
Linux Driver-api Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

Linux Driver-api Documentation

The kernel offers a wide variety of interfaces to support the development of device
drivers. This document is an only somewhat organized collection of some of those
interfaces —it will hopefully get better over time! The available subsections can
be seen below.

Table of contents

CONTENTS 1

Linux Driver-api Documentation

2 CONTENTS

CHAPTER

ONE

DRIVER MODEL

1.1 Driver Binding

Driver binding is the process of associating a device with a device driver that can
control it. Bus drivers have typically handled this because there have been bus-
specific structures to represent the devices and the drivers. With generic device
and device driver structures, most of the binding can take place using common
code.

1.1.1 Bus

The bus type structure contains a list of all devices that are on that bus type in the
system. When device_register is called for a device, it is inserted into the end of
this list. The bus object also contains a list of all drivers of that bus type. When
driver_register is called for a driver, it is inserted at the end of this list. These are
the two events which trigger driver binding.

1.1.2 device_register

When a new device is added, the bus’s list of drivers is iterated over to find
one that supports it. In order to determine that, the device ID of the device must
match one of the device IDs that the driver supports. The format and semantics for
comparing IDs is bus-specific. Instead of trying to derive a complex state machine
and matching algorithm, it is up to the bus driver to provide a callback to compare
a device against the IDs of a driver. The bus returns 1 if a match was found; 0
otherwise.

int match(struct device * dev, struct device_driver * drv);

If a match is found, the device’s driver field is set to the driver and the driver’s
probe callback is called. This gives the driver a chance to verify that it really does
support the hardware, and that it’s in a working state.

3

Linux Driver-api Documentation

1.1.3 Device Class

Upon the successful completion of probe, the device is registered with the class
to which it belongs. Device drivers belong to one and only one class, and that is
set in the driver’s devclass field. devclass_add_device is called to enumerate the
device within the class and actually register it with the class, which happens with
the class’s register_dev callback.

1.1.4 Driver

When a driver is attached to a device, the device is inserted into the driver’s list
of devices.

1.1.5 sysfs

A symlink is created in the bus’s‘devices’directory that points to the device’s
directory in the physical hierarchy.

A symlink is created in the driver’s‘devices’directory that points to the device’
s directory in the physical hierarchy.

A directory for the device is created in the class’s directory. A symlink is created
in that directory that points to the device’s physical location in the sysfs tree.
A symlink can be created (though this isn’t done yet) in the device’s physical
directory to either its class directory, or the class’s top-level directory. One can
also be created to point to its driver’s directory also.

1.1.6 driver_register

The process is almost identical for when a new driver is added. The bus’s list
of devices is iterated over to find a match. Devices that already have a driver are
skipped. All the devices are iterated over, to bind as many devices as possible to
the driver.

1.1.7 Removal

When a device is removed, the reference count for it will eventually go to 0. When
it does, the remove callback of the driver is called. It is removed from the driver’
s list of devices and the reference count of the driver is decremented. All symlinks
between the two are removed.

When a driver is removed, the list of devices that it supports is iterated over, and
the driver’s remove callback is called for each one. The device is removed from
that list and the symlinks removed.

4 Chapter 1. Driver Model

Linux Driver-api Documentation

1.2 Bus Types

1.2.1 Definition

See the kerneldoc for the struct bus_type.

int bus_register(struct bus_type * bus);

1.2.2 Declaration

Each bus type in the kernel (PCI, USB, etc) should declare one static object of this
type. They must initialize the name field, and may optionally initialize the match
callback:

struct bus_type pci_bus_type = {
.name = "pci",
.match = pci_bus_match,

};

The structure should be exported to drivers in a header file:

extern struct bus_type pci_bus_type;

1.2.3 Registration

When a bus driver is initialized, it calls bus_register. This initializes the rest of the
fields in the bus object and inserts it into a global list of bus types. Once the bus
object is registered, the fields in it are usable by the bus driver.

1.2.4 Callbacks

1.2.5 match(): Attaching Drivers to Devices

The format of device ID structures and the semantics for comparing them are
inherently bus-specific. Drivers typically declare an array of device IDs of devices
they support that reside in a bus-specific driver structure.

The purpose of the match callback is to give the bus an opportunity to determine
if a particular driver supports a particular device by comparing the device IDs
the driver supports with the device ID of a particular device, without sacrificing
bus-specific functionality or type-safety.

When a driver is registered with the bus, the bus’s list of devices is iterated
over, and the match callback is called for each device that does not have a driver
associated with it.

1.2. Bus Types 5

Linux Driver-api Documentation

1.2.6 Device and Driver Lists

The lists of devices and drivers are intended to replace the local lists that many
buses keep. They are lists of struct devices and struct device_drivers, respectively.
Bus drivers are free to use the lists as they please, but conversion to the bus-
specific type may be necessary.

The LDM core provides helper functions for iterating over each list:

int bus_for_each_dev(struct bus_type * bus, struct device * start,
void * data,
int (*fn)(struct device *, void *));

int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
void * data, int (*fn)(struct device_driver *, void␣

↪→*));

These helpers iterate over the respective list, and call the callback for each device
or driver in the list. All list accesses are synchronized by taking the bus’s lock (read
currently). The reference count on each object in the list is incremented before
the callback is called; it is decremented after the next object has been obtained.
The lock is not held when calling the callback.

1.2.7 sysfs

There is a top-level directory named ‘bus’.
Each bus gets a directory in the bus directory, along with two default directories:

/sys/bus/pci/
|-- devices
`-- drivers

Drivers registered with the bus get a directory in the bus’s drivers directory:
/sys/bus/pci/
|-- devices
`-- drivers

|-- Intel ICH
|-- Intel ICH Joystick
|-- agpgart
`-- e100

Each device that is discovered on a bus of that type gets a symlink in the bus’s
devices directory to the device’s directory in the physical hierarchy:
/sys/bus/pci/
|-- devices
| |-- 00:00.0 -> ../../../root/pci0/00:00.0
| |-- 00:01.0 -> ../../../root/pci0/00:01.0
| `-- 00:02.0 -> ../../../root/pci0/00:02.0
`-- drivers

6 Chapter 1. Driver Model

Linux Driver-api Documentation

1.2.8 Exporting Attributes

struct bus_attribute {
struct attribute attr;
ssize_t (*show)(struct bus_type *, char * buf);
ssize_t (*store)(struct bus_type *, const char * buf, size_t count);

};

Bus drivers can export attributes using the BUS_ATTR_RW macro that works sim-
ilarly to the DEVICE_ATTR_RW macro for devices. For example, a definition like
this:

static BUS_ATTR_RW(debug);

is equivalent to declaring:

static bus_attribute bus_attr_debug;

This can then be used to add and remove the attribute from the bus’s sysfs direc-
tory using:

int bus_create_file(struct bus_type *, struct bus_attribute *);
void bus_remove_file(struct bus_type *, struct bus_attribute *);

1.3 Device Classes

1.3.1 Introduction

A device class describes a type of device, like an audio or network device. The
following device classes have been identified:

<Insert List of Device Classes Here>

Each device class defines a set of semantics and a programming interface that
devices of that class adhere to. Device drivers are the implementation of that
programming interface for a particular device on a particular bus.

Device classes are agnostic with respect to what bus a device resides on.

1.3.2 Programming Interface

The device class structure looks like:

typedef int (*devclass_add)(struct device *);
typedef void (*devclass_remove)(struct device *);

See the kerneldoc for the struct class.

A typical device class definition would look like:

1.3. Device Classes 7

Linux Driver-api Documentation

struct device_class input_devclass = {
.name = "input",
.add_device = input_add_device,
.remove_device = input_remove_device,

};

Each device class structure should be exported in a header file so it can be used
by drivers, extensions and interfaces.

Device classes are registered and unregistered with the core using:

int devclass_register(struct device_class * cls);
void devclass_unregister(struct device_class * cls);

1.3.3 Devices

As devices are bound to drivers, they are added to the device class that the driver
belongs to. Before the driver model core, this would typically happen during the
driver’s probe() callback, once the device has been initialized. It now happens
after the probe() callback finishes from the core.

The device is enumerated in the class. Each time a device is added to the class,
the class’s devnum field is incremented and assigned to the device. The field is
never decremented, so if the device is removed from the class and re-added, it will
receive a different enumerated value.

The class is allowed to create a class-specific structure for the device and store it
in the device’s class_data pointer.
There is no list of devices in the device class. Each driver has a list of devices
that it supports. The device class has a list of drivers of that particular class. To
access all of the devices in the class, iterate over the device lists of each driver in
the class.

1.3.4 Device Drivers

Device drivers are added to device classes when they are registered with the
core. A driver specifies the class it belongs to by setting the struct de-
vice_driver::devclass field.

1.3.5 sysfs directory structure

There is a top-level sysfs directory named ‘class’.
Each class gets a directory in the class directory, along with two default subdirec-
tories:

class/
`-- input

|-- devices
`-- drivers

8 Chapter 1. Driver Model

Linux Driver-api Documentation

Drivers registered with the class get a symlink in the drivers/ directory that points
to the driver’s directory (under its bus directory):
class/
`-- input

|-- devices
`-- drivers

`-- usb:usb_mouse -> ../../../bus/drivers/usb_mouse/

Each device gets a symlink in the devices/ directory that points to the device’s
directory in the physical hierarchy:

class/
`-- input

|-- devices
| `-- 1 -> ../../../root/pci0/00:1f.0/usb_bus/00:1f.2-1:0/
`-- drivers

1.3.6 Exporting Attributes

struct devclass_attribute {
struct attribute attr;
ssize_t (*show)(struct device_class *, char * buf, size_t count,␣

↪→loff_t off);
ssize_t (*store)(struct device_class *, const char * buf, size_t␣

↪→count, loff_t off);
};

Class drivers can export attributes using the DEVCLASS_ATTR macro that works
similarly to the DEVICE_ATTR macro for devices. For example, a definition like
this:

static DEVCLASS_ATTR(debug,0644,show_debug,store_debug);

is equivalent to declaring:

static devclass_attribute devclass_attr_debug;

The bus driver can add and remove the attribute from the class’s sysfs directory
using:

int devclass_create_file(struct device_class *, struct devclass_attribute␣
↪→*);
void devclass_remove_file(struct device_class *, struct devclass_attribute␣
↪→*);

In the example above, the file will be named ‘debug’in placed in the class’s
directory in sysfs.

1.3. Device Classes 9

Linux Driver-api Documentation

1.3.7 Interfaces

There may exist multiple mechanisms for accessing the same device of a particular
class type. Device interfaces describe these mechanisms.

When a device is added to a device class, the core attempts to add it to every
interface that is registered with the device class.

1.4 Device Driver Design Patterns

This document describes a few common design patterns found in device drivers. It
is likely that subsystem maintainers will ask driver developers to conform to these
design patterns.

1. State Container

2. container_of()

1.4.1 1. State Container

While the kernel contains a few device drivers that assume that they will only be
probed() once on a certain system (singletons), it is custom to assume that the
device the driver binds to will appear in several instances. This means that the
probe() function and all callbacks need to be reentrant.

The most common way to achieve this is to use the state container design pattern.
It usually has this form:

struct foo {
spinlock_t lock; /* Example member */
(...)

};

static int foo_probe(...)
{

struct foo *foo;

foo = devm_kzalloc(dev, sizeof(*foo), GFP_KERNEL);
if (!foo)

return -ENOMEM;
spin_lock_init(&foo->lock);
(...)

}

This will create an instance of struct foo in memory every time probe() is called.
This is our state container for this instance of the device driver. Of course it is
then necessary to always pass this instance of the state around to all functions
that need access to the state and its members.

For example, if the driver is registering an interrupt handler, you would pass
around a pointer to struct foo like this:

10 Chapter 1. Driver Model

Linux Driver-api Documentation

static irqreturn_t foo_handler(int irq, void *arg)
{

struct foo *foo = arg;
(...)

}

static int foo_probe(...)
{

struct foo *foo;

(...)
ret = request_irq(irq, foo_handler, 0, "foo", foo);

}

This way you always get a pointer back to the correct instance of foo in your inter-
rupt handler.

1.4.2 2. container_of()

Continuing on the above example we add an offloaded work:

struct foo {
spinlock_t lock;
struct workqueue_struct *wq;
struct work_struct offload;
(...)

};

static void foo_work(struct work_struct *work)
{

struct foo *foo = container_of(work, struct foo, offload);

(...)
}

static irqreturn_t foo_handler(int irq, void *arg)
{

struct foo *foo = arg;

queue_work(foo->wq, &foo->offload);
(...)

}

static int foo_probe(...)
{

struct foo *foo;

foo->wq = create_singlethread_workqueue("foo-wq");
INIT_WORK(&foo->offload, foo_work);
(...)

}

The design pattern is the same for an hrtimer or something similar that will return
a single argument which is a pointer to a struct member in the callback.

container_of() is a macro defined in <linux/kernel.h>

1.4. Device Driver Design Patterns 11

Linux Driver-api Documentation

What container_of() does is to obtain a pointer to the containing struct from
a pointer to a member by a simple subtraction using the offsetof() macro from
standard C, which allows something similar to object oriented behaviours. Notice
that the contained member must not be a pointer, but an actual member for this
to work.

We can see here that we avoid having global pointers to our struct foo * instance
this way, while still keeping the number of parameters passed to the work function
to a single pointer.

1.5 The Basic Device Structure

See the kerneldoc for the struct device.

1.5.1 Programming Interface

The bus driver that discovers the device uses this to register the device with the
core:

int device_register(struct device * dev);

The bus should initialize the following fields:

• parent

• name

• bus_id

• bus

A device is removed from the core when its reference count goes to 0. The refer-
ence count can be adjusted using:

struct device * get_device(struct device * dev);
void put_device(struct device * dev);

get_device()will return a pointer to the struct device passed to it if the reference
is not already 0 (if it’s in the process of being removed already).
A driver can access the lock in the device structure using:

void lock_device(struct device * dev);
void unlock_device(struct device * dev);

12 Chapter 1. Driver Model

Linux Driver-api Documentation

1.5.2 Attributes

struct device_attribute {
struct attribute attr;
ssize_t (*show)(struct device *dev, struct device_attribute *attr,

char *buf);
ssize_t (*store)(struct device *dev, struct device_attribute *attr,

const char *buf, size_t count);
};

Attributes of devices can be exported by a device driver through sysfs.

Please see Documentation/filesystems/sysfs.rst for more information on how sysfs
works.

As explained in Documentation/core-api/kobject.rst, device attributes must be cre-
ated before the KOBJ_ADD uevent is generated. The only way to realize that is by
defining an attribute group.

Attributes are declared using a macro called DEVICE_ATTR:

#define DEVICE_ATTR(name,mode,show,store)

Example::

static DEVICE_ATTR(type, 0444, show_type, NULL);
static DEVICE_ATTR(power, 0644, show_power, store_power);

This declares two structures of type struct device_attribute with respective names
‘dev_attr_type’and‘dev_attr_power’. These two attributes can be organized as
follows into a group:

static struct attribute *dev_attrs[] = {
&dev_attr_type.attr,
&dev_attr_power.attr,
NULL,

};

static struct attribute_group dev_attr_group = {
.attrs = dev_attrs,

};

static const struct attribute_group *dev_attr_groups[] = {
&dev_attr_group,
NULL,

};

This array of groups can then be associated with a device by setting the group
pointer in struct device before device_register() is invoked:

dev->groups = dev_attr_groups;
device_register(dev);

The device_register() function will use the‘groups’pointer to create the device
attributes and the device_unregister() function will use this pointer to remove
the device attributes.

1.5. The Basic Device Structure 13

Linux Driver-api Documentation

Word of warning: While the kernel allows device_create_file() and
device_remove_file() to be called on a device at any time, userspace has strict
expectations on when attributes get created. When a new device is registered in
the kernel, a uevent is generated to notify userspace (like udev) that a new device
is available. If attributes are added after the device is registered, then userspace
won’t get notified and userspace will not know about the new attributes.
This is important for device driver that need to publish additional attributes
for a device at driver probe time. If the device driver simply calls
device_create_file() on the device structure passed to it, then userspace will
never be notified of the new attributes.

1.6 Devres - Managed Device Resource

Tejun Heo <teheo@suse.de>

First draft 10 January 2007

1.6.1 1. Intro

devres came up while trying to convert libata to use iomap. Each iomapped ad-
dress should be kept and unmapped on driver detach. For example, a plain SFF
ATA controller (that is, good old PCI IDE) in native mode makes use of 5 PCI BARs
and all of them should be maintained.

As with many other device drivers, libata low level drivers have sufficient bugs in
->remove and ->probe failure path. Well, yes, that’s probably because libata low
level driver developers are lazy bunch, but aren’t all low level driver developers?
After spending a day fiddling with braindamaged hardware with no document or
braindamaged document, if it’s finally working, well, it’s working.
For one reason or another, low level drivers don’t receive as much attention or
testing as core code, and bugs on driver detach or initialization failure don’t
happen often enough to be noticeable. Init failure path is worse because it’s
much less travelled while needs to handle multiple entry points.

So, many low level drivers end up leaking resources on driver detach and having
half broken failure path implementation in ->probe() which would leak resources
or even cause oops when failure occurs. iomap adds more to this mix. So do msi
and msix.

1.6.2 2. Devres

devres is basically linked list of arbitrarily sized memory areas associated with a
struct device. Each devres entry is associated with a release function. A devres
can be released in several ways. No matter what, all devres entries are released
on driver detach. On release, the associated release function is invoked and then
the devres entry is freed.

Managed interface is created for resources commonly used by device drivers
using devres. For example, coherent DMA memory is acquired using

14 Chapter 1. Driver Model

mailto:teheo@suse.de

Linux Driver-api Documentation

dma_alloc_coherent(). The managed version is called dmam_alloc_coherent(). It
is identical to dma_alloc_coherent() except for the DMA memory allocated using it
is managed and will be automatically released on driver detach. Implementation
looks like the following:

struct dma_devres {
size_t size;
void *vaddr;
dma_addr_t dma_handle;

};

static void dmam_coherent_release(struct device *dev, void *res)
{

struct dma_devres *this = res;

dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
}

dmam_alloc_coherent(dev, size, dma_handle, gfp)
{

struct dma_devres *dr;
void *vaddr;

dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
...

/* alloc DMA memory as usual */
vaddr = dma_alloc_coherent(...);
...

/* record size, vaddr, dma_handle in dr */
dr->vaddr = vaddr;
...

devres_add(dev, dr);

return vaddr;
}

If a driver uses dmam_alloc_coherent(), the area is guaranteed to be freed whether
initialization fails half-way or the device gets detached. If most resources are ac-
quired using managed interface, a driver can have much simpler init and exit code.
Init path basically looks like the following:

my_init_one()
{

struct mydev *d;

d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
if (!d)

return -ENOMEM;

d->ring = dmam_alloc_coherent(...);
if (!d->ring)

return -ENOMEM;

(continues on next page)

1.6. Devres - Managed Device Resource 15

Linux Driver-api Documentation

(continued from previous page)
if (check something)

return -EINVAL;
...

return register_to_upper_layer(d);
}

And exit path:

my_remove_one()
{

unregister_from_upper_layer(d);
shutdown_my_hardware();

}

As shown above, low level drivers can be simplified a lot by using devres. Com-
plexity is shifted from less maintained low level drivers to better maintained higher
layer. Also, as init failure path is shared with exit path, both can get more testing.

Note though that when converting current calls or assignments to managed
devm_* versions it is up to you to check if internal operations like allocating mem-
ory, have failed. Managed resources pertains to the freeing of these resources
only - all other checks needed are still on you. In some cases this may mean in-
troducing checks that were not necessary before moving to the managed devm_*
calls.

1.6.3 3. Devres group

Devres entries can be grouped using devres group. When a group is released, all
contained normal devres entries and properly nested groups are released. One
usage is to rollback series of acquired resources on failure. For example:

if (!devres_open_group(dev, NULL, GFP_KERNEL))
return -ENOMEM;

acquire A;
if (failed)

goto err;

acquire B;
if (failed)

goto err;
...

devres_remove_group(dev, NULL);
return 0;

err:
devres_release_group(dev, NULL);
return err_code;

As resource acquisition failure usually means probe failure, constructs like above
are usually useful in midlayer driver (e.g. libata core layer) where interface func-

16 Chapter 1. Driver Model

Linux Driver-api Documentation

tion shouldn’t have side effect on failure. For LLDs, just returning error code
suffices in most cases.

Each group is identified by void *id. It can either be explicitly specified by @id
argument to devres_open_group() or automatically created by passing NULL as
@id as in the above example. In both cases, devres_open_group() returns the
group’s id. The returned id can be passed to other devres functions to select the
target group. If NULL is given to those functions, the latest open group is selected.

For example, you can do something like the following:

int my_midlayer_create_something()
{

if (!devres_open_group(dev, my_midlayer_create_something, GFP_
↪→KERNEL))

return -ENOMEM;

...

devres_close_group(dev, my_midlayer_create_something);
return 0;

}

void my_midlayer_destroy_something()
{

devres_release_group(dev, my_midlayer_create_something);
}

1.6.4 4. Details

Lifetime of a devres entry begins on devres allocation and finishes when it is re-
leased or destroyed (removed and freed) - no reference counting.

devres core guarantees atomicity to all basic devres operations and has support
for single-instance devres types (atomic lookup-and-add-if-not-found). Other than
that, synchronizing concurrent accesses to allocated devres data is caller’s re-
sponsibility. This is usually non-issue because bus ops and resource allocations
already do the job.

For an example of single-instance devres type, read pcim_iomap_table() in
lib/devres.c.

All devres interface functions can be called without context if the right gfp mask
is given.

1.6. Devres - Managed Device Resource 17

Linux Driver-api Documentation

1.6.5 5. Overhead

Each devres bookkeeping info is allocated together with requested data area. With
debug option turned off, bookkeeping info occupies 16 bytes on 32bit machines and
24 bytes on 64bit (three pointers rounded up to ull alignment). If singly linked list
is used, it can be reduced to two pointers (8 bytes on 32bit, 16 bytes on 64bit).

Each devres group occupies 8 pointers. It can be reduced to 6 if singly linked list
is used.

Memory space overhead on ahci controller with two ports is between 300 and 400
bytes on 32bit machine after naive conversion (we can certainly invest a bit more
effort into libata core layer).

1.6.6 6. List of managed interfaces

CLOCK devm_clk_get() devm_clk_get_optional() devm_clk_put()
devm_clk_bulk_get() devm_clk_bulk_get_all() devm_clk_bulk_get_optional()
devm_get_clk_from_childl() devm_clk_hw_register()
devm_of_clk_add_hw_provider() devm_clk_hw_register_clkdev()

DMA dmaenginem_async_device_register() dmam_alloc_coherent()
dmam_alloc_attrs() dmam_free_coherent() dmam_pool_create()
dmam_pool_destroy()

DRM devm_drm_dev_init()

GPIO devm_gpiod_get() devm_gpiod_get_array() devm_gpiod_get_array_optional()
devm_gpiod_get_index() devm_gpiod_get_index_optional()
devm_gpiod_get_optional() devm_gpiod_put() devm_gpiod_unhinge()
devm_gpiochip_add_data() devm_gpio_request()
devm_gpio_request_one() devm_gpio_free()

I2C devm_i2c_new_dummy_device()

IIO devm_iio_device_alloc() devm_iio_device_register()
devm_iio_kfifo_allocate() devm_iio_triggered_buffer_setup()
devm_iio_trigger_alloc() devm_iio_trigger_register()
devm_iio_channel_get() devm_iio_channel_get_all()

INPUT devm_input_allocate_device()

IO region devm_release_mem_region() devm_release_region()
devm_release_resource() devm_request_mem_region()
devm_request_region() devm_request_resource()

IOMAP devm_ioport_map() devm_ioport_unmap() devm_ioremap()
devm_ioremap_uc() devm_ioremap_wc() devm_ioremap_resource() : checks
resource, requests memory region, ioremaps devm_ioremap_resource_wc()
devm_platform_ioremap_resource() : calls devm_ioremap_resource()
for platform device devm_platform_ioremap_resource_wc()
devm_platform_ioremap_resource_byname() devm_platform_get_and_ioremap_resource()
devm_iounmap() pcim_iomap() pcim_iomap_regions() : do request_region()
and iomap() on multiple BARs pcim_iomap_table() : array of mapped
addresses indexed by BAR pcim_iounmap()

18 Chapter 1. Driver Model

Linux Driver-api Documentation

IRQ devm_free_irq() devm_request_any_context_irq() devm_request_irq()
devm_request_threaded_irq() devm_irq_alloc_descs() devm_irq_alloc_desc()
devm_irq_alloc_desc_at() devm_irq_alloc_desc_from()
devm_irq_alloc_descs_from() devm_irq_alloc_generic_chip()
devm_irq_setup_generic_chip() devm_irq_sim_init()

LED devm_led_classdev_register() devm_led_classdev_unregister()

MDIO devm_mdiobus_alloc() devm_mdiobus_alloc_size() devm_mdiobus_free()

MEM devm_free_pages() devm_get_free_pages() devm_kasprintf()
devm_kcalloc() devm_kfree() devm_kmalloc() devm_kmalloc_array()
devm_kmemdup() devm_kstrdup() devm_kvasprintf() devm_kzalloc()

MFD devm_mfd_add_devices()

MUX devm_mux_chip_alloc() devm_mux_chip_register() devm_mux_control_get()

NET devm_alloc_etherdev() devm_alloc_etherdev_mqs() devm_register_netdev()
PER-CPU MEM devm_alloc_percpu() devm_free_percpu()

PCI devm_pci_alloc_host_bridge() : managed PCI host bridge alloca-
tion devm_pci_remap_cfgspace() : ioremap PCI configuration space
devm_pci_remap_cfg_resource() : ioremap PCI configuration space re-
source pcim_enable_device() : after success, all PCI ops become managed
pcim_pin_device() : keep PCI device enabled after release

PHY devm_usb_get_phy() devm_usb_put_phy()
PINCTRL devm_pinctrl_get() devm_pinctrl_put() devm_pinctrl_register()

devm_pinctrl_unregister()

POWER devm_reboot_mode_register() devm_reboot_mode_unregister()

PWM devm_pwm_get() devm_pwm_put()

REGULATOR devm_regulator_bulk_get() devm_regulator_get()
devm_regulator_put() devm_regulator_register()

RESET devm_reset_control_get() devm_reset_controller_register()
SERDEV devm_serdev_device_open()

SLAVE DMA ENGINE devm_acpi_dma_controller_register()

SPI devm_spi_register_master()
WATCHDOG devm_watchdog_register_device()

1.7 Device Drivers

See the kerneldoc for the struct device_driver.

1.7. Device Drivers 19

Linux Driver-api Documentation

1.7.1 Allocation

Device drivers are statically allocated structures. Though there may be multiple
devices in a system that a driver supports, struct device_driver represents the
driver as a whole (not a particular device instance).

1.7.2 Initialization

The driver must initialize at least the name and bus fields. It should also initialize
the devclass field (when it arrives), so it may obtain the proper linkage internally. It
should also initialize as many of the callbacks as possible, though each is optional.

1.7.3 Declaration

As stated above, struct device_driver objects are statically allocated. Below is an
example declaration of the eepro100 driver. This declaration is hypothetical only;
it relies on the driver being converted completely to the new model:

static struct device_driver eepro100_driver = {
.name = "eepro100",
.bus = &pci_bus_type,

.probe = eepro100_probe,

.remove = eepro100_remove,

.suspend = eepro100_suspend,

.resume = eepro100_resume,
};

Most drivers will not be able to be converted completely to the new model because
the bus they belong to has a bus-specific structure with bus-specific fields that
cannot be generalized.

The most common example of this are device ID structures. A driver typically
defines an array of device IDs that it supports. The format of these structures
and the semantics for comparing device IDs are completely bus-specific. Defining
them as bus-specific entities would sacrifice type-safety, so we keep bus-specific
structures around.

Bus-specific drivers should include a generic struct device_driver in the definition
of the bus-specific driver. Like this:

struct pci_driver {
const struct pci_device_id *id_table;
struct device_driver driver;

};

A definition that included bus-specific fields would look like (using the eepro100
driver again):

static struct pci_driver eepro100_driver = {
.id_table = eepro100_pci_tbl,
.driver = {

.name = "eepro100",
(continues on next page)

20 Chapter 1. Driver Model

Linux Driver-api Documentation

(continued from previous page)
.bus = &pci_bus_type,
.probe = eepro100_probe,
.remove = eepro100_remove,
.suspend = eepro100_suspend,
.resume = eepro100_resume,

},
};

Some may find the syntax of embedded struct initialization awkward or even a bit
ugly. So far, it’s the best way we’ve found to do what we want⋯

1.7.4 Registration

int driver_register(struct device_driver *drv);

The driver registers the structure on startup. For drivers that have no bus-
specific fields (i.e. don’t have a bus-specific driver structure), they would use
driver_register and pass a pointer to their struct device_driver object.

Most drivers, however, will have a bus-specific structure and will need to register
with the bus using something like pci_driver_register.

It is important that drivers register their driver structure as early as possible. Reg-
istration with the core initializes several fields in the struct device_driver object,
including the reference count and the lock. These fields are assumed to be valid
at all times and may be used by the device model core or the bus driver.

1.7.5 Transition Bus Drivers

By defining wrapper functions, the transition to the newmodel can be made easier.
Drivers can ignore the generic structure altogether and let the bus wrapper fill in
the fields. For the callbacks, the bus can define generic callbacks that forward the
call to the bus-specific callbacks of the drivers.

This solution is intended to be only temporary. In order to get class information
in the driver, the drivers must be modified anyway. Since converting drivers to
the new model should reduce some infrastructural complexity and code size, it is
recommended that they are converted as class information is added.

1.7.6 Access

Once the object has been registered, it may access the common fields of the object,
like the lock and the list of devices:

int driver_for_each_dev(struct device_driver *drv, void *data,
int (*callback)(struct device *dev, void *data));

The devices field is a list of all the devices that have been bound to the driver. The
LDM core provides a helper function to operate on all the devices a driver con-
trols. This helper locks the driver on each node access, and does proper reference
counting on each device as it accesses it.

1.7. Device Drivers 21

Linux Driver-api Documentation

1.7.7 sysfs

When a driver is registered, a sysfs directory is created in its bus’s directory. In
this directory, the driver can export an interface to userspace to control operation
of the driver on a global basis; e.g. toggling debugging output in the driver.

A future feature of this directory will be a‘devices’directory. This directory will
contain symlinks to the directories of devices it supports.

1.7.8 Callbacks

int (*probe) (struct device *dev);

The probe() entry is called in task context, with the bus’s rwsem locked and the
driver partially bound to the device. Drivers commonly use container_of() to
convert “dev”to a bus-specific type, both in probe() and other routines. That
type often provides device resource data, such as pci_dev.resource[] or plat-
form_device.resources, which is used in addition to dev->platform_data to initial-
ize the driver.

This callback holds the driver-specific logic to bind the driver to a given device.
That includes verifying that the device is present, that it’s a version the driver
can handle, that driver data structures can be allocated and initialized, and that
any hardware can be initialized. Drivers often store a pointer to their state with
dev_set_drvdata(). When the driver has successfully bound itself to that device,
then probe() returns zero and the driver model code will finish its part of binding
the driver to that device.

A driver’s probe() may return a negative errno value to indicate that the driver
did not bind to this device, in which case it should have released all resources it
allocated.

Optionally, probe() may return -EPROBE_DEFER if the driver depends on re-
sources that are not yet available (e.g., supplied by a driver that hasn’t initialized
yet). The driver core will put the device onto the deferred probe list and will try
to call it again later. If a driver must defer, it should return -EPROBE_DEFER as
early as possible to reduce the amount of time spent on setup work that will need
to be unwound and reexecuted at a later time.

Warning: -EPROBE_DEFER must not be returned if probe() has already cre-
ated child devices, even if those child devices are removed again in a cleanup
path. If -EPROBE_DEFER is returned after a child device has been registered,
it may result in an infinite loop of .probe() calls to the same driver.

void (*sync_state) (struct device *dev);

sync_state is called only once for a device. It’s called when all the consumer
devices of the device have successfully probed. The list of consumers of the device
is obtained by looking at the device links connecting that device to its consumer
devices.

22 Chapter 1. Driver Model

Linux Driver-api Documentation

The first attempt to call sync_state() is made during late_initcall_sync() to give
firmware and drivers time to link devices to each other. During the first attempt
at calling sync_state(), if all the consumers of the device at that point in time have
already probed successfully, sync_state() is called right away. If there are no con-
sumers of the device during the first attempt, that too is considered as “all con-
sumers of the device have probed”and sync_state() is called right away.
If during the first attempt at calling sync_state() for a device, there are still con-
sumers that haven’t probed successfully, the sync_state() call is postponed and
reattempted in the future only when one or more consumers of the device probe
successfully. If during the reattempt, the driver core finds that there are one or
more consumers of the device that haven’t probed yet, then sync_state() call is
postponed again.

A typical use case for sync_state() is to have the kernel cleanly take over manage-
ment of devices from the bootloader. For example, if a device is left on and at a
particular hardware configuration by the bootloader, the device’s driver might
need to keep the device in the boot configuration until all the consumers of the de-
vice have probed. Once all the consumers of the device have probed, the device’s
driver can synchronize the hardware state of the device to match the aggregated
software state requested by all the consumers. Hence the name sync_state().

While obvious examples of resources that can benefit from sync_state() include
resources such as regulator, sync_state() can also be useful for complex resources
like IOMMUs. For example, IOMMUs with multiple consumers (devices whose
addresses are remapped by the IOMMU) might need to keep their mappings fixed
at (or additive to) the boot configuration until all its consumers have probed.

While the typical use case for sync_state() is to have the kernel cleanly take over
management of devices from the bootloader, the usage of sync_state() is not re-
stricted to that. Use it whenever it makes sense to take an action after all the
consumers of a device have probed:

::

int (*remove) (struct device *dev);
remove is called to unbind a driver from a device. This may be called if a device is
physically removed from the system, if the driver module is being unloaded, during
a reboot sequence, or in other cases.

It is up to the driver to determine if the device is present or not. It should free
any resources allocated specifically for the device; i.e. anything in the device’s
driver_data field.

If the device is still present, it should quiesce the device and place it into a sup-
ported low-power state.

int (*suspend) (struct device *dev, pm_message_t state);

suspend is called to put the device in a low power state.

int (*resume) (struct device *dev);

Resume is used to bring a device back from a low power state.

1.7. Device Drivers 23

Linux Driver-api Documentation

1.7.9 Attributes

struct driver_attribute {
struct attribute attr;
ssize_t (*show)(struct device_driver *driver, char *buf);
ssize_t (*store)(struct device_driver *, const char *buf, size_t␣

↪→count);
};

Device drivers can export attributes via their sysfs directories. Drivers can declare
attributes using a DRIVER_ATTR_RW and DRIVER_ATTR_RO macro that works
identically to the DEVICE_ATTR_RW and DEVICE_ATTR_RO macros.

Example:

DRIVER_ATTR_RW(debug);

This is equivalent to declaring:

struct driver_attribute driver_attr_debug;

This can then be used to add and remove the attribute from the driver’s directory
using:

int driver_create_file(struct device_driver *, const struct driver_
↪→attribute *);
void driver_remove_file(struct device_driver *, const struct driver_
↪→attribute *);

1.8 The Linux Kernel Device Model

Patrick Mochel <mochel@digitalimplant.org>

Drafted 26 August 2002 Updated 31 January 2006

1.8.1 Overview

The Linux Kernel Driver Model is a unification of all the disparate driver models
that were previously used in the kernel. It is intended to augment the bus-specific
drivers for bridges and devices by consolidating a set of data and operations into
globally accessible data structures.

Traditional driver models implemented some sort of tree-like structure (sometimes
just a list) for the devices they control. There wasn’t any uniformity across the
different bus types.

The current driver model provides a common, uniform data model for describing
a bus and the devices that can appear under the bus. The unified bus model in-
cludes a set of common attributes which all busses carry, and a set of common
callbacks, such as device discovery during bus probing, bus shutdown, bus power
management, etc.

24 Chapter 1. Driver Model

mailto:mochel@digitalimplant.org

Linux Driver-api Documentation

The common device and bridge interface reflects the goals of the modern com-
puter: namely the ability to do seamless device “plug and play”, power man-
agement, and hot plug. In particular, the model dictated by Intel and Microsoft
(namely ACPI) ensures that almost every device on almost any bus on an x86-
compatible system can work within this paradigm. Of course, not every bus is
able to support all such operations, although most buses support most of those
operations.

1.8.2 Downstream Access

Common data fields have been moved out of individual bus layers into a common
data structure. These fields must still be accessed by the bus layers, and some-
times by the device-specific drivers.

Other bus layers are encouraged to do what has been done for the PCI layer. struct
pci_dev now looks like this:

struct pci_dev {
...

struct device dev; /* Generic device interface */
...

};

Note first that the struct device dev within the struct pci_dev is statically allocated.
This means only one allocation on device discovery.

Note also that that struct device dev is not necessarily defined at the front of
the pci_dev structure. This is to make people think about what they’re doing
when switching between the bus driver and the global driver, and to discourage
meaningless and incorrect casts between the two.

The PCI bus layer freely accesses the fields of struct device. It knows about the
structure of struct pci_dev, and it should know the structure of struct device. In-
dividual PCI device drivers that have been converted to the current driver model
generally do not and should not touch the fields of struct device, unless there is a
compelling reason to do so.

The above abstraction prevents unnecessary pain during transitional phases. If it
were not done this way, then when a field was renamed or removed, every down-
stream driver would break. On the other hand, if only the bus layer (and not
the device layer) accesses the struct device, it is only the bus layer that needs to
change.

1.8. The Linux Kernel Device Model 25

Linux Driver-api Documentation

1.8.3 User Interface

By virtue of having a complete hierarchical view of all the devices in the sys-
tem, exporting a complete hierarchical view to userspace becomes relatively easy.
This has been accomplished by implementing a special purpose virtual file system
named sysfs.

Almost all mainstream Linux distros mount this filesystem automatically; you can
see some variation of the following in the output of the “mount”command:
$ mount
...
none on /sys type sysfs (rw,noexec,nosuid,nodev)
...
$

The auto-mounting of sysfs is typically accomplished by an entry similar to the
following in the /etc/fstab file:

none /sys sysfs defaults 0 0

or something similar in the /lib/init/fstab file on Debian-based systems:

none /sys sysfs nodev,noexec,nosuid 0 0

If sysfs is not automatically mounted, you can always do it manually with:

mount -t sysfs sysfs /sys

Whenever a device is inserted into the tree, a directory is created for it. This
directory may be populated at each layer of discovery - the global layer, the bus
layer, or the device layer.

The global layer currently creates two files - ‘name’and ‘power’. The former
only reports the name of the device. The latter reports the current power state of
the device. It will also be used to set the current power state.

The bus layer may also create files for the devices it finds while probing the bus.
For example, the PCI layer currently creates‘irq’and‘resource’files for each
PCI device.

A device-specific driver may also export files in its directory to expose device-
specific data or tunable interfaces.

More information about the sysfs directory layout can be found in the other docu-
ments in this directory and in the file Documentation/filesystems/sysfs.rst.

26 Chapter 1. Driver Model

Linux Driver-api Documentation

1.9 Platform Devices and Drivers

See <linux/platform_device.h> for the driver model interface to the platform bus:
platform_device, and platform_driver. This pseudo-bus is used to connect devices
on busses with minimal infrastructure, like those used to integrate peripherals on
many system-on-chip processors, or some“legacy”PC interconnects; as opposed
to large formally specified ones like PCI or USB.

1.9.1 Platform devices

Platform devices are devices that typically appear as autonomous entities in the
system. This includes legacy port-based devices and host bridges to peripheral
buses, and most controllers integrated into system-on-chip platforms. What they
usually have in common is direct addressing from a CPU bus. Rarely, a plat-
form_device will be connected through a segment of some other kind of bus; but
its registers will still be directly addressable.

Platform devices are given a name, used in driver binding, and a list of resources
such as addresses and IRQs:

struct platform_device {
const char *name;
u32 id;
struct device dev;
u32 num_resources;
struct resource *resource;

};

1.9.2 Platform drivers

Platform drivers follow the standard driver model convention, where discov-
ery/enumeration is handled outside the drivers, and drivers provide probe() and
remove() methods. They support power management and shutdown notifications
using the standard conventions:

struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;

};

Note that probe() should in general verify that the specified device hardware ac-
tually exists; sometimes platform setup code can’t be sure. The probing can use
device resources, including clocks, and device platform_data.

Platform drivers register themselves the normal way:

1.9. Platform Devices and Drivers 27

Linux Driver-api Documentation

int platform_driver_register(struct platform_driver *drv);

Or, in common situations where the device is known not to be hot-pluggable, the
probe() routine can live in an init section to reduce the driver’s runtime memory
footprint:

int platform_driver_probe(struct platform_driver *drv,
int (*probe)(struct platform_device *))

Kernel modules can be composed of several platform drivers. The platform core
provides helpers to register and unregister an array of drivers:

int __platform_register_drivers(struct platform_driver * const *drivers,
unsigned int count, struct module *owner);

void platform_unregister_drivers(struct platform_driver * const *drivers,
unsigned int count);

If one of the drivers fails to register, all drivers registered up to that point will be
unregistered in reverse order. Note that there is a convenience macro that passes
THIS_MODULE as owner parameter:

#define platform_register_drivers(drivers, count)

1.9.3 Device Enumeration

As a rule, platform specific (and often board-specific) setup code will register plat-
form devices:

int platform_device_register(struct platform_device *pdev);

int platform_add_devices(struct platform_device **pdevs, int ndev);

The general rule is to register only those devices that actually exist, but in some
cases extra devices might be registered. For example, a kernel might be config-
ured to work with an external network adapter that might not be populated on all
boards, or likewise to work with an integrated controller that some boards might
not hook up to any peripherals.

In some cases, boot firmware will export tables describing the devices that are
populated on a given board. Without such tables, often the only way for system
setup code to set up the correct devices is to build a kernel for a specific target
board. Such board-specific kernels are common with embedded and custom sys-
tems development.

In many cases, the memory and IRQ resources associated with the platform device
are not enough to let the device’s driver work. Board setup code will often provide
additional information using the device’s platform_data field to hold additional
information.

Embedded systems frequently need one or more clocks for platform devices, which
are normally kept off until they’re actively needed (to save power). System setup
also associates those clocks with the device, so that that calls to clk_get(&pdev-
>dev, clock_name) return them as needed.

28 Chapter 1. Driver Model

Linux Driver-api Documentation

1.9.4 Legacy Drivers: Device Probing

Some drivers are not fully converted to the driver model, because they take on a
non-driver role: the driver registers its platform device, rather than leaving that
for system infrastructure. Such drivers can’t be hotplugged or coldplugged, since
those mechanisms require device creation to be in a different system component
than the driver.

The only “good”reason for this is to handle older system designs which, like
original IBM PCs, rely on error-prone“probe-the-hardware”models for hardware
configuration. Newer systems have largely abandoned that model, in favor of bus-
level support for dynamic configuration (PCI, USB), or device tables provided by
the boot firmware (e.g. PNPACPI on x86). There are too many conflicting options
about what might be where, and even educated guesses by an operating system
will be wrong often enough to make trouble.

This style of driver is discouraged. If you’re updating such a driver, please try to
move the device enumeration to a more appropriate location, outside the driver.
This will usually be cleanup, since such drivers tend to already have “normal”
modes, such as ones using device nodes that were created by PNP or by platform
device setup.

None the less, there are some APIs to support such legacy drivers. Avoid using
these calls except with such hotplug-deficient drivers:

struct platform_device *platform_device_alloc(
const char *name, int id);

You can use platform_device_alloc() to dynamically allocate a device, which
you will then initialize with resources and platform_device_register(). A better
solution is usually:

struct platform_device *platform_device_register_simple(
const char *name, int id,
struct resource *res, unsigned int nres);

You can use platform_device_register_simple() as a one-step call to allocate
and register a device.

1.9.5 Device Naming and Driver Binding

The platform_device.dev.bus_id is the canonical name for the devices. It’s built
from two components:

• platform_device.name ⋯which is also used to for driver matching.
• platform_device.id⋯the device instance number, or else“-1”to indicate there’
s only one.

These are concatenated, so name/id“serial”/0 indicates bus_id“serial.0”, and
“serial/3”indicates bus_id“serial.3”; both would use the platform_driver named
“serial”. While “my_rtc”/-1 would be bus_id “my_rtc”(no instance id) and use
the platform_driver called “my_rtc”.

1.9. Platform Devices and Drivers 29

Linux Driver-api Documentation

Driver binding is performed automatically by the driver core, invoking driver
probe() after finding a match between device and driver. If the probe() succeeds,
the driver and device are bound as usual. There are three different ways to find
such a match:

• Whenever a device is registered, the drivers for that bus are checked for
matches. Platform devices should be registered very early during system
boot.

• When a driver is registered using platform_driver_register(), all unbound de-
vices on that bus are checked for matches. Drivers usually register later
during booting, or by module loading.

• Registering a driver using platform_driver_probe() works just like using plat-
form_driver_register(), except that the driver won’t be probed later if another
device registers. (Which is OK, since this interface is only for use with non-
hotpluggable devices.)

1.9.6 Early Platform Devices and Drivers

The early platform interfaces provide platform data to platform device drivers
early on during the system boot. The code is built on top of the early_param()
command line parsing and can be executed very early on.

Example: “earlyprintk”class early serial console in 6 steps

1.9.7 1. Registering early platform device data

The architecture code registers platform device data using the function
early_platform_add_devices(). In the case of early serial console this should be
hardware configuration for the serial port. Devices registered at this point will
later on be matched against early platform drivers.

1.9.8 2. Parsing kernel command line

The architecture code calls parse_early_param() to parse the kernel command line.
This will execute all matching early_param() callbacks. User specified early plat-
form devices will be registered at this point. For the early serial console case the
user can specify port on the kernel command line as“earlyprintk=serial.0”where
“earlyprintk”is the class string,“serial”is the name of the platform driver and 0
is the platform device id. If the id is -1 then the dot and the id can be omitted.

30 Chapter 1. Driver Model

Linux Driver-api Documentation

1.9.9 3. Installing early platform drivers belonging to a certain
class

The architecture codemay optionally force registration of all early platform drivers
belonging to a certain class using the function early_platform_driver_register_all().
User specified devices from step 2 have priority over these. This step is omitted
by the serial driver example since the early serial driver code should be disabled
unless the user has specified port on the kernel command line.

1.9.10 4. Early platform driver registration

Compiled-in platform drivers making use of early_platform_init() are automat-
ically registered during step 2 or 3. The serial driver example should use
early_platform_init(“earlyprintk”, &platform_driver).

1.9.11 5. Probing of early platform drivers belonging to a certain
class

The architecture code calls early_platform_driver_probe() to match registered
early platform devices associated with a certain class with registered early plat-
form drivers. Matched devices will get probed(). This step can be executed at any
point during the early boot. As soon as possible may be good for the serial port
case.

1.9.12 6. Inside the early platform driver probe()

The driver code needs to take special care during early boot, especially when it
comes to memory allocation and interrupt registration. The code in the probe()
function can use is_early_platform_device() to check if it is called at early platform
device or at the regular platform device time. The early serial driver performs
register_console() at this point.

For further information, see <linux/platform_device.h>.

1.10 Porting Drivers to the New Driver Model

Patrick Mochel

7 January 2003

Overview

Please refer to Documentation/driver-api/driver-model/*.rst for definitions of var-
ious driver types and concepts.

Most of the work of porting devices drivers to the new model happens at the bus
driver layer. This was intentional, tominimize the negative effect on kernel drivers,
and to allow a gradual transition of bus drivers.

1.10. Porting Drivers to the New Driver Model 31

Linux Driver-api Documentation

In a nutshell, the driver model consists of a set of objects that can be embedded
in larger, bus-specific objects. Fields in these generic objects can replace fields in
the bus-specific objects.

The generic objects must be registered with the driver model core. By doing so,
they will exported via the sysfs filesystem. sysfs can be mounted by doing:

mount -t sysfs sysfs /sys

The Process

Step 0: Read include/linux/device.h for object and function definitions.

Step 1: Registering the bus driver.

• Define a struct bus_type for the bus driver:

struct bus_type pci_bus_type = {
.name = "pci",

};

• Register the bus type.

This should be done in the initialization function for the bus type, which is
usually the module_init(), or equivalent, function:

static int __init pci_driver_init(void)
{

return bus_register(&pci_bus_type);
}

subsys_initcall(pci_driver_init);

The bus type may be unregistered (if the bus driver may be compiled as a
module) by doing:

bus_unregister(&pci_bus_type);

• Export the bus type for others to use.

Other code may wish to reference the bus type, so declare it in a shared
header file and export the symbol.

From include/linux/pci.h:

extern struct bus_type pci_bus_type;

From file the above code appears in:

EXPORT_SYMBOL(pci_bus_type);

• This will cause the bus to show up in /sys/bus/pci/ with two subdirectories:
‘devices’and ‘drivers’:
tree -d /sys/bus/pci/
/sys/bus/pci/
|-- devices
`-- drivers

32 Chapter 1. Driver Model

Linux Driver-api Documentation

Step 2: Registering Devices.

struct device represents a single device. It mainly contains metadata describing
the relationship the device has to other entities.

• Embed a struct device in the bus-specific device type:

struct pci_dev {
...
struct device dev; /* Generic device interface */
...

};

It is recommended that the generic device not be the first item in the struct
to discourage programmers from doing mindless casts between the object
types. Instead macros, or inline functions, should be created to convert from
the generic object type:

#define to_pci_dev(n) container_of(n, struct pci_dev, dev)

or

static inline struct pci_dev * to_pci_dev(struct kobject * kobj)
{

return container_of(n, struct pci_dev, dev);
}

This allows the compiler to verify type-safety of the operations that are per-
formed (which is Good).

• Initialize the device on registration.

When devices are discovered or registered with the bus type, the bus driver
should initialize the generic device. The most important things to initialize
are the bus_id, parent, and bus fields.

The bus_id is an ASCII string that contains the device’s address on the bus.
The format of this string is bus-specific. This is necessary for representing
devices in sysfs.

parent is the physical parent of the device. It is important that the bus driver
sets this field correctly.

The driver model maintains an ordered list of devices that it uses for power
management. This list must be in order to guarantee that devices are shut-
down before their physical parents, and vice versa. The order of this list is
determined by the parent of registered devices.

Also, the location of the device’s sysfs directory depends on a device’s par-
ent. sysfs exports a directory structure that mirrors the device hierarchy.
Accurately setting the parent guarantees that sysfs will accurately represent
the hierarchy.

The device’s bus field is a pointer to the bus type the device belongs to. This
should be set to the bus_type that was declared and initialized before.

Optionally, the bus driver may set the device’s name and release fields.
The name field is an ASCII string describing the device, like

1.10. Porting Drivers to the New Driver Model 33

Linux Driver-api Documentation

“ATI Technologies Inc Radeon QD”
The release field is a callback that the driver model core calls when the device
has been removed, and all references to it have been released. More on this
in a moment.

• Register the device.

Once the generic device has been initialized, it can be registered with the
driver model core by doing:

device_register(&dev->dev);

It can later be unregistered by doing:

device_unregister(&dev->dev);

This should happen on buses that support hotpluggable devices. If a bus
driver unregisters a device, it should not immediately free it. It should instead
wait for the driver model core to call the device’s release method, then free
the bus-specific object. (Theremay be other code that is currently referencing
the device structure, and it would be rude to free the device while that is
happening).

When the device is registered, a directory in sysfs is created. The PCI tree in
sysfs looks like:

/sys/devices/pci0/
|-- 00:00.0
|-- 00:01.0
| `-- 01:00.0
|-- 00:02.0
| `-- 02:1f.0
| `-- 03:00.0
|-- 00:1e.0
| `-- 04:04.0
|-- 00:1f.0
|-- 00:1f.1
| |-- ide0
| | |-- 0.0
| | `-- 0.1
| `-- ide1
| `-- 1.0
|-- 00:1f.2
|-- 00:1f.3
`-- 00:1f.5

Also, symlinks are created in the bus’s‘devices’directory that point to the
device’s directory in the physical hierarchy:
/sys/bus/pci/devices/
|-- 00:00.0 -> ../../../devices/pci0/00:00.0
|-- 00:01.0 -> ../../../devices/pci0/00:01.0
|-- 00:02.0 -> ../../../devices/pci0/00:02.0
|-- 00:1e.0 -> ../../../devices/pci0/00:1e.0
|-- 00:1f.0 -> ../../../devices/pci0/00:1f.0
|-- 00:1f.1 -> ../../../devices/pci0/00:1f.1

(continues on next page)

34 Chapter 1. Driver Model

Linux Driver-api Documentation

(continued from previous page)
|-- 00:1f.2 -> ../../../devices/pci0/00:1f.2
|-- 00:1f.3 -> ../../../devices/pci0/00:1f.3
|-- 00:1f.5 -> ../../../devices/pci0/00:1f.5
|-- 01:00.0 -> ../../../devices/pci0/00:01.0/01:00.0
|-- 02:1f.0 -> ../../../devices/pci0/00:02.0/02:1f.0
|-- 03:00.0 -> ../../../devices/pci0/00:02.0/02:1f.0/03:00.0
`-- 04:04.0 -> ../../../devices/pci0/00:1e.0/04:04.0

Step 3: Registering Drivers.

struct device_driver is a simple driver structure that contains a set of operations
that the driver model core may call.

• Embed a struct device_driver in the bus-specific driver.

Just like with devices, do something like:

struct pci_driver {
...
struct device_driver driver;

};

• Initialize the generic driver structure.

When the driver registers with the bus (e.g. doing pci_register_driver()), ini-
tialize the necessary fields of the driver: the name and bus fields.

• Register the driver.

After the generic driver has been initialized, call:

driver_register(&drv->driver);

to register the driver with the core.

When the driver is unregistered from the bus, unregister it from the core by
doing:

driver_unregister(&drv->driver);

Note that this will block until all references to the driver have gone away.
Normally, there will not be any.

• Sysfs representation.

Drivers are exported via sysfs in their bus’s‘driver’s directory. For example:
/sys/bus/pci/drivers/
|-- 3c59x
|-- Ensoniq AudioPCI
|-- agpgart-amdk7
|-- e100
`-- serial

Step 4: Define Generic Methods for Drivers.

struct device_driver defines a set of operations that the driver model core calls.
Most of these operations are probably similar to operations the bus already defines

1.10. Porting Drivers to the New Driver Model 35

Linux Driver-api Documentation

for drivers, but taking different parameters.

It would be difficult and tedious to force every driver on a bus to simultaneously
convert their drivers to generic format. Instead, the bus driver should define single
instances of the generic methods that forward call to the bus-specific drivers. For
instance:

static int pci_device_remove(struct device * dev)
{

struct pci_dev * pci_dev = to_pci_dev(dev);
struct pci_driver * drv = pci_dev->driver;

if (drv) {
if (drv->remove)

drv->remove(pci_dev);
pci_dev->driver = NULL;

}
return 0;

}

The generic driver should be initialized with these methods before it is registered:

/* initialize common driver fields */
drv->driver.name = drv->name;
drv->driver.bus = &pci_bus_type;
drv->driver.probe = pci_device_probe;
drv->driver.resume = pci_device_resume;
drv->driver.suspend = pci_device_suspend;
drv->driver.remove = pci_device_remove;

/* register with core */
driver_register(&drv->driver);

Ideally, the bus should only initialize the fields if they are not already set. This
allows the drivers to implement their own generic methods.

Step 5: Support generic driver binding.

The model assumes that a device or driver can be dynamically registered with the
bus at any time. When registration happens, devices must be bound to a driver, or
drivers must be bound to all devices that it supports.

A driver typically contains a list of device IDs that it supports. The bus driver
compares these IDs to the IDs of devices registered with it. The format of the
device IDs, and the semantics for comparing them are bus-specific, so the generic
model does attempt to generalize them.

Instead, a bus may supply a method in struct bus_type that does the comparison:

int (*match)(struct device * dev, struct device_driver * drv);

match should return positive value if the driver supports the device, and zero oth-
erwise. It may also return error code (for example -EPROBE_DEFER) if determin-
ing that given driver supports the device is not possible.

When a device is registered, the bus’s list of drivers is iterated over. bus->match()
is called for each one until a match is found.

36 Chapter 1. Driver Model

Linux Driver-api Documentation

When a driver is registered, the bus’s list of devices is iterated over. bus->match()
is called for each device that is not already claimed by a driver.

When a device is successfully bound to a driver, device->driver is set, the device
is added to a per-driver list of devices, and a symlink is created in the driver’s
sysfs directory that points to the device’s physical directory:
/sys/bus/pci/drivers/
|-- 3c59x
| `-- 00:0b.0 -> ../../../../devices/pci0/00:0b.0
|-- Ensoniq AudioPCI
|-- agpgart-amdk7
| `-- 00:00.0 -> ../../../../devices/pci0/00:00.0
|-- e100
| `-- 00:0c.0 -> ../../../../devices/pci0/00:0c.0
`-- serial

This driver binding should replace the existing driver binding mechanism the bus
currently uses.

Step 6: Supply a hotplug callback.

Whenever a device is registered with the driver model core, the userspace pro-
gram /sbin/hotplug is called to notify userspace. Users can define actions to per-
form when a device is inserted or removed.

The driver model core passes several arguments to userspace via environment
variables, including

• ACTION: set to ‘add’or ‘remove’
• DEVPATH: set to the device’s physical path in sysfs.

A bus driver may also supply additional parameters for userspace to consume. To
do this, a bus must implement the ‘hotplug’method in struct bus_type:
int (*hotplug) (struct device *dev, char **envp,

int num_envp, char *buffer, int buffer_size);

This is called immediately before /sbin/hotplug is executed.

Step 7: Cleaning up the bus driver.

The generic bus, device, and driver structures provide several fields that can re-
place those defined privately to the bus driver.

• Device list.

struct bus_type contains a list of all devices registered with the bus type. This
includes all devices on all instances of that bus type. An internal list that the bus
uses may be removed, in favor of using this one.

The core provides an iterator to access these devices:

int bus_for_each_dev(struct bus_type * bus, struct device * start,
void * data, int (*fn)(struct device *, void *));

• Driver list.

1.10. Porting Drivers to the New Driver Model 37

Linux Driver-api Documentation

struct bus_type also contains a list of all drivers registered with it. An internal
list of drivers that the bus driver maintains may be removed in favor of using the
generic one.

The drivers may be iterated over, like devices:

int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
void * data, int (*fn)(struct device_driver *, void␣

↪→*));

Please see drivers/base/bus.c for more information.

• rwsem

struct bus_type contains an rwsem that protects all core accesses to the device
and driver lists. This can be used by the bus driver internally, and should be used
when accessing the device or driver lists the bus maintains.

• Device and driver fields.

Some of the fields in struct device and struct device_driver duplicate fields in the
bus-specific representations of these objects. Feel free to remove the bus-specific
ones and favor the generic ones. Note though, that this will likely mean fixing up
all the drivers that reference the bus-specific fields (though those should all be
1-line changes).

38 Chapter 1. Driver Model

CHAPTER

TWO

DRIVER BASICS

2.1 Driver Entry and Exit points

module_init(x)
driver initialization entry point

Parameters
x function to be run at kernel boot time or module insertion

Description
module_init() will either be called during do_initcalls() (if builtin) or at module
insertion time (if a module). There can only be one per module.

module_exit(x)
driver exit entry point

Parameters
x function to be run when driver is removed

Description
module_exit() will wrap the driver clean-up code with cleanup_module() when
used with rmmod when the driver is a module. If the driver is statically compiled
into the kernel, module_exit() has no effect. There can only be one per module.

2.2 Driver device table

struct pci_device_id
PCI device ID structure

Definition

struct pci_device_id {
__u32 vendor, device;
__u32 subvendor, subdevice;
__u32 class, class_mask;
kernel_ulong_t driver_data;

};

Members
vendor Vendor ID to match (or PCI_ANY_ID)

39

Linux Driver-api Documentation

device Device ID to match (or PCI_ANY_ID)

subvendor Subsystem vendor ID to match (or PCI_ANY_ID)

subdevice Subsystem device ID to match (or PCI_ANY_ID)

class Device class, subclass, and “interface”to match. See Appendix D of the
PCI Local Bus Spec or include/linux/pci_ids.h for a full list of classes. Most
drivers do not need to specify class/class_mask as vendor/device is normally
sufficient.

class_mask Limit which sub-fields of the class field are compared. See
drivers/scsi/sym53c8xx_2/ for example of usage.

driver_data Data private to the driver. Most drivers don’t need to use driver_data
field. Best practice is to use driver_data as an index into a static list of equiv-
alent device types, instead of using it as a pointer.

struct usb_device_id
identifies USB devices for probing and hotplugging

Definition

struct usb_device_id {
__u16 match_flags;
__u16 idVendor;
__u16 idProduct;
__u16 bcdDevice_lo;
__u16 bcdDevice_hi;
__u8 bDeviceClass;
__u8 bDeviceSubClass;
__u8 bDeviceProtocol;
__u8 bInterfaceClass;
__u8 bInterfaceSubClass;
__u8 bInterfaceProtocol;
__u8 bInterfaceNumber;
kernel_ulong_t driver_info ;

};

Members
match_flags Bit mask controlling which of the other fields are used to match

against new devices. Any field except for driver_info may be used, although
some only make sense in conjunction with other fields. This is usually set by
a USB_DEVICE_*() macro, which sets all other fields in this structure except
for driver_info.

idVendor USB vendor ID for a device; numbers are assigned by the USB forum to
its members.

idProduct Vendor-assigned product ID.

bcdDevice_lo Low end of range of vendor-assigned product version numbers.
This is also used to identify individual product versions, for a range consisting
of a single device.

bcdDevice_hi High end of version number range. The range of product versions
is inclusive.

40 Chapter 2. Driver Basics

Linux Driver-api Documentation

bDeviceClass Class of device; numbers are assigned by the USB forum. Prod-
ucts may choose to implement classes, or be vendor-specific. Device classes
specify behavior of all the interfaces on a device.

bDeviceSubClass Subclass of device; associated with bDeviceClass.

bDeviceProtocol Protocol of device; associated with bDeviceClass.

bInterfaceClass Class of interface; numbers are assigned by the USB forum.
Products may choose to implement classes, or be vendor-specific. Interface
classes specify behavior only of a given interface; other interfaces may sup-
port other classes.

bInterfaceSubClass Subclass of interface; associated with bInterfaceClass.

bInterfaceProtocol Protocol of interface; associated with bInterfaceClass.

bInterfaceNumber Number of interface; composite devices may use fixed inter-
face numbers to differentiate between vendor-specific interfaces.

driver_info Holds information used by the driver. Usually it holds a pointer to a
descriptor understood by the driver, or perhaps device flags.

Description
In most cases, drivers will create a table of device IDs by using USB_DEVICE(), or
similar macros designed for that purpose. They will then export it to userspace
using MODULE_DEVICE_TABLE(), and provide it to the USB core through their
usb_driver structure.

See the usb_match_id() function for information about how matches are per-
formed. Briefly, you will normally use one of several macros to help construct
these entries. Each entry you provide will either identify one or more specific
products, or will identify a class of products which have agreed to behave the
same. You should put the more specific matches towards the beginning of your
table, so that driver_info can record quirks of specific products.

struct mdio_device_id
identifies PHY devices on an MDIO/MII bus

Definition

struct mdio_device_id {
__u32 phy_id;
__u32 phy_id_mask;

};

Members
phy_id The result of (mdio_read(MII_PHYSID1) << 16 | mdio_read(MII_PHYSID2))

& phy_id_mask for this PHY type
phy_id_mask Defines the significant bits of phy_id. A value of 0 is used to termi-

nate an array of struct mdio_device_id.

struct amba_id
identifies a device on an AMBA bus

Definition

2.2. Driver device table 41

Linux Driver-api Documentation

struct amba_id {
unsigned int id;
unsigned int mask;
void *data;

};

Members
id The significant bits if the hardware device ID

mask Bitmask specifying which bits of the id field are significant when matching.
A driver binds to a device when ((hardware device ID) & mask) == id.

data Private data used by the driver.

struct mips_cdmm_device_id
identifies devices in MIPS CDMM bus

Definition

struct mips_cdmm_device_id {
__u8 type;

};

Members
type Device type identifier.

struct mei_cl_device_id
MEI client device identifier

Definition

struct mei_cl_device_id {
char name[MEI_CL_NAME_SIZE];
uuid_le uuid;
__u8 version;
kernel_ulong_t driver_info;

};

Members
name helper name

uuid client uuid

version client protocol version

driver_info information used by the driver.

Description
identifies mei client device by uuid and name

struct rio_device_id
RIO device identifier

Definition

42 Chapter 2. Driver Basics

Linux Driver-api Documentation

struct rio_device_id {
__u16 did, vid;
__u16 asm_did, asm_vid;

};

Members
did RapidIO device ID

vid RapidIO vendor ID

asm_did RapidIO assembly device ID

asm_vid RapidIO assembly vendor ID

Description
Identifies a RapidIO device based on both the device/vendor IDs and the assembly
device/vendor IDs.

struct fsl_mc_device_id
MC object device identifier

Definition

struct fsl_mc_device_id {
__u16 vendor;
const char obj_type[16];

};

Members
vendor vendor ID

obj_type MC object type

Description
Type of entries in the“device Id”table for MC object devices supported by a MC
object device driver. The last entry of the table has vendor set to 0x0

struct tb_service_id
Thunderbolt service identifiers

Definition

struct tb_service_id {
__u32 match_flags;
char protocol_key[8 + 1];
__u32 protocol_id;
__u32 protocol_version;
__u32 protocol_revision;
kernel_ulong_t driver_data;

};

Members
match_flags Flags used to match the structure

protocol_key Protocol key the service supports

protocol_id Protocol id the service supports

2.2. Driver device table 43

Linux Driver-api Documentation

protocol_version Version of the protocol

protocol_revision Revision of the protocol software

driver_data Driver specific data

Description
Thunderbolt XDomain services are exposed as devices where each device car-
ries the protocol information the service supports. Thunderbolt XDomain service
drivers match against that information.

struct typec_device_id
USB Type-C alternate mode identifiers

Definition

struct typec_device_id {
__u16 svid;
__u8 mode;
kernel_ulong_t driver_data;

};

Members
svid Standard or Vendor ID

mode Mode index

driver_data Driver specific data

struct tee_client_device_id
tee based device identifier

Definition

struct tee_client_device_id {
uuid_t uuid;

};

Members
uuid For TEE based client devices we use the device uuid as the identifier.

struct wmi_device_id
WMI device identifier

Definition

struct wmi_device_id {
const char guid_string[UUID_STRING_LEN+1];
const void *context;

};

Members
guid_string 36 char string of the form fa50ff2b-f2e8-45de-83fa-65417f2f49ba

context pointer to driver specific data

struct mhi_device_id
MHI device identification

44 Chapter 2. Driver Basics

Linux Driver-api Documentation

Definition

struct mhi_device_id {
const char chan[MHI_NAME_SIZE];
kernel_ulong_t driver_data;

};

Members
chan MHI channel name

driver_data driver data;

2.3 Delaying, scheduling, and timer routines

struct prev_cputime
snapshot of system and user cputime

Definition

struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE;

u64 utime;
u64 stime;
raw_spinlock_t lock;

#endif;
};

Members
utime time spent in user mode

stime time spent in system mode

lock protects the above two fields

Description
Stores previous user/system time values such that we can guarantee monotonicity.

struct util_est
Estimation utilization of FAIR tasks

Definition

struct util_est {
unsigned int enqueued;
unsigned int ewma;

#define UTIL_EST_WEIGHT_SHIFT 2;
};

Members
enqueued instantaneous estimated utilization of a task/cpu

ewma the Exponential Weighted Moving Average (EWMA) utilization of a task

2.3. Delaying, scheduling, and timer routines 45

Linux Driver-api Documentation

Description
Support data structure to track an Exponential WeightedMoving Average (EWMA)
of a FAIR task’s utilization. New samples are added to the moving average each
time a task completes an activation. Sample’s weight is chosen so that the EWMA
will be relatively insensitive to transient changes to the task’s workload.
The enqueued attribute has a slightly different meaning for tasks and cpus: - task:
the task’s util_avg at last task dequeue time - cfs_rq: the sum of util_est.enqueued
for each RUNNABLE task on that CPU Thus, the util_est.enqueued of a task rep-
resents the contribution on the estimated utilization of the CPU where that task is
currently enqueued.

Only for tasks we track a moving average of the past instantaneous estimated
utilization. This allows to absorb sporadic drops in utilization of an otherwise
almost periodic task.

int pid_alive(const struct task_struct * p)
check that a task structure is not stale

Parameters
const struct task_struct * p Task structure to be checked.

Description
Test if a process is not yet dead (at most zombie state) If pid_alive fails, then point-
ers within the task structure can be stale and must not be dereferenced.

Return
1 if the process is alive. 0 otherwise.

int is_global_init(struct task_struct * tsk)
check if a task structure is init. Since init is free to have sub-threads we need
to check tgid.

Parameters
struct task_struct * tsk Task structure to be checked.

Description
Check if a task structure is the first user space task the kernel created.

Return
1 if the task structure is init. 0 otherwise.

int task_nice(const struct task_struct * p)
return the nice value of a given task.

Parameters
const struct task_struct * p the task in question.

Return
The nice value [-20 ⋯0 ⋯19].
bool is_idle_task(const struct task_struct * p)

is the specified task an idle task?

46 Chapter 2. Driver Basics

Linux Driver-api Documentation

Parameters
const struct task_struct * p the task in question.

Return
1 if p is an idle task. 0 otherwise.
int wake_up_process(struct task_struct * p)

Wake up a specific process

Parameters
struct task_struct * p The process to be woken up.

Description
Attempt to wake up the nominated process and move it to the set of runnable
processes.

This function executes a full memory barrier before accessing the task state.

Return
1 if the process was woken up, 0 if it was already running.

void preempt_notifier_register(struct preempt_notifier * notifier)
tell me when current is being preempted & rescheduled

Parameters
struct preempt_notifier * notifier notifier struct to register

void preempt_notifier_unregister(struct preempt_notifier * notifier)
no longer interested in preemption notifications

Parameters
struct preempt_notifier * notifier notifier struct to unregister

Description
This is not safe to call from within a preemption notifier.

__visible void notrace preempt_schedule_notrace(void)
preempt_schedule called by tracing

Parameters
void no arguments

Description
The tracing infrastructure uses preempt_enable_notrace to prevent recursion and
tracing preempt enabling caused by the tracing infrastructure itself. But as tracing
can happen in areas coming from userspace or just about to enter userspace, a
preempt enable can occur before user_exit() is called. This will cause the scheduler
to be called when the system is still in usermode.

To prevent this, the preempt_enable_notrace will use this function instead of pre-
empt_schedule() to exit user context if needed before calling the scheduler.

2.3. Delaying, scheduling, and timer routines 47

Linux Driver-api Documentation

int sched_setscheduler(struct task_struct * p, int policy, const struct
sched_param * param)

change the scheduling policy and/or RT priority of a thread.

Parameters
struct task_struct * p the task in question.

int policy new policy.

const struct sched_param * param structure containing the new RT priority.

Return
0 on success. An error code otherwise.

Description
NOTE that the task may be already dead.

int sched_setscheduler_nocheck(struct task_struct * p, int policy, const
struct sched_param * param)

change the scheduling policy and/or RT priority of a thread from kernelspace.

Parameters
struct task_struct * p the task in question.

int policy new policy.

const struct sched_param * param structure containing the new RT priority.

Description
Just like sched_setscheduler, only don’t bother checking if the current context has
permission. For example, this is needed in stop_machine(): we create temporary
high priority worker threads, but our caller might not have that capability.

Return
0 on success. An error code otherwise.

void yield(void)
yield the current processor to other threads.

Parameters
void no arguments

Description
Do not ever use this function, there’s a 99% chance you’re doing it wrong.
The scheduler is at all times free to pick the calling task as the most eligible task
to run, if removing the yield() call from your code breaks it, its already broken.

Typical broken usage is:

while (!event) yield();

where one assumes that yield() will let ‘the other’process run that will make
event true. If the current task is a SCHED_FIFO task that will never happen. Never
use yield() as a progress guarantee!!

48 Chapter 2. Driver Basics

Linux Driver-api Documentation

If you want to use yield() to wait for something, use wait_event(). If you want
to use yield() to be‘nice’for others, use cond_resched(). If you still want to use
yield(), do not!

int yield_to(struct task_struct * p, bool preempt)
yield the current processor to another thread in your thread group, or accel-
erate that thread toward the processor it’s on.

Parameters
struct task_struct * p target task

bool preempt whether task preemption is allowed or not

Description
It’s the caller’s job to ensure that the target task struct can’t go away on us
before we can do any checks.

Return
true (>0) if we indeed boosted the target task. false (0) if we failed to
boost the target. -ESRCH if there’s no task to yield to.

int cpupri_find_fitness(struct cpupri * cp, struct task_struct * p, struct
cpumask * lowest_mask, bool (*fitness_fn)(struct
task_struct *p, int cpu))

find the best (lowest-pri) CPU in the system

Parameters
struct cpupri * cp The cpupri context

struct task_struct * p The task

struct cpumask * lowest_mask A mask to fill in with selected CPUs (or NULL)

bool (*)(struct task_struct *p, int cpu) fitness_fn A pointer to a func-
tion to do custom checks whether the CPU fits a specific criteria so that we
only return those CPUs.

Note
This function returns the recommended CPUs as calculated during the current in-
vocation. By the time the call returns, the CPUsmay have in fact changed priorities
any number of times. While not ideal, it is not an issue of correctness since the
normal rebalancer logic will correct any discrepancies created by racing against
the uncertainty of the current priority configuration.

Return
(int)bool - CPUs were found

void cpupri_set(struct cpupri * cp, int cpu, int newpri)
update the CPU priority setting

Parameters
struct cpupri * cp The cpupri context

int cpu The target CPU

int newpri The priority (INVALID-RT99) to assign to this CPU

2.3. Delaying, scheduling, and timer routines 49

Linux Driver-api Documentation

Note
Assumes cpu_rq(cpu)->lock is locked

Return
(void)

int cpupri_init(struct cpupri * cp)
initialize the cpupri structure

Parameters
struct cpupri * cp The cpupri context

Return
-ENOMEM on memory allocation failure.

void cpupri_cleanup(struct cpupri * cp)
clean up the cpupri structure

Parameters
struct cpupri * cp The cpupri context

void update_tg_load_avg(struct cfs_rq * cfs_rq, int force)
update the tg’s load avg

Parameters
struct cfs_rq * cfs_rq the cfs_rq whose avg changed

int force update regardless of how small the difference

Description
This function‘ensures’: tg->load_avg := Sum tg->cfs_rq[]->avg.load. However,
because tg->load_avg is a global value there are performance considerations.

In order to avoid having to look at the other cfs_rq’s, we use a differential update
where we store the last value we propagated. This in turn allows skipping updates
if the differential is ‘small’.
Updating tg’s load_avg is necessary before update_cfs_share().
int update_cfs_rq_load_avg(u64 now, struct cfs_rq * cfs_rq)

update the cfs_rq’s load/util averages
Parameters
u64 now current time, as per cfs_rq_clock_pelt()

struct cfs_rq * cfs_rq cfs_rq to update

Description
The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
avg. The immediate corollary is that all (fair) tasks must be attached, see
post_init_entity_util_avg().

cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.

Returns true if the load decayed or we removed load.

50 Chapter 2. Driver Basics

Linux Driver-api Documentation

Since both these conditions indicate a changed cfs_rq->avg.load we should call
update_tg_load_avg() when this function returns true.

void attach_entity_load_avg(struct cfs_rq * cfs_rq, struct sched_entity
* se)

attach this entity to its cfs_rq load avg

Parameters
struct cfs_rq * cfs_rq cfs_rq to attach to

struct sched_entity * se sched_entity to attach

Description
Must call update_cfs_rq_load_avg() before this, since we rely on cfs_rq-
>avg.last_update_time being current.

void detach_entity_load_avg(struct cfs_rq * cfs_rq, struct sched_entity
* se)

detach this entity from its cfs_rq load avg

Parameters
struct cfs_rq * cfs_rq cfs_rq to detach from

struct sched_entity * se sched_entity to detach

Description
Must call update_cfs_rq_load_avg() before this, since we rely on cfs_rq-
>avg.last_update_time being current.

unsigned long cpu_util(int cpu)

Parameters
int cpu the CPU to get the utilization of

Description
The unit of the return value must be the one of capacity so we can compare
the utilization with the capacity of the CPU that is available for CFS task (ie
cpu_capacity).

cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the recent
utilization of currently non-runnable tasks on a CPU. It represents the amount
of utilization of a CPU in the range [0..capacity_orig] where capacity_orig is the
cpu_capacity available at the highest frequency (arch_scale_freq_capacity()). The
utilization of a CPU converges towards a sum equal to or less than the current
capacity (capacity_curr <= capacity_orig) of the CPU because it is the running
time on this CPU scaled by capacity_curr.

The estimated utilization of a CPU is defined to be the maximum between its
cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks currently
RUNNABLE on that CPU. This allows to properly represent the expected utiliza-
tion of a CPU which has just got a big task running since a long sleep period. At
the same time however it preserves the benefits of the “blocked utilization”in
describing the potential for other tasks waking up on the same CPU.

2.3. Delaying, scheduling, and timer routines 51

Linux Driver-api Documentation

Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even higher
than capacity_orig because of unfortunate rounding in cfs.avg.util_avg or just af-
ter migrating tasks and new task wakeups until the average stabilizes with the
new running time. We need to check that the utilization stays within the range
of [0..capacity_orig] and cap it if necessary. Without utilization capping, a group
could be seen as overloaded (CPU0 utilization at 121% + CPU1 utilization at 80%)
whereas CPU1 has 20% of available capacity. We allow utilization to overshoot ca-
pacity_curr (but not capacity_orig) as it useful for predicting the capacity required
after task migrations (scheduler-driven DVFS).

Return
the (estimated) utilization for the specified CPU

void update_sg_lb_stats(struct lb_env * env, struct sched_group * group,
struct sg_lb_stats * sgs, int * sg_status)

Update sched_group’s statistics for load balancing.
Parameters
struct lb_env * env The load balancing environment.

struct sched_group * group sched_group whose statistics are to be updated.

struct sg_lb_stats * sgs variable to hold the statistics for this group.

int * sg_status Holds flag indicating the status of the sched_group

bool update_sd_pick_busiest(struct lb_env * env, struct sd_lb_stats * sds,
struct sched_group * sg, struct sg_lb_stats
* sgs)

return 1 on busiest group

Parameters
struct lb_env * env The load balancing environment.

struct sd_lb_stats * sds sched_domain statistics

struct sched_group * sg sched_group candidate to be checked for being the
busiest

struct sg_lb_stats * sgs sched_group statistics

Description
Determine if sg is a busier group than the previously selected busiest group.
Return
true if sg is a busier group than the previously selected busiest group. false
otherwise.

int idle_cpu_without(int cpu, struct task_struct * p)
would a given CPU be idle without p ?

Parameters
int cpu the processor on which idleness is tested.

struct task_struct * p task which should be ignored.

52 Chapter 2. Driver Basics

Linux Driver-api Documentation

Return
1 if the CPU would be idle. 0 otherwise.

void update_sd_lb_stats(struct lb_env * env, struct sd_lb_stats * sds)
Update sched_domain’s statistics for load balancing.

Parameters
struct lb_env * env The load balancing environment.

struct sd_lb_stats * sds variable to hold the statistics for this sched_domain.

void calculate_imbalance(struct lb_env * env, struct sd_lb_stats * sds)
Calculate the amount of imbalance present within the groups of a given
sched_domain during load balance.

Parameters
struct lb_env * env load balance environment

struct sd_lb_stats * sds statistics of the sched_domain whose imbalance is to
be calculated.

struct sched_group * find_busiest_group(struct lb_env * env)
Returns the busiest group within the sched_domain if there is an imbalance.

Parameters
struct lb_env * env The load balancing environment.

Description
Also calculates the amount of runnable load which should be moved to restore
balance.

Return
• The busiest group if imbalance exists.

DECLARE_COMPLETION(work)
declare and initialize a completion structure

Parameters
work identifier for the completion structure

Description
This macro declares and initializes a completion structure. Generally used for
static declarations. You should use the _ONSTACK variant for automatic variables.

DECLARE_COMPLETION_ONSTACK(work)
declare and initialize a completion structure

Parameters
work identifier for the completion structure

Description
This macro declares and initializes a completion structure on the kernel stack.

2.3. Delaying, scheduling, and timer routines 53

Linux Driver-api Documentation

void __init_completion(struct completion * x)
Initialize a dynamically allocated completion

Parameters
struct completion * x pointer to completion structure that is to be initialized

Description
This inline function will initialize a dynamically created completion structure.

void reinit_completion(struct completion * x)
reinitialize a completion structure

Parameters
struct completion * x pointer to completion structure that is to be reinitialized

Description
This inline function should be used to reinitialize a completion structure so it can
be reused. This is especially important after complete_all() is used.

unsigned long __round_jiffies(unsigned long j, int cpu)
function to round jiffies to a full second

Parameters
unsigned long j the time in (absolute) jiffies that should be rounded

int cpu the processor number on which the timeout will happen

Description
__round_jiffies() rounds an absolute time in the future (in jiffies) up or down
to (approximately) full seconds. This is useful for timers for which the exact time
they fire does not matter too much, as long as they fire approximately every X
seconds.

By rounding these timers to whole seconds, all such timers will fire at the same
time, rather than at various times spread out. The goal of this is to have the CPU
wake up less, which saves power.

The exact rounding is skewed for each processor to avoid all processors firing at
the exact same time, which could lead to lock contention or spurious cache line
bouncing.

The return value is the rounded version of the j parameter.
unsigned long __round_jiffies_relative(unsigned long j, int cpu)

function to round jiffies to a full second

Parameters
unsigned long j the time in (relative) jiffies that should be rounded

int cpu the processor number on which the timeout will happen

Description
__round_jiffies_relative() rounds a time delta in the future (in jiffies) up or
down to (approximately) full seconds. This is useful for timers for which the exact

54 Chapter 2. Driver Basics

Linux Driver-api Documentation

time they fire does not matter too much, as long as they fire approximately every
X seconds.

By rounding these timers to whole seconds, all such timers will fire at the same
time, rather than at various times spread out. The goal of this is to have the CPU
wake up less, which saves power.

The exact rounding is skewed for each processor to avoid all processors firing at
the exact same time, which could lead to lock contention or spurious cache line
bouncing.

The return value is the rounded version of the j parameter.
unsigned long round_jiffies(unsigned long j)

function to round jiffies to a full second

Parameters
unsigned long j the time in (absolute) jiffies that should be rounded

Description
round_jiffies() rounds an absolute time in the future (in jiffies) up or down to
(approximately) full seconds. This is useful for timers for which the exact time they
fire does not matter too much, as long as they fire approximately every X seconds.

By rounding these timers to whole seconds, all such timers will fire at the same
time, rather than at various times spread out. The goal of this is to have the CPU
wake up less, which saves power.

The return value is the rounded version of the j parameter.
unsigned long round_jiffies_relative(unsigned long j)

function to round jiffies to a full second

Parameters
unsigned long j the time in (relative) jiffies that should be rounded

Description
round_jiffies_relative() rounds a time delta in the future (in jiffies) up or down
to (approximately) full seconds. This is useful for timers for which the exact time
they fire does not matter too much, as long as they fire approximately every X
seconds.

By rounding these timers to whole seconds, all such timers will fire at the same
time, rather than at various times spread out. The goal of this is to have the CPU
wake up less, which saves power.

The return value is the rounded version of the j parameter.
unsigned long __round_jiffies_up(unsigned long j, int cpu)

function to round jiffies up to a full second

Parameters
unsigned long j the time in (absolute) jiffies that should be rounded

int cpu the processor number on which the timeout will happen

2.3. Delaying, scheduling, and timer routines 55

Linux Driver-api Documentation

Description
This is the same as __round_jiffies() except that it will never round down. This
is useful for timeouts for which the exact time of firing does not matter too much,
as long as they don’t fire too early.
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)

function to round jiffies up to a full second

Parameters
unsigned long j the time in (relative) jiffies that should be rounded

int cpu the processor number on which the timeout will happen

Description
This is the same as __round_jiffies_relative() except that it will never round
down. This is useful for timeouts for which the exact time of firing does not matter
too much, as long as they don’t fire too early.
unsigned long round_jiffies_up(unsigned long j)

function to round jiffies up to a full second

Parameters
unsigned long j the time in (absolute) jiffies that should be rounded

Description
This is the same as round_jiffies() except that it will never round down. This
is useful for timeouts for which the exact time of firing does not matter too much,
as long as they don’t fire too early.
unsigned long round_jiffies_up_relative(unsigned long j)

function to round jiffies up to a full second

Parameters
unsigned long j the time in (relative) jiffies that should be rounded

Description
This is the same as round_jiffies_relative() except that it will never round
down. This is useful for timeouts for which the exact time of firing does not matter
too much, as long as they don’t fire too early.
void init_timer_key(struct timer_list * timer, void (*func)(struct timer_list

*), unsigned int flags, const char * name, struct
lock_class_key * key)

initialize a timer

Parameters
struct timer_list * timer the timer to be initialized

void (*)(struct timer_list *) func timer callback function

unsigned int flags timer flags

const char * name name of the timer

56 Chapter 2. Driver Basics

Linux Driver-api Documentation

struct lock_class_key * key lockdep class key of the fake lock used for track-
ing timer sync lock dependencies

Description
init_timer_key() must be done to a timer prior calling any of the other timer
functions.

int mod_timer_pending(struct timer_list * timer, unsigned long expires)
modify a pending timer’s timeout

Parameters
struct timer_list * timer the pending timer to be modified

unsigned long expires new timeout in jiffies

Description
mod_timer_pending() is the same for pending timers as mod_timer(), but will not
re-activate and modify already deleted timers.

It is useful for unserialized use of timers.

int mod_timer(struct timer_list * timer, unsigned long expires)
modify a timer’s timeout

Parameters
struct timer_list * timer the timer to be modified

unsigned long expires new timeout in jiffies

Description
mod_timer() is a more efficient way to update the expire field of an active timer
(if the timer is inactive it will be activated)

mod_timer(timer, expires) is equivalent to:

del_timer(timer); timer->expires = expires; add_timer(timer);

Note that if there are multiple unserialized concurrent users of the same timer,
then mod_timer() is the only safe way to modify the timeout, since add_timer()
cannot modify an already running timer.

The function returns whether it has modified a pending timer or not. (ie.
mod_timer() of an inactive timer returns 0, mod_timer() of an active timer re-
turns 1.)

int timer_reduce(struct timer_list * timer, unsigned long expires)
Modify a timer’s timeout if it would reduce the timeout

Parameters
struct timer_list * timer The timer to be modified

unsigned long expires New timeout in jiffies

Description
timer_reduce() is very similar to mod_timer(), except that it will only modify a
running timer if that would reduce the expiration time (it will start a timer that
isn’t running).

2.3. Delaying, scheduling, and timer routines 57

Linux Driver-api Documentation

void add_timer(struct timer_list * timer)
start a timer

Parameters
struct timer_list * timer the timer to be added

Description
The kernel will do a ->function(timer) callback from the timer interrupt at the
->expires point in the future. The current time is ‘jiffies’.
The timer’s ->expires, ->function fields must be set prior calling this function.
Timers with an ->expires field in the past will be executed in the next timer tick.

void add_timer_on(struct timer_list * timer, int cpu)
start a timer on a particular CPU

Parameters
struct timer_list * timer the timer to be added

int cpu the CPU to start it on

Description
This is not very scalable on SMP. Double adds are not possible.

int del_timer(struct timer_list * timer)
deactivate a timer.

Parameters
struct timer_list * timer the timer to be deactivated

Description
del_timer() deactivates a timer - this works on both active and inactive timers.

The function returns whether it has deactivated a pending timer or not. (ie.
del_timer() of an inactive timer returns 0, del_timer() of an active timer re-
turns 1.)

int try_to_del_timer_sync(struct timer_list * timer)
Try to deactivate a timer

Parameters
struct timer_list * timer timer to delete

Description
This function tries to deactivate a timer. Upon successful (ret >= 0) exit the timer
is not queued and the handler is not running on any CPU.

int del_timer_sync(struct timer_list * timer)
deactivate a timer and wait for the handler to finish.

Parameters
struct timer_list * timer the timer to be deactivated

58 Chapter 2. Driver Basics

Linux Driver-api Documentation

Description
This function only differs from del_timer() on SMP: besides deactivating the
timer it also makes sure the handler has finished executing on other CPUs.

Synchronization rules: Callers must prevent restarting of the timer, otherwise this
function is meaningless. It must not be called from interrupt contexts unless the
timer is an irqsafe one. The caller must not hold locks which would prevent com-
pletion of the timer’s handler. The timer’s handler must not call add_timer_on().
Upon exit the timer is not queued and the handler is not running on any CPU.

Now del_timer_sync() will never return and never release somelock. The inter-
rupt on the other CPU is waiting to grab somelock but it has interrupted the softirq
that CPU0 is waiting to finish.

The function returns whether it has deactivated a pending timer or not.

Note
For !irqsafe timers, you must not hold locks that are held in interrupt con-

text while calling this function. Even if the lock has nothing to do with the
timer in question. Here’s why:
CPU0 CPU1
---- ----

<SOFTIRQ>
call_timer_fn();
base->running_timer = mytimer;

spin_lock_irq(somelock);
<IRQ>

spin_lock(somelock);
del_timer_sync(mytimer);
while (base->running_timer == mytimer);

signed long schedule_timeout(signed long timeout)
sleep until timeout

Parameters
signed long timeout timeout value in jiffies

Description
Make the current task sleep until timeout jiffies have elapsed. The function be-
havior depends on the current task state (see also set_current_state() description):

TASK_RUNNING - the scheduler is called, but the task does not sleep at all. That
happens because sched_submit_work() does nothing for tasks in TASK_RUNNING
state.

TASK_UNINTERRUPTIBLE - at least timeout jiffies are guaranteed to pass before
the routine returns unless the current task is explicitly woken up, (e.g. by
wake_up_process()).

TASK_INTERRUPTIBLE - the routine may return early if a signal is delivered to the
current task or the current task is explicitly woken up.

The current task state is guaranteed to be TASK_RUNNINGwhen this routine returns.

2.3. Delaying, scheduling, and timer routines 59

Linux Driver-api Documentation

Specifying a timeout value of MAX_SCHEDULE_TIMEOUT will schedule the CPU
away without a bound on the timeout. In this case the return value will be
MAX_SCHEDULE_TIMEOUT.

Returns 0 when the timer has expired otherwise the remaining time in jiffies will
be returned. In all cases the return value is guaranteed to be non-negative.

void msleep(unsigned int msecs)
sleep safely even with waitqueue interruptions

Parameters
unsigned int msecs Time in milliseconds to sleep for

unsigned long msleep_interruptible(unsigned int msecs)
sleep waiting for signals

Parameters
unsigned int msecs Time in milliseconds to sleep for

void usleep_range(unsigned long min, unsigned long max)
Sleep for an approximate time

Parameters
unsigned long min Minimum time in usecs to sleep

unsigned long max Maximum time in usecs to sleep

Description
In non-atomic context where the exact wakeup time is flexible, use
usleep_range() instead of udelay(). The sleep improves responsiveness by
avoiding the CPU-hogging busy-wait of udelay(), and the range reduces power
usage by allowing hrtimers to take advantage of an already- scheduled interrupt
instead of scheduling a new one just for this sleep.

2.4 Wait queues and Wake events

int waitqueue_active(struct wait_queue_head * wq_head)

• locklessly test for waiters on the queue

Parameters
struct wait_queue_head * wq_head the waitqueue to test for waiters

Description
returns true if the wait list is not empty

Use either while holding wait_queue_head::lock or when used for wakeups with
an extra smp_mb() like:

CPU0 - waker CPU1 - waiter

for (;;) {
@cond = true; prepare_to_wait(&wq_head, &wait, state);

(continues on next page)

60 Chapter 2. Driver Basics

Linux Driver-api Documentation

(continued from previous page)
smp_mb(); // smp_mb() from set_current_state()
if (waitqueue_active(wq_head)) if (@cond)

wake_up(wq_head); break;
schedule();

}
finish_wait(&wq_head, &wait);

Because without the explicit smp_mb() it’s possible for the waitqueue_active()
load to get hoisted over the cond store such that we’ll observe an empty wait list
while the waiter might not observe cond.
Also note that this ‘optimization’trades a spin_lock() for an smp_mb(), which
(when the lock is uncontended) are of roughly equal cost.

NOTE
this function is lockless and requires care, incorrect usage _will_ lead to sporadic
and non-obvious failure.

bool wq_has_single_sleeper(struct wait_queue_head * wq_head)
check if there is only one sleeper

Parameters
struct wait_queue_head * wq_head wait queue head

Description
Returns true of wq_head has only one sleeper on the list.

Please refer to the comment for waitqueue_active.

bool wq_has_sleeper(struct wait_queue_head * wq_head)
check if there are any waiting processes

Parameters
struct wait_queue_head * wq_head wait queue head

Description
Returns true if wq_head has waiting processes

Please refer to the comment for waitqueue_active.

wait_event(wq_head, condition)
sleep until a condition gets true

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition eval-
uates to true. The condition is checked each time the waitqueue wq_head is
woken up.

wake_up() has to be called after changing any variable that could change the result
of the wait condition.

2.4. Wait queues and Wake events 61

Linux Driver-api Documentation

wait_event_freezable(wq_head, condition)
sleep (or freeze) until a condition gets true

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

Description
The process is put to sleep (TASK_INTERRUPTIBLE – so as not to contribute to
system load) until the condition evaluates to true. The condition is checked
each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

wait_event_timeout(wq_head, condition, timeout)
sleep until a condition gets true or a timeout elapses

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, in jiffies

Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition eval-
uates to true. The condition is checked each time the waitqueue wq_head is
woken up.

wake_up() has to be called after changing any variable that could change the result
of the wait condition.

Return
0 if the condition evaluated to false after the timeout elapsed, 1 if the condition
evaluated to true after the timeout elapsed, or the remaining jiffies (at least 1) if
the condition evaluated to true before the timeout elapsed.
wait_event_cmd(wq_head, condition, cmd1, cmd2)

sleep until a condition gets true

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

cmd1 the command will be executed before sleep

cmd2 the command will be executed after sleep

Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition eval-
uates to true. The condition is checked each time the waitqueue wq_head is
woken up.

62 Chapter 2. Driver Basics

Linux Driver-api Documentation

wake_up() has to be called after changing any variable that could change the result
of the wait condition.

wait_event_interruptible(wq_head, condition)
sleep until a condition gets true

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates
to true or a signal is received. The condition is checked each time the waitqueue
wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if
condition evaluated to true.
wait_event_interruptible_timeout(wq_head, condition, timeout)

sleep until a condition gets true or a timeout elapses

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, in jiffies

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates
to true or a signal is received. The condition is checked each time the waitqueue
wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

Return
0 if the condition evaluated to false after the timeout elapsed, 1 if the condition
evaluated to true after the timeout elapsed, the remaining jiffies (at least 1) if the
condition evaluated to true before the timeout elapsed, or -ERESTARTSYS if it was
interrupted by a signal.

wait_event_hrtimeout(wq_head, condition, timeout)
sleep until a condition gets true or a timeout elapses

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, as a ktime_t

2.4. Wait queues and Wake events 63

Linux Driver-api Documentation

Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition eval-
uates to true or a signal is received. The condition is checked each time the
waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

The function returns 0 if condition became true, or -ETIME if the timeout elapsed.

wait_event_interruptible_hrtimeout(wq, condition, timeout)
sleep until a condition gets true or a timeout elapses

Parameters
wq the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, as a ktime_t

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates
to true or a signal is received. The condition is checked each time the waitqueue
wq is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

The function returns 0 if condition became true, -ERESTARTSYS if it was inter-
rupted by a signal, or -ETIME if the timeout elapsed.

wait_event_idle(wq_head, condition)
wait for a condition without contributing to system load

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

Description
The process is put to sleep (TASK_IDLE) until the condition evaluates to true. The
condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

wait_event_idle_exclusive(wq_head, condition)
wait for a condition with contributing to system load

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

Description

64 Chapter 2. Driver Basics

Linux Driver-api Documentation

The process is put to sleep (TASK_IDLE) until the condition evaluates to true. The
condition is checked each time the waitqueue wq_head is woken up.
The process is put on the wait queue with anWQ_FLAG_EXCLUSIVE flag set thus if
other processes wait on the same list, when this process is woken further processes
are not considered.

wake_up() has to be called after changing any variable that could change the result
of the wait condition.

wait_event_idle_timeout(wq_head, condition, timeout)
sleep without load until a condition becomes true or a timeout elapses

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, in jiffies

Description
The process is put to sleep (TASK_IDLE) until the condition evaluates to true. The
condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

Return
0 if the condition evaluated to false after the timeout elapsed, 1 if the condition
evaluated to true after the timeout elapsed, or the remaining jiffies (at least 1) if
the condition evaluated to true before the timeout elapsed.
wait_event_idle_exclusive_timeout(wq_head, condition, timeout)

sleep without load until a condition becomes true or a timeout elapses

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, in jiffies

Description
The process is put to sleep (TASK_IDLE) until the condition evaluates to true. The
condition is checked each time the waitqueue wq_head is woken up.
The process is put on the wait queue with anWQ_FLAG_EXCLUSIVE flag set thus if
other processes wait on the same list, when this process is woken further processes
are not considered.

wake_up() has to be called after changing any variable that could change the result
of the wait condition.

Return
0 if the condition evaluated to false after the timeout elapsed, 1 if the condition
evaluated to true after the timeout elapsed, or the remaining jiffies (at least 1) if
the condition evaluated to true before the timeout elapsed.

2.4. Wait queues and Wake events 65

Linux Driver-api Documentation

wait_event_interruptible_locked(wq, condition)
sleep until a condition gets true

Parameters
wq the waitqueue to wait on

condition a C expression for the event to wait for

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates
to true or a signal is received. The condition is checked each time the waitqueue
wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping
but condition testing is done while lock is held and when this macro exits the lock
is held.

The lock is locked/unlocked using spin_lock()/spin_unlock() functions which must
match the way they are locked/unlocked outside of this macro.

wake_up_locked() has to be called after changing any variable that could change
the result of the wait condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if
condition evaluated to true.
wait_event_interruptible_locked_irq(wq, condition)

sleep until a condition gets true

Parameters
wq the waitqueue to wait on

condition a C expression for the event to wait for

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates
to true or a signal is received. The condition is checked each time the waitqueue
wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping
but condition testing is done while lock is held and when this macro exits the lock
is held.

The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq() functions
which must match the way they are locked/unlocked outside of this macro.

wake_up_locked() has to be called after changing any variable that could change
the result of the wait condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if
condition evaluated to true.
wait_event_interruptible_exclusive_locked(wq, condition)

sleep exclusively until a condition gets true

Parameters
wq the waitqueue to wait on

66 Chapter 2. Driver Basics

Linux Driver-api Documentation

condition a C expression for the event to wait for

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates
to true or a signal is received. The condition is checked each time the waitqueue
wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping
but condition testing is done while lock is held and when this macro exits the lock
is held.

The lock is locked/unlocked using spin_lock()/spin_unlock() functions which must
match the way they are locked/unlocked outside of this macro.

The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus
when other process waits process on the list if this process is awaken further
processes are not considered.

wake_up_locked() has to be called after changing any variable that could change
the result of the wait condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if
condition evaluated to true.
wait_event_interruptible_exclusive_locked_irq(wq, condition)

sleep until a condition gets true

Parameters
wq the waitqueue to wait on

condition a C expression for the event to wait for

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates
to true or a signal is received. The condition is checked each time the waitqueue
wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping
but condition testing is done while lock is held and when this macro exits the lock
is held.

The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq() functions
which must match the way they are locked/unlocked outside of this macro.

The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus
when other process waits process on the list if this process is awaken further
processes are not considered.

wake_up_locked() has to be called after changing any variable that could change
the result of the wait condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if
condition evaluated to true.
wait_event_killable(wq_head, condition)

sleep until a condition gets true

Parameters

2.4. Wait queues and Wake events 67

Linux Driver-api Documentation

wq_head the waitqueue to wait on

condition a C expression for the event to wait for

Description
The process is put to sleep (TASK_KILLABLE) until the condition evaluates to
true or a signal is received. The condition is checked each time the waitqueue
wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if
condition evaluated to true.
wait_event_killable_timeout(wq_head, condition, timeout)

sleep until a condition gets true or a timeout elapses

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, in jiffies

Description
The process is put to sleep (TASK_KILLABLE) until the condition evaluates to
true or a kill signal is received. The condition is checked each time the waitqueue
wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

Only kill signals interrupt this process.

Return
0 if the condition evaluated to false after the timeout elapsed, 1 if the condition
evaluated to true after the timeout elapsed, the remaining jiffies (at least 1) if the
condition evaluated to true before the timeout elapsed, or -ERESTARTSYS if it was
interrupted by a kill signal.

wait_event_lock_irq_cmd(wq_head, condition, lock, cmd)
sleep until a condition gets true. The condition is checked under the lock.
This is expected to be called with the lock taken.

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before cmd and schedule() and
reacquired afterwards.

cmd a command which is invoked outside the critical section before sleep

Description

68 Chapter 2. Driver Basics

Linux Driver-api Documentation

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition eval-
uates to true. The condition is checked each time the waitqueue wq_head is
woken up.

wake_up() has to be called after changing any variable that could change the result
of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before
invoking the cmd and going to sleep and is reacquired afterwards.

wait_event_lock_irq(wq_head, condition, lock)
sleep until a condition gets true. The condition is checked under the lock.
This is expected to be called with the lock taken.

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before schedule() and reacquired
afterwards.

Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition eval-
uates to true. The condition is checked each time the waitqueue wq_head is
woken up.

wake_up() has to be called after changing any variable that could change the result
of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before
going to sleep and is reacquired afterwards.

wait_event_interruptible_lock_irq_cmd(wq_head, condition, lock, cmd)
sleep until a condition gets true. The condition is checked under the lock.
This is expected to be called with the lock taken.

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before cmd and schedule() and
reacquired afterwards.

cmd a command which is invoked outside the critical section before sleep

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates
to true or a signal is received. The condition is checked each time the waitqueue
wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before
invoking the cmd and going to sleep and is reacquired afterwards.

2.4. Wait queues and Wake events 69

Linux Driver-api Documentation

The macro will return -ERESTARTSYS if it was interrupted by a signal and 0 if
condition evaluated to true.
wait_event_interruptible_lock_irq(wq_head, condition, lock)

sleep until a condition gets true. The condition is checked under the lock.
This is expected to be called with the lock taken.

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before schedule() and reacquired
afterwards.

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates
to true or signal is received. The condition is checked each time the waitqueue
wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before
going to sleep and is reacquired afterwards.

The macro will return -ERESTARTSYS if it was interrupted by a signal and 0 if
condition evaluated to true.
wait_event_interruptible_lock_irq_timeout(wq_head, condition, lock,

timeout)
sleep until a condition gets true or a timeout elapses. The condition is checked
under the lock. This is expected to be called with the lock taken.

Parameters
wq_head the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before schedule() and reacquired
afterwards.

timeout timeout, in jiffies

Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates
to true or signal is received. The condition is checked each time the waitqueue
wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result
of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before
going to sleep and is reacquired afterwards.

The function returns 0 if the timeout elapsed, -ERESTARTSYS if it was interrupted
by a signal, and the remaining jiffies otherwise if the condition evaluated to true
before the timeout elapsed.

70 Chapter 2. Driver Basics

Linux Driver-api Documentation

void __wake_up(struct wait_queue_head * wq_head, unsigned int mode,
int nr_exclusive, void * key)

wake up threads blocked on a waitqueue.

Parameters
struct wait_queue_head * wq_head the waitqueue

unsigned int mode which threads

int nr_exclusive how many wake-one or wake-many threads to wake up

void * key is directly passed to the wakeup function

Description
If this function wakes up a task, it executes a full memory barrier before accessing
the task state.

void __wake_up_sync_key(struct wait_queue_head * wq_head, unsigned
int mode, void * key)

wake up threads blocked on a waitqueue.

Parameters
struct wait_queue_head * wq_head the waitqueue

unsigned int mode which threads

void * key opaque value to be passed to wakeup targets

Description
The sync wakeup differs that the waker knows that it will schedule away soon, so
while the target thread will be woken up, it will not be migrated to another CPU -
ie. the two threads are‘synchronized’with each other. This can prevent needless
bouncing between CPUs.

On UP it can prevent extra preemption.

If this function wakes up a task, it executes a full memory barrier before accessing
the task state.

void __wake_up_locked_sync_key(struct wait_queue_head * wq_head, un-
signed int mode, void * key)

wake up a thread blocked on a locked waitqueue.

Parameters
struct wait_queue_head * wq_head the waitqueue

unsigned int mode which threads

void * key opaque value to be passed to wakeup targets

Description
The sync wakeup differs in that the waker knows that it will schedule away soon,
so while the target thread will be woken up, it will not be migrated to another
CPU - ie. the two threads are ‘synchronized’with each other. This can prevent
needless bouncing between CPUs.

On UP it can prevent extra preemption.

2.4. Wait queues and Wake events 71

Linux Driver-api Documentation

If this function wakes up a task, it executes a full memory barrier before accessing
the task state.

void finish_wait(struct wait_queue_head * wq_head, struct
wait_queue_entry * wq_entry)

clean up after waiting in a queue

Parameters
struct wait_queue_head * wq_head waitqueue waited on

struct wait_queue_entry * wq_entry wait descriptor

Description
Sets current thread back to running state and removes the wait descriptor from
the given waitqueue if still queued.

2.5 High-resolution timers

ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
Set a ktime_t variable from a seconds/nanoseconds value

Parameters
const s64 secs seconds to set

const unsigned long nsecs nanoseconds to set

Return
The ktime_t representation of the value.

int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
Compares two ktime_t variables for less, greater or equal

Parameters
const ktime_t cmp1 comparable1

const ktime_t cmp2 comparable2

Return
⋯ cmp1 < cmp2: return <0 cmp1 == cmp2: return 0 cmp1 > cmp2: return >0

bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
Compare if a ktime_t value is bigger than another one.

Parameters
const ktime_t cmp1 comparable1

const ktime_t cmp2 comparable2

Return
true if cmp1 happened after cmp2.

bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
Compare if a ktime_t value is smaller than another one.

72 Chapter 2. Driver Basics

Linux Driver-api Documentation

Parameters
const ktime_t cmp1 comparable1

const ktime_t cmp2 comparable2

Return
true if cmp1 happened before cmp2.

bool ktime_to_timespec64_cond(const ktime_t kt, struct timespec64 * ts)
convert a ktime_t variable to timespec64 format only if the variable contains
data

Parameters
const ktime_t kt the ktime_t variable to convert

struct timespec64 * ts the timespec variable to store the result in

Return
true if there was a successful conversion, false if kt was 0.

struct hrtimer
the basic hrtimer structure

Definition

struct hrtimer {
struct timerqueue_node node;
ktime_t _softexpires;
enum hrtimer_restart (*function)(struct hrtimer *);
struct hrtimer_clock_base *base;
u8 state;
u8 is_rel;
u8 is_soft;
u8 is_hard;

};

Members
node timerqueue node, which alsomanages node.expires, the absolute expiry time

in the hrtimers internal representation. The time is related to the clock on
which the timer is based. Is setup by adding slack to the _softexpires value.
For non range timers identical to _softexpires.

_softexpires the absolute earliest expiry time of the hrtimer. The time which
was given as expiry time when the timer was armed.

function timer expiry callback function

base pointer to the timer base (per cpu and per clock)

state state information (See bit values above)

is_rel Set if the timer was armed relative

is_soft Set if hrtimer will be expired in soft interrupt context.

is_hard Set if hrtimer will be expired in hard interrupt context even on RT.

2.5. High-resolution timers 73

Linux Driver-api Documentation

Description
The hrtimer structure must be initialized by hrtimer_init()

struct hrtimer_sleeper
simple sleeper structure

Definition

struct hrtimer_sleeper {
struct hrtimer timer;
struct task_struct *task;

};

Members
timer embedded timer structure

task task to wake up

Description
task is set to NULL, when the timer expires.

struct hrtimer_clock_base
the timer base for a specific clock

Definition

struct hrtimer_clock_base {
struct hrtimer_cpu_base *cpu_base;
unsigned int index;
clockid_t clockid;
seqcount_t seq;
struct hrtimer *running;
struct timerqueue_head active;
ktime_t (*get_time)(void);
ktime_t offset;

};

Members
cpu_base per cpu clock base

index clock type index for per_cpu support when moving a timer to a base on
another cpu.

clockid clock id for per_cpu support

seq seqcount around __run_hrtimer

running pointer to the currently running hrtimer

active red black tree root node for the active timers

get_time function to retrieve the current time of the clock

offset offset of this clock to the monotonic base

struct hrtimer_cpu_base
the per cpu clock bases

Definition

74 Chapter 2. Driver Basics

Linux Driver-api Documentation

struct hrtimer_cpu_base {
raw_spinlock_t lock;
unsigned int cpu;
unsigned int active_bases;
unsigned int clock_was_set_seq;
unsigned int hres_active : 1,in_hrtirq ␣

↪→ : 1,hang_detected : 1, softirq_activated : 1;
#ifdef CONFIG_HIGH_RES_TIMERS;

unsigned int nr_events;
unsigned short nr_retries;
unsigned short nr_hangs;
unsigned int max_hang_time;

#endif;
#ifdef CONFIG_PREEMPT_RT;

spinlock_t softirq_expiry_lock;
atomic_t timer_waiters;

#endif;
ktime_t expires_next;
struct hrtimer *next_timer;
ktime_t softirq_expires_next;
struct hrtimer *softirq_next_timer;
struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES];

};

Members
lock lock protecting the base and associated clock bases and timers

cpu cpu number

active_bases Bitfield to mark bases with active timers

clock_was_set_seq Sequence counter of clock was set events

hres_active State of high resolution mode

in_hrtirq hrtimer_interrupt() is currently executing

hang_detected The last hrtimer interrupt detected a hang

softirq_activated displays, if the softirq is raised - update of softirq related
settings is not required then.

nr_events Total number of hrtimer interrupt events

nr_retries Total number of hrtimer interrupt retries

nr_hangs Total number of hrtimer interrupt hangs

max_hang_time Maximum time spent in hrtimer_interrupt

softirq_expiry_lock Lockwhich is takenwhile softirq based hrtimer are expired

timer_waiters A hrtimer_cancel() invocation waits for the timer callback to
finish.

expires_next absolute time of the next event, is required for remote hrtimer en-
queue; it is the total first expiry time (hard and soft hrtimer are taken into
account)

next_timer Pointer to the first expiring timer

2.5. High-resolution timers 75

Linux Driver-api Documentation

softirq_expires_next Time to check, if soft queues needs also to be expired

softirq_next_timer Pointer to the first expiring softirq based timer

clock_base array of clock bases for this cpu

Note
next_timer is just an optimization for __remove_hrtimer(). Do not derefer-

ence the pointer because it is not reliable on cross cpu removals.

void hrtimer_start(struct hrtimer * timer, ktime_t tim, const enum
hrtimer_mode mode)

(re)start an hrtimer

Parameters
struct hrtimer * timer the timer to be added

ktime_t tim expiry time

const enum hrtimer_mode mode timer mode: absolute
(HRTIMER_MODE_ABS) or relative (HRTIMER_MODE_REL), and pinned
(HRTIMER_MODE_PINNED); softirq based mode is considered for debug
purpose only!

bool hrtimer_is_queued(struct hrtimer * timer)

Parameters
struct hrtimer * timer Timer to check

Return
True if the timer is queued, false otherwise

Description
The function can be used lockless, but it gives only a current snapshot.

u64 hrtimer_forward_now(struct hrtimer * timer, ktime_t interval)
forward the timer expiry so it expires after now

Parameters
struct hrtimer * timer hrtimer to forward

ktime_t interval the interval to forward

Description
Forward the timer expiry so it will expire after the current time of the hrtimer
clock base. Returns the number of overruns.

