For compatibility */ #define V4L2 OUT CAP STD 0x00000004 /* Supports S →STD */ #define V4L2 OUT CAP NATIVE SIZE 0x0000008 /* Supports. →setting native size */ /* CONTROLS * */ struct v4l2 control { __u32 id; s32 value; }; struct v4l2_ext_control {

```
u32 id;
         u32 size;
          u32 reserved2[1];
        union {
                ___s32 value;
                 s64 value64;
                char __user *string;
                __u8 __user *p_u8;
                __u16 __user *p_u16;
                u32 user *p u32;
                struct v4l2_area __user *p_area;
                void user *ptr;
        };
} __attribute__ ((packed));
struct v4l2 ext controls {
        union {
#ifndef KERNEL
                u32 ctrl class;
#endif
                __u32 which;
        };
        __u32 count;
       __u32 error_idx;
        ___s32 request_fd;
        u32 reserved[1];
        struct v4l2 ext control *controls;
};
#define V4L2 CTRL ID MASK (0x0ffffff)
#ifndef KERNEL
#define V4L2_CTRL_ID2CLASS(id) ((id) & 0x0fff0000UL)
#endif
#define V4L2 CTRL ID2WHICH(id)
                                  ((id) & 0x0fff0000UL)
#define V4L2 CTRL DRIVER PRIV(id) (((id) & 0xffff) >= 0x1000)
#define V4L2 CTRL MAX DIMS
                                  (4)
#define V4L2 CTRL WHICH CUR VAL
                                  0
#define V4L2_CTRL_WHICH_DEF_VAL
                                  0x0f000000
#define V4L2_CTRL_WHICH_REQUEST_VAL 0x0f010000
enum v4l2 ctrl type {
        V4L2 CTRL TYPE INTEGER
                                     = 1,
        V4L2_CTRL_TYPE_BOOLEAN
                                     = 2,
        V4L2 CTRL TYPE MENU
                                     = 3,
        V4L2 CTRL TYPE BUTTON
                                     = 4.
        V4L2_CTRL_TYPE_INTEGER64
                                     = 5,
        V4L2 CTRL TYPE CTRL CLASS
                                     = 6,
        V4L2 CTRL TYPE STRING
                                     = 7.
        V4L2 CTRL TYPE BITMASK
                                     = 8,
        V4L2 CTRL TYPE INTEGER MENU = 9,
```

```
/* Compound types are >= 0x0100 */
        V4L2 CTRL COMPOUND TYPES = 0 \times 0100,
        V4L2 CTRL TYPE U8
                                      = 0 \times 0100,
        V4L2 CTRL TYPE U16
                                    = 0 \times 0101,
        V4L2_CTRL_TYPE_U32
                                      = 0 \times 0102,
        V4L2 CTRL TYPE AREA
                                      = 0 \times 0106,
};
    Used in the VIDIOC_QUERYCTRL ioctl for querying controls */
/*
struct v4l2 queryctrl {
        ___u32
                              id;
                                       /* enum v4l2_ctrl_type */
        ___u32
                              type;
                              name[32]; /* Whatever \overline{*}/
         u8
         s32
                                         /* Note signedness */
                              minimum;
         s32
                              maximum;
         s32
                              step;
                              default value;
          s32
                              flags;
         u32
        u32
                              reserved[2];
};
/*
    Used in the VIDIOC_QUERY_EXT_CTRL ioctl for querying extended
→controls */
struct v4l2_query_ext_ctrl {
         u32
                              id;
         u32
                              type;
        char
                              name[32];
         s64
                              minimum;
         s64
                              maximum;
                              step;
         u64
                              default value;
          s64
          u32
                              flags;
          u32
                              elem size;
          u32
                              elems;
                              nr of dims;
         u32
                              dims[V4L2 CTRL MAX DIMS];
          u32
                              reserved[32];
         u32
};
/*
    Used in the VIDIOC QUERYMENU ioctl for querying menu items */
struct v4l2 querymenu {
         u32
                        id;
         u32
                        index;
        union {
                        name[32]; /* Whatever */
                  u8
                  s64
                        value;
        };
         u32
                        reserved;
} __attribute__ ((packed));
/* Control flags */
```

#define V4L2 CTRL FLAG DISABLED 0x0001 #define V4L2 CTRL FLAG GRABBED 0x0002 #define V4L2 CTRL FLAG READ ONLY 0x0004 #define V4L2 CTRL FLAG UPDATE 0x0008 #define V4L2_CTRL_FLAG_INACTIVE 0x0010 #define V4L2 CTRL FLAG SLIDER 0x0020 #define V4L2 CTRL FLAG WRITE ONLY 0x0040 #define V4L2 CTRL FLAG V0LATILE 0x0080 #define V4L2 CTRL FLAG HAS PAYLOAD 0x0100 #define V4L2 CTRL FLAG EXECUTE ON WRITE 0x0200 #define V4L2 CTRL FLAG MODIFY LAYOUT 0x0400 Query flags, to be ORed with the control ID */ /* #define V4L2 CTRL FLAG NEXT CTRL 0x80000000 #define V4L2 CTRL FLAG NEXT COMPOUND 0x40000000 /* User-class control IDs defined by V4L2 */ #define V4L2 CID MAX CTRLS 1024 /* IDs reserved for driver specific controls */ #define V4L2 CID PRIVATE BASE 0x08000000 /* * TUNING */ struct v4l2 tuner { u32 index; u8 name[32]; u32 type; /* enum v4l2 tuner type */ u32 capability; u32 rangelow; rangehigh; u32 u32 rxsubchans; u32 audmode; s32 signal; afc; s32 u32 reserved[4]; }; struct v4l2 modulator { u32 index; u8 name[32]; u32 capability; u32 rangelow; u32 rangehigh; u32 txsubchans; /* enum v4l2 tuner type */ u32 type; reserved[3]; u32 }; /* Flags for the 'capability' field */

0x0001

#define V4L2_TUNER_CAP_LOW

<pre>#define V4L2_TUNER_CAP_N</pre>	ORM	0x0002
#define V4L2_TUNER_CAP_H		0x0004
#define V4L2_TUNER_CAP_H	WSEEK WRAP	0×0008
#define V4L2_TUNER_CAP_S	TERE0	0×0010
#define V4L2_TUNER_CAP_L	ANG2	0x0020
#define V4L2_TUNER_CAP_S	AP	0x0020
#define V4L2_TUNER_CAP_L	ANG1	0×0040
<pre>#define V4L2_TUNER_CAP_S #define V4L2_TUNER_CAP_L #define V4L2_TUNER_CAP_L #define V4L2_TUNER_CAP_L #define V4L2_TUNER_CAP_L #define V4L2_TUNER_CAP_R</pre>	DS	0x0080
#define V4L2_TUNER_CAP_R		
#define V4L2_TUNER_CAP_R		
#define V4L2_TUNER_CAP_F	REQ BANDS	0x0400
<pre>#define V4L2_TUNER_CAP_H</pre>		0x0800
<pre>#define V4L2 TUNER CAP 1</pre>		0×1000
/* Flags for the 'rxsub	chans' field */	
<pre>#define V4L2_TUNER_SUB_M</pre>	ONO ,	0x0001
#define V4L2 TUNER SUB S	TERE0	0x0002
#define V4L2 TUNER SUB L	ANG2	0x0004
<pre>#define V4L2_TUNER_SUB_M #define V4L2_TUNER_SUB_S #define V4L2_TUNER_SUB_L #define V4L2_TUNER_SUB_L #define V4L2_TUNER_SUB_L #define V4L2_TUNER_SUB_R</pre>	AP	0x0004 0x0008
#define V4L2_TUNER_SUB_L	ANG1	0x0008
#define V4L2 TUNER SUB R	DS	0x0010
	55	0,0010
/* Values for the 'audm	ode' field */	
		0×0000
#define V4L2_TUNER_MODE_		0x0000
<pre>#define V4L2_TUNER_MODE_ #define V4L2_TUNER_MODE_ #define V4L2_TUNER_MODE_</pre>		0x0001
#define V4L2_TUNER_MODE_		0x0002
<pre>#define V4L2_TUNER_MODE_ #define V4L2_TUNER_MODE_</pre>		0x0002
		0x0003
<pre>#define V4L2_TUNER_MODE_</pre>	LANGI_LANG2	0X0004
<pre>struct v4l2_frequency {</pre>		
u32 tuner;	(
	/* enum v4l2_tur	ner_type */
u32 frequenc	•	
u32 reserved	[8];	
};		
<pre>#define V4L2_BAND_MODULA</pre>		(1 << 1)
<pre>#define V4L2_BAND_MODULA</pre>		(1 << 2)
<pre>#define V4L2_BAND_MODULA</pre>	TION_AM	(1 << 3)
<pre>struct v4l2_frequency_ba</pre>	nd {	
u32 tuner;		
	/* enum v4l2_tur	ner_type */
u32 index;		
u32 capabili		
u32 rangelow		
u32 rangehig	h;	
u32 modulati	on;	
u32 reserved	[9];	
};		
-		

```
struct v4l2 hw freq seek {
          u32
                tuner;
                        /* enum v4l2_tuner_type */
          u32
                type;
          u32
                seek_upward;
                wrap around;
          u32
                spacing;
          u32
          u32
                rangelow;
          u32
                rangehigh;
         u32
                reserved[5];
};
/*
 *
        RDS
*/
struct v4l2_rds_data {
         u8
                lsb;
          u8
                msb:
          u8
                block;
} __attribute__ ((packed));
#define V4L2 RDS BLOCK MSK
                                 0x7
#define V4L2 RDS BLOCK A
                                  0
#define V4L2 RDS BLOCK B
                                 1
#define V4L2 RDS BLOCK C
                                 2
#define V4L2 RDS BLOCK D
                                  3
#define V4L2 RDS BLOCK C ALT
                                 4
#define V4L2 RDS BLOCK INVALID
                                 7
#define V4L2 RDS BLOCK CORRECTED 0x40
#define V4L2 RDS BLOCK ERROR
                                  0x80
/*
*
        AUDIO
 */
struct v4l2 audio {
         u32
                index;
          u8
                name[32];
          u32
                capability;
          u32
                mode;
         u32
                reserved[2];
};
/* Flags for the 'capability' field */
#define V4L2 AUDCAP STERE0
                                         0x00001
#define V4L2 AUDCAP AVL
                                         0x00002
/* Flags for the 'mode' field */
#define V4L2_AUDMODE_AVL
                                         0x00001
```

```
struct v4l2 audioout {
         u32
                index;
          u8
                name[32];
          u32
                capability;
          u32
                mode;
         u32 reserved[2];
};
/*
 *
        MPEG SERVICES
*/
#if 1
#define V4L2 ENC IDX FRAME I
                                (0)
#define V4L2_ENC_IDX_FRAME_P
                                (1)
#define V4L2 ENC IDX FRAME B
                                (2)
#define V4L2_ENC_IDX_FRAME MASK (0xf)
struct v4l2 enc idx entry {
         u64 offset;
          u64 pts;
         u32 length;
          u32 flags;
         u32 reserved[2];
};
#define V4L2_ENC_IDX_ENTRIES (64)
struct v4l2 enc idx {
        __u32 entries;
        __u32 entries_cap;
         u32 reserved[4];
        struct v4l2 enc idx entry entry[V4L2 ENC IDX ENTRIES];
};
#define V4L2_ENC_CMD_START
                                (0)
#define V4L2 ENC CMD STOP
                                (1)
#define V4L2 ENC CMD PAUSE
                                (2)
#define V4L2_ENC_CMD_RESUME
                                (3)
/* Flags for V4L2 ENC CMD STOP */
#define V4L2 ENC CMD STOP AT GOP END (1 << 0)</pre>
struct v4l2 encoder cmd {
        ___u32 cmd;
         u32 flags;
        union {
                struct {
                         u32 data[8];
                } raw;
        };
};
```

/* Decoder commands */ #define V4L2 DEC CMD START (0)#define V4L2_DEC_CMD_STOP (1)#define V4L2 DEC CMD PAUSE (2)#define V4L2 DEC CMD RESUME (3)#define V4L2 DEC CMD FLUSH (4)/* Flags for V4L2 DEC CMD START */ #define V4L2 DEC CMD START MUTE AUDIO (1 << 0)/* Flags for V4L2 DEC CMD PAUSE */ #define V4L2 DEC CMD PAUSE TO BLACK (1 << 0)/* Flags for V4L2 DEC CMD STOP */ #define V4L2 DEC CMD STOP TO BLACK (1 << 0)#define V4L2 DEC CMD STOP IMMEDIATELY (1 << 1)/* Play format requirements (returned by the driver): */ /* The decoder has no special format requirements */ #define V4L2 DEC START FMT NONE (0)/* The decoder requires full GOPs */ #define V4L2 DEC START FMT GOP (1)/* The structure must be zeroed before use by the application This ensures it can be extended safely in the future. */ struct v4l2 decoder cmd { ___u32 cmd; u32 flags; union { struct { u64 pts; } stop; struct { /* 0 or 1000 specifies normal speed, 1 specifies forward single stepping, -1 specifies backward single stepping, >1: playback at speed/1000 of the normal \rightarrow speed, <-1: reverse playback at (-speed/1000), \rightarrow of the normal speed. */ s32 speed; u32 format; } start; struct { u32 data[16]; } raw; }; };

```
#endif
/*
 *
       DATA SERVICES (VBI)
 *
 *
       Data services API by Michael Schimek
 */
/* Raw VBI */
struct v4l2 vbi format {
               sampling rate;
                                     /* in 1 Hz */
        u32
       ___u32
               offset;
               samples per line;
         u32
         u32
               sample_format;
                                       /* V4L2 PIX FMT * */
         s32
               start[2];
         u32
               count[2];
         u32
                                       /* V4L2_VBI_* */
               flags;
        u32 reserved[2];
                                       /* must be zero */
};
/* VBI flags */
#define V4L2_VBI_UNSYNC
                               (1 << 0)
#define V4L2 VBI INTERLACED
                              (1 << 1)
/* ITU-R start lines for each field */
#define V4L2_VBI_ITU_525_F1_START (1)
#define V4L2 VBI ITU 525 F2 START (264)
#define V4L2 VBI ITU 625 F1 START (1)
#define V4L2 VBI ITU 625 F2 START (314)
/* Sliced VBI
 *
 *
     This implements is a proposal V4L2 API to allow SLICED VBI
 * required for some hardware encoders. It should change without
 * notice in the definitive implementation.
 */
struct v4l2_sliced_vbi_format {
         ul6 service set;
       /* service_lines[0][...] specifies lines 0-23 (1-23 used)_
\rightarrow of the first field
          service lines[1][...] specifies lines 0-23 (1-23 used)
→of the second field
                                (equals frame lines 313-336 for
\rightarrow 625 line video
                                 standards, 263-286 for 525 line
→standards) */
               service lines[2][24];
         u16
         u32
               io size;
                                     /* must be zero */
         u32
               reserved[2];
};
```

```
/* Teletext World System Teletext
   (WST), defined on ITU-R BT.653-2 */
#define V4L2 SLICED TELETEXT B
                                         (0x0001)
/* Video Program System, defined on ETS 300 231*/
#define V4L2 SLICED VPS
                                         (0x0400)
/* Closed Caption, defined on EIA-608 */
#define V4L2 SLICED CAPTION 525
                                         (0x1000)
/* Wide Screen System, defined on ITU-R BT1119.1 */
#define V4L2 SLICED WSS 625
                                         (0x4000)
#define V4L2 SLICED VBI 525
                                         (V4L2 SLICED CAPTION 525)
#define V4L2 SLICED VBI 625
                                         (V4L2 SLICED TELETEXT B |
→V4L2_SLICED_VPS | V4L2_SLICED_WSS_625)
struct v4l2 sliced vbi cap {
         ul6 service set;
        /* service lines[0][...] specifies lines 0-23 (1-23 used)...
\rightarrow of the first field
           service lines[1][...] specifies lines 0-23 (1-23 used)
\rightarrow of the second field
                                  (equals frame lines 313-336 for
\rightarrow 625 line video
                                   standards, 263-286 for 525 line
→standards) */
         u16
                service lines[2][24];
                               /* enum v4l2 buf type */
          u32
                type;
         u32
                reserved[3];
                               /* must be 0 */
};
struct v4l2 sliced vbi data {
          u32
                id;
                               /* 0: first field, 1: second field...
          u32
                field;
→*/
                                /* 1-23 */
          u32
                line;
                reserved;
                                /* must be 0 */
          u32
                data[48];
         u8
};
/*
 * Sliced VBI data inserted into MPEG Streams
*/
/*
 * V4L2 MPEG STREAM VBI FMT IVTV:
 * Structure of payload contained in an MPEG 2 Private Stream 1 PES
→Packet in an
 * MPEG-2 Program Pack that contains V4L2 MPEG STREAM VBI FMT IVTV,
→Sliced VBI
 * data
```

```
*
 * Note, the MPEG-2 Program Pack and Private Stream 1 PES packet.
→header
 * definitions are not included here. See the MPEG-2,
→ specifications for details
 * on these headers.
 */
/* Line type IDs */
#define V4L2 MPEG VBI IVTV TELETEXT B
                                         (1)
#define V4L2 MPEG VBI IVTV_CAPTION_525
                                         (4)
#define V4L2 MPEG VBI IVTV WSS 625
                                         (5)
#define V4L2 MPEG VBI IVTV VPS
                                         (7)
struct v4l2 mpeg vbi itv0 line {
        u8 id; /* One of V4L2 MPEG VBI IVTV * above */
         u8 data[42]; /* Sliced VBI data for the line */
} attribute ((packed));
struct v4l2 mpeg vbi itv0 {
        le32 linemask[2]; /* Bitmasks of VBI service lines...
→present */
        struct v4l2 mpeg vbi itv0 line line[35];
} __attribute__ ((packed));
struct v4l2_mpeg_vbi_ITV0 {
        struct v4l2 mpeg vbi itv0 line line[36];
} attribute ((packed));
#define V4L2 MPEG VBI IVTV MAGIC0
                                       "itv0"
#define V4L2 MPEG VBI IVTV MAGIC1
                                       "ITV0"
struct v4l2 mpeg vbi fmt ivtv {
        u8 magic[4];
       union {
               struct v4l2 mpeg vbi itv0 itv0;
               struct v4l2 mpeg vbi ITV0 ITV0;
        };
} __attribute__ ((packed));
/*
 *
       AGGREGATE STRUCTURES
*/
/**
 * struct v4l2 plane pix format - additional, per-plane format,
→definition
* @sizeimage:
                     maximum size in bytes required for data,
→for which
 *
                       this plane will be used
 * @bytesperline:
                       distance in bytes between the leftmost
```

→pixels in two * adjacent lines */ struct v4l2_plane_pix_format { u32 sizeimage; u32 bytesperline; u16 reserved[6]; } __attribute__ ((packed)); /** * struct v4l2_pix_format_mplane - multiplanar format definition * @width: image width in pixels * @height: image height in pixels * @pixelformat: little endian four character code (fourcc) * @field: enum v4l2 field; field order (for →interlaced video) * @colorspace: enum v4l2 colorspace; supplemental to →pixelformat * @plane fmt: per-plane information * @num planes: number of planes for this format * @flags: format flags (V4L2 PIX FMT FLAG *) * @ycbcr_enc: enum v4l2_ycbcr_encoding, Y'CbCr encoding * @quantization: enum v4l2 quantization, colorspace, →quantization * @xfer func: enum v4l2 xfer func, colorspace transfer, \rightarrow function */ struct v4l2 pix format mplane { u32 width; u32 height; pixelformat; u32 u32 field: colorspace; u32 struct v4l2_plane_pix_format plane fmt[VIDEO MAX PLANES]; __u8 num planes; flags; u8 union { u8 ycbcr_enc; u8 hsv_enc; }; u8 quantization; u8 xfer func; u8 reserved[7]; } attribute ((packed)); /** * struct v4l2 sdr format - SDR format definition * @pixelformat: little endian four character code (fourcc) * @buffersize: maximum size in bytes required for data */

```
struct v4l2 sdr format {
         u32
                                         pixelformat;
                                         buffersize;
          u32
                                         reserved[24];
          u8
} __attribute__ ((packed));
/**
 * struct v4l2 meta format - metadata format definition
* @dataformat: little endian four character code (fourcc)
 * @buffersize:
                        maximum size in bytes required for data
*/
struct v4l2_meta_format {
        u32
                                         dataformat;
         u32
                                         buffersize;
} attribute ((packed));
/**
 * struct v4l2 format - stream data format
* @type:
               enum v4l2_buf_type; type of the data stream
 * @pix:
                definition of an image format
 * @pix:
* @pix_mp:
                definition of a multiplanar image format
                definition of an overlaid image
 * @win:
 * @vbi:

    * @vbi: raw VBI capture or output parameters
    * @sliced: sliced VBI capture or output parameters

                raw VBI capture or output parameters
* @raw_data: placeholder for future extensions and custom formats
 */
struct v4l2 format {
         u32
                 type;
        union {
                struct v4l2 pix format
                                                 pix;
                                                          /* V4L2
→BUF TYPE VIDEO CAPTURE */
                struct v4l2 pix format mplane
                                                          /* V4L2
                                                 pix mp;
→BUF TYPE VIDEO CAPTURE MPLANE */
                struct v4l2 window
                                                 win:
                                                           /* V4L2
→BUF TYPE VIDEO OVERLAY */
                struct v4l2 vbi format
                                                 vbi;
                                                           /* V4L2
→BUF TYPE VBI CAPTURE */
                                                          /* V4L2_
                struct v4l2_sliced_vbi_format
                                                 sliced;
→BUF_TYPE_SLICED_VBI_CAPTURE */
                struct v4l2 sdr format
                                                 sdr:
                                                          /* V4L2
→BUF_TYPE_SDR_CAPTURE */
                struct v4l2 meta format
                                                 meta;
                                                           /* V4L2
→BUF TYPE META CAPTURE */
                        raw data[200];
                                                           /*..
                  u8
→user-defined */
        } fmt;
};
/*
        Stream type-dependent parameters
 */
struct v4l2_streamparm {
```

```
u32
                 type;
                                        /* enum v4l2 buf type */
        union {
                struct v4l2 captureparm capture;
                struct v4l2 outputparm output;
                        raw data[200]; /* user-defined */
                u8
        } parm;
};
/*
 *
        EVENTS
 */
#define V4L2 EVENT ALL
                                                 0
#define V4L2_EVENT_VSYNC
                                                 1
#define V4L2 EVENT EOS
                                                 2
                                                 3
#define V4L2 EVENT CTRL
#define V4L2_EVENT_FRAME_SYNC
                                                 4
                                                 5
#define V4L2 EVENT SOURCE CHANGE
#define V4L2 EVENT MOTION DET
                                                 6
#define V4L2 EVENT PRIVATE START
                                                0x08000000
/* Payload for V4L2_EVENT_VSYNC */
struct v4l2 event vsvnc {
        /* Can be V4L2_FIELD_ANY, _NONE, _TOP or _BOTTOM */
          u8 field;
} __attribute__ ((packed));
/* Payload for V4L2 EVENT CTRL */
#define V4L2_EVENT_CTRL_CH_VALUE
                                                (1 << 0)
                                                (1 << 1)
#define V4L2 EVENT CTRL CH FLAGS
#define V4L2 EVENT CTRL CH RANGE
                                                (1 << 2)
struct v4l2 event ctrl {
        ___u32 changes;
         u32 type;
        union {
                ___s32 value;
                ___s64 value64;
        };
        u32 flags;
        ___s32 minimum;
        s32 maximum;
        __s32 step;
        s32 default value;
};
struct v4l2 event frame sync {
        u32 frame sequence;
};
#define V4L2_EVENT_SRC_CH_RESOLUTION
                                                 (1 << 0)
```

```
struct v4l2 event src change {
        u32 changes;
};
#define V4L2 EVENT MD FL HAVE FRAME SEQ (1 << 0)</pre>
/**
 * struct v4l2_event_motion_det - motion detection event
 * @flags:
                       if V4L2 EVENT MD FL HAVE FRAME SEQ is set,...
\rightarrow then the
 *
                       frame sequence field is valid.
* @frame_sequence:
                       the frame sequence number associated with,
\rightarrowthis event.
* @region mask: which regions detected motion.
 */
struct v4l2_event_motion_det {
        __u32 flags;
         u32 frame sequence;
         u32 region mask;
};
struct v4l2 event {
         u32
                                         type;
        union {
                struct v4l2_event_vsync
                                                 vsync;
                struct v4l2 event ctrl
                                                 ctrl;
                struct v4l2 event frame sync
                                                 frame sync;
                struct v4l2_event_src_change
                                                 src_change;
                struct v4l2 event motion det
                                                 motion det;
                                                 data[64];
                __u8
        } u;
        u32
                                         pending;
         u32
                                         sequence;
#ifdef KERNEL
        struct __kernel_timespec
                                         timestamp;
#else
        struct timespec
                                         timestamp;
#endif
         u32
                                         id;
                                         reserved[8];
         u32
};
#define V4L2 EVENT SUB FL SEND INITIAL
                                                 (1 << 0)
#define V4L2 EVENT SUB FL ALLOW FEEDBACK
                                                 (1 << 1)
struct v4l2 event subscription {
         u32
                                         type;
          u32
                                         id;
          u32
                                         flags;
                                         reserved[5];
         _u32
```

```
};
/*
 *
       ADVANCED DEBUGGING
 *
 *
       NOTE: EXPERIMENTAL API, NEVER RELY ON THIS IN APPLICATIONS!
 *
       FOR DEBUGGING, TESTING AND INTERNAL USE ONLY!
 */
/* VIDIOC DBG G REGISTER and VIDIOC DBG S REGISTER */
#define V4L2_CHIP_MATCH_BRIDGE 0 /* Match against chip ID on_
\rightarrow the bridge (0 for the bridge) */
#define V4L2_CHIP_MATCH_SUBDEV
                                4 /* Match against subdev
\rightarrow index */
/* The following four defines are no longer in use */
#define V4L2 CHIP MATCH HOST V4L2 CHIP MATCH BRIDGE
#define V4L2 CHIP MATCH I2C DRIVER 1 /* Match against I2C driver.
→name */
#define V4L2_CHIP_MATCH_I2C_ADDR 2 /* Match against I2C 7-bit_
→address */
#define V4L2 CHIP MATCH AC97 3 /* Match against ancillary...
→AC97 chip */
struct v4l2_dbg_match {
        u32 type; /* Match type */
       union { /* Match this chip, meaning determined by type,
→*/
                 u32 addr;
               char name[32];
        };
} attribute ((packed));
struct v4l2 dbg register {
       struct v4l2 dbg match match;
       __u32 size; /* register size in bytes */
       __u64 reg;
        _u64 val;
} _attribute__ ((packed));
#define V4L2 CHIP FL READABLE (1 << 0)</pre>
#define V4L2 CHIP FL WRITABLE (1 << 1)</pre>
/* VIDIOC DBG G CHIP INFO */
struct v4l2_dbg_chip_info {
        struct v4l2 dbg match match;
       char name[32];
        u32 flags;
        u32 reserved[32];
} __attribute__ ((packed));
```

```
/**
 * struct v4l2 create buffers - VIDIOC CREATE BUFS argument
 * @index:
                on return, index of the first created buffer
                entry: number of requested buffers,
 * @count:
 *
                return: number of created buffers
 * @memory:
                enum v4l2 memory; buffer memory type
 * @format:
                frame format, for which buffers are requested
 * @capabilities: capabilities of this buffer type.
 * @reserved: future extensions
 */
struct v4l2_create_buffers {
          u32
                                 index;
         u32
                                 count;
         u32
                                 memory;
        struct v4l2 format
                                 format;
        u32
                                 capabilities;
        u32
                                 reserved[7];
};
/*
 *
        IOCTL CODES FOR VIDEO DEVICES
 *
 */
#define VIDIOC QUERYCAP
                                  IOR('V', 0, struct v4l2
\rightarrow capability)
                                 _IOWR('V', 2, struct v4l2_fmtdesc)
#define VIDIOC ENUM FMT
#define VIDIOC G FMT
                                 _IOWR('V',
                                            4, struct v4l2 format)
                                _IOWR('V',
                                            5, struct v4l2 format)
#define VIDIOC_S_FMT
                                IOWR('V', 8, struct v4l2
#define VIDIOC REQBUFS
\rightarrow requestbuffers)
                                _IOWR('V', 9, struct v4l2_buffer)
#define VIDIOC QUERYBUF
#define VIDIOC G FBUF
                                 IOR('V', 10, struct v4l2
\rightarrow framebuffer)
#define VIDIOC S FBUF
                                 IOW('V', 11, struct v4l2
\rightarrow framebuffer)
#define VIDIOC OVERLAY
                                  IOW('V', 14, int)
                                 _IOWR('V', 15, struct v4l2_buffer)
#define VIDIOC QBUF
                                 _IOWR('V', 16, struct v4l2_
#define VIDIOC_EXPBUF
\rightarrow exportbuffer)
                                _IOWR('V', 17, struct v4l2 buffer)
#define VIDIOC DQBUF
                                 _IOW('V', 18, int)
#define VIDIOC STREAMON
                                  _IOW('V', 19, int)
#define VIDIOC_STREAMOFF
                                #define VIDIOC G PARM
\rightarrow streamparm)
                                _IOWR('V', 22, struct v4l2
#define VIDIOC S PARM
\rightarrow streamparm)
#define VIDIOC G STD
                                  _IOR('V', 23, v4l2_std_id)
                                  _IOW('V', 24, v4l2_std_id)
#define VIDIOC S STD
                                 _IOWR('V', 25, struct v\overline{4}l2 standard)
#define VIDIOC ENUMSTD
                                _IOWR('V', 26, struct v4l2_input)
#define VIDIOC_ENUMINPUT
```

#define VIDIOC G CTRL #define VIDIOC S CTRL #define VIDIOC G TUNER #define VIDIOC S TUNER #define VIDIOC_G_AUDI0 #define VIDIOC S AUDIO #define VIDIOC QUERYCTRL \rightarrow queryctrl) #define VIDIOC QUERYMENU →querymenu) #define VIDIOC G INPUT #define VIDIOC_S_INPUT #define VIDIOC G EDID #define VIDIOC_S_EDID #define VIDIOC G OUTPUT #define VIDIOC S OUTPUT #define VIDIOC ENUMOUTPUT #define VIDIOC G AUDOUT #define VIDIOC S AUDOUT #define VIDIOC G MODULATOR →modulator) #define VIDIOC_S_MODULATOR →modulator) #define VIDIOC G FREQUENCY \rightarrow frequency) #define VIDIOC_S_FREQUENCY \rightarrow frequency) #define VIDIOC CROPCAP #define VIDIOC_G_CROP #define VIDIOC S CROP #define VIDIOC G JPEGCOMP \rightarrow jpeqcompression) #define VIDIOC S JPEGCOMP →jpegcompression) #define VIDIOC QUERYSTD #define VIDIOC_TRY_FMT #define VIDIOC ENUMAUDIO #define VIDIOC ENUMAUDOUT #define VIDIOC_G_PRIORITY →priority */ #define VIDIOC_S_PRIORITY →priority */ →vbi cap) #define VIDIOC LOG STATUS #define VIDIOC G EXT CTRLS \rightarrow controls) #define VIDIOC S EXT CTRLS \rightarrow controls) #define VIDIOC TRY EXT CTRLS \rightarrow controls)

IOWR('V', 27, struct v4l2 control) _IOWR('V', 28, struct v4l2_control) _IOWR('V', 29, struct v4l2_tuner) _IOW('V', 30, struct v4l2_tuner) _IOR('V', 33, struct v4l2_audio) ______IOW('V', 34, struct v4l2_audio) IOWR('V', 36, struct v4l2 IOWR('V', 37, struct v4l2 IOR('V', 38, int) _IOWR('V', 39, int) _IOWR('V', 40, struct v4l2_edid) _IOWR('V', 41, struct v4l2_edid) _IOR('V', 46, int) _IOWR('V', 47, int) _IOWR('V', 48, struct v4l2_output) _IOR('V', 49, struct v4l2_audioout) _IOW('V', 50, struct v4l2_audioout) IOWR('V', 54, struct v4l2 _IOW('V', 55, struct v4l2_ _IOWR('V', 56, struct v4l2 IOW('V', 57, struct v4l2 _IOWR('V', 58, struct v4l2_cropcap) _IOWR('V', 59, struct v4l2_crop) _____IOW('V', 60, struct v4l2 crop) IOR('V', 61, struct v4l2 _IOW('V', 62, struct v4l2 IOR('V', 63, v4l2 std id) _IOWR('V', 64, struct v4l2_format) IOWR('V', 65, struct v4l2 audio) _IOWR('V', 66, struct v4l2_audioout) _IOR('V', 67, __u32) /* enum v4l2_ _IOW('V', 68, __u32) /* enum v4l2_ #define VIDIOC G SLICED VBI CAP IOWR('V', 69, struct v4l2 sliced IO('V', 70) IOWR('V', 71, struct v4l2 ext IOWR('V', 72, struct v4l2 ext IOWR('V', 73, struct v4l2 ext

#define VIDIOC ENUM FRAMESIZES IOWR('V', 74, struct v4l2 \rightarrow frmsizeenum) #define VIDIOC ENUM FRAMEINTERVALS IOWR('V', 75, struct v4l2 \rightarrow frmivalenum) #define VIDIOC G ENC INDEX IOR('V', 76, struct v4l2 enc idx) IOWR('V', 77, struct v4l2 encoder #define VIDIOC ENCODER CMD \rightarrow cmd) #define VIDIOC TRY ENCODER CMD IOWR('V', 78, struct v4l2 encoder \rightarrow cmd) /* * Experimental, meant for debugging, testing and internal use. * Only implemented if CONFIG VIDEO ADV DEBUG is defined. * You must be root to use these ioctls. Never use these in. →applications! */ #define VIDIOC DBG S REGISTER IOW('V', 79, struct v4l2 dbg \rightarrow register) #define VIDIOC DBG G REGISTER IOWR('V', 80, struct v4l2 dbg \rightarrow register) #define VIDIOC_S_HW_FREQ_SEEK __IOW('V', 82, struct v4l2_hw_freq_ \rightarrow seek) #define VIDIOC S DV TIMINGS IOWR('V', 87, struct v4l2 dv \rightarrow timings) _IOWR('V', 88, struct v4l2 dv #define VIDIOC G DV TIMINGS \rightarrow timings) _IOR('V', 89, struct v4l2 event) #define VIDIOC DQEVENT #define VIDIOC_SUBSCRIBE_EVENT IOW('V', 90, struct v4l2 event \rightarrow subscription) #define VIDIOC UNSUBSCRIBE EVENT IOW('V', 91, struct v4l2 event \rightarrow subscription) #define VIDIOC CREATE BUFS IOWR('V', 92, struct v4l2 create \rightarrow buffers) #define VIDIOC PREPARE BUF IOWR('V', 93, struct v4l2 buffer) _IOWR('V', 94, struct v4l2 #define VIDIOC G SELECTION \rightarrow selection) IOWR('V', 95, struct v4l2 #define VIDIOC S SELECTION \rightarrow selection) IOWR('V', 96, struct v4l2 decoder #define VIDIOC DECODER CMD \rightarrow cmd) #define VIDIOC TRY DECODER CMD IOWR('V', 97, struct v4l2 decoder →cmd) #define VIDIOC ENUM DV TIMINGS IOWR('V', 98, struct v4l2 enum dv →timings) #define VIDIOC QUERY DV TIMINGS IOR('V', 99, struct v4l2 dv →timings) #define VIDIOC DV TIMINGS CAP IOWR('V', 100, struct v4l2 dv \rightarrow timings cap) #define VIDIOC ENUM FREQ BANDS IOWR('V', 101, struct v4l2 \rightarrow frequency_band)

7.2.10 Video Capture Example

file: media/v4l/capture.c

```
/*
 * V4L2 video capture example
*
* This program can be used and distributed without restrictions.
       This program is provided with the V4L2 API
* see https://linuxtv.org/docs.php for more information
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <getopt.h>
                               /* getopt long() */
#include <fcntl.h>
                               /* low-level i/o */
#include <unistd.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <linux/videodev2.h>
#define CLEAR(x) memset(\&(x), 0, sizeof(x))
enum io method {
```

(continued from previous page)

```
IO METHOD READ,
        IO METHOD MMAP,
        IO METHOD USERPTR,
};
struct buffer {
               *start;
        void
        size_t length;
};
static char
                       *dev name;
                        io = IO METHOD MMAP;
static enum io method
static int
                        fd = -1;
struct buffer
                       *buffers;
static unsigned int
                        n buffers;
static int
                        out buf;
static int
                        force_format;
static int
                        frame_count = 70;
static void errno exit(const char *s)
{
        fprintf(stderr, "%s error %d, %s\\n", s, errno, strerror(errno));
        exit(EXIT_FAILURE);
}
static int xioctl(int fh, int request, void *arg)
{
        int r;
        do {
                r = ioctl(fh, request, arg);
        } while (-1 == r && EINTR == errno);
        return r;
}
static void process image(const void *p, int size)
{
        if (out_buf)
                fwrite(p, size, 1, stdout);
        fflush(stderr);
        fprintf(stderr, ".");
        fflush(stdout);
}
static int read frame(void)
{
        struct v4l2 buffer buf;
        unsigned int i;
        switch (io) {
        case IO_METHOD_READ:
                if (-1 == read(fd, buffers[0].start, buffers[0].length)) {
                        switch (errno) {
                        case EAGAIN:
```

(continued from previous page)

```
return 0;
                case EIO:
                         /* Could ignore EIO, see spec. */
                         /* fall through */
                default:
                         errno exit("read");
                }
        }
        process image(buffers[0].start, buffers[0].length);
        break;
case IO_METHOD_MMAP:
        CLEAR(buf);
        buf.type = V4L2 BUF TYPE VIDEO CAPTURE;
        buf.memory = V4L2_MEMORY_MMAP;
        if (-1 == xioctl(fd, VIDIOC DQBUF, &buf)) {
                switch (errno) {
                case EAGAIN:
                         return 0;
                case EIO:
                         /* Could ignore EIO, see spec. */
                         /* fall through */
                default:
                         errno exit("VIDIOC DQBUF");
                }
        }
        assert(buf.index < n_buffers);</pre>
        process_image(buffers[buf.index].start, buf.bytesused);
        if (-1 == xioctl(fd, VIDIOC QBUF, &buf))
                errno exit("VIDIOC QBUF");
        break;
case IO METHOD USERPTR:
        CLEAR(buf);
        buf.type = V4L2 BUF TYPE VIDEO CAPTURE;
        buf.memory = V4L2 MEMORY USERPTR;
        if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {
                switch (errno) {
                case EAGAIN:
                         return 0:
                case EIO:
```

(continued from previous page)

```
/* Could ignore EIO, see spec. */
                                 /* fall through */
                         default:
                                 errno_exit("VIDIOC_DQBUF");
                         }
                }
                for (i = 0; i < n buffers; ++i)
                         if (buf.m.userptr == (unsigned long)buffers[i].
→start
                             && buf.length == buffers[i].length)
                                 break;
                assert(i < n_buffers);</pre>
                process_image((void *)buf.m.userptr, buf.bytesused);
                if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
                        errno exit("VIDIOC QBUF");
                break;
        }
        return 1;
}
static void mainloop(void)
{
        unsigned int count;
        count = frame count;
        while (count - > 0) {
                for (;;) {
                         fd_set fds;
                         struct timeval tv;
                         int r;
                         FD_ZERO(&fds);
                         FD SET(fd, &fds);
                         /* Timeout. */
                         tv.tv_sec = 2;
                         tv.tv usec = 0;
                         r = select(fd + 1, &fds, NULL, NULL, &tv);
                         if (-1 == r) {
                                 if (EINTR == errno)
                                         continue;
                                 errno exit("select");
                         }
                         if (0 == r) {
                                 fprintf(stderr, "select timeout\\n");
```

```
exit(EXIT_FAILURE);
                          }
                          if (read_frame())
                                  break;
                          /* EAGAIN - continue select loop. */
                 }
        }
}
static void stop capturing(void)
{
        enum v4l2 buf type type;
        switch (io) {
        case IO_METHOD_READ:
                 /* Nothing to do. */
                 break;
        case IO METHOD MMAP:
        case IO METHOD USERPTR:
                 type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
if (-1 == xioctl(fd, VIDI0C_STREAMOFF, &type))
                         errno_exit("VIDIOC_STREAMOFF");
                 break;
        }
}
static void start capturing(void)
{
        unsigned int i;
        enum v4l2 buf type type;
        switch (io) {
        case IO_METHOD_READ:
                 /* Nothing to do. */
                 break;
        case IO_METHOD_MMAP:
                 for (i = 0; i < n_buffers; ++i) {</pre>
                          struct v4l2 buffer buf;
                          CLEAR(buf);
                          buf.type = V4L2 BUF TYPE VIDEO CAPTURE;
                          buf.memory = V4L2 MEMORY MMAP;
                          buf.index = i;
                          if (-1 == xioctl(fd, VIDIOC QBUF, &buf))
                                  errno_exit("VIDIOC_QBUF");
                 }
                 type = V4L2 BUF TYPE VIDE0 CAPTURE;
                 if (-1 == xioctl(fd, VIDIOC STREAMON, &type))
                          errno exit("VIDIOC STREAMON");
                 break;
        case IO METHOD USERPTR:
```

```
for (i = 0; i < n buffers; ++i) {
                         struct v4l2 buffer buf;
                         CLEAR(buf);
                         buf.type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
                         buf.memory = V4L2 MEMORY USERPTR;
                         buf.index = i;
                         buf.m.userptr = (unsigned long)buffers[i].start;
                         buf.length = buffers[i].length;
                         if (-1 == xioctl(fd, VIDIOC QBUF, &buf))
                                 errno exit("VIDIOC QBUF");
                 }
                type = V4L2 BUF TYPE VIDE0 CAPTURE;
                if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))
                         errno exit("VIDIOC STREAMON");
                break;
        }
}
static void uninit device(void)
{
        unsigned int i;
        switch (io) {
        case IO METHOD READ:
                free(buffers[0].start);
                break;
        case IO_METHOD MMAP:
                for (i = 0; i < n buffers; ++i)
                         if (-1 == munmap(buffers[i].start, buffers[i].
\rightarrowlength))
                                 errno exit("munmap");
                break;
        case IO METHOD USERPTR:
                for (i = 0; i < n_buffers; ++i)</pre>
                         free(buffers[i].start);
                break;
        }
        free(buffers);
}
static void init read(unsigned int buffer size)
{
        buffers = calloc(1, sizeof(*buffers));
        if (!buffers) {
                fprintf(stderr, "Out of memory\\n");
                exit(EXIT FAILURE);
        }
        buffers[0].length = buffer size;
        buffers[0].start = malloc(buffer size);
```

```
if (!buffers[0].start) {
                fprintf(stderr, "Out of memory\\n");
                exit(EXIT_FAILURE);
        }
}
static void init mmap(void)
{
        struct v4l2 requestbuffers req;
        CLEAR(req);
        req.count = 4;
        req.type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
        req.memory = V4L2_MEMORY_MMAP;
        if (-1 == xioctl(fd, VIDIOC REQBUFS, &req)) {
                if (EINVAL == errno) {
                        fprintf(stderr, "%s does not support "
                                  "memory mappingn", dev name);
                        exit(EXIT_FAILURE);
                } else {
                        errno_exit("VIDIOC_REQBUFS");
                }
        }
        if (req.count < 2) {
                fprintf(stderr, "Insufficient buffer memory on %s\\n",
                          dev name);
                exit(EXIT FAILURE);
        }
        buffers = calloc(req.count, sizeof(*buffers));
        if (!buffers) {
                fprintf(stderr, "Out of memory\\n");
                exit(EXIT_FAILURE);
        }
        for (n buffers = 0; n buffers < req.count; ++n buffers) {</pre>
                struct v4l2 buffer buf;
                CLEAR(buf);
                buf.type
                                = V4L2_BUF_TYPE_VIDE0_CAPTURE;
                buf.memory
                                = V4L2 MEMORY MMAP;
                buf.index
                                = n buffers;
                if (-1 == xioctl(fd, VIDIOC QUERYBUF, &buf))
                        errno exit("VIDIOC QUERYBUF");
                buffers[n buffers].length = buf.length;
                buffers[n buffers].start =
                        mmap(NULL /* start anywhere */,
                               buf.length,
                                                          (continues on next page)
```

```
(continued from previous page)
                               PROT_READ | PROT_WRITE /* required */,
                               MAP SHARED /* recommended */,
                               fd, buf.m.offset);
                if (MAP FAILED == buffers[n buffers].start)
                         errno exit("mmap");
        }
}
static void init userp(unsigned int buffer size)
{
        struct v4l2 requestbuffers req;
        CLEAR(req);
        req.count = 4;
        req.type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
        req.memory = V4L2_MEMORY_USERPTR;
        if (-1 == xioctl(fd, VIDIOC REQBUFS, &req)) {
                if (EINVAL == errno) {
                         fprintf(stderr, "%s does not support "
                                  "user pointer i/on", dev_name);
                         exit(EXIT FAILURE);
                } else {
                         errno exit("VIDIOC REQBUFS");
                }
        }
        buffers = calloc(4, sizeof(*buffers));
        if (!buffers) {
                fprintf(stderr, "Out of memory\\n");
                exit(EXIT FAILURE);
        }
        for (n buffers = 0; n buffers < 4; ++n buffers) {</pre>
                buffers[n buffers].length = buffer size;
                buffers[n_buffers].start = malloc(buffer_size);
                if (!buffers[n buffers].start) {
                         fprintf(stderr, "Out of memory\\n");
                         exit(EXIT_FAILURE);
                }
        }
}
static void init device(void)
{
        struct v4l2 capability cap;
        struct v4l2 cropcap cropcap;
        struct v4l2_crop crop;
        struct v4l2_format fmt;
        unsigned int min;
        if (-1 == xioctl(fd, VIDIOC QUERYCAP, &cap)) {
```

```
if (EINVAL == errno) {
                        fprintf(stderr, "%s is no V4L2 device\\n",
                                 dev name);
                        exit(EXIT_FAILURE);
                } else {
                        errno exit("VIDIOC QUERYCAP");
                }
       }
       if (!(cap.capabilities & V4L2 CAP VIDEO CAPTURE)) {
                fprintf(stderr, "%s is no video capture device\\n",
                         dev name);
                exit(EXIT FAILURE);
       }
       switch (io) {
       case IO_METHOD_READ:
                if (!(cap.capabilities & V4L2_CAP_READWRITE)) {
                        fprintf(stderr, "%s does not support read i/o\\n",
                                 dev name);
                        exit(EXIT FAILURE);
                }
                break;
       case IO METHOD MMAP:
       case IO METHOD USERPTR:
                if (!(cap.capabilities & V4L2_CAP_STREAMING)) {
                        fprintf(stderr, "%s does not support streaming i/o\
⇒\n",
                                 dev name);
                        exit(EXIT FAILURE);
                }
                break:
       }
       /* Select video input, video standard and tune here. */
       CLEAR(cropcap);
       cropcap.type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
       if (0 == xioctl(fd, VIDIOC CROPCAP, &cropcap)) {
                crop.type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
                crop.c = cropcap.defrect; /* reset to default */
                if (-1 == xioctl(fd, VIDIOC S CROP, &crop)) {
                        switch (errno) {
                        case EINVAL:
                                /* Cropping not supported. */
                                break:
                        default:
                                /* Errors ignored. */
                                break;
                        }
```

```
}
        } else {
                /* Errors ignored. */
        }
        CLEAR(fmt);
        fmt.type = V4L2 BUF TYPE VIDE0 CAPTURE;
        if (force format) {
                fmt.fmt.pix.width
                                         = 640:
                fmt.fmt.pix.height
                                         = 480:
                fmt.fmt.pix.pixelformat = V4L2 PIX FMT YUYV;
                fmt.fmt.pix.field
                                         = V4L2 FIELD INTERLACED;
                if (-1 == xioctl(fd, VIDIOC_S_FMT, &fmt))
                         errno_exit("VIDIOC_S_FMT");
                /* Note VIDIOC S FMT may change width and height. */
        } else {
                /* Preserve original settings as set by v4l2-ctl for...
→example */
                if (-1 == xioctl(fd, VIDIOC_G_FMT, &fmt))
                         errno exit("VIDIOC G FMT");
        }
        /* Buggy driver paranoia. */
        min = fmt.fmt.pix.width * 2;
        if (fmt.fmt.pix.bytesperline < min)</pre>
                fmt.fmt.pix.bytesperline = min;
        min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;
        if (fmt.fmt.pix.sizeimage < min)</pre>
                fmt.fmt.pix.sizeimage = min;
        switch (io) {
        case IO METHOD READ:
                init read(fmt.fmt.pix.sizeimage);
                break;
        case IO METHOD MMAP:
                init mmap();
                break:
        case IO METHOD USERPTR:
                init userp(fmt.fmt.pix.sizeimage);
                break:
        }
}
static void close_device(void)
{
        if (-1 == close(fd))
                errno exit("close");
        fd = -1;
}
```

```
static void open device(void)
{
        struct stat st;
        if (-1 == stat(dev_name, &st)) {
                fprintf(stderr, "Cannot identify '%s': %d, %s\\n",
                         dev name, errno, strerror(errno));
                exit(EXIT FAILURE);
        }
        if (!S ISCHR(st.st mode)) {
                fprintf(stderr, "%s is no devicen", dev_name);
                exit(EXIT FAILURE);
        }
        fd = open(dev_name, 0_RDWR /* required */ | 0_NONBLOCK, 0);
        if (-1 == fd) {
                fprintf(stderr, "Cannot open '%s': %d, %s\\n",
                         dev name, errno, strerror(errno));
                exit(EXIT_FAILURE);
        }
}
static void usage(FILE *fp, int argc, char **argv)
{
        fprintf(fp,
                 "Usage: %s [options]\\n\\n"
                 "Version 1.3\\n"
                 "Options:\\n"
                 "-d | --device name Video device name [%s]n"
                 "-h | --help
                                       Print this messagen"
                 "-m | --mmap
                                       Use memory mapped buffers [default]n
⇔"
                 "-r | --read
                                       Use read() callsn"
                 "-u | --userp
                                       Use application allocated buffersn"
                 "-o | --output
                                       Outputs stream to stdoutn"
                 "-f
                     --format
                                       Force format to 640x480 YUYVn"
                 "-c | --count
                                       Number of frames to grab [%i]n"
                 ۰۰,
                 argv[0], dev_name, frame_count);
}
static const char short options[] = "d:hmruofc:";
static const struct option
long options[] = {
        { "device", required argument, NULL, 'd' },
                                       NULL, 'h' },
        { "help",
                    no_argument,
        { "mmap",
{ "read",
                                       NULL, 'm' },
                    no argument,
                                       NULL. 'r'
                    no argument,
                                                 },
                                       NULL. 'u'
         "userp",
                   no_argument,
                                                 },
        {
         "output", no_argument,
                                       NULL,
                                                 },
                                             '0'
        {
         "format", no_argument,
                                       NULL,
                                             'f'
                                                 },
        {
                   required_argument, NULL, 'c'
         "count",
                                                 },
```

```
(continued from previous page)
```

```
\{0, 0, 0, 0\}
};
int main(int argc, char **argv)
{
        dev_name = "/dev/video0";
        for (;;) {
                int idx;
                int c;
                c = getopt_long(argc, argv,
                                 short options, long options, &idx);
                if (-1 == c)
                         break;
                switch (c) {
                case 0: /* getopt_long() flag */
                         break;
                case 'd':
                         dev_name = optarg;
                         break;
                case 'h':
                         usage(stdout, argc, argv);
                         exit(EXIT_SUCCESS);
                case 'm':
                         io = IO METHOD MMAP;
                         break;
                case 'r':
                         io = IO METHOD READ;
                         break;
                case 'u':
                         io = I0_METHOD_USERPTR;
                         break;
                case 'o':
                         out buf++;
                         break;
                case 'f':
                         force_format++;
                         break;
                case 'c':
                         errno = 0;
                         frame_count = strtol(optarg, NULL, 0);
                         if (errno)
                                 errno exit(optarg);
                         break;
```

7.2.11 Video Grabber example using libv4l

This program demonstrates how to grab V4L2 images in ppm format by using libv4l handlers. The advantage is that this grabber can potentially work with any V4L2 driver.

file: media/v4l/v4l2grab.c

```
/* V4L2 video picture grabber
   Copyright (C) 2009 Mauro Carvalho Chehab <mchehab@kernel.org>
  This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
  the Free Software Foundation version 2 of the License.
  This program is distributed in the hope that it will be useful.
   but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
   GNU General Public License for more details.
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <linux/videodev2.h>
#include "../libv4l/include/libv4l2.h"
#define CLEAR(x) memset(&(x), 0, sizeof(x))
                                                         (continues on next page)
```

```
(continued from previous page)
```

```
struct buffer {
               *start;
        void
        size_t length;
};
static void xioctl(int fh, int request, void *arg)
{
        int r;
        do {
                r = v4l2 ioctl(fh, request, arg);
        } while (r == -1 \&\& ((errno == EINTR) || (errno == EAGAIN)));
        if (r == -1) {
                fprintf(stderr, "error %d, %s\\n", errno, strerror(errno));
                exit(EXIT FAILURE);
        }
}
int main(int argc, char **argv)
{
        struct v4l2 format
                                         fmt;
        struct v4l2_buffer
                                         buf;
        struct v4l2_requestbuffers
                                         req;
        enum v4l2 buf type
                                         type;
        fd set
                                         fds;
        struct timeval
                                         tv;
        int
                                         r, fd = -1;
        unsigned int
                                         i, n buffers;
                                         *dev name = "/dev/video0";
        char
        char
                                         out name[256];
        FILE
                                         *fout;
        struct buffer
                                         *buffers;
        fd = v4l2 open(dev name, 0 RDWR | 0 NONBLOCK, 0);
        if (fd < \overline{0}) {
                perror("Cannot open device");
                exit(EXIT_FAILURE);
        }
        CLEAR(fmt);
        fmt.type = V4L2 BUF TYPE VIDEO CAPTURE;
        fmt.fmt.pix.width
                               = 640;
        fmt.fmt.pix.height
                                = 480;
        fmt.fmt.pix.pixelformat = V4L2 PIX FMT RGB24;
        fmt.fmt.pix.field
                                = V4L2 FIELD INTERLACED;
        xioctl(fd, VIDIOC_S_FMT, &fmt);
        if (fmt.fmt.pix.pixelformat != V4L2 PIX FMT RGB24) {
                printf("Libv4l didn't accept RGB24 format. Can't proceed.\\
→n");
                exit(EXIT FAILURE);
        if ((fmt.fmt.pix.width != 640) || (fmt.fmt.pix.height != 480))
                printf("Warning: driver is sending image at %dx%d\\n",
                         fmt.fmt.pix.width, fmt.fmt.pix.height);
```

```
(continues on next page)
```

```
(continued from previous page)
```

```
CLEAR(req);
req.count = 2;
req.type = V4L2 BUF TYPE VIDEO CAPTURE;
req.memory = V4L2_MEMORY MMAP;
xioctl(fd, VIDIOC_REQBUFS, &req);
buffers = calloc(req.count, sizeof(*buffers));
for (n buffers = 0; n buffers < req.count; ++n buffers) {</pre>
        CLEAR(buf);
        buf.type
                        = V4L2 BUF TYPE VIDEO CAPTURE;
                        = V4L2 MEMORY MMAP;
        buf.memory
        buf.index
                        = n buffers;
        xioctl(fd, VIDIOC QUERYBUF, &buf);
        buffers[n_buffers].length = buf.length;
        buffers[n_buffers].start = v4l2 mmap(NULL, buf.length,
                      PROT READ | PROT WRITE, MAP SHARED,
                      fd, buf.m.offset);
        if (MAP FAILED == buffers[n buffers].start) {
                perror("mmap");
                exit(EXIT FAILURE);
        }
}
for (i = 0; i < n buffers; ++i) {
        CLEAR(buf);
        buf.type = V4L2 BUF TYPE VIDEO CAPTURE;
        buf.memory = V4L2 MEMORY MMAP;
        buf.index = i;
        xioctl(fd, VIDIOC QBUF, &buf);
}
type = V4L2 BUF TYPE VIDE0 CAPTURE;
xioctl(fd, VIDIOC_STREAMON, &type);
for (i = 0; i < 20; i++) {
        do {
                FD ZERO(&fds);
                FD SET(fd, &fds);
                /* Timeout. */
                tv.tv sec = 2;
                tv.tv usec = 0;
                r = select(fd + 1, &fds, NULL, NULL, &tv);
        } while ((r == -1 && (errno = EINTR)));
        if (r == -1) {
                perror("select");
                return errno;
        }
        CLEAR(buf);
        buf.type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
        buf.memory = V4L2 MEMORY MMAP;
```

```
xioctl(fd, VIDIOC DQBUF, &buf);
                sprintf(out name, "out%03d.ppm", i);
                fout = fopen(out name, "w");
                if (!fout) {
                        perror("Cannot open image");
                        exit(EXIT_FAILURE);
                }
                fprintf(fout, "P6\\n%d %d 255\\n",
                        fmt.fmt.pix.width, fmt.fmt.pix.height);
                fwrite(buffers[buf.index].start, buf.bytesused, 1, fout);
                fclose(fout);
                xioctl(fd, VIDIOC_QBUF, &buf);
        }
        type = V4L2_BUF_TYPE_VIDE0_CAPTURE;
        xioctl(fd, VIDIOC STREAMOFF, &type);
        for (i = 0; i < n buffers; ++i)
                v4l2 munmap(buffers[i].start, buffers[i].length);
        v4l2_close(fd);
        return 0;
}
```

7.2.12 References

CEA 608-E

title CEA-608-E R-2014 "Line 21 Data Services"

author Consumer Electronics Association (http://www.ce.org)

EN 300 294

title EN 300 294 "625-line television Wide Screen Signalling (WSS)"

author European Telecommunication Standards Institute (http://www.etsi.org)

ETS 300 231

- **title** ETS 300 231 "Specification of the domestic video Programme Delivery Control system (PDC)"
- **author** European Telecommunication Standards Institute (http://www.etsi.org)

ETS 300 706

title ETS 300 706 "Enhanced Teletext specification"

author European Telecommunication Standards Institute (http://www.etsi.org)

ISO 13818-1

- title ITU-T Rec. H.222.0 | ISO/IEC 13818-1 "Information technology —Generic coding of moving pictures and associated audio information: Systems"
- **author** International Telecommunication Union (http://www.itu.ch), International Organisation for Standardisation (http://www.iso.ch)

ISO 13818-2

- **title** ITU-T Rec. H.262 | ISO/IEC 13818-2 "Information technology Generic coding of moving pictures and associated audio information: Video"
- **author** International Telecommunication Union (http://www.itu.ch), International Organisation for Standardisation (http://www.iso.ch)

ITU BT.470

- title ITU-R Recommendation BT.470-6 "Conventional Television Systems"
- author International Telecommunication Union (http://www.itu.ch)

ITU BT.601

title ITU-R Recommendation BT.601-5 "Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide-Screen 16:9 Aspect Ratios"

author International Telecommunication Union (http://www.itu.ch)

ITU BT.653

title ITU-R Recommendation BT.653-3 "Teletext systems"

author International Telecommunication Union (http://www.itu.ch)

ITU BT.709

- **title** ITU-R Recommendation BT.709-5 "Parameter values for the HDTV standards for production and international programme exchange"
- author International Telecommunication Union (http://www.itu.ch)

ITU BT.1119

title ITU-R Recommendation BT.1119 "625-line television Wide Screen Signalling (WSS)"

author International Telecommunication Union (http://www.itu.ch)

ITU-T Rec. H.264 Specification (04/2017 Edition)

title ITU-T Recommendation H.264 "Advanced Video Coding for Generic Audiovisual Services"

author International Telecommunication Union (http://www.itu.ch)

ITU H.265/HEVC

- title ITU-T Rec. H.265 | ISO/IEC 23008-2 "High Efficiency Video Coding"
- author International Telecommunication Union (http://www.itu.ch), International Organisation for Standardisation (http://www.iso.ch)

JFIF

title JPEG File Interchange Format

subtitle Version 1.02

author Independent JPEG Group (http://www.ijg.org)

ITU-T.81

title ITU-T Recommendation T.81 "Information Technology —Digital Compression and Coding of Continous-Tone Still Images —Requirements and Guidelines"

author International Telecommunication Union (http://www.itu.int)

W3C JPEG JFIF

title JPEG JFIF

author The World Wide Web Consortium (http://www.w3.org)

SMPTE 12M

- title SMPTE 12M-1999 "Television, Audio and Film Time and Control Code"
- author Society of Motion Picture and Television Engineers (http://www.smpte.org)

SMPTE 170M

- title SMPTE 170M-1999 "Television Composite Analog Video Signal -NTSC for Studio Applications"
- **author** Society of Motion Picture and Television Engineers (http://www.smpte.org)

SMPTE 240M

- title SMPTE 240M-1999 "Television Signal Parameters 1125-Line High-Definition Production"
- **author** Society of Motion Picture and Television Engineers (http://www.smpte.org)

SMPTE RP 431-2

- title SMPTE RP 431-2:2011 "D-Cinema Quality Reference Projector and Environment"
- **author** Society of Motion Picture and Television Engineers (http://www.smpte.org)

SMPTE ST 2084

- title SMPTE ST 2084:2014 "High Dynamic Range Electro-Optical Transfer Function of Master Reference Displays"
- author Society of Motion Picture and Television Engineers (http://www.smpte.org)

sRGB

title IEC 61966-2-1 ed1.0 "Multimedia systems and equipment - Colour measurement and management - Part 2-1: Colour management -Default RGB colour space - sRGB"

author International Electrotechnical Commission (http://www.iec.ch)

sYCC

title IEC 61966-2-1-am1 ed1.0 "Amendment 1 - Multimedia systems and equipment - Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"

author International Electrotechnical Commission (http://www.iec.ch)

xvYCC

title IEC 61966-2-4 ed1.0 "Multimedia systems and equipment - Colour measurement and management - Part 2-4: Colour management -Extended-gamut YCC colour space for video applications - xvYCC"

author International Electrotechnical Commission (http://www.iec.ch)

opRGB

title IEC 61966-2-5 "Multimedia systems and equipment - Colour measurement and management - Part 2-5: Colour management - Optional RGB colour space - opRGB"

author International Electrotechnical Commission (http://www.iec.ch)

ITU BT.2020

title ITU-R Recommendation BT.2020 (08/2012) "Parameter values for ultra-high definition television systems for production and international programme exchange"

author International Telecommunication Union (http://www.itu.ch)

EBU Tech 3213

title E.B.U. Standard for Chromaticity Tolerances for Studio Monitors" **author** European Broadcast Union (http://www.ebu.ch)

IEC 62106

- **title** Specification of the radio data system (RDS) for VHF/FM sound broadcasting in the frequency range from 87,5 to 108,0 MHz
- author International Electrotechnical Commission (http://www.iec.ch)

NRSC-4-B

title NRSC-4-B: United States RBDS Standard

author National Radio Systems Committee (http://www.nrscstandards. org)

ISO 12232:2006

- **title** Photography —Digital still cameras —Determination of exposure index, ISO speed ratings, standard output sensitivity, and recommended exposure index
- author International Organization for Standardization (http://www.iso. org)

CEA-861-E

title A DTV Profile for Uncompressed High Speed Digital Interfaces

author Consumer Electronics Association (http://www.ce.org)

VESA DMT

title VESA and Industry Standards and Guidelines for Computer Display Monitor Timing (DMT)

author Video Electronics Standards Association (http://www.vesa.org)

EDID

title VESA Enhanced Extended Display Identification Data Standard

subtitle Release A, Revision 2

author Video Electronics Standards Association (http://www.vesa.org)

HDCP

title High-bandwidth Digital Content Protection Systemsubtitle Revision 1.3author Digital Content Protection LLC (http://www.digital-cp.com)

HDMI

title High-Definition Multimedia Interface subtitle Specification Version 1.4a author HDMI Licensing LLC (http://www.hdmi.org)

HDMI2

title High-Definition Multimedia Interface
subtitle Specification Version 2.0
author HDMI Licensing LLC (http://www.hdmi.org)

DP

title VESA DisplayPort Standard
subtitle Version 1, Revision 2
author Video Electronics Standards Association (http://www.vesa.org)

poynton

title Digital Video and HDTV, Algorithms and Interfaces **author** Charles Poynton

colimg

title Color Imaging: Fundamentals and Applications author Erik Reinhard et al.

VP8

title RFC 6386: "VP8 Data Format and Decoding Guide"

author

J. Bankoski et al.

7.2.13 Revision and Copyright

Authors, in alphabetical order:

- Ailus, Sakari <sakari.ailus@iki.fi>
 - Subdev selections API.
- Carvalho Chehab, Mauro <mchehab+samsung@kernel.org>
 - Documented libv4l, designed and added v4l2grab example, Remote Controller chapter.
- Dirks, Bill
 - Original author of the V4L2 API and documentation.
- Figa, Tomasz <tfiga@chromium.org>
 - Documented the memory-to-memory decoder interface.
- H Schimek, Michael <mschimek@gmx.at>
 - Original author of the V4L2 API and documentation.
- Karicheri, Muralidharan <m-karicheri2@ti.com>
 - Documented the Digital Video timings API.
- Osciak, Pawel <posciak@chromium.org>
 - Documented the memory-to-memory decoder interface.
- Osciak, Pawel <pawel@osciak.com>
 - Designed and documented the multi-planar API.
- Palosaari, Antti <crope@iki.fi>
 - SDR API.
- Ribalda, Ricardo
 - Introduce HSV formats and other minor changes.
- Rubli, Martin
 - Designed and documented the VIDIOC_ENUM_FRAMESIZES and VID-IOC_ENUM_FRAMEINTERVALS ioctls.
- Walls, Andy <awalls@md.metrocast.net>
 - Documented the fielded V4L2_MPEG_STREAM_VBI_FMT_IVTV MPEG stream embedded, sliced VBI data format in this specification.
- Verkuil, Hans <hverkuil@xs4all.nl>

- Designed and documented the VIDIOC_LOG_STATUS ioctl, the extended control ioctls, major parts of the sliced VBI API, the MPEG encoder and decoder APIs and the DV Timings API.

Copyright © 1999-2018: Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin Rubli, Andy Walls, Muralidharan Karicheri, Mauro Carvalho Chehab, Pawel Osciak, Sakari Ailus & Antti Palosaari, Tomasz Figa

Except when explicitly stated as GPL, programming examples within this part can be used and distributed without restrictions.

7.2.14 Revision History

revision 4.10 / 2016-07-15 (rr)

Introduce HSV formats.

revision 4.5 / 2015-10-29 (rr)

revision 4.4 / 2015-05-26 (ap)

Renamed V4L2_TUNER_ADC to V4L2_TUNER_SDR. Added V4L2_CID_RF_TUNER_RF_GAIN control. Added transmitter support for Software Defined Radio (SDR) Interface.

revision 4.1 / 2015-02-13 (mcc)

Fix documentation for media controller device nodes and add support for DVB device nodes. Add support for Tuner sub-device.

revision 3.19 / 2014-12-05 (hv)

Rewrote Colorspace chapter, added new enum v4l2_ycbcr_encoding and enum v4l2_quantization fields to struct v4l2_pix_format, struct v4l2_pix_format_mplane and struct v4l2_mbus_framefmt.

revision 3.17 / 2014-08-04 (lp, hv)

Extended struct v4l2_pix_format. Added format flags. Added compound control types and VIDIOC_QUERY_EXT_CTRL.

revision 3.15 / 2014-02-03 (hv, ap)

Update several sections of "Common API Elements": "Opening and Closing Devices" "Querying Capabilities", "Application Priority", "Video Inputs and Outputs", "Audio Inputs and Outputs""Tuners and Modulators", "Video Standards" and "Digital Video (DV) Timings". Added SDR API.

revision 3.14 / 2013-11-25 (rr)

Set width and height as unsigned on v4l2_rect.

revision 3.11 / 2013-05-26 (hv)

Remove obsolete VIDIOC_DBG_G_CHIP_IDENT ioctl.

revision 3.10 / 2013-03-25 (hv)

Remove obsolete and unused DV_PRESET ioctls: VIDIOC_G_DV_PRESET, VIDIOC_S_DV_PRESET, VIDIOC_QUERY_DV_PRESET and VID-IOC_ENUM_DV_PRESET. Remove the related v4l2_input/output capability flags V4L2_IN_CAP_PRESETS and V4L2_OUT_CAP_PRESETS. Added VID-IOC_DBG_G_CHIP_INFO.

revision 3.9 / 2012-12-03 (sa, sn)

Added timestamp types to v4l2_buffer. Added V4L2_EVENT_CTRL_CH_RANGE control event changes flag.

revision 3.6 / 2012-07-02 (hv)

Added VIDIOC_ENUM_FREQ_BANDS.

revision 3.5 / 2012-05-07 (sa, sn, hv)

Added V4L2 CTRL TYPE INTEGER MENU V4L2 subdev and selections API. Improved the description V4L2 CID COLORFX of V4L2_CID COLORFX CBCR added control. control. Added camera controls V4L2 CID AUTO EXPOSURE BIAS, V4L2 CID AUTO N PRESET WHITE BALANCE, V4L2 CID IMAGE STABILIZATION, V4L2 CID ISO SENSITIVITY, V4L2 CID ISO SENSITIVITY AUTO, V4L2 CID EXPOSURE METERING, V4L2 CID SCENE MODE, V4L2 CID 3A LOCK, V4L2 CID AUTO FOCUS START, V4L2 CID AUTO FOCUS STOP, V4L2 CID AUTO FOCUS STATUS and V4L2 CID AUTO FOCUS RANGE. Added VIDIOC ENUM DV TIMINGS, VID-IOC QUERY DV TIMINGS and VIDIOC DV TIMINGS CAP.

revision 3.4 / 2012-01-25 (sn)

Added JPEG compression control class.

revision 3.3 / 2012-01-11 (hv)

Added device_caps field to struct v4l2_capabilities.

revision 3.2 / 2011-08-26 (hv)

Added V4L2 CTRL FLAG VOLATILE.

revision 3.1 / 2011-06-27 (mcc, po, hv)

Documented that VIDIOC_QUERYCAP now returns a per-subsystem version instead of a per-driver one. Standardize an error code for invalid ioctl. Added V4L2_CTRL_TYPE_BITMASK.

revision 2.6.39 / 2011-03-01 (mcc, po)

Removed VIDIOC_*_OLD from videodev2.h header and update it to reflect latest changes. Added the multi-planar API.

revision 2.6.37 / 2010-08-06 (hv)

Removed obsolete vtx (videotext) API.

revision 2.6.33 / 2009-12-03 (mk)

Added documentation for the Digital Video timings API.

revision 2.6.32 / 2009-08-31 (mcc)

Now, revisions will match the kernel version where the V4L2 API changes will be used by the Linux Kernel. Also added Remote Controller chapter.

revision 0.29 / 2009-08-26 (ev)

Added documentation for string controls and for FM Transmitter controls.

revision 0.28 / 2009-08-26 (gl)

Added V4L2_CID_BAND_STOP_FILTER documentation.

revision 0.27 / 2009-08-15 (mcc)

Added libv4l and Remote Controller documentation; added v4l2grab and keytable application examples.

revision 0.26 / 2009-07-23 (hv)

Finalized the RDS capture API. Added modulator and RDS encoder capabilities. Added support for string controls.

revision 0.25 / 2009-01-18 (hv)

Added pixel formats VYUY, NV16 and NV61, and changed the debug ioctls VIDIOC_DBG_G/S_REGISTER and VIDIOC_DBG_G_CHIP_IDENT. Added camera controls V4L2_CID_ZOOM_ABSOLUTE, V4L2_CID_ZOOM_RELATIVE, V4L2_CID_ZOOM_CONTINUOUS and V4L2_CID_PRIVACY.

revision 0.24 / 2008-03-04 (mhs)

Added pixel formats Y16 and SBGGR16, new controls and a camera controls class. Removed VIDIOC_G/S_MPEGCOMP.

revision 0.23 / 2007-08-30 (mhs)

Fixed a typo in VIDIOC_DBG_G/S_REGISTER. Clarified the byte order of packed pixel formats.

revision 0.22 / 2007-08-29 (mhs)

Added the Video Output Overlay interface, new MPEG controls, V4L2 FIELD INTERLACED TB V4L2 FIELD INTERLACED BT, and VIDIOC DBG G/S REGISTER, VIDIOC (TRY)ENCODER CMD, VID-IOC G CHIP IDENT, VIDIOC G ENC INDEX, new pixel formats. Clarifications in the cropping chapter, about RGB pixel formats, the mmap(), poll(), select(), read() and write() functions. Typographical fixes.

revision 0.21 / 2006-12-19 (mhs)

Fixed a link in the VIDIOC_G_EXT_CTRLS section.

revision 0.20 / 2006-11-24 (mhs)

Clarified the purpose of the audioset field in struct v4l2_input and v4l2_output.

revision 0.19 / 2006-10-19 (mhs)

Documented V4L2_PIX_FMT_RGB444.

revision 0.18 / 2006-10-18 (mhs)

Added the description of extended controls by Hans Verkuil. Linked V4L2_PIX_FMT_MPEG to V4L2_CID_MPEG_STREAM_TYPE.

revision 0.17 / 2006-10-12 (mhs)

 $Corrected \ V4L2_PIX_FMT_HM12 \ description.$

revision 0.16 / 2006-10-08 (mhs)

 $VIDIOC_ENUM_FRAMESIZES$ and $VIDIOC_ENUM_FRAMEINTERVALS$ are now part of the API.

revision 0.15 / 2006-09-23 (mhs)

Cleaned up the bibliography, added BT.653 and BT.1119. capture.c/start_capturing() for user pointer I/O did not initialize the buffer index. Documented the V4L MPEG and MJPEG VID_TYPEs and V4L2_PIX_FMT_SBGGR8. Updated the list of reserved pixel formats. See the history chapter for API changes.

revision 0.14 / 2006-09-14 (mr)

Added VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS proposal for frame format enumeration of digital devices.

revision 0.13 / 2006-04-07 (mhs)

Corrected the description of struct v4l2_window clips. New V4L2_STD_ and V4L2_TUNER_MODE_LANG1_LANG2 defines.

revision 0.12 / 2006-02-03 (mhs)

Corrected the description of struct v4l2_captureparm and v4l2_outputparm.

revision 0.11 / 2006-01-27 (mhs)

Improved the description of struct v4l2_tuner.

revision 0.10 / 2006-01-10 (mhs)

VIDIOC_G_INPUT and VIDIOC_S_PARM clarifications.

revision 0.9 / 2005-11-27 (mhs)

Improved the 525 line numbering diagram. Hans Verkuil and I rewrote the sliced VBI section. He also contributed a VIDIOC_LOG_STATUS page. Fixed VID-IOC_S_STD call in the video standard selection example. Various updates.

revision 0.8 / 2004-10-04 (mhs)

Somehow a piece of junk slipped into the capture example, removed.

revision 0.7 / 2004-09-19 (mhs)

Fixed video standard selection, control enumeration, downscaling and aspect example. Added read and user pointer i/o to video capture example.

revision 0.6 / 2004-08-01 (mhs)

v4l2_buffer changes, added video capture example, various corrections.

revision 0.5 / 2003-11-05 (mhs)

Pixel format erratum.

revision 0.4 / 2003-09-17 (mhs)

Corrected source and Makefile to generate a PDF. SGML fixes. Added latest API changes. Closed gaps in the history chapter.

revision 0.3 / 2003-02-05 (mhs)

Another draft, more corrections.

revision 0.2 / 2003-01-15 (mhs)

Second draft, with corrections pointed out by Gerd Knorr.

revision 0.1 / 2002-12-01 (mhs)

First draft, based on documentation by Bill Dirks and discussions on the V4L mailing list.

7.3 Part II - Digital TV API

Note: This API is also known as Linux DVB API.

It it was originally written to support the European digital TV standard (DVB), and later extended to support all digital TV standards.

In order to avoid confusion, within this document, it was opted to refer to it, and to associated hardware as **Digital TV**.

The word **DVB** is reserved to be used for:

- the Digital TV API version (e. g. DVB API version 3 or DVB API version 5);
- digital TV data types (enums, structs, defines, etc);
- digital TV device nodes (/dev/dvb/...);
- the European DVB standard.

Version 5.10

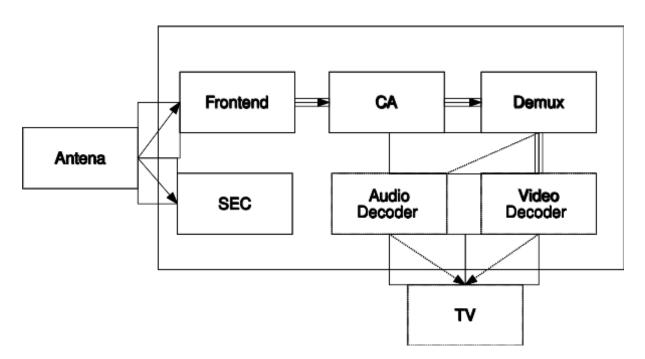
7.3.1 Introduction

What you need to know

The reader of this document is required to have some knowledge in the area of digital video broadcasting (Digital TV) and should be familiar with part I of the MPEG2 specification ISO/IEC 13818 (aka ITU-T H.222), i.e you should know what a program/transport stream (PS/TS) is and what is meant by a packetized elementary stream (PES) or an I-frame.

