
Linux Sh Documentation

The kernel development community

Jul 14, 2020





CONTENTS

i



ii



Linux Sh Documentation

Author Paul Mundt

CONTENTS 1



Linux Sh Documentation

2 CONTENTS



CHAPTER

ONE

MEMORY MANAGEMENT

1.1 SH-4

1.1.1 Store Queue API

void sq_flush_range(unsigned long start, unsigned int len)
Flush (prefetch) a specific SQ range

Parameters
unsigned long start the store queue address to start flushing from

unsigned int len the length to flush

Description
Flushes the store queue cache from start to start + len in a linear fashion.
unsigned long sq_remap(unsigned long phys, unsigned int size, const char

* name, pgprot_t prot)
Map a physical address through the Store Queues

Parameters
unsigned long phys Physical address of mapping.

unsigned int size Length of mapping.

const char * name User invoking mapping.

pgprot_t prot Protection bits.

Description
Remaps the physical address phys through the next available store queue address
of size length. name is logged at boot time as well as through the sysfs interface.

void sq_unmap(unsigned long vaddr)
Unmap a Store Queue allocation

Parameters
unsigned long vaddr Pre-allocated Store Queue mapping.

Description

3



Linux Sh Documentation

Unmaps the store queue allocation map that was previously created by
sq_remap(). Also frees up the pte that was previously inserted into the kernel
page table and discards the UTLB translation.

4 Chapter 1. Memory Management



CHAPTER

TWO

MACHINE SPECIFIC INTERFACES

2.1 mach-dreamcast

int aica_rtc_gettimeofday(struct device * dev, struct rtc_time * tm)
Get the time from the AICA RTC

Parameters
struct device * dev the RTC device (ignored)

struct rtc_time * tm pointer to resulting RTC time structure

Description
Grabs the current RTC seconds counter and adjusts it to the Unix Epoch.

int aica_rtc_settimeofday(struct device * dev, struct rtc_time * tm)
Set the AICA RTC to the current time

Parameters
struct device * dev the RTC device (ignored)

struct rtc_time * tm pointer to new RTC time structure

Description
Adjusts the given tv to the AICA Epoch and sets the RTC seconds counter.

2.2 mach-x3proto

int ilsel_enable(ilsel_source_t set)
Enable an ILSEL set.

Parameters
ilsel_source_t set ILSEL source (see ilsel_source_t enum in include/asm-

sh/ilsel.h).

Description
Enables a given non-aliased ILSEL source (<= ILSEL_KEY) at the highest avail-
able interrupt level. Callers should take care to order callsites noting de-
scending interrupt levels. Aliasing FPGA and external board IRQs need to use
ilsel_enable_fixed().

5



Linux Sh Documentation

The return value is an IRQ number that can later be taken down with
ilsel_disable().

int ilsel_enable_fixed(ilsel_source_t set, unsigned int level)
Enable an ILSEL set at a fixed interrupt level

Parameters
ilsel_source_t set ILSEL source (see ilsel_source_t enum in include/asm-

sh/ilsel.h).

unsigned int level Interrupt level (1 - 15)

Description
Enables a given ILSEL source at a fixed interrupt level. Necessary both for level
reservation as well as for aliased sources that only exist on special ILSEL#s.

Returns an IRQ number (as ilsel_enable()).

void ilsel_disable(unsigned int irq)
Disable an ILSEL set

Parameters
unsigned int irq Bit position for ILSEL set value (retval from enable routines)

Description
Disable a previously enabled ILSEL set.

6 Chapter 2. Machine Specific Interfaces



CHAPTER

THREE

BUSSES

3.1 SuperHyway

int superhyway_add_device(unsigned long base, struct superhyway_device
* sdev, struct superhyway_bus * bus)

Add a SuperHyway module

Parameters
unsigned long base Physical address where module is mapped.

struct superhyway_device * sdev SuperHyway device to add, or NULL to allo-
cate a new one.

struct superhyway_bus * bus Bus where SuperHyway module resides.

Description
This is responsible for adding a new SuperHyway module. This sets up a new
struct superhyway_device for the module being added if sdev == NULL.
Devices are initially added in the order that they are scanned (from the top-down
of the memory map), and are assigned an ID based on the order that they are
added. Any manual addition of a module will thus get the ID after the devices
already discovered regardless of where it resides in memory.

Further work can and should be done in superhyway_scan_bus(), to be sure that
any new modules are properly discovered and subsequently registered.

int superhyway_register_driver(struct superhyway_driver * drv)
Register a new SuperHyway driver

Parameters
struct superhyway_driver * drv SuperHyway driver to register.

Description
This registers the passed in drv. Any devices matching the id table will automati-
cally be populated and handed off to the driver’s specified probe routine.
void superhyway_unregister_driver(struct superhyway_driver * drv)

Unregister a SuperHyway driver

Parameters
struct superhyway_driver * drv SuperHyway driver to unregister.

7



Linux Sh Documentation

Description
This cleans up after superhyway_register_driver(), and should be invoked in
the exit path of any module drivers.

3.2 Maple

int maple_driver_register(struct maple_driver * drv)
register a maple driver

Parameters
struct maple_driver * drv maple driver to be registered.

Description
Registers the passed in drv, while updating the bus type. Devices with matching
function IDs will be automatically probed.

void maple_driver_unregister(struct maple_driver * drv)
unregister a maple driver.

Parameters
struct maple_driver * drv maple driver to unregister.

Description
Cleans up after maple_driver_register(). To be invoked in the exit path of any
module drivers.

void maple_getcond_callback(struct maple_device * dev, void (*call-
back)(struct mapleq *mq), unsigned
long interval, unsigned long function)

setup handling MAPLE_COMMAND_GETCOND

Parameters
struct maple_device * dev device responding

void (*) (struct mapleq *mq) callback handler callback

unsigned long interval interval in jiffies between callbacks

unsigned long function the function code for the device

int maple_add_packet(struct maple_device * mdev, u32 function,
u32 command, size_t length, void * data)

add a single instruction to the maple bus queue

Parameters
struct maple_device * mdev maple device

u32 function function on device being queried

u32 command maple command to add

size_t length length of command string (in 32 bit words)

void * data remainder of command string

8 Chapter 3. Busses