Can be safely called from the callback function of timer. If called from other
contexts timer must neither be enqueued nor running the callback and the caller
needs to take care of serialization.

Note
This only updates the timer expiry value and does not requeue the timer.

u64 hrtimer_forward(struct hrtimer * timer, ktime_t now, ktime_t interval)
forward the timer expiry

76 Chapter 2. Driver Basics

Linux Driver-api Documentation

Parameters
struct hrtimer * timer hrtimer to forward

ktime_t now forward past this time

ktime_t interval the interval to forward

Description
Forward the timer expiry so it will expire in the future. Returns the number of
overruns.

Can be safely called from the callback function of timer. If called from other
contexts timer must neither be enqueued nor running the callback and the caller
needs to take care of serialization.

Note
This only updates the timer expiry value and does not requeue the timer.

void hrtimer_start_range_ns(struct hrtimer * timer, ktime_t tim,
u64 delta_ns, const enum
hrtimer_mode mode)

(re)start an hrtimer

Parameters
struct hrtimer * timer the timer to be added

ktime_t tim expiry time

u64 delta_ns“slack”range for the timer
const enum hrtimer_mode mode timer mode: absolute

(HRTIMER_MODE_ABS) or relative (HRTIMER_MODE_REL), and pinned
(HRTIMER_MODE_PINNED); softirq based mode is considered for debug
purpose only!

int hrtimer_try_to_cancel(struct hrtimer * timer)
try to deactivate a timer

Parameters
struct hrtimer * timer hrtimer to stop

Return
• 0 when the timer was not active

• 1 when the timer was active

• -1 when the timer is currently executing the callback function and cannot be
stopped

int hrtimer_cancel(struct hrtimer * timer)
cancel a timer and wait for the handler to finish.

Parameters
struct hrtimer * timer the timer to be cancelled

Return

2.5. High-resolution timers 77

Linux Driver-api Documentation

0 when the timer was not active 1 when the timer was active

ktime_t __hrtimer_get_remaining(const struct hrtimer * timer,
bool adjust)

get remaining time for the timer

Parameters
const struct hrtimer * timer the timer to read

bool adjust adjust relative timers when CONFIG_TIME_LOW_RES=y

void hrtimer_init(struct hrtimer * timer, clockid_t clock_id, enum
hrtimer_mode mode)

initialize a timer to the given clock

Parameters
struct hrtimer * timer the timer to be initialized

clockid_t clock_id the clock to be used

enum hrtimer_mode mode The modes which are relevant for in-
titialization: HRTIMER_MODE_ABS, HRTIMER_MODE_REL,
HRTIMER_MODE_ABS_SOFT, HRTIMER_MODE_REL_SOFT

The PINNED variants of the above can be handed in, but the PINNED bit is
ignored as pinning happens when the hrtimer is started

void hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl, enum
hrtimer_mode mode)

Start a hrtimer sleeper timer

Parameters
struct hrtimer_sleeper * sl sleeper to be started

enum hrtimer_mode mode timer mode abs/rel

Description
Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers to allow
PREEMPT_RT to tweak the delivery mode (soft/hardirq context)

void hrtimer_init_sleeper(struct hrtimer_sleeper * sl, clockid_t clock_id,
enum hrtimer_mode mode)

initialize sleeper to the given clock

Parameters
struct hrtimer_sleeper * sl sleeper to be initialized

clockid_t clock_id the clock to be used

enum hrtimer_mode mode timer mode abs/rel

int schedule_hrtimeout_range(ktime_t * expires, u64 delta, const enum
hrtimer_mode mode)

sleep until timeout

Parameters
ktime_t * expires timeout value (ktime_t)

78 Chapter 2. Driver Basics

Linux Driver-api Documentation

u64 delta slack in expires timeout (ktime_t)

const enum hrtimer_mode mode timer mode

Description
Make the current task sleep until the given expiry time has elapsed. The rou-
tine will return immediately unless the current task state has been set (see
set_current_state()).

The delta argument gives the kernel the freedom to schedule the actual wakeup
to a time that is both power and performance friendly. The kernel give the normal
best effort behavior for “expires**+**delta”, but may decide to fire the timer
earlier, but no earlier than expires.
You can set the task state as follows -

TASK_UNINTERRUPTIBLE - at least timeout time is guaranteed to pass before
the routine returns unless the current task is explicitly woken up, (e.g. by
wake_up_process()).

TASK_INTERRUPTIBLE - the routine may return early if a signal is delivered to the
current task or the current task is explicitly woken up.

The current task state is guaranteed to be TASK_RUNNING when this routine
returns.

Returns 0 when the timer has expired. If the task was woken before the timer
expired by a signal (only possible in state TASK_INTERRUPTIBLE) or by an explicit
wakeup, it returns -EINTR.

int schedule_hrtimeout(ktime_t * expires, const enum
hrtimer_mode mode)

sleep until timeout

Parameters
ktime_t * expires timeout value (ktime_t)

const enum hrtimer_mode mode timer mode

Description
Make the current task sleep until the given expiry time has elapsed. The rou-
tine will return immediately unless the current task state has been set (see
set_current_state()).

You can set the task state as follows -

TASK_UNINTERRUPTIBLE - at least timeout time is guaranteed to pass before
the routine returns unless the current task is explicitly woken up, (e.g. by
wake_up_process()).

TASK_INTERRUPTIBLE - the routine may return early if a signal is delivered to the
current task or the current task is explicitly woken up.

The current task state is guaranteed to be TASK_RUNNING when this routine
returns.

Returns 0 when the timer has expired. If the task was woken before the timer
expired by a signal (only possible in state TASK_INTERRUPTIBLE) or by an explicit

2.5. High-resolution timers 79

Linux Driver-api Documentation

wakeup, it returns -EINTR.

2.6 Workqueues and Kevents

struct workqueue_attrs
A struct for workqueue attributes.

Definition

struct workqueue_attrs {
int nice;
cpumask_var_t cpumask;
bool no_numa;

};

Members
nice nice level

cpumask allowed CPUs

no_numa disable NUMA affinity

Unlike other fields, no_numa isn’t a property of a worker_pool. It only modifies
how apply_workqueue_attrs() select pools and thus doesn’t participate in
pool hash calculations or equality comparisons.

Description
This can be used to change attributes of an unbound workqueue.

work_pending(work)
Find out whether a work item is currently pending

Parameters
work The work item in question

delayed_work_pending(w)
Find out whether a delayable work item is currently pending

Parameters
w The work item in question

struct workqueue_struct * alloc_workqueue(const char * fmt, unsigned
int flags, int max_active, ...)

allocate a workqueue

Parameters
const char * fmt printf format for the name of the workqueue

unsigned int flags WQ_* flags

int max_active max in-flight work items, 0 for default remaining args: args for
fmt

... variable arguments

80 Chapter 2. Driver Basics

Linux Driver-api Documentation

Description
Allocate a workqueue with the specified parameters. For detailed information on
WQ_* flags, please refer to Documentation/core-api/workqueue.rst.

Return
Pointer to the allocated workqueue on success, NULL on failure.

alloc_ordered_workqueue(fmt, flags, args)
allocate an ordered workqueue

Parameters
fmt printf format for the name of the workqueue

flags WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaning-
ful)

args args for fmt
Description
Allocate an ordered workqueue. An ordered workqueue executes at most one work
item at any given time in the queued order. They are implemented as unbound
workqueues with max_active of one.
Return
Pointer to the allocated workqueue on success, NULL on failure.

bool queue_work(struct workqueue_struct * wq, struct work_struct * work)
queue work on a workqueue

Parameters
struct workqueue_struct * wq workqueue to use

struct work_struct * work work to queue

Description
Returns false if work was already on a queue, true otherwise.
We queue the work to the CPU on which it was submitted, but if the CPU dies it
can be processed by another CPU.

Memory-ordering properties: If it returns true, guarantees that all stores preced-
ing the call to queue_work() in the program order will be visible from the CPU
which will execute work by the time such work executes, e.g.,
{ x is initially 0 }

CPU0 CPU1

WRITE_ONCE(x, 1); [work is being executed] r0 = queue_work(wq,
work); r1 = READ_ONCE(x);

Forbids: r0 == true && r1 == 0

bool queue_delayed_work(struct workqueue_struct * wq, struct de-
layed_work * dwork, unsigned long delay)

queue work on a workqueue after delay

2.6. Workqueues and Kevents 81

Linux Driver-api Documentation

Parameters
struct workqueue_struct * wq workqueue to use

struct delayed_work * dwork delayable work to queue

unsigned long delay number of jiffies to wait before queueing

Description
Equivalent to queue_delayed_work_on() but tries to use the local CPU.

bool mod_delayed_work(struct workqueue_struct * wq, struct delayed_work
* dwork, unsigned long delay)

modify delay of or queue a delayed work

Parameters
struct workqueue_struct * wq workqueue to use

struct delayed_work * dwork work to queue

unsigned long delay number of jiffies to wait before queueing

Description
mod_delayed_work_on() on local CPU.

bool schedule_work_on(int cpu, struct work_struct * work)
put work task on a specific cpu

Parameters
int cpu cpu to put the work task on

struct work_struct * work job to be done

Description
This puts a job on a specific cpu

bool schedule_work(struct work_struct * work)
put work task in global workqueue

Parameters
struct work_struct * work job to be done

Description
Returns false if work was already on the kernel-global workqueue and true oth-
erwise.

This puts a job in the kernel-global workqueue if it was not already queued and
leaves it in the same position on the kernel-global workqueue otherwise.

Shares the same memory-ordering properties of queue_work(), cf. the DocBook
header of queue_work().

void flush_scheduled_work(void)
ensure that any scheduled work has run to completion.

Parameters
void no arguments

82 Chapter 2. Driver Basics

Linux Driver-api Documentation

Description
Forces execution of the kernel-global workqueue and blocks until its completion.

Think twice before calling this function! It’s very easy to get into trouble if you
don’t take great care. Either of the following situations will lead to deadlock:

One of the work items currently on the workqueue needs to acquire a
lock held by your code or its caller.

Your code is running in the context of a work routine.

They will be detected by lockdep when they occur, but the first might not occur
very often. It depends on what work items are on the workqueue and what locks
they need, which you have no control over.

In most situations flushing the entire workqueue is overkill; you merely need to
know that a particular work item isn’t queued and isn’t running. In such cases
you should use cancel_delayed_work_sync() or cancel_work_sync() instead.

bool schedule_delayed_work_on(int cpu, struct delayed_work * dwork, un-
signed long delay)

queue work in global workqueue on CPU after delay

Parameters
int cpu cpu to use

struct delayed_work * dwork job to be done

unsigned long delay number of jiffies to wait

Description
After waiting for a given time this puts a job in the kernel-global workqueue on
the specified CPU.

bool schedule_delayed_work(struct delayed_work * dwork, unsigned
long delay)

put work task in global workqueue after delay

Parameters
struct delayed_work * dwork job to be done

unsigned long delay number of jiffies to wait or 0 for immediate execution

Description
After waiting for a given time this puts a job in the kernel-global workqueue.

bool queue_work_on(int cpu, struct workqueue_struct * wq, struct
work_struct * work)

queue work on specific cpu

Parameters
int cpu CPU number to execute work on

struct workqueue_struct * wq workqueue to use

struct work_struct * work work to queue

2.6. Workqueues and Kevents 83

Linux Driver-api Documentation

Description
We queue the work to a specific CPU, the caller must ensure it can’t go away.
Return
false if work was already on a queue, true otherwise.
bool queue_work_node(int node, struct workqueue_struct * wq, struct

work_struct * work)
queue work on a “random”cpu for a given NUMA node

Parameters
int node NUMA node that we are targeting the work for

struct workqueue_struct * wq workqueue to use

struct work_struct * work work to queue

Description
We queue the work to a“random”CPU within a given NUMA node. The basic idea
here is to provide a way to somehow associate work with a given NUMA node.

This function will only make a best effort attempt at getting this onto the right
NUMA node. If no node is requested or the requested node is offline then we just
fall back to standard queue_work behavior.

Currently the “random”CPU ends up being the first available CPU in the inter-
section of cpu_online_mask and the cpumask of the node, unless we are running
on the node. In that case we just use the current CPU.

Return
false if work was already on a queue, true otherwise.
bool queue_delayed_work_on(int cpu, struct workqueue_struct * wq, struct

delayed_work * dwork, unsigned long delay)
queue work on specific CPU after delay

Parameters
int cpu CPU number to execute work on

struct workqueue_struct * wq workqueue to use

struct delayed_work * dwork work to queue

unsigned long delay number of jiffies to wait before queueing

Return
false if work was already on a queue, true otherwise. If delay is zero and dwork
is idle, it will be scheduled for immediate execution.

bool mod_delayed_work_on(int cpu, struct workqueue_struct * wq, struct de-
layed_work * dwork, unsigned long delay)

modify delay of or queue a delayed work on specific CPU

Parameters
int cpu CPU number to execute work on

struct workqueue_struct * wq workqueue to use

84 Chapter 2. Driver Basics

Linux Driver-api Documentation

struct delayed_work * dwork work to queue

unsigned long delay number of jiffies to wait before queueing

Description
If dwork is idle, equivalent to queue_delayed_work_on(); otherwise, modify
dwork’s timer so that it expires after delay. If delay is zero, work is guaranteed
to be scheduled immediately regardless of its current state.

This function is safe to call from any context including IRQ handler. See
try_to_grab_pending() for details.

Return
false if dwork was idle and queued, true if dwork was pending and its timer was
modified.

bool queue_rcu_work(struct workqueue_struct * wq, struct rcu_work
* rwork)

queue work after a RCU grace period

Parameters
struct workqueue_struct * wq workqueue to use

struct rcu_work * rwork work to queue

Return
false if rwork was already pending, true otherwise. Note that a full RCU grace
period is guaranteed only after a true return. While rwork is guaranteed to be
executed after a false return, the execution may happen before a full RCU grace
period has passed.

void flush_workqueue(struct workqueue_struct * wq)
ensure that any scheduled work has run to completion.

Parameters
struct workqueue_struct * wq workqueue to flush

Description
This function sleeps until all work items which were queued on entry have finished
execution, but it is not livelocked by new incoming ones.

void drain_workqueue(struct workqueue_struct * wq)
drain a workqueue

Parameters
struct workqueue_struct * wq workqueue to drain

Description
Wait until the workqueue becomes empty. While draining is in progress, only chain
queueing is allowed. IOW, only currently pending or running work items on wq
can queue further work items on it. wq is flushed repeatedly until it becomes
empty. The number of flushing is determined by the depth of chaining and should
be relatively short. Whine if it takes too long.

2.6. Workqueues and Kevents 85

Linux Driver-api Documentation

bool flush_work(struct work_struct * work)
wait for a work to finish executing the last queueing instance

Parameters
struct work_struct * work the work to flush

Description
Wait until work has finished execution. work is guaranteed to be idle on return if
it hasn’t been requeued since flush started.
Return
true if flush_work() waited for the work to finish execution, false if it was al-
ready idle.

bool cancel_work_sync(struct work_struct * work)
cancel a work and wait for it to finish

Parameters
struct work_struct * work the work to cancel

Description
Cancel work and wait for its execution to finish. This function can be used even if
the work re-queues itself or migrates to another workqueue. On return from this
function, work is guaranteed to be not pending or executing on any CPU.
cancel_work_sync(delayed_work->work) must not be used for delayed_work’s.
Use cancel_delayed_work_sync() instead.

The caller must ensure that the workqueue on which work was last queued can’t
be destroyed before this function returns.

Return
true if work was pending, false otherwise.
bool flush_delayed_work(struct delayed_work * dwork)

wait for a dwork to finish executing the last queueing

Parameters
struct delayed_work * dwork the delayed work to flush

Description
Delayed timer is cancelled and the pending work is queued for immediate execu-
tion. Like flush_work(), this function only considers the last queueing instance
of dwork.
Return
true if flush_work() waited for the work to finish execution, false if it was al-
ready idle.

bool flush_rcu_work(struct rcu_work * rwork)
wait for a rwork to finish executing the last queueing

Parameters
struct rcu_work * rwork the rcu work to flush

86 Chapter 2. Driver Basics

Linux Driver-api Documentation

Return
true if flush_rcu_work() waited for the work to finish execution, false if it was
already idle.

bool cancel_delayed_work(struct delayed_work * dwork)
cancel a delayed work

Parameters
struct delayed_work * dwork delayed_work to cancel

Description
Kill off a pending delayed_work.

This function is safe to call from any context including IRQ handler.

Return
true if dwork was pending and canceled; false if it wasn’t pending.
Note
The work callback function may still be running on return, unless it re-
turns true and the work doesn’t re-arm itself. Explicitly flush or use
cancel_delayed_work_sync() to wait on it.

bool cancel_delayed_work_sync(struct delayed_work * dwork)
cancel a delayed work and wait for it to finish

Parameters
struct delayed_work * dwork the delayed work cancel

Description
This is cancel_work_sync() for delayed works.

Return
true if dwork was pending, false otherwise.
int execute_in_process_context(work_func_t fn, struct execute_work

* ew)
reliably execute the routine with user context

Parameters
work_func_t fn the function to execute

struct execute_work * ew guaranteed storage for the execute work structure
(must be available when the work executes)

Description
Executes the function immediately if process context is available, otherwise sched-
ules the function for delayed execution.

Return
0 - function was executed 1 - function was scheduled for execution
void destroy_workqueue(struct workqueue_struct * wq)

safely terminate a workqueue

2.6. Workqueues and Kevents 87

Linux Driver-api Documentation

Parameters
struct workqueue_struct * wq target workqueue

Description
Safely destroy a workqueue. All work currently pending will be done first.

void workqueue_set_max_active(struct workqueue_struct * wq,
int max_active)

adjust max_active of a workqueue

Parameters
struct workqueue_struct * wq target workqueue

int max_active new max_active value.

Description
Set max_active of wq to max_active.
Context
Don’t call from IRQ context.

struct work_struct * current_work(void)
retrieve current task’s work struct

Parameters
void no arguments

Description
Determine if current task is a workqueue worker and what it’s working on. Useful
to find out the context that the current task is running in.

Return
work struct if current task is a workqueue worker, NULL otherwise.

bool workqueue_congested(int cpu, struct workqueue_struct * wq)
test whether a workqueue is congested

Parameters
int cpu CPU in question

struct workqueue_struct * wq target workqueue

Description
Test whether wq’s cpu workqueue for cpu is congested. There is no synchro-
nization around this function and the test result is unreliable and only useful as
advisory hints or for debugging.

If cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. Note
that both per-cpu and unbound workqueues may be associated with multiple
pool_workqueues which have separate congested states. A workqueue being con-
gested on one CPU doesn’t mean the workqueue is also contested on other CPUs
/ NUMA nodes.

Return

88 Chapter 2. Driver Basics

Linux Driver-api Documentation

true if congested, false otherwise.

unsigned int work_busy(struct work_struct * work)
test whether a work is currently pending or running

Parameters
struct work_struct * work the work to be tested

Description
Test whether work is currently pending or running. There is no synchronization
around this function and the test result is unreliable and only useful as advisory
hints or for debugging.

Return
OR’d bitmask of WORK_BUSY_* bits.
void set_worker_desc(const char * fmt, ...)

set description for the current work item

Parameters
const char * fmt printf-style format string

... arguments for the format string

Description
This function can be called by a running work function to describe what the work
item is about. If the worker task gets dumped, this information will be printed out
together to help debugging. The description can be at most WORKER_DESC_LEN
including the trailing ‘0’.
long work_on_cpu(int cpu, long (*fn)(void *), void * arg)

run a function in thread context on a particular cpu

Parameters
int cpu the cpu to run on

long (*)(void *) fn the function to run

void * arg the function arg

Description
It is up to the caller to ensure that the cpu doesn’t go offline. The caller must not
hold any locks which would prevent fn from completing.

Return
The value fn returns.
long work_on_cpu_safe(int cpu, long (*fn)(void *), void * arg)

run a function in thread context on a particular cpu

Parameters
int cpu the cpu to run on

long (*)(void *) fn the function to run

void * arg the function argument

2.6. Workqueues and Kevents 89

Linux Driver-api Documentation

Description
Disables CPU hotplug and calls work_on_cpu(). The caller must not hold any locks
which would prevent fn from completing.

Return
The value fn returns.

2.7 Internal Functions

int wait_task_stopped(struct wait_opts * wo, int ptrace, struct task_struct
* p)

Wait for TASK_STOPPED or TASK_TRACED

Parameters
struct wait_opts * wo wait options

int ptrace is the wait for ptrace

struct task_struct * p task to wait for

Description
Handle sys_wait4() work for p in state TASK_STOPPED or TASK_TRACED.

Context
read_lock(tasklist_lock), which is released if return value is non-zero. Also,
grabs and releases p->sighand->siglock.
Return
0 if wait condition didn’t exist and search for other wait conditions should continue.
Non-zero return, -errno on failure and p’s pid on success, implies that tasklist_lock
is released and wait condition search should terminate.

bool task_set_jobctl_pending(struct task_struct * task, unsigned
long mask)

set jobctl pending bits

Parameters
struct task_struct * task target task

unsigned long mask pending bits to set

Description
Clear mask from task->jobctl. mask must be subset of JOBCTL_PENDING_MASK
| JOBCTL_STOP_CONSUME | JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING. If stop signo
is being set, the existing signo is cleared. If task is already being killed or exiting,
this function becomes noop.

Context
Must be called with task->sighand->siglock held.
Return
true if mask is set, false if made noop because task was dying.

90 Chapter 2. Driver Basics

Linux Driver-api Documentation

void task_clear_jobctl_trapping(struct task_struct * task)
clear jobctl trapping bit

Parameters
struct task_struct * task target task

Description
If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. Clear
it and wake up the ptracer. Note that we don’t need any further locking. task-
>siglock guarantees that task->parent points to the ptracer.
Context
Must be called with task->sighand->siglock held.
void task_clear_jobctl_pending(struct task_struct * task, unsigned

long mask)
clear jobctl pending bits

Parameters
struct task_struct * task target task

unsigned long mask pending bits to clear

Description
Clear mask from task->jobctl. mask must be subset of JOBCTL_PENDING_MASK.
If JOBCTL_STOP_PENDING is being cleared, other STOP bits are cleared together.

If clearing of mask leaves no stop or trap pending, this function calls
task_clear_jobctl_trapping().

Context
Must be called with task->sighand->siglock held.
bool task_participate_group_stop(struct task_struct * task)

participate in a group stop

Parameters
struct task_struct * task task participating in a group stop

Description
task has JOBCTL_STOP_PENDING set and is participating in a group stop.
Group stop states are cleared and the group stop count is consumed if
JOBCTL_STOP_CONSUME was set. If the consumption completes the group stop, the
appropriate SIGNAL_* flags are set.

Context
Must be called with task->sighand->siglock held.
Return
true if group stop completion should be notified to the parent, false otherwise.

void ptrace_trap_notify(struct task_struct * t)
schedule trap to notify ptracer

2.7. Internal Functions 91

Linux Driver-api Documentation

Parameters
struct task_struct * t tracee wanting to notify tracer

Description
This function schedules sticky ptrace trap which is cleared on the next TRAP_STOP
to notify ptracer of an event. t must have been seized by ptracer.
If t is running, STOP trap will be taken. If trapped for STOP and ptracer is listening
for events, tracee is woken up so that it can re-trap for the new event. If trapped
otherwise, STOP trap will be eventually taken without returning to userland after
the existing traps are finished by PTRACE_CONT.

Context
Must be called with task->sighand->siglock held.
void do_notify_parent_cldstop(struct task_struct * tsk, bool for_ptracer,

int why)
notify parent of stopped/continued state change

Parameters
struct task_struct * tsk task reporting the state change

bool for_ptracer the notification is for ptracer

int why CLD_{CONTINUED|STOPPED|TRAPPED} to report

Description
Notify tsk’s parent that the stopped/continued state has changed. If for_ptracer
is false, tsk’s group leader notifies to its real parent. If true, tsk reports to
tsk->parent which should be the ptracer.
Context
Must be called with tasklist_lock at least read locked.

bool do_signal_stop(int signr)
handle group stop for SIGSTOP and other stop signals

Parameters
int signr signr causing group stop if initiating

Description
If JOBCTL_STOP_PENDING is not set yet, initiate group stop with signr and partici-
pate in it. If already set, participate in the existing group stop. If participated in
a group stop (and thus slept), true is returned with siglock released.

If ptraced, this function doesn’t handle stop itself. Instead, JOBCTL_TRAP_STOP is
scheduled and false is returned with siglock untouched. The caller must ensure
that INTERRUPT trap handling takes places afterwards.

Context
Must be called with current->sighand->siglock held, which is released on true
return.

Return

92 Chapter 2. Driver Basics

Linux Driver-api Documentation

false if group stop is already cancelled or ptrace trap is scheduled. true if par-
ticipated in group stop.

void do_jobctl_trap(void)
take care of ptrace jobctl traps

Parameters
void no arguments

Description
When PT_SEIZED, it’s used for both group stop and explicit SEIZE/INTERRUPT
traps. Both generate PTRACE_EVENT_STOP trap with accompanying siginfo. If
stopped, lower eight bits of exit_code contain the stop signal; otherwise, SIGTRAP.

When !PT_SEIZED, it’s used only for group stop trap with stop signal number as
exit_code and no siginfo.

Context
Must be called with current->sighand->siglock held, which may be released
and re-acquired before returning with intervening sleep.

void do_freezer_trap(void)
handle the freezer jobctl trap

Parameters
void no arguments

Description
Puts the task into frozen state, if only the task is not about to quit. In this case it
drops JOBCTL_TRAP_FREEZE.

Context
Must be called with current->sighand->siglock held, which is always released
before returning.

void signal_delivered(struct ksignal * ksig, int stepping)

Parameters
struct ksignal * ksig kernel signal struct

int stepping nonzero if debugger single-step or block-step in use

Description
This function should be called when a signal has successfully been delivered. It
updates the blocked signals accordingly (ksig->ka.sa.sa_mask is always blocked,
and the signal itself is blocked unless SA_NODEFER is set in ksig->ka.sa.sa_flags.
Tracing is notified.

long sys_restart_syscall(void)
restart a system call

Parameters
void no arguments

2.7. Internal Functions 93

Linux Driver-api Documentation

void set_current_blocked(sigset_t * newset)
change current->blocked mask

Parameters
sigset_t * newset new mask

Description
It is wrong to change ->blocked directly, this helper should be used to ensure the
process can’t miss a shared signal we are going to block.
long sys_rt_sigprocmask(int how, sigset_t __user * nset, sigset_t __user

* oset, size_t sigsetsize)
change the list of currently blocked signals

Parameters
int how whether to add, remove, or set signals

sigset_t __user * nset stores pending signals

sigset_t __user * oset previous value of signal mask if non-null

size_t sigsetsize size of sigset_t type

long sys_rt_sigpending(sigset_t __user * uset, size_t sigsetsize)
examine a pending signal that has been raised while blocked

Parameters
sigset_t __user * uset stores pending signals

size_t sigsetsize size of sigset_t type or larger

void copy_siginfo_to_external32(struct compat_siginfo * to, const struct
kernel_siginfo * from)

copy a kernel siginfo into a compat user siginfo

Parameters
struct compat_siginfo * to compat siginfo destination

const struct kernel_siginfo * from kernel siginfo source

Note
This function does not work properly for the SIGCHLD on x32, but fortunately it
doesn’t have to. The only valid callers for this function are copy_siginfo_to_user32,
which is overriden for x32 and the coredump code. The latter does not care be-
cause SIGCHLD will never cause a coredump.

int do_sigtimedwait(const sigset_t * which, kernel_siginfo_t * info, const
struct timespec64 * ts)

wait for queued signals specified in which
Parameters
const sigset_t * which queued signals to wait for

kernel_siginfo_t * info if non-null, the signal’s siginfo is returned here
const struct timespec64 * ts upper bound on process time suspension

94 Chapter 2. Driver Basics

Linux Driver-api Documentation

long sys_rt_sigtimedwait(const sigset_t __user * uthese, siginfo_t __user
* uinfo, const struct __kernel_timespec __user
* uts, size_t sigsetsize)

synchronously wait for queued signals specified in uthese
Parameters
const sigset_t __user * uthese queued signals to wait for

siginfo_t __user * uinfo if non-null, the signal’s siginfo is returned here
const struct __kernel_timespec __user * uts upper bound on process time

suspension

size_t sigsetsize size of sigset_t type

long sys_kill(pid_t pid, int sig)
send a signal to a process

Parameters
pid_t pid the PID of the process

int sig signal to be sent

long sys_pidfd_send_signal(int pidfd, int sig, siginfo_t __user * info, un-
signed int flags)

Signal a process through a pidfd

Parameters
int pidfd file descriptor of the process

int sig signal to send

siginfo_t __user * info signal info

unsigned int flags future flags

Description
The syscall currently only signals via PIDTYPE_PID which covers kill(<positive-
pid>, <signal>. It does not signal threads or process groups. In order to extend
the syscall to threads and process groups the flags argument should be used.
In essence, the flags argument will determine what is signaled and not the file
descriptor itself. Put in other words, grouping is a property of the flags argument
not a property of the file descriptor.

Return
0 on success, negative errno on failure

long sys_tgkill(pid_t tgid, pid_t pid, int sig)
send signal to one specific thread

Parameters
pid_t tgid the thread group ID of the thread

pid_t pid the PID of the thread

int sig signal to be sent

2.7. Internal Functions 95

Linux Driver-api Documentation

This syscall also checks the tgid and returns -ESRCH even if the PID exists
but it’s not belonging to the target process anymore. This method solves the
problem of threads exiting and PIDs getting reused.

long sys_tkill(pid_t pid, int sig)
send signal to one specific task

Parameters
pid_t pid the PID of the task

int sig signal to be sent

Send a signal to only one task, even if it’s a CLONE_THREAD task.
long sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user * uinfo)

send signal information to a signal

Parameters
pid_t pid the PID of the thread

int sig signal to be sent

siginfo_t __user * uinfo signal info to be sent

long sys_sigpending(old_sigset_t __user * uset)
examine pending signals

Parameters
old_sigset_t __user * uset where mask of pending signal is returned

long sys_sigprocmask(int how, old_sigset_t __user * nset, old_sigset_t
__user * oset)

examine and change blocked signals

Parameters
int how whether to add, remove, or set signals

old_sigset_t __user * nset signals to add or remove (if non-null)

old_sigset_t __user * oset previous value of signal mask if non-null

Description
Some platforms have their own version with special arguments; others support
only sys_rt_sigprocmask.

long sys_rt_sigaction(int sig, const struct sigaction __user * act, struct
sigaction __user * oact, size_t sigsetsize)

alter an action taken by a process

Parameters
int sig signal to be sent

const struct sigaction __user * act new sigaction

struct sigaction __user * oact used to save the previous sigaction

size_t sigsetsize size of sigset_t type

96 Chapter 2. Driver Basics

Linux Driver-api Documentation

long sys_rt_sigsuspend(sigset_t __user * unewset, size_t sigsetsize)
replace the signal mask for a value with the unewset value until a signal is
received

Parameters
sigset_t __user * unewset new signal mask value

size_t sigsetsize size of sigset_t type

kthread_create(threadfn, data, namefmt, arg)
create a kthread on the current node

Parameters
threadfn the function to run in the thread

data data pointer for threadfn()
namefmt printf-style format string for the thread name

arg arguments for namefmt.
Description
This macro will create a kthread on the current node, leaving it in the stopped
state. This is just a helper for kthread_create_on_node(); see the documentation
there for more details.

kthread_run(threadfn, data, namefmt, ⋯)
create and wake a thread.

Parameters
threadfn the function to run until signal_pending(current).

data data ptr for threadfn.
namefmt printf-style name for the thread.

... variable arguments

Description
Convenient wrapper for kthread_create() followed by wake_up_process(). Re-
turns the kthread or ERR_PTR(-ENOMEM).

bool kthread_should_stop(void)
should this kthread return now?

Parameters
void no arguments

Description
When someone calls kthread_stop() on your kthread, it will be woken and this
will return true. You should then return, and your return value will be passed
through to kthread_stop().

bool kthread_should_park(void)
should this kthread park now?

Parameters

2.7. Internal Functions 97

Linux Driver-api Documentation

void no arguments

Description
When someone calls kthread_park() on your kthread, it will be woken and
this will return true. You should then do the necessary cleanup and call
kthread_parkme()

Similar to kthread_should_stop(), but this keeps the thread alive and in a park
position. kthread_unpark() “restarts”the thread and calls the thread function
again.

bool kthread_freezable_should_stop(bool * was_frozen)
should this freezable kthread return now?

Parameters
bool * was_frozen optional out parameter, indicates whether current was

frozen

Description
kthread_should_stop() for freezable kthreads, which will enter refrigerator if
necessary. This function is safe from kthread_stop() / freezer deadlock and freez-
able kthreads should use this function instead of calling try_to_freeze() directly.

void * kthread_func(struct task_struct * task)
return the function specified on kthread creation

Parameters
struct task_struct * task kthread task in question

Description
Returns NULL if the task is not a kthread.

void * kthread_data(struct task_struct * task)
return data value specified on kthread creation

Parameters
struct task_struct * task kthread task in question

Description
Return the data value specified when kthread task was created. The caller is
responsible for ensuring the validity of task when calling this function.
struct task_struct * kthread_create_on_node(int (*threadfn)(void *data),

void * data, int node, const
char namefmt, ...)

create a kthread.

Parameters
int (*)(void *data) threadfn the function to run until sig-

nal_pending(current).

void * data data ptr for threadfn.
int node task and thread structures for the thread are allocated on this node

98 Chapter 2. Driver Basics

Linux Driver-api Documentation

const char namefmt printf-style name for the thread.

... variable arguments

Description
This helper function creates and names a kernel thread. The thread will be
stopped: use wake_up_process() to start it. See also kthread_run(). The new
thread has SCHED_NORMAL policy and is affine to all CPUs.

If thread is going to be bound on a particular cpu, give its node in node, to get
NUMA affinity for kthread stack, or else give NUMA_NO_NODE. When woken,
the thread will run threadfn() with data as its argument. threadfn() can ei-
ther call do_exit() directly if it is a standalone thread for which no one will call
kthread_stop(), or return when‘kthread_should_stop()’is true (which means
kthread_stop() has been called). The return value should be zero or a negative
error number; it will be passed to kthread_stop().

Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).

void kthread_bind(struct task_struct * p, unsigned int cpu)
bind a just-created kthread to a cpu.

Parameters
struct task_struct * p thread created by kthread_create().

unsigned int cpu cpu (might not be online, must be possible) for k to run on.
Description
This function is equivalent to set_cpus_allowed(), except that cpu doesn’t
need to be online, and the thread must be stopped (i.e., just returned from
kthread_create()).

void kthread_unpark(struct task_struct * k)
unpark a thread created by kthread_create().

Parameters
struct task_struct * k thread created by kthread_create().

Description
Sets kthread_should_park() for k to return false, wakes it, and waits for it to
return. If the thread is marked percpu then its bound to the cpu again.

int kthread_park(struct task_struct * k)
park a thread created by kthread_create().

Parameters
struct task_struct * k thread created by kthread_create().

Description
Sets kthread_should_park() for k to return true, wakes it, and waits for it
to return. This can also be called after kthread_create() instead of calling
wake_up_process(): the thread will park without calling threadfn().

Returns 0 if the thread is parked, -ENOSYS if the thread exited. If called by the
kthread itself just the park bit is set.

2.7. Internal Functions 99

Linux Driver-api Documentation

int kthread_stop(struct task_struct * k)
stop a thread created by kthread_create().

Parameters
struct task_struct * k thread created by kthread_create().

Description
Sets kthread_should_stop() for k to return true, wakes it, and waits for it
to exit. This can also be called after kthread_create() instead of calling
wake_up_process(): the thread will exit without calling threadfn().

If threadfn() may call do_exit() itself, the caller must ensure task_struct can’t go
away.

Returns the result of threadfn(), or -EINTR if wake_up_process()was never called.

int kthread_worker_fn(void * worker_ptr)
kthread function to process kthread_worker

Parameters
void * worker_ptr pointer to initialized kthread_worker

Description
This function implements the main cycle of kthread worker. It processes work_list
until it is stopped with kthread_stop(). It sleeps when the queue is empty.

The works are not allowed to keep any locks, disable preemption or interrupts
when they finish. There is defined a safe point for freezing when one work finishes
and before a new one is started.

Also the works must not be handled by more than one worker at the same time,
see also kthread_queue_work().

struct kthread_worker * kthread_create_worker(unsigned int flags, const
char namefmt, ...)

create a kthread worker

Parameters
unsigned int flags flags modifying the default behavior of the worker

const char namefmt printf-style name for the kthread worker (task).

... variable arguments

Description
Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) when
the needed structures could not get allocated, and ERR_PTR(-EINTR) when the
worker was SIGKILLed.

struct kthread_worker * kthread_create_worker_on_cpu(int cpu, unsigned
int flags, const
char namefmt,
...)

create a kthread worker and bind it it to a given CPU and the associated
NUMA node.

100 Chapter 2. Driver Basics

Linux Driver-api Documentation

Parameters
int cpu CPU number

unsigned int flags flags modifying the default behavior of the worker

const char namefmt printf-style name for the kthread worker (task).

... variable arguments

Description
Use a valid CPU number if you want to bind the kthread worker to the given CPU
and the associated NUMA node.

A good practice is to add the cpu number also into the worker name. For example,
use kthread_create_worker_on_cpu(cpu, “helper/d”, cpu).
Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) when
the needed structures could not get allocated, and ERR_PTR(-EINTR) when the
worker was SIGKILLed.

bool kthread_queue_work(struct kthread_worker * worker, struct
kthread_work * work)

queue a kthread_work

Parameters
struct kthread_worker * worker target kthread_worker

struct kthread_work * work kthread_work to queue

Description
Queue work to work processor task for async execution. task must have been
created with kthread_worker_create(). Returns true if work was successfully
queued, false if it was already pending.

Reinitialize the work if it needs to be used by another worker. For example, when
the worker was stopped and started again.

void kthread_delayed_work_timer_fn(struct timer_list * t)
callback that queues the associated kthread delayed work when the timer
expires.

Parameters
struct timer_list * t pointer to the expired timer

Description
The format of the function is defined by struct timer_list. It should have been
called from irqsafe timer with irq already off.

bool kthread_queue_delayed_work(struct kthread_worker * worker, struct
kthread_delayed_work * dwork, un-
signed long delay)

queue the associated kthread work after a delay.

Parameters
struct kthread_worker * worker target kthread_worker

2.7. Internal Functions 101

Linux Driver-api Documentation

struct kthread_delayed_work * dwork kthread_delayed_work to queue

unsigned long delay number of jiffies to wait before queuing

Description
If the work has not been pending it starts a timer that will queue the work after
the given delay. If delay is zero, it queues the work immediately.
Return
false if the work has already been pending. It means that either the timer was
running or the work was queued. It returns true otherwise.

void kthread_flush_work(struct kthread_work * work)
flush a kthread_work

Parameters
struct kthread_work * work work to flush

Description
If work is queued or executing, wait for it to finish execution.
bool kthread_mod_delayed_work(struct kthread_worker * worker, struct

kthread_delayed_work * dwork, unsigned
long delay)

modify delay of or queue a kthread delayed work

Parameters
struct kthread_worker * worker kthread worker to use

struct kthread_delayed_work * dwork kthread delayed work to queue

unsigned long delay number of jiffies to wait before queuing

Description
If dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, mod-
ify dwork’s timer so that it expires after delay. If delay is zero, work is guaran-
teed to be queued immediately.

A special case is when the work is being canceled in parallel. It might be
caused either by the real kthread_cancel_delayed_work_sync() or yet another
kthread_mod_delayed_work() call. We let the other command win and return
false here. The caller is supposed to synchronize these operations a reasonable
way.

This function is safe to call from any context including IRQ handler. See
__kthread_cancel_work() and kthread_delayed_work_timer_fn() for details.

Return
true if dwork was pending and its timer was modified, false otherwise.
bool kthread_cancel_work_sync(struct kthread_work * work)

cancel a kthread work and wait for it to finish

Parameters
struct kthread_work * work the kthread work to cancel

102 Chapter 2. Driver Basics

Linux Driver-api Documentation

Description
Cancel work and wait for its execution to finish. This function can be used even if
the work re-queues itself. On return from this function, work is guaranteed to be
not pending or executing on any CPU.

kthread_cancel_work_sync(delayed_work->work) must not be used for de-
layed_work’s. Use kthread_cancel_delayed_work_sync() instead.
The caller must ensure that the worker on which work was last queued can’t be
destroyed before this function returns.

Return
true if work was pending, false otherwise.
bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work

* dwork)
cancel a kthread delayed work and wait for it to finish.

Parameters
struct kthread_delayed_work * dwork the kthread delayed work to cancel

Description
This is kthread_cancel_work_sync() for delayed works.

Return
true if dwork was pending, false otherwise.
void kthread_flush_worker(struct kthread_worker * worker)

flush all current works on a kthread_worker

Parameters
struct kthread_worker * worker worker to flush

Description
Wait until all currently executing or pending works on worker are finished.
void kthread_destroy_worker(struct kthread_worker * worker)

destroy a kthread worker

Parameters
struct kthread_worker * worker worker to be destroyed

Description
Flush and destroyworker. The simple flush is enough because the kthread worker
API is used only in trivial scenarios. There are no multi-step state machines
needed.

void kthread_use_mm(struct mm_struct * mm)
make the calling kthread operate on an address space

Parameters
struct mm_struct * mm address space to operate on

2.7. Internal Functions 103

Linux Driver-api Documentation

void kthread_unuse_mm(struct mm_struct * mm)
reverse the effect of kthread_use_mm()

Parameters
struct mm_struct * mm address space to operate on

void kthread_associate_blkcg(struct cgroup_subsys_state * css)
associate blkcg to current kthread

Parameters
struct cgroup_subsys_state * css the cgroup info

Description
Current thread must be a kthread. The thread is running jobs on behalf of other
threads. In some cases, we expect the jobs attach cgroup info of original threads
instead of that of current thread. This function stores original thread’s cgroup
info in current kthread context for later retrieval.

struct cgroup_subsys_state * kthread_blkcg(void)
get associated blkcg css of current kthread

Parameters
void no arguments

Description
Current thread must be a kthread.

2.8 Reference counting

struct refcount_struct
variant of atomic_t specialized for reference counts

Definition

struct refcount_struct {
atomic_t refs;

};

Members
refs atomic_t counter field

Description
The counter saturates at REFCOUNT_SATURATED and will not move once there.
This avoids wrapping the counter and causing ‘spurious’use-after-free bugs.
void refcount_set(refcount_t * r, int n)

set a refcount’s value
Parameters
refcount_t * r the refcount

int n value to which the refcount will be set

104 Chapter 2. Driver Basics

Linux Driver-api Documentation

unsigned int refcount_read(const refcount_t * r)
get a refcount’s value

Parameters
const refcount_t * r the refcount

Return
the refcount’s value
bool refcount_add_not_zero(int i, refcount_t * r)

add a value to a refcount unless it is 0

Parameters
int i the value to add to the refcount

refcount_t * r the refcount

Description
Will saturate at REFCOUNT_SATURATED and WARN.

Provides no memory ordering, it is assumed the caller has guaranteed the object
memory to be stable (RCU, etc.). It does provide a control dependency and thereby
orders future stores. See the comment on top.

Use of this function is not recommended for the normal reference counting use
case in which references are taken and released one at a time. In these cases,
refcount_inc(), or one of its variants, should instead be used to increment a
reference count.

Return
false if the passed refcount is 0, true otherwise

void refcount_add(int i, refcount_t * r)
add a value to a refcount

Parameters
int i the value to add to the refcount

refcount_t * r the refcount

Description
Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN.

Provides no memory ordering, it is assumed the caller has guaranteed the object
memory to be stable (RCU, etc.). It does provide a control dependency and thereby
orders future stores. See the comment on top.

Use of this function is not recommended for the normal reference counting use
case in which references are taken and released one at a time. In these cases,
refcount_inc(), or one of its variants, should instead be used to increment a
reference count.

bool refcount_inc_not_zero(refcount_t * r)
increment a refcount unless it is 0

Parameters

2.8. Reference counting 105

Linux Driver-api Documentation

refcount_t * r the refcount to increment

Description
Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED
and WARN.

Provides no memory ordering, it is assumed the caller has guaranteed the object
memory to be stable (RCU, etc.). It does provide a control dependency and thereby
orders future stores. See the comment on top.

Return
true if the increment was successful, false otherwise

void refcount_inc(refcount_t * r)
increment a refcount

Parameters
refcount_t * r the refcount to increment

Description
Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN.

Provides no memory ordering, it is assumed the caller already has a reference on
the object.

Will WARN if the refcount is 0, as this represents a possible use-after-free condi-
tion.

bool refcount_sub_and_test(int i, refcount_t * r)
subtract from a refcount and test if it is 0

Parameters
int i amount to subtract from the refcount

refcount_t * r the refcount

Description
Similar to atomic_dec_and_test(), but it will WARN, return false and ulti-
mately leak on underflow and will fail to decrement when saturated at REF-
COUNT_SATURATED.

Provides release memory ordering, such that prior loads and stores are done be-
fore, and provides an acquire ordering on success such that free() must come after.

Use of this function is not recommended for the normal reference counting use
case in which references are taken and released one at a time. In these cases,
refcount_dec(), or one of its variants, should instead be used to decrement a
reference count.

Return
true if the resulting refcount is 0, false otherwise

bool refcount_dec_and_test(refcount_t * r)
decrement a refcount and test if it is 0

Parameters

106 Chapter 2. Driver Basics

Linux Driver-api Documentation

refcount_t * r the refcount

Description
Similar to atomic_dec_and_test(), it will WARN on underflow and fail to decrement
when saturated at REFCOUNT_SATURATED.

Provides release memory ordering, such that prior loads and stores are done be-
fore, and provides an acquire ordering on success such that free() must come after.

Return
true if the resulting refcount is 0, false otherwise

void refcount_dec(refcount_t * r)
decrement a refcount

Parameters
refcount_t * r the refcount

Description
Similar to atomic_dec(), it will WARN on underflow and fail to decrement when
saturated at REFCOUNT_SATURATED.

Provides release memory ordering, such that prior loads and stores are done be-
fore.

bool refcount_dec_if_one(refcount_t * r)
decrement a refcount if it is 1

Parameters
refcount_t * r the refcount

Description
No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the success
thereof.

Like all decrement operations, it provides release memory order and provides a
control dependency.

It can be used like a try-delete operator; this explicit case is provided and not
cmpxchg in generic, because that would allow implementing unsafe operations.

Return
true if the resulting refcount is 0, false otherwise

bool refcount_dec_not_one(refcount_t * r)
decrement a refcount if it is not 1

Parameters
refcount_t * r the refcount

Description
No atomic_t counterpart, it decrements unless the value is 1, in which case it will
return false.

Was often done like: atomic_add_unless(var, -1, 1)

2.8. Reference counting 107

Linux Driver-api Documentation

Return
true if the decrement operation was successful, false otherwise

bool refcount_dec_and_mutex_lock(refcount_t * r, struct mutex * lock)
return holding mutex if able to decrement refcount to 0

Parameters
refcount_t * r the refcount

struct mutex * lock the mutex to be locked

Description
Similar to atomic_dec_and_mutex_lock(), it will WARN on underflow and fail to
decrement when saturated at REFCOUNT_SATURATED.

Provides release memory ordering, such that prior loads and stores are done be-
fore, and provides a control dependency such that free() must come after. See the
comment on top.

Return
true and hold mutex if able to decrement refcount to 0, false otherwise
bool refcount_dec_and_lock(refcount_t * r, spinlock_t * lock)

return holding spinlock if able to decrement refcount to 0

Parameters
refcount_t * r the refcount

spinlock_t * lock the spinlock to be locked

Description
Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to decrement
when saturated at REFCOUNT_SATURATED.

Provides release memory ordering, such that prior loads and stores are done be-
fore, and provides a control dependency such that free() must come after. See the
comment on top.

Return
true and hold spinlock if able to decrement refcount to 0, false otherwise
bool refcount_dec_and_lock_irqsave(refcount_t * r, spinlock_t * lock, un-

signed long * flags)
return holding spinlock with disabled interrupts if able to decrement refcount
to 0

Parameters
refcount_t * r the refcount

spinlock_t * lock the spinlock to be locked

unsigned long * flags saved IRQ-flags if the is acquired

Description

108 Chapter 2. Driver Basics

Linux Driver-api Documentation

Same as refcount_dec_and_lock() above except that the spinlock is acquired
with disabled interupts.

Return
true and hold spinlock if able to decrement refcount to 0, false otherwise

2.9 Atomics

int arch_atomic_read(const atomic_t * v)
read atomic variable

Parameters
const atomic_t * v pointer of type atomic_t

Description
Atomically reads the value of v.
void arch_atomic_set(atomic_t * v, int i)

set atomic variable

Parameters
atomic_t * v pointer of type atomic_t

int i required value

Description
Atomically sets the value of v to i.
void arch_atomic_add(int i, atomic_t * v)

add integer to atomic variable

Parameters
int i integer value to add

atomic_t * v pointer of type atomic_t

Description
Atomically adds i to v.
void arch_atomic_sub(int i, atomic_t * v)

subtract integer from atomic variable

Parameters
int i integer value to subtract

atomic_t * v pointer of type atomic_t

Description
Atomically subtracts i from v.
bool arch_atomic_sub_and_test(int i, atomic_t * v)

subtract value from variable and test result

Parameters

2.9. Atomics 109

Linux Driver-api Documentation

int i integer value to subtract

atomic_t * v pointer of type atomic_t

Description
Atomically subtracts i from v and returns true if the result is zero, or false for all
other cases.

void arch_atomic_inc(atomic_t * v)
increment atomic variable

Parameters
atomic_t * v pointer of type atomic_t

Description
Atomically increments v by 1.
void arch_atomic_dec(atomic_t * v)

decrement atomic variable

Parameters
atomic_t * v pointer of type atomic_t

Description
Atomically decrements v by 1.
bool arch_atomic_dec_and_test(atomic_t * v)

decrement and test

Parameters
atomic_t * v pointer of type atomic_t

Description
Atomically decrements v by 1 and returns true if the result is 0, or false for all
other cases.

bool arch_atomic_inc_and_test(atomic_t * v)
increment and test

Parameters
atomic_t * v pointer of type atomic_t

Description
Atomically increments v by 1 and returns true if the result is zero, or false for all
other cases.

bool arch_atomic_add_negative(int i, atomic_t * v)
add and test if negative

Parameters
int i integer value to add

atomic_t * v pointer of type atomic_t

110 Chapter 2. Driver Basics

Linux Driver-api Documentation

Description
Atomically adds i to v and returns true if the result is negative, or false when result
is greater than or equal to zero.

int arch_atomic_add_return(int i, atomic_t * v)
add integer and return

Parameters
int i integer value to add

atomic_t * v pointer of type atomic_t

Description
Atomically adds i to v and returns i + v
int arch_atomic_sub_return(int i, atomic_t * v)

subtract integer and return

Parameters
int i integer value to subtract

atomic_t * v pointer of type atomic_t

Description
Atomically subtracts i from v and returns v - i

2.10 Kernel objects manipulation

char * kobject_get_path(struct kobject * kobj, gfp_t gfp_mask)
Allocate memory and fill in the path for kobj.

Parameters
struct kobject * kobj kobject in question, with which to build the path

gfp_t gfp_mask the allocation type used to allocate the path

Return
The newly allocated memory, caller must free with kfree().

int kobject_set_name(struct kobject * kobj, const char * fmt, ...)
Set the name of a kobject.

Parameters
struct kobject * kobj struct kobject to set the name of

const char * fmt format string used to build the name

... variable arguments

Description
This sets the name of the kobject. If you have already added the kobject to the sys-
tem, you must call kobject_rename() in order to change the name of the kobject.

2.10. Kernel objects manipulation 111

Linux Driver-api Documentation

void kobject_init(struct kobject * kobj, struct kobj_type * ktype)
Initialize a kobject structure.

Parameters
struct kobject * kobj pointer to the kobject to initialize

struct kobj_type * ktype pointer to the ktype for this kobject.

Description
This function will properly initialize a kobject such that it can then be passed to
the kobject_add() call.

After this function is called, the kobject MUST be cleaned up by a call to
kobject_put(), not by a call to kfree directly to ensure that all of the memory
is cleaned up properly.

int kobject_add(struct kobject * kobj, struct kobject * parent, const char
* fmt, ...)

The main kobject add function.

Parameters
struct kobject * kobj the kobject to add

struct kobject * parent pointer to the parent of the kobject.

const char * fmt format to name the kobject with.

... variable arguments

Description
The kobject name is set and added to the kobject hierarchy in this function.

If parent is set, then the parent of the kobj will be set to it. If parent is NULL,
then the parent of the kobj will be set to the kobject associated with the kset
assigned to this kobject. If no kset is assigned to the kobject, then the kobject will
be located in the root of the sysfs tree.

Note, no “add”uevent will be created with this call, the caller should set up
all of the necessary sysfs files for the object and then call kobject_uevent() with
the UEVENT_ADD parameter to ensure that userspace is properly notified of this
kobject’s creation.
Return
If this function returns an error, kobject_put() must be called to properly

clean up thememory associated with the object. Under no instance should the
kobject that is passed to this function be directly freed with a call to kfree(),
that can leak memory.

If this function returns success, kobject_put() must also be called in order
to properly clean up the memory associated with the object.

In short, once this function is called, kobject_put() MUST be called when
the use of the object is finished in order to properly free everything.

int kobject_init_and_add(struct kobject * kobj, struct kobj_type * ktype,
struct kobject * parent, const char * fmt, ...)

Initialize a kobject structure and add it to the kobject hierarchy.

112 Chapter 2. Driver Basics

Linux Driver-api Documentation

Parameters
struct kobject * kobj pointer to the kobject to initialize

struct kobj_type * ktype pointer to the ktype for this kobject.

struct kobject * parent pointer to the parent of this kobject.

const char * fmt the name of the kobject.

... variable arguments

Description
This function combines the call to kobject_init() and kobject_add().

If this function returns an error, kobject_put() must be called to properly clean
up the memory associated with the object. This is the same type of error handling
after a call to kobject_add() and kobject lifetime rules are the same here.

int kobject_rename(struct kobject * kobj, const char * new_name)
Change the name of an object.

Parameters
struct kobject * kobj object in question.

const char * new_name object’s new name
Description
It is the responsibility of the caller to provide mutual exclusion between two dif-
ferent calls of kobject_rename on the same kobject and to ensure that new_name
is valid and won’t conflict with other kobjects.
int kobject_move(struct kobject * kobj, struct kobject * new_parent)

Move object to another parent.

Parameters
struct kobject * kobj object in question.

struct kobject * new_parent object’s new parent (can be NULL)
void kobject_del(struct kobject * kobj)

Unlink kobject from hierarchy.

Parameters
struct kobject * kobj object.

Description
This is the function that should be called to delete an object successfully added via
kobject_add().

struct kobject * kobject_get(struct kobject * kobj)
Increment refcount for object.

Parameters
struct kobject * kobj object.

void kobject_put(struct kobject * kobj)
Decrement refcount for object.

2.10. Kernel objects manipulation 113

Linux Driver-api Documentation

Parameters
struct kobject * kobj object.

Description
Decrement the refcount, and if 0, call kobject_cleanup().

struct kobject * kobject_create_and_add(const char * name, struct kobject
* parent)

Create a struct kobject dynamically and register it with sysfs.

Parameters
const char * name the name for the kobject

struct kobject * parent the parent kobject of this kobject, if any.

Description
This function creates a kobject structure dynamically and registers it with sysfs.
When you are finished with this structure, call kobject_put() and the structure
will be dynamically freed when it is no longer being used.

If the kobject was not able to be created, NULL will be returned.

int kset_register(struct kset * k)
Initialize and add a kset.

Parameters
struct kset * k kset.

void kset_unregister(struct kset * k)
Remove a kset.

Parameters
struct kset * k kset.

struct kobject * kset_find_obj(struct kset * kset, const char * name)
Search for object in kset.

Parameters
struct kset * kset kset we’re looking in.
const char * name object’s name.
Description
Lock kset via kset->subsys, and iterate over kset->list, looking for a matching
kobject. If matching object is found take a reference and return the object.

struct kset * kset_create_and_add(const char * name, const struct
kset_uevent_ops * uevent_ops, struct
kobject * parent_kobj)

Create a struct kset dynamically and add it to sysfs.

Parameters
const char * name the name for the kset

114 Chapter 2. Driver Basics

Linux Driver-api Documentation

const struct kset_uevent_ops * uevent_ops a struct kset_uevent_ops for the
kset

struct kobject * parent_kobj the parent kobject of this kset, if any.

Description
This function creates a kset structure dynamically and registers it with sysfs. When
you are finished with this structure, call kset_unregister() and the structure will
be dynamically freed when it is no longer being used.

If the kset was not able to be created, NULL will be returned.

2.11 Kernel utility functions

REPEAT_BYTE(x)
repeat the value x multiple times as an unsigned long value

Parameters
x value to repeat

NOTE
x is not checked for > 0xff; larger values produce odd results.
ARRAY_SIZE(arr)

get the number of elements in array arr
Parameters
arr array to be sized

round_up(x, y)
round up to next specified power of 2

Parameters
x the value to round

y multiple to round up to (must be a power of 2)

Description
Rounds x up to next multiple of y (which must be a power of 2). To perform arbi-
trary rounding up, use roundup() below.

round_down(x, y)
round down to next specified power of 2

Parameters
x the value to round

y multiple to round down to (must be a power of 2)

Description
Rounds x down to next multiple of y (which must be a power of 2). To perform
arbitrary rounding down, use rounddown() below.

2.11. Kernel utility functions 115

Linux Driver-api Documentation

roundup(x, y)
round up to the next specified multiple

Parameters
x the value to up

y multiple to round up to

Description
Rounds x up to next multiple of y. If y will always be a power of 2, consider using
the faster round_up().

rounddown(x, y)
round down to next specified multiple

Parameters
x the value to round

y multiple to round down to

Description
Rounds x down to next multiple of y. If y will always be a power of 2, consider
using the faster round_down().

upper_32_bits(n)
return bits 32-63 of a number

Parameters
n the number we’re accessing
Description
A basic shift-right of a 64- or 32-bit quantity. Use this to suppress the“right shift
count >= width of type”warning when that quantity is 32-bits.
lower_32_bits(n)

return bits 0-31 of a number

Parameters
n the number we’re accessing
might_sleep()

annotation for functions that can sleep

Parameters
Description
this macro will print a stack trace if it is executed in an atomic context (spinlock,
irq-handler, ⋯). Additional sections where blocking is not allowed can be anno-
tated with non_block_start() and non_block_end() pairs.

This is a useful debugging help to be able to catch problems early and not be bitten
later when the calling function happens to sleep when it is not supposed to.

cant_sleep()
annotation for functions that cannot sleep

116 Chapter 2. Driver Basics

Linux Driver-api Documentation

Parameters
Description
this macro will print a stack trace if it is executed with preemption enabled

non_block_start()
annotate the start of section where sleeping is prohibited

Parameters
Description
This is on behalf of the oom reaper, specifically when it is calling the mmu notifiers.
The problem is that if the notifier were to block on, for example, mutex_lock() and if
the process which holds that mutex were to perform a sleeping memory allocation,
the oom reaper is now blocked on completion of that memory allocation. Other
blocking calls like wait_event() pose similar issues.

non_block_end()
annotate the end of section where sleeping is prohibited

Parameters
Description
Closes a section opened by non_block_start().

abs(x)
return absolute value of an argument

Parameters
x the value. If it is unsigned type, it is converted to signed type first. char is

treated as if it was signed (regardless of whether it really is) but the macro’
s return type is preserved as char.

Return
an absolute value of x.

u32 reciprocal_scale(u32 val, u32 ep_ro)
“scale”a value into range [0, ep_ro)

Parameters
u32 val value

u32 ep_ro right open interval endpoint

Description
Perform a “reciprocal multiplication”in order to “scale”a value into range [0,
ep_ro), where the upper interval endpoint is right-open. This is useful, e.g. for
accessing a index of an array containing ep_ro elements, for example. Think of it
as sort of modulus, only that the result isn’t that of modulo. ;) Note that if initial
input is a small value, then result will return 0.

Return
a result based on val in interval [0, ep_ro).

2.11. Kernel utility functions 117

Linux Driver-api Documentation

int kstrtoul(const char * s, unsigned int base, unsigned long * res)
convert a string to an unsigned long

Parameters
const char * s The start of the string. The string must be null-terminated, and

may also include a single newline before its terminating null. The first char-
acter may also be a plus sign, but not a minus sign.

unsigned int base The number base to use. The maximum supported base is 16.
If base is given as 0, then the base of the string is automatically detected with
the conventional semantics - If it begins with 0x the number will be parsed
as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

unsigned long * res Where to write the result of the conversion on success.

Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used
as a replacement for the simple_strtoull. Return code must be checked.

int kstrtol(const char * s, unsigned int base, long * res)
convert a string to a long

Parameters
const char * s The start of the string. The string must be null-terminated, and

may also include a single newline before its terminating null. The first char-
acter may also be a plus sign or a minus sign.

unsigned int base The number base to use. The maximum supported base is 16.
If base is given as 0, then the base of the string is automatically detected with
the conventional semantics - If it begins with 0x the number will be parsed
as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

long * res Where to write the result of the conversion on success.

Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used
as a replacement for the simple_strtoull. Return code must be checked.

trace_printk(fmt, ⋯)
printf formatting in the ftrace buffer

Parameters
fmt the printf format for printing

... variable arguments

Note
__trace_printk is an internal function for trace_printk() and the ip is

passed in via the trace_printk() macro.

Description

118 Chapter 2. Driver Basics

Linux Driver-api Documentation

This function allows a kernel developer to debug fast path sections that printk
is not appropriate for. By scattering in various printk like tracing in the code, a
developer can quickly see where problems are occurring.

This is intended as a debugging tool for the developer only. Please refrain from
leaving trace_printks scattered around in your code. (Extra memory is used for
special buffers that are allocated when trace_printk() is used.)

A little optimization trick is done here. If there’s only one argument, there’s
no need to scan the string for printf formats. The trace_puts() will suffice. But
how can we take advantage of using trace_puts()when trace_printk() has only
one argument? By stringifying the args and checking the size we can tell whether
or not there are args. __stringify((__VA_ARGS__)) will turn into “()0”with a size
of 3 when there are no args, anything else will be bigger. All we need to do is
define a string to this, and then take its size and compare to 3. If it’s bigger,
use do_trace_printk() otherwise, optimize it to trace_puts(). Then just let gcc
optimize the rest.

trace_puts(str)
write a string into the ftrace buffer

Parameters
str the string to record

Note
__trace_bputs is an internal function for trace_puts and the ip is passed in

via the trace_puts macro.

Description
This is similar to trace_printk() but is made for those really fast paths that a
developer wants the least amount of “Heisenbug”effects, where the processing
of the print format is still too much.

This function allows a kernel developer to debug fast path sections that printk
is not appropriate for. By scattering in various printk like tracing in the code, a
developer can quickly see where problems are occurring.

This is intended as a debugging tool for the developer only. Please refrain from
leaving trace_puts scattered around in your code. (Extra memory is used for spe-
cial buffers that are allocated when trace_puts() is used.)

Return
0 if nothing was written, positive # if string was. (1 when __trace_bputs is

used, strlen(str) when __trace_puts is used)

min(x, y)
return minimum of two values of the same or compatible types

Parameters
x first value

y second value

max(x, y)
return maximum of two values of the same or compatible types

2.11. Kernel utility functions 119

Linux Driver-api Documentation

Parameters
x first value

y second value

min3(x, y, z)
return minimum of three values

Parameters
x first value

y second value

z third value

max3(x, y, z)
return maximum of three values

Parameters
x first value

y second value

z third value

min_not_zero(x, y)
return the minimum that is _not_ zero, unless both are zero

Parameters
x value1

y value2

clamp(val, lo, hi)
return a value clamped to a given range with strict typechecking

Parameters
val current value

lo lowest allowable value

hi highest allowable value

Description
This macro does strict typechecking of lo/hi to make sure they are of the same
type as val. See the unnecessary pointer comparisons.
min_t(type, x, y)

return minimum of two values, using the specified type

Parameters
type data type to use

x first value

y second value

max_t(type, x, y)
return maximum of two values, using the specified type

120 Chapter 2. Driver Basics

Linux Driver-api Documentation

Parameters
type data type to use

x first value

y second value

clamp_t(type, val, lo, hi)
return a value clamped to a given range using a given type

Parameters
type the type of variable to use

val current value

lo minimum allowable value

hi maximum allowable value

Description
This macro does no typechecking and uses temporary variables of type type to
make all the comparisons.

clamp_val(val, lo, hi)
return a value clamped to a given range using val’s type

Parameters
val current value

lo minimum allowable value

hi maximum allowable value

Description
This macro does no typechecking and uses temporary variables of whatever type
the input argument val is. This is useful when val is an unsigned type and lo and
hi are literals that will otherwise be assigned a signed integer type.
swap(a, b)

swap values of a and b
Parameters
a first value

b second value

container_of(ptr, type, member)
cast a member of a structure out to the containing structure

Parameters
ptr the pointer to the member.

type the type of the container struct this is embedded in.

member the name of the member within the struct.

container_of_safe(ptr, type, member)
cast a member of a structure out to the containing structure

2.11. Kernel utility functions 121

Linux Driver-api Documentation

Parameters
ptr the pointer to the member.

type the type of the container struct this is embedded in.

member the name of the member within the struct.

Description
If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.

__visible int printk(const char * fmt, ...)
print a kernel message

Parameters
const char * fmt format string

... variable arguments

Description
This is printk(). It can be called from any context. We want it to work.

We try to grab the console_lock. If we succeed, it’s easy - we log the output and
call the console drivers. If we fail to get the semaphore, we place the output into
the log buffer and return. The current holder of the console_sem will notice the
new output in console_unlock(); and will send it to the consoles before releasing
the lock.

One effect of this deferred printing is that code which calls printk() and then
changes console_loglevel may break. This is because console_loglevel is inspected
when the actual printing occurs.

See also: printf(3)

See the vsnprintf() documentation for format string extensions over C99.

void console_lock(void)
lock the console system for exclusive use.

Parameters
void no arguments

Description
Acquires a lock which guarantees that the caller has exclusive access to the con-
sole system and the console_drivers list.

Can sleep, returns nothing.

int console_trylock(void)
try to lock the console system for exclusive use.

Parameters
void no arguments

Description
Try to acquire a lock which guarantees that the caller has exclusive access to the
console system and the console_drivers list.

122 Chapter 2. Driver Basics

Linux Driver-api Documentation

returns 1 on success, and 0 on failure to acquire the lock.

void console_unlock(void)
unlock the console system

Parameters
void no arguments

Description
Releases the console_lock which the caller holds on the console system and the
console driver list.

While the console_lock was held, console output may have been buffered by
printk(). If this is the case, console_unlock(); emits the output prior to re-
leasing the lock.

If there is output waiting, we wake /dev/kmsg and syslog() users.

console_unlock(); may be called from any context.

void console_conditional_schedule(void)
yield the CPU if required

Parameters
void no arguments

Description
If the console code is currently allowed to sleep, and if this CPU should yield the
CPU to another task, do so here.

Must be called within console_lock();.

bool printk_timed_ratelimit(unsigned long * caller_jiffies, unsigned
int interval_msecs)

caller-controlled printk ratelimiting

Parameters
unsigned long * caller_jiffies pointer to caller’s state
unsigned int interval_msecs minimum interval between prints

Description
printk_timed_ratelimit() returns true if more than interval_msecs millisec-
onds have elapsed since the last time printk_timed_ratelimit() returned true.

int kmsg_dump_register(struct kmsg_dumper * dumper)
register a kernel log dumper.

Parameters
struct kmsg_dumper * dumper pointer to the kmsg_dumper structure

Description
Adds a kernel log dumper to the system. The dump callback in the structure will be
called when the kernel oopses or panics and must be set. Returns zero on success
and -EINVAL or -EBUSY otherwise.

2.11. Kernel utility functions 123

Linux Driver-api Documentation

int kmsg_dump_unregister(struct kmsg_dumper * dumper)
unregister a kmsg dumper.

Parameters
struct kmsg_dumper * dumper pointer to the kmsg_dumper structure

Description
Removes a dump device from the system. Returns zero on success and -EINVAL
otherwise.

bool kmsg_dump_get_line(struct kmsg_dumper * dumper, bool syslog, char
* line, size_t size, size_t * len)

retrieve one kmsg log line

Parameters
struct kmsg_dumper * dumper registered kmsg dumper

bool syslog include the “<4>”prefixes
char * line buffer to copy the line to

size_t size maximum size of the buffer

size_t * len length of line placed into buffer

Description
Start at the beginning of the kmsg buffer, with the oldest kmsg record, and copy
one record into the provided buffer.

Consecutive calls will return the next available record moving towards the end of
the buffer with the youngest messages.

A return value of FALSE indicates that there are no more records to read.

bool kmsg_dump_get_buffer(struct kmsg_dumper * dumper, bool syslog,
char * buf, size_t size, size_t * len)

copy kmsg log lines

Parameters
struct kmsg_dumper * dumper registered kmsg dumper

bool syslog include the “<4>”prefixes
char * buf buffer to copy the line to

size_t size maximum size of the buffer

size_t * len length of line placed into buffer

Description
Start at the end of the kmsg buffer and fill the provided buffer with as many of
the the youngest kmsg records that fit into it. If the buffer is large enough, all
available kmsg records will be copied with a single call.

Consecutive calls will fill the buffer with the next block of available older records,
not including the earlier retrieved ones.

A return value of FALSE indicates that there are no more records to read.

124 Chapter 2. Driver Basics

Linux Driver-api Documentation

void kmsg_dump_rewind(struct kmsg_dumper * dumper)
reset the iterator

Parameters
struct kmsg_dumper * dumper registered kmsg dumper

Description
Reset the dumper’s iterator so that kmsg_dump_get_line() and
kmsg_dump_get_buffer() can be called again and used multiple times within the
same dumper.dump() callback.

void panic(const char * fmt, ...)
halt the system

Parameters
const char * fmt The text string to print

Display a message, then perform cleanups.

This function never returns.

... variable arguments

void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)

Parameters
unsigned flag one of the TAINT_* constants.

enum lockdep_ok lockdep_ok whether lock debugging is still OK.

Description
If something bad has gone wrong, you’ll want lockdebug_ok = false, but for some
notewortht-but-not-corrupting cases, it can be set to true.

bool rcu_is_watching(void)
see if RCU thinks that the current CPU is not idle

Parameters
void no arguments

Description
Return true if RCU is watching the running CPU, which means that this CPU can
safely enter RCU read-side critical sections. In other words, if the current CPU is
not in its idle loop or is in an interrupt or NMI handler, return true.

void call_rcu(struct rcu_head * head, rcu_callback_t func)
Queue an RCU callback for invocation after a grace period.

Parameters
struct rcu_head * head structure to be used for queueing the RCU updates.

rcu_callback_t func actual callback function to be invoked after the grace pe-
riod

Description

2.11. Kernel utility functions 125

Linux Driver-api Documentation

The callback function will be invoked some time after a full grace period elapses, in
other words after all pre-existing RCU read-side critical sections have completed.
However, the callback function might well execute concurrently with RCU read-
side critical sections that started after call_rcu() was invoked. RCU read-side
critical sections are delimited by rcu_read_lock() and rcu_read_unlock(), and may
be nested. In addition, regions of code across which interrupts, preemption, or
softirqs have been disabled also serve as RCU read-side critical sections. This
includes hardware interrupt handlers, softirq handlers, and NMI handlers.

Note that all CPUs must agree that the grace period extended beyond all pre-
existing RCU read-side critical section. On systems with more than one CPU, this
means that when“func()”is invoked, each CPU is guaranteed to have executed a
full memory barrier since the end of its last RCU read-side critical section whose
beginning preceded the call to call_rcu(). It also means that each CPU executing
an RCU read-side critical section that continues beyond the start of“func()”must
have executed a memory barrier after the call_rcu() but before the beginning of
that RCU read-side critical section. Note that these guarantees include CPUs that
are offline, idle, or executing in user mode, as well as CPUs that are executing in
the kernel.

Furthermore, if CPU A invoked call_rcu() and CPU B invoked the resulting RCU
callback function“func()”, then both CPU A and CPU B are guaranteed to execute
a full memory barrier during the time interval between the call to call_rcu() and
the invocation of“func()”– even if CPU A and CPU B are the same CPU (but again
only if the system has more than one CPU).

void synchronize_rcu(void)
wait until a grace period has elapsed.

Parameters
void no arguments

Description
Control will return to the caller some time after a full grace period has elapsed,
in other words after all currently executing RCU read-side critical sections have
completed. Note, however, that upon return from synchronize_rcu(), the caller
might well be executing concurrently with new RCU read-side critical sections that
began while synchronize_rcu() was waiting. RCU read-side critical sections are
delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. In addi-
tion, regions of code across which interrupts, preemption, or softirqs have been
disabled also serve as RCU read-side critical sections. This includes hardware
interrupt handlers, softirq handlers, and NMI handlers.

Note that this guarantee implies furthermemory-ordering guarantees. On systems
with more than one CPU, when synchronize_rcu() returns, each CPU is guaran-
teed to have executed a full memory barrier since the end of its last RCU read-side
critical section whose beginning preceded the call to synchronize_rcu(). In ad-
dition, each CPU having an RCU read-side critical section that extends beyond
the return from synchronize_rcu() is guaranteed to have executed a full mem-
ory barrier after the beginning of synchronize_rcu() and before the beginning of
that RCU read-side critical section. Note that these guarantees include CPUs that
are offline, idle, or executing in user mode, as well as CPUs that are executing in
the kernel.

126 Chapter 2. Driver Basics

Linux Driver-api Documentation

Furthermore, if CPU A invoked synchronize_rcu(), which returned to its caller
on CPU B, then both CPU A and CPU B are guaranteed to have executed a full
memory barrier during the execution of synchronize_rcu() – even if CPU A and
CPU B are the same CPU (but again only if the system has more than one CPU).

unsigned long get_state_synchronize_rcu(void)
Snapshot current RCU state

Parameters
void no arguments

Description
Returns a cookie that is used by a later call to cond_synchronize_rcu() to deter-
mine whether or not a full grace period has elapsed in the meantime.

void cond_synchronize_rcu(unsigned long oldstate)
Conditionally wait for an RCU grace period

Parameters
unsigned long oldstate return value from earlier call to

get_state_synchronize_rcu()

Description
If a full RCU grace period has elapsed since the earlier call to
get_state_synchronize_rcu(), just return. Otherwise, invoke
synchronize_rcu() to wait for a full grace period.

Yes, this function does not take counter wrap into account. But counter wrap is
harmless. If the counter wraps, we have waited for more than 2 billion grace
periods (and way more on a 64-bit system!), so waiting for one additional grace
period should be just fine.

void rcu_barrier(void)
Wait until all in-flight call_rcu() callbacks complete.

Parameters
void no arguments

Description
Note that this primitive does not necessarily wait for an RCU grace period to com-
plete. For example, if there are no RCU callbacks queued anywhere in the system,
then rcu_barrier() is within its rights to return immediately, without waiting for
anything, much less an RCU grace period.

void rcu_expedite_gp(void)
Expedite future RCU grace periods

Parameters
void no arguments

Description
After a call to this function, future calls to synchronize_rcu() and friends act as
the corresponding synchronize_rcu_expedited() function had instead been called.

2.11. Kernel utility functions 127

Linux Driver-api Documentation

void rcu_unexpedite_gp(void)
Cancel prior rcu_expedite_gp() invocation

Parameters
void no arguments

Description
Undo a prior call to rcu_expedite_gp(). If all prior calls to rcu_expedite_gp()
are undone by a subsequent call to rcu_unexpedite_gp(), and if the rcu_expedited
sysfs/boot parameter is not set, then all subsequent calls to synchronize_rcu()
and friends will return to their normal non-expedited behavior.

int rcu_read_lock_held(void)
might we be in RCU read-side critical section?

Parameters
void no arguments

Description
If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU read-
side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, this assumes
we are in an RCU read-side critical section unless it can prove otherwise. This
is useful for debug checks in functions that require that they be called within an
RCU read-side critical section.

Checks debug_lockdep_rcu_enabled() to prevent false positives during boot and
while lockdep is disabled.

Note that rcu_read_lock() and the matching rcu_read_unlock() must occur in the
same context, for example, it is illegal to invoke rcu_read_unlock() in process con-
text if the matching rcu_read_lock() was invoked from within an irq handler.

Note that rcu_read_lock() is disallowed if the CPU is either idle or offline from an
RCU perspective, so check for those as well.

int rcu_read_lock_bh_held(void)
might we be in RCU-bh read-side critical section?

Parameters
void no arguments

Description
Check for bottom half being disabled, which covers both the CONFIG_PROVE_RCU
and not cases. Note that if someone uses rcu_read_lock_bh(), but then later en-
ables BH, lockdep (if enabled) will show the situation. This is useful for debug
checks in functions that require that they be called within an RCU read-side criti-
cal section.

Check debug_lockdep_rcu_enabled() to prevent false positives during boot.

Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or offline from
an RCU perspective, so check for those as well.

void wakeme_after_rcu(struct rcu_head * head)
Callback function to awaken a task after grace period

128 Chapter 2. Driver Basics

Linux Driver-api Documentation

Parameters
struct rcu_head * head Pointer to rcu_head member within rcu_synchronize

structure

Description
Awaken the corresponding task now that a grace period has elapsed.

void init_rcu_head_on_stack(struct rcu_head * head)
initialize on-stack rcu_head for debugobjects

Parameters
struct rcu_head * head pointer to rcu_head structure to be initialized

Description
This function informs debugobjects of a new rcu_head structure that has been al-
located as an auto variable on the stack. This function is not required for rcu_head
structures that are statically defined or that are dynamically allocated on the heap.
This function has no effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel
builds.

void destroy_rcu_head_on_stack(struct rcu_head * head)
destroy on-stack rcu_head for debugobjects

Parameters
struct rcu_head * head pointer to rcu_head structure to be initialized

Description
This function informs debugobjects that an on-stack rcu_head structure is about to
go out of scope. As with init_rcu_head_on_stack(), this function is not required
for rcu_head structures that are statically defined or that are dynamically allocated
on the heap. Also as with init_rcu_head_on_stack(), this function has no effect
for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.

size_t array_size(size_t a, size_t b)
Calculate size of 2-dimensional array.

Parameters
size_t a dimension one

size_t b dimension two

Description
Calculates size of 2-dimensional array: a * b.
Return
number of bytes needed to represent the array or SIZE_MAX on overflow.

size_t array3_size(size_t a, size_t b, size_t c)
Calculate size of 3-dimensional array.

Parameters
size_t a dimension one

size_t b dimension two

2.11. Kernel utility functions 129

Linux Driver-api Documentation

size_t c dimension three

Description
Calculates size of 3-dimensional array: a * b * c.
Return
number of bytes needed to represent the array or SIZE_MAX on overflow.

struct_size(p, member, count)
Calculate size of structure with trailing array.

Parameters
p Pointer to the structure.

member Name of the array member.

count Number of elements in the array.

Description
Calculates size of memory needed for structure p followed by an array of count
number of member elements.
Return
number of bytes needed or SIZE_MAX on overflow.

flex_array_size(p, member, count)
Calculate size of a flexible array member within an enclosing structure.

Parameters
p Pointer to the structure.

member Name of the flexible array member.

count Number of elements in the array.

Description
Calculates size of a flexible array of count number of member elements, at the
end of structure p.
Return
number of bytes needed or SIZE_MAX on overflow.

2.12 Device Resource Management

void * devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp,
int nid)

Allocate device resource data

Parameters
dr_release_t release Release function devres will be associated with

size_t size Allocation size

gfp_t gfp Allocation flags

130 Chapter 2. Driver Basics

Linux Driver-api Documentation

int nid NUMA node

Description
Allocate devres of size bytes. The allocated area is zeroed, then associated with
release. The returned pointer can be passed to other devres_*() functions.
Return
Pointer to allocated devres on success, NULL on failure.

void devres_for_each_res(struct device * dev, dr_release_t release,
dr_match_t match, void * match_data, void
(*fn)(struct device *, void *, void *), void * data)

Resource iterator

Parameters
struct device * dev Device to iterate resource from

dr_release_t release Look for resources associated with this release function

dr_match_t match Match function (optional)

void * match_data Data for the match function

void (*)(struct device *, void *, void *) fn Function to be called for
each matched resource.

void * data Data for fn, the 3rd parameter of fn
Description
Call fn for each devres of dev which is associated with release and for which
match returns 1.
Return

void

void devres_free(void * res)
Free device resource data

Parameters
void * res Pointer to devres data to free

Description
Free devres created with devres_alloc().

void devres_add(struct device * dev, void * res)
Register device resource

Parameters
struct device * dev Device to add resource to

void * res Resource to register

Description
Register devres res to dev. res should have been allocated using devres_alloc().
On driver detach, the associated release function will be invoked and devres will
be freed automatically.

2.12. Device Resource Management 131

Linux Driver-api Documentation

void * devres_find(struct device * dev, dr_release_t release,
dr_match_t match, void * match_data)

Find device resource

Parameters
struct device * dev Device to lookup resource from

dr_release_t release Look for resources associated with this release function

dr_match_t match Match function (optional)

void * match_data Data for the match function

Description
Find the latest devres of devwhich is associated with release and for whichmatch
returns 1. If match is NULL, it’s considered to match all.
Return
Pointer to found devres, NULL if not found.

void * devres_get(struct device * dev, void * new_res, dr_match_t match,
void * match_data)

Find devres, if non-existent, add one atomically

Parameters
struct device * dev Device to lookup or add devres for

void * new_res Pointer to new initialized devres to add if not found

dr_match_t match Match function (optional)

void * match_data Data for the match function

Description
Find the latest devres of dev which has the same release function as new_res
and for which match return 1. If found, new_res is freed; otherwise, new_res is
added atomically.

Return
Pointer to found or added devres.

void * devres_remove(struct device * dev, dr_release_t release,
dr_match_t match, void * match_data)

Find a device resource and remove it

Parameters
struct device * dev Device to find resource from

dr_release_t release Look for resources associated with this release function

dr_match_t match Match function (optional)

void * match_data Data for the match function

Description

132 Chapter 2. Driver Basics

Linux Driver-api Documentation

Find the latest devres of dev associated with release and for whichmatch returns
1. Ifmatch is NULL, it’s considered to match all. If found, the resource is removed
atomically and returned.

Return
Pointer to removed devres on success, NULL if not found.

int devres_destroy(struct device * dev, dr_release_t release,
dr_match_t match, void * match_data)

Find a device resource and destroy it

Parameters
struct device * dev Device to find resource from

dr_release_t release Look for resources associated with this release function

dr_match_t match Match function (optional)

void * match_data Data for the match function

Description
Find the latest devres of dev associated with release and for whichmatch returns
1. Ifmatch is NULL, it’s considered to match all. If found, the resource is removed
atomically and freed.

Note that the release function for the resource will not be called, only the devres-
allocated data will be freed. The caller becomes responsible for freeing any other
data.

Return
0 if devres is found and freed, -ENOENT if not found.

int devres_release(struct device * dev, dr_release_t release,
dr_match_t match, void * match_data)

Find a device resource and destroy it, calling release

Parameters
struct device * dev Device to find resource from

dr_release_t release Look for resources associated with this release function

dr_match_t match Match function (optional)

void * match_data Data for the match function

Description
Find the latest devres of dev associated with release and for whichmatch returns
1. Ifmatch is NULL, it’s considered to match all. If found, the resource is removed
atomically, the release function called and the resource freed.

Return
0 if devres is found and freed, -ENOENT if not found.

void * devres_open_group(struct device * dev, void * id, gfp_t gfp)
Open a new devres group

Parameters

2.12. Device Resource Management 133

Linux Driver-api Documentation

struct device * dev Device to open devres group for

void * id Separator ID

gfp_t gfp Allocation flags

Description
Open a new devres group for devwith id. For id, using a pointer to an object which
won’t be used for another group is recommended. If id is NULL, address-wise
unique ID is created.

Return
ID of the new group, NULL on failure.

void devres_close_group(struct device * dev, void * id)
Close a devres group

Parameters
struct device * dev Device to close devres group for

void * id ID of target group, can be NULL

Description
Close the group identified by id. If id is NULL, the latest open group is selected.
void devres_remove_group(struct device * dev, void * id)

Remove a devres group

Parameters
struct device * dev Device to remove group for

void * id ID of target group, can be NULL

Description
Remove the group identified by id. If id is NULL, the latest open group is selected.
Note that removing a group doesn’t affect any other resources.
int devres_release_group(struct device * dev, void * id)

Release resources in a devres group

Parameters
struct device * dev Device to release group for

void * id ID of target group, can be NULL

Description
Release all resources in the group identified by id. If id is NULL, the latest open
group is selected. The selected group and groups properly nested inside the se-
lected group are removed.

Return
The number of released non-group resources.

int devm_add_action(struct device * dev, void (*action)(void *), void * data)
add a custom action to list of managed resources

134 Chapter 2. Driver Basics

Linux Driver-api Documentation

Parameters
struct device * dev Device that owns the action

void (*)(void *) action Function that should be called

void * data Pointer to data passed to action implementation
Description
This adds a custom action to the list of managed resources so that it gets executed
as part of standard resource unwinding.

void devm_remove_action(struct device * dev, void (*action)(void *), void
* data)

removes previously added custom action

Parameters
struct device * dev Device that owns the action

void (*)(void *) action Function implementing the action

void * data Pointer to data passed to action implementation
Description
Removes instance of action previously added by devm_add_action(). Both action
and data should match one of the existing entries.

void devm_release_action(struct device * dev, void (*action)(void *), void
* data)

release previously added custom action

Parameters
struct device * dev Device that owns the action

void (*)(void *) action Function implementing the action

void * data Pointer to data passed to action implementation
Description
Releases and removes instance of action previously added by
devm_add_action(). Both action and data should match one of the existing
entries.

void * devm_kmalloc(struct device * dev, size_t size, gfp_t gfp)
Resource-managed kmalloc

Parameters
struct device * dev Device to allocate memory for

size_t size Allocation size

gfp_t gfp Allocation gfp flags

Description
Managed kmalloc. Memory allocated with this function is automatically freed on
driver detach. Like all other devres resources, guaranteed alignment is unsigned
long long.

2.12. Device Resource Management 135

Linux Driver-api Documentation

Return
Pointer to allocated memory on success, NULL on failure.

char * devm_kstrdup(struct device * dev, const char * s, gfp_t gfp)
Allocate resource managed space and copy an existing string into that.

Parameters
struct device * dev Device to allocate memory for

const char * s the string to duplicate

gfp_t gfp the GFP mask used in the devm_kmalloc() call when allocating mem-
ory

Return
Pointer to allocated string on success, NULL on failure.

const char * devm_kstrdup_const(struct device * dev, const char * s,
gfp_t gfp)

resource managed conditional string duplication

Parameters
struct device * dev device for which to duplicate the string

const char * s the string to duplicate

gfp_t gfp the GFP mask used in the kmalloc() call when allocating memory

Description
Strings allocated by devm_kstrdup_const will be automatically freed when the as-
sociated device is detached.

Return
Source string if it is in .rodata section otherwise it falls back to devm_kstrdup.

char * devm_kvasprintf(struct device * dev, gfp_t gfp, const char * fmt,
va_list ap)

Allocate resource managed space and format a string into that.

Parameters
struct device * dev Device to allocate memory for

gfp_t gfp the GFP mask used in the devm_kmalloc() call when allocating mem-
ory

const char * fmt The printf()-style format string

va_list ap Arguments for the format string

Return
Pointer to allocated string on success, NULL on failure.

char * devm_kasprintf(struct device * dev, gfp_t gfp, const char * fmt, ...)
Allocate resource managed space and format a string into that.

Parameters

136 Chapter 2. Driver Basics

Linux Driver-api Documentation

struct device * dev Device to allocate memory for

gfp_t gfp the GFP mask used in the devm_kmalloc() call when allocating mem-
ory

const char * fmt The printf()-style format string

... Arguments for the format string

Return
Pointer to allocated string on success, NULL on failure.

void devm_kfree(struct device * dev, const void * p)
Resource-managed kfree

Parameters
struct device * dev Device this memory belongs to

const void * p Memory to free

Description
Free memory allocated with devm_kmalloc().

void * devm_kmemdup(struct device * dev, const void * src, size_t len,
gfp_t gfp)

Resource-managed kmemdup

Parameters
struct device * dev Device this memory belongs to

const void * src Memory region to duplicate

size_t len Memory region length

gfp_t gfp GFP mask to use

Description
Duplicate region of a memory using resource managed kmalloc

unsigned long devm_get_free_pages(struct device * dev, gfp_t gfp_mask,
unsigned int order)

Resource-managed __get_free_pages

Parameters
struct device * dev Device to allocate memory for

gfp_t gfp_mask Allocation gfp flags

unsigned int order Allocation size is (1 << order) pages

Description
Managed get_free_pages. Memory allocated with this function is automatically
freed on driver detach.

Return
Address of allocated memory on success, 0 on failure.

2.12. Device Resource Management 137

Linux Driver-api Documentation

void devm_free_pages(struct device * dev, unsigned long addr)
Resource-managed free_pages

Parameters
struct device * dev Device this memory belongs to

unsigned long addr Memory to free

Description
Free memory allocated with devm_get_free_pages(). Unlike free_pages, there is
no need to supply the order.
void __percpu * __devm_alloc_percpu(struct device * dev, size_t size,

size_t align)
Resource-managed alloc_percpu

Parameters
struct device * dev Device to allocate per-cpu memory for

size_t size Size of per-cpu memory to allocate

size_t align Alignment of per-cpu memory to allocate

Description
Managed alloc_percpu. Per-cpu memory allocated with this function is automati-
cally freed on driver detach.

Return
Pointer to allocated memory on success, NULL on failure.

void devm_free_percpu(struct device * dev, void __percpu * pdata)
Resource-managed free_percpu

Parameters
struct device * dev Device this memory belongs to

void __percpu * pdata Per-cpu memory to free

Description
Free memory allocated with devm_alloc_percpu().

138 Chapter 2. Driver Basics

CHAPTER

THREE

DEVICE DRIVERS INFRASTRUCTURE

3.1 The Basic Device Driver-Model Structures

struct subsys_interface
interfaces to device functions

Definition

struct subsys_interface {
const char *name;
struct bus_type *subsys;
struct list_head node;
int (*add_dev)(struct device *dev, struct subsys_interface *sif);
void (*remove_dev)(struct device *dev, struct subsys_interface *sif);

};

Members
name name of the device function

subsys subsytem of the devices to attach to

node the list of functions registered at the subsystem

add_dev device hookup to device function handler

remove_dev device hookup to device function handler

Description
Simple interfaces attached to a subsystem. Multiple interfaces can attach to a
subsystem and its devices. Unlike drivers, they do not exclusively claim or control
devices. Interfaces usually represent a specific functionality of a subsystem/class
of devices.

devm_alloc_percpu(dev, type)
Resource-managed alloc_percpu

Parameters
dev Device to allocate per-cpu memory for

type Type to allocate per-cpu memory for

Description
Managed alloc_percpu. Per-cpu memory allocated with this function is automati-
cally freed on driver detach.

139

Linux Driver-api Documentation

Return
Pointer to allocated memory on success, NULL on failure.

struct device_connection
Device Connection Descriptor

Definition

struct device_connection {
struct fwnode_handle *fwnode;
const char *endpoint[2];
const char *id;
struct list_head list;

};

Members
fwnode The device node of the connected device

endpoint The names of the two devices connected together

id Unique identifier for the connection

list List head, private, for internal use only

NOTE
fwnode is not used together with endpoint. fwnode is used when plat-
form firmware defines the connection. When the connection is registered with
device_connection_add() endpoint is used instead.
void device_connections_add(struct device_connection * cons)

Add multiple device connections at once

Parameters
struct device_connection * cons Zero terminated array of device connection

descriptors

void device_connections_remove(struct device_connection * cons)
Remove multiple device connections at once

Parameters
struct device_connection * cons Zero terminated array of device connection

descriptors

enum device_link_state
Device link states.

Constants
DL_STATE_NONE The presence of the drivers is not being tracked.

DL_STATE_DORMANT None of the supplier/consumer drivers is present.

DL_STATE_AVAILABLE The supplier driver is present, but the consumer is not.

DL_STATE_CONSUMER_PROBE The consumer is probing (supplier driver present).

DL_STATE_ACTIVE Both the supplier and consumer drivers are present.

DL_STATE_SUPPLIER_UNBIND The supplier driver is unbinding.

140 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

struct device_link
Device link representation.

Definition

struct device_link {
struct device *supplier;
struct list_head s_node;
struct device *consumer;
struct list_head c_node;
enum device_link_state status;
u32 flags;
refcount_t rpm_active;
struct kref kref;

#ifdef CONFIG_SRCU;
struct rcu_head rcu_head;

#endif;
bool supplier_preactivated;

};

Members
supplier The device on the supplier end of the link.

s_node Hook to the supplier device’s list of links to consumers.
consumer The device on the consumer end of the link.

c_node Hook to the consumer device’s list of links to suppliers.
status The state of the link (with respect to the presence of drivers).

flags Link flags.

rpm_active Whether or not the consumer device is runtime-PM-active.

kref Count repeated addition of the same link.

rcu_head An RCU head to use for deferred execution of SRCU callbacks.

supplier_preactivated Supplier has been made active before consumer probe.

enum dl_dev_state
Device driver presence tracking information.

Constants
DL_DEV_NO_DRIVER There is no driver attached to the device.

DL_DEV_PROBING A driver is probing.

DL_DEV_DRIVER_BOUND The driver has been bound to the device.

DL_DEV_UNBINDING The driver is unbinding from the device.

struct dev_links_info
Device data related to device links.

Definition

struct dev_links_info {
struct list_head suppliers;

(continues on next page)

3.1. The Basic Device Driver-Model Structures 141

Linux Driver-api Documentation

(continued from previous page)
struct list_head consumers;
struct list_head needs_suppliers;
struct list_head defer_sync;
bool need_for_probe;
enum dl_dev_state status;

};

Members
suppliers List of links to supplier devices.

consumers List of links to consumer devices.

needs_suppliers Hook to global list of devices waiting for suppliers.

defer_sync Hook to global list of devices that have deferred sync_state.

need_for_probe If needs_suppliers is on a list, this indicates if the suppliers are
needed for probe or not.

status Driver status information.

struct device
The basic device structure

Definition

struct device {
struct kobject kobj;
struct device *parent;
struct device_private *p;
const char *init_name;
const struct device_type *type;
struct bus_type *bus;
struct device_driver *driver;
void *platform_data;
void *driver_data;

#ifdef CONFIG_PROVE_LOCKING;
struct mutex lockdep_mutex;

#endif;
struct mutex mutex;
struct dev_links_info links;
struct dev_pm_info power;
struct dev_pm_domain *pm_domain;

#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN;
struct irq_domain *msi_domain;

#endif;
#ifdef CONFIG_PINCTRL;

struct dev_pin_info *pins;
#endif;
#ifdef CONFIG_GENERIC_MSI_IRQ;

struct list_head msi_list;
#endif;

const struct dma_map_ops *dma_ops;
u64 *dma_mask;
u64 coherent_dma_mask;
u64 bus_dma_limit;
unsigned long dma_pfn_offset;

(continues on next page)

142 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

(continued from previous page)
struct device_dma_parameters *dma_parms;
struct list_head dma_pools;

#ifdef CONFIG_DMA_DECLARE_COHERENT;
struct dma_coherent_mem *dma_mem;

#endif;
#ifdef CONFIG_DMA_CMA;

struct cma *cma_area;
#endif;

struct dev_archdata archdata;
struct device_node *of_node;
struct fwnode_handle *fwnode;

#ifdef CONFIG_NUMA;
int numa_node;

#endif;
dev_t devt;
u32 id;
spinlock_t devres_lock;
struct list_head devres_head;
struct class *class;
const struct attribute_group **groups;
void (*release)(struct device *dev);
struct iommu_group *iommu_group;
struct dev_iommu *iommu;
bool offline_disabled:1;
bool offline:1;
bool of_node_reused:1;
bool state_synced:1;

#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || defined(CONFIG_
↪→ARCH_HAS_SYNC_DMA_FOR_CPU) || defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_
↪→CPU_ALL);
bool dma_coherent:1;

#endif;
};

Members
kobj A top-level, abstract class from which other classes are derived.

parent The device’s“parent”device, the device to which it is attached. In most
cases, a parent device is some sort of bus or host controller. If parent is NULL,
the device, is a top-level device, which is not usually what you want.

p Holds the private data of the driver core portions of the device. See the comment
of the struct device_private for detail.

init_name Initial name of the device.

type The type of device. This identifies the device type and carries type-specific
information.

bus Type of bus device is on.

driver Which driver has allocated this

platform_data Platform data specific to the device.

driver_data Private pointer for driver specific info.

3.1. The Basic Device Driver-Model Structures 143

Linux Driver-api Documentation

lockdep_mutex An optional debug lock that a subsystem can use as a peer lock to
gain localized lockdep coverage of the device_lock.

mutex Mutex to synchronize calls to its driver.

links Links to suppliers and consumers of this device.

power For device power management. See Documentation/driver-
api/pm/devices.rst for details.

pm_domain Provide callbacks that are executed during system suspend, hiberna-
tion, system resume and during runtime PM transitions alongwith subsystem-
level and driver-level callbacks.

msi_domain The generic MSI domain this device is using.

pins For device pin management. See Documentation/driver-api/pinctl.rst for de-
tails.

msi_list Hosts MSI descriptors

dma_ops DMA mapping operations for this device.

dma_mask Dma mask (if dma’ble device).
coherent_dma_mask Like dma_mask, but for alloc_coherent mapping as not all

hardware supports 64-bit addresses for consistent allocations such descrip-
tors.

bus_dma_limit Limit of an upstream bridge or bus which imposes a smaller DMA
limit than the device itself supports.

dma_pfn_offset offset of DMA memory range relatively of RAM

dma_parms A low level driver may set these to teach IOMMU code about segment
limitations.

dma_pools Dma pools (if dma’ble device).
dma_mem Internal for coherent mem override.

cma_area Contiguous memory area for dma allocations

archdata For arch-specific additions.

of_node Associated device tree node.

fwnode Associated device node supplied by platform firmware.

numa_node NUMA node this device is close to.

devt For creating the sysfs “dev”.
id device instance

devres_lock Spinlock to protect the resource of the device.

devres_head The resources list of the device.

class The class of the device.

groups Optional attribute groups.

144 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

release Callback to free the device after all references have gone away. This
should be set by the allocator of the device (i.e. the bus driver that discovered
the device).

iommu_group IOMMU group the device belongs to.

iommu Per device generic IOMMU runtime data

offline_disabled If set, the device is permanently online.

offline Set after successful invocation of bus type’s .offline().
of_node_reused Set if the device-tree node is shared with an ancestor device.

state_synced The hardware state of this device has been synced to match the
software state of this device by calling the driver/bus sync_state() callback.

dma_coherent this particular device is dma coherent, even if the architecture sup-
ports non-coherent devices.

Example
For devices on custom boards, as typical of embedded and SOC based hard-

ware, Linux often uses platform_data to point to board-specific structures
describing devices and how they are wired. That can include what ports are
available, chip variants, which GPIO pins act in what additional roles, and
so on. This shrinks the “Board Support Packages”(BSPs) and minimizes
board-specific #ifdefs in drivers.

Description
At the lowest level, every device in a Linux system is represented by an instance
of struct device. The device structure contains the information that the device
model core needs to model the system. Most subsystems, however, track addi-
tional information about the devices they host. As a result, it is rare for devices
to be represented by bare device structures; instead, that structure, like kobject
structures, is usually embedded within a higher-level representation of the device.

bool device_iommu_mapped(struct device * dev)
Returns true when the device DMA is translated by an IOMMU

Parameters
struct device * dev Device to perform the check on

3.2 Device Drivers Base

void driver_init(void)
initialize driver model.

Parameters
void no arguments

Description
Call the driver model init functions to initialize their subsystems. Called early from
init/main.c.

3.2. Device Drivers Base 145

Linux Driver-api Documentation

int driver_for_each_device(struct device_driver * drv, struct device
* start, void * data, int (*fn)(struct device *,
void *))

Iterator for devices bound to a driver.

Parameters
struct device_driver * drv Driver we’re iterating.
struct device * start Device to begin with

void * data Data to pass to the callback.

int (*)(struct device *, void *) fn Function to call for each device.

Description
Iterate over the drv’s list of devices calling fn for each one.
struct device * driver_find_device(struct device_driver * drv, struct de-

vice * start, const void * data, int
(*match)(struct device *dev, const void
*data))

device iterator for locating a particular device.

Parameters
struct device_driver * drv The device’s driver
struct device * start Device to begin with

const void * data Data to pass to match function

int (*)(struct device *dev, const void *data) match Callback function to
check device

Description
This is similar to the driver_for_each_device() function above, but it returns a
reference to a device that is ‘found’for later use, as determined by the match
callback.

The callback should return 0 if the device doesn’t match and non-zero if it does. If
the callback returns non-zero, this function will return to the caller and not iterate
over any more devices.

int driver_create_file(struct device_driver * drv, const struct
driver_attribute * attr)

create sysfs file for driver.

Parameters
struct device_driver * drv driver.

const struct driver_attribute * attr driver attribute descriptor.

void driver_remove_file(struct device_driver * drv, const struct
driver_attribute * attr)

remove sysfs file for driver.

Parameters
struct device_driver * drv driver.

146 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

const struct driver_attribute * attr driver attribute descriptor.

int driver_register(struct device_driver * drv)
register driver with bus

Parameters
struct device_driver * drv driver to register

Description
We pass off most of the work to the bus_add_driver() call, since most of the things
we have to do deal with the bus structures.

void driver_unregister(struct device_driver * drv)
remove driver from system.

Parameters
struct device_driver * drv driver.

Description
Again, we pass off most of the work to the bus-level call.

struct device_driver * driver_find(const char * name, struct bus_type
* bus)

locate driver on a bus by its name.

Parameters
const char * name name of the driver.

struct bus_type * bus bus to scan for the driver.

Description
Call kset_find_obj() to iterate over list of drivers on a bus to find driver by name.
Return driver if found.

This routine provides no locking to prevent the driver it returns from being un-
registered or unloaded while the caller is using it. The caller is responsible for
preventing this.

struct device_link * device_link_add(struct device * consumer, struct de-
vice * supplier, u32 flags)

Create a link between two devices.

Parameters
struct device * consumer Consumer end of the link.

struct device * supplier Supplier end of the link.

u32 flags Link flags.

Description
The caller is responsible for the proper synchronization of the link creation
with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause
the runtime PM framework to take the link into account. Second, if the
DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will be
forced into the active metastate and reference-counted upon the creation of the

3.2. Device Drivers Base 147

Linux Driver-api Documentation

link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be ig-
nored.

If DL_FLAG_STATELESS is set in flags, the caller of this function is expected to
release the link returned by it directly with the help of either device_link_del()
or device_link_remove().

If that flag is not set, however, the caller of this function is hand-
ing the management of the link over to the driver core entirely and
its return value can only be used to check whether or not the link
is present. In that case, the DL_FLAG_AUTOREMOVE_CONSUMER and
DL_FLAG_AUTOREMOVE_SUPPLIER device link flags can be used to indicate to
the driver core when the link can be safely deleted. Namely, setting one of them
in flags indicates to the driver core that the link is not going to be used (by the
given caller of this function) after unbinding the consumer or supplier driver, re-
spectively, from its device, so the link can be deleted at that point. If none of them
is set, the link will be maintained until one of the devices pointed to by it (either
the consumer or the supplier) is unregistered.

Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
DL_FLAG_AUTOREMOVE_SUPPLIER are not set in flags (that is, a persistent
managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER
flag can be used to request the driver core to automaticall probe for a consmer
driver after successfully binding a driver to the supplier device.

The combination of DL_FLAG_STATELESS and one of
DL_FLAG_AUTOREMOVE_CONSUMER, DL_FLAG_AUTOREMOVE_SUPPLIER,
or DL_FLAG_AUTOPROBE_CONSUMER set in flags at the same time is invalid
and will cause NULL to be returned upfront. However, if a device link between
the given consumer and supplier pair exists already when this function is called
for them, the existing link will be returned regardless of its current type and
status (the link’s flags may be modified then). The caller of this function is then
expected to treat the link as though it has just been created, so (in particular) if
DL_FLAG_STATELESS was passed in flags, the link needs to be released explicitly
when not needed any more (as stated above).

A side effect of the link creation is re-ordering of dpm_list and the devices_kset
list by moving the consumer device and all devices depending on it to the ends of
these lists (that does not happen to devices that have not been registered when
this function is called).

The supplier device is required to be registered when this function is called and
NULL will be returned if that is not the case. The consumer device need not be
registered, however.

void device_link_del(struct device_link * link)
Delete a stateless link between two devices.

Parameters
struct device_link * link Device link to delete.

Description
The caller must ensure proper synchronization of this function with runtime PM.
If the link was added multiple times, it needs to be deleted as often. Care is

148 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

required for hotplugged devices: Their links are purged on removal and calling
device_link_del() is then no longer allowed.

void device_link_remove(void * consumer, struct device * supplier)
Delete a stateless link between two devices.

Parameters
void * consumer Consumer end of the link.

struct device * supplier Supplier end of the link.

Description
The caller must ensure proper synchronization of this function with runtime PM.

const char * dev_driver_string(const struct device * dev)
Return a device’s driver name, if at all possible

Parameters
const struct device * dev struct device to get the name of

Description
Will return the device’s driver’s name if it is bound to a device. If the device is
not bound to a driver, it will return the name of the bus it is attached to. If it is not
attached to a bus either, an empty string will be returned.

int devm_device_add_group(struct device * dev, const struct at-
tribute_group * grp)

given a device, create a managed attribute group

Parameters
struct device * dev The device to create the group for

const struct attribute_group * grp The attribute group to create

Description
This function creates a group for the first time. It will explicitly warn and error if
any of the attribute files being created already exist.

Returns 0 on success or error code on failure.

void devm_device_remove_group(struct device * dev, const struct at-
tribute_group * grp)

Parameters
struct device * dev device to remove the group from

const struct attribute_group * grp group to remove

Description
This function removes a group of attributes from a device. The attributes previ-
ously have to have been created for this group, otherwise it will fail.

int devm_device_add_groups(struct device * dev, const struct at-
tribute_group ** groups)

create a bunch of managed attribute groups

Parameters

3.2. Device Drivers Base 149

Linux Driver-api Documentation

struct device * dev The device to create the group for

const struct attribute_group ** groups The attribute groups to create,
NULL terminated

Description
This function creates a bunch of managed attribute groups. If an error occurs
when creating a group, all previously created groups will be removed, unwinding
everything back to the original state when this function was called. It will explicitly
warn and error if any of the attribute files being created already exist.

Returns 0 on success or error code from sysfs_create_group on failure.

void devm_device_remove_groups(struct device * dev, const struct at-
tribute_group ** groups)

remove a list of managed groups

Parameters
struct device * dev The device for the groups to be removed from

const struct attribute_group ** groups NULL terminated list of groups to
be removed

Description
If groups is not NULL, remove the specified groups from the device.

int device_create_file(struct device * dev, const struct device_attribute
* attr)

create sysfs attribute file for device.

Parameters
struct device * dev device.

const struct device_attribute * attr device attribute descriptor.

void device_remove_file(struct device * dev, const struct device_attribute
* attr)

remove sysfs attribute file.

Parameters
struct device * dev device.

const struct device_attribute * attr device attribute descriptor.

bool device_remove_file_self(struct device * dev, const struct de-
vice_attribute * attr)

remove sysfs attribute file from its own method.

Parameters
struct device * dev device.

const struct device_attribute * attr device attribute descriptor.

Description
See kernfs_remove_self() for details.

150 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

int device_create_bin_file(struct device * dev, const struct bin_attribute
* attr)

create sysfs binary attribute file for device.

Parameters
struct device * dev device.

const struct bin_attribute * attr device binary attribute descriptor.

void device_remove_bin_file(struct device * dev, const struct
bin_attribute * attr)

remove sysfs binary attribute file

Parameters
struct device * dev device.

const struct bin_attribute * attr device binary attribute descriptor.

void device_initialize(struct device * dev)
init device structure.

Parameters
struct device * dev device.

Description
This prepares the device for use by other layers by initializing its fields. It
is the first half of device_register(), if called by that function, though it
can also be called separately, so one may use dev’s fields. In particular,
get_device()/put_device()may be used for reference counting of dev after call-
ing this function.

All fields in dev must be initialized by the caller to 0, except for those explicitly
set to some other value. The simplest approach is to use kzalloc() to allocate the
structure containing dev.
NOTE
Use put_device() to give up your reference instead of freeing dev directly once
you have called this function.

int dev_set_name(struct device * dev, const char * fmt, ...)
set a device name

Parameters
struct device * dev device

const char * fmt format string for the device’s name
... variable arguments

int device_add(struct device * dev)
add device to device hierarchy.

Parameters
struct device * dev device.

3.2. Device Drivers Base 151

Linux Driver-api Documentation

Description
This is part 2 of device_register(), though may be called separately _iff_
device_initialize() has been called separately.

This adds dev to the kobject hierarchy via kobject_add(), adds it to the global
and sibling lists for the device, then adds it to the other relevant subsystems of
the driver model.

Do not call this routine or device_register()more than once for any device struc-
ture. The driver model core is not designed to work with devices that get unregis-
tered and then spring back to life. (Among other things, it’s very hard to guarantee
that all references to the previous incarnation of dev have been dropped.) Allocate
and register a fresh new struct device instead.

Rule of thumb is: if device_add() succeeds, you should call device_del()
when you want to get rid of it. If device_add() has not succeeded, use only
put_device() to drop the reference count.

NOTE
Never directly free dev after calling this function, even if it returned an error!
Always use put_device() to give up your reference instead.

int device_register(struct device * dev)
register a device with the system.

Parameters
struct device * dev pointer to the device structure

Description
This happens in two clean steps - initialize the device and add it to the system. The
two steps can be called separately, but this is the easiest and most common. I.e.
you should only call the two helpers separately if have a clearly defined need to
use and refcount the device before it is added to the hierarchy.

For more information, see the kerneldoc for device_initialize() and
device_add().

NOTE
Never directly free dev after calling this function, even if it returned an error!
Always use put_device() to give up the reference initialized in this function in-
stead.

struct device * get_device(struct device * dev)
increment reference count for device.

Parameters
struct device * dev device.

Description
This simply forwards the call to kobject_get(), though we do take care to provide
for the case that we get a NULL pointer passed in.

void put_device(struct device * dev)
decrement reference count.

152 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

Parameters
struct device * dev device in question.

void device_del(struct device * dev)
delete device from system.

Parameters
struct device * dev device.

Description
This is the first part of the device unregistration sequence. This removes the device
from the lists we control from here, has it removed from the other driver model
subsystems it was added to in device_add(), and removes it from the kobject
hierarchy.

NOTE
this should be called manually _iff_ device_add() was also called manually.

void device_unregister(struct device * dev)
unregister device from system.

Parameters
struct device * dev device going away.