Various Digital TV standards documents are available for download at:

- European standards (DVB): http://www.dvb.org and/or http://www.etsi.org.
- American standards (ATSC): https://www.atsc.org/standards/
- Japanese standards (ISDB): http://www.dibeg.org/


It is also necessary to know how to access Linux devices and how to use ioctl calls. This also includes the knowledge of C or C++.

History

The first API for Digital TV cards we used at Convergence in late 1999 was an extension of the Video4Linux API which was primarily developed for frame grabber cards. As such it was not really well suited to be used for Digital TV cards and their new features like recording MPEG streams and filtering several section and PES data streams at the same time.

In early 2000, Convergence was approached by Nokia with a proposal for a new standard Linux Digital TV API. As a commitment to the development of terminals based on open standards, Nokia and Convergence made it available to all Linux developers and published it on https://linuxtv.org in September 2000. With the Linux driver for the Siemens/Hauppauge DVB PCI card, Convergence provided a first implementation of the Linux Digital TV API. Convergence was the maintainer of the Linux Digital TV API in the early days.

Now, the API is maintained by the LinuxTV community (i.e. you, the reader of this document). The Linux Digital TV API is constantly reviewed and improved together with the improvements at the subsystem' s core at the Kernel.

Overview

Fig. 18: Components of a Digital TV card/STB

A Digital TV card or set-top-box (STB) usually consists of the following main hardware components:

Frontend consisting of tuner and digital TV demodulator Here the raw signal reaches the digital TV hardware from a satellite dish or antenna or directly from cable. The frontend down-converts and demodulates this signal into an MPEG transport stream (TS). In case of a satellite frontend, this includes a facility for satellite equipment control (SEC), which allows control of LNB polarization, multi feed switches or dish rotors.

Conditional Access (CA) hardware like CI adapters and smartcard slots

The complete TS is passed through the CA hardware. Programs to which the user has access (controlled by the smart card) are decoded in real time and re-inserted into the TS.

Note: Not every digital TV hardware provides conditional access hardware.

Demultiplexer which filters the incoming Digital TV MPEG-TS stream

The demultiplexer splits the TS into its components like audio and video streams. Besides usually several of such audio and video streams it also contains data streams with information about the programs offered in this or other streams of the same provider.

Audio and video decoder The main targets of the demultiplexer are audio and video decoders. After decoding, they pass on the uncompressed audio and video to the computer screen or to a TV set.

Note: Modern hardware usually doesn't have a separate decoder hardware, as such functionality can be provided by the main CPU, by the graphics adapter of the system or by a signal processing hardware embedded on a Systems on a Chip (SoC) integrated circuit.

It may also not be needed for certain usages (e.g. for data-only uses like "internet over satellite").

Components of a Digital TV card/STB shows a crude schematic of the control and data flow between those components.

Linux Digital TV Devices

The Linux Digital TV API lets you control these hardware components through currently six Unix-style character devices for video, audio, frontend, demux, CA and IP-over-DVB networking. The video and audio devices control the MPEG2 decoder hardware, the frontend device the tuner and the Digital TV demodulator. The demux device gives you control over the PES and section filters of the hardware. If the hardware does not support filtering these filters can be implemented in software. Finally, the CA device controls all the conditional access capabilities of the hardware. It can depend on the individual security requirements of the platform, if and how many of the CA functions are made available to the application through this device.

All devices can be found in the /dev tree under /dev/dvb. The individual devices are called:

- /dev/dvb/adapterN/audioM,
- /dev/dvb/adapterN/videoM,
- /dev/dvb/adapterN/frontendM,
- /dev/dvb/adapterN/netM,
- /dev/dvb/adapterN/demuxM,

- /dev/dvb/adapterN/dvrM,
- /dev/dvb/adapterN/caM,

where N enumerates the Digital TV cards in a system starting from 0, and M enumerates the devices of each type within each adapter, starting from 0, too. We will omit the "/dev/dvb/adapterN/" in the further discussion of these devices.

More details about the data structures and function calls of all the devices are described in the following chapters.

API include files

For each of the Digital TV devices a corresponding include file exists. The Digital TV API include files should be included in application sources with a partial path like:

```
#include <linux/dvb/ca.h>
#include <linux/dvb/dmx.h>
#include <linux/dvb/frontend.h>
#include <linux/dvb/net.h>
```

To enable applications to support different API version, an additional include file linux/dvb/version.h exists, which defines the constant DVB_API_VERSION. This document describes DVB_API_VERSION 5.10.

7.3.2 Digital TV Frontend API

The Digital TV frontend API was designed to support three groups of delivery systems: Terrestrial, cable and Satellite. Currently, the following delivery systems are supported:

- Terrestrial systems: DVB-T, DVB-T2, ATSC, ATSC M/H, ISDB-T, DVB-H, DTMB, CMMB
- Cable systems: DVB-C Annex A/C, ClearQAM (DVB-C Annex B)
- Satellite systems: DVB-S, DVB-S2, DVB Turbo, ISDB-S, DSS

The Digital TV frontend controls several sub-devices including:

- Tuner
- Digital TV demodulator
- Low noise amplifier (LNA)
- Satellite Equipment Control (SEC)¹.

¹ On Satellite systems, the API support for the Satellite Equipment Control (SEC) allows to power control and to send/receive signals to control the antenna subsystem, selecting the polarization and choosing the Intermediate Frequency IF) of the Low Noise Block Converter Feed Horn (LNBf). It supports the DiSEqC and V-SEC protocols. The DiSEqC (digital SEC) specification is available at Eutelsat.

The frontend can be accessed through /dev/dvb/adapter?/frontend?. Data types and ioctl definitions can be accessed by including linux/dvb/frontend.h in your application.

Note: Transmission via the internet (DVB-IP) and MMT (MPEG Media Transport) is not yet handled by this API but a future extension is possible.

Querying frontend information

Usually, the first thing to do when the frontend is opened is to check the frontend capabilities. This is done using ioctl FE_GET_INFO. This ioctl will enumerate the Digital TV API version and other characteristics about the frontend, and can be opened either in read only or read/write mode.

Querying frontend status and statistics

Once FE_SET_PROPERTY is called, the frontend will run a kernel thread that will periodically check for the tuner lock status and provide statistics about the quality of the signal.

The information about the frontend tuner locking status can be queried using ioctl FE_READ_STATUS.

Signal statistics are provided via ioctl FE_SET_PROPERTY, FE_GET_PROPERTY.

Note: Most statistics require the demodulator to be fully locked (e. g. with FE_HAS_LOCK bit set). See Frontend statistics indicators for more details.

Property types

Tuning into a Digital TV physical channel and starting decoding it requires changing a set of parameters, in order to control the tuner, the demodulator, the Linear Low-noise Amplifier (LNA) and to set the antenna subsystem via Satellite Equipment Control - SEC (on satellite systems). The actual parameters are specific to each particular digital TV standards, and may change as the digital TV specs evolves.

In the past (up to DVB API version 3 - DVBv3), the strategy used was to have a union with the parameters needed to tune for DVB-S, DVB-C, DVB-T and ATSC delivery systems grouped there. The problem is that, as the second generation standards appeared, the size of such union was not big enough to group the structs that would be required for those new standards. Also, extending it would break userspace.

So, the legacy union/struct based approach was deprecated, in favor of a properties set approach. On such approach, FE_GET_PROPERTY and FE_SET_PROPERTY are used to setup the frontend and read its status.

The actual action is determined by a set of dtv_property cmd/data pairs. With one single ioctl, is possible to get/set up to 64 properties.

This section describes the new and recommended way to set the frontend, with supports all digital TV delivery systems.

Note:

- 1. On Linux DVB API version 3, setting a frontend was done via struct dvb_frontend_parameters.
- 2. Don't use DVB API version 3 calls on hardware with supports newer standards. Such API provides no support or a very limited support to new standards and/or new hardware.
- 3. Nowadays, most frontends support multiple delivery systems. Only with DVB API version 5 calls it is possible to switch between the multiple delivery systems supported by a frontend.
- 4. DVB API version 5 is also called S2API, as the first new standard added to it was DVB-S2.

Example: in order to set the hardware to tune into a DVB-C channel at 651 kHz, modulated with 256-QAM, FEC 3/4 and symbol rate of 5.217 Mbauds, those properties should be sent to FE_SET_PROPERTY ioctl:

```
DTV_DELIVERY_SYSTEM = SYS_DVBC_ANNEX_A
DTV_FREQUENCY = 651000000
DTV_MODULATION = QAM_256
DTV_INVERSION = INVERSION_AUTO
DTV_SYMBOL_RATE = 5217000
DTV_INNER_FEC = FEC_3_4
DTV_TUNE
```

The code that would that would do the above is show in Example: Setting digital TV frontend properties.

Listing 1: Example: Setting digital TV frontend properties

```
#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/dvb/frontend.h>
static struct dtv property props[] = {
    { .cmd = DTV DELIVERY SYSTEM, .u.data = SYS DVBC ANNEX A },
    { .cmd = DTV FREQUENCY,
                                  .u.data = 651000000 },
    { .cmd = DTV MODULATION,
                                  .u.data = QAM 256 \},
    { .cmd = DTV INVERSION,
                                  .u.data = INVERSION AUTO },
    { .cmd = DTV_SYMBOL_RATE,
                                  .u.data = 5217000 },
    { .cmd = DTV INNER FEC,
                                  .u.data = FEC 3 4 \},
```

```
{ .cmd = DTV TUNE }
};
static struct dtv_properties dtv_prop = {
    .num = 6, .props = props
};
int main(void)
{
    int fd = open("/dev/dvb/adapter0/frontend0", 0 RDWR);
    if (!fd) {
        perror ("open");
        return -1;
    }
    if (ioctl(fd, FE_SET_PROPERTY, &dtv_prop) == -1) {
        perror("ioctl");
        return -1;
    }
    printf("Frontend set\\n");
    return 0;
}
```

Attention: While it is possible to directly call the Kernel code like the above example, it is strongly recommended to use libdvbv5, as it provides abstraction to work with the supported digital TV standards and provides methods for usual operations like program scanning and to read/write channel descriptor files.

Digital TV property parameters

There are several different Digital TV parameters that can be used by FE_SET_PROPERTY and FE_GET_PROPERTY ioctls. This section describes each of them. Please notice, however, that only a subset of them are needed to setup a frontend.

DTV_UNDEFINED

Used internally. A GET/SET operation for it won't change or return anything.

DTV_TUNE

Interpret the cache of data, build either a traditional frontend tunerequest so we can pass validation in the FE_SET_FRONTEND ioctl.

DTV_CLEAR

Reset a cache of data specific to the frontend here. This does not effect hardware.

DTV_FREQUENCY

Frequency of the digital TV transponder/channel.

Note:

- 1. For satellite delivery systems, the frequency is in kHz.
- 2. For cable and terrestrial delivery systems, the frequency is in Hz.
- 3. On most delivery systems, the frequency is the center frequency of the transponder/channel. The exception is for ISDB-T, where the main carrier has a 1/7 offset from the center.
- 4. For ISDB-T, the channels are usually transmitted with an offset of about 143kHz. E.g. a valid frequency could be 474,143 kHz. The stepping is bound to the bandwidth of the channel which is typically 6MHz.
- 5. In ISDB-Tsb, the channel consists of only one or three segments the frequency step is 429kHz, 3*429 respectively.

DTV_MODULATION

Specifies the frontend modulation type for delivery systems that supports more multiple modulations.

The modulation can be one of the types defined by enum fe_modulation.

Most of the digital TV standards offers more than one possible modulation type.

The table below presents a summary of the types of modulation types supported by each delivery system, as currently defined by specs.

Standard	Modulation types
ATSC (version 1)	8-VSB and 16-VSB.
DMTB	4-QAM, 16-QAM, 32-QAM, 64-QAM and 4-QAM-NR.
DVB-C Annex A/C	16-QAM, 32-QAM, 64-QAM and 256-QAM.
DVB-C Annex B	64-QAM.
DVB-T	QPSK, 16-QAM and 64-QAM.
DVB-T2	QPSK, 16-QAM, 64-QAM and 256-QAM.
DVB-S	No need to set. It supports only QPSK.
DVB-S2	QPSK, 8-PSK, 16-APSK and 32-APSK.
ISDB-T	QPSK, DQPSK, 16-QAM and 64-QAM.
ISDB-S	8-PSK, QPSK and BPSK.

Note: Please notice that some of the above modulation types may not be defined currently at the Kernel. The reason is simple: no driver needed such definition yet.

DTV_BANDWIDTH_HZ

Bandwidth for the channel, in HZ.

Should be set only for terrestrial delivery systems.

Possible values: 1712000, 5000000, 6000000, 7000000, 8000000, 10000000.

Terrestrial Stan-	Possible values for bandwidth
dard	
ATSC (version 1)	No need to set. It is always 6MHz.
DMTB	No need to set. It is always 8MHz.
DVB-T	6MHz, 7MHz and 8MHz.
DVB-T2	1.172 MHz, 5MHz, 6MHz, 7MHz, 8MHz and 10MHz
ISDB-T	5MHz, 6MHz, 7MHz and 8MHz, although most places use
	6MHz.

Note:

1. For ISDB-Tsb, the bandwidth can vary depending on the number of connected segments.

It can be easily derived from other parameters (DTV_ISDBT_SB_SEGMENT_IDX, DTV_ISDBT_SB_SEGMENT_COUNT).

2. On Satellite and Cable delivery systems, the bandwidth depends on the symbol rate. So, the Kernel will silently ignore any setting DTV_BANDWIDTH_HZ. I will however fill it back with a bandwidth estimation.

Such bandwidth estimation takes into account the symbol rate set with DTV_SYMBOL_RATE , and the rolloff factor, with is fixed for DVB-C and DVB-S.

For DVB-S2, the rolloff should also be set via DTV_ROLLOFF.

DTV_INVERSION

Specifies if the frontend should do spectral inversion or not. The acceptable values are defined by fe_spectral_inversion.

DTV_DISEQC_MASTER

Currently not implemented.

DTV_SYMBOL_RATE

Used on cable and satellite delivery systems. Digital TV symbol rate, in bauds (symbols/second).

DTV_INNER_FEC

Used on cable and satellite delivery systems. The acceptable values are defined by fe_code_rate.

DTV_VOLTAGE

Used on satellite delivery systems.

The voltage is usually used with non-DiSEqC capable LNBs to switch the polarzation (horizontal/vertical). When using DiSEqC epuipment this voltage has to be switched consistently to the DiSEqC commands as described in the DiSEqC spec.

The acceptable values are defined by fe_sec_voltage.

DTV_TONE

Currently not used.

DTV_PILOT

Used on DVB-S2. Sets DVB-S2 pilot. The acceptable values are defined by fe_pilot.

DTV_ROLLOFF

Used on DVB-S2. Sets DVB-S2 rolloff. The acceptable values are defined by fe_rolloff.

DTV_DISEQC_SLAVE_REPLY

Currently not implemented.

DTV_FE_CAPABILITY_COUNT

Currently not implemented.

DTV_FE_CAPABILITY

Currently not implemented.

DTV_DELIVERY_SYSTEM

Specifies the type of the delivery system. The acceptable values are defined by fe_delivery_system.

DTV_ISDBT_PARTIAL_RECEPTION

Used only on ISDB.

If $DTV_ISDBT_SOUND_BROADCASTING$ is '0' this bit-field represents whether the channel is in partial reception mode or not.

If '1' $DTV_ISDBT_LAYERA_*$ values are assigned to the center segment and $DTV_ISDBT_LAYERA_SEGMENT_COUNT$ has to be '1' .

If in addition DTV_ISDBT_SOUND_BROADCASTING is '1' DTV_ISDBT_PARTIAL_RECEPTION represents whether this ISDB-Tsb channel is consisting of one segment and layer or three segments and two layers.

Possible values: 0, 1, -1 (AUTO)

DTV_ISDBT_SOUND_BROADCASTING

Used only on ISDB.

This field represents whether the other DTV_ISDBT_*-parameters are referring to an ISDB-T and an ISDB-Tsb channel. (See also DTV_ISDBT_PARTIAL_RECEPTION).

Possible values: 0, 1, -1 (AUTO)

DTV_ISDBT_SB_SUBCHANNEL_ID

Used only on ISDB.

This field only applies if DTV_ISDBT_SOUND_BROADCASTING is '1'.

(Note of the author: This might not be the correct description of the SUBCHANNEL-ID in all details, but it is my understanding of the technical background needed to program a device)

An ISDB-Tsb channel (1 or 3 segments) can be broadcasted alone or in a set of connected ISDB-Tsb channels. In this set of channels every channel can be received independently. The number of connected ISDB-Tsb segment can vary, e.g. depending on the frequency spectrum bandwidth available.

Example: Assume 8 ISDB-Tsb connected segments are broadcasted. The broadcaster has several possibilities to put those channels in the air: Assuming a normal 13-segment ISDB-T spectrum he can align the 8 segments from position 1-8 to 5-13 or anything in between.

The underlying layer of segments are subchannels: each segment is consisting of several subchannels with a predefined IDs. A sub-channel is used to help the demodulator to synchronize on the channel.

An ISDB-T channel is always centered over all sub-channels. As for the example above, in ISDB-Tsb it is no longer as simple as that.

The DTV_ISDBT_SB_SUBCHANNEL_ID parameter is used to give the sub-channel ID of the segment to be demodulated.

Possible values: 0 .. 41, -1 (AUTO)

DTV_ISDBT_SB_SEGMENT_IDX

Used only on ISDB.

This field only applies if DTV_ISDBT_SOUND_BROADCASTING is '1'.

 $\mathsf{DTV_ISDBT_SB_SEGMENT_IDX}$ gives the index of the segment to be demodulated for an ISDB-Tsb channel where several of them are transmitted in the connected manner.

Possible values: 0 .. DTV_ISDBT_SB_SEGMENT_COUNT - 1

Note: This value cannot be determined by an automatic channel search.

DTV_ISDBT_SB_SEGMENT_COUNT

Used only on ISDB.

This field only applies if $DTV_ISDBT_SOUND_BROADCASTING$ is '1'.

 $\mathsf{DTV_ISDBT_SB_SEGMENT_COUNT}$ gives the total count of connected ISDB-Tsb channels.

Possible values: 1 .. 13

Note: This value cannot be determined by an automatic channel search.

DTV-ISDBT-LAYER[A-C] parameters

Used only on ISDB.

ISDB-T channels can be coded hierarchically. As opposed to DVB-T in ISDB-T hierarchical layers can be decoded simultaneously. For that reason a ISDB-T demodulator has 3 Viterbi and 3 Reed-Solomon decoders.

ISDB-T has 3 hierarchical layers which each can use a part of the available segments. The total number of segments over all layers has to 13 in ISDB-T.

There are 3 parameter sets, for Layers A, B and C.

DTV_ISDBT_LAYER_ENABLED

Used only on ISDB.

Hierarchical reception in ISDB-T is achieved by enabling or disabling layers in the decoding process. Setting all bits of DTV_ISDBT_LAYER_ENABLED to '1' forces all layers (if applicable) to be demodulated. This is the default.

If the channel is in the partial reception mode (DTV_ISDBT_PARTIAL_RECEPTION = 1) the central segment can be decoded independently of the other 12 segments. In that mode layer A has to have a SEGMENT_COUNT of 1.

In ISDB-Tsb only layer A is used, it can be 1 or 3 in ISDB-Tsb according to DTV_ISDBT_PARTIAL_RECEPTION. SEGMENT_COUNT must be filled accordingly.

Only the values of the first 3 bits are used. Other bits will be silently ignored:

DTV_ISDBT_LAYER_ENABLED bit 0: layer A enabled

DTV_ISDBT_LAYER_ENABLED bit 1: layer B enabled

DTV_ISDBT_LAYER_ENABLED bit 2: layer C enabled

DTV_ISDBT_LAYER_ENABLED bits 3-31: unused

DTV_ISDBT_LAYER[A-C]_FEC

Used only on ISDB.

The Forward Error Correction mechanism used by a given ISDB Layer, as defined by fe_code_rate.

Possible values are: FEC_AUTO, FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8

DTV_ISDBT_LAYER[A-C]_MODULATION

Used only on ISDB.

The modulation used by a given ISDB Layer, as defined by fe_modulation.

Possible values are: QAM_AUTO, QPSK, QAM_16, QAM_64, DQPSK

Note:

- 1. If layer C is DQPSK, then layer B has to be DQPSK.
- 2. If layer B is DQPSK and DTV_ISDBT_PARTIAL_RECEPTION= 0, then layer has to be DQPSK.

DTV_ISDBT_LAYER[A-C]_SEGMENT_COUNT

Used only on ISDB.

Possible values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, -1 (AUTO)

Note: Truth table for DTV_ISDBT_SOUND_BROADCASTING and DTV_ISDBT_PARTIAL_RECEPTION and LAYER[A-C]_SEGMENT_COUNT

Table 219: Truth table for ISDB-T Sound Broadcasting

Partial Recep-	Sound Broadcast-				total
tion	ing	width	width	width	width
0	0	113	113	113	13
1	0	1	113	113	13
0	1	1	0	0	1
1	1	1	2	0	13

DTV_ISDBT_LAYER[A-C]_TIME_INTERLEAVING

Used only on ISDB.

Valid values: 0, 1, 2, 4, -1 (AUTO)

when DTV_ISDBT_SOUND_BROADCASTING is active, value 8 is also valid.

Note: The real time interleaving length depends on the mode (fft-size). The values here are referring to what can be found in the TMCC-structure, as shown in the table below.

isdbt_layer_interleaving_table

DTV_ISDBT_LAYER[A-C]_TIME_INTERL	EMANJOIDENG 1 (2K	Mode 2 (4K	Mode 3	(8K
	FFT)	FFT)	FFT)	
0	0	0	0	
1	4	2	1	
2	8	4	2	
4	16	8	4	

Table 220: ISDB-T time interleaving modes

DTV_ATSCMH_FIC_VER

Used only on ATSC-MH.

Version number of the FIC (Fast Information Channel) signaling data.

FIC is used for relaying information to allow rapid service acquisition by the receiver.

Possible values: 0, 1, 2, 3, ..., 30, 31

DTV_ATSCMH_PARADE_ID

Used only on ATSC-MH.

Parade identification number

A parade is a collection of up to eight MH groups, conveying one or two ensembles. Possible values: 0, 1, 2, 3, …, 126, 127

DTV_ATSCMH_NOG

Used only on ATSC-MH. Number of MH groups per MH subframe for a designated parade. Possible values: 1, 2, 3, 4, 5, 6, 7, 8

DTV_ATSCMH_TNOG

Used only on ATSC-MH.

Total number of MH groups including all MH groups belonging to all MH parades in one MH subframe.

Possible values: 0, 1, 2, 3, ..., 30, 31

DTV_ATSCMH_SGN

Used only on ATSC-MH. Start group number. Possible values: 0, 1, 2, 3, …, 14, 15

DTV_ATSCMH_PRC

Used only on ATSC-MH. Parade repetition cycle. Possible values: 1, 2, 3, 4, 5, 6, 7, 8

DTV_ATSCMH_RS_FRAME_MODE

Used only on ATSC-MH. Reed Solomon (RS) frame mode. The acceptable values are defined by atscmh_rs_frame_mode.

DTV_ATSCMH_RS_FRAME_ENSEMBLE

Used only on ATSC-MH. Reed Solomon(RS) frame ensemble. The acceptable values are defined by atscmh_rs_frame_ensemble.

DTV_ATSCMH_RS_CODE_MODE_PRI

Used only on ATSC-MH. Reed Solomon (RS) code mode (primary). The acceptable values are defined by atscmh_rs_code_mode.

DTV_ATSCMH_RS_CODE_MODE_SEC

Used only on ATSC-MH. Reed Solomon (RS) code mode (secondary). The acceptable values are defined by atscmh_rs_code_mode.

DTV_ATSCMH_SCCC_BLOCK_MODE

Used only on ATSC-MH. Series Concatenated Convolutional Code Block Mode. The acceptable values are defined by atscmh_sccc_block_mode.

DTV_ATSCMH_SCCC_CODE_MODE_A

Used only on ATSC-MH. Series Concatenated Convolutional Code Rate. The acceptable values are defined by atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_B

Used only on ATSC-MH. Series Concatenated Convolutional Code Rate. Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_C

Used only on ATSC-MH. Series Concatenated Convolutional Code Rate. Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_ATSCMH_SCCC_CODE_MODE_D

Used only on ATSC-MH. Series Concatenated Convolutional Code Rate. Possible values are the same as documented on enum atscmh_sccc_code_mode.

DTV_API_VERSION

Returns the major/minor version of the Digital TV API

DTV_CODE_RATE_HP

Used on terrestrial transmissions.

The acceptable values are defined by fe_transmit_mode.

DTV_CODE_RATE_LP

Used on terrestrial transmissions.

The acceptable values are defined by fe_transmit_mode.

DTV_GUARD_INTERVAL

The acceptable values are defined by fe_guard_interval.

Note:

- 1. If DTV_GUARD_INTERVAL is set the GUARD_INTERVAL_AUTO the hardware will try to find the correct guard interval (if capable) and will use TMCC to fill in the missing parameters.
- 2. Intervals GUARD_INTERVAL_1_128, GUARD_INTERVAL_19_128 and GUARD_INTERVAL_19_256 are used only for DVB-T2 at present.
- 3. Intervals GUARD_INTERVAL_PN420, GUARD_INTERVAL_PN595 and GUARD_INTERVAL_PN945 are used only for DMTB at the present. On such standard, only those intervals and GUARD_INTERVAL_AUTO are valid.

DTV_TRANSMISSION_MODE

Used only on OFTM-based standards, e. g. DVB-T/T2, ISDB-T, DTMB.

Specifies the FFT size (with corresponds to the approximate number of carriers) used by the standard.

The acceptable values are defined by fe_transmit_mode.

Note:

1. ISDB-T supports three carrier/symbol-size: 8K, 4K, 2K. It is called **mode** on such standard, and are numbered from 1 to 3:

Mode	FFT size	Transmission mode
1	2K	TRANSMISSION_MODE_2K
2	4K	TRANSMISSION_MODE_4K
3	8K	TRANSMISSION_MODE_8K

- 2. If DTV_TRANSMISSION_MODE is set the TRANSMISSION_MODE_AUTO the hardware will try to find the correct FFT-size (if capable) and will use TMCC to fill in the missing parameters.
- 3. DVB-T specifies 2K and 8K as valid sizes.
- 4. DVB-T2 specifies 1K, 2K, 4K, 8K, 16K and 32K.
- 5. DTMB specifies C1 and C3780.

DTV_HIERARCHY

Used only on DVB-T and DVB-T2.

Frontend hierarchy.

The acceptable values are defined by fe_hierarchy.

DTV_STREAM_ID

Used on DVB-S2, DVB-T2 and ISDB-S.

DVB-S2, DVB-T2 and ISDB-S support the transmission of several streams on a single transport stream. This property enables the digital TV driver to handle substream filtering, when supported by the hardware. By default, substream filtering is disabled.

For DVB-S2 and DVB-T2, the valid substream id range is from 0 to 255.

For ISDB, the valid substream id range is from 1 to 65535.

To disable it, you should use the special macro NO_STREAM_ID_FILTER.

Note: any value outside the id range also disables filtering.

DTV_DVBT2_PLP_ID_LEGACY

Obsolete, replaced with DTV_STREAM_ID.

DTV_ENUM_DELSYS

A Multi standard frontend needs to advertise the delivery systems provided. Applications need to enumerate the provided delivery systems, before using any other operation with the frontend. Prior to it's introduction, FE_GET_INFO was used to determine a frontend type. A frontend which provides more than a single delivery system, FE_GET_INFO doesn't help much. Applications which intends to use a multistandard frontend must enumerate the delivery systems associated with it, rather than trying to use FE_GET_INFO. In the case of a legacy frontend, the result is just the same as with FE_GET_INFO, but in a more structured format

The acceptable values are defined by fe_delivery_system.

DTV_INTERLEAVING

Time interleaving to be used.

The acceptable values are defined by fe_interleaving.

DTV_LNA

Low-noise amplifier.

Hardware might offer controllable LNA which can be set manually using that parameter. Usually LNA could be found only from terrestrial devices if at all.

Possible values: 0, 1, LNA_AUTO

0, LNA off

1, LNA on

use the special macro LNA_AUTO to set LNA auto

DTV_SCRAMBLING_SEQUENCE_INDEX

Used on DVB-S2.

This 18 bit field, when present, carries the index of the DVB-S2 physical layer scrambling sequence as defined in clause 5.5.4 of EN 302 307. There is no explicit signalling method to convey scrambling sequence index to the receiver. If S2 satellite delivery system descriptor is available it can be used to read the scrambling sequence index (EN 300 468 table 41).

By default, gold scrambling sequence index 0 is used.

The valid scrambling sequence index range is from 0 to 262142.

Frontend statistics indicators

The values are returned via dtv_property.stat. If the property is supported, dtv_property.stat.len is bigger than zero.

For most delivery systems, dtv_property.stat.len will be 1 if the stats is supported, and the properties will return a single value for each parameter.

It should be noted, however, that new OFDM delivery systems like ISDB can use different modulation types for each group of carriers. On such standards, up to 3 groups of statistics can be provided, and dtv_property.stat.len is updated to reflect the "global" metrics, plus one metric per each carrier group (called "layer" on ISDB).

So, in order to be consistent with other delivery systems, the first value at $dtv_property.stat.dtv_stats$ array refers to the global metric. The other elements of the array represent each layer, starting from layer A(index 1), layer B (index 2) and so on.

The number of filled elements are stored at dtv_property.stat.len.

Each element of the dtv_property.stat.dtv_stats array consists on two elements:

- svalue or uvalue, where svalue is for signed values of the measure (dB measures) and uvalue is for unsigned values (counters, relative scale)
- scale Scale for the value. It can be:
 - FE_SCALE_NOT_AVAILABLE The parameter is supported by the frontend, but it was not possible to collect it (could be a transitory or permanent condition)
 - FE_SCALE_DECIBEL parameter is a signed value, measured in 1/1000 dB
 - FE_SCALE_RELATIVE parameter is a unsigned value, where 0 means 0% and 65535 means 100%.
 - FE_SCALE_COUNTER parameter is a unsigned value that counts the occurrence of an event, like bit error, block error, or lapsed time.

DTV_STAT_SIGNAL_STRENGTH

Indicates the signal strength level at the analog part of the tuner or of the demod.

Possible scales for this metric are:

- FE_SCALE_NOT_AVAILABLE it failed to measure it, or the measurement was not complete yet.
- FE_SCALE_DECIBEL signal strength is in 0.001 dBm units, power measured in miliwatts. This value is generally negative.
- FE_SCALE_RELATIVE The frontend provides a 0% to 100% measurement for power (actually, 0 to 65535).

DTV_STAT_CNR

Indicates the Signal to Noise ratio for the main carrier.

Possible scales for this metric are:

- FE_SCALE_NOT_AVAILABLE it failed to measure it, or the measurement was not complete yet.
- FE_SCALE_DECIBEL Signal/Noise ratio is in 0.001 dB units.
- FE_SCALE_RELATIVE The frontend provides a 0% to 100% measurement for Signal/Noise (actually, 0 to 65535).

DTV_STAT_PRE_ERROR_BIT_COUNT

Measures the number of bit errors before the forward error correction (FEC) on the inner coding block (before Viterbi, LDPC or other inner code).

This measure is taken during the same interval as DTV_STAT_PRE_TOTAL_BIT_COUNT.

In order to get the BER (Bit Error Rate) measurement, it should be divided by DTV_STAT_PRE_TOTAL_BIT_COUNT.

This measurement is monotonically increased, as the frontend gets more bit count measurements. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

- FE_SCALE_NOT_AVAILABLE it failed to measure it, or the measurement was not complete yet.
- FE_SCALE_COUNTER Number of error bits counted before the inner coding.

DTV_STAT_PRE_TOTAL_BIT_COUNT

Measures the amount of bits received before the inner code block, during the same period as DTV STAT PRE ERROR BIT COUNT measurement was taken.

It should be noted that this measurement can be smaller than the total amount of bits on the transport stream, as the frontend may need to manually restart the measurement, losing some data between each measurement interval.

This measurement is monotonically increased, as the frontend gets more bit count measurements. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

- FE_SCALE_NOT_AVAILABLE it failed to measure it, or the measurement was not complete yet.
- FE_SCALE_COUNTER Number of bits counted while measuring DTV_STAT_PRE_ERROR_BIT_COUNT.

DTV_STAT_POST_ERROR_BIT_COUNT

Measures the number of bit errors after the forward error correction (FEC) done by inner code block (after Viterbi, LDPC or other inner code).

This measure is taken during the same interval as DTV_STAT_POST_TOTAL_BIT_COUNT.

In order to get the BER (Bit Error Rate) measurement, it should be divided by DTV_STAT_POST_TOTAL_BIT_COUNT.

This measurement is monotonically increased, as the frontend gets more bit count measurements. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

- FE_SCALE_NOT_AVAILABLE it failed to measure it, or the measurement was not complete yet.
- FE_SCALE_COUNTER Number of error bits counted after the inner coding.

DTV_STAT_POST_TOTAL_BIT_COUNT

Measures the amount of bits received after the inner coding, during the same period as DTV_STAT_POST_ERROR_BIT_COUNT measurement was taken.

It should be noted that this measurement can be smaller than the total amount of bits on the transport stream, as the frontend may need to manually restart the measurement, losing some data between each measurement interval.

This measurement is monotonically increased, as the frontend gets more bit count measurements. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

- FE_SCALE_NOT_AVAILABLE it failed to measure it, or the measurement was not complete yet.
- FE_SCALE_COUNTER Number of bits counted while measuring DTV_STAT_POST_ERROR_BIT_COUNT.

DTV_STAT_ERROR_BLOCK_COUNT

Measures the number of block errors after the outer forward error correction coding (after Reed-Solomon or other outer code).

This measurement is monotonically increased, as the frontend gets more bit count measurements. The frontend may reset it when a channel/transponder is tuned.

Possible scales for this metric are:

- FE_SCALE_NOT_AVAILABLE it failed to measure it, or the measurement was not complete yet.
- FE_SCALE_COUNTER Number of error blocks counted after the outer coding.

DTV-STAT_TOTAL_BLOCK_COUNT

Measures the total number of blocks received during the same period as DTV_STAT_ERROR_BLOCK_COUNT measurement was taken.

It can be used to calculate the PER indicator, by dividing DTV_STAT_ERROR_BLOCK_COUNT by DTV-STAT_TOTAL_BLOCK_COUNT.

Possible scales for this metric are:

- FE_SCALE_NOT_AVAILABLE it failed to measure it, or the measurement was not complete yet.
- FE_SCALE_COUNTER Number of blocks counted while measuring DTV_STAT_ERROR_BLOCK_COUNT.

Properties used on terrestrial delivery systems

DVB-T delivery system

The following parameters are valid for DVB-T:

- DTV_API_VERSION
- DTV_DELIVERY_SYSTEM
- DTV_TUNE
- DTV_CLEAR
- DTV_FREQUENCY
- DTV_MODULATION
- DTV_BANDWIDTH_HZ
- DTV_INVERSION
- DTV_CODE_RATE_HP
- DTV_CODE_RATE_LP
- DTV_GUARD_INTERVAL
- DTV_TRANSMISSION_MODE
- DTV_HIERARCHY
- DTV_LNA

In addition, the DTV QoS statistics are also valid.

DVB-T2 delivery system

DVB-T2 support is currently in the early stages of development, so expect that this section maygrow and become more detailed with time.

The following parameters are valid for DVB-T2:

- DTV_API_VERSION
- DTV_DELIVERY_SYSTEM
- DTV_TUNE
- DTV_CLEAR
- DTV_FREQUENCY
- DTV_MODULATION
- DTV_BANDWIDTH_HZ
- DTV_INVERSION
- DTV_CODE_RATE_HP
- DTV_CODE_RATE_LP
- DTV_GUARD_INTERVAL
- DTV_TRANSMISSION_MODE
- DTV_HIERARCHY
- DTV_STREAM_ID
- DTV_LNA

In addition, the DTV QoS statistics are also valid.

ISDB-T delivery system

This ISDB-T/ISDB-Tsb API extension should reflect all information needed to tune any ISDB-T/ISDB-Tsb hardware. Of course it is possible that some very sophisticated devices won't need certain parameters to tune.

The information given here should help application writers to know how to handle ISDB-T and ISDB-Tsb hardware using the Linux Digital TV API.

The details given here about ISDB-T and ISDB-Tsb are just enough to basically show the dependencies between the needed parameter values, but surely some information is left out. For more detailed information see the following documents:

ARIB STD-B31 - "Transmission System for Digital Terrestrial Television Broadcasting" and

ARIB TR-B14 - "Operational Guidelines for Digital Terrestrial Television Broadcasting" .

In order to understand the ISDB specific parameters, one has to have some knowledge the channel structure in ISDB-T and ISDB-Tsb. I.e. it has to be known to the

reader that an ISDB-T channel consists of 13 segments, that it can have up to 3 layer sharing those segments, and things like that.

The following parameters are valid for ISDB-T:

- DTV_API_VERSION
- DTV_DELIVERY_SYSTEM
- DTV_TUNE
- DTV_CLEAR
- DTV_FREQUENCY
- DTV_BANDWIDTH_HZ
- DTV_INVERSION
- DTV_GUARD_INTERVAL
- DTV_TRANSMISSION_MODE
- DTV_ISDBT_LAYER_ENABLED
- DTV_ISDBT_PARTIAL_RECEPTION
- DTV_ISDBT_SOUND_BROADCASTING
- DTV_ISDBT_SB_SUBCHANNEL_ID
- DTV_ISDBT_SB_SEGMENT_IDX
- DTV_ISDBT_SB_SEGMENT_COUNT
- DTV_ISDBT_LAYERA_FEC
- DTV_ISDBT_LAYERA_MODULATION
- DTV_ISDBT_LAYERA_SEGMENT_COUNT
- DTV_ISDBT_LAYERA_TIME_INTERLEAVING
- DTV_ISDBT_LAYERB_FEC
- DTV_ISDBT_LAYERB_MODULATION
- DTV_ISDBT_LAYERB_SEGMENT_COUNT
- DTV_ISDBT_LAYERB_TIME_INTERLEAVING
- DTV_ISDBT_LAYERC_FEC
- DTV_ISDBT_LAYERC_MODULATION
- DTV_ISDBT_LAYERC_SEGMENT_COUNT
- DTV_ISDBT_LAYERC_TIME_INTERLEAVING

In addition, the DTV QoS statistics are also valid.

ATSC delivery system

The following parameters are valid for ATSC:

- DTV_API_VERSION
- DTV_DELIVERY_SYSTEM
- DTV_TUNE
- DTV_CLEAR
- DTV_FREQUENCY
- DTV_MODULATION
- DTV_BANDWIDTH_HZ

In addition, the DTV QoS statistics are also valid.

ATSC-MH delivery system

The following parameters are valid for ATSC-MH:

- DTV_API_VERSION
- DTV_DELIVERY_SYSTEM
- DTV_TUNE
- DTV_CLEAR
- DTV_FREQUENCY
- DTV_BANDWIDTH_HZ
- DTV_ATSCMH_FIC_VER
- DTV_ATSCMH_PARADE_ID
- DTV_ATSCMH_NOG
- DTV_ATSCMH_TNOG
- DTV_ATSCMH_SGN
- DTV_ATSCMH_PRC
- DTV_ATSCMH_RS_FRAME_MODE
- DTV_ATSCMH_RS_FRAME_ENSEMBLE
- DTV_ATSCMH_RS_CODE_MODE_PRI
- DTV_ATSCMH_RS_CODE_MODE_SEC
- DTV_ATSCMH_SCCC_BLOCK_MODE
- DTV_ATSCMH_SCCC_CODE_MODE_A
- DTV_ATSCMH_SCCC_CODE_MODE_B
- DTV_ATSCMH_SCCC_CODE_MODE_C

• DTV_ATSCMH_SCCC_CODE_MODE_D

In addition, the DTV QoS statistics are also valid.

DTMB delivery system

The following parameters are valid for DTMB:

- DTV_API_VERSION
- DTV_DELIVERY_SYSTEM
- DTV_TUNE
- DTV_CLEAR
- DTV_FREQUENCY
- DTV_MODULATION
- DTV_BANDWIDTH_HZ
- DTV_INVERSION
- DTV_INNER_FEC
- DTV_GUARD_INTERVAL
- DTV_TRANSMISSION_MODE
- DTV_INTERLEAVING
- DTV_LNA

In addition, the DTV QoS statistics are also valid.

Properties used on cable delivery systems

DVB-C delivery system

The DVB-C Annex-A is the widely used cable standard. Transmission uses QAM modulation.

The DVB-C Annex-C is optimized for 6MHz, and is used in Japan. It supports a subset of the Annex A modulation types, and a roll-off of 0.13, instead of 0.15

The following parameters are valid for DVB-C Annex A/C:

- DTV_API_VERSION
- DTV_DELIVERY_SYSTEM
- DTV_TUNE
- DTV_CLEAR
- DTV_FREQUENCY
- DTV_MODULATION
- DTV_INVERSION

- DTV_SYMBOL_RATE
- DTV_INNER_FEC
- DTV_LNA

In addition, the DTV QoS statistics are also valid.

DVB-C Annex B delivery system

The DVB-C Annex-B is only used on a few Countries like the United States. The following parameters are valid for DVB-C Annex B:

- DTV API VERSION
- DTV_DELIVERY_SYSTEM
- DTV_TUNE
- DTV_CLEAR
- DTV_FREQUENCY
- DTV_MODULATION
- DTV_INVERSION
- DTV_LNA

In addition, the DTV QoS statistics are also valid.

Properties used on satellite delivery systems

DVB-S delivery system

The following parameters are valid for DVB-S:

- DTV_API_VERSION
- DTV_DELIVERY_SYSTEM
- DTV_TUNE
- DTV_CLEAR
- DTV_FREQUENCY
- DTV_INVERSION
- DTV_SYMBOL_RATE
- DTV_INNER_FEC
- DTV_VOLTAGE
- DTV_TONE

In addition, the DTV QoS statistics are also valid.

Future implementations might add those two missing parameters:

- DTV_DISEQC_MASTER
- DTV_DISEQC_SLAVE_REPLY

DVB-S2 delivery system

In addition to all parameters valid for DVB-S, DVB-S2 supports the following parameters:

- DTV_MODULATION
- DTV_PILOT
- DTV_ROLLOFF
- DTV_STREAM_ID
- DTV_SCRAMBLING_SEQUENCE_INDEX

In addition, the DTV QoS statistics are also valid.

Turbo code delivery system

In addition to all parameters valid for DVB-S, turbo code supports the following parameters:

• DTV_MODULATION

ISDB-S delivery system

The following parameters are valid for ISDB-S:

- DTV_API_VERSION
- DTV_DELIVERY_SYSTEM
- DTV_TUNE
- DTV_CLEAR
- DTV_FREQUENCY
- DTV_INVERSION
- DTV_SYMBOL_RATE
- DTV_INNER_FEC
- DTV_VOLTAGE
- DTV_STREAM_ID

Frontend uAPI data types

enum **fe_caps** Frontend capabilities

Constants

- **FE_IS_STUPID** There's something wrong at the frontend, and it can't report its capabilities.
- FE_CAN_INVERSION_AUTO Can auto-detect frequency spectral band inversion
- FE_CAN_FEC_1_2 Supports FEC 1/2
- FE_CAN_FEC_2_3 Supports FEC 2/3
- FE_CAN_FEC_3_4 Supports FEC 3/4
- **FE_CAN_FEC_4_5** Supports FEC 4/5
- FE_CAN_FEC_5_6 Supports FEC 5/6
- FE_CAN_FEC_6_7 Supports FEC 6/7
- FE_CAN_FEC_7_8 Supports FEC 7/8
- FE_CAN_FEC_8_9 Supports FEC 8/9
- FE_CAN_FEC_AUT0 Can auto-detect FEC
- FE_CAN_QPSK Supports QPSK modulation
- FE_CAN_QAM_16 Supports 16-QAM modulation
- FE_CAN_QAM_32 Supports 32-QAM modulation
- FE_CAN_QAM_64 Supports 64-QAM modulation
- FE_CAN_QAM_128 Supports 128-QAM modulation
- FE_CAN_QAM_256 Supports 256-QAM modulation
- FE_CAN_QAM_AUTO Can auto-detect QAM modulation
- FE_CAN_TRANSMISSION_MODE_AUTO Can auto-detect transmission mode
- FE_CAN_BANDWIDTH_AUTO Can auto-detect bandwidth
- FE_CAN_GUARD_INTERVAL_AUT0 Can auto-detect guard interval
- FE_CAN_HIERARCHY_AUTO Can auto-detect hierarchy
- FE_CAN_8VSB Supports 8-VSB modulation
- FE_CAN_16VSB Supporta 16-VSB modulation
- FE_HAS_EXTENDED_CAPS Unused
- FE_CAN_MULTISTREAM Supports multistream filtering
- FE_CAN_TURBO_FEC Supports "turbo FEC" modulation
- **FE_CAN_2G_MODULATION** Supports "2nd generation" modulation, e. g. DVB-S2, DVB-T2, DVB-C2
- FE_NEEDS_BENDING Unused

FE_CAN_RECOVER Can recover from a cable unplug automatically

FE_CAN_MUTE_TS Can stop spurious TS data output

struct dvb_frontend_info

Frontend properties and capabilities

Definition

```
struct dvb_frontend_info {
    char name[128];
    enum fe_type type;
    __u32 frequency_min;
    _u32 frequency_max;
    _u32 frequency_stepsize;
    __u32 frequency_tolerance;
    __u32 symbol_rate_min;
    __u32 symbol_rate_tolerance;
    __u32 notifier_delay;
    enum fe_caps caps;
};
```

Members

name Name of the frontend

type DEPRECATED. Should not be used on modern programs, as a frontend may have more than one type. In order to get the support types of a given frontend, use DTV_ENUM_DELSYS instead.

frequency_min Minimal frequency supported by the frontend.

frequency_max Minimal frequency supported by the frontend.

frequency_stepsize All frequencies are multiple of this value.

frequency_tolerance Frequency tolerance.

symbol_rate_min Minimal symbol rate, in bauds (for Cable/Satellite systems).

symbol_rate_max Maximal symbol rate, in bauds (for Cable/Satellite systems).

symbol_rate_tolerance Maximal symbol rate tolerance, in ppm (for Cable/Satellite systems).

notifier_delay DEPRECATED. Not used by any driver.

caps Capabilities supported by the frontend, as specified in enum fe_caps.

Description

```
struct dvb_diseqc_master_cmd
DiSEqC master command
```

Definition

```
struct dvb_diseqc_master_cmd {
    __u8 msg[6];
    __u8 msg_len;
};
```

Members

msg DiSEqC message to be sent. It contains a 3 bytes header with: framing + address + command, and an optional argument of up to 3 bytes of data.

msg_len Length of the DiSEqC message. Valid values are 3 to 6.

Description

Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for the possible messages that can be used.

struct dvb_diseqc_slave_reply

DiSEqC received data

Definition

```
struct dvb_diseqc_slave_reply {
    ___u8 msg[4];
    __u8 msg_len;
    int timeout;
};
```

Members

- **msg** DiSEqC message buffer to store a message received via DiSEqC. It contains one byte header with: framing and an optional argument of up to 3 bytes of data.
- **timeout** Return from ioctl after timeout ms with errorcode when no message was received.

Description

Check out the DiSEqC bus spec available on http://www.eutelsat.org/ for the possible messages that can be used.

enum fe_sec_voltage

DC Voltage used to feed the LNBf

Constants

SEC_VOLTAGE_13 Output 13V to the LNBf

SEC_VOLTAGE_18 Output 18V to the LNBf

SEC_VOLTAGE_OFF Don't feed the LNBf with a DC voltage

enum fe_sec_tone_mode

Type of tone to be send to the LNBf.

Constants

SEC_TONE_ON Sends a 22kHz tone burst to the antenna.

SEC_TONE_OFF Don't send a 22kHz tone to the antenna (except if the FE_DISEQC_* ioctls are called).

enum fe_sec_mini_cmd Type of mini burst to be sent

Constants

SEC_MINI_A Sends a mini-DiSEqC 22kHz '0' Tone Burst to select satellite-A

SEC_MINI_B Sends a mini-DiSEqC 22kHz '1' Data Burst to select satellite-B

enum fe_status

Enumerates the possible frontend status.

Constants

 $\ensuremath{\text{FE}}\xspace$ The frontend doesn't have any kind of lock. That's the initial frontend status

FE_HAS_SIGNAL Has found something above the noise level.

FE_HAS_CARRIER Has found a signal.

FE_HAS_VITERBI FEC inner coding (Viterbi, LDPC or other inner code). is stable.

FE_HAS_SYNC Synchronization bytes was found.

FE_HAS_LOCK Digital TV were locked and everything is working.

FE_TIMEDOUT Fo lock within the last about 2 seconds.

FE_REINIT Frontend was reinitialized, application is recommended to reset DiS-EqC, tone and parameters.

enum fe_spectral_inversion

Type of inversion band

Constants

INVERSION_OFF Don't do spectral band inversion.

INVERSION_ON Do spectral band inversion.

INVERSION_AUTO Autodetect spectral band inversion.

Description

This parameter indicates if spectral inversion should be presumed or not. In the automatic setting (INVERSION_AUTO) the hardware will try to figure out the correct setting by itself. If the hardware doesn't support, the dvb_frontend will try to lock at the carrier first with inversion off. If it fails, it will try to enable inversion.

enum fe_code_rate

Type of Forward Error Correction (FEC)

Constants

FEC_NONE No Forward Error Correction Code

FEC_1_2 Forward Error Correction Code 1/2

FEC_2_3 Forward Error Correction Code 2/3

FEC_3_4 Forward Error Correction Code 3/4

FEC_4_5 Forward Error Correction Code 4/5

FEC_5_6 Forward Error Correction Code 5/6

FEC_6_7 Forward Error Correction Code 6/7

FEC_7_8 Forward Error Correction Code 7/8

FEC_8_9 Forward Error Correction Code 8/9

FEC_AUTO Autodetect Error Correction Code

FEC_3_5 Forward Error Correction Code 3/5

FEC_9_10 Forward Error Correction Code 9/10

FEC_2_5 Forward Error Correction Code 2/5

Description

Please note that not all FEC types are supported by a given standard.

enum fe_modulation

Type of modulation/constellation

Constants

 $\ensuremath{\textbf{QPSK}}$ QPSK modulation

QAM_16 16-QAM modulation

QAM_32 32-QAM modulation

QAM_64 64-QAM modulation

QAM_128 128-QAM modulation

QAM_256 256-QAM modulation

QAM_AUTO Autodetect QAM modulation

VSB_8 8-VSB modulation

VSB_16 16-VSB modulation

PSK_8 8-PSK modulation

APSK_16 16-APSK modulation

APSK_32 32-APSK modulation

DQPSK DQPSK modulation

QAM_4_NR 4-QAM-NR modulation

Description

Please note that not all modulations are supported by a given standard.

enum **fe_transmit_mode** Transmission mode

Constants

TRANSMISSION_MODE_2K Transmission mode 2K

TRANSMISSION_MODE_8K Transmission mode 8K

TRANSMISSION_MODE_AUTO Autodetect transmission mode. The hardware will try to find the correct FFT-size (if capable) to fill in the missing parameters.

TRANSMISSION_MODE_4K Transmission mode 4K

TRANSMISSION_MODE_1K Transmission mode 1K

TRANSMISSION_MODE_16K Transmission mode 16K

TRANSMISSION_MODE_32K Transmission mode 32K

TRANSMISSION_MODE_C1 Single Carrier (C=1) transmission mode (DTMB only)

TRANSMISSION_MODE_C3780 Multi Carrier (C=3780) transmission mode (DTMB only)

Description

Please note that not all transmission modes are supported by a given standard.

enum **fe_guard_interval** Guard interval

Constants

GUARD_INTERVAL_1_32 Guard interval 1/32

GUARD_INTERVAL_1_16 Guard interval 1/16

GUARD_INTERVAL_1_8 Guard interval 1/8

GUARD_INTERVAL_1_4 Guard interval 1/4

GUARD_INTERVAL_AUTO Autodetect the guard interval

GUARD_INTERVAL_1_128 Guard interval 1/128

GUARD_INTERVAL_19_128 Guard interval 19/128

GUARD_INTERVAL_19_256 Guard interval 19/256

GUARD_INTERVAL_PN420 PN length 420 (1/4)

GUARD_INTERVAL_PN595 PN length 595 (1/6)

GUARD_INTERVAL_PN945 PN length 945 (1/9)

Description

Please note that not all guard intervals are supported by a given standard.

enum **fe_hierarchy** Hierarchy

Constants

HIERARCHY_NONE No hierarchy

HIERARCHY_1 Hierarchy 1

HIERARCHY_2 Hierarchy 2

HIERARCHY_4 Hierarchy 4

HIERARCHY_AUTO Autodetect hierarchy (if supported)

Description

Please note that not all hierarchy types are supported by a given standard.

enum **fe_interleaving** Interleaving

Constants

INTERLEAVING_NONE No interleaving.

INTERLEAVING_AUTO Auto-detect interleaving.

INTERLEAVING_240 Interleaving of 240 symbols.

INTERLEAVING_720 Interleaving of 720 symbols.

Description

Please note that, currently, only DTMB uses it.

enum **fe_pilot** Type of pilot tone

Constants

PILOT_ON Pilot tones enabled

PILOT_OFF Pilot tones disabled

PILOT_AUTO Autodetect pilot tones

enum **fe_rolloff** Rolloff factor

Constants

ROLLOFF_35 Roloff factor: $\alpha = 35\%$

ROLLOFF_20 Roloff factor: $\alpha = 20\%$

ROLLOFF_25 Roloff factor: $\alpha = 25\%$

ROLLOFF_AUTO Auto-detect the roloff factor.

Description

enum **fe_delivery_system** Type of the delivery system

Constants

SYS_UNDEFINED Undefined standard. Generally, indicates an error

SYS_DVBC_ANNEX_A Cable TV: DVB-C following ITU-T J.83 Annex A spec

- **SYS_DVBC_ANNEX_B** Cable TV: DVB-C following ITU-T J.83 Annex B spec (Clear-QAM)
- **SYS_DVBT** Terrestrial TV: DVB-T
- SYS_DSS Satellite TV: DSS (not fully supported)
- SYS_DVBS Satellite TV: DVB-S
- SYS_DVBS2 Satellite TV: DVB-S2
- SYS_DVBH Terrestrial TV (mobile): DVB-H (standard deprecated)
- SYS_ISDBT Terrestrial TV: ISDB-T

SYS_ISDBS Satellite TV: ISDB-S

SYS_ISDBC Cable TV: ISDB-C (no drivers yet)

- **SYS_ATSC** Terrestrial TV: ATSC
- SYS_ATSCMH Terrestrial TV (mobile): ATSC-M/H
- SYS_DTMB Terrestrial TV: DTMB
- **SYS_CMMB** Terrestrial TV (mobile): CMMB (not fully supported)
- SYS_DAB Digital audio: DAB (not fully supported)
- SYS_DVBT2 Terrestrial TV: DVB-T2
- SYS_TURBO Satellite TV: DVB-S Turbo
- SYS_DVBC_ANNEX_C Cable TV: DVB-C following ITU-T J.83 Annex C spec

enum atscmh_sccc_block_mode

Type of Series Concatenated Convolutional Code Block Mode.

Constants

- **ATSCMH_SCCC_BLK_SEP** Separate SCCC: the SCCC outer code mode shall be set independently for each Group Region (A, B, C, D)
- ATSCMH_SCCC_BLK_COMB Combined SCCC: all four Regions shall have the same SCCC outer code mode.
- ATSCMH_SCCC_BLK_RES Reserved. Shouldn' t be used.

enum atscmh_sccc_code_mode

Type of Series Concatenated Convolutional Code Rate.

Constants

ATSCMH_SCCC_CODE_HLF The outer code rate of a SCCC Block is 1/2 rate.

ATSCMH_SCCC_CODE_QTR The outer code rate of a SCCC Block is 1/4 rate.

ATSCMH_SCCC_CODE_RES Reserved. Should not be used.

enum atscmh_rs_frame_ensemble Reed Solomon(RS) frame ensemble.

Constants

ATSCMH_RSFRAME_ENS_PRI Primary Ensemble.

ATSCMH_RSFRAME_ENS_SEC Secondary Ensemble.

enum atscmh_rs_frame_mode Reed Solomon (RS) frame mode.

Constants

- **ATSCMH_RSFRAME_PRI_ONLY** Single Frame: There is only a primary RS Frame for all Group Regions.
- ATSCMH_RSFRAME_PRI_SEC Dual Frame: There are two separate RS Frames: Primary RS Frame for Group Region A and B and Secondary RS Frame for Group Region C and D.

ATSCMH_RSFRAME_RES Reserved. Shouldn' t be used.

enum atscmh_rs_code_mode

Constants

ATSCMH_RSCODE_211_187 Reed Solomon code (211,187).

ATSCMH_RSCODE_223_187 Reed Solomon code (223,187).

ATSCMH_RSCODE_235_187 Reed Solomon code (235,187).

ATSCMH_RSCODE_RES Reserved. Shouldn' t be used.

```
enum fecap_scale_params
```

scale types for the quality parameters.

Constants

- **FE_SCALE_NOT_AVAILABLE** That QoS measure is not available. That could indicate a temporary or a permanent condition.
- **FE_SCALE_DECIBEL** The scale is measured in 0.001 dB steps, typically used on signal measures.
- **FE_SCALE_RELATIVE** The scale is a relative percentual measure, ranging from 0 (0%) to 0xffff (100%).
- **FE_SCALE_COUNTER** The scale counts the occurrence of an event, like bit error, block error, lapsed time.

struct dtv_stats

Used for reading a DTV status property

Definition

```
struct dtv_stats {
    __u8 scale;
    union {
        __u64 uvalue;
        __s64 svalue;
    };
};
```

Members

scale Filled with enum fecap_scale_params - the scale in usage for that parameter

{unnamed_union} anonymous

- uvalue unsigned integer value of the measure, used when scale is either
 FE_SCALE_RELATIVE or FE_SCALE_COUNTER.
- $\ensuremath{\texttt{svalue}}$ integer value of the measure, for FE_SCALE_DECIBEL, used for dB measures. The unit is 0.001 dB.

Description

For most delivery systems, this will return a single value for each parameter.

It should be noticed, however, that new OFDM delivery systems like ISDB can use different modulation types for each group of carriers. On such standards, up to 8 groups of statistics can be provided, one for each carrier group (called "layer" on ISDB).

In order to be consistent with other delivery systems, the first value refers to the entire set of carriers ("global").

scale should use the value FE_SCALE_NOT_AVAILABLE when the value for the entire group of carriers or from one specific layer is not provided by the hardware.

len should be filled with the latest filled status + 1.

In other words, for ISDB, those values should be filled like:

```
u.st.stat.svalue[0] = global statistics;
u.st.stat.scale[0] = FE_SCALE_DECIBEL;
u.st.stat.value[1] = layer A statistics;
u.st.stat.scale[1] = FE_SCALE_NOT_AVAILABLE (if not available);
u.st.stat.svalue[2] = layer B statistics;
u.st.stat.scale[2] = FE_SCALE_DECIBEL;
u.st.stat.scale[3] = layer C statistics;
u.st.stat.scale[3] = FE_SCALE_DECIBEL;
u.st.stat.scale[3] = FE_SCALE_DECIBEL;
u.st.len = 4;
```

```
struct dtv_fe_stats
store Digital TV frontend statistics
```

Definition

```
struct dtv_fe_stats {
    __u8 len;
    struct dtv_stats stat[MAX_DTV_STATS];
};
```

Members

len length of the statistics - if zero, stats is disabled.

stat array with digital TV statistics.

Description

On most standards, **len** can either be 0 or 1. However, for ISDB, each layer is modulated in separate. So, each layer may have its own set of statistics. If so, stat[0] carries on a global value for the property. Indexes 1 to 3 means layer A to B.

struct dtv_property

store one of frontend command and its value

Definition

```
struct dtv_property {
    __u32 cmd;
    __u32 reserved[3];
    union {
        __u32 data;
        struct dtv_fe_stats st;
        struct {
            _u8 data[32];
            _u32 len;
            _u32 reserved1[3];
        void *reserved2;
    }
}
```

(continues on next page)

(continued from previous page)

```
} buffer;
} u;
int result;
};
```

Members

cmd Digital TV command.

reserved Not used.

 \boldsymbol{u} Union with the values for the command.

u.data A unsigned 32 bits integer with command value.

u.st a struct dtv_fe_stats array of statistics.

u.buffer Struct to store bigger properties. Currently unused.

u.buffer.data an unsigned 32-bits array.

u.buffer.len number of elements of the buffer.

u.buffer.reserved1 Reserved.

u.buffer.reserved2 Reserved.

result Currently unused.

struct **dtv_properties** a set of command/value pairs.

Definition

```
struct dtv_properties {
    __u32 num;
    struct dtv_property *props;
};
```

Members

num amount of commands stored at the struct.

props a pointer to struct dtv_property.

Frontend Function Calls

Digital TV frontend open()

Name

fe-open - Open a frontend device

Synopsis

```
#include <fcntl.h>
```

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.

flags Open flags. Access can either be 0_RDWR or 0_RDONLY.

Multiple opens are allowed with $0_RDONLY.$ In this mode, only query and read ioctls are allowed.

Only one open is allowed in O_RDWR. In this mode, all ioctls are allowed.

When the O_NONBLOCK flag is given, the system calls may return EAGAIN error code when no data is available or when the device driver is temporarily busy.

Other flags have no effect.

Description

This system call opens a named frontend device (/dev/dvb/adapter?/frontend?) for subsequent use. Usually the first thing to do after a successful open is to find out the frontend type with ioctl FE_GET_INFO.

The device can be opened in read-only mode, which only allows monitoring of device status and statistics, or read/write mode, which allows any kind of use (e.g. performing tuning operations.)

In a system with multiple front-ends, it is usually the case that multiple devices cannot be open in read/write mode simultaneously. As long as a front-end device is opened in read/write mode, other open() calls in read/write mode will either fail or block, depending on whether non-blocking or blocking mode was specified. A front-end device opened in blocking mode can later be put into non-blocking mode (and vice versa) using the F_SETFL command of the fcntl system call. This is a standard system call, documented in the Linux manual page for fcntl. When an open() call has succeeded, the device will be ready for use in the specified mode. This implies that the corresponding hardware is powered up, and that other front-ends may have been powered down to make that possible.

On success open() returns the new file descriptor. On error, -1 is returned, and the errno variable is set appropriately.

Possible error codes are:

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

EPERM	The caller has no permission to access the device.	
EBUSY	The the device driver is already in use.	
EMFILE	The process already has the maximum number of files open.	
ENFILE	The limit on the total number of files open on the system has been reached.	

The generic error codes are described at the Generic Error Codes chapter.

Digital TV frontend close()

Name

fe-close - Close a frontend device

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

This system call closes a previously opened front-end device. After closing a frontend device, its corresponding hardware might be powered down automatically.

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_GET_INFO

Name

 FE_GET_INFO - Query Digital TV frontend capabilities and returns information about the - front-end. This call only requires read-only access to the device.

Synopsis

int ioctl(int fd, FE_GET_INFO, struct dvb_frontend_info *argp)

Arguments

fd File descriptor returned by open().
argp pointer to struct struct dvb_frontend_info

Description

All Digital TV frontend devices support the ioctl FE_GET_INFO ioctl. It is used to identify kernel devices compatible with this specification and to obtain information about driver and hardware capabilities. The ioctl takes a pointer to dvb_frontend_info which is filled by the driver. When the driver is not compatible with this specification the ioctl returns an error.

frontend capabilities

Capabilities describe what a frontend can do. Some capabilities are supported only on some specific frontend types.

The frontend capabilities are described at fe_caps.

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_READ_STATUS

Name

 FE_READ_STATUS - Returns status information about the front-end. This call only requires - read-only access to the device

Synopsis

int ioctl(int fd, FE_READ_STATUS, unsigned int *status)

Arguments

fd File descriptor returned by open().

status pointer to a bitmask integer filled with the values defined by enum
fe_status.

Description

All Digital TV frontend devices support the FE_READ_STATUS ioctl. It is used to check about the locking status of the frontend after being tuned. The ioctl takes a pointer to an integer where the status will be written.

Note: The size of status is actually sizeof(enum fe_status), with varies according with the architecture. This needs to be fixed in the future.

int fe_status

The fe_status parameter is used to indicate the current state and/or state changes of the frontend hardware. It is produced using the enum fe_status values on a bitmask

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_PROPERTY, FE_GET_PROPERTY

Name

FE_SET_PROPERTY - FE_GET_PROPERTY - FE_SET_PROPERTY sets one or more frontend properties. - FE_GET_PROPERTY returns one or more frontend properties.

Synopsis

int ioctl(int fd, FE_GET_PROPERTY, struct dtv_properties *argp)
int ioctl(int fd, FE_SET_PROPERTY, struct dtv_properties *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dtv_properties.

Description

All Digital TV frontend devices support the FE_SET_PROPERTY and FE_GET_PROPERTY ioctls. The supported properties and statistics depends on the delivery system and on the device:

- FE_SET_PROPERTY:
 - This ioctl is used to set one or more frontend properties.
 - This is the basic command to request the frontend to tune into some frequency and to start decoding the digital TV signal.
 - This call requires read/write access to the device.

Note: At return, the values aren't updated to reflect the actual parameters used. If the actual parameters are needed, an explicit call to FE_GET_PROPERTY is needed.

- FE_GET_PROPERTY:
 - This ioctl is used to get properties and statistics from the frontend.

- No properties are changed, and statistics aren't reset.
- This call only requires read-only access to the device.

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately. Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_RESET_OVERLOAD

Name

 $FE_DISEQC_RESET_OVERLOAD$ - Restores the power to the antenna subsystem, if it was powered off due - to power overload.

Synopsis

int ioctl(int fd, FE_DISEQC_RESET_OVERLOAD, NULL)

Arguments

fd File descriptor returned by open().

Description

If the bus has been automatically powered off due to power overload, this ioctl call restores the power to the bus. The call requires read/write access to the device. This call has no effect if the device is manually powered off. Not all Digital TV adapters support this ioctl.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_SEND_MASTER_CMD

Name

FE_DISEQC_SEND_MASTER_CMD - Sends a DiSEqC command

Synopsis

int **ioctl**(int fd, FE_DISEQC_SEND_MASTER_CMD, struct dvb_diseqc_master_cmd *argp)

Arguments

fd File descriptor returned by open().
argp pointer to struct dvb_diseqc_master_cmd

Description

Sends the DiSEqC command pointed by ${\tt dvb_diseqc_master_cmd}$ to the antenna subsystem.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_RECV_SLAVE_REPLY

Name

FE_DISEQC_RECV_SLAVE_REPLY - Receives reply from a DiSEqC 2.0 command

Synopsis

int **ioctl** (int fd, FE_DISEQC_RECV_SLAVE_REPLY, struct dvb_diseqc_slave_reply *argp)

Arguments

fd File descriptor returned by open().
argp pointer to struct dvb_diseqc_slave_reply.

Description

Receives reply from a DiSEqC 2.0 command. The received message is stored at the buffer pointed by argp.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately. Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_DISEQC_SEND_BURST

Name

 $FE_DISEQC_SEND_BURST$ - Sends a 22KHz tone burst for 2x1 mini DiSEqC satellite selection.

Synopsis

int ioctl(int fd, FE_DISEQC_SEND_BURST, enum fe_sec_mini_cmd tone)

Arguments

fd File descriptor returned by open().

tone An integer enumered value described at fe_sec_mini_cmd.

Description

This ioctl is used to set the generation of a 22kHz tone burst for mini DiSEqC satellite selection for 2x1 switches. This call requires read/write permissions.

It provides support for what's specified at Digital Satellite Equipment Control (DiSEqC) - Simple "ToneBurst" Detection Circuit specification.

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_TONE

Name

FE_SET_TONE - Sets/resets the generation of the continuous 22kHz tone.

Synopsis

int ioctl(int fd, FE_SET_TONE, enum fe_sec_tone_mode tone)

Arguments

fd File descriptor returned by open().

tone an integer enumered value described at fe_sec_tone_mode

Description

This ioctl is used to set the generation of the continuous 22kHz tone. This call requires read/write permissions.

Usually, satellite antenna subsystems require that the digital TV device to send a 22kHz tone in order to select between high/low band on some dual-band LNBf. It is also used to send signals to DiSEqC equipment, but this is done using the DiSEqC ioctls.

Attention: If more than one device is connected to the same antenna, setting a tone may interfere on other devices, as they may lose the capability of selecting the band. So, it is recommended that applications would change to SEC_TONE_OFF when the device is not used.

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_VOLTAGE

Name

FE_SET_VOLTAGE - Allow setting the DC level sent to the antenna subsystem.

Synopsis

int ioctl(int fd, FE_SET_VOLTAGE, enum fe_sec_voltage voltage)

Arguments

fd File descriptor returned by open().

voltage an integer enumered value described at fe_sec_voltage

Description

This ioctl allows to set the DC voltage level sent through the antenna cable to 13V, 18V or off.

Usually, a satellite antenna subsystems require that the digital TV device to send a DC voltage to feed power to the LNBf. Depending on the LNBf type, the polarization or the intermediate frequency (IF) of the LNBf can controlled by the voltage level. Other devices (for example, the ones that implement DISEqC and multipoint LNBf's don't need to control the voltage level, provided that either 13V or 18V is sent to power up the LNBf.

Attention: if more than one device is connected to the same antenna, setting a voltage level may interfere on other devices, as they may lose the capability of setting polarization or IF. So, on those cases, setting the voltage to SEC_VOLTAGE_OFF while the device is not is used is recommended.

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_ENABLE_HIGH_LNB_VOLTAGE

Name

FE_ENABLE_HIGH_LNB_VOLTAGE - Select output DC level between normal LNBf voltages or higher LNBf - voltages.

Synopsis

int ioctl(int fd, FE_ENABLE_HIGH_LNB_VOLTAGE, unsigned int high)

Arguments

fd File descriptor returned by open().

high Valid flags:

- 0 normal 13V and 18V.
- >0 enables slightly higher voltages instead of 13/18V, in order to compensate for long antenna cables.

Description

Select output DC level between normal LNBf voltages or higher LNBf voltages between 0 (normal) or a value grater than 0 for higher voltages.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

ioctl FE_SET_FRONTEND_TUNE_MODE

Name

 $\ensuremath{\mathsf{FE}_\mathsf{SET}_\mathsf{FRONTEND}_\mathsf{TUNE}_\mathsf{MODE}$ - Allow setting tuner mode flags to the frontend.

Synopsis

int ioctl(int fd, FE_SET_FRONTEND_TUNE_MODE, unsigned int flags)

Arguments

fd File descriptor returned by open().

flags Valid flags:

- 0 normal tune mode
- FE_TUNE_MODE_ONESHOT When set, this flag will disable any zigzagging or other "normal" tuning behaviour. Additionally, there will be no automatic monitoring of the lock status, and hence no frontend events will be generated. If a frontend device is closed, this flag will be automatically turned off when the device is reopened read-write.

Description

Allow setting tuner mode flags to the frontend, between 0 (normal) or ${\sf FE_TUNE_MODE_ONESHOT}$ mode

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

7.3.3 Digital TV Demux Device

The Digital TV demux device controls the MPEG-TS filters for the digital TV. If the driver and hardware supports, those filters are implemented at the hardware. Otherwise, the Kernel provides a software emulation.

It can be accessed through /dev/adapter?/demux?. Data types and and ioctl definitions can be accessed by including linux/dvb/dmx.h in your application.

Demux Data Types

enum dmx_output

Output for the demux.

Constants

DMX_OUT_DECODER Streaming directly to decoder.

- DMX_OUT_TAP Output going to a memory buffer (to be retrieved via the read command). Delivers the stream output to the demux device on which the ioctl is called.
- DMX_OUT_TS_TAP Output multiplexed into a new TS (to be retrieved by reading from the logical DVR device). Routes output to the logical DVR device /dev/ dvb/adapter?/dvr?, which delivers a TS multiplexed from all filters for which DMX_OUT_TS_TAP was specified.
- DMX_OUT_TSDEMUX_TAP Like DMX_OUT_TS_TAP but retrieved from the DMX device.

enum dmx_input Input from the demux.

Constants

DMX_IN_FRONTEND Input from a front-end device.

DMX_IN_DVR Input from the logical DVR device.

enum dmx_ts_pes type of the PES filter.

Constants

- DMX_PES_AUDIO0 first audio PID. Also referred as DMX_PES_AUDIO.
- DMX_PES_VIDE00 first video PID. Also referred as DMX_PES_VIDEO.
- DMX_PES_TELETEXT0 first teletext PID. Also referred as DMX_PES_TELETEXT.
- DMX_PES_SUBTITLE0 first subtitle PID. Also referred as DMX_PES_SUBTITLE.
- DMX_PES_PCR0 first Program Clock Reference PID. Also referred as
 DMX_PES_PCR.
- DMX_PES_AUDI01 second audio PID.

DMX PES VIDE01 second video PID.

DMX_PES_TELETEXT1 second teletext PID.

DMX_PES_SUBTITLE1 second subtitle PID.

DMX_PES_PCR1 second Program Clock Reference PID.

DMX_PES_AUDIO2 third audio PID.

DMX_PES_VIDE02 third video PID.

DMX_PES_TELETEXT2 third teletext PID.

DMX_PES_SUBTITLE2 third subtitle PID.

DMX_PES_PCR2 third Program Clock Reference PID.

DMX_PES_AUDIO3 fourth audio PID.

DMX_PES_VIDE03 fourth video PID.

DMX_PES_TELETEXT3 fourth teletext PID.

DMX_PES_SUBTITLE3 fourth subtitle PID.

DMX_PES_PCR3 fourth Program Clock Reference PID.

DMX_PES_OTHER any other PID.

struct **dmx_filter** Specifies a section header filter.

Definition

```
struct dmx_filter {
    __u8 filter[DMX_FILTER_SIZE];
    __u8 mask[DMX_FILTER_SIZE];
    __u8 mode[DMX_FILTER_SIZE];
};
```

Members

filter bit array with bits to be matched at the section header.

mask bits that are valid at the filter bit array.

mode mode of match: if bit is zero, it will match if equal (positive match); if bit is one, it will match if the bit is negated.

Note

All arrays in this struct have a size of DMX_FILTER_SIZE (16 bytes).

```
struct dmx_sct_filter_params
Specifies a section filter.
```

Definition

```
struct dmx_sct_filter_params {
    __u16 pid;
    struct dmx_filter filter;
    __u32 timeout;
    __u32 flags;
#define DMX_CHECK_CRC 1;
#define DMX_ONESHOT 2;
#define DMX_IMMEDIATE_START 4;
};
```

Members

pid PID to be filtered.

filter section header filter, as defined by struct dmx_filter.

timeout maximum time to filter, in milliseconds.

flags extra flags for the section filter.

Description

Carries the configuration for a MPEG-TS section filter.

The **flags** can be:

- DMX_CHECK_CRC only deliver sections where the CRC check succeeded;
- DMX_ONESHOT disable the section filter after one section has been delivered;
- $\mathsf{DMX_IMMEDIATE_START}$ Start filter immediately without requiring a $\mathsf{DMX_START}.$

struct dmx_pes_filter_params

Specifies Packetized Elementary Stream (PES) filter parameters.

Definition

```
struct dmx_pes_filter_params {
    __u16 pid;
    enum dmx_input input;
    enum dmx_output output;
    enum dmx_ts_pes pes_type;
    __u32 flags;
};
```

Members

pid PID to be filtered.

input Demux input, as specified by enum dmx_input.

output Demux output, as specified by enum dmx_output.

pes_type Type of the pes filter, as specified by enum dmx_pes_type.

flags Demux PES flags.

```
struct dmx_stc
Stores System Time Counter (STC) information.
```

Definition

```
struct dmx_stc {
    unsigned int num;
    unsigned int base;
    __u64 stc;
};
```

Members

num input data: number of the STC, from 0 to N.

base output: divisor for STC to get 90 kHz clock.

stc output: stc in **base** * 90 kHz units.

enum dmx_buffer_flags DMX memory-mapped buffer flags

Constants

- DMX_BUFFER_FLAG_HAD_CRC32_DISCARD Indicates that the Kernel discarded one or more frames due to wrong CRC32 checksum.
- **DMX_BUFFER_FLAG_TEI** Indicates that the Kernel has detected a Transport Error indicator (TEI) on a filtered pid.
- **DMX_BUFFER_PKT_COUNTER_MISMATCH** Indicates that the Kernel has detected a packet counter mismatch on a filtered pid.
- **DMX_BUFFER_FLAG_DISCONTINUITY_DETECTED** Indicates that the Kernel has detected one or more frame discontinuity.
- **DMX_BUFFER_FLAG_DISCONTINUITY_INDICATOR** Received at least one packet with a frame discontinuity indicator.

struct dmx_buffer dmx buffer info

Definition

```
struct dmx_buffer {
    __u32 index;
    __u32 bytesused;
    __u32 offset;
    __u32 length;
    __u32 flags;
    __u32 count;
};
```

Members

index id number of the buffer

bytesused number of bytes occupied by data in the buffer (payload);

- offset for buffers with memory == DMX_MEMORY_MMAP; offset from the start
 of the device memory for this plane, (or a "cookie" that should be passed to
 mmap() as offset)
- **length** size in bytes of the buffer
- ${\tt count}$ monotonic counter for filled buffers. Helps to identify data stream loses. Filled only at DMX_DQBUF.

Description

Contains data exchanged by application and driver using one of the streaming I/O methods.