Description
We do this in two parts, like we do device_register(). First, we remove it from
all the subsystems with device_del(), then we decrement the reference count
via put_device(). If that is the final reference count, the device will be cleaned
up via device_release() above. Otherwise, the structure will stick around until the
final reference to the device is dropped.

int device_for_each_child(struct device * parent, void * data, int
(*fn)(struct device *dev, void *data))

device child iterator.

Parameters
struct device * parent parent struct device.

void * data data for the callback.

int (*)(struct device *dev, void *data) fn function to be called for each
device.

Description
Iterate over parent’s child devices, and call fn for each, passing it data.
We check the return of fn each time. If it returns anything other than 0, we break
out and return that value.

int device_for_each_child_reverse(struct device * parent, void * data, int
(*fn)(struct device *dev, void *data))

device child iterator in reversed order.

Parameters
struct device * parent parent struct device.

3.2. Device Drivers Base 153

Linux Driver-api Documentation

void * data data for the callback.

int (*)(struct device *dev, void *data) fn function to be called for each
device.

Description
Iterate over parent’s child devices, and call fn for each, passing it data.
We check the return of fn each time. If it returns anything other than 0, we break
out and return that value.

struct device * device_find_child(struct device * parent, void * data,
int (*match)(struct device *dev, void
*data))

device iterator for locating a particular device.

Parameters
struct device * parent parent struct device

void * data Data to pass to match function

int (*)(struct device *dev, void *data) match Callback function to check
device

Description
This is similar to the device_for_each_child() function above, but it returns a
reference to a device that is ‘found’for later use, as determined by the match
callback.

The callback should return 0 if the device doesn’t match and non-zero if it does.
If the callback returns non-zero and a reference to the current device can be ob-
tained, this function will return to the caller and not iterate over any more devices.

NOTE
you will need to drop the reference with put_device() after use.

struct device * device_find_child_by_name(struct device * parent, const
char * name)

device iterator for locating a child device.

Parameters
struct device * parent parent struct device

const char * name name of the child device

Description
This is similar to the device_find_child() function above, but it returns a refer-
ence to a device that has the name name.
NOTE
you will need to drop the reference with put_device() after use.

struct device * __root_device_register(const char * name, struct module
* owner)

allocate and register a root device

Parameters

154 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

const char * name root device name

struct module * owner owner module of the root device, usually
THIS_MODULE

Description
This function allocates a root device and registers it using device_register(). In
order to free the returned device, use root_device_unregister().

Root devices are dummy devices which allow other devices to be grouped under
/sys/devices. Use this function to allocate a root device and then use it as the
parent of any device which should appear under /sys/devices/{name}

The /sys/devices/{name} directory will also contain a ‘module’symlink which
points to the owner directory in sysfs.
Returns struct device pointer on success, or ERR_PTR() on error.

Note
You probably want to use root_device_register().

void root_device_unregister(struct device * dev)
unregister and free a root device

Parameters
struct device * dev device going away

Description
This function unregisters and cleans up a device that was created by
root_device_register().

struct device * device_create(struct class * class, struct device * parent,
dev_t devt, void * drvdata, const char * fmt,
...)

creates a device and registers it with sysfs

Parameters
struct class * class pointer to the struct class that this device should be reg-

istered to

struct device * parent pointer to the parent struct device of this new device,
if any

dev_t devt the dev_t for the char device to be added

void * drvdata the data to be added to the device for callbacks

const char * fmt string for the device’s name
... variable arguments

Description
This function can be used by char device classes. A struct device will be created
in sysfs, registered to the specified class.

A “dev”file will be created, showing the dev_t for the device, if the dev_t is not
0,0. If a pointer to a parent struct device is passed in, the newly created struct

3.2. Device Drivers Base 155

Linux Driver-api Documentation

device will be a child of that device in sysfs. The pointer to the struct device will
be returned from the call. Any further sysfs files that might be required can be
created using this pointer.

Returns struct device pointer on success, or ERR_PTR() on error.

Note
the struct class passed to this function must have previously been created with a
call to class_create().

struct device * device_create_with_groups(struct class * class, struct
device * parent, dev_t devt,
void * drvdata, const struct
attribute_group ** groups,
const char * fmt, ...)

creates a device and registers it with sysfs

Parameters
struct class * class pointer to the struct class that this device should be reg-

istered to

struct device * parent pointer to the parent struct device of this new device,
if any

dev_t devt the dev_t for the char device to be added

void * drvdata the data to be added to the device for callbacks

const struct attribute_group ** groups NULL-terminated list of attribute
groups to be created

const char * fmt string for the device’s name
... variable arguments

Description
This function can be used by char device classes. A struct device will be created
in sysfs, registered to the specified class. Additional attributes specified in the
groups parameter will also be created automatically.

A “dev”file will be created, showing the dev_t for the device, if the dev_t is not
0,0. If a pointer to a parent struct device is passed in, the newly created struct
device will be a child of that device in sysfs. The pointer to the struct device will
be returned from the call. Any further sysfs files that might be required can be
created using this pointer.

Returns struct device pointer on success, or ERR_PTR() on error.

Note
the struct class passed to this function must have previously been created with a
call to class_create().

void device_destroy(struct class * class, dev_t devt)
removes a device that was created with device_create()

Parameters

156 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

struct class * class pointer to the struct class that this device was registered
with

dev_t devt the dev_t of the device that was previously registered

Description
This call unregisters and cleans up a device that was created with a call to
device_create().

int device_rename(struct device * dev, const char * new_name)
renames a device

Parameters
struct device * dev the pointer to the struct device to be renamed

const char * new_name the new name of the device

Description
It is the responsibility of the caller to provide mutual exclusion between two dif-
ferent calls of device_rename on the same device to ensure that new_name is valid
and won’t conflict with other devices.
Renaming devices is racy at many levels, symlinks and other stuff are not replaced
atomically, and you get a “move”uevent, but it’s not easy to connect the event
to the old and new device. Device nodes are not renamed at all, there isn’t even
support for that in the kernel now.

In the meantime, during renaming, your target name might be taken by another
driver, creating conflicts. Or the old name is taken directly after you renamed it –
then you get events for the same DEVPATH, before you even see the“move”event.
It’s just a mess, and nothing new should ever rely on kernel device renaming.
Besides that, it’s not even implemented now for other things than (driver-core
wise very simple) network devices.

We are currently about to change network renaming in udev to completely disallow
renaming of devices in the same namespace as the kernel uses, because we can’t
solve the problems properly, that arise with swapping names of multiple interfaces
without races. Means, renaming of eth[0-9]* will only be allowed to some other
name than eth[0-9]*, for the aforementioned reasons.

Make up a “real”name in the driver before you register anything, or add some
other attributes for userspace to find the device, or use udev to add symlinks – but
never rename kernel devices later, it’s a complete mess. We don’t even want to
get into that and try to implement the missing pieces in the core. We really have
other pieces to fix in the driver core mess. :)

Note
Don’t call this function. Currently, the networking layer calls this function, but
that will change. The following text from Kay Sievers offers some insight:

int device_move(struct device * dev, struct device * new_parent, enum
dpm_order dpm_order)

moves a device to a new parent

Parameters

3.2. Device Drivers Base 157

Linux Driver-api Documentation

struct device * dev the pointer to the struct device to be moved

struct device * new_parent the new parent of the device (can be NULL)

enum dpm_order dpm_order how to reorder the dpm_list

int device_change_owner(struct device * dev, kuid_t kuid, kgid_t kgid)
change the owner of an existing device.

Parameters
struct device * dev device.

kuid_t kuid new owner’s kuid
kgid_t kgid new owner’s kgid
Description
This changes the owner of dev and its corresponding sysfs entries to kuid/kgid.
This function closely mirrors how dev was added via driver core.
Returns 0 on success or error code on failure.

void set_primary_fwnode(struct device * dev, struct fwnode_handle
* fwnode)

Change the primary firmware node of a given device.

Parameters
struct device * dev Device to handle.

struct fwnode_handle * fwnode New primary firmware node of the device.

Description
Set the device’s firmware node pointer to fwnode, but if a secondary firmware
node of the device is present, preserve it.

void set_secondary_fwnode(struct device * dev, struct fwnode_handle
* fwnode)

Change the secondary firmware node of a given device.

Parameters
struct device * dev Device to handle.

struct fwnode_handle * fwnode New secondary firmware node of the device.

Description
If a primary firmware node of the device is present, set its secondary pointer to
fwnode. Otherwise, set the device’s firmware node pointer to fwnode.
void device_set_of_node_from_dev(struct device * dev, const struct device

* dev2)
reuse device-tree node of another device

Parameters
struct device * dev device whose device-tree node is being set

const struct device * dev2 device whose device-tree node is being reused

158 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

Description
Takes another reference to the new device-tree node after first dropping any ref-
erence held to the old node.

void register_syscore_ops(struct syscore_ops * ops)
Register a set of system core operations.

Parameters
struct syscore_ops * ops System core operations to register.

void unregister_syscore_ops(struct syscore_ops * ops)
Unregister a set of system core operations.

Parameters
struct syscore_ops * ops System core operations to unregister.

int syscore_suspend(void)
Execute all the registered system core suspend callbacks.

Parameters
void no arguments

Description
This function is executed with one CPU on-line and disabled interrupts.

void syscore_resume(void)
Execute all the registered system core resume callbacks.

Parameters
void no arguments

Description
This function is executed with one CPU on-line and disabled interrupts.

struct class * __class_create(struct module * owner, const char * name,
struct lock_class_key * key)

create a struct class structure

Parameters
struct module * owner pointer to the module that is to“own”this struct class
const char * name pointer to a string for the name of this class.

struct lock_class_key * key the lock_class_key for this class; used by mutex
lock debugging

Description
This is used to create a struct class pointer that can then be used in calls to
device_create().

Returns struct class pointer on success, or ERR_PTR() on error.

Note, the pointer created here is to be destroyed when finished by making a call
to class_destroy().

3.2. Device Drivers Base 159

Linux Driver-api Documentation

void class_destroy(struct class * cls)
destroys a struct class structure

Parameters
struct class * cls pointer to the struct class that is to be destroyed

Description
Note, the pointer to be destroyed must have been created with a call to
class_create().

void class_dev_iter_init(struct class_dev_iter * iter, struct class * class,
struct device * start, const struct device_type
* type)

initialize class device iterator

Parameters
struct class_dev_iter * iter class iterator to initialize

struct class * class the class we wanna iterate over

struct device * start the device to start iterating from, if any

const struct device_type * type device_type of the devices to iterate over,
NULL for all

Description
Initialize class iterator iter such that it iterates over devices of class. If start is
set, the list iteration will start there, otherwise if it is NULL, the iteration starts at
the beginning of the list.

struct device * class_dev_iter_next(struct class_dev_iter * iter)
iterate to the next device

Parameters
struct class_dev_iter * iter class iterator to proceed

Description
Proceed iter to the next device and return it. Returns NULL if iteration is com-
plete.

The returned device is referenced and won’t be released till iterator is proceed
to the next device or exited. The caller is free to do whatever it wants to do with
the device including calling back into class code.

void class_dev_iter_exit(struct class_dev_iter * iter)
finish iteration

Parameters
struct class_dev_iter * iter class iterator to finish

Description
Finish an iteration. Always call this function after iteration is complete whether
the iteration ran till the end or not.

160 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

int class_for_each_device(struct class * class, struct device * start, void
* data, int (*fn)(struct device *, void *))

device iterator

Parameters
struct class * class the class we’re iterating
struct device * start the device to start with in the list, if any.

void * data data for the callback

int (*)(struct device *, void *) fn function to be called for each device

Description
Iterate over class’s list of devices, and call fn for each, passing it data. If start
is set, the list iteration will start there, otherwise if it is NULL, the iteration starts
at the beginning of the list.

We check the return of fn each time. If it returns anything other than 0, we break
out and return that value.

fn is allowed to do anything including calling back into class code. There’s no
locking restriction.

struct device * class_find_device(struct class * class, struct device * start,
const void * data, int (*match)(struct de-
vice *, const void *))

device iterator for locating a particular device

Parameters
struct class * class the class we’re iterating
struct device * start Device to begin with

const void * data data for the match function

int (*)(struct device *, const void *) match function to check device

Description
This is similar to the class_for_each_dev() function above, but it returns a reference
to a device that is ‘found’for later use, as determined by the match callback.
The callback should return 0 if the device doesn’t match and non-zero if it does. If
the callback returns non-zero, this function will return to the caller and not iterate
over any more devices.

Note, you will need to drop the reference with put_device() after use.

match is allowed to do anything including calling back into class code. There’s
no locking restriction.

struct class_compat * class_compat_register(const char * name)
register a compatibility class

Parameters
const char * name the name of the class

3.2. Device Drivers Base 161

Linux Driver-api Documentation

Description
Compatibility class aremeant as a temporary user-space compatibility workaround
when converting a family of class devices to a bus devices.

void class_compat_unregister(struct class_compat * cls)
unregister a compatibility class

Parameters
struct class_compat * cls the class to unregister

int class_compat_create_link(struct class_compat * cls, struct device
* dev, struct device * device_link)

create a compatibility class device link to a bus device

Parameters
struct class_compat * cls the compatibility class

struct device * dev the target bus device

struct device * device_link an optional device to which a“device”link should
be created

void class_compat_remove_link(struct class_compat * cls, struct device
* dev, struct device * device_link)

remove a compatibility class device link to a bus device

Parameters
struct class_compat * cls the compatibility class

struct device * dev the target bus device

struct device * device_link an optional device to which a “device”link was
previously created

struct node_access_nodes
Access class device to hold user visible relationships to other nodes.

Definition

struct node_access_nodes {
struct device dev;
struct list_head list_node;
unsigned access;

#ifdef CONFIG_HMEM_REPORTING;
struct node_hmem_attrs hmem_attrs;

#endif;
};

Members
dev Device for this memory access class

list_node List element in the node’s access list
access The access class rank

hmem_attrs Heterogeneous memory performance attributes

162 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

void node_set_perf_attrs(unsigned int nid, struct node_hmem_attrs
* hmem_attrs, unsigned access)

Set the performance values for given access class

Parameters
unsigned int nid Node identifier to be set

struct node_hmem_attrs * hmem_attrs Heterogeneous memory performance
attributes

unsigned access The access class the for the given attributes

struct node_cache_info
Internal tracking for memory node caches

Definition

struct node_cache_info {
struct device dev;
struct list_head node;
struct node_cache_attrs cache_attrs;

};

Members
dev Device represeting the cache level

node List element for tracking in the node

cache_attrs Attributes for this cache level

void node_add_cache(unsigned int nid, struct node_cache_attrs
* cache_attrs)

add cache attribute to a memory node

Parameters
unsigned int nid Node identifier that has new cache attributes

struct node_cache_attrs * cache_attrs Attributes for the cache being added

void unregister_node(struct node * node)
unregister a node device

Parameters
struct node * node node going away

Description
Unregisters a node device node. All the devices on the node must be unregistered
before calling this function.

int register_memory_node_under_compute_node(unsigned int mem_nid,
unsigned int cpu_nid,
unsigned access)

link memory node to its compute node for a given access class.

Parameters
unsigned int mem_nid Memory node number

3.2. Device Drivers Base 163

Linux Driver-api Documentation

unsigned int cpu_nid Cpu node number

unsigned access Access class to register

Description
For use with platforms that may have separate memory and compute
nodes. This function will export node relationships linking which mem-
ory initiator nodes can access memory targets at a given ranked access
class.

int request_firmware(const struct firmware ** firmware_p, const char
* name, struct device * device)

send firmware request and wait for it

Parameters
const struct firmware ** firmware_p pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded

firmware_p will be used to return a firmware image by the name of name
for device device.
Should be called from user context where sleeping is allowed.

name will be used as $FIRMWARE in the uevent environment and should be
distinctive enough not to be confused with any other firmware image for this
or any other device.

Caller must hold the reference count of device.
The function can be called safely inside device’s suspend and resume callback.

int firmware_request_nowarn(const struct firmware ** firmware, const char
* name, struct device * device)

request for an optional fw module

Parameters
const struct firmware ** firmware pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded

Description
This function is similar in behaviour to request_firmware(), except it doesn’t
produce warning messages when the file is not found. The sysfs fallback mecha-
nism is enabled if direct filesystem lookup fails, however, however failures to find
the firmware file with it are still suppressed. It is therefore up to the driver to
check for the return value of this call and to decide when to inform the users of
errors.

int request_firmware_direct(const struct firmware ** firmware_p, const
char * name, struct device * device)

load firmware directly without usermode helper

Parameters

164 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

const struct firmware ** firmware_p pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded

Description
This function works pretty much like request_firmware(), but this doesn’t fall
back to usermode helper even if the firmware couldn’t be loaded directly from fs.
Hence it’s useful for loading optional firmwares, which aren’t always present,
without extra long timeouts of udev.

int firmware_request_platform(const struct firmware ** firmware, const
char * name, struct device * device)

request firmware with platform-fw fallback

Parameters
const struct firmware ** firmware pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded

Description
This function is similar in behaviour to request_firmware, except that if direct
filesystem lookup fails, it will fallback to looking for a copy of the requested
firmware embedded in the platform’s main (e.g. UEFI) firmware.
int firmware_request_cache(struct device * device, const char * name)

cache firmware for suspend so resume can use it

Parameters
struct device * device device for which firmware should be cached for

const char * name name of firmware file

Description
There are some devices with an optimization that enables the device to not re-
quire loading firmware on system reboot. This optimization may still require
the firmware present on resume from suspend. This routine can be used to en-
sure the firmware is present on resume from suspend in these situations. This
helper is not compatible with drivers which use request_firmware_into_buf()
or request_firmware_nowait() with no uevent set.

int request_firmware_into_buf(const struct firmware ** firmware_p, const
char * name, struct device * device, void
* buf, size_t size)

load firmware into a previously allocated buffer

Parameters
const struct firmware ** firmware_p pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded and DMA
region allocated

3.2. Device Drivers Base 165

Linux Driver-api Documentation

void * buf address of buffer to load firmware into

size_t size size of buffer

Description
This function works pretty much like request_firmware(), but it doesn’t allocate
a buffer to hold the firmware data. Instead, the firmware is loaded directly into
the buffer pointed to by buf and the firmware_p data member is pointed at buf.
This function doesn’t cache firmware either.
void release_firmware(const struct firmware * fw)

release the resource associated with a firmware image

Parameters
const struct firmware * fw firmware resource to release

int request_firmware_nowait(struct module * module, bool uevent,
const char * name, struct device * device,
gfp_t gfp, void * context, void (*cont)(const
struct firmware *fw, void *context))

asynchronous version of request_firmware

Parameters
struct module * module module requesting the firmware

bool uevent sends uevent to copy the firmware image if this flag is non-zero else
the firmware copy must be done manually.

const char * name name of firmware file

struct device * device device for which firmware is being loaded

gfp_t gfp allocation flags

void * context will be passed over to cont, and fw may be NULL if firmware
request fails.

void (*)(const struct firmware *fw, void *context) cont function will be
called asynchronously when the firmware request is over.

Caller must hold the reference count of device.
Asynchronous variant of request_firmware() for user contexts:

• sleep for as small periods as possible since it may increase kernel boot
time of built-in device drivers requesting firmware in their ->probe()
methods, if gfp is GFP_KERNEL.

• can’t sleep at all if gfp is GFP_ATOMIC.
int transport_class_register(struct transport_class * tclass)

register an initial transport class

Parameters
struct transport_class * tclass a pointer to the transport class structure to

be initialised

166 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

Description
The transport class contains an embedded class which is used to identify it. The
caller should initialise this structure with zeros and then generic class must have
been initialised with the actual transport class unique name. There’s a macro
DECLARE_TRANSPORT_CLASS() to do this (declared classes still must be regis-
tered).

Returns 0 on success or error on failure.

void transport_class_unregister(struct transport_class * tclass)
unregister a previously registered class

Parameters
struct transport_class * tclass The transport class to unregister

Description
Must be called prior to deallocating the memory for the transport class.

int anon_transport_class_register(struct anon_transport_class * atc)
register an anonymous class

Parameters
struct anon_transport_class * atc The anon transport class to register

Description
The anonymous transport class contains both a transport class and a con-
tainer. The idea of an anonymous class is that it never actually has any de-
vice attributes associated with it (and thus saves on container storage). So
it can only be used for triggering events. Use prezero and then use DE-
CLARE_ANON_TRANSPORT_CLASS() to initialise the anon transport class stor-
age.

void anon_transport_class_unregister(struct anon_transport_class * atc)
unregister an anon class

Parameters
struct anon_transport_class * atc Pointer to the anon transport class to un-

register

Description
Must be called prior to deallocating the memory for the anon transport class.

void transport_setup_device(struct device * dev)
declare a new dev for transport class association but don’t make it visible
yet.

Parameters
struct device * dev the generic device representing the entity being added

Description
Usually, dev represents some component in the HBA system (either the HBA itself
or a device remote across the HBA bus). This routine is simply a trigger point to
see if any set of transport classes wishes to associate with the added device. This

3.2. Device Drivers Base 167

Linux Driver-api Documentation

allocates storage for the class device and initialises it, but does not yet add it to the
system or add attributes to it (you do this with transport_add_device). If you have
no need for a separate setup and add operations, use transport_register_device
(see transport_class.h).

int transport_add_device(struct device * dev)
declare a new dev for transport class association

Parameters
struct device * dev the generic device representing the entity being added

Description
Usually, dev represents some component in the HBA system (either the HBA itself
or a device remote across the HBA bus). This routine is simply a trigger point used
to add the device to the system and register attributes for it.

void transport_configure_device(struct device * dev)
configure an already set up device

Parameters
struct device * dev generic device representing device to be configured

Description
The idea of configure is simply to provide a point within the setup process to allow
the transport class to extract information from a device after it has been setup.
This is used in SCSI because we have to have a setup device to begin using the
HBA, but after we send the initial inquiry, we use configure to extract the device
parameters. The device need not have been added to be configured.

void transport_remove_device(struct device * dev)
remove the visibility of a device

Parameters
struct device * dev generic device to remove

Description
This call removes the visibility of the device (to the user from sysfs), but
does not destroy it. To eliminate a device entirely you must also call trans-
port_destroy_device. If you don’t need to do remove and destroy as separate
operations, use transport_unregister_device() (see transport_class.h) which will
perform both calls for you.

void transport_destroy_device(struct device * dev)
destroy a removed device

Parameters
struct device * dev device to eliminate from the transport class.

Description
This call triggers the elimination of storage associated with the transport classdev.
Note: all it really does is relinquish a reference to the classdev. The memory will
not be freed until the last reference goes to zero. Note also that the classdev

168 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

retains a reference count on dev, so dev too will remain for as long as the transport
class device remains around.

int device_bind_driver(struct device * dev)
bind a driver to one device.

Parameters
struct device * dev device.

Description
Allow manual attachment of a driver to a device. Caller must have already set
dev->driver.
Note that this does not modify the bus reference count nor take the bus’s rwsem.
Please verify those are accounted for before calling this. (It is ok to call with no
other effort from a driver’s probe() method.)
This function must be called with the device lock held.

void wait_for_device_probe(void)

Parameters
void no arguments

Description
Wait for device probing to be completed.

int device_attach(struct device * dev)
try to attach device to a driver.

Parameters
struct device * dev device.

Description
Walk the list of drivers that the bus has and call driver_probe_device() for each
pair. If a compatible pair is found, break out and return.

Returns 1 if the device was bound to a driver; 0 if no matching driver was found;
-ENODEV if the device is not registered.

When called for a USB interface, dev->parent lock must be held.
int driver_attach(struct device_driver * drv)

try to bind driver to devices.

Parameters
struct device_driver * drv driver.

Description
Walk the list of devices that the bus has on it and try to match the driver with each
one. If driver_probe_device() returns 0 and the dev->driver is set, we’ve found
a compatible pair.

void device_release_driver(struct device * dev)
manually detach device from driver.

3.2. Device Drivers Base 169

Linux Driver-api Documentation

Parameters
struct device * dev device.

Description
Manually detach device from driver. When called for a USB interface, dev-
>parent lock must be held.
If this function is to be called with dev->parent lock held, ensure that the device’
s consumers are unbound in advance or that their locks can be acquired under the
dev->parent lock.
struct platform_device * platform_device_register_resndata(struct

device
* parent,
const char
* name,
int id,
const
struct
resource
* res, un-
signed
int num,
const void
* data,
size_t size)

add a platform-level device with resources and platform-specific data

Parameters
struct device * parent parent device for the device we’re adding
const char * name base name of the device we’re adding
int id instance id

const struct resource * res set of resources that needs to be allocated for the
device

unsigned int num number of resources

const void * data platform specific data for this platform device

size_t size size of platform specific data

Description
Returns struct platform_device pointer on success, or ERR_PTR() on error.

struct platform_device * platform_device_register_simple(const char
* name,
int id, const
struct re-
source * res,
unsigned
int num)

add a platform-level device and its resources

170 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

Parameters
const char * name base name of the device we’re adding
int id instance id

const struct resource * res set of resources that needs to be allocated for the
device

unsigned int num number of resources

Description
This function creates a simple platform device that requires minimal resource and
memory management. Canned release function freeing memory allocated for the
device allows drivers using such devices to be unloaded without waiting for the
last reference to the device to be dropped.

This interface is primarily intended for use with legacy drivers which probe hard-
ware directly. Because such drivers create sysfs device nodes themselves, rather
than letting system infrastructure handle such device enumeration tasks, they don’
t fully conform to the Linux driver model. In particular, when such drivers are built
as modules, they can’t be “hotplugged”.
Returns struct platform_device pointer on success, or ERR_PTR() on error.

struct platform_device * platform_device_register_data(struct device
* parent, const
char * name,
int id, const
void * data,
size_t size)

add a platform-level device with platform-specific data

Parameters
struct device * parent parent device for the device we’re adding
const char * name base name of the device we’re adding
int id instance id

const void * data platform specific data for this platform device

size_t size size of platform specific data

Description
This function creates a simple platform device that requires minimal resource and
memory management. Canned release function freeing memory allocated for the
device allows drivers using such devices to be unloaded without waiting for the
last reference to the device to be dropped.

Returns struct platform_device pointer on success, or ERR_PTR() on error.

struct resource * platform_get_resource(struct platform_device * dev,
unsigned int type, unsigned
int num)

get a resource for a device

Parameters

3.2. Device Drivers Base 171

Linux Driver-api Documentation

struct platform_device * dev platform device

unsigned int type resource type

unsigned int num resource index

void __iomem * devm_platform_get_and_ioremap_resource(struct plat-
form_device
* pdev,
unsigned
int index,
struct re-
source ** res)

call devm_ioremap_resource() for a platform device and get resource

Parameters
struct platform_device * pdev platform device to use both for memory re-

source lookup as well as resource management

unsigned int index resource index

struct resource ** res optional output parameter to store a pointer to the ob-
tained resource.

void __iomem * devm_platform_ioremap_resource(struct platform_device
* pdev, unsigned
int index)

call devm_ioremap_resource() for a platform device

Parameters
struct platform_device * pdev platform device to use both for memory re-

source lookup as well as resource management

unsigned int index resource index

void __iomem * devm_platform_ioremap_resource_byname(struct plat-
form_device
* pdev, const
char * name)

call devm_ioremap_resource for a platform device, retrieve the resource by
name

Parameters
struct platform_device * pdev platform device to use both for memory re-

source lookup as well as resource management

const char * name name of the resource

int platform_get_irq_optional(struct platform_device * dev, unsigned
int num)

get an optional IRQ for a device

Parameters
struct platform_device * dev platform device

unsigned int num IRQ number index

172 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

Description
Gets an IRQ for a platform device. Device drivers should check the return value
for errors so as to not pass a negative integer value to the request_irq() APIs. This
is the same as platform_get_irq(), except that it does not print an error message
if an IRQ can not be obtained.

For example:

int irq = platform_get_irq_optional(pdev, 0);
if (irq < 0)

return irq;

Return
non-zero IRQ number on success, negative error number on failure.

int platform_get_irq(struct platform_device * dev, unsigned int num)
get an IRQ for a device

Parameters
struct platform_device * dev platform device

unsigned int num IRQ number index

Description
Gets an IRQ for a platform device and prints an error message if finding the IRQ
fails. Device drivers should check the return value for errors so as to not pass a
negative integer value to the request_irq() APIs.

For example:

int irq = platform_get_irq(pdev, 0);
if (irq < 0)

return irq;

Return
non-zero IRQ number on success, negative error number on failure.

int platform_irq_count(struct platform_device * dev)
Count the number of IRQs a platform device uses

Parameters
struct platform_device * dev platform device

Return
Number of IRQs a platform device uses or EPROBE_DEFER

struct resource * platform_get_resource_byname(struct platform_device
* dev, unsigned int type,
const char * name)

get a resource for a device by name

Parameters
struct platform_device * dev platform device

unsigned int type resource type

3.2. Device Drivers Base 173

Linux Driver-api Documentation

const char * name resource name

int platform_get_irq_byname(struct platform_device * dev, const char
* name)

get an IRQ for a device by name

Parameters
struct platform_device * dev platform device

const char * name IRQ name

Description
Get an IRQ like platform_get_irq(), but then by name rather then by index.

Return
non-zero IRQ number on success, negative error number on failure.

int platform_get_irq_byname_optional(struct platform_device * dev,
const char * name)

get an optional IRQ for a device by name

Parameters
struct platform_device * dev platform device

const char * name IRQ name

Description
Get an optional IRQ by name like platform_get_irq_byname(). Except that it
does not print an error message if an IRQ can not be obtained.

Return
non-zero IRQ number on success, negative error number on failure.

int platform_add_devices(struct platform_device ** devs, int num)
add a numbers of platform devices

Parameters
struct platform_device ** devs array of platform devices to add

int num number of platform devices in array

void platform_device_put(struct platform_device * pdev)
destroy a platform device

Parameters
struct platform_device * pdev platform device to free

Description
Free all memory associated with a platform device. This function must _only_ be
externally called in error cases. All other usage is a bug.

struct platform_device * platform_device_alloc(const char * name, int id)
create a platform device

Parameters
const char * name base name of the device we’re adding

174 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

int id instance id

Description
Create a platform device object which can have other objects attached to it, and
which will have attached objects freed when it is released.

int platform_device_add_resources(struct platform_device * pdev, const
struct resource * res, unsigned
int num)

add resources to a platform device

Parameters
struct platform_device * pdev platform device allocated by plat-

form_device_alloc to add resources to

const struct resource * res set of resources that needs to be allocated for the
device

unsigned int num number of resources

Description
Add a copy of the resources to the platform device. The memory associated with
the resources will be freed when the platform device is released.

int platform_device_add_data(struct platform_device * pdev, const void
* data, size_t size)

add platform-specific data to a platform device

Parameters
struct platform_device * pdev platform device allocated by plat-

form_device_alloc to add resources to

const void * data platform specific data for this platform device

size_t size size of platform specific data

Description
Add a copy of platform specific data to the platform device’s platform_data pointer.
The memory associated with the platform data will be freed when the platform
device is released.

int platform_device_add_properties(struct platform_device * pdev, const
struct property_entry * properties)

add built-in properties to a platform device

Parameters
struct platform_device * pdev platform device to add properties to

const struct property_entry * properties null terminated array of proper-
ties to add

Description
The function will take deep copy of properties and attach the copy to the platform
device. The memory associated with properties will be freed when the platform
device is released.

3.2. Device Drivers Base 175

Linux Driver-api Documentation

int platform_device_add(struct platform_device * pdev)
add a platform device to device hierarchy

Parameters
struct platform_device * pdev platform device we’re adding
Description
This is part 2 of platform_device_register(), though may be called separately
iff pdev was allocated by platform_device_alloc().

void platform_device_del(struct platform_device * pdev)
remove a platform-level device

Parameters
struct platform_device * pdev platform device we’re removing
Description
Note that this function will also release all memory- and port-based resources
owned by the device (dev->resource). This function must _only_ be externally
called in error cases. All other usage is a bug.

int platform_device_register(struct platform_device * pdev)
add a platform-level device

Parameters
struct platform_device * pdev platform device we’re adding
void platform_device_unregister(struct platform_device * pdev)

unregister a platform-level device

Parameters
struct platform_device * pdev platform device we’re unregistering
Description
Unregistration is done in 2 steps. First we release all resources and remove it from
the subsystem, then we drop reference count by calling platform_device_put().

struct platform_device * platform_device_register_full(const
struct plat-
form_device_info
* pdevinfo)

add a platform-level device with resources and platform-specific data

Parameters
const struct platform_device_info * pdevinfo data used to create device

Description
Returns struct platform_device pointer on success, or ERR_PTR() on error.

int __platform_driver_register(struct platform_driver * drv, struct mod-
ule * owner)

register a driver for platform-level devices

Parameters

176 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

struct platform_driver * drv platform driver structure

struct module * owner owning module/driver

void platform_driver_unregister(struct platform_driver * drv)
unregister a driver for platform-level devices

Parameters
struct platform_driver * drv platform driver structure

int __platform_driver_probe(struct platform_driver * drv, int
(*probe)(struct platform_device *), struct
module * module)

register driver for non-hotpluggable device

Parameters
struct platform_driver * drv platform driver structure

int (*)(struct platform_device *) probe the driver probe routine, probably
from an __init section

struct module * module module which will be the owner of the driver

Description
Use this instead of platform_driver_register() when you know the device is not
hotpluggable and has already been registered, and you want to remove its run-
once probe() infrastructure from memory after the driver has bound to the device.

One typical use for this would be with drivers for controllers integrated into
system-on-chip processors, where the controller devices have been configured as
part of board setup.

Note that this is incompatible with deferred probing.

Returns zero if the driver registered and bound to a device, else returns a negative
error code and with the driver not registered.

struct platform_device * __platform_create_bundle(struct platform_driver
* driver, int
(*probe)(struct plat-
form_device *), struct
resource * res, un-
signed int n_res,
const void * data,
size_t size, struct
module * module)

register driver and create corresponding device

Parameters
struct platform_driver * driver platform driver structure

int (*)(struct platform_device *) probe the driver probe routine, probably
from an __init section

struct resource * res set of resources that needs to be allocated for the device

unsigned int n_res number of resources

3.2. Device Drivers Base 177

Linux Driver-api Documentation

const void * data platform specific data for this platform device

size_t size size of platform specific data

struct module * module module which will be the owner of the driver

Description
Use this in legacy-style modules that probe hardware directly and register a single
platform device and corresponding platform driver.

Returns struct platform_device pointer on success, or ERR_PTR() on error.

int __platform_register_drivers(struct platform_driver *const * drivers,
unsigned int count, struct module
* owner)

register an array of platform drivers

Parameters
struct platform_driver *const * drivers an array of drivers to register

unsigned int count the number of drivers to register

struct module * owner module owning the drivers

Description
Registers platform drivers specified by an array. On failure to register a driver, all
previously registered drivers will be unregistered. Callers of this API should use
platform_unregister_drivers() to unregister drivers in the reverse order.

Return
0 on success or a negative error code on failure.

void platform_unregister_drivers(struct platform_driver *const * drivers,
unsigned int count)

unregister an array of platform drivers

Parameters
struct platform_driver *const * drivers an array of drivers to unregister

unsigned int count the number of drivers to unregister

Description
Unregisters platform drivers specified by an array. This is typically used to com-
plement an earlier call to platform_register_drivers(). Drivers are unregistered in
the reverse order in which they were registered.

struct device * platform_find_device_by_driver(struct device * start,
const struct de-
vice_driver * drv)

Find a platform device with a given driver.

Parameters
struct device * start The device to start the search from.

const struct device_driver * drv The device driver to look for.

178 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

int bus_for_each_dev(struct bus_type * bus, struct device * start, void
* data, int (*fn)(struct device *, void *))

device iterator.

Parameters
struct bus_type * bus bus type.

struct device * start device to start iterating from.

void * data data for the callback.

int (*)(struct device *, void *) fn function to be called for each device.

Description
Iterate over bus’s list of devices, and call fn for each, passing it data. If start is
not NULL, we use that device to begin iterating from.

We check the return of fn each time. If it returns anything other than 0, we break
out and return that value.

NOTE
The device that returns a non-zero value is not retained in any way, nor is its
refcount incremented. If the caller needs to retain this data, it should do so, and
increment the reference count in the supplied callback.

struct device * bus_find_device(struct bus_type * bus, struct device * start,
const void * data, int (*match)(struct de-
vice *dev, const void *data))

device iterator for locating a particular device.

Parameters
struct bus_type * bus bus type

struct device * start Device to begin with

const void * data Data to pass to match function

int (*)(struct device *dev, const void *data) match Callback function to
check device

Description
This is similar to the bus_for_each_dev() function above, but it returns a refer-
ence to a device that is‘found’for later use, as determined by thematch callback.
The callback should return 0 if the device doesn’t match and non-zero if it does. If
the callback returns non-zero, this function will return to the caller and not iterate
over any more devices.

struct device * subsys_find_device_by_id(struct bus_type * subsys, un-
signed int id, struct device
* hint)

find a device with a specific enumeration number

Parameters
struct bus_type * subsys subsystem

unsigned int id index ‘id’in struct device

3.2. Device Drivers Base 179

Linux Driver-api Documentation

struct device * hint device to check first

Description
Check the hint’s next object and if it is a match return it directly, otherwise, fall
back to a full list search. Either way a reference for the returned object is taken.

int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
void * data, int (*fn)(struct device_driver *, void *))

driver iterator

Parameters
struct bus_type * bus bus we’re dealing with.
struct device_driver * start driver to start iterating on.

void * data data to pass to the callback.

int (*)(struct device_driver *, void *) fn function to call for each driver.

Description
This is nearly identical to the device iterator above. We iterate over each driver
that belongs to bus, and call fn for each. If fn returns anything but 0, we break
out and return it. If start is not NULL, we use it as the head of the list.
NOTE
we don’t return the driver that returns a non-zero value, nor do we leave the
reference count incremented for that driver. If the caller needs to know that info,
it must set it in the callback. It must also be sure to increment the refcount so it
doesn’t disappear before returning to the caller.
int bus_rescan_devices(struct bus_type * bus)

rescan devices on the bus for possible drivers

Parameters
struct bus_type * bus the bus to scan.

Description
This function will look for devices on the bus with no driver attached and rescan
it against existing drivers to see if it matches any by calling device_attach() for
the unbound devices.

int device_reprobe(struct device * dev)
remove driver for a device and probe for a new driver

Parameters
struct device * dev the device to reprobe

Description
This function detaches the attached driver (if any) for the given device and restarts
the driver probing process. It is intended to use if probing criteria changed during
a devices lifetime and driver attachment should change accordingly.

int bus_register(struct bus_type * bus)
register a driver-core subsystem

180 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

Parameters
struct bus_type * bus bus to register

Description
Once we have that, we register the bus with the kobject infrastructure, then reg-
ister the children subsystems it has: the devices and drivers that belong to the
subsystem.

void bus_unregister(struct bus_type * bus)
remove a bus from the system

Parameters
struct bus_type * bus bus.

Description
Unregister the child subsystems and the bus itself. Finally, we call bus_put() to
release the refcount

void subsys_dev_iter_init(struct subsys_dev_iter * iter, struct bus_type
* subsys, struct device * start, const struct de-
vice_type * type)

initialize subsys device iterator

Parameters
struct subsys_dev_iter * iter subsys iterator to initialize

struct bus_type * subsys the subsys we wanna iterate over

struct device * start the device to start iterating from, if any

const struct device_type * type device_type of the devices to iterate over,
NULL for all

Description
Initialize subsys iterator iter such that it iterates over devices of subsys. If start
is set, the list iteration will start there, otherwise if it is NULL, the iteration starts
at the beginning of the list.

struct device * subsys_dev_iter_next(struct subsys_dev_iter * iter)
iterate to the next device

Parameters
struct subsys_dev_iter * iter subsys iterator to proceed

Description
Proceed iter to the next device and return it. Returns NULL if iteration is com-
plete.

The returned device is referenced and won’t be released till iterator is proceed
to the next device or exited. The caller is free to do whatever it wants to do with
the device including calling back into subsys code.

void subsys_dev_iter_exit(struct subsys_dev_iter * iter)
finish iteration

3.2. Device Drivers Base 181

Linux Driver-api Documentation

Parameters
struct subsys_dev_iter * iter subsys iterator to finish

Description
Finish an iteration. Always call this function after iteration is complete whether
the iteration ran till the end or not.

int subsys_system_register(struct bus_type * subsys, const struct at-
tribute_group ** groups)

register a subsystem at /sys/devices/system/

Parameters
struct bus_type * subsys system subsystem

const struct attribute_group ** groups default attributes for the root de-
vice

Description
All‘system’subsystems have a /sys/devices/system/<name> root device with the
name of the subsystem. The root device can carry subsystem- wide attributes.
All registered devices are below this single root device and are named after the
subsystem with a simple enumeration number appended. The registered devices
are not explicitly named; only ‘id’in the device needs to be set.
Do not use this interface for anything new, it exists for compatibility with bad ideas
only. New subsystems should use plain subsystems; and add the subsystem-wide
attributes should be added to the subsystem directory itself and not some create
fake root-device placed in /sys/devices/system/<name>.

int subsys_virtual_register(struct bus_type * subsys, const struct at-
tribute_group ** groups)

register a subsystem at /sys/devices/virtual/

Parameters
struct bus_type * subsys virtual subsystem

const struct attribute_group ** groups default attributes for the root de-
vice

Description
All‘virtual’subsystems have a /sys/devices/system/<name> root device with the
name of the subystem. The root device can carry subsystem-wide attributes. All
registered devices are below this single root device. There’s no restriction on
device naming. This is for kernel software constructs which need sysfs interface.

182 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

3.3 Device Drivers DMA Management

void dmam_free_coherent(struct device * dev, size_t size, void * vaddr,
dma_addr_t dma_handle)

Managed dma_free_coherent()

Parameters
struct device * dev Device to free coherent memory for

size_t size Size of allocation

void * vaddr Virtual address of the memory to free

dma_addr_t dma_handle DMA handle of the memory to free

Description
Managed dma_free_coherent().

void * dmam_alloc_attrs(struct device * dev, size_t size, dma_addr_t
* dma_handle, gfp_t gfp, unsigned long attrs)

Managed dma_alloc_attrs()

Parameters
struct device * dev Device to allocate non_coherent memory for

size_t size Size of allocation

dma_addr_t * dma_handle Out argument for allocated DMA handle

gfp_t gfp Allocation flags

unsigned long attrs Flags in the DMA_ATTR_* namespace.

Description
Managed dma_alloc_attrs(). Memory allocated using this function will be automat-
ically released on driver detach.

Return
Pointer to allocated memory on success, NULL on failure.

bool dma_can_mmap(struct device * dev)
check if a given device supports dma_mmap_*

Parameters
struct device * dev device to check

Description
Returns true if dev supports dma_mmap_coherent() and dma_mmap_attrs() to
map DMA allocations to userspace.

int dma_mmap_attrs(struct device * dev, struct vm_area_struct * vma,
void * cpu_addr, dma_addr_t dma_addr, size_t size, un-
signed long attrs)

map a coherent DMA allocation into user space

Parameters

3.3. Device Drivers DMA Management 183

Linux Driver-api Documentation

struct device * dev valid struct device pointer, or NULL for ISA and EISA-like
devices

struct vm_area_struct * vma vm_area_struct describing requested user map-
ping

void * cpu_addr kernel CPU-view address returned from dma_alloc_attrs

dma_addr_t dma_addr device-view address returned from dma_alloc_attrs

size_t size size of memory originally requested in dma_alloc_attrs

unsigned long attrs attributes of mapping properties requested in
dma_alloc_attrs

Description
Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
space. The coherent DMA buffer must not be freed by the driver until the user
space mapping has been released.

3.4 Device drivers PnP support

int pnp_register_protocol(struct pnp_protocol * protocol)
adds a pnp protocol to the pnp layer

Parameters
struct pnp_protocol * protocol pointer to the corresponding pnp_protocol

structure

Ex protocols: ISAPNP, PNPBIOS, etc

void pnp_unregister_protocol(struct pnp_protocol * protocol)
removes a pnp protocol from the pnp layer

Parameters
struct pnp_protocol * protocol pointer to the corresponding pnp_protocol

structure

struct pnp_dev * pnp_request_card_device(struct pnp_card_link * clink,
const char * id, struct pnp_dev
* from)

Searches for a PnP device under the specified card

Parameters
struct pnp_card_link * clink pointer to the card link, cannot be NULL

const char * id pointer to a PnP ID structure that explains the rules for finding
the device

struct pnp_dev * from Starting place to search from. If NULL it will start from
the beginning.

void pnp_release_card_device(struct pnp_dev * dev)
call this when the driver no longer needs the device

Parameters

184 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

struct pnp_dev * dev pointer to the PnP device structure

int pnp_register_card_driver(struct pnp_card_driver * drv)
registers a PnP card driver with the PnP Layer

Parameters
struct pnp_card_driver * drv pointer to the driver to register

void pnp_unregister_card_driver(struct pnp_card_driver * drv)
unregisters a PnP card driver from the PnP Layer

Parameters
struct pnp_card_driver * drv pointer to the driver to unregister

struct pnp_id * pnp_add_id(struct pnp_dev * dev, const char * id)
adds an EISA id to the specified device

Parameters
struct pnp_dev * dev pointer to the desired device

const char * id pointer to an EISA id string

int pnp_start_dev(struct pnp_dev * dev)
low-level start of the PnP device

Parameters
struct pnp_dev * dev pointer to the desired device

Description
assumes that resources have already been allocated

int pnp_stop_dev(struct pnp_dev * dev)
low-level disable of the PnP device

Parameters
struct pnp_dev * dev pointer to the desired device

Description
does not free resources

int pnp_activate_dev(struct pnp_dev * dev)
activates a PnP device for use

Parameters
struct pnp_dev * dev pointer to the desired device

Description
does not validate or set resources so be careful.

int pnp_disable_dev(struct pnp_dev * dev)
disables device

Parameters
struct pnp_dev * dev pointer to the desired device

3.4. Device drivers PnP support 185

Linux Driver-api Documentation

Description
inform the correct pnp protocol so that resources can be used by other devices

int pnp_is_active(struct pnp_dev * dev)
Determines if a device is active based on its current resources

Parameters
struct pnp_dev * dev pointer to the desired PnP device

3.5 Userspace IO devices

void uio_event_notify(struct uio_info * info)
trigger an interrupt event

Parameters
struct uio_info * info UIO device capabilities

int __uio_register_device(struct module * owner, struct device * parent,
struct uio_info * info)

register a new userspace IO device

Parameters
struct module * owner module that creates the new device

struct device * parent parent device

struct uio_info * info UIO device capabilities

Description
returns zero on success or a negative error code.

int __devm_uio_register_device(struct module * owner, struct device
* parent, struct uio_info * info)

Resource managed uio_register_device()

Parameters
struct module * owner module that creates the new device

struct device * parent parent device

struct uio_info * info UIO device capabilities

Description
returns zero on success or a negative error code.

void uio_unregister_device(struct uio_info * info)
unregister a industrial IO device

Parameters
struct uio_info * info UIO device capabilities

struct uio_mem
description of a UIO memory region

Definition

186 Chapter 3. Device drivers infrastructure

Linux Driver-api Documentation

struct uio_mem {
const char *name;
phys_addr_t addr;
unsigned long offs;
resource_size_t size;
int memtype;
void __iomem *internal_addr;
struct uio_map *map;

};

Members
name name of the memory region for identification

addr address of the device’s memory rounded to page size (phys_addr is used
since addr can be logical, virtual, or physical & phys_addr_t should always be
large enough to handle any of the address types)

offs offset of device memory within the page

size size of IO (multiple of page size)

memtype type of memory addr points to

internal_addr ioremap-ped version of addr, for driver internal use

map for use by the UIO core only.

struct uio_port
description of a UIO port region

Definition

struct uio_port {
const char *name;
unsigned long start;
unsigned long size;
int porttype;
struct uio_portio *portio;

};

Members
name name of the port region for identification

start start of port region

size size of port region

porttype type of port (see UIO_PORT_* below)

portio for use by the UIO core only.

struct uio_info
UIO device capabilities

Definition

struct uio_info {
struct uio_device *uio_dev;

(continues on next page)

3.5. Userspace IO devices 187

Linux Driver-api Documentation

(continued from previous page)
const char *name;
const char *version;
struct uio_mem mem[MAX_UIO_MAPS];
struct uio_port port[MAX_UIO_PORT_REGIONS];
long irq;
unsigned long irq_flags;
void *priv;
irqreturn_t (*handler)(int irq, struct uio_info *dev_info);
int (*mmap)(struct uio_info *info, struct vm_area_struct *vma);
int (*open)(struct uio_info *info, struct inode *inode);
int (*release)(struct uio_info *info, struct inode *inode);
int (*irqcontrol)(struct uio_info *info, s32 irq_on);

};

Members
uio_dev the UIO device this info belongs to

name device name

version device driver version

mem list of mappable memory regions, size==0 for end of list

port list of port regions, size==0 for end of list

irq interrupt number or UIO_IRQ_CUSTOM

irq_flags flags for request_irq()

priv optional private data

handler the device’s irq handler
mmap mmap operation for this uio device

open open operation for this uio device

release release operation for this uio device

irqcontrol disable/enable irqs when 0/1 is written to /dev/uioX

188 Chapter 3. Device drivers infrastructure

CHAPTER

FOUR

IOCTL BASED INTERFACES

ioctl() is the most common way for applications to interface with device drivers.
It is flexible and easily extended by adding new commands and can be passed
through character devices, block devices as well as sockets and other special file
descriptors.

However, it is also very easy to get ioctl command definitions wrong, and hard to
fix them later without breaking existing applications, so this documentation tries
to help developers get it right.

4.1 Command number definitions

The command number, or request number, is the second argument passed to the
ioctl system call. While this can be any 32-bit number that uniquely identifies an
action for a particular driver, there are a number of conventions around defining
them.

include/uapi/asm-generic/ioctl.h provides four macros for defining ioctl com-
mands that follow modern conventions: _IO, _IOR, _IOW, and _IOWR. These should
be used for all new commands, with the correct parameters:

_IO/_IOR/_IOW/_IOWR The macro name specifies how the argument will be
used. It may be a pointer to data to be passed into the kernel (_IOW), out
of the kernel (_IOR), or both (_IOWR). _IO can indicate either commands
with no argument or those passing an integer value instead of a pointer. It
is recommended to only use _IO for commands without arguments, and use
pointers for passing data.

type An 8-bit number, often a character literal, specific to a subsystem or driver,
and listed in ../userspace-api/ioctl/ioctl-number

nr An 8-bit number identifying the specific command, unique for a give value of
‘type’

data_type The name of the data type pointed to by the argument, the command
number encodes the sizeof(data_type) value in a 13-bit or 14-bit integer,
leading to a limit of 8191 bytes for the maximum size of the argument. Note:
do not pass sizeof(data_type) type into _IOR/_IOW/IOWR, as that will lead to
encoding sizeof(sizeof(data_type)), i.e. sizeof(size_t). _IO does not have a
data_type parameter.

189

Linux Driver-api Documentation

4.2 Interface versions

Some subsystems use version numbers in data structures to overload commands
with different interpretations of the argument.

This is generally a bad idea, since changes to existing commands tend to break
existing applications.

A better approach is to add a new ioctl command with a new number. The old
command still needs to be implemented in the kernel for compatibility, but this
can be a wrapper around the new implementation.

4.3 Return code

ioctl commands can return negative error codes as documented in errno(3); these
get turned into errno values in user space. On success, the return code should be
zero. It is also possible but not recommended to return a positive ‘long’value.
When the ioctl callback is called with an unknown command number, the handler
returns either -ENOTTY or -ENOIOCTLCMD, which also results in -ENOTTY being
returned from the system call. Some subsystems return -ENOSYS or -EINVAL here
for historic reasons, but this is wrong.

Prior to Linux 5.5, compat_ioctl handlers were required to return -ENOIOCTLCMD
in order to use the fallback conversion into native commands. As all subsys-
tems are now responsible for handling compat mode themselves, this is no longer
needed, but it may be important to consider when backporting bug fixes to older
kernels.

4.4 Timestamps

Traditionally, timestamps and timeout values are passed as struct timespec or
struct timeval, but these are problematic because of incompatible definitions of
these structures in user space after the move to 64-bit time_t.

The struct __kernel_timespec type can be used instead to be embedded in
other data structures when separate second/nanosecond values are desired, or
passed to user space directly. This is still not ideal though, as the structure
matches neither the kernel’s timespec64 nor the user space timespec exactly.
The get_timespec64() and put_timespec64() helper functions can be used to en-
sure that the layout remains compatible with user space and the padding is treated
correctly.

As it is cheap to convert seconds to nanoseconds, but the opposite requires an
expensive 64-bit division, a simple __u64 nanosecond value can be simpler and
more efficient.

Timeout values and timestamps should ideally use CLOCK_MONOTONIC time, as
returned by ktime_get_ns() or ktime_get_ts64(). Unlike CLOCK_REALTIME, this
makes the timestamps immune from jumping backwards or forwards due to leap
second adjustments and clock_settime() calls.

190 Chapter 4. ioctl based interfaces

Linux Driver-api Documentation

ktime_get_real_ns() can be used for CLOCK_REALTIME timestamps that need to
be persistent across a reboot or between multiple machines.

4.5 32-bit compat mode

In order to support 32-bit user space running on a 64-bit machine, each subsys-
tem or driver that implements an ioctl callback handler must also implement the
corresponding compat_ioctl handler.

As long as all the rules for data structures are followed, this is as easy as set-
ting the .compat_ioctl pointer to a helper function such as compat_ptr_ioctl() or
blkdev_compat_ptr_ioctl().

4.5.1 compat_ptr()

On the s390 architecture, 31-bit user space has ambiguous representations for
data pointers, with the upper bit being ignored. When running such a process in
compat mode, the compat_ptr() helper must be used to clear the upper bit of a
compat_uptr_t and turn it into a valid 64-bit pointer. On other architectures, this
macro only performs a cast to a void __user * pointer.

In an compat_ioctl() callback, the last argument is an unsigned long, which can
be interpreted as either a pointer or a scalar depending on the command. If it
is a scalar, then compat_ptr() must not be used, to ensure that the 64-bit kernel
behaves the same way as a 32-bit kernel for arguments with the upper bit set.

The compat_ptr_ioctl() helper can be used in place of a custom compat_ioctl file
operation for drivers that only take arguments that are pointers to compatible data
structures.

4.5.2 Structure layout

Compatible data structures have the same layout on all architectures, avoiding all
problematic members:

• long and unsigned long are the size of a register, so they can be either 32-bit
or 64-bit wide and cannot be used in portable data structures. Fixed-length
replacements are __s32, __u32, __s64 and __u64.

• Pointers have the same problem, in addition to requiring the use of com-
pat_ptr(). The best workaround is to use __u64 in place of pointers, which
requires a cast to uintptr_t in user space, and the use of u64_to_user_ptr()
in the kernel to convert it back into a user pointer.

• On the x86-32 (i386) architecture, the alignment of 64-bit variables is only
32-bit, but they are naturally aligned on most other architectures including
x86-64. This means a structure like:

struct foo {
__u32 a;
__u64 b;

(continues on next page)

4.5. 32-bit compat mode 191

Linux Driver-api Documentation

(continued from previous page)
__u32 c;

};

has four bytes of padding between a and b on x86-64, plus another four bytes
of padding at the end, but no padding on i386, and it needs a compat_ioctl
conversion handler to translate between the two formats.

To avoid this problem, all structures should have their members naturally
aligned, or explicit reserved fields added in place of the implicit padding.
The pahole tool can be used for checking the alignment.

• On ARM OABI user space, structures are padded to multiples of 32-bit, mak-
ing some structs incompatible with modern EABI kernels if they do not end
on a 32-bit boundary.

• On the m68k architecture, struct members are not guaranteed to have an
alignment greater than 16-bit, which is a problem when relying on implicit
padding.

• Bitfields and enums generally work as one would expect them to, but some
properties of them are implementation-defined, so it is better to avoid them
completely in ioctl interfaces.

• char members can be either signed or unsigned, depending on the archi-
tecture, so the __u8 and __s8 types should be used for 8-bit integer values,
though char arrays are clearer for fixed-length strings.

4.6 Information leaks

Uninitialized data must not be copied back to user space, as this can cause an
information leak, which can be used to defeat kernel address space layout ran-
domization (KASLR), helping in an attack.

For this reason (and for compat support) it is best to avoid any implicit padding in
data structures. Where there is implicit padding in an existing structure, kernel
driversmust be careful to fully initialize an instance of the structure before copying
it to user space. This is usually done by calling memset() before assigning to
individual members.

4.7 Subsystem abstractions

While some device drivers implement their own ioctl function, most subsystems
implement the same command for multiple drivers. Ideally the subsystem has an
.ioctl() handler that copies the arguments from and to user space, passing them
into subsystem specific callback functions through normal kernel pointers.

This helps in various ways:

• Applications written for one driver are more likely to work for another one in
the same subsystem if there are no subtle differences in the user space ABI.

192 Chapter 4. ioctl based interfaces

Linux Driver-api Documentation

• The complexity of user space access and data structure layout is done in one
place, reducing the potential for implementation bugs.

• It is more likely to be reviewed by experienced developers that can spot prob-
lems in the interface when the ioctl is shared between multiple drivers than
when it is only used in a single driver.

4.8 Alternatives to ioctl

There are many cases in which ioctl is not the best solution for a problem. Alter-
natives include:

• System calls are a better choice for a system-wide feature that is not tied to a
physical device or constrained by the file system permissions of a character
device node

• netlink is the preferred way of configuring any network related objects
through sockets.

• debugfs is used for ad-hoc interfaces for debugging functionality that does
not need to be exposed as a stable interface to applications.

• sysfs is a good way to expose the state of an in-kernel object that is not tied
to a file descriptor.

• configfs can be used for more complex configuration than sysfs

• A custom file system can provide extra flexibility with a simple user interface
but adds a lot of complexity to the implementation.

4.8. Alternatives to ioctl 193

Linux Driver-api Documentation

194 Chapter 4. ioctl based interfaces

CHAPTER

FIVE

EARLY USERSPACE

5.1 Early userspace support

Last update: 2004-12-20 tlh

“Early userspace”is a set of libraries and programs that provide various pieces
of functionality that are important enough to be available while a Linux kernel is
coming up, but that don’t need to be run inside the kernel itself.
It consists of several major infrastructure components:

• gen_init_cpio, a program that builds a cpio-format archive containing a root
filesystem image. This archive is compressed, and the compressed image is
linked into the kernel image.

• initramfs, a chunk of code that unpacks the compressed cpio image midway
through the kernel boot process.

• klibc, a userspace C library, currently packaged separately, that is optimized
for correctness and small size.

The cpio file format used by initramfs is the“newc”(aka“cpio -H newc”) format,
and is documented in the file “buffer-format.txt”. There are two ways to add an
early userspace image: specify an existing cpio archive to be used as the image or
have the kernel build process build the image from specifications.

5.1.1 CPIO ARCHIVE method

You can create a cpio archive that contains the early userspace image. Your cpio
archive should be specified in CONFIG_INITRAMFS_SOURCE and it will be used
directly. Only a single cpio file may be specified in CONFIG_INITRAMFS_SOURCE
and directory and file names are not allowed in combination with a cpio archive.

195

Linux Driver-api Documentation

5.1.2 IMAGE BUILDING method

The kernel build process can also build an early userspace image from source parts
rather than supplying a cpio archive. This method provides a way to create images
with root-owned files even though the image was built by an unprivileged user.

The image is specified as one or more sources in CONFIG_INITRAMFS_SOURCE.
Sources can be either directories or files - cpio archives are not allowed when
building from sources.

A source directory will have it and all of its contents packaged. The specified
directory name will be mapped to‘/’. When packaging a directory, limited user
and group ID translation can be performed. INITRAMFS_ROOT_UID can be set to
a user ID that needs to be mapped to user root (0). INITRAMFS_ROOT_GID can
be set to a group ID that needs to be mapped to group root (0).

A source file must be directives in the format required by the usr/gen_init_cpio
utility (run‘usr/gen_init_cpio -h’to get the file format). The directives in the file
will be passed directly to usr/gen_init_cpio.

When a combination of directories and files are specified then the initramfs image
will be an aggregate of all of them. In this way a user can create a ‘root-image’
directory and install all files into it. Because device-special files cannot be cre-
ated by a unprivileged user, special files can be listed in a ‘root-files’file. Both
‘root-image’and‘root-files’can be listed in CONFIG_INITRAMFS_SOURCE and
a complete early userspace image can be built by an unprivileged user.

As a technical note, when directories and files are specified, the entire CON-
FIG_INITRAMFS_SOURCE is passed to usr/gen_initramfs_list.sh. This means that
CONFIG_INITRAMFS_SOURCE can really be interpreted as any legal argument to
gen_initramfs_list.sh. If a directory is specified as an argument then the contents
are scanned, uid/gid translation is performed, and usr/gen_init_cpio file directives
are output. If a directory is specified as an argument to usr/gen_initramfs_list.sh
then the contents of the file are simply copied to the output. All of the output
directives from directory scanning and file contents copying are processed by
usr/gen_init_cpio.

See also ‘usr/gen_initramfs_list.sh -h’.

Where’s this all leading?

The klibc distribution contains some of the necessary software to make early
userspace useful. The klibc distribution is currently maintained separately from
the kernel.

You can obtain somewhat infrequent snapshots of klibc from https://www.kernel.
org/pub/linux/libs/klibc/

For active users, you are better off using the klibc git repository, at http://git.
kernel.org/?p=libs/klibc/klibc.git

The standalone klibc distribution currently provides three components, in addition
to the klibc library:

196 Chapter 5. Early Userspace

https://www.kernel.org/pub/linux/libs/klibc/
https://www.kernel.org/pub/linux/libs/klibc/
http://git.kernel.org/?p=libs/klibc/klibc.git
http://git.kernel.org/?p=libs/klibc/klibc.git

Linux Driver-api Documentation

• ipconfig, a program that configures network interfaces. It can configure them
statically, or use DHCP to obtain information dynamically (aka “IP autocon-
figuration”).

• nfsmount, a program that can mount an NFS filesystem.

• kinit, the“glue”that uses ipconfig and nfsmount to replace the old support for
IP autoconfig, mount a filesystem over NFS, and continue system boot using
that filesystem as root.

kinit is built as a single statically linked binary to save space.

Eventually, several more chunks of kernel functionality will hopefully move to early
userspace:

• Almost all of init/do_mounts* (the beginning of this is already in place)

• ACPI table parsing

• Insert unwieldy subsystem that doesn’t really need to be in kernel space here
If kinit doesn’t meet your current needs and you’ve got bytes to burn, the klibc
distribution includes a small Bourne-compatible shell (ash) and a number of other
utilities, so you can replace kinit and build custom initramfs images that meet your
needs exactly.

For questions and help, you can sign up for the early userspace mailing list at
http://www.zytor.com/mailman/listinfo/klibc

How does it work?

The kernel has currently 3 ways to mount the root filesystem:

a) all required device and filesystem drivers compiled into the kernel, no ini-
trd. init/main.c:init() will call prepare_namespace() to mount the final root
filesystem, based on the root= option and optional init= to run some other
init binary than listed at the end of init/main.c:init().

b) some device and filesystem drivers built as modules and stored in an initrd.
The initrd must contain a binary ‘/linuxrc’which is supposed to load these
driver modules. It is also possible to mount the final root filesystem via lin-
uxrc and use the pivot_root syscall. The initrd is mounted and executed via
prepare_namespace().

c) using initramfs. The call to prepare_namespace() must be skipped. This
means that a binary must do all the work. Said binary can be stored into
initramfs either via modifying usr/gen_init_cpio.c or via the new initrd for-
mat, an cpio archive. It must be called“/init”. This binary is responsible to
do all the things prepare_namespace() would do.

To maintain backwards compatibility, the /init binary will only run if it comes
via an initramfs cpio archive. If this is not the case, init/main.c:init() will run
prepare_namespace() to mount the final root and exec one of the predefined
init binaries.

Bryan O’Sullivan <bos@serpentine.com>

5.1. Early userspace support 197

http://www.zytor.com/mailman/listinfo/klibc
mailto:bos@serpentine.com

Linux Driver-api Documentation

5.2 initramfs buffer format

Al Viro, H. Peter Anvin

Last revision: 2002-01-13

Starting with kernel 2.5.x, the old “initial ramdisk”protocol is getting {re-
placed/complemented} with the new “initial ramfs”(initramfs) protocol. The
initramfs contents is passed using the samememory buffer protocol used by the ini-
trd protocol, but the contents is different. The initramfs buffer contains an archive
which is expanded into a ramfs filesystem; this document details the format of the
initramfs buffer format.

The initramfs buffer format is based around the “newc”or “crc”CPIO formats,
and can be created with the cpio(1) utility. The cpio archive can be compressed
using gzip(1). One valid version of an initramfs buffer is thus a single .cpio.gz file.

The full format of the initramfs buffer is defined by the following grammar, where:

* is used to indicate "0 or more occurrences of"
(|) indicates alternatives
+ indicates concatenation
GZIP() indicates the gzip(1) of the operand
ALGN(n) means padding with null bytes to an n-byte boundary

initramfs := ("\0" | cpio_archive | cpio_gzip_archive)*

cpio_gzip_archive := GZIP(cpio_archive)

cpio_archive := cpio_file* + (<nothing> | cpio_trailer)

cpio_file := ALGN(4) + cpio_header + filename + "\0" + ALGN(4) + data

cpio_trailer := ALGN(4) + cpio_header + "TRAILER!!!\0" + ALGN(4)

In human terms, the initramfs buffer contains a collection of compressed and/or
uncompressed cpio archives (in the“newc”or“crc”formats); arbitrary amounts
zero bytes (for padding) can be added between members.

The cpio“TRAILER!!!”entry (cpio end-of-archive) is optional, but is not ignored;
see “handling of hard links”below.
The structure of the cpio_header is as follows (all fields contain hexadecimal ASCII
numbers fully padded with‘0’on the left to the full width of the field, for example,
the integer 4780 is represented by the ASCII string “000012ac”):

198 Chapter 5. Early Userspace

Linux Driver-api Documentation

Field name Field
size

Meaning

c_magic 6 bytes The string “070701”or “070702”
c_ino 8 bytes File inode number
c_mode 8 bytes File mode and permissions
c_uid 8 bytes File uid
c_gid 8 bytes File gid
c_nlink 8 bytes Number of links
c_mtime 8 bytes Modification time
c_filesize 8 bytes Size of data field
c_maj 8 bytes Major part of file device number
c_min 8 bytes Minor part of file device number
c_rmaj 8 bytes Major part of device node reference
c_rmin 8 bytes Minor part of device node reference
c_namesize 8 bytes Length of filename, including final 0
c_chksum 8 bytes Checksum of data field if c_magic is 070702; otherwise

zero

The c_mode field matches the contents of st_mode returned by stat(2) on Linux,
and encodes the file type and file permissions.

The c_filesize should be zero for any file which is not a regular file or symlink.

The c_chksum field contains a simple 32-bit unsigned sum of all the bytes in the
data field. cpio(1) refers to this as “crc”, which is clearly incorrect (a cyclic re-
dundancy check is a different and significantly stronger integrity check), however,
this is the algorithm used.

If the filename is “TRAILER!!!”this is actually an end-of-archive marker; the
c_filesize for an end-of-archive marker must be zero.

5.2.1 Handling of hard links

When a nondirectory with c_nlink > 1 is seen, the (c_maj,c_min,c_ino) tuple is
looked up in a tuple buffer. If not found, it is entered in the tuple buffer and the
entry is created as usual; if found, a hard link rather than a second copy of the file
is created. It is not necessary (but permitted) to include a second copy of the file
contents; if the file contents is not included, the c_filesize field should be set to
zero to indicate no data section follows. If data is present, the previous instance
of the file is overwritten; this allows the data-carrying instance of a file to occur
anywhere in the sequence (GNU cpio is reported to attach the data to the last
instance of a file only.)

c_filesize must not be zero for a symlink.

When a“TRAILER!!!”end-of-archive marker is seen, the tuple buffer is reset. This
permits archives which are generated independently to be concatenated.

To combine file data from different sources (without having to regenerate the
(c_maj,c_min,c_ino) fields), therefore, either one of the following techniques can
be used:

5.2. initramfs buffer format 199

Linux Driver-api Documentation

a) Separate the different file data sources with a “TRAILER!!!”end-of-archive
marker, or

b) Make sure c_nlink == 1 for all nondirectory entries.

200 Chapter 5. Early Userspace

CHAPTER

SIX

CPU AND DEVICE POWER MANAGEMENT

6.1 CPU Idle Time Management

Copyright © 2019 Intel Corporation

Author Rafael J. Wysocki <rafael.j.wysocki@intel.com>

6.1.1 CPU Idle Time Management Subsystem

Every time one of the logical CPUs in the system (the entities that appear to fetch
and execute instructions: hardware threads, if present, or processor cores) is idle
after an interrupt or equivalent wakeup event, which means that there are no
tasks to run on it except for the special “idle”task associated with it, there is
an opportunity to save energy for the processor that it belongs to. That can be
done by making the idle logical CPU stop fetching instructions from memory and
putting some of the processor’s functional units depended on by it into an idle
state in which they will draw less power.

However, there may be multiple different idle states that can be used in such a
situation in principle, so it may be necessary to find the most suitable one (from
the kernel perspective) and ask the processor to use (or“enter”) that particular
idle state. That is the role of the CPU idle time management subsystem in the
kernel, called CPUIdle.

The design of CPUIdle is modular and based on the code duplication avoidance
principle, so the generic code that in principle need not depend on the hardware
or platform design details in it is separate from the code that interacts with the
hardware. It generally is divided into three categories of functional units: gov-
ernors responsible for selecting idle states to ask the processor to enter, drivers
that pass the governors’decisions on to the hardware and the core providing a
common framework for them.

201

mailto:rafael.j.wysocki@intel.com

Linux Driver-api Documentation

6.1.2 CPU Idle Time Governors

A CPU idle time (CPUIdle) governor is a bundle of policy code invoked when one
of the logical CPUs in the system turns out to be idle. Its role is to select an idle
state to ask the processor to enter in order to save some energy.

CPUIdle governors are generic and each of them can be used on any hardware
platform that the Linux kernel can run on. For this reason, data structures oper-
ated on by them cannot depend on any hardware architecture or platform design
details as well.

The governor itself is represented by a struct cpuidle_governor object contain-
ing four callback pointers, enable, disable, select, reflect, a rating field de-
scribed below, and a name (string) used for identifying it.

For the governor to be available at all, that object needs to be registered with
the CPUIdle core by calling cpuidle_register_governor() with a pointer to it
passed as the argument. If successful, that causes the core to add the governor
to the global list of available governors and, if it is the only one in the list (that is,
the list was empty before) or the value of its rating field is greater than the value
of that field for the governor currently in use, or the name of the new governor
was passed to the kernel as the value of the cpuidle.governor= command line
parameter, the new governor will be used from that point on (there can be only
one CPUIdle governor in use at a time). Also, user space can choose the CPUIdle
governor to use at run time via sysfs.

Once registered, CPUIdle governors cannot be unregistered, so it is not practical
to put them into loadable kernel modules.

The interface between CPUIdle governors and the core consists of four callbacks:

enable

int (*enable) (struct cpuidle_driver *drv, struct cpuidle_device␣
↪→*dev);

The role of this callback is to prepare the governor for handling the (logi-
cal) CPU represented by the struct cpuidle_device object pointed to by
the dev argument. The struct cpuidle_driver object pointed to by the drv
argument represents the CPUIdle driver to be used with that CPU (among
other things, it should contain the list of struct cpuidle_state objects rep-
resenting idle states that the processor holding the given CPU can be asked
to enter).

It may fail, in which case it is expected to return a negative error code, and
that causes the kernel to run the architecture-specific default code for idle
CPUs on the CPU in question instead of CPUIdle until the ->enable() gover-
nor callback is invoked for that CPU again.

disable

void (*disable) (struct cpuidle_driver *drv, struct cpuidle_device␣
↪→*dev);

Called to make the governor stop handling the (logical) CPU represented by
the struct cpuidle_device object pointed to by the dev argument.

202 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

It is expected to reverse any changes made by the ->enable() callback when
it was last invoked for the target CPU, free all memory allocated by that call-
back and so on.

select

int (*select) (struct cpuidle_driver *drv, struct cpuidle_device *dev,
bool *stop_tick);

Called to select an idle state for the processor holding the (logical) CPU rep-
resented by the struct cpuidle_device object pointed to by the dev argu-
ment.

The list of idle states to take into consideration is represented by the states
array of struct cpuidle_state objects held by the struct cpuidle_driver
object pointed to by the drv argument (which represents the CPUIdle driver
to be used with the CPU at hand). The value returned by this callback is
interpreted as an index into that array (unless it is a negative error code).

The stop_tick argument is used to indicate whether or not to stop the sched-
uler tick before asking the processor to enter the selected idle state. When
the bool variable pointed to by it (which is set to true before invoking this
callback) is cleared to false, the processor will be asked to enter the selected
idle state without stopping the scheduler tick on the given CPU (if the tick has
been stopped on that CPU already, however, it will not be restarted before
asking the processor to enter the idle state).

This callback is mandatory (i.e. the select callback pointer in struct
cpuidle_governor must not be NULL for the registration of the governor to
succeed).

reflect

void (*reflect) (struct cpuidle_device *dev, int index);

Called to allow the governor to evaluate the accuracy of the idle state selec-
tion made by the ->select() callback (when it was invoked last time) and
possibly use the result of that to improve the accuracy of idle state selections
in the future.

In addition, CPUIdle governors are required to take power management qual-
ity of service (PM QoS) constraints on the processor wakeup latency into ac-
count when selecting idle states. In order to obtain the current effective PM QoS
wakeup latency constraint for a given CPU, a CPUIdle governor is expected to pass
the number of the CPU to cpuidle_governor_latency_req(). Then, the gover-
nor’s ->select() callback must not return the index of an indle state whose
exit_latency value is greater than the number returned by that function.

6.1. CPU Idle Time Management 203

Linux Driver-api Documentation

6.1.3 CPU Idle Time Management Drivers

CPU idle time management (CPUIdle) drivers provide an interface between the
other parts of CPUIdle and the hardware.

First of all, a CPUIdle driver has to populate the states array of struct
cpuidle_state objects included in the struct cpuidle_driver object represent-
ing it. Going forward this array will represent the list of available idle states that
the processor hardware can be asked to enter shared by all of the logical CPUs
handled by the given driver.

The entries in the states array are expected to be sorted by the value of
the target_residency field in struct cpuidle_state in the ascending order
(that is, index 0 should correspond to the idle state with the minimum value of
target_residency). [Since the target_residency value is expected to reflect
the “depth”of the idle state represented by the struct cpuidle_state object
holding it, this sorting order should be the same as the ascending sorting order by
the idle state “depth”.]
Three fields in struct cpuidle_state are used by the existing CPUIdle governors
for computations related to idle state selection:

target_residency Minimum time to spend in this idle state including the time
needed to enter it (which may be substantial) to save more energy than could
be saved by staying in a shallower idle state for the same amount of time, in
microseconds.

exit_latency Maximum time it will take a CPU asking the processor to enter this
idle state to start executing the first instruction after a wakeup from it, in
microseconds.

flags Flags representing idle state properties. Currently, governors only use the
CPUIDLE_FLAG_POLLING flagwhich is set if the given object does not represent
a real idle state, but an interface to a software “loop”that can be used in
order to avoid asking the processor to enter any idle state at all. [There are
other flags used by the CPUIdle core in special situations.]

The enter callback pointer in struct cpuidle_state, which must not be NULL,
points to the routine to execute in order to ask the processor to enter this particular
idle state:

void (*enter) (struct cpuidle_device *dev, struct cpuidle_driver *drv,
int index);

The first two arguments of it point to the struct cpuidle_device object repre-
senting the logical CPU running this callback and the struct cpuidle_driver
object representing the driver itself, respectively, and the last one is an index of
the struct cpuidle_state entry in the driver’s states array representing the
idle state to ask the processor to enter.

The analogous ->enter_s2idle() callback in struct cpuidle_state is used only
for implementing the suspend-to-idle system-wide power management feature.
The difference between in and ->enter() is that it must not re-enable interrupts
at any point (even temporarily) or attempt to change the states of clock event
devices, which the ->enter() callback may do sometimes.

204 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

Once the states array has been populated, the number of valid entries in it has
to be stored in the state_count field of the struct cpuidle_driver object repre-
senting the driver. Moreover, if any entries in the states array represent “cou-
pled”idle states (that is, idle states that can only be asked for if multiple related log-
ical CPUs are idle), the safe_state_index field in struct cpuidle_driver needs
to be the index of an idle state that is not“coupled”(that is, one that can be asked
for if only one logical CPU is idle).

In addition to that, if the given CPUIdle driver is only going to handle a subset of
logical CPUs in the system, the cpumask field in its struct cpuidle_driver object
must point to the set (mask) of CPUs that will be handled by it.

A CPUIdle driver can only be used after it has been registered. If there
are no “coupled”idle state entries in the driver’s states array, that can
be accomplished by passing the driver’s struct cpuidle_driver object to
cpuidle_register_driver(). Otherwise, cpuidle_register() should be used
for this purpose.

However, it also is necessary to register struct cpuidle_device objects for
all of the logical CPUs to be handled by the given CPUIdle driver with the
help of cpuidle_register_device() after the driver has been registered and
cpuidle_register_driver(), unlike cpuidle_register(), does not do that au-
tomatically. For this reason, the drivers that use cpuidle_register_driver()
to register themselves must also take care of registering the struct
cpuidle_device objects as needed, so it is generally recommended to use
cpuidle_register() for CPUIdle driver registration in all cases.

The registration of a struct cpuidle_device object causes the CPUIdle sysfs
interface to be created and the governor’s ->enable() callback to be invoked for
the logical CPU represented by it, so it must take place after registering the driver
that will handle the CPU in question.

CPUIdle drivers and struct cpuidle_device objects can be unregistered when
they are not necessary any more which allows some resources associated with
them to be released. Due to dependencies between them, all of the struct
cpuidle_device objects representing CPUs handled by the given CPUIdle driver
must be unregistered, with the help of cpuidle_unregister_device(), before
calling cpuidle_unregister_driver() to unregister the driver. Alternatively,
cpuidle_unregister() can be called to unregister a CPUIdle driver along with
all of the struct cpuidle_device objects representing CPUs handled by it.

CPUIdle drivers can respond to runtime system configuration changes that lead
to modifications of the list of available processor idle states (which can happen,
for example, when the system’s power source is switched from AC to battery or
the other way around). Upon a notification of such a change, a CPUIdle driver
is expected to call cpuidle_pause_and_lock() to turn CPUIdle off temporar-
ily and then cpuidle_disable_device() for all of the struct cpuidle_device
objects representing CPUs affected by that change. Next, it can update its
states array in accordance with the new configuration of the system, call
cpuidle_enable_device() for all of the relevant struct cpuidle_device objects
and invoke cpuidle_resume_and_unlock() to allow CPUIdle to be used again.

6.1. CPU Idle Time Management 205

Linux Driver-api Documentation

6.2 Device Power Management Basics

Copyright © 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.

Copyright © 2010 Alan Stern <stern@rowland.harvard.edu>

Copyright © 2016 Intel Corporation

Author Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Most of the code in Linux is device drivers, somost of the Linux powermanagement
(PM) code is also driver-specific. Most drivers will do very little; others, especially
for platforms with small batteries (like cell phones), will do a lot.

This writeup gives an overview of how drivers interact with system-wide power
management goals, emphasizing the models and interfaces that are shared by
everything that hooks up to the driver model core. Read it as background for
the domain-specific work you’d do with any specific driver.

6.2.1 Two Models for Device Power Management

Drivers will use one or both of these models to put devices into low-power states:

System Sleep model:

Drivers can enter low-power states as part of entering system-
wide low-power states like“suspend”(also known as“suspend-
to-RAM”), or (mostly for systems with disks)“hibernation”(also
known as “suspend-to-disk”).
This is something that device, bus, and class drivers collaborate
on by implementing various role-specific suspend and resume
methods to cleanly power down hardware and software subsys-
tems, then reactivate them without loss of data.

Some drivers can manage hardware wakeup events, which
make the system leave the low-power state. This feature may
be enabled or disabled using the relevant /sys/devices/.../
power/wakeup file (for Ethernet drivers the ioctl interface used
by ethtool may also be used for this purpose); enabling it may
cost some power usage, but let the whole system enter low-
power states more often.

Runtime Power Management model:

Devices may also be put into low-power states while the system
is running, independently of other power management activity
in principle. However, devices are not generally independent of
each other (for example, a parent device cannot be suspended
unless all of its child devices have been suspended). Moreover,
depending on the bus type the device is on, it may be necessary
to carry out some bus-specific operations on the device for this
purpose. Devices put into low power states at run time may
require special handling during system-wide power transitions
(suspend or hibernation).

206 Chapter 6. CPU and Device Power Management

mailto:rjw@sisk.pl
mailto:stern@rowland.harvard.edu
mailto:rafael.j.wysocki@intel.com

Linux Driver-api Documentation

For these reasons not only the device driver itself, but also the
appropriate subsystem (bus type, device type or device class)
driver and the PM core are involved in runtime power manage-
ment. As in the system sleep power management case, they
need to collaborate by implementing various role-specific sus-
pend and resume methods, so that the hardware is cleanly pow-
ered down and reactivated without data or service loss.

There’s not a lot to be said about those low-power states except that they are very
system-specific, and often device-specific. Also, that if enough devices have been
put into low-power states (at runtime), the effect may be very similar to entering
some system-wide low-power state (system sleep) ⋯and that synergies exist, so
that several drivers using runtime PM might put the system into a state where
even deeper power saving options are available.

Most suspended devices will have quiesced all I/O: no more DMA or IRQs (except
for wakeup events), no more data read or written, and requests from upstream
drivers are no longer accepted. A given bus or platform may have different re-
quirements though.

Examples of hardware wakeup events include an alarm from a real time clock,
network wake-on-LAN packets, keyboard or mouse activity, and media insertion
or removal (for PCMCIA, MMC/SD, USB, and so on).

6.2.2 Interfaces for Entering System Sleep States

There are programming interfaces provided for subsystems (bus type, device type,
device class) and device drivers to allow them to participate in the power manage-
ment of devices they are concerned with. These interfaces cover both system sleep
and runtime power management.

Device Power Management Operations

Device power management operations, at the subsystem level as well as at the
device driver level, are implemented by defining and populating objects of type
struct dev_pm_ops defined in include/linux/pm.h. The roles of the methods
included in it will be explained in what follows. For now, it should be sufficient to
remember that the last three methods are specific to runtime power management
while the remaining ones are used during system-wide power transitions.

There also is a deprecated “old”or “legacy”interface for power management
operations available at least for some subsystems. This approach does not use
struct dev_pm_ops objects and it is suitable only for implementing system sleep
power management methods in a limited way. Therefore it is not described in this
document, so please refer directly to the source code for more information about
it.

6.2. Device Power Management Basics 207

Linux Driver-api Documentation

Subsystem-Level Methods

The core methods to suspend and resume devices reside in struct dev_pm_ops
pointed to by the ops member of struct dev_pm_domain, or by the pm member
of struct bus_type, struct device_type and struct class. They are mostly of
interest to the people writing infrastructure for platforms and buses, like PCI or
USB, or device type and device class drivers. They also are relevant to the writers
of device drivers whose subsystems (PM domains, device types, device classes and
bus types) don’t provide all power management methods.
Bus drivers implement these methods as appropriate for the hardware and the
drivers using it; PCI works differently from USB, and so on. Not many people
write subsystem-level drivers; most driver code is a“device driver”that builds on
top of bus-specific framework code.

For more information on these driver calls, see the description later; they are
called in phases for every device, respecting the parent-child sequencing in the
driver model tree.

/sys/devices/.../power/wakeup files

All device objects in the driver model contain fields that control the handling
of system wakeup events (hardware signals that can force the system out of
a sleep state). These fields are initialized by bus or device driver code us-
ing device_set_wakeup_capable() and device_set_wakeup_enable(), defined
in include/linux/pm_wakeup.h.

The power.can_wakeup flag just records whether the device (and its driver) can
physically support wakeup events. The device_set_wakeup_capable() routine
affects this flag. The power.wakeup field is a pointer to an object of type struct
wakeup_source used for controlling whether or not the device should use its sys-
tem wakeup mechanism and for notifying the PM core of system wakeup events
signaled by the device. This object is only present for wakeup-capable devices
(i.e. devices whose can_wakeup flags are set) and is created (or removed) by
device_set_wakeup_capable().

Whether or not a device is capable of issuing wakeup events is a hardware matter,
and the kernel is responsible for keeping track of it. By contrast, whether or not
a wakeup-capable device should issue wakeup events is a policy decision, and it
is managed by user space through a sysfs attribute: the power/wakeup file. User
space can write the “enabled”or “disabled”strings to it to indicate whether or
not, respectively, the device is supposed to signal system wakeup. This file is only
present if the power.wakeup object exists for the given device and is created (or
removed) along with that object, by device_set_wakeup_capable(). Reads from
the file will return the corresponding string.

The initial value in the power/wakeup file is“disabled”for the majority of devices;
the major exceptions are power buttons, keyboards, and Ethernet adapters whose
WoL (wake-on-LAN) feature has been set up with ethtool. It should also default
to “enabled”for devices that don’t generate wakeup requests on their own but
merely forward wakeup requests from one bus to another (like PCI Express ports).

The device_may_wakeup() routine returns true only if the power.wakeup object
exists and the corresponding power/wakeup file contains the“enabled”string. This

208 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

information is used by subsystems, like the PCI bus type code, to see whether or
not to enable the devices’wakeup mechanisms. If device wakeup mechanisms are
enabled or disabled directly by drivers, they also should use device_may_wakeup()
to decide what to do during a system sleep transition. Device drivers, however,
are not expected to call device_set_wakeup_enable() directly in any case.

It ought to be noted that system wakeup is conceptually different from “remote
wakeup”used by runtime power management, although it may be supported by
the same physical mechanism. Remote wakeup is a feature allowing devices in
low-power states to trigger specific interrupts to signal conditions in which they
should be put into the full-power state. Those interrupts may or may not be used
to signal system wakeup events, depending on the hardware design. On some
systems it is impossible to trigger them from system sleep states. In any case,
remote wakeup should always be enabled for runtime power management for all
devices and drivers that support it.

/sys/devices/.../power/control files

Each device in the drivermodel has a flag to control whether it is subject to runtime
power management. This flag, runtime_auto, is initialized by the bus type (or
generally subsystem) code using pm_runtime_allow() or pm_runtime_forbid();
the default is to allow runtime power management.

The setting can be adjusted by user space by writing either“on”or“auto”to the de-
vice’s power/control sysfs file. Writing“auto”calls pm_runtime_allow(), setting
the flag and allowing the device to be runtime power-managed by its driver. Writ-
ing“on”calls pm_runtime_forbid(), clearing the flag, returning the device to full
power if it was in a low-power state, and preventing the device from being runtime
power-managed. User space can check the current value of the runtime_auto flag
by reading that file.

The device’s runtime_auto flag has no effect on the handling of system-wide power
transitions. In particular, the device can (and in the majority of cases should and
will) be put into a low-power state during a system-wide transition to a sleep state
even though its runtime_auto flag is clear.

For more information about the runtime power management framework, refer to
Documentation/power/runtime_pm.rst.

6.2.3 Calling Drivers to Enter and Leave System Sleep States

When the system goes into a sleep state, each device’s driver is asked to suspend
the device by putting it into a state compatible with the target system state. That’
s usually some version of“off”, but the details are system-specific. Also, wakeup-
enabled devices will usually stay partly functional in order to wake the system.

When the system leaves that low-power state, the device’s driver is asked to
resume it by returning it to full power. The suspend and resume operations always
go together, and both are multi-phase operations.

For simple drivers, suspend might quiesce the device using class code and then
turn its hardware as“off”as possible during suspend_noirq. The matching resume

6.2. Device Power Management Basics 209

Linux Driver-api Documentation

calls would then completely reinitialize the hardware before reactivating its class
I/O queues.

More power-aware drivers might prepare the devices for triggering system
wakeup events.

Call Sequence Guarantees

To ensure that bridges and similar links needing to talk to a device are available
when the device is suspended or resumed, the device hierarchy is walked in a
bottom-up order to suspend devices. A top-down order is used to resume those
devices.

The ordering of the device hierarchy is defined by the order in which devices get
registered: a child can never be registered, probed or resumed before its parent;
and can’t be removed or suspended after that parent.
The policy is that the device hierarchy should match hardware bus topology. [Or
at least the control bus, for devices which use multiple busses.] In particular, this
means that a device registration may fail if the parent of the device is suspending
(i.e. has been chosen by the PM core as the next device to suspend) or has already
suspended, as well as after all of the other devices have been suspended. Device
drivers must be prepared to cope with such situations.

System Power Management Phases

Suspending or resuming the system is done in several phases. Different phases
are used for suspend-to-idle, shallow (standby), and deep (“suspend-to-RAM”)
sleep states and the hibernation state (“suspend-to-disk”). Each phase involves
executing callbacks for every device before the next phase begins. Not all buses
or classes support all these callbacks and not all drivers use all the callbacks.
The various phases always run after tasks have been frozen and before they are
unfrozen. Furthermore, the *_noirq phases run at a time when IRQ handlers have
been disabled (except for those marked with the IRQF_NO_SUSPEND flag).

All phases use PM domain, bus, type, class or driver callbacks (that is, methods de-
fined in dev->pm_domain->ops, dev->bus->pm, dev->type->pm, dev->class->pm
or dev->driver->pm). These callbacks are regarded by the PM core as mutually
exclusive. Moreover, PM domain callbacks always take precedence over all of the
other callbacks and, for example, type callbacks take precedence over bus, class
and driver callbacks. To be precise, the following rules are used to determine
which callback to execute in the given phase:

1. If dev->pm_domain is present, the PM core will choose the callback provided
by dev->pm_domain->ops for execution.

2. Otherwise, if both dev->type and dev->type->pm are present, the callback
provided by dev->type->pm will be chosen for execution.

3. Otherwise, if both dev->class and dev->class->pm are present, the callback
provided by dev->class->pm will be chosen for execution.

4. Otherwise, if both dev->bus and dev->bus->pm are present, the callback pro-
vided by dev->bus->pm will be chosen for execution.

210 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

This allows PM domains and device types to override callbacks provided by bus
types or device classes if necessary.

The PM domain, type, class and bus callbacks may in turn invoke device- or driver-
specific methods stored in dev->driver->pm, but they don’t have to do that.
If the subsystem callback chosen for execution is not present, the PM core will
execute the corresponding method from the dev->driver->pm set instead if there
is one.

Entering System Suspend

When the system goes into the freeze, standby or memory sleep state, the phases
are: prepare, suspend, suspend_late, suspend_noirq.

1. The prepare phase is meant to prevent races by preventing new devices from
being registered; the PM core would never know that all the children of a
device had been suspended if new children could be registered at will. [By
contrast, from the PM core’s perspective, devices may be unregistered at any
time.] Unlike the other suspend-related phases, during the prepare phase the
device hierarchy is traversed top-down.

After the ->prepare callback method returns, no new children may be reg-
istered below the device. The method may also prepare the device or driver
in some way for the upcoming system power transition, but it should not put
the device into a low-power state. Moreover, if the device supports runtime
powermanagement, the ->prepare callbackmethodmust not update its state
in case it is necessary to resume it from runtime suspend later on.

For devices supporting runtime power management, the return value of the
prepare callback can be used to indicate to the PM core that it may safely
leave the device in runtime suspend (if runtime-suspended already), provided
that all of the device’s descendants are also left in runtime suspend. Namely,
if the prepare callback returns a positive number and that happens for all of
the descendants of the device too, and all of them (including the device itself)
are runtime-suspended, the PM core will skip the suspend, suspend_late and
suspend_noirq phases as well as all of the corresponding phases of the sub-
sequent device resume for all of these devices. In that case, the ->complete
callback will be the next one invoked after the ->prepare callback and is en-
tirely responsible for putting the device into a consistent state as appropriate.

Note that this direct-complete procedure applies even if the device is disabled
for runtime PM; only the runtime-PM status matters. It follows that if a device
has system-sleep callbacks but does not support runtime PM, then its prepare
callback must never return a positive value. This is because all such devices
are initially set to runtime-suspended with runtime PM disabled.

This feature also can be controlled by device drivers by using the
DPM_FLAG_NO_DIRECT_COMPLETE and DPM_FLAG_SMART_PREPARE driver power
management flags. [Typically, they are set at the time the driver
is probed against the device in question by passing them to the
dev_pm_set_driver_flags() helper function.] If the first of these flags is set,
the PM core will not apply the direct-complete procedure described above to
the given device and, consequenty, to any of its ancestors. The second flag,

6.2. Device Power Management Basics 211

Linux Driver-api Documentation

when set, informs the middle layer code (bus types, device types, PM do-
mains, classes) that it should take the return value of the ->prepare callback
provided by the driver into account and it may only return a positive value
from its own ->prepare callback if the driver’s one also has returned a pos-
itive value.

2. The ->suspendmethods should quiesce the device to stop it from performing
I/O. They also may save the device registers and put it into the appropriate
low-power state, depending on the bus type the device is on, and they may
enable wakeup events.

However, for devices supporting runtime power management, the ->suspend
methods provided by subsystems (bus types and PM domains in particular)
must follow an additional rule regarding what can be done to the devices be-
fore their drivers’->suspend methods are called. Namely, they may resume
the devices from runtime suspend by calling pm_runtime_resume() for them,
if that is necessary, but they must not update the state of the devices in any
other way at that time (in case the drivers need to resume the devices from
runtime suspend in their ->suspend methods). In fact, the PM core prevents
subsystems or drivers from putting devices into runtime suspend at these
times by calling pm_runtime_get_noresume() before issuing the ->prepare
callback (and calling pm_runtime_put() after issuing the ->complete call-
back).

3. For a number of devices it is convenient to split suspend into the “quiesce
device”and“save device state”phases, in which cases suspend_late is meant
to do the latter. It is always executed after runtime power management has
been disabled for the device in question.

4. The suspend_noirq phase occurs after IRQ handlers have been disabled,
which means that the driver’s interrupt handler will not be called while the
callback method is running. The ->suspend_noirq methods should save the
values of the device’s registers that weren’t saved previously and finally put
the device into the appropriate low-power state.

The majority of subsystems and device drivers need not implement this call-
back. However, bus types allowing devices to share interrupt vectors, like
PCI, generally need it; otherwise a driver might encounter an error during
the suspend phase by fielding a shared interrupt generated by some other
device after its own device had been set to low power.

At the end of these phases, drivers should have stopped all I/O transactions (DMA,
IRQs), saved enough state that they can re-initialize or restore previous state (as
needed by the hardware), and placed the device into a low-power state. On many
platforms they will gate off one or more clock sources; sometimes they will also
switch off power supplies or reduce voltages. [Drivers supporting runtime PMmay
already have performed some or all of these steps.]

If device_may_wakeup(dev)() returns true, the device should be prepared for
generating hardware wakeup signals to trigger a system wakeup event when the
system is in the sleep state. For example, enable_irq_wake()might identify GPIO
signals hooked up to a switch or other external hardware, and pci_enable_wake()
does something similar for the PCI PME signal.

If any of these callbacks returns an error, the system won’t enter the desired

212 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

low-power state. Instead, the PM core will unwind its actions by resuming all the
devices that were suspended.

Leaving System Suspend

When resuming from freeze, standby or memory sleep, the phases are:
resume_noirq, resume_early, resume, complete.

1. The ->resume_noirq callback methods should perform any actions needed
before the driver’s interrupt handlers are invoked. This generally means
undoing the actions of the suspend_noirq phase. If the bus type permits de-
vices to share interrupt vectors, like PCI, the method should bring the device
and its driver into a state in which the driver can recognize if the device is
the source of incoming interrupts, if any, and handle them correctly.

For example, the PCI bus type’s ->pm.resume_noirq() puts the device into
the full-power state (D0 in the PCI terminology) and restores the standard
configuration registers of the device. Then it calls the device driver’s ->pm.
resume_noirq() method to perform device-specific actions.

2. The ->resume_earlymethods should prepare devices for the execution of the
resumemethods. This generally involves undoing the actions of the preceding
suspend_late phase.

3. The ->resumemethods should bring the device back to its operating state, so
that it can perform normal I/O. This generally involves undoing the actions of
the suspend phase.

4. The complete phase should undo the actions of the prepare phase. For this
reason, unlike the other resume-related phases, during the complete phase
the device hierarchy is traversed bottom-up.

Note, however, that new children may be registered below the device as soon
as the ->resume callbacks occur; it’s not necessary to wait until the complete
phase runs.

Moreover, if the preceding ->prepare callback returned a positive number,
the device may have been left in runtime suspend throughout the whole sys-
tem suspend and resume (its ->suspend, ->suspend_late, ->suspend_noirq,
->resume_noirq, ->resume_early, and ->resume callbacks may have been
skipped). In that case, the ->complete callback is entirely responsible for
putting the device into a consistent state after system suspend if necessary.
[For example, it may need to queue up a runtime resume request for the de-
vice for this purpose.] To check if that is the case, the ->complete callback
can consult the device’s power.direct_complete flag. If that flag is set
when the ->complete callback is being run then the direct-complete mecha-
nism was used, and special actions may be required to make the device work
correctly afterward.

At the end of these phases, drivers should be as functional as they were before
suspending: I/O can be performed using DMA and IRQs, and the relevant clocks
are gated on.

However, the details here may again be platform-specific. For example, some
systems support multiple “run”states, and the mode in effect at the end of re-

6.2. Device Power Management Basics 213

Linux Driver-api Documentation

sume might not be the one which preceded suspension. That means availability of
certain clocks or power supplies changed, which could easily affect how a driver
works.

Drivers need to be able to handle hardware which has been reset since all of the
suspend methods were called, for example by complete reinitialization. This may
be the hardest part, and the one most protected by NDA’d documents and chip
errata. It’s simplest if the hardware state hasn’t changed since the suspend was
carried out, but that can only be guaranteed if the target system sleep entered
was suspend-to-idle. For the other system sleep states that may not be the case
(and usually isn’t for ACPI-defined system sleep states, like S3).

Drivers must also be prepared to notice that the device has been removed while
the system was powered down, whenever that’s physically possible. PCMCIA,
MMC, USB, Firewire, SCSI, and even IDE are common examples of busses where
common Linux platforms will see such removal. Details of how drivers will notice
and handle such removals are currently bus-specific, and often involve a separate
thread.

These callbacks may return an error value, but the PM core will ignore such errors
since there’s nothing it can do about them other than printing them in the system
log.

Entering Hibernation

Hibernating the system is more complicated than putting it into sleep states, be-
cause it involves creating and saving a system image. Therefore there are more
phases for hibernation, with a different set of callbacks. These phases always run
after tasks have been frozen and enough memory has been freed.

The general procedure for hibernation is to quiesce all devices (“freeze”), create
an image of the system memory while everything is stable, reactivate all devices
(“thaw”), write the image to permanent storage, and finally shut down the sys-
tem (“power off”). The phases used to accomplish this are: prepare, freeze,
freeze_late, freeze_noirq, thaw_noirq, thaw_early, thaw, complete, prepare,
poweroff, poweroff_late, poweroff_noirq.

1. The prepare phase is discussed in the “Entering System Suspend”section
above.

2. The ->freezemethods should quiesce the device so that it doesn’t generate
IRQs or DMA, and they may need to save the values of device registers. How-
ever the device does not have to be put in a low-power state, and to save time
it’s best not to do so. Also, the device should not be prepared to generate
wakeup events.

3. The freeze_late phase is analogous to the suspend_late phase described
earlier, except that the device should not be put into a low-power state and
should not be allowed to generate wakeup events.

4. The freeze_noirq phase is analogous to the suspend_noirq phase discussed
earlier, except again that the device should not be put into a low-power state
and should not be allowed to generate wakeup events.

214 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

At this point the system image is created. All devices should be inactive and the
contents of memory should remain undisturbed while this happens, so that the
image forms an atomic snapshot of the system state.

5. The thaw_noirq phase is analogous to the resume_noirq phase discussed
earlier. The main difference is that its methods can assume the device is in
the same state as at the end of the freeze_noirq phase.

6. The thaw_early phase is analogous to the resume_early phase described
above. Its methods should undo the actions of the preceding freeze_late, if
necessary.

7. The thaw phase is analogous to the resume phase discussed earlier. Its meth-
ods should bring the device back to an operating state, so that it can be used
for saving the image if necessary.

8. The complete phase is discussed in the “Leaving System Suspend”section
above.

At this point the system image is saved, and the devices then need to be prepared
for the upcoming system shutdown. This is much like suspending them before
putting the system into the suspend-to-idle, shallow or deep sleep state, and the
phases are similar.

9. The prepare phase is discussed above.

10. The poweroff phase is analogous to the suspend phase.

11. The poweroff_late phase is analogous to the suspend_late phase.

12. The poweroff_noirq phase is analogous to the suspend_noirq phase.

The ->poweroff, ->poweroff_late and ->poweroff_noirq callbacks should
do essentially the same things as the ->suspend, ->suspend_late and
->suspend_noirq callbacks, respectively. A notable difference is that they need
not store the device register values, because the registers should already have
been stored during the freeze, freeze_late or freeze_noirq phases. Also, on
many machines the firmware will power-down the entire system, so it is not nec-
essary for the callback to put the device in a low-power state.

Leaving Hibernation

Resuming from hibernation is, again, more complicated than resuming from a
sleep state in which the contents of main memory are preserved, because it re-
quires a system image to be loaded into memory and the pre-hibernation memory
contents to be restored before control can be passed back to the image kernel.

Although in principle the image might be loaded into memory and the pre-
hibernation memory contents restored by the boot loader, in practice this can’
t be done because boot loaders aren’t smart enough and there is no established
protocol for passing the necessary information. So instead, the boot loader loads a
fresh instance of the kernel, called“the restore kernel”, into memory and passes
control to it in the usual way. Then the restore kernel reads the system image,
restores the pre-hibernation memory contents, and passes control to the image
kernel. Thus two different kernel instances are involved in resuming from hiber-
nation. In fact, the restore kernel may be completely different from the image

6.2. Device Power Management Basics 215

Linux Driver-api Documentation

kernel: a different configuration and even a different version. This has important
consequences for device drivers and their subsystems.

To be able to load the system image into memory, the restore kernel needs to
include at least a subset of device drivers allowing it to access the storage medium
containing the image, although it doesn’t need to include all of the drivers present
in the image kernel. After the image has been loaded, the devices managed by the
boot kernel need to be prepared for passing control back to the image kernel. This
is very similar to the initial steps involved in creating a system image, and it is
accomplished in the same way, using prepare, freeze, and freeze_noirq phases.
However, the devices affected by these phases are only those having drivers in
the restore kernel; other devices will still be in whatever state the boot loader left
them.

Should the restoration of the pre-hibernation memory contents fail, the restore
kernel would go through the “thawing”procedure described above, using the
thaw_noirq, thaw_early, thaw, and complete phases, and then continue running
normally. This happens only rarely. Most often the pre-hibernation memory con-
tents are restored successfully and control is passed to the image kernel, which
then becomes responsible for bringing the system back to the working state.

To achieve this, the image kernel must restore the devices’pre-hibernation func-
tionality. The operation is much like waking up from a sleep state (with the mem-
ory contents preserved), although it involves different phases: restore_noirq,
restore_early, restore, complete.

1. The restore_noirq phase is analogous to the resume_noirq phase.

2. The restore_early phase is analogous to the resume_early phase.

3. The restore phase is analogous to the resume phase.

4. The complete phase is discussed above.

The main difference from resume[_early|_noirq] is that
restore[_early|_noirq] must assume the device has been accessed and
reconfigured by the boot loader or the restore kernel. Consequently, the state
of the device may be different from the state remembered from the freeze,
freeze_late and freeze_noirq phases. The device may even need to be reset
and completely re-initialized. In many cases this difference doesn’t matter, so
the ->resume[_early|_noirq] and ->restore[_early|_norq] method pointers
can be set to the same routines. Nevertheless, different callback pointers are
used in case there is a situation where it actually does matter.

6.2.4 Power Management Notifiers

There are some operations that cannot be carried out by the power management
callbacks discussed above, because the callbacks occur too late or too early. To
handle these cases, subsystems and device drivers may register power manage-
ment notifiers that are called before tasks are frozen and after they have been
thawed. Generally speaking, the PM notifiers are suitable for performing actions
that either require user space to be available, or at least won’t interfere with user
space.

For details refer to Suspend/Hibernation Notifiers.

216 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

6.2.5 Device Low-Power (suspend) States

Device low-power states aren’t standard. One device might only handle“on”and
“off”, while another might support a dozen different versions of“on”(how many
engines are active?), plus a state that gets back to “on”faster than from a full
“off”.
Some buses define rules about what different suspend states mean. PCI gives one
example: after the suspend sequence completes, a non-legacy PCI device may not
perform DMA or issue IRQs, and any wakeup events it issues would be issued
through the PME# bus signal. Plus, there are several PCI-standard device states,
some of which are optional.

In contrast, integrated system-on-chip processors often use IRQs as the wakeup
event sources (so drivers would call enable_irq_wake()) and might be able to
treat DMA completion as a wakeup event (sometimes DMA can stay active too, it’
d only be the CPU and some peripherals that sleep).

Some details here may be platform-specific. Systems may have devices that can be
fully active in certain sleep states, such as an LCD display that’s refreshed using
DMA while most of the system is sleeping lightly⋯and its frame buffer might even
be updated by a DSP or other non-Linux CPU while the Linux control processor
stays idle.

Moreover, the specific actions taken may depend on the target system state. One
target system state might allow a given device to be very operational; another
might require a hard shut down with re-initialization on resume. And two different
target systems might use the same device in different ways; the aforementioned
LCD might be active in one product’s “standby”, but a different product using
the same SOC might work differently.

6.2.6 Device Power Management Domains

Sometimes devices share reference clocks or other power resources. In those
cases it generally is not possible to put devices into low-power states individually.
Instead, a set of devices sharing a power resource can be put into a low-power
state together at the same time by turning off the shared power resource. Of
course, they also need to be put into the full-power state together, by turning the
shared power resource on. A set of devices with this property is often referred
to as a power domain. A power domain may also be nested inside another power
domain. The nested domain is referred to as the sub-domain of the parent domain.

Support for power domains is provided through the pm_domain field of struct
device. This field is a pointer to an object of type struct dev_pm_domain, de-
fined in include/linux/pm.h, providing a set of power management callbacks
analogous to the subsystem-level and device driver callbacks that are executed for
the given device during all power transitions, instead of the respective subsystem-
level callbacks. Specifically, if a device’s pm_domain pointer is not NULL, the
->suspend() callback from the object pointed to by it will be executed instead of
its subsystem’s (e.g. bus type’s) ->suspend() callback and analogously for all of
the remaining callbacks. In other words, power management domain callbacks, if
defined for the given device, always take precedence over the callbacks provided
by the device’s subsystem (e.g. bus type).

6.2. Device Power Management Basics 217

Linux Driver-api Documentation

The support for device power management domains is only relevant to platforms
needing to use the same device driver powermanagement callbacks inmany differ-
ent power domain configurations and wanting to avoid incorporating the support
for power domains into subsystem-level callbacks, for example by modifying the
platform bus type. Other platforms need not implement it or take it into account
in any way.

Devices may be defined as IRQ-safe which indicates to the PM core that their run-
time PM callbacks may be invoked with disabled interrupts (see Documentation/
power/runtime_pm.rst for more information). If an IRQ-safe device belongs to a
PM domain, the runtime PM of the domain will be disallowed, unless the domain
itself is defined as IRQ-safe. However, it makes sense to define a PM domain as
IRQ-safe only if all the devices in it are IRQ-safe. Moreover, if an IRQ-safe domain
has a parent domain, the runtime PM of the parent is only allowed if the parent
itself is IRQ-safe too with the additional restriction that all child domains of an
IRQ-safe parent must also be IRQ-safe.

6.2.7 Runtime Power Management

Many devices are able to dynamically power down while the system is still running.
This feature is useful for devices that are not being used, and can offer significant
power savings on a running system. These devices often support a range of run-
time power states, which might use names such as“off”,“sleep”,“idle”,“active”
, and so on. Those states will in some cases (like PCI) be partially constrained by
the bus the device uses, and will usually include hardware states that are also used
in system sleep states.

A system-wide power transition can be started while some devices are in low power
states due to runtime power management. The system sleep PM callbacks should
recognize such situations and react to them appropriately, but the necessary ac-
tions are subsystem-specific.

In some cases the decision may be made at the subsystem level while in other
cases the device driver may be left to decide. In some cases it may be desirable to
leave a suspended device in that state during a system-wide power transition, but
in other cases the device must be put back into the full-power state temporarily,
for example so that its system wakeup capability can be disabled. This all depends
on the hardware and the design of the subsystem and device driver in question.

If it is necessary to resume a device from runtime suspend during a system-wide
transition into a sleep state, that can be done by calling pm_runtime_resume()
from the ->suspend callback (or the ->freeze or ->poweroff callback for transi-
tions related to hibernation) of either the device’s driver or its subsystem (for
example, a bus type or a PM domain). However, subsystems must not other-
wise change the runtime status of devices from their ->prepare and ->suspend
callbacks (or equivalent) before invoking device drivers’->suspend callbacks (or
equivalent).

218 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

The DPM_FLAG_SMART_SUSPEND Driver Flag

Some bus types and PM domains have a policy to resume all devices from runtime
suspend upfront in their ->suspend callbacks, but that may not be really necessary
if the device’s driver can cope with runtime-suspended devices. The driver can
indicate this by setting DPM_FLAG_SMART_SUSPEND in power.driver_flags at probe
time, with the assistance of the dev_pm_set_driver_flags() helper routine.

Setting that flag causes the PM core andmiddle-layer code (bus types, PM domains
etc.) to skip the ->suspend_late and ->suspend_noirq callbacks provided by the
driver if the device remains in runtime suspend throughout those phases of the
system-wide suspend (and similarly for the“freeze”and“poweroff”parts of system
hibernation). [Otherwise the same driver callback might be executed twice in a
row for the same device, which would not be valid in general.] If the middle-layer
system-wide PM callbacks are present for the device then they are responsible for
skipping these driver callbacks; if not then the PM core skips them. The subsystem
callback routines can determine whether they need to skip the driver callbacks by
testing the return value from the dev_pm_skip_suspend() helper function.

In addition, with DPM_FLAG_SMART_SUSPEND set, the driver’s ->thaw_noirq and
->thaw_early callbacks are skipped in hibernation if the device remained in run-
time suspend throughout the preceding“freeze”transition. Again, if the middle-
layer callbacks are present for the device, they are responsible for doing this,
otherwise the PM core takes care of it.

The DPM_FLAG_MAY_SKIP_RESUME Driver Flag

During system-wide resume from a sleep state it’s easiest to put devices into the
full-power state, as explained in Documentation/power/runtime_pm.rst. [Refer
to that document for more information regarding this particular issue as well as
for information on the device runtime power management framework in general.]
However, it often is desirable to leave devices in suspend after system transitions
to the working state, especially if those devices had been in runtime suspend be-
fore the preceding system-wide suspend (or analogous) transition.

To that end, device drivers can use the DPM_FLAG_MAY_SKIP_RESUME flag to in-
dicate to the PM core and middle-layer code that they allow their “noirq”and
“early”resume callbacks to be skipped if the device can be left in suspend after
system-wide PM transitions to the working state. Whether or not that is the case
generally depends on the state of the device before the given system suspend-
resume cycle and on the type of the system transition under way. In particu-
lar, the“thaw”and“restore”transitions related to hibernation are not affected
by DPM_FLAG_MAY_SKIP_RESUME at all. [All callbacks are issued during the “re-
store”transition regardless of the flag settings, and whether or not any driver
callbacks are skipped during the “thaw”transition depends whether or not the
DPM_FLAG_SMART_SUSPEND flag is set (see above). In addition, a device is not al-
lowed to remain in runtime suspend if any of its children will be returned to full
power.]

The DPM_FLAG_MAY_SKIP_RESUME flag is taken into account in combination with
the power.may_skip_resume status bit set by the PM core during the “suspend”
phase of suspend-type transitions. If the driver or the middle layer has a reason to
prevent the driver’s“noirq”and“early”resume callbacks from being skipped during

6.2. Device Power Management Basics 219

Linux Driver-api Documentation

the subsequent system resume transition, it should clear power.may_skip_resume
in its ->suspend, ->suspend_late or ->suspend_noirq callback. [Note that the
drivers setting DPM_FLAG_SMART_SUSPEND need to clear power.may_skip_resume
in their ->suspend callback in case the other two are skipped.]

Setting the power.may_skip_resume status bit along with the
DPM_FLAG_MAY_SKIP_RESUME flag is necessary, but generally not sufficient, for the
driver’s“noirq”and“early”resume callbacks to be skipped. Whether or not they
should be skipped can be determined by evaluating the dev_pm_skip_resume()
helper function.

If that function returns true, the driver’s“noirq”and“early”resume callbacks
should be skipped and the device’s runtime PM status will be set to“suspended”
by the PM core. Otherwise, if the device was runtime-suspended during the pre-
ceding system-wide suspend transition and its DPM_FLAG_SMART_SUSPEND is set, its
runtime PM status will be set to“active”by the PM core. [Hence, the drivers that
do not set DPM_FLAG_SMART_SUSPEND should not expect the runtime PM status of
their devices to be changed from“suspended”to“active”by the PM core during
system-wide resume-type transitions.]

If the DPM_FLAG_MAY_SKIP_RESUME flag is not set for a device, but
DPM_FLAG_SMART_SUSPEND is set and the driver’s “late”and “noirq”sus-
pend callbacks are skipped, its system-wide “noirq”and “early”resume
callbacks, if present, are invoked as usual and the device’s runtime PM status is
set to“active”by the PM core before enabling runtime PM for it. In that case, the
driver must be prepared to cope with the invocation of its system-wide resume
callbacks back-to-back with its ->runtime_suspend one (without the intervening
->runtime_resume and system-wide suspend callbacks) and the final state of the
device must reflect the“active”runtime PM status in that case. [Note that this is
not a problem at all if the driver’s ->suspend_late callback pointer points to the
same function as its ->runtime_suspend one and its ->resume_early callback
pointer points to the same function as the ->runtime_resume one, while none of
the other system-wide suspend-resume callbacks of the driver are present, for
example.]

Likewise, if DPM_FLAG_MAY_SKIP_RESUME is set for a device, its driver’s system-
wide“noirq”and“early”resume callbacksmay be skippedwhile its“late”and“noirq”
suspend callbacks may have been executed (in principle, regardless of whether or
not DPM_FLAG_SMART_SUSPEND is set). In that case, the driver needs to be able to
cope with the invocation of its ->runtime_resume callback back-to-back with its
“late”and“noirq”suspend ones. [For instance, that is not a concern if the driver
sets both DPM_FLAG_SMART_SUSPEND and DPM_FLAG_MAY_SKIP_RESUME and uses the
same pair of suspend/resume callback functions for runtime PM and system-wide
suspend/resume.]

220 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

6.3 Suspend/Hibernation Notifiers

Copyright © 2016 Intel Corporation

Author Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There are some operations that subsystems or drivers may want to carry out before
hibernation/suspend or after restore/resume, but they require the system to be
fully functional, so the drivers’and subsystems’->suspend() and ->resume() or
even ->prepare() and ->complete() callbacks are not suitable for this purpose.

For example, device drivers may want to upload firmware to their devices after
resume/restore, but they cannot do it by calling request_firmware() from their
->resume() or ->complete() callback routines (user land processes are frozen
at these points). The solution may be to load the firmware into memory before
processes are frozen and upload it from there in the ->resume() routine. A sus-
pend/hibernation notifier may be used for that.

Subsystems or drivers having such needs can register suspend notifiers that will
be called upon the following events by the PM core:

PM_HIBERNATION_PREPARE The system is going to hibernate, tasks will be frozen
immediately. This is different from PM_SUSPEND_PREPARE below, because in
this case additional work is done between the notifiers and the invocation of
PM callbacks for the “freeze”transition.

PM_POST_HIBERNATION The system memory state has been restored from a hiber-
nation image or an error occurred during hibernation. Device restore call-
backs have been executed and tasks have been thawed.

PM_RESTORE_PREPARE The system is going to restore a hibernation image. If all
goes well, the restored image kernel will issue a PM_POST_HIBERNATION noti-
fication.

PM_POST_RESTORE An error occurred during restore from hibernation. Device re-
store callbacks have been executed and tasks have been thawed.

PM_SUSPEND_PREPARE The system is preparing for suspend.

PM_POST_SUSPEND The system has just resumed or an error occurred during sus-
pend. Device resume callbacks have been executed and tasks have been
thawed.

It is generally assumed that whatever the notifiers do for
PM_HIBERNATION_PREPARE, should be undone for PM_POST_HIBERNATION. Analo-
gously, operations carried out for PM_SUSPEND_PREPARE should be reversed for
PM_POST_SUSPEND.

Moreover, if one of the notifiers fails for the PM_HIBERNATION_PREPARE or
PM_SUSPEND_PREPARE event, the notifiers that have already succeeded for that
event will be called for PM_POST_HIBERNATION or PM_POST_SUSPEND, respectively.

The hibernation and suspend notifiers are called with pm_mutex held. They are de-
fined in the usual way, but their last argument is meaningless (it is always NULL).

To register and/or unregister a suspend notifier use register_pm_notifier()
and unregister_pm_notifier(), respectively (both defined in include/linux/

6.3. Suspend/Hibernation Notifiers 221

mailto:rafael.j.wysocki@intel.com

Linux Driver-api Documentation

suspend.h). If you don’t need to unregister the notifier, you can also use the
pm_notifier() macro defined in include/linux/suspend.h.

6.4 Device Power Management Data Types

struct dev_pm_ops
device PM callbacks.

Definition

struct dev_pm_ops {
int (*prepare)(struct device *dev);
void (*complete)(struct device *dev);
int (*suspend)(struct device *dev);
int (*resume)(struct device *dev);
int (*freeze)(struct device *dev);
int (*thaw)(struct device *dev);
int (*poweroff)(struct device *dev);
int (*restore)(struct device *dev);
int (*suspend_late)(struct device *dev);
int (*resume_early)(struct device *dev);
int (*freeze_late)(struct device *dev);
int (*thaw_early)(struct device *dev);
int (*poweroff_late)(struct device *dev);
int (*restore_early)(struct device *dev);
int (*suspend_noirq)(struct device *dev);
int (*resume_noirq)(struct device *dev);
int (*freeze_noirq)(struct device *dev);
int (*thaw_noirq)(struct device *dev);
int (*poweroff_noirq)(struct device *dev);
int (*restore_noirq)(struct device *dev);
int (*runtime_suspend)(struct device *dev);
int (*runtime_resume)(struct device *dev);
int (*runtime_idle)(struct device *dev);

};

Members
prepare The principal role of this callback is to prevent new children of the device

from being registered after it has returned (the driver’s subsystem and gener-
ally the rest of the kernel is supposed to prevent new calls to the probemethod
from being made too once prepare() has succeeded). If prepare() detects a
situation it cannot handle (e.g. registration of a child already in progress), it
may return -EAGAIN, so that the PM core can execute it once again (e.g. af-
ter a new child has been registered) to recover from the race condition. This
method is executed for all kinds of suspend transitions and is followed by one
of the suspend callbacks: suspend(), freeze(), or poweroff(). If the transi-
tion is a suspend to memory or standby (that is, not related to hibernation),
the return value of prepare()may be used to indicate to the PM core to leave
the device in runtime suspend if applicable. Namely, if prepare() returns a
positive number, the PM core will understand that as a declaration that the
device appears to be runtime-suspended and it may be left in that state during
the entire transition and during the subsequent resume if all of its descen-
dants are left in runtime suspend too. If that happens, complete() will be

222 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

executed directly after prepare() and it must ensure the proper functioning
of the device after the system resume. The PM core executes subsystem-level
prepare() for all devices before starting to invoke suspend callbacks for any
of them, so generally devices may be assumed to be functional or to respond
to runtime resume requests while prepare() is being executed. However,
device drivers may NOT assume anything about the availability of user space
at that time and it is NOT valid to request firmware from within prepare() (it’
s too late to do that). It also is NOT valid to allocate substantial amounts of
memory from prepare() in the GFP_KERNEL mode. [To work around these
limitations, drivers may register suspend and hibernation notifiers to be exe-
cuted before the freezing of tasks.]

complete Undo the changes made by prepare(). This method is executed for
all kinds of resume transitions, following one of the resume callbacks: re-
sume(), thaw(), restore(). Also called if the state transition fails before the
driver’s suspend callback: suspend(), freeze() or poweroff(), can be ex-
ecuted (e.g. if the suspend callback fails for one of the other devices that
the PM core has unsuccessfully attempted to suspend earlier). The PM core
executes subsystem-level complete() after it has executed the appropriate
resume callbacks for all devices. If the corresponding prepare() at the be-
ginning of the suspend transition returned a positive number and the device
was left in runtime suspend (without executing any suspend and resume call-
backs for it), complete() will be the only callback executed for the device
during resume. In that case, complete() must be prepared to do whatever
is necessary to ensure the proper functioning of the device after the system
resume. To this end, complete() can check the power.direct_complete flag
of the device to learn whether (unset) or not (set) the previous suspend and
resume callbacks have been executed for it.

suspend Executed before putting the system into a sleep state in which the con-
tents of main memory are preserved. The exact action to perform depends
on the device’s subsystem (PM domain, device type, class or bus type), but
generally the device must be quiescent after subsystem-level suspend() has
returned, so that it doesn’t do any I/O or DMA. Subsystem-level suspend()
is executed for all devices after invoking subsystem-level prepare() for all of
them.

resume Executed after waking the system up from a sleep state in which the con-
tents of main memory were preserved. The exact action to perform depends
on the device’s subsystem, but generally the driver is expected to start work-
ing again, responding to hardware events and software requests (the device
itself may be left in a low-power state, waiting for a runtime resume to oc-
cur). The state of the device at the time its driver’s resume() callback is run
depends on the platform and subsystem the device belongs to. On most plat-
forms, there are no restrictions on availability of resources like clocks during
resume(). Subsystem-level resume() is executed for all devices after invok-
ing subsystem-level resume_noirq() for all of them.

freeze Hibernation-specific, executed before creating a hibernation image. Anal-
ogous to suspend(), but it should not enable the device to signal wakeup
events or change its power state. The majority of subsystems (with the no-
table exception of the PCI bus type) expect the driver-level freeze() to save
the device settings in memory to be used by restore() during the subsequent

6.4. Device Power Management Data Types 223

Linux Driver-api Documentation

resume from hibernation. Subsystem-level freeze() is executed for all de-
vices after invoking subsystem-level prepare() for all of them.

thaw Hibernation-specific, executed after creating a hibernation image OR if the
creation of an image has failed. Also executed after a failing attempt to re-
store the contents of main memory from such an image. Undo the changes
made by the preceding freeze(), so the device can be operated in the same
way as immediately before the call to freeze(). Subsystem-level thaw() is
executed for all devices after invoking subsystem-level thaw_noirq() for all
of them. It also may be executed directly after freeze() in case of a transition
error.

poweroff Hibernation-specific, executed after saving a hibernation image. Anal-
ogous to suspend(), but it need not save the device’s settings in mem-
ory. Subsystem-level poweroff() is executed for all devices after invoking
subsystem-level prepare() for all of them.

restore Hibernation-specific, executed after restoring the contents of main mem-
ory from a hibernation image, analogous to resume().

suspend_late Continue operations started by suspend(). For a number of de-
vices suspend_late() may point to the same callback routine as the runtime
suspend callback.

resume_early Prepare to execute resume(). For a number of devices re-
sume_early() may point to the same callback routine as the runtime resume
callback.

freeze_late Continue operations started by freeze(). Analogous to sus-
pend_late(), but it should not enable the device to signal wakeup events
or change its power state.

thaw_early Prepare to execute thaw(). Undo the changes made by the preceding
freeze_late().

poweroff_late Continue operations started by poweroff(). Analogous to sus-
pend_late(), but it need not save the device’s settings in memory.

restore_early Prepare to execute restore(), analogous to resume_early().
suspend_noirq Complete the actions started by suspend(). Carry out any ad-

ditional operations required for suspending the device that might be racing
with its driver’s interrupt handler, which is guaranteed not to run while sus-
pend_noirq() is being executed. It generally is expected that the device will
be in a low-power state (appropriate for the target system sleep state) after
subsystem-level suspend_noirq() has returned successfully. If the device
can generate system wakeup signals and is enabled to wake up the system,
it should be configured to do so at that time. However, depending on the
platform and device’s subsystem, suspend() or suspend_late() may be al-
lowed to put the device into the low-power state and configure it to generate
wakeup signals, in which case it generally is not necessary to define sus-
pend_noirq().

resume_noirq Prepare for the execution of resume() by carrying out any opera-
tions required for resuming the device that might be racing with its driver’s
interrupt handler, which is guaranteed not to run while resume_noirq() is
being executed.

224 Chapter 6. CPU and Device Power Management

Linux Driver-api Documentation

freeze_noirq Complete the actions started by freeze(). Carry out any ad-
ditional operations required for freezing the device that might be racing
with its driver’s interrupt handler, which is guaranteed not to run while
freeze_noirq() is being executed. The power state of the device should not
be changed by either freeze(), or freeze_late(), or freeze_noirq() and it
should not be configured to signal system wakeup by any of these callbacks.

thaw_noirq Prepare for the execution of thaw() by carrying out any operations
required for thawing the device that might be racing with its driver’s in-
terrupt handler, which is guaranteed not to run while thaw_noirq() is being
executed.

poweroff_noirq Complete the actions started by poweroff(). Analogous to sus-
pend_noirq(), but it need not save the device’s settings in memory.

restore_noirq Prepare for the execution of restore() by carrying out any oper-
ations required for thawing the device that might be racing with its driver’s
interrupt handler, which is guaranteed not to run while restore_noirq() is
being executed. Analogous to resume_noirq().

runtime_suspend Prepare the device for a condition in which it won’t be able to
communicate with the CPU(s) and RAM due to power management. This need
not mean that the device should be put into a low-power state. For example,
if the device is behind a link which is about to be turned off, the device may
remain at full power. If the device does go to low power and is capable of gen-
erating runtime wakeup events, remote wakeup (i.e., a hardware mechanism
allowing the device to request a change of its power state via an interrupt)
should be enabled for it.

runtime_resume Put the device into the fully active state in response to a wakeup
event generated by hardware or at the request of software. If necessary, put
the device into the full-power state and restore its registers, so that it is fully
operational.

runtime_idle Device appears to be inactive and it might be put into a low-power
state if all of the necessary conditions are satisfied. Check these conditions,
and return 0 if it’s appropriate to let the PM core queue a suspend request
for the device.

Description
Several device power state transitions are externally visible, affecting the state
of pending I/O queues and (for drivers that touch hardware) interrupts, wakeups,
DMA, and other hardware state. There may also be internal transitions to various
low-power modes which are transparent to the rest of the driver stack (such as a
driver that’s ON gating off clocks which are not in active use).
The externally visible transitions are handled with the help of callbacks included
in this structure in such a way that, typically, two levels of callbacks are involved.
First, the PM core executes callbacks provided by PM domains, device types,
classes and bus types. They are the subsystem-level callbacks expected to execute
callbacks provided by device drivers, although they may choose not to do that. If
the driver callbacks are executed, they have to collaborate with the subsystem-
level callbacks to achieve the goals appropriate for the given system transition,
given transition phase and the subsystem the device belongs to.

6.4. Device Power Management Data Types 225

Linux Driver-api Documentation

All of the above callbacks, except for complete(), return error codes. How-
ever, the error codes returned by resume(), thaw(), restore(), resume_noirq(),
thaw_noirq(), and restore_noirq(), do not cause the PM core to abort the resume
transition during which they are returned. The error codes returned in those cases
are only printed to the system logs for debugging purposes. Still, it is recom-
mended that drivers only return error codes from their resume methods in case
of an unrecoverable failure (i.e. when the device being handled refuses to resume
and becomes unusable) to allow the PM core to be modified in the future, so that
it can avoid attempting to handle devices that failed to resume and their children.

It is allowed to unregister devices while the above callbacks are being executed.
However, a callback routine MUST NOT try to unregister the device it was called
for, although it may unregister children of that device (for example, if it detects
that a child was unplugged while the system was asleep).

There also are callbacks related to runtime power management of devices. Again,
as a rule these callbacks are executed by the PM core for subsystems (PM do-
mains, device types, classes and bus types) and the subsystem-level callbacks are
expected to invoke the driver callbacks. Moreover, the exact actions to be per-
formed by a device driver’s callbacks generally depend on the platform and sub-
system the device belongs to.

Refer to Documentation/power/runtime_pm.rst for more information about the
role of the runtime_suspend(), runtime_resume() and runtime_idle() call-
backs in device runtime power management.

struct dev_pm_domain
power management domain representation.

Definition

struct dev_pm_domain {
struct dev_pm_ops ops;
int (*start)(struct device *dev);
void (*detach)(struct device *dev, bool power_off);
int (*activate)(struct device *dev);
void (*sync)(struct device *dev);
void (*dismiss)(struct device *dev);

};

Members
ops Power management operations associated with this domain.

start Called when a user needs to start the device via the domain.

detach Called when removing a device from the domain.

activate Called before executing probe routines for bus types and drivers.

sync Called after successful driver probe.

dismiss Called after unsuccessful driver probe and after driver removal.

Description
Power domains provide callbacks that are executed during system suspend, hiber-
nation, system resume and during runtime PM transitions instead of subsystem-
level and driver-level callbacks.

226 Chapter 6. CPU and Device Power Management

CHAPTER

SEVEN

THE COMMON CLK FRAMEWORK

Author Mike Turquette <mturquette@ti.com>
This document endeavours to explain the common clk framework details, and how
to port a platform over to this framework. It is not yet a detailed explanation
of the clock api in include/linux/clk.h, but perhaps someday it will include that
information.

7.1 Introduction and interface split

The common clk framework is an interface to control the clock nodes available
on various devices today. This may come in the form of clock gating, rate ad-
justment, muxing or other operations. This framework is enabled with the CON-
FIG_COMMON_CLK option.

The interface itself is divided into two halves, each shielded from the details of
its counterpart. First is the common definition of struct clk which unifies the
framework-level accounting and infrastructure that has traditionally been dupli-
cated across a variety of platforms. Second is a common implementation of the
clk.h api, defined in drivers/clk/clk.c. Finally there is struct clk_ops, whose oper-
ations are invoked by the clk api implementation.

The second half of the interface is comprised of the hardware-specific callbacks
registered with struct clk_ops and the corresponding hardware-specific structures
needed to model a particular clock. For the remainder of this document any ref-
erence to a callback in struct clk_ops, such as .enable or .set_rate, implies the
hardware-specific implementation of that code. Likewise, references to struct
clk_foo serve as a convenient shorthand for the implementation of the hardware-
specific bits for the hypothetical “foo”hardware.
Tying the two halves of this interface together is struct clk_hw, which is defined in
struct clk_foo and pointed to within struct clk_core. This allows for easy navigation
between the two discrete halves of the common clock interface.

227

mailto:mturquette@ti.com

Linux Driver-api Documentation

7.2 Common data structures and api

Below is the common struct clk_core definition from drivers/clk/clk.c, modified for
brevity:

struct clk_core {
const char *name;
const struct clk_ops *ops;
struct clk_hw *hw;
struct module *owner;
struct clk_core *parent;
const char **parent_names;
struct clk_core **parents;
u8 num_parents;
u8 new_parent_index;
...

};

The members above make up the core of the clk tree topology. The clk api itself
defines several driver-facing functions which operate on struct clk. That api is
documented in include/linux/clk.h.

Platforms and devices utilizing the common struct clk_core use the struct clk_ops
pointer in struct clk_core to perform the hardware-specific parts of the operations
defined in clk-provider.h:

struct clk_ops {
int (*prepare)(struct clk_hw *hw);
void (*unprepare)(struct clk_hw *hw);
int (*is_prepared)(struct clk_hw *hw);
void (*unprepare_unused)(struct clk_hw *hw);
int (*enable)(struct clk_hw *hw);
void (*disable)(struct clk_hw *hw);
int (*is_enabled)(struct clk_hw *hw);
void (*disable_unused)(struct clk_hw *hw);
unsigned long (*recalc_rate)(struct clk_hw *hw,

unsigned long parent_rate);
long (*round_rate)(struct clk_hw *hw,

unsigned long rate,
unsigned long *parent_rate);

int (*determine_rate)(struct clk_hw *hw,
struct clk_rate_request *req);

int (*set_parent)(struct clk_hw *hw, u8 index);
u8 (*get_parent)(struct clk_hw *hw);
int (*set_rate)(struct clk_hw *hw,

unsigned long rate,
unsigned long parent_rate);

int (*set_rate_and_parent)(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate,
u8 index);

unsigned long (*recalc_accuracy)(struct clk_hw *hw,
unsigned long parent_accuracy);

int (*get_phase)(struct clk_hw *hw);
int (*set_phase)(struct clk_hw *hw, int degrees);
void (*init)(struct clk_hw *hw);

(continues on next page)

228 Chapter 7. The Common Clk Framework

Linux Driver-api Documentation

(continued from previous page)
void (*debug_init)(struct clk_hw *hw,

struct dentry *dentry);
};

7.3 Hardware clk implementations

The strength of the common struct clk_core comes from its .ops and .hw point-
ers which abstract the details of struct clk from the hardware-specific bits, and
vice versa. To illustrate consider the simple gateable clk implementation in
drivers/clk/clk-gate.c:

struct clk_gate {
struct clk_hw hw;
void __iomem *reg;
u8 bit_idx;
...

};

struct clk_gate contains struct clk_hw hw as well as hardware-specific knowledge
about which register and bit controls this clk’s gating. Nothing about clock topol-
ogy or accounting, such as enable_count or notifier_count, is needed here. That is
all handled by the common framework code and struct clk_core.

Let’s walk through enabling this clk from driver code:

struct clk *clk;
clk = clk_get(NULL, "my_gateable_clk");

clk_prepare(clk);
clk_enable(clk);

The call graph for clk_enable is very simple:

clk_enable(clk);
clk->ops->enable(clk->hw);
[resolves to...]

clk_gate_enable(hw);
[resolves struct clk gate with to_clk_gate(hw)]

clk_gate_set_bit(gate);

And the definition of clk_gate_set_bit:

static void clk_gate_set_bit(struct clk_gate *gate)
{

u32 reg;

reg = __raw_readl(gate->reg);
reg |= BIT(gate->bit_idx);
writel(reg, gate->reg);

}

Note that to_clk_gate is defined as:

7.3. Hardware clk implementations 229

Linux Driver-api Documentation

#define to_clk_gate(_hw) container_of(_hw, struct clk_gate, hw)

This pattern of abstraction is used for every clock hardware representation.

7.4 Supporting your own clk hardware

When implementing support for a new type of clock it is only necessary to include
the following header:

#include <linux/clk-provider.h>

To construct a clk hardware structure for your platform you must define the fol-
lowing:

struct clk_foo {
struct clk_hw hw;
... hardware specific data goes here ...

};

To take advantage of your data you’ll need to support valid operations for your
clk:

struct clk_ops clk_foo_ops = {
.enable = &clk_foo_enable,
.disable = &clk_foo_disable,

};

Implement the above functions using container_of:

#define to_clk_foo(_hw) container_of(_hw, struct clk_foo, hw)

int clk_foo_enable(struct clk_hw *hw)
{

struct clk_foo *foo;

foo = to_clk_foo(hw);

... perform magic on foo ...

return 0;
};

Below is a matrix detailing which clk_ops are mandatory based upon the hardware
capabilities of that clock. A cell marked as“y”means mandatory, a cell marked as
“n”implies that either including that callback is invalid or otherwise unnecessary.
Empty cells are either optional or must be evaluated on a case-by-case basis.

230 Chapter 7. The Common Clk Framework

Linux Driver-api Documentation

Table 1: clock hardware characteristics
gate change rate single parent multiplexer root

.prepare

.unprepare

.enable y

.disable y

.is_enabled y

.recalc_rate y

.round_rate y1

.determine_rate y1

.set_rate y

.set_parent n y n

.get_parent n y n

.recalc_accuracy

.init

Finally, register your clock at run-time with a hardware-specific registration func-
tion. This function simply populates struct clk_foo’s data and then passes the
common struct clk parameters to the framework with a call to:

clk_register(...)

See the basic clock types in drivers/clk/clk-*.c for examples.

7.5 Disabling clock gating of unused clocks

Sometimes during development it can be useful to be able to bypass the default
disabling of unused clocks. For example, if drivers aren’t enabling clocks properly
but rely on them being on from the bootloader, bypassing the disabling means that
the driver will remain functional while the issues are sorted out.

To bypass this disabling, include“clk_ignore_unused”in the bootargs to the kernel.
1 either one of round_rate or determine_rate is required.

7.5. Disabling clock gating of unused clocks 231

Linux Driver-api Documentation

7.6 Locking

The common clock framework uses two global locks, the prepare lock and the
enable lock.

The enable lock is a spinlock and is held across calls to the .enable, .disable opera-
tions. Those operations are thus not allowed to sleep, and calls to the clk_enable(),
clk_disable() API functions are allowed in atomic context.

For clk_is_enabled() API, it is also designed to be allowed to be used in atomic
context. However, it doesn’t really make any sense to hold the enable lock in
core, unless you want to do something else with the information of the enable state
with that lock held. Otherwise, seeing if a clk is enabled is a one-shot read of the
enabled state, which could just as easily change after the function returns because
the lock is released. Thus the user of this API needs to handle synchronizing the
read of the state with whatever they’re using it for to make sure that the enable
state doesn’t change during that time.
The prepare lock is a mutex and is held across calls to all other operations. All
those operations are allowed to sleep, and calls to the corresponding API functions
are not allowed in atomic context.

This effectively divides operations in two groups from a locking perspective.

Drivers don’t need to manually protect resources shared between the operations
of one group, regardless of whether those resources are shared by multiple clocks
or not. However, access to resources that are shared between operations of the
two groups needs to be protected by the drivers. An example of such a resource
would be a register that controls both the clock rate and the clock enable/disable
state.

The clock framework is reentrant, in that a driver is allowed to call clock frame-
work functions from within its implementation of clock operations. This can for
instance cause a .set_rate operation of one clock being called from within the
.set_rate operation of another clock. This case must be considered in the driver
implementations, but the code flow is usually controlled by the driver in that case.

Note that locking must also be considered when code outside of the common clock
framework needs to access resources used by the clock operations. This is con-
sidered out of scope of this document.

232 Chapter 7. The Common Clk Framework

CHAPTER

EIGHT

BUS-INDEPENDENT DEVICE ACCESSES

Author Matthew Wilcox
Author Alan Cox

8.1 Introduction

Linux provides an API which abstracts performing IO across all busses and devices,
allowing device drivers to be written independently of bus type.

8.2 Memory Mapped IO

8.2.1 Getting Access to the Device

The most widely supported form of IO is memory mapped IO. That is, a part of the
CPU’s address space is interpreted not as accesses to memory, but as accesses
to a device. Some architectures define devices to be at a fixed address, but most
have some method of discovering devices. The PCI bus walk is a good example of
such a scheme. This document does not cover how to receive such an address, but
assumes you are starting with one. Physical addresses are of type unsigned long.

This address should not be used directly. Instead, to get an address suitable for
passing to the accessor functions described below, you should call ioremap(). An
address suitable for accessing the device will be returned to you.

After you’ve finished using the device (say, in your module’s exit routine), call
iounmap() in order to return the address space to the kernel. Most architectures
allocate new address space each time you call ioremap(), and they can run out
unless you call iounmap().

233

Linux Driver-api Documentation

8.2.2 Accessing the device

The part of the interface most used by drivers is reading and writing memory-
mapped registers on the device. Linux provides interfaces to read and write 8-bit,
16-bit, 32-bit and 64-bit quantities. Due to a historical accident, these are named
byte, word, long and quad accesses. Both read and write accesses are supported;
there is no prefetch support at this time.

The functions are named readb(), readw(), readl(), readq(), readb_relaxed(),
readw_relaxed(), readl_relaxed(), readq_relaxed(), writeb(), writew(), writel() and
writeq().

Some devices (such as framebuffers) would like to use larger transfers than 8
bytes at a time. For these devices, the memcpy_toio(), memcpy_fromio() and
memset_io() functions are provided. Do not use memset or memcpy on IO ad-
dresses; they are not guaranteed to copy data in order.

The read and write functions are defined to be ordered. That is the compiler is
not permitted to reorder the I/O sequence. When the ordering can be compiler
optimised, you can use __readb() and friends to indicate the relaxed ordering. Use
this with care.

While the basic functions are defined to be synchronous with respect to each other
and ordered with respect to each other the busses the devices sit on may them-
selves have asynchronicity. In particular many authors are burned by the fact that
PCI bus writes are posted asynchronously. A driver author must issue a read from
the same device to ensure that writes have occurred in the specific cases the au-
thor cares. This kind of property cannot be hidden from driver writers in the API.
In some cases, the read used to flush the device may be expected to fail (if the
card is resetting, for example). In that case, the read should be done from config
space, which is guaranteed to soft-fail if the card doesn’t respond.
The following is an example of flushing a write to a device when the driver would
like to ensure the write’s effects are visible prior to continuing execution:
static inline void
qla1280_disable_intrs(struct scsi_qla_host *ha)
{

struct device_reg *reg;

reg = ha->iobase;
/* disable risc and host interrupts */
WRT_REG_WORD(®->ictrl, 0);
/*
* The following read will ensure that the above write
* has been received by the device before we return from this
* function.
*/

RD_REG_WORD(®->ictrl);
ha->flags.ints_enabled = 0;

}

PCI ordering rules also guarantee that PIO read responses arrive after any out-
standing DMA writes from that bus, since for some devices the result of a readb()
call may signal to the driver that a DMA transaction is complete. In many cases,
however, the driver may want to indicate that the next readb() call has no rela-

234 Chapter 8. Bus-Independent Device Accesses

Linux Driver-api Documentation

tion to any previous DMA writes performed by the device. The driver can use
readb_relaxed() for these cases, although only some platforms will honor the re-
laxed semantics. Using the relaxed read functions will provide significant perfor-
mance benefits on platforms that support it. The qla2xxx driver provides examples
of how to use readX_relaxed(). In many cases, a majority of the driver’s readX()
calls can safely be converted to readX_relaxed() calls, since only a few will indicate
or depend on DMA completion.

8.3 Port Space Accesses

8.3.1 Port Space Explained

Another form of IO commonly supported is Port Space. This is a range of addresses
separate to the normal memory address space. Access to these addresses is gen-
erally not as fast as accesses to the memory mapped addresses, and it also has a
potentially smaller address space.

Unlike memory mapped IO, no preparation is required to access port space.

8.3.2 Accessing Port Space

Accesses to this space are provided through a set of functions which allow 8-bit,
16-bit and 32-bit accesses; also known as byte, word and long. These functions
are inb(), inw(), inl(), outb(), outw() and outl().

Some variants are provided for these functions. Some devices require that ac-
cesses to their ports are slowed down. This functionality is provided by appending
a _p to the end of the function. There are also equivalents to memcpy. The ins()
and outs() functions copy bytes, words or longs to the given port.

8.4 Public Functions Provided

phys_addr_t virt_to_phys(volatile void * address)
map virtual addresses to physical

Parameters
volatile void * address address to remap

The returned physical address is the physical (CPU) mapping for the mem-
ory address given. It is only valid to use this function on addresses directly
mapped or allocated via kmalloc.

This function does not give bus mappings for DMA transfers. In almost all
conceivable cases a device driver should not be using this function

void * phys_to_virt(phys_addr_t address)
map physical address to virtual

Parameters

8.3. Port Space Accesses 235

Linux Driver-api Documentation

phys_addr_t address address to remap

The returned virtual address is a current CPU mapping for the memory ad-
dress given. It is only valid to use this function on addresses that have a
kernel mapping

This function does not handle bus mappings for DMA transfers. In almost all
conceivable cases a device driver should not be using this function

void __iomem * ioremap(resource_size_t offset, unsigned long size)
map bus memory into CPU space

Parameters
resource_size_t offset bus address of the memory

unsigned long size size of the resource to map

Description
ioremap performs a platform specific sequence of operations to make bus memory
CPU accessible via the readb/readw/readl/writeb/ writew/writel functions and the
other mmio helpers. The returned address is not guaranteed to be usable directly
as a virtual address.

If the area you are trying to map is a PCI BAR you should have a look at
pci_iomap().

void iosubmit_cmds512(void __iomem * __dst, const void * src, size_t count)
copy data to single MMIO location, in 512-bit units

Parameters
void __iomem * __dst destination, in MMIO space (must be 512-bit aligned)

const void * src source

size_t count number of 512 bits quantities to submit

Description
Submit data from kernel space to MMIO space, in units of 512 bits at a time. Order
of access is not guaranteed, nor is a memory barrier performed afterwards.

Warning: Do not use this helper unless your driver has checked that the CPU
instruction is supported on the platform.

void __iomem * pci_iomap_range(struct pci_dev * dev, int bar, unsigned
long offset, unsigned long maxlen)

create a virtual mapping cookie for a PCI BAR

Parameters
struct pci_dev * dev PCI device that owns the BAR

int bar BAR number

unsigned long offset map memory at the given offset in BAR

unsigned long maxlen max length of the memory to map

Description

236 Chapter 8. Bus-Independent Device Accesses

Linux Driver-api Documentation

Using this function you will get a __iomem address to your device BAR. You can
access it using ioread*() and iowrite*(). These functions hide the details if this is
a MMIO or PIO address space and will just do what you expect from them in the
correct way.

maxlen specifies the maximum length to map. If you want to get access to the
complete BAR from offset to the end, pass 0 here.

void __iomem * pci_iomap_wc_range(struct pci_dev * dev, int bar, unsigned
long offset, unsigned long maxlen)

create a virtual WC mapping cookie for a PCI BAR

Parameters
struct pci_dev * dev PCI device that owns the BAR

int bar BAR number

unsigned long offset map memory at the given offset in BAR

unsigned long maxlen max length of the memory to map

Description
Using this function you will get a __iomem address to your device BAR. You can
access it using ioread*() and iowrite*(). These functions hide the details if this is
a MMIO or PIO address space and will just do what you expect from them in the
correct way. When possible write combining is used.

maxlen specifies the maximum length to map. If you want to get access to the
complete BAR from offset to the end, pass 0 here.

void __iomem * pci_iomap(struct pci_dev * dev, int bar, unsigned
long maxlen)

create a virtual mapping cookie for a PCI BAR

Parameters
struct pci_dev * dev PCI device that owns the BAR

int bar BAR number

unsigned long maxlen length of the memory to map

Description
Using this function you will get a __iomem address to your device BAR. You can
access it using ioread*() and iowrite*(). These functions hide the details if this is
a MMIO or PIO address space and will just do what you expect from them in the
correct way.

maxlen specifies the maximum length to map. If you want to get access to the
complete BAR without checking for its length first, pass 0 here.

void __iomem * pci_iomap_wc(struct pci_dev * dev, int bar, unsigned
long maxlen)

create a virtual WC mapping cookie for a PCI BAR

Parameters
struct pci_dev * dev PCI device that owns the BAR

int bar BAR number

8.4. Public Functions Provided 237

Linux Driver-api Documentation

unsigned long maxlen length of the memory to map

Description
Using this function you will get a __iomem address to your device BAR. You can
access it using ioread*() and iowrite*(). These functions hide the details if this is
a MMIO or PIO address space and will just do what you expect from them in the
correct way. When possible write combining is used.

maxlen specifies the maximum length to map. If you want to get access to the
complete BAR without checking for its length first, pass 0 here.

238 Chapter 8. Bus-Independent Device Accesses

CHAPTER

NINE

DEVICE CONNECTIONS

9.1 Introduction

Devices often have connections to other devices that are outside of the direct
child/parent relationship. A serial or network communication controller, which
could be a PCI device, may need to be able to get a reference to its PHY compo-
nent, which could be attached for example to the I2C bus. Some device drivers
need to be able to control the clocks or the GPIOs for their devices, and so on.

Device connections are generic descriptions of any type of connection between
two separate devices.

Device connections alone do not create a dependency between the two devices.
They are only descriptions which are not tied to either of the devices directly. A
dependency between the two devices exists only if one of the two endpoint devices
requests a reference to the other. The descriptions themselves can be defined in
firmware (not yet supported) or they can be built-in.

9.2 Usage

Device connections should exist before device ->probe callback is called for either
endpoint device in the description. If the connections are defined in firmware, this
is not a problem. It should be considered if the connection descriptions are“built-
in”, and need to be added separately.
The connection description consists of the names of the two devices with the
connection, i.e. the endpoints, and unique identifier for the connection which is
needed if there are multiple connections between the two devices.

After a description exists, the devices in it can request reference to the other end-
point device, or they can request the description itself.

239

Linux Driver-api Documentation

9.3 API

void * device_connection_find_match(struct device * dev, const char
* con_id, void * data, dev-
con_match_fn_t match)

Find physical connection to a device

Parameters
struct device * dev Device with the connection

const char * con_id Identifier for the connection

void * data Data for the match function

devcon_match_fn_t match Function to check and convert the connection descrip-
tion

Description
Find a connection with unique identifier con_id between dev and another device.
match will be used to convert the connection description to data the caller is
expecting to be returned.

struct device * device_connection_find(struct device * dev, const char
* con_id)

Find two devices connected together

Parameters
struct device * dev Device with the connection

const char * con_id Identifier for the connection

Description
Find a connection with unique identifier con_id between dev and another device.
On success returns handle to the device that is connected to dev, with the refer-
ence count for the found device incremented. Returns NULL if no matching con-
nection was found, or ERR_PTR(-EPROBE_DEFER) when a connection was found
but the other device has not been enumerated yet.

void device_connection_add(struct device_connection * con)
Register a connection description

Parameters
struct device_connection * con The connection description to be registered

void device_connection_remove(struct device_connection * con)
Unregister connection description

Parameters
struct device_connection * con The connection description to be unregis-

tered

240 Chapter 9. Device connections

CHAPTER

TEN

BUFFER SHARING AND SYNCHRONIZATION

The dma-buf subsystem provides the framework for sharing buffers for hardware
(DMA) access across multiple device drivers and subsystems, and for synchroniz-
ing asynchronous hardware access.

This is used, for example, by drm“prime”multi-GPU support, but is of course not
limited to GPU use cases.

The three main components of this are: (1) dma-buf, representing a sg_table and
exposed to userspace as a file descriptor to allow passing between devices, (2)
fence, which provides a mechanism to signal when one device has finished access,
and (3) reservation, which manages the shared or exclusive fence(s) associated
with the buffer.

10.1 Shared DMA Buffers

This document serves as a guide to device-driver writers on what is the dma-buf
buffer sharing API, how to use it for exporting and using shared buffers.

Any device driver which wishes to be a part of DMA buffer sharing, can do so as
either the ‘exporter’of buffers, or the ‘user’or ‘importer’of buffers.
Say a driver A wants to use buffers created by driver B, then we call B as the
exporter, and A as buffer-user/importer.

The exporter

• implements and manages operations in struct dma_buf_ops for the buffer,

• allows other users to share the buffer by using dma_buf sharing APIs,

• manages the details of buffer allocation, wrapped in a struct dma_buf,

• decides about the actual backing storage where this allocation happens,

• and takes care of any migration of scatterlist - for all (shared) users of this
buffer.

The buffer-user

• is one of (many) sharing users of the buffer.

• doesn’t need to worry about how the buffer is allocated, or where.

241

Linux Driver-api Documentation

• and needs a mechanism to get access to the scatterlist that makes up
this buffer in memory, mapped into its own address space, so it can ac-
cess the same area of memory. This interface is provided by struct
dma_buf_attachment.

Any exporters or users of the dma-buf buffer sharing frameworkmust have a‘select
DMA_SHARED_BUFFER’in their respective Kconfigs.

10.1.1 Userspace Interface Notes

Mostly a DMA buffer file descriptor is simply an opaque object for userspace, and
hence the generic interface exposed is very minimal. There’s a few things to
consider though:

• Since kernel 3.12 the dma-buf FD supports the llseek system call, but only
with offset=0 and whence=SEEK_END|SEEK_SET. SEEK_SET is supported
to allow the usual size discover pattern size = SEEK_END(0); SEEK_SET(0).
Every other llseek operation will report -EINVAL.

If llseek on dma-buf FDs isn’t support the kernel will report -ESPIPE for all
cases. Userspace can use this to detect support for discovering the dma-buf
size using llseek.

• In order to avoid fd leaks on exec, the FD_CLOEXEC flag must be set on the
file descriptor. This is not just a resource leak, but a potential security hole.
It could give the newly exec’d application access to buffers, via the leaked
fd, to which it should otherwise not be permitted access.

The problem with doing this via a separate fcntl() call, versus doing it atomi-
cally when the fd is created, is that this is inherently racy in a multi-threaded
app[3]. The issue is made worse when it is library code opening/creating the
file descriptor, as the application may not even be aware of the fd’s.
To avoid this problem, userspacemust have away to request O_CLOEXEC flag
be set when the dma-buf fd is created. So any API provided by the exporting
driver to create a dmabuf fd must provide a way to let userspace control
setting of O_CLOEXEC flag passed in to dma_buf_fd().

• Memory mapping the contents of the DMA buffer is also supported. See the
discussion below on CPU Access to DMA Buffer Objects for the full details.

• The DMA buffer FD is also pollable, see Fence Poll Support below for details.

10.1.2 Basic Operation and Device DMA Access

For device DMA access to a shared DMA buffer the usual sequence of operations
is fairly simple:

1. The exporter defines his exporter instance using
DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap
a private buffer object into a dma_buf. It then exports that dma_buf to
userspace as a file descriptor by calling dma_buf_fd().

242 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

2. Userspace passes this file-descriptors to all drivers it wants this buffer
to share with: First the filedescriptor is converted to a dma_buf us-
ing dma_buf_get(). Then the buffer is attached to the device using
dma_buf_attach().

Up to this stage the exporter is still free to migrate or reallocate the backing
storage.

3. Once the buffer is attached to all devices userspace can initiate DMA
access to the shared buffer. In the kernel this is done by calling
dma_buf_map_attachment() and dma_buf_unmap_attachment().

4. Once a driver is done with a shared buffer it needs to call dma_buf_detach()
(after cleaning up any mappings) and then release the reference acquired
with dma_buf_get by calling dma_buf_put().

For the detailed semantics exporters are expected to implement see dma_buf_ops.

10.1.3 CPU Access to DMA Buffer Objects

There are mutliple reasons for supporting CPU access to a dma buffer object:

• Fallback operations in the kernel, for example when a device is connected
over USB and the kernel needs to shuffle the data around first before sending
it away. Cache coherency is handled by braketing any transactions with calls
to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() access.

Since for most kernel internal dma-buf accesses need the entire buffer, a
vmap interface is introduced. Note that on very old 32-bit architectures vmal-
loc space might be limited and result in vmap calls failing.

Interfaces:: void *dma_buf_vmap(struct dma_buf *dmabuf) void
dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)

The vmap call can fail if there is no vmap support in the exporter, or if it
runs out of vmalloc space. Fallback to kmap should be implemented. Note
that the dma-buf layer keeps a reference count for all vmap access and calls
down into the exporter’s vmap function only when no vmapping exists, and
only unmaps it once. Protection against concurrent vmap/vunmap calls is
provided by taking the dma_buf->lock mutex.

• For full compatibility on the importer side with existing userspace interfaces,
which might already support mmap’ing buffers. This is needed in many
processing pipelines (e.g. feeding a software rendered image into a hardware
pipeline, thumbnail creation, snapshots,⋯). Also, Android’s ION framework
already supported this and for DMA buffer file descriptors to replace ION
buffers mmap support was needed.

There is no special interfaces, userspace simply calls mmap on the dma-
buf fd. But like for CPU access there’s a need to braket the actual ac-
cess, which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it
must be restarted.

Some systems might need some sort of cache coherency management
e.g. when CPU and GPU domains are being accessed through dma-buf

10.1. Shared DMA Buffers 243

Linux Driver-api Documentation

at the same time. To circumvent this problem there are begin/end co-
herency markers, that forward directly to existing dma-buf device drivers
vfunc hooks. Userspace can make use of those markers through the
DMA_BUF_IOCTL_SYNC ioctl. The sequence would be used like following:

– mmap dma-buf fd
– for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2.
read/write to mmap area 3. SYNC_END ioctl. This can be re-
peated as often as you want (with the new data being consumed
by say the GPU or the scanout device)

– munmap once you don’t need the buffer any more
For correctness and optimal performance, it is always required to use
SYNC_START and SYNC_END before and after, respectively, when
accessing the mapped address. Userspace cannot rely on coherent
access, even when there are systems where it just works without
calling these ioctls.

• And as a CPU fallback in userspace processing pipelines.

Similar to the motivation for kernel cpu access it is again important that the
userspace code of a given importing subsystem can use the same interfaces
with a imported dma-buf buffer object as with a native buffer object. This
is especially important for drm where the userspace part of contemporary
OpenGL, X, and other drivers is huge, and reworking them to use a different
way to mmap a buffer rather invasive.

The assumption in the current dma-buf interfaces is that redirecting the initial
mmap is all that’s needed. A survey of some of the existing subsystems shows
that no driver seems to do any nefarious thing like syncing up with outstand-
ing asynchronous processing on the device or allocating special resources at
fault time. So hopefully this is good enough, since adding interfaces to in-
tercept pagefaults and allow pte shootdowns would increase the complexity
quite a bit.

Interface::
int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *,

unsigned long);

If the importing subsystem simply provides a special-purposemmap call to set
up a mapping in userspace, calling do_mmap with dma_buf->file will equally
achieve that for a dma-buf object.

10.1.4 Fence Poll Support

To support cross-device and cross-driver synchronization of buffer access implicit
fences (represented internally in the kernel with struct fence) can be attached to
a dma_buf. The glue for that and a few related things are provided in the dma_resv
structure.

Userspace can query the state of these implicitly tracked fences using poll() and
related system calls:

244 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

• Checking for EPOLLIN, i.e. read access, can be use to query the state of the
most recent write or exclusive fence.

• Checking for EPOLLOUT, i.e. write access, can be used to query the state of
all attached fences, shared and exclusive ones.

Note that this only signals the completion of the respective fences, i.e. the DMA
transfers are complete. Cache flushing and any other necessary preparations be-
fore CPU access can begin still need to happen.

10.1.5 Kernel Functions and Structures Reference

struct dma_buf * dma_buf_export(const struct dma_buf_export_info
* exp_info)

Creates a new dma_buf, and associates an anon file with this buffer, so it can
be exported. Also connect the allocator specific data and ops to the buffer.
Additionally, provide a name string for exporter; useful in debugging.

Parameters
const struct dma_buf_export_info * exp_info [in] holds all the ex-

port related information provided by the exporter. see struct
dma_buf_export_info for further details.

Description
Returns, on success, a newly created dma_buf object, which wraps the supplied
private data and operations for dma_buf_ops. On either missing ops, or error in
allocating struct dma_buf, will return negative error.

For most cases the easiest way to create exp_info is through the
DEFINE_DMA_BUF_EXPORT_INFO macro.

int dma_buf_fd(struct dma_buf * dmabuf, int flags)
returns a file descriptor for the given dma_buf

Parameters
struct dma_buf * dmabuf [in] pointer to dma_buf for which fd is required.

int flags [in] flags to give to fd

Description
On success, returns an associated ‘fd’. Else, returns error.
struct dma_buf * dma_buf_get(int fd)

returns the dma_buf structure related to an fd

Parameters
int fd [in] fd associated with the dma_buf to be returned

Description
On success, returns the dma_buf structure associated with an fd; uses file’s ref-
counting done by fget to increase refcount. returns ERR_PTR otherwise.

void dma_buf_put(struct dma_buf * dmabuf)
decreases refcount of the buffer

10.1. Shared DMA Buffers 245

Linux Driver-api Documentation

Parameters
struct dma_buf * dmabuf [in] buffer to reduce refcount of

Description
Uses file’s refcounting done implicitly by fput().
If, as a result of this call, the refcount becomes 0, the ‘release’file operation
related to this fd is called. It calls dma_buf_ops.release vfunc in turn, and frees
the memory allocated for dmabuf when exported.

struct dma_buf_attachment * dma_buf_dynamic_attach(struct dma_buf
* dmabuf, struct
device * dev,
const struct
dma_buf_attach_ops
* importer_ops,
void
* importer_priv)

Add the device to dma_buf’s attachments list; optionally, calls attach() of
dma_buf_ops to allow device-specific attach functionality

Parameters
struct dma_buf * dmabuf [in] buffer to attach device to.

struct device * dev [in] device to be attached.

const struct dma_buf_attach_ops * importer_ops [in] importer operations
for the attachment

void * importer_priv [in] importer private pointer for the attachment

Description
Returns struct dma_buf_attachment pointer for this attachment. Attachments
must be cleaned up by calling dma_buf_detach().

A pointer to newly created dma_buf_attachment on success, or a negative error
code wrapped into a pointer on failure.

Note that this can fail if the backing storage of dmabuf is in a place not accessible
to dev, and cannot be moved to a more suitable place. This is indicated with the
error code -EBUSY.

Return
struct dma_buf_attachment * dma_buf_attach(struct dma_buf * dmabuf,

struct device * dev)
Wrapper for dma_buf_dynamic_attach

Parameters
struct dma_buf * dmabuf [in] buffer to attach device to.

struct device * dev [in] device to be attached.

Description
Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
mapping.

246 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

void dma_buf_detach(struct dma_buf * dmabuf, struct dma_buf_attachment
* attach)

Remove the given attachment from dmabuf’s attachments list; optionally
calls detach() of dma_buf_ops for device-specific detach

Parameters
struct dma_buf * dmabuf [in] buffer to detach from.

struct dma_buf_attachment * attach [in] attachment to be detached; is free’d
after this call.

Description
Clean up a device attachment obtained by calling dma_buf_attach().

int dma_buf_pin(struct dma_buf_attachment * attach)
Lock down the DMA-buf

Parameters
struct dma_buf_attachment * attach [in] attachment which should be pinned

Return
0 on success, negative error code on failure.

void dma_buf_unpin(struct dma_buf_attachment * attach)
Remove lock from DMA-buf

Parameters
struct dma_buf_attachment * attach [in] attachment which should be un-

pinned

struct sg_table * dma_buf_map_attachment(struct dma_buf_attachment
* attach, enum
dma_data_direction direction)

Returns the scatterlist table of the attachment; mapped into _device_ address
space. Is a wrapper for map_dma_buf() of the dma_buf_ops.

Parameters
struct dma_buf_attachment * attach [in] attachment whose scatterlist is to be

returned

enum dma_data_direction direction [in] direction of DMA transfer

Description
Returns sg_table containing the scatterlist to be returned; returns ERR_PTR on
error. May return -EINTR if it is interrupted by a signal.

A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
the underlying backing storage is pinned for as long as a mapping exists, therefore
users/importers should not hold onto a mapping for undue amounts of time.

void dma_buf_unmap_attachment(struct dma_buf_attachment * attach,
struct sg_table * sg_table, enum
dma_data_direction direction)

unmaps and decreases usecount of the buffer;might deallocate the scatterlist
associated. Is a wrapper for unmap_dma_buf() of dma_buf_ops.

10.1. Shared DMA Buffers 247

Linux Driver-api Documentation

Parameters
struct dma_buf_attachment * attach [in] attachment to unmap buffer from

struct sg_table * sg_table [in] scatterlist info of the buffer to unmap

enum dma_data_direction direction [in] direction of DMA transfer

Description
This unmaps a DMA mapping for attached obtained by
dma_buf_map_attachment().

void dma_buf_move_notify(struct dma_buf * dmabuf)
notify attachments that DMA-buf is moving

Parameters
struct dma_buf * dmabuf [in] buffer which is moving

Description
Informs all attachmenst that they need to destroy and recreated all their mappings.

int dma_buf_begin_cpu_access(struct dma_buf * dmabuf, enum
dma_data_direction direction)

Must be called before accessing a dma_buf from the cpu in the kernel context.
Calls begin_cpu_access to allow exporter-specific preparations. Coherency is
only guaranteed in the specified range for the specified access direction.

Parameters
struct dma_buf * dmabuf [in] buffer to prepare cpu access for.

enum dma_data_direction direction [in] length of range for cpu access.

Description
After the cpu access is complete the caller should call
dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is it
guaranteed to be coherent with other DMA access.

Can return negative error values, returns 0 on success.

int dma_buf_end_cpu_access(struct dma_buf * dmabuf, enum
dma_data_direction direction)

Must be called after accessing a dma_buf from the cpu in the kernel context.
Calls end_cpu_access to allow exporter-specific actions. Coherency is only
guaranteed in the specified range for the specified access direction.

Parameters
struct dma_buf * dmabuf [in] buffer to complete cpu access for.

enum dma_data_direction direction [in] length of range for cpu access.

Description
This terminates CPU access started with dma_buf_begin_cpu_access().

Can return negative error values, returns 0 on success.

248 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

int dma_buf_mmap(struct dma_buf * dmabuf, struct vm_area_struct * vma, un-
signed long pgoff)

Setup up a userspace mmap with the given vma

Parameters
struct dma_buf * dmabuf [in] buffer that should back the vma

struct vm_area_struct * vma [in] vma for the mmap

unsigned long pgoff [in] offset in pages where this mmap should start within
the dma-buf buffer.

Description
This function adjusts the passed in vma so that it points at the file of the dma_buf
operation. It also adjusts the starting pgoff and does bounds checking on the size
of the vma. Then it calls the exporters mmap function to set up the mapping.

Can return negative error values, returns 0 on success.

void * dma_buf_vmap(struct dma_buf * dmabuf)
Create virtual mapping for the buffer object into kernel address space. Same
restrictions as for vmap and friends apply.

Parameters
struct dma_buf * dmabuf [in] buffer to vmap

Description
This call may fail due to lack of virtual mapping address space. These calls are
optional in drivers. The intended use for them is for mapping objects linear in
kernel space for high use objects. Please attempt to use kmap/kunmap before
thinking about these interfaces.

Returns NULL on error.

void dma_buf_vunmap(struct dma_buf * dmabuf, void * vaddr)
Unmap a vmap obtained by dma_buf_vmap.

Parameters
struct dma_buf * dmabuf [in] buffer to vunmap

void * vaddr [in] vmap to vunmap

struct dma_buf_ops
operations possible on struct dma_buf

Definition

struct dma_buf_ops {
bool cache_sgt_mapping;
int (*attach)(struct dma_buf *, struct dma_buf_attachment *);
void (*detach)(struct dma_buf *, struct dma_buf_attachment *);
int (*pin)(struct dma_buf_attachment *attach);
void (*unpin)(struct dma_buf_attachment *attach);
struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *, enum dma_

↪→data_direction);
void (*unmap_dma_buf)(struct dma_buf_attachment *,struct sg_table *,␣

↪→enum dma_data_direction);
(continues on next page)

10.1. Shared DMA Buffers 249

Linux Driver-api Documentation

(continued from previous page)
void (*release)(struct dma_buf *);
int (*begin_cpu_access)(struct dma_buf *, enum dma_data_direction);
int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);
int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);
void *(*vmap)(struct dma_buf *);
void (*vunmap)(struct dma_buf *, void *vaddr);

};

Members
cache_sgt_mapping If true the framework will cache the first mapping made for

each attachment. This avoids creating mappings for attachments multiple
times.

attach This is called from dma_buf_attach() to make sure that a given
dma_buf_attachment.dev can access the provided dma_buf. Exporters which
support buffer objects in special locations like VRAM or device-specific carve-
out areas should check whether the buffer could be move to system memory
(or directly accessed by the provided device), and otherwise need to fail the
attach operation.

The exporter should also in general check whether the current allocation full-
fills the DMA constraints of the new device. If this is not the case, and the
allocation cannot be moved, it should also fail the attach operation.

Any exporter-private housekeeping data can be stored in the
dma_buf_attachment.priv pointer.

This callback is optional.

Returns:

0 on success, negative error code on failure. It might return -EBUSY to signal
that backing storage is already allocated and incompatible with the require-
ments of requesting device.

detach This is called by dma_buf_detach() to release a dma_buf_attachment.
Provided so that exporters can clean up any housekeeping for an
dma_buf_attachment.

This callback is optional.

pin This is called by dma_buf_pin and lets the exporter know that the DMA-buf
can’t be moved any more.
This is called with the dmabuf->resv object locked and is mutual exclusive
with cache_sgt_mapping.
This callback is optional and should only be used in limited use cases like
scanout and not for temporary pin operations.

Returns:

0 on success, negative error code on failure.

unpin This is called by dma_buf_unpin and lets the exporter know that the DMA-
buf can be moved again.

250 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

This is called with the dmabuf->resv object locked and is mutual exclusive
with cache_sgt_mapping.
This callback is optional.

map_dma_buf This is called by dma_buf_map_attachment() and is used to map a
shared dma_buf into device address space, and it is mandatory. It can only be
called if attach has been called successfully.
This call may sleep, e.g. when the backing storage first needs to be allocated,
or moved to a location suitable for all currently attached devices.

Note that any specific buffer attributes required for this function should get
added to device_dma_parameters accessible via device.dma_params from
the dma_buf_attachment. The attach callback should also check these con-
straints.

If this is being called for the first time, the exporter can now choose to scan
through the list of attachments for this buffer, collate the requirements of the
attached devices, and choose an appropriate backing storage for the buffer.

Based on enum dma_data_direction, it might be possible to have multiple
users accessing at the same time (for reading, maybe), or any other kind of
sharing that the exporter might wish to make available to buffer-users.

This is always called with the dmabuf->resv object locked when the dy-
namic_mapping flag is true.

Returns:

A sg_table scatter list of or the backing storage of the DMA buffer, already
mapped into the device address space of the device attached with the pro-
vided dma_buf_attachment.

On failure, returns a negative error value wrapped into a pointer. May also
return -EINTR when a signal was received while being blocked.

unmap_dma_buf This is called by dma_buf_unmap_attachment() and should un-
map and release the sg_table allocated in map_dma_buf, and it is manda-
tory. For static dma_buf handling this might also unpins the backing storage
if this is the last mapping of the DMA buffer.

release Called after the last dma_buf_put to release the dma_buf, and mandatory.

begin_cpu_access This is called from dma_buf_begin_cpu_access() and allows
the exporter to ensure that the memory is actually available for cpu access -
the exporter might need to allocate or swap-in and pin the backing storage.
The exporter also needs to ensure that cpu access is coherent for the access
direction. The direction can be used by the exporter to optimize the cache
flushing, i.e. access with a different direction (read instead of write) might
return stale or even bogus data (e.g. when the exporter needs to copy the
data to temporary storage).

This callback is optional.

FIXME: This is both called through the DMA_BUF_IOCTL_SYNC command
from userspace (where storage shouldn’t be pinned to avoid handing de-factor
mlock rights to userspace) and for the kernel-internal users of the various
kmap interfaces, where the backing storage must be pinned to guarantee

10.1. Shared DMA Buffers 251

Linux Driver-api Documentation

that the atomic kmap calls can succeed. Since there’s no in-kernel users of
the kmap interfaces yet this isn’t a real problem.
Returns:

0 on success or a negative error code on failure. This can for example fail
when the backing storage can’t be allocated. Can also return -ERESTARTSYS
or -EINTR when the call has been interrupted and needs to be restarted.

end_cpu_access This is called from dma_buf_end_cpu_access() when the im-
porter is done accessing the CPU. The exporter can use this to flush caches
and unpin any resources pinned in begin_cpu_access. The result of any
dma_buf kmap calls after end_cpu_access is undefined.

This callback is optional.

Returns:

0 on success or a negative error code on failure. Can return -ERESTARTSYS
or -EINTR when the call has been interrupted and needs to be restarted.

mmap This callback is used by the dma_buf_mmap() function

Note that the mapping needs to be incoherent, userspace is expected to
braket CPU access using the DMA_BUF_IOCTL_SYNC interface.

Because dma-buf buffers have invariant size over their lifetime, the dma-buf
core checks whether a vma is too large and rejects such mappings. The ex-
porter hence does not need to duplicate this check. Drivers do not need to
check this themselves.

If an exporter needs to manually flush caches and hence needs to fake co-
herency for mmap support, it needs to be able to zap all the ptes pointing at
the backing storage. Now linux mm needs a struct address_space associated
with the struct file stored in vma->vm_file to do that with the function un-
map_mapping_range. But the dma_buf framework only backs every dma_buf
fd with the anon_file struct file, i.e. all dma_bufs share the same file.

Hence exporters need to setup their own file (and address_space) associa-
tion by setting vma->vm_file and adjusting vma->vm_pgoff in the dma_buf
mmap callback. In the specific case of a gem driver the exporter could use
the shmem file already provided by gem (and set vm_pgoff = 0). Exporters
can then zap ptes by unmapping the corresponding range of the struct ad-
dress_space associated with their own file.

This callback is optional.

Returns:

0 on success or a negative error code on failure.

vmap [optional] creates a virtual mapping for the buffer into kernel address space.
Same restrictions as for vmap and friends apply.

vunmap [optional] unmaps a vmap from the buffer

struct dma_buf
shared buffer object

Definition

252 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

struct dma_buf {
size_t size;
struct file *file;
struct list_head attachments;
const struct dma_buf_ops *ops;
struct mutex lock;
unsigned vmapping_counter;
void *vmap_ptr;
const char *exp_name;
const char *name;
struct module *owner;
struct list_head list_node;
void *priv;
struct dma_resv *resv;
wait_queue_head_t poll;
struct dma_buf_poll_cb_t {

struct dma_fence_cb cb;
wait_queue_head_t *poll;
__poll_t active;

} cb_excl, cb_shared;
};

Members
size size of the buffer

file file pointer used for sharing buffers across, and for refcounting.

attachments list of dma_buf_attachment that denotes all devices attached, pro-
tected by dma_resv lock.

ops dma_buf_ops associated with this buffer object.

lock used internally to serialize list manipulation, attach/detach and vmap/unmap

vmapping_counter used internally to refcnt the vmaps

vmap_ptr the current vmap ptr if vmapping_counter > 0

exp_name name of the exporter; useful for debugging.

name userspace-provided name; useful for accounting and debugging, protected
by resv.

owner pointer to exporter module; used for refcounting when exporter is a kernel
module.

list_node node for dma_buf accounting and debugging.

priv exporter specific private data for this buffer object.

resv reservation object linked to this dma-buf

poll for userspace poll support

cb_excl for userspace poll support

cb_shared for userspace poll support

Description

10.1. Shared DMA Buffers 253

Linux Driver-api Documentation

This represents a shared buffer, created by calling dma_buf_export(). The
userspace representation is a normal file descriptor, which can be created by call-
ing dma_buf_fd().

Shared dma buffers are reference counted using dma_buf_put() and
get_dma_buf().

Device DMA access is handled by the separate struct dma_buf_attachment.

struct dma_buf_attach_ops
importer operations for an attachment

Definition

struct dma_buf_attach_ops {
bool allow_peer2peer;
void (*move_notify)(struct dma_buf_attachment *attach);

};

Members
allow_peer2peer If this is set to true the importer must be able to handle peer

resources without struct pages.

move_notify [optional] notification that the DMA-buf is moving

If this callback is provided the framework can avoid pinning the backing store
while mappings exists.

This callback is called with the lock of the reservation object associated with
the dma_buf held and the mapping function must be called with this lock
held as well. This makes sure that no mapping is created concurrently with
an ongoing move operation.

Mappings stay valid and are not directly affected by this callback. But the
DMA-buf can now be in a different physical location, so all mappings should
be destroyed and re-created as soon as possible.

New mappings can be created after this callback returns, and will point to
the new location of the DMA-buf.

Description
Attachment operations implemented by the importer.

struct dma_buf_attachment
holds device-buffer attachment data

Definition

struct dma_buf_attachment {
struct dma_buf *dmabuf;
struct device *dev;
struct list_head node;
struct sg_table *sgt;
enum dma_data_direction dir;
bool peer2peer;
const struct dma_buf_attach_ops *importer_ops;
void *importer_priv;

(continues on next page)

254 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

(continued from previous page)
void *priv;

};

Members
dmabuf buffer for this attachment.

dev device attached to the buffer.

node list of dma_buf_attachment, protected by dma_resv lock of the dmabuf.

sgt cached mapping.

dir direction of cached mapping.

peer2peer true if the importer can handle peer resources without pages.

importer_ops importer operations for this attachment, if provided
dma_buf_map/unmap_attachment() must be called with the dma_resv
lock held.

importer_priv importer specific attachment data.

priv exporter specific attachment data.

Description
This structure holds the attachment information between the dma_buf buffer and
its user device(s). The list contains one attachment struct per device attached to
the buffer.

An attachment is created by calling dma_buf_attach(), and released again
by calling dma_buf_detach(). The DMA mapping itself needed to initiate a
transfer is created by dma_buf_map_attachment() and freed again by calling
dma_buf_unmap_attachment().

struct dma_buf_export_info
holds information needed to export a dma_buf

Definition

struct dma_buf_export_info {
const char *exp_name;
struct module *owner;
const struct dma_buf_ops *ops;
size_t size;
int flags;
struct dma_resv *resv;
void *priv;

};

Members
exp_name name of the exporter - useful for debugging.

owner pointer to exporter module - used for refcounting kernel module

ops Attach allocator-defined dma buf ops to the new buffer

size Size of the buffer

10.1. Shared DMA Buffers 255

Linux Driver-api Documentation

flags mode flags for the file

resv reservation-object, NULL to allocate default one

priv Attach private data of allocator to this buffer

Description
This structure holds the information required to export the buffer. Used with
dma_buf_export() only.

DEFINE_DMA_BUF_EXPORT_INFO(name)
helper macro for exporters

Parameters
name export-info name

Description
DEFINE_DMA_BUF_EXPORT_INFO macro defines the struct
dma_buf_export_info, zeroes it out and pre-populates exp_name in it.

void get_dma_buf(struct dma_buf * dmabuf)
convenience wrapper for get_file.

Parameters
struct dma_buf * dmabuf [in] pointer to dma_buf

Description
Increments the reference count on the dma-buf, needed in case of drivers that
either need to create additional references to the dmabuf on the kernel side. For
example, an exporter that needs to keep a dmabuf ptr so that subsequent exports
don’t create a new dmabuf.
bool dma_buf_is_dynamic(struct dma_buf * dmabuf)

check if a DMA-buf uses dynamic mappings.

Parameters
struct dma_buf * dmabuf the DMA-buf to check

Description
Returns true if a DMA-buf exporter wants to be called with the dma_resv locked
for the map/unmap callbacks, false if it doesn’t wants to be called with the lock
held.

bool dma_buf_attachment_is_dynamic(struct dma_buf_attachment
* attach)

check if a DMA-buf attachment uses dynamic mappinsg

Parameters
struct dma_buf_attachment * attach the DMA-buf attachment to check

Description
Returns true if a DMA-buf importer wants to call the map/unmap functions with
the dma_resv lock held.

256 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

10.2 Reservation Objects

The reservation object provides a mechanism to manage shared and exclusive
fences associated with a buffer. A reservation object can have attached one exclu-
sive fence (normally associated with write operations) or N shared fences (read
operations). The RCU mechanism is used to protect read access to fences from
locked write-side updates.

void dma_resv_init(struct dma_resv * obj)
initialize a reservation object

Parameters
struct dma_resv * obj the reservation object

void dma_resv_fini(struct dma_resv * obj)
destroys a reservation object

Parameters
struct dma_resv * obj the reservation object

int dma_resv_reserve_shared(struct dma_resv * obj, unsigned
int num_fences)

Reserve space to add shared fences to a dma_resv.

Parameters
struct dma_resv * obj reservation object

unsigned int num_fences number of fences we want to add

Description
Should be called before dma_resv_add_shared_fence(). Must be called with obj-
>lock held.

RETURNS Zero for success, or -errno

void dma_resv_add_shared_fence(struct dma_resv * obj, struct dma_fence
* fence)

Add a fence to a shared slot

Parameters
struct dma_resv * obj the reservation object

struct dma_fence * fence the shared fence to add

Description
Add a fence to a shared slot, obj->lock must be held, and
dma_resv_reserve_shared() has been called.

void dma_resv_add_excl_fence(struct dma_resv * obj, struct dma_fence
* fence)

Add an exclusive fence.

Parameters
struct dma_resv * obj the reservation object

struct dma_fence * fence the shared fence to add

10.2. Reservation Objects 257

Linux Driver-api Documentation

Description
Add a fence to the exclusive slot. The obj->lock must be held.

int dma_resv_copy_fences(struct dma_resv * dst, struct dma_resv * src)
Copy all fences from src to dst.

Parameters
struct dma_resv * dst the destination reservation object

struct dma_resv * src the source reservation object

Description
Copy all fences from src to dst. dst-lock must be held.

int dma_resv_get_fences_rcu(struct dma_resv * obj, struct dma_fence
** pfence_excl, unsigned * pshared_count,
struct dma_fence *** pshared)

Get an object’s shared and exclusive fences without update side lock held
Parameters
struct dma_resv * obj the reservation object

struct dma_fence ** pfence_excl the returned exclusive fence (or NULL)

unsigned * pshared_count the number of shared fences returned

struct dma_fence *** pshared the array of shared fence ptrs returned (array
is krealloc’d to the required size, and must be freed by caller)

Description
Retrieve all fences from the reservation object. If the pointer for the exclusive
fence is not specified the fence is put into the array of the shared fences as well.
Returns either zero or -ENOMEM.

long dma_resv_wait_timeout_rcu(struct dma_resv * obj, bool wait_all,
bool intr, unsigned long timeout)

Wait on reservation’s objects shared and/or exclusive fences.
Parameters
struct dma_resv * obj the reservation object

bool wait_all if true, wait on all fences, else wait on just exclusive fence

bool intr if true, do interruptible wait

unsigned long timeout timeout value in jiffies or zero to return immediately

Description
RETURNS Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or
greater than zer on success.

bool dma_resv_test_signaled_rcu(struct dma_resv * obj, bool test_all)
Test if a reservation object’s fences have been signaled.

Parameters
struct dma_resv * obj the reservation object

258 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

bool test_all if true, test all fences, otherwise only test the exclusive fence

Description
RETURNS true if all fences signaled, else false

struct dma_resv_list
a list of shared fences

Definition

struct dma_resv_list {
struct rcu_head rcu;
u32 shared_count, shared_max;
struct dma_fence __rcu *shared[];

};

Members
rcu for internal use

shared_count table of shared fences

shared_max for growing shared fence table

shared shared fence table

struct dma_resv
a reservation object manages fences for a buffer

Definition

struct dma_resv {
struct ww_mutex lock;
seqcount_t seq;
struct dma_fence __rcu *fence_excl;
struct dma_resv_list __rcu *fence;

};

Members
lock update side lock

seq sequence count for managing RCU read-side synchronization

fence_excl the exclusive fence, if there is one currently

fence list of current shared fences

struct dma_resv_list * dma_resv_get_list(struct dma_resv * obj)
get the reservation object’s shared fence list, with update-side lock held

Parameters
struct dma_resv * obj the reservation object

Description
Returns the shared fence list. Does NOT take references to the fence. The obj-
>lock must be held.

int dma_resv_lock(struct dma_resv * obj, struct ww_acquire_ctx * ctx)
lock the reservation object

10.2. Reservation Objects 259

Linux Driver-api Documentation

Parameters
struct dma_resv * obj the reservation object

struct ww_acquire_ctx * ctx the locking context

Description
Locks the reservation object for exclusive access and modification. Note, that the
lock is only against other writers, readers will run concurrently with a writer under
RCU. The seqlock is used to notify readers if they overlap with a writer.

As the reservation object may be locked bymultiple parties in an undefined order, a
#ww_acquire_ctx is passed to unwind if a cycle is detected. See ww_mutex_lock()
and ww_acquire_init(). A reservation object may be locked by itself by passing
NULL as ctx.
int dma_resv_lock_interruptible(struct dma_resv * obj, struct

ww_acquire_ctx * ctx)
lock the reservation object

Parameters
struct dma_resv * obj the reservation object

struct ww_acquire_ctx * ctx the locking context

Description
Locks the reservation object interruptible for exclusive access and modification.
Note, that the lock is only against other writers, readers will run concurrently with
a writer under RCU. The seqlock is used to notify readers if they overlap with a
writer.

As the reservation object may be locked bymultiple parties in an undefined order, a
#ww_acquire_ctx is passed to unwind if a cycle is detected. See ww_mutex_lock()
and ww_acquire_init(). A reservation object may be locked by itself by passing
NULL as ctx.
void dma_resv_lock_slow(struct dma_resv * obj, struct ww_acquire_ctx

* ctx)
slowpath lock the reservation object

Parameters
struct dma_resv * obj the reservation object

struct ww_acquire_ctx * ctx the locking context

Description
Acquires the reservation object after a die case. This function will sleep until the
lock becomes available. See dma_resv_lock() as well.

int dma_resv_lock_slow_interruptible(struct dma_resv * obj, struct
ww_acquire_ctx * ctx)

slowpath lock the reservation object, interruptible

Parameters
struct dma_resv * obj the reservation object

struct ww_acquire_ctx * ctx the locking context

260 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

Description
Acquires the reservation object interruptible after a die case. This function will
sleep until the lock becomes available. See dma_resv_lock_interruptible() as
well.

bool dma_resv_trylock(struct dma_resv * obj)
trylock the reservation object

Parameters
struct dma_resv * obj the reservation object

Description
Tries to lock the reservation object for exclusive access and modification. Note,
that the lock is only against other writers, readers will run concurrently with a
writer under RCU. The seqlock is used to notify readers if they overlap with a
writer.

Also note that since no context is provided, no deadlock protection is possible.

Returns true if the lock was acquired, false otherwise.

bool dma_resv_is_locked(struct dma_resv * obj)
is the reservation object locked

Parameters
struct dma_resv * obj the reservation object

Description
Returns true if the mutex is locked, false if unlocked.

struct ww_acquire_ctx * dma_resv_locking_ctx(struct dma_resv * obj)
returns the context used to lock the object

Parameters
struct dma_resv * obj the reservation object

Description
Returns the context used to lock a reservation object or NULL if no context was
used or the object is not locked at all.

void dma_resv_unlock(struct dma_resv * obj)
unlock the reservation object

Parameters
struct dma_resv * obj the reservation object

Description
Unlocks the reservation object following exclusive access.

struct dma_fence * dma_resv_get_excl(struct dma_resv * obj)
get the reservation object’s exclusive fence, with update-side lock held

Parameters
struct dma_resv * obj the reservation object

10.2. Reservation Objects 261

Linux Driver-api Documentation

Description
Returns the exclusive fence (if any). Does NOT take a reference. Writers must
hold obj->lock, readers may only hold a RCU read side lock.

RETURNS The exclusive fence or NULL

struct dma_fence * dma_resv_get_excl_rcu(struct dma_resv * obj)
get the reservation object’s exclusive fence, without lock held.

Parameters
struct dma_resv * obj the reservation object

Description
If there is an exclusive fence, this atomically increments it’s reference count and
returns it.

RETURNS The exclusive fence or NULL if none

10.3 DMA Fences

DMA fences, represented by struct dma_fence, are the kernel internal syn-
chronization primitive for DMA operations like GPU rendering, video encod-
ing/decoding, or displaying buffers on a screen.

A fence is initialized using dma_fence_init() and completed using
dma_fence_signal(). Fences are associated with a context, allocated through
dma_fence_context_alloc(), and all fences on the same context are fully
ordered.

Since the purposes of fences is to facilitate cross-device and cross-application syn-
chronization, there’s multiple ways to use one:
• Individual fences can be exposed as a sync_file, accessed as a file descriptor
from userspace, created by calling sync_file_create(). This is called ex-
plicit fencing, since userspace passes around explicit synchronization points.

• Some subsystems also have their own explicit fencing primitives, like
drm_syncobj. Compared to sync_file, a drm_syncobj allows the underly-
ing fence to be updated.

• Then there’s also implicit fencing, where the synchronization points are im-
plicitly passed around as part of shared dma_buf instances. Such implicit
fences are stored in struct dma_resv through the dma_buf.resv pointer.

262 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

10.3.1 DMA Fences Functions Reference

struct dma_fence * dma_fence_get_stub(void)
return a signaled fence

Parameters
void no arguments

Description
Return a stub fence which is already signaled.

u64 dma_fence_context_alloc(unsigned num)
allocate an array of fence contexts

Parameters
unsigned num amount of contexts to allocate

Description
This function will return the first index of the number of fence contexts allocated.
The fence context is used for setting dma_fence.context to a unique number by
passing the context to dma_fence_init().

int dma_fence_signal_locked(struct dma_fence * fence)
signal completion of a fence

Parameters
struct dma_fence * fence the fence to signal

Description
Signal completion for software callbacks on a fence, this will un-
block dma_fence_wait() calls and run all the callbacks added with
dma_fence_add_callback(). Can be called multiple times, but since a fence
can only go from the unsignaled to the signaled state and not back, it will only be
effective the first time.

Unlike dma_fence_signal(), this function must be called with dma_fence.lock
held.

Returns 0 on success and a negative error value when fence has been signalled
already.

int dma_fence_signal(struct dma_fence * fence)
signal completion of a fence

Parameters
struct dma_fence * fence the fence to signal

Description
Signal completion for software callbacks on a fence, this will un-
block dma_fence_wait() calls and run all the callbacks added with
dma_fence_add_callback(). Can be called multiple times, but since a fence
can only go from the unsignaled to the signaled state and not back, it will only be
effective the first time.

10.3. DMA Fences 263

Linux Driver-api Documentation

Returns 0 on success and a negative error value when fence has been signalled
already.

signed long dma_fence_wait_timeout(struct dma_fence * fence, bool intr,
signed long timeout)

sleep until the fence gets signaled or until timeout elapses

Parameters
struct dma_fence * fence the fence to wait on

bool intr if true, do an interruptible wait

signed long timeout timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT

Description
Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the remaining
timeout in jiffies on success. Other error values may be returned on custom im-
plementations.

Performs a synchronous wait on this fence. It is assumed the caller directly or
indirectly (buf-mgr between reservation and committing) holds a reference to the
fence, otherwise the fence might be freed before return, resulting in undefined
behavior.

See also dma_fence_wait() and dma_fence_wait_any_timeout().

void dma_fence_release(struct kref * kref)
default relese function for fences

Parameters
struct kref * kref dma_fence.recfount

Description
This is the default release functions for dma_fence. Drivers shouldn’t call this
directly, but instead call dma_fence_put().

void dma_fence_free(struct dma_fence * fence)
default release function for dma_fence.

Parameters
struct dma_fence * fence fence to release

Description
This is the default implementation for dma_fence_ops.release. It calls kfree_rcu()
on fence.
void dma_fence_enable_sw_signaling(struct dma_fence * fence)

enable signaling on fence

Parameters
struct dma_fence * fence the fence to enable

Description
This will request for sw signaling to be enabled, to make the fence complete as
soon as possible. This calls dma_fence_ops.enable_signaling internally.

264 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

int dma_fence_add_callback(struct dma_fence * fence, struct
dma_fence_cb * cb, dma_fence_func_t func)

add a callback to be called when the fence is signaled

Parameters
struct dma_fence * fence the fence to wait on

struct dma_fence_cb * cb the callback to register

dma_fence_func_t func the function to call

Description
cb will be initialized by dma_fence_add_callback(), no initialization by the caller
is required. Any number of callbacks can be registered to a fence, but a callback
can only be registered to one fence at a time.

Note that the callback can be called from an atomic context. If fence is already
signaled, this function will return -ENOENT (and not call the callback).

Add a software callback to the fence. Same restrictions apply to refcount as it
does to dma_fence_wait(), however the caller doesn’t need to keep a refcount to
fence afterward dma_fence_add_callback() has returned: when software access
is enabled, the creator of the fence is required to keep the fence alive until after
it signals with dma_fence_signal(). The callback itself can be called from irq
context.

Returns 0 in case of success, -ENOENT if the fence is already signaled and -EINVAL
in case of error.

int dma_fence_get_status(struct dma_fence * fence)
returns the status upon completion

Parameters
struct dma_fence * fence the dma_fence to query

Description
This wraps dma_fence_get_status_locked() to return the error status condition
on a signaled fence. See dma_fence_get_status_locked() for more details.

Returns 0 if the fence has not yet been signaled, 1 if the fence has been signaled
without an error condition, or a negative error code if the fence has been com-
pleted in err.

bool dma_fence_remove_callback(struct dma_fence * fence, struct
dma_fence_cb * cb)

remove a callback from the signaling list

Parameters
struct dma_fence * fence the fence to wait on

struct dma_fence_cb * cb the callback to remove

Description
Remove a previously queued callback from the fence. This function returns true
if the callback is successfully removed, or false if the fence has already been sig-
naled.

10.3. DMA Fences 265

Linux Driver-api Documentation

WARNING: Cancelling a callback should only be done if you really know what you’
re doing, since deadlocks and race conditions could occur all too easily. For this
reason, it should only ever be done on hardware lockup recovery, with a reference
held to the fence.

Behaviour is undefined if cb has not been added to fence using
dma_fence_add_callback() beforehand.

signed long dma_fence_default_wait(struct dma_fence * fence, bool intr,
signed long timeout)

default sleep until the fence gets signaled or until timeout elapses

Parameters
struct dma_fence * fence the fence to wait on

bool intr if true, do an interruptible wait

signed long timeout timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT

Description
Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the remaining
timeout in jiffies on success. If timeout is zero the value one is returned if the fence
is already signaled for consistency with other functions taking a jiffies timeout.

signed long dma_fence_wait_any_timeout(struct dma_fence ** fences,
uint32_t count, bool intr, signed
long timeout, uint32_t * idx)

sleep until any fence gets signaled or until timeout elapses

Parameters
struct dma_fence ** fences array of fences to wait on

uint32_t count number of fences to wait on

bool intr if true, do an interruptible wait

signed long timeout timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT

uint32_t * idx used to store the first signaled fence index, meaningful only on
positive return

Description
Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if inter-
rupted, 0 if the wait timed out, or the remaining timeout in jiffies on success.

Synchronous waits for the first fence in the array to be signaled. The caller needs
to hold a reference to all fences in the array, otherwise a fence might be freed
before return, resulting in undefined behavior.

See also dma_fence_wait() and dma_fence_wait_timeout().

void dma_fence_init(struct dma_fence * fence, const struct dma_fence_ops
* ops, spinlock_t * lock, u64 context, u64 seqno)

Initialize a custom fence.

Parameters
struct dma_fence * fence the fence to initialize

266 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

const struct dma_fence_ops * ops the dma_fence_ops for operations on this
fence

spinlock_t * lock the irqsafe spinlock to use for locking this fence

u64 context the execution context this fence is run on

u64 seqno a linear increasing sequence number for this context

Description
Initializes an allocated fence, the caller doesn’t have to keep its refcount after com-
mitting with this fence, but it will need to hold a refcount again if dma_fence_ops.
enable_signaling gets called.

context and seqno are used for easy comparison between fences, allowing to check
which fence is later by simply using dma_fence_later().

struct dma_fence
software synchronization primitive

Definition

struct dma_fence {
spinlock_t *lock;
const struct dma_fence_ops *ops;
union {

struct list_head cb_list;
ktime_t timestamp;
struct rcu_head rcu;

};
u64 context;
u64 seqno;
unsigned long flags;
struct kref refcount;
int error;

};

Members
lock spin_lock_irqsave used for locking

ops dma_fence_ops associated with this fence

{unnamed_union} anonymous

cb_list list of all callbacks to call

timestamp Timestamp when the fence was signaled.

rcu used for releasing fence with kfree_rcu

context execution context this fence belongs to, returned by
dma_fence_context_alloc()

seqno the sequence number of this fence inside the execution context, can be
compared to decide which fence would be signaled later.

flags A mask of DMA_FENCE_FLAG_* defined below

refcount refcount for this fence

10.3. DMA Fences 267

Linux Driver-api Documentation

error Optional, only valid if < 0, must be set before calling dma_fence_signal,
indicates that the fence has completed with an error.

Description
the flags member must be manipulated and read using the appropriate atomic ops
(bit_*), so taking the spinlock will not be needed most of the time.

DMA_FENCE_FLAG_SIGNALED_BIT - fence is already signaled
DMA_FENCE_FLAG_TIMESTAMP_BIT - timestamp recorded for fence signal-
ing DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT - enable_signaling might have
been called DMA_FENCE_FLAG_USER_BITS - start of the unused bits, can be
used by the implementer of the fence for its own purposes. Can be used in
different ways by different fence implementers, so do not rely on this.

Since atomic bitops are used, this is not guaranteed to be the case.
Particularly, if the bit was set, but dma_fence_signal was called
right before this bit was set, it would have been able to set the
DMA_FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called.
Adding a check for DMA_FENCE_FLAG_SIGNALED_BIT after setting
DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT closes this race, and makes sure
that after dma_fence_signal was called, any enable_signaling call will have either
been completed, or never called at all.

struct dma_fence_cb
callback for dma_fence_add_callback()

Definition

struct dma_fence_cb {
struct list_head node;
dma_fence_func_t func;

};

Members
node used by dma_fence_add_callback() to append this struct to fence::cb_list

func dma_fence_func_t to call

Description
This struct will be initialized by dma_fence_add_callback(), additional data can
be passed along by embedding dma_fence_cb in another struct.

struct dma_fence_ops
operations implemented for fence

Definition

struct dma_fence_ops {
bool use_64bit_seqno;
const char * (*get_driver_name)(struct dma_fence *fence);
const char * (*get_timeline_name)(struct dma_fence *fence);
bool (*enable_signaling)(struct dma_fence *fence);
bool (*signaled)(struct dma_fence *fence);
signed long (*wait)(struct dma_fence *fence, bool intr, signed long␣

↪→timeout);
(continues on next page)

268 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

(continued from previous page)
void (*release)(struct dma_fence *fence);
void (*fence_value_str)(struct dma_fence *fence, char *str, int size);
void (*timeline_value_str)(struct dma_fence *fence, char *str, int size);

};

Members
use_64bit_seqno True if this dma_fence implementation uses 64bit seqno, false

otherwise.

get_driver_name Returns the driver name. This is a callback to allow drivers to
compute the name at runtime, without having it to store permanently for each
fence, or build a cache of some sort.

This callback is mandatory.

get_timeline_name Return the name of the context this fence belongs to. This is
a callback to allow drivers to compute the name at runtime, without having
it to store permanently for each fence, or build a cache of some sort.

This callback is mandatory.

enable_signaling Enable software signaling of fence.

For fence implementations that have the capability for hw->hw signaling,
they can implement this op to enable the necessary interrupts, or insert com-
mands into cmdstream, etc, to avoid these costly operations for the common
case where only hw->hw synchronization is required. This is called in the
first dma_fence_wait() or dma_fence_add_callback() path to let the fence
implementation know that there is another driver waiting on the signal (ie.
hw->sw case).

This function can be called from atomic context, but not from irq context, so
normal spinlocks can be used.

A return value of false indicates the fence already passed, or some failure oc-
curred that made it impossible to enable signaling. True indicates successful
enabling.

dma_fence.error may be set in enable_signaling, but only when false is re-
turned.

Since many implementations can call dma_fence_signal() even when be-
fore enable_signaling has been called there’s a race window, where the
dma_fence_signal()might result in the final fence reference being released
and its memory freed. To avoid this, implementations of this callback should
grab their own reference using dma_fence_get(), to be released when the
fence is signalled (through e.g. the interrupt handler).

This callback is optional. If this callback is not present, then the driver must
always have signaling enabled.

signaled Peek whether the fence is signaled, as a fastpath optimization for
e.g. dma_fence_wait() or dma_fence_add_callback(). Note that this call-
back does not need to make any guarantees beyond that a fence once in-
dicates as signalled must always return true from this callback. This call-
back may return false even if the fence has completed already, in this

10.3. DMA Fences 269

Linux Driver-api Documentation

case information hasn’t propogated throug the system yet. See also
dma_fence_is_signaled().

May set dma_fence.error if returning true.

This callback is optional.

wait Custom wait implementation, defaults to dma_fence_default_wait() if not
set.

The dma_fence_default_wait implementation should work for any fence, as
long as enable_signaling works correctly. This hook allows drivers to have
an optimized version for the case where a process context is already available,
e.g. if enable_signaling for the general case needs to set up a worker thread.
Must return -ERESTARTSYS if the wait is intr = true and the wait was inter-
rupted, and remaining jiffies if fence has signaled, or 0 if wait timed out. Can
also return other error values on custom implementations, which should be
treated as if the fence is signaled. For example a hardware lockup could be
reported like that.

This callback is optional.

release Called on destruction of fence to release additional resources. Can
be called from irq context. This callback is optional. If it is NULL, then
dma_fence_free() is instead called as the default implementation.

fence_value_str Callback to fill in free-form debug info specific to this fence, like
the sequence number.

This callback is optional.

timeline_value_str Fills in the current value of the timeline as a string, like the
sequence number. Note that the specific fence passed to this function should
not matter, drivers should only use it to look up the corresponding timeline
structures.

void dma_fence_put(struct dma_fence * fence)
decreases refcount of the fence

Parameters
struct dma_fence * fence fence to reduce refcount of

struct dma_fence * dma_fence_get(struct dma_fence * fence)
increases refcount of the fence

Parameters
struct dma_fence * fence fence to increase refcount of

Description
Returns the same fence, with refcount increased by 1.

struct dma_fence * dma_fence_get_rcu(struct dma_fence * fence)
get a fence from a dma_resv_list with rcu read lock

Parameters
struct dma_fence * fence fence to increase refcount of

270 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

Description
Function returns NULL if no refcount could be obtained, or the fence.

struct dma_fence * dma_fence_get_rcu_safe(struct dma_fence __rcu
** fencep)

acquire a reference to an RCU tracked fence

Parameters
struct dma_fence __rcu ** fencep pointer to fence to increase refcount of

Description
Function returnsNULL if no refcount could be obtained, or the fence. This function
handles acquiring a reference to a fence that may be reallocated within the RCU
grace period (such as with SLAB_TYPESAFE_BY_RCU), so long as the caller is
using RCU on the pointer to the fence.

An alternative mechanism is to employ a seqlock to protect a bunch of fences,
such as used by struct dma_resv. When using a seqlock, the seqlock must be taken
before and checked after a reference to the fence is acquired (as shown here).

The caller is required to hold the RCU read lock.

bool dma_fence_is_signaled_locked(struct dma_fence * fence)
Return an indication if the fence is signaled yet.

Parameters
struct dma_fence * fence the fence to check

Description
Returns true if the fence was already signaled, false if not. Since
this function doesn’t enable signaling, it is not guaranteed to
ever return true if dma_fence_add_callback(), dma_fence_wait() or
dma_fence_enable_sw_signaling() haven’t been called before.
This function requires dma_fence.lock to be held.

See also dma_fence_is_signaled().

bool dma_fence_is_signaled(struct dma_fence * fence)
Return an indication if the fence is signaled yet.

Parameters
struct dma_fence * fence the fence to check

Description
Returns true if the fence was already signaled, false if not. Since
this function doesn’t enable signaling, it is not guaranteed to
ever return true if dma_fence_add_callback(), dma_fence_wait() or
dma_fence_enable_sw_signaling() haven’t been called before.
It’s recommended for seqno fences to call dma_fence_signal when the operation
is complete, it makes it possible to prevent issues from wraparound between time
of issue and time of use by checking the return value of this function before calling
hardware-specific wait instructions.

10.3. DMA Fences 271

Linux Driver-api Documentation

See also dma_fence_is_signaled_locked().

bool __dma_fence_is_later(u64 f1, u64 f2, const struct dma_fence_ops
* ops)

return if f1 is chronologically later than f2

Parameters
u64 f1 the first fence’s seqno
u64 f2 the second fence’s seqno from the same context

const struct dma_fence_ops * ops dma_fence_ops associated with the seqno

Description
Returns true if f1 is chronologically later than f2. Both fences must be from the
same context, since a seqno is not common across contexts.

bool dma_fence_is_later(struct dma_fence * f1, struct dma_fence * f2)
return if f1 is chronologically later than f2

Parameters
struct dma_fence * f1 the first fence from the same context

struct dma_fence * f2 the second fence from the same context

Description
Returns true if f1 is chronologically later than f2. Both fences must be from the
same context, since a seqno is not re-used across contexts.

struct dma_fence * dma_fence_later(struct dma_fence * f1, struct
dma_fence * f2)

return the chronologically later fence

Parameters
struct dma_fence * f1 the first fence from the same context

struct dma_fence * f2 the second fence from the same context

Description
Returns NULL if both fences are signaled, otherwise the fence that would be sig-
naled last. Both fences must be from the same context, since a seqno is not re-used
across contexts.

int dma_fence_get_status_locked(struct dma_fence * fence)
returns the status upon completion

Parameters
struct dma_fence * fence the dma_fence to query

Description
Drivers can supply an optional error status condition before they signal the fence
(to indicate whether the fence was completed due to an error rather than suc-
cess). The value of the status condition is only valid if the fence has been signaled,
dma_fence_get_status_locked() first checks the signal state before reporting
the error status.

272 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

Returns 0 if the fence has not yet been signaled, 1 if the fence has been signaled
without an error condition, or a negative error code if the fence has been com-
pleted in err.

void dma_fence_set_error(struct dma_fence * fence, int error)
flag an error condition on the fence

Parameters
struct dma_fence * fence the dma_fence

int error the error to store

Description
Drivers can supply an optional error status condition before they signal the fence,
to indicate that the fence was completed due to an error rather than success. This
must be set before signaling (so that the value is visible before any waiters on the
signal callback are woken). This helper exists to help catching erroneous setting
of #dma_fence.error.

signed long dma_fence_wait(struct dma_fence * fence, bool intr)
sleep until the fence gets signaled

Parameters
struct dma_fence * fence the fence to wait on

bool intr if true, do an interruptible wait

Description
This function will return -ERESTARTSYS if interrupted by a signal, or 0 if the fence
was signaled. Other error values may be returned on custom implementations.

Performs a synchronous wait on this fence. It is assumed the caller directly or
indirectly holds a reference to the fence, otherwise the fence might be freed before
return, resulting in undefined behavior.

See also dma_fence_wait_timeout() and dma_fence_wait_any_timeout().

10.3.2 Seqno Hardware Fences

struct seqno_fence * to_seqno_fence(struct dma_fence * fence)
cast a fence to a seqno_fence

Parameters
struct dma_fence * fence fence to cast to a seqno_fence

Description
Returns NULL if the fence is not a seqno_fence, or the seqno_fence otherwise.

void seqno_fence_init(struct seqno_fence * fence, spinlock_t * lock,
struct dma_buf * sync_buf, uint32_t context,
uint32_t seqno_ofs, uint32_t seqno, enum
seqno_fence_condition cond, const struct
dma_fence_ops * ops)

initialize a seqno fence

10.3. DMA Fences 273

Linux Driver-api Documentation

Parameters
struct seqno_fence * fence seqno_fence to initialize

spinlock_t * lock pointer to spinlock to use for fence

struct dma_buf * sync_buf buffer containing the memory location to signal on

uint32_t context the execution context this fence is a part of

uint32_t seqno_ofs the offset within sync_buf
uint32_t seqno the sequence # to signal on

enum seqno_fence_condition cond fence wait condition

const struct dma_fence_ops * ops the fence_ops for operations on this seqno
fence

Description
This function initializes a struct seqno_fence with passed parameters, and takes a
reference on sync_buf which is released on fence destruction.

A seqno_fence is a dma_fence which can complete in software when en-
able_signaling is called, but it also completes when (s32)((sync_buf)[seqno_ofs]
- seqno) >= 0 is true

The seqno_fence will take a refcount on the sync_buf until it’s destroyed, but
actual lifetime of sync_buf may be longer if one of the callers take a reference to
it.

Certain hardware have instructions to insert this type of wait condition in the com-
mand stream, so no intervention from software would be needed. This type of
fence can be destroyed before completed, however a reference on the sync_buf
dma-buf can be taken. It is encouraged to re-use the same dma-buf for sync_buf,
since mapping or unmapping the sync_buf to the device’s vm can be expensive.

It is recommended for creators of seqno_fence to call dma_fence_signal() be-
fore destruction. This will prevent possible issues from wraparound at time of
issue vs time of check, since users can check dma_fence_is_signaled() before
submitting instructions for the hardware to wait on the fence. However, when
ops.enable_signaling is not called, it doesn’t have to be done as soon as possible,
just before there’s any real danger of seqno wraparound.

10.3.3 DMA Fence Array

struct dma_fence_array * dma_fence_array_create(int num_fences,
struct dma_fence
** fences, u64 context,
unsigned seqno,
bool signal_on_any)

Create a custom fence array

Parameters
int num_fences [in] number of fences to add in the array

struct dma_fence ** fences [in] array containing the fences

274 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

u64 context [in] fence context to use

unsigned seqno [in] sequence number to use

bool signal_on_any [in] signal on any fence in the array

Description
Allocate a dma_fence_array object and initialize the base fence with
dma_fence_init(). In case of error it returns NULL.

The caller should allocate the fences array with num_fences size and fill it with
the fences it wants to add to the object. Ownership of this array is taken and
dma_fence_put() is used on each fence on release.

If signal_on_any is true the fence array signals if any fence in the array signals,
otherwise it signals when all fences in the array signal.

bool dma_fence_match_context(struct dma_fence * fence, u64 context)
Check if all fences are from the given context

Parameters
struct dma_fence * fence [in] fence or fence array

u64 context [in] fence context to check all fences against

Description
Checks the provided fence or, for a fence array, all fences in the array against the
given context. Returns false if any fence is from a different context.

struct dma_fence_array_cb
callback helper for fence array

Definition

struct dma_fence_array_cb {
struct dma_fence_cb cb;
struct dma_fence_array *array;

};

Members
cb fence callback structure for signaling

array reference to the parent fence array object

struct dma_fence_array
fence to represent an array of fences

Definition

struct dma_fence_array {
struct dma_fence base;
spinlock_t lock;
unsigned num_fences;
atomic_t num_pending;
struct dma_fence **fences;
struct irq_work work;

};

10.3. DMA Fences 275

Linux Driver-api Documentation

Members
base fence base class

lock spinlock for fence handling

num_fences number of fences in the array

num_pending fences in the array still pending

fences array of the fences

work internal irq_work function

bool dma_fence_is_array(struct dma_fence * fence)
check if a fence is from the array subsclass

Parameters
struct dma_fence * fence fence to test

Description
Return true if it is a dma_fence_array and false otherwise.

struct dma_fence_array * to_dma_fence_array(struct dma_fence * fence)
cast a fence to a dma_fence_array

Parameters
struct dma_fence * fence fence to cast to a dma_fence_array

Description
Returns NULL if the fence is not a dma_fence_array, or the dma_fence_array oth-
erwise.

10.3.4 DMA Fence uABI/Sync File

struct sync_file * sync_file_create(struct dma_fence * fence)
creates a sync file

Parameters
struct dma_fence * fence fence to add to the sync_fence

Description
Creates a sync_file containg fence. This function acquires and additional refer-
ence of fence for the newly-created sync_file, if it succeeds. The sync_file can
be released with fput(sync_file->file). Returns the sync_file or NULL in case of
error.

struct dma_fence * sync_file_get_fence(int fd)
get the fence related to the sync_file fd

Parameters
int fd sync_file fd to get the fence from

Description

276 Chapter 10. Buffer Sharing and Synchronization

Linux Driver-api Documentation

Ensures fd references a valid sync_file and returns a fence that represents all fence
in the sync_file. On error NULL is returned.

struct sync_file
sync file to export to the userspace

Definition

struct sync_file {
struct file *file;
char user_name[32];

#ifdef CONFIG_DEBUG_FS;
struct list_head sync_file_list;

#endif;
wait_queue_head_t wq;
unsigned long flags;
struct dma_fence *fence;
struct dma_fence_cb cb;

};

Members
file file representing this fence

user_name Name of the sync file provided by userspace, for merged fences. Oth-
erwise generated through driver callbacks (in which case the entire array is
0).

sync_file_list membership in global file list

wq wait queue for fence signaling

flags flags for the sync_file

fence fence with the fences in the sync_file

cb fence callback information

Description
flags: POLL_ENABLED: whether userspace is currently poll()’ing or not

10.3. DMA Fences 277

Linux Driver-api Documentation

278 Chapter 10. Buffer Sharing and Synchronization

CHAPTER

ELEVEN

DEVICE LINKS

By default, the driver core only enforces dependencies between devices that are
borne out of a parent/child relationship within the device hierarchy: When sus-
pending, resuming or shutting down the system, devices are ordered based on
this relationship, i.e. children are always suspended before their parent, and the
parent is always resumed before its children.

Sometimes there is a need to represent device dependencies beyond the mere
parent/child relationship, e.g. between siblings, and have the driver core auto-
matically take care of them.

Secondly, the driver core by default does not enforce any driver presence depen-
dencies, i.e. that one device must be bound to a driver before another one can
probe or function correctly.

Often these two dependency types come together, so a device depends on another
one both with regards to driver presence and with regards to suspend/resume and
shutdown ordering.

Device links allow representation of such dependencies in the driver core.

In its standard or managed form, a device link combines both dependency types:
It guarantees correct suspend/resume and shutdown ordering between a “sup-
plier”device and its “consumer”devices, and it guarantees driver presence on
the supplier. The consumer devices are not probed before the supplier is bound
to a driver, and they’re unbound before the supplier is unbound.
When driver presence on the supplier is irrelevant and only correct sus-
pend/resume and shutdown ordering is needed, the device link may simply be set
up with the DL_FLAG_STATELESS flag. In other words, enforcing driver presence
on the supplier is optional.

Another optional feature is runtime PM integration: By setting the
DL_FLAG_PM_RUNTIME flag on addition of the device link, the PM core is in-
structed to runtime resume the supplier and keep it active whenever and for as
long as the consumer is runtime resumed.

279

Linux Driver-api Documentation

11.1 Usage

The earliest point in time when device links can be added is after device_add()
has been called for the supplier and device_initialize() has been called for the
consumer.

It is legal to add them later, but care must be taken that the system remains
in a consistent state: E.g. a device link cannot be added in the midst of a sus-
pend/resume transition, so either commencement of such a transition needs to be
prevented with lock_system_sleep(), or the device link needs to be added from a
function which is guaranteed not to run in parallel to a suspend/resume transition,
such as from a device ->probe callback or a boot-time PCI quirk.

Another example for an inconsistent state would be a device link that represents a
driver presence dependency, yet is added from the consumer’s ->probe callback
while the supplier hasn’t started to probe yet: Had the driver core known about
the device link earlier, it wouldn’t have probed the consumer in the first place.
The onus is thus on the consumer to check presence of the supplier after adding
the link, and defer probing on non-presence. [Note that it is valid to create a
link from the consumer’s ->probe callback while the supplier is still probing,
but the consumer must know that the supplier is functional already at the link
creation time (that is the case, for instance, if the consumer has just acquired some
resources that would not have been available had the supplier not been functional
then).]

If a device link with DL_FLAG_STATELESS set (i.e. a stateless device link) is added
in the ->probe callback of the supplier or consumer driver, it is typically deleted
in its ->remove callback for symmetry. That way, if the driver is compiled as a
module, the device link is added on module load and orderly deleted on unload.
The same restrictions that apply to device link addition (e.g. exclusion of a parallel
suspend/resume transition) apply equally to deletion. Device links managed by the
driver core are deleted automatically by it.

Several flags may be specified on device link addition, two of which have already
been mentioned above: DL_FLAG_STATELESS to express that no driver presence
dependency is needed (but only correct suspend/resume and shutdown ordering)
and DL_FLAG_PM_RUNTIME to express that runtime PM integration is desired.

Two other flags are specifically targeted at use cases where the device link is added
from the consumer’s ->probe callback: DL_FLAG_RPM_ACTIVE can be specified to
runtime resume the supplier and prevent it from suspending before the consumer
is runtime suspended. DL_FLAG_AUTOREMOVE_CONSUMER causes the device link to
be automatically purged when the consumer fails to probe or later unbinds.

Similarly, when the device link is added from supplier’s ->probe callback,
DL_FLAG_AUTOREMOVE_SUPPLIER causes the device link to be automatically purged
when the supplier fails to probe or later unbinds.

If neither DL_FLAG_AUTOREMOVE_CONSUMER nor DL_FLAG_AUTOREMOVE_SUPPLIER is
set, DL_FLAG_AUTOPROBE_CONSUMER can be used to request the driver core to probe
for a driver for the consumer driver on the link automatically after a driver has
been bound to the supplier device.

Note, however, that any combinations of DL_FLAG_AUTOREMOVE_CONSUMER,
DL_FLAG_AUTOREMOVE_SUPPLIER or DL_FLAG_AUTOPROBE_CONSUMER with

280 Chapter 11. Device links

Linux Driver-api Documentation

DL_FLAG_STATELESS are invalid and cannot be used.

11.2 Limitations

Driver authors should be aware that a driver presence dependency for managed
device links (i.e. when DL_FLAG_STATELESS is not specified on link addition) may
cause probing of the consumer to be deferred indefinitely. This can become a prob-
lem if the consumer is required to probe before a certain initcall level is reached.
Worse, if the supplier driver is blacklisted or missing, the consumer will never be
probed.

Moreover, managed device links cannot be deleted directly. They are deleted by
the driver core when they are not necessary any more in accordance with the
DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER flags. How-
ever, stateless device links (i.e. device links with DL_FLAG_STATELESS set) are
expected to be removed by whoever called device_link_add() to add them with
the help of either device_link_del() or device_link_remove().

Passing DL_FLAG_RPM_ACTIVE along with DL_FLAG_STATELESS to
device_link_add() may cause the PM-runtime usage counter of the supplier de-
vice to remain nonzero after a subsequent invocation of either device_link_del()
or device_link_remove() to remove the device link returned by it. This happens
if device_link_add() is called twice in a row for the same consumer-supplier pair
without removing the link between these calls, in which case allowing the PM-
runtime usage counter of the supplier to drop on an attempt to remove the link may
cause it to be suspended while the consumer is still PM-runtime-active and that has
to be avoided. [To work around this limitation it is sufficient to let the consumer
runtime suspend at least once, or call pm_runtime_set_suspended() for it with
PM-runtime disabled, between the device_link_add() and device_link_del()
or device_link_remove() calls.]

Sometimes drivers depend on optional resources. They are able to operate in a de-
graded mode (reduced feature set or performance) when those resources are not
present. An example is an SPI controller that can use a DMA engine or work in PIO
mode. The controller can determine presence of the optional resources at probe
time but on non-presence there is no way to know whether they will become avail-
able in the near future (due to a supplier driver probing) or never. Consequently
it cannot be determined whether to defer probing or not. It would be possible
to notify drivers when optional resources become available after probing, but it
would come at a high cost for drivers as switching between modes of operation at
runtime based on the availability of such resources would be much more complex
than a mechanism based on probe deferral. In any case optional resources are
beyond the scope of device links.

11.2. Limitations 281

Linux Driver-api Documentation

11.3 Examples

• An MMU device exists alongside a busmaster device, both are in the same
power domain. The MMU implements DMA address translation for the bus-
master device and shall be runtime resumed and kept active whenever and as
long as the busmaster device is active. The busmaster device’s driver shall
not bind before the MMU is bound. To achieve this, a device link with runtime
PM integration is added from the busmaster device (consumer) to the MMU
device (supplier). The effect with regards to runtime PM is the same as if the
MMU was the parent of the master device.

The fact that both devices share the same power domain would normally sug-
gest usage of a struct dev_pm_domain or struct generic_pm_domain, how-
ever these are not independent devices that happen to share a power switch,
but rather the MMU device serves the busmaster device and is useless with-
out it. A device link creates a synthetic hierarchical relationship between the
devices and is thus more apt.

• A Thunderbolt host controller comprises a number of PCIe hotplug ports and
an NHI device to manage the PCIe switch. On resume from system sleep, the
NHI device needs to re-establish PCI tunnels to attached devices before the
hotplug ports can resume. If the hotplug ports were children of the NHI, this
resume order would automatically be enforced by the PM core, but unfortu-
nately they’re aunts. The solution is to add device links from the hotplug ports
(consumers) to the NHI device (supplier). A driver presence dependency is
not necessary for this use case.

• Discrete GPUs in hybrid graphics laptops often feature an HDA controller for
HDMI/DP audio. In the device hierarchy the HDA controller is a sibling of the
VGA device, yet both share the same power domain and the HDA controller is
only ever needed when an HDMI/DP display is attached to the VGA device. A
device link from the HDA controller (consumer) to the VGA device (supplier)
aptly represents this relationship.

• ACPI allows definition of a device start order by way of _DEP objects. A clas-
sical example is when ACPI power management methods on one device are
implemented in terms of I2C accesses and require a specific I2C controller to
be present and functional for the powermanagement of the device in question
to work.

• In some SoCs a functional dependency exists from display, video codec and
video processing IP cores on transparent memory access IP cores that handle
burst access and compression/decompression.

282 Chapter 11. Device links

Linux Driver-api Documentation

11.4 Alternatives

• A struct dev_pm_domain can be used to override the bus, class or device type
callbacks. It is intended for devices sharing a single on/off switch, however
it does not guarantee a specific suspend/resume ordering, this needs to be
implemented separately. It also does not by itself track the runtime PM status
of the involved devices and turn off the power switch only when all of them
are runtime suspended. Furthermore it cannot be used to enforce a specific
shutdown ordering or a driver presence dependency.

• A struct generic_pm_domain is a lot more heavyweight than a device link
and does not allow for shutdown ordering or driver presence dependencies.
It also cannot be used on ACPI systems.

11.5 Implementation

The device hierarchy, which – as the name implies – is a tree, becomes a directed
acyclic graph once device links are added.

Ordering of these devices during suspend/resume is determined by the dpm_list.
During shutdown it is determined by the devices_kset. With no device links
present, the two lists are a flattened, one-dimensional representations of the de-
vice tree such that a device is placed behind all its ancestors. That is achieved
by traversing the ACPI namespace or OpenFirmware device tree top-down and
appending devices to the lists as they are discovered.

Once device links are added, the lists need to satisfy the additional constraint
that a device is placed behind all its suppliers, recursively. To ensure this, upon
addition of the device link the consumer and the entire sub-graph below it (all
children and consumers of the consumer) are moved to the end of the list. (Call to
device_reorder_to_tail() from device_link_add().)

To prevent introduction of dependency loops into the graph, it is verified upon
device link addition that the supplier is not dependent on the consumer or any
children or consumers of the consumer. (Call to device_is_dependent() from
device_link_add().) If that constraint is violated, device_link_add()will return
NULL and a WARNING will be logged.

Notably this also prevents the addition of a device link from a parent device to a
child. However the converse is allowed, i.e. a device link from a child to a parent.
Since the driver core already guarantees correct suspend/resume and shutdown
ordering between parent and child, such a device link only makes sense if a driver
presence dependency is needed on top of that. In this case driver authors should
weigh carefully if a device link is at all the right tool for the purpose. A more
suitable approach might be to simply use deferred probing or add a device flag
causing the parent driver to be probed before the child one.

11.4. Alternatives 283

Linux Driver-api Documentation

11.6 State machine

enum device_link_state
Device link states.

Constants
DL_STATE_NONE The presence of the drivers is not being tracked.

DL_STATE_DORMANT None of the supplier/consumer drivers is present.

DL_STATE_AVAILABLE The supplier driver is present, but the consumer is not.

DL_STATE_CONSUMER_PROBE The consumer is probing (supplier driver present).