Please notice that, for DMX_QBUF, only **index** should be filled. On DMX_DQBUF calls, all fields will be filled by the Kernel.

struct dmx_requestbuffers

request dmx buffer information

Definition

```
struct dmx_requestbuffers {
    __u32 count;
    __u32 size;
};
```

Members

count number of requested buffers,

size size in bytes of the requested buffer

Description

Contains data used for requesting a dmx buffer. All reserved fields must be set to zero.

struct dmx_exportbuffer export of dmx buffer as DMABUF file descriptor

Definition

```
struct dmx_exportbuffer {
    __u32 index;
    __u32 flags;
    __s32 fd;
};
```

Members

index id number of the buffer

- **flags** flags for newly created file, currently only O_CLOEXEC is supported, refer to manual of open syscall for more details
- fd file descriptor associated with DMABUF (set by driver)

Description

Contains data used for exporting a dmx buffer as DMABUF file descriptor. The buffer is identified by a 'cookie' returned by DMX_QUERYBUF (identical to the cookie used to mmap() the buffer to userspace). All reserved fields must be set to zero. The field reserved0 is expected to become a structure 'type' allowing an alternative layout of the structure content. Therefore this field should not be used for any other extensions.

Demux Function Calls

Digital TV demux open()

Name

Digital TV demux open()

Synopsis

int open(const char *deviceName, int flags)

Arguments

name Name of specific Digital TV demux device.

flags A bit-wise OR of the following flags:

0_RDONLY	read-only access
0_RDWR	read/write access
0_NONBLOCK	open in non-blocking mode (blocking mode is the default)

Description

This system call, used with a device name of /dev/dvb/adapter?/demux?, allocates a new filter and returns a handle which can be used for subsequent control of that filter. This call has to be made for each filter to be used, i.e. every returned file descriptor is a reference to a single filter. /dev/dvb/adapter?/dvr? is a logical device to be used for retrieving Transport Streams for digital video recording. When reading from this device a transport stream containing the packets from all PES filters set in the corresponding demux device (/dev/dvb/adapter?/demux?) having the output set to DMX_OUT_TS_TAP. A recorded Transport Stream is replayed by writing to this device.

The significance of blocking or non-blocking mode is described in the documentation for functions where there is a difference. It does not affect the semantics of the <code>open()</code> call itself. A device opened in blocking mode can later be put into non-blocking mode (and vice versa) using the <code>F_SETFL</code> command of the fcntl system call.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EMFILE	"Too many open files", i.e. no more filters available.	
--------	--	--

The generic error codes are described at the Generic Error Codes chapter.

Digital TV demux close()

Name

Digital TV demux close()

Synopsis

int close(int fd)

Arguments

fd File descriptor returned by a previous call to open().

Description

This system call deactivates and deallocates a filter that was previously allocated via the open() call.

Return Value

On success 0 is returned.

On error, -1 is returned and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

Digital TV demux read()

Name

Digital TV demux read()

Synopsis

size_t read(int fd, void *buf, size_t count)

Arguments

fd

File descriptor returned by a previous call to open().

buf Buffer to be filled

count Max number of bytes to read

Description

This system call returns filtered data, which might be section or Packetized Elementary Stream (PES) data. The filtered data is transferred from the driver's internal circular buffer to buf. The maximum amount of data to be transferred is implied by count.

Note: if a section filter created with DMX_CHECK_CRC flag set, data that fails on CRC check will be silently ignored.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EWOULDBLOCK No data to return and 0_NONBLOCK was specified.		
EOVERFLOW	The filtered data was not read from the buffer in due time, resulting in non-	
	read data being lost. The buffer is flushed.	
ETIMEDOUT	The section was not loaded within the stated timeout period. See ioctl	
	DMX_SET_FILTER for how to set a timeout.	
EFAULT	The driver failed to write to the callers buffer due to an invalid *buf pointer.	

The generic error codes are described at the Generic Error Codes chapter.

Digital TV demux write()

Name

Digital TV demux write()

Synopsis

ssize_t write(int fd, const void *buf, size_t count)

Arguments

fd File descriptor returned by a previous call to open().

buf Buffer with data to be written

count Number of bytes at the buffer

Description

This system call is only provided by the logical device /dev/dvb/adapter?/dvr?, associated with the physical demux device that provides the actual DVR functionality. It is used for replay of a digitally recorded Transport Stream. Matching filters have to be defined in the corresponding physical demux device, /dev/dvb/ adapter?/demux?. The amount of data to be transferred is implied by count.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EWOULDBLOCK	No data was written. This might happen if O_NONBLOCK was specified and				
	there is no more buffer space available (if O_NONBLOCK is not specified the				
	function will block until buffer space is available).				
EBUSY	This error code indicates that there are conflicting requests. The correspond				
	ing demux device is setup to receive data from the front- end. Make sure that				
	these filters are stopped and that the filters with input set to DMX_IN_DVR are				
	started.				

The generic error codes are described at the Generic Error Codes chapter.

Digital TV mmap()

Name

dmx-mmap - Map device memory into application address space

Warning: this API is still experimental

Synopsis

```
#include <unistd.h>
#include <sys/mman.h>
```

void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset)

Arguments

- start Map the buffer to this address in the application' s address space. When the MAP_FIXED flag is specified, start must be a multiple of the pagesize and mmap will fail when the specified address cannot be used. Use of this option is discouraged; applications should just specify a NULL pointer here.
- **length** Length of the memory area to map. This must be a multiple of the DVB packet length (188, on most drivers).
- prot The prot argument describes the desired memory protection. Regardless
 of the device type and the direction of data exchange it should be set to
 PROT_READ | PROT_WRITE, permitting read and write access to image buffers.
 Drivers should support at least this combination of flags.
- **flags** The flags parameter specifies the type of the mapped object, mapping options and whether modifications made to the mapped copy of the page are private to the process or are to be shared with other references.

MAP_FIXED requests that the driver selects no other address than the one specified. If the specified address cannot be used, mmap() will fail. If MAP_FIXED is specified, start must be a multiple of the pagesize. Use of this option is discouraged.

One of the MAP_SHARED or MAP_PRIVATE flags must be set. MAP_SHARED allows applications to share the mapped memory with other (e. g. child-) processes.

Note: The Linux Digital TV applications should not set the MAP_PRIVATE, MAP_DENYWRITE, MAP_EXECUTABLE or MAP_ANON flags.

- **fd** File descriptor returned by open().
- **offset** Offset of the buffer in device memory, as returned by ioctl DMX_QUERYBUF ioctl.

Description

The mmap() function asks to map length bytes starting at offset in the memory of the device specified by fd into the application address space, preferably at address start. This latter address is a hint only, and is usually specified as 0.

Suitable length and offset parameters are queried with the ioctl DMX_QUERYBUF ioctl. Buffers must be allocated with the ioctl DMX_REQBUFS ioctl before they can be queried.

To unmap buffers the munmap() function is used.

Return Value

On success mmap() returns a pointer to the mapped buffer. On error MAP_FAILED (-1) is returned, and the errno variable is set appropriately. Possible error codes are:

- **EBADF** fd is not a valid file descriptor.
- EACCES fd is not open for reading and writing.
- **EINVAL** The start or length or offset are not suitable. (E. g. they are too large, or not aligned on a PAGESIZE boundary.)

The flags or prot value is not supported.

No buffers have been allocated with the ioctl DMX_REQBUFS ioctl.

ENOMEM Not enough physical or virtual memory was available to complete the request.

DVB munmap()

Name

dmx-munmap - Unmap device memory

```
Warning: This API is still experimental.
```

Synopsis

```
#include <unistd.h>
#include <sys/mman.h>
```

int munmap(void *start, size_t length)

Arguments

start Address of the mapped buffer as returned by the mmap() function.

length Length of the mapped buffer. This must be the same value as given to mmap().

Description

Unmaps a previously with the mmap() function mapped buffer and frees it, if possible.

Return Value

On success munmap() returns 0, on failure -1 and the errno variable is set appropriately:

EINVAL The start or length is incorrect, or no buffers have been mapped yet.

DMX_START

Name

DMX_START

Synopsis

int ioctl(int fd, DMX START)

Arguments

fd File descriptor returned by open().

Description

This ioctl call is used to start the actual filtering operation defined via the ioctl calls DMX_SET_FILTER or DMX_SET_PES_FILTER.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL	Invalid	argument,	i.e.	no	filtering	parameters	provided	via	the
	DMX_SE	T_FILTER o	r DMX	SET_	PES_FILT	ER ioctls.			
EBUSY	This error code indicates that there are conflicting requests. There are active								
	filters filtering data from another input source. Make sure that these filters								
	are stopp	ped before s	starting	this f	ilter.				

The generic error codes are described at the Generic Error Codes chapter.

DMX_STOP

Name

DMX_STOP

Synopsis

int ioctl(int fd, DMX_STOP)

Arguments

fd File descriptor returned by open().

Description

This ioctl call is used to stop the actual filtering operation defined via the ioctl calls DMX_SET_FILTER or $DMX_SET_PES_FILTER$ and started via the DMX_START command.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_FILTER

Name

DMX_SET_FILTER

Synopsis

int ioctl(int fd, DMX_SET_FILTER, struct dmx_sct_filter_params *params)

Arguments

fd File descriptor returned by open().

params

Pointer to structure containing filter parameters.

Description

This ioctl call sets up a filter according to the filter and mask parameters provided. A timeout may be defined stating number of seconds to wait for a section to be loaded. A value of 0 means that no timeout should be applied. Finally there is a flag field where it is possible to state whether a section should be CRC-checked, whether the filter should be a "one-shot" filter, i.e. if the filtering operation should be stopped after the first section is received, and whether the filtering operation should be started immediately (without waiting for a DMX_START ioctl call). If a filter was previously set-up, this filter will be canceled, and the receive buffer will be flushed.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_PES_FILTER

Name

DMX_SET_PES_FILTER

Synopsis

int **ioctl**(int fd, DMX_SET_PES_FILTER, struct dmx_pes_filter_params *params)

Arguments

fd File descriptor returned by open().

params Pointer to structure containing filter parameters.

Description

This ioctl call sets up a PES filter according to the parameters provided. By a PES filter is meant a filter that is based just on the packet identifier (PID), i.e. no PES header or payload filtering capability is supported.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EBUSYThis error code indicates that there are conflicting requests. There are active
filters filtering data from another input source. Make sure that these filters
are stopped before starting this filter.

The generic error codes are described at the Generic Error Codes chapter.

DMX_SET_BUFFER_SIZE

Name

DMX_SET_BUFFER_SIZE

Synopsis

int ioctl(int fd, DMX_SET_BUFFER_SIZE, unsigned long size)

Arguments

fd File descriptor returned by open().

size Unsigned long size

Description

This ioctl call is used to set the size of the circular buffer used for filtered data. The default size is two maximum sized sections, i.e. if this function is not called a buffer size of 2×4096 bytes will be used.

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

DMX_GET_STC

Name

DMX_GET_STC

Synopsis

int ioctl(int fd, DMX_GET_STC, struct dmx_stc *stc)

Arguments

fd File descriptor returned by open().

stc Pointer to dmx_stc where the stc data is to be stored.

Description

This ioctl call returns the current value of the system time counter (which is driven by a PES filter of type DMX_PES_PCR). Some hardware supports more than one STC, so you must specify which one by setting the num field of stc before the ioctl (range $0\cdots n$). The result is returned in form of a ratio with a 64 bit numerator and a 32 bit denominator, so the real 90kHz STC value is stc->stc / stc->base.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL	Invalid stc number.

The generic error codes are described at the Generic Error Codes chapter.

DMX_GET_PES_PIDS

Name

DMX_GET_PES_PIDS

Synopsis

int ioctl(fd, DMX_GET_PES_PIDS, __u16 pids[5])

Arguments

fd File descriptor returned by open().

pids Array used to store 5 Program IDs.

Description

This ioctl allows to query a DVB device to return the first PID used by audio, video, textext, subtitle and PCR programs on a given service. They' re stored as:

PID element	position	content
pids[DMX_PES_AUDIO]	0	first audio PID
pids[DMX_PES_VIDEO]	1	first video PID
pids[DMX_PES_TELETEXT]	2	first teletext PID
pids[DMX_PES_SUBTITLE]	3	first subtitle PID
pids[DMX_PES_PCR]	4	first Program Clock Reference PID

Note: A value equal to 0xffff means that the PID was not filled by the Kernel.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

DMX_ADD_PID

Name

DMX_ADD_PID

Synopsis

int ioctl(fd, DMX_ADD_PID, __u16 *pid)

Arguments

fd File descriptor returned by open().

pid PID number to be filtered.

Description

This ioctl call allows to add multiple PIDs to a transport stream filter previously set up with DMX_SET_PES_FILTER and output equal to DMX_OUT_TSDEMUX_TAP.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

DMX_REMOVE_PID

Name

DMX_REMOVE_PID

Synopsis

int ioctl(fd, DMX_REMOVE_PID, __u16 *pid)

Arguments

fd File descriptor returned by open().

pid PID of the PES filter to be removed.

Description

This ioctl call allows to remove a PID when multiple PIDs are set on a transport stream filter, e. g. a filter previously set up with output equal to $DMX_OUT_TSDEMUX_TAP$, created via either $DMX_SET_PES_FILTER$ or DMX_ADD_PID .

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

ioctl DMX_REQBUFS

Name

DMX_REQBUFS - Initiate Memory Mapping and/or DMA buffer I/O

Warning: this API is still experimental

Synopsis

int ioctl(int fd, DMX_REQBUFS, struct dmx_requestbuffers *argp)

Arguments

fd File descriptor returned by open().
argp Pointer to struct dmx_requestbuffers.

Description

This ioctl is used to initiate a memory mapped or DMABUF based demux I/O.

Memory mapped buffers are located in device memory and must be allocated with this ioctl before they can be mapped into the application's address space. User buffers are allocated by applications themselves, and this ioctl is merely used to switch the driver into user pointer I/O mode and to setup some internal structures. Similarly, DMABUF buffers are allocated by applications through a device driver, and this ioctl only configures the driver into DMABUF I/O mode without performing any direct allocation.

To allocate device buffers applications initialize all fields of the struct dmx_requestbuffers structure. They set the count field to the desired number of buffers, and size to the size of each buffer.

When the ioctl is called with a pointer to this structure, the driver will attempt to allocate the requested number of buffers and it stores the actual number allocated in the count field. The count can be smaller than the number requested, even zero, when the driver runs out of free memory. A larger number is also possible when the driver requires more buffers to function correctly. The actual allocated buffer size can is returned at size, and can be smaller than what' s requested.

When this I/O method is not supported, the ioctl returns an EOPNOTSUPP error code.

Applications can call ioctl DMX_REQBUFS again to change the number of buffers, however this cannot succeed when any buffers are still mapped. A count value of zero frees all buffers, after aborting or finishing any DMA in progress.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EOPNOTSUPP The the requested I/O method is not supported.

ioctl DMX_QUERYBUF

Name

DMX_QUERYBUF - Query the status of a buffer

Warning: this API is still experimental

Synopsis

int ioctl(int fd, DMX_QUERYBUF, struct dvb_buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dvb_buffer.

Description

This ioctl is part of the mmap streaming I/O method. It can be used to query the status of a buffer at any time after buffers have been allocated with the ioctl DMX_REQBUFS ioctl.

Applications set the index field. Valid index numbers range from zero to the number of buffers allocated with ioctl DMX_REQBUFS (struct dvb_requestbuffers count) minus one.

After calling ioctl DMX_QUERYBUF with a pointer to this structure, drivers return an error code or fill the rest of the structure.

On success, the offset will contain the offset of the buffer from the start of the device memory, the length field its size, and the bytesused the number of bytes occupied by data in the buffer (payload).

Return Value

On success 0 is returned, the offset will contain the offset of the buffer from the start of the device memory, the length field its size, and the bytesused the number of bytes occupied by data in the buffer (payload).

On error it returns -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The index is out of bounds.

ioctl DMX_EXPBUF

Name

DMX_EXPBUF - Export a buffer as a DMABUF file descriptor.

Warning: this API is still experimental

Synopsis

int ioctl(int fd, DMX_EXPBUF, struct dmx_exportbuffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dmx_exportbuffer.

Description

This ioctl is an extension to the memory mapping I/O method. It can be used to export a buffer as a DMABUF file at any time after buffers have been allocated with the ioctl DMX_REQBUFS ioctl.

To export a buffer, applications fill struct dmx_exportbuffer. Applications must set the index field. Valid index numbers range from zero to the number of buffers allocated with ioctl DMX_REQBUFS (struct dmx_requestbuffers count) minus one. Additional flags may be posted in the flags field. Refer to a manual for open() for details. Currently only O_CLOEXEC, O_RDONLY, O_WRONLY, and O_RDWR are supported. All other fields must be set to zero. In the case of multi-planar API, every plane is exported separately using multiple ioctl DMX_EXPBUF calls.

After calling ioctl DMX_EXPBUF the fd field will be set by a driver, on success. This is a DMABUF file descriptor. The application may pass it to other DMABUF-aware devices. It is recommended to close a DMABUF file when it is no longer used to allow the associated memory to be reclaimed.

Examples

```
int buffer_export(int v4lfd, enum dmx_buf_type bt, int index, int *dmafd)
{
    struct dmx_exportbuffer expbuf;
    memset(&expbuf, 0, sizeof(expbuf));
    expbuf.type = bt;
    expbuf.index = index;
    if (ioctl(v4lfd, DMX_EXPBUF, &expbuf) == -1) {
        perror("DMX_EXPBUF");
        return -1;
    }
    *dmafd = expbuf.fd;
    return 0;
}
```

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL A queue is not in MMAP mode or DMABUF exporting is not supported or flags or index fields are invalid.

ioctl DMX_QBUF, DMX_DQBUF

Name

DMX_QBUF - DMX_DQBUF - Exchange a buffer with the driver

Warning: this API is still experimental

Synopsis

int ioctl(int fd, DMX_QBUF, struct dmx_buffer *argp)
int ioctl(int fd, DMX DQBUF, struct dmx buffer *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct dmx_buffer.

Description

Applications call the DMX_QBUF ioctl to enqueue an empty (capturing) or filled (output) buffer in the driver's incoming queue. The semantics depend on the selected I/O method.

To enqueue a buffer applications set the index field. Valid index numbers range from zero to the number of buffers allocated with ioctl DMX_REQBUFS (struct dmx_requestbuffers count) minus one. The contents of the struct dmx_buffer returned by a ioctl DMX_QUERYBUF ioctl will do as well.

When DMX_QBUF is called with a pointer to this structure, it locks the memory pages of the buffer in physical memory, so they cannot be swapped out to disk. Buffers remain locked until dequeued, until the the device is closed.

Applications call the DMX_DQBUF ioctl to dequeue a filled (capturing) buffer from the driver's outgoing queue. They just set the index field with the buffer ID to be queued. When DMX_DQBUF is called with a pointer to struct dmx_buffer, the driver fills the remaining fields or returns an error code.

By default DMX_DQBUF blocks when no buffer is in the outgoing queue. When the $0_NONBLOCK$ flag was given to the open() function, DMX_DQBUF returns immediately with an EAGAIN error code when no buffer is available.

The struct dmx_buffer structure is specified in Buffers.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EAGAIN** Non-blocking I/O has been selected using 0_NONBLOCK and no buffer was in the outgoing queue.
- EINVAL The index is out of bounds, or no buffers have been allocated yet.
- **EIO** DMX_DQBUF failed due to an internal error. Can also indicate temporary problems like signal loss or CRC errors.

7.3.4 Digital TV CA Device

The Digital TV CA device controls the conditional access hardware. It can be accessed through /dev/dvb/adapter?/ca?. Data types and and ioctl definitions can be accessed by including linux/dvb/ca.h in your application.

Note: There are three ioctls at this API that aren' t documented: CA_GET_MSG, CA_SEND_MSG and CA_SET_DESCR. Documentation for them are welcome.

CA Data Types

```
struct ca_slot_info
CA slot interface types and info.
```

Definition

```
struct ca_slot_info {
  int num;
  int type;
#define CA CI
                          1;
#define CA CI LINK
                          2;
#define CA CI PHYS
                          4;
#define CA DESCR
                          8;
#define CA SC
                        128;
  unsigned int flags;
#define CA CI MODULE PRESENT 1;
#define CA CI MODULE READY
                              2:
};
```

Members

num slot number.

type slot type.

flags flags applicable to the slot.

Description

This struct stores the CA slot information.

type can be:

- CA_CI CI high level interface;
- CA_CI_LINK CI link layer level interface;
- CA_CI_PHYS CI physical layer level interface;
- CA_DESCR built-in descrambler;
- CA_SC -simple smart card interface.

flags can be:

- CA_CI_MODULE_PRESENT module (or card) inserted;
- CA_CI_MODULE_READY module is ready for usage.

struct ca_descr_info

descrambler types and info.

Definition

```
struct ca_descr_info {
    unsigned int num;
    unsigned int type;
#define CA_ECD 1;
#define CA_NDS 2;
#define CA_DSS 4;
};
```

Members

num number of available descramblers (keys).

type type of supported scrambling system.

Description

Identifies the number of descramblers and their type.

type can be:

- CA_ECD European Common Descrambler (ECD) hardware;
- CA_NDS Videoguard (NDS) hardware;
- CA_DSS Distributed Sample Scrambling (DSS) hardware.

struct ca_caps

CA slot interface capabilities.

Definition

```
struct ca_caps {
    unsigned int slot_num;
    unsigned int slot_type;
    unsigned int descr_num;
```

(continues on next page)

(continued from previous page)

```
unsigned int descr_type;
};
```

Members

slot_num total number of CA card and module slots.

slot_type bitmap with all supported types as defined at struct ca_slot_info
 (e. g. CA_CI, CA_CI_LINK, etc).

descr_num total number of descrambler slots (keys)

struct **ca_msg**

a message to/from a CI-CAM

Definition

```
struct ca_msg {
    unsigned int index;
    unsigned int type;
    unsigned int length;
    unsigned char msg[256];
};
```

Members

index unused

type unused

length length of the message

msg message

Description

This struct carries a message to be send/received from a CI CA module.

```
struct ca_descr
```

CA descrambler control words info

Definition

```
struct ca_descr {
    unsigned int index;
    unsigned int parity;
    unsigned char cw[8];
};
```

Members

index CA Descrambler slot

parity control words parity, where 0 means even and 1 means odd

cw CA Descrambler control words

CA Function Calls

Digital TV CA open()

Name

Digital TV CA open()

Synopsis

int open(const char *name, int flags)

Arguments

name Name of specific Digital TV CA device.

flags A bit-wise OR of the following flags:

0_RDONLY	read-only access
0_RDWR	read/write access
0_NONBLOCK	open in non-blocking mode (blocking mode is the default)

Description

This system call opens a named ca device (e.g. /dev/dvb/adapter?/ca?) for subsequent use.

When an open() call has succeeded, the device will be ready for use. The significance of blocking or non-blocking mode is described in the documentation for functions where there is a difference. It does not affect the semantics of the open() call itself. A device opened in blocking mode can later be put into non-blocking mode (and vice versa) using the F_SETFL command of the fcntl system call. This is a standard system call, documented in the Linux manual page for fcntl. Only one user can open the CA Device in 0_RDWR mode. All other attempts to open the device in this mode will fail, and an error code will be returned.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

Digital TV CA close()

Name

Digital TV CA close()

Synopsis

int close(int fd)

Arguments

fd File descriptor returned by a previous call to open().

Description

This system call closes a previously opened CA device.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately. Generic error codes are described at the Generic Error Codes chapter.

CA_RESET

Name

CA_RESET

Synopsis

int ioctl(fd, CA_RESET)

Arguments

fd File descriptor returned by a previous call to open().

Description

Puts the Conditional Access hardware on its initial state. It should be called before start using the CA hardware.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

CA_GET_CAP

Name

CA_GET_CAP

Synopsis

int ioctl(fd, CA_GET_CAP, struct ca_caps *caps)

Arguments

fd File descriptor returned by a previous call to open().
caps Pointer to struct ca_caps.

Description

Queries the Kernel for information about the available CA and descrambler slots, and their types.

Return Value

On success 0 is returned and ca_caps is filled. On error, -1 is returned and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

CA_GET_SLOT_INFO

Name

CA_GET_SLOT_INFO

Synopsis

int ioctl(fd, CA_GET_SLOT_INFO, struct ca_slot_info *info)

Arguments

fd File descriptor returned by a previous call to open().
info Pointer to struct ca_slot_info.

Description

Returns information about a CA slot identified by ca_slot_info.slot_num.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

ENODEV	the slot is not available.

The generic error codes are described at the Generic Error Codes chapter.

CA_GET_DESCR_INFO

Name

CA_GET_DESCR_INFO

Synopsis

int ioctl(fd, CA_GET_DESCR_INFO, struct ca_descr_info *desc)

Arguments

fd File descriptor returned by a previous call to open().

desc Pointer to struct ca_descr_info.

Description

Returns information about all descrambler slots.

Return Value

On success 0 is returned, and ca_descr_info is filled.

On error -1 is returned, and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

CA_GET_MSG

Name

CA_GET_MSG

Synopsis

int ioctl(fd, CA_GET_MSG, struct ca_msg *msg)

Arguments

fd File descriptor returned by a previous call to open().

msg Pointer to struct ca_msg.

Description

Receives a message via a CI CA module.

Note: Please notice that, on most drivers, this is done by reading from the /dev/adapter?/ca? device node.

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately. Generic error codes are described at the Generic Error Codes chapter.

CA_SEND_MSG

Name

CA_SEND_MSG

Synopsis

int ioctl(fd, CA_SEND_MSG, struct ca_msg *msg)

Arguments

fd File descriptor returned by a previous call to open().

msg Pointer to struct ca_msg.

Description

Sends a message via a CI CA module.

Note: Please notice that, on most drivers, this is done by writing to the /dev/adapter?/ca? device node.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

CA_SET_DESCR

Name

CA_SET_DESCR

Synopsis

int ioctl(fd, CA_SET_DESCR, struct ca_descr *desc)

Arguments

fd File descriptor returned by a previous call to open().

msg Pointer to struct ca_descr.

Description

 CA_SET_DESCR is used for feeding descrambler CA slots with descrambling keys (referred as control words).

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

The High level CI API

Note: This documentation is outdated.

This document describes the high level CI API as in accordance to the Linux DVB API.

With the High Level CI approach any new card with almost any random architecture can be implemented with this style, the definitions inside the switch statement can be easily adapted for any card, thereby eliminating the need for any additional ioctls.

The disadvantage is that the driver/hardware has to manage the rest. For the application programmer it would be as simple as sending/receiving an array to/from the CI ioctls as defined in the Linux DVB API. No changes have been made in the API to accommodate this feature.

Why the need for another CI interface?

This is one of the most commonly asked question. Well a nice question. Strictly speaking this is not a new interface.

The CI interface is defined in the DVB API in ca.h as:

```
typedef struct ca slot info {
         int num;
                                   /* slot number */
                                   /* CA interface this slot supports */
         int type;
                                  /* CI high level interface */
#define CA CI
                           1
#define CA_CI_LINK
                          2 /* CI Link layer level int
4 /* CI physical layer level
8 /* built-in descrambler */
128 /* simple smart call.
                                  /* CI link layer level interface */
                                  /* CI physical layer level interface */
#define CA CI PHYS
#define CA_DESCR
#define CA SC
                          128
                                  /* simple smart card interface */
         unsigned int flags;
#define CA CI MODULE PRESENT 1 /* module (or card) inserted */
#define CA CI MODULE READY
                                 2
} ca slot info t;
```

This CI interface follows the CI high level interface, which is not implemented by most applications. Hence this area is revisited.

This CI interface is quite different in the case that it tries to accommodate all other CI based devices, that fall into the other categories.

This means that this CI interface handles the EN50221 style tags in the Application layer only and no session management is taken care of by the application. The driver/hardware will take care of all that.

This interface is purely an EN50221 interface exchanging APDU's. This means that no session management, link layer or a transport layer do exist in this case in the application to driver communication. It is as simple as that. The driver/hardware has to take care of that.

With this High Level CI interface, the interface can be defined with the regular ioctls.

All these ioctls are also valid for the High level CI interface

#define CA_RESET _IO('o' , 128) #define CA_GET_CAP _IOR('o' , 129, ca_caps_t) #define CA_GET_SLOT_INFO _IOR('o' , 130, ca_slot_info_t) #define CA_GET_DESCR_INFO _IOR('o' , 131, ca_descr_info_t) #define CA_GET_MSG _IOR('o' , 132, ca_msg_t) #define CA_SEND_MSG _IOW('o' , 133, ca_msg_t) #define CA_SET_DESCR_IOW('o' , 134, ca_descr_t)

On querying the device, the device yields information thus:

```
CA_GET_SLOT_INF0
Command = [info]
APP: Number=[1]
APP: Type=[1]
APP: flags=[1]
APP: CI High level interface
```

(continues on next page)

(continued from previous page)

```
APP: CA/CI Module Present
CA GET CAP
                - - - - - - - - - - - - -
Command = [caps]
APP: Slots=[1]
APP: Type=[1]
APP: Descrambler keys=[16]
APP: Type=[1]
CA SEND MSG
Descriptors(Program Level)=[ 09 06 06 04 05 50 ff f1]
Found CA descriptor @ program level
(20) ES type=[2] ES pid=[201] ES length =[0 (0x0)]
(25) ES type=[4] ES pid=[301] ES length =[0 (0x0)]
ca message length is 25 (0x19) bytes
EN50221 CA MSG=[ 9f 80 32 19 03 01 2d d1 f0 08 01 09 06 06 04 05 50 ff f1,
→02 e0 c9 00 00 04 e1 2d 00 00]
```

Not all ioctl's are implemented in the driver from the API, the other features of the hardware that cannot be implemented by the API are achieved using the CA_GET_MSG and CA_SEND_MSG ioctls. An EN50221 style wrapper is used to exchange the data to maintain compatibility with other hardware.

```
/* a message to/from a CI-CAM */
typedef struct ca_msg {
    unsigned int index;
    unsigned int type;
    unsigned int length;
    unsigned char msg[256];
} ca_msg_t;
```

The flow of data can be described thus,

(continues on next page)

(continued from previous page)

```
| do (H/W dep) |
| Hardware
|
V
```

The High Level CI interface uses the EN50221 DVB standard, following a standard ensures futureproofness.

7.3.5 Digital TV Network API

The Digital TV net device controls the mapping of data packages that are part of a transport stream to be mapped into a virtual network interface, visible through the standard Linux network protocol stack.

Currently, two encapsulations are supported:

- Multi Protocol Encapsulation (MPE)
- Ultra Lightweight Encapsulation (ULE)

In order to create the Linux virtual network interfaces, an application needs to tell to the Kernel what are the PIDs and the encapsulation types that are present on the transport stream. This is done through /dev/dvb/adapter?/net? device node. The data will be available via virtual dvb?_? network interfaces, and will be controlled/routed via the standard ip tools (like ip, route, netstat, ifconfig, etc).

Data types and and ioctl definitions are defined via linux/dvb/net.h header.

Digital TV net Function Calls

Net Data Types

struct dvb_net_if describes a DVB network interface

Definition

```
struct dvb_net_if {
    __ul6 pid;
    __ul6 if_num;
    __u8 feedtype;
#define DVB_NET_FEEDTYPE_MPE 0 ;
#define DVB_NET_FEEDTYPE_ULE 1 ;
};
```

Members

pid Packet ID (PID) of the MPEG-TS that contains data

if_num number of the Digital TV interface.

feedtype Encapsulation type of the feed.

Description

A MPEG-TS stream may contain packet IDs with IP packages on it. This struct describes it, and the type of encoding.

feedtype can be:

- DVB_NET_FEEDTYPE_MPE for MPE encoding
- DVB_NET_FEEDTYPE_ULE for ULE encoding.

ioctl NET_ADD_IF

Name

NET_ADD_IF - Creates a new network interface for a given Packet ID.

Synopsis

int ioctl(int fd, NET_ADD_IF, struct dvb_net_if *net_if)

Arguments

fd File descriptor returned by open().

net_if pointer to struct dvb_net_if

Description

The NET_ADD_IF ioctl system call selects the Packet ID (PID) that contains a TCP/IP traffic, the type of encapsulation to be used (MPE or ULE) and the interface number for the new interface to be created. When the system call successfully returns, a new virtual network interface is created.

The struct $dvb_net_if::ifnum$ field will be filled with the number of the created interface.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

ioctl NET_REMOVE_IF

Name

NET_REMOVE_IF - Removes a network interface.

Synopsis

int ioctl(int fd, NET_REMOVE_IF, int ifnum)

Arguments

fd File descriptor returned by open().
net_if number of the interface to be removed

Description

The NET_REMOVE_IF ioctl deletes an interface previously created via NET_ADD_IF.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

ioctl NET_GET_IF

Name

 $\ensuremath{\mathsf{NET}_\mathsf{GET}_\mathsf{IF}}$ - Read the configuration data of an interface created via - $\ensuremath{\mathsf{NET}_\mathsf{ADD}_\mathsf{IF}}.$

Synopsis

int ioctl(int fd, NET_GET_IF, struct dvb_net_if *net_if)

Arguments

fd File descriptor returned by open().

net_if pointer to struct dvb_net_if

Description

The NET_GET_IF ioctl uses the interface number given by the struct dvb_net_if::ifnum field and fills the content of struct dvb_net_if with the packet ID and encapsulation type used on such interface. If the interface was not created yet with NET_ADD_IF, it will return -1 and fill the errno with EINVAL error code.

Return Value

On success 0 is returned, and ca_slot_info is filled.

On error -1 is returned, and the errno variable is set appropriately.

The generic error codes are described at the Generic Error Codes chapter.

7.3.6 Digital TV Deprecated APIs

The APIs described here **should not** be used on new drivers or applications.

The DVBv3 frontend API has issues with new delivery systems, including DVB-S2, DVB-T2, ISDB, etc.

There's just one driver for a very legacy hardware using the Digital TV audio and video APIs. No modern drivers should use it. Instead, audio and video should be using the V4L2 and ALSA APIs, and the pipelines should be set via the Media Controller API.

Attention: The APIs described here doesn't necessarily reflect the current code implementation, as this section of the document was written for DVB version 1, while the code reflects DVB version 3 implementation.

Digital TV Frontend legacy API (a. k. a. DVBv3)

The usage of this API is deprecated, as it doesn't support all digital TV standards, doesn't provide good statistics measurements and provides incomplete information. This is kept only to support legacy applications.

Frontend Legacy Data Types

Frontend type

For historical reasons, frontend types are named by the type of modulation used in transmission. The fontend types are given by fe_type_t type, defined as:

fe_type

Table 221: Frontend types		
fe_type		DTV_DELIVERY_SYSTEM equivalent type
	For DVB-S	SYS_DVBS
FE_QPSK	standard	
	For DVB-C	SYS_DVBC_ANNEX_A
FE_QAM	annex A	
	standard	
	For DVB-T	SYS_DVBT
FE_OFDM	standard	
	For ATSC	SYS_ATSC (terrestrial) or SYS_DVBC_ANNEX_B
FE_ATSC	standard	(cable)
	(terres-	
	trial) or	
	for DVB-	
	C Annex	
	B (cable)	
	used in US.	

Table 221: Frontend types

Newer formats like DVB-S2, ISDB-T, ISDB-S and DVB-T2 are above, not described at the as they' re supported via the new FE GET PROPERTY/FE GET SET PROPERTY ioctl's, using the DTV DELIVERY SYSTEM parameter.

In the old days, struct dvb_frontend_info used to contain fe_type_t field to indicate the delivery systems, filled with either FE_QPSK, FE_QAM, FE_OFDM or FE_ATSC. While this is still filled to keep backward compatibility, the usage of this field is deprecated, as it can report just one delivery system, but some devices support multiple delivery systems. Please use DTV_ENUM_DELSYS instead.

On devices that support multiple delivery systems, struct dvb_frontend_info::fe_type_t is filled with the currently standard, as selected by the last call to FE_SET_PROPERTY using the DTV_DELIVERY_SYSTEM property.

Frontend bandwidth

fe_bandwidth

ID	Description	
BANDWIDTH_AUTO	Autodetect bandwidth (if supported)	
BANDWIDTH_1_712_MHZ	1.712 MHz	
BANDWIDTH_5_MHZ	5 MHz	
BANDWIDTH_6_MHZ	6 MHz	
BANDWIDTH_7_MHZ	7 MHz	
BANDWIDTH_8_MHZ	8 MHz	
BANDWIDTH_10_MHZ	10 MHz	

Table 222: enum fe bandwidth

dvb_frontend_parameters

frontend parameters

The kind of parameters passed to the frontend device for tuning depend on the kind of hardware you are using.

The struct dvb_frontend_parameters uses a union with specific per-system parameters. However, as newer delivery systems required more data, the structure size weren' t enough to fit, and just extending its size would break the existing applications. So, those parameters were replaced by the usage of FE_GET_PROPERTY/FE_SET_PROPERTY ioctl' s. The new API is flexible enough to add new parameters to existing delivery systems, and to add newer delivery systems.

So, newer applications should use FE_GET_PROPERTY/FE_SET_PROPERTY instead, in order to be able to support the newer System Delivery like DVB-S2, DVB-T2, DVB-C2, ISDB, etc.

All kinds of parameters are combined as a union in the dvb_frontend_parameters structure:

In the case of QPSK frontends the frequency field specifies the intermediate frequency, i.e. the offset which is effectively added to the local oscillator frequency (LOF) of the LNB. The intermediate frequency has to be specified in units of kHz. For QAM and OFDM frontends the frequency specifies the absolute frequency and is given in Hz.

dvb_qpsk_parameters

QPSK parameters

For satellite QPSK frontends you have to use the dvb_qpsk_parameters structure:

```
struct dvb_qpsk_parameters {
    uint32_t symbol_rate; /* symbol rate in Symbols per second */
    fe_code_rate_t fec_inner; /* forward error correction (see above)_
    $
    $
};
```

dvb_qam_parameters

QAM parameters

for cable QAM frontend you use the dvb_qam_parameters structure:

```
struct dvb_qam_parameters {
    uint32_t symbol_rate; /* symbol rate in Symbols per second */
    fe_code_rate_t fec_inner; /* forward error correction (see above)_
    ``*/
    fe_modulation_t modulation; /* modulation type (see above) */
};
```

dvb_vsb_parameters

VSB parameters

ATSC frontends are supported by the dvb_vsb_parameters structure:

```
struct dvb_vsb_parameters {
    fe_modulation_t modulation; /* modulation type (see above) */
};
```

dvb_ofdm_parameters

OFDM parameters

DVB-T frontends are supported by the dvb_ofdm_parameters structure:

```
struct dvb_ofdm_parameters {
    fe_bandwidth_t bandwidth;
    fe_code_rate_t code_rate_HP; /* high priority stream code rate */
    fe_code_rate_t code_rate_LP; /* low priority stream code rate */
    fe_modulation_t constellation; /* modulation type (see above) */
    fe_transmit_mode_t transmission_mode;
    fe_guard_interval_t guard_interval;
    fe_hierarchy_t hierarchy_information;
}
```

};

dvb_frontend_event

frontend events

```
struct dvb_frontend_event {
    fe_status_t status;
    struct dvb_frontend_parameters parameters;
};
```

Frontend Legacy Function Calls

Those functions are defined at DVB version 3. The support is kept in the kernel due to compatibility issues only. Their usage is strongly not recommended

FE_READ_BER

Name

FE_READ_BER

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_BER, uint32_t *ber)

Arguments

fd File descriptor returned by open().

ber The bit error rate is stored into *ber.

Description

This ioctl call returns the bit error rate for the signal currently received/demodulated by the front-end. For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

FE_READ_SNR

Name

FE_READ_SNR

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_SNR, int16_t *snr)

Arguments

fd File descriptor returned by open().

snr The signal-to-noise ratio is stored into *snr.

Description

This ioctl call returns the signal-to-noise ratio for the signal currently received by the front-end. For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

FE_READ_SIGNAL_STRENGTH

Name

FE_READ_SIGNAL_STRENGTH

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_SIGNAL_STRENGTH, uint16_t *strength)

Arguments

fd File descriptor returned by open().

strength The signal strength value is stored into *strength.

Description

This ioctl call returns the signal strength value for the signal currently received by the front-end. For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

FE_READ_UNCORRECTED_BLOCKS

Name

FE_READ_UNCORRECTED_BLOCKS

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_READ_UNCORRECTED_BLOCKS, uint32_t *ublocks)

Arguments

fd File descriptor returned by open().

ublocks The total number of uncorrected blocks seen by the driver so far.

Description

This ioctl call returns the number of uncorrected blocks detected by the device driver during its lifetime. For meaningful measurements, the increment in block count during a specific time interval should be calculated. For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

FE_SET_FRONTEND

Attention: This ioctl is deprecated.

Name

FE_SET_FRONTEND

Synopsis

int ioctl(int fd, FE_SET_FRONTEND, struct dvb_frontend_parameters *p)

Arguments

fd File descriptor returned by open().

p Points to parameters for tuning operation.

Description

This ioctl call starts a tuning operation using specified parameters. The result of this call will be successful if the parameters were valid and the tuning could be initiated. The result of the tuning operation in itself, however, will arrive asynchronously as an event (see documentation for FE_GET_EVENT and FrontendE-vent.) If a new FE_SET_FRONTEND operation is initiated before the previous one was completed, the previous operation will be aborted in favor of the new one. This command requires read/write access to the device.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL	Maximum supported symbol rate reached.	

Generic error codes are described at the Generic Error Codes chapter.

FE_GET_FRONTEND

Name

FE_GET_FRONTEND

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_GET_FRONTEND, struct dvb_frontend_parameters *p)

Arguments

fd File descriptor returned by open().

p Points to parameters for tuning operation.

Description

This ioctl call queries the currently effective frontend parameters. For this command, read-only access to the device is sufficient.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EINVAL Maximum supported symbol rate reached.

Generic error codes are described at the Generic Error Codes chapter.

FE_GET_EVENT

Name

FE_GET_EVENT

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, FE_GET_EVENT, struct dvb_frontend_event *ev)

Arguments

fd File descriptor returned by open().

ev Points to the location where the event, if any, is to be stored.

Description

This ioctl call returns a frontend event if available. If an event is not available, the behavior depends on whether the device is in blocking or non-blocking mode. In the latter case, the call fails immediately with errno set to EWOULDBLOCK. In the former case, the call blocks until an event becomes available.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

EWOULDBLOCKThere is no event pending, and the device is in non-blocking mode.EOVERFLOWOverflow in event queue - one or more events were lost.

Generic error codes are described at the Generic Error Codes chapter.

FE_DISHNETWORK_SEND_LEGACY_CMD

Name

FE_DISHNETWORK_SEND_LEGACY_CMD

Synopsis

Arguments

fd File descriptor returned by open().

cmd Sends the specified raw cmd to the dish via DISEqC.

Description

Warning: This is a very obscure legacy command, used only at stv0299 driver. Should not be used on newer drivers.

It provides a non-standard method for selecting Diseqc voltage on the frontend, for Dish Network legacy switches.

As support for this ioctl were added in 2004, this means that such dishes were already legacy in 2004.

Return Value

On success 0 is returned.

On error -1 is returned, and the errno variable is set appropriately.

Generic error codes are described at the Generic Error Codes chapter.

Digital TV Video Device

The Digital TV video device controls the MPEG2 video decoder of the Digital TV hardware. It can be accessed through **/dev/dvb/adapter0/video0**. Data types and and ioctl definitions can be accessed by including **linux/dvb/video.h** in your application.

Note that the Digital TV video device only controls decoding of the MPEG video stream, not its presentation on the TV or computer screen. On PCs this is typically handled by an associated video4linux device, e.g. **/dev/video**, which allows scaling and defining output windows.

Some Digital TV cards don't have their own MPEG decoder, which results in the omission of the audio and video device as well as the video4linux device.

The ioctls that deal with SPUs (sub picture units) and navigation packets are only supported on some MPEG decoders made for DVD playback.

These ioctls were also used by V4L2 to control MPEG decoders implemented in V4L2. The use of these ioctls for that purpose has been made obsolete and proper V4L2 ioctls or controls have been created to replace that functionality.

Video Data Types

video_format_t

The video_format_t data type defined by

```
typedef enum {
    VIDE0_FORMAT_4_3, /* Select 4:3 format */
    VIDE0_FORMAT_16_9, /* Select 16:9 format. */
```

(continues on next page)

(continued from previous page)

```
VIDE0_FORMAT_221_1  /* 2.21:1 */
} video_format_t;
```

is used in the VIDEO_SET_FORMAT function (??) to tell the driver which aspect ratio the output hardware (e.g. TV) has. It is also used in the data structures video_status (??) returned by VIDEO_GET_STATUS (??) and video_event (??) returned by VIDEO_GET_EVENT (??) which report about the display format of the current video stream.

video_displayformat_t

In case the display format of the video stream and of the display hardware differ the application has to specify how to handle the cropping of the picture. This can be done using the VIDEO_SET_DISPLAY_FORMAT call (??) which accepts

```
typedef enum {
    VIDE0_PAN_SCAN,    /* use pan and scan format */
    VIDE0_LETTER_BOX,    /* use letterbox format */
    VIDE0_CENTER_CUT_OUT    /* use center cut out format */
} video_displayformat_t;
```

as argument.

video_stream_source_t

The video stream source is set through the VIDEO_SELECT_SOURCE call and can take the following values, depending on whether we are replaying from an internal (demuxer) or external (user write) source.

VIDEO_SOURCE_DEMUX selects the demultiplexer (fed either by the frontend or the DVR device) as the source of the video stream. If VIDEO_SOURCE_MEMORY is selected the stream comes from the application through the **write()** system call.

video_play_state_t

The following values can be returned by the $\ensuremath{VIDEO_GET_STATUS}$ call representing the state of video playback.

```
typedef enum {
    VIDE0_STOPPED, /* Video is stopped */
    VIDE0_PLAYING, /* Video is currently playing */
    VIDE0_FREEZED /* Video is freezed */
} video_play_state_t;
```

video_command

struct video_command

The structure must be zeroed before use by the application This ensures it can be extended safely in the future.

```
struct video command {
    ___u32 cmd;
     _u32 flags;
    union {
        struct {
             u64 pts;
        } stop;
        struct {
            /* 0 or 1000 specifies normal speed,
               1 specifies forward single stepping,
               -1 specifies backward single stepping,
               >>1: playback at speed/1000 of the normal speed,
               <-1: reverse playback at (-speed/1000) of the normal speed...
→*/
             s32 speed;
             u32 format;
        } play;
        struct {
             u32 data[16];
        } raw;
    };
};
```

video_size_t

```
typedef struct {
    int w;
    int h;
    video_format_t aspect_ratio;
} video_size_t;
```

video_event

struct video_event

The following is the structure of a video event as it is returned by the VIDEO_GET_EVENT call.

```
struct video_event {
    __s32 type;
#define VIDE0_EVENT_SIZE_CHANGED 1
#define VIDE0_EVENT_FRAME_RATE_CHANGED 2
```

(continues on next page)

(continued from previous page)

```
#define VIDE0_EVENT_DECODER_STOPPED 3
#define VIDE0_EVENT_VSYNC 4
    long timestamp;
    union {
        video_size_t size;
        unsigned int frame_rate; /* in frames per 1000sec */
        unsigned char vsync_field; /* unknown/odd/even/progressive */
     } u;
};
```

video_status

struct video_status

The VIDEO_GET_STATUS call returns the following structure informing about various states of the playback operation.

```
struct video_status {
    int video_blank; /* blank video on freeze? */
    video_play_state_t play_state; /* current state of playback */
    video_stream_source_t stream_source; /* current source (demux/memory)_u
    */
    video_format_t video_format; /* current aspect ratio of stream_u
    */
    video_displayformat_t display_format;/* selected cropping mode */
};
```

If video_blank is set video will be blanked out if the channel is changed or if playback is stopped. Otherwise, the last picture will be displayed. play_state indicates if the video is currently frozen, stopped, or being played back. The stream_source corresponds to the selected source for the video stream. It can come either from the demultiplexer or from memory. The video_format indicates the aspect ratio (one of 4:3 or 16:9) of the currently played video stream. Finally, display_format corresponds to the selected cropping mode in case the source video format is not the same as the format of the output device.

video_still_picture

struct video_still_picture

An I-frame displayed via the VIDEO_STILLPICTURE call is passed on within the following structure.

```
/* pointer to and size of a single iframe in memory */
struct video_still_picture {
    char *iFrame; /* pointer to a single iframe in memory */
    int32_t size;
};
```

video capabilities

A call to VIDEO_GET_CAPABILITIES returns an unsigned integer with the following bits set according to the hardwares capabilities.

```
/* bit definitions for capabilities: */
/* can the hardware decode MPEG1 and/or MPEG2? */
#define VIDE0 CAP MPEG1
                           1
#define VIDE0 CAP MPEG2
                           2
/* can you send a system and/or program stream to video device?
   (you still have to open the video and the audio device but only
    send the stream to the video device) */
#define VIDE0 CAP SYS
                           4
#define VIDE0 CAP PROG
                           8
/* can the driver also handle SPU, NAVI and CSS encoded data?
   (CSS API is not present yet) */
#define VIDE0_CAP_SPU
#define VIDE0_CAP_NAVI
                          16
                          32
#define VIDE0_CAP_CSS
                          64
```

Video Function Calls

dvb video open()

Name

dvb video open()

Attention: This ioctl is deprecated.

Synopsis

int open (const char *deviceName, int flags)

Arguments

const char *deviceName	Name of specific video device.
int flags	A bit-wise OR of the following flags:
	O_RDONLY read-only access
	O_RDWR read/write access
	O_NONBLOCK open in non-blocking mode
	(blocking mode is the default)

Description

This system call opens a named video device (e.g. /dev/dvb/adapter0/video0) for subsequent use.

When an open() call has succeeded, the device will be ready for use. The significance of blocking or non-blocking mode is described in the documentation for functions where there is a difference. It does not affect the semantics of the open() call itself. A device opened in blocking mode can later be put into non-blocking mode (and vice versa) using the F_SETFL command of the fcntl system call. This is a standard system call, documented in the Linux manual page for fcntl. Only one user can open the Video Device in O_RDWR mode. All other attempts to open the device in this mode will fail, and an error-code will be returned. If the Video Device is opened in O_RDONLY mode, the only ioctl call that can be used is VIDEO_GET_STATUS. All other call will return an error code.

Return Value

ENODEV	Device driver not loaded/available.
EINTERNAL	Internal error.
EBUSY	Device or resource busy.
EINVAL	Invalid argument.

dvb video close()

Name

dvb video close()

Attention: This ioctl is deprecated.

Synopsis

int close(int fd)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This system call closes a previously opened video device.

Return Value

EBADF | fd is not a valid open file descriptor.

dvb video write()

Name

dvb video write()

Attention: This ioctl is deprecated.

Synopsis

size_t write(int fd, const void *buf, size_t count)

Arguments

int fd	File descriptor returned by a previous call to open().
void *buf	Pointer to the buffer containing the PES data.
size_t count	Size of buf.

Description

This system call can only be used if VIDEO_SOURCE_MEMORY is selected in the ioctl call VIDEO_SELECT_SOURCE. The data provided shall be in PES format, unless the capability allows other formats. If O_NONBLOCK is not specified the function will block until buffer space is available. The amount of data to be transferred is implied by count.

Return Value

EPERM Mode VIDEO_SOURCE_MEMORY not selected.ENOMEM Attempted to write more data than the internal buffer can hold.EBADF fd is not a valid open file descriptor.

VIDEO_STOP

Name

VIDEO STOP

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_STOP, boolean mode)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_STOP for this command.
Boolean mode	Indicates how the screen shall be handled.
	TRUE: Blank screen when stop.
	FALSE: Show last decoded frame.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.

This ioctl call asks the Video Device to stop playing the current stream. Depending on the input parameter, the screen can be blanked out or displaying the last decoded frame.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_PLAY

Name

VIDEO_PLAY

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_PLAY)

Arguments

int fdFile descriptor returned by a previous call to open().int requestEquals VIDEO_PLAY for this command.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.

This ioctl call asks the Video Device to start playing a video stream from the selected source.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_FREEZE

Name

VIDEO_FREEZE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_FREEZE)

Arguments

int fdFile descriptor returned by a previous call to open().int requestEquals VIDEO_FREEZE for this command.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 ioctl VIDIOC DECODER CMD, VIDIOC TRY DECODER CMD instead.

This ioctl call suspends the live video stream being played. Decoding and playing are frozen. It is then possible to restart the decoding and playing process of the video stream using the VIDEO_CONTINUE command. If VIDEO_SOURCE_MEMORY is selected in the ioctl call VIDEO_SELECT_SOURCE, the Digital TV subsystem will not decode any more data until the ioctl call VIDEO CONTINUE or VIDEO PLAY is performed.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_CONTINUE

Name

VIDEO_CONTINUE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_CONTINUE)

Arguments

int fdFile descriptor returned by a previous call to open().int requestEquals VIDEO_CONTINUE for this command.

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD instead.

This ioctl call restarts decoding and playing processes of the video stream which was played before a call to VIDEO_FREEZE was made.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_SELECT_SOURCE

Name

VIDEO_SELECT_SOURCE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SELECT_SOURCE, video_stream_source_t source)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_SELECT_SOURCE for this command.
video_stream_source_t	Indicates which source shall be used for the Video
source	stream.

Description

This ioctl is for Digital TV devices only. This ioctl was also supported by the V4L2 ivtv driver, but that has been replaced by the ivtv-specific $IVTV_IOC_PASSTHROUGH_MODE$ ioctl.

This ioctl call informs the video device which source shall be used for the input data. The possible sources are demux or memory. If memory is selected, the data is fed to the video device through the write command.

video_stream_source_t

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_SET_BLANK

Name

VIDEO_SET_BLANK

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_BLANK, boolean mode)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_SET_BLANK for this command.
boolean mode	TRUE: Blank screen when stop.
	FALSE: Show last decoded frame.

Description

This ioctl call asks the Video Device to blank out the picture.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_GET_STATUS

Name

VIDEO_GET_STATUS

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_GET_STATUS, struct video_status *status)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_GET_STATUS for this command.
struct video_status *status	Returns the current status of the Video Device.

Description

This ioctl call asks the Video Device to return the current status of the device.

video_status

```
struct video_status {
    int video_blank; /* blank video on freeze? */
    video_play_state_t play_state; /* current state of playback_
    ·*/
    video_stream_source_t stream_source; /* current source (demux/
    ·memory) */
    video_format_t video_format; /* current aspect ratio of_
    ·stream*/
    video_displayformat_t display_format;/* selected cropping mode */
};
```

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_GET_FRAME_COUNT

Name

VIDEO GET FRAME COUNT

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_GET_FRAME_COUNT, __u64 *pts)

Arguments

int fd		File descriptor returned by a previous call to open().
int	re-	Equals VIDEO_GET_FRAME_COUNT for this command.
quest		
u64	*pts	Returns the number of frames displayed since the decoder was
		started.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has been replaced by the V4L2_CID_MPEG_VIDE0_DEC_FRAME control.

This ioctl call asks the Video Device to return the number of displayed frames since the decoder was started.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_GET_PTS

Name

VIDEO_GET_PTS

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_GET_PTS, __u64 *pts)

Arguments

int	File descriptor returned by a previous call to open().
fd	
int	Equals VIDEO_GET_PTS for this command.
re-	
que	st
u	Heturns the 33-bit timestamp as defined in ITU T-REC-H.222.0 / ISO/IEC
*pts	13818-1.
	The PTS should belong to the currently played frame if possible, but may also
	be a value close to it like the PTS of the last decoded frame or the last PTS
	extracted by the PES parser.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has been replaced by the V4L2_CID_MPEG_VIDE0_DEC_PTS control.

This ioctl call asks the Video Device to return the current PTS timestamp.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_GET_EVENT

Name

VIDEO_GET_EVENT

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_GET_EVENT, struct video_event *ev)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_GET_EVENT for this command.
struct video_event	Points to the location where the event, if any, is to be stored.
*ev	

Description

This ioctl is for Digital TV devices only. To get events from a V4L2 decoder use the V4L2 ioctl VIDIOC DQEVENT ioctl instead.

This ioctl call returns an event of type video_event if available. If an event is not available, the behavior depends on whether the device is in blocking or nonblocking mode. In the latter case, the call fails immediately with errno set to EWOULDBLOCK. In the former case, the call blocks until an event becomes available. The standard Linux poll() and/or select() system calls can be used with the device file descriptor to watch for new events. For select(), the file descriptor should be included in the exceptfds argument, and for poll(), POLLPRI should be specified as the wake-up condition. Read-only permissions are sufficient for this ioctl call.

```
video_event
```

```
struct video event {
          s32 type;
#define VIDEO EVENT SIZE CHANGED
                                         1
                                         2
#define VIDEO EVENT FRAME RATE CHANGED
#define VIDEO EVENT DECODER STOPPED
                                         3
#define VIDE0 EVENT VSYNC
                                         4
        long timestamp;
        union {
                video_size_t size;
                unsigned int frame_rate;
                                                 /* in frames per 1000sec */
                unsigned char vsync field;
                                                 /* unknown/odd/even/
→progressive */
```

(continues on next page)

		(continued from previous page)
	} u;	
};		

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EWOULDBLOCKThere is no event pending, and the device is in non-blocking mode.EOVERFLOWOverflow in event queue - one or more events were lost.

VIDEO_COMMAND

Name

VIDEO_COMMAND

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO COMMAND, struct video command *cmd)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_COMMAND for this command.
struct video_command *cmd	Commands the decoder.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has been replaced by the ioctl VIDIOC_DECODER_CMD, VID-IOC_TRY_DECODER_CMD ioctl.

This ioctl commands the decoder. The video_command struct is a subset of the v4l2_decoder_cmd struct, so refer to the ioctl VIDIOC_DECODER_CMD, VID-IOC_TRY_DECODER_CMD documentation for more information.

struct video_command

```
/* The structure must be zeroed before use by the application
This ensures it can be extended safely in the future. */
struct video_command {
        ___u32 cmd;
         _u32 flags;
        union {
                struct {
                          _u64 pts;
                } stop;
                struct {
                         /* 0 or 1000 specifies normal speed,
                        1 specifies forward single stepping,
                        -1 specifies backward single stepping,
                        >1: playback at speed/1000 of the normal speed,
                        <-1: reverse playback at (-speed/1000) of the
→normal speed. */
                         s32 speed;
                         u32 format;
                } play;
                struct {
                          _u32 data[16];
                } raw;
        };
};
```

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_TRY_COMMAND

Name

VIDEO_TRY_COMMAND

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_TRY_COMMAND, struct video_command *cmd)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_TRY_COMMAND for this command.
struct video_command *cmd	Try a decoder command.

Description

This ioctl is obsolete. Do not use in new drivers. For V4L2 decoders this ioctl has been replaced by the VIDIOC_TRY_DECODER_CMD ioctl.

This ioctl tries a decoder command. The video_command struct is a subset of the v4l2_decoder_cmd struct, so refer to the VIDIOC_TRY_DECODER_CMD documentation for more information.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_GET_SIZE

Name

VIDEO_GET_SIZE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(int fd, VIDEO_GET_SIZE, video_size_t *size)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_GET_SIZE for this command.
video_size_t *size	Returns the size and aspect ratio.

Description

This ioctl returns the size and aspect ratio.

video_size_t

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_SET_DISPLAY_FORMAT

Name

VIDEO_SET_DISPLAY_FORMAT

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_DISPLAY_FORMAT)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_SET_DISPLAY_FORMAT for this com-
	mand.
video_display_format_t for-	Selects the video format to be used.
mat	

Description

This ioctl call asks the Video Device to select the video format to be applied by the MPEG chip on the video.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_STILLPICTURE

Name

VIDEO STILLPICTURE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO STILLPICTURE, struct video still picture *sp)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_STILLPICTURE for this command.
struct video_still_picture	Pointer to a location where an I-frame and size is
*sp	stored.

Description

This ioctl call asks the Video Device to display a still picture (I-frame). The input data shall contain an I-frame. If the pointer is NULL, then the current displayed still picture is blanked.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_FAST_FORWARD

Name

VIDEO_FAST_FORWARD

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_FAST_FORWARD, int nFrames)

Arguments

	File descriptor returned by a previous call to open().
int request	Equals VIDEO_FAST_FORWARD for this command.
int nFrames The number of frames to skip.	

Description

This ioctl call asks the Video Device to skip decoding of N number of I-frames. This call can only be used if VIDEO_SOURCE_MEMORY is selected.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EPERM Mode VIDEO_SOURCE_MEMORY not selected.

VIDEO_SLOWMOTION

Name

VIDEO_SLOWMOTION

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SLOWMOTION, int nFrames)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_SLOWMOTION for this command.
int nFrames	The number of times to repeat each frame.

Description

This ioctl call asks the video device to repeat decoding frames N number of times. This call can only be used if VIDEO_SOURCE_MEMORY is selected.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EPERM Mode VIDEO_SOURCE_MEMORY not selected.

VIDEO_GET_CAPABILITIES

Name

VIDEO_GET_CAPABILITIES

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_GET_CAPABILITIES, unsigned int *cap)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_GET_CAPABILITIES for this command.
unsigned int *cap	Pointer to a location where to store the capability information.

Description

This ioctl call asks the video device about its decoding capabilities. On success it returns and integer which has bits set according to the defines in section ??.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_CLEAR_BUFFER

Name

VIDEO_CLEAR_BUFFER

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_CLEAR_BUFFER)

Arguments

	File descriptor returned by a previous call to open().
int request	Equals VIDEO_CLEAR_BUFFER for this command.

Description

This ioctl call clears all video buffers in the driver and in the decoder hardware.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_SET_STREAMTYPE

Name

VIDEO_SET_STREAMTYPE

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_STREAMTYPE, int type)

Arguments

	File descriptor returned by a previous call to open().
int request	Equals VIDEO_SET_STREAMTYPE for this command.
int type	stream type

Description

This ioctl tells the driver which kind of stream to expect being written to it. If this call is not used the default of video PES is used. Some drivers might not support this call and always expect PES.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

VIDEO_SET_FORMAT

Name

VIDEO_SET_FORMAT

Attention: This ioctl is deprecated.

Synopsis

int ioctl(fd, VIDEO_SET_FORMAT, video_format_t format)

Arguments

int fd	File descriptor returned by a previous call to open().
int request	Equals VIDEO_SET_FORMAT for this command.
video_format_t format	video format of TV as defined in section ??.

Description

This ioctl sets the screen format (aspect ratio) of the connected output device (TV) so that the output of the decoder can be adjusted accordingly.

```
video_format_t
```

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL format is not a valid video format.

Digital TV Audio Device

The Digital TV audio device controls the MPEG2 audio decoder of the Digital TV hardware. It can be accessed through /dev/dvb/adapter?/audio?. Data types and and ioctl definitions can be accessed by including linux/dvb/audio.h in your application.

Please note that some Digital TV cards don't have their own MPEG decoder, which results in the omission of the audio and video device.

These ioctls were also used by V4L2 to control MPEG decoders implemented in V4L2. The use of these ioctls for that purpose has been made obsolete and proper V4L2 ioctls or controls have been created to replace that functionality.

Audio Data Types

This section describes the structures, data types and defines used when talking to the audio device.

audio_stream_source

The audio stream source is set through the AUDIO_SELECT_SOURCE call and can take the following values, depending on whether we are replaying from an internal (demux) or external (user write) source.

typedef enum {
 AUDIO_SOURCE_DEMUX,
 AUDIO_SOURCE_MEMORY
} audio stream source t;

AUDIO_SOURCE_DEMUX selects the demultiplexer (fed either by the frontend or the DVR device) as the source of the video stream. If AUDIO_SOURCE_MEMORY is selected the stream comes from the application through the write() system call.

audio_play_state

The following values can be returned by the AUDIO_GET_STATUS call representing the state of audio playback.

```
typedef enum {
    AUDIO_STOPPED,
    AUDIO_PLAYING,
    AUDIO_PAUSED
} audio_play_state_t;
```

audio_channel_select

The audio channel selected via AUDIO_CHANNEL_SELECT is determined by the following values.

```
typedef enum {
    AUDIO_STEREO,
    AUDIO_MONO_LEFT,
    AUDIO_MONO_RIGHT,
```

(continues on next page)

(continued from previous page)

```
AUDIO_MONO,
AUDIO_STEREO_SWAPPED
} audio_channel_select_t;
```

audio_status

The AUDIO_GET_STATUS call returns the following structure informing about various states of the playback operation.

```
typedef struct audio_status {
    boolean AV_sync_state;
    boolean mute_state;
    audio_play_state_t play_state;
    audio_stream_source_t stream_source;
    audio_channel_select_t channel_select;
    boolean bypass_mode;
    audio_mixer_t mixer_state;
} audio status t;
```

audio_mixer

The following structure is used by the $\ensuremath{\text{AUDIO_SET_MIXER}}$ call to set the audio volume.

```
typedef struct audio_mixer {
    unsigned int volume_left;
    unsigned int volume_right;
} audio mixer t;
```

audio encodings

A call to AUDIO_GET_CAPABILITIES returns an unsigned integer with the following bits set according to the hardwares capabilities.

```
#define AUDIO CAP DTS
                          1
#define AUDIO CAP LPCM
                          2
#define AUDIO CAP MP1
                          4
#define AUDIO CAP MP2
                          8
#define AUDIO CAP MP3
                         16
#define AUDI0_CAP_AAC
                         32
#define AUDI0_CAP_0GG
                         64
#define AUDIO_CAP_SDDS 128
#define AUDIO CAP AC3 256
```

Audio Function Calls

Digital TV audio open()

Name

Digital TV audio open()

Attention: This ioctl is deprecated

Synopsis

int open(const char *deviceName, int flags)

Arguments

const char *deviceName	Name of specific audio device.
int flags	A bit-wise OR of the following flags:
	O_RDONLY read-only access
	O_RDWR read/write access
	O_NONBLOCK open in non-blocking mode
	(blocking mode is the default)

Description

This system call opens a named audio device (e.g. /dev/dvb/adapter0/audio0) for subsequent use. When an open() call has succeeded, the device will be ready for use. The significance of blocking or non-blocking mode is described in the documentation for functions where there is a difference. It does not affect the semantics of the open() call itself. A device opened in blocking mode can later be put into non-blocking mode (and vice versa) using the F_SETFL command of the fcntl system call. This is a standard system call, documented in the Linux manual page for fcntl. Only one user can open the Audio Device in O_RDWR mode. All other attempts to open the device in this mode will fail, and an error code will be returned. If the Audio Device is opened in O_RDONLY mode, the only ioctl call that can be used is AUDIO_GET_STATUS. All other call will return with an error code.

ENODEV	Device driver not loaded/available.
EBUSY	Device or resource busy.
EINVAL	Invalid argument.

Digital TV audio close()

Name

Digital TV audio close()

Attention: This ioctl is deprecated

Synopsis

int close(int fd)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This system call closes a previously opened audio device.

Return Value

EBADF fd is not a valid open file descriptor.

Digital TV audio write()

Name

Digital TV audio write()

Attention: This ioctl is deprecated

Synopsis

size_t write(int fd, const void *buf, size_t count)

Arguments

int fd	File descriptor returned by a previous call to open().
void *buf	Pointer to the buffer containing the PES data.
size_t count	Size of buf.

Description

This system call can only be used if AUDIO_SOURCE_MEMORY is selected in the ioctl call AUDIO_SELECT_SOURCE. The data provided shall be in PES format. If O_NONBLOCK is not specified the function will block until buffer space is available. The amount of data to be transferred is implied by count.

Return Value

EPERM	Mode AUDIO_SOURCE_MEMORY not selected.
ENOMEM	Attempted to write more data than the internal buffer can hold.
EBADF	fd is not a valid open file descriptor.

AUDIO_STOP

Name

AUDIO_STOP

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_STOP)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call asks the Audio Device to stop playing the current stream.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_PLAY

Name

AUDIO_PLAY

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_PLAY)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call asks the Audio Device to start playing an audio stream from the selected source.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_PAUSE

Name

AUDIO_PAUSE

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_PAUSE)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call suspends the audio stream being played. Decoding and playing are paused. It is then possible to restart again decoding and playing process of the audio stream using AUDIO_CONTINUE command.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_CONTINUE

Name

AUDIO_CONTINUE

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_CONTINUE)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl restarts the decoding and playing process previously paused with AU-DIO_PAUSE command.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SELECT_SOURCE

Name

AUDIO_SELECT_SOURCE

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SELECT_SOURCE, struct audio_stream_source *source)

Arguments

int fd	File descriptor returned by a previous call to open().
audio_stream_source_t	Indicates the source that shall be used for the Audio
source	stream.

Description

This ioctl call informs the audio device which source shall be used for the input data. The possible sources are demux or memory. If AUDIO_SOURCE_MEMORY is selected, the data is fed to the Audio Device through the write command.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_MUTE

Name

AUDIO_SET_MUTE

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_MUTE, boolean state)

Arguments

int fd	File descriptor returned by a previous call to open().
boolean	Indicates if audio device shall mute or not.
state	TRUE: Audio Mute
	FALSE: Audio Un-mute

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD with the V4L2_DEC_CMD_START_MUTE_AUDIO flag instead.

This ioctl call asks the audio device to mute the stream that is currently being played.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_AV_SYNC

Name

AUDIO_SET_AV_SYNC

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_AV_SYNC, boolean state)

Arguments

int fd	File descriptor returned by a previous call to open().	
boolean	Tells the Digital TV subsystem if A/V synchronization shall be ON or OFF.	
state	TRUE: AV-sync ON	
	FALSE: AV-sync OFF	

Description

This ioctl call asks the Audio Device to turn ON or OFF A/V synchronization.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_BYPASS_MODE

Name

AUDIO_SET_BYPASS_MODE

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_BYPASS_MODE, boolean mode)

Arguments

int fd	File descriptor returned by a previous call to open().	
boolear	nEnables or disables the decoding of the current Audio stream in the Dig-	
mode	ital TV subsystem.	
	TRUE: Bypass is disabled	
	FALSE: Bypass is enabled	

Description

This ioctl call asks the Audio Device to bypass the Audio decoder and forward the stream without decoding. This mode shall be used if streams that can't be handled by the Digital TV system shall be decoded. Dolby DigitalTM streams are automatically forwarded by the Digital TV subsystem if the hardware can handle it.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_CHANNEL_SELECT

Name

AUDIO_CHANNEL_SELECT

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_CHANNEL_SELECT, struct *audio_channel_select)

Arguments

int fd	File descriptor returned by a previous call to open().
audio_channel_select_t	Select the output format of the audio (mono left/right,
ch	stereo).

Description

This ioctl is for Digital TV devices only. To control a V4L2 decoder use the V4L2 V4L2_CID_MPEG_AUDI0_DEC_PLAYBACK control instead.

This ioctl call asks the Audio Device to select the requested channel if possible.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_BILINGUAL_CHANNEL_SELECT

Name

AUDIO_BILINGUAL_CHANNEL_SELECT

Attention: This ioctl is deprecated

Synopsis

Arguments

int fd	File descriptor returned by a previous call to open().
audio_channel_select_t	Select the output format of the audio (mono left/right,
ch	stereo).

Description

This ioctl is obsolete. Do not use in new drivers. It has been replaced by the V4L2 V4L2_CID_MPEG_AUDI0_DEC_MULTILINGUAL_PLAYBACK control for MPEG decoders controlled through V4L2.

This ioctl call asks the Audio Device to select the requested channel for bilingual streams if possible.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_GET_STATUS

Name

AUDIO_GET_STATUS

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_GET_STATUS, struct audio_status *status)

Arguments

int fd	File descriptor returned by a previous call to open().
struct audio_status *status	Returns the current state of Audio Device.

Description

This ioctl call asks the Audio Device to return the current state of the Audio Device.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_GET_CAPABILITIES

Name

AUDIO_GET_CAPABILITIES

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_GET_CAPABILITIES, unsigned int *cap)

Arguments

int fd File descriptor returned by a previous call to open(). unsigned int *cap Returns a bit array of supported sound formats.

Description

This ioctl call asks the Audio Device to tell us about the decoding capabilities of the audio hardware.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_CLEAR_BUFFER

Name

AUDIO_CLEAR_BUFFER

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_CLEAR_BUFFER)

Arguments

int fd File descriptor returned by a previous call to open().

Description

This ioctl call asks the Audio Device to clear all software and hardware buffers of the audio decoder device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_ID

Name

AUDIO_SET_ID

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_ID, int id)

Arguments

int fd File descriptor returned by a previous call to open(). int id audio sub-stream id

Description

This ioctl selects which sub-stream is to be decoded if a program or system stream is sent to the video device. If no audio stream type is set the id has to be in [0xC0,0xDF] for MPEG sound, in [0x80,0x87] for AC3 and in [0xA0,0xA7] for LPCM. More specifications may follow for other stream types. If the stream type is set the id just specifies the substream id of the audio stream and only the first 5 bits are recognized.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_MIXER

Name

AUDIO_SET_MIXER

Attention: This ioctl is deprecated

Synopsis

int ioctl(int fd, AUDIO_SET_MIXER, struct audio_mixer *mix)

Arguments

int fd	File descriptor returned by a previous call to open().
audio_mixer_t *mix	mixer settings.

Description

This ioctl lets you adjust the mixer settings of the audio decoder.

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

AUDIO_SET_STREAMTYPE

Name

AUDIO_SET_STREAMTYPE

Attention: This ioctl is deprecated

Synopsis

int ioctl(fd, AUDIO_SET_STREAMTYPE, int type)

Arguments

int fd File descriptor returned by a previous call to open(). int type stream type

Description

This ioctl tells the driver which kind of audio stream to expect. This is useful if the stream offers several audio sub-streams like LPCM and AC3.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL type is not a valid or supported stream type.

7.3.7 Examples

In the past, we used to have a set of examples here. However, those examples got out of date and doesn't even compile nowadays.

Also, nowadays, the best is to use the libdvbv5 DVB API nowadays, with is fully documented.

Please refer to the libdvbv5 for updated/recommended examples.

7.3.8 Digital TV uAPI header files

Digital TV uAPI headers

frontend.h

```
/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
 * frontend.h
 *
 * Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
                    Ralph Metzler <ralph@convergence.de>
 *
                    Holger Waechtler <holger@convergence.de>
 *
                    Andre Draszik <ad@convergence.de>
 *
                    for convergence integrated media GmbH
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public,
→License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
→License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
→02111-1307, USA.
 *
 */
#ifndef DVBFRONTEND H
#define DVBFRONTEND H
#include <linux/types.h>
/**
```

```
* enum fe caps - Frontend capabilities
 * @FE IS STUPID:
                                         There's something wrong at,
→the
                                         frontend, and it can't
\rightarrow report its
                                         capabilities.
 * @FE CAN INVERSION AUTO:
                                         Can auto-detect frequency
*
                                         band inversion
 * @FE_CAN_FEC_1_2:
                                         Supports FEC 1/2
 * @FE_CAN_FEC_2_3:
                                         Supports FEC 2/3
 * @FE CAN FEC_3_4:
                                         Supports FEC 3/4
 * @FE_CAN_FEC_4_5:
                                         Supports FEC 4/5
 * @FE CAN FEC 5 6:
                                         Supports FEC 5/6
 * @FE CAN FEC 6 7:
                                         Supports FEC 6/7
                                         Supports FEC 7/8
 * @FE_CAN_FEC_7_8:
 * @FE CAN_FEC_8_9:
                                         Supports FEC 8/9
 * @FE CAN FEC AUTO:
                                         Can auto-detect FEC
                                         Supports QPSK modulation
 * @FE_CAN_QPSK:
 * @FE_CAN_QAM_16:
                                         Supports 16-QAM modulation
                                         Supports 32-QAM modulation
 * @FE_CAN_QAM_32:
 * @FE_CAN_QAM_64:
                                         Supports 64-QAM modulation
 * @FE_CAN_QAM_128:
                                         Supports 128-QAM modulation
 * @FE CAN QAM_256:
                                         Supports 256-QAM modulation
 * @FE_CAN_QAM_AUTO:
                                         Can auto-detect QAM
→modulation
 * @FE CAN TRANSMISSION MODE AUTO:
                                         Can auto-detect
→transmission mode
 * @FE CAN BANDWIDTH AUTO:
                                         Can auto-detect bandwidth
 * @FE CAN GUARD INTERVAL AUTO:
                                         Can auto-detect guard,
→interval
 * @FE CAN HIERARCHY AUTO:
                                         Can auto-detect hierarchy
 * @FE_CAN_8VSB:
                                         Supports 8-VSB modulation
 * @FE CAN 16VSB:
                                         Supporta 16-VSB modulation
 * @FE HAS EXTENDED CAPS:
                                         Unused
 * @FE_CAN_MULTISTREAM:
                                         Supports multistream
\rightarrow filtering
 * @FE_CAN_TURB0_FEC:
                                         Supports "turbo FEC"
→modulation
 * @FE_CAN_2G_MODULATION:
                                         Supports "2nd generation"
\rightarrow modulation,
                                         e. g. DVB-S2, DVB-T2, DVB-C2
 * @FE NEEDS BENDING:
                                         Unused
 * @FE_CAN_RECOVER:
                                         Can recover from a cable
→unplug
 *
                                         automatically
 * @FE CAN MUTE TS:
                                         Can stop spurious TS data
output
 */
enum fe_caps {
```

FE_IS_STUPID	= 0,
FE_CAN_INVERSION_AUTO	$= 0 \times 1$,
FE_CAN_FEC_1_2	$= 0 \times 2$,
FE_CAN_FEC_2_3	$= 0 \times 4$,
FE_CAN_FEC_3_4	$= 0 \times 8$,
FE_CAN_FEC_4_5	$= 0 \times 10,$
FE_CAN_FEC_5_6	$= 0 \times 20,$
FE_CAN_FEC_6_7	$= 0 \times 40$,
FE_CAN_FEC_7_8	$= 0 \times 80,$
FE_CAN_FEC_8_9	$= 0 \times 100$,
FE_CAN_FEC_AUTO	$= 0 \times 200,$
FE_CAN_QPSK	$= 0 \times 400$,
FE_CAN_QAM_16	$= 0 \times 800$,
FE_CAN_QAM_32	$= 0 \times 1000$,
FE_CAN_QAM_64	$= 0 \times 2000$,
FE_CAN_QAM_128	$= 0 \times 4000$,
FE_CAN_QAM_256	$= 0 \times 8000,$
FE_CAN_QAM_AUTO	$= 0 \times 10000$,
FE_CAN_TRANSMISSION_MODE	
FE_CAN_BANDWIDTH_AUTO	$= 0 \times 40000 ,$
FE_CAN_GUARD_INTERVAL_AU	$JTO = 0 \times 80000$,
FE_CAN_HIERARCHY_AUT0	$= 0 \times 100000$,
FE_CAN_8VSB	$= 0 \times 200000$,
FE_CAN_16VSB	$= 0 \times 400000$,
FE_HAS_EXTENDED_CAPS	$= 0 \times 800000$,
FE_CAN_MULTISTREAM	$= 0 \times 4000000$,
FE_CAN_TURBO_FEC	$= 0 \times 8000000$,
FE_CAN_2G_MODULATION	$= 0 \times 10000000$,
FE_NEEDS_BENDING	$= 0 \times 20000000$,
FE_CAN_RECOVER	$= 0 \times 40000000$,
FE_CAN_MUTE_TS	$= 0 \times 80000000$
};	
	ust due to backward compatibility.
*/	
enum fe_type {	
FE_QPSK,	
FE_QAM,	
FE_OFDM,	
FE_ATSC	
};	
(de la chi	
/**	
	rontend properties and capabilities
*	
* @name:	Name of the frontend
* @type:	****DEPRECATED****
*	Should not be used on modern <mark>.</mark>
⇒programs,	.
*	as a frontend may have more than _u

```
\rightarrow one type.
                                 In order to get the support types,
→of a given
                                 frontend, use :c:type:`DTV ENUM
→DELSYS`
                                 instead.
 *
 * @frequency min:
                                 Minimal frequency supported by the,
\rightarrow frontend.
 * @frequency max:
                                 Minimal frequency supported by the
\rightarrow frontend.
 * @frequency_stepsize:
                                 All frequencies are multiple of
→this value.
 * @frequency tolerance:
                                 Frequency tolerance.
 * @symbol_rate_min:
                                 Minimal symbol rate, in bauds
                                 (for Cable/Satellite systems).
 * @symbol_rate_max:
                                 Maximal symbol rate, in bauds
                                 (for Cable/Satellite systems).
 *
 * @symbol rate tolerance:
                                 Maximal symbol rate tolerance, in.
→ppm
                                 (for Cable/Satellite systems).
 * @notifier delay:
                                 ****DEPRECATED****. Not used by any
→driver.
 * @caps:
                                 Capabilities supported by the
\rightarrow frontend,
 *
                                 as specified in &enum fe caps.
 *
 * .. note:
 *
      #. The frequencies are specified in Hz for Terrestrial and
→Cable
         systems.
 *
      #. The frequencies are specified in kHz for Satellite systems.
 */
struct dvb_frontend_info {
        char
                   name[128];
        enum fe_type type;
                                 /* DEPRECATED. Use DTV ENUM DELSYS
→instead */
                    frequency_min;
         u32
                    frequency_max;
         u32
                    frequency_stepsize;
         u32
                   frequency_tolerance;
         u32
                    symbol rate min;
         u32
          u32
                    symbol rate max;
                    symbol rate tolerance;
         u32
                                                  /* DEPRECATED */
         u32
                   notifier delay;
        enum fe caps caps;
};
/**
 * struct dvb diseqc_master_cmd - DiSEqC master command
```

```
* @msg:
 *
        DiSEqC message to be sent. It contains a 3 bytes header.
\rightarrowwith:
        framing + address + command, and an optional argument
 *
 *
        of up to 3 bytes of data.
 * @msg len:
 *
        Length of the DiSEgC message. Valid values are 3 to 6.
 * Check out the DiSEqC bus spec available on http://www.eutelsat.
→org/ for
 * the possible messages that can be used.
 */
struct dvb diseqc master cmd {
        __u8 msg[6];
        u8 msg len;
};
/**
 * struct dvb diseqc slave_reply - DiSEqC received data
 *
 * @msg:
 *
        DiSEqC message buffer to store a message received via
→DiSEqC.
        It contains one byte header with: framing and
 *
 *
        an optional argument of up to 3 bytes of data.
 * @msg len:
 *
        Length of the DiSEqC message. Valid values are 0 to 4,
 *
        where 0 means no message.
 * @timeout:
 *
        Return from ioctl after timeout ms with errorcode when
 *
        no message was received.
 *
 * Check out the DiSEqC bus spec available on http://www.eutelsat.
→org/ for
 * the possible messages that can be used.
 */
struct dvb diseqc slave reply {
         u8 msg[4];
         _u8 msg_len;
        int timeout;
};
/**
 * enum fe sec voltage - DC Voltage used to feed the LNBf
*
 * @SEC VOLTAGE 13:
                        Output 13V to the LNBf
                        Output 18V to the LNBf
 * @SEC VOLTAGE 18:
 * @SEC VOLTAGE OFF:
                       Don't feed the LNBf with a DC voltage
 */
enum fe_sec_voltage {
        SEC_VOLTAGE 13,
```

```
SEC VOLTAGE 18,
        SEC VOLTAGE OFF
};
/**
 * enum fe sec tone mode - Type of tone to be send to the LNBf.
 * @SEC_TONE_ON: Sends a 22kHz tone burst to the antenna.
* @SEC_TONE_OFF: Don't send a 22kHz tone to the antenna_
\rightarrow (except
                          if the ``FE_DISEQC_*`` ioctls are called).
 */
enum fe_sec_tone_mode {
        SEC TONE ON,
        SEC_TONE_OFF
};
/**
 * enum fe sec mini cmd - Type of mini burst to be sent
 * @SEC MINI A:
                          Sends a mini-DiSEqC 22kHz '0' Tone Burst to,
→select
 *
                          satellite-A
 * @SEC MINI B:
                         Sends a mini-DiSEqC 22kHz '1' Data Burst to,
→select
                          satellite-B
 */
enum fe_sec_mini_cmd {
        SEC MINI A,
        SEC MINI B
};
/**
 * enum fe status - Enumerates the possible frontend status.
                          The frontend doesn't have any kind of lock.
 * @FE NONE:
 *
                          That's the initial frontend status
 * @FE_HAS_SIGNAL:
                          Has found something above the noise level.
                          Has found a signal.
 * @FE HAS CARRIER:
                          FEC inner coding (Viterbi, LDPC or other
 * @FE HAS VITERBI:
\rightarrow inner code).
 *
                          is stable.
 * @FE HAS SYNC:
                          Synchronization bytes was found.
                          Digital TV were locked and everything is.
 * @FE HAS LOCK:
→working.
 * @FE TIMEDOUT:
                          Fo lock within the last about 2 seconds.
 * @FE_REINIT:
                          Frontend was reinitialized, application is,
\rightarrow recommended
 *
                          to reset DiSEqC, tone and parameters.
 */
enum fe status {
        FE NONE
                                   = 0 \times 00,
        FE_HAS_SIGNAL
                                   = 0 \times 01,
```

```
FE HAS CARRIER
                                 = 0 \times 02,
        FE HAS VITERBI
                                 = 0 \times 04.
        FE HAS SYNC
                                 = 0 \times 08.
        FE HAS LOCK
                                 = 0 \times 10.
        FE TIMEDOUT
                                 = 0 \times 20.
                                 = 0 \times 40,
        FE REINIT
};
/**
 * enum fe spectral inversion - Type of inversion band
 *
 * @INVERSION OFF:
                        Don't do spectral band inversion.
 * @INVERSION ON:
                        Do spectral band inversion.
 * @INVERSION AUTO:
                        Autodetect spectral band inversion.
 * This parameter indicates if spectral inversion should be
→presumed or
 * not. In the automatic setting (``INVERSION AUTO``) the hardware
→will trv
 * to figure out the correct setting by itself. If the hardware,
→doesn't
 * support, the %dvb_frontend will try to lock at the carrier first
→with
 * inversion off. If it fails, it will try to enable inversion.
 */
enum fe_spectral_inversion {
        INVERSION OFF,
        INVERSION ON,
        INVERSION AUTO
};
/**
 * enum fe code rate - Type of Forward Error Correction (FEC)
 *
 * @FEC NONE: No Forward Error Correction Code
 * @FEC 1 2: Forward Error Correction Code 1/2
 * @FEC_2_3: Forward Error Correction Code 2/3
 * @FEC_3_4: Forward Error Correction Code 3/4
 * @FEC 4 5: Forward Error Correction Code 4/5
 * @FEC_5_6: Forward Error Correction Code 5/6
 * @FEC 6 7: Forward Error Correction Code 6/7
 * @FEC_7_8: Forward Error Correction Code 7/8
 * @FEC 8 9: Forward Error Correction Code 8/9
 * @FEC AUTO: Autodetect Error Correction Code
 * @FEC 3 5: Forward Error Correction Code 3/5
 * @FEC 9 10: Forward Error Correction Code 9/10
 * @FEC 2 5: Forward Error Correction Code 2/5
 * Please note that not all FEC types are supported by a given.
\rightarrow standard.
```

```
*/
enum fe code rate {
        FEC NONE = 0,
        FEC_1_2,
        FEC_2_3,
        FEC 3 4,
        FEC 4 5,
        FEC 5 6,
        FEC_6_7,
        FEC 7 8,
        FEC 8 9,
        FEC AUTO,
        FEC_3_5,
        FEC_9_10,
        FEC 2 5,
};
/**
 * enum fe modulation - Type of modulation/constellation
 * @QPSK:
                 QPSK modulation
                 16-QAM modulation
 * @QAM 16:
 * @QAM 32:
                 32-QAM modulation
 * @QAM 64:
                 64-0AM modulation
 * @QAM_128:
                 128-QAM modulation
 * @QAM 256:
                 256-QAM modulation
 * @QAM AUTO:
                 Autodetect QAM modulation
 * @VSB 8:
                 8-VSB modulation
 * @VSB 16:
                 16-VSB modulation
 * @PSK 8:
                 8-PSK modulation
 * @APSK 16:
                16-APSK modulation
 * @APSK 32:
                 32-APSK modulation
 * @DQPSK:
                 DQPSK modulation
 * @QAM 4 NR:
                 4-QAM-NR modulation
 *
 * Please note that not all modulations are supported by a given.
\rightarrow standard.
 *
 */
enum fe_modulation {
        OPSK,
        QAM 16,
        QAM 32,
        QAM 64,
        QAM 128,
        QAM 256,
        QAM AUTO,
        VSB 8,
        VSB 16,
        PSK 8,
        APSK 16,
        APSK_32,
```

```
DQPSK,
        QAM 4 NR,
};
/**
 * enum fe transmit mode - Transmission mode
 * @TRANSMISSION MODE AUTO:
 *
        Autodetect transmission mode. The hardware will try to find
→the
        correct FFT-size (if capable) to fill in the missing,
 *
\rightarrow parameters.
 * @TRANSMISSION MODE 1K:
 *
        Transmission mode 1K
 * @TRANSMISSION MODE 2K:
 *
        Transmission mode 2K
 * @TRANSMISSION MODE 8K:
 *
        Transmission mode 8K
 * @TRANSMISSION MODE 4K:
 *
        Transmission mode 4K
 * @TRANSMISSION_MODE_16K:
 *
        Transmission mode 16K
 * @TRANSMISSION_MODE_32K:
 *
        Transmission mode 32K
 * @TRANSMISSION MODE C1:
 *
        Single Carrier (C=1) transmission mode (DTMB only)
 * @TRANSMISSION MODE C3780:
 *
        Multi Carrier (C=3780) transmission mode (DTMB only)
 *
 * Please note that not all transmission modes are supported by a.
→given
 * standard.
 */
enum fe_transmit_mode {
        TRANSMISSION MODE 2K,
        TRANSMISSION MODE 8K,
        TRANSMISSION MODE AUTO,
        TRANSMISSION_MODE_4K,
        TRANSMISSION_MODE_1K,
        TRANSMISSION MODE 16K,
        TRANSMISSION MODE 32K,
        TRANSMISSION MODE C1,
        TRANSMISSION MODE C3780,
};
/**
 * enum fe guard interval - Guard interval
 * @GUARD_INTERVAL_AUTO:
                                 Autodetect the guard interval
 * @GUARD INTERVAL 1 128:
                                 Guard interval 1/128
 * @GUARD_INTERVAL_1_32:
                                 Guard interval 1/32
```

```
* @GUARD INTERVAL 1 16:
                                Guard interval 1/16
 * @GUARD INTERVAL 1 8:
                                Guard interval 1/8
 * @GUARD INTERVAL 1 4:
                                Guard interval 1/4
                                Guard interval 19/128
 * @GUARD INTERVAL 19 128:
 * @GUARD_INTERVAL_19_256:
                                Guard interval 19/256
 * @GUARD INTERVAL PN420:
                                PN length 420 (1/4)
 * @GUARD INTERVAL PN595:
                               PN length 595 (1/6)
 * @GUARD_INTERVAL_PN945:
                                PN length 945 (1/9)
 *
 * Please note that not all guard intervals are supported by a
→ given standard.
 */
enum fe guard interval {
        GUARD_INTERVAL_1_32,
        GUARD INTERVAL 1 16,
        GUARD_INTERVAL_1_8,
        GUARD INTERVAL 1 4,
        GUARD INTERVAL AUTO,
        GUARD INTERVAL 1 128,
        GUARD INTERVAL 19 128,
        GUARD INTERVAL 19 256,
        GUARD INTERVAL PN420,
        GUARD INTERVAL PN595,
        GUARD INTERVAL PN945,
};
/**
 * enum fe hierarchy - Hierarchy
 * @HIERARCHY_NONE:
                        No hierarchy
* @HIERARCHY_AUTO: Autodetect hierarchy (if supported)
* @HIERARCHY_1: Hierarchy 1
 * @HIERARCHY 2:
                       Hierarchy 2
 * @HIERARCHY 4:
                       Hierarchy 4
 * Please note that not all hierarchy types are supported by a
→ given standard.
 */
enum fe_hierarchy {
        HIERARCHY_NONE,
        HIERARCHY 1,
        HIERARCHY 2,
        HIERARCHY 4,
        HIERARCHY AUTO
};
/**
 * enum fe interleaving - Interleaving
 * @INTERLEAVING NONE: No interleaving.
 * @INTERLEAVING AUTO: Auto-detect interleaving.
 * @INTERLEAVING_240: Interleaving of 240 symbols.
 * @INTERLEAVING_720:
                        Interleaving of 720 symbols.
```

* * Please note that, currently, only DTMB uses it. */ enum fe interleaving { INTERLEAVING_NONE, INTERLEAVING AUTO, INTERLEAVING 240, INTERLEAVING 720, }; /* DVBv5 property Commands */ #define DTV UNDEFINED 0 #define DTV_TUNE 1 #define DTV CLEAR 2 3 #define DTV FREQUENCY #define DTV MODULATION 4 5 #define DTV BANDWIDTH HZ #define DTV INVERSION 6 #define DTV DISEQC MASTER 7 #define DTV SYMBOL RATE 8 #define DTV_INNER_FEC 9 #define DTV VOLTAGE 10 #define DTV TONE 11 #define DTV PILOT 12 #define DTV ROLLOFF 13 #define DTV DISEQC SLAVE REPLY 14 /* Basic enumeration set for querying unlimited capabilities */ #define DTV FE CAPABILITY COUNT 15 #define DTV FE CAPABILITY 16 #define DTV DELIVERY SYSTEM 17 /* ISDB-T and ISDB-Tsb */ #define DTV ISDBT PARTIAL RECEPTION 18 #define DTV ISDBT SOUND BROADCASTING 19 #define DTV_ISDBT_SB_SUBCHANNEL_ID 20 #define DTV_ISDBT_SB_SEGMENT_IDX 21 #define DTV ISDBT SB SEGMENT COUNT 22 #define DTV ISDBT LAYERA FEC 23 #define DTV ISDBT LAYERA MODULATION 24 #define DTV ISDBT LAYERA SEGMENT COUNT 25 #define DTV ISDBT LAYERA TIME INTERLEAVING 26 #define DTV ISDBT LAYERB FEC 27 #define DTV ISDBT LAYERB MODULATION 28 #define DTV ISDBT LAYERB SEGMENT COUNT 29 #define DTV ISDBT LAYERB TIME INTERLEAVING 30

#define DTV ISDBT LAYERC FEC 31 #define DTV ISDBT LAYERC MODULATION 32 #define DTV ISDBT LAYERC SEGMENT COUNT 33 #define DTV ISDBT LAYERC TIME INTERLEAVING 34 #define DTV API VERSION 35 #define DTV CODE RATE HP 36 #define DTV CODE RATE LP 37 #define DTV GUARD INTERVAL 38 #define DTV TRANSMISSION MODE 39 #define DTV HIERARCHY 40 #define DTV_ISDBT_LAYER_ENABLED 41 #define DTV STREAM ID 42 #define DTV ISDBS TS ID LEGACY DTV STREAM ID #define DTV DVBT2 PLP ID LEGACY 43 #define DTV ENUM DELSYS 44 /* ATSC-MH */ #define DTV ATSCMH FIC VER 45 #define DTV ATSCMH PARADE ID 46 47 #define DTV ATSCMH NOG #define DTV ATSCMH TNOG 48 #define DTV ATSCMH SGN 49 #define DTV ATSCMH PRC 50 #define DTV ATSCMH RS FRAME MODE 51 #define DTV ATSCMH RS FRAME ENSEMBLE 52 #define DTV ATSCMH RS CODE MODE PRI 53 #define DTV ATSCMH RS CODE MODE SEC 54 #define DTV ATSCMH SCCC BLOCK MODE 55 #define DTV_ATSCMH_SCCC_CODE_MODE_A 56 #define DTV ATSCMH SCCC CODE MODE B 57 #define DTV ATSCMH SCCC CODE MODE C 58 #define DTV ATSCMH SCCC CODE MODE D 59 #define DTV_INTERLEAVING 60 61 #define DTV LNA /* Quality parameters */ #define DTV STAT SIGNAL STRENGTH 62 #define DTV STAT CNR 63 #define DTV STAT PRE ERROR BIT COUNT 64 #define DTV_STAT_PRE_TOTAL_BIT_COUNT 65 #define DTV STAT POST ERROR BIT COUNT 66 #define DTV STAT POST TOTAL BIT COUNT 67 #define DTV STAT ERROR BLOCK COUNT 68 #define DTV STAT TOTAL BLOCK COUNT 69

```
/* Physical layer scrambling */
#define DTV SCRAMBLING SEQUENCE INDEX
                                         70
#define DTV MAX COMMAND
                               DTV SCRAMBLING SEQUENCE INDEX
/**
 * enum fe pilot - Type of pilot tone
 * @PILOT ON:
               Pilot tones enabled
 * @PILOT OFF: Pilot tones disabled
 * @PILOT AUTO: Autodetect pilot tones
 */
enum fe pilot {
        PILOT ON,
        PILOT OFF,
        PILOT AUTO,
};
/**
 * enum fe rolloff - Rolloff factor
 * @ROLLOFF 35:
                       Roloff factor: \alpha=35%
 * @ROLLOFF_20:
                      Roloff factor: \alpha = 20\%
 * @ROLLOFF 25:
                       Roloff factor: \alpha = 25\%
 * @ROLLOFF AUTO: Auto-detect the roloff factor.
 *
 *
  .. note:
 *
 *
      Roloff factor of 35% is implied on DVB-S. On DVB-S2, it is,
→default.
 */
enum fe rolloff {
        ROLLOFF 35,
        ROLLOFF 20,
        ROLLOFF_25,
        ROLLOFF AUTO,
};
/**
 * enum fe_delivery_system - Type of the delivery system
 *
 * @SYS UNDEFINED:
 *
        Undefined standard. Generally, indicates an error
 * @SYS DVBC ANNEX A:
        Cable TV: DVB-C following ITU-T J.83 Annex A spec
 *
 * @SYS DVBC ANNEX B:
        Cable TV: DVB-C following ITU-T J.83 Annex B spec (ClearQAM)
 *
 * @SYS DVBC ANNEX C:
 *
        Cable TV: DVB-C following ITU-T J.83 Annex C spec
 * @SYS ISDBC:
 *
        Cable TV: ISDB-C (no drivers yet)
 * @SYS_DVBT:
```

```
*
        Terrestrial TV: DVB-T
 *
  @SYS DVBT2:
 *
        Terrestrial TV: DVB-T2
 * @SYS ISDBT:
        Terrestrial TV: ISDB-T
 *
 * @SYS ATSC:
 *
        Terrestrial TV: ATSC
 * @SYS ATSCMH:
 *
        Terrestrial TV (mobile): ATSC-M/H
 *
  @SYS DTMB:
 *
        Terrestrial TV: DTMB
 *
  @SYS DVBS:
 *
        Satellite TV: DVB-S
 * @SYS_DVBS2:
 *
        Satellite TV: DVB-S2
 * @SYS TURBO:
        Satellite TV: DVB-S Turbo
 *
 * @SYS ISDBS:
 *
        Satellite TV: ISDB-S
 *
  @SYS DAB:
        Digital audio: DAB (not fully supported)
 *
 * @SYS_DSS:
 *
        Satellite TV: DSS (not fully supported)
 * @SYS_CMMB:
 *
        Terrestrial TV (mobile): CMMB (not fully supported)
 * @SYS DVBH:
 *
        Terrestrial TV (mobile): DVB-H (standard deprecated)
 */
enum fe_delivery_system {
        SYS UNDEFINED,
        SYS DVBC ANNEX A,
        SYS DVBC ANNEX B,
        SYS DVBT,
        SYS_DSS,
        SYS DVBS,
        SYS DVBS2,
        SYS DVBH,
        SYS_ISDBT,
        SYS_ISDBS,
        SYS ISDBC,
        SYS ATSC,
        SYS ATSCMH,
        SYS DTMB,
        SYS CMMB,
        SYS DAB,
        SYS DVBT2,
        SYS TURBO,
        SYS DVBC ANNEX C,
```

};

/* backward compatibility definitions for delivery systems */

```
#define SYS DVBC ANNEX AC
                                 SYS DVBC ANNEX A
#define SYS DMBTH
                                 SYS DTMB /* DMB-TH is legacy name,...
→use DTMB */
/* ATSC-MH specific parameters */
/**
 * enum atscmh sccc block mode - Type of Series Concatenated,
→Convolutional
 *
                                  Code Block Mode.
 *
 * @ATSCMH SCCC BLK SEP:
 *
        Separate SCCC: the SCCC outer code mode shall be set,
\rightarrow independently
        for each Group Region (A, B, C, D)
 * @ATSCMH SCCC BLK COMB:
        Combined SCCC: all four Regions shall have the same SCCC.
 *
⊶outer
        code mode.
 * @ATSCMH_SCCC_BLK_RES:
 *
        Reserved. Shouldn't be used.
 */
enum atscmh sccc block mode {
        ATSCMH_SCCC_BLK_SEP
                                  = 0,
        ATSCMH SCCC BLK COMB
                                  = 1,
        ATSCMH SCCC BLK RES
                                  = 2,
};
/**
 * enum atscmh_sccc_code_mode - Type of Series Concatenated_
→Convolutional
 *
                                 Code Rate.
 *
 * @ATSCMH SCCC CODE HLF:
 *
        The outer code rate of a SCCC Block is 1/2 rate.
 * @ATSCMH SCCC CODE QTR:
 *
        The outer code rate of a SCCC Block is 1/4 rate.
 * @ATSCMH SCCC CODE RES:
 *
        Reserved. Should not be used.
 */
enum atscmh_sccc_code_mode {
        ATSCMH SCCC CODE HLF
                                  = 0,
        ATSCMH SCCC CODE QTR
                                  = 1,
        ATSCMH SCCC CODE RES
                                  = 2,
};
/**
 * enum atscmh rs frame ensemble - Reed Solomon(RS) frame ensemble.
 *
 * @ATSCMH RSFRAME ENS PRI:
                                 Primary Ensemble.
 * @ATSCMH RSFRAME ENS SEC:
                                 Secondary Ensemble.
```

```
*/
enum atscmh rs frame ensemble {
        ATSCMH RSFRAME ENS PRI
                                 = 0,
                                 = 1,
        ATSCMH RSFRAME ENS SEC
};
/**
 * enum atscmh_rs_frame_mode - Reed Solomon (RS) frame mode.
 *
 * @ATSCMH RSFRAME PRI ONLY:
 *
        Single Frame: There is only a primary RS Frame for all Group
 *
        Regions.
 * @ATSCMH_RSFRAME_PRI_SEC:
        Dual Frame: There are two separate RS Frames: Primary RS
\rightarrow Frame for
        Group Region A and B and Secondary RS Frame for Group,
 *
\rightarrow Region C and
 *
        D.
 * @ATSCMH RSFRAME RES:
 *
        Reserved. Shouldn't be used.
 */
enum atscmh_rs_frame_mode {
        ATSCMH RSFRAME PRI ONLY = 0,
        ATSCMH_RSFRAME_PRI_SEC
                                  = 1,
        ATSCMH RSFRAME RES
                                  = 2,
};
/**
 * enum atscmh rs code mode
* @ATSCMH RSCODE 211 187:
                                Reed Solomon code (211,187).
* @ATSCMH_RSCODE_223_187:
                                Reed Solomon code (223,187).
 * @ATSCMH RSCODE 235 187:
                                Reed Solomon code (235,187).
 * @ATSCMH RSCODE RES:
                                Reserved. Shouldn't be used.
 */
enum atscmh_rs_code_mode {
        ATSCMH_RSCODE_211_187
                                 = 0,
                                  = 1,
        ATSCMH RSCODE 223 187
        ATSCMH_RSCODE_235_187
                                  = 2,
        ATSCMH_RSCODE_RES
                                  = 3,
};
#define NO_STREAM_ID_FILTER
                                 (~0U)
#define LNA AUTO
                                 (~0U)
/**
 * enum fecap scale params - scale types for the quality parameters.
 * @FE SCALE NOT AVAILABLE: That QoS measure is not available. That
                             could indicate a temporary or a
→permanent
                             condition.
```

```
* @FE SCALE DECIBEL: The scale is measured in 0.001 dB steps,
→typically
                      used on signal measures.
 * @FE SCALE RELATIVE: The scale is a relative percentual measure,
                       ranging from 0 (0%) to 0xffff (100%).
 * @FE SCALE COUNTER: The scale counts the occurrence of an event,
→like
 *
                      bit error, block error, lapsed time.
 */
enum fecap scale params {
        FE SCALE NOT AVAILABLE = 0,
        FE SCALE DECIBEL,
        FE SCALE RELATIVE,
        FE SCALE COUNTER
};
/**
 * struct dtv stats - Used for reading a DTV status property
 *
 * @scale:
 *
        Filled with enum fecap scale params - the scale in usage
 *
        for that parameter
 *
 * @svalue:
 *
        integer value of the measure, for %FE SCALE DECIBEL,
 *
        used for dB measures. The unit is 0.001 dB.
 *
 * @uvalue:
        unsigned integer value of the measure, used when @scale is
 *
 *
        either %FE SCALE RELATIVE or %FE SCALE COUNTER.
 * For most delivery systems, this will return a single value for.
⊶each
 * parameter.
 * It should be noticed, however, that new OFDM delivery systems.
→like
 * ISDB can use different modulation types for each group of.
→carriers.
 * On such standards, up to 8 groups of statistics can be provided,
→one
 * for each carrier group (called "layer" on ISDB).
 * In order to be consistent with other delivery systems, the first
 * value refers to the entire set of carriers ("global").
 * @scale should use the value %FE SCALE NOT AVAILABLE when
 * the value for the entire group of carriers or from one specific.
→laver
 * is not provided by the hardware.
 *
```

```
* @len should be filled with the latest filled status + 1.
 * In other words, for ISDB, those values should be filled like::
 *
 *
        u.st.stat.svalue[0] = global statistics;
 *
        u.st.stat.scale[0] = FE SCALE DECIBEL;
 *
        u.st.stat.value[1] = layer A statistics;
 *
        u.st.stat.scale[1] = FE SCALE NOT AVAILABLE (if not,
→available);
 *
        u.st.stat.svalue[2] = layer B statistics;
 *
        u.st.stat.scale[2] = FE SCALE DECIBEL;
 *
        u.st.stat.svalue[3] = layer C statistics;
 *
        u.st.stat.scale[3] = FE SCALE DECIBEL;
 *
        u.st.len = 4;
 */
struct dtv stats {
        __u8 scale; /* enum fecap_scale params type */
        union {
                u64 uvalue; /* for counters and relative scales.
→*/
                s64 svalue; /* for 0.001 dB measures */
        };
} __attribute__ ((packed));
#define MAX DTV STATS
                        4
/**
 * struct dtv fe stats - store Digital TV frontend statistics
 * @len:
                length of the statistics - if zero, stats is
→disabled.
                array with digital TV statistics.
 * @stat:
 * On most standards, @len can either be 0 or 1. However, for ISDB,
→each
 * layer is modulated in separate. So, each layer may have its own,
→set
 * of statistics. If so, stat[0] carries on a global value for the
→property.
 * Indexes 1 to 3 means layer A to B.
 */
struct dtv fe stats {
         u8 len;
        struct dtv stats stat[MAX DTV STATS];
} attribute ((packed));
/**
 * struct dtv property - store one of frontend command and its value
 *
                        Digital TV command.
 * @cmd:
 * @reserved:
                        Not used.
```

```
Union with the values for the command.
 * @u:
 * @u.data:
                        A unsigned 32 bits integer with command,
→value.
 * @u.buffer:
                        Struct to store bigger properties.
                        Currently unused.
                        an unsigned 32-bits array.
 * @u.buffer.data:
 * @u.buffer.len:
                        number of elements of the buffer.
 * @u.buffer.reserved1: Reserved.
 * @u.buffer.reserved2: Reserved.
                        a &struct dtv fe stats array of statistics.
 * @u.st:
 * @result:
                        Currently unused.
 *
 */
struct dtv_property {
         u32 cmd;
        u32 reserved[3];
        union {
                  u32 data;
                struct dtv fe stats st;
                struct {
                          u8 data[32];
                         _u32 len;
                         u32 reserved1[3];
                        void *reserved2;
                } buffer;
        } u;
        int result;
} attribute ((packed));
/* num of properties cannot exceed DTV IOCTL MAX MSGS per ioctl */
#define DTV IOCTL MAX MSGS 64
/**
 * struct dtv properties - a set of command/value pairs.
 *
 * @num:
                amount of commands stored at the struct.
                a pointer to &struct dtv property.
 * @props:
 */
struct dtv_properties {
        u32 num;
        struct dtv property *props;
};
/*
 * When set, this flag will disable any zigzagging or other
\rightarrow "normal" tuning
 * behavior. Additionally, there will be no automatic monitoring of
\rightarrowthe lock
 * status, and hence no frontend events will be generated. If a,
→ frontend device
 * is closed, this flag will be automatically turned off when the
```

 \rightarrow device is * reopened read-write. */ #define FE TUNE MODE ONESHOT 0x01 /* Digital TV Frontend API calls */ IOR('o', 61, struct dvb #define FE GET INFO \rightarrow frontend info) #define FE DISEQC RESET OVERLOAD IO('o', 62) #define FE_DISEQC_SEND MASTER CMD __IOW('o', 63, struct dvb diseqc__ →master cmd) #define FE DISEQC RECV SLAVE REPLY IOR('o', 64, struct dvb_diseqc_ \rightarrow slave reply) #define FE DISEQC SEND BURST IO('o', 65) /* fe sec mini cmd →t */ #define FE SET TONE IO('o', 66) /* fe sec tone →mode t */ IO('o', 67) /* fe sec voltage #define FE_SET_VOLTAGE →t */ #define FE ENABLE HIGH LNB VOLTAGE IO('o', 68) /* int */ IOR('o', 69, fe status t) #define FE READ STATUS _IOR('o', 70, __u32) #define FE READ BER IOR('o', 71, ____u16) #define FE READ SIGNAL STRENGTH #define FE READ SNR _IOR('o', 72, ___u16) #define FE_READ_UNCORRECTED_BLOCKS _IOR('o', 73, __u32) #define FE_SET_FRONTEND_TUNE_MODE _IO('o', 81) /* unsigned int */ #define FE GET EVENT IOR('o', 78, struct dvb → frontend event) #define FE DISHNETWORK SEND LEGACY_CMD _IO('o', 80) /* unsigned int_ <u>→*/</u> #define FE SET PROPERTY IOW('o', 82, struct dtv \rightarrow properties) IOR('o', 83, struct dtv #define FE GET PROPERTY \rightarrow properties) #if defined(DVB CORE) || !defined(KERNEL) /* * DEPRECATED: Everything below is deprecated in favor of DVBv5 API * The DVBv3 only ioctls, structs and enums should not be used on * newer programs, as it doesn't support the second generation of * digital TV standards, nor supports newer delivery systems. * They also don't support modern frontends with usually support.

```
→multiple
 * delivery systems.
 * Drivers shouldn't use them.
 * New applications should use DVBv5 delivery system instead
 */
/*
 */
enum fe_bandwidth {
        BANDWIDTH 8 MHZ,
        BANDWIDTH_7_MHZ,
        BANDWIDTH 6 MHZ,
        BANDWIDTH AUTO,
        BANDWIDTH 5 MHZ,
        BANDWIDTH 10 MHZ,
        BANDWIDTH 1 712 MHZ,
};
/* This is kept for legacy userspace support */
typedef enum fe sec voltage fe sec voltage t;
typedef enum fe caps fe caps t;
typedef enum fe type fe type t;
typedef enum fe_sec_tone_mode fe_sec_tone_mode_t;
typedef enum fe sec mini cmd fe sec mini cmd t;
typedef enum fe status fe status t;
typedef enum fe spectral inversion fe spectral inversion t;
typedef enum fe code rate fe code rate t;
typedef enum fe modulation fe modulation t;
typedef enum fe transmit mode fe transmit mode t;
typedef enum fe bandwidth fe bandwidth t;
typedef enum fe guard interval fe guard interval t;
typedef enum fe hierarchy fe hierarchy t;
typedef enum fe pilot fe pilot t;
typedef enum fe rolloff fe rolloff t;
typedef enum fe_delivery_system fe_delivery_system_t;
/* DVBv3 structs */
struct dvb qpsk parameters {
         u32
                        symbol rate; /* symbol rate in Symbols per
→second */
        fe code rate t fec inner; /* forward error correction,
\rightarrow (see above) */
};
struct dvb gam parameters {
                        symbol_rate; /* symbol rate in Symbols per,
          u32
\rightarrow second */
```

```
fe code rate t fec inner; /* forward error correction,
\rightarrow (see above) */
        fe modulation t modulation; /* modulation type (see above)
→*/
};
struct dvb vsb parameters {
        fe_modulation_t modulation; /* modulation type (see above)_
→*/
};
struct dvb ofdm parameters {
        fe bandwidth t
                            bandwidth;
        fe_code_rate_t
                           code_rate_HP; /* high priority stream_
→code rate */
        fe_code_rate_t code_rate_LP; /* low priority stream_
fe modulation t constellation; /* modulation type (see
→above) */
        fe transmit mode t transmission mode;
        fe guard interval t guard interval;
        fe hierarchy_t
                           hierarchy_information;
};
struct dvb frontend parameters {
         _u32 frequency; /* (absolute) frequency in Hz for DVB-C/
→DVB-T/ATSC */
                         /* intermediate frequency in kHz for...
\rightarrow DVB-S */
        fe spectral inversion t inversion;
        union {
                struct dvb qpsk parameters qpsk;
                                                     /* DVB-S */
                struct dvb qam parameters qam;
                                                       /* DVB-C */
                struct dvb_ofdm_parameters ofdm;
                                                       /* DVB-T */
                struct dvb vsb parameters vsb;
                                                       /* ATSC */
        } u;
};
struct dvb_frontend_event {
        fe status t status;
        struct dvb frontend parameters parameters;
};
/* DVBv3 API calls */
#define FE_SET_FRONTEND
                                  IOW('o', 76, struct dvb
\rightarrow frontend parameters)
#define FE GET FRONTEND
                                  IOR('o', 77, struct dvb

→ frontend parameters)
```

```
#endif
```

```
#endif /*_DVBFRONTEND_H_*/
```

dmx.h

```
/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
 * dmx.h
 *
 * Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
                    & Ralph Metzler <ralph@convergence.de>
 *
                      for convergence integrated media GmbH
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public.
→License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 * You should have received a copy of the GNU Lesser General Public,
→License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
→02111-1307, USA.
 *
 */
#ifndef _UAPI_DVBDMX_H_
#define UAPI DVBDMX H
#include <linux/types.h>
#ifndef KERNEL
#include <time.h>
#endif
#define DMX FILTER SIZE 16
/**
 * enum dmx output - Output for the demux.
 * @:c:type:DMX OUT DECODER <dmx output>:
        Streaming directly to decoder.
 * @:c:type:DMX OUT TAP <dmx output>:
        Output going to a memory buffer (to be retrieved via the,
\rightarrow read command).
```

```
*
        Delivers the stream output to the demux device on which the
→ioctl
 *
        is called.
 * @:c:type:DMX OUT TS TAP <dmx output>:
 *
        Output multiplexed into a new TS (to be retrieved by,
\rightarrow reading from the
 *
        logical DVR device). Routes output to the logical DVR device
        ``/dev/dvb/adapter?/dvr?``, which delivers a TS multiplexed
 *
⊶from all
        filters for which @:c:type:DMX OUT TS TAP <dmx output> was,
\rightarrow specified.
 * @:c:type:DMX OUT TSDEMUX TAP <dmx output>:
        Like @:c:type:DMX OUT TS TAP <dmx output> but retrieved.
\rightarrow from the DMX device.
 */
enum dmx output {
        DMX_OUT_DECODER,
        DMX OUT TAP,
        DMX OUT TS TAP,
        DMX OUT TSDEMUX TAP
};
/**
 * dmx input - Input from the demux.
 * @:c:type:DMX IN FRONTEND <dmx input>: Input from a front-end,
→device.
 * @:c:type:DMX IN DVR <dmx input>:
                                             Input from the logical,
→DVR device.
 */
dmx input {
        DMX IN FRONTEND,
        DMX IN DVR
};
/**
 * dmx ts pes - type of the PES filter.
                                                first audio PID.
 * @:c:type:DMX_PES_AUDI00 <dmx_pes_type>:
→Also referred as @DMX_PES_AUDIO.
 * @:c:type:DMX PES VIDEO0 <dmx pes type>:
                                                first video PID.
→Also referred as @DMX PES VIDEO.
 * @:c:type:DMX PES TELETEXT0 <dmx pes type>: first teletext PID.
→Also referred as @DMX PES TELETEXT.
 * @:c:type:DMX PES SUBTITLE0 <dmx pes type>: first subtitle PID.
→Also referred as @DMX PES SUBTITLE.
 * @:c:type:DMX PES PCR0 <dmx pes type>:
                                                first Program Clock
\rightarrowReference PID.
                        Also referred as @DMX PES PCR.
 *
 * @:c:type:DMX_PES_AUDI01 <dmx_pes_type>:
                                                second audio PID.
```

* @:c:type:DMX PES VIDE01 <dmx pes type>: second video PID. * @:c:type:DMX PES TELETEXT1 <dmx pes type>: second teletext PID. * @:c:type:DMX PES SUBTITLE1 <dmx pes type>: second subtitle PID. * @:c:type:DMX PES PCR1 <dmx pes type>: second Program Clock \rightarrow Reference PID. * @:c:type:DMX PES_AUDI02 <dmx_pes_type>: third audio PID. * @:c:type:DMX_PES_VIDE02 <dmx_pes_type>: third video PID. * @:c:type:DMX_PES_TELETEXT2 <dmx_pes_type>: third teletext PID. * @:c:type:DMX PES SUBTITLE2 <dmx pes type>: third subtitle PID. * @:c:type:DMX_PES_PCR2 <dmx_pes_type>: third Program Clock, →Reference PID. * @:c:type:DMX_PES_AUDI03 <dmx_pes_type>: fourth audio PID. * @:c:type:DMX PES VIDE03 <dmx pes type>: fourth video PID. * @:c:type:DMX PES TELETEXT3 <dmx pes type>: fourth teletext PID. * @:c:type:DMX_PES_SUBTITLE3 <dmx_pes_type>: fourth subtitle PID. * @:c:type:DMX PES PCR3 <dmx pes type>: fourth Program Clock \rightarrow Reference PID. * @:c:type:DMX PES OTHER <dmx pes type>: any other PID. */ dmx_ts_pes { DMX PES AUDIO0, DMX_PES_VIDE00, DMX PES TELETEXT0, DMX PES SUBTITLE0, DMX PES PCR0, DMX PES AUDI01, DMX PES VIDE01, DMX PES TELETEXT1, DMX_PES_SUBTITLE1, DMX PES PCR1, DMX PES AUDIO2, DMX_PES_VIDE02, DMX_PES_TELETEXT2, DMX PES SUBTITLE2, DMX PES PCR2, DMX PES AUDIO3, DMX PES VIDE03, DMX PES TELETEXT3, DMX PES SUBTITLE3, DMX PES PCR3, DMX PES OTHER

};

```
#define DMX PES AUDIO
                         DMX PES AUDIO0
#define DMX PES_VIDE0
                         DMX PES VIDE00
#define DMX PES TELETEXT DMX PES TELETEXT0
#define DMX PES SUBTITLE DMX PES SUBTITLE0
#define DMX PES PCR
                         DMX PES PCR0
/**
 * struct dmx filter - Specifies a section header filter.
 * @filter: bit array with bits to be matched at the section header.
 * @mask: bits that are valid at the filter bit array.
 * @mode: mode of match: if bit is zero, it will match if equal,
→(positive
 *
          match); if bit is one, it will match if the bit is
\rightarrow negated.
 *
 * Note: All arrays in this struct have a size of DMX FILTER SIZE,
\rightarrow (16 bytes).
*/
struct dmx filter {
        u8 filter[DMX FILTER SIZE];
          _u8 mask[DMX_FILTER_SIZE];
         u8 mode[DMX FILTER SIZE];
};
/**
 * struct dmx sct filter params - Specifies a section filter.
 * @pid: PID to be filtered.
 * @filter: section header filter, as defined by &struct dmx filter.
 * @timeout: maximum time to filter, in milliseconds.
 * @flags: extra flags for the section filter.
 * Carries the configuration for a MPEG-TS section filter.
 *
 * The @flags can be:
        - %DMX CHECK CRC - only deliver sections where the CRC,
 *

→ check succeeded;

        - %DMX ONESHOT - disable the section filter after one.
 *
→section
 *
          has been delivered;
        - %DMX_IMMEDIATE_START - Start filter immediately without
→requiring a
 *
          :ref:`DMX START`.
 */
struct dmx sct filter params {
                          pid:
         u16
        struct dmx filter filter;
                          timeout;
        u32
        _u32
                          flags;
```

```
#define DMX CHECK CRC
                            1
#define DMX ONESHOT
                            2
#define DMX IMMEDIATE START 4
};
/**
 * struct dmx pes filter params - Specifies Packetized Elementary
→Stream (PES)
        filter parameters.
 *
 * @pid:
                PID to be filtered.
 * @input:
                Demux input, as specified by &enum dmx input.
                Demux output, as specified by &enum dmx output.
 * @output:
 * @pes_type:
                Type of the pes filter, as specified by &enum dmx_
\rightarrow pes type.
 * @flags:
                Demux PES flags.
 */
struct dmx pes filter params {
                        pid;
          u16
        dmx input input;
        enum dmx output output;
        dmx_ts_pes pes_type;
        u32
                        flags;
};
/**
 * struct dmx stc - Stores System Time Counter (STC) information.
 * @num: input data: number of the STC, from 0 to N.
 * @base: output: divisor for STC to get 90 kHz clock.
 * @stc: output: stc in @base * 90 kHz units.
 */
struct dmx stc {
        unsigned int num;
        unsigned int base;
        __u64 stc;
};
/**
 * enum dmx buffer flags - DMX memory-mapped buffer flags
 * @:c:type:DMX BUFFER FLAG HAD CRC32 DISCARD <dmx buffer flags>:
 *
        Indicates that the Kernel discarded one or more frames due,
→to wrona
        CRC32 checksum.
 *
 * @:c:type:DMX BUFFER FLAG TEI <dmx buffer flags>:
 *
        Indicates that the Kernel has detected a Transport Error
→indicator
        (TEI) on a filtered pid.
 * @:c:type:DMX_BUFFER_PKT_COUNTER_MISMATCH <dmx_buffer_flags>:
        Indicates that the Kernel has detected a packet counter,
```

```
→mismatch
        on a filtered pid.
 * @:c:type:DMX BUFFER FLAG DISCONTINUITY DETECTED <dmx buffer
\rightarrow flags>:
        Indicates that the Kernel has detected one or more frame,
\rightarrow discontinuity.
 * @:c:type:DMX BUFFER FLAG DISCONTINUITY INDICATOR <dmx buffer
\rightarrow flags>:
        Received at least one packet with a frame discontinuity
→indicator.
 */
enum dmx buffer flags {
        DMX_BUFFER_FLAG_HAD_CRC32_DISCARD
                                                         = 1 << 0,
        DMX_BUFFER_FLAG TEI
                                                         = 1 << 1.
        DMX BUFFER PKT COUNTER MISMATCH
                                                         = 1 << 2,
        DMX BUFFER FLAG DISCONTINUITY DETECTED
                                                         = 1 << 3,
        DMX BUFFER FLAG DISCONTINUITY INDICATOR
                                                         = 1 << 4,
};
/**
 * struct dmx_buffer - dmx buffer info
 *
                id number of the buffer
 * @index:
 * @bytesused: number of bytes occupied by data in the buffer.
* @offset:
                for buffers with memory == DMX MEMORY MMAP;
 *
                offset from the start of the device memory for this,
→plane,
                (or a "cookie" that should be passed to mmap() as,
→offset)
* @length:
                size in bytes of the buffer
 * @flags:
                bit array of buffer flags as defined by &enum dmx
→buffer flags.
                Filled only at &DMX DQBUF.
 *
                monotonic counter for filled buffers. Helps to,
 * @count:
\rightarrow identify
                data stream loses. Filled only at &DMX_DQBUF.
 *
 *
 * Contains data exchanged by application and driver using one of
\rightarrow the streaming
 * I/O methods.
 * Please notice that, for &DMX_QBUF, only @index should be filled.
 * On &DMX DQBUF calls, all fields will be filled by the Kernel.
 */
struct dmx buffer {
         u32
                                 index;
          u32
                                 bytesused;
                                 offset;
          u32
         u32
                                 length;
```

```
u32
                                 flags;
         u32
                                 count;
};
/**
 * struct dmx requestbuffers - request dmx buffer information
 * @count:
                number of requested buffers,
 * @size:
                size in bytes of the requested buffer
 * Contains data used for requesting a dmx buffer.
 * All reserved fields must be set to zero.
*/
struct dmx_requestbuffers {
          u32
                                 count;
         u32
                                 size;
};
/**
 * struct dmx exportbuffer - export of dmx buffer as DMABUF file
→descriptor
 *
 * @index:
                id number of the buffer
 * @flags:
                flags for newly created file, currently only 0
→CLOEXEC is
                supported, refer to manual of open syscall for more,
 *
⊶details
 * @fd:
                file descriptor associated with DMABUF (set by,
→driver)
 * Contains data used for exporting a dmx buffer as DMABUF file.
→descriptor.
 * The buffer is identified by a 'cookie' returned by DMX QUERYBUF
 * (identical to the cookie used to mmap() the buffer to userspace).
→ All
* reserved fields must be set to zero. The field reserved0 is.
\rightarrow expected to
 * become a structure 'type' allowing an alternative layout of the
\rightarrow structure
 * content. Therefore this field should not be used for any other.
\rightarrow extensions.
*/
struct dmx exportbuffer {
         u32
                        index;
                        flags;
          u32
         s32
                         fd:
};
#define DMX START
                                  IO('o', 41)
                                  _IO('o', 42)
#define DMX STOP
                                  _IOW('o', 43, struct dmx_sct_
#define DMX_SET_FILTER
```

 \rightarrow filter params) #define DMX SET PES FILTER IOW('o', 44, struct dmx pes \rightarrow filter params) _IO('o', 45) #define DMX SET BUFFER SIZE _IOR('o', 47, __u16[5]) #define DMX_GET_PES_PIDS _IOWR('o', 50, struct dmx_stc) _IOW('o', 51, __u16) #define DMX GET STC #define DMX_ADD PID _IOW('o', 52, __u16) #define DMX REMOVE PID #if !defined(KERNEL) /* This is needed for legacy userspace support */ typedef enum dmx output dmx output t; typedef dmx_input dmx_input_t; typedef dmx ts pes dmx pes type t; typedef struct dmx filter dmx filter t; #endif #define DMX REQBUFS IOWR('o', 60, struct dmx \rightarrow requestbuffers) _IOWR('o', 61, struct dmx_buffer) #define DMX QUERYBUF #define DMX EXPBUF IOWR('o', 62, struct dmx →exportbuffer) _IOWR('o', 63, struct dmx buffer) #define DMX QBUF _IOWR('o', 64, struct dmx buffer) #define DMX DQBUF #endif /* DVBDMX H */ ca.h /* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */ /* * ca.h *

```
* You should have received a copy of the GNU Lesser General Public,
→License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
→02111-1307, USA.
 */
#ifndef _DVBCA_H_
#define DVBCA H
/**
 * struct ca slot info - CA slot interface types and info.
 * @num:
                slot number.
 * @type:
                slot type.
 * @flags:
                flags applicable to the slot.
 * This struct stores the CA slot information.
 *
 * @type can be:
 *
 *
        - %CA CI - CI high level interface;
 *
        - %CA_CI_LINK - CI link layer level interface;
 *
        - %CA CI PHYS - CI physical layer level interface;
 *
        - %CA DESCR - built-in descrambler;
 *
        - %CA SC -simple smart card interface.
 *
 * @flags can be:
 *
 *
        - %CA CI MODULE PRESENT - module (or card) inserted;
 *
        - %CA CI MODULE READY - module is ready for usage.
 */
struct ca slot info {
        int num;
        int type;
#define CA CI
                         1
#define CA_CI_LINK
                         2
#define CA CI PHYS
                         4
#define CA DESCR
                         8
#define CA SC
                       128
        unsigned int flags;
#define CA CI MODULE PRESENT 1
#define CA CI MODULE READY
                             2
};
/**
 * struct ca descr info - descrambler types and info.
```

```
* @num:
                number of available descramblers (keys).
 * @type:
                type of supported scrambling system.
 * Identifies the number of descramblers and their type.
 *
 * @type can be:
 *
        - %CA ECD - European Common Descrambler (ECD) hardware;
 *
        - %CA NDS - Videoguard (NDS) hardware;
 *
        - %CA DSS - Distributed Sample Scrambling (DSS) hardware.
 */
struct ca_descr_info {
        unsigned int num;
        unsigned int type;
#define CA ECD
                         1
                         2
#define CA NDS
#define CA DSS
                         4
};
/**
 * struct ca_caps - CA slot interface capabilities.
 *
 * @slot num:
               total number of CA card and module slots.
 * @slot_type: bitmap with all supported types as defined at
 *
                &struct ca_slot_info (e. g. %CA_CI, %CA_CI_LINK,
→etc).
 * @descr num: total number of descrambler slots (keys)
 * @descr type: bitmap with all supported types as defined at
 *
               &struct ca descr info (e. g. %CA ECD, %CA NDS, etc).
 */
struct ca caps {
        unsigned int slot num;
        unsigned int slot type;
        unsigned int descr num;
        unsigned int descr type;
};
/**
 * struct ca_msg - a message to/from a CI-CAM
 *
 * @index:
               unused
 * @type:
               unused
* @length:
               length of the message
               message
 * This struct carries a message to be send/received from a CI CA
→module.
 */
struct ca msg {
        unsigned int index;
        unsigned int type;
```

```
unsigned int length;
        unsigned char msg[256];
};
/**
 * struct ca descr - CA descrambler control words info
 * @index: CA Descrambler slot
 * @parity: control words parity, where 0 means even and 1 means odd
 * @cw: CA Descrambler control words
*/
struct ca_descr {
        unsigned int index;
        unsigned int parity;
        unsigned char cw[8];
};
                          IO('o', 128)
#define CA RESET
                          _IOR('o', 129, struct ca_caps)
#define CA GET CAP
#define CA GET SLOT INFO
                          _IOR('o', 130, struct ca_slot_info)
#define CA_GET_DESCR_INFO _IOR('o', 131, struct ca_descr_info)
                          _IOR('o', 132, struct ca_msg)
#define CA GET MSG
#define CA SEND MSG
                          _IOW('o', 133, struct ca_msg)
                          IOW('o', 134, struct ca descr)
#define CA_SET_DESCR
#if !defined(__KERNEL__)
/* This is needed for legacy userspace support */
typedef struct ca slot info ca slot info t;
typedef struct ca descr info ca descr info t;
typedef struct ca caps ca caps t;
typedef struct ca msg ca msg t;
typedef struct ca descr ca descr t;
#endif
#endif
net.h
/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
 * net.h
 *
 * Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
                    & Ralph Metzler <ralph@convergence.de>
 *
                      for convergence integrated media GmbH
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public,
```

```
→License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public,
→License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
→02111-1307, USA.
 *
 */
#ifndef DVBNET H
#define DVBNET H
#include <linux/types.h>
/**
 * struct dvb net if - describes a DVB network interface
 *
 * @pid: Packet ID (PID) of the MPEG-TS that contains data
 * @if num: number of the Digital TV interface.
 * @feedtype: Encapsulation type of the feed.
 * A MPEG-TS stream may contain packet IDs with IP packages on it.
 * This struct describes it, and the type of encoding.
 *
 * @feedtype can be:
 *
 *
        - %DVB NET FEEDTYPE MPE for MPE encoding
        - %DVB NET FEEDTYPE ULE for ULE encoding.
 *
 */
struct dvb_net_if {
         _ul6 pid;
        __u16 if_num;
         u8 feedtype;
#define DVB NET FEEDTYPE MPE 0 /* multi protocol encapsulation */
#define DVB_NET_FEEDTYPE_ULE 1 /* ultra lightweight encapsulation_
→*/
};
#define NET ADD IF IOWR('o', 52, struct dvb net if)
#define NET_REMOVE_IF _IO('o', 53)
#define NET_GET_IF __IOWR('o', 54, struct dvb_net_if)
/* binary compatibility cruft: */
```

```
struct __dvb_net_if_old {
    __u16 pid;
    __u16 if_num;
};
#define __NET_ADD_IF_OLD _IOWR('o', 52, struct __dvb_net_if_old)
#define __NET_GET_IF_OLD _IOWR('o', 54, struct __dvb_net_if_old)
#endif /* DVBNET H */
```

Legacy uAPI

audio.h

```
/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
 * audio.h - DEPRECATED MPEG-TS audio decoder API
 * NOTE: should not be used on future drivers
 * Copyright (C) 2000 Ralph Metzler <ralph@convergence.de>
 *
                    & Marcus Metzler <marcus@convergence.de>
 *
                      for convergence integrated media GmbH
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Lesser Public
→License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 * You should have received a copy of the GNU Lesser General Public,
→License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
→02111-1307, USA.
 */
#ifndef _DVBAUDI0_H_
#define DVBAUDIO H
#include <linux/types.h>
typedef enum {
        AUDIO SOURCE DEMUX, /* Select the demux as the main source,
→*/
```

AUDIO SOURCE MEMORY /* Select internal memory as the main, →source */ } audio stream source t; typedef enum { AUDIO_STOPPED, /* Device is stopped */ AUDIO_PLAYING, /* Device is currently playing */ /* Device is paused */ AUDIO PAUSED } audio_play_state_t; typedef enum { AUDIO_STEREO, AUDIO MONO LEFT, AUDIO_MONO_RIGHT, AUDIO MONO, AUDIO STEREO SWAPPED } audio channel select t; typedef struct audio mixer { unsigned int volume left; unsigned int volume right; /* what else do we need? bass, pass-through, ... */ } audio mixer t; typedef struct audio status { int AV_sync_state; /* sync audio and →video? */ mute state; /* audio is muted */ int /* current playback... audio_play_state_t play state; \rightarrow state */ audio stream source t stream source; /* current stream, →source */ audio channel select t channel select; /* currently, →selected channel */ int bypass mode; /* pass on audio, →data to */ mixer state; /* current mixer, audio mixer t →state */ } audio_status_t; /* separate decoder \rightarrow hardware */ /* for GET CAPABILITIES and SET FORMAT, the latter should only set →one bit */ #define AUDIO CAP DTS 1 #define AUDIO CAP LPCM 2 #define AUDIO CAP MP1 4 #define AUDIO CAP MP2 8 #define AUDIO CAP MP3 16 #define AUDIO CAP AAC 32 #define AUDIO CAP OGG 64 #define AUDIO_CAP_SDDS 128

```
#define AUDIO_CAP_AC3 256
#define AUDI0 STOP
                                   IO('o', 1)
                                   IO('o', 2)
#define AUDIO PLAY
                                   IO('o', 3)
#define AUDIO PAUSE
                                   #define AUDIO CONTINUE
#define AUDIO SELECT SOURCE
                                   IO('o', 5)
#define AUDIO SET MUTE
                                   IO('o', 6)
                                   _IO('o', 7)
#define AUDIO SET AV SYNC
#define AUDIO_SET BYPASS MODE
                                   IO('o', 8)
#define AUDIO CHANNEL SELECT
                                   IO('o', 9)
#define AUDIO GET STATUS
                                  _IOR('o', 10, audio_status t)
#define AUDIO GET CAPABILITIES
                                  _IOR('o', 11, unsigned int)
                                  _IO('o', 12)
#define AUDIO CLEAR BUFFER
                                  _IO('o', 13)
#define AUDIO SET ID
                                  __IOW('o', 14, audio_mixer t)
#define AUDI0_SET_MIXER
#define AUDIO SET STREAMTYPE
                                   IO('o', 15)
#define AUDIO BILINGUAL CHANNEL SELECT IO('o', 20)
```

#endif /* _DVBAUDI0_H_ */

video.h

```
/* SPDX-License-Identifier: LGPL-2.1+ WITH Linux-syscall-note */
/*
 * video.h - DEPRECATED MPEG-TS video decoder API
 * NOTE: should not be used on future drivers
 * Copyright (C) 2000 Marcus Metzler <marcus@convergence.de>
 *
                    & Ralph Metzler <ralph@convergence.de>
 *
                      for convergence integrated media GmbH
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public,
→License
 * as published by the Free Software Foundation; either version 2.1
 * of the License, or (at your option) any later version.
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 * You should have received a copy of the GNU Lesser General Public,
→License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
→02111-1307, USA.
```

* */ #ifndef _UAPI_DVBVIDE0_H_ #define _UAPI_DVBVIDE0_H_ #include <linux/types.h> #ifndef __KERNEL__ #include <time.h> #endif typedef enum { } video format t; typedef enum { VIDEO PAN SCAN, /* use pan and scan format */ VIDEO_LETTER_BOX, /* use letterbox format */ VIDEO CENTER CUT OUT /* use center cut out format */ } video_displayformat_t; typedef struct { int w; int h; video format t aspect ratio; } video size t; typedef enum { VIDEO SOURCE DEMUX, /* Select the demux as the main source, **→***/ VIDEO SOURCE MEMORY /* If this source is selected, the →stream comes from the user through the write system call */ } video stream source t; typedef enum { VIDE0 STOPPED, /* Video is stopped */ VIDEO_PLAYING, /* Video is currently playing */ VIDEO FREEZED /* Video is freezed */ } video play state t; /* Decoder commands */ #define VIDE0 CMD PLAY (0)#define VIDE0 CMD STOP (1)#define VIDE0 CMD FREEZE (2)#define VIDE0 CMD CONTINUE (3) /* Flags for VIDE0_CMD_FREEZE */

```
#define VIDE0 CMD FREEZE TO BLACK
                                         (1 << 0)
/* Flags for VIDEO CMD STOP */
#define VIDE0 CMD STOP TO BLACK
                                         (1 << 0)
#define VIDE0 CMD STOP IMMEDIATELY
                                         (1 << 1)
/* Play input formats: */
/* The decoder has no special format requirements */
#define VIDEO PLAY FMT NONE (0)
/* The decoder requires full GOPs */
#define VIDE0 PLAY FMT GOP
                                     (1)
/* The structure must be zeroed before use by the application
   This ensures it can be extended safely in the future. */
struct video command {
        u32 cmd;
        __u32 flags;
        union {
                struct {
                          u64 pts;
                } stop;
                struct {
                         /* 0 or 1000 specifies normal speed,
                            1 specifies forward single stepping,
                            -1 specifies backward single stepping,
                            >1: playback at speed/1000 of the normal,
\rightarrow speed,
                            <-1: reverse playback at (-speed/1000)
\rightarrow of the normal speed. */
                           s32 speed;
                          u32 format;
                } play;
                struct {
                         __u32 data[16];
                } raw;
        };
};
/* FIELD UNKNOWN can be used if the hardware does not know whether
   the Vsync is for an odd, even or progressive (i.e.,
\rightarrow non-interlaced)
   field. */
#define VIDE0 VSYNC FIELD UNKNOWN
                                         (0)
#define VIDE0_VSYNC_FIELD_0DD
                                          (1)
#define VIDE0 VSYNC FIELD EVEN
                                          (2)
#define VIDE0 VSYNC FIELD PROGRESSIVE
                                         (3)
struct video event {
        ___s32 type;
```

```
#define VIDEO EVENT SIZE CHANGED
                                       1
#define VIDEO EVENT FRAME RATE CHANGED 2
#define VIDEO EVENT DECODER STOPPED
                                       3
#define VIDE0 EVENT VSYNC
                                       4
       /* unused, make sure to use atomic time for y2038 if it,
→ever gets used */
       long timestamp;
       union {
               video_size_t size;
               unsigned int frame_rate; /* in frames per_
→1000sec */
               unsigned char vsync field; /* unknown/odd/even/
→progressive */
       } u;
};
struct video_status {
       int
                             video blank; /* blank video on_
→freeze? */
       video play state t play state; /* current state of
→playback */
       video_stream_source_t stream_source; /* current source_
\rightarrow (demux/memory) */
       video format t video format; /* current aspect,
→ratio of stream*/
       video_displayformat_t display_format;/* selected cropping_
→mode */
};
struct video still picture {
       char __user *iFrame; /* pointer to a single iframe
→in memory */
       s32 size;
};
typedef __u16 video_attributes_t;
    bits: descr. */
/*
/*
    15-14 Video compression mode (0=MPEG-1, 1=MPEG-2) */
    13-12 TV system (0=525/60, 1=625/50) */
/*
    11-10 Aspect ratio (0=4:3, 3=16:9) */
/*
/*
    9- 8 permitted display mode on 4:3 monitor (0=both, 1=only,
⊶pan-sca */
/*
          line 21-1 data present in GOP (1=yes, 0=no) */
     7
     6
          line 21-2 data present in GOP (1=yes, 0=no) */
/*
/*
     5- 3 source resolution (0=720x480/576, 1=704x480/576, ...
→2=352x480/57 */
          source letterboxed (1=yes, 0=no) */
/* 2
          film/camera mode (0=
/*
    0
*camera, 1=film (625/50 only)) */
/* bit definitions for capabilities: */
```

/* can the hardware decode MPEG1 and/or MPEG2? */ #define VIDE0 CAP MPEG1 1 2 #define VIDE0 CAP MPEG2 /* can you send a system and/or program stream to video device? (you still have to open the video and the audio device but only send the stream to the video device) */ #define VIDE0 CAP SYS 4 #define VIDE0 CAP PROG 8 /* can the driver also handle SPU, NAVI and CSS encoded data? (CSS API is not present yet) */ #define VIDE0 CAP SPU 16 #define VIDE0 CAP NAVI 32 #define VIDE0 CAP CSS 64 #define VIDE0 STOP IO('o', 21) #define VIDE0 PLAY IO('o', 22) _IO('o', 23) #define VIDE0_FREEZE #define VIDEO CONTINUE IO('o', 24) #define VIDE0 SELECT SOURCE IO('o', 25) _IO('o', 26) #define VIDE0 SET BLANK #define VIDE0 GET STATUS IOR('o', 27, struct video \rightarrow status) _IOR('o', 28, struct video_event) #define VIDE0 GET EVENT _IO('o', 29) #define VIDE0 SET DISPLAY FORMAT _IOW('o', 30, struct video still #define VIDE0 STILLPICTURE \rightarrow picture) _IO('o', 31) #define VIDE0 FAST FORWARD #define VIDE0 SLOWMOTION _IO('o', 32) [IOR('o', 33, unsigned int) #define VIDE0 GET CAPABILITIES _IO('o', 34) _IO('o', 36) #define VIDE0 CLEAR BUFFER #define VIDE0 SET STREAMTYPE IO('o', 37) #define VIDE0 SET FORMAT #define VIDE0 GET SIZE IOR('o', 55, video size t) /** * VIDE0_GET_PTS * Read the 33 bit presentation time stamp as defined * in ITU T-REC-H.222.0 / ISO/IEC 13818-1. * * The PTS should belong to the currently played * frame if possible, but may also be a value close to it * like the PTS of the last decoded frame or the last PTS * extracted by the PES parser. */ IOR('o', 57, u64) #define VIDE0 GET PTS /* Read the number of displayed frames since the decoder was. \rightarrow started */ #define VIDE0 GET FRAME COUNT IOR('o', 58, u64)

#endif /* _UAPI_DVBVIDE0_H_ */

7.3.9 Revision and Copyright

Authors:

- J. K. Metzler, Ralph <rjkm@metzlerbros.de>
- Original author of the Digital TV API documentation.
- O. C. Metzler, Marcus <rjkm@metzlerbros.de>
- Original author of the Digital TV API documentation.
- Carvalho Chehab, Mauro <mchehab+samsung@kernel.org>
- Ported document to Docbook XML, addition of DVBv5 API, documentation gaps fix.

Copyright © 2002-2003 : Convergence GmbH

Copyright © 2009-2017 : Mauro Carvalho Chehab

7.3.10 Revision History

revision 2.2.0 / 2017-09-01 (mcc)

Most gaps between the uAPI document and the Kernel implementation got fixed for the non-legacy API.

```
revision 2.1.0 / 2015-05-29 (mcc)
```

DocBook improvements and cleanups, in order to document the system calls on a more standard way and provide more description about the current Digital TV API.

revision 2.0.4 / 2011-05-06 (mcc)

Add more information about DVBv5 API, better describing the frontend GET/SET props ioctl's.

revision 2.0.3 / 2010-07-03 (mcc)

Add some frontend capabilities flags, present on kernel, but missing at the specs.

revision 2.0.2 / 2009-10-25 (mcc)

 $documents\ FE_SET_FRONTEND_TUNE_MODE\ and\ FE_DISHETWORK_SEND_LEGACY_CMD\ ioctls.$

revision 2.0.1 / 2009-09-16 (mcc)

Added ISDB-T test originally written by Patrick Boettcher

revision 2.0.0 / 2009-09-06 (mcc)

Conversion from LaTex to DocBook XML. The contents is the same as the original LaTex version.

revision 1.0.0 / 2003-07-24 (rjkm)

Initial revision on LaTEX.

7.4 Part III - Remote Controller API

7.4.1 Introduction

Currently, most analog and digital devices have a Infrared input for remote controllers. Each manufacturer has their own type of control. It is not rare for the same manufacturer to ship different types of controls, depending on the device.

A Remote Controller interface is mapped as a normal evdev/input interface, just like a keyboard or a mouse. So, it uses all ioctls already defined for any other input devices.

However, remove controllers are more flexible than a normal input device, as the IR receiver (and/or transmitter) can be used in conjunction with a wide variety of different IR remotes.

In order to allow flexibility, the Remote Controller subsystem allows controlling the RC-specific attributes via the sysfs class nodes.

7.4.2 Remote Controller's sysfs nodes

As defined at Documentation/ABI/testing/sysfs-class-rc, those are the sysfs nodes that control the Remote Controllers:

/sys/class/rc/

The /sys/class/rc/ class sub-directory belongs to the Remote Controller core and provides a sysfs interface for configuring infrared remote controller receivers.

/sys/class/rc/rcN/

A /sys/class/rc/rcN directory is created for each remote control receiver device where N is the number of the receiver.

/sys/class/rc/rcN/protocols

Reading this file returns a list of available protocols, something like:

rc5 [rc6] nec jvc [sony]

Enabled protocols are shown in [] brackets.

Writing "+proto" will add a protocol to the list of enabled protocols.

Writing "-proto" will remove a protocol from the list of enabled protocols.

Writing "proto" will enable only "proto".

Writing "none" will disable all protocols.

Write fails with EINVAL if an invalid protocol combination or unknown protocol name is used.

/sys/class/rc/rcN/filter

Sets the scancode filter expected value.

Use in combination with /sys/class/rc/rcN/filter_mask to set the expected value of the bits set in the filter mask. If the hardware supports it then scancodes which do not match the filter will be ignored. Otherwise the write will fail with an error.

This value may be reset to 0 if the current protocol is altered.

/sys/class/rc/rcN/filter_mask

Sets the scancode filter mask of bits to compare. Use in combination with /sys/ class/rc/rcN/filter to set the bits of the scancode which should be compared against the expected value. A value of 0 disables the filter to allow all valid scancodes to be processed.

If the hardware supports it then scancodes which do not match the filter will be ignored. Otherwise the write will fail with an error.

This value may be reset to 0 if the current protocol is altered.

/sys/class/rc/rcN/wakeup_protocols

Reading this file returns a list of available protocols to use for the wakeup filter, something like:

rc-5 nec nec-x rc-6-0 rc-6-6a-24 [rc-6-6a-32] rc-6-mce

Note that protocol variants are listed, so nec, sony, rc-5, rc-6 have their different bit length encodings listed if available.

Note that all protocol variants are listed.

The enabled wakeup protocol is shown in [] brackets.

Only one protocol can be selected at a time.

Writing "proto" will use "proto" for wakeup events.

Writing "none" will disable wakeup.

Write fails with EINVAL if an invalid protocol combination or unknown protocol name is used, or if wakeup is not supported by the hardware.

/sys/class/rc/rcN/wakeup_filter

Sets the scancode wakeup filter expected value. Use in combination with /sys/ class/rc/rcN/wakeup_filter_mask to set the expected value of the bits set in the wakeup filter mask to trigger a system wake event.

If the hardware supports it and wakeup_filter_mask is not 0 then scancodes which match the filter will wake the system from e.g. suspend to RAM or power off. Otherwise the write will fail with an error.

This value may be reset to 0 if the wakeup protocol is altered.

/sys/class/rc/rcN/wakeup_filter_mask

Sets the scancode wakeup filter mask of bits to compare. Use in combination with /sys/class/rc/rcN/wakeup_filter to set the bits of the scancode which should be compared against the expected value to trigger a system wake event.

If the hardware supports it and wakeup_filter_mask is not 0 then scancodes which match the filter will wake the system from e.g. suspend to RAM or power off. Otherwise the write will fail with an error.

This value may be reset to 0 if the wakeup protocol is altered.

7.4.3 Remote Controller Protocols and Scancodes

IR is encoded as a series of pulses and spaces, using a protocol. These protocols can encode e.g. an address (which device should respond) and a command: what it should do. The values for these are not always consistent across different devices for a given protocol.

Therefore out the output of the IR decoder is a scancode; a single u32 value. Using keymap tables this can be mapped to linux key codes.

Other things can be encoded too. Some IR protocols encode a toggle bit; this is to distinguish whether the same button is being held down, or has been released and pressed again. If has been released and pressed again, the toggle bit will invert from one IR message to the next.

Some remotes have a pointer-type device which can used to control the mouse; some air conditioning systems can have their target temperature target set in IR.

The following are the protocols the kernel knows about and also lists how scancodes are encoded for each protocol.

rc-5 (RC_PROTO_RC5)

This IR protocol uses manchester encoding to encode 14 bits. There is a detailed description here https://www.sbprojects.net/knowledge/ir/rc5.php.

The scancode encoding is not consistent with the lirc daemon (lircd) rc5 protocol, or the manchester BPF decoder.

rc-5 bit	scancode bit	description
1	none	Start bit, always set
1	6 (inverted)	2nd start bit in rc5, re-used as 6th command bit
1	none	Toggle bit
5	8 to 13	Address
6	0 to 5	Command

Table 223: rc5 bits scancode mapping

There is a variant of rc5 called either rc5x or extended rc5 where there the second stop bit is the 6th command bit, but inverted. This is done so it the scancodes and encoding is compatible with existing schemes. This bit is stored in bit 6 of the scancode, inverted. This is done to keep it compatible with plain rc-5 where there are two start bits.

rc-5-sz (RC_PROTO_RC5_SZ)

This is much like rc-5 but one bit longer. The scancode is encoded differently.

rc-5-sz bits	scancode bit	description
1	none	Start bit, always set
1	13	Address bit
1	none	Toggle bit
6	6 to 11	Address
6	0 to 5	Command

Table 224: rc-5-sz bits scancode mapping

rc-5x-20 (RC_PROTO_RC5X_20)

This rc-5 extended to encoded 20 bits. The is a 3555 microseconds space after the 8th bit.

rc-5-sz bits	scancode bit	description
1	none	Start bit, always set
1	14	Address bit
1	none	Toggle bit
5	16 to 20	Address
6	8 to 13	Address
6	0 to 5	Command

Table 225: rc-5x-20 bits scancode mapping

jvc (RC_PROTO_JVC)

The jvc protocol is much like nec, without the inverted values. It is described here https://www.sbprojects.net/knowledge/ir/jvc.php.

The scancode is a 16 bits value, where the address is the lower 8 bits and the command the higher 8 bits; this is reversed from IR order.

sony-12 (RC_PROTO_SONY12)

The sony protocol is a pulse-width encoding. There are three variants, which just differ in number of bits and scancode encoding.

) == 2100 000	eede mappi	- :
sony-12 bits	scancode bit	description	
5	16 to 20	device	
7	0 to 6	function	

Table 226: sony-12 bits scancode mapping

sony-15 (RC_PROTO_SONY15)

The sony protocol is a pulse-width encoding. There are three variants, which just differ in number of bits and scancode encoding.

Table 227:	sony-12 bits	scancode i	mapping
------------	--------------	------------	---------

sony-12 bits	scancode bit	description
8	16 to 23	device
7	0 to 6	function

sony-20 (RC_PROTO_SONY20)

The sony protocol is a pulse-width encoding. There are three variants, which just differ in number of bits and scancode encoding.

sony-20 bits	scancode bit	description
5	16 to 20	device
7	0 to 7	device
8	8 to 15	extended bits

nec (RC_PROTO_NEC)

The nec protocol encodes an 8 bit address and an 8 bit command. It is described here https://www.sbprojects.net/knowledge/ir/nec.php. Note that the protocol sends least significant bit first.

As a check, the nec protocol sends the address and command twice; the second time it is inverted. This is done for verification.

A plain nec IR message has 16 bits; the high 8 bits are the address and the low 8 bits are the command.

nec-x (RC_PROTO_NECX)

Extended nec has a 16 bit address and a 8 bit command. This is encoded as a 24 bit value as you would expect, with the lower 8 bits the command and the upper 16 bits the address.

nec-32 (RC_PROTO_NEC32)

nec-32 does not send an inverted address or an inverted command; the entire message, all 32 bits, are used.

For this to be decoded correctly, the second 8 bits must not be the inverted value of the first, and also the last 8 bits must not be the inverted value of the third 8 bit value.

The scancode has a somewhat unusual encoding.

nec-32 bits	scancode bit
First 8 bits	16 to 23
Second 8 bits	24 to 31
Third 8 bits	0 to 7
Fourth 8 bits	8 to 15

Table 229: nec-32 bits scancode mapping

sanyo (RC_PROTO_SANYO)

The sanyo protocol is like the nec protocol, but with 13 bits address rather than 8 bits. Both the address and the command are followed by their inverted versions, but these are not present in the scancodes.

Bis 8 to 20 of the scancode is the 13 bits address, and the lower 8 bits are the command.

mcir2-kbd (RC_PROTO_MCIR2_KBD)

This protocol is generated by the Microsoft MCE keyboard for keyboard events. Refer to the ir-mce_kbd-decoder.c to see how it is encoded.

mcir2-mse (RC_PROTO_MCIR2_MSE)

This protocol is generated by the Microsoft MCE keyboard for pointer events. Refer to the ir-mce_kbd-decoder.c to see how it is encoded.

rc-6-0 (RC_PROTO_RC6_0)

This is the rc-6 in mode 0. rc-6 is described here https://www.sbprojects.net/ knowledge/ir/rc6.php. The scancode is the exact 16 bits as in the protocol. There is also a toggle bit.

rc-6-6a-20 (RC_PROTO_RC6_6A_20)

This is the rc-6 in mode 6a, 20 bits. rc-6 is described here https://www.sbprojects. net/knowledge/ir/rc6.php. The scancode is the exact 20 bits as in the protocol. There is also a toggle bit.

rc-6-6a-24 (RC_PROTO_RC6_6A_24)

This is the rc-6 in mode 6a, 24 bits. rc-6 is described here https://www.sbprojects. net/knowledge/ir/rc6.php. The scancode is the exact 24 bits as in the protocol. There is also a toggle bit.

rc-6-6a-32 (RC_PROTO_RC6_6A_32)

This is the rc-6 in mode 6a, 32 bits. rc-6 is described here https://www.sbprojects. net/knowledge/ir/rc6.php. The upper 16 bits are the vendor, and the lower 16 bits are the vendor-specific bits. This protocol is for the non-Microsoft MCE variant (vendor != 0x800f).

rc-6-mce (RC_PROTO_RC6_MCE)

This is the rc-6 in mode 6a, 32 bits. The upper 16 bits are the vendor, and the lower 16 bits are the vendor-specific bits. This protocol is for the Microsoft MCE variant (vendor = 0x800f). The toggle bit in the protocol itself is ignored, and the 16th bit should be takes as the toggle bit.

sharp (RC_PROTO_SHARP)

This is a protocol used by Sharp VCRs, is described here https://www.sbprojects. net/knowledge/ir/sharp.php. There is a very long (40ms) space between the normal and inverted values, and some IR receivers cannot decode this.