DL_STATE_ACTIVE Both the supplier and consumer drivers are present.

DL_STATE_SUPPLIER_UNBIND The supplier driver is unbinding.

.=============================.
| |
v |

DORMANT <=> AVAILABLE <=> CONSUMER_PROBE => ACTIVE
^ |
| |
'============ SUPPLIER_UNBIND <============'

• The initial state of a device link is automatically determined by
device_link_add() based on the driver presence on the supplier and con-
sumer. If the link is created before any devices are probed, it is set to
DL_STATE_DORMANT.

• When a supplier device is bound to a driver, links to its consumers
progress to DL_STATE_AVAILABLE. (Call to device_links_driver_bound()
from driver_bound().)

• Before a consumer device is probed, presence of supplier drivers is veri-
fied by checking the consumer device is not in the wait_for_suppliers list
and by checking that links to suppliers are in DL_STATE_AVAILABLE state.
The state of the links is updated to DL_STATE_CONSUMER_PROBE. (Call to
device_links_check_suppliers() from really_probe().) This prevents
the supplier from unbinding. (Call to wait_for_device_probe() from
device_links_unbind_consumers().)

• If the probe fails, links to suppliers revert back to DL_STATE_AVAILABLE. (Call
to device_links_no_driver() from really_probe().)

• If the probe succeeds, links to suppliers progress to DL_STATE_ACTIVE. (Call
to device_links_driver_bound() from driver_bound().)

• When the consumer’s driver is later on removed, links to suppliers re-
vert back to DL_STATE_AVAILABLE. (Call to __device_links_no_driver()
from device_links_driver_cleanup(), which in turn is called from
__device_release_driver().)

• Before a supplier’s driver is removed, links to consumers that are not
bound to a driver are updated to DL_STATE_SUPPLIER_UNBIND. (Call to
device_links_busy() from __device_release_driver().) This prevents

284 Chapter 11. Device links

Linux Driver-api Documentation

the consumers from binding. (Call to device_links_check_suppliers()
from really_probe().) Consumers that are bound are freed from their
driver; consumers that are probing are waited for until they are done. (Call
to device_links_unbind_consumers() from __device_release_driver().)
Once all links to consumers are in DL_STATE_SUPPLIER_UNBIND state, the sup-
plier driver is released and the links revert to DL_STATE_DORMANT. (Call to
device_links_driver_cleanup() from __device_release_driver().)

11.7 API

struct device_link * device_link_add(struct device * consumer, struct de-
vice * supplier, u32 flags)

Create a link between two devices.

Parameters
struct device * consumer Consumer end of the link.

struct device * supplier Supplier end of the link.

u32 flags Link flags.

Description
The caller is responsible for the proper synchronization of the link creation
with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause
the runtime PM framework to take the link into account. Second, if the
DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will be
forced into the active metastate and reference-counted upon the creation of the
link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be ig-
nored.

If DL_FLAG_STATELESS is set in flags, the caller of this function is expected to
release the link returned by it directly with the help of either device_link_del()
or device_link_remove().

If that flag is not set, however, the caller of this function is hand-
ing the management of the link over to the driver core entirely and
its return value can only be used to check whether or not the link
is present. In that case, the DL_FLAG_AUTOREMOVE_CONSUMER and
DL_FLAG_AUTOREMOVE_SUPPLIER device link flags can be used to indicate to
the driver core when the link can be safely deleted. Namely, setting one of them
in flags indicates to the driver core that the link is not going to be used (by the
given caller of this function) after unbinding the consumer or supplier driver, re-
spectively, from its device, so the link can be deleted at that point. If none of them
is set, the link will be maintained until one of the devices pointed to by it (either
the consumer or the supplier) is unregistered.

Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
DL_FLAG_AUTOREMOVE_SUPPLIER are not set in flags (that is, a persistent
managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER
flag can be used to request the driver core to automaticall probe for a consmer
driver after successfully binding a driver to the supplier device.

11.7. API 285

Linux Driver-api Documentation

The combination of DL_FLAG_STATELESS and one of
DL_FLAG_AUTOREMOVE_CONSUMER, DL_FLAG_AUTOREMOVE_SUPPLIER,
or DL_FLAG_AUTOPROBE_CONSUMER set in flags at the same time is invalid
and will cause NULL to be returned upfront. However, if a device link between
the given consumer and supplier pair exists already when this function is called
for them, the existing link will be returned regardless of its current type and
status (the link’s flags may be modified then). The caller of this function is then
expected to treat the link as though it has just been created, so (in particular) if
DL_FLAG_STATELESS was passed in flags, the link needs to be released explicitly
when not needed any more (as stated above).

A side effect of the link creation is re-ordering of dpm_list and the devices_kset
list by moving the consumer device and all devices depending on it to the ends of
these lists (that does not happen to devices that have not been registered when
this function is called).

The supplier device is required to be registered when this function is called and
NULL will be returned if that is not the case. The consumer device need not be
registered, however.

void device_link_del(struct device_link * link)
Delete a stateless link between two devices.

Parameters
struct device_link * link Device link to delete.

Description
The caller must ensure proper synchronization of this function with runtime PM.
If the link was added multiple times, it needs to be deleted as often. Care is
required for hotplugged devices: Their links are purged on removal and calling
device_link_del() is then no longer allowed.

void device_link_remove(void * consumer, struct device * supplier)
Delete a stateless link between two devices.

Parameters
void * consumer Consumer end of the link.

struct device * supplier Supplier end of the link.

Description
The caller must ensure proper synchronization of this function with runtime PM.

286 Chapter 11. Device links

CHAPTER

TWELVE

COMPONENT HELPER FOR AGGREGATE DRIVERS

The component helper allows drivers to collect a pile of sub-devices, including
their bound drivers, into an aggregate driver. Various subsystems already provide
functions to get hold of such components, e.g. of_clk_get_by_name(). The compo-
nent helper can be used when such a subsystem-specific way to find a device is not
available: The component helper fills the niche of aggregate drivers for specific
hardware, where further standardization into a subsystem would not be practi-
cal. The common example is when a logical device (e.g. a DRM display driver) is
spread around the SoC on various components (scanout engines, blending blocks,
transcoders for various outputs and so on).

The component helper also doesn’t solve runtime dependencies, e.g. for system
suspend and resume operations. See also device links.

Components are registered using component_add() and unregistered with
component_del(), usually from the driver’s probe and disconnect functions.
Aggregate drivers first assemble a component match list of what they need
using component_match_add(). This is then registered as an aggregate
driver using component_master_add_with_match(), and unregistered using
component_master_del().

12.1 API

struct component_ops
callbacks for component drivers

Definition

struct component_ops {
int (*bind)(struct device *comp, struct device *master, void *master_

↪→data);
void (*unbind)(struct device *comp, struct device *master, void *master_

↪→data);
};

Members
bind Called through component_bind_all() when the aggregate driver is ready

to bind the overall driver.

287

Linux Driver-api Documentation

unbind Called through component_unbind_all() when the aggregate driver is
ready to bind the overall driver, or when component_bind_all() fails part-
ways through and needs to unbind some already bound components.

Description
Components are registered with component_add() and unregistered with
component_del().

struct component_master_ops
callback for the aggregate driver

Definition

struct component_master_ops {
int (*bind)(struct device *master);
void (*unbind)(struct device *master);

};

Members
bind Called when all components or the aggregate driver, as specified in the

match list passed to component_master_add_with_match(), are ready. Usu-
ally there are 3 steps to bind an aggregate driver:

1. Allocate a structure for the aggregate driver.

2. Bind all components to the aggregate driver by calling
component_bind_all() with the aggregate driver structure as opaque
pointer data.

3. Register the aggregate driver with the subsystem to publish its inter-
faces.

Note that the lifetime of the aggregate driver does not align with any of the
underlying struct device instances. Therefore devm cannot be used and all
resources acquired or allocated in this callback must be explicitly released in
the unbind callback.

unbind Called when either the aggregate driver, using component_master_del(),
or one of its components, using component_del(), is unregistered.

Description
Aggregate drivers are registered with component_master_add_with_match() and
unregistered with component_master_del().

void component_match_add(struct device * master, struct component_match
** matchptr, int (*compare)(struct device *, void
*), void * compare_data)

add a component match entry

Parameters
struct device * master device with the aggregate driver

struct component_match ** matchptr pointer to the list of component matches

int (*)(struct device *, void *) compare compare function to match
against all components

288 Chapter 12. Component Helper for Aggregate Drivers

Linux Driver-api Documentation

void * compare_data opaque pointer passed to the compare function
Description
Adds a new component match to the list stored in matchptr, which the master
aggregate driver needs to function. The list of component matches pointed to by
matchptr must be initialized to NULL before adding the first match. This only
matches against components added with component_add().

The allocatedmatch list inmatchptr is automatically released using devm actions.
See also component_match_add_release() and component_match_add_typed().

void component_match_add_release(struct device * master, struct com-
ponent_match ** matchptr, void (*re-
lease)(struct device *, void *), int
(*compare) (struct device *, void *),
void * compare_data)

add a component match entry with release callback

Parameters
struct device * master device with the aggregate driver

struct component_match ** matchptr pointer to the list of component matches

void (*)(struct device *, void *) release release function for com-
pare_data

int (*)(struct device *, void *) compare compare function to match
against all components

void * compare_data opaque pointer passed to the compare function
Description
Adds a new component match to the list stored in matchptr, which the master
aggregate driver needs to function. The list of component matches pointed to by
matchptr must be initialized to NULL before adding the first match. This only
matches against components added with component_add().

The allocated match list in matchptr is automatically released using devm ac-
tions, where upon release will be called to free any references held by com-
pare_data, e.g. when compare_data is a device_node that must be released
with of_node_put().

See also component_match_add() and component_match_add_typed().

void component_match_add_typed(struct device * master, struct compo-
nent_match ** matchptr, int (*com-
pare_typed)(struct device *, int, void *),
void * compare_data)

add a component match entry for a typed component

Parameters
struct device * master device with the aggregate driver

struct component_match ** matchptr pointer to the list of component matches

12.1. API 289

Linux Driver-api Documentation

int (*)(struct device *, int, void *) compare_typed compare function to
match against all typed components

void * compare_data opaque pointer passed to the compare function
Description
Adds a new component match to the list stored in matchptr, which the master
aggregate driver needs to function. The list of component matches pointed to by
matchptr must be initialized to NULL before adding the first match. This only
matches against components added with component_add_typed().

The allocatedmatch list inmatchptr is automatically released using devm actions.
See also component_match_add_release() and component_match_add_typed().

int component_master_add_with_match(struct device * dev, const struct
component_master_ops * ops,
struct component_match * match)

register an aggregate driver

Parameters
struct device * dev device with the aggregate driver

const struct component_master_ops * ops callbacks for the aggregate driver

struct component_match * match component match list for the aggregate
driver

Description
Registers a new aggregate driver consisting of the components added to match
by calling one of the component_match_add() functions. Once all components in
match are available, it will be assembled by calling component_master_ops.bind
from ops. Must be unregistered by calling component_master_del().
void component_master_del(struct device * dev, const struct compo-

nent_master_ops * ops)
unregister an aggregate driver

Parameters
struct device * dev device with the aggregate driver

const struct component_master_ops * ops callbacks for the aggregate driver

Description
Unregisters an aggregate driver registeredwith component_master_add_with_match().
If necessary the aggregate driver is first disassembled by calling
component_master_ops.unbind from ops.
void component_unbind_all(struct device * master_dev, void * data)

unbind all components of an aggregate driver

Parameters
struct device * master_dev device with the aggregate driver

void * data opaque pointer, passed to all components

290 Chapter 12. Component Helper for Aggregate Drivers

Linux Driver-api Documentation

Description
Unbinds all components of the aggregate dev by passing data to their
component_ops.unbind functions. Should be called from component_master_ops.
unbind.

int component_bind_all(struct device * master_dev, void * data)
bind all components of an aggregate driver

Parameters
struct device * master_dev device with the aggregate driver

void * data opaque pointer, passed to all components

Description
Binds all components of the aggregate dev by passing data to their
component_ops.bind functions. Should be called from component_master_ops.
bind.

int component_add_typed(struct device * dev, const struct component_ops
* ops, int subcomponent)

register a component

Parameters
struct device * dev component device

const struct component_ops * ops component callbacks

int subcomponent nonzero identifier for subcomponents

Description
Register a new component for dev. Functions in ops will be call when the aggre-
gate driver is ready to bind the overall driver by calling component_bind_all().
See also struct component_ops.

subcomponent must be nonzero and is used to differentiate between multiple
components registerd on the same device dev. These components are match using
component_match_add_typed().

The component needs to be unregistered at driver unload/disconnect by calling
component_del().

See also component_add().

int component_add(struct device * dev, const struct component_ops * ops)
register a component

Parameters
struct device * dev component device

const struct component_ops * ops component callbacks

Description
Register a new component for dev. Functions in opswill be called when the aggre-
gate driver is ready to bind the overall driver by calling component_bind_all().
See also struct component_ops.

12.1. API 291

Linux Driver-api Documentation

The component needs to be unregistered at driver unload/disconnect by calling
component_del().

See also component_add_typed() for a variant that allowsmultipled different com-
ponents on the same device.

void component_del(struct device * dev, const struct component_ops * ops)
unregister a component

Parameters
struct device * dev component device

const struct component_ops * ops component callbacks

Description
Unregister a component added with component_add(). If the component is bound
into an aggregate driver, this will force the entire aggregate driver, including all
its components, to be unbound.

292 Chapter 12. Component Helper for Aggregate Drivers

CHAPTER

THIRTEEN

MESSAGE-BASED DEVICES

13.1 Fusion message devices

u8 mpt_register(MPT_CALLBACK cbfunc, MPT_DRIVER_CLASS dclass,
char * func_name)

Register protocol-specific main callback handler.

Parameters
MPT_CALLBACK cbfunc callback function pointer

MPT_DRIVER_CLASS dclass Protocol driver’s class (MPT_DRIVER_CLASS enum
value)

char * func_name call function’s name
This routine is called by a protocol-specific driver (SCSI host, LAN, SCSI tar-
get) to register its reply callback routine. Each protocol-specific driver must
do this before it will be able to use any IOC resources, such as obtaining
request frames.

NOTES
The SCSI protocol driver currently calls this routine thrice in order to reg-

ister separate callbacks; one for“normal”SCSI IO; one for MptScsiTaskMgmt
requests; one for Scan/DV requests.

Returns u8 valued“handle”in the range (and S.O.D. order) {N,⋯,7,6,5,⋯,1}
if successful. A return value of MPT_MAX_PROTOCOL_DRIVERS (including
zero!) should be considered an error by the caller.

void mpt_deregister(u8 cb_idx)
Deregister a protocol drivers resources.

Parameters
u8 cb_idx previously registered callback handle

Each protocol-specific driver should call this routine when its module is un-
loaded.

int mpt_event_register(u8 cb_idx, MPT_EVHANDLER ev_cbfunc)
Register protocol-specific event callback handler.

Parameters
u8 cb_idx previously registered (via mpt_register) callback handle

293

Linux Driver-api Documentation

MPT_EVHANDLER ev_cbfunc callback function

This routine can be called by one or more protocol-specific drivers if/when
they choose to be notified of MPT events.

Returns 0 for success.

void mpt_event_deregister(u8 cb_idx)
Deregister protocol-specific event callback handler

Parameters
u8 cb_idx previously registered callback handle

Each protocol-specific driver should call this routine when it does not (or can
no longer) handle events, or when its module is unloaded.

int mpt_reset_register(u8 cb_idx, MPT_RESETHANDLER reset_func)
Register protocol-specific IOC reset handler.

Parameters
u8 cb_idx previously registered (via mpt_register) callback handle

MPT_RESETHANDLER reset_func reset function

This routine can be called by one or more protocol-specific drivers if/when
they choose to be notified of IOC resets.

Returns 0 for success.

void mpt_reset_deregister(u8 cb_idx)
Deregister protocol-specific IOC reset handler.

Parameters
u8 cb_idx previously registered callback handle

Each protocol-specific driver should call this routine when it does not (or can
no longer) handle IOC reset handling, or when its module is unloaded.

int mpt_device_driver_register(struct mpt_pci_driver * dd_cbfunc,
u8 cb_idx)

Register device driver hooks

Parameters
struct mpt_pci_driver * dd_cbfunc driver callbacks struct

u8 cb_idx MPT protocol driver index

void mpt_device_driver_deregister(u8 cb_idx)
DeRegister device driver hooks

Parameters
u8 cb_idx MPT protocol driver index

MPT_FRAME_HDR* mpt_get_msg_frame(u8 cb_idx, MPT_ADAPTER * ioc)
Obtain an MPT request frame from the pool

Parameters
u8 cb_idx Handle of registered MPT protocol driver

294 Chapter 13. Message-based devices

Linux Driver-api Documentation

MPT_ADAPTER * ioc Pointer to MPT adapter structure

Obtain an MPT request frame from the pool (of 1024) that are allocated per
MPT adapter.

Returns pointer to a MPT request frame or NULL if none are available or IOC
is not active.

void mpt_put_msg_frame(u8 cb_idx, MPT_ADAPTER * ioc,
MPT_FRAME_HDR * mf)

Send a protocol-specific MPT request frame to an IOC

Parameters
u8 cb_idx Handle of registered MPT protocol driver

MPT_ADAPTER * ioc Pointer to MPT adapter structure

MPT_FRAME_HDR * mf Pointer to MPT request frame

This routine posts anMPT request frame to the request post FIFO of a specific
MPT adapter.

void mpt_put_msg_frame_hi_pri(u8 cb_idx, MPT_ADAPTER * ioc,
MPT_FRAME_HDR * mf)

Send a hi-pri protocol-specific MPT request frame

Parameters
u8 cb_idx Handle of registered MPT protocol driver

MPT_ADAPTER * ioc Pointer to MPT adapter structure

MPT_FRAME_HDR * mf Pointer to MPT request frame

Send a protocol-specific MPT request frame to an IOC using hi-priority re-
quest queue.

This routine posts anMPT request frame to the request post FIFO of a specific
MPT adapter.

void mpt_free_msg_frame(MPT_ADAPTER * ioc, MPT_FRAME_HDR * mf)
Place MPT request frame back on FreeQ.

Parameters
MPT_ADAPTER * ioc Pointer to MPT adapter structure

MPT_FRAME_HDR * mf Pointer to MPT request frame

This routine places a MPT request frame back on the MPT adapter’s FreeQ.
int mpt_send_handshake_request(u8 cb_idx, MPT_ADAPTER * ioc,

int reqBytes, u32 * req, int sleepFlag)
Send MPT request via doorbell handshake method.

Parameters
u8 cb_idx Handle of registered MPT protocol driver

MPT_ADAPTER * ioc Pointer to MPT adapter structure

int reqBytes Size of the request in bytes

u32 * req Pointer to MPT request frame

13.1. Fusion message devices 295

Linux Driver-api Documentation

int sleepFlag Use schedule if CAN_SLEEP else use udelay.

This routine is used exclusively to sendMptScsiTaskMgmt requests since they
are required to be sent via doorbell handshake.

NOTE
It is the callers responsibility to byte-swap fields in the request which are

greater than 1 byte in size.

Returns 0 for success, non-zero for failure.

int mpt_verify_adapter(int iocid, MPT_ADAPTER ** iocpp)
Given IOC identifier, set pointer to its adapter structure.

Parameters
int iocid IOC unique identifier (integer)

MPT_ADAPTER ** iocpp Pointer to pointer to IOC adapter

Given a unique IOC identifier, set pointer to the associated MPT adapter
structure.

Returns iocid and sets iocpp if iocid is found. Returns -1 if iocid is not found.

int mpt_attach(struct pci_dev * pdev, const struct pci_device_id * id)
Install a PCI intelligent MPT adapter.

Parameters
struct pci_dev * pdev Pointer to pci_dev structure

const struct pci_device_id * id PCI device ID information

This routine performs all the steps necessary to bring the IOC of a MPT
adapter to a OPERATIONAL state. This includes registering memory regions,
registering the interrupt, and allocating request and reply memory pools.

This routine also pre-fetches the LAN MAC address of a Fibre Channel MPT
adapter.

Returns 0 for success, non-zero for failure.

TODO: Add support for polled controllers

void mpt_detach(struct pci_dev * pdev)
Remove a PCI intelligent MPT adapter.

Parameters
struct pci_dev * pdev Pointer to pci_dev structure

int mpt_suspend(struct pci_dev * pdev, pm_message_t state)
Fusion MPT base driver suspend routine.

Parameters
struct pci_dev * pdev Pointer to pci_dev structure

pm_message_t state new state to enter

int mpt_resume(struct pci_dev * pdev)
Fusion MPT base driver resume routine.

296 Chapter 13. Message-based devices

Linux Driver-api Documentation

Parameters
struct pci_dev * pdev Pointer to pci_dev structure

u32 mpt_GetIocState(MPT_ADAPTER * ioc, int cooked)
Get the current state of a MPT adapter.

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

int cooked Request raw or cooked IOC state

Returns all IOC Doorbell register bits if cooked==0, else just the Doorbell
bits in MPI_IOC_STATE_MASK.

int mpt_alloc_fw_memory(MPT_ADAPTER * ioc, int size)
allocate firmware memory

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

int size total FW bytes

If memory has already been allocated, the same (cached) value is returned.

Return 0 if successful, or non-zero for failure

void mpt_free_fw_memory(MPT_ADAPTER * ioc)
free firmware memory

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

If alt_img is NULL, delete from ioc structure. Else, delete a secondary image
in same format.

int mptbase_sas_persist_operation(MPT_ADAPTER * ioc,
u8 persist_opcode)

Perform operation on SAS Persistent Table

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

u8 persist_opcode see below

MPI_SAS_OP_CLEAR_NOT_PRESENTFree all persist TargetID mappings for de-
vices not currently present.

MPI_SAS_OP_CLEAR_ALL_PERSISTENTClear al persist TargetID mappings

NOTE
Don’t use not this function during interrupt time.

Returns 0 for success, non-zero error

int mpt_raid_phys_disk_pg0(MPT_ADAPTER * ioc, u8 phys_disk_num,
RaidPhysDiskPage0_t * phys_disk)

returns phys disk page zero

13.1. Fusion message devices 297

Linux Driver-api Documentation

Parameters
MPT_ADAPTER * ioc Pointer to a Adapter Structure

u8 phys_disk_num io unit unique phys disk num generated by the ioc

RaidPhysDiskPage0_t * phys_disk requested payload data returned

Return
0 on success -EFAULT if read of config page header fails or data pointer
not NULL -ENOMEM if pci_alloc failed

int mpt_raid_phys_disk_get_num_paths(MPT_ADAPTER * ioc,
u8 phys_disk_num)

returns number paths associated to this phys_num

Parameters
MPT_ADAPTER * ioc Pointer to a Adapter Structure

u8 phys_disk_num io unit unique phys disk num generated by the ioc

Return
returns number paths

int mpt_raid_phys_disk_pg1(MPT_ADAPTER * ioc, u8 phys_disk_num,
RaidPhysDiskPage1_t * phys_disk)

returns phys disk page 1

Parameters
MPT_ADAPTER * ioc Pointer to a Adapter Structure

u8 phys_disk_num io unit unique phys disk num generated by the ioc

RaidPhysDiskPage1_t * phys_disk requested payload data returned

Return
0 on success -EFAULT if read of config page header fails or data pointer
not NULL -ENOMEM if pci_alloc failed

int mpt_findImVolumes(MPT_ADAPTER * ioc)
Identify IDs of hidden disks and RAID Volumes

Parameters
MPT_ADAPTER * ioc Pointer to a Adapter Strucutre

Return
0 on success -EFAULT if read of config page header fails or data pointer
not NULL -ENOMEM if pci_alloc failed

int mpt_config(MPT_ADAPTER * ioc, CONFIGPARMS * pCfg)
Generic function to issue config message

Parameters
MPT_ADAPTER * ioc Pointer to an adapter structure

298 Chapter 13. Message-based devices

Linux Driver-api Documentation

CONFIGPARMS * pCfg Pointer to a configuration structure. Struct contains action,
page address, direction, physical address and pointer to a configuration page
header Page header is updated.

Returns 0 for success -EPERM if not allowed due to ISR context
-EAGAIN if no msg frames currently available -EFAULT for non-
successful reply or no reply (timeout)

void mpt_print_ioc_summary(MPT_ADAPTER * ioc, char * buffer, int * size,
int len, int showlan)

Write ASCII summary of IOC to a buffer.

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

char * buffer Pointer to buffer where IOC summary info should be written

int * size Pointer to number of bytes we wrote (set by this routine)

int len Offset at which to start writing in buffer

int showlan Display LAN stuff?

This routine writes (english readable) ASCII text, which represents a sum-
mary of IOC information, to a buffer.

int mpt_set_taskmgmt_in_progress_flag(MPT_ADAPTER * ioc)
set flags associated with task management

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

Returns 0 for SUCCESS or -1 if FAILED.

If -1 is return, then it was not possible to set the flags

void mpt_clear_taskmgmt_in_progress_flag(MPT_ADAPTER * ioc)
clear flags associated with task management

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

void mpt_halt_firmware(MPT_ADAPTER * ioc)
Halts the firmware if it is operational and panic the kernel

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

int mpt_Soft_Hard_ResetHandler(MPT_ADAPTER * ioc, int sleepFlag)
Try less expensive reset

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

int sleepFlag Indicates if sleep or schedule must be called.

Returns 0 for SUCCESS or -1 if FAILED. Try for softreset first, only if it fails
go for expensive HardReset.

13.1. Fusion message devices 299

Linux Driver-api Documentation

int mpt_HardResetHandler(MPT_ADAPTER * ioc, int sleepFlag)
Generic reset handler

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

int sleepFlag Indicates if sleep or schedule must be called.

Issues SCSI Task Management call based on input arg values. If TaskMgmt
fails, returns associated SCSI request.

Remark: _HardResetHandler can be invoked from an interrupt thread (timer)
or a non-interrupt thread. In the former, must not call schedule().

Note
A return of -1 is a FATAL error case, as it means a FW reload/initialization

failed.

Returns 0 for SUCCESS or -1 if FAILED.

const char * mptscsih_info(struct Scsi_Host * SChost)
Return information about MPT adapter

Parameters
struct Scsi_Host * SChost Pointer to Scsi_Host structure

(linux scsi_host_template.info routine)

Returns pointer to buffer where information was written.

int mptscsih_qcmd(struct scsi_cmnd * SCpnt)
Primary Fusion MPT SCSI initiator IO start routine.

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure

(linux scsi_host_template.queuecommand routine) This is the primary SCSI
IO start routine. Create aMPI SCSIIORequest from a linux scsi_cmnd request
and send it to the IOC.

Returns 0. (rtn value discarded by linux scsi mid-layer)

int mptscsih_IssueTaskMgmt(MPT_SCSI_HOST * hd, u8 type, u8 channel,
u8 id, u64 lun, int ctx2abort, ulong timeout)

Generic send Task Management function.

Parameters
MPT_SCSI_HOST * hd Pointer to MPT_SCSI_HOST structure

u8 type Task Management type

u8 channel channel number for task management

u8 id Logical Target ID for reset (if appropriate)

u64 lun Logical Unit for reset (if appropriate)

int ctx2abort Context for the task to be aborted (if appropriate)

300 Chapter 13. Message-based devices

Linux Driver-api Documentation

ulong timeout timeout for task management control

Remark: _HardResetHandler can be invoked from an interrupt thread (timer)
or a non-interrupt thread. In the former, must not call schedule().

Not all fields are meaningfull for all task types.

Returns 0 for SUCCESS, or FAILED.

int mptscsih_abort(struct scsi_cmnd * SCpnt)
Abort linux scsi_cmnd routine, new_eh variant

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, IO to be aborted

(linux scsi_host_template.eh_abort_handler routine)

Returns SUCCESS or FAILED.

int mptscsih_dev_reset(struct scsi_cmnd * SCpnt)
Perform a SCSI TARGET_RESET! new_eh variant

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, IO which reset is due

to

(linux scsi_host_template.eh_dev_reset_handler routine)

Returns SUCCESS or FAILED.

int mptscsih_bus_reset(struct scsi_cmnd * SCpnt)
Perform a SCSI BUS_RESET! new_eh variant

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, IO which reset is due

to

(linux scsi_host_template.eh_bus_reset_handler routine)

Returns SUCCESS or FAILED.

int mptscsih_host_reset(struct scsi_cmnd * SCpnt)
Perform a SCSI host adapter RESET (new_eh variant)

Parameters
struct scsi_cmnd * SCpnt Pointer to scsi_cmnd structure, IO which reset is due

to

(linux scsi_host_template.eh_host_reset_handler routine)

Returns SUCCESS or FAILED.

int mptscsih_taskmgmt_complete(MPT_ADAPTER * ioc, MPT_FRAME_HDR
* mf, MPT_FRAME_HDR * mr)

Registered with Fusion MPT base driver

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

MPT_FRAME_HDR * mf Pointer to SCSI task mgmt request frame

13.1. Fusion message devices 301

Linux Driver-api Documentation

MPT_FRAME_HDR * mr Pointer to SCSI task mgmt reply frame

This routine is called from mptbase.c::mpt_interrupt() at the completion of
any SCSI task management request. This routine is registered with the MPT
(base) driver at driver load/init time via the mpt_register() API call.

Returns 1 indicating alloc’d request frame ptr should be freed.
struct scsi_cmnd * mptscsih_get_scsi_lookup(MPT_ADAPTER * ioc, int i)

retrieves scmd entry

Parameters
MPT_ADAPTER * ioc Pointer to MPT_ADAPTER structure

int i index into the array

Description
Returns the scsi_cmd pointer

302 Chapter 13. Message-based devices

CHAPTER

FOURTEEN

INFINIBAND AND REMOTE DMA (RDMA) INTERFACES

14.1 Introduction and Overview

TBD

14.2 InfiniBand core interfaces

struct iwpm_nlmsg_request * iwpm_get_nlmsg_request(__u32 nlmsg_seq,
u8 nl_client,
gfp_t gfp)

Allocate and initialize netlink message request

Parameters
__u32 nlmsg_seq Sequence number of the netlink message

u8 nl_client The index of the netlink client

gfp_t gfp Indicates how the memory for the request should be allocated

Description
Returns the newly allocated netlink request object if successful, otherwise returns
NULL

void iwpm_free_nlmsg_request(struct kref * kref)
Deallocate netlink message request

Parameters
struct kref * kref Holds reference of netlink message request

struct iwpm_nlmsg_request * iwpm_find_nlmsg_request(__u32 echo_seq)
Find netlink message request in the request list

Parameters
__u32 echo_seq Sequence number of the netlink request to find

Description
Returns the found netlink message request, if not found, returns NULL

int iwpm_wait_complete_req(struct iwpm_nlmsg_request * nlmsg_request)
Block while servicing the netlink request

303

Linux Driver-api Documentation

Parameters
struct iwpm_nlmsg_request * nlmsg_request Netlink message request to ser-

vice

Description
Wakes up, after the request is completed or expired Returns 0 if the request is
complete without error

int iwpm_get_nlmsg_seq(void)
Get the sequence number for a netlink message to send to the port mapper

Parameters
void no arguments

Description
Returns the sequence number for the netlink message.

void iwpm_add_remote_info(struct iwpm_remote_info * reminfo)
Add remote address info of the connecting peer to the remote info hash table

Parameters
struct iwpm_remote_info * reminfo The remote info to be added

int iwpm_valid_client(u8 nl_client)
Check if the port mapper client is valid

Parameters
u8 nl_client The index of the netlink client

Description
Valid clients need to call iwpm_init() before using the port mapper

void iwpm_set_valid(u8 nl_client, int valid)
Set the port mapper client to valid or not

Parameters
u8 nl_client The index of the netlink client

int valid 1 if valid or 0 if invalid

u32 iwpm_check_registration(u8 nl_client, u32 reg)
Check if the client registration matches the given one

Parameters
u8 nl_client The index of the netlink client

u32 reg The given registration type to compare with

Description
Call iwpm_register_pid() to register a client Returns true if the client registration
matches reg, otherwise returns false

void iwpm_set_registration(u8 nl_client, u32 reg)
Set the client registration

304 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Parameters
u8 nl_client The index of the netlink client

u32 reg Registration type to set

u32 iwpm_get_registration(u8 nl_client)

Parameters
u8 nl_client The index of the netlink client

Description
Returns the client registration type

int iwpm_send_mapinfo(u8 nl_client, int iwpm_pid)
Send local and mapped IPv4/IPv6 address info of a client to the user space
port mapper

Parameters
u8 nl_client The index of the netlink client

int iwpm_pid The pid of the user space port mapper

Description
If successful, returns the number of sent mapping info records

int iwpm_mapinfo_available(void)
Check if any mapping info records is available in the hash table

Parameters
void no arguments

Description
Returns 1 if mapping information is available, otherwise returns 0

int iwpm_compare_sockaddr(struct sockaddr_storage * a_sockaddr, struct
sockaddr_storage * b_sockaddr)

Compare two sockaddr storage structs

Parameters
struct sockaddr_storage * a_sockaddr first sockaddr to compare

struct sockaddr_storage * b_sockaddr second sockaddr to compare

Return
0 if they are holding the same ip/tcp address info, otherwise returns 1

int iwpm_validate_nlmsg_attr(struct nlattr * nltb, int nla_count)
Check for NULL netlink attributes

Parameters
struct nlattr * nltb Holds address of each netlink message attributes

int nla_count Number of netlink message attributes

14.2. InfiniBand core interfaces 305

Linux Driver-api Documentation

Description
Returns error if any of the nla_count attributes is NULL

struct sk_buff * iwpm_create_nlmsg(u32 nl_op, struct nlmsghdr ** nlh,
int nl_client)

Allocate skb and form a netlink message

Parameters
u32 nl_op Netlink message opcode

struct nlmsghdr ** nlh Holds address of the netlink message header in skb

int nl_client The index of the netlink client

Description
Returns the newly allcated skb, or NULL if the tailroom of the skb is insufficient
to store the message header and payload

int iwpm_parse_nlmsg(struct netlink_callback * cb, int policy_max, const
struct nla_policy * nlmsg_policy, struct nlattr * nltb,
const char * msg_type)

Validate and parse the received netlink message

Parameters
struct netlink_callback * cb Netlink callback structure

int policy_max Maximum attribute type to be expected

const struct nla_policy * nlmsg_policy Validation policy

struct nlattr * nltb Array to store policy_max parsed elements

const char * msg_type Type of netlink message

Description
Returns 0 on success or a negative error code

void iwpm_print_sockaddr(struct sockaddr_storage * sockaddr, char
* msg)

Print IPv4/IPv6 address and TCP port

Parameters
struct sockaddr_storage * sockaddr Socket address to print

char * msg Message to print

int iwpm_send_hello(u8 nl_client, int iwpm_pid, u16 abi_version)
Send hello response to iwpmd

Parameters
u8 nl_client The index of the netlink client

int iwpm_pid The pid of the user space port mapper

u16 abi_version The kernel’s abi_version
Description
Returns 0 on success or a negative error code

306 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

int ib_process_cq_direct(struct ib_cq * cq, int budget)
process a CQ in caller context

Parameters
struct ib_cq * cq CQ to process

int budget number of CQEs to poll for

Description
This function is used to process all outstanding CQ entries. It does not offload
CQ processing to a different context and does not ask for completion interrupts
from the HCA. Using direct processing on CQwith non IB_POLL_DIRECT type may
trigger concurrent processing.

Note
do not pass -1 as budget unless it is guaranteed that the number of completions
that will be processed is small.

struct ib_cq * __ib_alloc_cq_user(struct ib_device * dev, void * private,
int nr_cqe, int comp_vector, enum
ib_poll_context poll_ctx, const char
* caller, struct ib_udata * udata)

allocate a completion queue

Parameters
struct ib_device * dev device to allocate the CQ for

void * private driver private data, accessible from cq->cq_context

int nr_cqe number of CQEs to allocate

int comp_vector HCA completion vectors for this CQ

enum ib_poll_context poll_ctx context to poll the CQ from.

const char * caller module owner name.

struct ib_udata * udata Valid user data or NULL for kernel object

Description
This is the proper interface to allocate a CQ for in-kernel users. A CQ allocated
with this interface will automatically be polled from the specified context. The
ULP must use wr->wr_cqe instead of wr->wr_id to use this CQ abstraction.

struct ib_cq * __ib_alloc_cq_any(struct ib_device * dev, void * private,
int nr_cqe, enum ib_poll_context poll_ctx,
const char * caller)

allocate a completion queue

Parameters
struct ib_device * dev device to allocate the CQ for

void * private driver private data, accessible from cq->cq_context

int nr_cqe number of CQEs to allocate

enum ib_poll_context poll_ctx context to poll the CQ from

14.2. InfiniBand core interfaces 307

Linux Driver-api Documentation

const char * caller module owner name

Description
Attempt to spread ULP Completion Queues over each device’s interrupt vectors.
A simple best-effort mechanism is used.

void ib_free_cq_user(struct ib_cq * cq, struct ib_udata * udata)
free a completion queue

Parameters
struct ib_cq * cq completion queue to free.

struct ib_udata * udata User data or NULL for kernel object

struct ib_cq * ib_cq_pool_get(struct ib_device * dev, unsigned
int nr_cqe, int comp_vector_hint, enum
ib_poll_context poll_ctx)

Find the least used completion queue that matches a given cpu hint (or least
used for wild card affinity) and fits nr_cqe.

Parameters
struct ib_device * dev rdma device

unsigned int nr_cqe number of needed cqe entries

int comp_vector_hint completion vector hint (-1) for the driver to assign a comp
vector based on internal counter

enum ib_poll_context poll_ctx cq polling context

Description
Finds a cq that satisfies comp_vector_hint and nr_cqe requirements and claim
entries in it for us. In case there is no available cq, allocate a new cq with the
requirements and add it to the device pool. IB_POLL_DIRECT cannot be used for
shared cqs so it is not a valid value for poll_ctx.
void ib_cq_pool_put(struct ib_cq * cq, unsigned int nr_cqe)

Return a CQ taken from a shared pool.

Parameters
struct ib_cq * cq The CQ to return.

unsigned int nr_cqe The max number of cqes that the user had requested.

int ib_cm_listen(struct ib_cm_id * cm_id, __be64 service_id,
__be64 service_mask)

Initiates listening on the specified service ID for connection and service ID
resolution requests.

Parameters
struct ib_cm_id * cm_id Connection identifier associated with the listen re-

quest.

__be64 service_id Service identifier matched against incoming connection and
service ID resolution requests. The service ID should be specified network-

308 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

byte order. If set to IB_CM_ASSIGN_SERVICE_ID, the CM will assign a ser-
vice ID to the caller.

__be64 service_mask Mask applied to service ID used to listen across a range of
service IDs. If set to 0, the service ID is matched exactly. This parameter is
ignored if service_id is set to IB_CM_ASSIGN_SERVICE_ID.

struct ib_cm_id * ib_cm_insert_listen(struct ib_device * device,
ib_cm_handler cm_handler,
__be64 service_id)

Parameters
struct ib_device * device Device associated with the cm_id. All related com-

munication will be associated with the specified device.

ib_cm_handler cm_handler Callback invoked to notify the user of CM events.

__be64 service_id Service identifier matched against incoming connection and
service ID resolution requests. The service ID should be specified network-
byte order. If set to IB_CM_ASSIGN_SERVICE_ID, the CM will assign a ser-
vice ID to the caller.

Description
If there’s an existing ID listening on that same device and service ID, return it.
Callers should call ib_destroy_cm_id when done with the listener ID.

int rdma_rw_ctx_init(struct rdma_rw_ctx * ctx, struct ib_qp * qp,
u8 port_num, struct scatterlist * sg, u32 sg_cnt,
u32 sg_offset, u64 remote_addr, u32 rkey, enum
dma_data_direction dir)

initialize a RDMA READ/WRITE context

Parameters
struct rdma_rw_ctx * ctx context to initialize

struct ib_qp * qp queue pair to operate on

u8 port_num port num to which the connection is bound

struct scatterlist * sg scatterlist to READ/WRITE from/to

u32 sg_cnt number of entries in sg
u32 sg_offset current byte offset into sg
u64 remote_addr remote address to read/write (relative to rkey)
u32 rkey remote key to operate on

enum dma_data_direction dir DMA_TO_DEVICE for RDMA WRITE,
DMA_FROM_DEVICE for RDMA READ

Description
Returns the number of WQEs that will be needed on the workqueue if successful,
or a negative error code.

14.2. InfiniBand core interfaces 309

Linux Driver-api Documentation

int rdma_rw_ctx_signature_init(struct rdma_rw_ctx * ctx, struct ib_qp
* qp, u8 port_num, struct scatterlist * sg,
u32 sg_cnt, struct scatterlist * prot_sg,
u32 prot_sg_cnt, struct ib_sig_attrs
* sig_attrs, u64 remote_addr, u32 rkey,
enum dma_data_direction dir)

initialize a RW context with signature offload

Parameters
struct rdma_rw_ctx * ctx context to initialize

struct ib_qp * qp queue pair to operate on

u8 port_num port num to which the connection is bound

struct scatterlist * sg scatterlist to READ/WRITE from/to

u32 sg_cnt number of entries in sg
struct scatterlist * prot_sg scatterlist to READ/WRITE protection informa-

tion from/to

u32 prot_sg_cnt number of entries in prot_sg
struct ib_sig_attrs * sig_attrs signature offloading algorithms

u64 remote_addr remote address to read/write (relative to rkey)
u32 rkey remote key to operate on

enum dma_data_direction dir DMA_TO_DEVICE for RDMA WRITE,
DMA_FROM_DEVICE for RDMA READ

Description
Returns the number of WQEs that will be needed on the workqueue if successful,
or a negative error code.

struct ib_send_wr * rdma_rw_ctx_wrs(struct rdma_rw_ctx * ctx, struct ib_qp
* qp, u8 port_num, struct ib_cqe
* cqe, struct ib_send_wr * chain_wr)

return chain of WRs for a RDMA READ or WRITE operation

Parameters
struct rdma_rw_ctx * ctx context to operate on

struct ib_qp * qp queue pair to operate on

u8 port_num port num to which the connection is bound

struct ib_cqe * cqe completion queue entry for the last WR

struct ib_send_wr * chain_wr WR to append to the posted chain

Description
Return the WR chain for the set of RDMA READ/WRITE operations described by
ctx, as well as any memory registration operations needed. If chain_wr is non-
NULL theWR it points to will be appended to the chain of WRs posted. If chain_wr
is not set cqe must be set so that the caller gets a completion notification.

310 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

int rdma_rw_ctx_post(struct rdma_rw_ctx * ctx, struct ib_qp * qp,
u8 port_num, struct ib_cqe * cqe, struct ib_send_wr
* chain_wr)

post a RDMA READ or RDMA WRITE operation

Parameters
struct rdma_rw_ctx * ctx context to operate on

struct ib_qp * qp queue pair to operate on

u8 port_num port num to which the connection is bound

struct ib_cqe * cqe completion queue entry for the last WR

struct ib_send_wr * chain_wr WR to append to the posted chain

Description
Post the set of RDMA READ/WRITE operations described by ctx, as well as any
memory registration operations needed. If chain_wr is non-NULL theWR it points
to will be appended to the chain of WRs posted. If chain_wr is not set cqe must
be set so that the caller gets a completion notification.

void rdma_rw_ctx_destroy(struct rdma_rw_ctx * ctx, struct ib_qp * qp,
u8 port_num, struct scatterlist * sg, u32 sg_cnt,
enum dma_data_direction dir)

release all resources allocated by rdma_rw_ctx_init

Parameters
struct rdma_rw_ctx * ctx context to release

struct ib_qp * qp queue pair to operate on

u8 port_num port num to which the connection is bound

struct scatterlist * sg scatterlist that was used for the READ/WRITE

u32 sg_cnt number of entries in sg
enum dma_data_direction dir DMA_TO_DEVICE for RDMA WRITE,

DMA_FROM_DEVICE for RDMA READ

void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx * ctx, struct
ib_qp * qp, u8 port_num, struct scat-
terlist * sg, u32 sg_cnt, struct scat-
terlist * prot_sg, u32 prot_sg_cnt,
enum dma_data_direction dir)

release all resources allocated by rdma_rw_ctx_signature_init

Parameters
struct rdma_rw_ctx * ctx context to release

struct ib_qp * qp queue pair to operate on

u8 port_num port num to which the connection is bound

struct scatterlist * sg scatterlist that was used for the READ/WRITE

u32 sg_cnt number of entries in sg

14.2. InfiniBand core interfaces 311

Linux Driver-api Documentation

struct scatterlist * prot_sg scatterlist that was used for the READ/WRITE
of the PI

u32 prot_sg_cnt number of entries in prot_sg
enum dma_data_direction dir DMA_TO_DEVICE for RDMA WRITE,

DMA_FROM_DEVICE for RDMA READ

unsigned int rdma_rw_mr_factor(struct ib_device * device, u8 port_num,
unsigned int maxpages)

return number of MRs required for a payload

Parameters
struct ib_device * device device handling the connection

u8 port_num port num to which the connection is bound

unsigned int maxpages maximum payload pages per rdma_rw_ctx

Description
Returns the number of MRs the device requires to move maxpayload bytes. The
returned value is used during transport creation to compute max_rdma_ctxts and
the size of the transport’s Send and Send Completion Queues.
bool rdma_dev_access_netns(const struct ib_device * dev, const struct net

* net)
Return whether an rdma device can be accessed from a specified net names-
pace or not.

Parameters
const struct ib_device * dev Pointer to rdma device which needs to be

checked

const struct net * net Pointer to net namesapce for which access to be
checked

Description
When the rdma device is in shared mode, it ignores the net namespace. When
the rdma device is exclusive to a net namespace, rdma device net namespace is
checked against the specified one.

void ib_device_put(struct ib_device * device)
Release IB device reference

Parameters
struct ib_device * device device whose reference to be released

Description
ib_device_put() releases reference to the IB device to allow it to be unregistered
and eventually free.

struct ib_device * ib_device_get_by_name(const char * name, enum
rdma_driver_id driver_id)

Find an IB device by name

Parameters

312 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

const char * name The name to look for

enum rdma_driver_id driver_id The driver ID that must match
(RDMA_DRIVER_UNKNOWN matches all)

Description
Find and hold an ib_device by its name. The caller must call ib_device_put() on
the returned pointer.

struct ib_device * _ib_alloc_device(size_t size)
allocate an IB device struct

Parameters
size_t size size of structure to allocate

Description
Low-level drivers should use ib_alloc_device() to allocate struct ib_device. size
is the size of the structure to be allocated, including any private data used by the
low-level driver. ib_dealloc_device() must be used to free structures allocated
with ib_alloc_device().

void ib_dealloc_device(struct ib_device * device)
free an IB device struct

Parameters
struct ib_device * device structure to free

Description
Free a structure allocated with ib_alloc_device().

int ib_register_device(struct ib_device * device, const char * name)
Register an IB device with IB core

Parameters
struct ib_device * device Device to register

const char * name unique string device name. This may include a ‘%’which
will cause a unique index to be added to the passed device name.

Description
Low-level drivers use ib_register_device() to register their devices with the IB
core. All registered clients will receive a callback for each device that is added.
device must be allocated with ib_alloc_device().
If the driver uses ops.dealloc_driver and calls any ib_unregister_device() asyn-
chronously then the device pointer may become freed as soon as this function
returns.

void ib_unregister_device(struct ib_device * ib_dev)
Unregister an IB device

Parameters
struct ib_device * ib_dev The device to unregister

14.2. InfiniBand core interfaces 313

Linux Driver-api Documentation

Description
Unregister an IB device. All clients will receive a remove callback.

Callers should call this routine only once, and protect against races with registra-
tion. Typically it should only be called as part of a remove callback in an imple-
mentation of driver core’s struct device_driver and related.
If ops.dealloc_driver is used then ib_dev will be freed upon return from this func-
tion.

void ib_unregister_device_and_put(struct ib_device * ib_dev)
Unregister a device while holding a ‘get’

Parameters
struct ib_device * ib_dev The device to unregister

Description
This is the same as ib_unregister_device(), except it includes an internal
ib_device_put() that should match a ‘get’obtained by the caller.
It is safe to call this routine concurrently from multiple threads while holding the
‘get’. When the function returns the device is fully unregistered.
Drivers using this flow MUST use the driver_unregister callback to clean up their
resources associated with the device and dealloc it.

void ib_unregister_driver(enum rdma_driver_id driver_id)
Unregister all IB devices for a driver

Parameters
enum rdma_driver_id driver_id The driver to unregister

Description
This implements a fence for device unregistration. It only returns once all de-
vices associated with the driver_id have fully completed their unregistration and
returned from ib_unregister_device*().

If device’s are not yet unregistered it goes ahead and starts unregistering them.
This does not block creation of new devices with the given driver_id, that is the
responsibility of the caller.

void ib_unregister_device_queued(struct ib_device * ib_dev)
Unregister a device using a work queue

Parameters
struct ib_device * ib_dev The device to unregister

Description
This schedules an asynchronous unregistration using aWQ for the device. A driver
should use this to avoid holding locks while doing unregistration, such as holding
the RTNL lock.

Drivers using this API must use ib_unregister_driver before module unload to en-
sure that all scheduled unregistrations have completed.

314 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

int ib_register_client(struct ib_client * client)
Register an IB client

Parameters
struct ib_client * client Client to register

Description
Upper level users of the IB drivers can use ib_register_client() to register
callbacks for IB device addition and removal. When an IB device is added, each
registered client’s add method will be called (in the order the clients were reg-
istered), and when a device is removed, each client’s remove method will be
called (in the reverse order that clients were registered). In addition, when
ib_register_client() is called, the client will receive an add callback for all
devices already registered.

void ib_unregister_client(struct ib_client * client)
Unregister an IB client

Parameters
struct ib_client * client Client to unregister

Description
Upper level users use ib_unregister_client() to remove their client registra-
tion. When ib_unregister_client() is called, the client will receive a remove
callback for each IB device still registered.

This is a full fence, once it returns no client callbacks will be called, or are running
in another thread.

void ib_set_client_data(struct ib_device * device, struct ib_client * client,
void * data)

Set IB client context

Parameters
struct ib_device * device Device to set context for

struct ib_client * client Client to set context for

void * data Context to set

Description
ib_set_client_data() sets client context data that can be retrieved with
ib_get_client_data(). This can only be called while the client is registered to the
device, once the ib_client remove() callback returns this cannot be called.

void ib_register_event_handler(struct ib_event_handler * event_handler)
Register an IB event handler

Parameters
struct ib_event_handler * event_handler Handler to register

Description

14.2. InfiniBand core interfaces 315

Linux Driver-api Documentation

ib_register_event_handler() registers an event handler that will be called back
when asynchronous IB events occur (as defined in chapter 11 of the InfiniBand
Architecture Specification). This callback occurs in workqueue context.

void ib_unregister_event_handler(struct ib_event_handler
* event_handler)

Unregister an event handler

Parameters
struct ib_event_handler * event_handler Handler to unregister

Description
Unregister an event handler registered with ib_register_event_handler().

int ib_query_port(struct ib_device * device, u8 port_num, struct
ib_port_attr * port_attr)

Query IB port attributes

Parameters
struct ib_device * device Device to query

u8 port_num Port number to query

struct ib_port_attr * port_attr Port attributes

Description
ib_query_port() returns the attributes of a port through the port_attr pointer.
int ib_device_set_netdev(struct ib_device * ib_dev, struct net_device

* ndev, unsigned int port)
Associate the ib_dev with an underlying net_device

Parameters
struct ib_device * ib_dev Device to modify

struct net_device * ndev net_device to affiliate, may be NULL

unsigned int port IB port the net_device is connected to

Description
Drivers should use this to link the ib_device to a netdev so the netdev shows up in
interfaces like ib_enum_roce_netdev. Only one netdev may be affiliated with any
port.

The caller must ensure that the given ndev is not unregistered or unregistering,
and that either the ib_device is unregistered or ib_device_set_netdev() is called
with NULL when the ndev sends a NETDEV_UNREGISTER event.

struct ib_device * ib_device_get_by_netdev(struct net_device
* ndev, enum
rdma_driver_id driver_id)

Find an IB device associated with a netdev

Parameters
struct net_device * ndev netdev to locate

316 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

enum rdma_driver_id driver_id The driver ID that must match
(RDMA_DRIVER_UNKNOWN matches all)

Description
Find and hold an ib_device that is associated with a netdev via
ib_device_set_netdev(). The caller must call ib_device_put() on the re-
turned pointer.

int ib_query_pkey(struct ib_device * device, u8 port_num, u16 index, u16
* pkey)

Get P_Key table entry

Parameters
struct ib_device * device Device to query

u8 port_num Port number to query

u16 index P_Key table index to query

u16 * pkey Returned P_Key

Description
ib_query_pkey() fetches the specified P_Key table entry.

int ib_modify_device(struct ib_device * device, int device_modify_mask,
struct ib_device_modify * device_modify)

Change IB device attributes

Parameters
struct ib_device * device Device to modify

int device_modify_mask Mask of attributes to change

struct ib_device_modify * device_modify New attribute values

Description
ib_modify_device() changes a device’s attributes as specified by the de-
vice_modify_mask and device_modify structure.
int ib_modify_port(struct ib_device * device, u8 port_num,

int port_modify_mask, struct ib_port_modify
* port_modify)

Modifies the attributes for the specified port.

Parameters
struct ib_device * device The device to modify.

u8 port_num The number of the port to modify.

int port_modify_mask Mask used to specify which attributes of the port to
change.

struct ib_port_modify * port_modify New attribute values for the port.

Description
ib_modify_port() changes a port’s attributes as specified by the
port_modify_mask and port_modify structure.

14.2. InfiniBand core interfaces 317

Linux Driver-api Documentation

int ib_find_gid(struct ib_device * device, union ib_gid * gid, u8 * port_num,
u16 * index)

Returns the port number and GID table index where a specified GID value
occurs. Its searches only for IB link layer.

Parameters
struct ib_device * device The device to query.

union ib_gid * gid The GID value to search for.

u8 * port_num The port number of the device where the GID value was found.

u16 * index The index into the GID table where the GID was found. This param-
eter may be NULL.

int ib_find_pkey(struct ib_device * device, u8 port_num, u16 pkey, u16
* index)

Returns the PKey table index where a specified PKey value occurs.

Parameters
struct ib_device * device The device to query.

u8 port_num The port number of the device to search for the PKey.

u16 pkey The PKey value to search for.

u16 * index The index into the PKey table where the PKey was found.

struct net_device * ib_get_net_dev_by_params(struct ib_device * dev,
u8 port, u16 pkey, const
union ib_gid * gid, const
struct sockaddr * addr)

Return the appropriate net_dev for a received CM request

Parameters
struct ib_device * dev An RDMA device on which the request has been re-

ceived.

u8 port Port number on the RDMA device.

u16 pkey The Pkey the request came on.

const union ib_gid * gid A GID that the net_dev uses to communicate.

const struct sockaddr * addr Contains the IP address that the request speci-
fied as its destination.

struct ib_pd * __ib_alloc_pd(struct ib_device * device, unsigned int flags,
const char * caller)

Allocates an unused protection domain.

Parameters
struct ib_device * device The device on which to allocate the protection do-

main.

unsigned int flags protection domain flags

const char * caller caller’s build-time module name

318 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Description
A protection domain object provides an association between QPs, shared receive
queues, address handles, memory regions, and memory windows.

Every PD has a local_dma_lkey which can be used as the lkey value for local mem-
ory operations.

void ib_dealloc_pd_user(struct ib_pd * pd, struct ib_udata * udata)
Deallocates a protection domain.

Parameters
struct ib_pd * pd The protection domain to deallocate.

struct ib_udata * udata Valid user data or NULL for kernel object

Description
It is an error to call this function while any resources in the pd still exist. The caller
is responsible to synchronously destroy them and guarantee no new allocations
will happen.

void rdma_copy_ah_attr(struct rdma_ah_attr * dest, const struct
rdma_ah_attr * src)

Copy rdma ah attribute from source to destination.

Parameters
struct rdma_ah_attr * dest Pointer to destination ah_attr. Contents of the des-

tination pointer is assumed to be invalid and attribute are overwritten.

const struct rdma_ah_attr * src Pointer to source ah_attr.

void rdma_replace_ah_attr(struct rdma_ah_attr * old, const struct
rdma_ah_attr * new)

Replace valid ah_attr with new new one.

Parameters
struct rdma_ah_attr * old Pointer to existing ah_attr which needs to be re-

placed. old is assumed to be valid or zero’d
const struct rdma_ah_attr * new Pointer to the new ah_attr.

Description
rdma_replace_ah_attr() first releases any reference in the old ah_attr if old the
ah_attr is valid; after that it copies the new attribute and holds the reference to
the replaced ah_attr.

void rdma_move_ah_attr(struct rdma_ah_attr * dest, struct rdma_ah_attr
* src)

Move ah_attr pointed by source to destination.

Parameters
struct rdma_ah_attr * dest Pointer to destination ah_attr to copy to. dest is

assumed to be valid or zero’d
struct rdma_ah_attr * src Pointer to the new ah_attr.

14.2. InfiniBand core interfaces 319

Linux Driver-api Documentation

Description
rdma_move_ah_attr() first releases any reference in the destination ah_attr if it is
valid. This also transfers ownership of internal references from src to dest, making
src invalid in the process. No new reference of the src ah_attr is taken.

struct ib_ah * rdma_create_ah(struct ib_pd * pd, struct rdma_ah_attr
* ah_attr, u32 flags)

Creates an address handle for the given address vector.

Parameters
struct ib_pd * pd The protection domain associated with the address handle.

struct rdma_ah_attr * ah_attr The attributes of the address vector.

u32 flags Create address handle flags (see enum rdma_create_ah_flags).

Description
It returns 0 on success and returns appropriate error code on error. The address
handle is used to reference a local or global destination in all UD QP post sends.

struct ib_ah * rdma_create_user_ah(struct ib_pd * pd, struct rdma_ah_attr
* ah_attr, struct ib_udata * udata)

Creates an address handle for the given address vector. It resolves destina-
tion mac address for ah attribute of RoCE type.

Parameters
struct ib_pd * pd The protection domain associated with the address handle.

struct rdma_ah_attr * ah_attr The attributes of the address vector.

struct ib_udata * udata pointer to user’s input output buffer information need
by provider driver.

Description
It returns 0 on success and returns appropriate error code on error. The address
handle is used to reference a local or global destination in all UD QP post sends.

void rdma_move_grh_sgid_attr(struct rdma_ah_attr * attr, union ib_gid
* dgid, u32 flow_label, u8 hop_limit,
u8 traffic_class, const struct ib_gid_attr
* sgid_attr)

Sets the sgid attribute of GRH, taking ownership of the reference

Parameters
struct rdma_ah_attr * attr Pointer to AH attribute structure

union ib_gid * dgid Destination GID

u32 flow_label Flow label

u8 hop_limit Hop limit

u8 traffic_class traffic class

const struct ib_gid_attr * sgid_attr Pointer to SGID attribute

320 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Description
This takes ownership of the sgid_attr reference. The caller must ensure
rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after call-
ing this function.

void rdma_destroy_ah_attr(struct rdma_ah_attr * ah_attr)
Release reference to SGID attribute of ah attribute.

Parameters
struct rdma_ah_attr * ah_attr Pointer to ah attribute

Description
Release reference to the SGID attribute of the ah attribute if it is non NULL. It is
safe to call this multiple times, and safe to call it on a zero initialized ah_attr.

struct ib_srq * ib_create_srq_user(struct ib_pd * pd, struct ib_srq_init_attr
* srq_init_attr, struct ib_usrq_object
* uobject, struct ib_udata * udata)

Creates a SRQ associated with the specified protection domain.

Parameters
struct ib_pd * pd The protection domain associated with the SRQ.

struct ib_srq_init_attr * srq_init_attr A list of initial attributes required
to create the SRQ. If SRQ creation succeeds, then the attributes are updated
to the actual capabilities of the created SRQ. uobject - uobject pointer if this
is not a kernel SRQ udata - udata pointer if this is not a kernel SRQ

struct ib_usrq_object * uobject undescribed

struct ib_udata * udata undescribed

Description
srq_attr->max_wr and srq_attr->max_sge are read the determine the requested
size of the SRQ, and set to the actual values allocated on return. If ib_create_srq()
succeeds, then max_wr and max_sge will always be at least as large as the re-
quested values.

struct ib_qp * ib_create_qp(struct ib_pd * pd, struct ib_qp_init_attr
* qp_init_attr)

Creates a kernel QP associated with the specified protection domain.

Parameters
struct ib_pd * pd The protection domain associated with the QP.

struct ib_qp_init_attr * qp_init_attr A list of initial attributes required to
create the QP. If QP creation succeeds, then the attributes are updated to the
actual capabilities of the created QP.

NOTE
for user qp use ib_create_qp_user with valid udata!

int ib_modify_qp_with_udata(struct ib_qp * ib_qp, struct ib_qp_attr * attr,
int attr_mask, struct ib_udata * udata)

Modifies the attributes for the specified QP.

14.2. InfiniBand core interfaces 321

Linux Driver-api Documentation

Parameters
struct ib_qp * ib_qp The QP to modify.

struct ib_qp_attr * attr On input, specifies the QP attributes to modify. On
output, the current values of selected QP attributes are returned.

int attr_mask A bit-mask used to specify which attributes of the QP are being
modified.

struct ib_udata * udata pointer to user’s input output buffer information are
being modified. It returns 0 on success and returns appropriate error code
on error.

struct ib_mr * ib_alloc_mr_user(struct ib_pd * pd, enum
ib_mr_type mr_type, u32 max_num_sg,
struct ib_udata * udata)

Allocates a memory region

Parameters
struct ib_pd * pd protection domain associated with the region

enum ib_mr_type mr_type memory region type

u32 max_num_sg maximum sg entries available for registration.

struct ib_udata * udata user data or null for kernel objects

Notes
Memory registeration page/sg lists must not exceed max_num_sg. For
mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed max_num_sg *
used_page_size.

struct ib_mr * ib_alloc_mr_integrity(struct ib_pd * pd,
u32 max_num_data_sg,
u32 max_num_meta_sg)

Allocates an integrity memory region

Parameters
struct ib_pd * pd protection domain associated with the region

u32 max_num_data_sg maximum data sg entries available for registration

u32 max_num_meta_sg maximum metadata sg entries available for registration

Notes
Memory registration page/sg lists must not exceed max_num_sg, also the integrity
page/sg lists must not exceed max_num_meta_sg.

struct ib_wq * ib_create_wq(struct ib_pd * pd, struct ib_wq_init_attr
* wq_attr)

Creates a WQ associated with the specified protection domain.

Parameters
struct ib_pd * pd The protection domain associated with the WQ.

322 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

struct ib_wq_init_attr * wq_attr A list of initial attributes required to create
theWQ. If WQ creation succeeds, then the attributes are updated to the actual
capabilities of the created WQ.

Description
wq_attr->max_wr and wq_attr->max_sge determine the requested size of the WQ,
and set to the actual values allocated on return. If ib_create_wq() succeeds, then
max_wr and max_sge will always be at least as large as the requested values.

int ib_destroy_wq(struct ib_wq * wq, struct ib_udata * udata)
Destroys the specified user WQ.

Parameters
struct ib_wq * wq The WQ to destroy.

struct ib_udata * udata Valid user data

int ib_modify_wq(struct ib_wq * wq, struct ib_wq_attr * wq_attr,
u32 wq_attr_mask)

Modifies the specified WQ.

Parameters
struct ib_wq * wq The WQ to modify.

struct ib_wq_attr * wq_attr On input, specifies the WQ attributes to modify.

u32 wq_attr_mask A bit-mask used to specify which attributes of the WQ are be-
ing modified. On output, the current values of selected WQ attributes are
returned.

int ib_map_mr_sg_pi(struct ib_mr * mr, struct scatterlist * data_sg,
int data_sg_nents, unsigned int * data_sg_offset, struct
scatterlist * meta_sg, int meta_sg_nents, unsigned int
* meta_sg_offset, unsigned int page_size)

Map the dma mapped SG lists for PI (protection information) and set an ap-
propriate memory region for registration.

Parameters
struct ib_mr * mr memory region

struct scatterlist * data_sg dma mapped scatterlist for data

int data_sg_nents number of entries in data_sg

unsigned int * data_sg_offset offset in bytes into data_sg

struct scatterlist * meta_sg dma mapped scatterlist for metadata

int meta_sg_nents number of entries in meta_sg

unsigned int * meta_sg_offset offset in bytes into meta_sg

unsigned int page_size page vector desired page size

Description
Constraints: - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.

After this completes successfully, the memory region is ready for registration.

14.2. InfiniBand core interfaces 323

Linux Driver-api Documentation

Return
0 on success.

int ib_map_mr_sg(struct ib_mr * mr, struct scatterlist * sg, int sg_nents, un-
signed int * sg_offset, unsigned int page_size)

Map the largest prefix of a dma mapped SG list and set it the memory region.

Parameters
struct ib_mr * mr memory region

struct scatterlist * sg dma mapped scatterlist

int sg_nents number of entries in sg

unsigned int * sg_offset offset in bytes into sg

unsigned int page_size page vector desired page size

Description
Constraints:

• The first sg element is allowed to have an offset.

• Each sg element must either be aligned to page_size or virtually contiguous
to the previous element. In case an sg element has a non-contiguous offset,
the mapping prefix will not include it.

• The last sg element is allowed to have length less than page_size.

• If sg_nents total byte length exceeds the mr max_num_sge * page_size then
only max_num_sg entries will be mapped.

• If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these con-
straints holds and the page_size argument is ignored.

Returns the number of sg elements that were mapped to the memory region.

After this completes successfully, the memory region is ready for registration.

int ib_sg_to_pages(struct ib_mr * mr, struct scatterlist * sgl, int sg_nents,
unsigned int * sg_offset_p, int (*set_page)(struct ib_mr
*, u64))

Convert the largest prefix of a sg list to a page vector

Parameters
struct ib_mr * mr memory region

struct scatterlist * sgl dma mapped scatterlist

int sg_nents number of entries in sg

unsigned int * sg_offset_p

IN start offset in bytes into sg
OUT offset in bytes for element n of the sg of the first byte that has not

been processed where n is the return value of this function.

int (*)(struct ib_mr *, u64) set_page driver page assignment function
pointer

324 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Description
Core service helper for drivers to convert the largest prefix of given sg list to a
page vector. The sg list prefix converted is the prefix that meet the requirements
of ib_map_mr_sg.

Returns the number of sg elements that were assigned to a page vector.

void ib_drain_sq(struct ib_qp * qp)
Block until all SQ CQEs have been consumed by the application.

Parameters
struct ib_qp * qp queue pair to drain

Description
If the device has a provider-specific drain function, then call that. Otherwise call
the generic drain function __ib_drain_sq().

The caller must:

ensure there is room in the CQ and SQ for the drain work request and completion.

allocate the CQ using ib_alloc_cq().

ensure that there are no other contexts that are posting WRs concurrently. Oth-
erwise the drain is not guaranteed.

void ib_drain_rq(struct ib_qp * qp)
Block until all RQ CQEs have been consumed by the application.

Parameters
struct ib_qp * qp queue pair to drain

Description
If the device has a provider-specific drain function, then call that. Otherwise call
the generic drain function __ib_drain_rq().

The caller must:

ensure there is room in the CQ and RQ for the drain work request and completion.

allocate the CQ using ib_alloc_cq().

ensure that there are no other contexts that are posting WRs concurrently. Oth-
erwise the drain is not guaranteed.

void ib_drain_qp(struct ib_qp * qp)
Block until all CQEs have been consumed by the application on both the RQ
and SQ.

Parameters
struct ib_qp * qp queue pair to drain

Description
The caller must:

ensure there is room in the CQ(s), SQ, and RQ for drain work requests and com-
pletions.

14.2. InfiniBand core interfaces 325

Linux Driver-api Documentation

allocate the CQs using ib_alloc_cq().

ensure that there are no other contexts that are posting WRs concurrently. Oth-
erwise the drain is not guaranteed.

void ib_pack(const struct ib_field * desc, int desc_len, void * structure, void
* buf)

Pack a structure into a buffer

Parameters
const struct ib_field * desc Array of structure field descriptions

int desc_len Number of entries in desc
void * structure Structure to pack from

void * buf Buffer to pack into

Description
ib_pack() packs a list of structure fields into a buffer, controlled by the array of
fields in desc.
void ib_unpack(const struct ib_field * desc, int desc_len, void * buf, void

* structure)
Unpack a buffer into a structure

Parameters
const struct ib_field * desc Array of structure field descriptions

int desc_len Number of entries in desc
void * buf Buffer to unpack from

void * structure Structure to unpack into

Description
ib_pack() unpacks a list of structure fields from a buffer, controlled by the array
of fields in desc.
void ib_sa_cancel_query(int id, struct ib_sa_query * query)

try to cancel an SA query

Parameters
int id ID of query to cancel

struct ib_sa_query * query query pointer to cancel

Description
Try to cancel an SA query. If the id and query don’t match up or the query has
already completed, nothing is done. Otherwise the query is canceled and will
complete with a status of -EINTR.

int ib_init_ah_attr_from_path(struct ib_device * device, u8 port_num,
struct sa_path_rec * rec, struct
rdma_ah_attr * ah_attr, const struct
ib_gid_attr * gid_attr)

Initialize address handle attributes based on an SA path record.

326 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Parameters
struct ib_device * device Device associated ah attributes initialization.

u8 port_num Port on the specified device.

struct sa_path_rec * rec path record entry to use for ah attributes initializa-
tion.

struct rdma_ah_attr * ah_attr address handle attributes to initialization from
path record.

const struct ib_gid_attr * gid_attr SGID attribute to consider during ini-
tialization.

Description
When ib_init_ah_attr_from_path() returns success, (a) for IB link layer it op-
tionally contains a reference to SGID attribute when GRH is present for IB link
layer. (b) for RoCE link layer it contains a reference to SGID attribute. User must
invoke rdma_destroy_ah_attr() to release reference to SGID attributes which
are initialized using ib_init_ah_attr_from_path().

int ib_sa_path_rec_get(struct ib_sa_client * client, struct ib_device
* device, u8 port_num, struct sa_path_rec
* rec, ib_sa_comp_mask comp_mask, unsigned
long timeout_ms, gfp_t gfp_mask, void (*call-
back)(int status, struct sa_path_rec *resp, void
*context), void * context, struct ib_sa_query
** sa_query)

Start a Path get query

Parameters
struct ib_sa_client * client SA client

struct ib_device * device device to send query on

u8 port_num port number to send query on

struct sa_path_rec * rec Path Record to send in query

ib_sa_comp_mask comp_mask component mask to send in query

unsigned long timeout_ms time to wait for response

gfp_t gfp_mask GFP mask to use for internal allocations

void (*)(int status, struct sa_path_rec *resp, void *context) callback
function called when query completes, times out or is canceled

void * context opaque user context passed to callback

struct ib_sa_query ** sa_query query context, used to cancel query

Description
Send a Path Record Get query to the SA to look up a path. The callback function will
be called when the query completes (or fails); status is 0 for a successful response,
-EINTR if the query is canceled, -ETIMEDOUT is the query timed out, or -EIO if
an error occurred sending the query. The resp parameter of the callback is only
valid if status is 0.

14.2. InfiniBand core interfaces 327

Linux Driver-api Documentation

If the return value of ib_sa_path_rec_get() is negative, it is an error code. Oth-
erwise it is a query ID that can be used to cancel the query.

int ib_sa_service_rec_query(struct ib_sa_client * client, struct
ib_device * device, u8 port_num,
u8 method, struct ib_sa_service_rec * rec,
ib_sa_comp_mask comp_mask, unsigned
long timeout_ms, gfp_t gfp_mask, void (*call-
back)(int status, struct ib_sa_service_rec
*resp, void *context), void * context, struct
ib_sa_query ** sa_query)

Start Service Record operation

Parameters
struct ib_sa_client * client SA client

struct ib_device * device device to send request on

u8 port_num port number to send request on

u8 method SA method - should be get, set, or delete

struct ib_sa_service_rec * rec Service Record to send in request

ib_sa_comp_mask comp_mask component mask to send in request

unsigned long timeout_ms time to wait for response

gfp_t gfp_mask GFP mask to use for internal allocations

void (*)(int status, struct ib_sa_service_rec *resp, void *context) callback
function called when request completes, times out or is canceled

void * context opaque user context passed to callback

struct ib_sa_query ** sa_query request context, used to cancel request

Description
Send a Service Record set/get/delete to the SA to register, unregister or query a
service record. The callback function will be called when the request completes
(or fails); status is 0 for a successful response, -EINTR if the query is canceled,
-ETIMEDOUT is the query timed out, or -EIO if an error occurred sending the
query. The resp parameter of the callback is only valid if status is 0.

If the return value of ib_sa_service_rec_query() is negative, it is an error code.
Otherwise it is a request ID that can be used to cancel the query.

int ib_ud_header_init(int payload_bytes, int lrh_present, int eth_present,
int vlan_present, int grh_present, int ip_version,
int udp_present, int immediate_present, struct
ib_ud_header * header)

Initialize UD header structure

Parameters
int payload_bytes Length of packet payload

int lrh_present specify if LRH is present

int eth_present specify if Eth header is present

328 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

int vlan_present packet is tagged vlan

int grh_present GRH flag (if non-zero, GRH will be included)

int ip_version if non-zero, IP header, V4 or V6, will be included

int udp_present if non-zero, UDP header will be included

int immediate_present specify if immediate data is present

struct ib_ud_header * header Structure to initialize

int ib_ud_header_pack(struct ib_ud_header * header, void * buf)
Pack UD header struct into wire format

Parameters
struct ib_ud_header * header UD header struct

void * buf Buffer to pack into

Description
ib_ud_header_pack() packs the UD header structure header into wire format in
the buffer buf.
int ib_ud_header_unpack(void * buf, struct ib_ud_header * header)

Unpack UD header struct from wire format

Parameters
void * buf Buffer to pack into

struct ib_ud_header * header UD header struct

Description
ib_ud_header_pack() unpacks the UD header structure header from wire format
in the buffer buf.
unsigned long ib_umem_find_best_pgsz(struct ib_umem * umem, un-

signed long pgsz_bitmap, un-
signed long virt)

Find best HW page size to use for this MR

Parameters
struct ib_umem * umem umem struct

unsigned long pgsz_bitmap bitmap of HW supported page sizes

unsigned long virt IOVA

Description
This helper is intended for HW that support multiple page sizes but can do only a
single page size in an MR.

Returns 0 if the umem requires page sizes not supported by the driver to be
mapped. Drivers always supporting PAGE_SIZE or smaller will never see a 0 re-
sult.

14.2. InfiniBand core interfaces 329

Linux Driver-api Documentation

struct ib_umem * ib_umem_get(struct ib_device * device, unsigned
long addr, size_t size, int access)

Pin and DMA map userspace memory.

Parameters
struct ib_device * device IB device to connect UMEM

unsigned long addr userspace virtual address to start at

size_t size length of region to pin

int access IB_ACCESS_xxx flags for memory being pinned

void ib_umem_release(struct ib_umem * umem)
release memory pinned with ib_umem_get

Parameters
struct ib_umem * umem umem struct to release

struct ib_umem_odp * ib_umem_odp_alloc_implicit(struct ib_device
* device, int access)

Allocate a parent implicit ODP umem

Parameters
struct ib_device * device IB device to create UMEM

int access ib_reg_mr access flags

Description
Implicit ODP umems do not have a VA range and do not have any page lists. They
exist only to hold the per_mm reference to help the driver create children umems.

struct ib_umem_odp * ib_umem_odp_alloc_child(struct ib_umem_odp
* root, unsigned
long addr, size_t size,
const struct
mmu_interval_notifier_ops
* ops)

Allocate a child ODP umem under an implicit parent ODP umem

Parameters
struct ib_umem_odp * root The parent umem enclosing the child. This must be

allocated using ib_alloc_implicit_odp_umem()

unsigned long addr The starting userspace VA

size_t size The length of the userspace VA

const struct mmu_interval_notifier_ops * ops undescribed

struct ib_umem_odp * ib_umem_odp_get(struct ib_device * device, un-
signed long addr, size_t size,
int access, const struct
mmu_interval_notifier_ops * ops)

Create a umem_odp for a userspace va

Parameters

330 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

struct ib_device * device IB device struct to get UMEM

unsigned long addr userspace virtual address to start at

size_t size length of region to pin

int access IB_ACCESS_xxx flags for memory being pinned

const struct mmu_interval_notifier_ops * ops undescribed

Description
The driver should use when the access flags indicate ODP memory. It avoids pin-
ning, instead, stores the mm for future page fault handling in conjunction with
MMU notifiers.

int ib_umem_odp_map_dma_pages(struct ib_umem_odp * umem_odp,
u64 user_virt, u64 bcnt, u64 access_mask,
unsigned long current_seq)

Pin and DMA map userspace memory in an ODP MR.

Parameters
struct ib_umem_odp * umem_odp the umem to map and pin

u64 user_virt the address from which we need to map.

u64 bcnt the minimal number of bytes to pin and map. The mapping might be
bigger due to alignment, and may also be smaller in case of an error pinning
or mapping a page. The actual pages mapped is returned in the return value.

u64 access_mask bit mask of the requested access permissions for the given
range.

unsigned long current_seq the MMU notifiers sequance value for synchroniza-
tion with invalidations. the sequance number is read from umem_odp-
>notifiers_seq before calling this function

Description
Pins the range of pages passed in the argument, andmaps them to DMA addresses.
The DMA addresses of the mapped pages is updated in umem_odp->dma_list.

Returns the number of pages mapped in success, negative error code for fail-
ure. An -EAGAIN error code is returned when a concurrent mmu notifier pre-
vents the function from completing its task. An -ENOENT error code indicates
that userspace process is being terminated and mm was already destroyed.

14.3 RDMA Verbs transport library

int rvt_fast_reg_mr(struct rvt_qp * qp, struct ib_mr * ibmr, u32 key,
int access)

fast register physical MR

Parameters
struct rvt_qp * qp the queue pair where the work request comes from

struct ib_mr * ibmr the memory region to be registered

14.3. RDMA Verbs transport library 331

Linux Driver-api Documentation

u32 key updated key for this memory region

int access access flags for this memory region

Description
Returns 0 on success.

int rvt_invalidate_rkey(struct rvt_qp * qp, u32 rkey)
invalidate an MR rkey

Parameters
struct rvt_qp * qp queue pair associated with the invalidate op

u32 rkey rkey to invalidate

Description
Returns 0 on success.

int rvt_lkey_ok(struct rvt_lkey_table * rkt, struct rvt_pd * pd, struct rvt_sge
* isge, struct rvt_sge * last_sge, struct ib_sge * sge, int acc)

check IB SGE for validity and initialize

Parameters
struct rvt_lkey_table * rkt table containing lkey to check SGE against

struct rvt_pd * pd protection domain

struct rvt_sge * isge outgoing internal SGE

struct rvt_sge * last_sge last outgoing SGE written

struct ib_sge * sge SGE to check

int acc access flags

Description
Check the IB SGE for validity and initialize our internal version of it.

Increments the reference count when a new sge is stored.

Return
0 if compressed, 1 if added , otherwise returns -errno.

int rvt_rkey_ok(struct rvt_qp * qp, struct rvt_sge * sge, u32 len, u64 vaddr,
u32 rkey, int acc)

check the IB virtual address, length, and RKEY

Parameters
struct rvt_qp * qp qp for validation

struct rvt_sge * sge SGE state

u32 len length of data

u64 vaddr virtual address to place data

u32 rkey rkey to check

int acc access flags

332 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Return
1 if successful, otherwise 0.

Description
increments the reference count upon success

__be32 rvt_compute_aeth(struct rvt_qp * qp)
compute the AETH (syndrome + MSN)

Parameters
struct rvt_qp * qp the queue pair to compute the AETH for

Description
Returns the AETH.

void rvt_get_credit(struct rvt_qp * qp, u32 aeth)
flush the send work queue of a QP

Parameters
struct rvt_qp * qp the qp who’s send work queue to flush
u32 aeth the Acknowledge Extended Transport Header

Description
The QP s_lock should be held.

u32 rvt_restart_sge(struct rvt_sge_state * ss, struct rvt_swqe * wqe,
u32 len)

rewind the sge state for a wqe

Parameters
struct rvt_sge_state * ss the sge state pointer

struct rvt_swqe * wqe the wqe to rewind

u32 len the data length from the start of the wqe in bytes

Description
Returns the remaining data length.

int rvt_check_ah(struct ib_device * ibdev, struct rdma_ah_attr * ah_attr)
validate the attributes of AH

Parameters
struct ib_device * ibdev the ib device

struct rdma_ah_attr * ah_attr the attributes of the AH

Description
If driver supports a more detailed check_ah function call back to it otherwise just
check the basics.

Return
0 on success

14.3. RDMA Verbs transport library 333

Linux Driver-api Documentation

struct rvt_dev_info * rvt_alloc_device(size_t size, int nports)
allocate rdi

Parameters
size_t size how big of a structure to allocate

int nports number of ports to allocate array slots for

Description
Use IB core device alloc to allocate space for the rdi which is assumed to be inside
of the ib_device. Any extra space that drivers require should be included in size.

We also allocate a port array based on the number of ports.

Return
pointer to allocated rdi

void rvt_dealloc_device(struct rvt_dev_info * rdi)
deallocate rdi

Parameters
struct rvt_dev_info * rdi structure to free

Description
Free a structure allocated with rvt_alloc_device()

int rvt_register_device(struct rvt_dev_info * rdi)
register a driver

Parameters
struct rvt_dev_info * rdi main dev structure for all of rdmavt operations

Description
It is up to drivers to allocate the rdi and fill in the appropriate information.

Return
0 on success otherwise an errno.

void rvt_unregister_device(struct rvt_dev_info * rdi)
remove a driver

Parameters
struct rvt_dev_info * rdi rvt dev struct

int rvt_init_port(struct rvt_dev_info * rdi, struct rvt_ibport * port,
int port_index, u16 * pkey_table)

init internal data for driver port

Parameters
struct rvt_dev_info * rdi rvt_dev_info struct

struct rvt_ibport * port rvt port

int port_index 0 based index of ports, different from IB core port num

u16 * pkey_table pkey_table for port

334 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Description
Keep track of a list of ports. No need to have a detach port. They persist until the
driver goes away.

Return
always 0

bool rvt_cq_enter(struct rvt_cq * cq, struct ib_wc * entry, bool solicited)
add a new entry to the completion queue

Parameters
struct rvt_cq * cq completion queue

struct ib_wc * entry work completion entry to add

bool solicited true if entry is solicited
Description
This may be called with qp->s_lock held.

Return
return true on success, else return false if cq is full.

int rvt_error_qp(struct rvt_qp * qp, enum ib_wc_status err)
put a QP into the error state

Parameters
struct rvt_qp * qp the QP to put into the error state

enum ib_wc_status err the receive completion error to signal if a RWQE is active

Description
Flushes both send and receive work queues.

Return
true if last WQE event should be generated. The QP r_lock and s_lock should be
held and interrupts disabled. If we are already in error state, just return.

int rvt_get_rwqe(struct rvt_qp * qp, bool wr_id_only)
copy the next RWQE into the QP’s RWQE

Parameters
struct rvt_qp * qp the QP

bool wr_id_only update qp->r_wr_id only, not qp->r_sge

Description
Return -1 if there is a local error, 0 if no RWQE is available, otherwise return 1.

Can be called from interrupt level.

void rvt_comm_est(struct rvt_qp * qp)
handle trap with QP established

Parameters

14.3. RDMA Verbs transport library 335

Linux Driver-api Documentation

struct rvt_qp * qp the QP

void rvt_add_rnr_timer(struct rvt_qp * qp, u32 aeth)
add/start an rnr timer on the QP

Parameters
struct rvt_qp * qp the QP

u32 aeth aeth of RNR timeout, simulated aeth for loopback

void rvt_stop_rc_timers(struct rvt_qp * qp)
stop all timers

Parameters
struct rvt_qp * qp the QP stop any pending timers

void rvt_del_timers_sync(struct rvt_qp * qp)
wait for any timeout routines to exit

Parameters
struct rvt_qp * qp the QP

struct rvt_qp_iter * rvt_qp_iter_init(struct rvt_dev_info * rdi, u64 v, void
(*cb)(struct rvt_qp *qp, u64 v))

initial for QP iteration

Parameters
struct rvt_dev_info * rdi rvt devinfo

u64 v u64 value

void (*)(struct rvt_qp *qp, u64 v) cb user-defined callback

Description
This returns an iterator suitable for iterating QPs in the system.

The cb is a user-defined callback and v is a 64-bit value passed to and relevant for
processing in the cb. An example use case would be to alter QP processing based
on criteria not part of the rvt_qp.

Use cases that require memory allocation to succeed must preallocate appropri-
ately.

Return
a pointer to an rvt_qp_iter or NULL

int rvt_qp_iter_next(struct rvt_qp_iter * iter)
return the next QP in iter

Parameters
struct rvt_qp_iter * iter the iterator

Description
Fine grained QP iterator suitable for use with debugfs seq_file mechanisms.

Updates iter->qp with the current QP when the return value is 0.

336 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Return
0 - iter->qp is valid 1 - no more QPs

void rvt_qp_iter(struct rvt_dev_info * rdi, u64 v, void (*cb)(struct rvt_qp
*qp, u64 v))

iterate all QPs

Parameters
struct rvt_dev_info * rdi rvt devinfo

u64 v a 64-bit value

void (*)(struct rvt_qp *qp, u64 v) cb a callback

Description
This provides a way for iterating all QPs.

The cb is a user-defined callback and v is a 64-bit value passed to and relevant for
processing in the cb. An example use case would be to alter QP processing based
on criteria not part of the rvt_qp.

The code has an internal iterator to simplify non seq_file use cases.

void rvt_copy_sge(struct rvt_qp * qp, struct rvt_sge_state * ss, void * data,
u32 length, bool release, bool copy_last)

copy data to SGE memory

Parameters
struct rvt_qp * qp associated QP

struct rvt_sge_state * ss the SGE state

void * data the data to copy

u32 length the length of the data

bool release boolean to release MR

bool copy_last do a separate copy of the last 8 bytes

void rvt_ruc_loopback(struct rvt_qp * sqp)
handle UC and RC loopback requests

Parameters
struct rvt_qp * sqp the sending QP

Description
This is called from rvt_do_send() to forward a WQE addressed to the same HFI
Note that although we are single threaded due to the send engine, we still have
to protect against post_send(). We don’t have to worry about receive interrupts
since this is a connected protocol and all packets will pass through here.

struct rvt_mcast * rvt_mcast_find(struct rvt_ibport * ibp, union ib_gid
* mgid, u16 lid)

search the global table for the given multicast GID/LID

Parameters
struct rvt_ibport * ibp the IB port structure

14.3. RDMA Verbs transport library 337

Linux Driver-api Documentation

union ib_gid * mgid the multicast GID to search for

u16 lid the multicast LID portion of the multicast address (host order)

NOTE
It is valid to have 1 MLID with multiple MGIDs. It is not valid to have 1 MGID with
multiple MLIDs.

Description
The caller is responsible for decrementing the reference count if found.

Return
NULL if not found.

14.4 Upper Layer Protocols

14.4.1 iSCSI Extensions for RDMA (iSER)

struct iser_data_buf
iSER data buffer

Definition

struct iser_data_buf {
struct scatterlist *sg;
int size;
unsigned long data_len;
int dma_nents;

};

Members
sg pointer to the sg list

size num entries of this sg

data_len total beffer byte len

dma_nents returned by dma_map_sg

struct iser_mem_reg
iSER memory registration info

Definition

struct iser_mem_reg {
struct ib_sge sge;
u32 rkey;
void *mem_h;

};

Members
sge memory region sg element

rkey memory region remote key

338 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

mem_h pointer to registration context (FMR/Fastreg)

struct iser_tx_desc
iSER TX descriptor

Definition

struct iser_tx_desc {
struct iser_ctrl iser_header;
struct iscsi_hdr iscsi_header;
enum iser_desc_type type;
u64 dma_addr;
struct ib_sge tx_sg[2];
int num_sge;
struct ib_cqe cqe;
bool mapped;
struct ib_reg_wr reg_wr;
struct ib_send_wr send_wr;
struct ib_send_wr inv_wr;

};

Members
iser_header iser header

iscsi_header iscsi header

type command/control/dataout

dma_addr header buffer dma_address

tx_sg sg[0] points to iser/iscsi headers sg[1] optionally points to either of imme-
diate data unsolicited data-out or control

num_sge number sges used on this TX task

cqe completion handler

mapped Is the task header mapped

reg_wr registration WR

send_wr send WR

inv_wr invalidate WR

struct iser_rx_desc
iSER RX descriptor

Definition

struct iser_rx_desc {
struct iser_ctrl iser_header;
struct iscsi_hdr iscsi_header;
char data[ISER_RECV_DATA_SEG_LEN];
u64 dma_addr;
struct ib_sge rx_sg;
struct ib_cqe cqe;
char pad[ISER_RX_PAD_SIZE];

};

Members

14.4. Upper Layer Protocols 339

Linux Driver-api Documentation

iser_header iser header

iscsi_header iscsi header

data received data segment

dma_addr receive buffer dma address

rx_sg ib_sge of receive buffer

cqe completion handler

pad for sense data TODO: Modify to maximum sense length supported

struct iser_login_desc
iSER login descriptor

Definition

struct iser_login_desc {
void *req;
void *rsp;
u64 req_dma;
u64 rsp_dma;
struct ib_sge sge;
struct ib_cqe cqe;

};

Members
req pointer to login request buffer

rsp pointer to login response buffer

req_dma DMA address of login request buffer

rsp_dma DMA address of login response buffer

sge IB sge for login post recv

cqe completion handler

struct iser_comp
iSER completion context

Definition

struct iser_comp {
struct ib_cq *cq;
int active_qps;

};

Members
cq completion queue

active_qps Number of active QPs attached to completion context

struct iser_device
iSER device handle

Definition

340 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

struct iser_device {
struct ib_device *ib_device;
struct ib_pd *pd;
struct ib_event_handler event_handler;
struct list_head ig_list;
int refcount;
int comps_used;
struct iser_comp *comps;

};

Members
ib_device RDMA device

pd Protection Domain for this device

event_handler IB events handle routine

ig_list entry in devices list

refcount Reference counter, dominated by open iser connections

comps_used Number of completion contexts used, Min between online cpus and
device max completion vectors

comps Dinamically allocated array of completion handlers

struct iser_reg_resources
Fast registration resources

Definition

struct iser_reg_resources {
struct ib_mr *mr;
struct ib_mr *sig_mr;
u8 mr_valid:1;

};

Members
mr memory region

sig_mr signature memory region

mr_valid is mr valid indicator

struct iser_fr_desc
Fast registration descriptor

Definition

struct iser_fr_desc {
struct list_head list;
struct iser_reg_resources rsc;
bool sig_protected;
struct list_head all_list;

};

Members
list entry in connection fastreg pool

14.4. Upper Layer Protocols 341

Linux Driver-api Documentation

rsc data buffer registration resources

sig_protected is region protected indicator

struct iser_fr_pool
connection fast registration pool

Definition

struct iser_fr_pool {
struct list_head list;
spinlock_t lock;
int size;
struct list_head all_list;

};

Members
list list of fastreg descriptors

lock protects fastreg pool

size size of the pool

struct ib_conn
Infiniband related objects

Definition

struct ib_conn {
struct rdma_cm_id *cma_id;
struct ib_qp *qp;
int post_recv_buf_count;
u8 sig_count;
struct ib_recv_wr rx_wr[ISER_MIN_POSTED_RX];
struct iser_device *device;
struct iser_comp *comp;
struct iser_fr_pool fr_pool;
bool pi_support;
struct ib_cqe reg_cqe;

};

Members
cma_id rdma_cm connection maneger handle

qp Connection Queue-pair

post_recv_buf_count post receive counter

sig_count send work request signal count

rx_wr receive work request for batch posts

device reference to iser device

comp iser completion context

fr_pool connection fast registration poool

pi_support Indicate device T10-PI support

reg_cqe completion handler

342 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

struct iser_conn
iSER connection context

Definition

struct iser_conn {
struct ib_conn ib_conn;
struct iscsi_conn *iscsi_conn;
struct iscsi_endpoint *ep;
enum iser_conn_state state;
unsigned qp_max_recv_dtos;
unsigned qp_max_recv_dtos_mask;
unsigned min_posted_rx;
u16 max_cmds;
char name[ISER_OBJECT_NAME_SIZE];
struct work_struct release_work;
struct mutex state_mutex;
struct completion stop_completion;
struct completion ib_completion;
struct completion up_completion;
struct list_head conn_list;
struct iser_login_desc login_desc;
unsigned int rx_desc_head;
struct iser_rx_desc *rx_descs;
u32 num_rx_descs;
unsigned short scsi_sg_tablesize;
unsigned short pages_per_mr;
bool snd_w_inv;

};

Members
ib_conn connection RDMA resources

iscsi_conn link to matching iscsi connection

ep transport handle

state connection logical state

qp_max_recv_dtos maximum number of data outs, corresponds to max number of
post recvs

qp_max_recv_dtos_mask (qp_max_recv_dtos - 1)

min_posted_rx (qp_max_recv_dtos >> 2)

max_cmds maximum cmds allowed for this connection

name connection peer portal

release_work deffered work for release job

state_mutex protects iser onnection state

stop_completion conn_stop completion

ib_completion RDMA cleanup completion

up_completion connection establishment completed (state is ISER_CONN_UP)

conn_list entry in ig conn list

14.4. Upper Layer Protocols 343

Linux Driver-api Documentation

login_desc login descriptor

rx_desc_head head of rx_descs cyclic buffer

rx_descs rx buffers array (cyclic buffer)

num_rx_descs number of rx descriptors

scsi_sg_tablesize scsi host sg_tablesize

pages_per_mr maximum pages available for registration

snd_w_inv connection uses remote invalidation

struct iscsi_iser_task
iser task context

Definition

struct iscsi_iser_task {
struct iser_tx_desc desc;
struct iser_conn *iser_conn;
enum iser_task_status status;
struct scsi_cmnd *sc;
int command_sent;
int dir[ISER_DIRS_NUM];
struct iser_mem_reg rdma_reg[ISER_DIRS_NUM];
struct iser_data_buf data[ISER_DIRS_NUM];
struct iser_data_buf prot[ISER_DIRS_NUM];

};

Members
desc TX descriptor

iser_conn link to iser connection

status current task status

sc link to scsi command

command_sent indicate if command was sent

dir iser data direction

rdma_reg task rdma registration desc

data iser data buffer desc

prot iser protection buffer desc

struct iser_global
iSER global context

Definition

struct iser_global {
struct mutex device_list_mutex;
struct list_head device_list;
struct mutex connlist_mutex;
struct list_head connlist;
struct kmem_cache *desc_cache;

};

344 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Members
device_list_mutex protects device_list

device_list iser devices global list

connlist_mutex protects connlist

connlist iser connections global list

desc_cache kmem cache for tx dataout

int iscsi_iser_pdu_alloc(struct iscsi_task * task, uint8_t opcode)
allocate an iscsi-iser PDU

Parameters
struct iscsi_task * task iscsi task

uint8_t opcode iscsi command opcode

Description
Netes: This routine can’t fail, just assign iscsi task hdr and max hdr size.
int iser_initialize_task_headers(struct iscsi_task * task, struct

iser_tx_desc * tx_desc)
Initialize task headers

Parameters
struct iscsi_task * task iscsi task

struct iser_tx_desc * tx_desc iser tx descriptor

Notes
This routine may race with iser teardown flow for scsi error handling TMFs. So
for TMF we should acquire the state mutex to avoid dereferencing the IB device
which may have already been terminated.

int iscsi_iser_task_init(struct iscsi_task * task)
Initialize iscsi-iser task

Parameters
struct iscsi_task * task iscsi task

Description
Initialize the task for the scsi command or mgmt command.

Return
Returns zero on success or -ENOMEM when failing to init task headers

(dma mapping error).

int iscsi_iser_mtask_xmit(struct iscsi_conn * conn, struct iscsi_task
* task)

xmit management (immediate) task

Parameters
struct iscsi_conn * conn iscsi connection

struct iscsi_task * task task management task

14.4. Upper Layer Protocols 345

Linux Driver-api Documentation

Notes
The function can return -EAGAIN in which case caller must call it again
later, or recover. ‘0’return code means successful xmit.

int iscsi_iser_task_xmit(struct iscsi_task * task)
xmit iscsi-iser task

Parameters
struct iscsi_task * task iscsi task

Return
zero on success or escalates $error on failure.

void iscsi_iser_cleanup_task(struct iscsi_task * task)
cleanup an iscsi-iser task

Parameters
struct iscsi_task * task iscsi task

Notes
In case the RDMA device is already NULL (might have been removed in DE-

VICE_REMOVAL CM event it will bail-out without doing dma unmapping.

u8 iscsi_iser_check_protection(struct iscsi_task * task, sector_t
* sector)

check protection information status of task.

Parameters
struct iscsi_task * task iscsi task

sector_t * sector error sector if exsists (output)

Return
zero if no data-integrity errors have occured 0x1: data-integrity error oc-

cured in the guard-block 0x2: data-integrity error occured in the reference
tag 0x3: data-integrity error occured in the application tag

In addition the error sector is marked.

struct iscsi_cls_conn * iscsi_iser_conn_create(struct iscsi_cls_session
* cls_session,
uint32_t conn_idx)

create a new iscsi-iser connection

Parameters
struct iscsi_cls_session * cls_session iscsi class connection

uint32_t conn_idx connection index within the session (for MCS)

Return
iscsi_cls_conn when iscsi_conn_setup succeeds or NULL otherwise.

346 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

int iscsi_iser_conn_bind(struct iscsi_cls_session * cls_session,
struct iscsi_cls_conn * cls_conn,
uint64_t transport_eph, int is_leading)

bind iscsi and iser connection structures

Parameters
struct iscsi_cls_session * cls_session iscsi class session

struct iscsi_cls_conn * cls_conn iscsi class connection

uint64_t transport_eph transport end-point handle

int is_leading indicate if this is the session leading connection (MCS)

Return
zero on success, $error if iscsi_conn_bind fails and -EINVAL in case end-

point doesn’t exsits anymore or iser connection state is not UP (teardown
already started).

int iscsi_iser_conn_start(struct iscsi_cls_conn * cls_conn)
start iscsi-iser connection

Parameters
struct iscsi_cls_conn * cls_conn iscsi class connection

Notes
Here iser intialize (or re-initialize) stop_completion as from this point iscsi

must call conn_stop in session/connection teardown so iser transport must
wait for it.

void iscsi_iser_conn_stop(struct iscsi_cls_conn * cls_conn, int flag)
stop iscsi-iser connection

Parameters
struct iscsi_cls_conn * cls_conn iscsi class connection

int flag indicate if recover or terminate (passed as is)

Notes
Calling iscsi_conn_stop might theoretically race with DEVICE_REMOVAL

event and dereference a previously freed RDMA device handle, so we call it
under iser the state lock to protect against this kind of race.

void iscsi_iser_session_destroy(struct iscsi_cls_session * cls_session)
destroy iscsi-iser session

Parameters
struct iscsi_cls_session * cls_session iscsi class session

Description
Removes and free iscsi host.

14.4. Upper Layer Protocols 347

Linux Driver-api Documentation

struct iscsi_cls_session * iscsi_iser_session_create(struct
iscsi_endpoint * ep,
uint16_t cmds_max,
uint16_t qdepth,
uint32_t initial_cmdsn)

create an iscsi-iser session

Parameters
struct iscsi_endpoint * ep iscsi end-point handle

uint16_t cmds_max maximum commands in this session

uint16_t qdepth session command queue depth

uint32_t initial_cmdsn initiator command sequnce number

Description
Allocates and adds a scsi host, expose DIF supprot if exists, and sets up an iscsi
session.

struct iscsi_endpoint * iscsi_iser_ep_connect(struct Scsi_Host * shost,
struct sockaddr * dst_addr,
int non_blocking)

Initiate iSER connection establishment

Parameters
struct Scsi_Host * shost scsi_host

struct sockaddr * dst_addr destination address

int non_blocking indicate if routine can block

Description
Allocate an iscsi endpoint, an iser_conn structure and bind them. After that start
RDMA connection establishment via rdma_cm. We don’t allocate iser_conn em-
bedded in iscsi_endpoint since in teardown the endpoint will be destroyed at
ep_disconnect while iser_conn will cleanup its resources asynchronuously.

Return
iscsi_endpoint created by iscsi layer or ERR_PTR(error) if fails.
int iscsi_iser_ep_poll(struct iscsi_endpoint * ep, int timeout_ms)

poll for iser connection establishment to complete

Parameters
struct iscsi_endpoint * ep iscsi endpoint (created at ep_connect)

int timeout_ms polling timeout allowed in ms.

Description
This routine boils down to waiting for up_completion signaling that cma_id got
CONNECTED event.

Return

348 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

1 if succeeded in connection establishment, 0 if timeout expired (libiscsi
will retry will kick in) or -1 if interrupted by signal or more likely iser
connection state transitioned to TEMINATING or DOWN during the wait
period.

void iscsi_iser_ep_disconnect(struct iscsi_endpoint * ep)
Initiate connection teardown process

Parameters
struct iscsi_endpoint * ep iscsi endpoint handle

Description
This routine is not blocked by iser and RDMA termination process completion as
we queue a deffered work for iser/RDMA destruction and cleanup or actually call
it immediately in case we didn’t pass iscsi conn bind/start stage, thus it is safe.
int iser_send_command(struct iscsi_conn * conn, struct iscsi_task * task)

send command PDU

Parameters
struct iscsi_conn * conn link to matching iscsi connection

struct iscsi_task * task SCSI command task

int iser_send_data_out(struct iscsi_conn * conn, struct iscsi_task * task,
struct iscsi_data * hdr)

send data out PDU

Parameters
struct iscsi_conn * conn link to matching iscsi connection

struct iscsi_task * task SCSI command task

struct iscsi_data * hdr pointer to the LLD’s iSCSI message header
int iser_alloc_fastreg_pool(struct ib_conn * ib_conn, un-

signed cmds_max, unsigned int size)
Creates pool of fast_reg descriptors for fast registration work requests.

Parameters
struct ib_conn * ib_conn connection RDMA resources

unsigned cmds_max max number of SCSI commands for this connection

unsigned int size max number of pages per map request

Return
0 on success, or errno code on failure

void iser_free_fastreg_pool(struct ib_conn * ib_conn)
releases the pool of fast_reg descriptors

Parameters
struct ib_conn * ib_conn connection RDMA resources

void iser_free_ib_conn_res(struct iser_conn * iser_conn, bool destroy)
release IB related resources

14.4. Upper Layer Protocols 349

Linux Driver-api Documentation

Parameters
struct iser_conn * iser_conn iser connection struct

bool destroy indicator if we need to try to release the iser device and memory
regoins pool (only iscsi shutdown and DEVICE_REMOVAL will use this).