There is a 5 bit address and a 8 bit command. In the scancode the address is in bits 8 to 12, and the command in bits 0 to 7.

xmp (RC_PROTO_XMP)

This protocol has several versions and only version 1 is supported. Refer to the decoder (ir-xmp-decoder.c) to see how it is encoded.

cec (RC_PROTO_CEC)

This is not an IR protocol, this is a protocol over CEC. The CEC infrastructure uses rc-core for handling CEC commands, so that they can easily be remapped.

imon (RC_PROTO_IMON)

This protocol is used by Antec Veris/SoundGraph iMON remotes.

The protocol describes both button presses and pointer movements. The protocol encodes 31 bits, and the scancode is simply the 31 bits with the top bit always 0.

rc-mm-12 (RC_PROTO_RCMM12)

The rc-mm protocol is described here https://www.sbprojects.net/knowledge/ir/rcmm.php. The scancode is simply the 12 bits.

rc-mm-24 (RC_PROTO_RCMM24)

The rc-mm protocol is described here https://www.sbprojects.net/knowledge/ir/rcmm.php. The scancode is simply the 24 bits.

rc-mm-32 (RC_PROTO_RCMM32)

The rc-mm protocol is described here https://www.sbprojects.net/knowledge/ir/rcmm.php. The scancode is simply the 32 bits.

xbox-dvd (RC_PROTO_XBOX_DVD)

This protocol is used by XBox DVD Remote, which was made for the original XBox. There is no in-kernel decoder or encoder for this protocol. The usb device decodes the protocol. There is a BPF decoder available in v4l-utils.

7.4.4 Remote controller tables

Unfortunately, for several years, there was no effort to create uniform IR keycodes for different devices. This caused the same IR keyname to be mapped completely differently on different IR devices. This resulted that the same IR keyname to be mapped completely different on different IR's. Due to that, V4L2 API now specifies a standard for mapping Media keys on IR.

This standard should be used by both V4L/DVB drivers and userspace applications

The modules register the remote as keyboard within the linux input layer. This means that the IR key strokes will look like normal keyboard key strokes (if CONFIG_INPUT_KEYBOARD is enabled). Using the event devices (CON-FIG_INPUT_EVDEV) it is possible for applications to access the remote via /dev/input/event devices.

KEY_NUMERIC_2Keyboard digit 22KEY_NUMERIC_3Keyboard digit 33KEY_NUMERIC_4Keyboard digit 44KEY_NUMERIC_5Keyboard digit 55KEY_NUMERIC_6Keyboard digit 66KEY_NUMERIC_7Keyboard digit 77KEY_NUMERIC_8Keyboard digit 88KEY_NUMERIC_9Keyboard digit 99Movie play controlKey_forward>> / FORWARDKEY_BACKInstantly advance in time>> / FORWARDKEY_FASTFORWARDPlay movie faster>>> / FORWARDKEY_REWINDPlay movie backREWIND / BACKWARDKEY_NEXTSelect next chapter / sub-chapter / intervalNEXT / SKIP sub-chapter / intervalKEY_PREVIOUSSelect previous chap- ter / sub-chapter / in-<			
KEY_NUMERIC_0Keyboard digit 00KEY_NUMERIC_1Keyboard digit 11KEY_NUMERIC_2Keyboard digit 22KEY_NUMERIC_3Keyboard digit 33KEY_NUMERIC_4Keyboard digit 44KEY_NUMERIC_5Keyboard digit 55KEY_NUMERIC_6Keyboard digit 77KEY_NUMERIC_7Keyboard digit 88KEY_NUMERIC_9Keyboard digit 99Movie play controlKeyboard digit 99Movie play controlInstantly advance in time>> / FORWARDKEY_FORWARDInstantly go back in time<<< / > / BACKKEY_REWINDPlay movie faster>>> / FORWARDKEY_REWINDPlay movie backREWIND / BACKWARDKEY_REWINDPlay movie backREWIND / BACKWARDKEY_NEXTSelect next chapter / NEXT / SKIP sub-chapter / intervalKEY_PREVIOUSSelect previous chap- ter / sub-chapter / in-	Key code	Meaning	Key examples on IR
KEY_NUMERIC_1Keyboard digit 11KEY_NUMERIC_2Keyboard digit 22KEY_NUMERIC_3Keyboard digit 33KEY_NUMERIC_4Keyboard digit 44KEY_NUMERIC_5Keyboard digit 55KEY_NUMERIC_6Keyboard digit 66KEY_NUMERIC_7Keyboard digit 77KEY_NUMERIC_8Keyboard digit 88KEY_NUMERIC_9Keyboard digit 99Movie play controlKeyboard digit 99Movie play controlInstantly advance in time>> / FORWARDKEY_BACKInstantly go back in time<<< / BACK		·	
KEY_NUMERIC_2Keyboard digit 22KEY_NUMERIC_3Keyboard digit 33KEY_NUMERIC_4Keyboard digit 44KEY_NUMERIC_5Keyboard digit 55KEY_NUMERIC_6Keyboard digit 66KEY_NUMERIC_7Keyboard digit 77KEY_NUMERIC_8Keyboard digit 88KEY_NUMERIC_9Keyboard digit 99Movie play controlKeyboard digit 99Movie play controlInstantly advance in time>> / FORWARDKEY_BACKInstantly go back in time<<< / BACK	KEY_NUMERIC_0	Keyboard digit 0	0
KEY_NUMERIC_3Keyboard digit 33KEY_NUMERIC_4Keyboard digit 44KEY_NUMERIC_5Keyboard digit 55KEY_NUMERIC_6Keyboard digit 77KEY_NUMERIC_7Keyboard digit 88KEY_NUMERIC_9Keyboard digit 99Movie play controlInstantly advance in time>> / FORWARDKEY_FORWARDInstantly go back in time<<< / BACK	KEY_NUMERIC_1	Keyboard digit 1	1
KEY_NUMERIC_4Keyboard digit 44KEY_NUMERIC_5Keyboard digit 55KEY_NUMERIC_6Keyboard digit 66KEY_NUMERIC_7Keyboard digit 77KEY_NUMERIC_8Keyboard digit 88KEY_NUMERIC_9Keyboard digit 99Movie play controlInstantly advance in time>> / FORWARDKEY_FORWARDInstantly go back in time<<< / BACK	KEY_NUMERIC_2	Keyboard digit 2	2
KEY_NUMERIC_5Keyboard digit 55KEY_NUMERIC_6Keyboard digit 66KEY_NUMERIC_7Keyboard digit 77KEY_NUMERIC_8Keyboard digit 88KEY_NUMERIC_9Keyboard digit 99Movie play controlInstantly advance in time>> / FORWARDKEY_FORWARDInstantly go back in time<<< / BACK			3
KEY_NUMERIC_6Keyboard digit 66KEY_NUMERIC_7Keyboard digit 77KEY_NUMERIC_8Keyboard digit 88KEY_NUMERIC_9Keyboard digit 99Movie play controlInstantly advance in time>> / FORWARDKEY_FORWARDInstantly go back in time<<			4
KEY_NUMERIC_7Keyboard digit 77KEY_NUMERIC_8Keyboard digit 88KEY_NUMERIC_9Keyboard digit 99Movie play controlInstantly advance in time>> / FORWARDKEY_FORWARDInstantly go back in time<<< / BACK	KEY_NUMERIC_5		5
KEY_NUMERIC_8Keyboard digit 88KEY_NUMERIC_9Keyboard digit 99Movie play controlInstantly advance in time>> / FORWARDKEY_FORWARDInstantly go back in time<<< / BACKKEY_FASTFORWARDPlay movie faster>>> / FORWARDKEY_REWINDPlay movie back sub-chapter / intervalREWIND / BACKWARDKEY_PREVIOUSSelect next chapter / sub-chapter / interval<<< / PREV / PREVIOUS	KEY_NUMERIC_6		6
KEY_NUMERIC_9Keyboard digit 99Movie play controlInstantly advance in time>> / FORWARDKEY_FORWARDInstantly go back in time<<< / BACK			7
Movie play controlKEY_FORWARDInstantly advance in timeKEY_BACKInstantly go back in timeKEY_BACKInstantly go back in timeKEY_FASTFORWARDPlay movie fasterKEY_REWINDPlay movie backKEY_NEXTSelect next chapter / sub-chapter / intervalKEY_PREVIOUSSelect previous chap- ter / sub-chapter / in-	KEY_NUMERIC_8	Keyboard digit 8	8
KEY_FORWARDInstantly advance in time>> / FORWARDKEY_BACKInstantly go back in time<<< / BACK	KEY_NUMERIC_9	Keyboard digit 9	9
timeKEY_BACKInstantly go back in time<<< / BACKKEY_FASTFORWARDPlay movie fasterKEY_REWINDPlay movie backKEY_REWINDPlay movie backKEY_NEXTSelect next chapter / sub-chapter / intervalKEY_PREVIOUSSelect previous chap- ter / sub-chapter / in-			
KEY_BACKInstantly go back in time<<< / BACKKEY_FASTFORWARDPlay movie faster>>> / FORWARDKEY_REWINDPlay movie backREWIND / BACKWARDKEY_NEXTSelect next chapter / sub-chapter / intervalNEXT / SKIPKEY_PREVIOUSSelect previous chap- ter / sub-chapter / in-<< / PREV / PREVIOUS	KEY_FORWARD	Instantly advance in	>> / FORWARD
time KEY_FASTFORWARD Play movie faster XEY_REWIND Play movie back REWIND / BACKWARD KEY_NEXT Select next chapter / NEXT / SKIP Sub-chapter / interval KEY_PREVIOUS Select previous chap- ter / sub-chapter / in-			
KEY_FASTFORWARDPlay movie fasterKEY_REWINDPlay movie backKEY_REWINDPlay movie backKEY_NEXTSelect next chapter / NEXT / SKIPsub-chapter / intervalNEXT / SKIPKEY_PREVIOUSSelect previous chap- ter / sub-chapter / in-	KEY_BACK	Instantly go back in	<<< / BACK
KEY_REWIND Play movie back REWIND / BACKWARD KEY_NEXT Select next chapter / NEXT / SKIP sub-chapter / interval NEXT / SKIP KEY_PREVIOUS Select previous chap- ter / sub-chapter / in-		time	
KEY_REWIND Play movie back REWIND / BACKWARD KEY_NEXT Select next chapter / NEXT / SKIP sub-chapter / interval NEXT / SKIP KEY_PREVIOUS Select previous chap- ter / sub-chapter / in-	KEY_FASTFORWARD	Play movie faster	
KEY_NEXT Select next chapter / NEXT / SKIP sub-chapter / interval NEXT / SKIP KEY_PREVIOUS Select previous chap- ter / sub-chapter / in-			>>> / FORWARD
KEY_NEXT Select next chapter / NEXT / SKIP sub-chapter / interval NEXT / SKIP KEY_PREVIOUS Select previous chap- ter / sub-chapter / in-			
sub-chapter / interval KEY_PREVIOUS Select previous chap- ter / sub-chapter / in-	KEY_REWIND	Play movie back	REWIND / BACKWARD
KEY_PREVIOUS Select previous chap- ter / sub-chapter / in- << / PREV / PREVIOUS	KEY_NEXT	Select next chapter /	NEXT / SKIP
ter / sub-chapter / in-	_	sub-chapter / interval	
-	KEY_PREVIOUS	Select previous chap-	<< / PREV / PREVIOUS
terval		ter / sub-chapter / in-	
		terval	
Continued on next page	Contir	•	

Table 230: IR default keymapping

video interval Pause stream	REPEAT / LOOP / RECALL
Pause stream	DALLOE / EDEEZE
	DALLEE / EDEE7E
	PAUSE / FREEZE
Play movie at the nor- mal timeshift	NORMAL TIMESHIFT / LIVE / >
	PLAY / PAUSE
	STOP
	CAPTURE / REC / RECORD/PAUSE
Take a picture of the image	CAMERA ICON / CAPTURE / SNAPSHOT
Enable shuffle mode	SHUFFLE
Activate time shift mode	TIME SHIFT
Allow changing the chapter	CHAPTER
Allow changing the subtitle	SUBTITLE
	L
Decrease Brightness	BRIGHTNESS DECREASE
Increase Brightness	BRIGHTNESS INCREASE
angle (on videos with more than one angle	
	FPG / GUIDF
Play Guide (EPG)	
Activate/change closed caption mode	CLOSED CAPTION/TELETEXT / DVD TEXT TELETEXT / TTX
	1
Change audio source	AUDIO SOURCE / AUDIO / MUSIC
_	MUTE / DEMUTE / UNMUTE
	VOLUME- / VOLUME DOWN
	VOLUME + / VOLUME UP
	MONO/STEREO
Select Language	1ST / 2ND LANGUAGE / DVD LANG MTS/SAP / MTS SEL
,	
Go to the next favorite channel	ALT / CHANNEL / CH SURFING / SURF / FAV
quentially	CHANNEL - / CHANNEL DOWN / DOWN
quentially	CHANNEL + / CHANNEL UP / UP
Use more than one digit for channel	PLUS / 100/ 1xx / xxx / -/- / Single Double Triple Digit
	play and pauseStop streamStart/stop recording streamTake a picture of the imageEnable shuffle modeActivate time shift modeAllow changing the chapterAllow changing the subtitleDecrease BrightnessIncrease BrightnessSwitch video camera angle (on videos with more than one angle stored)Open the Elecrowonic Play Guide (EPG)Activate/change closed caption modeChange audio source Mute/unmute audio Decrease volumeIncrease volume Change sound modeGo to the next favorite channel Decrease channel se- quentiallyUse more than one

Table 230 – continued from previous page

Та	ble 230 - continued from	
KEY_SEARCH	Start channel au-	SCAN / AUTOSCAN
	toscan	
Colored keys		
KEY_BLUE	IR Blue key	BLUE
KEY_GREEN	IR Green Key	GREEN
KEY_RED	IR Red key	RED
KEY_YELLOW	IR Yellow key	YELLOW
Media selection	1	
KEY_CD	Change input source	CD
	to Compact Disc	
KEY_DVD	Change input to DVD	DVD / DVD MENU
KEY_EJECTCLOSECD	Open/close the CD/DVD player	->) / CLOSE / OPEN
KEY_MEDIA	Turn on/off Media ap-	PC/TV / TURN ON/OFF APP
	plication	
KEY PC	Selects from TV to PC	PC
KEY_RADIO	Put into AM/FM radio mode	RADIO / TV/FM / TV/RADIO / FM / FM/RADIO
KEY_TV	Select tv mode	TV / LIVE TV
KEY TV2	Select Cable mode	AIR/CBL
KEY_VCR	Select VCR mode	VCR MODE / DTR
KEY_VIDE0	Alternate between in-	SOURCE / SELECT / DISPLAY / SWITCH IN-
_	put modes	PUTS / VIDEO
Power control	1-	
KEY POWER	Turn on/off computer	SYSTEM POWER / COMPUTER POWER
KEY POWER2		TV ON/OFF / POWER
KEY_SLEEP	Activate sleep timer	SLEEP / SLEEP TIMER
KEY_SUSPEND	Put computer into sus-	STANDBY / SUSPEND
	pend mode	
Window control		
KEY_CLEAR	turn to default input	CLEAR / RESET / BOSS KEY
	video/audio	
KEY_CYCLEWINDOWS		ALT-TAB / MINIMIZE / DESKTOP
	move to the next one	
KEY_FAVORITES	-	TV WALL / Favorites
	stream window	
KEY_MENU	Call application menu	DVD/MENU / SHOW/HIDE CTRL
KEY_NEW	Open/Close Picture in Picture	
KEY_OK	Send a confirmation code to application	OK / ENTER / RETURN
KEY_ASPECT_RATIO	Select screen aspect ratio	4:3 16:9 SELECT
KEY_FULL_SCREEN	Put device into zoom/full screen mode	ZOOM / FULL SCREEN / ZOOM+ / HIDE PANNEL / SWITCH
Navigation keys		
-		

Table 230 – continued from previous page

Continued on next page

lable 250 - continued norm previous page		
KEY_ESC	Cancel current opera-	CANCEL / BACK
	tion	
KEY_HELP	Open a Help window	HELP
KEY_HOMEPAGE	Navigate to Home-	HOME
	page	
KEY_INF0	Open On Screen Dis-	DISPLAY INFORMATION / OSD
	play	
KEY_WWW	Open the default	WEB
	browser	
KEY_UP	Up key	UP
KEY_DOWN	Down key	DOWN
KEY_LEFT	Left key	LEFT
KEY_RIGHT	Right key	RIGHT
Miscellaneous keys		
KEY_DOT	Return a dot	•
KEY_FN	Select a function	FUNCTION

Table 230 - continued from previous page

It should be noted that, sometimes, there some fundamental missing keys at some cheaper IR' s. Due to that, it is recommended to:

Table 231: Notes

On simpler IR's, without separate channel keys, you need to map UP as
KEY_CHANNELUP
On simpler IR's, without separate channel keys, you need to map DOWN as
KEY_CHANNELDOWN
On simpler IR's, without separate volume keys, you need to map LEFT as
KEY_VOLUMEDOWN
On simpler IR's, without separate volume keys, you need to map RIGHT as
KEY_VOLUMEUP

7.4.5 Changing default Remote Controller mappings

The event interface provides two ioctls to be used against the /dev/input/event device, to allow changing the default keymapping.

This program demonstrates how to replace the keymap tables.

file: uapi/v4l/keytable.c

```
/* keytable.c - This program allows checking/replacing keys at IR
Copyright (C) 2006-2009 Mauro Carvalho Chehab <mchehab@kernel.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 2 of the License.
This program is distributed in the hope that it will be useful,
(continues on next page)
```

```
(continued from previous page)
```

```
but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
   GNU General Public License for more details.
 */
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <linux/input.h>
#include <sys/ioctl.h>
#include "parse.h"
void prtcode (int *codes)
{
        struct parse key *p;
        for (p=keynames;p->name!=NULL;p++) {
                if (p->value == (unsigned)codes[1]) {
                         printf("scancode 0x%04x = %s (0x%02x)\\n",
\rightarrow codes[0], p->name, codes[1]);
                         return;
                }
        }
        if (isprint (codes[1]))
                printf("scancode %d = '%c' (0x%02x)\\n", codes[0],...
\hookrightarrow codes[1], codes[1]);
        else
                printf("scancode %d = 0x%02x\\n", codes[0], codes[1]);
}
int parse code(char *string)
{
        struct parse_key *p;
        for (p=keynames;p->name!=NULL;p++) {
                if (!strcasecmp(p->name, string)) {
                         return p->value;
                }
        }
        return -1;
}
int main (int argc, char *argv[])
{
        int fd:
        unsigned int i, j;
        int codes[2];
        if (argc<2 || argc>4) {
                printf ("usage: %s <device> to get table; or\\n"
                                 %s <device> <scancode> <keycode>\\n"
```

```
(continues on next page)
```

```
(continued from previous page)
```

```
н
                                %s <device> <keycode file>n",*argv,*argv,
\rightarrow*argv);
                return -1;
       }
       if ((fd = open(argv[1], 0 RDONLY)) < 0) {
                perror("Couldn't open input device");
                return(-1);
       }
       if (argc==4) {
                int value;
                value=parse code(argv[3]);
                if (value==-1) {
                        value = strtol(argv[3], NULL, 0);
                        if (errno)
                                perror("value");
                }
                codes [0] = (unsigned) strtol(argv[2], NULL, 0);
                codes [1] = (unsigned) value;
                if(ioctl(fd, EVIOCSKEYCODE, codes))
                        perror ("EVIOCSKEYCODE");
                if(ioctl(fd, EVIOCGKEYCODE, codes)==0)
                        prtcode(codes);
                return 0;
       }
       if (argc==3) {
                FILE *fin:
                int value;
                char *scancode, *keycode, s[2048];
                fin=fopen(argv[2],"r");
                if (fin==NULL) {
                        perror ("opening keycode file");
                        return -1;
                }
                /* Clears old table */
                for (j = 0; j < 256; j++) {
                        for (i = 0; i < 256; i++) {
                                codes[0] = (j << 8) | i;
                                codes[1] = KEY RESERVED;
                                 ioctl(fd, EVIOCSKEYCODE, codes);
                        }
                }
                while (fgets(s,sizeof(s),fin)) {
                        scancode=strtok(s,"\\n\\t =:");
                        if (!scancode) {
                                perror ("parsing input file scancode");
                                                          (continues on next page)
```

(continued from previous page)

```
return -1;
                         if (!strcasecmp(scancode, "scancode")) {
                                 scancode = strtok(NULL, "\\n\\t =:");
                                 if (!scancode) {
                                          perror ("parsing input file,
\rightarrow scancode");
                                          return -1;
                                 }
                         }
                         keycode=strtok(NULL, "\\n\\t =: (");
                         if (!keycode) {
                                 perror ("parsing input file keycode");
                                 return -1;
                         }
                         // printf ("parsing %s=%s:", scancode, keycode);
                         value=parse code(keycode);
                         // printf ("\\tvalue=%d\\n",value);
                         if (value==-1) {
                                 value = strtol(keycode, NULL, 0);
                                 if (errno)
                                          perror("value");
                         }
                         codes [0] = (unsigned) strtol(scancode, NULL, 0);
                         codes [1] = (unsigned) value;
                         // printf("\\t%04x=%04x\\n",codes[0], codes[1]);
                         if(ioctl(fd, EVIOCSKEYCODE, codes)) {
                                 fprintf(stderr, "Setting scancode 0x%04x...
→with 0x%04x via ",codes[0], codes[1]);
                                 perror ("EVIOCSKEYCODE");
                         }
                         if(ioctl(fd, EVIOCGKEYCODE, codes)==0)
                                 prtcode(codes);
                 }
                 return 0;
        }
        /* Get scancode table */
        for (j = 0; j < 256; j++) {
                 for (i = 0; i < 256; i++) {
                         codes[0] = (j << 8) | i;
                         if (!ioctl(fd, EVIOCGKEYCODE, codes) && codes[1] !
\rightarrow = KEY RESERVED)
                                 prtcode(codes);
                }
        }
        return 0;
}
```

7.4.6 LIRC Device Interface

Introduction

LIRC stands for Linux Infrared Remote Control. The LIRC device interface is a bidirectional interface for transporting raw IR and decoded scancodes data between userspace and kernelspace. Fundamentally, it is just a chardev (/dev/lircX, for X = 0, 1, 2, ...), with a number of standard struct file_operations defined on it. With respect to transporting raw IR and decoded scancodes to and fro, the essential fops are read, write and ioctl.

It is also possible to attach a BPF program to a LIRC device for decoding raw IR into scancodes.

Example dmesg output upon a driver registering w/LIRC:

```
$ dmesg |grep lirc_dev
rc rc0: lirc_dev: driver mceusb registered at minor = 0, raw IR receiver,

→ raw IR transmitter
```

What you should see for a chardev:

\$ ls -l /dev/lirc*
crw-rw---- 1 root root 248, 0 Jul 2 22:20 /dev/lirc0

Note that the package v4l-utils contains tools for working with LIRC devices:

- ir-ctl: can receive raw IR and transmit IR, as well as query LIRC device features.
- ir-keytable: can load keymaps; allows you to set IR kernel protocols; load BPF IR decoders and test IR decoding. Some BPF IR decoders are also provided.

LIRC modes

LIRC supports some modes of receiving and sending IR codes, as shown on the following table.

LIRC_MODE_SCANCODE

This mode is for both sending and receiving IR.

For transmitting (aka sending), create a struct lirc_scancode with the desired scancode set in the scancode member, rc_proto set to the IR protocol, and all other members set to 0. Write this struct to the lirc device.

For receiving, you read struct lirc_scancode from the LIRC device. The scancode field is set to the received scancode and the IR protocol is set in rc_proto. If the scancode maps to a valid key code, this is set in the keycode field, else it is set to KEY_RESERVED.

The flags can have LIRC_SCANCODE_FLAG_TOGGLE set if the toggle bit is set in protocols that support it (e.g. rc-5 and rc-6), or LIRC_SCANCODE_FLAG_REPEAT for when a repeat is received for protocols that support it (e.g. nec).

In the Sanyo and NEC protocol, if you hold a button on remote, rather than repeating the entire scancode, the remote sends a shorter message with no scancode, which just means button is held, a "repeat". When this is received, the LIRC_SCANCODE_FLAG_REPEAT is set and the scancode and keycode is repeated.

With nec, there is no way to distinguish "button hold" from "repeatedly pressing the same button". The rc-5 and rc-6 protocols have a toggle bit. When a button is released and pressed again, the toggle bit is inverted. If the toggle bit is set, the LIRC_SCANCODE_FLAG_TOGGLE is set.

The timestamp field is filled with the time nanoseconds (in CLOCK_MONOTONIC) when the scancode was decoded.

LIRC_MODE_MODE2

The driver returns a sequence of pulse and space codes to userspace, as a series of u32 values.

This mode is used only for IR receive.

The upper 8 bits determine the packet type, and the lower 24 bits the payload. Use LIRC_VALUE() macro to get the payload, and the macro LIRC_MODE2() will give you the type, which is one of:

LIRC_MODE2_PULSE

Signifies the presence of IR in microseconds.

LIRC_MODE2_SPACE

Signifies absence of IR in microseconds.

LIRC MODE2 FREQUENCY

If measurement of the carrier frequency was enabled with ioctl LIRC_SET_MEASURE_CARRIER_MODE then this packet gives you the carrier frequency in Hertz.

LIRC_MODE2_TIMEOUT

If enabled timeout reports are with ioctl LIRC SET REC TIMEOUT REPORTS, when the timewith LIRC GET REC TIMEOUT set ioctl out and LIRC SET REC TIMEOUT expires due to no IR being detected, this packet will be sent, with the number of microseconds with no IR.

LIRC_MODE_PULSE

In pulse mode, a sequence of pulse/space integer values are written to the lirc device using LIRC write().

The values are alternating pulse and space lengths, in microseconds. The first and last entry must be a pulse, so there must be an odd number of entries.

This mode is used only for IR send.

BPF based IR decoder

The kernel has support for decoding the most common IR protocols, but there are many protocols which are not supported. To support these, it is possible to load an BPF program which does the decoding. This can only be done on LIRC devices which support reading raw IR.

First, using the bpf(2) syscall with the BPF_LOAD_PROG argument, program must be loaded of type BPF_PROG_TYPE_LIRC_MODE2. Once attached to the LIRC device, this program will be called for each pulse, space or timeout event on the LIRC device. The context for the BPF program is a pointer to a unsigned int, which is a LIRC_MODE_MODE2 value. When the program has decoded the scancode, it can be submitted using the BPF functions bpf_rc_keydown() or bpf_rc_repeat(). Mouse or pointer movements can be reported using bpf_rc_pointer_rel().

Once you have the file descriptor for the BPF_PROG_TYPE_LIRC_MODE2 BPF program, it can be attached to the LIRC device using the bpf(2) syscall. The target must be the file descriptor for the LIRC device, and the attach type must be BPF_LIRC_MODE2. No more than 64 BPF programs can be attached to a single LIRC device at a time.

LIRC Function Reference

LIRC read()

Name

lirc-read - Read from a LIRC device

Synopsis

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().buf Buffer to be filledcount Max number of bytes to read

Description

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf. If count is zero, read() returns zero and has no other results. If count is greater than SSIZE_MAX, the result is unspecified.

The exact format of the data depends on what LIRC modes a driver uses. Use ioctl LIRC_GET_FEATURES to get the supported mode, and use ioctls LIRC_GET_REC_MODE and LIRC_SET_REC_MODE set the current active mode.

The mode LIRC_MODE_MODE2 is for raw IR, in which packets containing an unsigned int value describing an IR signal are read from the chardev.

Alternatively, LIRC_MODE_SCANCODE can be available, in this mode scancodes which are either decoded by software decoders, or by hardware decoders. The rc_proto member is set to the IR protocol used for transmission, and scancode to the decoded scancode, and the keycode set to the keycode or KEY_RESERVED.

Return Value

On success, the number of bytes read is returned. It is not an error if this number is smaller than the number of bytes requested, or the amount of data required for one frame. On error, -1 is returned, and the errno variable is set appropriately.

LIRC write()

Name

lirc-write - Write to a LIRC device

Synopsis

#include <unistd.h>

ssize_t write(int fd, void *buf, size_t count)

Arguments

fd File descriptor returned by open().

buf Buffer with data to be written

count Number of bytes at the buffer

Description

write() writes up to count bytes to the device referenced by the file descriptor fd from the buffer starting at buf.

The exact format of the data depends on what mode a driver is in, use ioctl LIRC_GET_FEATURES to get the supported modes and use ioctls LIRC_GET_SEND_MODE and LIRC_SET_SEND_MODE set the mode.

When in LIRC_MODE_PULSE mode, the data written to the chardev is a pulse/space sequence of integer values. Pulses and spaces are only marked implicitly by their position. The data must start and end with a pulse, therefore, the data must always include an uneven number of samples. The write function blocks until the data has been transmitted by the hardware. If more data is provided than the hardware can send, the driver returns EINVAL.

When in LIRC_MODE_SCANCODE mode, one struct lirc_scancode must be written to the chardev at a time, else EINVAL is returned. Set the desired scancode in the scancode member, and the IR protocol in the rc_proto: member. All other members must be set to 0, else EINVAL is returned. If there is no protocol encoder for the protocol or the scancode is not valid for the specified protocol, EINVAL is returned. The write function blocks until the scancode is transmitted by the hardware.

Return Value

On success, the number of bytes written is returned. It is not an error if this number is smaller than the number of bytes requested, or the amount of data required for one frame. On error, -1 is returned, and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_GET_FEATURES

Name

LIRC_GET_FEATURES - Get the underlying hardware device's features

Synopsis

int ioctl(int fd, LIRC_GET_FEATURES, __u32 *features)

Arguments

fd File descriptor returned by open().

features Bitmask with the LIRC features.

Description

Get the underlying hardware device's features. If a driver does not announce support of certain features, calling of the corresponding ioctls is undefined.

LIRC features

LIRC_CAN_REC_RAW

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_REC_PULSE

Unused. Kept just to avoid breaking uAPI. LIRC_MODE_PULSE can only be used for transmitting.

LIRC_CAN_REC_MODE2

This is raw IR driver for receiving. This means that LIRC_MODE_MODE2 is used. This also implies that LIRC_MODE_SCANCODE is also supported, as long as the kernel is recent enough. Use the ioctls LIRC_GET_REC_MODE and LIRC_SET_REC_MODE to switch modes.

LIRC_CAN_REC_LIRCCODE

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_REC_SCANCODE

This is a scancode driver for receiving. This means that LIRC_MODE_SCANCODE is used.

LIRC_CAN_SET_SEND_CARRIER

The driver supports changing the modulation frequency via ioctl $\mbox{LIRC_SET_SEND_CARRIER}.$

LIRC_CAN_SET_SEND_DUTY_CYCLE

The driver supports changing the duty cycle using ioctl LIRC_SET_SEND_DUTY_CYCLE.

LIRC_CAN_SET_TRANSMITTER_MASK

The driver supports changing the active transmitter(s) using ioctl LIRC_SET_TRANSMITTER_MASK.

LIRC_CAN_SET_REC_CARRIER

The driver supports setting the receive carrier frequency using ioctl LIRC_SET_REC_CARRIER.

LIRC_CAN_SET_REC_DUTY_CYCLE_RANGE

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_SET_REC_CARRIER_RANGE

The driver supports ioctl LIRC_SET_REC_CARRIER_RANGE.

LIRC_CAN_GET_REC_RESOLUTION

The driver supports ioctl LIRC_GET_REC_RESOLUTION.

LIRC_CAN_SET_REC_TIMEOUT

The driver supports ioctl LIRC_SET_REC_TIMEOUT.

LIRC_CAN_SET_REC_FILTER

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_MEASURE_CARRIER

The driver supports measuring of the modulation frequency using ioctl LIRC_SET_MEASURE_CARRIER_MODE.

LIRC_CAN_USE_WIDEBAND_RECEIVER

The driver supports learning mode using ioctl LIRC_SET_WIDEBAND_RECEIVER.

LIRC_CAN_NOTIFY_DECODE

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_SEND_RAW

Unused. Kept just to avoid breaking uAPI.

LIRC_CAN_SEND_PULSE

The driver supports sending (also called as IR blasting or IR TX) using LIRC_MODE_PULSE. This implies that LIRC_MODE_SCANCODE is also supported for transmit, as long as the kernel is recent enough. Use the ioctls LIRC_GET_SEND_MODE and LIRC_SET_SEND_MODE to switch modes.

LIRC_CAN_SEND_MODE2

Unused. Kept just to avoid breaking uAPI. LIRC_MODE_MODE2 can only be used for receiving.

LIRC_CAN_SEND_LIRCCODE

Unused. Kept just to avoid breaking uAPI.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctls LIRC_GET_SEND_MODE and LIRC_SET_SEND_MODE

Name

 $\label{eq:linc_get_send_mode} LIRC_GET_SEND_MODE - Get/set \ current \ transmit mode.$

Synopsis

int ioctl(int fd, LIRC_GET_SEND_MODE, __u32 *mode)
int ioctl(int fd, LIRC_SET_SEND_MODE, __u32 *mode)

Arguments

fd File descriptor returned by open().

mode The mode used for transmitting.

Description

Get/set current transmit mode.

Only LIRC_MODE_PULSE and LIRC_MODE_SCANCODE are supported by for IR send, depending on the driver. Use ioctl LIRC_GET_FEATURES to find out which modes the driver supports.

Return Value

ENODEV	Device not available.
ENOTTY	Device does not support transmitting.
EINVAL	Invalid mode or invalid mode for this device.

ioctls LIRC_GET_REC_MODE and LIRC_SET_REC_MODE

Name

LIRC GET REC MODE/LIRC SET REC MODE - Get/set current receive mode.

Synopsis

int ioctl(int fd, LIRC_GET_REC_MODE, __u32 *mode)
int ioctl(int fd, LIRC SET REC MODE, __u32 *mode)

Arguments

fd File descriptor returned by open().

mode Mode used for receive.

Description

Get and set the current receive mode. Only LIRC_MODE_MODE2 and LIRC_MODE_SCANCODE are supported. Use ioctl LIRC_GET_FEATURES to find out which modes the driver supports.

Return Value

ENODEV	Device not available.
ENOTTY	Device does not support receiving.
EINVAL	Invalid mode or invalid mode for this device.

ioctl LIRC_GET_REC_RESOLUTION

Name

 $\mbox{LIRC_GET_REC_RESOLUTION}$ - Obtain the value of receive resolution, in microseconds.

Synopsis

int ioctl(int fd, LIRC_GET_REC_RESOLUTION, __u32 *microseconds)

Arguments

fd File descriptor returned by open().

microseconds Resolution, in microseconds.

Description

Some receivers have maximum resolution which is defined by internal sample rate or data format limitations. E.g. it's common that signals can only be reported in 50 microsecond steps.

This ioctl returns the integer value with such resolution, with can be used by userspace applications like lircd to automatically adjust the tolerance value.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_SEND_DUTY_CYCLE

Name

 $\mbox{LIRC_SET_SEND_DUTY_CYCLE}$ - Set the duty cycle of the carrier signal for IR transmit.

Synopsis

int ioctl(int fd, LIRC_SET_SEND_DUTY_CYCLE, __u32 *duty_cycle)

Arguments

fd File descriptor returned by open().

duty_cycle Duty cicle, describing the pulse width in percent (from 1 to 99) of the
 total cycle. Values 0 and 100 are reserved.

Description

Get/set the duty cycle of the carrier signal for IR transmit.

Currently, no special meaning is defined for 0 or 100, but this could be used to switch off carrier generation in the future, so these values should be reserved.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctls LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT

Name

 $LIRC_GET_MIN_TIMEOUT$ / $LIRC_GET_MAX_TIMEOUT$ - Obtain the possible timeout range for IR receive.

Synopsis

int ioctl(int fd, LIRC_GET_MIN_TIMEOUT, __u32 *timeout)
int ioctl(int fd, LIRC_GET_MAX_TIMEOUT, __u32 *timeout)

Arguments

fd File descriptor returned by open().

timeout Timeout, in microseconds.

Description

Some devices have internal timers that can be used to detect when there's no IR activity for a long time. This can help lircd in detecting that a IR signal is finished and can speed up the decoding process. Returns an integer value with the minimum/maximum timeout that can be set.

Note: Some devices have a fixed timeout, in that case both ioctls will return the same value even though the timeout cannot be changed via ioctl LIRC_GET_REC_TIMEOUT and LIRC_SET_REC_TIMEOUT.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_GET_REC_TIMEOUT and LIRC_SET_REC_TIMEOUT

Name

 $LIRC_GET_REC_TIMEOUT/LIRC_SET_REC_TIMEOUT$ - Get/set the integer value for IR inactivity timeout.

Synopsis

int ioctl(int fd, LIRC_GET_REC_TIMEOUT, __u32 *timeout)
int ioctl(int fd, LIRC_SET_REC_TIMEOUT, __u32 *timeout)

Arguments

fd File descriptor returned by open().

timeout Timeout, in microseconds.

Description

Get and set the integer value for IR inactivity timeout.

If supported by the hardware, setting it to 0 disables all hardware timeouts and data should be reported as soon as possible. If the exact value cannot be set, then the next possible value _greater_ than the given value should be set.

Note: The range of supported timeout is given by ioctls LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_CARRIER

Name

LIRC_SET_REC_CARRIER - Set carrier used to modulate IR receive.

Synopsis

int ioctl(int fd, LIRC_SET_REC_CARRIER, __u32 *frequency)

Arguments

fd File descriptor returned by open().

frequency Frequency of the carrier that modulates PWM data, in Hz.

Description

Set receive carrier used to modulate IR PWM pulses and spaces.

Note: If called together with ioctl LIRC_SET_REC_CARRIER_RANGE, this ioctl sets the upper bound frequency that will be recognized by the device.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_CARRIER_RANGE

Name

 $\mbox{LIRC_SET_REC_CARRIER_RANGE}$ - Set lower bound of the carrier used to modulate IR receive.

Synopsis

int ioctl(int fd, LIRC_SET_REC_CARRIER_RANGE, __u32 *frequency)

Arguments

fd File descriptor returned by open().

frequency Frequency of the carrier that modulates PWM data, in Hz.

Description

This ioctl sets the upper range of carrier frequency that will be recognized by the IR receiver.

Note: To set a range use LIRC_SET_REC_CARRIER_RANGE with the lower bound first and later call LIRC_SET_REC_CARRIER with the upper bound.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_SEND_CARRIER

Name

LIRC_SET_SEND_CARRIER - Set send carrier used to modulate IR TX.

Synopsis

int ioctl(int fd, LIRC_SET_SEND_CARRIER, __u32 *frequency)

Arguments

fd File descriptor returned by open().

frequency Frequency of the carrier to be modulated, in Hz.

Description

Set send carrier used to modulate IR PWM pulses and spaces.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_TRANSMITTER_MASK

Name

 $\label{eq:linear} LIRC_SET_TRANSMITTER_MASK \text{-} Enables \text{ send codes on a given set of transmitters}$

Synopsis

int ioctl(int fd, LIRC_SET_TRANSMITTER_MASK, __u32 *mask)

Arguments

fd File descriptor returned by open().

mask Mask with channels to enable tx. Channel 0 is the least significant bit.

Description

Some IR TX devices have multiple output channels. in such LIRC_CAN_SET_TRANSMITTER MASK case, is returned via ioctl LIRC GET FEATURES and this ioctl sets what channels will send IR codes.

This ioctl enables the given set of transmitters. The first transmitter is encoded by the least significant bit and so on.

When an invalid bit mask is given, i.e. a bit is set, even though the device does not have so many transitters, then this ioctl returns the number of available transitters and does nothing otherwise.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_REC_TIMEOUT_REPORTS

Name

```
\mbox{LIRC\_SET\_REC\_TIMEOUT\_REPORTS} - enable or disable timeout reports for IR receive
```

Synopsis

int ioctl(int fd, LIRC_SET_REC_TIMEOUT_REPORTS, __u32 *enable)

Arguments

fd File descriptor returned by open().

enable enable = 1 means enable timeout report, enable = 0 means disable timeout reports.

Description

Enable or disable timeout reports for IR receive. By default, timeout reports should be turned off.

Note: This ioctl is only valid for LIRC MODE MODE2.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_MEASURE_CARRIER_MODE

Name

LIRC_SET_MEASURE_CARRIER_MODE - enable or disable measure mode

Synopsis

int ioctl(int fd, LIRC_SET_MEASURE_CARRIER_MODE, __u32 *enable)

Arguments

fd File descriptor returned by open().

enable enable = 1 means enable measure mode, enable = 0 means disable measure mode.

Description

Enable or disable measure mode. If enabled, from the next key press on, the driver will send LIRC_MODE2_FREQUENCY packets. By default this should be turned off.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl LIRC_SET_WIDEBAND_RECEIVER

Name

LIRC_SET_WIDEBAND_RECEIVER - enable wide band receiver.

Synopsis

int ioctl(int fd, LIRC_SET_WIDEBAND_RECEIVER, __u32 *enable)

Arguments

fd File descriptor returned by open().

enable enable = 1 means enable wideband receiver, enable = 0 means disable wideband receiver.

Description

Some receivers are equipped with special wide band receiver which is intended to be used to learn output of existing remote. This ioctl allows enabling or disabling it.

This might be useful of receivers that have otherwise narrow band receiver that prevents them to be used with some remotes. Wide band receiver might also be more precise. On the other hand its disadvantage it usually reduced range of reception.

Note: Wide band receiver might be implicitly enabled if you enable carrier reports. In that case it will be disabled as soon as you disable carrier reports. Trying to disable wide band receiver while carrier reports are active will do nothing.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

LIRC Header File

lirc.h

```
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/*
 * lirc.h - linux infrared remote control header file
 * last modified 2010/07/13 by Jarod Wilson
 */
#ifndef LINUX LIRC H
#define LINUX LIRC H
#include <linux/types.h>
#include <linux/ioctl.h>
#define PULSE BIT
                        0x01000000
#define PULSE MASK
                        0x00FFFFFF
#define LIRC MODE2 SPACE
                             0x00000000
#define LIRC MODE2 PULSE
                             0x01000000
#define LIRC_MODE2_FREQUENCY 0x02000000
#define LIRC MODE2 TIMEOUT
                             0x03000000
#define LIRC VALUE MASK
                             0x00FFFFFF
#define LIRC_MODE2_MASK
                             0xFF000000
#define LIRC SPACE(val) (((val)&LIRC VALUE MASK) | LIRC MODE2 SPACE)
```

#define LIRC PULSE(val) (((val)&LIRC VALUE MASK) | LIRC MODE2 PULSE) #define LIRC FREQUENCY(val) (((val)&LIRC VALUE MASK) | LIRC MODE2 \rightarrow FREQUENCY) #define LIRC TIMEOUT(val) (((val)&LIRC VALUE MASK) | LIRC MODE2 →TIMEOUT) #define LIRC VALUE(val) ((val)&LIRC VALUE MASK) #define LIRC MODE2(val) ((val)&LIRC MODE2 MASK) #define LIRC IS SPACE(val) (LIRC MODE2(val) == LIRC MODE2 SPACE) #define LIRC IS PULSE(val) (LIRC MODE2(val) == LIRC MODE2 PULSE) #define LIRC IS FREQUENCY(val) (LIRC MODE2(val) == LIRC MODE2 \rightarrow FREQUENCY) #define LIRC IS TIMEOUT(val) (LIRC MODE2(val) == LIRC MODE2 TIMEOUT) /* used heavily by lirc userspace */ #define lirc t int /*** lirc compatible hardware features ***/ #define LIRC MODE2SEND(x) (x) #define LIRC_SEND2MODE(x) (x) #define LIRC MODE2REC(x) ((x) << 16) #define LIRC REC2MODE(x) ((x) >> 16) #define LIRC MODE RAW 0x00000001 #define LIRC MODE PULSE 0x0000002 #define LIRC MODE MODE2 0x00000004 #define LIRC MODE SCANCODE 0x0000008 #define LIRC_MODE LIRCCODE 0x00000010 #define LIRC CAN SEND RAW LIRC MODE2SEND(LIRC MODE RAW) #define LIRC CAN SEND PULSE LIRC MODE2SEND(LIRC MODE →PULSE) #define LIRC_CAN_SEND_MODE2 LIRC MODE2SEND(LIRC MODE →MODE2) #define LIRC CAN SEND LIRCCODE LIRC MODE2SEND(LIRC MODE \rightarrow LIRCCODE) #define LIRC CAN SEND MASK 0x0000003f #define LIRC CAN SET SEND CARRIER 0x00000100 #define LIRC CAN SET SEND DUTY CYCLE 0x00000200 #define LIRC CAN SET TRANSMITTER MASK 0x00000400 #define LIRC CAN REC RAW LIRC MODE2REC(LIRC MODE RAW) #define LIRC CAN REC PULSE LIRC MODE2REC(LIRC MODE →PULSE) #define LIRC CAN REC MODE2 LIRC MODE2REC(LIRC MODE →MODE2) #define LIRC_CAN_REC_SCANCODE LIRC_MODE2REC(LIRC_MODE_

 \rightarrow SCANCODE) #define LIRC CAN REC LIRCCODE LIRC MODE2REC(LIRC MODE →LIRCCODE) #define LIRC CAN REC MASK LIRC MODE2REC(LIRC CAN SEND →MASK) #define LIRC CAN SET REC CARRIER (LIRC CAN SET SEND CARRIER <</pre> →< 16) #define LIRC CAN_SET_REC_DUTY_CYCLE (LIRC_CAN_SET_SEND_DUTY_ \rightarrow CYCLE << 16) #define LIRC CAN SET REC DUTY CYCLE RANGE 0x40000000 #define LIRC CAN SET REC_CARRIER_RANGE 0x80000000 #define LIRC CAN GET REC RESOLUTION 0x20000000 #define LIRC CAN SET REC TIMEOUT 0×1000000 #define LIRC CAN SET REC FILTER 0x08000000 #define LIRC CAN MEASURE CARRIER 0x02000000 #define LIRC CAN USE WIDEBAND RECEIVER 0x04000000 #define LIRC_CAN_SEND(x) ((x)&LIRC_CAN_SEND_MASK) #define LIRC CAN REC(x) ((x)&LIRC CAN REC MASK) #define LIRC CAN NOTIFY DECODE 0x01000000 /*** IOCTL commands for lirc driver ***/ IOR('i', 0x00000000, u32) #define LIRC GET FEATURES _IOR('i', 0x00000001, __u32) #define LIRC_GET_SEND_MODE
#define LIRC_GET_REC_MODE _IOR('i', 0x00000002, __u32) #define LIRC GET REC RESOLUTION IOR('i', 0x00000007, u32) #define LIRC_GET_MIN_TIMEOUT __IOR('i', 0x00000008, __u32)
#define LIRC_GET_MAX_TIMEOUT __IOR('i', 0x00000009, __u32) IOR('i', 0x00000009, __u32) /* code length in bits, currently only for LIRC_MODE_LIRCCODE */ #define LIRC_GET_LENGTH _IOR('i', 0x0000000f, __u32) _IOW('i', 0x00000011, __u32) #define LIRC_SET_SEND_MODE
#define LIRC_SET_REC_MODE IOW('i', 0x00000012, u32) /* Note: these can reset the according pulse width */ #define LIRC_SET_SEND_CARRIER __IOW('i', 0x00000013, __u32) /*

* when a timeout != 0 is set the driver will send a

* LIRC MODE2 TIMEOUT data packet, otherwise LIRC MODE2 TIMEOUT is

* never sent, timeout is disabled by default */ #define LIRC SET REC TIMEOUT IOW('i', 0x00000018, u32) /* 1 enables, 0 disables timeout reports in MODE2 */ #define LIRC SET REC TIMEOUT REPORTS IOW('i', 0x00000019, u32) /* * if enabled from the next key press on the driver will send * LIRC MODE2 FREQUENCY packets */ #define LIRC_SET_MEASURE_CARRIER_MODE _IOW('i', 0x0000001d, __u32) /* * to set a range use LIRC SET REC CARRIER RANGE with the * lower bound first and later LIRC SET REC CARRIER with the upper →bound */ #define LIRC_SET_REC_CARRIER_RANGE __IOW('i', 0x0000001f, u32) #define LIRC_SET_WIDEBAND_RECEIVER __IOW('i', 0x00000023, __u32) /* * Return the recording timeout, which is either set by * the ioctl LIRC SET REC TIMEOUT or by the kernel after setting. \rightarrow the protocols. */ IOR('i', 0x00000024, u32) #define LIRC GET REC TIMEOUT /* * struct lirc scancode - decoded scancode with protocol for use. →with * LIRC MODE SCANCODE * * @timestamp: Timestamp in nanoseconds using CLOCK MONOTONIC when, →IR * was decoded. * @flags: should be 0 for transmit. When receiving scancodes, * LIRC_SCANCODE_FLAG_TOGGLE or LIRC_SCANCODE_FLAG_REPEAT can_ →be set * depending on the protocol * @rc proto: see enum rc proto * @keycode: the translated keycode. Set to 0 for transmit. * @scancode: the scancode received or to be sent */ struct lirc scancode { u64 timestamp; u16 flags; ul6 rc proto; u32 keycode; __u64 scancode;

```
};
/* Set if the toggle bit of rc-5 or rc-6 is enabled */
#define LIRC SCANCODE FLAG TOGGLE
                                        1
/* Set if this is a nec or sanyo repeat */
#define LIRC SCANCODE FLAG REPEAT
                                        2
/**
 * enum rc proto - the Remote Controller protocol
 *
 * @RC PROTO UNKNOWN: Protocol not known
 * @RC PROTO OTHER: Protocol known but proprietary
 * @RC PROTO_RC5: Philips RC5 protocol
 * @RC_PROTO_RC5X_20: Philips RC5x 20 bit protocol
 * @RC PROTO RC5 SZ: StreamZap variant of RC5
 * @RC PROTO JVC: JVC protocol
 * @RC_PROTO_SONY12: Sony 12 bit protocol
 * @RC PROTO SONY15: Sony 15 bit protocol
 * @RC PROTO SONY20: Sony 20 bit protocol
 * @RC PROTO_NEC: NEC protocol
 * @RC PROTO NECX: Extended NEC protocol
 * @RC_PROTO_NEC32: NEC 32 bit protocol
 * @RC PROTO_SANYO: Sanyo protocol
 * @RC PROTO MCIR2 KBD: RC6-ish MCE keyboard
 * @RC PROTO MCIR2 MSE: RC6-ish MCE mouse
 * @RC PROTO RC6 0: Philips RC6-0-16 protocol
 * @RC PROTO RC6 6A 20: Philips RC6-6A-20 protocol
 * @RC PROTO RC6 6A 24: Philips RC6-6A-24 protocol
 * @RC_PROTO_RC6_6A_32: Philips RC6-6A-32 protocol
 * @RC PROTO RC6 MCE: MCE (Philips RC6-6A-32 subtype) protocol
 * @RC PROTO SHARP: Sharp protocol
 * @RC PROTO XMP: XMP protocol
 * @RC PROTO CEC: CEC protocol
 * @RC_PROTO_IMON: iMon Pad protocol
 * @RC PROTO RCMM12: RC-MM protocol 12 bits
 * @RC PROTO RCMM24: RC-MM protocol 24 bits
 * @RC PROTO_RCMM32: RC-MM protocol 32 bits
 * @RC PROTO XBOX DVD: Xbox DVD Movie Playback Kit protocol
 */
enum rc proto {
        RC PROTO UNKNOWN
                                = 0,
        RC PROTO OTHER
                                = 1.
        RC PROTO RC5
                                = 2,
        RC PROTO RC5X 20
                               = 3,
        RC PROTO RC5 SZ
                              = 4.
        RC PROTO JVC
                                = 5,
                              = 6,
        RC PROTO SONY12
        RC PROTO SONY15
                               = 7,
        RC PROTO SONY20
                               = 8,
        RC PROTO NEC
                                = 9,
                             = 10,
        RC_PROTO_NECX
```

RC_PROTO_NEC32	= 11,
RC_PROTO_SANYO	= 12,
RC PROTO MCIR2 KBD	= 13,
RC_PROTO_RCIR2_MSE	= 14,
RC_PROTO_RC6_0	= 15,
RC_PROTO_RC6_6A_20	= 16,
RC_PROTO_RC6_6A_24	= 17,
RC_PROTO_RC6_6A_32	= 18,
RC_PROTO_RC6_MCE	= 19,
RC_PROTO_SHARP	= 20,
RC_PROTO_XMP	= 21,
RC_PROTO_CEC	= 22,
RC PROTO IMON	= 23,
RC_PROTO_RCMM12	= 24,
RC_PROTO_RCMM24	= 25,
RC_PROTO_RCMM32	= 26,
RC_PROTO_XBOX_DVD	= 27,

};

#endif

7.4.7 Revision and Copyright

Authors:

- Carvalho Chehab, Mauro <mchehab@kernel.org>
- Initial version.

Copyright © 2009-2016 : Mauro Carvalho Chehab

7.4.8 Revision History

revision 3.15 / 2014-02-06 (mcc)

Added the interface description and the RC sysfs class description.

revision 1.0 / 2009-09-06 (mcc)

Initial revision

7.5 Part IV - Media Controller API

7.5.1 Introduction

Media devices increasingly handle multiple related functions. Many USB cameras include microphones, video capture hardware can also output video, or SoC camera interfaces also perform memory-to-memory operations similar to video codecs.

Independent functions, even when implemented in the same hardware, can be modelled as separate devices. A USB camera with a microphone will be presented to userspace applications as V4L2 and ALSA capture devices. The devices' relationships (when using a webcam, end-users shouldn' t have to manually select the associated USB microphone), while not made available directly to applications by the drivers, can usually be retrieved from sysfs.

With more and more advanced SoC devices being introduced, the current approach will not scale. Device topologies are getting increasingly complex and can't always be represented by a tree structure. Hardware blocks are shared between different functions, creating dependencies between seemingly unrelated devices.

Kernel abstraction APIs such as V4L2 and ALSA provide means for applications to access hardware parameters. As newer hardware expose an increasingly high number of those parameters, drivers need to guess what applications really require based on limited information, thereby implementing policies that belong to userspace.

The media controller API aims at solving those problems.

7.5.2 Media device model

Discovering a device internal topology, and configuring it at runtime, is one of the goals of the media controller API. To achieve this, hardware devices and Linux Kernel interfaces are modelled as graph objects on an oriented graph. The object types that constitute the graph are:

- An **entity** is a basic media hardware or software building block. It can correspond to a large variety of logical blocks such as physical hardware devices (CMOS sensor for instance), logical hardware devices (a building block in a System-on-Chip image processing pipeline), DMA channels or physical connectors.
- An **interface** is a graph representation of a Linux Kernel userspace API interface, like a device node or a sysfs file that controls one or more entities in the graph.
- A **pad** is a data connection endpoint through which an entity can interact with other entities. Data (not restricted to video) produced by an entity flows from the entity' s output to one or more entity inputs. Pads should not be confused with physical pins at chip boundaries.
- A **data link** is a point-to-point oriented connection between two pads, either on the same entity or on different entities. Data flows from a source pad to a sink pad.
- An **interface link** is a point-to-point bidirectional control connection between a Linux Kernel interface and an entity.

7.5.3 Types and flags used to represent the media graph elements

Table 232: Media	entity functions
	d Unknown entity. That generally indicates that
MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN	driver didn't initialize properly the entity, which is
	Kernel bug
MEDIA_ENT_F_I0_V4L	Data streaming input and/or output entity.
MEDIA_ENT_F_IO_VBI	V4L VBI streaming input or output entity
MEDIA_ENT_F_IO_SWRADIO	V4L Software Digital Radio (SDR) streaming input of
	output entity
MEDIA_ENT_F_IO_DTV	DVB Digital TV streaming input or output entity
MEDIA_ENT_F_DTV_DEMOD	Digital TV demodulator entity.
MEDIA_ENT_F_TS_DEMUX	MPEG Transport stream demux entity. Could b
	implemented on hardware or in Kernelspace by th
	Linux DVB subsystem.
MEDIA_ENT_F_DTV_CA	Digital TV Conditional Access module (CAM) entity
MEDIA_ENT_F_DTV_NET_DECAP	Digital TV network ULE/MLE desencapsulation er
	tity. Could be implemented on hardware or in Ke
	nelspace
MEDIA_ENT_F_CONN_RF	Connector for a Radio Frequency (RF) signal.
MEDIA_ENT_F_CONN_SVIDE0	Connector for a S-Video signal.
MEDIA_ENT_F_CONN_COMPOSITE	Connector for a RGB composite signal.
MEDIA_ENT_F_CAM_SENSOR	Camera video sensor entity.
MEDIA_ENT_F_FLASH	Flash controller entity.
MEDIA_ENT_F_LENS	Lens controller entity.
MEDIA_ENT_F_ATV_DECODER	Analog video decoder, the basic function of the vide
	decoder is to accept analogue video from a wide var
	ety of sources such as broadcast, DVD players, can
	eras and video cassette recorders, in either NTSC
	PAL, SECAM or HD format, separating the stream
	into its component parts, luminance and chrom
	nance, and output it in some digital video standard
	with appropriate timing signals.
MEDIA_ENT_F_TUNER	Digital TV, analog TV, radio and/or software rad
	tuner, with consists on a PLL tuning stage that con
	verts radio frequency (RF) signal into an Intermed
	ate Frequency (IF). Modern tuners have internally I
	PLL decoders for audio and video, but older mode
	have those stages implemented on separate entitie
MEDIA_ENT_F_IF_VID_DECODER	IF-PLL video decoder. It receives the IF from a PL
	and decodes the analog TV video signal. This is con
	monly found on some very old analog tuners, lil
	Philips MK3 designs. They all contain a tda9887 (
	some software compatible similar chip, like tda9885
	Those devices use a different I2C address than the
	tuner PLL.
Continued on next page	,

Table 232: Media entity functions

Continued on next page

Table 232 - continued	from previous page
MEDIA_ENT_F_IF_AUD_DECODER	IF-PLL sound decoder. It receives the IF from a PL
	and decodes the analog TV audio signal. This is con
	monly found on some very old analog hardware, lik
	Micronas msp3400, Philips tda9840, tda985x, et
	Those devices use a different I2C address than th
	tuner PLL and should be controlled together with th
	IF-PLL video decoder.
MEDIA_ENT_F_AUDIO_CAPTURE	Audio Capture Function Entity.
MEDIA_ENT_F_AUDIO_PLAYBACK	Audio Playback Function Entity.
MEDIA_ENT_F_AUDIO_MIXER	Audio Mixer Function Entity.
MEDIA_ENT_F_PROC_VIDEO_COMPOSER	Video composer (blender). An entity capable of vide
	composing must have at least two sink pads and on
	source pad, and composes input video frames ont
	output video frames. Composition can be performe
	using alpha blending, color keying, raster operation
MEDIA ENT E DOAC VIDEO DIVEL FORMAT	(ROP), stitching or any other means.
MEDIA_ENT_F_PROC_VIDE0_PIXEL_FORMATT	1 5 1 1
	matting must have at least one sink pad and on source pad. Read pixel formatters read pixels from
	memory and perform a subset of unpacking, cro
	ping, color keying, alpha multiplication and pixel er
	coding conversion. Write pixel formatters perform
	a subset of dithering, pixel encoding conversion an
	packing and write pixels to memory.
MEDIA ENT E PROC VIDEO PIXEL ENC CON	Video pixel encoding converter. An entity capable of
	pixel encoding conversion must have at least one sin
	pad and one source pad, and convert the encoding of
	pixels received on its sink pad(s) to a different er
	coding output on its source pad(s). Pixel encodin
	conversion includes but isn't limited to RGB to/from
	HSV, RGB to/from YUV and CFA (Bayer) to RGB cor
	versions.
MEDIA_ENT_F_PROC_VIDEO_LUT	Video look-up table. An entity capable of video looku
	table processing must have one sink pad and on
	source pad. It uses the values of the pixels receive
	on its sink pad to look up entries in internal tables an
	output them on its source pad. The lookup proces
	ing can be performed on all components separately of
	combine them for multi-dimensional table lookups.
MEDIA_ENT_F_PROC_VIDEO_SCALER	Video scaler. An entity capable of video scaling mus
	have at least one sink pad and one source pad, an scale the video frame(s) received on its sink pad(s) t
	a different resolution output on its source pad(s). Th
	range of supported scaling ratios is entity-specifi
	and can differ between the horizontal and vertice
	directions (in particular scaling can be supported i
	one direction only). Binning and sub-sampling (occa
	sionally also referred to as skipping) are considere
	as scaling.

Continued on next page

MEDIA_ENT_F_PROC_VIDEO_STATISTICS	
	Video statistics computation (histogram, 3A, etc.). A
	entity capable of statistics computation must hav
	one sink pad and one source pad. It computes stati
	tics over the frames received on its sink pad and ou
	puts the statistics data on its source pad.
MEDIA_ENT_F_PROC_VIDE0_ENCODER	Video (MPEG, HEVC, VPx, etc.) encoder. An entit
	capable of compressing video frames. Must have on
	sink pad and at least one source pad.
MEDIA_ENT_F_PROC_VIDE0_DECODER	Video (MPEG, HEVC, VPx, etc.) decoder. An er
	tity capable of decompressing a compressed vide
	stream into uncompressed video frames. Must hav
	one sink pad and at least one source pad.
MEDIA_ENT_F_VID_MUX	Video multiplexer. An entity capable of multiplexin
	must have at least two sink pads and one source pa
	and must pass the video frame(s) received from th
	active sink pad to the source pad.
MEDIA_ENT_F_VID_IF_BRIDGE	Video interface bridge. A video interface bridge er
	tity must have at least one sink pad and at least on
	source pad. It receives video frames on its sink pa
	from an input video bus of one type (HDMI, eDP, MI
	CSI-2, etc.), and outputs them on its source pad to a
	output video bus of another type (eDP, MIPI CSI-
	output video bus of another type (eDP, MIPI CSI-2 parallel, etc.).
MEDIA_ENT_F_DV_DECODER	output video bus of another type (eDP, MIPI CSI- parallel, etc.). Digital video decoder. The basic function of the vide
MEDIA_ENT_F_DV_DECODER	output video bus of another type (eDP, MIPI CSI- parallel, etc.). Digital video decoder. The basic function of the vide decoder is to accept digital video from a wide variet
MEDIA_ENT_F_DV_DECODER	output video bus of another type (eDP, MIPI CSI- parallel, etc.). Digital video decoder. The basic function of the vide decoder is to accept digital video from a wide variet of sources and output it in some digital video star
	output video bus of another type (eDP, MIPI CSI- parallel, etc.). Digital video decoder. The basic function of the vide decoder is to accept digital video from a wide variet of sources and output it in some digital video star dard, with appropriate timing signals.
MEDIA_ENT_F_DV_DECODER MEDIA_ENT_F_DV_ENCODER	output video bus of another type (eDP, MIPI CSI-2 parallel, etc.). Digital video decoder. The basic function of the vide decoder is to accept digital video from a wide variet of sources and output it in some digital video star dard, with appropriate timing signals. Digital video encoder. The basic function of the vide
	output video bus of another type (eDP, MIPI CSI- parallel, etc.). Digital video decoder. The basic function of the vide decoder is to accept digital video from a wide variet of sources and output it in some digital video star dard, with appropriate timing signals. Digital video encoder. The basic function of the vide encoder is to accept digital video from some digital
	output video bus of another type (eDP, MIPI CSI- parallel, etc.). Digital video decoder. The basic function of the vide decoder is to accept digital video from a wide variet of sources and output it in some digital video star dard, with appropriate timing signals. Digital video encoder. The basic function of the vide encoder is to accept digital video from some digital video standard with appropriate timing signals (usu
	output video bus of another type (eDP, MIPI CSI-2 parallel, etc.). Digital video decoder. The basic function of the vide decoder is to accept digital video from a wide variet of sources and output it in some digital video star dard, with appropriate timing signals. Digital video encoder. The basic function of the vide encoder is to accept digital video from some digita video standard with appropriate timing signals (usu ally a parallel video bus with sync signals) and outpu
	output video bus of another type (eDP, MIPI CSI- parallel, etc.). Digital video decoder. The basic function of the vide decoder is to accept digital video from a wide variet of sources and output it in some digital video stan dard, with appropriate timing signals. Digital video encoder. The basic function of the vide encoder is to accept digital video from some digital video standard with appropriate timing signals (usu

Table 232 - continued from previous page

Table 233: Media entity flags

MEDIA_ENT_FL_DEFAULT	Default entity for its type. Used to discover the default audio,
	VBI and video devices, the default camera sensor, etc.
MEDIA_ENT_FL_CONNECTOR	The entity represents a connector.

. Media interface types	
Device node interface for the	0 - 0
5	/dev/dvb/adapter?/frontend?
Device node interface for the	
	/dev/dvb/adapter?/demux?
Device node interface for the	
Digital TV DVR	/dev/dvb/adapter?/dvr?
Device node interface for the	
	/dev/dvb/adapter?/ca?
Device node interface for the	typically,
Digital TV network control	/dev/dvb/adapter?/net?
Device node interface for video	
(V4L)	
Device node interface for VBI	typically, /dev/vbi?
(V4L)	
Device node interface for radio	typically, /dev/radio?
(V4L)	
	typically, /dev/v4l-
	subdev?
Device node interface for Soft-	typically, /dev/swradio?
ware Defined Radio (V4L)	
	typically, /dev/v4l-touch?
Touch device (V4L)	
	tvpically,
	/dev/snd/pcmC?D?c
	/dev/snd/pcmC?D?p
Device node interface for ALSA	
Control	/dev/snd/controlC?
Device node interface for ALSA	
	/dev/snd/compr?
-	- 1
Raw MIDI	
Device node interface for ALSA	tvpically.
Device node interface for ALSA Hardware Dependent	typically, /dev/snd/hwC?D?
Hardware Dependent	/dev/snd/hwC?D?
Hardware Dependent Device node interface for ALSA	/dev/snd/hwC?D?
Hardware Dependent	/dev/snd/hwC?D? typically, /dev/snd/seq
	Device node interface for the Digital TV frontend Device node interface for the Digital TV demux Device node interface for the Digital TV DVR Device node interface for the Digital TV conditional Access Device node interface for the Digital TV network control Device node interface for video (V4L) Device node interface for VBI (V4L) Device node interface for a V4L subdevice Device node interface for a V4L subdevice Device node interface for Soft- ware Defined Radio (V4L) Device node interface for ALSA PCM Capture CM Playback Device node interface for ALSA Compress Device node interface for ALSA

Table 234: Media interface types

MEDIA_PAD_FL_SINK	Input pad, relative to the entity. Input pads sink data and are
	targets of links.
MEDIA_PAD_FL_SOURCE	Output pad, relative to the entity. Output pads source data
	and are origins of links.
MEDIA_PAD_FL_MUST_CONNEC	If this flag is set and the pad is linked to any other pad, then
	at least one of those links must be enabled for the entity to
	be able to stream. There could be temporary reasons (e.g.
	device configuration dependent) for the pad to need enabled
	links even when this flag isn't set; the absence of the flag
	doesn't imply there is none.

Table 235: Media pad flags

One and only one of MEDIA_PAD_FL_SINK and MEDIA_PAD_FL_SOURCE must be set for every pad.

The link is enabled and can be used to transfer media data.
When two or more links target a sink pad, only one of them
can be enabled at a time.
The link enabled state can't be modified at runtime. An im-
mutable link is always enabled.
The link enabled state can be modified during streaming. This
flag is set by drivers and is read-only for applications.
This is a bitmask that defines the type of the link. Currently,
two types of links are supported:
MEDIA_LNK_FL_DATA_LINK if the link is between two pads
MEDIA_LNK_FL_INTERFACE_LINK if the link is between an in-
terface and an entity

Table 236: Media link flags

7.5.4 Request API

The Request API has been designed to allow V4L2 to deal with requirements of modern devices (stateless codecs, complex camera pipelines, …) and APIs (Android Codec v2). One such requirement is the ability for devices belonging to the same pipeline to reconfigure and collaborate closely on a per-frame basis. Another is support of stateless codecs, which require controls to be applied to specific frames (aka 'per-frame controls') in order to be used efficiently.

While the initial use-case was V4L2, it can be extended to other subsystems as well, as long as they use the media controller.

Supporting these features without the Request API is not always possible and if it is, it is terribly inefficient: user-space would have to flush all activity on the media pipeline, reconfigure it for the next frame, queue the buffers to be processed with that configuration, and wait until they are all available for dequeuing before considering the next frame. This defeats the purpose of having buffer queues since in practice only one buffer would be queued at a time.

The Request API allows a specific configuration of the pipeline (media controller topology + configuration for each media entity) to be associated with specific

buffers. This allows user-space to schedule several tasks ("requests") with different configurations in advance, knowing that the configuration will be applied when needed to get the expected result. Configuration values at the time of request completion are also available for reading.

General Usage

The Request API extends the Media Controller API and cooperates with subsystemspecific APIs to support request usage. At the Media Controller level, requests are allocated from the supporting Media Controller device node. Their life cycle is then managed through the request file descriptors in an opaque way. Configuration data, buffer handles and processing results stored in requests are accessed through subsystem-specific APIs extended for request support, such as V4L2 APIs that take an explicit request_fd parameter.

Request Allocation

User-space allocates requests using ioctl MEDIA_IOC_REQUEST_ALLOC for the media device node. This returns a file descriptor representing the request. Typically, several such requests will be allocated.

Request Preparation

Standard V4L2 ioctls can then receive a request file descriptor to express the fact that the ioctl is part of said request, and is not to be applied immediately. See ioctl MEDIA_IOC_REQUEST_ALLOC for a list of ioctls that support this. Configurations set with a request_fd parameter are stored instead of being immediately applied, and buffers queued to a request do not enter the regular buffer queue until the request itself is queued.

Request Submission

Once the configuration and buffers of the request are specified, it can be queued by calling ioctl MEDIA_REQUEST_IOC_QUEUE on the request file descriptor. A request must contain at least one buffer, otherwise ENOENT is returned. A queued request cannot be modified anymore.

Caution: For memory-to-memory devices you can use requests only for output buffers, not for capture buffers. Attempting to add a capture buffer to a request will result in an EBADR error.

If the request contains configurations for multiple entities, individual drivers may synchronize so the requested pipeline' s topology is applied before the buffers are processed. Media controller drivers do a best effort implementation since perfect atomicity may not be possible due to hardware limitations. **Caution:** It is not allowed to mix queuing requests with directly queuing buffers: whichever method is used first locks this in place until VID-IOC_STREAMOFF is called or the device is closed. Attempts to directly queue a buffer when earlier a buffer was queued via a request or vice versa will result in an EBUSY error.

Controls can still be set without a request and are applied immediately, regardless of whether a request is in use or not.

Caution: Setting the same control through a request and also directly can lead to undefined behavior!

User-space can poll() a request file descriptor in order to wait until the request completes. A request is considered complete once all its associated buffers are available for dequeuing and all the associated controls have been updated with the values at the time of completion. Note that user-space does not need to wait for the request to complete to dequeue its buffers: buffers that are available halfway through a request can be dequeued independently of the request' s state.

A completed request contains the state of the device after the request was executed. User-space can query that state by calling ioctl VIDIOC_G_EXT_CTRLS with the request file descriptor. Calling ioctl VIDIOC_G_EXT_CTRLS for a request that has been queued but not yet completed will return EBUSY since the control values might be changed at any time by the driver while the request is in flight.

Recycling and Destruction

Finally, a completed request can either be discarded or be reused. Calling close() on a request file descriptor will make that file descriptor unusable and the request will be freed once it is no longer in use by the kernel. That is, if the request is queued and then the file descriptor is closed, then it won't be freed until the driver completed the request.

The ioctl MEDIA_REQUEST_IOC_REINIT will clear a request's state and make it available again. No state is retained by this operation: the request is as if it had just been allocated.

Example for a Codec Device

For use-cases such as codecs, the request API can be used to associate specific controls to be applied by the driver for the OUTPUT buffer, allowing user-space to queue many such buffers in advance. It can also take advantage of requests' ability to capture the state of controls when the request completes to read back information that may be subject to change.

Put into code, after obtaining a request, user-space can assign controls and one OUTPUT buffer to it:

```
struct v4l2 buffer buf;
struct v4l2 ext controls ctrls;
int req fd;
. . .
if (ioctl(media fd, MEDIA IOC REQUEST_ALLOC, &req_fd))
        return errno;
. . .
ctrls.which = V4L2 CTRL WHICH REQUEST VAL;
ctrls.request fd = req fd;
if (ioctl(codec fd, VIDIOC S EXT CTRLS, &ctrls))
        return errno;
. . .
buf.type = V4L2 BUF TYPE VIDEO OUTPUT;
buf.flags |= V4L2 BUF FLAG REQUEST FD;
buf.request fd = req fd;
if (ioctl(codec fd, VIDIOC QBUF, &buf))
        return errno;
```

Note that it is not allowed to use the Request API for CAPTURE buffers since there are no per-frame settings to report there.

Once the request is fully prepared, it can be queued to the driver:

User-space can then either wait for the request to complete by calling poll() on its file descriptor, or start dequeuing CAPTURE buffers. Most likely, it will want to get CAPTURE buffers as soon as possible and this can be done using a regular VIDIOC_DQBUF:

struct v4l2_buffer buf;

Note that this example assumes for simplicity that for every OUTPUT buffer there will be one CAPTURE buffer, but this does not have to be the case.

We can then, after ensuring that the request is completed via polling the request file descriptor, query control values at the time of its completion via a call to VID-IOC_G_EXT_CTRLS. This is particularly useful for volatile controls for which we want to query values as soon as the capture buffer is produced.

Once we don't need the request anymore, we can either recycle it for reuse with ioctl MEDIA_REQUEST_IOC_REINIT \cdots

... or close its file descriptor to completely dispose of it.

close(req_fd);

Example for a Simple Capture Device

With a simple capture device, requests can be used to specify controls to apply for a given CAPTURE buffer.

```
struct v4l2 buffer buf;
struct v4l2 ext controls ctrls;
int req fd;
if (ioctl(media fd, MEDIA IOC REQUEST ALLOC, &reg fd))
        return errno;
. . .
ctrls.which = V4L2_CTRL_WHICH_REQUEST_VAL;
ctrls.request fd = req fd;
if (ioctl(camera fd, VIDIOC S EXT CTRLS, &ctrls))
        return errno;
. . .
buf.type = V4L2 BUF TYPE VIDEO CAPTURE;
buf.flags |= V4L2 BUF FLAG REQUEST FD;
buf.request_fd = req_fd;
if (ioctl(camera fd, VIDIOC QBUF, &buf))
        return errno;
```

Once the request is fully prepared, it can be queued to the driver:

User-space can then dequeue buffers, wait for the request completion, query controls and recycle the request as in the M2M example above.

7.5.5 Function Reference

media open()

Name

media-open - Open a media device

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.

Description

To open a media device applications call open() with the desired device name. The function has no side effects; the device configuration remain unchanged.

When the device is opened in read-only mode, attempts to modify its configuration will result in an error, and errno will be set to EBADF.

Return Value

open() returns the new file descriptor on success. On error, -1 is returned, and errno is set appropriately. Possible error codes are:

EACCES The requested access to the file is not allowed.

EMFILE The process already has the maximum number of files open.

ENFILE The system limit on the total number of open files has been reached.

ENOMEM Insufficient kernel memory was available.

ENXIO No device corresponding to this device special file exists.

media close()

Name

media-close - Close a media device

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

Closes the media device. Resources associated with the file descriptor are freed. The device configuration remain unchanged.

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropriately. Possible error codes are:

EBADF fd is not a valid open file descriptor.

media ioctl()

Name

media-ioctl - Control a media device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().

- request Media ioctl request code as defined in the media.h header file, for example MEDIA_IOC_SETUP_LINK.
- **argp** Pointer to a request-specific structure.

The ioctl() function manipulates media device parameters. The argument fd must be an open file descriptor.

The ioctl request code specifies the media function to be called. It has encoded in it whether the argument is an input, output or read/write parameter, and the size of the argument argp in bytes.

Macros and structures definitions specifying media ioctl requests and their parameters are located in the media.h header file. All media ioctl requests, their respective function and parameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

Request-specific error codes are listed in the individual requests descriptions.

When an ioctl that takes an output or read/write parameter fails, the parameter remains unmodified.

ioctl MEDIA_IOC_DEVICE_INFO

Name

MEDIA_IOC_DEVICE_INFO - Query device information

Synopsis

int ioctl(int fd, MEDIA_IOC_DEVICE_INFO, struct media_device_info *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_device_info.

All media devices must support the MEDIA_IOC_DEVICE_INFO ioctl. To query device information, applications call the ioctl with a pointer to a struct media_device_info. The driver fills the structure and returns the information to the application. The ioctl never fails.

media_device_info

char	driver[16]	 Name of the driver implementing the media API as a NUL-terminated ASCII string. The driver version is stored in the driver_version field. Driver specific applications can use this information to verify the driver identity. It is also useful to work around known bugs, or to identify drivers in error reports.
char	model[32]	Device model name as a NUL-terminated UTF-8 string. The device version is stored in the device_version field and is not be ap- pended to the model name.
char	serial[40]	Serial number as a NUL-terminated ASCII string.
char	bus_info[32]	Location of the device in the system as a NUL-terminated ASCII string. This includes the bus type name (PCI, USB, …) and a bus- specific identifier.
u32	media_version	Media API version, formatted with the KERNEL_VERSION() macro.
u32	hw_revision	Hardware device revision in a driver-specific format.
u32	driver_version	Media device driver version, formatted with the KERNEL_VERSION() macro. Together with the driver field this identifies a particular driver.
u32	reserved[31]	Reserved for future extensions. Drivers and applications must set this array to zero.

Table 237: struct media device info

The serial and bus_info fields can be used to distinguish between multiple instances of otherwise identical hardware. The serial number takes precedence when provided and can be assumed to be unique. If the serial number is an empty string, the bus_info field can be used instead. The bus_info field is guaranteed to be unique, but can vary across reboots or device unplug/replug.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctl MEDIA_IOC_G_TOPOLOGY

Name

 $\ensuremath{\mathsf{MEDIA_IOC_G_TOPOLOGY}}$ - Enumerate the graph topology and graph element properties

Synopsis

int ioctl(int fd, MEDIA_IOC_G_TOPOLOGY, struct media_v2_topology *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_v2_topology.

Description

The typical usage of this ioctl is to call it twice. On the first call, the structure defined at struct media_v2_topology should be zeroed. At return, if no errors happen, this ioctl will return the topology_version and the total number of entities, interfaces, pads and links.

Before the second call, the userspace should allocate arrays to store the graph elements that are desired, putting the pointers to them at the ptr_entities, ptr_interfaces, ptr_links and/or ptr_pads, keeping the other values untouched.

If the topology_version remains the same, the ioctl should fill the desired arrays with the media graph elements.

media_v2_topology

	Tubi	200. Stract mount_12_topology
u64	topology_version	Version of the media graph topology. When the graph is created,
		this field starts with zero. Every time a graph element is added
		or removed, this field is incremented.
u32	num_entities	Number of entities in the graph
_u32	reserved1	Applications and drivers shall set this to 0.
u64	ptr_entities	A pointer to a memory area where the entities array will be
		stored, converted to a 64-bits integer. It can be zero. if zero, the
		ioctl won't store the entities. It will just update num_entities
u32	num_interfaces	Number of interfaces in the graph
_u32	reserved2	Applications and drivers shall set this to 0.
u64	ptr_interfaces	A pointer to a memory area where the interfaces array will
		be stored, converted to a 64-bits integer. It can be zero. if
		zero, the ioctl won't store the interfaces. It will just update
		num_interfaces
_u32	num_pads	Total number of pads in the graph
_u32	reserved3	Applications and drivers shall set this to 0.
u64	ptr_pads	A pointer to a memory area where the pads array will be stored,
		converted to a 64-bits integer. It can be zero. if zero, the ioctl
		won't store the pads. It will just update num_pads
_u32	num_links	Total number of data and interface links in the graph
_u32	reserved4	Applications and drivers shall set this to 0.
u64	ptr_links	A pointer to a memory area where the links array will be stored,
		converted to a 64-bits integer. It can be zero. if zero, the ioctl
		won't store the links. It will just update num_links

Table 238: struct media_v2_topology

media_v2_entity

Table 239: struct media v2 entity

id	Unique ID for the entity. Do not expect that the ID will always be
	the same for each instance of the device. In other words, do not
	hardcode entity IDs in an application.
name[64]	Entity name as an UTF-8 NULL-terminated string. This name
	must be unique within the media topology.
function	Entity main function, see Media entity functions for details.
flags	Entity flags, see Media entity flags for details. Only valid if
	MEDIA_V2_ENTITY_HAS_FLAGS(media_version) returns true. The
	media_version is defined in struct media_device_info and can
	be retrieved using ioctl MEDIA_IOC_DEVICE_INFO.
reserved[5]	Reserved for future extensions. Drivers and applications must set
	this array to zero.
	name[64] function flags

media_v2_interface

u32	id	Unique ID for the interface. Do not expect that the ID will always
		be the same for each instance of the device. In other words, do
		not hardcode interface IDs in an application.
u32	intf_type	Interface type, see Media interface types for details.
u32	flags	Interface flags. Currently unused.
_u32	reserved[9]	Reserved for future extensions. Drivers and applications must set
		this array to zero.
struct	devnode	Used only for device node interfaces. See
me-		<pre>media_v2_intf_devnode for details.</pre>
dia_v2_i	ntf_devnode	

Table 240: struct media_v2_interface

media_v2_intf_devnode

Table 241: struct media v2 intf devnoe	de
--	----

_u32	major	Device node major number.
_u32	minor	Device node minor number.

media_v2_pad

Table 242: struct media_v2_pad

u32	id	Unique ID for the pad. Do not expect that the ID will always be
		the same for each instance of the device. In other words, do not
		hardcode pad IDs in an application.
u32	entity_id	Unique ID for the entity where this pad belongs.
u32	flags	Pad flags, see Media pad flags for more details.
_u32	index	Pad index, starts at 0. Only valid if
		MEDIA_V2_PAD_HAS_INDEX(media_version) returns true. The
		media_version is defined in struct media_device_info and can
		be retrieved using ioctl MEDIA_IOC_DEVICE_INFO.
u32	reserved[4]	Reserved for future extensions. Drivers and applications must set
		this array to zero.

media_v2_link

Table 243: struct media_v2_link

_u32	id	Unique ID for the link. Do not expect that the ID will always be
		the same for each instance of the device. In other words, do not
		hardcode link IDs in an application.
_u32	source_id	On pad to pad links: unique ID for the source pad.
		On interface to entity links: unique ID for the interface.
_u32	sink_id	On pad to pad links: unique ID for the sink pad.
		On interface to entity links: unique ID for the entity.
_u32	flags	Link flags, see Media link flags for more details.
_u32	reserved[6]	Reserved for future extensions. Drivers and applications must set
		this array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ENOSPC This is returned when either one or more of the num_entities, num_interfaces, num_links or num_pads are non-zero and are smaller than the actual number of elements inside the graph. This may happen if the topology_version changed when compared to the last time this ioctl was called. Userspace should usually free the area for the pointers, zero the struct elements and call this ioctl again.

ioctl MEDIA_IOC_ENUM_ENTITIES

Name

MEDIA_IOC_ENUM_ENTITIES - Enumerate entities and their properties

Synopsis

int ioctl(int fd, MEDIA_IOC_ENUM_ENTITIES, struct media entity desc *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_entity_desc.

Description

To query the attributes of an entity, applications set the id field of a struct media_entity_desc structure and call the MEDIA_IOC_ENUM_ENTITIES ioctl with a pointer to this structure. The driver fills the rest of the structure or returns an EINVAL error code when the id is invalid.

Entities can be enumerated by or' ing the id with the MEDIA_ENT_ID_FLAG_NEXT flag. The driver will return information about the entity with the smallest id strictly larger than the requested one ('next entity'), or the EINVAL error code if there is none.

Entity IDs can be non-contiguous. Applications must not try to enumerate entities by calling MEDIA_IOC_ENUM_ENTITIES with increasing id's until they get an error.

media_entity_desc

	Table 24	4: struct r	nedia_en	tity_desc	;	
	_u32	id		Entity		
				ID, set		
				by the		
				appli-		
				cation.		
				When		
				the ID		
				is or'		
				ed with		
					NT_ID_FLAG_NEXT,	
				the		
				driver		
				clears		
				the flag		
				and		
				returns		
				the		
				first		
				entity		
				with a		
				larger		
				ID. Do		
				not		
				expect		
				that		
				the ID		
				will		
				always		
				be the		
				same		
				for		
				each		
				in-		
				stance		
				of the		
				de-		
				vice. In		
				other		
				words,		
				do not		
				hard-		
				code		
				entity		
				IDs		
				in an		
				appli-		
				cation.		
	char	name[32]		Entity		
	Juan			name		
				as an		
				UTF-8		
7.5. Part IV - Media	Control			NULL-		947
I.J. FAILIN - MEUIA						34/
				termina	ieu	
				string.		
				This		

$T_{2}h_{2} 211$	struct media	ontity	doco
	Su uci meula	entrity	uesc

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct media_entity_desc id references a non-existing entity.

ioctl MEDIA_IOC_ENUM_LINKS

Name

MEDIA_IOC_ENUM_LINKS - Enumerate all pads and links for a given entity

Synopsis

int ioctl(int fd, MEDIA_IOC_ENUM_LINKS, struct media_links_enum *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_links_enum.

Description

To enumerate pads and/or links for a given entity, applications set the entity field of a struct media_links_enum structure and initialize the struct media_pad_desc and struct media_link_desc structure arrays pointed by the pads and links fields. They then call the MEDIA_IOC_ENUM_LINKS ioctl with a pointer to this structure.

If the pads field is not NULL, the driver fills the pads array with information about the entity's pads. The array must have enough room to store all the entity's pads. The number of pads can be retrieved with ioctl MEDIA_IOC_ENUM_ENTITIES.

If the links field is not NULL, the driver fills the links array with information about the entity' s outbound links. The array must have enough room to store all the entity' s outbound links. The number of outbound links can be retrieved with ioctl MEDIA_IOC_ENUM_ENTITIES.

Only forward links that originate at one of the entity's source pads are returned during the enumeration process.

media_links_enum

		a
u32	entity	Entity id, set by the application.
struct	*pads	Pointer to a pads array allocated by the ap-
<pre>media_pad_desc</pre>		plication. Ignored if NULL.
struct	*links	Pointer to a links array allocated by the ap-
<pre>media_link_desc</pre>		plication. Ignored if NULL.
u32	reserved[4]	Reserved for future extensions. Drivers and
		applications must set the array to zero.

Table 245: struct media_links_enum

media_pad_desc

	Table 246:	struct n	nedia	pad	desc
--	------------	----------	-------	-----	------

u32	entity	ID of the entity this pad belongs to.
u16	index	Pad index, starts at 0.
u32	flags	Pad flags, see Media pad flags for more de- tails.
u32	reserved[2]	Reserved for future extensions. Drivers and applications must set the array to zero.

media_link_desc

Table 247: struct media link desc

struct	source	Pad at the origin of this link.
<pre>media_pad_desc</pre>		
struct	sink	Pad at the target of this link.
<pre>media_pad_desc</pre>		
u32	flags	Link flags, see Media link flags for more de-
		tails.
u32	reserved[2]	Reserved for future extensions. Drivers and
		applications must set the array to zero.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct media_links_enum id references a non-existing entity.

ioctl MEDIA_IOC_SETUP_LINK

Name

MEDIA_IOC_SETUP_LINK - Modify the properties of a link

int ioctl(int fd, MEDIA_IOC_SETUP_LINK, struct media_link_desc *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct media_link_desc.

Description

To change link properties applications fill a struct media_link_desc with link identification information (source and sink pad) and the new requested link flags. They then call the MEDIA_IOC_SETUP_LINK ioctl with a pointer to that structure.

The only configurable property is the ENABLED link flag to enable/disable a link. Links marked with the IMMUTABLE link flag can not be enabled or disabled.

Link configuration has no side effect on other links. If an enabled link at the sink pad prevents the link from being enabled, the driver returns with an EBUSY error code.

Only links marked with the DYNAMIC link flag can be enabled/disabled while streaming media data. Attempting to enable or disable a streaming non-dynamic link will return an EBUSY error code.

If the specified link can't be found the driver returns with an EINVAL error code.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

EINVAL The struct media_link_desc references a non-existing link, or the link is immutable and an attempt to modify its configuration was made.

ioctl MEDIA_IOC_REQUEST_ALLOC

Name

MEDIA_IOC_REQUEST_ALLOC - Allocate a request

int ioctl(int fd, MEDIA_IOC_REQUEST_ALLOC, int *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to an integer.

Description

If the media device supports requests, then this ioctl can be used to allocate a request. If it is not supported, then errno is set to ENOTTY. A request is accessed through a file descriptor that is returned in *argp.

If the request was successfully allocated, then the request file descriptor can be passed to the VIDIOC_QBUF, VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS ioctls.

In addition, be calling MEthe request can queued bv ioctl DIA REQUEST IOC QUEUE and re-initialized by calling ioctl ME-DIA REQUEST IOC REINIT.

Finally, the file descriptor can be polled to wait for the request to complete.

The request will remain allocated until all the file descriptors associated with it are closed by close() and the driver no longer uses the request internally. See also here for more information.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ENOTTY The driver has no support for requests.

request close()

Name

request-close - Close a request file descriptor

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

Description

Closes the request file descriptor. Resources associated with the request are freed once all file descriptors associated with the request are closed and the driver has completed the request. See here for more information.

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropriately. Possible error codes are:

EBADF fd is not a valid open file descriptor.

request ioctl()

Name

request-ioctl - Control a request file descriptor

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int cmd, void *argp)

Arguments

fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

- **cmd** The request ioctl command code as defined in the media.h header file, for example ioctl MEDIA_REQUEST_IOC_QUEUE.
- **argp** Pointer to a request-specific structure.

The ioctl() function manipulates request parameters. The argument fd must be an open file descriptor.

The ioctl cmd code specifies the request function to be called. It has encoded in it whether the argument is an input, output or read/write parameter, and the size of the argument argp in bytes.

Macros and structures definitions specifying request ioctl commands and their parameters are located in the media.h header file. All request ioctl commands, their respective function and parameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

Command-specific error codes are listed in the individual command descriptions.

When an ioctl that takes an output or read/write parameter fails, the parameter remains unmodified.

request poll()

Name

request-poll - Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

ufds List of file descriptor events to be watched
nfds Number of file descriptor events at the *ufds array
timeout Timeout to wait for events

With the poll() function applications can wait for a request to complete.

On success poll() returns the number of file descriptors that have been selected (that is, file descriptors for which the revents field of the respective struct pollfd is non-zero). Request file descriptor set the POLLPRI flag in revents when the request was completed. When the function times out it returns a value of zero, on failure it returns -1 and the errno variable is set appropriately.

Attempting to poll for a request that is not yet queued will set the POLLERR flag in revents.

Return Value

On success, poll() returns the number of structures which have non-zero revents fields, or zero if the call timed out. On error -1 is returned, and the errno variable is set appropriately:

EBADF One or more of the ufds members specify an invalid file descriptor.

EFAULT ufds references an inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds value exceeds the RLIMIT_NOFILE value. Use getrlimit() to obtain this value.

ioctl MEDIA_REQUEST_IOC_QUEUE

Name

MEDIA_REQUEST_IOC_QUEUE - Queue a request

Synopsis

int ioctl(int request_fd, MEDIA_REQUEST_IOC_QUEUE)

Arguments

request_fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

If the media device supports requests, then this request ioctl can be used to queue a previously allocated request.

If the request was successfully queued, then the file descriptor can be polled to wait for the request to complete.

If the request was already queued before, then EBUSY is returned. Other errors can be returned if the contents of the request contained invalid or inconsistent data, see the next section for a list of common error codes. On error both the request and driver state are unchanged.

Once a request is queued, then the driver is required to gracefully handle errors that occur when the request is applied to the hardware. The exception is the EIO error which signals a fatal error that requires the application to stop streaming to reset the hardware state.

It is not allowed to mix queuing requests with queuing buffers directly (without a request). EBUSY will be returned if the first buffer was queued directly and you next try to queue a request, or vice versa.

A request must contain at least one buffer, otherwise this ioctl will return an ENOENT error.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

- **EBUSY** The request was already queued or the application queued the first buffer directly, but later attempted to use a request. It is not permitted to mix the two APIs.
- **ENOENT** The request did not contain any buffers. All requests are required to have at least one buffer. This can also be returned if some required configuration is missing in the request.
- **ENOMEM** Out of memory when allocating internal data structures for this request.
- EINVAL The request has invalid data.
- **EIO** The hardware is in a bad state. To recover, the application needs to stop streaming to reset the hardware state and then try to restart streaming.

ioctl MEDIA_REQUEST_IOC_REINIT

Name

MEDIA_REQUEST_IOC_REINIT - Re-initialize a request

Synopsis

int ioctl(int request_fd, MEDIA_REQUEST_IOC_REINIT)

Arguments

request_fd File descriptor returned by ioctl MEDIA_IOC_REQUEST_ALLOC.

Description

If the media device supports requests, then this request ioctl can be used to reinitialize a previously allocated request.

Re-initializing a request will clear any existing data from the request. This avoids having to close() a completed request and allocate a new request. Instead the completed request can just be re-initialized and it is ready to be used again.

A request can only be re-initialized if it either has not been queued yet, or if it was queued and completed. Otherwise it will set errno to EBUSY. No other error codes can be returned.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately.

EBUSY The request is queued but not yet completed.

7.5.6 Media Controller Header File

media.h

```
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/*
* Multimedia device API
*
* Copyright (C) 2010 Nokia Corporation
*
* Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Sakari Ailus <sakari.ailus@iki.fi>
*
* This program is free software; you can redistribute it and/or_u
-modify
```

* it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warrantv of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #ifndef LINUX MEDIA H #define __LINUX_MEDIA_H #ifndef KERNEL #include <stdint.h> #endif #include <linux/ioctl.h> #include <linux/types.h> struct media device info { char driver[16]; char model[32]; char serial[40]; char bus info[32]; ___u32 media version; u32 hw revision; u32 driver version; u32 reserved[31]; }; * Base number ranges for entity functions * NOTE: Userspace should not rely on these ranges to identify a, →group * of function types, as newer functions can be added with any name, -within * the full u32 range. * Some older functions use the MEDIA_ENT_F_OLD_*_BASE range. Do not * change this, this is for backwards compatibility. When adding new * functions always use MEDIA ENT F BASE. */ #define MEDIA ENT F BASE 0x00000000 #define MEDIA ENT F OLD BASE 0x00010000 #define MEDIA ENT F OLD SUBDEV BASE 0x00020000 /* * Initial value to be used when a new entity is created * Drivers should change it to something useful. */ #define MEDIA_ENT_F_UNKNOWN MEDIA_ENT_F_BASE

/* * Subdevs are initialized with MEDIA ENT F V4L2 SUBDEV UNKNOWN in. →order * to preserve backward compatibility. Drivers must change to the, →proper * subdev type before registering the entity. */ #define MEDIA ENT F V4L2 SUBDEV UNKNOWN MEDIA ENT F OLD →SUBDEV BASE /* * DVB entity functions */ #define MEDIA ENT F DTV DEMOD (MEDIA ENT F BASE + →0x00001) #define MEDIA ENT F TS DEMUX (MEDIA ENT F BASE + →0x00002) #define MEDIA ENT F DTV CA (MEDIA ENT F BASE + →0x00003) #define MEDIA ENT F DTV NET DECAP (MEDIA_ENT_F_BASE + $\rightarrow 0 \times 00004$) /* * I/O entity functions */ #define MEDIA ENT F IO V4L (MEDIA ENT F OLD \rightarrow BASE + 1) #define MEDIA ENT F IO DTV (MEDIA ENT F BASE + $\rightarrow 0 \times 01001)$ #define MEDIA ENT F IO VBI (MEDIA ENT F BASE +... →0x01002) #define MEDIA ENT F IO SWRADIO (MEDIA ENT F BASE + →0x01003) /* * Sensor functions */ #define MEDIA_ENT_F_CAM_SENSOR (MEDIA_ENT_F_OLD_ \rightarrow SUBDEV BASE + 1) #define MEDIA_ENT_F_FLASH (MEDIA_ENT_F_OLD_ \rightarrow SUBDEV BASE + 2) #define MEDIA ENT F LENS (MEDIA ENT F OLD \rightarrow SUBDEV BASE + 3) /* * Digital TV, analog TV, radio and/or software defined radio tuner. \rightarrow functions. * It is a responsibility of the master/bridge drivers to add, →connectors

* and links for MEDIA ENT F TUNER. Please notice that some old, \rightarrow tuners * may require the usage of separate I2C chips to decode analog TV. \rightarrow signals, * when the master/bridge chipset doesn't have its own TV standard →decoder. * On such cases, the IF-PLL staging is mapped via one or two. \rightarrow entities: * MEDIA ENT F IF VID DECODER and/or MEDIA ENT F IF AUD DECODER. */ #define MEDIA ENT F TUNER (MEDIA ENT F OLD \rightarrow SUBDEV BASE + 5) /* * Analog TV IF-PLL decoder functions * * It is a responsibility of the master/bridge drivers to create, →links * for MEDIA ENT F IF VID DECODER and MEDIA ENT F IF AUD DECODER. */ #define MEDIA ENT F IF VID DECODER (MEDIA ENT F BASE + →0x02001) #define MEDIA_ENT_F_IF_AUD_DECODER (MEDIA ENT F BASE + $\rightarrow 0 \times 02002$) /* * Audio entity functions */ #define MEDIA ENT F AUDIO CAPTURE (MEDIA_ENT_F_BASE + →0x03001) #define MEDIA ENT F AUDIO PLAYBACK (MEDIA ENT F BASE +... $\rightarrow 0 \times 03002$) #define MEDIA ENT F AUDIO MIXER (MEDIA ENT F BASE + →0x03003) /* * Processing entity functions */ #define MEDIA_ENT_F_PROC_VIDEO_COMPOSER (MEDIA_ENT_F_BASE + →0x4001) #define MEDIA ENT F PROC VIDEO PIXEL FORMATTER (MEDIA_ENT_F_BASE + →0x4002) #define MEDIA ENT F PROC VIDEO PIXEL ENC CONV (MEDIA ENT F BASE + →0x4003) #define MEDIA ENT F PROC VIDEO LUT (MEDIA ENT F BASE + →0x4004) #define MEDIA ENT F PROC VIDEO SCALER (MEDIA ENT F BASE + →0x4005) #define MEDIA ENT F PROC VIDEO STATISTICS (MEDIA ENT F BASE + →0x4006) #define MEDIA_ENT_F_PROC_VIDEO_ENCODER (MEDIA_ENT_F_BASE +

→0x4007) #define MEDIA ENT F PROC VIDEO DECODER (MEDIA_ENT_F_BASE + →0x4008) /* * Switch and bridge entity functions */ #define MEDIA_ENT_F_VID_MUX (MEDIA_ENT_F_BASE + →0x5001) #define MEDIA ENT F VID IF BRIDGE (MEDIA ENT F BASE +,, →0x5002) /* * Video decoder/encoder functions */ #define MEDIA ENT F ATV DECODER (MEDIA ENT F OLD \rightarrow SUBDEV BASE + 4) #define MEDIA ENT F DV DECODER (MEDIA ENT F BASE + →0x6001) #define MEDIA ENT F DV ENCODER (MEDIA ENT F BASE + →0x6002) /* Entity flags */ #define MEDIA ENT FL DEFAULT (1 << 0)#define MEDIA ENT FL CONNECTOR (1 << 1)/* OR with the entity id value to find the next entity */ #define MEDIA ENT ID FLAG NEXT (10 << 31) struct media entity desc { u32 id; char name[32]; u32 type; __u32 revision; u32 flags; __u32 group_id; u16 pads; __u16 links; u32 reserved[4]; union { /* Node specifications */ struct { u32 major; u32 minor; } dev; #if !defined(KERNEL) /* * TODO: this shouldn't have been added without

* actual drivers that use this. When the first, \rightarrow real driver * appears that sets this information, special →attention * should be given whether this information is 1) \rightarrow enough, and * 2) can deal with udev rules that rename devices... \rightarrow The struct * dev would not be sufficient for this since that, →does not * contain the subdevice information. In addition, \rightarrow struct dev * can only refer to a single device, and not to →multiple (e.g. * pcm and mixer devices). */ struct { u32 card; u32 device; u32 subdevice; } alsa; /* * DEPRECATED: previous node specifications. Kept, ⇒just to * avoid breaking compilation. Use media_entity_ →desc.dev * instead. */ struct { u32 major; u32 minor; } v4l; struct { u32 major; _u32 minor; } fb; int dvb; #endif /* Sub-device specifications */ /* Nothing needed yet */ __u8 raw[184]; }; }; #define MEDIA PAD FL SINK (1 << 0)#define MEDIA PAD FL SOURCE (1 << 1)#define MEDIA PAD FL MUST CONNECT (1 << 2)struct media_pad_desc {

/* entity ID */ u32 entity; ul6 index; /* pad index */ /* pad flags */ u32 flags; u32 reserved[2]; }; #define MEDIA LNK FL ENABLED (1 << 0)#define MEDIA LNK FL IMMUTABLE (1 << 1)#define MEDIA LNK FL DYNAMIC (1 << 2)#define MEDIA LNK FL LINK TYPE (0xf << 28)# define MEDIA LNK FL DATA LINK (0 << 28)# define MEDIA LNK FL INTERFACE LINK (1 << 28)struct media link desc { struct media pad desc source; struct media pad desc sink; u32 flags; u32 reserved[2]; }; struct media_links_enum { u32 entity; /* Should have enough room for pads elements */ struct media_pad_desc __user *pads; /* Should have enough room for links elements */ struct media link desc user *links; u32 reserved[4]; }; /* Interface type ranges */ #define MEDIA INTF T DVB BASE 0x00000100 #define MEDIA INTF T V4L BASE 0x00000200 /* Interface types */ (MEDIA_INTF_T_DVB_ #define MEDIA_INTF_T_DVB_FE →BASE) #define MEDIA INTF T DVB DEMUX (MEDIA INTF T DVB \rightarrow BASE + 1) #define MEDIA INTF T DVB DVR (MEDIA INTF T DVB \rightarrow BASE + 2) #define MEDIA INTF T DVB CA (MEDIA INTF T DVB \rightarrow BASE + 3) #define MEDIA INTF T DVB NET (MEDIA INTF T DVB \rightarrow BASE + 4) #define MEDIA INTF T V4L VIDE0 (MEDIA INTF T V4L →BASE) #define MEDIA_INTF_T_V4L_VBI (MEDIA_INTF_T_V4L_

 \rightarrow BASE + 1) #define MEDIA INTF T V4L RADIO (MEDIA INTF T V4L \rightarrow BASE + 2) #define MEDIA INTF T V4L SUBDEV (MEDIA INTF T V4L \rightarrow BASE + 3) #define MEDIA INTF T V4L SWRADIO (MEDIA INTF T V4L \rightarrow BASE + 4) #define MEDIA INTF T_V4L_T0UCH (MEDIA INTF T V4L \rightarrow BASE + 5) #define MEDIA INTF T ALSA BASE 0x00000300 #define MEDIA_INTF_T_ALSA_PCM_CAPTURE (MEDIA_INTF_T_ALSA_ →BASE) #define MEDIA_INTF_T_ALSA_PCM_PLAYBACK (MEDIA_INTF_T_ALSA_ \rightarrow BASE + 1) #define MEDIA INTF T ALSA CONTROL (MEDIA INTF T ALSA \rightarrow BASE + 2) #if defined(KERNEL) /* * Connector functions * For now these should not be used in userspace, as some → definitions may * change. * * It is the responsibility of the entity drivers to add connectors. \rightarrow and links. */ #define MEDIA ENT F CONN RF (MEDIA ENT F BASE +... →0x30001) #define MEDIA ENT F CONN SVIDEO (MEDIA ENT F BASE + →0x30002) #define MEDIA ENT F CONN COMPOSITE (MEDIA ENT F BASE + $\rightarrow 0 \times 30003$) #endif /* * MC next gen API definitions */ /* * Appeared in 4.19.0. * The media version argument comes from the media version field in * struct media device info. */ #define MEDIA V2 ENTITY HAS FLAGS(media version) \ ((media version) >= ((4 << 16) | (19 << 8) | 0))

```
struct media v2 entity {
        u32 id;
       char name[64];
                              /* Main function of the entity */
        ___u32 function;
       ___u32 flags;
         u32 reserved[5];
} attribute ((packed));
/* Should match the specific fields at media_intf_devnode */
struct media_v2_intf_devnode {
       ___u32 major;
         u32 minor;
} __attribute__ ((packed));
struct media v2 interface {
        ___u32 id;
        u32 intf type;
       ___u32 flags;
        u32 reserved[9];
       union {
                struct media_v2_intf_devnode devnode;
                __u32 raw[16];
        };
} __attribute__ ((packed));
/*
 * Appeared in 4.19.0.
 * The media version argument comes from the media version field in
 * struct media device info.
*/
#define MEDIA_V2_PAD_HAS_INDEX(media_version) \
        ((media version) >= ((4 << 16) | (19 << 8) | 0))
struct media v2 pad {
        ___u32 id;
         _u32 entity_id;
         u32 flags;
       __u32 index;
         u32 reserved[4];
} __attribute__ ((packed));
struct media v2 link {
        u32 id;
        u32 source id;
        ___u32 sink_id;
         u32 flags;
         u32 reserved[6];
} __attribute__ ((packed));
```

```
struct media v2 topology {
        u64 topology version;
        ___u32 num_entities;
        u32 reserved1;
        u64 ptr entities;
        ___u32 num_interfaces;
         u32 reserved2:
        u64 ptr interfaces;
         u32 num pads;
        ___u32 reserved3;
        u64 ptr pads;
        ___u32 num_links;
        ___u32 reserved4;
          u64 ptr links;
} attribute ((packed));
/* ioctls */
#define MEDIA IOC DEVICE INFO IOWR('|', 0x00, struct media
\rightarrow device info)
#define MEDIA_IOC_ENUM_ENTITIES _IOWR('|', 0x01, struct media_
\rightarrowentity desc)
#define MEDIA_IOC_ENUM_LINKS
                                 IOWR('|', 0x02, struct media links
→enum)
#define MEDIA IOC SETUP LINK
                                 IOWR('|', 0x03, struct media link
\rightarrowdesc)
#define MEDIA IOC G TOPOLOGY _IOWR('|', 0x04, struct media_v2_
\rightarrowtopology)
#define MEDIA IOC REQUEST ALLOC IOR ('|', 0x05, int)
/*
 * These ioctls are called on the request file descriptor as,
\rightarrow returned
 * by MEDIA_IOC_REQUEST_ALLOC.
 */
                                       _IO('|', 0x80)
#define MEDIA_REQUEST_IOC_QUEUE
#define MEDIA_REQUEST_IOC_REINIT
                                          IO('|', 0x81)
#ifndef KERNEL
/*
 * Legacy symbols used to avoid userspace compilation breakages.
 * Do not use any of this in new applications!
 * Those symbols map the entity function into types and should be
 * used only on legacy programs for legacy hardware. Don't rely
```

* on those for MEDIA IOC G TOPOLOGY. */ #define MEDIA ENT TYPE SHIFT 16 #define MEDIA ENT TYPE MASK 0x00ff0000 #define MEDIA ENT SUBTYPE MASK 0x0000ffff #define MEDIA ENT T DEVNODE UNKNOWN (MEDIA ENT F OLD →BASE | \ MEDIA_ENT_SUBTYPE_ →MASK) #define MEDIA ENT T DEVNODE MEDIA_ENT_F_OLD_BASE #define MEDIA ENT T DEVNODE V4L MEDIA ENT F IO V4L #define MEDIA_ENT_T_DEVNODE_FB (MEDIA_ENT_F_OLD_ \rightarrow BASE + 2) #define MEDIA ENT T DEVNODE ALSA (MEDIA ENT F OLD \rightarrow BASE + 3) #define MEDIA ENT T DEVNODE DVB (MEDIA ENT F OLD \rightarrow BASE + 4) #define MEDIA ENT T UNKNOWN MEDIA ENT F UNKNOWN #define MEDIA_ENT_T_V4L2_VIDE0 MEDIA_ENT_F_I0_V4L #define MEDIA ENT T_V4L2_SUBDEV MEDIA ENT F V4L2 → SUBDEV UNKNOWN #define MEDIA ENT T V4L2 SUBDEV SENSOR MEDIA ENT F CAM → SENSOR #define MEDIA ENT T V4L2 SUBDEV FLASH MEDIA ENT F FLASH #define MEDIA ENT T V4L2 SUBDEV LENS MEDIA ENT F LENS #define MEDIA ENT T V4L2 SUBDEV DECODER MEDIA ENT F ATV → DECODER #define MEDIA ENT T V4L2 SUBDEV TUNER MEDIA ENT F TUNER #define MEDIA ENT F DTV DECODER MEDIA ENT F DV → DECODER /* * There is still no full ALSA support in the media controller... →These * defines should not have been added and we leave them here only * in case some application tries to use these defines. * The ALSA defines that are in use have been moved into KERNEL * scope. As support gets added to these interface types, they →should * be moved into KERNEL scope with the code that uses them. */ #define MEDIA INTF T ALSA COMPRESS (MEDIA INTF T ALSA \rightarrow BASE + 3) #define MEDIA INTF T ALSA RAWMIDI (MEDIA INTF T ALSA \rightarrow BASE + 4) #define MEDIA_INTF_T_ALSA_HWDEP (MEDIA_INTF_T_ALSA_

#endif

#endif /* __LINUX_MEDIA_H */

7.5.7 Revision and Copyright

Authors:

- Pinchart, Laurent <laurent.pinchart@ideasonboard.com>
- Initial version.
- Carvalho Chehab, Mauro <mchehab@kernel.org>
- \bullet MEDIA_IOC_G_TOPOLOGY documentation and documentation improvements.

Copyright @ 2010: Laurent Pinchart

Copyright © 2015-2016 : Mauro Carvalho Chehab

7.5.8 Revision History

revision 1.1.0 / 2015-12-12 (mcc) **revision** 1.0.0 / 2010-11-10 (lp)

Initial revision

7.6 Part V - Consumer Electronics Control API

This part describes the CEC: Consumer Electronics Control

7.6.1 Introduction

HDMI connectors provide a single pin for use by the Consumer Electronics Control protocol. This protocol allows different devices connected by an HDMI cable to communicate. The protocol for CEC version 1.4 is defined in supplements 1 (CEC) and 2 (HEAC or HDMI Ethernet and Audio Return Channel) of the HDMI 1.4a (HDMI) specification and the extensions added to CEC version 2.0 are defined in chapter 11 of the HDMI 2.0 (HDMI2) specification.

The bitrate is very slow (effectively no more than 36 bytes per second) and is based on the ancient AV.link protocol used in old SCART connectors. The protocol closely resembles a crazy Rube Goldberg contraption and is an unholy mix of low and high level messages. Some messages, especially those part of the HEAC protocol layered on top of CEC, need to be handled by the kernel, others can be handled either by the kernel or by userspace.

In addition, CEC can be implemented in HDMI receivers, transmitters and in USB devices that have an HDMI input and an HDMI output and that control just the CEC pin.

Drivers that support CEC will create a CEC device node (/dev/cecX) to give userspace access to the CEC adapter. The ioctl CEC_ADAP_G_CAPS ioctl will tell userspace what it is allowed to do.

In order to check the support and test it, it is suggested to download the v4l-utils package. It provides three tools to handle CEC:

- cec-ctl: the Swiss army knife of CEC. Allows you to configure, transmit and monitor CEC messages.
- cec-compliance: does a CEC compliance test of a remote CEC device to determine how compliant the CEC implementation is.
- cec-follower: emulates a CEC follower.

7.6.2 Function Reference

cec open()

Name

cec-open - Open a cec device

Synopsis

#include <fcntl.h>

int open(const char *device_name, int flags)

Arguments

device_name Device to be opened.

flags Open flags. Access mode must be 0_RDWR.

When the <code>0_NONBLOCK</code> flag is given, the CEC_RECEIVE and CEC_DQEVENT ioctls will return the <code>EAGAIN</code> error code when no message or event is available, and ioctls CEC_TRANSMIT, CEC_ADAP_S_PHYS_ADDR and CEC_ADAP_S_LOG_ADDRS all return 0.

Other flags have no effect.

Description

To open a cec device applications call open() with the desired device name. The function has no side effects; the device configuration remain unchanged.

When the device is opened in read-only mode, attempts to modify its configuration will result in an error, and errno will be set to EBADF.

Return Value

open() returns the new file descriptor on success. On error, -1 is returned, and errno is set appropriately. Possible error codes include:

EACCES The requested access to the file is not allowed.

EMFILE The process already has the maximum number of files open.

ENFILE The system limit on the total number of open files has been reached.

ENOMEM Insufficient kernel memory was available.

ENXIO No device corresponding to this device special file exists.

cec close()

Name

cec-close - Close a cec device

Synopsis

#include <unistd.h>

int close(int fd)

Arguments

fd File descriptor returned by open().

Description

Closes the cec device. Resources associated with the file descriptor are freed. The device configuration remain unchanged.

Return Value

close() returns 0 on success. On error, -1 is returned, and errno is set appropriately. Possible error codes are:

EBADF fd is not a valid open file descriptor.

cec ioctl()

Name

cec-ioctl - Control a cec device

Synopsis

#include <sys/ioctl.h>

int ioctl(int fd, int request, void *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to a request-specific structure.

Description

The ioctl() function manipulates cec device parameters. The argument fd must be an open file descriptor.

The ioctl request code specifies the cec function to be called. It has encoded in it whether the argument is an input, output or read/write parameter, and the size of the argument argp in bytes.

Macros and structures definitions specifying cec ioctl requests and their parameters are located in the cec.h header file. All cec ioctl requests, their respective function and parameters are specified in Function Reference.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

Request-specific error codes are listed in the individual requests descriptions.

When an ioctl that takes an output or read/write parameter fails, the parameter remains unmodified.

cec poll()

Name

cec-poll - Wait for some event on a file descriptor

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout)

Arguments

ufds List of FD events to be watched
nfds Number of FD events at the *ufds array
timeout Timeout to wait for events

Description

With the poll() function applications can wait for CEC events.

On success poll() returns the number of file descriptors that have been selected (that is, file descriptors for which the revents field of the respective struct pollfd is non-zero). CEC devices set the POLLIN and POLLRDNORM flags in the revents field if there are messages in the receive queue. If the transmit queue has room for new messages, the POLLOUT and POLLWRNORM flags are set. If there are events in the event queue, then the POLLPRI flag is set. When the function times out it returns a value of zero, on failure it returns -1 and the errno variable is set appropriately.

For more details see the poll() manual page.

On success, poll() returns the number structures which have non-zero revents fields, or zero if the call timed out. On error -1 is returned, and the errno variable is set appropriately:

EBADF One or more of the ufds members specify an invalid file descriptor.

EFAULT ufds references an inaccessible memory area.

EINTR The call was interrupted by a signal.

EINVAL The nfds value exceeds the RLIMIT_NOFILE value. Use getrlimit() to obtain this value.

ioctl CEC_ADAP_G_CAPS

Name

CEC_ADAP_G_CAPS - Query device capabilities

Synopsis

int ioctl(int fd, CEC_ADAP_G_CAPS, struct cec_caps *argp)

Arguments

fd File descriptor returned by open().

argp

Description

All cec devices must support ioctl CEC_ADAP_G_CAPS. To query device information, applications call the ioctl with a pointer to a struct cec_caps. The driver fills the structure and returns the information to the application. The ioctl never fails.

cec_caps

char	driver[32]	The name of the cec adapter driver.		
char	name[32]	The name of this CEC adapter. The combination driver and name must		
		be unique.		
u32	capabilities of the CEC adapter, see CEC Capabilities Flags.			
u32	version	CEC Framework API version, formatted with the KERNEL_VERSION()		
		macro.		

Table 248: struct cec_caps

CEC_CAP_PHYS_ADDR	0x00000001	Userspace has to configure the physical address by calling ioctl CEC_ADAP_S_PHYS_ADDR. If this capability isn't set, then setting the physical address is handled by the kernel whenever the EDID is set (for an HDMI receiver) or read (for an HDMI transmitter).
CEC_CAP_LOG_ADDRS	0x00000002	Userspace has to configure the logical addresses by calling ioctl CEC_ADAP_S_LOG_ADDRS. If this capability isn' t set, then the kernel will have configured this.
CEC_CAP_TRANSMIT	0x00000004	Userspace can transmit CEC messages by calling ioctl CEC_TRANSMIT. This implies that userspace can be a follower as well, since being able to transmit messages is a prerequisite of becoming a follower. If this capability isn't set, then the kernel will handle all CEC transmits and process all CEC messages it receives.
CEC_CAP_PASSTHROUGH	0x0000008	Userspace can use the passthrough mode by calling ioctl CEC_S_MODE.
CEC_CAP_RC	0x00000010	This adapter supports the remote control protocol.
CEC_CAP_MONITOR_ALL	0x00000020	The CEC hardware can monitor all messages, not just directed and broadcast messages.
CEC_CAP_NEEDS_HPD	0x00000040	The CEC hardware is only active if the HDMI Hotplug Detect pin is high. This makes it impossible to use CEC to wake up displays that set the HPD pin low when in standby mode, but keep the CEC bus alive.
CEC_CAP_MONITOR_PIN	0x00000080	The CEC hardware can monitor CEC pin changes from low to high voltage and vice versa. When in pin monitoring mode the application will receive CEC_EVENT_PIN_CEC_LOW and CEC_EVENT_PIN_CEC_HIGH events.
CEC_CAP_CONNECTOR_I	NJF£000000100	If this capability is set, then ioctl CEC_ADAP_G_CONNECTOR_INFO can be used.

Table 249: CEC Capabilities Flags

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

ioctls CEC_ADAP_G_LOG_ADDRS and CEC_ADAP_S_LOG_ADDRS

Name

CEC_ADAP_G_LOG_ADDRS, CEC_ADAP_S_LOG_ADDRS - Get or set the logical addresses

Synopsis

int ioctl(int fd, CEC_ADAP_G_LOG_ADDRS, struct cec_log_addrs *argp)
int ioctl(int fd, CEC_ADAP_S_LOG_ADDRS, struct cec_log_addrs *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to struct cec_log_addrs.

Description

To query the current CEC logical addresses, applications call ioctl CEC_ADAP_G_LOG_ADDRS with a pointer to a struct cec_log_addrs where the driver stores the logical addresses.

To set new logical addresses, applications fill in struct cec_log_addrs and call ioctl CEC_ADAP_S_LOG_ADDRS with a pointer to this struct. The ioctl CEC_ADAP_S_LOG_ADDRS is only available if CEC_CAP_LOG_ADDRS is set (the ENOTTY error code is returned otherwise). The ioctl CEC_ADAP_S_LOG_ADDRS can only be called by a file descriptor in initiator mode (see ioctls CEC_G_MODE and CEC_S_MODE), if not the EBUSY error code will be returned.

To clear existing logical addresses set num_log_addrs to 0. All other fields will be ignored in that case. The adapter will go to the unconfigured state and the cec_version, vendor_id and osd_name fields are all reset to their default values (CEC version 2.0, no vendor ID and an empty OSD name).

If the physical address is valid (see ioctl CEC_ADAP_S_PHYS_ADDR), then this ioctl will block until all requested logical addresses have been claimed. If the file descriptor is in non-blocking mode then it will not wait for the logical addresses to be claimed, instead it just returns 0.

A CEC_EVENT_STATE_CHANGE event is sent when the logical addresses are claimed or cleared.

 $\label{eq:address} Attempting to call ioctl CEC_ADAP_S_LOG_ADDRS when logical address types are already defined will return with error EBUSY.$

cec_log_addrs

Table 250: struct cec_log_addrs			
u8 log_addr[CEC_MAX_LOG_ADDRS]	The actual logical addresses that were claimed. This is set by the driver. If no logical address could be claimed, then it is set to CEC_LOG_ADDR_INVALID. If this adapter is Unregistered, then log_addr[0] is set to 0xf and all oth- ers to CEC_LOG_ADDR_INVALID.		
u16log_addr_mask	The bitmask of all logical ad- dresses this adapter has claimed. If this adapter is Unregistered then log_addr_mask sets bit 15 and clears all other bits. If this adapter is not configured at all, then log_addr_mask is set to 0. Set by the driver.		
u8 cec_version	The CEC version that this adapter shall use. See CEC Versions. Used to implement the CEC_MSG_CEC_VERSION and CEC_MSG_REPORT_FEATURES messages. Note that CEC_OP_CEC_VERSION_1_3A is not allowed by the CEC framework.		
u8 num_log_addrs	Number of logical addresses to set up. Must be ≤ available_log_addrs as returned by ioctl CEC_ADAP_G_CAPS. All arrays in this structure are only filled up to index available_log_addrs-1. The remain- ing array elements will be ignored. Note that the CEC 2.0 standard allows for a maximum of 2 logical addresses, although some hardware has support for more. CEC_MAX_LOG_ADDRS is 4. The driver will return the actual number of logical addresses it could claim, which may be less than what was requested. If this field is set to 0, then the CEC adapter shall clear all claimed logical addresses and all other fields will be ignored.		

Table 250: struct cec_log_addrs

Continued on next page

	Table 250 – continued from previous page			
u32	vendor_id	The vendor ID is a 24-bit number that		
		identifies the specific vendor or en-		
		tity. Based on this ID vendor specific		
		commands may be defined. If you do		
		not want a vendor ID then set it to		
		CEC_VENDOR_ID_NONE.		
u32	flags	Flags. See Flags for struct		
		cec_log_addrs for a list of available		
		flags.		
char	osd_name[15]	The On-Screen Display name as is re-		
		turned by the CEC_MSG_SET_OSD_NAME		
		message.		
_u8	primary_device_type[CEC_MAX_LOG_ADD	RSI mary device type for each logical		
		address. See CEC Primary Device		
		Types for possible types.		
_u8	log_addr_type[CEC_MAX_LOG_ADDRS]	Logical address types. See CEC Logi-		
		cal Address Types for possible types.		
		The driver will update this with the		
		actual logical address type that it		
		claimed (e.g. it may have to fallback to		
		CEC_LOG_ADDR_TYPE_UNREGISTERED).		
u8	all_device_types[CEC_MAX_LOG_ADDRS]			
		device types. See CEC All Device		
		Types Flags. It is used in the CEC		
		2.0 CEC_MSG_REPORT_FEATURES mes-		
		sage. For CEC 1.4 you can either leave		
		this field to 0, or fill it in according to		
		the CEC 2.0 guidelines to give the CEC		
		framework more information about the		
		device type, even though the frame-		
		work won't use it directly in the CEC		
		message.		
u8	<pre>features[CEC_MAX_LOG_ADDRS][12]</pre>	Features for each logical ad-		
		dress. It is used in the CEC 2.0		
		CEC_MSG_REPORT_FEATURES message.		
		The 12 bytes include both the RC Pro-		
		file and the Device Features. For CEC		
		1.4 you can either leave this field to all		
		0, or fill it in according to the CEC 2.0		
		guidelines to give the CEC framework		
		more information about the device		
		type, even though the framework won'		
		t use it directly in the CEC message.		

Table 250 – continued from previous page

CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLB	AICK	By default if no logical address of the re- quested type can be claimed, then it will go back to the unconfigured state. If this flag is set, then it will fallback to the Unregis- tered logical address. Note that if the Un- registered logical address was explicitly re- quested, then this flag has no effect.
CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU	2	By default the CEC_MSG_USER_CONTROL_PRESSED and CEC_MSG_USER_CONTROL_RELEASED mes- sages are only passed on to the follower(s), if any. If this flag is set, then these messages are also passed on to the remote control in- put subsystem and will appear as keystrokes. This features needs to be enabled explicitly. If CEC is used to enter e.g. passwords, then you may not want to enable this to avoid trivial snooping of the keystrokes.
CEC_LOG_ADDRS_FL_CDC_ONLY	4	If this flag is set, then the device is CDC-Only. CDC-Only CEC devices are CEC devices that can only handle CDC messages. All other messages are ignored.

Table 251:	Flags	for struct	cec	loa	addrs

CEC_OP_CEC_VERSION_1_3A		CEC version according to the HDMI 1.3a standard.
CEC_OP_CEC_VERSION_1_4B		CEC version according to the HDMI 1.4b standard.
CEC_OP_CEC_VERSION_2_0	6	CEC version according to the HDMI 2.0 stan- dard.

	-	
CEC_OP_PRIM_DEVTYPE_TV	0	Use for a TV.
CEC_OP_PRIM_DEVTYPE_RECORD	1	Use for a recording device.
CEC_OP_PRIM_DEVTYPE_TUNER	3	Use for a device with a tuner.
CEC_OP_PRIM_DEVTYPE_PLAYBACK	4	Use for a playback device.
CEC_OP_PRIM_DEVTYPE_AUDIOSYS1	БМ	Use for an audio system (e.g. an audio/video receiver).
CEC_OP_PRIM_DEVTYPE_SWITCH	6	Use for a CEC switch.
CEC_OP_PRIM_DEVTYPE_VIDEOPROC	7	Use for a video processor device.

Table 254:	CEC Logical Address	s Types
------------	---------------------	---------

CEC_LOG_ADDR_TYPE_TV	0	Use for a TV.
CEC_LOG_ADDR_TYPE_RECORD	1	Use for a recording device.
CEC_LOG_ADDR_TYPE_TUNER	2	Use for a tuner device.
CEC_LOG_ADDR_TYPE_PLAYBACK	3	Use for a playback device.
CEC_LOG_ADDR_TYPE_AUDIOSYSTEM	4	Use for an audio system device.
CEC_LOG_ADDR_TYPE_SPECIFIC	5	Use for a second TV or for a video processor device.
CEC_LOG_ADDR_TYPE_UNREGISTERE	6	Use this if you just want to remain unregis- tered. Used for pure CEC switches or CDC- only devices (CDC: Capability Discovery and Control).

Table 255: CEC All Device Types Flags

0x80	This supports the TV type.
0x40	This supports the Recording type.
0x20	This supports the Tuner type.
0x10	This supports the Playback type.
1 0 x08	This supports the Audio System type.
0x04	This supports the CEC Switch or Video Pro- cessing type.
	0x40 0x20 0x10 Øx08

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

The ioctl CEC_ADAP_S_LOG_ADDRS can return the following error codes:

- **ENOTTY** The CEC_CAP_LOG_ADDRS capability wasn't set, so this ioctl is not supported.
- **EBUSY** The CEC adapter is currently configuring itself, or it is already configured and num_log_addrs is non-zero, or another filehandle is in exclusive follower or initiator mode, or the filehandle is in mode CEC_MODE_NO_INITIATOR.

EINVAL The contents of struct cec_log_addrs is invalid.

ioctls CEC_ADAP_G_PHYS_ADDR and CEC_ADAP_S_PHYS_ADDR

Name

CEC_ADAP_G_PHYS_ADDR, CEC_ADAP_S_PHYS_ADDR - Get or set the physical address

Synopsis

int ioctl(int fd, CEC_ADAP_G_PHYS_ADDR, __u16 *argp)
int ioctl(int fd, CEC_ADAP_S_PHYS_ADDR, __u16 *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to the CEC address.

Description

To query the current physical address applications call ioctl CEC_ADAP_G_PHYS_ADDR with a pointer to a $_u16$ where the driver stores the physical address.

To set a new physical address applications store the physical address in a _u16 and call ioctl CEC_ADAP_S_PHYS_ADDR with a pointer to this integer. The ioctl CEC_ADAP_S_PHYS_ADDR is only available if CEC_CAP_PHYS_ADDR is set (the ENOTTY error code will be returned otherwise). The ioctl CEC_ADAP_S_PHYS_ADDR can only be called by a file descriptor in initiator mode (see ioctls CEC_G_MODE and CEC_S_MODE), if not the EBUSY error code will be returned.

To clear an existing physical address use $\mathsf{CEC_PHYS_ADDR_INVALID}.$ The adapter will go to the unconfigured state.

If logical address types have been defined (see ioctl CEC_ADAP_S_LOG_ADDRS), then this ioctl will block until all requested logical addresses have been claimed. If the file descriptor is in non-blocking mode then it will not wait for the logical addresses to be claimed, instead it just returns 0.

A CEC_EVENT_STATE_CHANGE event is sent when the physical address changes.

The physical address is a 16-bit number where each group of 4 bits represent a digit of the physical address a.b.c.d where the most significant 4 bits represent 'a'. The CEC root device (usually the TV) has address 0.0.0.0. Every device that is hooked up to an input of the TV has address a.0.0.0 (where 'a' is \geq 1), devices hooked up to those in turn have addresses a.b.0.0, etc. So a topology of up to 5 devices deep is supported. The physical address a device shall use is stored in the EDID of the sink.

For example, the EDID for each HDMI input of the TV will have a different physical address of the form a.0.0.0 that the sources will read out and use as their physical address.

Return Value

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

The ioctl CEC_ADAP_S_PHYS_ADDR can return the following error codes:

- **ENOTTY** The CEC_CAP_PHYS_ADDR capability wasn't set, so this ioctl is not supported.
- **EBUSY** Another filehandle is in exclusive follower or initiator mode, or the filehandle is in mode CEC_MODE_NO_INITIATOR.
- **EINVAL** The physical address is malformed.

ioctl CEC_ADAP_G_CONNECTOR_INFO

Name

CEC_ADAP_G_CONNECTOR_INFO - Query HDMI connector information

Synopsis

int **ioctl**(int fd, CEC_ADAP_G_CONNECTOR_INFO, struct cec_connector_info *argp)

Arguments

fd File descriptor returned by open().

argp

Description

Using this ioctl an application can learn which HDMI connector this CEC device corresponds to. While calling this ioctl the application should provide a pointer to a cec_connector_info struct which will be populated by the kernel with the info provided by the adapter's driver. This ioctl is only available if the CEC_CAP_CONNECTOR_INFO capability is set.

cec_connector_info

u32type	The type of
	connector
	this adapter
	is associated
	with.
union (anonymous)	
{	
stru¢dirm	struct
cec_drm_connector_info	cec_drm_connector_info
}	

Table 256: struct cec_connector_info

CEC_CONNECTOR_TYPE_I	No connector is associated with the adapter/the infor- mation is not provided by the driver.
CEC_CONNECTOR_TYPE_I	Indicates that a DRM connector is associated with this adapter. Information about the connector can be found in struct cec_drm_connector_info.

cec_drm_connector_info

Table 258:	struct cec	drm	connector :	info

_	_u32	_	DRM card number: the number from a card's path, e.g. 0 in case of /dev/card0.
	_u32	connector_i	DRM connector ID.

ioctl CEC_DQEVENT

Name

CEC_DQEVENT - Dequeue a CEC event

Synopsis

int ioctl(int fd, CEC_DQEVENT, struct cec_event *argp)

Arguments

fd File descriptor returned by open().

argp

Description

CEC devices can send asynchronous events. These can be retrieved by calling CEC_DQEVENT(). If the file descriptor is in non-blocking mode and no event is pending, then it will return -1 and set errno to the EAGAIN error code.

The internal event queues are per-filehandle and per-event type. If there is no more room in a queue then the last event is overwritten with the new one. This means that intermediate results can be thrown away but that the latest event is always available. This also means that is it possible to read two successive events that have the same value (e.g. two CEC_EVENT_STATE_CHANGE events with the same state). In that case the intermediate state changes were lost but it is guaranteed that the state did change in between the two events.

cec_event_state_change

Table 259: struct cec_event_state_change

u16	phys_addr	The current physical address. This is CEC_PHYS_ADDR_INVALID if no
		valid physical address is set.
u16	log_addr_mask	The current set of claimed logical addresses. This is 0 if no logical
		addresses are claimed or if phys_addr is CEC_PHYS_ADDR_INVALID.
		If bit 15 is set (1 << CEC_LOG_ADDR_UNREGISTERED) then this device
		has the unregistered logical address. In that case all other bits are 0.
_u16	have_conn_inf	of non-zero, then HDMI connector information is available. This field
		is only valid if CEC_CAP_CONNECTOR_INFO is set. If that capability is
		set and have_conn_info is zero, then that indicates that the HDMI
		connector device is not instantiated, either because the HDMI driver
		is still configuring the device or because the HDMI device was un-
		bound.

cec_event_lost_msgs

Table 260: struct cec_event_lost_msgs

u32lost_msgs	Set to the number of lost messages since the filehandle was opened or since
	the last time this event was dequeued for this filehandle. The messages lost
	are the oldest messages. So when a new message arrives and there is no
	more room, then the oldest message is discarded to make room for the new
	one. The internal size of the message queue guarantees that all messages
	received in the last two seconds will be stored. Since messages should be
	replied to within a second according to the CEC specification, this is more
	than enough.

cec_event

$C 4 \pm c$	
u64ts	Timestamp
	of the event
	in ns.
	The times-
	tamp has
	been taken
	from the
	CLOCK_MONOTONIC
	clock.
	To access
	the same
	clock from
	userspace
	use
	<pre>clock_gettime().</pre>
u32event	The CEC
	event type,
	see CEC
	Events
	Types.
u32flags	Event flags,
	see CEC
	Event Flags.
union (anonymous)	
{	
structstate_change	The new
cec event state change	adapter
	state as
	sent by the
	CEC_EVENT STATE_CHANGE
	event.
structlost msgs	The num-
cec_event_lost_msgs	ber of lost
	messages as
	sent by the
	CEC_EVENT_LOST_MSGS
	event.
}	
	I

Table 261: struct cec_{event}

CEC_EVENT_STATE_CHANGE	1	Generated when the CEC Adapter's state changes. When open() is called an initial event will be generated for that filehandle with the CEC Adapter's state at that time.
CEC_EVENT_LOST_MSGS	2	Generated if one or more CEC messages were lost be- cause the application didn't dequeue CEC messages fast enough.
CEC_EVENT_PIN_CEC_LOW	3	Generated if the CEC pin goes from a high voltage to a low voltage. Only applies to adapters that have the CEC_CAP_MONITOR_PIN capability set.
CEC_EVENT_PIN_CEC_HIGH	4	Generated if the CEC pin goes from a low voltage to a high voltage. Only applies to adapters that have the CEC_CAP_MONITOR_PIN capability set.
CEC_EVENT_PIN_HPD_LOW	5	Generated if the HPD pin goes from a high voltage to a low voltage. Only applies to adapters that have the CEC_CAP_MONITOR_PIN capability set. When open() is called, the HPD pin can be read and if the HPD is low, then an initial event will be generated for that filehan- dle.
CEC_EVENT_PIN_HPD_HIGH	6	Generated if the HPD pin goes from a low voltage to a high voltage. Only applies to adapters that have the CEC_CAP_MONITOR_PIN capability set. When open() is called, the HPD pin can be read and if the HPD is high, then an initial event will be generated for that filehandle.
CEC_EVENT_PIN_5V_LOW	6	Generated if the 5V pin goes from a high voltage to a low voltage. Only applies to adapters that have the CEC_CAP_MONITOR_PIN capability set. When open() is called, the 5V pin can be read and if the 5V is low, then an initial event will be generated for that filehandle.
CEC_EVENT_PIN_5V_HIGH	7	Generated if the 5V pin goes from a low voltage to a high voltage. Only applies to adapters that have the CEC_CAP_MONITOR_PIN capability set. When open() is called, the 5V pin can be read and if the 5V is high, then an initial event will be generated for that filehandle.

Table 262: CEC Events Types

CEC_EVENT_FL_INITIAL_STATE	Set for the initial events that are generated when the device is opened. See the table above for which events do this. This allows applications to learn the initial state of the CEC adapter at open() time.
CEC_EVENT_FL_DR0PPED_EVENTS	Set if one or more events of the given event type have been dropped. This is an indication that the application cannot keep up.

Table 263: CEC Event Flags

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

The ioctl CEC_DQEVENT can return the following error codes:

- **EAGAIN** This is returned when the filehandle is in non-blocking mode and there are no pending events.
- **ERESTARTSYS** An interrupt (e.g. Ctrl-C) arrived while in blocking mode waiting for events to arrive.

ioctls CEC_G_MODE and CEC_S_MODE

CEC_G_MODE, CEC_S_MODE - Get or set exclusive use of the CEC adapter

Synopsis

int ioctl(int fd, CEC_G_MODE, __u32 *argp)
int ioctl(int fd, CEC_S_MODE, __u32 *argp)

Arguments

fd File descriptor returned by open().

argp Pointer to CEC mode.

Description

By default any filehandle can use ioctls CEC_RECEIVE and CEC_TRANSMIT, but in order to prevent applications from stepping on each others toes it must be possible to obtain exclusive access to the CEC adapter. This ioctl sets the filehandle to initiator and/or follower mode which can be exclusive depending on the chosen mode. The initiator is the filehandle that is used to initiate messages, i.e. it commands other CEC devices. The follower is the filehandle that receives messages sent to the CEC adapter and processes them. The same filehandle can be both initiator and follower, or this role can be taken by two different filehandles.

When a CEC message is received, then the CEC framework will decide how it will be processed. If the message is a reply to an earlier transmitted message, then the reply is sent back to the filehandle that is waiting for it. In addition the CEC framework will process it.

If the message is not a reply, then the CEC framework will process it first. If there is no follower, then the message is just discarded and a feature abort is sent back to the initiator if the framework couldn' t process it. If there is a follower, then the message is passed on to the follower who will use ioctl CEC_RECEIVE to dequeue the new message. The framework expects the follower to make the right decisions.

The CEC framework will process core messages unless requested otherwise by the follower. The follower can enable the passthrough mode. In that case, the CEC framework will pass on most core messages without processing them and the follower will have to implement those messages. There are some messages that the core will always process, regardless of the passthrough mode. See Core Message Processing for details.

If there is no initiator, then any CEC filehandle can use ioctl CEC_TRANSMIT. If there is an exclusive initiator then only that initiator can call ioctls CEC_RECEIVE and CEC_TRANSMIT. The follower can of course always call ioctl CEC_TRANSMIT.

Available initiator modes are:

CEC_MODE_NO_INITIATOR	0x0	This is not an initiator, i.e. it cannot transmit CEC mes- sages or make any other changes to the CEC adapter.
CEC_MODE_INITIATOR	0x1	This is an initiator (the default when the device is opened) and it can transmit CEC messages and make changes to the CEC adapter, unless there is an exclusive initiator.
CEC_MODE_EXCL_INITIATOR	0x2	This is an exclusive initiator and this file descriptor is the only one that can transmit CEC messages and make changes to the CEC adapter. If someone else is already the exclusive initiator then an attempt to become one will return the EBUSY error code error.

Table 264: Initiator Modes

Available follower modes are:

CEC_MODE_NO_FOLLOWER	This is not a follower (the default when the device
	0x00 is opened).
CEC_MODE_FOLLOWER	This is a follower and it will receive CEC messages
CEC_NODE_I OELOWER	0x10 unless there is an exclusive follower. You cannot be-
	come a follower if CEC CAP TRANSMIT is not set
	or if CEC_MODE_NO_INITIATOR was specified, the EINVAL error code is returned in that case.
CEC_MODE_EXCL_FOLLOWER	This is an exclusive follower and only this file de-
	0x20 scriptor will receive CEC messages for process-
	ing. If someone else is already the exclusive fol-
	lower then an attempt to become one will re-
	turn the EBUSY error code. You cannot become
	a follower if CEC_CAP_TRANSMIT is not set or
	if CEC_MODE_NO_INITIATOR was specified, the
	EINVAL error code is returned in that case.
CEC_MODE_EXCL_FOLLOWER_PASST	
	0x30 scriptor will receive CEC messages for process-
	ing. In addition it will put the CEC device into
	passthrough mode, allowing the exclusive follower
	to handle most core messages instead of relying on
	the CEC framework for that. If someone else is al-
	ready the exclusive follower then an attempt to be-
	come one will return the EBUSY error code. You can-
	not become a follower if CEC_CAP_TRANSMIT is
	not set or if CEC_MODE_NO_INITIATOR was speci-
	fied, the EINVAL error code is returned in that case.
CEC_MODE_MONITOR_PIN	Put the file descriptor into pin monitoring
	0xd0 mode. Can only be used in combination with
	CEC_MODE_NO_INITIATOR, otherwise the EINVAL
	error code will be returned. This mode re-
	quires that the CEC_CAP_MONITOR_PIN capabil-
	ity is set, otherwise the EINVAL error code is re-
	turned. While in pin monitoring mode this file de-
	scriptor can receive the CEC_EVENT_PIN_CEC_LOW
	and CEC_EVENT_PIN_CEC_HIGH events to see the
	low-level CEC pin transitions. This is very useful for
	debugging. This mode is only allowed if the process
	has the CAP NET ADMIN capability. If that is not set,
	then the EPERM error code is returned.
Continued on nex	/

Table 265: Follower Modes

Continued on next page

	Table 265 – continued from previous page				
CEC_MODE_MONITOR		Put the file descriptor into monitor mode.			
	0xe0	Can only be used in combination with			
		CEC_MODE_NO_INITIATOR, otherwise the EINVAL			
		error code will be returned. In monitor mode			
		all messages this CEC device transmits and all			
		messages it receives (both broadcast messages and			
		directed messages for one its logical addresses)			
		will be reported. This is very useful for debug-			
		ging. This is only allowed if the process has the			
		CAP_NET_ADMIN capability. If that is not set, then			
		the EPERM error code is returned.			
CEC_MODE_MONITOR_ALL		Put the file descriptor into 'monitor all'			
	0xf0	mode. Can only be used in combination with			
		CEC_MODE_NO_INITIATOR, otherwise the EINVAL			
		error code will be returned. In 'monitor all'			
		mode all messages this CEC device transmits			
		and all messages it receives, including directed			
		messages for other CEC devices will be reported.			
		This is very useful for debugging, but not all de-			
		vices support this. This mode requires that the			
		CEC_CAP_MONITOR_ALL capability is set, other-			
		wise the EINVAL error code is returned. This is			
		only allowed if the process has the CAP_NET_ADMIN			
		capability. If that is not set, then the EPERM error			
		code is returned.			

Table 265 – continued from previous page

Core message processing details:

CEC_MSG_GET_CEC_VERSION	The core will return the CEC version that was set with ioctl CEC_ADAP_S_LOG_ADDRS, except when in passthrough mode. In passthrough mode the core does nothing and this message has to be handled by a follower instead.		
CEC_MSG_GIVE_DEVICE_VENDOR_ID	The core will return the vendor ID that was set with ioctl CEC_ADAP_S_LOG_ADDRS, except when in passthrough mode. In passthrough mode the core does nothing and this message has to be handled by a follower instead.		
CEC_MSG_ABORT	The core will return a Feature Abort message with rea- son 'Feature Refused' as per the specification, except when in passthrough mode. In passthrough mode the core does nothing and this message has to be handled by a follower instead.		
CEC_MSG_GIVE_PHYSICAL_ADDR	The core will report the current physical address, except when in passthrough mode. In passthrough mode the core does nothing and this message has to be handled by a follower instead.		
CEC_MSG_GIVE_OSD_NAME	The core will report the current OSD name that was set with ioctl CEC_ADAP_S_LOG_ADDRS, except when in passthrough mode. In passthrough mode the core does nothing and this message has to be handled by a follower instead.		
CEC_MSG_GIVE_FEATURES	The core will do nothing if the CEC version is older than 2.0, otherwise it will report the current features that were set with ioctl CEC_ADAP_S_LOG_ADDRS, except when in passthrough mode. In passthrough mode the core does nothing (for any CEC version) and this message has to be handled by a follower instead.		
CEC_MSG_USER_CONTROL_PRESSED	If CEC_CAP_RC is set and if CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU is set, then generate a remote control key press. This message is always passed on to the follower(s).		
CEC_MSG_USER_CONTROL_RELEASED	If CEC_CAP_RC is set and if CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU is set, then generate a remote control key release. This message is always passed on to the follower(s).		
CEC_MSG_REPORT_PHYSICAL_ADDR	The CEC framework will make note of the reported phys- ical address and then just pass the message on to the follower(s).		

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

The ioctl CEC_S_MODE can return the following error codes:

EINVAL The requested mode is invalid.

EPERM Monitor mode is requested, but the process does have the CAP_NET_ADMIN capability.

EBUSY Someone else is already an exclusive follower or initiator.

ioctls CEC_RECEIVE and CEC_TRANSMIT

Name

CEC_RECEIVE, CEC_TRANSMIT - Receive or transmit a CEC message

Synopsis

int ioctl(int fd, CEC_RECEIVE, struct cec_msg *argp)
int ioctl(int fd, CEC_TRANSMIT, struct cec_msg *argp)

Arguments

 ${\bf fd}\,$ File descriptor returned by ${\tt open()}.$

argp Pointer to struct cec_msg.

Description

To receive a CEC message the application has to fill in the timeout field of struct cec_msg and pass it to ioctl CEC_RECEIVE. If the file descriptor is in non-blocking mode and there are no received messages pending, then it will return -1 and set errno to the EAGAIN error code. If the file descriptor is in blocking mode and timeout is non-zero and no message arrived within timeout milliseconds, then it will return -1 and set errno to the ETIMEDOUT error code.

A received message can be:

- 1. a message received from another CEC device (the sequence field will be 0).
- 2. the result of an earlier non-blocking transmit (the sequence field will be non-zero).

To send a CEC message the application has to fill in the struct cec_msg and pass it to ioctl CEC_TRANSMIT. The ioctl CEC_TRANSMIT is only available if CEC_CAP_TRANSMIT is set. If there is no more room in the transmit queue, then it will return -1 and set errno to the EBUSY error code. The transmit queue has

enough room for 18 messages (about 1 second worth of 2-byte messages). Note that the CEC kernel framework will also reply to core messages (see Core Message Processing), so it is not a good idea to fully fill up the transmit queue.

If the file descriptor is in non-blocking mode then the transmit will return 0 and the result of the transmit will be available via ioctl CEC_RECEIVE once the transmit has finished (including waiting for a reply, if requested).

The sequence field is filled in for every transmit and this can be checked against the received messages to find the corresponding transmit result.

Normally calling ioctl CEC_TRANSMIT when the physical address is invalid (due to e.g. a disconnect) will return ENONET.

However, the CEC specification allows sending messages from 'Unregistered' to 'TV' when the physical address is invalid since some TVs pull the hotplug detect pin of the HDMI connector low when they go into standby, or when switching to another input.

When the hotplug detect pin goes low the EDID disappears, and thus the physical address, but the cable is still connected and CEC still works. In order to detect/wake up the device it is allowed to send poll and 'Image/Text View On' messages from initiator 0xf('Unregistered') to destination 0('TV').

cec_msg

u64tx_ts	Timestamp in ns of when the last byte of the message						
	was transmitted. The timestamp has been taken from the						
	CLOCK_MONOTONIC clock. To access the same clock from userspace						
	<pre>use clock_gettime().</pre>						
u64rx_ts	Timestamp in ns of when the last byte of the message was received.						
	The timestamp has been taken from the CLOCK_MONOTONIC clock. To						
	access the same clock from userspace use clock_gettime().						
_u32len	The length of the message. For ioctl CEC_TRANSMIT this is						
	filled in by the application. The driver will fill this in for ioctl						
	CEC_RECEIVE. For ioctl CEC_TRANSMIT it will be filled in by the						
	driver with the length of the reply message if reply was set.						
u32timeout	The timeout in milliseconds. This is the time the device will wait for						
	a message to be received before timing out. If it is set to 0, then it						
	will wait indefinitely when it is called by ioctl CEC RECEIVE. If it is						
	0 and it is called by ioctl CEC TRANSMIT, then it will be replaced						
	by 1000 if the reply is non-zero or ignored if reply is 0.						
u32 sequence	A non-zero sequence number is automatically assigned by the CEC						
	framework for all transmitted messages. It is used by the CEC						
	framework when it queues the transmit result (when transmit was						
	called in non-blocking mode). This allows the application to asso-						
	ciate the received message with the original transmit.						
u32flags	Flags. See Flags for struct cec_msg for a list of available flags.						
u8 tx_status	The status bits of the transmitted message. See CEC Transmit Sta-						
	tus for the possible status values. It is 0 if this message was re-						
	ceived, not transmitted.						

Table 267: struct cec msg

Continued on next page

Table 267 – continued from previous page

	labic	207 - continued nom previous page
u8	msg[16]	The message payload. For ioctl CEC_TRANSMIT this is filled in by
		the application. The driver will fill this in for ioctl CEC_RECEIVE.
		For ioctl CEC_TRANSMIT it will be filled in by the driver with the
		payload of the reply message if timeout was set.
u8	reply	Wait until this message is replied. If reply is 0 and the
		timeout is 0, then don't wait for a reply but return after
		transmitting the message. Ignored by ioctl CEC RECEIVE.
		The case where reply is 0 (this is the opcode for the Fea-
		ture Abort message) and timeout is non-zero is specifically al-
		lowed to make it possible to send a message and wait up to
		timeout milliseconds for a Feature Abort reply. In this case
		rx status will either be set to CEC RX STATUS TIMEOUT or
		CEC RX STATUS FEATURE ABORT.
		If the transmitter message is CEC_MSG_INITIATE_ARC then
		the reply values CEC_MSG_REPORT_ARC_INITIATED and
		CEC_MSG_REPORT_ARC_TERMINATED are processed differently:
		either value will match both possible replies. The reason is that
		the CEC_MSG_INITIATE_ARC message is the only CEC message that
		has two possible replies other than Feature Abort. The reply field
		will be updated with the actual reply so that it is synchronized with
		the contents of the received message.
_u8	rx_status	The status bits of the received message. See CEC Receive Status
		for the possible status values. It is 0 if this message was transmit-
		ted, not received, unless this is the reply to a transmitted message.
		In that case both rx_status and tx_status are set.
u8	tx_status	The status bits of the transmitted message. See CEC Transmit Sta-
		tus for the possible status values. It is 0 if this message was re-
		ceived, not transmitted.
u8	<pre>tx_arb_lost_cnt</pre>	A counter of the number of transmit attempts that resulted in the
		Arbitration Lost error. This is only set if the hardware supports
		this, otherwise it is always 0. This counter is only valid if the
		CEC_TX_STATUS_ARB_LOST status bit is set.
u8	tx_nack_cnt	A counter of the number of transmit attempts that resulted in the
		Not Acknowledged error. This is only set if the hardware sup-
		ports this, otherwise it is always 0. This counter is only valid if
		the CEC_TX_STATUS_NACK status bit is set.
_u8	tx_low_drive_cn	A counter of the number of transmit attempts that resulted in the
		Arbitration Lost error. This is only set if the hardware supports
		this, otherwise it is always 0. This counter is only valid if the
		CEC_TX_STATUS_LOW_DRIVE status bit is set.
u8	tx_error_cnt	A counter of the number of transmit errors other than Arbitration
		Lost or Not Acknowledged. This is only set if the hardware sup-
		ports this, otherwise it is always 0. This counter is only valid if the
		CEC_TX_STATUS_ERROR status bit is set.

CEC_MSG_FL_REPLY_TO_FOLLOWE	ris	If a CEC transmit expects a reply, then by default that reply is only sent to the filehandle that called ioctl CEC_TRANSMIT. If this flag is set, then the reply is also sent to all followers, if any. If the filehandle that called ioctl CEC_TRANSMIT is also a follower, then that filehandle will receive the reply twice: once as the result of the ioctl CEC_TRANSMIT, and once via ioctl CEC_RECEIVE.
CEC_MSG_FL_RAW	2	Normally CEC messages are validated before trans- mitting them. If this flag is set when ioctl CEC_TRANSMIT is called, then no validation takes place and the message is transmitted as-is. This is useful when debugging CEC issues. This flag is only allowed if the process has the CAP_SYS_RAWIO capa- bility. If that is not set, then the EPERM error code is returned.

Table 268: Flags for struct cec_msg

CEC_TX_STATUS_0K	0x01	The message was transmitted successfully. This is mu- tually exclusive with CEC_TX_STATUS_MAX_RETRIES. Other bits can still be set if earlier attempts met with failure before the transmit was eventually successful.		
CEC_TX_STATUS_ARB_LOST	0x02	CEC line arbitration was lost, i.e. another transmit started at the same time with a higher priority. Optional status, not all hardware can detect this error condition.		
CEC_TX_STATUS_NACK	0x04	Message was not acknowledged. Note that some hard- ware cannot tell apart a 'Not Acknowledged' status from other error conditions, i.e. the result of a transmit is just OK or FAIL. In that case this status will be returned when the transmit failed.		
CEC_TX_STATUS_LOW_DRIVE	0x08	Low drive was detected on the CEC bus. This indicates that a follower detected an error on the bus and requests a retransmission. Optional status, not all hardware can detect this error condition.		
CEC_TX_STATUS_ERROR	0x10	Some error occurred. This is used for any errors that do not fit CEC_TX_STATUS_ARB_LOST or CEC_TX_STATUS_LOW_DRIVE, either because the hardware could not tell which error occurred, or because the hardware tested for other conditions besides those two. Optional status.		
CEC_TX_STATUS_MAX_RETRIES	50x20	The transmit failed after one or more retries. This sta- tus bit is mutually exclusive with CEC_TX_STATUS_OK. Other bits can still be set to explain which failures were seen.		
CEC_TX_STATUS_ABORTED	0x40	The transmit was aborted due to an HDMI disconnect, or the adapter was unconfigured, or a transmit was inter- rupted, or the driver returned an error when attempting to start a transmit.		
CEC_TX_STATUS_TIMEOUT	0x80	The transmit timed out. This should not normally happen and this indicates a driver problem.		

Table 269: CEC Transmit Status

CEC_RX_STATUS_0K	0x01	The message was received successfully.
CEC_RX_STATUS_TIMEOUT	0x02	The reply to an earlier transmitted message timed out.
CEC_RX_STATUS_FEATURE_ABC	€ ₹04	The message was received successfully but the reply was CEC_MSG_FEATURE_ABORT. This status is only set if this message was the reply to an earlier transmitted message.
CEC_RX_STATUS_ABORTED	0x08	The wait for a reply to an earlier transmitted message was aborted because the HDMI cable was disconnected, the adapter was unconfigured or the CEC_TRANSMIT that waited for a reply was interrupted.