Description
This routine is called with the iser state mutex held so the cm_id removal is out of
here. It is Safe to be invoked multiple times.

void iser_conn_release(struct iser_conn * iser_conn)
Frees all conn objects and deallocs conn descriptor

Parameters
struct iser_conn * iser_conn iSER connection context

int iser_conn_terminate(struct iser_conn * iser_conn)
triggers start of the disconnect procedures and waits for them to be done

Parameters
struct iser_conn * iser_conn iSER connection context

Description
Called with state mutex held

int iser_post_send(struct ib_conn * ib_conn, struct iser_tx_desc * tx_desc,
bool signal)

Initiate a Send DTO operation

Parameters
struct ib_conn * ib_conn connection RDMA resources

struct iser_tx_desc * tx_desc iSER TX descriptor

bool signal true to send work request as SIGNALED

Return
0 on success, -1 on failure

14.4.2 Omni-Path (OPA) Virtual NIC support

struct opa_vnic_ctrl_port
OPA virtual NIC control port

Definition

struct opa_vnic_ctrl_port {
struct ib_device *ibdev;
struct opa_vnic_ctrl_ops *ops;
u8 num_ports;

};

Members
ibdev pointer to ib device

350 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

ops opa vnic control operations

num_ports number of opa ports

struct opa_vnic_adapter
OPA VNIC netdev private data structure

Definition

struct opa_vnic_adapter {
struct net_device *netdev;
struct ib_device *ibdev;
struct opa_vnic_ctrl_port *cport;
const struct net_device_ops *rn_ops;
u8 port_num;
u8 vport_num;
struct mutex lock;
struct __opa_veswport_info info;
u8 vema_mac_addr[ETH_ALEN];
u32 umac_hash;
u32 mmac_hash;
struct hlist_head __rcu *mactbl;
struct mutex mactbl_lock;
spinlock_t stats_lock;
u8 flow_tbl[OPA_VNIC_FLOW_TBL_SIZE];
unsigned long trap_timeout;
u8 trap_count;

};

Members
netdev pointer to associated netdev

ibdev ib device

cport pointer to opa vnic control port

rn_ops rdma netdev’s net_device_ops
port_num OPA port number

vport_num vesw port number

lock adapter lock

info virtual ethernet switch port information

vema_mac_addr mac address configured by vema

umac_hash unicast maclist hash

mmac_hash multicast maclist hash

mactbl hash table of MAC entries

mactbl_lock mac table lock

stats_lock statistics lock

flow_tbl flow to default port redirection table

trap_timeout trap timeout

trap_count no. of traps allowed within timeout period

14.4. Upper Layer Protocols 351

Linux Driver-api Documentation

struct opa_vnic_mac_tbl_node
OPA VNIC mac table node

Definition

struct opa_vnic_mac_tbl_node {
struct hlist_node hlist;
u16 index;
struct __opa_vnic_mactable_entry entry;

};

Members
hlist hash list handle

index index of entry in the mac table

entry entry in the table

struct opa_vesw_info
OPA vnic switch information

Definition

struct opa_vesw_info {
__be16 fabric_id;
__be16 vesw_id;
u8 rsvd0[6];
__be16 def_port_mask;
u8 rsvd1[2];
__be16 pkey;
u8 rsvd2[4];
__be32 u_mcast_dlid;
__be32 u_ucast_dlid[OPA_VESW_MAX_NUM_DEF_PORT];
__be32 rc;
u8 rsvd3[56];
__be16 eth_mtu;
u8 rsvd4[2];

};

Members
fabric_id 10-bit fabric id

vesw_id 12-bit virtual ethernet switch id

def_port_mask bitmask of default ports

pkey partition key

u_mcast_dlid unknown multicast dlid

u_ucast_dlid array of unknown unicast dlids

rc routing control

eth_mtu Ethernet MTU

struct opa_per_veswport_info
OPA vnic per port information

Definition

352 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

struct opa_per_veswport_info {
__be32 port_num;
u8 eth_link_status;
u8 rsvd0[3];
u8 base_mac_addr[ETH_ALEN];
u8 config_state;
u8 oper_state;
__be16 max_mac_tbl_ent;
__be16 max_smac_ent;
__be32 mac_tbl_digest;
u8 rsvd1[4];
__be32 encap_slid;
u8 pcp_to_sc_uc[OPA_VNIC_MAX_NUM_PCP];
u8 pcp_to_vl_uc[OPA_VNIC_MAX_NUM_PCP];
u8 pcp_to_sc_mc[OPA_VNIC_MAX_NUM_PCP];
u8 pcp_to_vl_mc[OPA_VNIC_MAX_NUM_PCP];
u8 non_vlan_sc_uc;
u8 non_vlan_vl_uc;
u8 non_vlan_sc_mc;
u8 non_vlan_vl_mc;
u8 rsvd2[48];
__be16 uc_macs_gen_count;
__be16 mc_macs_gen_count;
u8 rsvd3[8];

};

Members
port_num port number

eth_link_status current ethernet link state

base_mac_addr base mac address

config_state configured port state

oper_state operational port state

max_mac_tbl_ent max number of mac table entries

max_smac_ent max smac entries in mac table

mac_tbl_digest mac table digest

encap_slid base slid for the port

pcp_to_sc_uc sc by pcp index for unicast ethernet packets

pcp_to_vl_uc vl by pcp index for unicast ethernet packets

pcp_to_sc_mc sc by pcp index for multicast ethernet packets

pcp_to_vl_mc vl by pcp index for multicast ethernet packets

non_vlan_sc_uc sc for non-vlan unicast ethernet packets

non_vlan_vl_uc vl for non-vlan unicast ethernet packets

non_vlan_sc_mc sc for non-vlan multicast ethernet packets

non_vlan_vl_mc vl for non-vlan multicast ethernet packets

uc_macs_gen_count generation count for unicast macs list

14.4. Upper Layer Protocols 353

Linux Driver-api Documentation

mc_macs_gen_count generation count for multicast macs list

struct opa_veswport_info
OPA vnic port information

Definition

struct opa_veswport_info {
struct opa_vesw_info vesw;
struct opa_per_veswport_info vport;

};

Members
vesw OPA vnic switch information

vport OPA vnic per port information

Description
On host, each of the virtual ethernet ports belongs to a different virtual ethernet
switches.

struct opa_veswport_mactable_entry
single entry in the forwarding table

Definition

struct opa_veswport_mactable_entry {
u8 mac_addr[ETH_ALEN];
u8 mac_addr_mask[ETH_ALEN];
__be32 dlid_sd;

};

Members
mac_addr MAC address

mac_addr_mask MAC address bit mask

dlid_sd Matching DLID and side data

Description
On the host each virtual ethernet port will have a forwarding table. These tables
are used to map a MAC to a LID and other data. For more details see struct
opa_veswport_mactable_entries. This is the structure of a single mactable entry

struct opa_veswport_mactable
Forwarding table array

Definition

struct opa_veswport_mactable {
__be16 offset;
__be16 num_entries;
__be32 mac_tbl_digest;
struct opa_veswport_mactable_entry tbl_entries[];

};

Members

354 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

offset mac table starting offset

num_entries Number of entries to get or set

mac_tbl_digest mac table digest

tbl_entries Array of table entries

Description
The EM sends down this structure in a MAD indicating the starting offset in the
forwarding table that this entry is to be loaded into and the number of entries
that that this MAD instance contains The mac_tbl_digest has been added to this
MAD structure. It will be set by the EM and it will be used by the EM to check if
there are any discrepancies with this value and the value maintained by the EM
in the case of VNIC port being deleted or unloaded A new instantiation of a VNIC
will always have a value of zero. This value is stored as part of the vnic adapter
structure and will be accessed by the GET and SET routines for both the mactable
entries and the veswport info.

struct opa_veswport_summary_counters
summary counters

Definition

struct opa_veswport_summary_counters {
__be16 vp_instance;
__be16 vesw_id;
__be32 veswport_num;
__be64 tx_errors;
__be64 rx_errors;
__be64 tx_packets;
__be64 rx_packets;
__be64 tx_bytes;
__be64 rx_bytes;
__be64 tx_unicast;
__be64 tx_mcastbcast;
__be64 tx_untagged;
__be64 tx_vlan;
__be64 tx_64_size;
__be64 tx_65_127;
__be64 tx_128_255;
__be64 tx_256_511;
__be64 tx_512_1023;
__be64 tx_1024_1518;
__be64 tx_1519_max;
__be64 rx_unicast;
__be64 rx_mcastbcast;
__be64 rx_untagged;
__be64 rx_vlan;
__be64 rx_64_size;
__be64 rx_65_127;
__be64 rx_128_255;
__be64 rx_256_511;
__be64 rx_512_1023;
__be64 rx_1024_1518;
__be64 rx_1519_max;
__be64 reserved[16];

(continues on next page)

14.4. Upper Layer Protocols 355

Linux Driver-api Documentation

(continued from previous page)
};

Members
vp_instance vport instance on the OPA port

vesw_id virtual ethernet switch id

veswport_num virtual ethernet switch port number

tx_errors transmit errors

rx_errors receive errors

tx_packets transmit packets

rx_packets receive packets

tx_bytes transmit bytes

rx_bytes receive bytes

tx_unicast unicast packets transmitted

tx_mcastbcast multicast/broadcast packets transmitted

tx_untagged non-vlan packets transmitted

tx_vlan vlan packets transmitted

tx_64_size transmit packet length is 64 bytes

tx_65_127 transmit packet length is >=65 and < 127 bytes

tx_128_255 transmit packet length is >=128 and < 255 bytes

tx_256_511 transmit packet length is >=256 and < 511 bytes

tx_512_1023 transmit packet length is >=512 and < 1023 bytes

tx_1024_1518 transmit packet length is >=1024 and < 1518 bytes

tx_1519_max transmit packet length >= 1519 bytes

rx_unicast unicast packets received

rx_mcastbcast multicast/broadcast packets received

rx_untagged non-vlan packets received

rx_vlan vlan packets received

rx_64_size received packet length is 64 bytes

rx_65_127 received packet length is >=65 and < 127 bytes

rx_128_255 received packet length is >=128 and < 255 bytes

rx_256_511 received packet length is >=256 and < 511 bytes

rx_512_1023 received packet length is >=512 and < 1023 bytes

rx_1024_1518 received packet length is >=1024 and < 1518 bytes

rx_1519_max received packet length >= 1519 bytes

356 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Description
All the above are counters of corresponding conditions.

struct opa_veswport_error_counters
error counters

Definition

struct opa_veswport_error_counters {
__be16 vp_instance;
__be16 vesw_id;
__be32 veswport_num;
__be64 tx_errors;
__be64 rx_errors;
__be64 rsvd0;
__be64 tx_smac_filt;
__be64 rsvd1;
__be64 rsvd2;
__be64 rsvd3;
__be64 tx_dlid_zero;
__be64 rsvd4;
__be64 tx_logic;
__be64 rsvd5;
__be64 tx_drop_state;
__be64 rx_bad_veswid;
__be64 rsvd6;
__be64 rx_runt;
__be64 rx_oversize;
__be64 rsvd7;
__be64 rx_eth_down;
__be64 rx_drop_state;
__be64 rx_logic;
__be64 rsvd8;
__be64 rsvd9[16];

};

Members
vp_instance vport instance on the OPA port

vesw_id virtual ethernet switch id

veswport_num virtual ethernet switch port number

tx_errors transmit errors

rx_errors receive errors

tx_smac_filt smac filter errors

tx_dlid_zero transmit packets with invalid dlid

tx_logic other transmit errors

tx_drop_state packet tansmission in non-forward port state

rx_bad_veswid received packet with invalid vesw id

rx_runt received ethernet packet with length < 64 bytes

rx_oversize received ethernet packet with length > MTU size

14.4. Upper Layer Protocols 357

Linux Driver-api Documentation

rx_eth_down received packets when interface is down

rx_drop_state received packets in non-forwarding port state

rx_logic other receive errors

Description
All the above are counters of corresponding error conditions.

struct opa_veswport_trap
Trap message sent to EM by VNIC

Definition

struct opa_veswport_trap {
__be16 fabric_id;
__be16 veswid;
__be32 veswportnum;
__be16 opaportnum;
u8 veswportindex;
u8 opcode;
__be32 reserved;

};

Members
fabric_id 10 bit fabric id

veswid 12 bit virtual ethernet switch id

veswportnum logical port number on the Virtual switch

opaportnum physical port num (redundant on host)

veswportindex switch port index on opa port 0 based

opcode operation

reserved 32 bit for alignment

Description
The VNIC will send trap messages to the Ethernet manager to inform it about
changes to the VNIC config, behaviour etc. This is the format of the trap payload.

struct opa_vnic_iface_mac_entry
single entry in the mac list

Definition

struct opa_vnic_iface_mac_entry {
u8 mac_addr[ETH_ALEN];

};

Members
mac_addr MAC address

struct opa_veswport_iface_macs
Msg to set globally administered MAC

358 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Definition

struct opa_veswport_iface_macs {
__be16 start_idx;
__be16 num_macs_in_msg;
__be16 tot_macs_in_lst;
__be16 gen_count;
struct opa_vnic_iface_mac_entry entry[];

};

Members
start_idx position of first entry (0 based)

num_macs_in_msg number of MACs in this message

tot_macs_in_lst The total number of MACs the agent has

gen_count gen_count to indicate change

entry The mac list entry

Description
Same attribute IDS and attribute modifiers as in locally administered addresses
used to set globally administered addresses

struct opa_vnic_vema_mad
Generic VEMA MAD

Definition

struct opa_vnic_vema_mad {
struct ib_mad_hdr mad_hdr;
struct ib_rmpp_hdr rmpp_hdr;
u8 reserved;
u8 oui[3];
u8 data[OPA_VNIC_EMA_DATA];

};

Members
mad_hdr Generic MAD header

rmpp_hdr RMPP header for vendor specific MADs

oui Unique org identifier

data MAD data

struct opa_vnic_notice_attr
Generic Notice MAD

Definition

struct opa_vnic_notice_attr {
u8 gen_type;
u8 oui_1;
u8 oui_2;
u8 oui_3;
__be16 trap_num;

(continues on next page)

14.4. Upper Layer Protocols 359

Linux Driver-api Documentation

(continued from previous page)
__be16 toggle_count;
__be32 issuer_lid;
__be32 reserved;
u8 issuer_gid[16];
u8 raw_data[64];

};

Members
gen_type Generic/Specific bit and type of notice

oui_1 Vendor ID byte 1

oui_2 Vendor ID byte 2

oui_3 Vendor ID byte 3

trap_num Trap number

toggle_count Notice toggle bit and count value

issuer_lid Trap issuer’s lid
issuer_gid Issuer GID (only if Report method)

raw_data Trap message body

struct opa_vnic_vema_mad_trap
Generic VEMA MAD Trap

Definition

struct opa_vnic_vema_mad_trap {
struct ib_mad_hdr mad_hdr;
struct ib_rmpp_hdr rmpp_hdr;
u8 reserved;
u8 oui[3];
struct opa_vnic_notice_attr notice;

};

Members
mad_hdr Generic MAD header

rmpp_hdr RMPP header for vendor specific MADs

oui Unique org identifier

notice Notice structure

void opa_vnic_vema_report_event(struct opa_vnic_adapter * adapter,
u8 event)

sent trap to report the specified event

Parameters
struct opa_vnic_adapter * adapter vnic port adapter

u8 event event to be reported

Description

360 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

This function calls vema api to sent a trap for the given event.

void opa_vnic_get_summary_counters(struct opa_vnic_adapter
* adapter, struct
opa_veswport_summary_counters
* cntrs)

get summary counters

Parameters
struct opa_vnic_adapter * adapter vnic port adapter

struct opa_veswport_summary_counters * cntrs pointer to destination sum-
mary counters structure

Description
This function populates the summary counters that is maintained by the given
adapter to destination address provided.

void opa_vnic_get_error_counters(struct opa_vnic_adapter * adapter,
struct opa_veswport_error_counters
* cntrs)

get error counters

Parameters
struct opa_vnic_adapter * adapter vnic port adapter

struct opa_veswport_error_counters * cntrs pointer to destination error
counters structure

Description
This function populates the error counters that is maintained by the given adapter
to destination address provided.

void opa_vnic_get_vesw_info(struct opa_vnic_adapter * adapter, struct
opa_vesw_info * info)

• Get the vesw information

Parameters
struct opa_vnic_adapter * adapter vnic port adapter

struct opa_vesw_info * info pointer to destination vesw info structure

Description
This function copies the vesw info that is maintained by the given adapter to des-
tination address provided.

void opa_vnic_set_vesw_info(struct opa_vnic_adapter * adapter, struct
opa_vesw_info * info)

• Set the vesw information

Parameters
struct opa_vnic_adapter * adapter vnic port adapter

struct opa_vesw_info * info pointer to vesw info structure

14.4. Upper Layer Protocols 361

Linux Driver-api Documentation

Description
This function updates the vesw info that is maintained by the given adapter with
vesw info provided. Reserved fields are stored and returned back to EM as is.

void opa_vnic_get_per_veswport_info(struct opa_vnic_adapter * adapter,
struct opa_per_veswport_info
* info)

• Get the vesw per port information

Parameters
struct opa_vnic_adapter * adapter vnic port adapter

struct opa_per_veswport_info * info pointer to destination vport info struc-
ture

Description
This function copies the vesw per port info that is maintained by the given adapter
to destination address provided. Note that the read only fields are not copied.

void opa_vnic_set_per_veswport_info(struct opa_vnic_adapter * adapter,
struct opa_per_veswport_info
* info)

• Set vesw per port information

Parameters
struct opa_vnic_adapter * adapter vnic port adapter

struct opa_per_veswport_info * info pointer to vport info structure

Description
This function updates the vesw per port info that is maintained by the given
adapter with vesw per port info provided. Reserved fields are stored and returned
back to EM as is.

void opa_vnic_query_mcast_macs(struct opa_vnic_adapter * adapter, struct
opa_veswport_iface_macs * macs)

query multicast mac list

Parameters
struct opa_vnic_adapter * adapter vnic port adapter

struct opa_veswport_iface_macs * macs pointer mac list

Description
This function populates the provided mac list with the configured multicast ad-
dresses in the adapter.

void opa_vnic_query_ucast_macs(struct opa_vnic_adapter * adapter, struct
opa_veswport_iface_macs * macs)

query unicast mac list

Parameters
struct opa_vnic_adapter * adapter vnic port adapter

362 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

struct opa_veswport_iface_macs * macs pointer mac list

Description
This function populates the provided mac list with the configured unicast ad-
dresses in the adapter.

struct opa_vnic_vema_port

• VNIC VEMA port details

Definition

struct opa_vnic_vema_port {
struct opa_vnic_ctrl_port *cport;
struct ib_mad_agent *mad_agent;
struct opa_class_port_info class_port_info;
u64 tid;
u8 port_num;
struct xarray vports;
struct ib_event_handler event_handler;
struct mutex lock;

};

Members
cport pointer to port

mad_agent pointer to mad agent for port

class_port_info Class port info information.

tid Transaction id

port_num OPA port number

vports vnic ports

event_handler ib event handler

lock adapter interface lock

u8 vema_get_vport_num(struct opa_vnic_vema_mad * recvd_mad)

• Get the vnic from the mad

Parameters
struct opa_vnic_vema_mad * recvd_mad Received mad

Return
returns value of the vnic port number

struct opa_vnic_adapter * vema_get_vport_adapter(struct
opa_vnic_vema_mad
* recvd_mad, struct
opa_vnic_vema_port
* port)

• Get vnic port adapter from recvd mad

Parameters

14.4. Upper Layer Protocols 363

Linux Driver-api Documentation

struct opa_vnic_vema_mad * recvd_mad received mad

struct opa_vnic_vema_port * port ptr to port struct on which MAD was recvd

Return
vnic adapter

bool vema_mac_tbl_req_ok(struct opa_veswport_mactable * mac_tbl)

• Check if mac request has correct values

Parameters
struct opa_veswport_mactable * mac_tbl mac table

Description
This function checks for the validity of the offset and number of entries required.

Return
true if offset and num_entries are valid

struct opa_vnic_adapter * vema_add_vport(struct opa_vnic_vema_port
* port, u8 vport_num)

• Add a new vnic port

Parameters
struct opa_vnic_vema_port * port ptr to opa_vnic_vema_port struct

u8 vport_num vnic port number (to be added)

Description
Return a pointer to the vnic adapter structure

void vema_get_class_port_info(struct opa_vnic_vema_port * port, struct
opa_vnic_vema_mad * recvd_mad, struct
opa_vnic_vema_mad * rsp_mad)

• Get class info for port

Parameters
struct opa_vnic_vema_port * port Port on whic MAD was received

struct opa_vnic_vema_mad * recvd_mad pointer to the received mad

struct opa_vnic_vema_mad * rsp_mad pointer to respose mad

Description
This function copies the latest class port info value set for the port and stores it
for generating traps

void vema_set_class_port_info(struct opa_vnic_vema_port * port, struct
opa_vnic_vema_mad * recvd_mad, struct
opa_vnic_vema_mad * rsp_mad)

• Get class info for port

Parameters
struct opa_vnic_vema_port * port Port on whic MAD was received

364 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

struct opa_vnic_vema_mad * recvd_mad pointer to the received mad

struct opa_vnic_vema_mad * rsp_mad pointer to respose mad

Description
This function updates the port class info for the specific vnic and sets up the re-
sponse mad data

void vema_get_veswport_info(struct opa_vnic_vema_port * port, struct
opa_vnic_vema_mad * recvd_mad, struct
opa_vnic_vema_mad * rsp_mad)

• Get veswport info

Parameters
struct opa_vnic_vema_port * port source port on which MAD was received

struct opa_vnic_vema_mad * recvd_mad pointer to the received mad

struct opa_vnic_vema_mad * rsp_mad pointer to respose mad

void vema_set_veswport_info(struct opa_vnic_vema_port * port, struct
opa_vnic_vema_mad * recvd_mad, struct
opa_vnic_vema_mad * rsp_mad)

• Set veswport info

Parameters
struct opa_vnic_vema_port * port source port on which MAD was received

struct opa_vnic_vema_mad * recvd_mad pointer to the received mad

struct opa_vnic_vema_mad * rsp_mad pointer to respose mad

Description
This function gets the port class infor for vnic

void vema_get_mac_entries(struct opa_vnic_vema_port * port, struct
opa_vnic_vema_mad * recvd_mad, struct
opa_vnic_vema_mad * rsp_mad)

• Get MAC entries in VNIC MAC table

Parameters
struct opa_vnic_vema_port * port source port on which MAD was received

struct opa_vnic_vema_mad * recvd_mad pointer to the received mad

struct opa_vnic_vema_mad * rsp_mad pointer to respose mad

Description
This function gets the MAC entries that are programmed into the VNIC MAC for-
warding table. It checks for the validity of the index into the MAC table and the
number of entries that are to be retrieved.

void vema_set_mac_entries(struct opa_vnic_vema_port * port, struct
opa_vnic_vema_mad * recvd_mad, struct
opa_vnic_vema_mad * rsp_mad)

14.4. Upper Layer Protocols 365

Linux Driver-api Documentation

• Set MAC entries in VNIC MAC table

Parameters
struct opa_vnic_vema_port * port source port on which MAD was received

struct opa_vnic_vema_mad * recvd_mad pointer to the received mad

struct opa_vnic_vema_mad * rsp_mad pointer to respose mad

Description
This function sets the MAC entries in the VNIC forwarding table It checks for the
validity of the index and the number of forwarding table entries to be programmed.

void vema_set_delete_vesw(struct opa_vnic_vema_port * port, struct
opa_vnic_vema_mad * recvd_mad, struct
opa_vnic_vema_mad * rsp_mad)

• Reset VESW info to POD values

Parameters
struct opa_vnic_vema_port * port source port on which MAD was received

struct opa_vnic_vema_mad * recvd_mad pointer to the received mad

struct opa_vnic_vema_mad * rsp_mad pointer to respose mad

Description
This function clears all the fields of veswport info for the requested vesw and sets
them back to the power-on default values. It does not delete the vesw.

void vema_get_mac_list(struct opa_vnic_vema_port * port, struct
opa_vnic_vema_mad * recvd_mad, struct
opa_vnic_vema_mad * rsp_mad, u16 attr_id)

• Get the unicast/multicast macs.

Parameters
struct opa_vnic_vema_port * port source port on which MAD was received

struct opa_vnic_vema_mad * recvd_mad Received mad contains fields to set
vnic parameters

struct opa_vnic_vema_mad * rsp_mad Response mad to be built

u16 attr_id Attribute ID indicating multicast or unicast mac list

void vema_get_summary_counters(struct opa_vnic_vema_port * port, struct
opa_vnic_vema_mad * recvd_mad, struct
opa_vnic_vema_mad * rsp_mad)

• Gets summary counters.

Parameters
struct opa_vnic_vema_port * port source port on which MAD was received

struct opa_vnic_vema_mad * recvd_mad Received mad contains fields to set
vnic parameters

366 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

struct opa_vnic_vema_mad * rsp_mad Response mad to be built

void vema_get_error_counters(struct opa_vnic_vema_port * port, struct
opa_vnic_vema_mad * recvd_mad, struct
opa_vnic_vema_mad * rsp_mad)

• Gets summary counters.

Parameters
struct opa_vnic_vema_port * port source port on which MAD was received

struct opa_vnic_vema_mad * recvd_mad Received mad contains fields to set
vnic parameters

struct opa_vnic_vema_mad * rsp_mad Response mad to be built

void vema_get(struct opa_vnic_vema_port * port, struct opa_vnic_vema_mad
* recvd_mad, struct opa_vnic_vema_mad * rsp_mad)

• Process received get MAD

Parameters
struct opa_vnic_vema_port * port source port on which MAD was received

struct opa_vnic_vema_mad * recvd_mad Received mad

struct opa_vnic_vema_mad * rsp_mad Response mad to be built

void vema_set(struct opa_vnic_vema_port * port, struct opa_vnic_vema_mad
* recvd_mad, struct opa_vnic_vema_mad * rsp_mad)

• Process received set MAD

Parameters
struct opa_vnic_vema_port * port source port on which MAD was received

struct opa_vnic_vema_mad * recvd_mad Received mad contains fields to set
vnic parameters

struct opa_vnic_vema_mad * rsp_mad Response mad to be built

void vema_send(struct ib_mad_agent * mad_agent, struct ib_mad_send_wc
* mad_wc)

• Send handler for VEMA MAD agent

Parameters
struct ib_mad_agent * mad_agent pointer to the mad agent

struct ib_mad_send_wc * mad_wc pointer to mad send work completion infor-
mation

Description
Free all the data structures associated with the sent MAD

void vema_recv(struct ib_mad_agent * mad_agent, struct ib_mad_send_buf
* send_buf, struct ib_mad_recv_wc * mad_wc)

• Recv handler for VEMA MAD agent

Parameters

14.4. Upper Layer Protocols 367

Linux Driver-api Documentation

struct ib_mad_agent * mad_agent pointer to the mad agent

struct ib_mad_send_buf * send_buf Send buffer if found, else NULL

struct ib_mad_recv_wc * mad_wc pointer to mad send work completion infor-
mation

Description
Handle only set and get methods and respond to other methods as unsupported.
Allocate response buffer and address handle for the response MAD.

struct opa_vnic_vema_port * vema_get_port(struct opa_vnic_ctrl_port
* cport, u8 port_num)

• Gets the opa_vnic_vema_port

Parameters
struct opa_vnic_ctrl_port * cport pointer to control dev

u8 port_num Port number

Description
This function loops through the ports and returns the opa_vnic_vema port struc-
ture that is associated with the OPA port number

Return
ptr to requested opa_vnic_vema_port strucure if success, NULL if not
void opa_vnic_vema_send_trap(struct opa_vnic_adapter * adapter, struct

__opa_veswport_trap * data, u32 lid)
• This function sends a trap to the EM

Parameters
struct opa_vnic_adapter * adapter pointer to vnic adapter

struct __opa_veswport_trap * data pointer to trap data filled by calling func-
tion

u32 lid issuers lid (encap_slid from vesw_port_info)

Description
This function is called from the VNIC driver to send a trap if there is somethng the
EM should be notified about. These events currently are 1) UNICAST INTERFACE
MACADDRESS changes 2) MULTICAST INTERFACE MACADDRESS changes 3)
ETHERNET LINK STATUS changes While allocating the send mad the remote site
qpn used is 1 as this is the well known QP.

void vema_unregister(struct opa_vnic_ctrl_port * cport)

• Unregisters agent

Parameters
struct opa_vnic_ctrl_port * cport pointer to control port

Description
This deletes the registration by VEMA for MADs

368 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

int vema_register(struct opa_vnic_ctrl_port * cport)

• Registers agent

Parameters
struct opa_vnic_ctrl_port * cport pointer to control port

Description
This function registers the handlers for the VEMA MADs

Return
returns 0 on success. non zero otherwise

void opa_vnic_ctrl_config_dev(struct opa_vnic_ctrl_port * cport, bool en)

• This function sends a trap to the EM by way of ib_modify_port to indicate
support for ethernet on the fabric.

Parameters
struct opa_vnic_ctrl_port * cport pointer to control port

bool en enable or disable ethernet on fabric support

int opa_vnic_vema_add_one(struct ib_device * device)

• Handle new ib device

Parameters
struct ib_device * device ib device pointer

Description
Allocate the vnic control port and initialize it.

void opa_vnic_vema_rem_one(struct ib_device * device, void * client_data)

• Handle ib device removal

Parameters
struct ib_device * device ib device pointer

void * client_data ib client data

Description
Uninitialize and free the vnic control port.

14.4.3 InfiniBand SCSI RDMA protocol target support

enum srpt_command_state
SCSI command state managed by SRPT

Constants
SRPT_STATE_NEW New command arrived and is being processed.

SRPT_STATE_NEED_DATA Processing a write or bidir command and waiting for data
arrival.

14.4. Upper Layer Protocols 369

Linux Driver-api Documentation

SRPT_STATE_DATA_IN Data for the write or bidir command arrived and is being
processed.

SRPT_STATE_CMD_RSP_SENT SRP_RSP for SRP_CMD has been sent.

SRPT_STATE_MGMT Processing a SCSI task management command.

SRPT_STATE_MGMT_RSP_SENT SRP_RSP for SRP_TSK_MGMT has been sent.

SRPT_STATE_DONE Command processing finished successfully, command process-
ing has been aborted or command processing failed.

struct srpt_ioctx
shared SRPT I/O context information

Definition

struct srpt_ioctx {
struct ib_cqe cqe;
void *buf;
dma_addr_t dma;
uint32_t offset;
uint32_t index;

};

Members
cqe Completion queue element.

buf Pointer to the buffer.

dma DMA address of the buffer.

offset Offset of the first byte in buf and dma that is actually used.
index Index of the I/O context in its ioctx_ring array.

struct srpt_recv_ioctx
SRPT receive I/O context

Definition

struct srpt_recv_ioctx {
struct srpt_ioctx ioctx;
struct list_head wait_list;
int byte_len;

};

Members
ioctx See above.

wait_list Node for insertion in srpt_rdma_ch.cmd_wait_list.

byte_len Number of bytes in ioctx.buf.
struct srpt_send_ioctx

SRPT send I/O context

Definition

370 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

struct srpt_send_ioctx {
struct srpt_ioctx ioctx;
struct srpt_rdma_ch *ch;
struct srpt_recv_ioctx *recv_ioctx;
struct srpt_rw_ctx s_rw_ctx;
struct srpt_rw_ctx *rw_ctxs;
struct scatterlist imm_sg;
struct ib_cqe rdma_cqe;
enum srpt_command_state state;
struct se_cmd cmd;
u8 n_rdma;
u8 n_rw_ctx;
bool queue_status_only;
u8 sense_data[TRANSPORT_SENSE_BUFFER];

};

Members
ioctx See above.

ch Channel pointer.

recv_ioctx Receive I/O context associated with this send I/O context. Only used
for processing immediate data.

s_rw_ctx rw_ctxs points here if only a single rw_ctx is needed.
rw_ctxs RDMA read/write contexts.

imm_sg Scatterlist for immediate data.

rdma_cqe RDMA completion queue element.

state I/O context state.

cmd Target core command data structure.

n_rdma Number of work requests needed to transfer this ioctx.

n_rw_ctx Size of rw_ctxs array.

queue_status_only Send a SCSI status back to the initiator but no data.

sense_data Sense data to be sent to the initiator.

enum rdma_ch_state
SRP channel state

Constants
CH_CONNECTING QP is in RTR state; waiting for RTU.

CH_LIVE QP is in RTS state.

CH_DISCONNECTING DREQ has been sent and waiting for DREP or DREQ has been
received.

CH_DRAINING DREP has been received or waiting for DREP timed out and last work
request has been queued.

CH_DISCONNECTED Last completion has been received.

14.4. Upper Layer Protocols 371

Linux Driver-api Documentation

struct srpt_rdma_ch
RDMA channel

Definition

struct srpt_rdma_ch {
struct srpt_nexus *nexus;
struct ib_qp *qp;
union {

struct {
struct ib_cm_id *cm_id;

} ib_cm;
struct {

struct rdma_cm_id *cm_id;
} rdma_cm;

};
struct ib_cq *cq;
struct ib_cqe zw_cqe;
struct rcu_head rcu;
struct kref kref;
struct completion *closed;
int rq_size;
u32 max_rsp_size;
atomic_t sq_wr_avail;
struct srpt_port *sport;
int max_ti_iu_len;
atomic_t req_lim;
atomic_t req_lim_delta;
u16 imm_data_offset;
spinlock_t spinlock;
enum rdma_ch_state state;
struct kmem_cache *rsp_buf_cache;
struct srpt_send_ioctx **ioctx_ring;
struct kmem_cache *req_buf_cache;
struct srpt_recv_ioctx **ioctx_recv_ring;
struct list_head list;
struct list_head cmd_wait_list;
uint16_t pkey;
bool using_rdma_cm;
bool processing_wait_list;
struct se_session *sess;
u8 sess_name[40];
struct work_struct release_work;

};

Members
nexus I_T nexus this channel is associated with.

qp IB queue pair used for communicating over this channel.

{unnamed_union} anonymous

ib_cm See below.

ib_cm.cm_id IB CM ID associated with the channel.

rdma_cm See below.

rdma_cm.cm_id RDMA CM ID associated with the channel.

372 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

cq IB completion queue for this channel.

zw_cqe Zero-length write CQE.

rcu RCU head.

kref kref for this channel.

closed Completion object that will be signaled as soon as a new channel object
with the same identity can be created.

rq_size IB receive queue size.

max_rsp_size Maximum size of an RSP response message in bytes.

sq_wr_avail number of work requests available in the send queue.

sport pointer to the information of the HCA port used by this channel.

max_ti_iu_len maximum target-to-initiator information unit length.

req_lim request limit: maximum number of requests that may be sent by the
initiator without having received a response.

req_lim_delta Number of credits not yet sent back to the initiator.

imm_data_offset Offset from start of SRP_CMD for immediate data.

spinlock Protects free_list and state.

state channel state. See also enum rdma_ch_state.

rsp_buf_cache kmem_cache for ioctx_ring.
ioctx_ring Send ring.

req_buf_cache kmem_cache for ioctx_recv_ring.
ioctx_recv_ring Receive I/O context ring.

list Node in srpt_nexus.ch_list.

cmd_wait_list List of SCSI commands that arrived before the RTU event. This
list contains struct srpt_ioctx elements and is protected against concurrent
modification by the cm_id spinlock.

pkey P_Key of the IB partition for this SRP channel.

using_rdma_cm Whether the RDMA/CM or IB/CM is used for this channel.

processing_wait_list Whether or not cmd_wait_list is being processed.

sess Session information associated with this SRP channel.

sess_name Session name.

release_work Allows scheduling of srpt_release_channel().

struct srpt_nexus
I_T nexus

Definition

14.4. Upper Layer Protocols 373

Linux Driver-api Documentation

struct srpt_nexus {
struct rcu_head rcu;
struct list_head entry;
struct list_head ch_list;
u8 i_port_id[16];
u8 t_port_id[16];

};

Members
rcu RCU head for this data structure.

entry srpt_port.nexus_list list node.

ch_list struct srpt_rdma_ch list. Protected by srpt_port.mutex.

i_port_id 128-bit initiator port identifier copied from SRP_LOGIN_REQ.

t_port_id 128-bit target port identifier copied from SRP_LOGIN_REQ.

struct srpt_port_attrib
attributes for SRPT port

Definition

struct srpt_port_attrib {
u32 srp_max_rdma_size;
u32 srp_max_rsp_size;
u32 srp_sq_size;
bool use_srq;

};

Members
srp_max_rdma_size Maximum size of SRP RDMA transfers for new connections.

srp_max_rsp_size Maximum size of SRP response messages in bytes.

srp_sq_size Shared receive queue (SRQ) size.

use_srq Whether or not to use SRQ.

struct srpt_tpg
information about a single “target portal group”

Definition

struct srpt_tpg {
struct list_head entry;
struct srpt_port_id *sport_id;
struct se_portal_group tpg;

};

Members
entry Entry in sport_id->tpg_list.
sport_id Port name this TPG is associated with.

tpg LIO TPG data structure.

374 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Description
Zero or more target portal groups are associated with each port name
(srpt_port_id). With each TPG an ACL list is associated.

struct srpt_port_id
information about an RDMA port name

Definition

struct srpt_port_id {
struct mutex mutex;
struct list_head tpg_list;
struct se_wwn wwn;
char name[64];

};

Members
mutex Protects tpg_list changes.
tpg_list TPGs associated with the RDMA port name.

wwn WWN associated with the RDMA port name.

name ASCII representation of the port name.

Description
Multiple sysfs directories can be associated with a single RDMA port. This data
structure represents a single (port, name) pair.

struct srpt_port
information associated by SRPT with a single IB port

Definition

struct srpt_port {
struct srpt_device *sdev;
struct ib_mad_agent *mad_agent;
bool enabled;
u8 port;
u32 sm_lid;
u32 lid;
union ib_gid gid;
struct work_struct work;
struct srpt_port_id port_guid_id;
struct srpt_port_id port_gid_id;
struct srpt_port_attrib port_attrib;
atomic_t refcount;
struct completion *freed_channels;
struct mutex mutex;
struct list_head nexus_list;

};

Members
sdev backpointer to the HCA information.

mad_agent per-port management datagram processing information.

14.4. Upper Layer Protocols 375

Linux Driver-api Documentation

enabled Whether or not this target port is enabled.

port one-based port number.

sm_lid cached value of the port’s sm_lid.
lid cached value of the port’s lid.
gid cached value of the port’s gid.
work work structure for refreshing the aforementioned cached values.

port_guid_id target port GUID

port_gid_id target port GID

port_attrib Port attributes that can be accessed through configfs.

refcount Number of objects associated with this port.

freed_channels Completion that will be signaled once refcount becomes 0.
mutex Protects nexus_list.

nexus_list Nexus list. See also srpt_nexus.entry.

struct srpt_device
information associated by SRPT with a single HCA

Definition

struct srpt_device {
struct ib_device *device;
struct ib_pd *pd;
u32 lkey;
struct ib_srq *srq;
struct ib_cm_id *cm_id;
int srq_size;
struct mutex sdev_mutex;
bool use_srq;
struct kmem_cache *req_buf_cache;
struct srpt_recv_ioctx **ioctx_ring;
struct ib_event_handler event_handler;
struct list_head list;
struct srpt_port port[];

};

Members
device Backpointer to the struct ib_device managed by the IB core.

pd IB protection domain.

lkey L_Key (local key) with write access to all local memory.

srq Per-HCA SRQ (shared receive queue).

cm_id Connection identifier.

srq_size SRQ size.

sdev_mutex Serializes use_srq changes.

use_srq Whether or not to use SRQ.

376 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

req_buf_cache kmem_cache for ioctx_ring buffers.
ioctx_ring Per-HCA SRQ.

event_handler Per-HCA asynchronous IB event handler.

list Node in srpt_dev_list.

port Information about the ports owned by this HCA.

void srpt_event_handler(struct ib_event_handler * handler, struct ib_event
* event)

asynchronous IB event callback function

Parameters
struct ib_event_handler * handler IB event handler registered by

ib_register_event_handler().

struct ib_event * event Description of the event that occurred.

Description
Callback function called by the InfiniBand core when an asynchronous IB event
occurs. This callback may occur in interrupt context. See also section 11.5.2, Set
Asynchronous Event Handler in the InfiniBand Architecture Specification.

void srpt_srq_event(struct ib_event * event, void * ctx)
SRQ event callback function

Parameters
struct ib_event * event Description of the event that occurred.

void * ctx Context pointer specified at SRQ creation time.

void srpt_qp_event(struct ib_event * event, struct srpt_rdma_ch * ch)
QP event callback function

Parameters
struct ib_event * event Description of the event that occurred.

struct srpt_rdma_ch * ch SRPT RDMA channel.

void srpt_set_ioc(u8 * c_list, u32 slot, u8 value)
initialize a IOUnitInfo structure

Parameters
u8 * c_list controller list.

u32 slot one-based slot number.

u8 value four-bit value.

Description
Copies the lowest four bits of value in element slot of the array of four bit elements
called c_list (controller list). The index slot is one-based.

void srpt_get_class_port_info(struct ib_dm_mad * mad)
copy ClassPortInfo to a management datagram

Parameters

14.4. Upper Layer Protocols 377

Linux Driver-api Documentation

struct ib_dm_mad * mad Datagram that will be sent as response to
DM_ATTR_CLASS_PORT_INFO.

Description
See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture Specifica-
tion.

void srpt_get_iou(struct ib_dm_mad * mad)
write IOUnitInfo to a management datagram

Parameters
struct ib_dm_mad * mad Datagram that will be sent as response to

DM_ATTR_IOU_INFO.

Description
See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture Specification.
See also section B.7, table B.6 in the SRP r16a document.

void srpt_get_ioc(struct srpt_port * sport, u32 slot, struct ib_dm_mad
* mad)

write IOControllerprofile to a management datagram

Parameters
struct srpt_port * sport HCA port through which theMAD has been received.

u32 slot Slot number specified in DM_ATTR_IOC_PROFILE query.

struct ib_dm_mad * mad Datagram that will be sent as response to
DM_ATTR_IOC_PROFILE.

Description
See also section 16.3.3.4 IOControllerProfile in the InfiniBand Architecture Spec-
ification. See also section B.7, table B.7 in the SRP r16a document.

void srpt_get_svc_entries(u64 ioc_guid, u16 slot, u8 hi, u8 lo, struct
ib_dm_mad * mad)

write ServiceEntries to a management datagram

Parameters
u64 ioc_guid I/O controller GUID to use in reply.

u16 slot I/O controller number.

u8 hi End of the range of service entries to be specified in the reply.

u8 lo Start of the range of service entries to be specified in the reply..

struct ib_dm_mad * mad Datagram that will be sent as response to
DM_ATTR_SVC_ENTRIES.

Description
See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture Specifica-
tion. See also section B.7, table B.8 in the SRP r16a document.

void srpt_mgmt_method_get(struct srpt_port * sp, struct ib_mad * rq_mad,
struct ib_dm_mad * rsp_mad)

process a received management datagram

378 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Parameters
struct srpt_port * sp HCA port through which the MAD has been received.

struct ib_mad * rq_mad received MAD.

struct ib_dm_mad * rsp_mad response MAD.

void srpt_mad_send_handler(struct ib_mad_agent * mad_agent, struct
ib_mad_send_wc * mad_wc)

MAD send completion callback

Parameters
struct ib_mad_agent * mad_agent Return value of ib_register_mad_agent().

struct ib_mad_send_wc * mad_wc Work completion reporting that the MAD has
been sent.

void srpt_mad_recv_handler(struct ib_mad_agent * mad_agent, struct
ib_mad_send_buf * send_buf, struct
ib_mad_recv_wc * mad_wc)

MAD reception callback function

Parameters
struct ib_mad_agent * mad_agent Return value of ib_register_mad_agent().

struct ib_mad_send_buf * send_buf Not used.

struct ib_mad_recv_wc * mad_wc Work completion reporting that a MAD has
been received.

int srpt_refresh_port(struct srpt_port * sport)
configure a HCA port

Parameters
struct srpt_port * sport SRPT HCA port.

Description
Enable InfiniBand management datagram processing, update the cached sm_lid,
lid and gid values, and register a callback function for processing MADs on the
specified port.

Note
It is safe to call this function more than once for the same port.

void srpt_unregister_mad_agent(struct srpt_device * sdev)
unregister MAD callback functions

Parameters
struct srpt_device * sdev SRPT HCA pointer.

Note
It is safe to call this function more than once for the same device.

14.4. Upper Layer Protocols 379

Linux Driver-api Documentation

struct srpt_ioctx * srpt_alloc_ioctx(struct srpt_device * sdev,
int ioctx_size, struct
kmem_cache * buf_cache, enum
dma_data_direction dir)

allocate a SRPT I/O context structure

Parameters
struct srpt_device * sdev SRPT HCA pointer.

int ioctx_size I/O context size.

struct kmem_cache * buf_cache I/O buffer cache.

enum dma_data_direction dir DMA data direction.

void srpt_free_ioctx(struct srpt_device * sdev, struct srpt_ioctx
* ioctx, struct kmem_cache * buf_cache, enum
dma_data_direction dir)

free a SRPT I/O context structure

Parameters
struct srpt_device * sdev SRPT HCA pointer.

struct srpt_ioctx * ioctx I/O context pointer.

struct kmem_cache * buf_cache I/O buffer cache.

enum dma_data_direction dir DMA data direction.

struct srpt_ioctx ** srpt_alloc_ioctx_ring(struct srpt_device
* sdev, int ring_size,
int ioctx_size, struct
kmem_cache * buf_cache,
int alignment_offset, enum
dma_data_direction dir)

allocate a ring of SRPT I/O context structures

Parameters
struct srpt_device * sdev Device to allocate the I/O context ring for.

int ring_size Number of elements in the I/O context ring.

int ioctx_size I/O context size.

struct kmem_cache * buf_cache I/O buffer cache.

int alignment_offset Offset in each ring buffer at which the SRP information
unit starts.

enum dma_data_direction dir DMA data direction.

void srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring, struct
srpt_device * sdev, int ring_size,
struct kmem_cache * buf_cache, enum
dma_data_direction dir)

free the ring of SRPT I/O context structures

Parameters
struct srpt_ioctx ** ioctx_ring I/O context ring to be freed.

380 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

struct srpt_device * sdev SRPT HCA pointer.

int ring_size Number of ring elements.

struct kmem_cache * buf_cache I/O buffer cache.

enum dma_data_direction dir DMA data direction.

enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx
* ioctx, enum
srpt_command_state new)

set the state of a SCSI command

Parameters
struct srpt_send_ioctx * ioctx Send I/O context.

enum srpt_command_state new New I/O context state.

Description
Does not modify the state of aborted commands. Returns the previous command
state.

bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx, enum
srpt_command_state old, enum
srpt_command_state new)

test and set the state of a command

Parameters
struct srpt_send_ioctx * ioctx Send I/O context.

enum srpt_command_state old Current I/O context state.

enum srpt_command_state new New I/O context state.

Description
Returns true if and only if the previous command state was equal to ‘old’.
int srpt_post_recv(struct srpt_device * sdev, struct srpt_rdma_ch * ch,

struct srpt_recv_ioctx * ioctx)
post an IB receive request

Parameters
struct srpt_device * sdev SRPT HCA pointer.

struct srpt_rdma_ch * ch SRPT RDMA channel.

struct srpt_recv_ioctx * ioctx Receive I/O context pointer.

int srpt_zerolength_write(struct srpt_rdma_ch * ch)
perform a zero-length RDMA write

Parameters
struct srpt_rdma_ch * ch SRPT RDMA channel.

Description
A quote from the InfiniBand specification: C9-88: For an HCA responder using
Reliable Connection service, for each zero-length RDMA READ or WRITE request,
the R_Key shall not be validated, even if the request includes Immediate data.

14.4. Upper Layer Protocols 381

Linux Driver-api Documentation

int srpt_get_desc_tbl(struct srpt_recv_ioctx * recv_ioctx, struct
srpt_send_ioctx * ioctx, struct srp_cmd * srp_cmd,
enum dma_data_direction * dir, struct scatterlist
** sg, unsigned int * sg_cnt, u64 * data_len,
u16 imm_data_offset)

parse the data descriptors of a SRP_CMD request

Parameters
struct srpt_recv_ioctx * recv_ioctx I/O context associated with the re-

ceived command srp_cmd.
struct srpt_send_ioctx * ioctx I/O context that will be used for responding

to the initiator.

struct srp_cmd * srp_cmd Pointer to the SRP_CMD request data.

enum dma_data_direction * dir Pointer to the variable to which the transfer
direction will be written.

struct scatterlist ** sg [out] scatterlist for the parsed SRP_CMD.

unsigned int * sg_cnt [out] length of sg.
u64 * data_len Pointer to the variable to which the total data length of all de-

scriptors in the SRP_CMD request will be written.

u16 imm_data_offset [in] Offset in SRP_CMD requests at which immediate data
starts.

Description
This function initializes ioctx->nrbuf and ioctx->r_bufs.

Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
-ENOMEM when memory allocation fails and zero upon success.

int srpt_init_ch_qp(struct srpt_rdma_ch * ch, struct ib_qp * qp)
initialize queue pair attributes

Parameters
struct srpt_rdma_ch * ch SRPT RDMA channel.

struct ib_qp * qp Queue pair pointer.

Description
Initialized the attributes of queue pair ‘qp’by allowing local write, remote read
and remote write. Also transitions ‘qp’to state IB_QPS_INIT.
int srpt_ch_qp_rtr(struct srpt_rdma_ch * ch, struct ib_qp * qp)

change the state of a channel to ‘ready to receive’(RTR)
Parameters
struct srpt_rdma_ch * ch channel of the queue pair.

struct ib_qp * qp queue pair to change the state of.

Description
Returns zero upon success and a negative value upon failure.

382 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Note
currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. If this structure
ever becomes larger, it might be necessary to allocate it dynamically instead of on
the stack.

int srpt_ch_qp_rts(struct srpt_rdma_ch * ch, struct ib_qp * qp)
change the state of a channel to ‘ready to send’(RTS)

Parameters
struct srpt_rdma_ch * ch channel of the queue pair.

struct ib_qp * qp queue pair to change the state of.

Description
Returns zero upon success and a negative value upon failure.

Note
currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. If this structure
ever becomes larger, it might be necessary to allocate it dynamically instead of on
the stack.

int srpt_ch_qp_err(struct srpt_rdma_ch * ch)
set the channel queue pair state to ‘error’

Parameters
struct srpt_rdma_ch * ch SRPT RDMA channel.

struct srpt_send_ioctx * srpt_get_send_ioctx(struct srpt_rdma_ch * ch)
obtain an I/O context for sending to the initiator

Parameters
struct srpt_rdma_ch * ch SRPT RDMA channel.

int srpt_abort_cmd(struct srpt_send_ioctx * ioctx)
abort a SCSI command

Parameters
struct srpt_send_ioctx * ioctx I/O context associated with the SCSI com-

mand.

void srpt_rdma_read_done(struct ib_cq * cq, struct ib_wc * wc)
RDMA read completion callback

Parameters
struct ib_cq * cq Completion queue.

struct ib_wc * wc Work completion.

Description
XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
the data that has been transferred via IB RDMA had to be postponed until the
check_stop_free() callback. None of this is necessary anymore and needs to be
cleaned up.

14.4. Upper Layer Protocols 383

Linux Driver-api Documentation

int srpt_build_cmd_rsp(struct srpt_rdma_ch * ch, struct srpt_send_ioctx
* ioctx, u64 tag, int status)

build a SRP_RSP response

Parameters
struct srpt_rdma_ch * ch RDMA channel through which the request has been

received.

struct srpt_send_ioctx * ioctx I/O context associated with the SRP_CMD re-
quest. The response will be built in the buffer ioctx->buf points at and hence
this function will overwrite the request data.

u64 tag tag of the request for which this response is being generated.

int status value for the STATUS field of the SRP_RSP information unit.

Description
Returns the size in bytes of the SRP_RSP response.

An SRP_RSP response contains a SCSI status or service response. See also section
6.9 in the SRP r16a document for the format of an SRP_RSP response. See also
SPC-2 for more information about sense data.

int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch, struct
srpt_send_ioctx * ioctx, u8 rsp_code, u64 tag)

build a task management response

Parameters
struct srpt_rdma_ch * ch RDMA channel through which the request has been

received.

struct srpt_send_ioctx * ioctx I/O context in which the SRP_RSP response
will be built.

u8 rsp_code RSP_CODE that will be stored in the response.

u64 tag Tag of the request for which this response is being generated.

Description
Returns the size in bytes of the SRP_RSP response.

An SRP_RSP response contains a SCSI status or service response. See also section
6.9 in the SRP r16a document for the format of an SRP_RSP response.

void srpt_handle_cmd(struct srpt_rdma_ch * ch, struct srpt_recv_ioctx
* recv_ioctx, struct srpt_send_ioctx * send_ioctx)

process a SRP_CMD information unit

Parameters
struct srpt_rdma_ch * ch SRPT RDMA channel.

struct srpt_recv_ioctx * recv_ioctx Receive I/O context.

struct srpt_send_ioctx * send_ioctx Send I/O context.

384 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

void srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch, struct
srpt_recv_ioctx * recv_ioctx, struct
srpt_send_ioctx * send_ioctx)

process a SRP_TSK_MGMT information unit

Parameters
struct srpt_rdma_ch * ch SRPT RDMA channel.

struct srpt_recv_ioctx * recv_ioctx Receive I/O context.

struct srpt_send_ioctx * send_ioctx Send I/O context.

Description
Returns 0 if and only if the request will be processed by the target core.

For more information about SRP_TSK_MGMT information units, see also section
6.7 in the SRP r16a document.

bool srpt_handle_new_iu(struct srpt_rdma_ch * ch, struct srpt_recv_ioctx
* recv_ioctx)

process a newly received information unit

Parameters
struct srpt_rdma_ch * ch RDMA channel through which the information unit

has been received.

struct srpt_recv_ioctx * recv_ioctx Receive I/O context associated with the
information unit.

void srpt_send_done(struct ib_cq * cq, struct ib_wc * wc)
send completion callback

Parameters
struct ib_cq * cq Completion queue.

struct ib_wc * wc Work completion.

Note
Although this has not yet been observed during tests, at least in theory it is possi-
ble that the srpt_get_send_ioctx() call invoked by srpt_handle_new_iu() fails.
This is possible because the req_lim_delta value in each response is set to one, and
it is possible that this response makes the initiator send a new request before the
send completion for that response has been processed. This could e.g. happen if
the call to srpt_put_send_iotcx() is delayed because of a higher priority interrupt
or if IB retransmission causes generation of the send completion to be delayed. In-
coming information units for which srpt_get_send_ioctx() fails are queued on
cmd_wait_list. The code below processes these delayed requests one at a time.

int srpt_create_ch_ib(struct srpt_rdma_ch * ch)
create receive and send completion queues

Parameters
struct srpt_rdma_ch * ch SRPT RDMA channel.

bool srpt_close_ch(struct srpt_rdma_ch * ch)
close a RDMA channel

14.4. Upper Layer Protocols 385

Linux Driver-api Documentation

Parameters
struct srpt_rdma_ch * ch SRPT RDMA channel.

Description
Make sure all resources associated with the channel will be deallocated at an ap-
propriate time.

Returns true if and only if the channel state has been modified into CH_DRAINING.

int srpt_cm_req_recv(struct srpt_device *const sdev, struct ib_cm_id
* ib_cm_id, struct rdma_cm_id * rdma_cm_id,
u8 port_num, __be16 pkey, const struct srp_login_req
* req, const char * src_addr)

process the event IB_CM_REQ_RECEIVED

Parameters
struct srpt_device *const sdev HCA through which the login request was re-

ceived.

struct ib_cm_id * ib_cm_id IB/CM connection identifier in case of IB/CM.

struct rdma_cm_id * rdma_cm_id RDMA/CM connection identifier in case of
RDMA/CM.

u8 port_num Port through which the REQ message was received.

__be16 pkey P_Key of the incoming connection.

const struct srp_login_req * req SRP login request.

const char * src_addr GID (IB/CM) or IP address (RDMA/CM) of the port that
submitted the login request.

Description
Ownership of the cm_id is transferred to the target session if this function returns
zero. Otherwise the caller remains the owner of cm_id.

void srpt_cm_rtu_recv(struct srpt_rdma_ch * ch)
process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event

Parameters
struct srpt_rdma_ch * ch SRPT RDMA channel.

Description
An RTU (ready to use) message indicates that the connection has been established
and that the recipient may begin transmitting.

int srpt_cm_handler(struct ib_cm_id * cm_id, const struct ib_cm_event
* event)

IB connection manager callback function

Parameters
struct ib_cm_id * cm_id IB/CM connection identifier.

const struct ib_cm_event * event IB/CM event.

386 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Description
A non-zero return value will cause the caller destroy the CM ID.

Note
srpt_cm_handler() must only return a non-zero value when transferring owner-
ship of the cm_id to a channel by srpt_cm_req_recv() failed. Returning a non-
zero value in any other case will trigger a race with the ib_destroy_cm_id() call in
srpt_release_channel().

void srpt_queue_response(struct se_cmd * cmd)
transmit the response to a SCSI command

Parameters
struct se_cmd * cmd SCSI target command.

Description
Callback function called by the TCM core. Must not block since it can be invoked
on the context of the IB completion handler.

int srpt_release_sport(struct srpt_port * sport)
disable login and wait for associated channels

Parameters
struct srpt_port * sport SRPT HCA port.

int srpt_add_one(struct ib_device * device)
InfiniBand device addition callback function

Parameters
struct ib_device * device Describes a HCA.

void srpt_remove_one(struct ib_device * device, void * client_data)
InfiniBand device removal callback function

Parameters
struct ib_device * device Describes a HCA.

void * client_data The value passed as the third argument to
ib_set_client_data().

void srpt_close_session(struct se_session * se_sess)
forcibly close a session

Parameters
struct se_session * se_sess SCSI target session.

Description
Callback function invoked by the TCM core to clean up ses-
sions associated with a node ACL when the user invokes rmdir
/sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id

u32 srpt_sess_get_index(struct se_session * se_sess)
return the value of scsiAttIntrPortIndex (SCSI-MIB)

Parameters

14.4. Upper Layer Protocols 387

Linux Driver-api Documentation

struct se_session * se_sess SCSI target session.

Description
A quote from RFC 4455 (SCSI-MIB) about this MIB object: This object represents
an arbitrary integer used to uniquely identify a particular attached remote initiator
port to a particular SCSI target port within a particular SCSI target device within
a particular SCSI instance.

int srpt_parse_i_port_id(u8 i_port_id, const char * name)
parse an initiator port ID

Parameters
u8 i_port_id Binary 128-bit port ID.

const char * name ASCII representation of a 128-bit initiator port ID.

struct se_portal_group * srpt_make_tpg(struct se_wwn * wwn, const char
* name)

configfs callback invoked formkdir /sys/kernel/config/target/$driver/$port/$tpg

Parameters
struct se_wwn * wwn Corresponds to $driver/$port.

const char * name $tpg.

void srpt_drop_tpg(struct se_portal_group * tpg)
configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg

Parameters
struct se_portal_group * tpg Target portal group to deregister.

struct se_wwn * srpt_make_tport(struct target_fabric_configfs * tf, struct
config_group * group, const char
* name)

configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port

Parameters
struct target_fabric_configfs * tf Not used.

struct config_group * group Not used.

const char * name $port.

void srpt_drop_tport(struct se_wwn * wwn)
configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port

Parameters
struct se_wwn * wwn $port.

int srpt_init_module(void)
kernel module initialization

Parameters
void no arguments

Note

388 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

Linux Driver-api Documentation

Since ib_register_client() registers callback functions, and since at least one
of these callback functions (srpt_add_one()) calls target core functions, this
driver must be registered with the target core before ib_register_client() is
called.

14.4.4 iSCSI Extensions for RDMA (iSER) target support

void isert_conn_terminate(struct isert_conn * isert_conn)
Initiate connection termination

Parameters
struct isert_conn * isert_conn isert connection struct

Notes
In case the connection state is BOUND, move state to TEMINATING and start tear-
down sequence (rdma_disconnect). In case the connection state is UP, complete
flush as well.

Description
This routine must be called with mutex held. Thus it is safe to call multiple times.

void isert_put_unsol_pending_cmds(struct iscsi_conn * conn)
Drop commands waiting for unsolicitate dataout

Parameters
struct iscsi_conn * conn iscsi connection

Description
We might still have commands that are waiting for unsolicited dataouts mes-
sages. We must put the extra reference on those before blocking on the tar-
get_wait_for_session_cmds

14.4. Upper Layer Protocols 389

Linux Driver-api Documentation

390 Chapter 14. InfiniBand and Remote DMA (RDMA) Interfaces

CHAPTER

FIFTEEN

SOUND DEVICES

void snd_card_unref(struct snd_card * card)
Unreference the card object

Parameters
struct snd_card * card the card object to unreference

Description
Call this function for the card object that was obtained via snd_card_ref() or
snd_lookup_minor_data().

snd_printk(fmt, ⋯)
printk wrapper

Parameters
fmt format string

... variable arguments

Description
Works like printk() but prints the file and the line of the caller when configured
with CONFIG_SND_VERBOSE_PRINTK.

snd_printd(fmt, ⋯)
debug printk

Parameters
fmt format string

... variable arguments

Description
Works like snd_printk() for debugging purposes. Ignored when CON-
FIG_SND_DEBUG is not set.

snd_BUG()
give a BUG warning message and stack trace

Parameters
Description
Calls WARN() if CONFIG_SND_DEBUG is set. Ignored when CON-
FIG_SND_DEBUG is not set.

391

Linux Driver-api Documentation

snd_printd_ratelimit()

Parameters
snd_BUG_ON(cond)

debugging check macro

Parameters
cond condition to evaluate

Description
Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, other-
wise just evaluates the conditional and returns the value.

snd_printdd(format, ⋯)
debug printk

Parameters
format format string

... variable arguments

Description
Works like snd_printk() for debugging purposes. Ignored when CON-
FIG_SND_DEBUG_VERBOSE is not set.

int register_sound_special_device(const struct file_operations * fops,
int unit, struct device * dev)

register a special sound node

Parameters
const struct file_operations * fops File operations for the driver

int unit Unit number to allocate

struct device * dev device pointer

Allocate a special sound device by minor number from the sound subsystem.

Return
The allocated number is returned on success. On failure, a negative error

code is returned.

int register_sound_mixer(const struct file_operations * fops, int dev)
register a mixer device

Parameters
const struct file_operations * fops File operations for the driver

int dev Unit number to allocate

Allocate a mixer device. Unit is the number of the mixer requested. Pass -1
to request the next free mixer unit.

Return
On success, the allocated number is returned. On failure, a negative error

code is returned.

392 Chapter 15. Sound Devices

Linux Driver-api Documentation

int register_sound_dsp(const struct file_operations * fops, int dev)
register a DSP device

Parameters
const struct file_operations * fops File operations for the driver

int dev Unit number to allocate

Allocate a DSP device. Unit is the number of the DSP requested. Pass -1 to
request the next free DSP unit.

This function allocates both the audio and dsp device entries together and
will always allocate them as a matching pair - eg dsp3/audio3

Return
On success, the allocated number is returned. On failure, a negative error

code is returned.

void unregister_sound_special(int unit)
unregister a special sound device

Parameters
int unit unit number to allocate

Release a sound device that was allocated with register_sound_special(). The
unit passed is the return value from the register function.

void unregister_sound_mixer(int unit)
unregister a mixer

Parameters
int unit unit number to allocate

Release a sound device that was allocated with register_sound_mixer().
The unit passed is the return value from the register function.

void unregister_sound_dsp(int unit)
unregister a DSP device

Parameters
int unit unit number to allocate

Release a sound device that was allocated with register_sound_dsp(). The
unit passed is the return value from the register function.

Both of the allocated units are released together automatically.

int snd_pcm_stream_linked(struct snd_pcm_substream * substream)
Check whether the substream is linked with others

Parameters
struct snd_pcm_substream * substream substream to check

Description
Returns true if the given substream is being linked with others.

393

Linux Driver-api Documentation

snd_pcm_stream_lock_irqsave(substream, flags)
Lock the PCM stream

Parameters
substream PCM substream

flags irq flags

Description
This locks the PCM stream like snd_pcm_stream_lock() but with the local
IRQ (only when nonatomic is false). In nonatomic case, this is identical as
snd_pcm_stream_lock().

snd_pcm_group_for_each_entry(s, substream)
iterate over the linked substreams

Parameters
s the iterator

substream the substream

Description
Iterate over the all linked substreams to the given substream. When substream
isn’t linked with any others, this gives returns substream itself once.

int snd_pcm_running(struct snd_pcm_substream * substream)
Check whether the substream is in a running state

Parameters
struct snd_pcm_substream * substream substream to check

Description
Returns true if the given substream is in the state RUNNING, or in the state
DRAINING for playback.

ssize_t bytes_to_samples(struct snd_pcm_runtime * runtime, ssize_t size)
Unit conversion of the size from bytes to samples

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

ssize_t size size in bytes

snd_pcm_sframes_t bytes_to_frames(struct snd_pcm_runtime * runtime,
ssize_t size)

Unit conversion of the size from bytes to frames

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

ssize_t size size in bytes

ssize_t samples_to_bytes(struct snd_pcm_runtime * runtime, ssize_t size)
Unit conversion of the size from samples to bytes

Parameters

394 Chapter 15. Sound Devices

Linux Driver-api Documentation

struct snd_pcm_runtime * runtime PCM runtime instance

ssize_t size size in samples

ssize_t frames_to_bytes(struct snd_pcm_runtime * runtime,
snd_pcm_sframes_t size)

Unit conversion of the size from frames to bytes

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_sframes_t size size in frames

int frame_aligned(struct snd_pcm_runtime * runtime, ssize_t bytes)
Check whether the byte size is aligned to frames

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

ssize_t bytes size in bytes

size_t snd_pcm_lib_buffer_bytes(struct snd_pcm_substream * substream)
Get the buffer size of the current PCM in bytes

Parameters
struct snd_pcm_substream * substream PCM substream

size_t snd_pcm_lib_period_bytes(struct snd_pcm_substream * substream)
Get the period size of the current PCM in bytes

Parameters
struct snd_pcm_substream * substream PCM substream

snd_pcm_uframes_t snd_pcm_playback_avail(struct snd_pcm_runtime
* runtime)

Get the available (writable) space for playback

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

Description
Result is between 0 ⋯(boundary - 1)
snd_pcm_uframes_t snd_pcm_capture_avail(struct snd_pcm_runtime

* runtime)
Get the available (readable) space for capture

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

Description
Result is between 0 ⋯(boundary - 1)
snd_pcm_sframes_t snd_pcm_playback_hw_avail(struct snd_pcm_runtime

* runtime)
Get the queued space for playback

395

Linux Driver-api Documentation

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_sframes_t snd_pcm_capture_hw_avail(struct snd_pcm_runtime
* runtime)

Get the free space for capture

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

int snd_pcm_playback_ready(struct snd_pcm_substream * substream)
check whether the playback buffer is available

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
Checks whether enough free space is available on the playback buffer.

Return
Non-zero if available, or zero if not.

int snd_pcm_capture_ready(struct snd_pcm_substream * substream)
check whether the capture buffer is available

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
Checks whether enough capture data is available on the capture buffer.

Return
Non-zero if available, or zero if not.

int snd_pcm_playback_data(struct snd_pcm_substream * substream)
check whether any data exists on the playback buffer

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
Checks whether any data exists on the playback buffer.

Return
Non-zero if any data exists, or zero if not. If stop_threshold is bigger or equal to
boundary, then this function returns always non-zero.

int snd_pcm_playback_empty(struct snd_pcm_substream * substream)
check whether the playback buffer is empty

Parameters
struct snd_pcm_substream * substream the pcm substream instance

396 Chapter 15. Sound Devices

Linux Driver-api Documentation

Description
Checks whether the playback buffer is empty.

Return
Non-zero if empty, or zero if not.

int snd_pcm_capture_empty(struct snd_pcm_substream * substream)
check whether the capture buffer is empty

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
Checks whether the capture buffer is empty.

Return
Non-zero if empty, or zero if not.

void snd_pcm_trigger_done(struct snd_pcm_substream * substream, struct
snd_pcm_substream * master)

Mark the master substream

Parameters
struct snd_pcm_substream * substream the pcm substream instance

struct snd_pcm_substream * master the linked master substream

Description
When multiple substreams of the same card are linked and the hardware
supports the single-shot operation, the driver calls this in the loop in
snd_pcm_group_for_each_entry() for marking the substream as“done”. Then
most of trigger operations are performed only to the given master substream.

The trigger_master mark is cleared at timestamp updates at the end of trigger
operations.

unsigned int params_channels(const struct snd_pcm_hw_params * p)
Get the number of channels from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_rate(const struct snd_pcm_hw_params * p)
Get the sample rate from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_period_size(const struct snd_pcm_hw_params * p)
Get the period size (in frames) from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

397

Linux Driver-api Documentation

unsigned int params_periods(const struct snd_pcm_hw_params * p)
Get the number of periods from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_buffer_size(const struct snd_pcm_hw_params * p)
Get the buffer size (in frames) from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

unsigned int params_buffer_bytes(const struct snd_pcm_hw_params * p)
Get the buffer size (in bytes) from the hw params

Parameters
const struct snd_pcm_hw_params * p hw params

int snd_pcm_hw_constraint_single(struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var, unsigned
int val)

Constrain parameter to a single value

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_hw_param_t var The hw_params variable to constrain

unsigned int val The value to constrain to

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_pcm_format_cpu_endian(snd_pcm_format_t format)
Check the PCM format is CPU-endian

Parameters
snd_pcm_format_t format the format to check

Return
1 if the given PCM format is CPU-endian, 0 if opposite, or a negative error code if
endian not specified.

void snd_pcm_set_runtime_buffer(struct snd_pcm_substream * substream,
struct snd_dma_buffer * bufp)

Set the PCM runtime buffer

Parameters
struct snd_pcm_substream * substream PCM substream to set

struct snd_dma_buffer * bufp the buffer information, NULL to clear

Description
Copy the buffer information to runtime->dma_buffer when bufp is non-NULL. Oth-
erwise it clears the current buffer information.

398 Chapter 15. Sound Devices

Linux Driver-api Documentation

void snd_pcm_gettime(struct snd_pcm_runtime * runtime, struct time-
spec64 * tv)

Fill the timespec64 depending on the timestamp mode

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

struct timespec64 * tv timespec64 to fill

int snd_pcm_lib_alloc_vmalloc_buffer(struct snd_pcm_substream
* substream, size_t size)

allocate virtual DMA buffer

Parameters
struct snd_pcm_substream * substream the substream to allocate the buffer to

size_t size the requested buffer size, in bytes

Description
Allocates the PCM substream buffer using vmalloc(), i.e., the memory is contigu-
ous in kernel virtual space, but not in physical memory. Use this if the buffer is
accessed by kernel code but not by device DMA.

Return
1 if the buffer was changed, 0 if not changed, or a negative error code.

int snd_pcm_lib_alloc_vmalloc_32_buffer(struct snd_pcm_substream
* substream, size_t size)

allocate 32-bit-addressable buffer

Parameters
struct snd_pcm_substream * substream the substream to allocate the buffer to

size_t size the requested buffer size, in bytes

Description
This function works like snd_pcm_lib_alloc_vmalloc_buffer(), but uses vmal-
loc_32(), i.e., the pages are allocated from 32-bit-addressable memory.

Return
1 if the buffer was changed, 0 if not changed, or a negative error code.

dma_addr_t snd_pcm_sgbuf_get_addr(struct snd_pcm_substream
* substream, unsigned int ofs)

Get the DMA address at the corresponding offset

Parameters
struct snd_pcm_substream * substream PCM substream

unsigned int ofs byte offset

void * snd_pcm_sgbuf_get_ptr(struct snd_pcm_substream * substream, un-
signed int ofs)

Get the virtual address at the corresponding offset

Parameters

399

Linux Driver-api Documentation

struct snd_pcm_substream * substream PCM substream

unsigned int ofs byte offset

unsigned int snd_pcm_sgbuf_get_chunk_size(struct snd_pcm_substream
* substream, unsigned
int ofs, unsigned int size)

Compute the max size that fits within the contig. page from the given size

Parameters
struct snd_pcm_substream * substream PCM substream

unsigned int ofs byte offset

unsigned int size byte size to examine

void snd_pcm_mmap_data_open(struct vm_area_struct * area)
increase the mmap counter

Parameters
struct vm_area_struct * area VMA

Description
PCM mmap callback should handle this counter properly

void snd_pcm_mmap_data_close(struct vm_area_struct * area)
decrease the mmap counter

Parameters
struct vm_area_struct * area VMA

Description
PCM mmap callback should handle this counter properly

void snd_pcm_limit_isa_dma_size(int dma, size_t * max)
Get the max size fitting with ISA DMA transfer

Parameters
int dma DMA number

size_t * max pointer to store the max size

const char * snd_pcm_stream_str(struct snd_pcm_substream * substream)
Get a string naming the direction of a stream

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Return
A string naming the direction of the stream.

struct snd_pcm_substream * snd_pcm_chmap_substream(struct
snd_pcm_chmap
* info, unsigned
int idx)

get the PCM substream assigned to the given chmap info

400 Chapter 15. Sound Devices

Linux Driver-api Documentation

Parameters
struct snd_pcm_chmap * info chmap information

unsigned int idx the substream number index

u64 pcm_format_to_bits(snd_pcm_format_t pcm_format)
Strong-typed conversion of pcm_format to bitwise

Parameters
snd_pcm_format_t pcm_format PCM format

pcm_for_each_format(f)
helper to iterate for each format type

Parameters
f the iterator variable in snd_pcm_format_t type

const char * snd_pcm_format_name(snd_pcm_format_t format)
Return a name string for the given PCM format

Parameters
snd_pcm_format_t format PCM format

int snd_pcm_new_stream(struct snd_pcm * pcm, int stream,
int substream_count)

create a new PCM stream

Parameters
struct snd_pcm * pcm the pcm instance

int stream the stream direction, SNDRV_PCM_STREAM_XXX

int substream_count the number of substreams

Description
Creates a new stream for the pcm. The corresponding stream on the pcm must
have been empty before calling this, i.e. zero must be given to the argument of
snd_pcm_new().

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_new(struct snd_card * card, const char * id, int device,
int playback_count, int capture_count, struct snd_pcm
** rpcm)

create a new PCM instance

Parameters
struct snd_card * card the card instance

const char * id the id string

int device the device index (zero based)

int playback_count the number of substreams for playback

int capture_count the number of substreams for capture

401

Linux Driver-api Documentation

struct snd_pcm ** rpcm the pointer to store the new pcm instance

Description
Creates a new PCM instance.

The pcm operators have to be set afterwards to the new instance via
snd_pcm_set_ops().

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_new_internal(struct snd_card * card, const char
* id, int device, int playback_count,
int capture_count, struct snd_pcm ** rpcm)

create a new internal PCM instance

Parameters
struct snd_card * card the card instance

const char * id the id string

int device the device index (zero based - shared with normal PCMs)

int playback_count the number of substreams for playback

int capture_count the number of substreams for capture

struct snd_pcm ** rpcm the pointer to store the new pcm instance

Description
Creates a new internal PCM instance with no userspace device or procfs entries.
This is used by ASoC Back End PCMs in order to create a PCM that will only
be used internally by kernel drivers. i.e. it cannot be opened by userspace. It
provides existing ASoC components drivers with a substream and access to any
private data.

The pcm operators have to be set afterwards to the new instance via
snd_pcm_set_ops().

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_notify(struct snd_pcm_notify * notify, int nfree)
Add/remove the notify list

Parameters
struct snd_pcm_notify * notify PCM notify list

int nfree 0 = register, 1 = unregister

Description
This adds the given notifier to the global list so that the callback is called for each
registered PCM devices. This exists only for PCM OSS emulation, so far.

int snd_device_new(struct snd_card * card, enum snd_device_type type, void
* device_data, const struct snd_device_ops * ops)

create an ALSA device component

402 Chapter 15. Sound Devices

Linux Driver-api Documentation

Parameters
struct snd_card * card the card instance

enum snd_device_type type the device type, SNDRV_DEV_XXX

void * device_data the data pointer of this device

const struct snd_device_ops * ops the operator table

Description
Creates a new device component for the given data pointer. The device will be
assigned to the card and managed together by the card.

The data pointer plays a role as the identifier, too, so the pointer address must be
unique and unchanged.

Return
Zero if successful, or a negative error code on failure.

void snd_device_disconnect(struct snd_card * card, void * device_data)
disconnect the device

Parameters
struct snd_card * card the card instance

void * device_data the data pointer to disconnect

Description
Turns the device into the disconnection state, invoking dev_disconnect callback,
if the device was already registered.

Usually called from snd_card_disconnect().

Return
Zero if successful, or a negative error code on failure or if the device not found.

void snd_device_free(struct snd_card * card, void * device_data)
release the device from the card

Parameters
struct snd_card * card the card instance

void * device_data the data pointer to release

Description
Removes the device from the list on the card and invokes the callbacks,
dev_disconnect and dev_free, corresponding to the state. Then release the device.

int snd_device_register(struct snd_card * card, void * device_data)
register the device

Parameters
struct snd_card * card the card instance

void * device_data the data pointer to register

403

Linux Driver-api Documentation

Description
Registers the device which was already created via snd_device_new(). Usually
this is called from snd_card_register(), but it can be called later if any new
devices are created after invocation of snd_card_register().

Return
Zero if successful, or a negative error code on failure or if the device not found.

int snd_device_get_state(struct snd_card * card, void * device_data)
Get the current state of the given device

Parameters
struct snd_card * card the card instance

void * device_data the data pointer to release

Description
Returns the current state of the given device object. For the valid
device, either SNDRV_DEV_BUILD, SNDRV_DEV_REGISTERED or
SNDRV_DEV_DISCONNECTED is returned. Or for a non-existing device,
-1 is returned as an error.

int snd_info_get_line(struct snd_info_buffer * buffer, char * line, int len)
read one line from the procfs buffer

Parameters
struct snd_info_buffer * buffer the procfs buffer

char * line the buffer to store

int len the max. buffer size

Description
Reads one line from the buffer and stores the string.

Return
Zero if successful, or 1 if error or EOF.

const char * snd_info_get_str(char * dest, const char * src, int len)
parse a string token

Parameters
char * dest the buffer to store the string token

const char * src the original string

int len the max. length of token - 1

Description
Parses the original string and copy a token to the given string buffer.

Return
The updated pointer of the original string so that it can be used for the next call.

404 Chapter 15. Sound Devices

Linux Driver-api Documentation

struct snd_info_entry * snd_info_create_module_entry(struct mod-
ule * module,
const char
* name, struct
snd_info_entry
* parent)

create an info entry for the given module

Parameters
struct module * module the module pointer

const char * name the file name

struct snd_info_entry * parent the parent directory

Description
Creates a new info entry and assigns it to the given module.

Return
The pointer of the new instance, or NULL on failure.

struct snd_info_entry * snd_info_create_card_entry(struct snd_card
* card, const char
* name, struct
snd_info_entry
* parent)

create an info entry for the given card

Parameters
struct snd_card * card the card instance

const char * name the file name

struct snd_info_entry * parent the parent directory

Description
Creates a new info entry and assigns it to the given card.

Return
The pointer of the new instance, or NULL on failure.

void snd_info_free_entry(struct snd_info_entry * entry)
release the info entry

Parameters
struct snd_info_entry * entry the info entry

Description
Releases the info entry.

int snd_info_register(struct snd_info_entry * entry)
register the info entry

Parameters
struct snd_info_entry * entry the info entry

405

Linux Driver-api Documentation

Description
Registers the proc info entry. The all children entries are registered recursively.

Return
Zero if successful, or a negative error code on failure.

int snd_card_rw_proc_new(struct snd_card * card, const char * name,
void * private_data, void (*read)(struct
snd_info_entry *, struct snd_info_buffer *),
void (*write) (struct snd_info_entry *entry,
struct snd_info_buffer *buffer))

Create a read/write text proc file entry for the card

Parameters
struct snd_card * card the card instance

const char * name the file name

void * private_data the arbitrary private data

void (*)(struct snd_info_entry *, struct snd_info_buffer *) read the
read callback

void (*)(struct snd_info_entry *entry, struct snd_info_buffer *buffer) write
the write callback, NULL for read-only

Description
This proc file entry will be registered via snd_card_register() call, and it will be
removed automatically at the card removal, too.

int snd_rawmidi_receive(struct snd_rawmidi_substream * substream, const
unsigned char * buffer, int count)

receive the input data from the device

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

const unsigned char * buffer the buffer pointer

int count the data size to read

Description
Reads the data from the internal buffer.

Return
The size of read data, or a negative error code on failure.

int snd_rawmidi_transmit_empty(struct snd_rawmidi_substream
* substream)

check whether the output buffer is empty

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

Return
1 if the internal output buffer is empty, 0 if not.

406 Chapter 15. Sound Devices

Linux Driver-api Documentation

int __snd_rawmidi_transmit_peek(struct snd_rawmidi_substream
* substream, unsigned char * buffer,
int count)

copy data from the internal buffer

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

unsigned char * buffer the buffer pointer

int count data size to transfer

Description
This is a variant of snd_rawmidi_transmit_peek() without spinlock.

int snd_rawmidi_transmit_peek(struct snd_rawmidi_substream
* substream, unsigned char * buffer,
int count)

copy data from the internal buffer

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

unsigned char * buffer the buffer pointer

int count data size to transfer

Description
Copies data from the internal output buffer to the given buffer.

Call this in the interrupt handler when the midi output is ready, and call
snd_rawmidi_transmit_ack() after the transmission is finished.

Return
The size of copied data, or a negative error code on failure.

int __snd_rawmidi_transmit_ack(struct snd_rawmidi_substream
* substream, int count)

acknowledge the transmission

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

int count the transferred count

Description
This is a variant of __snd_rawmidi_transmit_ack() without spinlock.

int snd_rawmidi_transmit_ack(struct snd_rawmidi_substream
* substream, int count)

acknowledge the transmission

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

int count the transferred count

407

Linux Driver-api Documentation

Description
Advances the hardware pointer for the internal output buffer with the given size
and updates the condition. Call after the transmission is finished.

Return
The advanced size if successful, or a negative error code on failure.

int snd_rawmidi_transmit(struct snd_rawmidi_substream * substream, un-
signed char * buffer, int count)

copy from the buffer to the device

Parameters
struct snd_rawmidi_substream * substream the rawmidi substream

unsigned char * buffer the buffer pointer

int count the data size to transfer

Description
Copies data from the buffer to the device and advances the pointer.

Return
The copied size if successful, or a negative error code on failure.

int snd_rawmidi_proceed(struct snd_rawmidi_substream * substream)
Discard the all pending bytes and proceed

Parameters
struct snd_rawmidi_substream * substream rawmidi substream

Return
the number of discarded bytes

int snd_rawmidi_new(struct snd_card * card, char * id, int device,
int output_count, int input_count, struct snd_rawmidi
** rrawmidi)

create a rawmidi instance

Parameters
struct snd_card * card the card instance

char * id the id string

int device the device index

int output_count the number of output streams

int input_count the number of input streams

struct snd_rawmidi ** rrawmidi the pointer to store the new rawmidi instance

Description
Creates a new rawmidi instance. Use snd_rawmidi_set_ops() to set the operators
to the new instance.

Return

408 Chapter 15. Sound Devices

Linux Driver-api Documentation

Zero if successful, or a negative error code on failure.

void snd_rawmidi_set_ops(struct snd_rawmidi * rmidi, int stream, const
struct snd_rawmidi_ops * ops)

set the rawmidi operators

Parameters
struct snd_rawmidi * rmidi the rawmidi instance

int stream the stream direction, SNDRV_RAWMIDI_STREAM_XXX

const struct snd_rawmidi_ops * ops the operator table

Description
Sets the rawmidi operators for the given stream direction.

void snd_request_card(int card)
try to load the card module

Parameters
int card the card number

Description
Tries to load the module “snd-card-X”for the given card number via re-
quest_module. Returns immediately if already loaded.

void * snd_lookup_minor_data(unsigned int minor, int type)
get user data of a registered device

Parameters
unsigned int minor the minor number

int type device type (SNDRV_DEVICE_TYPE_XXX)

Description
Checks that a minor device with the specified type is registered, and returns its
user data pointer.

This function increments the reference counter of the card instance if an associ-
ated instance with the given minor number and type is found. The caller must call
snd_card_unref() appropriately later.

Return
The user data pointer if the specified device is found. NULL otherwise.

int snd_register_device(int type, struct snd_card * card, int dev, const
struct file_operations * f_ops, void * private_data,
struct device * device)

Register the ALSA device file for the card

Parameters
int type the device type, SNDRV_DEVICE_TYPE_XXX

struct snd_card * card the card instance

int dev the device index

409

Linux Driver-api Documentation

const struct file_operations * f_ops the file operations

void * private_data user pointer for f_ops->open()

struct device * device the device to register

Description
Registers an ALSA device file for the given card. The operators have to be set in
reg parameter.

Return
Zero if successful, or a negative error code on failure.

int snd_unregister_device(struct device * dev)
unregister the device on the given card

Parameters
struct device * dev the device instance

Description
Unregisters the device file already registered via snd_register_device().

Return
Zero if successful, or a negative error code on failure.

int copy_to_user_fromio(void __user * dst, const volatile void __iomem
* src, size_t count)

copy data from mmio-space to user-space

Parameters
void __user * dst the destination pointer on user-space

const volatile void __iomem * src the source pointer on mmio

size_t count the data size to copy in bytes

Description
Copies the data from mmio-space to user-space.

Return
Zero if successful, or non-zero on failure.

int copy_from_user_toio(volatile void __iomem * dst, const void __user
* src, size_t count)

copy data from user-space to mmio-space

Parameters
volatile void __iomem * dst the destination pointer on mmio-space

const void __user * src the source pointer on user-space

size_t count the data size to copy in bytes

Description
Copies the data from user-space to mmio-space.

410 Chapter 15. Sound Devices

Linux Driver-api Documentation

Return
Zero if successful, or non-zero on failure.

void snd_pcm_lib_preallocate_free_for_all(struct snd_pcm * pcm)
release all pre-allocated buffers on the pcm

Parameters
struct snd_pcm * pcm the pcm instance

Description
Releases all the pre-allocated buffers on the given pcm.

void snd_pcm_lib_preallocate_pages(struct snd_pcm_substream
* substream, int type, struct de-
vice * data, size_t size, size_t max)

pre-allocation for the given DMA type

Parameters
struct snd_pcm_substream * substream the pcm substream instance

int type DMA type (SNDRV_DMA_TYPE_*)

struct device * data DMA type dependent data

size_t size the requested pre-allocation size in bytes

size_t max the max. allowed pre-allocation size

Description
Do pre-allocation for the given DMA buffer type.

void snd_pcm_lib_preallocate_pages_for_all(struct snd_pcm * pcm,
int type, void * data,
size_t size, size_t max)

pre-allocation for continuous memory type (all substreams)

Parameters
struct snd_pcm * pcm the pcm instance

int type DMA type (SNDRV_DMA_TYPE_*)

void * data DMA type dependent data

size_t size the requested pre-allocation size in bytes

size_t max the max. allowed pre-allocation size

Description
Do pre-allocation to all substreams of the given pcm for the specified DMA type.

void snd_pcm_set_managed_buffer(struct snd_pcm_substream * substream,
int type, struct device * data,
size_t size, size_t max)

set up buffer management for a substream

Parameters
struct snd_pcm_substream * substream the pcm substream instance

411

Linux Driver-api Documentation

int type DMA type (SNDRV_DMA_TYPE_*)

struct device * data DMA type dependent data

size_t size the requested pre-allocation size in bytes

size_t max the max. allowed pre-allocation size

Description
Do pre-allocation for the given DMA buffer type, and set the managed buffer allo-
cation mode to the given substream. In this mode, PCM core will allocate a buffer
automatically before PCM hw_params ops call, and release the buffer after PCM
hw_free ops call as well, so that the driver doesn’t need to invoke the allocation
and the release explicitly in its callback. When a buffer is actually allocated before
the PCM hw_params call, it turns on the runtime buffer_changed flag for drivers
changing their h/w parameters accordingly.

void snd_pcm_set_managed_buffer_all(struct snd_pcm * pcm, int type,
struct device * data, size_t size,
size_t max)

set up buffer management for all substreams for all substreams

Parameters
struct snd_pcm * pcm the pcm instance

int type DMA type (SNDRV_DMA_TYPE_*)

struct device * data DMA type dependent data

size_t size the requested pre-allocation size in bytes

size_t max the max. allowed pre-allocation size

Description
Do pre-allocation to all substreams of the given pcm for the specified DMA type
and size, and set the managed_buffer_alloc flag to each substream.

int snd_pcm_lib_malloc_pages(struct snd_pcm_substream * substream,
size_t size)

allocate the DMA buffer

Parameters
struct snd_pcm_substream * substream the substream to allocate the DMA

buffer to

size_t size the requested buffer size in bytes

Description
Allocates the DMA buffer on the BUS type given earlier to
snd_pcm_lib_preallocate_xxx_pages().

Return
1 if the buffer is changed, 0 if not changed, or a negative code on failure.

int snd_pcm_lib_free_pages(struct snd_pcm_substream * substream)
release the allocated DMA buffer.

412 Chapter 15. Sound Devices

Linux Driver-api Documentation

Parameters
struct snd_pcm_substream * substream the substream to release the DMA

buffer

Description
Releases the DMA buffer allocated via snd_pcm_lib_malloc_pages().

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_lib_free_vmalloc_buffer(struct snd_pcm_substream
* substream)

free vmalloc buffer

Parameters
struct snd_pcm_substream * substream the substream with a buffer allocated

by snd_pcm_lib_alloc_vmalloc_buffer()

Return
Zero if successful, or a negative error code on failure.

struct page * snd_pcm_lib_get_vmalloc_page(struct snd_pcm_substream
* substream, unsigned
long offset)

map vmalloc buffer offset to page struct

Parameters
struct snd_pcm_substream * substream the substream with a buffer allocated

by snd_pcm_lib_alloc_vmalloc_buffer()

unsigned long offset offset in the buffer

Description
This function is to be used as the page callback in the PCM ops.

Return
The page struct, or NULL on failure.

void snd_device_initialize(struct device * dev, struct snd_card * card)
Initialize struct device for sound devices

Parameters
struct device * dev device to initialize

struct snd_card * card card to assign, optional

int snd_card_new(struct device * parent, int idx, const char * xid, struct mod-
ule * module, int extra_size, struct snd_card ** card_ret)

create and initialize a soundcard structure

Parameters
struct device * parent the parent device object

int idx card index (address) [0 ⋯(SNDRV_CARDS-1)]

413

Linux Driver-api Documentation

const char * xid card identification (ASCII string)

struct module * module top level module for locking

int extra_size allocate this extra size after the main soundcard structure

struct snd_card ** card_ret the pointer to store the created card instance

Creates and initializes a soundcard structure.

The function allocates snd_card instance via kzalloc with the given space for
the driver to use freely. The allocated struct is stored in the given card_ret
pointer.

Return
Zero if successful or a negative error code.

struct snd_card * snd_card_ref(int idx)
Get the card object from the index

Parameters
int idx the card index

Description
Returns a card object corresponding to the given index or NULL if not found.
Release the object via snd_card_unref().

int snd_card_disconnect(struct snd_card * card)
disconnect all APIs from the file-operations (user space)

Parameters
struct snd_card * card soundcard structure

Disconnects all APIs from the file-operations (user space).

Return
Zero, otherwise a negative error code.

Note
The current implementation replaces all active file->f_op with special

dummy file operations (they do nothing except release).

void snd_card_disconnect_sync(struct snd_card * card)
disconnect card and wait until files get closed

Parameters
struct snd_card * card card object to disconnect

Description
This calls snd_card_disconnect() for disconnecting all belonging components
and waits until all pending files get closed. It assures that all accesses from user-
space finished so that the driver can release its resources gracefully.

int snd_card_free_when_closed(struct snd_card * card)
Disconnect the card, free it later eventually

Parameters

414 Chapter 15. Sound Devices

Linux Driver-api Documentation

struct snd_card * card soundcard structure

Description
Unlike snd_card_free(), this function doesn’t try to release the card resource
immediately, but tries to disconnect at first. When the card is still in use, the
function returns before freeing the resources. The card resources will be freed
when the refcount gets to zero.

int snd_card_free(struct snd_card * card)
frees given soundcard structure

Parameters
struct snd_card * card soundcard structure

Description
This function releases the soundcard structure and the all assigned devices auto-
matically. That is, you don’t have to release the devices by yourself.
This function waits until the all resources are properly released.

Return
Zero. Frees all associated devices and frees the control interface associated to
given soundcard.

void snd_card_set_id(struct snd_card * card, const char * nid)
set card identification name

Parameters
struct snd_card * card soundcard structure

const char * nid new identification string

This function sets the card identification and checks for name collisions.

int snd_card_add_dev_attr(struct snd_card * card, const struct at-
tribute_group * group)

Append a new sysfs attribute group to card

Parameters
struct snd_card * card card instance

const struct attribute_group * group attribute group to append

int snd_card_register(struct snd_card * card)
register the soundcard

Parameters
struct snd_card * card soundcard structure

This function registers all the devices assigned to the soundcard. Until calling
this, the ALSA control interface is blocked from the external accesses. Thus,
you should call this function at the end of the initialization of the card.

Return
Zero otherwise a negative error code if the registration failed.

415

Linux Driver-api Documentation

int snd_component_add(struct snd_card * card, const char * component)
add a component string

Parameters
struct snd_card * card soundcard structure

const char * component the component id string

This function adds the component id string to the supported list. The compo-
nent can be referred from the alsa-lib.

Return
Zero otherwise a negative error code.

int snd_card_file_add(struct snd_card * card, struct file * file)
add the file to the file list of the card

Parameters
struct snd_card * card soundcard structure

struct file * file file pointer

This function adds the file to the file linked-list of the card. This linked-list is
used to keep tracking the connection state, and to avoid the release of busy
resources by hotplug.

Return
zero or a negative error code.

int snd_card_file_remove(struct snd_card * card, struct file * file)
remove the file from the file list

Parameters
struct snd_card * card soundcard structure

struct file * file file pointer

This function removes the file formerly added to the card via
snd_card_file_add() function. If all files are removed and
snd_card_free_when_closed() was called beforehand, it processes the
pending release of resources.

Return
Zero or a negative error code.

int snd_power_wait(struct snd_card * card, unsigned int power_state)
wait until the power-state is changed.

Parameters
struct snd_card * card soundcard structure

unsigned int power_state expected power state

Waits until the power-state is changed.

Return
Zero if successful, or a negative error code.

416 Chapter 15. Sound Devices

Linux Driver-api Documentation

void snd_dma_program(unsigned long dma, unsigned long addr, unsigned
int size, unsigned short mode)

program an ISA DMA transfer

Parameters
unsigned long dma the dma number

unsigned long addr the physical address of the buffer

unsigned int size the DMA transfer size

unsigned short mode the DMA transfer mode, DMA_MODE_XXX

Description
Programs an ISA DMA transfer for the given buffer.

void snd_dma_disable(unsigned long dma)
stop the ISA DMA transfer

Parameters
unsigned long dma the dma number

Description
Stops the ISA DMA transfer.

unsigned int snd_dma_pointer(unsigned long dma, unsigned int size)
return the current pointer to DMA transfer buffer in bytes

Parameters
unsigned long dma the dma number

unsigned int size the dma transfer size

Return
The current pointer in DMA transfer buffer in bytes.

void snd_ctl_notify(struct snd_card * card, unsigned int mask, struct
snd_ctl_elem_id * id)

Send notification to user-space for a control change

Parameters
struct snd_card * card the card to send notification

unsigned int mask the event mask, SNDRV_CTL_EVENT_*

struct snd_ctl_elem_id * id the ctl element id to send notification

Description
This function adds an event record with the given id and mask, appends to the
list and wakes up the user-space for notification. This can be called in the atomic
context.

struct snd_kcontrol * snd_ctl_new1(const struct snd_kcontrol_new
* ncontrol, void * private_data)

create a control instance from the template

Parameters

417

Linux Driver-api Documentation

const struct snd_kcontrol_new * ncontrol the initialization record

void * private_data the private data to set

Description
Allocates a new struct snd_kcontrol instance and initialize from the given template.
When the access field of ncontrol is 0, it’s assumed as READWRITE access. When
the count field is 0, it’s assumes as one.
Return
The pointer of the newly generated instance, or NULL on failure.

void snd_ctl_free_one(struct snd_kcontrol * kcontrol)
release the control instance

Parameters
struct snd_kcontrol * kcontrol the control instance

Description
Releases the control instance created via snd_ctl_new() or snd_ctl_new1(). Don’
t call this after the control was added to the card.

int snd_ctl_add(struct snd_card * card, struct snd_kcontrol * kcontrol)
add the control instance to the card

Parameters
struct snd_card * card the card instance

struct snd_kcontrol * kcontrol the control instance to add

Description
Adds the control instance created via snd_ctl_new() or snd_ctl_new1() to the
given card. Assigns also an unique numid used for fast search.

It frees automatically the control which cannot be added.

Return
Zero if successful, or a negative error code on failure.

int snd_ctl_replace(struct snd_card * card, struct snd_kcontrol * kcontrol,
bool add_on_replace)

replace the control instance of the card

Parameters
struct snd_card * card the card instance

struct snd_kcontrol * kcontrol the control instance to replace

bool add_on_replace add the control if not already added

Description
Replaces the given control. If the given control does not exist and the
add_on_replace flag is set, the control is added. If the control exists, it is destroyed
first.

It frees automatically the control which cannot be added or replaced.

418 Chapter 15. Sound Devices

Linux Driver-api Documentation

Return
Zero if successful, or a negative error code on failure.

int snd_ctl_remove(struct snd_card * card, struct snd_kcontrol * kcontrol)
remove the control from the card and release it

Parameters
struct snd_card * card the card instance

struct snd_kcontrol * kcontrol the control instance to remove

Description
Removes the control from the card and then releases the instance. You
don’t need to call snd_ctl_free_one(). You must be in the write lock -
down_write(card->controls_rwsem).

Return
0 if successful, or a negative error code on failure.

int snd_ctl_remove_id(struct snd_card * card, struct snd_ctl_elem_id * id)
remove the control of the given id and release it

Parameters
struct snd_card * card the card instance

struct snd_ctl_elem_id * id the control id to remove

Description
Finds the control instance with the given id, removes it from the card list and
releases it.

Return
0 if successful, or a negative error code on failure.

int snd_ctl_activate_id(struct snd_card * card, struct snd_ctl_elem_id
* id, int active)

activate/inactivate the control of the given id

Parameters
struct snd_card * card the card instance

struct snd_ctl_elem_id * id the control id to activate/inactivate

int active non-zero to activate

Description
Finds the control instance with the given id, and activate or inactivate the control
together with notification, if changed. The given ID data is filled with full informa-
tion.

Return
0 if unchanged, 1 if changed, or a negative error code on failure.

419

Linux Driver-api Documentation

int snd_ctl_rename_id(struct snd_card * card, struct snd_ctl_elem_id
* src_id, struct snd_ctl_elem_id * dst_id)

replace the id of a control on the card

Parameters
struct snd_card * card the card instance

struct snd_ctl_elem_id * src_id the old id

struct snd_ctl_elem_id * dst_id the new id

Description
Finds the control with the old id from the card, and replaces the id with the new
one.

Return
Zero if successful, or a negative error code on failure.

struct snd_kcontrol * snd_ctl_find_numid(struct snd_card * card, unsigned
int numid)

find the control instance with the given number-id

Parameters
struct snd_card * card the card instance

unsigned int numid the number-id to search

Description
Finds the control instance with the given number-id from the card.

The caller must down card->controls_rwsem before calling this function (if the
race condition can happen).

Return
The pointer of the instance if found, or NULL if not.

struct snd_kcontrol * snd_ctl_find_id(struct snd_card * card, struct
snd_ctl_elem_id * id)

find the control instance with the given id

Parameters
struct snd_card * card the card instance

struct snd_ctl_elem_id * id the id to search

Description
Finds the control instance with the given id from the card.

The caller must down card->controls_rwsem before calling this function (if the
race condition can happen).

Return
The pointer of the instance if found, or NULL if not.

int snd_ctl_register_ioctl(snd_kctl_ioctl_func_t fcn)
register the device-specific control-ioctls

420 Chapter 15. Sound Devices

Linux Driver-api Documentation

Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function

Description
called from each device manager like pcm.c, hwdep.c, etc.

int snd_ctl_register_ioctl_compat(snd_kctl_ioctl_func_t fcn)
register the device-specific 32bit compat control-ioctls

Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function

int snd_ctl_unregister_ioctl(snd_kctl_ioctl_func_t fcn)
de-register the device-specific control-ioctls

Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function to unregister

int snd_ctl_unregister_ioctl_compat(snd_kctl_ioctl_func_t fcn)
de-register the device-specific compat 32bit control-ioctls

Parameters
snd_kctl_ioctl_func_t fcn ioctl callback function to unregister

int snd_ctl_boolean_mono_info(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo)

Helper function for a standard boolean info callback with a mono channel

Parameters
struct snd_kcontrol * kcontrol the kcontrol instance

struct snd_ctl_elem_info * uinfo info to store

Description
This is a function that can be used as info callback for a standard boolean control
with a single mono channel.

int snd_ctl_boolean_stereo_info(struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo)

Helper function for a standard boolean info callback with stereo two channels

Parameters
struct snd_kcontrol * kcontrol the kcontrol instance

struct snd_ctl_elem_info * uinfo info to store

Description
This is a function that can be used as info callback for a standard boolean control
with stereo two channels.

int snd_ctl_enum_info(struct snd_ctl_elem_info * info, unsigned
int channels, unsigned int items, const char
*const names)

fills the info structure for an enumerated control

Parameters

421

Linux Driver-api Documentation

struct snd_ctl_elem_info * info the structure to be filled

unsigned int channels the number of the control’s channels; often one
unsigned int items the number of control values; also the size of names
const char *const names an array containing the names of all control values

Description
Sets all required fields in info to their appropriate values. If the control’s accessi-
bility is not the default (readable and writable), the caller has to fill info->access.
Return
Zero.

void snd_pcm_set_ops(struct snd_pcm * pcm, int direction, const struct
snd_pcm_ops * ops)

set the PCM operators

Parameters
struct snd_pcm * pcm the pcm instance

int direction stream direction, SNDRV_PCM_STREAM_XXX

const struct snd_pcm_ops * ops the operator table

Description
Sets the given PCM operators to the pcm instance.

void snd_pcm_set_sync(struct snd_pcm_substream * substream)
set the PCM sync id

Parameters
struct snd_pcm_substream * substream the pcm substream

Description
Sets the PCM sync identifier for the card.

int snd_interval_refine(struct snd_interval * i, const struct snd_interval
* v)

refine the interval value of configurator

Parameters
struct snd_interval * i the interval value to refine

const struct snd_interval * v the interval value to refer to

Description
Refines the interval value with the reference value. The interval is changed to the
range satisfying both intervals. The interval status (min, max, integer, etc.) are
evaluated.

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

422 Chapter 15. Sound Devices

Linux Driver-api Documentation

int snd_interval_ratnum(struct snd_interval * i, unsigned int rats_count,
const struct snd_ratnum * rats, unsigned int
* nump, unsigned int * denp)

refine the interval value

Parameters
struct snd_interval * i interval to refine

unsigned int rats_count number of ratnum_t

const struct snd_ratnum * rats ratnum_t array

unsigned int * nump pointer to store the resultant numerator

unsigned int * denp pointer to store the resultant denominator

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_interval_list(struct snd_interval * i, unsigned int count, const un-
signed int * list, unsigned int mask)

refine the interval value from the list

Parameters
struct snd_interval * i the interval value to refine

unsigned int count the number of elements in the list

const unsigned int * list the value list

unsigned int mask the bit-mask to evaluate

Description
Refines the interval value from the list. When mask is non-zero, only the elements
corresponding to bit 1 are evaluated.

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_interval_ranges(struct snd_interval * i, unsigned int count, const
struct snd_interval * ranges, unsigned int mask)

refine the interval value from the list of ranges

Parameters
struct snd_interval * i the interval value to refine

unsigned int count the number of elements in the list of ranges

const struct snd_interval * ranges the ranges list

unsigned int mask the bit-mask to evaluate

Description
Refines the interval value from the list of ranges. When mask is non-zero, only the
elements corresponding to bit 1 are evaluated.

423

Linux Driver-api Documentation

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_pcm_hw_rule_add(struct snd_pcm_runtime * runtime, unsigned
int cond, int var, snd_pcm_hw_rule_func_t func,
void * private, int dep, ...)

add the hw-constraint rule

Parameters
struct snd_pcm_runtime * runtime the pcm runtime instance

unsigned int cond condition bits

int var the variable to evaluate

snd_pcm_hw_rule_func_t func the evaluation function

void * private the private data pointer passed to function

int dep the dependent variables

... variable arguments

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var,
u_int64_t mask)

apply the given bitmap mask constraint

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_hw_param_t var hw_params variable to apply the mask

u_int64_t mask the 64bit bitmap mask

Description
Apply the constraint of the given bitmap mask to a 64-bit mask parameter.

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var)

apply an integer constraint to an interval

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_hw_param_t var hw_params variable to apply the integer constraint

Description
Apply the constraint of integer to an interval parameter.

Return

424 Chapter 15. Sound Devices

Linux Driver-api Documentation

Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var, unsigned
int min, unsigned int max)

apply a min/max range constraint to an interval

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

snd_pcm_hw_param_t var hw_params variable to apply the range

unsigned int min the minimal value

unsigned int max the maximal value

Description
Apply the min/max range constraint to an interval parameter.

Return
Positive if the value is changed, zero if it’s not changed, or a negative error code.

int snd_pcm_hw_constraint_list(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_list * l)

apply a list of constraints to a parameter

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the list constraint

const struct snd_pcm_hw_constraint_list * l list

Description
Apply the list of constraints to an interval parameter.

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_ranges * r)

apply list of range constraints to a parameter

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

425

Linux Driver-api Documentation

snd_pcm_hw_param_t var hw_params variable to apply the list of range con-
straints

const struct snd_pcm_hw_constraint_ranges * r ranges

Description
Apply the list of range constraints to an interval parameter.

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var,
const struct
snd_pcm_hw_constraint_ratnums
* r)

apply ratnums constraint to a parameter

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the ratnums constraint

const struct snd_pcm_hw_constraint_ratnums * r struct snd_ratnums cons-
triants

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var,
const struct
snd_pcm_hw_constraint_ratdens
* r)

apply ratdens constraint to a parameter

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the ratdens constraint

const struct snd_pcm_hw_constraint_ratdens * r struct snd_ratdens cons-
triants

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime * runtime, un-
signed int cond, unsigned int width,
unsigned int msbits)

add a hw constraint msbits rule

426 Chapter 15. Sound Devices

Linux Driver-api Documentation

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

unsigned int width sample bits width

unsigned int msbits msbits width

Description
This constraint will set the number of most significant bits (msbits) if a sample
format with the specified width has been select. If width is set to 0 the msbits will
be set for any sample format with a width larger than the specified msbits.

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_step(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var, unsigned
long step)

add a hw constraint step rule

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the step constraint

unsigned long step step size

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime
* runtime, unsigned int cond,
snd_pcm_hw_param_t var)

add a hw constraint power-of-2 rule

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

unsigned int cond condition bits

snd_pcm_hw_param_t var hw_params variable to apply the power-of-2 constraint

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime * runtime, un-
signed int base_rate)

add a rule to allow disabling hw resampling

Parameters
struct snd_pcm_runtime * runtime PCM runtime instance

427

Linux Driver-api Documentation

unsigned int base_rate the rate at which the hardware does not resample

Return
Zero if successful, or a negative error code on failure.

int snd_pcm_hw_param_value(const struct snd_pcm_hw_params * params,
snd_pcm_hw_param_t var, int * dir)

return params field var value
Parameters
const struct snd_pcm_hw_params * params the hw_params instance

snd_pcm_hw_param_t var parameter to retrieve

int * dir pointer to the direction (-1,0,1) or NULL

Return
The value for field var if it’s fixed in configuration space defined by params.
-EINVAL otherwise.

int snd_pcm_hw_param_first(struct snd_pcm_substream * pcm,
struct snd_pcm_hw_params * params,
snd_pcm_hw_param_t var, int * dir)

refine config space and return minimum value

Parameters
struct snd_pcm_substream * pcm PCM instance

struct snd_pcm_hw_params * params the hw_params instance

snd_pcm_hw_param_t var parameter to retrieve

int * dir pointer to the direction (-1,0,1) or NULL

Description
Inside configuration space defined by params remove from var all values > mini-
mum. Reduce configuration space accordingly.

Return
The minimum, or a negative error code on failure.

int snd_pcm_hw_param_last(struct snd_pcm_substream * pcm,
struct snd_pcm_hw_params * params,
snd_pcm_hw_param_t var, int * dir)

refine config space and return maximum value

Parameters
struct snd_pcm_substream * pcm PCM instance

struct snd_pcm_hw_params * params the hw_params instance

snd_pcm_hw_param_t var parameter to retrieve

int * dir pointer to the direction (-1,0,1) or NULL

Description

428 Chapter 15. Sound Devices

Linux Driver-api Documentation

Inside configuration space defined by params remove from var all values < max-
imum. Reduce configuration space accordingly.

Return
The maximum, or a negative error code on failure.

int snd_pcm_lib_ioctl(struct snd_pcm_substream * substream, unsigned
int cmd, void * arg)

a generic PCM ioctl callback

Parameters
struct snd_pcm_substream * substream the pcm substream instance

unsigned int cmd ioctl command

void * arg ioctl argument

Description
Processes the generic ioctl commands for PCM. Can be passed as the ioctl callback
for PCM ops.

Return
Zero if successful, or a negative error code on failure.

void snd_pcm_period_elapsed(struct snd_pcm_substream * substream)
update the pcm status for the next period

Parameters
struct snd_pcm_substream * substream the pcm substream instance

Description
This function is called from the interrupt handler when the PCM has processed
the period size. It will update the current pointer, wake up sleepers, etc.

Even if more than one periods have elapsed since the last call, you have to call this
only once.

int snd_pcm_add_chmap_ctls(struct snd_pcm * pcm, int stream,
const struct snd_pcm_chmap_elem
* chmap, int max_channels, unsigned
long private_value, struct snd_pcm_chmap
** info_ret)

create channel-mapping control elements

Parameters
struct snd_pcm * pcm the assigned PCM instance

int stream stream direction

const struct snd_pcm_chmap_elem * chmap channel map elements (for query)

int max_channels the max number of channels for the stream

unsigned long private_value the value passed to each kcontrol’s private_value
field

429

Linux Driver-api Documentation

struct snd_pcm_chmap ** info_ret store struct snd_pcm_chmap instance if
non-NULL

Description
Create channel-mapping control elements assigned to the given PCM stream(s).

Return
Zero if successful, or a negative error value.

int snd_hwdep_new(struct snd_card * card, char * id, int device, struct
snd_hwdep ** rhwdep)

create a new hwdep instance

Parameters
struct snd_card * card the card instance

char * id the id string

int device the device index (zero-based)

struct snd_hwdep ** rhwdep the pointer to store the new hwdep instance

Description
Creates a new hwdep instance with the given index on the card. The callbacks
(hwdep->ops) must be set on the returned instance after this call manually by the
caller.

Return
Zero if successful, or a negative error code on failure.

void snd_pcm_stream_lock(struct snd_pcm_substream * substream)
Lock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream

Description
This locks the PCM stream’s spinlock or mutex depending on the nonatomic flag
of the given substream. This also takes the global link rw lock (or rw sem), too,
for avoiding the race with linked streams.

void snd_pcm_stream_unlock(struct snd_pcm_substream * substream)
Unlock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream

Description
This unlocks the PCM stream that has been locked via snd_pcm_stream_lock().

void snd_pcm_stream_lock_irq(struct snd_pcm_substream * substream)
Lock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream

430 Chapter 15. Sound Devices

Linux Driver-api Documentation

Description
This locks the PCM stream like snd_pcm_stream_lock() and disables the lo-
cal IRQ (only when nonatomic is false). In nonatomic case, this is identical as
snd_pcm_stream_lock().

void snd_pcm_stream_unlock_irq(struct snd_pcm_substream * substream)
Unlock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream

Description
This is a counter-part of snd_pcm_stream_lock_irq().

void snd_pcm_stream_unlock_irqrestore(struct snd_pcm_substream
* substream, unsigned
long flags)

Unlock the PCM stream

Parameters
struct snd_pcm_substream * substream PCM substream

unsigned long flags irq flags

Description
This is a counter-part of snd_pcm_stream_lock_irqsave().

int snd_pcm_stop(struct snd_pcm_substream * substream,
snd_pcm_state_t state)

try to stop all running streams in the substream group

Parameters
struct snd_pcm_substream * substream the PCM substream instance

snd_pcm_state_t state PCM state after stopping the stream

Description
The state of each stream is then changed to the given state unconditionally.

Return
Zero if successful, or a negative error code.

int snd_pcm_stop_xrun(struct snd_pcm_substream * substream)
stop the running streams as XRUN

Parameters
struct snd_pcm_substream * substream the PCM substream instance

Description
This stops the given running substream (and all linked substreams) as XRUN. Un-
like snd_pcm_stop(), this function takes the substream lock by itself.

Return
Zero if successful, or a negative error code.

431

Linux Driver-api Documentation

int snd_pcm_suspend_all(struct snd_pcm * pcm)
trigger SUSPEND to all substreams in the given pcm

Parameters
struct snd_pcm * pcm the PCM instance

Description
After this call, all streams are changed to SUSPENDED state.

Return
Zero if successful (or pcm is NULL), or a negative error code.

int snd_pcm_kernel_ioctl(struct snd_pcm_substream * substream, un-
signed int cmd, void * arg)

Execute PCM ioctl in the kernel-space

Parameters
struct snd_pcm_substream * substream PCM substream

unsigned int cmd IOCTL cmd

void * arg IOCTL argument

Description
The function is provided primarily for OSS layer and USB gadget drivers, and it
allows only the limited set of ioctls (hw_params, sw_params, prepare, start, drain,
drop, forward).

int snd_pcm_lib_default_mmap(struct snd_pcm_substream * substream,
struct vm_area_struct * area)

Default PCM data mmap function

Parameters
struct snd_pcm_substream * substream PCM substream

struct vm_area_struct * area VMA

Description
This is the default mmap handler for PCM data. When mmap pcm_ops is NULL,
this function is invoked implicitly.

int snd_pcm_lib_mmap_iomem(struct snd_pcm_substream * substream,
struct vm_area_struct * area)

Default PCM data mmap function for I/O mem

Parameters
struct snd_pcm_substream * substream PCM substream

struct vm_area_struct * area VMA

Description
When your hardware uses the iomapped pages as the hardware buffer and wants
to mmap it, pass this function as mmap pcm_ops. Note that this is supposed to
work only on limited architectures.

432 Chapter 15. Sound Devices

Linux Driver-api Documentation

int snd_dma_alloc_pages(int type, struct device * device, size_t size, struct
snd_dma_buffer * dmab)

allocate the buffer area according to the given type

Parameters
int type the DMA buffer type

struct device * device the device pointer

size_t size the buffer size to allocate

struct snd_dma_buffer * dmab buffer allocation record to store the allocated
data

Description
Calls the memory-allocator function for the corresponding buffer type.

Return
Zero if the buffer with the given size is allocated successfully, otherwise a negative
value on error.

int snd_dma_alloc_pages_fallback(int type, struct device * device,
size_t size, struct snd_dma_buffer
* dmab)

allocate the buffer area according to the given type with fallback

Parameters
int type the DMA buffer type

struct device * device the device pointer

size_t size the buffer size to allocate

struct snd_dma_buffer * dmab buffer allocation record to store the allocated
data

Description
Calls the memory-allocator function for the corresponding buffer type. When no
space is left, this function reduces the size and tries to allocate again. The size
actually allocated is stored in res_size argument.

Return
Zero if the buffer with the given size is allocated successfully, otherwise a negative
value on error.

void snd_dma_free_pages(struct snd_dma_buffer * dmab)
release the allocated buffer

Parameters
struct snd_dma_buffer * dmab the buffer allocation record to release

Description
Releases the allocated buffer via snd_dma_alloc_pages().

433

Linux Driver-api Documentation

434 Chapter 15. Sound Devices

CHAPTER

SIXTEEN

FRAME BUFFER LIBRARY

The frame buffer drivers depend heavily on four data structures. These struc-
tures are declared in include/linux/fb.h. They are fb_info, fb_var_screeninfo,
fb_fix_screeninfo and fb_monospecs. The last three can be made available to and
from userland.

fb_info defines the current state of a particular video card. Inside fb_info, there
exists a fb_ops structure which is a collection of needed functions to make fbdev
and fbcon work. fb_info is only visible to the kernel.

fb_var_screeninfo is used to describe the features of a video card that are user
defined. With fb_var_screeninfo, things such as depth and the resolution may be
defined.

The next structure is fb_fix_screeninfo. This defines the properties of a card that
are created when a mode is set and can’t be changed otherwise. A good example
of this is the start of the frame buffer memory. This “locks”the address of the
frame buffer memory, so that it cannot be changed or moved.

The last structure is fb_monospecs. In the old API, there was little importance
for fb_monospecs. This allowed for forbidden things such as setting a mode of
800x600 on a fix frequency monitor. With the new API, fb_monospecs prevents
such things, and if used correctly, can prevent a monitor from being cooked.
fb_monospecs will not be useful until kernels 2.5.x.

16.1 Frame Buffer Memory

int remove_conflicting_framebuffers(struct apertures_struct * a, const
char * name, bool primary)

remove firmware-configured framebuffers

Parameters
struct apertures_struct * a memory range, users of which are to be removed

const char * name requesting driver name

bool primary also kick vga16fb if present

Description
This function removes framebuffer devices (initialized by firmware/bootloader)
which use memory range described by a. If a is NULL all such devices are re-
moved.

435

Linux Driver-api Documentation

int remove_conflicting_pci_framebuffers(struct pci_dev * pdev, const
char * name)

remove firmware-configured framebuffers for PCI devices

Parameters
struct pci_dev * pdev PCI device

const char * name requesting driver name

Description
This function removes framebuffer devices (eg. initialized by firmware) using
memory range configured for any of pdev’s memory bars.
The function assumes that PCI device with shadowed ROMdrives a primary display
and so kicks out vga16fb.

int register_framebuffer(struct fb_info * fb_info)
registers a frame buffer device

Parameters
struct fb_info * fb_info frame buffer info structure

Registers a frame buffer device fb_info.
Returns negative errno on error, or zero for success.

void unregister_framebuffer(struct fb_info * fb_info)
releases a frame buffer device

Parameters
struct fb_info * fb_info frame buffer info structure

Unregisters a frame buffer device fb_info.
Returns negative errno on error, or zero for success.

This function will also notify the framebuffer console to release the driver.

This is meant to be called within a driver’s module_exit() function. If this is
called outside module_exit(), ensure that the driver implements fb_open()
and fb_release() to check that no processes are using the device.

void fb_set_suspend(struct fb_info * info, int state)
low level driver signals suspend

Parameters
struct fb_info * info framebuffer affected

int state 0 = resuming, !=0 = suspending

This is meant to be used by low level drivers to signal suspend/resume to the
core & clients. It must be called with the console semaphore held

436 Chapter 16. Frame Buffer Library

Linux Driver-api Documentation

16.2 Frame Buffer Colormap

void fb_dealloc_cmap(struct fb_cmap * cmap)
deallocate a colormap

Parameters
struct fb_cmap * cmap frame buffer colormap structure

Deallocates a colormap that was previously allocated with fb_alloc_cmap().

int fb_copy_cmap(const struct fb_cmap * from, struct fb_cmap * to)
copy a colormap

Parameters
const struct fb_cmap * from frame buffer colormap structure

struct fb_cmap * to frame buffer colormap structure

Copy contents of colormap from from to to.
int fb_set_cmap(struct fb_cmap * cmap, struct fb_info * info)

set the colormap

Parameters
struct fb_cmap * cmap frame buffer colormap structure

struct fb_info * info frame buffer info structure

Sets the colormap cmap for a screen of device info.
Returns negative errno on error, or zero on success.

const struct fb_cmap * fb_default_cmap(int len)
get default colormap

Parameters
int len size of palette for a depth

Gets the default colormap for a specific screen depth. len is the size of the
palette for a particular screen depth.

Returns pointer to a frame buffer colormap structure.

void fb_invert_cmaps(void)
invert all defaults colormaps

Parameters
void no arguments

Description
Invert all default colormaps.