Table 270:	CEC	Receive	Status
10.010 - / 01		11000110	0.00000

On success 0 is returned, on error -1 and the errno variable is set appropriately. The generic error codes are described at the Generic Error Codes chapter.

The ioctl CEC_RECEIVE can return the following error codes:

- **EAGAIN** No messages are in the receive queue, and the filehandle is in nonblocking mode.
- **ETIMEDOUT** The timeout was reached while waiting for a message.

ERESTARTSYS The wait for a message was interrupted (e.g. by Ctrl-C).

The ioctl CEC_TRANSMIT can return the following error codes:

- **ENOTTY** The CEC_CAP_TRANSMIT capability wasn't set, so this ioctl is not supported.
- **EPERM** The CEC adapter is not configured, i.e. ioctl CEC_ADAP_S_LOG_ADDRS has never been called, or CEC_MSG_FL_RAW was used from a process that did not have the CAP_SYS_RAWIO capability.
- **EBUSY** Another filehandle is in exclusive follower or initiator mode, or the filehandle is in mode CEC_MODE_NO_INITIATOR. This is also returned if the transmit queue is full.
- **EINVAL** The contents of struct cec_msg is invalid.
- **ERESTARTSYS** The wait for a successful transmit was interrupted (e.g. by Ctrl-C).

7.6.3 CEC Pin Framework Error Injection

The CEC Pin Framework is a core CEC framework for CEC hardware that only has low-level support for the CEC bus. Most hardware today will have high-level CEC support where the hardware deals with driving the CEC bus, but some older devices aren't that fancy. However, this framework also allows you to connect the CEC pin to a GPIO on e.g. a Raspberry Pi and you have now made a CEC adapter.

What makes doing this so interesting is that since we have full control over the bus it is easy to support error injection. This is ideal to test how well CEC adapters can handle error conditions.

Currently only the cec-gpio driver (when the CEC line is directly connected to a pull-up GPIO line) and the AllWinner A10/A20 drm driver support this framework.

If CONFIG_CEC_PIN_ERROR_INJ is enabled, then error injection is available through debugfs. Specifically, in /sys/kernel/debug/cec/cecX/ there is now an error-inj file.

Note: The error injection commands are not a stable ABI and may change in the future.

With cat error-inj you can see both the possible commands and the current error injection status:

```
$ cat /sys/kernel/debug/cec/cec0/error-inj
# Clear error injections:
#
                    clear all rx and tx error injections
    clear
#
    rx-clear
                    clear all rx error injections
    tx-clear clear all tx error injections
<op> clear clear all rx and tx error injections for <op>
#
#
#
    <op> rx-clear clear all rx error injections for <op>
#
    <op> tx-clear clear all tx error injections for <op>
#
# RX error injection:
#
    <op>[,<mode>] rx-nack
                                         NACK the message instead of sending
→an ACK
#
    <op>[,<mode>] rx-low-drive <bit>
                                         force a low-drive condition at this
→bit position
    <op>[,<mode>] rx-add-byte
                                         add a spurious byte to the received.
#
\hookrightarrowCEC message
    <op>[,<mode>] rx-remove-byte
                                         remove the last byte from the,
#
\rightarrow received CEC message
    <op>[,<mode>] rx-arb-lost <poll>
                                         generate a POLL message to trigger
#
→an arbitration lost
#
# TX error injection settings:
#
    tx-ignore-nack-until-eom
                                         ignore early NACKs until EOM
#
    tx-custom-low-usecs <usecs>
                                         define the 'low' time for the
→custom pulse
                                         define the 'high' time for the
   tx-custom-high-usecs <usecs>
#
→custom pulse
#
    tx-custom-pulse
                                         transmit the custom pulse once the
→bus is idle
#
```

(continues on next page)

(continued from previous page)

```
# TX error injection:
#
    <op>[,<mode>] tx-no-eom
                                        don't set the EOM bit
#
    <op>[,<mode>] tx-early-eom
                                        set the EOM bit one byte too soon
    <op>[,<mode>] tx-add-bytes <num>
#
                                        append <num> (1-255) spurious bytes
\rightarrow to the message
    <op>[,<mode>] tx-remove-byte
#
                                        drop the last byte from the message
    <op>[,<mode>] tx-short-bit <bit>
#
                                        make this bit shorter than allowed
#
    <op>[,<mode>] tx-long-bit <bit>
                                        make this bit longer than allowed
    <op>[,<mode>] tx-custom-bit <bit>
                                        send the custom pulse instead of.
#
\rightarrowthis bit
    <op>[,<mode>] tx-short-start
                                        send a start pulse that's too short
#
    <op>[,<mode>] tx-long-start
#
                                        send a start pulse that's too long
    <op>[,<mode>] tx-custom-start
                                        send the custom pulse instead of
#
\rightarrow the start pulse
    <op>[,<mode>] tx-last-bit <bit>
                                        stop sending after this bit
#
    <op>[,<mode>] tx-low-drive <bit>
                                        force a low-drive condition at this
#
→bit position
#
             CEC message opcode (0-255) or 'any'
# <op>
             'once' (default), 'always', 'toggle' or 'off'
# <mode>
             CEC message bit (0-159)
# <bit>
             10 bits per 'byte': bits 0-7: data, bit 8: EOM, bit 9: ACK
#
# <poll>
             CEC poll message used to test arbitration lost (0x00-0xff,
→default 0x0f)
             microseconds (0-10000000, default 1000)
# <usecs>
clear
```

You can write error injection commands to error-inj using echo 'cmd' >error-inj or cat cmd.txt >error-inj. The cat error-inj output contains the current error commands. You can save the output to a file and use it as an input to error-inj later.

Basic Syntax

Leading spaces/tabs are ignored. If the next character is a # or the end of the line was reached, then the whole line is ignored. Otherwise a command is expected.

The error injection commands fall in two main groups: those relating to receiving CEC messages and those relating to transmitting CEC messages. In addition, there are commands to clear existing error injection commands and to create custom pulses on the CEC bus.

Most error injection commands can be executed for specific CEC opcodes or for all opcodes (any). Each command also has a 'mode' which can be off (can be used to turn off an existing error injection command), once (the default) which will trigger the error injection only once for the next received or transmitted message, always to always trigger the error injection and toggle to toggle the error injection on or off for every transmit or receive.

So 'any rx-nack' will NACK the next received CEC message, 'any,always rx-nack' will NACK all received CEC messages and '0x82,toggle rx-nack' will only NACK if an Active Source message was received and do that only for every other received message.

After an error was injected with mode once the error injection command is cleared automatically, so once is a one-time deal.

All combinations of *<op>* and error injection commands can co-exist. So this is fine:

```
0x9e tx-add-bytes 1
0x9e tx-early-eom
0x9f tx-add-bytes 2
any rx-nack
```

All four error injection commands will be active simultaneously.

However, if the same <op> and command combination is specified, but with different arguments:

0x9e tx-add-bytes 1 0x9e tx-add-bytes 2

Then the second will overwrite the first.

Clear Error Injections

clear Clear all error injections.

rx-clear Clear all receive error injections

tx-clear Clear all transmit error injections

<op> clear Clear all error injections for the given opcode.

<op> rx-clear Clear all receive error injections for the given opcode.

<op> tx-clear Clear all transmit error injections for the given opcode.

Receive Messages

- <op>[,<mode>] rx-nack NACK broadcast messages and messages directed to
 this CEC adapter. Every byte of the message will be NACKed in case the
 transmitter keeps transmitting after the first byte was NACKed.
- <op>[,<mode>] rx-low-drive <bit> Force a Low Drive condition at this bit position. If <op> specifies a specific CEC opcode then the bit position must be at least 18, otherwise the opcode hasn' t been received yet. This tests if the transmitter can handle the Low Drive condition correctly and reports the error correctly. Note that a Low Drive in the first 4 bits can also be interpreted as an Arbitration Lost condition by the transmitter. This is implementation dependent.
- <op>[,<mode>] rx-add-byte Add a spurious 0x55 byte to the received CEC message, provided the message was 15 bytes long or less. This is useful to test the high-level protocol since spurious bytes should be ignored.
- <op>[,<mode>] rx-remove-byte Remove the last byte from the received CEC
 message, provided it was at least 2 bytes long. This is useful to test the
 high-level protocol since messages that are too short should be ignored.

<op>[,<mode>] rx-arb-lost <poll> Generate a POLL message to trigger an Arbitration Lost condition. This command is only allowed for <op> values of next or all. As soon as a start bit has been received the CEC adapter will switch to transmit mode and it will transmit a POLL message. By default this is 0x0f, but it can also be specified explicitly via the <poll> argument.

This command can be used to test the Arbitration Lost condition in the remote CEC transmitter. Arbitration happens when two CEC adapters start sending a message at the same time. In that case the initiator with the most leading zeroes wins and the other transmitter has to stop transmitting ('Arbitration Lost'). This is very hard to test, except by using this error injection command.

This does not work if the remote CEC transmitter has logical address 0 ('TV') since that will always win.

Transmit Messages

tx-ignore-nack-until-eom This setting changes the behavior of transmitting CEC messages. Normally as soon as the receiver NACKs a byte the transmit will stop, but the specification also allows that the full message is transmitted and only at the end will the transmitter look at the ACK bit. This is not recommended behavior since there is no point in keeping the CEC bus busy for longer than is strictly needed. Especially given how slow the bus is.

This setting can be used to test how well a receiver deals with transmitters that ignore NACKs until the very end of the message.

- <op>[,<mode>] tx-no-eom Don' t set the EOM bit. Normally the last byte of the message has the EOM (End-Of-Message) bit set. With this command the transmit will just stop without ever sending an EOM. This can be used to test how a receiver handles this case. Normally receivers have a time-out after which they will go back to the Idle state.
- <op>[,<mode>] tx-early-eom Set the EOM bit one byte too soon. This obviously
 only works for messages of two bytes or more. The EOM bit will be set for the
 second-to-last byte and not for the final byte. The receiver should ignore the
 last byte in this case. Since the resulting message is likely to be too short for
 this same reason the whole message is typically ignored. The receiver should
 be in Idle state after the last byte was transmitted.
- <op>[,<mode>] tx-add-bytes <num> Append <num> (1-255) spurious bytes to the message. The extra bytes have the value of the byte position in the message. So if you transmit a two byte message (e.g. a Get CEC Version message) and add 2 bytes, then the full message received by the remote CEC adapter is 0x40 0x9f 0x02 0x03.

This command can be used to test buffer overflows in the receiver. E.g. what does it do when it receives more than the maximum message size of 16 bytes.

- <op>[,<mode>] tx-remove-byte Drop the last byte from the message, provided the message is at least two bytes long. The receiver should ignore messages that are too short.
- <op>[,<mode>] tx-short-bit <bit> Make this bit period shorter than allowed. The bit position cannot be an Ack bit. If <op> specifies a specific CEC opcode

then the bit position must be at least 18, otherwise the opcode hasn't been received yet. Normally the period of a data bit is between 2.05 and 2.75 milliseconds. With this command the period of this bit is 1.8 milliseconds, this is done by reducing the time the CEC bus is high. This bit period is less than is allowed and the receiver should respond with a Low Drive condition.

This command is ignored for 0 bits in bit positions 0 to 3. This is because the receiver also looks for an Arbitration Lost condition in those first four bits and it is undefined what will happen if it sees a too-short 0 bit.

<op>[,<mode>] tx-long-bit <bit> Make this bit period longer than is valid. The bit position cannot be an Ack bit. If <op> specifies a specific CEC opcode then the bit position must be at least 18, otherwise the opcode hasn' t been received yet. Normally the period of a data bit is between 2.05 and 2.75 milliseconds. With this command the period of this bit is 2.9 milliseconds, this is done by increasing the time the CEC bus is high.

Even though this bit period is longer than is valid it is undefined what a receiver will do. It might just accept it, or it might time out and return to Idle state. Unfortunately the CEC specification is silent about this.

This command is ignored for 0 bits in bit positions 0 to 3. This is because the receiver also looks for an Arbitration Lost condition in those first four bits and it is undefined what will happen if it sees a too-long 0 bit.

- <op>[,<mode>] tx-short-start Make this start bit period shorter than allowed. Normally the period of a start bit is between 4.3 and 4.7 milliseconds. With this command the period of the start bit is 4.1 milliseconds, this is done by reducing the time the CEC bus is high. This start bit period is less than is allowed and the receiver should return to Idle state when this is detected.
- <op>[,<mode>] tx-long-start Make this start bit period longer than is valid. Normally the period of a start bit is between 4.3 and 4.7 milliseconds. With this command the period of the start bit is 5 milliseconds, this is done by increasing the time the CEC bus is high. This start bit period is more than is valid and the receiver should return to Idle state when this is detected.

Even though this start bit period is longer than is valid it is undefined what a receiver will do. It might just accept it, or it might time out and return to Idle state. Unfortunately the CEC specification is silent about this.

- <op>[,<mode>] tx-last-bit <bit> Just stop transmitting after this bit. If <op>
 specifies a specific CEC opcode then the bit position must be at least 18,
 otherwise the opcode hasn' t been received yet. This command can be used
 to test how the receiver reacts when a message just suddenly stops. It should
 time out and go back to Idle state.
- <op>[,<mode>] tx-low-drive <bit> Force a Low Drive condition at this bit position. If <op> specifies a specific CEC opcode then the bit position must be at least 18, otherwise the opcode hasn' t been received yet. This can be used to test how the receiver handles Low Drive conditions. Note that if this happens at bit positions 0-3 the receiver can interpret this as an Arbitration Lost condition. This is implementation dependent.

Custom Pulses

- **tx-custom-low-usecs** <usecs> This defines the duration in microseconds that the custom pulse pulls the CEC line low. The default is 1000 microseconds.
- tx-custom-high-usecs <usecs> This defines the duration in microseconds that the custom pulse keeps the CEC line high (unless another CEC adapter pulls it low in that time). The default is 1000 microseconds. The total period of the custom pulse is tx-custom-low-usecs + tx-custom-high-usecs.
- <op>[,<mode>] tx-custom-bit <bit> Send the custom bit instead of a regular
 data bit. The bit position cannot be an Ack bit. If <op> specifies a specific
 CEC opcode then the bit position must be at least 18, otherwise the opcode
 hasn' t been received yet.
- <op>[,<mode>] tx-custom-start Send the custom bit instead of a regular start
 bit.
- **tx-custom-pulse** Transmit a single custom pulse as soon as the CEC bus is idle.

7.6.4 CEC Header File

cec.h

```
/* SPDX-License-Identifier: ((GPL-2.0 WITH Linux-syscall-note) OR,
→BSD-3-Clause) */
/*
 * cec - HDMI Consumer Electronics Control public header
 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All,
\rightarrow rights reserved.
 */
#ifndef _CEC_UAPI_H
#define _CEC_UAPI_H
#include <linux/types.h>
#include <linux/string.h>
#define CEC MAX MSG SIZE
                                 16
/**
 * struct cec msg - CEC message structure.
 * @tx_ts:
                Timestamp in nanoseconds using CLOCK MONOTONIC. Set,
→by the
                driver when the message transmission has finished.
 * @rx_ts:
                Timestamp in nanoseconds using CLOCK MONOTONIC. Set,
→by the
                driver when the message was received.
 * @len:
                Length in bytes of the message.
 * @timeout:
                The timeout (in ms) that is used to timeout CEC_
→RECEIVE.
```

* Set to 0 if you want to wait forever. This timeout →can also be used with CEC TRANSMIT as the timeout for waiting, \rightarrow for a reply. If 0, then it will use a 1 second timeout instead → of waiting forever as is done with CEC RECEIVE. * @sequence: The framework assigns a sequence number to messages, →that are sent. This can be used to track replies to, →previously sent messages. * @flags: Set to 0. * @msg: The message payload. * @reply: This field is ignored with CEC RECEIVE and is only. →used by CEC TRANSMIT. If non-zero, then wait for a reply. \rightarrow with this opcode. Set to CEC MSG FEATURE ABORT if you want to, →wait for * a possible ABORT reply. If there was an error when \rightarrow sending the msg or FeatureAbort was returned, then reply is set, , to 0. * If reply is non-zero upon return, then len/msg are, ⇒set to the received message. * * If reply is zero upon return and status has the * CEC TX STATUS FEATURE ABORT bit set, then len/msg. →are set to * the received feature abort message. * If reply is zero upon return and status has the * CEC TX STATUS MAX RETRIES bit set, then no reply. →was seen at * all. If reply is non-zero for CEC TRANSMIT and the →message is a * broadcast, then -EINVAL is returned. * if reply is non-zero, then timeout is set to 1000 \rightarrow (the required * maximum response time). * @rx_status: The message receive status bits. Set by the driver. * @tx status: The message transmit status bits. Set by the driver. * @tx arb lost cnt: The number of 'Arbitration Lost' events. Set, \rightarrow by the driver. * @tx nack cnt: The number of 'Not Acknowledged' events. Set by, \rightarrow the driver. * @tx low drive cnt: The number of 'Low Drive Detected' events... \rightarrow Set by the driver. * @tx_error_cnt: The number of 'Error' events. Set by the driver. */

```
struct cec msg {
        u64 tx ts;
         u64 rx ts;
         u32 len;
         _u32 timeout;
        u32 sequence;
        u32 flags;
         u8 msg[CEC MAX MSG SIZE];
         _u8 reply;
        u8 rx status;
        u8 tx status;
       __u8 tx_arb_lost_cnt;
        u8 tx nack cnt;
        _u8 tx_low_drive_cnt;
        u8 tx error cnt;
};
/**
 * cec msg initiator - return the initiator's logical address.
* @msg:
               the message structure
 */
static inline __u8 cec_msg_initiator(const struct cec_msg *msg)
{
        return msg->msg[0] >> 4;
}
/**
 * cec msg destination - return the destination's logical address.
 * @msg: the message structure
*/
static inline u8 cec msg destination(const struct cec msg *msg)
{
        return msg->msg[0] & 0xf;
}
/**
 * cec msg opcode - return the opcode of the message, -1 for poll
* @msg: the message structure
 */
static inline int cec msg opcode(const struct cec msg *msg)
{
        return msg->len > 1 ? msg->msg[1] : -1;
}
/**
 * cec msg is broadcast - return true if this is a broadcast,
⊶message.
* @msg:
               the message structure
*/
static inline int cec_msg_is_broadcast(const struct cec_msg *msg)
{
```

```
return (msg->msg[0] \& 0xf) == 0xf;
}
/**
 * cec_msg_init - initialize the message structure.
 * @msg:
                the message structure
 * @initiator: the logical address of the initiator
 * @destination: the logical address of the destination (0xf for
\rightarrow broadcast)
 * The whole structure is zeroed, the len field is set to 1 (i.e. a.
→poll
 * message) and the initiator and destination are filled in.
 */
static inline void cec_msg_init(struct cec_msg *msg,
                                 u8 initiator, u8 destination)
{
        memset(msg, 0, sizeof(*msg));
        msg->msg[0] = (initiator << 4) | destination;</pre>
        msg -> len = 1;
}
/**
 * cec msg set reply to - fill in destination/initiator in a reply.
⊶message.
 * @msg:
                the message structure for the reply
 * @orig:
               the original message structure
 *
* Set the msg destination to the orig initiator and the msg.
\rightarrow initiator to the
* orig destination. Note that msg and orig may be the same pointer,
→ in which
 * case the change is done in place.
 */
static inline void cec msg set reply to(struct cec msg *msg,
                                         struct cec msg *orig)
{
        /* The destination becomes the initiator and vice versa */
        msg->msg[0] = (cec_msg_destination(orig) << 4) |</pre>
                      cec_msg_initiator(orig);
        msg->reply = msg->timeout = 0;
}
/* cec msg flags field */
#define CEC MSG FL REPLY TO FOLLOWERS
                                         (1 << 0)
#define CEC MSG FL RAW
                                         (1 << 1)
/* cec msg tx/rx status field */
#define CEC TX STATUS OK
                                         (1 << 0)
#define CEC TX STATUS ARB LOST
                                         (1 << 1)
#define CEC_TX_STATUS_NACK
                                         (1 << 2)
```

```
#define CEC TX STATUS LOW DRIVE
                                         (1 << 3)
#define CEC TX STATUS ERROR
                                         (1 << 4)
#define CEC TX STATUS MAX RETRIES
                                         (1 << 5)
                                         (1 << 6)
#define CEC TX STATUS ABORTED
#define CEC TX STATUS TIMEOUT
                                         (1 << 7)
#define CEC RX STATUS OK
                                         (1 << 0)
#define CEC RX STATUS TIMEOUT
                                         (1 << 1)
#define CEC RX STATUS FEATURE ABORT
                                         (1 << 2)
#define CEC RX STATUS ABORTED
                                         (1 << 3)
static inline int cec msg status is ok(const struct cec msg *msg)
{
        if (msg->tx status && !(msg->tx status & CEC TX STATUS OK))
                return 0;
        if (msg->rx status && !(msg->rx status & CEC RX STATUS OK))
                return 0;
        if (!msg->tx status && !msg->rx status)
                return 0;
        return !(msg->rx status & CEC RX STATUS FEATURE ABORT);
}
#define CEC LOG ADDR INVALID
                                         0xff
#define CEC PHYS ADDR INVALID
                                         0xffff
/*
 * The maximum number of logical addresses one device can be.
\rightarrow assigned to.
* The CEC 2.0 spec allows for only 2 logical addresses at the
\rightarrow moment. The
 * Analog Devices CEC hardware supports 3. So let's go wild and go,
→for 4.
 */
#define CEC MAX LOG ADDRS 4
/* The logical addresses defined by CEC 2.0 */
#define CEC LOG ADDR TV
                                         0
#define CEC LOG ADDR RECORD 1
                                         1
#define CEC_LOG_ADDR_RECORD_2
                                         2
                                         3
#define CEC LOG ADDR TUNER 1
#define CEC LOG ADDR PLAYBACK 1
                                         4
                                         5
#define CEC LOG ADDR AUDIOSYSTEM
#define CEC LOG ADDR TUNER 2
                                         6
#define CEC LOG ADDR TUNER 3
                                         7
#define CEC LOG ADDR PLAYBACK 2
                                         8
#define CEC LOG ADDR RECORD 3
                                         9
#define CEC LOG ADDR TUNER 4
                                         10
#define CEC LOG ADDR PLAYBACK 3
                                         11
#define CEC LOG ADDR BACKUP 1
                                         12
#define CEC LOG ADDR BACKUP 2
                                         13
#define CEC_LOG_ADDR_SPECIFIC
                                         14
```

#define CEC LOG ADDR UNREGISTERED 15 /* as initiator address **→***/ #define CEC LOG ADDR BROADCAST 15 /* as destination. →address */ /* The logical address types that the CEC device wants to claim */ #define CEC LOG ADDR TYPE TV 0 #define CEC LOG ADDR TYPE RECORD 1 #define CEC LOG ADDR TYPE TUNER 2 #define CEC LOG ADDR TYPE PLAYBACK 3 #define CEC LOG ADDR TYPE AUDIOSYSTEM 4 #define CEC LOG ADDR TYPE SPECIFIC 5 #define CEC LOG ADDR TYPE UNREGISTERED 6 /* * Switches should use UNREGISTERED. * Processors should use SPECIFIC. */ #define CEC LOG ADDR MASK TV (1 << CEC LOG ADDR TV) #define CEC LOG ADDR MASK RECORD ((1 << CEC LOG ADDR RECORD →1) | \ (1 << CEC_LOG_ADDR_RECORD_</pre> →2) | \ (1 << CEC LOG ADDR RECORD **→**3)) #define CEC LOG ADDR MASK TUNER ((1 << CEC_LOG_ADDR_TUNER_ →1) | \ (1 << CEC LOG ADDR TUNER →2) | \ (1 << CEC LOG ADDR TUNER →3) | \ (1 << CEC LOG ADDR TUNER <u>→</u>4)) #define CEC LOG ADDR MASK PLAYBACK ((1 << CEC LOG ADDR \rightarrow PLAYBACK 1) | \setminus (1 << CEC LOG ADDR →PLAYBACK 2) | \ (1 << CEC_LOG_ADDR_</pre> \rightarrow PLAYBACK_3)) #define CEC LOG ADDR MASK AUDIOSYSTEM (1 << CEC LOG ADDR \rightarrow AUDIOSYSTEM) #define CEC LOG ADDR MASK BACKUP ((1 << CEC LOG ADDR BACKUP **→**1) | \ (1 << CEC LOG ADDR BACKUP <u>→</u>2)) #define CEC LOG ADDR MASK SPECIFIC (1 << CEC LOG ADDR SPECIFIC)</pre> #define CEC LOG ADDR MASK UNREGISTERED (1 << CEC LOG ADDR</pre> \rightarrow UNREGISTERED) static inline int cec has tv(u16 log addr mask) {

```
return log addr mask & CEC LOG ADDR MASK TV;
}
static inline int cec has record( u16 log addr mask)
{
        return log addr mask & CEC LOG ADDR MASK RECORD;
}
static inline int cec_has_tuner(__u16 log_addr_mask)
{
        return log_addr_mask & CEC_LOG_ADDR_MASK_TUNER;
}
static inline int cec_has_playback(__u16 log_addr_mask)
{
        return log addr mask & CEC LOG ADDR MASK PLAYBACK;
}
static inline int cec has audiosystem( u16 log addr mask)
{
        return log_addr_mask & CEC_LOG_ADDR_MASK_AUDIOSYSTEM;
}
static inline int cec_has_backup(__u16 log_addr_mask)
{
        return log_addr_mask & CEC_LOG_ADDR_MASK_BACKUP;
}
static inline int cec has specific( u16 log addr mask)
{
        return log addr mask & CEC LOG ADDR MASK SPECIFIC;
}
static inline int cec_is_unregistered(__u16 log_addr_mask)
{
        return log addr mask & CEC LOG ADDR MASK UNREGISTERED;
}
static inline int cec_is_unconfigured(__u16 log_addr_mask)
{
        return log_addr_mask == 0;
}
 * Use this if there is no vendor ID (CEC G VENDOR ID) or if the
→vendor ID
 * should be disabled (CEC_S_VENDOR_ID)
 */
#define CEC VENDOR ID NONE
                                        0xfffffff
/* The message handling modes */
```

```
/* Modes for initiator */
#define CEC MODE NO INITIATOR
                                         (0 \times 0 << 0)
#define CEC MODE INITIATOR
                                         (0x1 << 0)
#define CEC MODE EXCL INITIATOR
                                         (0x2 << 0)
#define CEC MODE INITIATOR MSK
                                         0x0f
/* Modes for follower */
#define CEC MODE NO FOLLOWER
                                         (0 \times 0 << 4)
                                         (0x1 << 4)
#define CEC MODE FOLLOWER
#define CEC MODE EXCL_FOLLOWER
                                         (0x2 << 4)
#define CEC MODE EXCL FOLLOWER PASSTHRU (0x3 << 4)</pre>
#define CEC MODE MONITOR PIN
                                         (0xd << 4)
#define CEC MODE MONITOR
                                         (0xe << 4)
#define CEC MODE MONITOR ALL
                                         (0xf << 4)
#define CEC MODE FOLLOWER MSK
                                         0 \times f 0
/* Userspace has to configure the physical address */
#define CEC CAP PHYS ADDR
                                (1 << 0)
/* Userspace has to configure the logical addresses */
#define CEC CAP LOG ADDRS (1 << 1)</pre>
/* Userspace can transmit messages (and thus become follower as,
→well) */
#define CEC CAP_TRANSMIT
                                 (1 << 2)
/*
 * Passthrough all messages instead of processing them.
 */
#define CEC CAP PASSTHROUGH
                                 (1 << 3)
/* Supports remote control */
#define CEC CAP RC
                                 (1 << 4)
/* Hardware can monitor all messages, not just directed and
→broadcast. */
#define CEC CAP MONITOR ALL
                                 (1 << 5)
/* Hardware can use CEC only if the HDMI HPD pin is high. */
#define CEC_CAP_NEEDS_HPD
                                 (1 << 6)
/* Hardware can monitor CEC pin transitions */
#define CEC CAP MONITOR PIN
                                 (1 << 7)
/* CEC ADAP G CONNECTOR INFO is available */
#define CEC CAP CONNECTOR INFO (1 << 8)</pre>
/**
 * struct cec_caps - CEC capabilities structure.
 * @driver: name of the CEC device driver.
 * @name: name of the CEC device. @driver + @name must be unique.
 * @available_log_addrs: number of available logical addresses.
 * @capabilities: capabilities of the CEC adapter.
 * @version: version of the CEC adapter framework.
 */
struct cec caps {
        char driver[32];
        char name[32];
        __u32 available_log_addrs;
```

```
u32 capabilities;
        u32 version;
};
/**
 * struct cec log addrs - CEC logical addresses structure.
 * @log addr: the claimed logical addresses. Set by the driver.
 * @log addr mask: current logical address mask. Set by the driver.
 * @cec version: the CEC version that the adapter should implement...
\rightarrowSet by the
 *
        caller.
 * @num log addrs: how many logical addresses should be claimed...
\rightarrowSet by the
        caller.
 * @vendor id: the vendor ID of the device. Set by the caller.
 * @flags: flags.
 * @osd name: the OSD name of the device. Set by the caller.
 * @primary device type: the primary device type for each logical.
\rightarrow address.
        Set by the caller.
 * @log_addr_type: the logical address types. Set by the caller.
 * @all_device_types: CEC 2.0: all device types represented by the
→logical
        address. Set by the caller.
 * @features: CEC 2.0: The logical address features. Set by the
→caller.
 */
struct cec log addrs {
        __u8 log_addr[CEC_MAX LOG ADDRS];
        u16 log addr mask;
        __u8 cec_version;
         u8 num log addrs;
         u32 vendor id;
         _u32 flags;
        char osd name[15];
        u8 primary device type[CEC MAX LOG ADDRS];
        ___u8 log_addr_type[CEC_MAX_LOG_ADDRS];
        /* CEC 2.0 */
        __u8 all_device_types[CEC_MAX_LOG ADDRS];
        __u8 features[CEC_MAX_LOG_ADDRS][12];
};
/* Allow a fallback to unregistered */
#define CEC LOG ADDRS FL ALLOW UNREG FALLBACK
                                                 (1 << 0)
/* Passthrough RC messages to the input subsystem */
#define CEC LOG ADDRS FL ALLOW RC PASSTHRU
                                                 (1 << 1)
/* CDC-Only device: supports only CDC messages */
#define CEC LOG ADDRS FL CDC ONLY
                                                 (1 << 2)
```

/**

```
* struct cec drm connector info - tells which drm connector is
 * associated with the CEC adapter.
 * @card no: drm card number
 * @connector id: drm connector ID
 */
struct cec drm connector info {
        ___u32 card no;
        u32 connector id;
};
#define CEC CONNECTOR TYPE NO CONNECTOR 0
#define CEC CONNECTOR TYPE DRM
                                         1
/**
 * struct cec connector info - tells if and which connector is
 * associated with the CEC adapter.
 * @type: connector type (if any)
 * @drm: drm connector info
 */
struct cec connector info {
        _u32 type;
        union {
                struct cec_drm connector info drm;
                u32 raw[16];
        };
};
/* Events */
/* Event that occurs when the adapter state changes */
#define CEC EVENT STATE CHANGE
                                         1
/*
 * This event is sent when messages are lost because the application
 * didn't empty the message queue in time
 */
#define CEC EVENT LOST MSGS
                                         2
#define CEC EVENT PIN CEC LOW
                                         3
#define CEC EVENT PIN CEC HIGH
                                         4
#define CEC_EVENT_PIN_HPD_LOW
                                         5
#define CEC EVENT PIN HPD HIGH
                                         6
#define CEC EVENT PIN 5V LOW
                                         7
#define CEC EVENT PIN 5V HIGH
                                         8
#define CEC EVENT FL INITIAL STATE
                                        (1 << 0)
#define CEC EVENT FL DROPPED EVENTS
                                        (1 << 1)
/**
 * struct cec event state_change - used when the CEC adapter_
\rightarrow changes state.
 * @phys addr: the current physical address
 * @log_addr_mask: the current logical address mask
```

```
* @have conn info: if non-zero, then HDMI connector information is.
→available.
        This field is only valid if CEC CAP CONNECTOR INFO is set...
 *
\rightarrow If that
 *
        capability is set and @have conn info is zero, then that,
\rightarrow indicates
 *
        that the HDMI connector device is not instantiated, either,
→because
        the HDMI driver is still configuring the device or because,
→the HDMI
 *
        device was unbound.
 */
struct cec event state change {
        ___u16 phys_addr;
         u16 log addr mask;
        ul6 have conn info;
};
/**
* struct cec event lost msgs - tells you how many messages were
→lost.
* @lost msgs: how many messages were lost.
*/
struct cec_event_lost_msgs {
        u32 lost msgs;
};
/**
 * struct cec_event - CEC event structure
* @ts: the timestamp of when the event was sent.
* @event: the event.
* array.
 * @state change: the event payload for CEC EVENT STATE CHANGE.
 * @lost msgs: the event payload for CEC EVENT LOST MSGS.
 * @raw: array to pad the union.
 */
struct cec event {
         u64 ts;
         _u32 event;
         u32 flags;
        union {
                struct cec event state change state change;
                struct cec event lost msgs lost msgs;
                u32 raw[16];
        };
};
/* ioctls */
/* Adapter capabilities */
#define CEC_ADAP_G_CAPS
                                 _IOWR('a', 0, struct cec_caps)
```

* phys addr is either 0 (if this is the CEC root device) * or a valid physical address obtained from the sink's EDID * as read by this CEC device (if this is a source device) * or a physical address obtained and modified from a sink * EDID and used for a sink CEC device. * If nothing is connected, then phys addr is 0xffff. * See HDMI 1.4b, section 8.7 (Physical Address). * The CEC ADAP S PHYS ADDR ioctl may not be available if that is, →handled * internally. */ #define CEC_ADAP_G_PHYS_ADDR __IOR('a', 1, __u16)
#define CEC_ADAP_S_PHYS_ADDR __IOW('a', 2, __u16) /* * Configure the CEC adapter. It sets the device type and which * logical types it will try to claim. It will return which * logical addresses it could actually claim. * An error is returned if the adapter is disabled or if there * is no physical address assigned. */ #define CEC ADAP G LOG ADDRS _IOR('a', 3, struct cec_log_addrs) #define CEC ADAP S LOG ADDRS IOWR('a', 4, struct cec log addrs) /* Transmit/receive a CEC command */ #define CEC_TRANSMIT __IOWR('a', 5, struct cec_msg) IOWR('a', 6, struct cec msg) #define CEC RECEIVE /* Dequeue CEC events */ IOWR('a', 7, struct cec event) #define CEC DQEVENT /* * Get and set the message handling mode for this filehandle. */ #define CEC G MODE _IOR('a', 8, __u32) IOW('a', 9, __u32) #define CEC S MODE /* Get the connector info */ #define CEC ADAP G CONNECTOR INFO IOR('a', 10, struct cec \rightarrow connector info) /* * The remainder of this header defines all CEC messages and, \rightarrow operands. * The format matters since it the cec-ctl utility parses it to, →generate * code for implementing all these messages.

* * Comments ending with 'Feature' group messages for each feature. * If messages are part of multiple features, then the "Has also" * comment is used to list the previously defined messages that are * supported by the feature. * * Before operands are defined a comment is added that gives the * name of the operand and in brackets the variable name of the * corresponding argument in the cec-funcs.h function. */ /* Messages */ /* One Touch Play Feature */ #define CEC MSG ACTIVE SOURCE 0x82 #define CEC_MSG_IMAGE VIEW ON 0x04 #define CEC_MSG_TEXT_VIEW_ON 0x0d /* Routing Control Feature */ /* * Has also: * CEC MSG ACTIVE SOURCE */ #define CEC_MSG_INACTIVE_SOURCE 0x9d #define CEC MSG REQUEST ACTIVE SOURCE 0x85 #define CEC MSG ROUTING CHANGE 0x80 #define CEC_MSG_ROUTING_INFORMATION 0x81 #define CEC MSG SET STREAM PATH 0x86 /* Standby Feature */ #define CEC MSG STANDBY 0x36 /* One Touch Record Feature */ #define CEC MSG RECORD OFF 0x0b #define CEC MSG RECORD ON 0x09 /* Record Source Type Operand (rec src type) */ #define CEC_OP_RECORD_SRC_OWN 1 2 #define CEC OP RECORD SRC DIGITAL #define CEC_OP_RECORD_SRC_ANALOG 3 #define CEC OP RECORD SRC EXT PLUG 4 #define CEC OP RECORD SRC EXT PHYS ADDR 5 /* Service Identification Method Operand (service id method) */ #define CEC OP SERVICE ID METHOD BY DIG ID 0 #define CEC_OP_SERVICE_ID_METHOD_BY_CHANNEL 1 /* Digital Service Broadcast System Operand (dig bcast system) */ #define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_GEN 0x00 #define CEC OP DIG SERVICE BCAST SYSTEM ATSC GEN 0x01 #define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_GEN 0x02 #define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_BS 0x08

<pre>#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_CS</pre>	0×09
<pre>#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ARIB_T</pre>	0x0a
<pre>#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_CABLE</pre>	0×10
<pre>#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_SAT</pre>	0x11
<pre>#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_ATSC_T</pre>	0x12
<pre>#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_C</pre>	0x18
<pre>#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_S</pre>	0x19
<pre>#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_S2</pre>	0x1a
<pre>#define CEC_OP_DIG_SERVICE_BCAST_SYSTEM_DVB_T</pre>	0x1b
<pre>/* Analogue Broadcast Type Operand (ana_bcast_type) */</pre>	
<pre>#define CEC_OP_ANA_BCAST_TYPE_CABLE</pre>	Θ
<pre>#define CEC_OP_ANA_BCAST_TYPE_SATELLITE</pre>	1
<pre>#define CEC_OP_ANA_BCAST_TYPE_TERRESTRIAL</pre>	2
/* Broadcast System Operand (bcast_system) */	
<pre>#define CEC_OP_BCAST_SYSTEM_PAL_BG</pre>	0×00
<pre>#define CEC_OP_BCAST_SYSTEM_SECAM_LQ</pre>	0x01 /* <mark>.</mark>
→SECAM L' */	
<pre>#define CEC_OP_BCAST_SYSTEM_PAL_M</pre>	0x02
<pre>#define CEC_OP_BCAST_SYSTEM_NTSC_M</pre>	0x03
#define CEC_OP_BCAST_SYSTEM_PAL_I	0×04
<pre>#define CEC_OP_BCAST_SYSTEM_SECAM_DK</pre>	0x05
<pre>#define CEC_OP_BCAST_SYSTEM_SECAM_BG</pre>	0x06
<pre>#define CEC_OP_BCAST_SYSTEM_SECAM_L</pre>	0x07
<pre>#define CEC_OP_BCAST_SYSTEM_PAL_DK</pre>	0x08
<pre>#define CEC_0P_BCAST_SYSTEM_0THER</pre>	0x1f
<pre>/* Channel Number Format Operand (channel_number_fmt)</pre>	*/
<pre>#define CEC_OP_CHANNEL_NUMBER_FMT_1_PART</pre>	0×01
<pre>#define CEC_OP_CHANNEL_NUMBER_FMT_2_PART</pre>	0x02
#define CEC_MSG_RECORD_STATUS	0x0a
<pre>/* Record Status Operand (rec_status) */</pre>	
<pre>#define CEC_OP_RECORD_STATUS_CUR_SRC</pre>	0x01
<pre>#define CEC_OP_RECORD_STATUS_DIG_SERVICE</pre>	0x02
<pre>#define CEC_OP_RECORD_STATUS_ANA_SERVICE</pre>	0x03
<pre>#define CEC_OP_RECORD_STATUS_EXT_INPUT</pre>	0x04
<pre>#define CEC_OP_RECORD_STATUS_NO_DIG_SERVICE</pre>	0x05
<pre>#define CEC_OP_RECORD_STATUS_NO_ANA_SERVICE</pre>	0x06
<pre>#define CEC_OP_RECORD_STATUS_NO_SERVICE</pre>	0x07
<pre>#define CEC_OP_RECORD_STATUS_INVALID_EXT_PLUG</pre>	0x09
<pre>#define CEC_OP_RECORD_STATUS_INVALID_EXT_PHYS_ADDR</pre>	0x0a
<pre>#define CEC_OP_RECORD_STATUS_UNSUP_CA</pre>	0x0b
<pre>#define CEC_OP_RECORD_STATUS_NO_CA_ENTITLEMENTS</pre>	0x0c
<pre>#define CEC_OP_RECORD_STATUS_CANT_COPY_SRC</pre>	0x0d
<pre>#define CEC_OP_RECORD_STATUS_NO_MORE_COPIES</pre>	0x0e
#define CEC_OP_RECORD_STATUS_NO_MEDIA	0×10
#define CEC_OP_RECORD_STATUS_PLAYING	0x11
#define CEC_OP_RECORD_STATUS_ALREADY_RECORDING	0x12
#define CEC_OP_RECORD_STATUS_MEDIA_PROT	0x13
#define CEC_OP_RECORD_STATUS_NO_SIGNAL	0×14
#define CEC_OP_RECORD_STATUS_MEDIA_PROBLEM	0x15
#define CEC_OP_RECORD_STATUS_N0_SPACE	0×16

#define CEC OP RECORD STATUS PARENTAL LOCK	0x17
<pre>#define CEC_OP_RECORD_STATUS_TERMINATED_OK</pre>	0x1a
#define CEC OP RECORD STATUS ALREADY TERM	0x1b
#define CEC OP RECORD STATUS OTHER	0x15 0x1f
#deline Cec_OP_Record_STATUS_OTHER	UXII
#define CEC MSG RECORD TV SCREEN	0x0f
	0,01
/* Timer Programming Feature */	
<pre>#define CEC_MSG_CLEAR_ANALOGUE_TIMER</pre>	0x33
/* Recording Sequence Operand (recording seq) */	
#define CEC OP REC SEQ SUNDAY	0x01
<pre>#define CEC_OP_REC_SEQ_MONDAY</pre>	0x02
<pre>#define CEC_OP_REC_SEQ_TUESDAY</pre>	0x04
<pre>#define CEC_OP_REC_SEQ_WEDNESDAY</pre>	0x08
<pre>#define CEC_OP_REC_SEQ_THURSDAY</pre>	0x10
<pre>#define CEC_OP_REC_SEQ_FRIDAY</pre>	0x20
<pre>#define CEC_OP_REC_SEQ_SATERDAY</pre>	0x40
#define CEC OP REC SEQ ONCE ONLY	0x00
	0,00
#define CEC MSG CLEAR DIGITAL TIMER	0x99
#define CEC MSG CLEAR EXT TIMER	0xal
<pre>/* External Source Specifier Operand (ext_src_spec) */</pre>	
<pre>#define CEC_OP_EXT_SRC_PLUG</pre>	0x04
#define CEC OP EXT SRC PHYS ADDR	0x05
	0703
<pre>#define CEC_MSG_SET_ANALOGUE_TIMER</pre>	0x34
#define CEC MSG SET DIGITAL TIMER	0x97
#define CEC_MSG_SET_DIGITAL_TIMER	0xa2
#deline Cec_MSG_SET_EXT_TIMER	UXdZ
<pre>#define CEC_MSG_SET_TIMER_PROGRAM_TITLE</pre>	0x67
#define CEC_MSG_TIMER_CLEARED_STATUS	0x43
/* Timer Cleared Status Data Operand (timer_cleared_stat	
<pre>#define CEC_OP_TIMER_CLR_STAT_RECORDING #define CEC_OP_TIMER_CLR_STAT_RECORDING</pre>	0x00
#define CEC_OP_TIMER_CLR_STAT_NO_MATCHING	0x01
#define CEC_OP_TIMER_CLR_STAT_NO_INFO	0x02
#define CEC_OP_TIMER_CLR_STAT_CLEARED	0x80
	0 05
#define CEC_MSG_TIMER_STATUS	0v25
<pre>/* Timer Overlap Warning Operand (timer_overlap_warning)</pre>	0x35
HALL C' CEC OD TIMED OVEDLAD MADNING NO OVEDLAD	
#define CEC OP TIMER OVERLAP WARNING NO OVERLAP	
) */ 0
#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP) */
#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP /* Media Info Operand (media_info) */) */ 0 1
<pre>#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP /* Media Info Operand (media_info) */ #define CEC_OP_MEDIA_INFO_UNPROT_MEDIA</pre>) */ 0 1 0
<pre>#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP /* Media Info Operand (media_info) */ #define CEC_OP_MEDIA_INFO_UNPROT_MEDIA #define CEC_OP_MEDIA_INFO_PROT_MEDIA</pre>) */ 0 1 0 1
<pre>#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP /* Media Info Operand (media_info) */ #define CEC_OP_MEDIA_INFO_UNPROT_MEDIA #define CEC_OP_MEDIA_INFO_PROT_MEDIA #define CEC_OP_MEDIA_INFO_NO_MEDIA</pre>) */ 0 1 0
<pre>#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP /* Media Info Operand (media_info) */ #define CEC_OP_MEDIA_INFO_UNPROT_MEDIA #define CEC_OP_MEDIA_INFO_PROT_MEDIA #define CEC_OP_MEDIA_INFO_NO_MEDIA /* Programmed Indicator Operand (prog_indicator) */</pre>) */ 0 1 0 1 2
<pre>#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP /* Media Info Operand (media_info) */ #define CEC_OP_MEDIA_INFO_UNPROT_MEDIA #define CEC_OP_MEDIA_INFO_PROT_MEDIA #define CEC_OP_MEDIA_INFO_NO_MEDIA</pre>) */ 0 1 0 1
<pre>#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP /* Media Info Operand (media_info) */ #define CEC_OP_MEDIA_INFO_UNPROT_MEDIA #define CEC_OP_MEDIA_INFO_PROT_MEDIA #define CEC_OP_MEDIA_INFO_NO_MEDIA /* Programmed Indicator Operand (prog_indicator) */</pre>) */ 0 1 0 1 2
<pre>#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP /* Media Info Operand (media_info) */ #define CEC_OP_MEDIA_INFO_UNPROT_MEDIA #define CEC_OP_MEDIA_INFO_PROT_MEDIA #define CEC_OP_MEDIA_INFO_NO_MEDIA /* Programmed Indicator Operand (prog_indicator) */ #define CEC_OP_PROG_IND_NOT_PROGRAMMED #define CEC_OP_PROG_IND_PROGRAMMED</pre>) */ 0 1 0 1 2 0
<pre>#define CEC_OP_TIMER_OVERLAP_WARNING_OVERLAP /* Media Info Operand (media_info) */ #define CEC_OP_MEDIA_INFO_UNPROT_MEDIA #define CEC_OP_MEDIA_INFO_PROT_MEDIA #define CEC_OP_MEDIA_INFO_NO_MEDIA /* Programmed Indicator Operand (prog_indicator) */ #define CEC_OP_PROG_IND_NOT_PROGRAMMED</pre>) */ 0 1 0 1 2 0

<pre>#define CEC_OP_PROG_INF0_NOT_ENOUGH_SPACE #define CEC_OP_PROG_INF0_MIGHT_NOT_BE_ENOUGH_SPACE #define CEC_OP_PROG_INF0_NONE_AVAILABLE /* Not Programmed Error Info Operand (prog_error) */</pre>	0x09 0x0b 0x0a	
<pre>#define CEC_OP_PROG_ERROR_NO_FREE_TIMER</pre>	0x01	
<pre>#define CEC_OP_PROG_ERROR_DATE_OUT_OF_RANGE</pre>	0x02	
<pre>#define CEC_OP_PROG_ERROR_REC_SEQ_ERROR</pre>	0x03	
#define CEC_OP_PROG_ERROR_INV_EXT_PLUG	0x04	
<pre>#define CEC_OP_PROG_ERROR_INV_EXT_PHYS_ADDR</pre>	0x05	
<pre>#define CEC_OP_PROG_ERROR_CA_UNSUPP</pre>	0x06	
<pre>#define CEC_OP_PROG_ERROR_INSUF_CA_ENTITLEMENTS</pre>	0x07	
<pre>#define CEC_OP_PROG_ERROR_RESOLUTION_UNSUPP</pre>	0x08	
<pre>#define CEC_0P_PROG_ERROR_PARENTAL_LOCK</pre>	0x09	
#define CEC_OP_PROG_ERROR_CLOCK_FAILURE	0x0a	
#define CEC_OP_PROG_ERROR_DUPLICATE	0x0e	
/* System Information Feature */ #define CEC_MSG_CEC_VERSION	0x9e	
/* CEC Version Operand (cec_version) */		
#define CEC OP CEC VERSION 1 3A	4	
#define CEC_OP_CEC_VERSION_1_4	5	
<pre>#define CEC_OP_CEC_VERSION_2_0</pre>	6	
	006	
<pre>#define CEC_MSG_GET_CEC_VERSION</pre>	0x9f	
#define CEC_MSG_GIVE_PHYSICAL_ADDR	0x83	
<pre>#define CEC_MSG_GET_MENU_LANGUAGE</pre>	0x91	
#define CEC_MSG_REPORT PHYSICAL ADDR	0x84	
/* Primary Device Type Operand (prim_devtype) */		
#define CEC OP PRIM DEVTYPE TV	0	
#define CEC_OP_PRIM_DEVTYPE_RECORD	1	
<pre>#define CEC_OP_PRIM_DEVTYPE_TUNER</pre>	3	
<pre>#define CEC_OP_PRIM_DEVTYPE_PLAYBACK</pre>	4	
<pre>#define CEC_OP_PRIM_DEVTYPE_AUDIOSYSTEM</pre>	5	
<pre>#define CEC_OP_PRIM_DEVTYPE_SWITCH</pre>	6	
#define CEC OP PRIM DEVTYPE PROCESSOR	7	
#define clc_of_rhin_beviire_rhocesson	1	
#define CEC MSG SET MENU LANGUAGE	0x32	
<pre>#define CEC_MSG_REPORT_FEATURES</pre>	0xa6	/* <mark>⊔</mark>
→HDMI 2.0 */		
<pre>/* All Device Types Operand (all device types) */</pre>		
#define CEC OP ALL DEVTYPE TV	0x80	
#define CEC_OP_ALL_DEVTYPE_RECORD		
	0x40	
<pre>#define CEC_OP_ALL_DEVTYPE_TUNER</pre>	0x20	
<pre>#define CEC_0P_ALL_DEVTYPE_PLAYBACK</pre>	0x10	
<pre>#define CEC_OP_ALL_DEVTYPE_AUDIOSYSTEM</pre>	0x08	
#define CEC_OP_ALL_DEVTYPE_SWITCH	0×04	
/*	-	
* And if you wondering what happened to PROCESSOR devi →should * be mapped to a SWITCH. */	.ces: tho	se <mark>u</mark>

<pre>/* Valid for RC Profile and Device Feature operands */ #define CEC_OP_FEAT_EXT →Extension bit */</pre>	0×80	/*⊔
<pre>/* RC Profile Operand (rc_profile) */ #define CEC_OP_FEAT_RC_TV_PROFILE_NONE #define CEC OP FEAT RC TV PROFILE 1</pre>	0x00 0x02	
#define CEC_OP_FEAT_RC_TV_PROFILE_2 #define CEC OP FEAT RC TV PROFILE 3	0x06 0x0a	
#define CEC_OP_FEAT_RC_TV_PROFILE_4	0x0a 0x0e	
#define CEC_OP_FEAT_RC_SRC_HAS_DEV_ROOT_MENU	0x50	
#define CEC_OP_FEAT_RC_SRC_HAS_DEV_SETUP_MENU	0x48	
#define CEC_OP_FEAT_RC_SRC_HAS_CONTENTS_MENU	0x44	
#define CEC_OP_FEAT_RC_SRC_HAS_MEDIA_TOP_MENU	0x42	
<pre>#define CEC_OP_FEAT_RC_SRC_HAS_MEDIA_CONTEXT_MENU /* Device Feature Operand (dev_features) */</pre>	0x41	
#define CEC_OP_FEAT_DEV_HAS_RECORD_TV_SCREEN	0x40	
<pre>#define CEC_OP_FEAT_DEV_HAS_SET_OSD_STRING</pre>	0x20	
<pre>#define CEC_OP_FEAT_DEV_HAS_DECK_CONTROL</pre>	0x10	
<pre>#define CEC_OP_FEAT_DEV_HAS_SET_AUDIO_RATE</pre>	0x08	
<pre>#define CEC_OP_FEAT_DEV_SINK_HAS_ARC_TX #define CEC_OP_FEAT_DEV_COUPCE_HAC_APC_PX</pre>	0x04	
<pre>#define CEC_OP_FEAT_DEV_SOURCE_HAS_ARC_RX</pre>	0x02	
#define CEC_MSG_GIVE_FEATURES →HDMI 2.0 */	0xa5	/* <mark>u</mark>
/* Deck Control Feature */ #define CEC_MSG_DECK_CONTROL /* Deck Control Mode Operand (deck control mode) */	0x42	
#define CEC OP DECK CTL MODE SKIP FWD	1	
#define CEC OP DECK CTL MODE SKIP REV	2	
<pre>#define CEC_OP_DECK_CTL_MODE_STOP</pre>	3	
#define CEC_OP_DECK_CTL_MODE_EJECT	4	
#define CEC_MSG_DECK_STATUS /* Deck Info Operand (deck_info) */	0x1b	
#define CEC_OP_DECK_INF0_PLAY	0x11	
<pre>#define CEC_OP_DECK_INF0_RECORD</pre>	0x12	
<pre>#define CEC_OP_DECK_INF0_PLAY_REV</pre>	0x13	
<pre>#define CEC_OP_DECK_INF0_STILL</pre>	0x14	
<pre>#define CEC_OP_DECK_INF0_SLOW</pre>	0x15	
<pre>#define CEC_OP_DECK_INF0_SLOW_REV #define CEC_OP_DECK_INF0_SLOW_REV</pre>	0x16	
#define CEC_OP_DECK_INFO_FAST_FWD	0x17	
#define CEC_OP_DECK_INFO_FAST_REV	0x18 0x10	
#define CEC_OP_DECK_INFO_NO_MEDIA #define CEC OP DECK INFO STOP	0x19 0x1a	
#define CEC_OP_DECK_INFO_STOP #define CEC_OP_DECK_INFO_STOP	0x1a 0x1b	
#define CEC_OP_DECK_INFO_SKIP_FWD #define CEC_OP_DECK_INFO_SKIP_REV	0x10 0x1c	
#define CEC_OP_DECK_INFO_INDEX_SEARCH_FWD	0x1c 0x1d	
#define CEC OP DECK INFO INDEX SEARCH REV	0x1e	
#define CEC_OP_DECK_INF0_OTHER	0x1f	

```
#define CEC MSG GIVE DECK STATUS
                                                         0x1a
/* Status Request Operand (status reg) */
#define CEC OP STATUS REQ ON
                                                         1
#define CEC_OP_STATUS_REQ_OFF
                                                         2
                                                         3
#define CEC OP STATUS REQ ONCE
#define CEC MSG PLAY
                                                         0x41
/* Play Mode Operand (play mode) */
#define CEC OP PLAY MODE PLAY FWD
                                                         0x24
#define CEC OP PLAY MODE PLAY REV
                                                         0x20
#define CEC OP PLAY MODE PLAY STILL
                                                         0x25
#define CEC OP PLAY MODE PLAY FAST FWD MIN
                                                         0x05
#define CEC_OP_PLAY_MODE_PLAY_FAST_FWD_MED
                                                         0x06
#define CEC OP PLAY MODE PLAY FAST FWD MAX
                                                         0x07
#define CEC OP PLAY MODE PLAY FAST REV MIN
                                                         0x09
#define CEC OP PLAY MODE PLAY FAST REV MED
                                                         0x0a
#define CEC OP PLAY MODE PLAY FAST REV MAX
                                                         0x0b
#define CEC OP PLAY MODE PLAY SLOW FWD MIN
                                                         0x15
#define CEC OP PLAY MODE PLAY SLOW FWD MED
                                                         0x16
#define CEC OP PLAY MODE PLAY SLOW FWD MAX
                                                         0x17
#define CEC_OP_PLAY_MODE_PLAY_SLOW_REV_MIN
                                                         0x19
#define CEC OP PLAY MODE PLAY SLOW REV MED
                                                         0x1a
#define CEC OP PLAY MODE PLAY SLOW REV MAX
                                                         0x1b
/* Tuner Control Feature */
#define CEC MSG GIVE TUNER DEVICE STATUS
                                                         0x08
#define CEC MSG SELECT ANALOGUE SERVICE
                                                         0x92
#define CEC MSG SELECT DIGITAL SERVICE
                                                         0x93
#define CEC MSG TUNER DEVICE STATUS
                                                         0x07
/* Recording Flag Operand (rec flag) */
#define CEC OP REC FLAG NOT USED
                                                         0
#define CEC OP REC FLAG USED
                                                         1
/* Tuner Display Info Operand (tuner display info) */
#define CEC OP TUNER DISPLAY INFO DIGITAL
                                                         0
#define CEC_OP_TUNER_DISPLAY_INFO_NONE
                                                         1
#define CEC_OP_TUNER_DISPLAY_INFO_ANALOGUE
                                                         2
#define CEC_MSG_TUNER_STEP_DECREMENT
                                                         0x06
#define CEC MSG TUNER STEP INCREMENT
                                                         0x05
/* Vendor Specific Commands Feature */
/*
 * Has also:
 *
        CEC MSG CEC VERSION
 *
        CEC_MSG_GET_CEC_VERSION
 */
#define CEC MSG DEVICE VENDOR ID
                                                         0x87
#define CEC MSG GIVE DEVICE VENDOR ID
                                                         0x8c
#define CEC_MSG_VENDOR_COMMAND
                                                         0x89
```

<pre>#define CEC_MSG_VENDOR_COMMAND_WITH_ID</pre>	0xa0
<pre>#define CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN</pre>	0x8a
#define CEC_MSG_VENDOR_REMOTE_BUTTON_UP	0x8b
(* OCD Display Fasture */	
<pre>/* OSD Display Feature */ #define CFC MSC SET OSD STDINC</pre>	0x64
<pre>#define CEC_MSG_SET_OSD_STRING (* Display Control Operand (display) */</pre>	0X04
<pre>/* Display Control Operand (disp_ctl) */ #define CFC OP DISP CTL DFFAULT</pre>	000
#define CEC_OP_DISP_CTL_DEFAULT	0×00
#define CEC_OP_DISP_CTL_UNTIL_CLEARED	0x40
#define CEC_OP_DISP_CTL_CLEAR	0x80
/* Device OSD Transfer Feature */	
#define CEC MSG GIVE OSD NAME	0x46
#define CEC_MSG_SET_OSD_NAME	0×40 0×47
#deline cec_hsd_sel_osd_name	0.47
/* Device Menu Control Feature */	
#define CEC MSG MENU REQUEST	0x8d
/* Menu Request Type Operand (menu req) */	onou
#define CEC OP MENU REQUEST ACTIVATE	0x00
#define CEC_OP_MENU_REQUEST_DEACTIVATE	0x01
#define CEC OP MENU REQUEST QUERY	0x01
	0702
#define CEC MSG MENU STATUS	0x8e
/* Menu State Operand (menu_state) */	
#define CEC_OP_MENU_STATE_ACTIVATED	0x00
#define CEC OP MENU STATE DEACTIVATED	0x01
	•
#define CEC MSG USER CONTROL PRESSED	0x44
/* UI Command Operand (ui_cmd) */	
#define CEC_OP_UI_CMD_SELECT	0x00
#define CEC_OP_UI_CMD_UP	0x01
#define CEC_OP_UI_CMD_DOWN	0x02
#define CEC_OP_UI_CMD_LEFT	0x03
#define CEC_OP_UI_CMD_RIGHT	0x04
#define CEC_OP_UI_CMD_RIGHT_UP	0x05
#define CEC_OP_UI_CMD_RIGHT_DOWN	0x06
#define CEC_OP_UI_CMD_LEFT_UP	0x07
#define CEC OP UI CMD LEFT DOWN	0x08
#define CEC OP UI CMD DEVICE ROOT MENU	0x09
#define CEC OP UI CMD DEVICE SETUP MENU	0x0a
<pre>#define CEC_OP_UI_CMD_CONTENTS_MENU</pre>	0x0b
#define CEC OP UI CMD FAVORITE MENU	0x0c
#define CEC OP UI CMD BACK	0x0d
#define CEC OP UI CMD MEDIA TOP MENU	0x10
#define CEC OP UI CMD MEDIA CONTEXT SENSITIVE MENU	0x11
#define CEC OP UI CMD NUMBER ENTRY MODE	0x1d
#define CEC OP UI CMD NUMBER 11	0x1e
#define CEC_OP_UI_CMD_NUMBER_12	0x10
#define CEC OP UI CMD NUMBER 0 OR NUMBER 10	0x20
#define CEC OP UI CMD NUMBER 1	0x20 0x21
#define CEC OP UI CMD NUMBER 2	0x21
	57722