16.2. Frame Buffer Colormap 437

Linux Driver-api Documentation

16.3 Frame Buffer Video Mode Database

int fb_try_mode(struct fb_var_screeninfo * var, struct fb_info * info, const
struct fb_videomode * mode, unsigned int bpp)

test a video mode

Parameters
struct fb_var_screeninfo * var frame buffer user defined part of display

struct fb_info * info frame buffer info structure

const struct fb_videomode * mode frame buffer video mode structure

unsigned int bpp color depth in bits per pixel

Tries a video mode to test it’s validity for device info.
Returns 1 on success.

void fb_delete_videomode(const struct fb_videomode * mode, struct
list_head * head)

removed videomode entry from modelist

Parameters
const struct fb_videomode * mode videomode to remove

struct list_head * head struct list_head of modelist

NOTES
Will remove all matching mode entries

int fb_find_mode(struct fb_var_screeninfo * var, struct fb_info * info,
const char * mode_option, const struct fb_videomode
* db, unsigned int dbsize, const struct fb_videomode
* default_mode, unsigned int default_bpp)

finds a valid video mode

Parameters
struct fb_var_screeninfo * var frame buffer user defined part of display

struct fb_info * info frame buffer info structure

const char * mode_option string video mode to find

const struct fb_videomode * db video mode database

unsigned int dbsize size of db
const struct fb_videomode * default_mode default video mode to fall back to

unsigned int default_bpp default color depth in bits per pixel

Description
Finds a suitable video mode, starting with the specified mode in mode_option
with fallback to default_mode. If default_mode fails, all modes in the video
mode database will be tried.

Valid mode specifiers for mode_option:

438 Chapter 16. Frame Buffer Library

Linux Driver-api Documentation

<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][p][m]

or

<name>[-<bpp>][@<refresh>]

with <xres>, <yres>, <bpp> and <refresh> decimal numbers and <name> a
string.

If ‘M’is present after yres (and before refresh/bpp if present), the function will
compute the timings using VESA(tm) Coordinated Video Timings (CVT). If‘R’is
present after‘M’, will compute with reduced blanking (for flatpanels). If‘i’or
‘p’are present, compute interlaced or progressive mode. If ‘m’is present, add
margins equal to 1.8% of xres rounded down to 8 pixels, and 1.8% of yres. The
char ‘i’, ‘p’and ‘m’must be after ‘M’and ‘R’. Example:
1024x768MR-8@60m - Reduced blank with margins at 60Hz.

Returns zero for failure, 1 if using specified mode_option, 2 if using specified
mode_option with an ignored refresh rate, 3 if default mode is used, 4 if fall back
to any valid mode.

NOTE
The passed struct var is _not_ cleared! This allows you to supply values for e.g.
the grayscale and accel_flags fields.

void fb_var_to_videomode(struct fb_videomode * mode, const struct
fb_var_screeninfo * var)

convert fb_var_screeninfo to fb_videomode

Parameters
struct fb_videomode * mode pointer to struct fb_videomode

const struct fb_var_screeninfo * var pointer to struct fb_var_screeninfo

void fb_videomode_to_var(struct fb_var_screeninfo * var, const struct
fb_videomode * mode)

convert fb_videomode to fb_var_screeninfo

Parameters
struct fb_var_screeninfo * var pointer to struct fb_var_screeninfo

const struct fb_videomode * mode pointer to struct fb_videomode

int fb_mode_is_equal(const struct fb_videomode * mode1, const struct
fb_videomode * mode2)

compare 2 videomodes

Parameters
const struct fb_videomode * mode1 first videomode

const struct fb_videomode * mode2 second videomode

Return
1 if equal, 0 if not

16.3. Frame Buffer Video Mode Database 439

Linux Driver-api Documentation

const struct fb_videomode * fb_find_best_mode(const struct
fb_var_screeninfo * var,
struct list_head * head)

find best matching videomode

Parameters
const struct fb_var_screeninfo * var pointer to struct fb_var_screeninfo

struct list_head * head pointer to struct list_head of modelist

Return
struct fb_videomode, NULL if none found

Description
IMPORTANT: This function assumes that all modelist entries in info->modelist are
valid.

NOTES
Finds best matching videomode which has an equal or greater dimension than var-
>xres and var->yres. If more than 1 videomode is found, will return the videomode
with the highest refresh rate

const struct fb_videomode * fb_find_nearest_mode(const struct
fb_videomode * mode,
struct list_head
* head)

find closest videomode

Parameters
const struct fb_videomode * mode pointer to struct fb_videomode

struct list_head * head pointer to modelist

Description
Finds best matching videomode, smaller or greater in dimension. If more than 1
videomode is found, will return the videomode with the closest refresh rate.

const struct fb_videomode * fb_match_mode(const struct fb_var_screeninfo
* var, struct list_head * head)

find a videomode which exactly matches the timings in var

Parameters
const struct fb_var_screeninfo * var pointer to struct fb_var_screeninfo

struct list_head * head pointer to struct list_head of modelist

Return
struct fb_videomode, NULL if none found

int fb_add_videomode(const struct fb_videomode * mode, struct list_head
* head)

adds videomode entry to modelist

Parameters
const struct fb_videomode * mode videomode to add

440 Chapter 16. Frame Buffer Library

Linux Driver-api Documentation

struct list_head * head struct list_head of modelist

NOTES
Will only add unmatched mode entries

void fb_destroy_modelist(struct list_head * head)
destroy modelist

Parameters
struct list_head * head struct list_head of modelist

void fb_videomode_to_modelist(const struct fb_videomode * modedb,
int num, struct list_head * head)

convert mode array to mode list

Parameters
const struct fb_videomode * modedb array of struct fb_videomode

int num number of entries in array

struct list_head * head struct list_head of modelist

16.4 Frame Buffer Macintosh Video Mode Database

int mac_vmode_to_var(int vmode, int cmode, struct fb_var_screeninfo * var)
converts vmode/cmode pair to var structure

Parameters
int vmode MacOS video mode

int cmode MacOS color mode

struct fb_var_screeninfo * var frame buffer video mode structure

Converts a MacOS vmode/cmode pair to a frame buffer video mode structure.

Returns negative errno on error, or zero for success.

int mac_map_monitor_sense(int sense)
Convert monitor sense to vmode

Parameters
int sense Macintosh monitor sense number

Converts a Macintosh monitor sense number to a MacOS vmode number.

Returns MacOS vmode video mode number.

int mac_find_mode(struct fb_var_screeninfo * var, struct fb_info * info, const
char * mode_option, unsigned int default_bpp)

find a video mode

Parameters
struct fb_var_screeninfo * var frame buffer user defined part of display

struct fb_info * info frame buffer info structure

16.4. Frame Buffer Macintosh Video Mode Database 441

Linux Driver-api Documentation

const char * mode_option video mode name (see mac_modedb[])

unsigned int default_bpp default color depth in bits per pixel

Finds a suitable video mode. Tries to set mode specified by mode_option.
If the name of the wanted mode begins with ‘mac’, the Mac video mode
database will be used, otherwise it will fall back to the standard video mode
database.

Note
Function marked as __init and can only be used during system boot.

Returns error code from fb_find_mode (see fb_find_mode function).

16.5 Frame Buffer Fonts

Refer to the file lib/fonts/fonts.c for more information.

442 Chapter 16. Frame Buffer Library

CHAPTER

SEVENTEEN

VOLTAGE AND CURRENT REGULATOR API

Author Liam Girdwood

Author Mark Brown

17.1 Introduction

This framework is designed to provide a standard kernel interface to control volt-
age and current regulators.

The intention is to allow systems to dynamically control regulator power output in
order to save power and prolong battery life. This applies to both voltage regula-
tors (where voltage output is controllable) and current sinks (where current limit
is controllable).

Note that additional (and currently more complete) documentation is available in
the Linux kernel source under Documentation/power/regulator.

17.1.1 Glossary

The regulator API uses a number of terms which may not be familiar:

Regulator

Electronic device that supplies power to other devices. Most regulators
can enable and disable their output and some can also control their out-
put voltage or current.

Consumer

Electronic device which consumes power provided by a regulator. These
may either be static, requiring only a fixed supply, or dynamic, requiring
active management of the regulator at runtime.

Power Domain

The electronic circuit supplied by a given regulator, including the reg-
ulator and all consumer devices. The configuration of the regulator is
shared between all the components in the circuit.

Power Management Integrated Circuit (PMIC)

443

Linux Driver-api Documentation

An IC which contains numerous regulators and often also other subsys-
tems. In an embedded system the primary PMIC is often equivalent to a
combination of the PSU and southbridge in a desktop system.

17.2 Consumer driver interface

This offers a similar API to the kernel clock framework. Consumer drivers use get
and put operations to acquire and release regulators. Functions are provided to
enable and disable the regulator and to get and set the runtime parameters of the
regulator.

When requesting regulators consumers use symbolic names for their supplies,
such as “Vcc”, which are mapped into actual regulator devices by the machine
interface.

A stub version of this API is provided when the regulator framework is not in use
in order to minimise the need to use ifdefs.

17.2.1 Enabling and disabling

The regulator API provides reference counted enabling and disabling of regula-
tors. Consumer devices use the regulator_enable() and regulator_disable()
functions to enable and disable regulators. Calls to the two functions must be
balanced.

Note that since multiple consumers may be using a regulator and machine con-
straints may not allow the regulator to be disabled there is no guarantee that
calling regulator_disable() will actually cause the supply provided by the reg-
ulator to be disabled. Consumer drivers should assume that the regulator may be
enabled at all times.

17.2.2 Configuration

Some consumer devices may need to be able to dynamically configure their sup-
plies. For example, MMC drivers may need to select the correct operating voltage
for their cards. This may be done while the regulator is enabled or disabled.

The regulator_set_voltage() and regulator_set_current_limit() functions
provide the primary interface for this. Both take ranges of voltages and currents,
supporting drivers that do not require a specific value (eg, CPU frequency scal-
ing normally permits the CPU to use a wider range of supply voltages at lower
frequencies but does not require that the supply voltage be lowered). Where an
exact value is required both minimum and maximum values should be identical.

444 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

17.2.3 Callbacks

Callbacks may also be registered for events such as regulation failures.

17.3 Regulator driver interface

Drivers for regulator chips register the regulators with the regulator core, provid-
ing operations structures to the core. A notifier interface allows error conditions
to be reported to the core.

Registration should be triggered by explicit setup done by the platform, supplying
a struct regulator_init_data for the regulator containing constraint and supply
information.

17.4 Machine interface

This interface provides a way to define how regulators are connected to consumers
on a given system and what the valid operating parameters are for the system.

17.4.1 Supplies

Regulator supplies are specified using struct regulator_consumer_supply. This
is done at driver registration time as part of the machine constraints.

17.4.2 Constraints

As well as defining the connections the machine interface also provides constraints
defining the operations that clients are allowed to perform and the parameters
that may be set. This is required since generally regulator devices will offer more
flexibility than it is safe to use on a given system, for example supporting higher
supply voltages than the consumers are rated for.

This is done at driver registration time` by providing a struct
regulation_constraints.

The constraints may also specify an initial configuration for the regulator in the
constraints, which is particularly useful for use with static consumers.

17.5 API reference

Due to limitations of the kernel documentation framework and the existing layout
of the source code the entire regulator API is documented here.

struct pre_voltage_change_data
Data sent with PRE_VOLTAGE_CHANGE event

Definition

17.3. Regulator driver interface 445

Linux Driver-api Documentation

struct pre_voltage_change_data {
unsigned long old_uV;
unsigned long min_uV;
unsigned long max_uV;

};

Members
old_uV Current voltage before change.

min_uV Min voltage we’ll change to.
max_uV Max voltage we’ll change to.
struct regulator_bulk_data

Data used for bulk regulator operations.

Definition

struct regulator_bulk_data {
const char *supply;
struct regulator *consumer;

};

Members
supply The name of the supply. Initialised by the user before using the bulk reg-

ulator APIs.

consumer The regulator consumer for the supply. This will be managed by the
bulk API.

Description
The regulator APIs provide a series of regulator_bulk_() API calls as a convenience
to consumers which require multiple supplies. This structure is used to manage
data for these calls.

struct regulator_state
regulator state during low power system states

Definition

struct regulator_state {
int uV;
int min_uV;
int max_uV;
unsigned int mode;
int enabled;
bool changeable;

};

Members
uV Default operating voltage during suspend, it can be adjusted among <min_uV,

max_uV>.

min_uV Minimum suspend voltage may be set.

max_uV Maximum suspend voltage may be set.

446 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

mode Operating mode during suspend.

enabled operations during suspend. - DO_NOTHING_IN_SUSPEND - DIS-
ABLE_IN_SUSPEND - ENABLE_IN_SUSPEND

changeable Is this state can be switched between enabled/disabled,

Description
This describes a regulators state during a system wide low power state. One of
enabled or disabled must be set for the configuration to be applied.

struct regulation_constraints
regulator operating constraints.

Definition

struct regulation_constraints {
const char *name;
int min_uV;
int max_uV;
int uV_offset;
int min_uA;
int max_uA;
int ilim_uA;
int system_load;
u32 *max_spread;
int max_uV_step;
unsigned int valid_modes_mask;
unsigned int valid_ops_mask;
int input_uV;
struct regulator_state state_disk;
struct regulator_state state_mem;
struct regulator_state state_standby;
suspend_state_t initial_state;
unsigned int initial_mode;
unsigned int ramp_delay;
unsigned int settling_time;
unsigned int settling_time_up;
unsigned int settling_time_down;
unsigned int enable_time;
unsigned int active_discharge;
unsigned always_on:1;
unsigned boot_on:1;
unsigned apply_uV:1;
unsigned ramp_disable:1;
unsigned soft_start:1;
unsigned pull_down:1;
unsigned over_current_protection:1;

};

Members
name Descriptive name for the constraints, used for display purposes.

min_uV Smallest voltage consumers may set.

max_uV Largest voltage consumers may set.

17.5. API reference 447

Linux Driver-api Documentation

uV_offset Offset applied to voltages from consumer to compensate for voltage
drops.

min_uA Smallest current consumers may set.

max_uA Largest current consumers may set.

ilim_uA Maximum input current.

system_load Load that isn’t captured by any consumer requests.
max_spread Max possible spread between coupled regulators

valid_modes_mask Mask of modes which may be configured by consumers.

valid_ops_mask Operations which may be performed by consumers.

input_uV Input voltage for regulator when supplied by another regulator.

state_disk State for regulator when system is suspended in disk mode.

state_mem State for regulator when system is suspended in mem mode.

state_standby State for regulator when system is suspended in standby mode.

initial_state Suspend state to set by default.

initial_mode Mode to set at startup.

ramp_delay Time to settle down after voltage change (unit: uV/us)

settling_time Time to settle down after voltage change when voltage change is
non-linear (unit: microseconds).

settling_time_up Time to settle down after voltage increase when voltage
change is non-linear (unit: microseconds).

settling_time_down Time to settle down after voltage decrease when voltage
change is non-linear (unit: microseconds).

enable_time Turn-on time of the rails (unit: microseconds)

active_discharge Enable/disable active discharge. The enum regula-
tor_active_discharge values are used for initialisation.

always_on Set if the regulator should never be disabled.

boot_on Set if the regulator is enabled when the system is initially started. If the
regulator is not enabled by the hardware or bootloader then it will be enabled
when the constraints are applied.

apply_uV Apply the voltage constraint when initialising.

ramp_disable Disable ramp delay when initialising or when setting voltage.

soft_start Enable soft start so that voltage ramps slowly.

pull_down Enable pull down when regulator is disabled.

over_current_protection Auto disable on over current event.

Description
This struct describes regulator and board/machine specific constraints.

448 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

struct regulator_consumer_supply
supply -> device mapping

Definition

struct regulator_consumer_supply {
const char *dev_name;
const char *supply;

};

Members
dev_name Result of dev_name() for the consumer.

supply Name for the supply.

Description
This maps a supply name to a device. Use of dev_name allows support for buses
which make struct device available late such as I2C.

struct regulator_init_data
regulator platform initialisation data.

Definition

struct regulator_init_data {
const char *supply_regulator;
struct regulation_constraints constraints;
int num_consumer_supplies;
struct regulator_consumer_supply *consumer_supplies;
int (*regulator_init)(void *driver_data);
void *driver_data;

};

Members
supply_regulator Parent regulator. Specified using the regulator name as it ap-

pears in the name field in sysfs, which can be explicitly set using the con-
straints field ‘name’.

constraints Constraints. These must be specified for the regulator to be usable.

num_consumer_supplies Number of consumer device supplies.

consumer_supplies Consumer device supply configuration.

regulator_init Callback invoked when the regulator has been registered.

driver_data Data passed to regulator_init.

Description
Initialisation constraints, our supply and consumers supplies.

struct regulator_ops
regulator operations.

Definition

17.5. API reference 449

Linux Driver-api Documentation

struct regulator_ops {
int (*list_voltage) (struct regulator_dev *, unsigned selector);
int (*set_voltage) (struct regulator_dev *, int min_uV, int max_uV,␣

↪→unsigned *selector);
int (*map_voltage)(struct regulator_dev *, int min_uV, int max_uV);
int (*set_voltage_sel) (struct regulator_dev *, unsigned selector);
int (*get_voltage) (struct regulator_dev *);
int (*get_voltage_sel) (struct regulator_dev *);
int (*set_current_limit) (struct regulator_dev *, int min_uA, int max_

↪→uA);
int (*get_current_limit) (struct regulator_dev *);
int (*set_input_current_limit) (struct regulator_dev *, int lim_uA);
int (*set_over_current_protection) (struct regulator_dev *);
int (*set_active_discharge) (struct regulator_dev *, bool enable);
int (*enable) (struct regulator_dev *);
int (*disable) (struct regulator_dev *);
int (*is_enabled) (struct regulator_dev *);
int (*set_mode) (struct regulator_dev *, unsigned int mode);
unsigned int (*get_mode) (struct regulator_dev *);
int (*get_error_flags)(struct regulator_dev *, unsigned int *flags);
int (*enable_time) (struct regulator_dev *);
int (*set_ramp_delay) (struct regulator_dev *, int ramp_delay);
int (*set_voltage_time) (struct regulator_dev *, int old_uV, int new_uV);
int (*set_voltage_time_sel) (struct regulator_dev *,unsigned int old_

↪→selector, unsigned int new_selector);
int (*set_soft_start) (struct regulator_dev *);
int (*get_status)(struct regulator_dev *);
unsigned int (*get_optimum_mode) (struct regulator_dev *, int input_uV,␣

↪→int output_uV, int load_uA);
int (*set_load)(struct regulator_dev *, int load_uA);
int (*set_bypass)(struct regulator_dev *dev, bool enable);
int (*get_bypass)(struct regulator_dev *dev, bool *enable);
int (*set_suspend_voltage) (struct regulator_dev *, int uV);
int (*set_suspend_enable) (struct regulator_dev *);
int (*set_suspend_disable) (struct regulator_dev *);
int (*set_suspend_mode) (struct regulator_dev *, unsigned int mode);
int (*resume)(struct regulator_dev *rdev);
int (*set_pull_down) (struct regulator_dev *);

};

Members
list_voltage Return one of the supported voltages, in microvolts; zero if the se-

lector indicates a voltage that is unusable on this system; or negative errno.
Selectors range from zero to one less than regulator_desc.n_voltages. Volt-
ages may be reported in any order.

set_voltage Set the voltage for the regulator within the range specified. The
driver should select the voltage closest to min_uV.

map_voltage Convert a voltage into a selector

set_voltage_sel Set the voltage for the regulator using the specified selector.

get_voltage Return the currently configured voltage for the regulator; return -
ENOTRECOVERABLE if regulator can’t be read at bootup and hasn’t been
set yet.

450 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

get_voltage_sel Return the currently configured voltage selector for the regu-
lator; return -ENOTRECOVERABLE if regulator can’t be read at bootup and
hasn’t been set yet.

set_current_limit Configure a limit for a current-limited regulator. The driver
should select the current closest to max_uA.

get_current_limit Get the configured limit for a current-limited regulator.

set_input_current_limit Configure an input limit.

set_over_current_protection Support capability of automatically shutting
down when detecting an over current event.

set_active_discharge Set active discharge enable/disable of regulators.

enable Configure the regulator as enabled.

disable Configure the regulator as disabled.

is_enabled Return 1 if the regulator is enabled, 0 if not. May also return negative
errno.

set_mode Set the configured operating mode for the regulator.

get_mode Get the configured operating mode for the regulator.

get_error_flags Get the current error(s) for the regulator.

enable_time Time taken for the regulator voltage output voltage to stabilise after
being enabled, in microseconds.

set_ramp_delay Set the ramp delay for the regulator. The driver should select
ramp delay equal to or less than(closest) ramp_delay.

set_voltage_time Time taken for the regulator voltage output voltage to stabilise
after being set to a new value, in microseconds. The function receives the
from and to voltage as input, it should return the worst case.

set_voltage_time_sel Time taken for the regulator voltage output voltage to sta-
bilise after being set to a new value, in microseconds. The function receives
the from and to voltage selector as input, it should return the worst case.

set_soft_start Enable soft start for the regulator.

get_status Return actual (not as-configured) status of regulator, as a REGULA-
TOR_STATUS value (or negative errno)

get_optimum_mode Get the most efficient operating mode for the regulator when
running with the specified parameters.

set_load Set the load for the regulator.

set_bypass Set the regulator in bypass mode.

get_bypass Get the regulator bypass mode state.

set_suspend_voltage Set the voltage for the regulator when the system is sus-
pended.

set_suspend_enable Mark the regulator as enabled when the system is sus-
pended.

17.5. API reference 451

Linux Driver-api Documentation

set_suspend_disable Mark the regulator as disabled when the system is sus-
pended.

set_suspend_mode Set the operating mode for the regulator when the system is
suspended.

set_pull_down Configure the regulator to pull down when the regulator is dis-
abled.

Description
This struct describes regulator operations which can be implemented by regulator
chip drivers.

struct regulator_desc
Static regulator descriptor

Definition

struct regulator_desc {
const char *name;
const char *supply_name;
const char *of_match;
const char *regulators_node;
int (*of_parse_cb)(struct device_node *,const struct regulator_desc *,␣

↪→struct regulator_config *);
int id;
unsigned int continuous_voltage_range:1;
unsigned n_voltages;
unsigned int n_current_limits;
const struct regulator_ops *ops;
int irq;
enum regulator_type type;
struct module *owner;
unsigned int min_uV;
unsigned int uV_step;
unsigned int linear_min_sel;
int fixed_uV;
unsigned int ramp_delay;
int min_dropout_uV;
const struct linear_range *linear_ranges;
const unsigned int *linear_range_selectors;
int n_linear_ranges;
const unsigned int *volt_table;
const unsigned int *curr_table;
unsigned int vsel_range_reg;
unsigned int vsel_range_mask;
unsigned int vsel_reg;
unsigned int vsel_mask;
unsigned int vsel_step;
unsigned int csel_reg;
unsigned int csel_mask;
unsigned int apply_reg;
unsigned int apply_bit;
unsigned int enable_reg;
unsigned int enable_mask;
unsigned int enable_val;
unsigned int disable_val;

(continues on next page)

452 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

(continued from previous page)
bool enable_is_inverted;
unsigned int bypass_reg;
unsigned int bypass_mask;
unsigned int bypass_val_on;
unsigned int bypass_val_off;
unsigned int active_discharge_on;
unsigned int active_discharge_off;
unsigned int active_discharge_mask;
unsigned int active_discharge_reg;
unsigned int soft_start_reg;
unsigned int soft_start_mask;
unsigned int soft_start_val_on;
unsigned int pull_down_reg;
unsigned int pull_down_mask;
unsigned int pull_down_val_on;
unsigned int enable_time;
unsigned int off_on_delay;
unsigned int (*of_map_mode)(unsigned int mode);

};

Members
name Identifying name for the regulator.

supply_name Identifying the regulator supply

of_match Name used to identify regulator in DT.

regulators_node Name of node containing regulator definitions in DT.

of_parse_cb Optional callback called only if of_match is present. Will be called
for each regulator parsed from DT, during init_data parsing. The regula-
tor_config passed as argument to the callback will be a copy of config passed
to regulator_register, valid only for this particular call. Callback may freely
change the config but it cannot store it for later usage. Callback should return
0 on success or negative ERRNO indicating failure.

id Numerical identifier for the regulator.

continuous_voltage_range Indicates if the regulator can set any voltage within
constrains range.

n_voltages Number of selectors available for ops.list_voltage().

n_current_limits Number of selectors available for current limits

ops Regulator operations table.

irq Interrupt number for the regulator.

type Indicates if the regulator is a voltage or current regulator.

owner Module providing the regulator, used for refcounting.

min_uV Voltage given by the lowest selector (if linear mapping)

uV_step Voltage increase with each selector (if linear mapping)

linear_min_sel Minimal selector for starting linear mapping

fixed_uV Fixed voltage of rails.

17.5. API reference 453

Linux Driver-api Documentation

ramp_delay Time to settle down after voltage change (unit: uV/us)

min_dropout_uV The minimum dropout voltage this regulator can handle

linear_ranges A constant table of possible voltage ranges.

linear_range_selectors A constant table of voltage range selectors. If pickable
ranges are used each range must have corresponding selector here.

n_linear_ranges Number of entries in the linear_ranges (and in lin-
ear_range_selectors if used) table(s).

volt_table Voltage mapping table (if table based mapping)

curr_table Current limit mapping table (if table based mapping)

vsel_range_reg Register for range selector when using pickable ranges and
regulator_map_*_voltage_*_pickable functions.

vsel_range_mask Mask for register bitfield used for range selector

vsel_reg Register for selector when using regulator_map_*_voltage_*

vsel_mask Mask for register bitfield used for selector

vsel_step Specify the resolution of selector stepping when setting voltage. If 0,
then no stepping is done (requested selector is set directly), if >0 then the
regulator API will ramp the voltage up/down gradually each time increas-
ing/decreasing the selector by the specified step value.

csel_reg Register for current limit selector using regmap set_current_limit

csel_mask Mask for register bitfield used for current limit selector

apply_reg Register for initiate voltage change on the output when using regula-
tor_set_voltage_sel_regmap

apply_bit Register bitfield used for initiate voltage change on the output when
using regulator_set_voltage_sel_regmap

enable_reg Register for control when using regmap enable/disable ops

enable_mask Mask for control when using regmap enable/disable ops

enable_val Enabling value for control when using regmap enable/disable ops

disable_val Disabling value for control when using regmap enable/disable ops

enable_is_inverted A flag to indicate set enable_mask bits to disable when using
regulator_enable_regmap and friends APIs.

bypass_reg Register for control when using regmap set_bypass

bypass_mask Mask for control when using regmap set_bypass

bypass_val_on Enabling value for control when using regmap set_bypass

bypass_val_off Disabling value for control when using regmap set_bypass

active_discharge_on Disabling value for control when using regmap
set_active_discharge

active_discharge_off Enabling value for control when using regmap
set_active_discharge

454 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

active_discharge_mask Mask for control when using regmap
set_active_discharge

active_discharge_reg Register for control when using regmap
set_active_discharge

soft_start_reg Register for control when using regmap set_soft_start

soft_start_mask Mask for control when using regmap set_soft_start

soft_start_val_on Enabling value for control when using regmap set_soft_start

pull_down_reg Register for control when using regmap set_pull_down

pull_down_mask Mask for control when using regmap set_pull_down

pull_down_val_on Enabling value for control when using regmap set_pull_down

enable_time Time taken for initial enable of regulator (in uS).

off_on_delay guard time (in uS), before re-enabling a regulator

of_map_mode Maps a hardware mode defined in a DeviceTree to a standard mode

Description
Each regulator registered with the core is described with a structure of this type
and a struct regulator_config. This structure contains the non-varying parts of the
regulator description.

struct regulator_config
Dynamic regulator descriptor

Definition

struct regulator_config {
struct device *dev;
const struct regulator_init_data *init_data;
void *driver_data;
struct device_node *of_node;
struct regmap *regmap;
struct gpio_desc *ena_gpiod;

};

Members
dev struct device for the regulator

init_data platform provided init data, passed through by driver

driver_data private regulator data

of_node OpenFirmware node to parse for device tree bindings (may be NULL).

regmap regmap to use for core regmap helpers if dev_get_regmap() is insufficient.

ena_gpiod GPIO controlling regulator enable.

Description
Each regulator registered with the core is described with a structure of this type
and a struct regulator_desc. This structure contains the runtime variable parts of
the regulator description.

17.5. API reference 455

Linux Driver-api Documentation

void regulator_lock(struct regulator_dev * rdev)
lock a single regulator

Parameters
struct regulator_dev * rdev regulator source

Description
This function can be called many times by one task on a single regulator and its
mutex will be locked only once. If a task, which is calling this function is other
than the one, which initially locked the mutex, it will wait on mutex.

void regulator_unlock(struct regulator_dev * rdev)
unlock a single regulator

Parameters
struct regulator_dev * rdev regulator_source

Description
This function unlocks the mutex when the reference counter reaches 0.

struct regulator * regulator_get(struct device * dev, const char * id)
lookup and obtain a reference to a regulator.

Parameters
struct device * dev device for regulator “consumer”
const char * id Supply name or regulator ID.

Description
Returns a struct regulator corresponding to the regulator producer, or IS_ERR()
condition containing errno.

Use of supply names configured via regulator_set_device_supply() is strongly en-
couraged. It is recommended that the supply name used should match the name
used for the supply and/or the relevant device pins in the datasheet.

struct regulator * regulator_get_exclusive(struct device * dev, const char
* id)

obtain exclusive access to a regulator.

Parameters
struct device * dev device for regulator “consumer”
const char * id Supply name or regulator ID.

Description
Returns a struct regulator corresponding to the regulator producer, or IS_ERR()
condition containing errno. Other consumers will be unable to obtain this regula-
tor while this reference is held and the use count for the regulator will be initialised
to reflect the current state of the regulator.

This is intended for use by consumers which cannot tolerate shared use of the
regulator such as those which need to force the regulator off for correct operation
of the hardware they are controlling.

456 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

Use of supply names configured via regulator_set_device_supply() is strongly en-
couraged. It is recommended that the supply name used should match the name
used for the supply and/or the relevant device pins in the datasheet.

struct regulator * regulator_get_optional(struct device * dev, const char
* id)

obtain optional access to a regulator.

Parameters
struct device * dev device for regulator “consumer”
const char * id Supply name or regulator ID.

Description
Returns a struct regulator corresponding to the regulator producer, or IS_ERR()
condition containing errno.

This is intended for use by consumers for devices which can have some supplies
unconnected in normal use, such as some MMC devices. It can allow the reg-
ulator core to provide stub supplies for other supplies requested using normal
regulator_get() calls without disrupting the operation of drivers that can han-
dle absent supplies.

Use of supply names configured via regulator_set_device_supply() is strongly en-
couraged. It is recommended that the supply name used should match the name
used for the supply and/or the relevant device pins in the datasheet.

void regulator_put(struct regulator * regulator)
“free”the regulator source

Parameters
struct regulator * regulator regulator source

Note
drivers must ensure that all regulator_enable calls made on this regulator source
are balanced by regulator_disable calls prior to calling this function.

int regulator_register_supply_alias(struct device * dev, const char * id,
struct device * alias_dev, const char
* alias_id)

Provide device alias for supply lookup

Parameters
struct device * dev device that will be given as the regulator “consumer”
const char * id Supply name or regulator ID

struct device * alias_dev device that should be used to lookup the supply

const char * alias_id Supply name or regulator ID that should be used to
lookup the supply

Description
All lookups for id on dev will instead be conducted for alias_id on alias_dev.

17.5. API reference 457

Linux Driver-api Documentation

void regulator_unregister_supply_alias(struct device * dev, const char
* id)

Remove device alias

Parameters
struct device * dev device that will be given as the regulator “consumer”
const char * id Supply name or regulator ID

Description
Remove a lookup alias if one exists for id on dev.

int regulator_bulk_register_supply_alias(struct device * dev, const
char *const * id, struct device
* alias_dev, const char *const
* alias_id, int num_id)

register multiple aliases

Parameters
struct device * dev device that will be given as the regulator “consumer”
const char *const * id List of supply names or regulator IDs

struct device * alias_dev device that should be used to lookup the supply

const char *const * alias_id List of supply names or regulator IDs that
should be used to lookup the supply

int num_id Number of aliases to register

Description
return 0 on success, an errno on failure.
This helper function allows drivers to register several supply aliases in one oper-
ation. If any of the aliases cannot be registered any aliases that were registered
will be removed before returning to the caller.

void regulator_bulk_unregister_supply_alias(struct device * dev,
const char *const * id,
int num_id)

unregister multiple aliases

Parameters
struct device * dev device that will be given as the regulator “consumer”
const char *const * id List of supply names or regulator IDs

int num_id Number of aliases to unregister

Description
This helper function allows drivers to unregister several supply aliases in one op-
eration.

int regulator_enable(struct regulator * regulator)
enable regulator output

Parameters

458 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

struct regulator * regulator regulator source

Description
Request that the regulator be enabled with the regulator output at the predefined
voltage or current value. Calls to regulator_enable() must be balanced with
calls to regulator_disable().

NOTE
the output value can be set by other drivers, boot loader or may be hardwired in
the regulator.

int regulator_disable(struct regulator * regulator)
disable regulator output

Parameters
struct regulator * regulator regulator source

Description
Disable the regulator output voltage or current. Calls to regulator_enable()
must be balanced with calls to regulator_disable().

NOTE
this will only disable the regulator output if no other consumer devices have it
enabled, the regulator device supports disabling and machine constraints permit
this operation.

int regulator_force_disable(struct regulator * regulator)
force disable regulator output

Parameters
struct regulator * regulator regulator source

Description
Forcibly disable the regulator output voltage or current.

NOTE
this will disable the regulator output even if other consumer devices have it en-
abled. This should be used for situations when device damage will likely occur if
the regulator is not disabled (e.g. over temp).

int regulator_disable_deferred(struct regulator * regulator, int ms)
disable regulator output with delay

Parameters
struct regulator * regulator regulator source

int ms milliseconds until the regulator is disabled

Description
Execute regulator_disable() on the regulator after a delay. This is intended for
use with devices that require some time to quiesce.

NOTE

17.5. API reference 459

Linux Driver-api Documentation

this will only disable the regulator output if no other consumer devices have it
enabled, the regulator device supports disabling and machine constraints permit
this operation.

int regulator_is_enabled(struct regulator * regulator)
is the regulator output enabled

Parameters
struct regulator * regulator regulator source

Description
Returns positive if the regulator driver backing the source/client has requested
that the device be enabled, zero if it hasn’t, else a negative errno code.
Note that the device backing this regulator handle can have multiple users, so it
might be enabled even if regulator_enable() was never called for this particular
source.

int regulator_count_voltages(struct regulator * regulator)
count regulator_list_voltage() selectors

Parameters
struct regulator * regulator regulator source

Description
Returns number of selectors, or negative errno. Selectors are numbered starting
at zero, and typically correspond to bitfields in hardware registers.

int regulator_list_voltage(struct regulator * regulator, un-
signed selector)

enumerate supported voltages

Parameters
struct regulator * regulator regulator source

unsigned selector identify voltage to list

Context
can sleep

Description
Returns a voltage that can be passed to regulator_set_voltage(), zero if this
selector code can’t be used on this system, or a negative errno.
int regulator_get_hardware_vsel_register(struct regulator * regulator,

unsigned * vsel_reg, un-
signed * vsel_mask)

get the HW voltage selector register

Parameters
struct regulator * regulator regulator source

unsigned * vsel_reg voltage selector register, output parameter

unsigned * vsel_mask mask for voltage selector bitfield, output parameter

460 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

Description
Returns the hardware register offset and bitmask used for setting the regula-
tor voltage. This might be useful when configuring voltage-scaling hardware or
firmware that can make I2C requests behind the kernel’s back, for example.
On success, the output parameters vsel_reg and vsel_mask are filled in and 0 is
returned, otherwise a negative errno is returned.

int regulator_list_hardware_vsel(struct regulator * regulator, un-
signed selector)

get the HW-specific register value for a selector

Parameters
struct regulator * regulator regulator source

unsigned selector identify voltage to list

Description
Converts the selector to a hardware-specific voltage selector that can be directly
written to the regulator registers. The address of the voltage register can be de-
termined by calling regulator_get_hardware_vsel_register.
On error a negative errno is returned.

unsigned int regulator_get_linear_step(struct regulator * regulator)
return the voltage step size between VSEL values

Parameters
struct regulator * regulator regulator source

Description
Returns the voltage step size between VSEL values for linear regulators, or return
0 if the regulator isn’t a linear regulator.
int regulator_is_supported_voltage(struct regulator * regulator,

int min_uV, int max_uV)
check if a voltage range can be supported

Parameters
struct regulator * regulator Regulator to check.

int min_uV Minimum required voltage in uV.

int max_uV Maximum required voltage in uV.

Description
Returns a boolean.

int regulator_set_voltage(struct regulator * regulator, int min_uV,
int max_uV)

set regulator output voltage

Parameters
struct regulator * regulator regulator source

int min_uV Minimum required voltage in uV

17.5. API reference 461

Linux Driver-api Documentation

int max_uV Maximum acceptable voltage in uV

Description
Sets a voltage regulator to the desired output voltage. This can be set during any
regulator state. IOW, regulator can be disabled or enabled.

If the regulator is enabled then the voltage will change to the new value imme-
diately otherwise if the regulator is disabled the regulator will output at the new
voltage when enabled.

NOTE
If the regulator is shared between several devices then the lowest request voltage
that meets the system constraints will be used. Regulator system constraints must
be set for this regulator before calling this function otherwise this call will fail.

int regulator_set_voltage_time(struct regulator * regulator, int old_uV,
int new_uV)

get raise/fall time

Parameters
struct regulator * regulator regulator source

int old_uV starting voltage in microvolts

int new_uV target voltage in microvolts

Description
Provided with the starting and ending voltage, this function attempts to calculate
the time in microseconds required to rise or fall to this new voltage.

int regulator_set_voltage_time_sel(struct regulator_dev * rdev, un-
signed int old_selector, unsigned
int new_selector)

get raise/fall time

Parameters
struct regulator_dev * rdev regulator source device

unsigned int old_selector selector for starting voltage

unsigned int new_selector selector for target voltage

Description
Provided with the starting and target voltage selectors, this function returns time
in microseconds required to rise or fall to this new voltage

Drivers providing ramp_delay in regulation_constraints can use this as their
set_voltage_time_sel() operation.

int regulator_sync_voltage(struct regulator * regulator)
re-apply last regulator output voltage

Parameters
struct regulator * regulator regulator source

462 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

Description
Re-apply the last configured voltage. This is intended to be used where some ex-
ternal control source the consumer is cooperating with has caused the configured
voltage to change.

int regulator_get_voltage(struct regulator * regulator)
get regulator output voltage

Parameters
struct regulator * regulator regulator source

Description
This returns the current regulator voltage in uV.

NOTE
If the regulator is disabled it will return the voltage value. This function should
not be used to determine regulator state.

int regulator_set_current_limit(struct regulator * regulator, int min_uA,
int max_uA)

set regulator output current limit

Parameters
struct regulator * regulator regulator source

int min_uA Minimum supported current in uA

int max_uA Maximum supported current in uA

Description
Sets current sink to the desired output current. This can be set during any regu-
lator state. IOW, regulator can be disabled or enabled.

If the regulator is enabled then the current will change to the new value imme-
diately otherwise if the regulator is disabled the regulator will output at the new
current when enabled.

NOTE
Regulator system constraints must be set for this regulator before calling this func-
tion otherwise this call will fail.

int regulator_get_current_limit(struct regulator * regulator)
get regulator output current

Parameters
struct regulator * regulator regulator source

Description
This returns the current supplied by the specified current sink in uA.

NOTE
If the regulator is disabled it will return the current value. This function should
not be used to determine regulator state.

17.5. API reference 463

Linux Driver-api Documentation

int regulator_set_mode(struct regulator * regulator, unsigned int mode)
set regulator operating mode

Parameters
struct regulator * regulator regulator source

unsigned int mode operating mode - one of the REGULATOR_MODE constants

Description
Set regulator operating mode to increase regulator efficiency or improve regula-
tion performance.

NOTE
Regulator system constraints must be set for this regulator before calling this func-
tion otherwise this call will fail.

unsigned int regulator_get_mode(struct regulator * regulator)
get regulator operating mode

Parameters
struct regulator * regulator regulator source

Description
Get the current regulator operating mode.

int regulator_get_error_flags(struct regulator * regulator, unsigned int
* flags)

get regulator error information

Parameters
struct regulator * regulator regulator source

unsigned int * flags pointer to store error flags

Description
Get the current regulator error information.

int regulator_set_load(struct regulator * regulator, int uA_load)
set regulator load

Parameters
struct regulator * regulator regulator source

int uA_load load current

Description
Notifies the regulator core of a new device load. This is then used by DRMS (if
enabled by constraints) to set the most efficient regulator operating mode for the
new regulator loading.

Consumer devices notify their supply regulator of the maximum power they will re-
quire (can be taken from device datasheet in the power consumption tables) when
they change operational status and hence power state. Examples of operational
state changes that can affect power consumption are :-

464 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

o Device is opened / closed. o Device I/O is about to begin or has just
finished. o Device is idling in between work.

This information is also exported via sysfs to userspace.

DRMS will sum the total requested load on the regulator and change to the most
efficient operating mode if platform constraints allow.

If a regulator is an always-on regulator then an individual consumer’s load will
still be removed if that consumer is fully disabled.

On error a negative errno is returned.

NOTE
when a regulator consumer requests to have a regulator disabled then any load
that consumer requested no longer counts toward the total requested load. If
the regulator is re-enabled then the previously requested load will start counting
again.

int regulator_allow_bypass(struct regulator * regulator, bool enable)
allow the regulator to go into bypass mode

Parameters
struct regulator * regulator Regulator to configure

bool enable enable or disable bypass mode

Description
Allow the regulator to go into bypass mode if all other consumers for the regulator
also enable bypass mode and the machine constraints allow this. Bypass mode
means that the regulator is simply passing the input directly to the output with no
regulation.

int regulator_register_notifier(struct regulator * regulator, struct noti-
fier_block * nb)

register regulator event notifier

Parameters
struct regulator * regulator regulator source

struct notifier_block * nb notifier block

Description
Register notifier block to receive regulator events.

int regulator_unregister_notifier(struct regulator * regulator, struct no-
tifier_block * nb)

unregister regulator event notifier

Parameters
struct regulator * regulator regulator source

struct notifier_block * nb notifier block

Description
Unregister regulator event notifier block.

17.5. API reference 465

Linux Driver-api Documentation

int regulator_bulk_get(struct device * dev, int num_consumers, struct reg-
ulator_bulk_data * consumers)

get multiple regulator consumers

Parameters
struct device * dev Device to supply

int num_consumers Number of consumers to register

struct regulator_bulk_data * consumers Configuration of consumers; clients
are stored here.

Description
return 0 on success, an errno on failure.
This helper function allows drivers to get several regulator consumers in one op-
eration. If any of the regulators cannot be acquired then any regulators that were
allocated will be freed before returning to the caller.

int regulator_bulk_enable(int num_consumers, struct regulator_bulk_data
* consumers)

enable multiple regulator consumers

Parameters
int num_consumers Number of consumers

struct regulator_bulk_data * consumers Consumer data; clients are stored
here. return 0 on success, an errno on failure

Description
This convenience API allows consumers to enable multiple regulator clients in a
single API call. If any consumers cannot be enabled then any others that were
enabled will be disabled again prior to return.

int regulator_bulk_disable(int num_consumers, struct regula-
tor_bulk_data * consumers)

disable multiple regulator consumers

Parameters
int num_consumers Number of consumers

struct regulator_bulk_data * consumers Consumer data; clients are stored
here. return 0 on success, an errno on failure

Description
This convenience API allows consumers to disable multiple regulator clients in a
single API call. If any consumers cannot be disabled then any others that were
disabled will be enabled again prior to return.

int regulator_bulk_force_disable(int num_consumers, struct regula-
tor_bulk_data * consumers)

force disable multiple regulator consumers

Parameters
int num_consumers Number of consumers

466 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

struct regulator_bulk_data * consumers Consumer data; clients are stored
here. return 0 on success, an errno on failure

Description
This convenience API allows consumers to forcibly disable multiple regulator
clients in a single API call.

NOTE
This should be used for situations when device damage will likely occur if the
regulators are not disabled (e.g. over temp). Although regulator_force_disable
function call for some consumers can return error numbers, the function is called
for all consumers.

void regulator_bulk_free(int num_consumers, struct regulator_bulk_data
* consumers)

free multiple regulator consumers

Parameters
int num_consumers Number of consumers

struct regulator_bulk_data * consumers Consumer data; clients are stored
here.

Description
This convenience API allows consumers to free multiple regulator clients in a sin-
gle API call.

int regulator_notifier_call_chain(struct regulator_dev * rdev, unsigned
long event, void * data)

call regulator event notifier

Parameters
struct regulator_dev * rdev regulator source

unsigned long event notifier block

void * data callback-specific data.

Description
Called by regulator drivers to notify clients a regulator event has occurred. We
also notify regulator clients downstream. Note lock must be held by caller.

int regulator_mode_to_status(unsigned int mode)
convert a regulator mode into a status

Parameters
unsigned int mode Mode to convert

Description
Convert a regulator mode into a status.

struct regulator_dev * regulator_register(const struct regulator_desc
* regulator_desc, const struct
regulator_config * cfg)

register regulator

17.5. API reference 467

Linux Driver-api Documentation

Parameters
const struct regulator_desc * regulator_desc regulator to register

const struct regulator_config * cfg runtime configuration for regulator

Description
Called by regulator drivers to register a regulator. Returns a valid pointer to struct
regulator_dev on success or an ERR_PTR() on error.

void regulator_unregister(struct regulator_dev * rdev)
unregister regulator

Parameters
struct regulator_dev * rdev regulator to unregister

Description
Called by regulator drivers to unregister a regulator.

void regulator_has_full_constraints(void)
the system has fully specified constraints

Parameters
void no arguments

Description
Calling this function will cause the regulator API to disable all regulators which
have a zero use count and don’t have an always_on constraint in a late_initcall.
The intention is that this will become the default behaviour in a future kernel
release so users are encouraged to use this facility now.

void * rdev_get_drvdata(struct regulator_dev * rdev)
get rdev regulator driver data

Parameters
struct regulator_dev * rdev regulator

Description
Get rdev regulator driver private data. This call can be used in the regulator driver
context.

void * regulator_get_drvdata(struct regulator * regulator)
get regulator driver data

Parameters
struct regulator * regulator regulator

Description
Get regulator driver private data. This call can be used in the consumer driver
context when non API regulator specific functions need to be called.

void regulator_set_drvdata(struct regulator * regulator, void * data)
set regulator driver data

Parameters

468 Chapter 17. Voltage and current regulator API

Linux Driver-api Documentation

struct regulator * regulator regulator

void * data data

int rdev_get_id(struct regulator_dev * rdev)
get regulator ID

Parameters
struct regulator_dev * rdev regulator

17.5. API reference 469

Linux Driver-api Documentation

470 Chapter 17. Voltage and current regulator API

CHAPTER

EIGHTEEN

INDUSTRIAL I/O

Copyright © 2015 Intel Corporation

Contents:

18.1 Introduction

The main purpose of the Industrial I/O subsystem (IIO) is to provide support for
devices that in some sense perform either analog-to-digital conversion (ADC) or
digital-to-analog conversion (DAC) or both. The aim is to fill the gap between the
somewhat similar hwmon and input subsystems. Hwmon is directed at low sample
rate sensors used to monitor and control the system itself, like fan speed control
or temperature measurement. Input is, as its name suggests, focused on human
interaction input devices (keyboard, mouse, touchscreen). In some cases there is
considerable overlap between these and IIO.

Devices that fall into this category include:

• analog to digital converters (ADCs)

• accelerometers

• capacitance to digital converters (CDCs)

• digital to analog converters (DACs)

• gyroscopes

• inertial measurement units (IMUs)

• color and light sensors

• magnetometers

• pressure sensors

• proximity sensors

• temperature sensors

Usually these sensors are connected via SPI or I2C. A common use case of the
sensors devices is to have combined functionality (e.g. light plus proximity sensor).

471

Linux Driver-api Documentation

18.2 Core elements

The Industrial I/O core offers both a unified framework for writing drivers for many
different types of embedded sensors and a standard interface to user space appli-
cations manipulating sensors. The implementation can be found under drivers/
iio/industrialio-*

18.2.1 Industrial I/O Devices

• struct iio_dev - industrial I/O device

• iio_device_alloc() - allocate an iio_dev from a driver

• iio_device_free() - free an iio_dev from a driver

• iio_device_register() - register a device with the IIO subsystem

• iio_device_unregister() - unregister a device from the IIO subsystem

An IIO device usually corresponds to a single hardware sensor and it provides all
the information needed by a driver handling a device. Let’s first have a look at
the functionality embedded in an IIO device then we will show how a device driver
makes use of an IIO device.

There are two ways for a user space application to interact with an IIO driver.

1. /sys/bus/iio/iio:deviceX/, this represents a hardware sensor and groups
together the data channels of the same chip.

2. /dev/iio:deviceX, character device node interface used for buffered data
transfer and for events information retrieval.

A typical IIO driver will register itself as an I2C or SPI driver and will create two
routines, probe and remove.

At probe:

1. Call iio_device_alloc(), which allocates memory for an IIO device.

2. Initialize IIO device fields with driver specific information (e.g. device name,
device channels).

3. Call iio_device_register(), this registers the device with the IIO core. Af-
ter this call the device is ready to accept requests from user space applica-
tions.

At remove, we free the resources allocated in probe in reverse order:

1. iio_device_unregister(), unregister the device from the IIO core.

2. iio_device_free(), free the memory allocated for the IIO device.

472 Chapter 18. Industrial I/O

Linux Driver-api Documentation

IIO device sysfs interface

Attributes are sysfs files used to expose chip info and also allowing applications to
set various configuration parameters. For device with index X, attributes can be
found under /sys/bus/iio/iio:deviceX/ directory. Common attributes are:

• name, description of the physical chip.

• dev, shows the major:minor pair associated with /dev/iio:deviceX node.

• sampling_frequency_available, available discrete set of sampling fre-
quency values for device.

• Available standard attributes for IIO devices are described in the
Documentation/ABI/testing/sysfs-bus-iio file in the Linux kernel
sources.

IIO device channels

struct iio_chan_spec - specification of a single channel

An IIO device channel is a representation of a data channel. An IIO device can
have one or multiple channels. For example:

• a thermometer sensor has one channel representing the temperature mea-
surement.

• a light sensor with two channels indicating the measurements in the visible
and infrared spectrum.

• an accelerometer can have up to 3 channels representing acceleration on X,
Y and Z axes.

An IIO channel is described by the struct iio_chan_spec. A thermometer driver
for the temperature sensor in the example above would have to describe its chan-
nel as follows:

static const struct iio_chan_spec temp_channel[] = {
{

.type = IIO_TEMP,

.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
},

};

Channel sysfs attributes exposed to userspace are specified in the form of bit-
masks. Depending on their shared info, attributes can be set in one of the following
masks:

• info_mask_separate, attributes will be specific to this channel
• info_mask_shared_by_type, attributes are shared by all channels of the
same type

• info_mask_shared_by_dir, attributes are shared by all channels of the same
direction

• info_mask_shared_by_all, attributes are shared by all channels

18.2. Core elements 473

Linux Driver-api Documentation

When there are multiple data channels per channel type we have two ways to
distinguish between them:

• set .modified field of iio_chan_spec to 1. Modifiers are specified using
.channel2 field of the same iio_chan_spec structure and are used to in-
dicate a physically unique characteristic of the channel such as its direction
or spectral response. For example, a light sensor can have two channels, one
for infrared light and one for both infrared and visible light.

• set .indexed field of iio_chan_spec to 1. In this case the channel is simply
another instance with an index specified by the .channel field.

Here is how we can make use of the channel’s modifiers:
static const struct iio_chan_spec light_channels[] = {

{
.type = IIO_INTENSITY,
.modified = 1,
.channel2 = IIO_MOD_LIGHT_IR,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),

},
{

.type = IIO_INTENSITY,

.modified = 1,

.channel2 = IIO_MOD_LIGHT_BOTH,

.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

.info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},
{

.type = IIO_LIGHT,

.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),

.info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
},

}

This channel’s definition will generate two separate sysfs files for raw data re-
trieval:

• /sys/bus/iio/iio:deviceX/in_intensity_ir_raw

• /sys/bus/iio/iio:deviceX/in_intensity_both_raw

one file for processed data:

• /sys/bus/iio/iio:deviceX/in_illuminance_input

and one shared sysfs file for sampling frequency:

• /sys/bus/iio/iio:deviceX/sampling_frequency.

Here is how we can make use of the channel’s indexing:
static const struct iio_chan_spec light_channels[] = {

{
.type = IIO_VOLTAGE,
.indexed = 1,
.channel = 0,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),

(continues on next page)

474 Chapter 18. Industrial I/O

Linux Driver-api Documentation

(continued from previous page)
},
{

.type = IIO_VOLTAGE,

.indexed = 1,

.channel = 1,

.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
},

}

This will generate two separate attributes files for raw data retrieval:

• /sys/bus/iio/devices/iio:deviceX/in_voltage0_raw, representing volt-
age measurement for channel 0.

• /sys/bus/iio/devices/iio:deviceX/in_voltage1_raw, representing volt-
age measurement for channel 1.

More details

struct iio_chan_spec_ext_info
Extended channel info attribute

Definition

struct iio_chan_spec_ext_info {
const char *name;
enum iio_shared_by shared;
ssize_t (*read)(struct iio_dev *, uintptr_t private, struct iio_chan_

↪→spec const *, char *buf);
ssize_t (*write)(struct iio_dev *, uintptr_t private,struct iio_chan_

↪→spec const *, const char *buf, size_t len);
uintptr_t private;

};

Members
name Info attribute name

shared Whether this attribute is shared between all channels.

read Read callback for this info attribute, may be NULL.

write Write callback for this info attribute, may be NULL.

private Data private to the driver.

struct iio_enum
Enum channel info attribute

Definition

struct iio_enum {
const char * const *items;
unsigned int num_items;
int (*set)(struct iio_dev *, const struct iio_chan_spec *, unsigned int);
int (*get)(struct iio_dev *, const struct iio_chan_spec *);

};

18.2. Core elements 475

Linux Driver-api Documentation

Members
items An array of strings.

num_items Length of the item array.

set Set callback function, may be NULL.

get Get callback function, may be NULL.

Description
The iio_enum struct can be used to implement enum style channel attributes.
Enum style attributes are those which have a set of strings which map to unsigned
integer values. The IIO enum helper code takes care of mapping between value
and string as well as generating a“_available”file which contains a list of all avail-
able items. The set callback will be called when the attribute is updated. The last
parameter is the index to the newly activated item. The get callback will be used
to query the currently active item and is supposed to return the index for it.

IIO_ENUM(_name, _shared, _e)
Initialize enum extended channel attribute

Parameters
_name Attribute name

_shared Whether the attribute is shared between all channels

_e Pointer to an iio_enum struct

Description
This should usually be used together with IIO_ENUM_AVAILABLE()

IIO_ENUM_AVAILABLE(_name, _e)
Initialize enum available extended channel attribute

Parameters
_name Attribute name (“_available”will be appended to the name)
_e Pointer to an iio_enum struct

Description
Creates a read only attribute which lists all the available enum items in a space
separated list. This should usually be used together with IIO_ENUM()

struct iio_mount_matrix
iio mounting matrix

Definition

struct iio_mount_matrix {
const char *rotation[9];

};

Members
rotation 3 dimensional space rotation matrix defining sensor alignment with

main hardware

476 Chapter 18. Industrial I/O

Linux Driver-api Documentation

IIO_MOUNT_MATRIX(_shared, _get)
Initialize mount matrix extended channel attribute

Parameters
_shared Whether the attribute is shared between all channels

_get Pointer to an iio_get_mount_matrix_t accessor

struct iio_event_spec
specification for a channel event

Definition

struct iio_event_spec {
enum iio_event_type type;
enum iio_event_direction dir;
unsigned long mask_separate;
unsigned long mask_shared_by_type;
unsigned long mask_shared_by_dir;
unsigned long mask_shared_by_all;

};

Members
type Type of the event

dir Direction of the event

mask_separate Bit mask of enum iio_event_info values. Attributes set in this mask
will be registered per channel.

mask_shared_by_type Bit mask of enum iio_event_info values. Attributes set in
this mask will be shared by channel type.

mask_shared_by_dir Bit mask of enum iio_event_info values. Attributes set in
this mask will be shared by channel type and direction.

mask_shared_by_all Bit mask of enum iio_event_info values. Attributes set in
this mask will be shared by all channels.

struct iio_chan_spec
specification of a single channel

Definition

struct iio_chan_spec {
enum iio_chan_type type;
int channel;
int channel2;
unsigned long address;
int scan_index;
struct {

char sign;
u8 realbits;
u8 storagebits;
u8 shift;
u8 repeat;
enum iio_endian endianness;

} scan_type;
(continues on next page)

18.2. Core elements 477

Linux Driver-api Documentation

(continued from previous page)
long info_mask_separate;
long info_mask_separate_available;
long info_mask_shared_by_type;
long info_mask_shared_by_type_available;
long info_mask_shared_by_dir;
long info_mask_shared_by_dir_available;
long info_mask_shared_by_all;
long info_mask_shared_by_all_available;
const struct iio_event_spec *event_spec;
unsigned int num_event_specs;
const struct iio_chan_spec_ext_info *ext_info;
const char *extend_name;
const char *datasheet_name;
unsigned modified:1;
unsigned indexed:1;
unsigned output:1;
unsigned differential:1;

};

Members
type What type of measurement is the channel making.

channel What number do we wish to assign the channel.

channel2 If there is a second number for a differential channel then this is it. If
modified is set then the value here specifies the modifier.

address Driver specific identifier.

scan_index Monotonic index to give ordering in scans when read from a buffer.

scan_type struct describing the scan type

scan_type.sign‘s’or ‘u’to specify signed or unsigned
scan_type.realbits Number of valid bits of data

scan_type.storagebits Realbits + padding

scan_type.shift Shift right by this before masking out realbits.

scan_type.repeat Number of times real/storage bits repeats. When the repeat
element is more than 1, then the type element in sysfs will show a repeat
value. Otherwise, the number of repetitions is omitted.

scan_type.endianness little or big endian

info_mask_separate What information is to be exported that is specific to this
channel.

info_mask_separate_available What availability information is to be exported
that is specific to this channel.

info_mask_shared_by_type What information is to be exported that is shared by
all channels of the same type.

info_mask_shared_by_type_available What availability information is to be ex-
ported that is shared by all channels of the same type.

478 Chapter 18. Industrial I/O

Linux Driver-api Documentation

info_mask_shared_by_dir What information is to be exported that is shared by
all channels of the same direction.

info_mask_shared_by_dir_available What availability information is to be ex-
ported that is shared by all channels of the same direction.

info_mask_shared_by_all What information is to be exported that is shared by
all channels.

info_mask_shared_by_all_available What availability information is to be ex-
ported that is shared by all channels.

event_spec Array of events which should be registered for this channel.

num_event_specs Size of the event_spec array.

ext_info Array of extended info attributes for this channel. The array is NULL
terminated, the last element should have its name field set to NULL.

extend_name Allows labeling of channel attributes with an informative name.
Note this has no effect codes etc, unlike modifiers.

datasheet_name A name used in in-kernel mapping of channels. It should corre-
spond to the first name that the channel is referred to by in the datasheet
(e.g. IND), or the nearest possible compound name (e.g. IND-INC).

modified Does a modifier apply to this channel. What these are depends on the
channel type. Modifier is set in channel2. Examples are IIO_MOD_X for axial
sensors about the ‘x’axis.

indexed Specify the channel has a numerical index. If not, the channel index
number will be suppressed for sysfs attributes but not for event codes.

output Channel is output.

differential Channel is differential.

bool iio_channel_has_info(const struct iio_chan_spec * chan, enum
iio_chan_info_enum type)

Checks whether a channel supports a info attribute

Parameters
const struct iio_chan_spec * chan The channel to be queried

enum iio_chan_info_enum type Type of the info attribute to be checked

Description
Returns true if the channels supports reporting values for the given info attribute
type, false otherwise.

bool iio_channel_has_available(const struct iio_chan_spec * chan, enum
iio_chan_info_enum type)

Checks if a channel has an available attribute

Parameters
const struct iio_chan_spec * chan The channel to be queried

enum iio_chan_info_enum type Type of the available attribute to be checked

18.2. Core elements 479

Linux Driver-api Documentation

Description
Returns true if the channel supports reporting available values for the given at-
tribute type, false otherwise.

struct iio_info
constant information about device

Definition

struct iio_info {
const struct attribute_group *event_attrs;
const struct attribute_group *attrs;
int (*read_raw)(struct iio_dev *indio_dev,struct iio_chan_spec const␣

↪→*chan,int *val,int *val2, long mask);
int (*read_raw_multi)(struct iio_dev *indio_dev,struct iio_chan_spec␣

↪→const *chan,int max_len,int *vals,int *val_len, long mask);
int (*read_avail)(struct iio_dev *indio_dev,struct iio_chan_spec const␣

↪→*chan,const int **vals,int *type,int *length, long mask);
int (*write_raw)(struct iio_dev *indio_dev,struct iio_chan_spec const␣

↪→*chan,int val,int val2, long mask);
int (*write_raw_get_fmt)(struct iio_dev *indio_dev,struct iio_chan_spec␣

↪→const *chan, long mask);
int (*read_event_config)(struct iio_dev *indio_dev,const struct iio_chan_

↪→spec *chan,enum iio_event_type type, enum iio_event_direction dir);
int (*write_event_config)(struct iio_dev *indio_dev,const struct iio_

↪→chan_spec *chan,enum iio_event_type type,enum iio_event_direction dir,␣
↪→int state);
int (*read_event_value)(struct iio_dev *indio_dev,const struct iio_chan_

↪→spec *chan,enum iio_event_type type,enum iio_event_direction dir, enum␣
↪→iio_event_info info, int *val, int *val2);
int (*write_event_value)(struct iio_dev *indio_dev,const struct iio_chan_

↪→spec *chan,enum iio_event_type type,enum iio_event_direction dir, enum␣
↪→iio_event_info info, int val, int val2);
int (*validate_trigger)(struct iio_dev *indio_dev, struct iio_trigger␣

↪→*trig);
int (*update_scan_mode)(struct iio_dev *indio_dev, const unsigned long␣

↪→*scan_mask);
int (*debugfs_reg_access)(struct iio_dev *indio_dev,unsigned reg,␣

↪→unsigned writeval, unsigned *readval);
int (*of_xlate)(struct iio_dev *indio_dev, const struct of_phandle_args␣

↪→*iiospec);
int (*hwfifo_set_watermark)(struct iio_dev *indio_dev, unsigned val);
int (*hwfifo_flush_to_buffer)(struct iio_dev *indio_dev, unsigned count);

};

Members
event_attrs event control attributes

attrs general purpose device attributes

read_raw function to request a value from the device. mask specifies which value.
Note 0 means a reading of the channel in question. Return value will spec-
ify the type of value returned by the device. val and val2 will contain the
elements making up the returned value.

read_raw_multi function to return values from the device. mask specifies which
value. Note 0 means a reading of the channel in question. Return value will

480 Chapter 18. Industrial I/O

Linux Driver-api Documentation

specify the type of value returned by the device. vals pointer contain the
elements making up the returned value. max_len specifies maximum number
of elements vals pointer can contain. val_len is used to return length of valid
elements in vals.

read_avail function to return the available values from the device. mask specifies
which value. Note 0 means the available values for the channel in question.
Return value specifies if a IIO_AVAIL_LIST or a IIO_AVAIL_RANGE is returned
in vals. The type of the vals are returned in type and the number of vals is
returned in length. For ranges, there are always three vals returned; min,
step and max. For lists, all possible values are enumerated.

write_raw function to write a value to the device. Parameters are the same as for
read_raw.

write_raw_get_fmt callback function to query the expected format/precision. If
not set by the driver, write_raw returns IIO_VAL_INT_PLUS_MICRO.

read_event_config find out if the event is enabled.

write_event_config set if the event is enabled.

read_event_value read a configuration value associated with the event.

write_event_value write a configuration value for the event.

validate_trigger function to validate the trigger when the current trigger gets
changed.

update_scan_mode function to configure device and scan buffer when channels
have changed

debugfs_reg_access function to read or write register value of device

of_xlate function pointer to obtain channel specifier index. When #iio-cells is
greater than ‘0’, the driver could provide a custom of_xlate function that
reads the args and returns the appropriate index in registered IIO channels
array.

hwfifo_set_watermark function pointer to set the current hardware fifo water-
mark level; see hwfifo_* entries in Documentation/ABI/testing/sysfs-bus-iio
for details on how the hardware fifo operates

hwfifo_flush_to_buffer function pointer to flush the samples stored in the hard-
ware fifo to the device buffer. The driver should not flush more than count
samples. The function must return the number of samples flushed, 0 if no
samples were flushed or a negative integer if no samples were flushed and
there was an error.

struct iio_buffer_setup_ops
buffer setup related callbacks

Definition

struct iio_buffer_setup_ops {
int (*preenable)(struct iio_dev *);
int (*postenable)(struct iio_dev *);
int (*predisable)(struct iio_dev *);
int (*postdisable)(struct iio_dev *);

(continues on next page)

18.2. Core elements 481

Linux Driver-api Documentation

(continued from previous page)
bool (*validate_scan_mask)(struct iio_dev *indio_dev, const unsigned␣

↪→long *scan_mask);
};

Members
preenable [DRIVER] function to run prior to marking buffer enabled

postenable [DRIVER] function to run after marking buffer enabled

predisable [DRIVER] function to run prior to marking buffer disabled

postdisable [DRIVER] function to run after marking buffer disabled

validate_scan_mask [DRIVER] function callback to check whether a given scan
mask is valid for the device.

struct iio_dev
industrial I/O device

Definition

struct iio_dev {
int id;
struct module *driver_module;
int modes;
int currentmode;
struct device dev;
struct iio_event_interface *event_interface;
struct iio_buffer *buffer;
struct list_head buffer_list;
int scan_bytes;
struct mutex mlock;
const unsigned long *available_scan_masks;
unsigned masklength;
const unsigned long *active_scan_mask;
bool scan_timestamp;
unsigned scan_index_timestamp;
struct iio_trigger *trig;
bool trig_readonly;
struct iio_poll_func *pollfunc;
struct iio_poll_func *pollfunc_event;
struct iio_chan_spec const *channels;
int num_channels;
struct list_head channel_attr_list;
struct attribute_group chan_attr_group;
const char *name;
const char *label;
const struct iio_info *info;
clockid_t clock_id;
struct mutex info_exist_lock;
const struct iio_buffer_setup_ops *setup_ops;
struct cdev chrdev;

#define IIO_MAX_GROUPS 6;
const struct attribute_group *groups[IIO_MAX_GROUPS + 1];
int groupcounter;
unsigned long flags;

(continues on next page)

482 Chapter 18. Industrial I/O

Linux Driver-api Documentation

(continued from previous page)
#if defined(CONFIG_DEBUG_FS);

struct dentry *debugfs_dentry;
unsigned cached_reg_addr;
char read_buf[20];
unsigned int read_buf_len;

#endif;
};

Members
id [INTERN] used to identify device internally

driver_module [INTERN] used to make it harder to undercut users

modes [DRIVER] operating modes supported by device

currentmode [DRIVER] current operating mode

dev [DRIVER] device structure, should be assigned a parent and owner

event_interface [INTERN] event chrdevs associated with interrupt lines

buffer [DRIVER] any buffer present

buffer_list [INTERN] list of all buffers currently attached

scan_bytes [INTERN] num bytes captured to be fed to buffer demux

mlock [INTERN] lock used to prevent simultaneous device state changes

available_scan_masks [DRIVER] optional array of allowed bitmasks

masklength [INTERN] the length of the mask established from channels

active_scan_mask [INTERN] union of all scan masks requested by buffers

scan_timestamp [INTERN] set if any buffers have requested timestamp

scan_index_timestamp [INTERN] cache of the index to the timestamp

trig [INTERN] current device trigger (buffer modes)

trig_readonly [INTERN] mark the current trigger immutable

pollfunc [DRIVER] function run on trigger being received

pollfunc_event [DRIVER] function run on events trigger being received

channels [DRIVER] channel specification structure table

num_channels [DRIVER] number of channels specified in channels.
channel_attr_list [INTERN] keep track of automatically created channel at-

tributes

chan_attr_group [INTERN] group for all attrs in base directory

name [DRIVER] name of the device.

label [DRIVER] unique name to identify which device this is

info [DRIVER] callbacks and constant info from driver

clock_id [INTERN] timestamping clock posix identifier

18.2. Core elements 483

Linux Driver-api Documentation

info_exist_lock [INTERN] lock to prevent use during removal

setup_ops [DRIVER] callbacks to call before and after buffer enable/disable

chrdev [INTERN] associated character device

groups [INTERN] attribute groups

groupcounter [INTERN] index of next attribute group

flags [INTERN] file ops related flags including busy flag.

debugfs_dentry [INTERN] device specific debugfs dentry.

cached_reg_addr [INTERN] cached register address for debugfs reads.

iio_device_register(indio_dev)
register a device with the IIO subsystem

Parameters
indio_dev Device structure filled by the device driver

devm_iio_device_register(dev, indio_dev)
Resource-managed iio_device_register()

Parameters
dev Device to allocate iio_dev for

indio_dev Device structure filled by the device driver

Description
Managed iio_device_register. The IIO device registered with this func-
tion is automatically unregistered on driver detach. This function calls
iio_device_register() internally. Refer to that function for more information.

Return
0 on success, negative error number on failure.

void iio_device_put(struct iio_dev * indio_dev)
reference counted deallocation of struct device

Parameters
struct iio_dev * indio_dev IIO device structure containing the device

clockid_t iio_device_get_clock(const struct iio_dev * indio_dev)
Retrieve current timestamping clock for the device

Parameters
const struct iio_dev * indio_dev IIO device structure containing the device

struct iio_dev * dev_to_iio_dev(struct device * dev)
Get IIO device struct from a device struct

Parameters
struct device * dev The device embedded in the IIO device

Note
The device must be a IIO device, otherwise the result is undefined.

484 Chapter 18. Industrial I/O

Linux Driver-api Documentation

struct iio_dev * iio_device_get(struct iio_dev * indio_dev)
increment reference count for the device

Parameters
struct iio_dev * indio_dev IIO device structure

Return
The passed IIO device

void iio_device_set_drvdata(struct iio_dev * indio_dev, void * data)
Set device driver data

Parameters
struct iio_dev * indio_dev IIO device structure

void * data Driver specific data

Description
Allows to attach an arbitrary pointer to an IIO device, which can later be retrieved
by iio_device_get_drvdata().

void * iio_device_get_drvdata(struct iio_dev * indio_dev)
Get device driver data

Parameters
struct iio_dev * indio_dev IIO device structure

Description
Returns the data previously set with iio_device_set_drvdata()

bool iio_buffer_enabled(struct iio_dev * indio_dev)
helper function to test if the buffer is enabled

Parameters
struct iio_dev * indio_dev IIO device structure for device

struct dentry * iio_get_debugfs_dentry(struct iio_dev * indio_dev)
helper function to get the debugfs_dentry

Parameters
struct iio_dev * indio_dev IIO device structure for device

IIO_DEGREE_TO_RAD(deg)
Convert degree to rad

Parameters
deg A value in degree

Description
Returns the given value converted from degree to rad

IIO_RAD_TO_DEGREE(rad)
Convert rad to degree

Parameters

18.2. Core elements 485

Linux Driver-api Documentation

rad A value in rad

Description
Returns the given value converted from rad to degree

IIO_G_TO_M_S_2(g)
Convert g to meter / second**2

Parameters
g A value in g

Description
Returns the given value converted from g to meter / second**2

IIO_M_S_2_TO_G(ms2)
Convert meter / second**2 to g

Parameters
ms2 A value in meter / second**2

Description
Returns the given value converted from meter / second**2 to g

int iio_device_set_clock(struct iio_dev * indio_dev, clockid_t clock_id)
Set current timestamping clock for the device

Parameters
struct iio_dev * indio_dev IIO device structure containing the device

clockid_t clock_id timestamping clock posix identifier to set.

s64 iio_get_time_ns(const struct iio_dev * indio_dev)
utility function to get a time stamp for events etc

Parameters
const struct iio_dev * indio_dev device

unsigned int iio_get_time_res(const struct iio_dev * indio_dev)
utility function to get time stamp clock resolution in nano seconds.

Parameters
const struct iio_dev * indio_dev device

int iio_read_mount_matrix(struct device * dev, const char * propname,
struct iio_mount_matrix * matrix)

retrieve iio device mounting matrix from device “mount-matrix”property
Parameters
struct device * dev device the mounting matrix property is assigned to

const char * propname device specific mounting matrix property name

struct iio_mount_matrix * matrix where to store retrieved matrix

486 Chapter 18. Industrial I/O

Linux Driver-api Documentation

Description
If device is assigned no mounting matrix property, a default 3x3 identity matrix
will be filled in.

Return
0 if success, or a negative error code on failure.

ssize_t iio_format_value(char * buf, unsigned int type, int size, int * vals)
Formats a IIO value into its string representation

Parameters
char * buf The buffer to which the formatted value gets written which is as-

sumed to be big enough (i.e. PAGE_SIZE).

unsigned int type One of the IIO_VAL_* constants. This decides how the val and
val2 parameters are formatted.

int size Number of IIO value entries contained in vals

int * vals Pointer to the values, exact meaning depends on the type parameter.

Return
0 by default, a negative number on failure or the total number of characters

written for a type that belongs to the IIO_VAL_* constant.

int iio_str_to_fixpoint(const char * str, int fract_mult, int * integer, int
* fract)

Parse a fixed-point number from a string

Parameters
const char * str The string to parse

int fract_mult Multiplier for the first decimal place, should be a power of 10

int * integer The integer part of the number

int * fract The fractional part of the number

Description
Returns 0 on success, or a negative error code if the string could not be parsed.

struct iio_dev * iio_device_alloc(int sizeof_priv)
allocate an iio_dev from a driver

Parameters
int sizeof_priv Space to allocate for private structure.

void iio_device_free(struct iio_dev * dev)
free an iio_dev from a driver

Parameters
struct iio_dev * dev the iio_dev associated with the device

struct iio_dev * devm_iio_device_alloc(struct device * dev, int sizeof_priv)
Resource-managed iio_device_alloc()

Parameters

18.2. Core elements 487

Linux Driver-api Documentation

struct device * dev Device to allocate iio_dev for

int sizeof_priv Space to allocate for private structure.

Description
Managed iio_device_alloc. iio_dev allocated with this function is automatically
freed on driver detach.

Return
Pointer to allocated iio_dev on success, NULL on failure.

void iio_device_unregister(struct iio_dev * indio_dev)
unregister a device from the IIO subsystem

Parameters
struct iio_dev * indio_dev Device structure representing the device.

int iio_device_claim_direct_mode(struct iio_dev * indio_dev)
Keep device in direct mode

Parameters
struct iio_dev * indio_dev the iio_dev associated with the device

Description
If the device is in direct mode it is guaranteed to stay that way until
iio_device_release_direct_mode() is called.

Use with iio_device_release_direct_mode()

Return
0 on success, -EBUSY on failure

void iio_device_release_direct_mode(struct iio_dev * indio_dev)
releases claim on direct mode

Parameters
struct iio_dev * indio_dev the iio_dev associated with the device

Description
Release the claim. Device is no longer guaranteed to stay in direct mode.

Use with iio_device_claim_direct_mode()

18.3 Buffers

• struct iio_buffer —general buffer structure
• iio_validate_scan_mask_onehot() —Validates that exactly one channel is
selected

• iio_buffer_get() —Grab a reference to the buffer
• iio_buffer_put() —Release the reference to the buffer

488 Chapter 18. Industrial I/O

Linux Driver-api Documentation

The Industrial I/O core offers a way for continuous data capture based on a trig-
ger source. Multiple data channels can be read at once from /dev/iio:deviceX
character device node, thus reducing the CPU load.

18.3.1 IIO buffer sysfs interface

An IIO buffer has an associated attributes directory under /sys/bus/iio/
iio:deviceX/buffer/*. Here are some of the existing attributes:

• length, the total number of data samples (capacity) that can be stored by the
buffer.

• enable, activate buffer capture.

18.3.2 IIO buffer setup

The meta information associated with a channel reading placed in a buffer is called
a scan element. The important bits configuring scan elements are exposed to
userspace applications via the /sys/bus/iio/iio:deviceX/scan_elements/* di-
rectory. This file contains attributes of the following form:

• enable, used for enabling a channel. If and only if its attribute is non zero,
then a triggered capture will contain data samples for this channel.

• type, description of the scan element data storage within the buffer
and hence the form in which it is read from user space. Format is
[be|le]:[s|u]bits/storagebitsXrepeat[>>shift] . * be or le, specifies big or little
endian. * s or u, specifies if signed (2’s complement) or unsigned. * bits,
is the number of valid data bits. * storagebits, is the number of bits (after
padding) that it occupies in the buffer. * shift, if specified, is the shift that
needs to be applied prior to masking out unused bits. * repeat, specifies the
number of bits/storagebits repetitions. When the repeat element is 0 or 1,
then the repeat value is omitted.

For example, a driver for a 3-axis accelerometer with 12 bit resolution where data
is stored in two 8-bits registers as follows:

7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
|D3 |D2 |D1 |D0 | X | X | X | X | (LOW byte, address 0x06)
+---+---+---+---+---+---+---+---+

7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
|D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)
+---+---+---+---+---+---+---+---+

will have the following scan element type for each axis:

$ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
le:s12/16>>4

18.3. Buffers 489

Linux Driver-api Documentation

A user space application will interpret data samples read from the buffer as two
byte little endian signed data, that needs a 4 bits right shift before masking out
the 12 valid bits of data.

For implementing buffer support a driver should initialize the following fields in
iio_chan_spec definition:

struct iio_chan_spec {
/* other members */

int scan_index
struct {

char sign;
u8 realbits;
u8 storagebits;
u8 shift;
u8 repeat;
enum iio_endian endianness;

} scan_type;
};

The driver implementing the accelerometer described above will have the follow-
ing channel definition:

struct struct iio_chan_spec accel_channels[] = {
{

.type = IIO_ACCEL,

.modified = 1,

.channel2 = IIO_MOD_X,
/* other stuff here */
.scan_index = 0,
.scan_type = {

.sign = 's',

.realbits = 12,

.storagebits = 16,

.shift = 4,

.endianness = IIO_LE,
},

}
/* similar for Y (with channel2 = IIO_MOD_Y, scan_index = 1)
* and Z (with channel2 = IIO_MOD_Z, scan_index = 2) axis
*/

}

Here scan_index defines the order in which the enabled channels are placed in-
side the buffer. Channels with a lower scan_index will be placed before channels
with a higher index. Each channel needs to have a unique scan_index.
Setting scan_index to -1 can be used to indicate that the specific channel does not
support buffered capture. In this case no entries will be created for the channel
in the scan_elements directory.

490 Chapter 18. Industrial I/O

Linux Driver-api Documentation

18.3.3 More details

int iio_push_to_buffers_with_timestamp(struct iio_dev * indio_dev, void
* data, int64_t timestamp)

push data and timestamp to buffers

Parameters
struct iio_dev * indio_dev iio_dev structure for device.

void * data sample data

int64_t timestamp timestamp for the sample data

Description
Pushes data to the IIO device’s buffers. If timestamps are enabled for the device
the function will store the supplied timestamp as the last element in the sample
data buffer before pushing it to the device buffers. The sample data buffer needs
to be large enough to hold the additional timestamp (usually the buffer should be
indio->scan_bytes bytes large).

Returns 0 on success, a negative error code otherwise.

void iio_buffer_set_attrs(struct iio_buffer * buffer, const struct attribute
** attrs)

Set buffer specific attributes

Parameters
struct iio_buffer * buffer The buffer for which we are setting attributes

const struct attribute ** attrs Pointer to a null terminated list of pointers
to attributes

bool iio_validate_scan_mask_onehot(struct iio_dev * indio_dev, const un-
signed long * mask)

Validates that exactly one channel is selected

Parameters
struct iio_dev * indio_dev the iio device

const unsigned long * mask scan mask to be checked

Description
Return true if exactly one bit is set in the scan mask, false otherwise. It can be
used for devices where only one channel can be active for sampling at a time.

int iio_push_to_buffers(struct iio_dev * indio_dev, const void * data)
push to a registered buffer.

Parameters
struct iio_dev * indio_dev iio_dev structure for device.

const void * data Full scan.

struct iio_buffer * iio_buffer_get(struct iio_buffer * buffer)
Grab a reference to the buffer

Parameters

18.3. Buffers 491

Linux Driver-api Documentation

struct iio_buffer * buffer The buffer to grab a reference for, may be NULL

Description
Returns the pointer to the buffer that was passed into the function.

void iio_buffer_put(struct iio_buffer * buffer)
Release the reference to the buffer

Parameters
struct iio_buffer * buffer The buffer to release the reference for, may be

NULL

void iio_device_attach_buffer(struct iio_dev * indio_dev, struct iio_buffer
* buffer)

Attach a buffer to a IIO device

Parameters
struct iio_dev * indio_dev The device the buffer should be attached to

struct iio_buffer * buffer The buffer to attach to the device

Description
This function attaches a buffer to a IIO device. The buffer stays attached to the
device until the device is freed. The function should only be called at most once
per device.

18.4 Triggers

• struct iio_trigger —industrial I/O trigger device
• devm_iio_trigger_alloc() —Resource-managed iio_trigger_alloc
• devm_iio_trigger_register() —Resource-managed iio_trigger_register
iio_trigger_unregister

• iio_trigger_validate_own_device()—Check if a trigger and IIO device be-
long to the same device

In many situations it is useful for a driver to be able to capture data based on
some external event (trigger) as opposed to periodically polling for data. An IIO
trigger can be provided by a device driver that also has an IIO device based on
hardware generated events (e.g. data ready or threshold exceeded) or provided by
a separate driver from an independent interrupt source (e.g. GPIO line connected
to some external system, timer interrupt or user space writing a specific file in
sysfs). A trigger may initiate data capture for a number of sensors and also it may
be completely unrelated to the sensor itself.

492 Chapter 18. Industrial I/O

Linux Driver-api Documentation

18.4.1 IIO trigger sysfs interface

There are two locations in sysfs related to triggers:

• /sys/bus/iio/devices/triggerY/*, this file is created once an IIO trigger
is registered with the IIO core and corresponds to trigger with index Y. Be-
cause triggers can be very different depending on type there are few standard
attributes that we can describe here:

– name, trigger name that can be later used for association with a device.

– sampling_frequency, some timer based triggers use this attribute to
specify the frequency for trigger calls.

• /sys/bus/iio/devices/iio:deviceX/trigger/*, this directory is created
once the device supports a triggered buffer. We can associate a trigger with
our device by writing the trigger’s name in the current_trigger file.

18.4.2 IIO trigger setup

Let’s see a simple example of how to setup a trigger to be used by a driver:
struct iio_trigger_ops trigger_ops = {

.set_trigger_state = sample_trigger_state,

.validate_device = sample_validate_device,
}

struct iio_trigger *trig;

/* first, allocate memory for our trigger */
trig = iio_trigger_alloc(dev, "trig-%s-%d", name, idx);

/* setup trigger operations field */
trig->ops = &trigger_ops;

/* now register the trigger with the IIO core */
iio_trigger_register(trig);

18.4.3 IIO trigger ops

• struct iio_trigger_ops —operations structure for an iio_trigger.
Notice that a trigger has a set of operations attached:

• set_trigger_state, switch the trigger on/off on demand.

• validate_device, function to validate the device when the current trigger
gets changed.

18.4. Triggers 493

Linux Driver-api Documentation

18.4.4 More details

struct iio_trigger_ops
operations structure for an iio_trigger.

Definition

struct iio_trigger_ops {
int (*set_trigger_state)(struct iio_trigger *trig, bool state);
int (*try_reenable)(struct iio_trigger *trig);
int (*validate_device)(struct iio_trigger *trig, struct iio_dev *indio_

↪→dev);
};

Members
set_trigger_state switch on/off the trigger on demand

try_reenable function to reenable the trigger when the use count is zero (may
be NULL)

validate_device function to validate the device when the current trigger gets
changed.

Description
This is typically static const within a driver and shared by instances of a given
device.

struct iio_trigger
industrial I/O trigger device

Definition

struct iio_trigger {
const struct iio_trigger_ops *ops;
struct module *owner;
int id;
const char *name;
struct device dev;
struct list_head list;
struct list_head alloc_list;
atomic_t use_count;
struct irq_chip subirq_chip;
int subirq_base;
struct iio_subirq subirqs[CONFIG_IIO_CONSUMERS_PER_TRIGGER];
unsigned long pool[BITS_TO_LONGS(CONFIG_IIO_CONSUMERS_PER_TRIGGER)];
struct mutex pool_lock;
bool attached_own_device;

};

Members
ops [DRIVER] operations structure

owner [INTERN] owner of this driver module

id [INTERN] unique id number

name [DRIVER] unique name

494 Chapter 18. Industrial I/O

Linux Driver-api Documentation

dev [DRIVER] associated device (if relevant)

list [INTERN] used in maintenance of global trigger list

alloc_list [DRIVER] used for driver specific trigger list

use_count [INTERN] use count for the trigger.

subirq_chip [INTERN] associate ‘virtual’irq chip.
subirq_base [INTERN] base number for irqs provided by trigger.

subirqs [INTERN] information about the ‘child’irqs.
pool [INTERN] bitmap of irqs currently in use.

pool_lock [INTERN] protection of the irq pool.

attached_own_device [INTERN] if we are using our own device as trigger, i.e.
if we registered a poll function to the same device as the one providing the
trigger.

void iio_trigger_set_drvdata(struct iio_trigger * trig, void * data)
Set trigger driver data

Parameters
struct iio_trigger * trig IIO trigger structure

void * data Driver specific data

Description
Allows to attach an arbitrary pointer to an IIO trigger, which can later be retrieved
by iio_trigger_get_drvdata().

void * iio_trigger_get_drvdata(struct iio_trigger * trig)
Get trigger driver data

Parameters
struct iio_trigger * trig IIO trigger structure

Description
Returns the data previously set with iio_trigger_set_drvdata()

iio_trigger_register(trig_info)
register a trigger with the IIO core

Parameters
trig_info trigger to be registered

void iio_trigger_unregister(struct iio_trigger * trig_info)
unregister a trigger from the core

Parameters
struct iio_trigger * trig_info trigger to be unregistered

int iio_trigger_set_immutable(struct iio_dev * indio_dev, struct
iio_trigger * trig)

set an immutable trigger on destination

18.4. Triggers 495

Linux Driver-api Documentation

Parameters
struct iio_dev * indio_dev IIO device structure containing the device

struct iio_trigger * trig trigger to assign to device

void iio_trigger_poll(struct iio_trigger * trig)
called on a trigger occurring

Parameters
struct iio_trigger * trig trigger which occurred

Description
Typically called in relevant hardware interrupt handler.

bool iio_trigger_using_own(struct iio_dev * indio_dev)
tells us if we use our own HW trigger ourselves

Parameters
struct iio_dev * indio_dev device to check

struct iio_trigger * devm_iio_trigger_alloc(struct device * dev, const char
* fmt, ...)

Resource-managed iio_trigger_alloc()

Parameters
struct device * dev Device to allocate iio_trigger for

const char * fmt trigger name format. If it includes format specifiers, the addi-
tional arguments following format are formatted and inserted in the resulting
string replacing their respective specifiers.

... variable arguments

Description
Managed iio_trigger_alloc. iio_trigger allocated with this function is automatically
freed on driver detach.

Return
Pointer to allocated iio_trigger on success, NULL on failure.

int __devm_iio_trigger_register(struct device * dev, struct iio_trigger
* trig_info, struct module * this_mod)

Resource-managed iio_trigger_register()

Parameters
struct device * dev device this trigger was allocated for

struct iio_trigger * trig_info trigger to register

struct module * this_mod module registering the trigger

Description
Managed iio_trigger_register(). The IIO trigger registered with this
function is automatically unregistered on driver detach. This function calls
iio_trigger_register() internally. Refer to that function for more information.

496 Chapter 18. Industrial I/O

Linux Driver-api Documentation

Return
0 on success, negative error number on failure.

int iio_trigger_validate_own_device(struct iio_trigger * trig, struct
iio_dev * indio_dev)

Check if a trigger and IIO device belong to the same device

Parameters
struct iio_trigger * trig The IIO trigger to check

struct iio_dev * indio_dev the IIO device to check

Description
This function can be used as the validate_device callback for triggers that can only
be attached to their own device.

Return
0 if both the trigger and the IIO device belong to the same device, -EINVAL other-
wise.

18.5 Triggered Buffers

Now that we know what buffers and triggers are let’s see how they work together.

18.5.1 IIO triggered buffer setup

• iio_triggered_buffer_setup() —Setup triggered buffer and pollfunc
• iio_triggered_buffer_cleanup() —Free resources allocated by
iio_triggered_buffer_setup()

• struct iio_buffer_setup_ops —buffer setup related callbacks
A typical triggered buffer setup looks like this:

const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {
.preenable = sensor_buffer_preenable,
.postenable = sensor_buffer_postenable,
.postdisable = sensor_buffer_postdisable,
.predisable = sensor_buffer_predisable,

};

irqreturn_t sensor_iio_pollfunc(int irq, void *p)
{

pf->timestamp = iio_get_time_ns((struct indio_dev *)p);
return IRQ_WAKE_THREAD;

}

irqreturn_t sensor_trigger_handler(int irq, void *p)
{

u16 buf[8];
int i = 0;

(continues on next page)

18.5. Triggered Buffers 497

Linux Driver-api Documentation

(continued from previous page)
/* read data for each active channel */
for_each_set_bit(bit, active_scan_mask, masklength)

buf[i++] = sensor_get_data(bit)

iio_push_to_buffers_with_timestamp(indio_dev, buf, timestamp);

iio_trigger_notify_done(trigger);
return IRQ_HANDLED;

}

/* setup triggered buffer, usually in probe function */
iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,

sensor_trigger_handler,
sensor_buffer_setup_ops);

The important things to notice here are:

• iio_buffer_setup_ops, the buffer setup functions to be called at predefined
points in the buffer configuration sequence (e.g. before enable, after disable).
If not specified, the IIO core uses the default iio_triggered_buffer_setup_ops.

• sensor_iio_pollfunc, the function that will be used as top half of poll
function. It should do as little processing as possible, because it runs
in interrupt context. The most common operation is recording of the
current timestamp and for this reason one can use the IIO core defined
iio_pollfunc_store_time() function.

• sensor_trigger_handler, the function that will be used as bottom half of the
poll function. This runs in the context of a kernel thread and all the processing
takes place here. It usually reads data from the device and stores it in the
internal buffer together with the timestamp recorded in the top half.

18.5.2 More details

int iio_triggered_buffer_setup(struct iio_dev * indio_dev, irqreturn_t
(*h)(int irq, void *p), irqreturn_t
(*thread) (int irq, void *p), const struct
iio_buffer_setup_ops * setup_ops)

Setup triggered buffer and pollfunc

Parameters
struct iio_dev * indio_dev IIO device structure

irqreturn_t (*)(int irq, void *p) h Function which will be used as pollfunc
top half

irqreturn_t (*)(int irq, void *p) thread Function which will be used as
pollfunc bottom half

const struct iio_buffer_setup_ops * setup_ops Buffer setup functions to
use for this device. If NULL the default setup functions for triggered buffers
will be used.

Description

498 Chapter 18. Industrial I/O

Linux Driver-api Documentation

This function combines some common tasks which will normally be performed
when setting up a triggered buffer. It will allocate the buffer and the pollfunc.

Before calling this function the indio_dev structure should already be completely
initialized, but not yet registered. In practice this means that this function should
be called right before iio_device_register().

To free the resources allocated by this function call
iio_triggered_buffer_cleanup().

void iio_triggered_buffer_cleanup(struct iio_dev * indio_dev)
Free resources allocated by iio_triggered_buffer_setup()

Parameters
struct iio_dev * indio_dev IIO device structure

18.6 HW consumer

An IIO device can be directly connected to another device in hardware. In this
case the buffers between IIO provider and IIO consumer are handled by hardware.
The Industrial I/O HW consumer offers a way to bond these IIO devices without
software buffer for data. The implementation can be found under drivers/iio/
buffer/hw-consumer.c

• struct iio_hw_consumer —Hardware consumer structure
• iio_hw_consumer_alloc() —Allocate IIO hardware consumer
• iio_hw_consumer_free() —Free IIO hardware consumer
• iio_hw_consumer_enable() —Enable IIO hardware consumer
• iio_hw_consumer_disable() —Disable IIO hardware consumer

18.6.1 HW consumer setup

As standard IIO device the implementation is based on IIO provider/consumer. A
typical IIO HW consumer setup looks like this:

static struct iio_hw_consumer *hwc;

static const struct iio_info adc_info = {
.read_raw = adc_read_raw,

};

static int adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)

{
ret = iio_hw_consumer_enable(hwc);

/* Acquire data */

ret = iio_hw_consumer_disable(hwc);
(continues on next page)

18.6. HW consumer 499

Linux Driver-api Documentation

(continued from previous page)
}

static int adc_probe(struct platform_device *pdev)
{

hwc = devm_iio_hw_consumer_alloc(&iio->dev);
}

18.6.2 More details

struct iio_hw_consumer * iio_hw_consumer_alloc(struct device * dev)
Allocate IIO hardware consumer

Parameters
struct device * dev Pointer to consumer device.

Description
Returns a valid iio_hw_consumer on success or a ERR_PTR() on failure.

void iio_hw_consumer_free(struct iio_hw_consumer * hwc)
Free IIO hardware consumer

Parameters
struct iio_hw_consumer * hwc hw consumer to free.

struct iio_hw_consumer * devm_iio_hw_consumer_alloc(struct device
* dev)

Resource-managed iio_hw_consumer_alloc()

Parameters
struct device * dev Pointer to consumer device.

Description
Managed iio_hw_consumer_alloc. iio_hw_consumer allocated with this function is
automatically freed on driver detach.

returns pointer to allocated iio_hw_consumer on success, NULL on failure.

int iio_hw_consumer_enable(struct iio_hw_consumer * hwc)
Enable IIO hardware consumer

Parameters
struct iio_hw_consumer * hwc iio_hw_consumer to enable.

Description
Returns 0 on success.

void iio_hw_consumer_disable(struct iio_hw_consumer * hwc)
Disable IIO hardware consumer

Parameters
struct iio_hw_consumer * hwc iio_hw_consumer to disable.

500 Chapter 18. Industrial I/O

CHAPTER

NINETEEN

INPUT SUBSYSTEM

19.1 Input core

struct input_value
input value representation

Definition

struct input_value {
__u16 type;
__u16 code;
__s32 value;

};

Members
type type of value (EV_KEY, EV_ABS, etc)

code the value code

value the value

struct input_dev
represents an input device

Definition

struct input_dev {
const char *name;
const char *phys;
const char *uniq;
struct input_id id;
unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)];
unsigned long evbit[BITS_TO_LONGS(EV_CNT)];
unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];
unsigned long relbit[BITS_TO_LONGS(REL_CNT)];
unsigned long absbit[BITS_TO_LONGS(ABS_CNT)];
unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)];
unsigned long ledbit[BITS_TO_LONGS(LED_CNT)];
unsigned long sndbit[BITS_TO_LONGS(SND_CNT)];
unsigned long ffbit[BITS_TO_LONGS(FF_CNT)];
unsigned long swbit[BITS_TO_LONGS(SW_CNT)];
unsigned int hint_events_per_packet;
unsigned int keycodemax;
unsigned int keycodesize;

(continues on next page)

501

Linux Driver-api Documentation

(continued from previous page)
void *keycode;
int (*setkeycode)(struct input_dev *dev,const struct input_keymap_entry␣

↪→*ke, unsigned int *old_keycode);
int (*getkeycode)(struct input_dev *dev, struct input_keymap_entry *ke);
struct ff_device *ff;
struct input_dev_poller *poller;
unsigned int repeat_key;
struct timer_list timer;
int rep[REP_CNT];
struct input_mt *mt;
struct input_absinfo *absinfo;
unsigned long key[BITS_TO_LONGS(KEY_CNT)];
unsigned long led[BITS_TO_LONGS(LED_CNT)];
unsigned long snd[BITS_TO_LONGS(SND_CNT)];
unsigned long sw[BITS_TO_LONGS(SW_CNT)];
int (*open)(struct input_dev *dev);
void (*close)(struct input_dev *dev);
int (*flush)(struct input_dev *dev, struct file *file);
int (*event)(struct input_dev *dev, unsigned int type, unsigned int code,

↪→ int value);
struct input_handle __rcu *grab;
spinlock_t event_lock;
struct mutex mutex;
unsigned int users;
bool going_away;
struct device dev;
struct list_head h_list;
struct list_head node;
unsigned int num_vals;
unsigned int max_vals;
struct input_value *vals;
bool devres_managed;
ktime_t timestamp[INPUT_CLK_MAX];

};

Members
name name of the device

phys physical path to the device in the system hierarchy

uniq unique identification code for the device (if device has it)

id id of the device (struct input_id)

propbit bitmap of device properties and quirks

evbit bitmap of types of events supported by the device (EV_KEY, EV_REL, etc.)

keybit bitmap of keys/buttons this device has

relbit bitmap of relative axes for the device

absbit bitmap of absolute axes for the device

mscbit bitmap of miscellaneous events supported by the device

ledbit bitmap of leds present on the device

sndbit bitmap of sound effects supported by the device

502 Chapter 19. Input Subsystem

Linux Driver-api Documentation

ffbit bitmap of force feedback effects supported by the device

swbit bitmap of switches present on the device

hint_events_per_packet average number of events generated by the device in a
packet (between EV_SYN/SYN_REPORT events). Used by event handlers to
estimate size of the buffer needed to hold events.

keycodemax size of keycode table

keycodesize size of elements in keycode table

keycode map of scancodes to keycodes for this device

setkeycode optional method to alter current keymap, used to implement sparse
keymaps. If not supplied default mechanism will be used. The method is
being called while holding event_lock and thus must not sleep

getkeycode optional legacy method to retrieve current keymap.

ff force feedback structure associated with the device if device supports force
feedback effects

poller poller structure associated with the device if device is set up to use polling
mode

repeat_key stores key code of the last key pressed; used to implement software
autorepeat

timer timer for software autorepeat

rep current values for autorepeat parameters (delay, rate)

mt pointer to multitouch state

absinfo array of struct input_absinfo elements holding information about ab-
solute axes (current value, min, max, flat, fuzz, resolution)

key reflects current state of device’s keys/buttons
led reflects current state of device’s LEDs
snd reflects current state of sound effects

sw reflects current state of device’s switches
open this method is called when the very first user calls input_open_device().

The driver must prepare the device to start generating events (start polling
thread, request an IRQ, submit URB, etc.)

close this method is called when the very last user calls input_close_device().

flush purges the device. Most commonly used to get rid of force feedback effects
loaded into the device when disconnecting from it

event event handler for events sent _to_ the device, like EV_LED or EV_SND. The
device is expected to carry out the requested action (turn on a LED, play
sound, etc.) The call is protected by event_lock and must not sleep

grab input handle that currently has the device grabbed (via EVIOCGRAB ioctl).
When a handle grabs a device it becomes sole recipient for all input events
coming from the device

19.1. Input core 503

Linux Driver-api Documentation

event_lock this spinlock is taken when input core receives and processes a new
event for the device (in input_event()). Code that accesses and/or modifies
parameters of a device (such as keymap or absmin, absmax, absfuzz, etc.)
after device has been registered with input core must take this lock.

mutex serializes calls to open(), close() and flush() methods

users stores number of users (input handlers) that opened this device. It is used
by input_open_device() and input_close_device() to make sure that dev-
>open() is only called when the first user opens device and dev->close() is
called when the very last user closes the device

going_away marks devices that are in a middle of unregistering and causes in-
put_open_device*() fail with -ENODEV.

dev driver model’s view of this device
h_list list of input handles associated with the device. When accessing the list

dev->mutex must be held

node used to place the device onto input_dev_list

num_vals number of values queued in the current frame

max_vals maximum number of values queued in a frame

vals array of values queued in the current frame

devres_managed indicates that devices is managed with devres framework and
needs not be explicitly unregistered or freed.

timestamp storage for a timestamp set by input_set_timestamp called by a driver

struct input_handler
implements one of interfaces for input devices

Definition

struct input_handler {
void *private;
void (*event)(struct input_handle *handle, unsigned int type, unsigned␣

↪→int code, int value);
void (*events)(struct input_handle *handle, const struct input_value␣

↪→*vals, unsigned int count);
bool (*filter)(struct input_handle *handle, unsigned int type, unsigned␣

↪→int code, int value);
bool (*match)(struct input_handler *handler, struct input_dev *dev);
int (*connect)(struct input_handler *handler, struct input_dev *dev,␣

↪→const struct input_device_id *id);
void (*disconnect)(struct input_handle *handle);
void (*start)(struct input_handle *handle);
bool legacy_minors;
int minor;
const char *name;
const struct input_device_id *id_table;
struct list_head h_list;
struct list_head node;

};

Members

504 Chapter 19. Input Subsystem

Linux Driver-api Documentation

private driver-specific data

event event handler. This method is being called by input core with interrupts
disabled and dev->event_lock spinlock held and so it may not sleep

events event sequence handler. This method is being called by input core with
interrupts disabled and dev->event_lock spinlock held and so it may not sleep

filter similar to event; separates normal event handlers from “filters”.
match called after comparing device’s id with handler’s id_table to perform fine-

grained matching between device and handler

connect called when attaching a handler to an input device

disconnect disconnects a handler from input device

start starts handler for given handle. This function is called by input core right
after connect() method and also when a process that “grabbed”a device
releases it

legacy_minors set to true by drivers using legacy minor ranges

minor beginning of range of 32 legacy minors for devices this driver can provide

name name of the handler, to be shown in /proc/bus/input/handlers

id_table pointer to a table of input_device_ids this driver can handle

h_list list of input handles associated with the handler

node for placing the driver onto input_handler_list

Description
Input handlers attach to input devices and create input handles. There are likely
several handlers attached to any given input device at the same time. All of them
will get their copy of input event generated by the device.

The very same structure is used to implement input filters. Input core allows filters
to run first and will not pass event to regular handlers if any of the filters indicate
that the event should be filtered (by returning true from their filter() method).

Note that input core serializes calls to connect() and disconnect() methods.

struct input_handle
links input device with an input handler

Definition

struct input_handle {
void *private;
int open;
const char *name;
struct input_dev *dev;
struct input_handler *handler;
struct list_head d_node;
struct list_head h_node;

};

Members
private handler-specific data

19.1. Input core 505

Linux Driver-api Documentation

open counter showing whether the handle is ‘open’, i.e. should deliver events
from its device

name name given to the handle by handler that created it

dev input device the handle is attached to

handler handler that works with the device through this handle

d_node used to put the handle on device’s list of attached handles
h_node used to put the handle on handler’s list of handles from which it gets

events

void input_set_events_per_packet(struct input_dev * dev, int n_events)
tell handlers about the driver event rate

Parameters
struct input_dev * dev the input device used by the driver

int n_events the average number of events between calls to input_sync()

Description
If the event rate sent from a device is unusually large, use this function to set the
expected event rate. This will allow handlers to set up an appropriate buffer size
for the event stream, in order to minimize information loss.

struct ff_device
force-feedback part of an input device

Definition

struct ff_device {
int (*upload)(struct input_dev *dev, struct ff_effect *effect, struct ff_

↪→effect *old);
int (*erase)(struct input_dev *dev, int effect_id);
int (*playback)(struct input_dev *dev, int effect_id, int value);
void (*set_gain)(struct input_dev *dev, u16 gain);
void (*set_autocenter)(struct input_dev *dev, u16 magnitude);
void (*destroy)(struct ff_device *);
void *private;
unsigned long ffbit[BITS_TO_LONGS(FF_CNT)];
struct mutex mutex;
int max_effects;
struct ff_effect *effects;
struct file *effect_owners[];

};

Members
upload Called to upload an new effect into device

erase Called to erase an effect from device

playback Called to request device to start playing specified effect

set_gain Called to set specified gain

set_autocenter Called to auto-center device

destroy called by input core when parent input device is being destroyed

506 Chapter 19. Input Subsystem

Linux Driver-api Documentation

private driver-specific data, will be freed automatically

ffbit bitmap of force feedback capabilities truly supported by device (not emu-
lated like ones in input_dev->ffbit)

mutex mutex for serializing access to the device

max_effects maximum number of effects supported by device

effects pointer to an array of effects currently loaded into device

effect_owners array of effect owners; when file handle owning an effect gets
closed the effect is automatically erased

Description
Every force-feedback device must implement upload() and playback() methods;
erase() is optional. set_gain() and set_autocenter() need only be implemented if
driver sets up FF_GAIN and FF_AUTOCENTER bits.

Note that playback(), set_gain() and set_autocenter() are called with dev-
>event_lock spinlock held and interrupts off and thus may not sleep.

void input_event(struct input_dev * dev, unsigned int type, unsigned
int code, int value)

report new input event

Parameters
struct input_dev * dev device that generated the event

unsigned int type type of the event

unsigned int code event code

int value value of the event

Description
This function should be used by drivers implementing various input devices to
report input events. See also input_inject_event().

NOTE
input_event() may be safely used right after input device was allo-
cated with input_allocate_device(), even before it is registered with
input_register_device(), but the event will not reach any of the input handlers.
Such early invocation of input_event() may be used to ‘seed’initial state of a
switch or initial position of absolute axis, etc.

void input_inject_event(struct input_handle * handle, unsigned int type,
unsigned int code, int value)

send input event from input handler

Parameters
struct input_handle * handle input handle to send event through

unsigned int type type of the event

unsigned int code event code

int value value of the event

19.1. Input core 507

Linux Driver-api Documentation

Description
Similar to input_event() but will ignore event if device is“grabbed”and handle
injecting event is not the one that owns the device.

void input_alloc_absinfo(struct input_dev * dev)
allocates array of input_absinfo structs

Parameters
struct input_dev * dev the input device emitting absolute events

Description
If the absinfo struct the caller asked for is already allocated, this functions will not
do anything.

int input_grab_device(struct input_handle * handle)
grabs device for exclusive use

Parameters
struct input_handle * handle input handle that wants to own the device

Description
When a device is grabbed by an input handle all events generated by the device
are delivered only to this handle. Also events injected by other input handles are
ignored while device is grabbed.

void input_release_device(struct input_handle * handle)
release previously grabbed device

Parameters
struct input_handle * handle input handle that owns the device

Description
Releases previously grabbed device so that other input handles can start receiving
input events. Upon release all handlers attached to the device have their start()
method called so they have a change to synchronize device state with the rest of
the system.

int input_open_device(struct input_handle * handle)
open input device

Parameters
struct input_handle * handle handle through which device is being accessed

Description
This function should be called by input handlers when they want to start receive
events from given input device.

void input_close_device(struct input_handle * handle)
close input device

Parameters
struct input_handle * handle handle through which device is being accessed

508 Chapter 19. Input Subsystem

Linux Driver-api Documentation

Description
This function should be called by input handlers when they want to stop receive
events from given input device.

int input_scancode_to_scalar(const struct input_keymap_entry * ke, un-
signed int * scancode)

converts scancode in struct input_keymap_entry

Parameters
const struct input_keymap_entry * ke keymap entry containing scancode to

be converted.

unsigned int * scancode pointer to the location where converted scancode
should be stored.

Description
This function is used to convert scancode stored in struct keymap_entry into
scalar form understood by legacy keymap handling methods. These methods ex-
pect scancodes to be represented as ‘unsigned int’.
int input_get_keycode(struct input_dev * dev, struct input_keymap_entry

* ke)
retrieve keycode currently mapped to a given scancode

Parameters
struct input_dev * dev input device which keymap is being queried

struct input_keymap_entry * ke keymap entry

Description
This function should be called by anyone interested in retrieving current keymap.
Presently evdev handlers use it.

int input_set_keycode(struct input_dev * dev, const struct in-
put_keymap_entry * ke)

attribute a keycode to a given scancode

Parameters
struct input_dev * dev input device which keymap is being updated

const struct input_keymap_entry * ke new keymap entry

Description
This function should be called by anyone needing to update current keymap.
Presently keyboard and evdev handlers use it.

void input_reset_device(struct input_dev * dev)
reset/restore the state of input device

Parameters
struct input_dev * dev input device whose state needs to be reset

Description

19.1. Input core 509

Linux Driver-api Documentation

This function tries to reset the state of an opened input device and bring inter-
nal state and state if the hardware in sync with each other. We mark all keys as
released, restore LED state, repeat rate, etc.

struct input_dev * input_allocate_device(void)
allocate memory for new input device

Parameters
void no arguments

Description
Returns prepared struct input_dev or NULL.

NOTE
Use input_free_device() to free devices that have not been registered;
input_unregister_device() should be used for already registered devices.

struct input_dev * devm_input_allocate_device(struct device * dev)
allocate managed input device

Parameters
struct device * dev device owning the input device being created

Description
Returns prepared struct input_dev or NULL.

Managed input devices do not need to be explicitly unregistered or freed as it
will be done automatically when owner device unbinds from its driver (or bind-
ing fails). Once managed input device is allocated, it is ready to be set up and
registered in the same fashion as regular input device. There are no special
devm_input_device_[un]register() variants, regular ones work with both managed
and unmanaged devices, should you need them. In most cases however, managed
input device need not be explicitly unregistered or freed.

NOTE
the owner device is set up as parent of input device and users should not override
it.

void input_free_device(struct input_dev * dev)
free memory occupied by input_dev structure

Parameters
struct input_dev * dev input device to free

Description
This function should only be used if input_register_device() was not called yet
or if it failed. Once device was registered use input_unregister_device() and
memory will be freed once last reference to the device is dropped.

Device should be allocated by input_allocate_device().

NOTE
If there are references to the input device then memory will not be freed until last
reference is dropped.

510 Chapter 19. Input Subsystem

Linux Driver-api Documentation

void input_set_timestamp(struct input_dev * dev, ktime_t timestamp)
set timestamp for input events

Parameters
struct input_dev * dev input device to set timestamp for

ktime_t timestamp the time at which the event has occurred in
CLOCK_MONOTONIC

Description
This function is intended to provide to the input system a more accurate time of
when an event actually occurred. The driver should call this function as soon as
a timestamp is acquired ensuring clock conversions in input_set_timestamp are
done correctly.

The system entering suspend state between timestamp acquisition and calling in-
put_set_timestamp can result in inaccurate conversions.

ktime_t * input_get_timestamp(struct input_dev * dev)
get timestamp for input events

Parameters
struct input_dev * dev input device to get timestamp from

Description
A valid timestamp is a timestamp of non-zero value.

void input_set_capability(struct input_dev * dev, unsigned int type, un-
signed int code)

mark device as capable of a certain event

Parameters
struct input_dev * dev device that is capable of emitting or accepting event

unsigned int type type of the event (EV_KEY, EV_REL, etc⋯)
unsigned int code event code

Description
In addition to setting up corresponding bit in appropriate capability bitmap the
function also adjusts dev->evbit.

void input_enable_softrepeat(struct input_dev * dev, int delay,
int period)

enable software autorepeat

Parameters
struct input_dev * dev input device

int delay repeat delay

int period repeat period

Description
Enable software autorepeat on the input device.