#define CEC_OP_UI_CMD_NUMBER_3 0x23 #define CEC_OP_UI_CMD_NUMBER_4 0x24 #define CEC_OP_UI_CMD_NUMBER_5 0x25 #define CEC_OP_UI_CMD_NUMBER_6 0x26 #define CEC_OP_UI_CMD_NUMBER_8 0x28 #define CEC_OP_UI_CMD_NUMBER_9 0x22 #define CEC_OP_UI_CMD_NUMBER_9 0x28 #define CEC_OP_UI_CMD_ENTER 0x24 #define CEC_OP_UI_CMD_CLAR 0x25 #define CEC_OP_UI_CMD_CHANNEL_UP 0x30 #define CEC_OP_UI_CMD_CHANNEL_UP 0x33 #define CEC_OP_UI_CMD_CHANNEL_ONN 0x31 #define CEC_OP_UI_CMD_PREVIOUS_CHANNEL 0x32 #define CEC_OP_UI_CMD_SOUND_SELECT 0x33 #define CEC_OP_UI_CMD_DAGE_UP 0x36 #define CEC_OP_UI_CMD_PAGE_UP 0x36 #define CEC_OP_UI_CMD_PAGE_UP 0x37 #define CEC_OP_UI_CMD_PAGE_UP 0x38 #define CEC_OP_UI_CMD_PAGE_UP 0x44 #define CEC_OP_UI_CMD_PAGE_UP 0x43 #define CEC_OP_UI_CMD_PAGE_UP 0x43 #define CEC_OP_UI_CMD_PAGE_UP 0x44 #define CEC_OP_UI_CMD_PAGE_UP 0x44 #define CEC_OP_UI_CMD_PAGE_UP 0x44				
#define CEC_OP_UI_CMD_NUMBER_5 0x25 #define CEC_OP_UI_CMD_NUMBER_6 0x26 #define CEC_OP_UI_CMD_NUMBER_7 0x27 #define CEC_OP_UI_CMD_NUMBER_8 0x28 #define CEC_OP_UI_CMD_NUMBER_9 0x22 #define CEC_OP_UI_CMD_ENTER 0x2b #define CEC_OP_UI_CMD_CLEAR 0x2c #define CEC_OP_UI_CMD_CHANNEL_UP 0x30 #define CEC_OP_UI_CMD_CHANNEL_UP 0x33 #define CEC_OP_UI_CMD_CHANNEL_UP 0x33 #define CEC_OP_UI_CMD_CHANNEL_OWN 0x31 #define CEC_OP_UI_CMD_DREVIOUS_CHANNEL 0x32 #define CEC_OP_UI_CMD_DISPLAY_INFORMATION 0x35 #define CEC_OP_UI_CMD_PAGE_DOWN 0x38 #define CEC_OP_UI_CMD_PAGE_DOWN 0x38 #define CEC_OP_UI_CMD_VOLUME_DOWN 0x42 #define CEC_OP_UI_CMD_PAGE_DOWN 0x43 #define CEC_OP_UI_CMD_VOLUME_DOWN 0x44 #define CEC_OP_UI_CMD_PAGE_DOWN 0x44 <td></td> <td></td> <td></td> <td>0x23</td>				0x23
#define CEC_OP_UI_CMD_NUMBER_6 0x26 #define CEC_OP_UI_CMD_NUMBER_7 0x27 #define CEC_OP_UI_CMD_NUMBER_8 0x28 #define CEC_OP_UI_CMD_DOT 0x2a #define CEC_OP_UI_CMD_ENTER 0x2b #define CEC_OP_UI_CMD_CLEAR 0x2c #define CEC_OP_UI_CMD_CHANNEL_UP 0x30 #define CEC_OP_UI_CMD_CHANNEL_DOWN 0x31 #define CEC_OP_UI_CMD_CHANNEL_DOWN 0x31 #define CEC_OP_UI_CMD_DREVIOUS_CHANNEL 0x32 #define CEC_OP_UI_CMD_DISPLAY_INFORMATION 0x35 #define CEC_OP_UI_CMD_PAGE_UP 0x36 #define CEC_OP_UI_CMD_POWER 0x40 #define CEC_OP_UI_CMD_PAGE_UP 0x41 #define CEC_OP_UI_CMD_PAGE_UP 0x42 #define CEC_OP_UI_CMD_PAGE_UP 0x42 #define CEC_OP_UI_CMD_PAGE_UP 0x44 #define CEC_OP_UI_CMD_PAGE_UP 0x43 #define CEC_OP_UI_CMD_PAGE_UP 0x43 #			—	
#define CEC_OP_UI_CMD_NUMBER_7 0x27 #define CEC_OP_UI_CMD_NUMBER_8 0x28 #define CEC_OP_UI_CMD_DOT 0x2a #define CEC_OP_UI_CMD_ENTER 0x2b #define CEC_OP_UI_CMD_ENTER 0x2c #define CEC_OP_UI_CMD_CHANEL_UP 0x33 #define CEC_OP_UI_CMD_CHANNEL_UP 0x33 #define CEC_OP_UI_CMD_CHANNEL_DOWN 0x31 #define CEC_OP_UI_CMD_TREVIOUS_CHANNEL 0x32 #define CEC_OP_UI_CMD_INPUT_SELECT 0x33 #define CEC_OP_UI_CMD_PAGE_UP 0x36 #define CEC_OP_UI_CMD_PAGE_ODWN 0x33 #define CEC_OP_UI_CMD_PAGE_ODWN 0x42 #define CEC_OP_UI_CMD_VOLUME_UP 0x41 #define CEC_OP_UI_CMD_PAGE 0x44 #define CEC_OP_UI_CMD_PLAY 0x44 #define CEC_OP_UI_CMD_PLAY 0x44 #define CEC_OP_UI_CMD_PLAY 0x44 #define CEC_OP_UI_CMD_PLAY 0x44 #define			—	0x25
#define CEC_OP_UI_CMD_NUMBER_8 0x28 #define CEC_OP_UI_CMD_NUMBER_9 0x29 #define CEC_OP_UI_CMD_ENTER 0x2b #define CEC_OP_UI_CMD_CLEAR 0x2c #define CEC_OP_UI_CMD_CLEAR 0x2c #define CEC_OP_UI_CMD_CHANNEL_UP 0x30 #define CEC_OP_UI_CMD_CHANNEL_DOWN 0x31 #define CEC_OP_UI_CMD_CMANNEL_DOWN 0x33 #define CEC_OP_UI_CMD_DSELECT 0x33 #define CEC_OP_UI_CMD_DAGE_DP 0x37 #define CEC_OP_UI_CMD_PAGE_UP 0x37 #define CEC_OP_UI_CMD_PAGE_DOWN 0x42 #define CEC_OP_UI_CMD_VOLUME_UP 0x41 #define CEC_OP_UI_CMD_VOLUME_DOWN 0x42 #define CEC_OP_UI_CMD_VOLUME_DOWN 0x42 #define CEC_OP_UI_CMD_VOLUME_UP 0x44 #define CEC_OP_UI_CMD_STOP 0x45 #define CEC_OP_UI_CMD_STOP 0x45 #define CEC_OP_UI_CMD_FAST_FORWARD 0x46 #defin				0x26
#define CEC_OP_UI_CMD_NUMBER_9 0x29 #define CEC_OP_UI_CMD_DOT 0x2a #define CEC_OP_UI_CMD_ENTER 0x2b #define CEC_OP_UI_CMD_ENTER 0x2c #define CEC_OP_UI_CMD_ELEAR 0x2c #define CEC_OP_UI_CMD_CHANNEL_UP 0x30 #define CEC_OP_UI_CMD_PREVIOUS_CHANNEL 0x32 #define CEC_OP_UI_CMD_SOUND_SELECT 0x33 #define CEC_OP_UI_CMD_PAELP 0x36 #define CEC_OP_UI_CMD_PAGE_UP 0x37 #define CEC_OP_UI_CMD_PAGE_DOWN 0x38 #define CEC_OP_UI_CMD_POWER 0x40 #define CEC_OP_UI_CMD_VOLUME_UP 0x41 #define CEC_OP_UI_CMD_PAUSE 0x44 #define CEC_OP_UI_CMD_PAUSE 0x44 #define CEC_OP_UI_CMD_PAUSE 0x44 #define CEC_OP_UI_CMD_PAUSE 0x44 #define CEC_OP_UI_CMD_FAST_FORWARD 0x44 #define CEC_OP_UI_CMD_SKIP_FORWARD 0x44 #define	#define	CEC_OP_UI_CMD_NUMB	ER_7	0x27
#define CEC_OP_UI_CMD_DOT 0x2a #define CEC_OP_UI_CMD_ENTER 0x2c #define CEC_OP_UI_CMD_ENTER 0x2c #define CEC_OP_UI_CMD_ENTER 0x2c #define CEC_OP_UI_CMD_NEXT_FAVORITE 0x2f #define CEC_OP_UI_CMD_CHANNEL_UP 0x30 #define CEC_OP_UI_CMD_CHANNEL_DOWN 0x31 #define CEC_OP_UI_CMD_SOUND_SELECT 0x33 #define CEC_OP_UI_CMD_DAGE_UP 0x36 #define CEC_OP_UI_CMD_PAGE_DOWN 0x35 #define CEC_OP_UI_CMD_PAGE_DOWN 0x38 #define CEC_OP_UI_CMD_PAGE_DOWN 0x34 #define CEC_OP_UI_CMD_VOLUME_UP 0x41 #define CEC_OP_UI_CMD_VOLUME_DOWN 0x42 #define CEC_OP_UI_CMD_STOP 0x44 #define CEC_OP_UI_CMD_REVIND 0x44 #define CEC_OP_UI_CMD_SAST_FORWARD 0x44 #define CEC_OP_UI_CMD_SAST_FORWARD 0x44 #define CEC_OP_UI_CMD_SAST_FORWARD 0x44	#define	CEC_OP_UI_CMD_NUMB	ER_8	0x28
#defineCEC_OP_UI_CMD_ENTER0x2b#defineCEC_OP_UI_CMD_CLEAR0x2c#defineCEC_OP_UI_CMD_CLEAR0x2c#defineCEC_OP_UI_CMD_CLANNEL_UP0x30#defineCEC_OP_UI_CMD_CHANNEL_DP0x31#defineCEC_OP_UI_CMD_PREVIOUS_CHANNEL0x32#defineCEC_OP_UI_CMD_PREVIOUS_CHANNEL0x33#defineCEC_OP_UI_CMD_DND_SELECT0x34#defineCEC_OP_UI_CMD_DISPLAY_INFORMATION0x35#defineCEC_OP_UI_CMD_PAGE_UP0x36#defineCEC_OP_UI_CMD_PAGE_DOWN0x38#defineCEC_OP_UI_CMD_PAGE_DOWN0x41#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_PAGE_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_PAGE0x44#defineCEC_OP_UI_CMD_PAUSE0x44#defineCEC_OP_UI_CMD_PAUSE0x46#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_SKIP_FORWARD0x42#defineCEC_OP_UI_CMD_SKIP_FORWARD0x42#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_SELECT_BOADACAST_TYPE0x55#defineCEC_OP_UI_CMD_SELECT_BOADACAST_TYPE0x55#defineCEC_OP_UI_CMD_SELECT_BOADACAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_BOADACAST_TYPE0x56#define<	#define	CEC_OP_UI_CMD_NUMB	ER_9	0x29
#defineCEC_OP_UI_CMD_CLEAR0x2c#defineCEC_OP_UI_CMD_NEXT_FAVORITE0x2f#defineCEC_OP_UI_CMD_CHANNEL_UP0x30#defineCEC_OP_UI_CMD_CHANNEL_DOWN0x31#defineCEC_OP_UI_CMD_PREVIOUS_CHANNEL0x32#defineCEC_OP_UI_CMD_SOUND_SELECT0x33#defineCEC_OP_UI_CMD_INPUT_SELECT0x34#defineCEC_OP_UI_CMD_PRAGE_UP0x35#defineCEC_OP_UI_CMD_PAGE_DOWN0x38#defineCEC_OP_UI_CMD_POWER0x40#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x43#defineCEC_OP_UI_CMD_VOLUME_DOWN0x44#defineCEC_OP_UI_CMD_PAUSE0x46#defineCEC_OP_UI_CMD_ROVEND0x44#defineCEC_OP_UI_CMD_ROVEND0x47#defineCEC_OP_UI_CMD_ROVEND0x48#defineCEC_OP_UI_CMD_STOP0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x42#defineCEC_OP_UI_CMD_SUP_ARCWARD0x42#defineCEC_OP_UI_CMD_SUP_ARCWARD0x42#defineCEC_OP_UI_CMD_SUP_ARCWARD0x42#defineCEC_OP_UI_CMD_SUP_ARCWARD0x53#defineCEC_OP_UI_CMD_SUP_ARCWARD0x55	#define	CEC OP UI CMD DOT	_	0x2a
#defineCEC_OP_UI_CMD_NEXT_FAVORITE0x2f#defineCEC_OP_UI_CMD_CHANNEL_UP0x30#defineCEC_OP_UI_CMD_CHANNEL_DOWN0x31#defineCEC_OP_UI_CMD_PREVIOUS_CHANNEL0x32#defineCEC_OP_UI_CMD_NEVIOUS_CHANNEL0x33#defineCEC_OP_UI_CMD_INPUT_SELECT0x33#defineCEC_OP_UI_CMD_DISPLAY_INFORMATION0x35#defineCEC_OP_UI_CMD_PAGE_UP0x36#defineCEC_OP_UI_CMD_PAGE_DOWN0x38#defineCEC_OP_UI_CMD_PAGE_DOWN0x40#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_TOP0x44#defineCEC_OP_UI_CMD_TOP0x44#defineCEC_OP_UI_CMD_TOP0x44#defineCEC_OP_UI_CMD_TOP0x44#defineCEC_OP_UI_CMD_FAST_FORWARD0x44#defineCEC_OP_UI_CMD_FAST_FORWARD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_FAST_FORWARD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x46#defineCEC_OP_UI_CMD_STOP_RECORD0x42#defineCEC_OP_UI_CMD_STOP_RECORD0x42#defineCEC_OP_UI_CMD_STOP_RECORD0x42#defineCEC_OP_UI_CMD_STOP_RECORD0x45#defineCEC_OP_UI_CMD_STOP_RECORD0x46#defineCEC_OP_UI_CMD_STO	#define	CEC OP UI CMD ENTE	R	0x2b
#defineCEC_OP_UI_CMD_NEXT_FAVORITE0x2f#defineCEC_OP_UI_CMD_CHANNEL_UP0x30#defineCEC_OP_UI_CMD_CHANNEL_DOWN0x31#defineCEC_OP_UI_CMD_PREVIOUS_CHANNEL0x32#defineCEC_OP_UI_CMD_NEVIOUS_CHANNEL0x33#defineCEC_OP_UI_CMD_INPUT_SELECT0x33#defineCEC_OP_UI_CMD_DISPLAY_INFORMATION0x35#defineCEC_OP_UI_CMD_PAGE_UP0x36#defineCEC_OP_UI_CMD_PAGE_DOWN0x38#defineCEC_OP_UI_CMD_PAGE_DOWN0x40#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_TOP0x44#defineCEC_OP_UI_CMD_TOP0x44#defineCEC_OP_UI_CMD_TOP0x44#defineCEC_OP_UI_CMD_TOP0x44#defineCEC_OP_UI_CMD_FAST_FORWARD0x44#defineCEC_OP_UI_CMD_FAST_FORWARD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_FAST_FORWARD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x46#defineCEC_OP_UI_CMD_STOP_RECORD0x42#defineCEC_OP_UI_CMD_STOP_RECORD0x42#defineCEC_OP_UI_CMD_STOP_RECORD0x42#defineCEC_OP_UI_CMD_STOP_RECORD0x45#defineCEC_OP_UI_CMD_STOP_RECORD0x46#defineCEC_OP_UI_CMD_STO	#define	CECOPUICMDCLEA	R	0x2c
#defineCEC_OP_UI_CMD_CHANNEL_UP0x30#defineCEC_OP_UI_CMD_CHANNEL_DOWN0x31#defineCEC_OP_UI_CMD_PREVIOUS_CHANNEL0x32#defineCEC_OP_UI_CMD_DOND_SELECT0x33#defineCEC_OP_UI_CMD_INPUT_SELECT0x34#defineCEC_OP_UI_CMD_DISPLAY_INFORMATION0x35#defineCEC_OP_UI_CMD_HELP0x36#defineCEC_OP_UI_CMD_PAGE_UP0x37#defineCEC_OP_UI_CMD_PAGE_DOWN0x38#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x44#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_REVIND0x48#defineCEC_OP_UI_CMD_REVIND0x48#defineCEC_OP_UI_CMD_FAST_FORWARD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_SUB_PICTURE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_SUB_PICTURE0x52#defineCEC_OP_UI_CMD_SUB_PICTURE0x53#defineCEC_OP_UI_CMD_SUB_PICTURE0x53#defineCEC_OP_UI_CMD_SUB_PICTURE0x53#defineCEC_OP_UI_CMD_SUB_PICTURE0x56#defineCEC_OP_UI_CMD_SUB_PICT				0x2f
#defineCEC_OP_UI_CMD_CHANNEL_DOWN0x31#defineCEC_OP_UI_CMD_PREVIOUS_CHANNEL0x32#defineCEC_OP_UI_CMD_SOUND_SELECT0x33#defineCEC_OP_UI_CMD_INPUT_SELECT0x34#defineCEC_OP_UI_CMD_DISPLAY_INFORMATION0x35#defineCEC_OP_UI_CMD_PAGE_UP0x37#defineCEC_OP_UI_CMD_PAGE_DOWN0x38#defineCEC_OP_UI_CMD_PAGE_DOWN0x44#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x44#defineCEC_OP_UI_CMD_VOLUME_DOWN0x44#defineCEC_OP_UI_CMD_PAUSE0x44#defineCEC_OP_UI_CMD_RECORD0x45#defineCEC_OP_UI_CMD_RECORD0x44#defineCEC_OP_UI_CMD_FAST_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x44#defineCEC_OP_UI_CMD_SKIP_RECORD0x44#defineCEC_OP_UI_CMD_SUB_RECORD0x44#defineCEC_OP_UI_CMD_SUB_RECORD0x45#defineCEC_OP_UI_CMD_SUB_RECORD0x45#defineCEC_OP_UI_CMD_SUB_RECORD0x52#defineCEC_OP_UI_CMD_SUB_RECORD0x53#defineCEC_OP_UI_CMD_SUB_RECORD_FUNCTION0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#def				0x30
#defineCEC_OP_UI_CMD_PREVIOUS_CHANNEL0x32#defineCEC_OP_UI_CMD_SOUND_SELECT0x33#defineCEC_OP_UI_CMD_INPUT_SELECT0x34#defineCEC_OP_UI_CMD_DISPLAY_INFORMATION0x35#defineCEC_OP_UI_CMD_HELP0x36#defineCEC_OP_UI_CMD_PAGE_UP0x37#defineCEC_OP_UI_CMD_POWER0x40#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x44#defineCEC_OP_UI_CMD_VOLUME_DOWN0x44#defineCEC_OP_UI_CMD_TOP0x45#defineCEC_OP_UI_CMD_RAUSE0x46#defineCEC_OP_UI_CMD_REVIND0x48#defineCEC_OP_UI_CMD_ESCT0x47#defineCEC_OP_UI_CMD_ESTP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SUB_PICTURE0x50#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_SUB_PICTURE0x52#defineCEC_OP_UI_CMD_SUB_PICTURE0x52#defineCEC_OP_UI_CMD_ANGLE0x52#defineCEC_OP_UI_CMD_SUB_PICTURE0x53#defineCEC_OP_UI_CMD_SUB_PICTURE0x56#defineCEC_OP_UI_CMD_SUB_PICTURE0x56#defineCEC_OP_UI_CMD_SUB_CRIDFIION0x			-	
#defineCEC_OP_UI_CMD_SOUND_SELECT0x33#defineCEC_OP_UI_CMD_INPUT_SELECT0x34#defineCEC_OP_UI_CMD_DISPLAY_INFORMATION0x35#defineCEC_OP_UI_CMD_PAGE_UP0x37#defineCEC_OP_UI_CMD_PAGE_DOWN0x38#defineCEC_OP_UI_CMD_POWER0x40#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x43#defineCEC_OP_UI_CMD_VOLUME_DOWN0x44#defineCEC_OP_UI_CMD_PAUSE0x44#defineCEC_OP_UI_CMD_RECORD0x45#defineCEC_OP_UI_CMD_RECORD0x44#defineCEC_OP_UI_CMD_REVIND0x48#defineCEC_OP_UI_CMD_EJECT0x4a#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_ANGLE0x51#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x52#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x55#defineCEC_OP_UI_CMD_ANGLE0x56#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x55#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x55#defineCEC_OP_UI_CMD_ANDIO_DESCRIPTION0x56#defineCEC_OP_UI_CMD_ANDIO_DESCRIPTION0x56#defineCEC_OP_UI_CMD_A			-	
#defineCEC_OP_UI_CMD_INPUT_SELECT0x34#defineCEC_OP_UI_CMD_DISPLAY_INFORMATION0x35#defineCEC_OP_UI_CMD_HELP0x36#defineCEC_OP_UI_CMD_PAGE_UP0x37#defineCEC_OP_UI_CMD_POWER0x40#defineCEC_OP_UI_CMD_POWER0x41#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VUTE0x43#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_REVEND0x45#defineCEC_OP_UI_CMD_REVEND0x44#defineCEC_OP_UI_CMD_REVEND0x44#defineCEC_OP_UI_CMD_REVEND0x44#defineCEC_OP_UI_CMD_REVEND0x44#defineCEC_OP_UI_CMD_REVEND0x44#defineCEC_OP_UI_CMD_REVEND0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_ANGLE0x51#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_TINER_PROGRAMING0x52#defineCEC_OP_UI_CMD_TINER_PROGRAMING0x55#defineCEC_OP_UI_CMD_ANDIO_DESCRIPTION0x56#defineCEC_OP_UI_CMD_ANDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_ANDIO_DESCRIPTION0x56<			—	
#define CEC_OP_UI_CMD_DISPLAY_INFORMATION 0x35 #define CEC_OP_UI_CMD_HELP 0x36 #define CEC_OP_UI_CMD_PAGE_UP 0x37 #define CEC_OP_UI_CMD_PAGE_DOWN 0x38 #define CEC_OP_UI_CMD_PAGE_DOWN 0x40 #define CEC_OP_UI_CMD_VOLUME_UP 0x41 #define CEC_OP_UI_CMD_VOLUME_DOWN 0x42 #define CEC_OP_UI_CMD_VOLUME_DOWN 0x442 #define CEC_OP_UI_CMD_VOLUME_DOWN 0x444 #define CEC_OP_UI_CMD_STOP 0x444 #define CEC_OP_UI_CMD_RECORD 0x47 #define CEC_OP_UI_CMD_REWIND 0x48 #define CEC_OP_UI_CMD_SKIP_FORWARD 0x44 #define CEC_OP_UI_CMD_SKIP_BACKWARD 0x44 #define CEC_OP_UI_CMD_SKIP_BACKWARD 0x44 #define CEC_OP_UI_CMD_SKIP_BACKWARD 0x44 #define CEC_OP_UI_CMD_SUB_PICTURE 0x51 #define CEC_OP_UI_CMD_SUB_PICTURE 0x52 #define CEC_OP_UI_CMD_SELECT_BONADCAST_TYPE <td< td=""><td></td><td></td><td>—</td><td></td></td<>			—	
#defineCEC_OP_UI_CMD_HELP0x36#defineCEC_OP_UI_CMD_PAGE_UP0x37#defineCEC_OP_UI_CMD_PAGE_DOWN0x38#defineCEC_OP_UI_CMD_POWER0x40#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x44#defineCEC_OP_UI_CMD_VOLUME_DOWN0x44#defineCEC_OP_UI_CMD_STOP0x45#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_REST_FORWARD0x48#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_STOP_RECORD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x52#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x58#defineCEC_OP_UI_CMD_SUB_PLAY_FUNCTION0x58#defineCEC_OP_UI_CMD_AUDID_DESCRIPTION0x58#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x58#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x61 <trr< td=""><td></td><td></td><td>—</td><td></td></trr<>			—	
#defineCEC_OP_UI_CMD_PAGE_UP0x37#defineCEC_OP_UI_CMD_PAGE_DOWN0x38#defineCEC_OP_UI_CMD_PAGE_DOWN0x40#defineCEC_OP_UI_CMD_POWER0x41#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_MUTE0x43#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_PAUSE0x46#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_FAST_FORWARD0x48#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x42#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x42#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x42#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_BONDCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#def			-	
#defineCEC_OP_UI_CMD_PAGE_DOWN0x38#defineCEC_OP_UI_CMD_POWER0x40#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x43#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_STOP0x45#defineCEC_OP_UI_CMD_PAUSE0x46#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_FAST_FORWARD0x48#defineCEC_OP_UI_CMD_EJECT0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x42#defineCEC_OP_UI_CMD_SKIP_FORWARD0x42#defineCEC_OP_UI_CMD_SKIP_FORWARD0x42#defineCEC_OP_UI_CMD_SKIP_FORWARD0x42#defineCEC_OP_UI_CMD_SKIP_FORWARD0x52#defineCEC_OP_UI_CMD_SKIP_FORWARD0x52#defineCEC_OP_UI_CMD_SKIP_FORWARD0x52#defineCEC_OP_UI_CMD_SKIP_FORWARD0x52#defineCEC_OP_UI_CMD_SKIP_FORWARD0x52#defineCEC_OP_UI_CMD_SKIP_FORWARD0x52#defineCEC_OP_UI_CMD_SKIP_FORWARD0x52#defineCEC_OP_UI_CMD_SKIP_FORWARD0x53#defineCEC_OP_UI_CMD_SKIP_FO				
#defineCEC_OP_UI_CMD_POWER0x40#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_VOLUME_DOWN0x43#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_PAUSE0x45#defineCEC_OP_UI_CMD_PAUSE0x46#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_EAST_FORWARD0x49#defineCEC_OP_UI_CMD_ESCT0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x42#defineCEC_OP_UI_CMD_SKIP_FORWARD0x42#defineCEC_OP_UI_CMD_SKIP_FORWARD0x42#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x50#defineCEC_OP_UI_CMD_SKIP_FORWARD0x51#defineCEC_OP_UI_CMD_SKIP_FORWARD0x52#defineCEC_OP_UI_CMD_SKIP_FORWARD0x52#defineCEC_OP_UI_CMD_SKIP_FORWARD0x52#defineCEC_OP_UI_CMD_SKIP_FORWARD0x53#defineCEC_OP_UI_CMD_SKIP_FORMARD0x52#defineCEC_OP_UI_CMD_SKIP_FORMARD0x53#defineCEC_OP_UI_CMD_SKIP_FORMARD0x55#defineCEC_OP_UI_CMD_SKIP				
#defineCEC_OP_UI_CMD_VOLUME_UP0x41#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_MUTE0x43#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_STOP0x45#defineCEC_OP_UI_CMD_PAUSE0x46#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_RECORD0x44#defineCEC_OP_UI_CMD_RETFORWARD0x48#defineCEC_OP_UI_CMD_EJECT0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x42#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x42#defineCEC_OP_UI_CMD_TANGLE0x51#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x52#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x53#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_ANDL0x57#defineCEC_OP_UI_CMD_ANDL0x57#defineCEC_OP_UI_CMD_ANDL0x56#defineCEC_OP_UI_CMD_ANDL0x56#defineCEC_OP_UI_CMD_ANDL0x58#defineCEC_OP_UI_CMD_ANDL0x58#defineCEC_OP_UI_CMD_ANDL0x58 <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
#defineCEC_OP_UI_CMD_VOLUME_DOWN0x42#defineCEC_OP_UI_CMD_MUTE0x43#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_PAUSE0x45#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_REWIND0x48#defineCEC_OP_UI_CMD_EJECT0x49#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x46#defineCEC_OP_UI_CMD_NUSE_RECORD0x44#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x52#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x53#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x56#defineCEC_OP_UI_CMD_ANDL0x57#defineCEC_OP_UI_CMD_ANDL0x58#defineCEC_OP_UI_CMD_ANDL0x58#defineCEC_OP_UI_CMD_ANDL0x58#defineCEC_OP_UI_CMD_ANDL0x58#defineCEC_OP_UI_CMD_ANDL0x58#defineCEC_OP_UI_CMD_ANDL0x58#defineCEC_OP_UI_CMD_ANDL0x58#defineCEC_OP_UI_CMD_ANDL0x58#defineC				
#defineCEC_OP_UI_CMD_MUTE0x43#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_PLAY0x45#defineCEC_OP_UI_CMD_PAUSE0x46#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_REWIND0x48#defineCEC_OP_UI_CMD_FAST_FORWARD0x49#defineCEC_OP_UI_CMD_EJECT0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x44#defineCEC_OP_UI_CMD_SUB_RECORD0x44#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x55#defineCEC_OP_UI_CMD_INITIAL_CONFIGURATION0x55#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_ADDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_ADMOE0x58#defineCEC_OP_UI_CMD_ADMOE0x58#defineCEC_OP_UI_CMD_ADMOE0x58#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x61#defineCEC_O			—	
#defineCEC_OP_UI_CMD_PLAY0x44#defineCEC_OP_UI_CMD_STOP0x45#defineCEC_OP_UI_CMD_PAUSE0x46#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_REWIND0x48#defineCEC_OP_UI_CMD_FAST_FORWARD0x49#defineCEC_OP_UI_CMD_EJECT0x4a#defineCEC_OP_UI_CMD_SKIP_FORWARD0x44#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x4c#defineCEC_OP_UI_CMD_STOP_RECORD0x4d#defineCEC_OP_UI_CMD_SUB_RECORD0x4d#defineCEC_OP_UI_CMD_SUB_PICTURE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_TIMER_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_ANDI0x55#defineCEC_OP_UI_CMD_ANDI0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_ADDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_ADNE0x58#defineCEC_OP_UI_CMD_ADNE0x58#defineCEC_OP_UI_CMD_ADNDE0x58#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x61#defineCEC_OP_UI_CMD_RAUSE_RECORD_FUNCTION0x62<			—	
#defineCEC_OP_UI_CMD_STOP0x45#defineCEC_OP_UI_CMD_PAUSE0x46#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_REWIND0x48#defineCEC_OP_UI_CMD_FAST_FORWARD0x49#defineCEC_OP_UI_CMD_EJECT0x4a#defineCEC_OP_UI_CMD_SKIP_FORWARD0x4c#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x4c#defineCEC_OP_UI_CMD_STOP_RECORD0x4d#defineCEC_OP_UI_CMD_PAUSE_RECORD0x4e#defineCEC_OP_UI_CMD_SUB_PICTURE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_TIME_PROGRAMING0x52#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x55#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x55#defineCEC_OP_UI_CMD_ANDLE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_ANDLE0x56#defineCEC_OP_UI_CMD_ANDLE0x56#defineCEC_OP_UI_CMD_ANDLE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x58#defineCEC_OP_UI_CMD_ANDLE0x58#defineCEC_OP_UI_CMD_ANDLE0x58#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x62#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x63				
#defineCEC_OP_UI_CMD_PAUSE0x46#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_REWIND0x48#defineCEC_OP_UI_CMD_FAST_FORWARD0x49#defineCEC_OP_UI_CMD_EJECT0x4a#defineCEC_OP_UI_CMD_SKIP_FORWARD0x4b#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x4c#defineCEC_OP_UI_CMD_STOP_RECORD0x4d#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_TIMEN_PROGRAMMING0x52#defineCEC_OP_UI_CMD_TIMEN_PROGRAMMING0x54#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x57#defineCEC_OP_UI_CMD_INITENET0x59#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x62#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62				
#defineCEC_OP_UI_CMD_RECORD0x47#defineCEC_OP_UI_CMD_REWIND0x48#defineCEC_OP_UI_CMD_FAST_FORWARD0x49#defineCEC_OP_UI_CMD_EJECT0x4a#defineCEC_OP_UI_CMD_SKIP_FORWARD0x4b#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x4c#defineCEC_OP_UI_CMD_STOP_RECORD0x4d#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x57#defineCEC_OP_UI_CMD_INTERNET0x59#defineCEC_OP_UI_CMD_ANDLE0x58#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x50#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUSE_PLAY_FUNCTION0x61#define <t< td=""><td></td><td></td><td></td><td></td></t<>				
#defineCEC_OP_UI_CMD_REWIND0x48#defineCEC_OP_UI_CMD_FAST_FORWARD0x49#defineCEC_OP_UI_CMD_EJECT0x4a#defineCEC_OP_UI_CMD_SKIP_FORWARD0x4b#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x4c#defineCEC_OP_UI_CMD_STOP_RECORD0x4d#defineCEC_OP_UI_CMD_PAUSE_RECORD0x4e#defineCEC_OP_UI_CMD_NGLE0x50#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_TIMER_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_INITERNET0x59#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x62#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63				
#defineCEC_OP_UI_CMD_FAST_FORWARD0x49#defineCEC_OP_UI_CMD_EJECT0x4a#defineCEC_OP_UI_CMD_SKIP_FORWARD0x4b#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x4c#defineCEC_OP_UI_CMD_STOP_RECORD0x4d#defineCEC_OP_UI_CMD_PAUSE_RECORD0x4e#defineCEC_OP_UI_CMD_SUB_PICTURE0x50#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_INITERNET0x59#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x60#defineCEC_OP_UI_CMD_AUSE_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x63				
#defineCEC_OP_UI_CMD_EJECT0x4a#defineCEC_OP_UI_CMD_SKIP_FORWARD0x4b#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x4c#defineCEC_OP_UI_CMD_STOP_RECORD0x4d#defineCEC_OP_UI_CMD_PAUSE_RECORD0x4e#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_VIDE0_ON_DEMAND0x52#defineCEC_OP_UI_CMD_VIDE0_ON_DEMAND0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x56#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x63				
#defineCEC_OP_UI_CMD_SKIP_FORWARD0x4b#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x4c#defineCEC_OP_UI_CMD_STOP_RECORD0x4d#defineCEC_OP_UI_CMD_PAUSE_RECORD0x4e#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x57#defineCEC_OP_UI_CMD_INTERNET0x59#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x62#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x63				
#defineCEC_OP_UI_CMD_SKIP_BACKWARD0x4c#defineCEC_OP_UI_CMD_STOP_RECORD0x4d#defineCEC_OP_UI_CMD_PAUSE_RECORD0x4e#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_INITIAL_CONFIGURATION0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_INTERNET0x59#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63				
#defineCEC_OP_UI_CMD_STOP_RECORD0x4d#defineCEC_OP_UI_CMD_PAUSE_RECORD0x4e#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_INITIAL_CONFIGURATION0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_ADDE0x50#defineCEC_OP_UI_CMD_PRAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63				
#defineCEC_OP_UI_CMD_PAUSE_RECORD0x4e#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_INITIAL_CONFIGURATION0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x57#defineCEC_OP_UI_CMD_JNTERNET0x59#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x63				
#defineCEC_OP_UI_CMD_ANGLE0x50#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_INITIAL_CONFIGURATION0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_JD_MODE0x53#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63				
#defineCEC_OP_UI_CMD_SUB_PICTURE0x51#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_INITIAL_CONFIGURATION0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_JD_MODE0x59#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63				
#defineCEC_OP_UI_CMD_VIDEO_ON_DEMAND0x52#defineCEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_INITIAL_CONFIGURATION0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_JD_MODE0x59#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63				0x50
#defineCEC_OP_UI_CMD_ELECTRONIC_PROGRAM_GUIDE0x53#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_INITIAL_CONFIGURATION0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_INTERNET0x59#defineCEC_OP_UI_CMD_ADDE0x5a#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63				0x51
#defineCEC_OP_UI_CMD_TIMER_PROGRAMMING0x54#defineCEC_OP_UI_CMD_INITIAL_CONFIGURATION0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_INTERNET0x59#defineCEC_OP_UI_CMD_JD_PLAY_FUNCTION0x5a#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63	#define	CEC_OP_UI_CMD_VIDE	O_ON_DEMAND	0x52
#defineCEC_OP_UI_CMD_INITIAL_CONFIGURATION0x55#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_INTERNET0x59#defineCEC_OP_UI_CMD_JD_NODE0x5a#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63	#define	CEC_OP_UI_CMD_ELEC	TRONIC_PROGRAM_GUIDE	0x53
#defineCEC_OP_UI_CMD_SELECT_BROADCAST_TYPE0x56#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_INTERNET0x59#defineCEC_OP_UI_CMD_3D_MODE0x5a#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63	#define	CEC_OP_UI_CMD_TIME	R_PROGRAMMING	0x54
#defineCEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION0x57#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_INTERNET0x59#defineCEC_OP_UI_CMD_3D_MODE0x5a#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63	#define	CEC_OP_UI_CMD_INIT	IAL_CONFIGURATION	0x55
#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_INTERNET0x59#defineCEC_OP_UI_CMD_3D_MODE0x5a#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63	#define	CEC OP UI CMD SELE	CT BROADCAST TYPE	0x56
#defineCEC_OP_UI_CMD_AUDIO_DESCRIPTION0x58#defineCEC_OP_UI_CMD_INTERNET0x59#defineCEC_OP_UI_CMD_3D_MODE0x5a#defineCEC_OP_UI_CMD_PLAY_FUNCTION0x60#defineCEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#defineCEC_OP_UI_CMD_RECORD_FUNCTION0x62#defineCEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63	#define	CEC OP UI CMD SELE	CT_SOUND PRESENTATION	0x57
#define CEC_OP_UI_CMD_INTERNET0x59#define CEC_OP_UI_CMD_3D_MODE0x5a#define CEC_OP_UI_CMD_PLAY_FUNCTION0x60#define CEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#define CEC_OP_UI_CMD_RECORD_FUNCTION0x62#define CEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63				0x58
#define CEC_OP_UI_CMD_3D_MODE0x5a#define CEC_OP_UI_CMD_PLAY_FUNCTION0x60#define CEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#define CEC_OP_UI_CMD_RECORD_FUNCTION0x62#define CEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63			—	
#define CEC_OP_UI_CMD_PLAY_FUNCTION0x60#define CEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#define CEC_OP_UI_CMD_RECORD_FUNCTION0x62#define CEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63				
#define CEC_OP_UI_CMD_PAUSE_PLAY_FUNCTION0x61#define CEC_OP_UI_CMD_RECORD_FUNCTION0x62#define CEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION0x63				
<pre>#define CEC_OP_UI_CMD_RECORD_FUNCTION 0x62 #define CEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION 0x63</pre>				
<pre>#define CEC_OP_UI_CMD_PAUSE_RECORD_FUNCTION 0x63</pre>				
			—	

```
#define CEC OP UI CMD MUTE FUNCTION
                                                         0x65
#define CEC OP UI CMD RESTORE VOLUME FUNCTION
                                                         0x66
#define CEC OP UI CMD TUNE FUNCTION
                                                         0x67
#define CEC OP UI CMD SELECT MEDIA FUNCTION
                                                         0x68
#define CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION
                                                         0x69
#define CEC OP UI CMD SELECT AUDIO INPUT FUNCTION
                                                         0x6a
#define CEC OP UI CMD POWER TOGGLE FUNCTION
                                                         0x6b
#define CEC OP UI CMD POWER OFF FUNCTION
                                                         0x6c
#define CEC OP UI CMD POWER ON FUNCTION
                                                         0x6d
#define CEC OP UI CMD F1 BLUE
                                                         0x71
#define CEC OP UI CMD F2 RED
                                                         0x72
#define CEC_OP_UI_CMD_F3_GREEN
                                                         0x73
#define CEC OP UI CMD F4 YELLOW
                                                         0x74
#define CEC_OP_UI_CMD_F5
                                                         0x75
#define CEC OP UI CMD DATA
                                                         0x76
/* UI Broadcast Type Operand (ui bcast type) */
#define CEC_OP_UI_BCAST_TYPE_TOGGLE_ALL
                                                         0x00
#define CEC OP UI BCAST TYPE TOGGLE DIG ANA
                                                         0x01
#define CEC OP UI BCAST TYPE ANALOGUE
                                                         0x10
#define CEC OP UI BCAST TYPE ANALOGUE T
                                                         0x20
#define CEC OP UI BCAST TYPE ANALOGUE CABLE
                                                         0x30
#define CEC_OP_UI_BCAST_TYPE_ANALOGUE_SAT
                                                         0x40
#define CEC OP UI BCAST TYPE DIGITAL
                                                         0x50
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_T
                                                         0x60
#define CEC OP UI BCAST TYPE DIGITAL CABLE
                                                         0x70
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_SAT
                                                         0x80
#define CEC_OP_UI_BCAST_TYPE_DIGITAL_COM_SAT
                                                         0x90
#define CEC OP UI BCAST TYPE DIGITAL COM SAT2
                                                         0x91
#define CEC_OP_UI_BCAST_TYPE_IP
                                                         0xa0
/* UI Sound Presentation Control Operand (ui snd pres ctl) */
#define CEC OP UI SND PRES CTL DUAL MONO
                                                         0x10
#define CEC OP UI SND PRES CTL KARAOKE
                                                         0x20
#define CEC OP UI SND PRES CTL DOWNMIX
                                                         0x80
#define CEC_OP_UI_SND_PRES_CTL_REVERB
                                                         0x90
#define CEC OP UI SND PRES CTL EQUALIZER
                                                         0xa0
#define CEC_OP_UI_SND_PRES_CTL_BASS_UP
                                                         0xb1
#define CEC OP UI SND PRES CTL BASS NEUTRAL
                                                         0xb2
#define CEC_OP_UI_SND_PRES_CTL_BASS_DOWN
                                                         0xb3
#define CEC_OP_UI_SND_PRES_CTL_TREBLE_UP
                                                         0xc1
#define CEC OP UI SND PRES CTL TREBLE NEUTRAL
                                                         0xc2
#define CEC OP UI SND PRES CTL TREBLE DOWN
                                                         0xc3
#define CEC MSG USER CONTROL RELEASED
                                                         0x45
/* Remote Control Passthrough Feature */
/*
 * Has also:
 *
        CEC MSG USER CONTROL PRESSED
 *
        CEC MSG USER CONTROL RELEASED
 */
```

```
/* Power Status Feature */
#define CEC MSG GIVE DEVICE POWER STATUS
                                                         0x8f
#define CEC MSG REPORT POWER STATUS
                                                         0x90
/* Power Status Operand (pwr state) */
#define CEC OP POWER STATUS ON
                                                         0
#define CEC OP POWER STATUS STANDBY
                                                         1
#define CEC OP POWER STATUS TO ON
                                                         2
#define CEC_OP_POWER STATUS TO STANDBY
                                                         3
/* General Protocol Messages */
#define CEC MSG FEATURE_ABORT
                                                         0x00
/* Abort Reason Operand (reason) */
#define CEC_OP_ABORT_UNRECOGNIZED_OP
                                                         0
#define CEC OP ABORT INCORRECT MODE
                                                         1
                                                         2
#define CEC OP ABORT NO SOURCE
#define CEC_OP_ABORT_INVALID_OP
                                                         3
                                                         4
#define CEC OP ABORT REFUSED
#define CEC OP ABORT UNDETERMINED
                                                         5
#define CEC MSG ABORT
                                                         0xff
/* System Audio Control Feature */
/*
 * Has also:
 *
        CEC MSG USER CONTROL PRESSED
 *
        CEC MSG USER CONTROL RELEASED
*/
#define CEC MSG GIVE AUDIO STATUS
                                                         0x71
#define CEC MSG GIVE SYSTEM AUDIO MODE STATUS
                                                         0x7d
#define CEC MSG REPORT AUDIO STATUS
                                                         0x7a
/* Audio Mute Status Operand (aud mute status) */
#define CEC_OP_AUD_MUTE_STATUS_OFF
                                                         0
#define CEC OP AUD MUTE STATUS ON
                                                         1
#define CEC MSG REPORT SHORT AUDIO DESCRIPTOR
                                                         0xa3
#define CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR
                                                         0xa4
#define CEC_MSG_SET_SYSTEM_AUDIO_MODE
                                                         0x72
/* System Audio Status Operand (sys aud status) */
#define CEC OP SYS AUD STATUS OFF
                                                         0
                                                         1
#define CEC OP SYS AUD STATUS ON
#define CEC MSG SYSTEM AUDIO MODE REQUEST
                                                         0x70
#define CEC MSG SYSTEM AUDIO MODE STATUS
                                                         0x7e
/* Audio Format ID Operand (audio format id) */
#define CEC OP AUD FMT ID CEA861
                                                         0
#define CEC OP AUD FMT ID CEA861 CXT
                                                         1
/* Audio Rate Control Feature */
#define CEC_MSG_SET_AUDIO_RATE
                                                         0x9a
```

<pre>/* Audio Rate Operand (audio_rate) */ #define CEC_OP_AUD_RATE_OFF #define CEC_OP_AUD_RATE_WIDE_STD #define CEC_OP_AUD_RATE_WIDE_FAST #define CEC_OP_AUD_RATE_NARROW_STD #define CEC_OP_AUD_RATE_NARROW_FAST #define CEC_OP_AUD_RATE_NARROW_SLOW</pre>	0 1 2 3 4 5 6
<pre>/* Audio Return Channel Control Feature */ #define CEC_MSG_INITIATE_ARC #define CEC_MSG_REPORT_ARC_INITIATED #define CEC_MSG_REPORT_ARC_TERMINATED #define CEC_MSG_REQUEST_ARC_INITIATION #define CEC_MSG_REQUEST_ARC_TERMINATION #define CEC_MSG_TERMINATE_ARC</pre>	0xc0 0xc1 0xc2 0xc3 0xc4 0xc5
<pre>/* Dynamic Audio Lipsync Feature */ /* Only for CEC 2.0 and up */ #define CEC_MSG_REQUEST_CURRENT_LATENCY #define CEC_MSG_REPORT_CURRENT_LATENCY /* Low Latency Mode Operand (low_latency_mode) */ #define CEC_OP_LOW_LATENCY_MODE_OFF #define CEC OP LOW LATENCY MODE ON</pre>	0xa7 0xa8 0 1
<pre>#define CEC_OP_LOW_LATENCY_MODE_ON /* Audio Output Compensated Operand (audio_out_compensate) #define CEC_OP_AUD_OUT_COMPENSATED_NA #define CEC_OP_AUD_OUT_COMPENSATED_NO_DELAY #define CEC_OP_AUD_OUT_COMPENSATED_PARTIAL_DELAY</pre>	-
<pre>/* Capability Discovery and Control Feature */ #define CEC_MSG_CDC_MESSAGE /* Ethernet-over-HDMI: nobody ever does this */ #define CEC_MSG_CDC_HEC_INQUIRE_STATE #define CEC_MSG_CDC_HEC_REPORT_STATE /* HEC Functionality State Operand (hec_func_state) */</pre>	0xf8 0x00 0x01
<pre>#define CEC_OP_HEC_FUNC_STATE_NOT_SUPPORTED #define CEC_OP_HEC_FUNC_STATE_INACTIVE #define CEC_OP_HEC_FUNC_STATE_ACTIVE #define CEC_OP_HEC_FUNC_STATE_ACTIVATION_FIELD /* Host Functionality State Operand (host_func_state) *</pre>	0 1 2 3 /
<pre>#define CEC_OP_HOST_FUNC_STATE_NOT_SUPPORTED #define CEC_OP_HOST_FUNC_STATE_INACTIVE #define CEC_OP_HOST_FUNC_STATE_ACTIVE /* ENC Functionality State Operand (enc_func_state) */ #define CEC_OP_ENC_FUNC_STATE_EXT_CON_NOT_SUPPORTED #define CEC_OP_ENC_FUNC_STATE_EXT_CON_INACTIVE</pre>	0 1 2 0 1
<pre>#define CEC_OP_ENC_FUNC_STATE_EXT_CON_ACTIVE /* CDC Error Code Operand (cdc_errcode) */ #define CEC_OP_CDC_ERROR_CODE_NONE #define CEC_OP_CDC_ERROR_CODE_CAP_UNSUPPORTED</pre>	2 0 1

<pre>#define CEC_OP_HEC_SUPPORT_NO 0 #define CEC_OP_HEC_ACTIVATION_VES 1 /* HEC Activation Operand (hec_activation) */ #define CEC_OP_HEC_ACTIVATION_OFF 1 #define CEC_MSG_COC_HEC_SET_STATE 0 *define CEC_MSG_COC_HEC_SET_STATE 0 *define CEC_OP_HEC_SET_STATE_ADJACENT 0 #define CEC_OP_HEC_SET_STATE_ACTIVATE 1 #define CEC_MSG_COC_HEC_NOTIFY_ALIVE 0 #define CEC_OP_SCT_STATE_0 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 1 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 1 #define CEC_OP_HPD_STATE_EDID_DISABLE_NABLE 1 #define CEC_OP_HPD_STATE_EDID_DISABLE_NABLE 1 #define CEC_OP_HPD_STATE_EDID_DISABLE_NABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_NABLE 5 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) {</pre>	<pre>#define CEC_OP_CDC_ERROR_CODE_WRONG_STATE #define CEC_OP_CDC_ERROR_CODE_OTHER /* HEC Support Operand (hec_support) */ #define CEC_OP_UEC_SUPPORT_NO</pre>	2 3
<pre>/* HEC Activation Operand Thec_activation) */ #define CEC_OP_HEC_ACTIVATION_ON 0 #define CEC_OP_HEC_ACTIVATION_OFF 1 #define CEC_MSG_CDC_HEC_SET_STATE 0) */ #define CEC_MSG_CDC_HEC_SET_STATE 0) */ #define CEC_OP_HEC_SET_STATE_DEACTIVATE 0 #define CEC_OP_HEC_SET_STATE_DEACTIVATE 0 #define CEC_MSG_CDC_HEC_NOTIFY_ALIVE 0) */ #define CEC_MSG_CDC_HEC_DISCOVER 0) */ #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 1 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_ERROR_NONE 0 #define CEC_OP_HPD_ERROR_NONE 0 #define CEC_OP_HPD_ERROR_NONE_NO_YIDEO 4 /* End of Messages */ * It is a second TV if the logical address is 14 or 15 and_uthe * primary device type is a TV. */ return las->num_log_addrs &&</pre>		
<pre>#define CEC_OP_HEC_ACTIVATION_OFF 1 #define CEC_MSG_CDC_HEC_SET_STATE_ADJACENT 0x02 #define CEC_MSG_CDC_HEC_SET_STATE 0x03 /* HEC Set State Operand (hec_set_state) */ #define CEC_OP_HEC_SET_STATE_DEACTIVATE 0 #define CEC_OP_HEC_SET_STATE_ACTIVATE 1 #define CEC_MSG_CDC_HEC_REQUEST_DEACTIVATION 0x04 #define CEC_MSG_CDC_HEC_NOTIFY_ALIVE 0x05 #define CEC_MSG_CDC_HEC_DISCOVER 0x06 /* Hotplug Detect messages */ #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 /* HOP State Operand (hpd_state) */ #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 1 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 2 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 2 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 3 #define CEC_OP_HPD_STATE_EDID_DISABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE 5 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_ONE 0 #define CEC_OP_HPD_ERROR_ONE_NO_VIDEO 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) {</pre>	/* HEC Activation Operand (hec_activation) */	
<pre>#define CEC_MSG_CDC_HEC_SET_STATE</pre>		
<pre>#define CEC_MSG_CDC_HEC_SET_STATE</pre>	#define clc_of_nec_ActivAtion_off	1
<pre>/* HEC Set State Operand (hec_set_state) */ #define CEC_OP_HEC_SET_STATE_DEACTIVATE 0 #define CEC_OP_HEC_SET_STATE_ACTIVATE 1 #define CEC_MSG_CDC_HEC_REQUEST_DEACTIVATION 0x04 #define CEC_MSG_CDC_HEC_NOTIFY_ALIVE 0x05 #define CEC_MSG_CDC_HEC_DISCOVER 0x06 /* Hotplug Detect messages */ #define CEC_MSG_CDC_HPD_SET_STATE 0x10 /* HPD State Operand (hpd_state) */ #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 1 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 2 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE_ENABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 3 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4 /* End of Messages */</pre>		
<pre>#define CEC_OP_HEC_SET_STATE_DEACTIVATE 0 #define CEC_OP_HEC_SET_STATE_ACTIVATE 1 #define CEC_MSG_CDC_HEC_NOTIFY_ALIVE 0×05 #define CEC_MSG_CDC_HEC_DISCOVER 0×06 /* Hotplug Detect messages */ #define CEC_OP_HED_STATE_OP_EDID_DISABLE 0 /* HPD State Operand (hpd_state) */ #define CEC_OP_HPD_STATE_OP_EDID_DISABLE 1 #define CEC_OP_HPD_STATE_OP_EDID_DISABLE 1 #define CEC_OP_HPD_STATE_EDID_DISABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE 3 #define CEC_OP_HPD_STATE_EDID_DISABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * primary device type is a TV. */ return las->num_log_addrs &&</pre>		0x03
<pre>#define CEC_OP_HEC_SET_STATE_ACTIVATE 1 #define CEC_MSG_CDC_HEC_REQUEST_DEACTIVATION 0x04 #define CEC_MSG_CDC_HEC_NOTIFY_ALIVE 0x05 #define CEC_MSG_CDC_HEC_DISCOVER 0x06 /* Hotplug Detect messages */ #define CEC_MSG_CDC_HPD_SET_STATE 0x10 /* HPD State Operand (hpd_state) */ #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 1 #define CEC_OP_HPD_STATE_EDID_DISABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE 3 #define CEC_OP_HPD_STATE_EDID_DISABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_ERADE_NONE 0 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_OTHER 4 * r r is a second TV if the logical address is 14 or 15 and_uthe * primary device type is a TV. */ return las->num_log_addrs &&</pre>		0
<pre>#define CEC_MSG_CDC_HEC_REQUEST_DEACTIVATION</pre>		
<pre>#define CEC_MSG_CDC_HEC_NOTIFY_ALIVE 0x05 #define CEC_MSG_CDC_HEC_DISCOVER 0x06 /* Hotplug Detect messages */ #define CEC_MSG_CDC_HPD_SET_STATE 0x10 /* HPD State Operand (hpd_state) */ #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE_NABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE_NABLE 3 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 1 #define CEC_OP_HPD_STATE_EDID_OPERABLE 1 #define CEC_OP_HPD_STATE_EDID_OPERABLE 2 #define CEC_OP_HPD_ERROR_NONE 0 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_NONE 0 #define CEC_OP_HPD_ERROR_NONE_NO_VIDE0 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /*</pre>	#define CEC_OP_HEC_SEI_STATE_ACTIVATE	1
<pre>#define CEC_MSG_CDC_HEC_DISCOVER 0x06 /* Hotplug Detect messages */ #define CEC_MSG_CDC_HPD_SET_STATE 0x10 /* HPD State Operand (hpd_state) */ #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 1 #define CEC_OP_HPD_STATE_EDID_DISABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE 5 #define CEC_MSG_CDC_HPD_REPORT_STATE 0x11 /* HPD Error Code Operand (hpd_error) */ #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /*</pre>	#define CEC MSG CDC HEC REQUEST DEACTIVATION	0x04
<pre>/* Hotplug Detect messages */ #define CEC_MSG_CDC_HPD_SET_STATE 0x10 /* HPD State Operand (hpd_state) */ #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_ENABLE 1 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE_ENABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 1 #define CEC_OP_HPD_REPORT_STATE 0x11 /* HPD Error Code Operand (hpd_error) */ #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /*</pre>	<pre>#define CEC_MSG_CDC_HEC_NOTIFY_ALIVE</pre>	0x05
<pre>#define CEC_MSG_CDC_HPD_SET_STATE 0x10 /* HPD State Operand (hpd_state) */ #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 1 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE_ENABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 3 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_RROR_STATE 0x11 /* HPD Error Code Operand (hpd_error) */ #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_NONE 0 #define CEC_OP_HPD_ERROR_NONE_NO_VIDE0 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) {</pre>		0×06
<pre>/* HPD State Operand (hpd_state) */ #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_ENABLE 1 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE 3 #define CEC_OP_HPD_STATE_EDID_ENABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_REPORT_STATE 0x11 /* HPD Error Code Operand (hpd_error) */ #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDE0 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) {</pre>		
<pre>#define CEC_OP_HPD_STATE_CP_EDID_DISABLE 0 #define CEC_OP_HPD_STATE_CP_EDID_ENABLE 1 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE_ENABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 3 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_ERROR_STATE 0 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_NONE 0 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and,</pre>		0×10
<pre>#define CEC_OP_HPD_STATE_CP_EDID_ENABLE 1 #define CEC_OP_HPD_STATE_CP_EDID_DISABLE_ENABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 3 #define CEC_OP_HPD_STATE_EDID_ENABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_ERROR_STATE 0 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_NONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDE0 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /*</pre>		_
<pre>#define CEC_OP_HPD_STATE_CP_EDID_DISABLE_ENABLE 2 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 3 #define CEC_OP_HPD_STATE_EDID_ENABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_MSG_CDC_HPD_REPORT_STATE 0x11 /* HPD Error Code Operand (hpd_error) */ #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDE0 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and_ * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>		
<pre>#define CEC_OP_HPD_STATE_EDID_DISABLE 3 #define CEC_OP_HPD_STATE_EDID_ENABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_ERPORT_STATE 0x11 /* HPD Error Code Operand (hpd_error) */ #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and_ * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->log_addr[0] == CEC_OP_PRIM_DEVTYPE_</pre>		
<pre>#define CEC_OP_HPD_STATE_EDID_ENABLE 4 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_OP_HPD_REPORT_STATE 0x11 /* HPD Error Code Operand (hpd_error) */ #define CEC_OP_HPD_ERROR_NONE 0 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* it is a second TV if the logical address is 14 or 15 and_u the * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->log_addr[0] == CEC_OP_PRIM_DEVTYPE_</pre>		
<pre>#define CEC_OP_HPD_STATE_EDID_DISABLE_ENABLE 5 #define CEC_MSG_CDC_HPD_REPORT_STATE 0x11 /* HPD Error Code Operand (hpd_error) */ #define CEC_OP_HPD_ERROR_NONE 0 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and_u the * primary device type is a TV. */ return las->num_log_addrs && las->log_addrs && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>		
<pre>#define CEC_MSG_CDC_HPD_REPORT_STATE</pre>		
<pre>/* HPD Error Code Operand (hpd_error) */ #define CEC_OP_HPD_ERROR_NONE 0 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * it is a second TV if the logical address is 14 or 15 andu * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>		
<pre>#define CEC_OP_HPD_ERROR_NONE 0 #define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and_u * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>		0/11
<pre>#define CEC_OP_HPD_ERROR_INITIATOR_NOT_CAPABLE 1 #define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDEO 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and_u * the * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->log_addr[0] == CEC_OP_PRIM_DEVTYPE_</pre>		0
<pre>#define CEC_OP_HPD_ERROR_INITIATOR_WRONG_STATE 2 #define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDE0 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and_u * the * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>		
<pre>#define CEC_OP_HPD_ERROR_OTHER 3 #define CEC_OP_HPD_ERROR_NONE_NO_VIDE0 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>		
<pre>#define CEC_OP_HPD_ERROR_NONE_NO_VIDE0 4 /* End of Messages */ /* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) {</pre>		
<pre>/* Helper functions to identify the 'special' CEC devices */ static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and othe * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>		4
<pre>static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and • the * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>	/* End of Messages */	
<pre>static inline int cec_is_2nd_tv(const struct cec_log_addrs *las) { /* * It is a second TV if the logical address is 14 or 15 and • the * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>		
<pre>{ /* * It is a second TV if the logical address is 14 or 15 and * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>	/* Helper functions to identify the 'special' CEC devic	es */
<pre>* It is a second TV if the logical address is 14 or 15 and the * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>		ldrs *las)
<pre>→the * primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>	/*	
<pre>* primary device type is a TV. */ return las->num_log_addrs && las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_</pre>		14 or 15 and <mark>.</mark>
las->log_addr[0] >= CEC_LOG_ADDR_SPECIFIC && las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_	<pre>* primary device type is a TV.</pre>	
las->primary_device_type[0] == CEC_OP_PRIM_DEVTYPE_		
→TV; }		IM_DEVTYPE_
}	⇔IV;	
	3	

```
static inline int cec is processor(const struct cec log addrs *las)
{
        /*
         * It is a processor if the logical address is 12-15 and the
         * primary device type is a Processor.
         */
        return las->num log addrs &&
               las->log_addr[0] >= CEC_LOG_ADDR_BACKUP_1 &&
               las->primary device type[0] == CEC OP PRIM DEVTYPE
\rightarrow PROCESSOR;
}
static inline int cec_is_switch(const struct cec_log_addrs *las)
{
        /*
         * It is a switch if the logical address is 15 and the
         * primary device type is a Switch and the CDC-Only flag is.
→not set.
         */
        return las->num log addrs == 1 &&
               las->log_addr[0] == CEC_LOG_ADDR_UNREGISTERED &&
               las->primary device type[0] == CEC OP PRIM DEVTYPE
→SWITCH &&
               !(las->flags & CEC LOG ADDRS FL CDC ONLY);
}
static inline int cec is cdc only(const struct cec log addrs *las)
{
        /*
         * It is a CDC-only device if the logical address is 15 and,
→the
         * primary device type is a Switch and the CDC-Only flag is.
\rightarrow set.
         */
        return las->num log addrs == 1 &&
               las->log addr[0] == CEC LOG ADDR UNREGISTERED &&
               las->primary device type[0] == CEC OP PRIM DEVTYPE
→SWITCH &&
               (las->flags & CEC LOG ADDRS FL CDC ONLY);
}
#endif
```

7.6.5 Revision and Copyright

Authors:

- Verkuil, Hans <hverkuil-cisco@xs4all.nl>
- Initial version.

Copyright @ 2016: Hans Verkuil

7.6.6 Revision History

revision 1.0.0 / 2016-03-17 (hv)

Initial revision

7.7 Generic Error Codes

	Table 2/1: Generic error codes		
	EAGAIN (aka The ioctl can't be handled because the device is in state where it can't perform		
EWOULDBLOCK it. This could happen for example in case where device is sleeping and ioct			
	is performed to query statistics. It is also returned when the ioctl would need		
	to wait for an event, but the device was opened in non-blocking mode.		
EBADF	The file descriptor is not a valid.		
EBUSY	The ioctl can't be handled because the device is busy. This is typically return		
	while device is streaming, and an ioctl tried to change something that would		
	affect the stream, or would require the usage of a hardware resource that was		
	already allocated. The ioctl must not be retried without performing another		
	action to fix the problem first (typically: stop the stream before retrying).		
EFAULT	There was a failure while copying data from/to userspace, probably caused		
	by an invalid pointer reference.		
EINVAL One or more of the ioctl parameters are invalid or out of the allowed ra			
	This is a widely used error code. See the individual ioctl requests for specific		
	causes.		
ENODEV	Device not found or was removed.		
ENOMEM	There's not enough memory to handle the desired operation.		
ENOTTY	The ioctl is not supported by the driver, actually meaning that the required		
	functionality is not available, or the file descriptor is not for a media device.		
ENOSPC	ENOSPC On USB devices, the stream ioctl's can return this error, meaning that this		
	request would overcommit the usb bandwidth reserved for periodic transfers		
	(up to 80% of the USB bandwidth).		
EPERM	Permission denied. Can be returned if the device needs write permission, or		
	some special capabilities is needed (e.g. root)		
EIO	I/O error. Typically used when there are problems communicating with a		
	hardware device. This could indicate broken or flaky hardware. It's a 'Some-		
	thing is wrong, I give up!' type of error.		
ENXIO	No device corresponding to this device special file exists.		

Table 271: Generic error codes

Note:

- 1. This list is not exhaustive; ioctls may return other error codes. Since errors may have side effects such as a driver reset, applications should abort on unexpected errors, or otherwise assume that the device is in a bad state.
- 2. Request-specific error codes are listed in the individual requests descriptions.

7.8 GNU Free Documentation License

7.8.1 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

7.8.2 1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

7.8.3 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

7.8.4 3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes lim-

ited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of added material, which the general network-using public has access to download anonymously at no charge using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

7.8.5 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

- **A.** Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
- **B.** List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five).
- **C.** State on the Title Page the name of the publisher of the Modified Version, as the publisher.
- **D.** Preserve all the copyright notices of the Document.
- E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
- **F.** Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

- **G.** Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
- **H.** Include an unaltered copy of this License.
- I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
- J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
- **K.** In any section entitled "Acknowledgements" or "Dedications", preserve the section' s title, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
- L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
- ${\bf M}.$ Delete any section entitled "Endorsements" . Such a section may not be included in the Modified Version.
- **N.** Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

7.8.6 5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents, forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any sections entitled "Dedications". You must delete all sections entitled "Endorsements."

7.8.7 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7.8.8 7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an "aggregate", and this License does not apply to the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document. If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document' s Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

7.8.9 8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include the original English version of this License. In case of a disagreement between the translation and the original English version of this License, the original English version will prevail.

7.8.10 9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

7.8.11 10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

7.8.12 Addendum

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

7.9 Video4Linux (V4L) driver-specific documentation

Copyright © 1999-2016 : LinuxTV Developers

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

For more details see the file COPYING in the source distribution of Linux.

7.9.1 The cx2341x driver

Non-compressed file format

The cx23416 can produce (and the cx23415 can also read) raw YUV output. The format of a YUV frame is specific to this chip and is called HM12. 'HM' stands for 'Hauppauge Macroblock', which is a misnomer as 'Conexant Macroblock' would be more accurate.

The format is YUV 4:2:0 which uses 1 Y byte per pixel and 1 U and V byte per four pixels.

The data is encoded as two macroblock planes, the first containing the Y values, the second containing UV macroblocks.

The Y plane is divided into blocks of 16x16 pixels from left to right and from top to bottom. Each block is transmitted in turn, line-by-line.

So the first 16 bytes are the first line of the top-left block, the second 16 bytes are the second line of the top-left block, etc. After transmitting this block the first line of the block on the right to the first block is transmitted, etc.

The UV plane is divided into blocks of 16x8 UV values going from left to right, top to bottom. Each block is transmitted in turn, line-by-line.

So the first 16 bytes are the first line of the top-left block and contain 8 UV value pairs (16 bytes in total). The second 16 bytes are the second line of 8 UV pairs of the top-left block, etc. After transmitting this block the first line of the block on the right to the first block is transmitted, etc.

The code below is given as an example on how to convert HM12 to separate Y, U and V planes. This code assumes frames of 720x576 (PAL) pixels.

The width of a frame is always 720 pixels, regardless of the actual specified width.

If the height is not a multiple of 32 lines, then the captured video is missing macroblocks at the end and is unusable. So the height must be a multiple of 32.

Raw format c example

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static unsigned char frame[576*720*3/2];
static unsigned char framey[576*720];
static unsigned char frameu[576*720 / 4];
static unsigned char framev[576*720 / 4];
static void de macro y(unsigned char* dst, unsigned char *src, int dstride,
\rightarrow int w, int h)
{
unsigned int y, x, i;
// descramble Y plane
// dstride = 720 = w
// The Y plane is divided into blocks of 16x16 pixels
// Each block in transmitted in turn, line-by-line.
for (y = 0; y < h; y += 16) {
        for (x = 0; x < w; x += 16) {
        for (i = 0; i < 16; i++) {
                memcpy(dst + x + (y + i) * dstride, src, 16);
                src += 16;
        }
        }
}
}
static void de_macro_uv(unsigned char *dstu, unsigned char *dstv, unsigned.

→ char *src, int dstride, int w, int h)

{
unsigned int y, x, i;
// descramble U/V plane
// dstride = 720 / 2 = w
// The U/V values are interlaced (UVUV...).
// Again, the UV plane is divided into blocks of 16x16 UV values.
// Each block in transmitted in turn, line-by-line.
for (y = 0; y < h; y += 16) {
        for (x = 0; x < w; x += 8) {
        for (i = 0; i < 16; i++) {
                int idx = x + (y + i) * dstride;
                dstu[idx+0] = src[0]; dstv[idx+0] = src[1];
                dstu[idx+1] = src[2];
                                        dstv[idx+1] = src[3];
                                        dstv[idx+2] = src[5];
                dstu[idx+2] = src[4];
                                                          (continues on next page)
```

```
(continued from previous page)
```

```
dstu[idx+3] = src[6];
                                    dstv[idx+3] = src[7];
               dstu[idx+4] = src[8]; dstv[idx+4] = src[9];
               dstu[idx+5] = src[10]; dstv[idx+5] = src[11];
               dstu[idx+6] = src[12]; dstv[idx+6] = src[13];
               dstu[idx+7] = src[14]; dstv[idx+7] = src[15];
               src += 16;
       }
       }
}
}
        int main(int argc, char **argv)
{
FILE *fin:
int i;
if (argc == 1) fin = stdin;
else fin = fopen(argv[1], "r");
if (fin == NULL) {
       fprintf(stderr, "cannot open input\n");
       exit(-1);
while (fread(frame, sizeof(frame), 1, fin) == 1) {
       de macro y(framey, frame, 720, 720, 576);
       de macro uv(frameu, framev, frame + 720 * 576, 720 / 2, 720 / 2,
\rightarrow 576 / 2);
       fwrite(framey, sizeof(framey), 1, stdout);
       fwrite(framev, sizeof(framev), 1, stdout);
       fwrite(frameu, sizeof(frameu), 1, stdout);
fclose(fin);
return 0;
}
```

Format of embedded V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI data

Author: Hans Verkuil <hverkuil@xs4all.nl>

This section describes the V4L2_MPEG_STREAM_VBI_FMT_IVTV format of the VBI data embedded in an MPEG-2 program stream. This format is in part dictated by some hardware limitations of the ivtv driver (the driver for the Conexant cx23415/6 chips), in particular a maximum size for the VBI data. Anything longer is cut off when the MPEG stream is played back through the cx23415.

The advantage of this format is it is very compact and that all VBI data for all lines can be stored while still fitting within the maximum allowed size.

The stream ID of the VBI data is 0xBD. The maximum size of the embedded data is 4 + 43 * 36, which is 4 bytes for a header and 2 * 18 VBI lines with a 1 byte header and a 42 bytes payload each. Anything beyond this limit is cut off by the cx23415/6 firmware. Besides the data for the VBI lines we also need 36 bits for a bitmask determining which lines are captured and 4 bytes for a magic cookie,

signifying that this data package contains V4L2_MPEG_STREAM_VBI_FMT_IVTV VBI data. If all lines are used, then there is no longer room for the bitmask. To solve this two different magic numbers were introduced:

'itv0' : After this magic number two unsigned longs follow. Bits 0-17 of the first unsigned long denote which lines of the first field are captured. Bits 18-31 of the first unsigned long and bits 0-3 of the second unsigned long are used for the second field.

'ITVO' : This magic number assumes all VBI lines are captured, i.e. it implicitly implies that the bitmasks are 0xffffffff and 0xf.

After these magic cookies (and the 8 byte bitmask in case of cookie 'itv0') the captured VBI lines start:

For each line the least significant 4 bits of the first byte contain the data type. Possible values are shown in the table below. The payload is in the following 42 bytes.

Here is the list of possible data types:

```
#define IVTV SLICED TYPE TELETEXT
                                               0x1
                                                        // Teletext (uses lines 6-
\rightarrow 22 for PAL)
#define IVTV SLICED TYPE CC
                                                        // Closed Captions (line...)
                                               0x4
\rightarrow 21 NTSC)
#define IVTV_SLICED_TYPE_WSS
                                               0x5
                                                        // Wide Screen Signal...
\rightarrow(line 23 PAL)
#define IVTV_SLICED_TYPE_VPS
                                               0x7
                                                        // Video Programming...
\rightarrowSystem (PAL) (line 16)
```

7.9.2 i.MX Video Capture Driver

Events

ipuX_csiY

This subdev can generate the following event when enabling the second IDMAC source pad:

• V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR

The user application can subscribe to this event from the ipuX_csiY subdev node. This event is generated by the Frame Interval Monitor (see below for more on the FIM).

Controls

Frame Interval Monitor in ipuX_csiY

The adv718x decoders can occasionally send corrupt fields during NTSC/PAL signal re-sync (too little or too many video lines). When this happens, the IPU triggers a mechanism to re-establish vertical sync by adding 1 dummy line every frame, which causes a rolling effect from image to image, and can last a long time before a stable image is recovered. Or sometimes the mechanism doesn' t work at all, causing a permanent split image (one frame contains lines from two consecutive captured images).

From experiment it was found that during image rolling, the frame intervals (elapsed time between two EOF's) drop below the nominal value for the current standard, by about one frame time (60 usec), and remain at that value until rolling stops.

While the reason for this observation isn't known (the IPU dummy line mechanism should show an increase in the intervals by 1 line time every frame, not a fixed value), we can use it to detect the corrupt fields using a frame interval monitor. If the FIM detects a bad frame interval, the ipuX_csiY subdev will send the event V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR. Userland can register with the FIM event notification on the ipuX_csiY subdev device node. Userland can issue a streaming restart when this event is received to correct the rolling/split image.

The ipuX_csiY subdev includes custom controls to tweak some dials for FIM. If one of these controls is changed during streaming, the FIM will be reset and will continue at the new settings.

• V4L2_CID_IMX_FIM_ENABLE

Enable/disable the FIM.

• V4L2_CID_IMX_FIM_NUM

How many frame interval measurements to average before comparing against the nominal frame interval reported by the sensor. This can reduce noise caused by interrupt latency.

• V4L2_CID_IMX_FIM_TOLERANCE_MIN

If the averaged intervals fall outside nominal by this amount, in microseconds, the V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR event is sent.

• V4L2_CID_IMX_FIM_TOLERANCE_MAX

If any intervals are higher than this value, those samples are discarded and do not enter into the average. This can be used to discard really high interval errors that might be due to interrupt latency from high system load.

• V4L2_CID_IMX_FIM_NUM_SKIP

How many frames to skip after a FIM reset or stream restart before FIM begins to average intervals.

• V4L2_CID_IMX_FIM_ICAP_CHANNEL / V4L2_CID_IMX_FIM_ICAP_EDGE

These controls will configure an input capture channel as the method for measuring frame intervals. This is superior to the default method of measuring frame intervals via EOF interrupt, since it is not subject to uncertainty errors introduced by interrupt latency.

Input capture requires hardware support. A VSYNC signal must be routed to one of the i.MX6 input capture channel pads.

V4L2_CID_IMX_FIM_ICAP_CHANNEL configures which i.MX6 input capture channel to use. This must be 0 or 1.

V4L2_CID_IMX_FIM_ICAP_EDGE configures which signal edge will trigger input capture events. By default the input capture method is disabled with a value of IRQ_TYPE_NONE. Set this control to IRQ_TYPE_EDGE_RISING, IRQ_TYPE_EDGE_FALLING, or IRQ_TYPE_EDGE_BOTH to enable input capture, triggered on the given signal edge(s).

When input capture is disabled, frame intervals will be measured via EOF interrupt.

File list

drivers/staging/media/imx/ include/media/imx.h include/linux/imx-media.h

Authors

- Steve Longerbeam <steve_longerbeam@mentor.com>
- Philipp Zabel <kernel@pengutronix.de>
- Russell King <linux@armlinux.org.uk>

Copyright (C) 2012-2017 Mentor Graphics Inc.

7.9.3 Maxim Integrated MAX2175 RF to bits tuner driver

The MAX2175 driver implements the following driver-specific controls:

V4L2_CID_MAX2175_I2S_ENABLE

Enable/Disable I2S output of the tuner. This is a private control that can be accessed only using the subdev interface. Refer to Documentation/driver-api/media/v4l2-controls.rst for more details.

	I2S output is disabled.
(1)	I2S output is enabled.

V4L2_CID_MAX2175_HSLS

The high-side/low-side (HSLS) control of the tuner for a given band.

(0) The LO frequency position is below the desired frequency.(1) The LO frequency position is above the desired frequency.

V4L2_CID_MAX2175_RX_MODE (menu)

The Rx mode controls a number of preset parameters of the tuner like sample clock (sck), sampling rate etc. These multiple settings are provided under one single label called Rx mode in the datasheet. The list below shows the supported modes with a brief description.

"Europe m	"Europe modes"		
"FM 1.2"	This configures FM band with a sample rate of 0.512 million sam-		
(0)	ples/sec with a 10.24 MHz sck.		
"DAB 1.	This configures VHF band with a sample rate of 2.048 million sam-		
2" (1)	2" (1) ples/sec with a 32.768 MHz sck.		
"North Am	erica modes"		
"FM 1.0"	This configures FM band with a sample rate of 0.7441875 million sam-		
(0)	ples/sec with a 14.88375 MHz sck.		
"DAB 1.	This configures FM band with a sample rate of 0.372 million sam-		
2" (1)	ples/sec with a 7.441875 MHz sck.		

7.9.4 Vaio Picturebook Motion Eye Camera Driver

Copyright © 2001-2004 Stelian Pop <stelian@popies.net>

Copyright © 2001-2002 Alcôve <www.alcove.com>

Copyright © 2000 Andrew Tridgell <tridge@samba.org>

Private API

The driver supports frame grabbing with the video4linux API, so all video4linux tools (like xawtv) should work with this driver.

Besides the video4linux interface, the driver has a private interface for accessing the Motion Eye extended parameters (camera sharpness, agc, video framerate), the snapshot and the MJPEG capture facilities.

This interface consists of several ioctls (prototypes and structures can be found in include/linux/meye.h):

MEYEIOC_G_PARAMS and MEYEIOC_S_PARAMS Get and set the extended parameters of the motion eye camera. The user should always query the current parameters with MEYEIOC_G_PARAMS, change what he likes and then issue the MEYEIOC_S_PARAMS call (checking for -EINVAL). The extended parameters are described by the meye_params structure.

- **MEYEIOC_QBUF_CAPT** Queue a buffer for capture (the buffers must have been obtained with a VIDIOCGMBUF call and mmap' ed by the application). The argument to MEYEIOC_QBUF_CAPT is the buffer number to queue (or -1 to end capture). The first call to MEYEIOC_QBUF_CAPT starts the streaming capture.
- **MEYEIOC_SYNC** Takes as an argument the buffer number you want to sync. This ioctl blocks until the buffer is filled and ready for the application to use. It returns the buffer size.
- **MEYEIOC_STILLCAPT and MEYEIOC_STILLJCAPT** Takes a snapshot in an uncompressed or compressed jpeg format. This ioctl blocks until the snapshot is done and returns (for jpeg snapshot) the size of the image. The image data is available from the first mmap' ed buffer.

Look at the 'motioneye' application code for an actual example.

7.9.5 OMAP 3 Image Signal Processor (ISP) driver

Copyright © 2010 Nokia Corporation

Copyright © 2009 Texas Instruments, Inc.

Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>, Sakari Ailus <sakari.ailus@iki.fi>, David Cohen <dacohen@gmail.com>

Events

The OMAP 3 ISP driver does support the V4L2 event interface on CCDC and statistics (AEWB, AF and histogram) subdevs.

The CCDC subdev produces V4L2_EVENT_FRAME_SYNC type event on HS_VS interrupt which is used to signal frame start. Earlier version of this driver used V4L2_EVENT_OMAP3ISP_HS_VS for this purpose. The event is triggered exactly when the reception of the first line of the frame starts in the CCDC module. The event can be subscribed on the CCDC subdev.

(When using parallel interface one must pay account to correct configuration of the VS signal polarity. This is automatically correct when using the serial receivers.)

Each of the statistics subdevs is able to produce events. An event is generated whenever a statistics buffer can be dequeued by a user space application using the VIDIOC_OMAP3ISP_STAT_REQ IOCTL. The events available are:

- V4L2_EVENT_OMAP3ISP_AEWB
- V4L2_EVENT_OMAP3ISP_AF
- V4L2_EVENT_OMAP3ISP_HIST

The type of the event data is struct omap3isp_stat_event_status for these ioctls. If there is an error calculating the statistics, there will be an event as usual, but no related statistics buffer. In this case omap3isp_stat_event_status.buf_err is set to non-zero.

Private IOCTLs

The OMAP 3 ISP driver supports standard V4L2 IOCTLs and controls where possible and practical. Much of the functions provided by the ISP, however, does not fall under the standard IOCTLs —gamma tables and configuration of statistics collection are examples of such.

In general, there is a private ioctl for configuring each of the blocks containing hardware-dependent functions.

The following private IOCTLs are supported:

- VIDIOC OMAP3ISP CCDC CFG
- VIDIOC_OMAP3ISP_PRV_CFG
- VIDIOC OMAP3ISP AEWB CFG
- VIDIOC_OMAP3ISP_HIST_CFG
- VIDIOC_OMAP3ISP_AF_CFG
- VIDIOC_OMAP3ISP_STAT_REQ
- VIDIOC_OMAP3ISP_STAT_EN

The parameter structures used by these ioctls are described in include/linux/omap3isp.h. The detailed functions of the ISP itself related to a given ISP block is described in the Technical Reference Manuals (TRMs) —see the end of the document for those.

While it is possible to use the ISP driver without any use of these private IOCTLs it is not possible to obtain optimal image quality this way. The AEWB, AF and histogram modules cannot be used without configuring them using the appropriate private IOCTLs.

CCDC and preview block IOCTLs

The VIDIOC_OMAP3ISP_CCDC_CFG and VIDIOC_OMAP3ISP_PRV_CFG IOCTLs are used to configure, enable and disable functions in the CCDC and preview blocks, respectively. Both IOCTLs control several functions in the blocks they control. VIDIOC_OMAP3ISP_CCDC_CFG IOCTL accepts a pointer to struct omap3isp_ccdc_update_config as its argument. Similarly VIDIOC_OMAP3ISP_PRV_CFG accepts a pointer to struct omap3isp_prev_update_config. The definition of both structures is available in¹.

The update field in the structures tells whether to update the configuration for the specific function and the flag tells whether to enable or disable the function.

The update and flag bit masks accept the following values. Each separate functions in the CCDC and preview blocks is associated with a flag (either disable or enable; part of the flag field in the structure) and a pointer to configuration data for the function.

¹ include/linux/omap3isp.h

Valid values for the update and flag fields are listed here for VID-IOC_OMAP3ISP_CCDC_CFG. Values may be or' ed to configure more than one function in the same IOCTL call.

- OMAP3ISP_CCDC_ALAW
- OMAP3ISP_CCDC_LPF
- OMAP3ISP_CCDC_BLCLAMP
- OMAP3ISP_CCDC_BCOMP
- OMAP3ISP_CCDC_FPC
- OMAP3ISP_CCDC_CULL
- OMAP3ISP_CCDC_CONFIG_LSC
- OMAP3ISP_CCDC_TBL_LSC

The corresponding values for the VIDIOC_OMAP3ISP_PRV_CFG are here:

- OMAP3ISP_PREV_LUMAENH
- OMAP3ISP_PREV_INVALAW
- OMAP3ISP_PREV_HRZ_MED
- OMAP3ISP_PREV_CFA
- OMAP3ISP_PREV_CHROMA_SUPP
- OMAP3ISP_PREV_WB
- OMAP3ISP_PREV_BLKADJ
- OMAP3ISP_PREV_RGB2RGB
- OMAP3ISP_PREV_COLOR_CONV
- OMAP3ISP_PREV_YC_LIMIT
- OMAP3ISP_PREV_DEFECT_COR
- OMAP3ISP_PREV_GAMMABYPASS
- OMAP3ISP_PREV_DRK_FRM_CAPTURE
- OMAP3ISP_PREV_DRK_FRM_SUBTRACT
- OMAP3ISP_PREV_LENS_SHADING
- OMAP3ISP_PREV_NF
- OMAP3ISP_PREV_GAMMA

The associated configuration pointer for the function may not be NULL when enabling the function. When disabling a function the configuration pointer is ignored.

Statistic blocks IOCTLs

The statistics subdevs do offer more dynamic configuration options than the other subdevs. They can be enabled, disable and reconfigured when the pipeline is in streaming state.

The statistics blocks always get the input image data from the CCDC (as the histogram memory read isn' t implemented). The statistics are dequeueable by the user from the statistics subdev nodes using private IOCTLs.

The private IOCTLs offered by the AEWB, AF and histogram subdevs are heavily reflected by the register level interface offered by the ISP hardware. There are aspects that are purely related to the driver implementation and these are discussed next.

VIDIOC_OMAP3ISP_STAT_EN

This private IOCTL enables/disables a statistic module. If this request is done before streaming, it will take effect as soon as the pipeline starts to stream. If the pipeline is already streaming, it will take effect as soon as the CCDC becomes idle.

VIDIOC_OMAP3ISP_AEWB_CFG, VIDIOC_OMAP3ISP_HIST_CFG and VID-IOC_OMAP3ISP_AF_CFG

Those IOCTLs are used to configure the modules. They require user applications to have an in-depth knowledge of the hardware. Most of the fields explanation can be found on OMAP' s TRMs. The two following fields common to all the above configure private IOCTLs require explanation for better understanding as they are not part of the TRM.

omap3isp_[h3a_af/h3a_aewb/hist]_config.buf_size:

The modules handle their buffers internally. The necessary buffer size for the module's data output depends on the requested configuration. Although the driver supports reconfiguration while streaming, it does not support a reconfiguration which requires bigger buffer size than what is already internally allocated if the module is enabled. It will return -EBUSY on this case. In order to avoid such condition, either disable/reconfigure/enable the module or request the necessary buffer size during the first configuration while the module is disabled.

The internal buffer size allocation considers the requested configuration's minimum buffer size and the value set on buf_size field. If buf_size field is out of [minimum, maximum] buffer size range, it's clamped to fit in there. The driver then selects the biggest value. The corrected buf_size value is written back to user application.

omap3isp_[h3a_af/h3a_aewb/hist]_config.config_counter:

As the configuration doesn't take effect synchronously to the request, the driver must provide a way to track this information to provide more accurate data. After a configuration is requested, the config_counter returned to user space application will be an unique value associated to that request. When user application receives an event for buffer availability or when a new buffer is requested, this config_counter is used to match a buffer data and a configuration.

VIDIOC_OMAP3ISP_STAT_REQ

Send to user space the oldest data available in the internal buffer queue and discards such buffer afterwards. The field omap3isp_stat_data.frame_number matches with the video buffer' s field_count.

References

7.9.6 The Linux USB Video Class (UVC) driver

This file documents some driver-specific aspects of the UVC driver, such as driver-specific ioctls and implementation notes.

Questions and remarks can be sent to the Linux UVC development mailing list at linux-uvc-devel@lists.berlios.de.

Extension Unit (XU) support

Introduction

The UVC specification allows for vendor-specific extensions through extension units (XUs). The Linux UVC driver supports extension unit controls (XU controls) through two separate mechanisms:

- through mappings of XU controls to V4L2 controls
- through a driver-specific ioctl interface

The first one allows generic V4L2 applications to use XU controls by mapping certain XU controls onto V4L2 controls, which then show up during ordinary control enumeration.

The second mechanism requires uvcvideo-specific knowledge for the application to access XU controls but exposes the entire UVC XU concept to user space for maximum flexibility.

Both mechanisms complement each other and are described in more detail below.

Control mappings

The UVC driver provides an API for user space applications to define so-called control mappings at runtime. These allow for individual XU controls or byte ranges thereof to be mapped to new V4L2 controls. Such controls appear and function exactly like normal V4L2 controls (i.e. the stock controls, such as brightness, contrast, etc.). However, reading or writing of such a V4L2 controls triggers a read or write of the associated XU control.

The ioctl used to create these control mappings is called UVCIOC_CTRL_MAP. Previous driver versions (before 0.2.0) required another ioctl to be used beforehand (UVCIOC_CTRL_ADD) to pass XU control information to the UVC driver. This is no longer necessary as newer uvcvideo versions query the information directly from the device. For details on the UVCIOC_CTRL_MAP ioctl please refer to the section titled "IOCTL reference" below.

3. Driver specific XU control interface

For applications that need to access XU controls directly, e.g. for testing purposes, firmware upload, or accessing binary controls, a second mechanism to access XU controls is provided in the form of a driver-specific ioctl, namely UVCIOC_CTRL_QUERY.

A call to this ioctl allows applications to send queries to the UVC driver that directly map to the low-level UVC control requests.

In order to make such a request the UVC unit ID of the control's extension unit and the control selector need to be known. This information either needs to be hardcoded in the application or queried using other ways such as by parsing the UVC descriptor or, if available, using the media controller API to enumerate a device's entities.

Unless the control size is already known it is necessary to first make a UVC_GET_LEN requests in order to be able to allocate a sufficiently large buffer and set the buffer size to the correct value. Similarly, to find out whether UVC_GET_CUR or UVC_SET_CUR are valid requests for a given control, a UVC_GET_INFO request should be made. The bits 0 (GET supported) and 1 (SET supported) of the resulting byte indicate which requests are valid.

With the addition of the UVCIOC_CTRL_QUERY ioctl the UVCIOC_CTRL_GET and UVCIOC_CTRL_SET ioctls have become obsolete since their functionality is a subset of the former ioctl. For the time being they are still supported but application developers are encouraged to use UVCIOC_CTRL_QUERY instead.

For details on the UVCIOC_CTRL_QUERY ioctl please refer to the section titled "IOCTL reference" below.

Security

The API doesn't currently provide a fine-grained access control facility. The UVCIOC_CTRL_ADD and UVCIOC_CTRL_MAP ioctls require super user permissions.

Suggestions on how to improve this are welcome.

Debugging

In order to debug problems related to XU controls or controls in general it is recommended to enable the UVC_TRACE_CONTROL bit in the module parameter 'trace'. This causes extra output to be written into the system log.

IOCTL reference

UVCIOC_CTRL_MAP - Map a UVC control to a V4L2 control

Argument: struct uvc_xu_control_mapping

Description:

This ioctl creates a mapping between a UVC control or part of a UVC control and a V4L2 control. Once mappings are defined, userspace applications can access vendor-defined UVC control through the V4L2 control API.

To create a mapping, applications fill the uvc_xu_control_mapping structure with information about an existing UVC control defined with UVCIOC_CTRL_ADD and a new V4L2 control.

A UVC control can be mapped to several V4L2 controls. For instance, a UVC pan/tilt control could be mapped to separate pan and tilt V4L2 controls. The UVC control is divided into non overlapping fields using the 'size' and 'offset' fields and are then independently mapped to V4L2 control.

For signed integer V4L2 controls the data_type field should be set to UVC CTRL DATA TYPE SIGNED. Other values are currently ignored.

Return value:

On success 0 is returned. On error -1 is returned and errno is set appropriately.

ENOMEM Not enough memory to perform the operation.

EPERM Insufficient privileges (super user privileges are required).

EINVAL No such UVC control.

EOVERFLOW The requested offset and size would overflow the UVC control.

EEXIST Mapping already exists.

Data types:

```
struct uvc xu control mapping
  u32
        id
                        V4L2 control identifier
 u8
        name[32]
                        V4L2 control name
                        UVC extension unit GUID
 u8
        entity[16]
 u8
        selector
                        UVC control selector
                        V4L2 control size (in bits)
 u8
        size
        offset
                        V4L2 control offset (in bits)
 u8
enum v4l2 ctrl type
        v4l2 type
                        V4L2 control type
enum uvc_control_data_type
        data_type
                       UVC control data type
struct uvc_menu_info
        *menu info
                        Array of menu entries (for menu controls only)
```

(continues on next page)

(continued from previous page) Number of menu entries (for menu controls only) u32 menu count * struct uvc menu info value Menu entry value used by the device u32 u8 name[32] Menu entry name * enum uvc control data type UVC CTRL DATA TYPE RAW Raw control (byte array) UVC CTRL DATA TYPE SIGNED Signed integer UVC CTRL DATA TYPE UNSIGNED Unsigned integer UVC CTRL DATA TYPE BOOLEAN Boolean UVC_CTRL_DATA_TYPE_ENUM Enumeration UVC CTRL DATA TYPE BITMASK Bitmask

UVCIOC_CTRL_QUERY - Query a UVC XU control

Argument: struct uvc_xu_control_query

Description:

This ioctl queries a UVC XU control identified by its extension unit ID and control selector.

There are a number of different queries available that closely correspond to the low-level control requests described in the UVC specification. These requests are:

UVC_GET_CUR Obtain the current value of the control.

UVC_GET_MIN Obtain the minimum value of the control.

UVC_GET_MAX Obtain the maximum value of the control.

- **UVC_GET_DEF** Obtain the default value of the control.
- **UVC_GET_RES** Query the resolution of the control, i.e. the step size of the allowed control values.

UVC_GET_LEN Query the size of the control in bytes.

- **UVC_GET_INFO** Query the control information bitmap, which indicates whether get/set requests are supported.
- **UVC_SET_CUR** Update the value of the control.

Applications must set the 'size' field to the correct length for the control. Exceptions are the UVC_GET_LEN and UVC_GET_INFO queries, for which the size must be set to 2 and 1, respectively. The 'data' field must point to a valid writable buffer big enough to hold the indicated number of data bytes.

Data is copied directly from the device without any driver-side processing. Applications are responsible for data buffer formatting, including little-endian/big-endian conversion. This is particularly important for the result of the UVC_GET_LEN requests, which is always returned as a little-endian 16-bit integer by the device.

Return value:

On success 0 is returned. On error -1 is returned and errno is set appropriately.

ENOENT The device does not support the given control or the specified extension unit could not be found.

ENOBUFS The specified buffer size is incorrect (too big or too small).

EINVAL An invalid request code was passed.

EBADRQC The given request is not supported by the given control.

EFAULT The data pointer references an inaccessible memory area.

Data types:

more details.

* struc	<pre>* struct uvc_xu_control_query</pre>		
u8 u8 u16 u8	unit selector query size *data	Extension unit ID Control selector Request code to send to the device Control data size (in bytes) Control value	

Copyright © 2009-2020 : LinuxTV Developers

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation, with no Invariant Sections. A copy of the license is included in the chapter entitled "GNU Free Documentation License".

Please notice that some documents inside the media userspace API, when explicitly mentioned on its source code, are dual-licensed with GNU Free Documentation License Version 1.1 and with the GNU General Public License:

This documentation is free software; you can redistribute it and/or modify →it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) →any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

For more details see the file COPYING in the source distribution of Linux.