19.1. Input core 511

Linux Driver-api Documentation

int input_register_device(struct input_dev * dev)
register device with input core

Parameters
struct input_dev * dev device to be registered

Description
This function registers device with input core. The device must be allocated
with input_allocate_device() and all it’s capabilities set up before regis-
tering. If function fails the device must be freed with input_free_device().
Once device has been successfully registered it can be unregistered with
input_unregister_device(); input_free_device() should not be called in this
case.

Note that this function is also used to register managed input devices (ones allo-
cated with devm_input_allocate_device()). Such managed input devices need
not be explicitly unregistered or freed, their tear down is controlled by the devres
infrastructure. It is also worth noting that tear down of managed input devices is
internally a 2-step process: registered managed input device is first unregistered,
but stays in memory and can still handle input_event() calls (although events
will not be delivered anywhere). The freeing of managed input device will hap-
pen later, when devres stack is unwound to the point where device allocation was
made.

void input_unregister_device(struct input_dev * dev)
unregister previously registered device

Parameters
struct input_dev * dev device to be unregistered

Description
This function unregisters an input device. Once device is unregistered the caller
should not try to access it as it may get freed at any moment.

int input_register_handler(struct input_handler * handler)
register a new input handler

Parameters
struct input_handler * handler handler to be registered

Description
This function registers a new input handler (interface) for input devices in the
system and attaches it to all input devices that are compatible with the handler.

void input_unregister_handler(struct input_handler * handler)
unregisters an input handler

Parameters
struct input_handler * handler handler to be unregistered

Description
This function disconnects a handler from its input devices and removes it from
lists of known handlers.

512 Chapter 19. Input Subsystem

Linux Driver-api Documentation

int input_handler_for_each_handle(struct input_handler * handler, void
* data, int (*fn)(struct input_handle *,
void *))

handle iterator

Parameters
struct input_handler * handler input handler to iterate

void * data data for the callback

int (*)(struct input_handle *, void *) fn function to be called for each
handle

Description
Iterate over bus’s list of devices, and call fn for each, passing it data and stop
when fn returns a non-zero value. The function is using RCU to traverse the list
and therefore may be using in atomic contexts. The fn callback is invoked from
RCU critical section and thus must not sleep.

int input_register_handle(struct input_handle * handle)
register a new input handle

Parameters
struct input_handle * handle handle to register

Description
This function puts a new input handle onto device’s and handler’s lists so that
events can flow through it once it is opened using input_open_device().

This function is supposed to be called from handler’s connect() method.
void input_unregister_handle(struct input_handle * handle)

unregister an input handle

Parameters
struct input_handle * handle handle to unregister

Description
This function removes input handle from device’s and handler’s lists.
This function is supposed to be called from handler’s disconnect() method.
int input_get_new_minor(int legacy_base, unsigned int legacy_num,

bool allow_dynamic)
allocates a new input minor number

Parameters
int legacy_base beginning or the legacy range to be searched

unsigned int legacy_num size of legacy range

bool allow_dynamic whether we can also take ID from the dynamic range

Description
This function allocates a new device minor for from input major namespace. Caller
can request legacy minor by specifying legacy_base and legacy_num parameters

19.1. Input core 513

Linux Driver-api Documentation

and whether ID can be allocated from dynamic range if there are no free IDs in
legacy range.

void input_free_minor(unsigned int minor)
release previously allocated minor

Parameters
unsigned int minor minor to be released

Description
This function releases previously allocated input minor so that it can be reused
later.

int input_ff_upload(struct input_dev * dev, struct ff_effect * effect, struct
file * file)

upload effect into force-feedback device

Parameters
struct input_dev * dev input device

struct ff_effect * effect effect to be uploaded

struct file * file owner of the effect

int input_ff_erase(struct input_dev * dev, int effect_id, struct file * file)
erase a force-feedback effect from device

Parameters
struct input_dev * dev input device to erase effect from

int effect_id id of the effect to be erased

struct file * file purported owner of the request

Description
This function erases a force-feedback effect from specified device. The effect will
only be erased if it was uploaded through the same file handle that is requesting
erase.

int input_ff_event(struct input_dev * dev, unsigned int type, unsigned
int code, int value)

generic handler for force-feedback events

Parameters
struct input_dev * dev input device to send the effect to

unsigned int type event type (anything but EV_FF is ignored)

unsigned int code event code

int value event value

int input_ff_create(struct input_dev * dev, unsigned int max_effects)
create force-feedback device

Parameters
struct input_dev * dev input device supporting force-feedback

514 Chapter 19. Input Subsystem

Linux Driver-api Documentation

unsigned int max_effects maximum number of effects supported by the device

Description
This function allocates all necessary memory for a force feedback portion of an
input device and installs all default handlers. dev->ffbit should be already set up
before calling this function. Once ff device is created you need to setup its upload,
erase, playback and other handlers before registering input device

void input_ff_destroy(struct input_dev * dev)
frees force feedback portion of input device

Parameters
struct input_dev * dev input device supporting force feedback

Description
This function is only needed in error path as input core will automatically free
force feedback structures when device is destroyed.

int input_ff_create_memless(struct input_dev * dev, void * data, int
(*play_effect)(struct input_dev *, void *,
struct ff_effect *))

create memoryless force-feedback device

Parameters
struct input_dev * dev input device supporting force-feedback

void * data driver-specific data to be passed into play_effect
int (*)(struct input_dev *, void *, struct ff_effect *) play_effect

driver-specific method for playing FF effect

19.2 Multitouch Library

struct input_mt_slot
represents the state of an input MT slot

Definition

struct input_mt_slot {
int abs[ABS_MT_LAST - ABS_MT_FIRST + 1];
unsigned int frame;
unsigned int key;

};

Members
abs holds current values of ABS_MT axes for this slot

frame last frame at which input_mt_report_slot_state() was called

key optional driver designation of this slot

struct input_mt
state of tracked contacts

Definition

19.2. Multitouch Library 515

Linux Driver-api Documentation

struct input_mt {
int trkid;
int num_slots;
int slot;
unsigned int flags;
unsigned int frame;
int *red;
struct input_mt_slot slots[];

};

Members
trkid stores MT tracking ID for the next contact

num_slots number of MT slots the device uses

slot MT slot currently being transmitted

flags input_mt operation flags

frame increases every time input_mt_sync_frame() is called

red reduced cost matrix for in-kernel tracking

slots array of slots holding current values of tracked contacts

struct input_mt_pos
contact position

Definition

struct input_mt_pos {
s16 x, y;

};

Members
x horizontal coordinate

y vertical coordinate

int input_mt_init_slots(struct input_dev * dev, unsigned int num_slots,
unsigned int flags)

initialize MT input slots

Parameters
struct input_dev * dev input device supporting MT events and finger tracking

unsigned int num_slots number of slots used by the device

unsigned int flags mt tasks to handle in core

Description
This function allocates all necessary memory for MT slot handling in the input de-
vice, prepares the ABS_MT_SLOT and ABS_MT_TRACKING_ID events for use and
sets up appropriate buffers. Depending on the flags set, it also performs pointer
emulation and frame synchronization.

May be called repeatedly. Returns -EINVAL if attempting to reinitialize with a
different number of slots.

516 Chapter 19. Input Subsystem

Linux Driver-api Documentation

void input_mt_destroy_slots(struct input_dev * dev)
frees the MT slots of the input device

Parameters
struct input_dev * dev input device with allocated MT slots

Description
This function is only needed in error path as the input core will automatically free
the MT slots when the device is destroyed.

bool input_mt_report_slot_state(struct input_dev * dev, unsigned
int tool_type, bool active)

report contact state

Parameters
struct input_dev * dev input device with allocated MT slots

unsigned int tool_type the tool type to use in this slot

bool active true if contact is active, false otherwise

Description
Reports a contact via ABS_MT_TRACKING_ID, and optionally
ABS_MT_TOOL_TYPE. If active is true and the slot is currently inactive, or if
the tool type is changed, a new tracking id is assigned to the slot. The tool type is
only reported if the corresponding absbit field is set.

Returns true if contact is active.

void input_mt_report_finger_count(struct input_dev * dev, int count)
report contact count

Parameters
struct input_dev * dev input device with allocated MT slots

int count the number of contacts

Description
Reports the contact count via BTN_TOOL_FINGER, BTN_TOOL_DOUBLETAP,
BTN_TOOL_TRIPLETAP and BTN_TOOL_QUADTAP.

The input core ensures only the KEY events already setup for this device will pro-
duce output.

void input_mt_report_pointer_emulation(struct input_dev * dev,
bool use_count)

common pointer emulation

Parameters
struct input_dev * dev input device with allocated MT slots

bool use_count report number of active contacts as finger count

Description
Performs legacy pointer emulation via BTN_TOUCH, ABS_X, ABS_Y and
ABS_PRESSURE. Touchpad finger count is emulated if use_count is true.

19.2. Multitouch Library 517

Linux Driver-api Documentation

The input core ensures only the KEY and ABS axes already setup for this device
will produce output.

void input_mt_drop_unused(struct input_dev * dev)
Inactivate slots not seen in this frame

Parameters
struct input_dev * dev input device with allocated MT slots

Description
Lift all slots not seen since the last call to this function.

void input_mt_sync_frame(struct input_dev * dev)
synchronize mt frame

Parameters
struct input_dev * dev input device with allocated MT slots

Description
Close the frame and prepare the internal state for a new one. Depending on the
flags, marks unused slots as inactive and performs pointer emulation.

int input_mt_assign_slots(struct input_dev * dev, int * slots, const struct
input_mt_pos * pos, int num_pos, int dmax)

perform a best-match assignment

Parameters
struct input_dev * dev input device with allocated MT slots

int * slots the slot assignment to be filled

const struct input_mt_pos * pos the position array to match

int num_pos number of positions

int dmax maximum ABS_MT_POSITION displacement (zero for infinite)

Description
Performs a best match against the current contacts and returns the slot assign-
ment list. New contacts are assigned to unused slots.

The assignments are balanced so that all coordinate displacements are below the
euclidian distance dmax. If no such assignment can be found, some contacts are
assigned to unused slots.

Returns zero on success, or negative error in case of failure.

int input_mt_get_slot_by_key(struct input_dev * dev, int key)
return slot matching key

Parameters
struct input_dev * dev input device with allocated MT slots

int key the key of the sought slot

Description

518 Chapter 19. Input Subsystem

Linux Driver-api Documentation

Returns the slot of the given key, if it exists, otherwise set the key on the first
unused slot and return.

If no available slot can be found, -1 is returned. Note that for this function to work
properly, input_mt_sync_frame() has to be called at each frame.

19.3 Polled input devices

struct input_polled_dev
simple polled input device

Definition

struct input_polled_dev {
void *private;
void (*open)(struct input_polled_dev *dev);
void (*close)(struct input_polled_dev *dev);
void (*poll)(struct input_polled_dev *dev);
unsigned int poll_interval;
unsigned int poll_interval_max;
unsigned int poll_interval_min;
struct input_dev *input;

};

Members
private private driver data.

open driver-supplied method that prepares device for polling (enabled the device
and maybe flushes device state).

close driver-supplied method that is called when device is no longer being polled.
Used to put device into low power mode.

poll driver-supplied method that polls the device and posts input events (manda-
tory).

poll_interval specifies how often the poll() method should be called. Defaults
to 500 msec unless overridden when registering the device.

poll_interval_max specifies upper bound for the poll interval. Defaults to the
initial value of poll_interval.

poll_interval_min specifies lower bound for the poll interval. Defaults to 0.

input input device structure associated with the polled device. Must be properly
initialized by the driver (id, name, phys, bits).

Description
Polled input device provides a skeleton for supporting simple input devices that do
not raise interrupts but have to be periodically scanned or polled to detect changes
in their state.

struct input_polled_dev * input_allocate_polled_device(void)
allocate memory for polled device

Parameters

19.3. Polled input devices 519

Linux Driver-api Documentation

void no arguments

Description
The function allocates memory for a polled device and also for an input device
associated with this polled device.

struct input_polled_dev * devm_input_allocate_polled_device(struct
device
* dev)

allocate managed polled device

Parameters
struct device * dev device owning the polled device being created

Description
Returns prepared struct input_polled_dev or NULL.

Managed polled input devices do not need to be explicitly unregistered or freed
as it will be done automatically when owner device unbinds from * its driver (or
binding fails). Once such managed polled device is allocated, it is ready to be
set up and registered in the same fashion as regular polled input devices (using
input_register_polled_device() function).

If you want to manually unregister and free such managed polled de-
vices, it can be still done by calling input_unregister_polled_device() and
input_free_polled_device(), although it is rarely needed.

NOTE
the owner device is set up as parent of input device and users should not override
it.

void input_free_polled_device(struct input_polled_dev * dev)
free memory allocated for polled device

Parameters
struct input_polled_dev * dev device to free

Description
The function frees memory allocated for polling device and drops reference to the
associated input device.

int input_register_polled_device(struct input_polled_dev * dev)
register polled device

Parameters
struct input_polled_dev * dev device to register

Description
The function registers previously initialized polled input device with input layer.
The device should be allocated with call to input_allocate_polled_device().
Callers should also set up poll() method and set up capabilities (id, name, phys,
bits) of the corresponding input_dev structure.

520 Chapter 19. Input Subsystem

Linux Driver-api Documentation

void input_unregister_polled_device(struct input_polled_dev * dev)
unregister polled device

Parameters
struct input_polled_dev * dev device to unregister

Description
The function unregisters previously registered polled input device from in-
put layer. Polling is stopped and device is ready to be freed with call to
input_free_polled_device().

19.4 Matrix keyboards/keypads

struct matrix_keymap_data
keymap for matrix keyboards

Definition

struct matrix_keymap_data {
const uint32_t *keymap;
unsigned int keymap_size;

};

Members
keymap pointer to array of uint32 values encoded with KEY() macro representing

keymap

keymap_size number of entries (initialized) in this keymap

Description
This structure is supposed to be used by platform code to supply keymaps to
drivers that implement matrix-like keypads/keyboards.

struct matrix_keypad_platform_data
platform-dependent keypad data

Definition

struct matrix_keypad_platform_data {
const struct matrix_keymap_data *keymap_data;
const unsigned int *row_gpios;
const unsigned int *col_gpios;
unsigned int num_row_gpios;
unsigned int num_col_gpios;
unsigned int col_scan_delay_us;
unsigned int debounce_ms;
unsigned int clustered_irq;
unsigned int clustered_irq_flags;
bool active_low;
bool wakeup;
bool no_autorepeat;
bool drive_inactive_cols;

};

19.4. Matrix keyboards/keypads 521

Linux Driver-api Documentation

Members
keymap_data pointer to matrix_keymap_data

row_gpios pointer to array of gpio numbers representing rows

col_gpios pointer to array of gpio numbers reporesenting colums

num_row_gpios actual number of row gpios used by device

num_col_gpios actual number of col gpios used by device

col_scan_delay_us delay, measured in microseconds, that is needed before we
can keypad after activating column gpio

debounce_ms debounce interval in milliseconds

clustered_irq may be specified if interrupts of all row/columnGPIOs are bundled
to one single irq

clustered_irq_flags flags that are needed for the clustered irq

active_low gpio polarity

wakeup controls whether the device should be set up as wakeup source

no_autorepeat disable key autorepeat

drive_inactive_cols drive inactive columns during scan, rather than making
them inputs.

Description
This structure represents platform-specific data that use used by matrix_keypad
driver to perform proper initialization.

19.5 Sparse keymap support

struct key_entry
keymap entry for use in sparse keymap

Definition

struct key_entry {
int type;
u32 code;
union {

u16 keycode;
struct {
u8 code;
u8 value;

} sw;
};

};

Members
type Type of the key entry (KE_KEY, KE_SW, KE_VSW, KE_END); drivers are al-

lowed to extend the list with their own private definitions.

522 Chapter 19. Input Subsystem

Linux Driver-api Documentation

code Device-specific data identifying the button/switch

{unnamed_union} anonymous

keycode KEY_* code assigned to a key/button

sw.code SW_* code assigned to a switch

sw.value Value that should be sent in an input even when KE_SW switch is tog-
gled. KE_VSW switches ignore this field and expect driver to supply value for
the event.

Description
This structure defines an entry in a sparse keymap used by some input devices for
which traditional table-based approach is not suitable.

struct key_entry * sparse_keymap_entry_from_scancode(struct input_dev
* dev, unsigned
int code)

perform sparse keymap lookup

Parameters
struct input_dev * dev Input device using sparse keymap

unsigned int code Scan code

Description
This function is used to perform struct key_entry lookup in an input device using
sparse keymap.

struct key_entry * sparse_keymap_entry_from_keycode(struct input_dev
* dev, unsigned
int keycode)

perform sparse keymap lookup

Parameters
struct input_dev * dev Input device using sparse keymap

unsigned int keycode Key code

Description
This function is used to perform struct key_entry lookup in an input device using
sparse keymap.

int sparse_keymap_setup(struct input_dev * dev, const struct key_entry
* keymap, int (*setup)(struct input_dev *, struct
key_entry *))

set up sparse keymap for an input device

Parameters
struct input_dev * dev Input device

const struct key_entry * keymap Keymap in form of array of key_entry struc-
tures ending with KE_END type entry

int (*)(struct input_dev *, struct key_entry *) setup Function that can
be used to adjust keymap entries depending on device’s needs, may be NULL

19.5. Sparse keymap support 523

Linux Driver-api Documentation

Description
The function calculates size and allocates copy of the original keymap after which
sets up input device event bits appropriately. The allocated copy of the keymap is
automatically freed when it is no longer needed.

void sparse_keymap_report_entry(struct input_dev * dev, const struct
key_entry * ke, unsigned int value,
bool autorelease)

report event corresponding to given key entry

Parameters
struct input_dev * dev Input device for which event should be reported

const struct key_entry * ke key entry describing event

unsigned int value Value that should be reported (ignored by KE_SW entries)

bool autorelease Signals whether release event should be emitted for KE_KEY
entries right after reporting press event, ignored by all other entries

Description
This function is used to report input event described by given struct key_entry.

bool sparse_keymap_report_event(struct input_dev * dev, unsigned
int code, unsigned int value,
bool autorelease)

report event corresponding to given scancode

Parameters
struct input_dev * dev Input device using sparse keymap

unsigned int code Scan code

unsigned int value Value that should be reported (ignored by KE_SW entries)

bool autorelease Signals whether release event should be emitted for KE_KEY
entries right after reporting press event, ignored by all other entries

Description
This function is used to perform lookup in an input device using sparse keymap
and report corresponding event. Returns true if lookup was successful and false
otherwise.

524 Chapter 19. Input Subsystem

CHAPTER

TWENTY

LINUX USB API

20.1 The Linux-USB Host Side API

20.1.1 Introduction to USB on Linux

AUniversal Serial Bus (USB) is used to connect a host, such as a PC or workstation,
to a number of peripheral devices. USB uses a tree structure, with the host as the
root (the system’s master), hubs as interior nodes, and peripherals as leaves (and
slaves). Modern PCs support several such trees of USB devices, usually a few USB
3.0 (5 GBit/s) or USB 3.1 (10 GBit/s) and some legacy USB 2.0 (480 MBit/s) busses
just in case.

That master/slave asymmetry was designed-in for a number of reasons, one being
ease of use. It is not physically possible to mistake upstream and downstream or
it does not matter with a type C plug (or they are built into the peripheral). Also,
the host software doesn’t need to deal with distributed auto-configuration since
the pre-designated master node manages all that.

Kernel developers added USB support to Linux early in the 2.2 kernel series and
have been developing it further since then. Besides support for each new genera-
tion of USB, various host controllers gained support, new drivers for peripherals
have been added and advanced features for latency measurement and improved
power management introduced.

Linux can run inside USB devices as well as on the hosts that control the devices.
But USB device drivers running inside those peripherals don’t do the same things
as the ones running inside hosts, so they’ve been given a different name: gadget
drivers. This document does not cover gadget drivers.

20.1.2 USB Host-Side API Model

Host-side drivers for USB devices talk to the“usbcore”APIs. There are two. One
is intended for general-purpose drivers (exposed through driver frameworks), and
the other is for drivers that are part of the core. Such core drivers include the hub
driver (which manages trees of USB devices) and several different kinds of host
controller drivers, which control individual busses.

The device model seen by USB drivers is relatively complex.

• USB supports four kinds of data transfers (control, bulk, interrupt, and
isochronous). Two of them (control and bulk) use bandwidth as it’s avail-

525

Linux Driver-api Documentation

able, while the other two (interrupt and isochronous) are scheduled to pro-
vide guaranteed bandwidth.

• The device description model includes one or more“configurations”per de-
vice, only one of which is active at a time. Devices are supposed to be capable
of operating at lower than their top speeds and may provide a BOS descriptor
showing the lowest speed they remain fully operational at.

• From USB 3.0 on configurations have one or more “functions”, which pro-
vide a common functionality and are grouped together for purposes of power
management.

• Configurations or functions have one or more“interfaces”, each of which may
have“alternate settings”. Interfaces may be standardized by USB“Class”
specifications, or may be specific to a vendor or device.

USB device drivers actually bind to interfaces, not devices. Think of them
as “interface drivers”, though you may not see many devices where the
distinction is important. Most USB devices are simple, with only one function,
one configuration, one interface, and one alternate setting.

• Interfaces have one or more “endpoints”, each of which supports one type
and direction of data transfer such as“bulk out”or“interrupt in”. The entire
configuration may have up to sixteen endpoints in each direction, allocated
as needed among all the interfaces.

• Data transfer on USB is packetized; each endpoint has a maximum packet
size. Drivers must often be aware of conventions such as flagging the end of
bulk transfers using “short”(including zero length) packets.

• The Linux USB API supports synchronous calls for control and bulk messages.
It also supports asynchronous calls for all kinds of data transfer, using request
structures called “URBs”(USB Request Blocks).

Accordingly, the USB Core API exposed to device drivers covers quite a lot of
territory. You’ll probably need to consult the USB 3.0 specification, available
online from www.usb.org at no cost, as well as class or device specifications.

The only host-side drivers that actually touch hardware (reading/writing regis-
ters, handling IRQs, and so on) are the HCDs. In theory, all HCDs provide the
same functionality through the same API. In practice, that’s becoming more true,
but there are still differences that crop up especially with fault handling on the
less common controllers. Different controllers don’t necessarily report the same
aspects of failures, and recovery from faults (including software-induced ones like
unlinking an URB) isn’t yet fully consistent. Device driver authors should make
a point of doing disconnect testing (while the device is active) with each different
host controller driver, to make sure drivers don’t have bugs of their own as well
as to make sure they aren’t relying on some HCD-specific behavior.

526 Chapter 20. Linux USB API

Linux Driver-api Documentation

20.1.3 USB-Standard Types

In <linux/usb/ch9.h> you will find the USB data types defined in chapter 9 of the
USB specification. These data types are used throughout USB, and in APIs includ-
ing this host side API, gadget APIs, usb character devices and debugfs interfaces.

const char * usb_ep_type_string(int ep_type)
Returns human readable-name of the endpoint type.

Parameters
int ep_type The endpoint type to return human-readable name for. If it’s not

any of the types: USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT},
usually got by usb_endpoint_type(), the string ‘unknown’will be returned.

const char * usb_speed_string(enum usb_device_speed speed)
Returns human readable-name of the speed.

Parameters
enum usb_device_speed speed The speed to return human-readable name for.

If it’s not any of the speeds defined in usb_device_speed enum, string for
USB_SPEED_UNKNOWN will be returned.

enum usb_device_speed usb_get_maximum_speed(struct device * dev)
Get maximum requested speed for a given USB controller.

Parameters
struct device * dev Pointer to the given USB controller device

Description
The function gets the maximum speed string from property “maximum-speed”,
and returns the corresponding enum usb_device_speed.

const char * usb_state_string(enum usb_device_state state)
Returns human readable name for the state.

Parameters
enum usb_device_state state The state to return a human-readable name for.

If it’s not any of the states devices in usb_device_state_string enum, the string
UNKNOWN will be returned.

const char * usb_decode_ctrl(char * str, size_t size, __u8 bRequestType,
__u8 bRequest, __u16 wValue, __u16 wIndex,
__u16 wLength)

Returns human readable representation of control request.

Parameters
char * str buffer to return a human-readable representation of control request.

This buffer should have about 200 bytes.

size_t size size of str buffer.

__u8 bRequestType matches the USB bmRequestType field

__u8 bRequest matches the USB bRequest field

20.1. The Linux-USB Host Side API 527

Linux Driver-api Documentation

__u16 wValue matches the USB wValue field (CPU byte order)

__u16 wIndex matches the USB wIndex field (CPU byte order)

__u16 wLength matches the USB wLength field (CPU byte order)

Description
Function returns decoded, formatted and human-readable description of control
request packet.

The usage scenario for this is for tracepoints, so function as a return use the same
value as in parameters. This approach allows to use this function in TP_printk

Important: wValue, wIndex, wLength parameters before invoking this function
should be processed by le16_to_cpu macro.

20.1.4 Host-Side Data Types and Macros

The host side API exposes several layers to drivers, some of which are more neces-
sary than others. These support lifecycle models for host side drivers and devices,
and support passing buffers through usbcore to some HCD that performs the I/O
for the device driver.

struct usb_host_endpoint
host-side endpoint descriptor and queue

Definition

struct usb_host_endpoint {
struct usb_endpoint_descriptor desc;
struct usb_ss_ep_comp_descriptor ss_ep_comp;
struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
struct list_head urb_list;
void *hcpriv;
struct ep_device *ep_dev;
unsigned char *extra;
int extralen;
int enabled;
int streams;

};

Members
desc descriptor for this endpoint, wMaxPacketSize in native byteorder

ss_ep_comp SuperSpeed companion descriptor for this endpoint

ssp_isoc_ep_comp SuperSpeedPlus isoc companion descriptor for this endpoint

urb_list urbs queued to this endpoint; maintained by usbcore

hcpriv for use by HCD; typically holds hardware dma queue head (QH) with one
or more transfer descriptors (TDs) per urb

ep_dev ep_device for sysfs info

extra descriptors following this endpoint in the configuration

extralen how many bytes of “extra”are valid

528 Chapter 20. Linux USB API

Linux Driver-api Documentation

enabled URBs may be submitted to this endpoint

streams number of USB-3 streams allocated on the endpoint

Description
USB requests are always queued to a given endpoint, identified by a descriptor
within an active interface in a given USB configuration.

struct usb_interface
what usb device drivers talk to

Definition

struct usb_interface {
struct usb_host_interface *altsetting;
struct usb_host_interface *cur_altsetting;
unsigned num_altsetting;
struct usb_interface_assoc_descriptor *intf_assoc;
int minor;
enum usb_interface_condition condition;
unsigned sysfs_files_created:1;
unsigned ep_devs_created:1;
unsigned unregistering:1;
unsigned needs_remote_wakeup:1;
unsigned needs_altsetting0:1;
unsigned needs_binding:1;
unsigned resetting_device:1;
unsigned authorized:1;
struct device dev;
struct device *usb_dev;
struct work_struct reset_ws;

};

Members
altsetting array of interface structures, one for each alternate setting that may

be selected. Each one includes a set of endpoint configurations. They will be
in no particular order.

cur_altsetting the current altsetting.

num_altsetting number of altsettings defined.

intf_assoc interface association descriptor

minor the minor number assigned to this interface, if this interface is bound to
a driver that uses the USB major number. If this interface does not use the
USB major, this field should be unused. The driver should set this value in
the probe() function of the driver, after it has been assigned a minor number
from the USB core by calling usb_register_dev().

condition binding state of the interface: not bound, binding (in probe()), bound
to a driver, or unbinding (in disconnect())

sysfs_files_created sysfs attributes exist

ep_devs_created endpoint child pseudo-devices exist

unregistering flag set when the interface is being unregistered

20.1. The Linux-USB Host Side API 529

Linux Driver-api Documentation

needs_remote_wakeup flag set when the driver requires remote-wakeup capabil-
ity during autosuspend.

needs_altsetting0 flag set when a set-interface request for altsetting 0 has been
deferred.

needs_binding flag set when the driver should be re-probed or unbound following
a reset or suspend operation it doesn’t support.

resetting_device USB core reset the device, so use alt setting 0 as current;
needs bandwidth alloc after reset.

authorized This allows to (de)authorize individual interfaces instead a whole de-
vice in contrast to the device authorization.

dev driver model’s view of this device
usb_dev if an interface is bound to the USB major, this will point to the sysfs

representation for that device.

reset_ws Used for scheduling resets from atomic context.

Description
USB device drivers attach to interfaces on a physical device. Each interface encap-
sulates a single high level function, such as feeding an audio stream to a speaker
or reporting a change in a volume control. Many USB devices only have one inter-
face. The protocol used to talk to an interface’s endpoints can be defined in a usb
“class”specification, or by a product’s vendor. The (default) control endpoint is
part of every interface, but is never listed among the interface’s descriptors.
The driver that is bound to the interface can use standard driver model calls such
as dev_get_drvdata() on the dev member of this structure.

Each interface may have alternate settings. The initial configuration of a de-
vice sets altsetting 0, but the device driver can change that setting using
usb_set_interface(). Alternate settings are often used to control the use of
periodic endpoints, such as by having different endpoints use different amounts
of reserved USB bandwidth. All standards-conformant USB devices that use
isochronous endpoints will use them in non-default settings.

The USB specification says that alternate setting numbers must run from 0 to one
less than the total number of alternate settings. But some devices manage to mess
this up, and the structures aren’t necessarily stored in numerical order anyhow.
Use usb_altnum_to_altsetting() to look up an alternate setting in the altsetting
array based on its number.

struct usb_interface_cache
long-term representation of a device interface

Definition

struct usb_interface_cache {
unsigned num_altsetting;
struct kref ref;
struct usb_host_interface altsetting[];

};

Members

530 Chapter 20. Linux USB API

Linux Driver-api Documentation

num_altsetting number of altsettings defined.

ref reference counter.

altsetting variable-length array of interface structures, one for each alternate
setting that may be selected. Each one includes a set of endpoint configura-
tions. They will be in no particular order.

Description
These structures persist for the lifetime of a usb_device, unlike struct
usb_interface (which persists only as long as its configuration is installed).
The altsetting arrays can be accessed through these structures at any
time, permitting comparison of configurations and providing support for the
/sys/kernel/debug/usb/devices pseudo-file.

struct usb_host_config
representation of a device’s configuration

Definition

struct usb_host_config {
struct usb_config_descriptor desc;
char *string;
struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
struct usb_interface *interface[USB_MAXINTERFACES];
struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
unsigned char *extra;
int extralen;

};

Members
desc the device’s configuration descriptor.
string pointer to the cached version of the iConfiguration string, if present for

this configuration.

intf_assoc list of any interface association descriptors in this config

interface array of pointers to usb_interface structures, one for each in-
terface in the configuration. The number of interfaces is stored in
desc.bNumInterfaces. These pointers are valid only while the the configu-
ration is active.

intf_cache array of pointers to usb_interface_cache structures, one for each in-
terface in the configuration. These structures exist for the entire life of the
device.

extra pointer to buffer containing all extra descriptors associated with this con-
figuration (those preceding the first interface descriptor).

extralen length of the extra descriptors buffer.

Description
USB devices may have multiple configurations, but only one can be active at any
time. Each encapsulates a different operational environment; for example, a dual-
speed device would have separate configurations for full-speed and high-speed

20.1. The Linux-USB Host Side API 531

Linux Driver-api Documentation

operation. The number of configurations available is stored in the device descrip-
tor as bNumConfigurations.

A configuration can contain multiple interfaces. Each corresponds to a differ-
ent function of the USB device, and all are available whenever the configuration
is active. The USB standard says that interfaces are supposed to be numbered
from 0 to desc.bNumInterfaces-1, but a lot of devices get this wrong. In addi-
tion, the interface array is not guaranteed to be sorted in numerical order. Use
usb_ifnum_to_if() to look up an interface entry based on its number.

Device drivers should not attempt to activate configurations. The choice of which
configuration to install is a policy decision based on such considerations as avail-
able power, functionality provided, and the user’s desires (expressed through
userspace tools). However, drivers can call usb_reset_configuration() to reini-
tialize the current configuration and all its interfaces.

struct usb_device
kernel’s representation of a USB device

Definition

struct usb_device {
int devnum;
char devpath[16];
u32 route;
enum usb_device_state state;
enum usb_device_speed speed;
unsigned int rx_lanes;
unsigned int tx_lanes;
struct usb_tt *tt;
int ttport;
unsigned int toggle[2];
struct usb_device *parent;
struct usb_bus *bus;
struct usb_host_endpoint ep0;
struct device dev;
struct usb_device_descriptor descriptor;
struct usb_host_bos *bos;
struct usb_host_config *config;
struct usb_host_config *actconfig;
struct usb_host_endpoint *ep_in[16];
struct usb_host_endpoint *ep_out[16];
char **rawdescriptors;
unsigned short bus_mA;
u8 portnum;
u8 level;
u8 devaddr;
unsigned can_submit:1;
unsigned persist_enabled:1;
unsigned have_langid:1;
unsigned authorized:1;
unsigned authenticated:1;
unsigned wusb:1;
unsigned lpm_capable:1;
unsigned usb2_hw_lpm_capable:1;
unsigned usb2_hw_lpm_besl_capable:1;
unsigned usb2_hw_lpm_enabled:1;

(continues on next page)

532 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
unsigned usb2_hw_lpm_allowed:1;
unsigned usb3_lpm_u1_enabled:1;
unsigned usb3_lpm_u2_enabled:1;
int string_langid;
char *product;
char *manufacturer;
char *serial;
struct list_head filelist;
int maxchild;
u32 quirks;
atomic_t urbnum;
unsigned long active_duration;

#ifdef CONFIG_PM;
unsigned long connect_time;
unsigned do_remote_wakeup:1;
unsigned reset_resume:1;
unsigned port_is_suspended:1;

#endif;
struct wusb_dev *wusb_dev;
int slot_id;
enum usb_device_removable removable;
struct usb2_lpm_parameters l1_params;
struct usb3_lpm_parameters u1_params;
struct usb3_lpm_parameters u2_params;
unsigned lpm_disable_count;
u16 hub_delay;
unsigned use_generic_driver:1;

};

Members
devnum device number; address on a USB bus

devpath device ID string for use in messages (e.g., /port/⋯)
route tree topology hex string for use with xHCI

state device state: configured, not attached, etc.

speed device speed: high/full/low (or error)

rx_lanes number of rx lanes in use, USB 3.2 adds dual-lane support

tx_lanes number of tx lanes in use, USB 3.2 adds dual-lane support

tt Transaction Translator info; used with low/full speed dev, highspeed hub

ttport device port on that tt hub

toggle one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints

parent our hub, unless we’re the root
bus bus we’re part of
ep0 endpoint 0 data (default control pipe)

dev generic device interface

descriptor USB device descriptor

20.1. The Linux-USB Host Side API 533

Linux Driver-api Documentation

bos USB device BOS descriptor set

config all of the device’s configs
actconfig the active configuration

ep_in array of IN endpoints

ep_out array of OUT endpoints

rawdescriptors raw descriptors for each config

bus_mA Current available from the bus

portnum parent port number (origin 1)

level number of USB hub ancestors

devaddr device address, XHCI: assigned by HW, others: same as devnum

can_submit URBs may be submitted

persist_enabled USB_PERSIST enabled for this device

have_langid whether string_langid is valid

authorized policy has said we can use it; (user space) policy determines if we
authorize this device to be used or not. By default, wired USB devices are
authorized. WUSB devices are not, until we authorize them from user space.
FIXME – complete doc

authenticated Crypto authentication passed

wusb device is Wireless USB

lpm_capable device supports LPM

usb2_hw_lpm_capable device can perform USB2 hardware LPM

usb2_hw_lpm_besl_capable device can perform USB2 hardware BESL LPM

usb2_hw_lpm_enabled USB2 hardware LPM is enabled

usb2_hw_lpm_allowed Userspace allows USB 2.0 LPM to be enabled

usb3_lpm_u1_enabled USB3 hardware U1 LPM enabled

usb3_lpm_u2_enabled USB3 hardware U2 LPM enabled

string_langid language ID for strings

product iProduct string, if present (static)

manufacturer iManufacturer string, if present (static)

serial iSerialNumber string, if present (static)

filelist usbfs files that are open to this device

maxchild number of ports if hub

quirks quirks of the whole device

urbnum number of URBs submitted for the whole device

active_duration total time device is not suspended

534 Chapter 20. Linux USB API

Linux Driver-api Documentation

connect_time time device was first connected

do_remote_wakeup remote wakeup should be enabled

reset_resume needs reset instead of resume

port_is_suspended the upstream port is suspended (L2 or U3)

wusb_dev if this is a Wireless USB device, link to the WUSB specific data for the
device.

slot_id Slot ID assigned by xHCI

removable Device can be physically removed from this port

l1_params best effor service latency for USB2 L1 LPM state, and L1 timeout.

u1_params exit latencies for USB3 U1 LPM state, and hub-initiated timeout.

u2_params exit latencies for USB3 U2 LPM state, and hub-initiated timeout.

lpm_disable_count Ref count used by usb_disable_lpm() and usb_enable_lpm()
to keep track of the number of functions that require USB 3.0 Link Power
Management to be disabled for this usb_device. This count should only be
manipulated by those functions, with the bandwidth_mutex is held.

hub_delay cached value consisting of: parent->hub_delay + wHubDelay + tTP-
TransmissionDelay (40ns)

Will be used as wValue for SetIsochDelay requests.

Notes
Usbcore drivers should not set usbdev->state directly. Instead use
usb_set_device_state().

usb_hub_for_each_child(hdev, port1, child)
iterate over all child devices on the hub

Parameters
hdev USB device belonging to the usb hub

port1 portnum associated with child device

child child device pointer

int usb_interface_claimed(struct usb_interface * iface)
returns true iff an interface is claimed

Parameters
struct usb_interface * iface the interface being checked

Return
true (nonzero) iff the interface is claimed, else false (zero).

Note
Callers must own the driver model’s usb bus readlock. So driver probe() entries
don’t need extra locking, but other call contexts may need to explicitly claim that
lock.

20.1. The Linux-USB Host Side API 535

Linux Driver-api Documentation

int usb_make_path(struct usb_device * dev, char * buf, size_t size)
returns stable device path in the usb tree

Parameters
struct usb_device * dev the device whose path is being constructed

char * buf where to put the string

size_t size how big is “buf”?
Return
Length of the string (> 0) or negative if size was too small.

Note
This identifier is intended to be “stable”, reflecting physical paths in hardware
such as physical bus addresses for host controllers or ports on USB hubs. That
makes it stay the same until systems are physically reconfigured, by re-cabling
a tree of USB devices or by moving USB host controllers. Adding and removing
devices, including virtual root hubs in host controller driver modules, does not
change these path identifiers; neither does rebooting or re-enumerating. These
are more useful identifiers than changeable (“unstable”) ones like bus numbers
or device addresses.

Description
With a partial exception for devices connected to USB 2.0 root hubs, these identi-
fiers are also predictable. So long as the device tree isn’t changed, plugging any
USB device into a given hub port always gives it the same path. Because of the
use of“companion”controllers, devices connected to ports on USB 2.0 root hubs
(EHCI host controllers) will get one path ID if they are high speed, and a different
one if they are full or low speed.

USB_DEVICE(vend, prod)
macro used to describe a specific usb device

Parameters
vend the 16 bit USB Vendor ID

prod the 16 bit USB Product ID

Description
This macro is used to create a struct usb_device_id that matches a specific device.

USB_DEVICE_VER(vend, prod, lo, hi)
describe a specific usb device with a version range

Parameters
vend the 16 bit USB Vendor ID

prod the 16 bit USB Product ID

lo the bcdDevice_lo value

hi the bcdDevice_hi value

536 Chapter 20. Linux USB API

Linux Driver-api Documentation

Description
This macro is used to create a struct usb_device_id that matches a specific device,
with a version range.

USB_DEVICE_INTERFACE_CLASS(vend, prod, cl)
describe a usb device with a specific interface class

Parameters
vend the 16 bit USB Vendor ID

prod the 16 bit USB Product ID

cl bInterfaceClass value

Description
This macro is used to create a struct usb_device_id that matches a specific inter-
face class of devices.

USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr)
describe a usb device with a specific interface protocol

Parameters
vend the 16 bit USB Vendor ID

prod the 16 bit USB Product ID

pr bInterfaceProtocol value

Description
This macro is used to create a struct usb_device_id that matches a specific inter-
face protocol of devices.

USB_DEVICE_INTERFACE_NUMBER(vend, prod, num)
describe a usb device with a specific interface number

Parameters
vend the 16 bit USB Vendor ID

prod the 16 bit USB Product ID

num bInterfaceNumber value

Description
This macro is used to create a struct usb_device_id that matches a specific inter-
face number of devices.

USB_DEVICE_INFO(cl, sc, pr)
macro used to describe a class of usb devices

Parameters
cl bDeviceClass value

sc bDeviceSubClass value

pr bDeviceProtocol value

20.1. The Linux-USB Host Side API 537

Linux Driver-api Documentation

Description
This macro is used to create a struct usb_device_id that matches a specific class
of devices.

USB_INTERFACE_INFO(cl, sc, pr)
macro used to describe a class of usb interfaces

Parameters
cl bInterfaceClass value

sc bInterfaceSubClass value

pr bInterfaceProtocol value

Description
This macro is used to create a struct usb_device_id that matches a specific class
of interfaces.

USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr)
describe a specific usb device with a class of usb interfaces

Parameters
vend the 16 bit USB Vendor ID

prod the 16 bit USB Product ID

cl bInterfaceClass value

sc bInterfaceSubClass value

pr bInterfaceProtocol value

Description
This macro is used to create a struct usb_device_id that matches a specific device
with a specific class of interfaces.

This is especially useful when explicitly matching devices that have vendor specific
bDeviceClass values, but standards-compliant interfaces.

USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr)
describe a specific usb vendor with a class of usb interfaces

Parameters
vend the 16 bit USB Vendor ID

cl bInterfaceClass value

sc bInterfaceSubClass value

pr bInterfaceProtocol value

Description
This macro is used to create a struct usb_device_id that matches a specific vendor
with a specific class of interfaces.

This is especially useful when explicitly matching devices that have vendor specific
bDeviceClass values, but standards-compliant interfaces.

538 Chapter 20. Linux USB API

Linux Driver-api Documentation

struct usbdrv_wrap
wrapper for driver-model structure

Definition

struct usbdrv_wrap {
struct device_driver driver;
int for_devices;

};

Members
driver The driver-model core driver structure.

for_devices Non-zero for device drivers, 0 for interface drivers.

struct usb_driver
identifies USB interface driver to usbcore

Definition

struct usb_driver {
const char *name;
int (*probe) (struct usb_interface *intf, const struct usb_device_id␣

↪→*id);
void (*disconnect) (struct usb_interface *intf);
int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,␣

↪→void *buf);
int (*suspend) (struct usb_interface *intf, pm_message_t message);
int (*resume) (struct usb_interface *intf);
int (*reset_resume)(struct usb_interface *intf);
int (*pre_reset)(struct usb_interface *intf);
int (*post_reset)(struct usb_interface *intf);
const struct usb_device_id *id_table;
const struct attribute_group **dev_groups;
struct usb_dynids dynids;
struct usbdrv_wrap drvwrap;
unsigned int no_dynamic_id:1;
unsigned int supports_autosuspend:1;
unsigned int disable_hub_initiated_lpm:1;
unsigned int soft_unbind:1;

};

Members
name The driver name should be unique among USB drivers, and should normally

be the same as the module name.

probe Called to see if the driver is willing to manage a particular interface on
a device. If it is, probe returns zero and uses usb_set_intfdata() to associate
driver-specific data with the interface. It may also use usb_set_interface()
to specify the appropriate altsetting. If unwilling to manage the interface, re-
turn -ENODEV, if genuine IO errors occurred, an appropriate negative errno
value.

disconnect Called when the interface is no longer accessible, usually because
its device has been (or is being) disconnected or the driver module is being
unloaded.

20.1. The Linux-USB Host Side API 539

Linux Driver-api Documentation

unlocked_ioctl Used for drivers that want to talk to userspace through the“us-
bfs”filesystem. This lets devices provide ways to expose information to user
space regardless of where they do (or don’t) show up otherwise in the filesys-
tem.

suspend Called when the device is going to be suspended by the system either
from system sleep or runtime suspend context. The return value will be ig-
nored in system sleep context, so do NOT try to continue using the device if
suspend fails in this case. Instead, let the resume or reset-resume routine
recover from the failure.

resume Called when the device is being resumed by the system.

reset_resume Called when the suspended device has been reset instead of being
resumed.

pre_reset Called by usb_reset_device() when the device is about to be reset.
This routinemust not return until the driver has no active URBs for the device,
and no more URBs may be submitted until the post_reset method is called.

post_reset Called by usb_reset_device() after the device has been reset

id_table USB drivers use ID table to support hotplugging. Export this with MOD-
ULE_DEVICE_TABLE(usb,⋯). Thismust be set or your driver’s probe function
will never get called.

dev_groups Attributes attached to the device that will be created once it is bound
to the driver.

dynids used internally to hold the list of dynamically added device ids for this
driver.

drvwrap Driver-model core structure wrapper.

no_dynamic_id if set to 1, the USB core will not allow dynamic ids to be added to
this driver by preventing the sysfs file from being created.

supports_autosuspend if set to 0, the USB core will not allow autosuspend for
interfaces bound to this driver.

disable_hub_initiated_lpm if set to 1, the USB core will not allow hubs to ini-
tiate lower power link state transitions when an idle timeout occurs. Device-
initiated USB 3.0 link PM will still be allowed.

soft_unbind if set to 1, the USB core will not kill URBs and disable endpoints
before calling the driver’s disconnect method.

Description
USB interface drivers must provide a name, probe() and disconnect() methods,
and an id_table. Other driver fields are optional.

The id_table is used in hotplugging. It holds a set of descriptors, and specialized
data may be associated with each entry. That table is used by both user and kernel
mode hotplugging support.

The probe() and disconnect() methods are called in a context where they can sleep,
but they should avoid abusing the privilege. Most work to connect to a device
should be done when the device is opened, and undone at the last close. The
disconnect code needs to address concurrency issues with respect to open() and

540 Chapter 20. Linux USB API

Linux Driver-api Documentation

close() methods, as well as forcing all pending I/O requests to complete (by un-
linking them as necessary, and blocking until the unlinks complete).

struct usb_device_driver
identifies USB device driver to usbcore

Definition

struct usb_device_driver {
const char *name;
bool (*match) (struct usb_device *udev);
int (*probe) (struct usb_device *udev);
void (*disconnect) (struct usb_device *udev);
int (*suspend) (struct usb_device *udev, pm_message_t message);
int (*resume) (struct usb_device *udev, pm_message_t message);
const struct attribute_group **dev_groups;
struct usbdrv_wrap drvwrap;
const struct usb_device_id *id_table;
unsigned int supports_autosuspend:1;
unsigned int generic_subclass:1;

};

Members
name The driver name should be unique among USB drivers, and should normally

be the same as the module name.

probe Called to see if the driver is willing to manage a particular device. If it
is, probe returns zero and uses dev_set_drvdata() to associate driver-specific
data with the device. If unwilling to manage the device, return a negative
errno value.

disconnect Called when the device is no longer accessible, usually because it has
been (or is being) disconnected or the driver’s module is being unloaded.

suspend Called when the device is going to be suspended by the system.

resume Called when the device is being resumed by the system.

dev_groups Attributes attached to the device that will be created once it is bound
to the driver.

drvwrap Driver-model core structure wrapper.

supports_autosuspend if set to 0, the USB core will not allow autosuspend for
devices bound to this driver.

generic_subclass if set to 1, the generic USB driver’s probe, disconnect, resume
and suspend functions will be called in addition to the driver’s own, so this
part of the setup does not need to be replicated.

Description
USB drivers must provide all the fields listed above except drvwrap.

struct usb_class_driver
identifies a USB driver that wants to use the USB major number

Definition

20.1. The Linux-USB Host Side API 541

Linux Driver-api Documentation

struct usb_class_driver {
char *name;
char *(*devnode)(struct device *dev, umode_t *mode);
const struct file_operations *fops;
int minor_base;

};

Members
name the usb class device name for this driver. Will show up in sysfs.

devnode Callback to provide a naming hint for a possible device node to create.

fops pointer to the struct file_operations of this driver.

minor_base the start of the minor range for this driver.

Description
This structure is used for the usb_register_dev() and usb_deregister_dev()
functions, to consolidate a number of the parameters used for them.

module_usb_driver(__usb_driver)
Helper macro for registering a USB driver

Parameters
__usb_driver usb_driver struct

Description
Helper macro for USB drivers which do not do anything special in module init/exit.
This eliminates a lot of boilerplate. Each module may only use this macro once,
and calling it replaces module_init() and module_exit()

struct urb
USB Request Block

Definition

struct urb {
struct list_head urb_list;
struct list_head anchor_list;
struct usb_anchor *anchor;
struct usb_device *dev;
struct usb_host_endpoint *ep;
unsigned int pipe;
unsigned int stream_id;
int status;
unsigned int transfer_flags;
void *transfer_buffer;
dma_addr_t transfer_dma;
struct scatterlist *sg;
int num_mapped_sgs;
int num_sgs;
u32 transfer_buffer_length;
u32 actual_length;
unsigned char *setup_packet;
dma_addr_t setup_dma;
int start_frame;

(continues on next page)

542 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
int number_of_packets;
int interval;
int error_count;
void *context;
usb_complete_t complete;
struct usb_iso_packet_descriptor iso_frame_desc[];

};

Members
urb_list For use by current owner of the URB.

anchor_list membership in the list of an anchor

anchor to anchor URBs to a common mooring

dev Identifies the USB device to perform the request.

ep Points to the endpoint’s data structure. Will eventually replace pipe.
pipe Holds endpoint number, direction, type, and more. Create these values with

the eight macros available; usb_{snd,rcv}TYPEpipe(dev,endpoint), where the
TYPE is“ctrl”(control),“bulk”,“int”(interrupt), or“iso”(isochronous).
For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint numbers range
from zero to fifteen. Note that “in”endpoint two is a different endpoint
(and pipe) from “out”endpoint two. The current configuration controls the
existence, type, and maximum packet size of any given endpoint.

stream_id the endpoint’s stream ID for bulk streams

status This is read in non-iso completion functions to get the status of the partic-
ular request. ISO requests only use it to tell whether the URB was unlinked;
detailed status for each frame is in the fields of the iso_frame-desc.

transfer_flags A variety of flags may be used to affect how URB submission,
unlinking, or operation are handled. Different kinds of URB can use different
flags.

transfer_buffer This identifies the buffer to (or from) which the I/O request will
be performed unless URB_NO_TRANSFER_DMA_MAP is set (however, do not
leave garbage in transfer_buffer even then). This buffer must be suitable for
DMA; allocate it with kmalloc() or equivalent. For transfers to“in”endpoints,
contents of this buffer will be modified. This buffer is used for the data stage
of control transfers.

transfer_dma When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, the
device driver is saying that it provided this DMA address, which the host
controller driver should use in preference to the transfer_buffer.

sg scatter gather buffer list, the buffer size of each element in the list (except the
last) must be divisible by the endpoint’s max packet size if no_sg_constraint
isn’t set in ‘struct usb_bus’

num_mapped_sgs (internal) number of mapped sg entries

num_sgs number of entries in the sg list

20.1. The Linux-USB Host Side API 543

Linux Driver-api Documentation

transfer_buffer_length How big is transfer_buffer. The transfer may be bro-
ken up into chunks according to the current maximum packet size for the
endpoint, which is a function of the configuration and is encoded in the pipe.
When the length is zero, neither transfer_buffer nor transfer_dma is used.

actual_length This is read in non-iso completion functions, and it tells how many
bytes (out of transfer_buffer_length) were transferred. It will normally be the
same as requested, unless either an error was reported or a short read was
performed. The URB_SHORT_NOT_OK transfer flag may be used to make
such short reads be reported as errors.

setup_packet Only used for control transfers, this points to eight bytes of setup
data. Control transfers always start by sending this data to the device. Then
transfer_buffer is read or written, if needed.

setup_dma DMA pointer for the setup packet. The caller must not use this field;
setup_packet must point to a valid buffer.

start_frame Returns the initial frame for isochronous transfers.

number_of_packets Lists the number of ISO transfer buffers.

interval Specifies the polling interval for interrupt or isochronous transfers.
The units are frames (milliseconds) for full and low speed devices, and mi-
croframes (1/8 millisecond) for highspeed and SuperSpeed devices.

error_count Returns the number of ISO transfers that reported errors.

context For use in completion functions. This normally points to request-specific
driver context.

complete Completion handler. This URB is passed as the parameter to the com-
pletion function. The completion function may then do what it likes with the
URB, including resubmitting or freeing it.

iso_frame_desc Used to provide arrays of ISO transfer buffers and to collect the
transfer status for each buffer.

Description
This structure identifies USB transfer requests. URBs must be allocated by
calling usb_alloc_urb() and freed with a call to usb_free_urb(). Initial-
ization may be done using various usb_fill_*_urb() functions. URBs are sub-
mitted using usb_submit_urb(), and pending requests may be canceled using
usb_unlink_urb() or usb_kill_urb().

Data Transfer Buffers:

Normally drivers provide I/O buffers allocated with kmalloc() or otherwise taken
from the general page pool. That is provided by transfer_buffer (control requests
also use setup_packet), and host controller drivers perform a dma mapping (and
unmapping) for each buffer transferred. Those mapping operations can be ex-
pensive on some platforms (perhaps using a dma bounce buffer or talking to an
IOMMU), although they’re cheap on commodity x86 and ppc hardware.
Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
which tells the host controller driver that no such mapping is needed for the trans-
fer_buffer since the device driver is DMA-aware. For example, a device driver
might allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().

544 Chapter 20. Linux USB API

Linux Driver-api Documentation

When this transfer flag is provided, host controller drivers will attempt to use the
dma address found in the transfer_dma field rather than determining a dma ad-
dress themselves.

Note that transfer_buffer must still be set if the controller does not support DMA
(as indicated by hcd_uses_dma()) and when talking to root hub. If you have to
trasfer between highmem zone and the device on such controller, create a bounce
buffer or bail out with an error. If transfer_buffer cannot be set (is in highmem)
and the controller is DMA capable, assign NULL to it, so that usbmon knows not
to use the value. The setup_packet must always be set, so it cannot be located in
highmem.

Initialization:

All URBs submitted must initialize the dev, pipe, transfer_flags (may be zero),
and complete fields. All URBs must also initialize transfer_buffer and trans-
fer_buffer_length. They may provide the URB_SHORT_NOT_OK transfer flag, in-
dicating that short reads are to be treated as errors; that flag is invalid for write
requests.

Bulk URBs may use the URB_ZERO_PACKET transfer flag, indicating that bulk
OUT transfers should always terminate with a short packet, even if it means adding
an extra zero length packet.

Control URBs must provide a valid pointer in the setup_packet field. Unlike the
transfer_buffer, the setup_packet may not be mapped for DMA beforehand.

Interrupt URBs must provide an interval, saying how often (in milliseconds or, for
highspeed devices, 125 microsecond units) to poll for transfers. After the URB has
been submitted, the interval field reflects how the transfer was actually scheduled.
The polling interval may bemore frequent than requested. For example, some con-
trollers have a maximum interval of 32 milliseconds, while others support intervals
of up to 1024 milliseconds. Isochronous URBs also have transfer intervals. (Note
that for isochronous endpoints, as well as high speed interrupt endpoints, the en-
coding of the transfer interval in the endpoint descriptor is logarithmic. Device
drivers must convert that value to linear units themselves.)

If an isochronous endpoint queue isn’t already running, the host controller will
schedule a new URB to start as soon as bandwidth utilization allows. If the queue
is running then a new URB will be scheduled to start in the first transfer slot
following the end of the preceding URB, if that slot has not already expired. If the
slot has expired (which can happen when IRQ delivery is delayed for a long time),
the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag is clear
then the URB will be scheduled to start in the expired slot, implying that some of
its packets will not be transferred; if the flag is set then the URB will be scheduled
in the first unexpired slot, breaking the queue’s synchronization. Upon URB
completion, the start_frame field will be set to the (micro)frame number in which
the transfer was scheduled. Ranges for frame counter values are HC-specific and
can go from as low as 256 to as high as 65536 frames.

Isochronous URBs have a different data transfer model, in part because the quality
of service is only“best effort”. Callers provide specially allocated URBs, with num-
ber_of_packets worth of iso_frame_desc structures at the end. Each such packet is
an individual ISO transfer. Isochronous URBs are normally queued, submitted by
drivers to arrange that transfers are at least double buffered, and then explicitly

20.1. The Linux-USB Host Side API 545

Linux Driver-api Documentation

resubmitted in completion handlers, so that data (such as audio or video) streams
at as constant a rate as the host controller scheduler can support.

Completion Callbacks:

The completion callback is made in_interrupt(), and one of the first things that
a completion handler should do is check the status field. The status field is pro-
vided for all URBs. It is used to report unlinked URBs, and status for all non-ISO
transfers. It should not be examined before the URB is returned to the completion
handler.

The context field is normally used to link URBs back to the relevant driver or
request state.

When the completion callback is invoked for non-isochronous URBs, the ac-
tual_length field tells how many bytes were transferred. This field is updated even
when the URB terminated with an error or was unlinked.

ISO transfer status is reported in the status and actual_length fields of the
iso_frame_desc array, and the number of errors is reported in error_count. Com-
pletion callbacks for ISO transfers will normally (re)submit URBs to ensure a con-
stant transfer rate.

Note that even fields marked “public”should not be touched by the driver when
the urb is owned by the hcd, that is, since the call to usb_submit_urb() till the
entry into the completion routine.

void usb_fill_control_urb(struct urb * urb, struct usb_device * dev, un-
signed int pipe, unsigned char * setup_packet,
void * transfer_buffer, int buffer_length,
usb_complete_t complete_fn, void * context)

initializes a control urb

Parameters
struct urb * urb pointer to the urb to initialize.

struct usb_device * dev pointer to the struct usb_device for this urb.

unsigned int pipe the endpoint pipe

unsigned char * setup_packet pointer to the setup_packet buffer

void * transfer_buffer pointer to the transfer buffer

int buffer_length length of the transfer buffer

usb_complete_t complete_fn pointer to the usb_complete_t function

void * context what to set the urb context to.

Description
Initializes a control urb with the proper information needed to submit it to a device.

void usb_fill_bulk_urb(struct urb * urb, struct usb_device * dev, unsigned
int pipe, void * transfer_buffer, int buffer_length,
usb_complete_t complete_fn, void * context)

macro to help initialize a bulk urb

546 Chapter 20. Linux USB API

Linux Driver-api Documentation

Parameters
struct urb * urb pointer to the urb to initialize.

struct usb_device * dev pointer to the struct usb_device for this urb.

unsigned int pipe the endpoint pipe

void * transfer_buffer pointer to the transfer buffer

int buffer_length length of the transfer buffer

usb_complete_t complete_fn pointer to the usb_complete_t function

void * context what to set the urb context to.

Description
Initializes a bulk urb with the proper information needed to submit it to a device.

void usb_fill_int_urb(struct urb * urb, struct usb_device * dev, unsigned
int pipe, void * transfer_buffer, int buffer_length,
usb_complete_t complete_fn, void * context,
int interval)

macro to help initialize a interrupt urb

Parameters
struct urb * urb pointer to the urb to initialize.

struct usb_device * dev pointer to the struct usb_device for this urb.

unsigned int pipe the endpoint pipe

void * transfer_buffer pointer to the transfer buffer

int buffer_length length of the transfer buffer

usb_complete_t complete_fn pointer to the usb_complete_t function

void * context what to set the urb context to.

int interval what to set the urb interval to, encoded like the endpoint descrip-
tor’s bInterval value.

Description
Initializes a interrupt urb with the proper information needed to submit it to a
device.

Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
encoding of the endpoint interval, and express polling intervals in microframes
(eight per millisecond) rather than in frames (one per millisecond).

Wireless USB also uses the logarithmic encoding, but specifies it in units of 128us
instead of 125us. For Wireless USB devices, the interval is passed through to the
host controller, rather than being translated into microframe units.

int usb_urb_dir_in(struct urb * urb)
check if an URB describes an IN transfer

Parameters
struct urb * urb URB to be checked

20.1. The Linux-USB Host Side API 547

Linux Driver-api Documentation

Return
1 if urb describes an IN transfer (device-to-host), otherwise 0.
int usb_urb_dir_out(struct urb * urb)

check if an URB describes an OUT transfer

Parameters
struct urb * urb URB to be checked

Return
1 if urb describes an OUT transfer (host-to-device), otherwise 0.
struct usb_sg_request

support for scatter/gather I/O

Definition

struct usb_sg_request {
int status;
size_t bytes;

};

Members
status zero indicates success, else negative errno

bytes counts bytes transferred.

Description
These requests are initialized using usb_sg_init(), and then are used as request
handles passed to usb_sg_wait() or usb_sg_cancel(). Most members of the re-
quest object aren’t for driver access.
The status and bytecount values are valid only after usb_sg_wait() returns. If the
status is zero, then the bytecount matches the total from the request.

After an error completion, drivers may need to clear a halt condition on the end-
point.

20.1.5 USB Core APIs

There are two basic I/O models in the USB API. The most elemental one is asyn-
chronous: drivers submit requests in the form of an URB, and the URB’s com-
pletion callback handles the next step. All USB transfer types support that model,
although there are special cases for control URBs (which always have setup and
status stages, but may not have a data stage) and isochronous URBs (which allow
large packets and include per-packet fault reports). Built on top of that is syn-
chronous API support, where a driver calls a routine that allocates one or more
URBs, submits them, and waits until they complete. There are synchronous wrap-
pers for single-buffer control and bulk transfers (which are awkward to use in
some driver disconnect scenarios), and for scatterlist based streaming i/o (bulk or
interrupt).

USB drivers need to provide buffers that can be used for DMA, although they don’
t necessarily need to provide the DMA mapping themselves. There are APIs to

548 Chapter 20. Linux USB API

Linux Driver-api Documentation

use used when allocating DMA buffers, which can prevent use of bounce buffers
on some systems. In some cases, drivers may be able to rely on 64bit DMA to
eliminate another kind of bounce buffer.

void usb_init_urb(struct urb * urb)
initializes a urb so that it can be used by a USB driver

Parameters
struct urb * urb pointer to the urb to initialize

Description
Initializes a urb so that the USB subsystem can use it properly.

If a urb is created with a call to usb_alloc_urb() it is not necessary to call this
function. Only use this if you allocate the space for a struct urb on your own. If
you call this function, be careful when freeing the memory for your urb that it is
no longer in use by the USB core.

Only use this function if you _really_ understand what you are doing.

struct urb * usb_alloc_urb(int iso_packets, gfp_t mem_flags)
creates a new urb for a USB driver to use

Parameters
int iso_packets number of iso packets for this urb

gfp_t mem_flags the type of memory to allocate, see kmalloc() for a list of valid
options for this.

Description
Creates an urb for the USB driver to use, initializes a few internal structures,
increments the usage counter, and returns a pointer to it.

If the driver want to use this urb for interrupt, control, or bulk endpoints, pass‘0’
as the number of iso packets.

The driver must call usb_free_urb() when it is finished with the urb.

Return
A pointer to the new urb, or NULL if no memory is available.

void usb_free_urb(struct urb * urb)
frees the memory used by a urb when all users of it are finished

Parameters
struct urb * urb pointer to the urb to free, may be NULL

Description
Must be called when a user of a urb is finished with it. When the last user of the
urb calls this function, the memory of the urb is freed.

Note
The transfer buffer associated with the urb is not freed unless the
URB_FREE_BUFFER transfer flag is set.

20.1. The Linux-USB Host Side API 549

Linux Driver-api Documentation

struct urb * usb_get_urb(struct urb * urb)
increments the reference count of the urb

Parameters
struct urb * urb pointer to the urb to modify, may be NULL

Description
This must be called whenever a urb is transferred from a device driver to a host
controller driver. This allows proper reference counting to happen for urbs.

Return
A pointer to the urb with the incremented reference counter.

void usb_anchor_urb(struct urb * urb, struct usb_anchor * anchor)
anchors an URB while it is processed

Parameters
struct urb * urb pointer to the urb to anchor

struct usb_anchor * anchor pointer to the anchor

Description
This can be called to have access to URBs which are to be executed without both-
ering to track them

void usb_unanchor_urb(struct urb * urb)
unanchors an URB

Parameters
struct urb * urb pointer to the urb to anchor

Description
Call this to stop the system keeping track of this URB

int usb_urb_ep_type_check(const struct urb * urb)
sanity check of endpoint in the given urb

Parameters
const struct urb * urb urb to be checked

Description
This performs a light-weight sanity check for the endpoint in the given urb. It
returns 0 if the urb contains a valid endpoint, otherwise a negative error code.

int usb_submit_urb(struct urb * urb, gfp_t mem_flags)
issue an asynchronous transfer request for an endpoint

Parameters
struct urb * urb pointer to the urb describing the request

gfp_t mem_flags the type of memory to allocate, see kmalloc() for a list of valid
options for this.

550 Chapter 20. Linux USB API

Linux Driver-api Documentation

Description
This submits a transfer request, and transfers control of the URB describing that
request to the USB subsystem. Request completion will be indicated later, asyn-
chronously, by calling the completion handler. The three types of completion are
success, error, and unlink (a software-induced fault, also called “request cancel-
lation”).
URBs may be submitted in interrupt context.

The caller must have correctly initialized the URB before submitting it. Functions
such as usb_fill_bulk_urb() and usb_fill_control_urb() are available to en-
sure that most fields are correctly initialized, for the particular kind of transfer,
although they will not initialize any transfer flags.

If the submission is successful, the complete() callback from the URB will be called
exactly once, when the USB core and Host Controller Driver (HCD) are finished
with the URB. When the completion function is called, control of the URB is re-
turned to the device driver which issued the request. The completion handler may
then immediately free or reuse that URB.

With few exceptions, USB device drivers should never access URB fields provided
by usbcore or the HCD until its complete() is called. The exceptions relate to
periodic transfer scheduling. For both interrupt and isochronous urbs, as part of
successful URB submission urb->interval is modified to reflect the actual transfer
period used (normally some power of two units). And for isochronous urbs, urb-
>start_frame is modified to reflect when the URB’s transfers were scheduled to
start.

Not all isochronous transfer scheduling policies will work, but most host controller
drivers should easily handle ISO queues going from now until 10-200 msec into the
future. Drivers should try to keep at least one or two msec of data in the queue;
many controllers require that new transfers start at least 1 msec in the future
when they are added. If the driver is unable to keep up and the queue empties
out, the behavior for new submissions is governed by the URB_ISO_ASAP flag. If
the flag is set, or if the queue is idle, then the URB is always assigned to the first
available (and not yet expired) slot in the endpoint’s schedule. If the flag is not
set and the queue is active then the URB is always assigned to the next slot in the
schedule following the end of the endpoint’s previous URB, even if that slot is in
the past. When a packet is assigned in this way to a slot that has already expired,
the packet is not transmitted and the corresponding usb_iso_packet_descriptor’s
status field will return -EXDEV. If this would happen to all the packets in the URB,
submission fails with a -EXDEV error code.

For control endpoints, the synchronous usb_control_msg() call is often used (in
non-interrupt context) instead of this call. That is often used through convenience
wrappers, for the requests that are standardized in the USB 2.0 specification. For
bulk endpoints, a synchronous usb_bulk_msg() call is available.

Request Queuing:

URBs may be submitted to endpoints before previous ones complete, to minimize
the impact of interrupt latencies and system overhead on data throughput. With
that queuing policy, an endpoint’s queue would never be empty. This is required for
continuous isochronous data streams, and may also be required for some kinds of
interrupt transfers. Such queuing also maximizes bandwidth utilization by letting

20.1. The Linux-USB Host Side API 551

Linux Driver-api Documentation

USB controllers start work on later requests before driver software has finished
the completion processing for earlier (successful) requests.

As of Linux 2.6, all USB endpoint transfer queues support depths greater than
one. This was previously a HCD-specific behavior, except for ISO transfers. Non-
isochronous endpoint queues are inactive during cleanup after faults (transfer er-
rors or cancellation).

Reserved Bandwidth Transfers:

Periodic transfers (interrupt or isochronous) are performed repeatedly, using the
interval specified in the urb. Submitting the first urb to the endpoint reserves the
bandwidth necessary to make those transfers. If the USB subsystem can’t allocate
sufficient bandwidth to perform the periodic request, submitting such a periodic
request should fail.

For devices under xHCI, the bandwidth is reserved at configuration time, or when
the alt setting is selected. If there is not enough bus bandwidth, the configura-
tion/alt setting request will fail. Therefore, submissions to periodic endpoints on
devices under xHCI should never fail due to bandwidth constraints.

Device drivers must explicitly request that repetition, by ensuring that some URB
is always on the endpoint’s queue (except possibly for short periods during comple-
tion callbacks). When there is no longer an urb queued, the endpoint’s bandwidth
reservation is canceled. This means drivers can use their completion handlers to
ensure they keep bandwidth they need, by reinitializing and resubmitting the just-
completed urb until the driver longer needs that periodic bandwidth.

Memory Flags:

The general rules for how to decide which mem_flags to use are the same as
for kmalloc. There are four different possible values; GFP_KERNEL, GFP_NOFS,
GFP_NOIO and GFP_ATOMIC.

GFP_NOFS is not ever used, as it has not been implemented yet.

GFP_ATOMIC is used when
(a) you are inside a completion handler, an interrupt, bottom half, tasklet or

timer, or

(b) you are holding a spinlock or rwlock (does not apply to semaphores), or

(c) current->state != TASK_RUNNING, this is the case only after you’ve
changed it.

GFP_NOIO is used in the block io path and error handling of storage devices.

All other situations use GFP_KERNEL.

Some more specific rules for mem_flags can be inferred, such as
(1) start_xmit, timeout, and receive methods of network drivers must use

GFP_ATOMIC (they are called with a spinlock held);

(2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
called with a spinlock held);

(3) If you use a kernel thread with a network driver you must use GFP_NOIO,
unless (b) or (c) apply;

552 Chapter 20. Linux USB API

Linux Driver-api Documentation

(4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
apply or your are in a storage driver’s block io path;

(5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply;
and

(6) changing firmware on a running storage or net device uses GFP_NOIO,
unless b) or c) apply

Return
0 on successful submissions. A negative error number otherwise.

int usb_unlink_urb(struct urb * urb)
abort/cancel a transfer request for an endpoint

Parameters
struct urb * urb pointer to urb describing a previously submitted request, may

be NULL

Description
This routine cancels an in-progress request. URBs complete only once per sub-
mission, and may be canceled only once per submission. Successful cancellation
means termination of urb will be expedited and the completion handler will be
called with a status code indicating that the request has been canceled (rather
than any other code).

Drivers should not call this routine or related routines, such as usb_kill_urb() or
usb_unlink_anchored_urbs(), after their disconnect method has returned. The
disconnect function should synchronize with a driver’s I/O routines to insure that
all URB-related activity has completed before it returns.

This request is asynchronous, however the HCD might call the ->complete() call-
back during unlink. Therefore when drivers call usb_unlink_urb(), they must
not hold any locks that may be taken by the completion function. Success is indi-
cated by returning -EINPROGRESS, at which time the URB will probably not yet
have been given back to the device driver. When it is eventually called, the com-
pletion function will see urb->status == -ECONNRESET. Failure is indicated by
usb_unlink_urb() returning any other value. Unlinking will fail when urb is not
currently “linked”(i.e., it was never submitted, or it was unlinked before, or the
hardware is already finished with it), even if the completion handler has not yet
run.

The URB must not be deallocated while this routine is running. In particular,
when a driver calls this routine, it must insure that the completion handler cannot
deallocate the URB.

Unlinking and Endpoint Queues:

[The behaviors and guarantees described below do not apply to virtual root hubs
but only to endpoint queues for physical USB devices.]

Host Controller Drivers (HCDs) place all the URBs for a particular endpoint in a
queue. Normally the queue advances as the controller hardware processes each
request. But when an URB terminates with an error its queue generally stops (see
below), at least until that URB’s completion routine returns. It is guaranteed
that a stopped queue will not restart until all its unlinked URBs have been fully

20.1. The Linux-USB Host Side API 553

Linux Driver-api Documentation

retired, with their completion routines run, even if that’s not until some time after
the original completion handler returns. The same behavior and guarantee apply
when an URB terminates because it was unlinked.

Bulk and interrupt endpoint queues are guaranteed to stop whenever an URB
terminates with any sort of error, including -ECONNRESET, -ENOENT, and -
EREMOTEIO. Control endpoint queues behave the same way except that they are
not guaranteed to stop for -EREMOTEIO errors. Queues for isochronous endpoints
are treated differently, because they must advance at fixed rates. Such queues do
not stop when an URB encounters an error or is unlinked. An unlinked isochronous
URB may leave a gap in the stream of packets; it is undefined whether such gaps
can be filled in.

Note that early termination of an URB because a short packet was received will
generate a -EREMOTEIO error if and only if the URB_SHORT_NOT_OK flag is set.
By setting this flag, USB device drivers can build deep queues for large or complex
bulk transfers and clean them up reliably after any sort of aborted transfer by
unlinking all pending URBs at the first fault.

When a control URB terminates with an error other than -EREMOTEIO, it is quite
likely that the status stage of the transfer will not take place.

Return
-EINPROGRESS on success. See description for other values on failure.

void usb_kill_urb(struct urb * urb)
cancel a transfer request and wait for it to finish

Parameters
struct urb * urb pointer to URB describing a previously submitted request,

may be NULL

Description
This routine cancels an in-progress request. It is guaranteed that upon return all
completion handlers will have finished and the URB will be totally idle and avail-
able for reuse. These features make this an ideal way to stop I/O in a disconnect()
callback or close() function. If the request has not already finished or been un-
linked the completion handler will see urb->status == -ENOENT.

While the routine is running, attempts to resubmit the URB will fail with error
-EPERM. Thus even if the URB’s completion handler always tries to resubmit, it
will not succeed and the URB will become idle.

The URB must not be deallocated while this routine is running. In particular,
when a driver calls this routine, it must insure that the completion handler cannot
deallocate the URB.

This routine may not be used in an interrupt context (such as a bottom half or a
completion handler), or when holding a spinlock, or in other situations where the
caller can’t schedule().
This routine should not be called by a driver after its disconnect method has re-
turned.

void usb_poison_urb(struct urb * urb)
reliably kill a transfer and prevent further use of an URB

554 Chapter 20. Linux USB API

Linux Driver-api Documentation

Parameters
struct urb * urb pointer to URB describing a previously submitted request,

may be NULL

Description
This routine cancels an in-progress request. It is guaranteed that upon return all
completion handlers will have finished and the URB will be totally idle and cannot
be reused. These features make this an ideal way to stop I/O in a disconnect()
callback. If the request has not already finished or been unlinked the completion
handler will see urb->status == -ENOENT.

After and while the routine runs, attempts to resubmit the URB will fail with error
-EPERM. Thus even if the URB’s completion handler always tries to resubmit, it
will not succeed and the URB will become idle.

The URB must not be deallocated while this routine is running. In particular,
when a driver calls this routine, it must insure that the completion handler cannot
deallocate the URB.

This routine may not be used in an interrupt context (such as a bottom half or a
completion handler), or when holding a spinlock, or in other situations where the
caller can’t schedule().
This routine should not be called by a driver after its disconnect method has re-
turned.

void usb_block_urb(struct urb * urb)
reliably prevent further use of an URB

Parameters
struct urb * urb pointer to URB to be blocked, may be NULL

Description
After the routine has run, attempts to resubmit the URB will fail with error -
EPERM. Thus even if the URB’s completion handler always tries to resubmit,
it will not succeed and the URB will become idle.

The URB must not be deallocated while this routine is running. In particular,
when a driver calls this routine, it must insure that the completion handler cannot
deallocate the URB.

void usb_kill_anchored_urbs(struct usb_anchor * anchor)
cancel transfer requests en masse

Parameters
struct usb_anchor * anchor anchor the requests are bound to

Description
this allows all outstanding URBs to be killed starting from the back of the queue

This routine should not be called by a driver after its disconnect method has re-
turned.

void usb_poison_anchored_urbs(struct usb_anchor * anchor)
cease all traffic from an anchor

20.1. The Linux-USB Host Side API 555

Linux Driver-api Documentation

Parameters
struct usb_anchor * anchor anchor the requests are bound to

Description
this allows all outstanding URBs to be poisoned starting from the back of the
queue. Newly added URBs will also be poisoned

This routine should not be called by a driver after its disconnect method has re-
turned.

void usb_unpoison_anchored_urbs(struct usb_anchor * anchor)
let an anchor be used successfully again

Parameters
struct usb_anchor * anchor anchor the requests are bound to

Description
Reverses the effect of usb_poison_anchored_urbs the anchor can be used normally
after it returns

void usb_unlink_anchored_urbs(struct usb_anchor * anchor)
asynchronously cancel transfer requests en masse

Parameters
struct usb_anchor * anchor anchor the requests are bound to

Description
this allows all outstanding URBs to be unlinked starting from the back of the queue.
This function is asynchronous. The unlinking is just triggered. It may happen after
this function has returned.

This routine should not be called by a driver after its disconnect method has re-
turned.

void usb_anchor_suspend_wakeups(struct usb_anchor * anchor)

Parameters
struct usb_anchor * anchor the anchor you want to suspend wakeups on

Description
Call this to stop the last urb being unanchored from waking up any
usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give- back
path to delay waking up until after the completion handler has run.

void usb_anchor_resume_wakeups(struct usb_anchor * anchor)

Parameters
struct usb_anchor * anchor the anchor you want to resume wakeups on

Description
Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and wake
up any current waiters if the anchor is empty.

556 Chapter 20. Linux USB API

Linux Driver-api Documentation

int usb_wait_anchor_empty_timeout(struct usb_anchor * anchor, unsigned
int timeout)

wait for an anchor to be unused

Parameters
struct usb_anchor * anchor the anchor you want to become unused

unsigned int timeout how long you are willing to wait in milliseconds

Description
Call this is you want to be sure all an anchor’s URBs have finished
Return
Non-zero if the anchor became unused. Zero on timeout.

struct urb * usb_get_from_anchor(struct usb_anchor * anchor)
get an anchor’s oldest urb

Parameters
struct usb_anchor * anchor the anchor whose urb you want

Description
This will take the oldest urb from an anchor, unanchor and return it

Return
The oldest urb from anchor, or NULL if anchor has no urbs associated with it.
void usb_scuttle_anchored_urbs(struct usb_anchor * anchor)

unanchor all an anchor’s urbs
Parameters
struct usb_anchor * anchor the anchor whose urbs you want to unanchor

Description
use this to get rid of all an anchor’s urbs
int usb_anchor_empty(struct usb_anchor * anchor)

is an anchor empty

Parameters
struct usb_anchor * anchor the anchor you want to query

Return
1 if the anchor has no urbs associated with it.

int usb_control_msg(struct usb_device * dev, unsigned int pipe,
__u8 request, __u8 requesttype, __u16 value,
__u16 index, void * data, __u16 size, int timeout)

Builds a control urb, sends it off and waits for completion

Parameters
struct usb_device * dev pointer to the usb device to send the message to

unsigned int pipe endpoint “pipe”to send the message to

20.1. The Linux-USB Host Side API 557

Linux Driver-api Documentation

__u8 request USB message request value

__u8 requesttype USB message request type value

__u16 value USB message value

__u16 index USB message index value

void * data pointer to the data to send

__u16 size length in bytes of the data to send

int timeout time in msecs to wait for the message to complete before timing out
(if 0 the wait is forever)

Context
!in_interrupt ()

Description
This function sends a simple control message to a specified endpoint and waits for
the message to complete, or timeout.

Don’t use this function from within an interrupt context. If you need an asyn-
chronous message, or need to send a message from within interrupt context, use
usb_submit_urb(). If a thread in your driver uses this call, make sure your dis-
connect() method can wait for it to complete. Since you don’t have a handle on
the URB used, you can’t cancel the request.
Return
If successful, the number of bytes transferred. Otherwise, a negative error num-
ber.

int usb_interrupt_msg(struct usb_device * usb_dev, unsigned int pipe, void
* data, int len, int * actual_length, int timeout)

Builds an interrupt urb, sends it off and waits for completion

Parameters
struct usb_device * usb_dev pointer to the usb device to send the message to

unsigned int pipe endpoint “pipe”to send the message to
void * data pointer to the data to send

int len length in bytes of the data to send

int * actual_length pointer to a location to put the actual length transferred in
bytes

int timeout time in msecs to wait for the message to complete before timing out
(if 0 the wait is forever)

Context
!in_interrupt ()

Description
This function sends a simple interrupt message to a specified endpoint and waits
for the message to complete, or timeout.

558 Chapter 20. Linux USB API

Linux Driver-api Documentation

Don’t use this function from within an interrupt context. If you need an asyn-
chronous message, or need to send a message from within interrupt context, use
usb_submit_urb() If a thread in your driver uses this call, make sure your discon-
nect() method can wait for it to complete. Since you don’t have a handle on the
URB used, you can’t cancel the request.
Return
If successful, 0. Otherwise a negative error number. The number of actual bytes
transferred will be stored in the actual_length parameter.
int usb_bulk_msg(struct usb_device * usb_dev, unsigned int pipe, void

* data, int len, int * actual_length, int timeout)
Builds a bulk urb, sends it off and waits for completion

Parameters
struct usb_device * usb_dev pointer to the usb device to send the message to

unsigned int pipe endpoint “pipe”to send the message to
void * data pointer to the data to send

int len length in bytes of the data to send

int * actual_length pointer to a location to put the actual length transferred in
bytes

int timeout time in msecs to wait for the message to complete before timing out
(if 0 the wait is forever)

Context
!in_interrupt ()

Description
This function sends a simple bulk message to a specified endpoint and waits for
the message to complete, or timeout.

Don’t use this function from within an interrupt context. If you need an asyn-
chronous message, or need to send a message from within interrupt context, use
usb_submit_urb() If a thread in your driver uses this call, make sure your discon-
nect() method can wait for it to complete. Since you don’t have a handle on the
URB used, you can’t cancel the request.
Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
users are forced to abuse this routine by using it to submit URBs for interrupt
endpoints. We will take the liberty of creating an interrupt URB (with the default
interval) if the target is an interrupt endpoint.

Return
If successful, 0. Otherwise a negative error number. The number of actual bytes
transferred will be stored in the actual_length parameter.
int usb_sg_init(struct usb_sg_request * io, struct usb_device * dev, un-

signed pipe, unsigned period, struct scatterlist * sg,
int nents, size_t length, gfp_t mem_flags)

initializes scatterlist-based bulk/interrupt I/O request

20.1. The Linux-USB Host Side API 559

Linux Driver-api Documentation

Parameters
struct usb_sg_request * io request block being initialized. until

usb_sg_wait() returns, treat this as a pointer to an opaque block of
memory,

struct usb_device * dev the usb device that will send or receive the data

unsigned pipe endpoint “pipe”used to transfer the data
unsigned period polling rate for interrupt endpoints, in frames or (for high speed

endpoints) microframes; ignored for bulk

struct scatterlist * sg scatterlist entries

int nents how many entries in the scatterlist

size_t length how many bytes to send from the scatterlist, or zero to send every
byte identified in the list.

gfp_t mem_flags SLAB_* flags affecting memory allocations in this call

Description
This initializes a scatter/gather request, allocating resources such as I/O mappings
and urb memory (except maybe memory used by USB controller drivers).

The request must be issued using usb_sg_wait(), which waits for the I/O to
complete (or to be canceled) and then cleans up all resources allocated by
usb_sg_init().

The request may be canceled with usb_sg_cancel(), either before or after
usb_sg_wait() is called.

Return
Zero for success, else a negative errno value.

void usb_sg_wait(struct usb_sg_request * io)
synchronously execute scatter/gather request

Parameters
struct usb_sg_request * io request block handle, as initialized with

usb_sg_init(). some fields become accessible when this call returns.

Context
!in_interrupt ()

Description
This function blocks until the specified I/O operation completes. It leverages the
grouping of the related I/O requests to get good transfer rates, by queueing the
requests. At higher speeds, such queuing can significantly improve USB through-
put.

There are three kinds of completion for this function.

(1) success, where io->status is zero. The number of io->bytes transferred is as
requested.

560 Chapter 20. Linux USB API

Linux Driver-api Documentation

(2) error, where io->status is a negative errno value. The number of io->bytes
transferred before the error is usually less than requested, and can be
nonzero.

(3) cancellation, a type of error with status -ECONNRESET that is initiated by
usb_sg_cancel().

When this function returns, all memory allocated through usb_sg_init() or this
call will have been freed. The request block parameter may still be passed to
usb_sg_cancel(), or it may be freed. It could also be reinitialized and then reused.

Data Transfer Rates:

Bulk transfers are valid for full or high speed endpoints. The best full speed data
rate is 19 packets of 64 bytes each per frame, or 1216 bytes per millisecond. The
best high speed data rate is 13 packets of 512 bytes each per microframe, or 52
KBytes per millisecond.

The reason to use interrupt transfers through this API would most likely be to
reserve high speed bandwidth, where up to 24 KBytes per millisecond could be
transferred. That capability is less useful for low or full speed interrupt endpoints,
which allow at most one packet per millisecond, of at most 8 or 64 bytes (respec-
tively).

It is not necessary to call this function to reserve bandwidth for devices under
an xHCI host controller, as the bandwidth is reserved when the configuration or
interface alt setting is selected.

void usb_sg_cancel(struct usb_sg_request * io)
stop scatter/gather i/o issued by usb_sg_wait()

Parameters
struct usb_sg_request * io request block, initialized with usb_sg_init()

Description
This stops a request after it has been started by usb_sg_wait(). It can also pre-
vents one initialized by usb_sg_init() from starting, so that call just frees re-
sources allocated to the request.

int usb_get_descriptor(struct usb_device * dev, unsigned char type, un-
signed char index, void * buf, int size)

issues a generic GET_DESCRIPTOR request

Parameters
struct usb_device * dev the device whose descriptor is being retrieved

unsigned char type the descriptor type (USB_DT_*)

unsigned char index the number of the descriptor

void * buf where to put the descriptor

int size how big is “buf”?
Context
!in_interrupt ()

Description

20.1. The Linux-USB Host Side API 561

Linux Driver-api Documentation

Gets a USB descriptor. Convenience functions exist to simplify getting some types
of descriptors. Use usb_get_string() or usb_string() for USB_DT_STRING. De-
vice (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) are part
of the device structure. In addition to a number of USB-standard descriptors, some
devices also use class-specific or vendor-specific descriptors.

This call is synchronous, and may not be used in an interrupt context.

Return
The number of bytes received on success, or else the status code returned by the
underlying usb_control_msg() call.

int usb_string(struct usb_device * dev, int index, char * buf, size_t size)
returns UTF-8 version of a string descriptor

Parameters
struct usb_device * dev the device whose string descriptor is being retrieved

int index the number of the descriptor

char * buf where to put the string

size_t size how big is “buf”?
Context
!in_interrupt ()

Description
This converts the UTF-16LE encoded strings returned by devices, from
usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones that are more
usable in most kernel contexts. Note that this function chooses strings in the first
language supported by the device.

This call is synchronous, and may not be used in an interrupt context.

Return
length of the string (>= 0) or usb_control_msg status (< 0).

int usb_get_status(struct usb_device * dev, int recip, int type, int target,
void * data)

issues a GET_STATUS call

Parameters
struct usb_device * dev the device whose status is being checked

int recip USB_RECIP_*; for device, interface, or endpoint

int type USB_STATUS_TYPE_*; for standard or PTM status types

int target zero (for device), else interface or endpoint number

void * data pointer to two bytes of bitmap data

Context
!in_interrupt ()

Description

562 Chapter 20. Linux USB API

Linux Driver-api Documentation

Returns device, interface, or endpoint status. Normally only of interest to see if
the device is self powered, or has enabled the remote wakeup facility; or whether
a bulk or interrupt endpoint is halted (“stalled”).
Bits in these status bitmaps are set using the SET_FEATURE request, and cleared
using the CLEAR_FEATURE request. The usb_clear_halt() function should be
used to clear halt (“stall”) status.
This call is synchronous, and may not be used in an interrupt context.

Returns 0 and the status value in *data (in host byte order) on success, or else the
status code from the underlying usb_control_msg() call.

int usb_clear_halt(struct usb_device * dev, int pipe)
tells device to clear endpoint halt/stall condition

Parameters
struct usb_device * dev device whose endpoint is halted

int pipe endpoint “pipe”being cleared
Context
!in_interrupt ()

Description
This is used to clear halt conditions for bulk and interrupt endpoints, as reported
by URB completion status. Endpoints that are halted are sometimes referred to as
being “stalled”. Such endpoints are unable to transmit or receive data until the
halt status is cleared. Any URBs queued for such an endpoint should normally be
unlinked by the driver before clearing the halt condition, as described in sections
5.7.5 and 5.8.5 of the USB 2.0 spec.

Note that control and isochronous endpoints don’t halt, although control endpoints
report“protocol stall”(for unsupported requests) using the same status code used
to report a true stall.

This call is synchronous, and may not be used in an interrupt context.

Return
Zero on success, or else the status code returned by the underlying
usb_control_msg() call.

void usb_reset_endpoint(struct usb_device * dev, unsigned int epaddr)
Reset an endpoint’s state.

Parameters
struct usb_device * dev the device whose endpoint is to be reset

unsigned int epaddr the endpoint’s address. Endpoint number for output, end-
point number + USB_DIR_IN for input

Description
Resets any host-side endpoint state such as the toggle bit, sequence number or
current window.

20.1. The Linux-USB Host Side API 563

Linux Driver-api Documentation

int usb_set_interface(struct usb_device * dev, int interface, int alternate)
Makes a particular alternate setting be current

Parameters
struct usb_device * dev the device whose interface is being updated

int interface the interface being updated

int alternate the setting being chosen.

Context
!in_interrupt ()

Description
This is used to enable data transfers on interfaces that may not be enabled by
default. Not all devices support such configurability. Only the driver bound to an
interface may change its setting.

Within any given configuration, each interface may have several alternative set-
tings. These are often used to control levels of bandwidth consumption. For ex-
ample, the default setting for a high speed interrupt endpoint may not send more
than 64 bytes per microframe, while interrupt transfers of up to 3KBytes per mi-
croframe are legal. Also, isochronous endpoints may never be part of an interface’
s default setting. To access such bandwidth, alternate interface settings must be
made current.

Note that in the Linux USB subsystem, bandwidth associated with an endpoint
in a given alternate setting is not reserved until an URB is submitted that needs
that bandwidth. Some other operating systems allocate bandwidth early, when a
configuration is chosen.

xHCI reserves bandwidth and configures the alternate setting in
usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting may be
disabled. Drivers cannot rely on any particular alternate setting being in effect
after a failure.

This call is synchronous, and may not be used in an interrupt context. Also, drivers
must not change altsettings while urbs are scheduled for endpoints in that inter-
face; all such urbs must first be completed (perhaps forced by unlinking).

Return
Zero on success, or else the status code returned by the underlying
usb_control_msg() call.

int usb_reset_configuration(struct usb_device * dev)
lightweight device reset

Parameters
struct usb_device * dev the device whose configuration is being reset

Description
This issues a standard SET_CONFIGURATION request to the device using the cur-
rent configuration. The effect is to reset most USB-related state in the device, in-
cluding interface altsettings (reset to zero), endpoint halts (cleared), and endpoint

564 Chapter 20. Linux USB API

Linux Driver-api Documentation

state (only for bulk and interrupt endpoints). Other usbcore state is unchanged,
including bindings of usb device drivers to interfaces.

Because this affects multiple interfaces, avoid using this with composite
(multi-interface) devices. Instead, the driver for each interface may use
usb_set_interface() on the interfaces it claims. Be careful though; some de-
vices don’t support the SET_INTERFACE request, and others won’t reset all the
interface state (notably endpoint state). Resetting the whole configuration would
affect other drivers’interfaces.
The caller must own the device lock.

Return
Zero on success, else a negative error code.

int usb_driver_set_configuration(struct usb_device * udev, int config)
Provide a way for drivers to change device configurations

Parameters
struct usb_device * udev the device whose configuration is being updated

int config the configuration being chosen.

Context
In process context, must be able to sleep

Description
Device interface drivers are not allowed to change device configurations. This is
because changing configurations will destroy the interface the driver is bound to
and create new ones; it would be like a floppy-disk driver telling the computer to
replace the floppy-disk drive with a tape drive!

Still, in certain specialized circumstances the need may arise. This routine gets
around the normal restrictions by using a work thread to submit the change-config
request.

Return
0 if the request was successfully queued, error code otherwise. The caller has no
way to know whether the queued request will eventually succeed.

int cdc_parse_cdc_header(struct usb_cdc_parsed_header * hdr, struct
usb_interface * intf, u8 * buffer, int buflen)

parse the extra headers present in CDC devices

Parameters
struct usb_cdc_parsed_header * hdr the place to put the results of the parsing

struct usb_interface * intf the interface for which parsing is requested

u8 * buffer pointer to the extra headers to be parsed

int buflen length of the extra headers

Description
This evaluates the extra headers present in CDC devices which bind the interfaces
for data and control and provide details about the capabilities of the device.

20.1. The Linux-USB Host Side API 565

Linux Driver-api Documentation

Return
number of descriptors parsed or -EINVAL if the header is contradictory beyond
salvage

int usb_register_dev(struct usb_interface * intf, struct usb_class_driver
* class_driver)

register a USB device, and ask for a minor number

Parameters
struct usb_interface * intf pointer to the usb_interface that is being regis-

tered

struct usb_class_driver * class_driver pointer to the usb_class_driver for
this device

Description
This should be called by all USB drivers that use the USB major number. If CON-
FIG_USB_DYNAMIC_MINORS is enabled, the minor number will be dynamically
allocated out of the list of available ones. If it is not enabled, the minor num-
ber will be based on the next available free minor, starting at the class_driver-
>minor_base.

This function also creates a usb class device in the sysfs tree.

usb_deregister_dev() must be called when the driver is done with the minor
numbers given out by this function.

Return
-EINVAL if something bad happens with trying to register a device, and 0 on suc-
cess.

void usb_deregister_dev(struct usb_interface * intf, struct usb_class_driver
* class_driver)

deregister a USB device’s dynamic minor.
Parameters
struct usb_interface * intf pointer to the usb_interface that is being dereg-

istered

struct usb_class_driver * class_driver pointer to the usb_class_driver for
this device

Description
Used in conjunction with usb_register_dev(). This function is called when
the USB driver is finished with the minor numbers gotten from a call to
usb_register_dev() (usually when the device is disconnected from the system.)

This function also removes the usb class device from the sysfs tree.

This should be called by all drivers that use the USB major number.

int usb_driver_claim_interface(struct usb_driver * driver, struct
usb_interface * iface, void * priv)

bind a driver to an interface

Parameters

566 Chapter 20. Linux USB API

Linux Driver-api Documentation

struct usb_driver * driver the driver to be bound

struct usb_interface * iface the interface to which it will be bound; must be
in the usb device’s active configuration

void * priv driver data associated with that interface

Description
This is used by usb device drivers that need to claim more than one interface on
a device when probing (audio and acm are current examples). No device driver
should directly modify internal usb_interface or usb_device structure members.

Few drivers should need to use this routine, since the most natural way to bind to
an interface is to return the private data from the driver’s probe() method.
Callers must own the device lock, so driver probe() entries don’t need extra lock-
ing, but other call contexts may need to explicitly claim that lock.

Return
0 on success.

void usb_driver_release_interface(struct usb_driver * driver, struct
usb_interface * iface)

unbind a driver from an interface

Parameters
struct usb_driver * driver the driver to be unbound

struct usb_interface * iface the interface from which it will be unbound

Description
This can be used by drivers to release an interface without waiting for their discon-
nect() methods to be called. In typical cases this also causes the driver disconnect()
method to be called.

This call is synchronous, and may not be used in an interrupt context. Callers must
own the device lock, so driver disconnect() entries don’t need extra locking, but
other call contexts may need to explicitly claim that lock.

const struct usb_device_id * usb_match_id(struct usb_interface * interface,
const struct usb_device_id * id)

find first usb_device_id matching device or interface

Parameters
struct usb_interface * interface the interface of interest

const struct usb_device_id * id array of usb_device_id structures, termi-
nated by zero entry

Description
usb_match_id searches an array of usb_device_id’s and returns the first onematch-
ing the device or interface, or null. This is used when binding (or rebinding) a
driver to an interface. Most USB device drivers will use this indirectly, through
the usb core, but some layered driver frameworks use it directly. These device
tables are exported with MODULE_DEVICE_TABLE, through modutils, to support
the driver loading functionality of USB hotplugging.

20.1. The Linux-USB Host Side API 567

Linux Driver-api Documentation

What Matches:

The“match_flags”element in a usb_device_id controls which members are used.
If the corresponding bit is set, the value in the device_id must match its corre-
sponding member in the device or interface descriptor, or else the device_id does
not match.

“driver_info”is normally used only by device drivers, but you can create a wildcard
“matches anything”usb_device_id as a driver’s “modules.usbmap”entry if you
provide an id with only a nonzero“driver_info”field. If you do this, the USB device
driver’s probe() routine should use additional intelligence to decide whether to
bind to the specified interface.

What Makes Good usb_device_id Tables:

The match algorithm is very simple, so that intelligence in driver selection must
come from smart driver id records. Unless you have good reasons to use another
selection policy, provide match elements only in related groups, and order match
specifiers from specific to general. Use the macros provided for that purpose if
you can.

The most specific match specifiers use device descriptor data. These are com-
monly used with product-specific matches; the USB_DEVICE macro lets you pro-
vide vendor and product IDs, and you can also match against ranges of product
revisions. These are widely used for devices with application or vendor specific
bDeviceClass values.

Matches based on device class/subclass/protocol specifications are slightly more
general; use the USB_DEVICE_INFO macro, or its siblings. These are used with
single-function devices where bDeviceClass doesn’t specify that each interface
has its own class.

Matches based on interface class/subclass/protocol are the most general; they
let drivers bind to any interface on a multiple-function device. Use the
USB_INTERFACE_INFO macro, or its siblings, to match class-per-interface style
devices (as recorded in bInterfaceClass).

Note that an entry created by USB_INTERFACE_INFO won’t match any interface
if the device class is set to Vendor-Specific. This is deliberate; according to the
USB spec the meanings of the interface class/subclass/protocol for these devices
are also vendor-specific, and hence matching against a standard product class
wouldn’t work anyway. If you really want to use an interface-based match for such
a device, create a match record that also specifies the vendor ID. (Unforunately
there isn’t a standard macro for creating records like this.)
Within those groups, remember that not all combinations are meaningful. For
example, don’t give a product version range without vendor and product IDs; or
specify a protocol without its associated class and subclass.

Return
The first matching usb_device_id, or NULL.

int usb_register_device_driver(struct usb_device_driver * new_udriver,
struct module * owner)

register a USB device (not interface) driver

Parameters

568 Chapter 20. Linux USB API

Linux Driver-api Documentation

struct usb_device_driver * new_udriver USB operations for the device
driver

struct module * owner module owner of this driver.

Description
Registers a USB device driver with the USB core. The list of unattached devices
will be rescanned whenever a new driver is added, allowing the new driver to
attach to any recognized devices.

Return
A negative error code on failure and 0 on success.

void usb_deregister_device_driver(struct usb_device_driver * udriver)
unregister a USB device (not interface) driver

Parameters
struct usb_device_driver * udriver USB operations of the device driver to

unregister

Context
must be able to sleep

Description
Unlinks the specified driver from the internal USB driver list.

int usb_register_driver(struct usb_driver * new_driver, struct module
* owner, const char * mod_name)

register a USB interface driver

Parameters
struct usb_driver * new_driver USB operations for the interface driver

struct module * owner module owner of this driver.

const char * mod_name module name string

Description
Registers a USB interface driver with the USB core. The list of unattached inter-
faces will be rescanned whenever a new driver is added, allowing the new driver
to attach to any recognized interfaces.

Return
A negative error code on failure and 0 on success.

NOTE
if you want your driver to use the USB major number, you must call
usb_register_dev() to enable that functionality. This function no longer takes
care of that.

void usb_deregister(struct usb_driver * driver)
unregister a USB interface driver

Parameters

20.1. The Linux-USB Host Side API 569

Linux Driver-api Documentation

struct usb_driver * driver USB operations of the interface driver to unregis-
ter

Context
must be able to sleep

Description
Unlinks the specified driver from the internal USB driver list.

NOTE
If you called usb_register_dev(), you still need to call usb_deregister_dev()
to clean up your driver’s allocated minor numbers, this * call will no longer do it
for you.

void usb_enable_autosuspend(struct usb_device * udev)
allow a USB device to be autosuspended

Parameters
struct usb_device * udev the USB device which may be autosuspended

Description
This routine allows udev to be autosuspended. An autosuspend won’t take place
until the autosuspend_delay has elapsed and all the other necessary conditions are
satisfied.

The caller must hold udev’s device lock.
void usb_disable_autosuspend(struct usb_device * udev)

prevent a USB device from being autosuspended

Parameters
struct usb_device * udev the USB device which may not be autosuspended

Description
This routine prevents udev from being autosuspended and wakes it up if it is al-
ready autosuspended.

The caller must hold udev’s device lock.
void usb_autopm_put_interface(struct usb_interface * intf)

decrement a USB interface’s PM-usage counter
Parameters
struct usb_interface * intf the usb_interface whose counter should be

decremented

Description
This routine should be called by an interface driver when it is finished using intf
and wants to allow it to autosuspend. A typical example would be a character-
device driver when its device file is closed.

The routine decrements intf’s usage counter. When the counter reaches 0, a
delayed autosuspend request for intf’s device is attempted. The attempt may fail
(see autosuspend_check()).

570 Chapter 20. Linux USB API

Linux Driver-api Documentation

This routine can run only in process context.

void usb_autopm_put_interface_async(struct usb_interface * intf)
decrement a USB interface’s PM-usage counter

Parameters
struct usb_interface * intf the usb_interface whose counter should be

decremented

Description
This routine doesmuch the same thing as usb_autopm_put_interface(): It decre-
ments intf’s usage counter and schedules a delayed autosuspend request if the
counter is <= 0. The difference is that it does not perform any synchronization;
callers should hold a private lock and handle all synchronization issues themselves.

Typically a driver would call this routine during an URB’s completion handler, if
no more URBs were pending.

This routine can run in atomic context.

void usb_autopm_put_interface_no_suspend(struct usb_interface * intf)
decrement a USB interface’s PM-usage counter

Parameters
struct usb_interface * intf the usb_interface whose counter should be

decremented

Description
This routine decrements intf’s usage counter but does not carry out an autosus-
pend.

This routine can run in atomic context.

int usb_autopm_get_interface(struct usb_interface * intf)
increment a USB interface’s PM-usage counter

Parameters
struct usb_interface * intf the usb_interface whose counter should be incre-

mented

Description
This routine should be called by an interface driver when it wants to use intf
and needs to guarantee that it is not suspended. In addition, the routine pre-
vents intf from being autosuspended subsequently. (Note that this will not pre-
vent suspend events originating in the PM core.) This prevention will persist un-
til usb_autopm_put_interface() is called or intf is unbound. A typical example
would be a character-device driver when its device file is opened.

intf’s usage counter is incremented to prevent subsequent autosuspends. How-
ever if the autoresume fails then the counter is re-decremented.

This routine can run only in process context.

Return
0 on success.

20.1. The Linux-USB Host Side API 571

Linux Driver-api Documentation

int usb_autopm_get_interface_async(struct usb_interface * intf)
increment a USB interface’s PM-usage counter

Parameters
struct usb_interface * intf the usb_interface whose counter should be incre-

mented

Description
This routine does much the same thing as usb_autopm_get_interface(): It in-
crements intf’s usage counter and queues an autoresume request if the device
is suspended. The differences are that it does not perform any synchronization
(callers should hold a private lock and handle all synchronization issues them-
selves), and it does not autoresume the device directly (it only queues a request).
After a successful call, the device may not yet be resumed.

This routine can run in atomic context.

Return
0 on success. A negative error code otherwise.

void usb_autopm_get_interface_no_resume(struct usb_interface * intf)
increment a USB interface’s PM-usage counter

Parameters
struct usb_interface * intf the usb_interface whose counter should be incre-

mented

Description
This routine increments intf’s usage counter but does not carry out an autoresume.
This routine can run in atomic context.

int usb_find_common_endpoints(struct usb_host_interface * alt, struct
usb_endpoint_descriptor ** bulk_in, struct
usb_endpoint_descriptor ** bulk_out,
struct usb_endpoint_descriptor ** int_in,
struct usb_endpoint_descriptor ** int_out)

• look up common endpoint descriptors

Parameters
struct usb_host_interface * alt alternate setting to search

struct usb_endpoint_descriptor ** bulk_in pointer to descriptor pointer, or
NULL

struct usb_endpoint_descriptor ** bulk_out pointer to descriptor pointer,
or NULL

struct usb_endpoint_descriptor ** int_in pointer to descriptor pointer, or
NULL

struct usb_endpoint_descriptor ** int_out pointer to descriptor pointer, or
NULL

572 Chapter 20. Linux USB API

Linux Driver-api Documentation

Description
Search the alternate setting’s endpoint descriptors for the first bulk-in, bulk-out,
interrupt-in and interrupt-out endpoints and return them in the provided pointers
(unless they are NULL).

If a requested endpoint is not found, the corresponding pointer is set to NULL.

Return
Zero if all requested descriptors were found, or -ENXIO otherwise.

int usb_find_common_endpoints_reverse(struct usb_host_interface * alt,
struct usb_endpoint_descriptor
** bulk_in, struct
usb_endpoint_descriptor
** bulk_out, struct
usb_endpoint_descriptor
** int_in, struct
usb_endpoint_descriptor
** int_out)

• look up common endpoint descriptors

Parameters
struct usb_host_interface * alt alternate setting to search

struct usb_endpoint_descriptor ** bulk_in pointer to descriptor pointer, or
NULL

struct usb_endpoint_descriptor ** bulk_out pointer to descriptor pointer,
or NULL

struct usb_endpoint_descriptor ** int_in pointer to descriptor pointer, or
NULL

struct usb_endpoint_descriptor ** int_out pointer to descriptor pointer, or
NULL

Description
Search the alternate setting’s endpoint descriptors for the last bulk-in, bulk-out,
interrupt-in and interrupt-out endpoints and return them in the provided pointers
(unless they are NULL).

If a requested endpoint is not found, the corresponding pointer is set to NULL.

Return
Zero if all requested descriptors were found, or -ENXIO otherwise.

struct usb_host_interface * usb_find_alt_setting(struct usb_host_config
* config, unsigned
int iface_num, unsigned
int alt_num)

Given a configuration, find the alternate setting for the given interface.

Parameters

20.1. The Linux-USB Host Side API 573

Linux Driver-api Documentation

struct usb_host_config * config the configuration to search (not necessarily
the current config).

unsigned int iface_num interface number to search in

unsigned int alt_num alternate interface setting number to search for.

Description
Search the configuration’s interface cache for the given alt setting.
Return
The alternate setting, if found. NULL otherwise.

struct usb_interface * usb_ifnum_to_if(const struct usb_device * dev, un-
signed ifnum)

get the interface object with a given interface number

Parameters
const struct usb_device * dev the device whose current configuration is con-

sidered

unsigned ifnum the desired interface

Description
This walks the device descriptor for the currently active configuration to find the
interface object with the particular interface number.

Note that configuration descriptors are not required to assign interface numbers
sequentially, so that it would be incorrect to assume that the first interface in that
descriptor corresponds to interface zero. This routine helps device drivers avoid
such mistakes. However, you should make sure that you do the right thing with
any alternate settings available for this interfaces.

Don’t call this function unless you are bound to one of the interfaces on this device
or you have locked the device!

Return
A pointer to the interface that has ifnum as interface number, if found. NULL
otherwise.

struct usb_host_interface * usb_altnum_to_altsetting(const struct
usb_interface
* intf, unsigned
int altnum)

get the altsetting structure with a given alternate setting number.

Parameters
const struct usb_interface * intf the interface containing the altsetting in

question

unsigned int altnum the desired alternate setting number

Description
This searches the altsetting array of the specified interface for an entry with the
correct bAlternateSetting value.

574 Chapter 20. Linux USB API

Linux Driver-api Documentation

Note that altsettings need not be stored sequentially by number, so it would be
incorrect to assume that the first altsetting entry in the array corresponds to alt-
setting zero. This routine helps device drivers avoid such mistakes.

Don’t call this function unless you are bound to the intf interface or you have
locked the device!

Return
A pointer to the entry of the altsetting array of intf that has altnum as the alter-
nate setting number. NULL if not found.

struct usb_interface * usb_find_interface(struct usb_driver * drv,
int minor)

find usb_interface pointer for driver and device

Parameters
struct usb_driver * drv the driver whose current configuration is considered

int minor the minor number of the desired device

Description
This walks the bus device list and returns a pointer to the interface with the match-
ing minor and driver. Note, this only works for devices that share the USB major
number.

Return
A pointer to the interface with the matching major and minor.
int usb_for_each_dev(void * data, int (*fn)(struct usb_device *, void *))

iterate over all USB devices in the system

Parameters
void * data data pointer that will be handed to the callback function

int (*)(struct usb_device *, void *) fn callback function to be called for
each USB device

Description
Iterate over all USB devices and call fn for each, passing it data. If it returns
anything other than 0, we break the iteration prematurely and return that value.

struct usb_device * usb_alloc_dev(struct usb_device * parent, struct
usb_bus * bus, unsigned port1)

usb device constructor (usbcore-internal)

Parameters
struct usb_device * parent hub to which device is connected; null to allocate

a root hub

struct usb_bus * bus bus used to access the device

unsigned port1 one-based index of port; ignored for root hubs

Context
!in_interrupt()

20.1. The Linux-USB Host Side API 575

Linux Driver-api Documentation

Description
Only hub drivers (including virtual root hub drivers for host controllers) should
ever call this.

This call may not be used in a non-sleeping context.

Return
On success, a pointer to the allocated usb device. NULL on failure.

struct usb_device * usb_get_dev(struct usb_device * dev)
increments the reference count of the usb device structure

Parameters
struct usb_device * dev the device being referenced

Description
Each live reference to a device should be refcounted.

Drivers for USB interfaces should normally record such references in their
probe() methods, when they bind to an interface, and release them by calling
usb_put_dev(), in their disconnect() methods.

Return
A pointer to the device with the incremented reference counter.

void usb_put_dev(struct usb_device * dev)
release a use of the usb device structure

Parameters
struct usb_device * dev device that’s been disconnected
Description
Must be called when a user of a device is finished with it. When the last user of
the device calls this function, the memory of the device is freed.

struct usb_interface * usb_get_intf(struct usb_interface * intf)
increments the reference count of the usb interface structure

Parameters
struct usb_interface * intf the interface being referenced

Description
Each live reference to a interface must be refcounted.

Drivers for USB interfaces should normally record such references in their
probe() methods, when they bind to an interface, and release them by calling
usb_put_intf(), in their disconnect() methods.

Return
A pointer to the interface with the incremented reference counter.

void usb_put_intf(struct usb_interface * intf)
release a use of the usb interface structure

Parameters

576 Chapter 20. Linux USB API

Linux Driver-api Documentation

struct usb_interface * intf interface that’s been decremented
Description
Must be called when a user of an interface is finished with it. When the last user
of the interface calls this function, the memory of the interface is freed.

int usb_lock_device_for_reset(struct usb_device * udev, const struct
usb_interface * iface)

cautiously acquire the lock for a usb device structure

Parameters
struct usb_device * udev device that’s being locked
const struct usb_interface * iface interface bound to the driver making the

request (optional)

Description
Attempts to acquire the device lock, but fails if the device is NOTATTACHED or
SUSPENDED, or if iface is specified and the interface is neither BINDING nor
BOUND. Rather than sleeping to wait for the lock, the routine polls repeatedly.
This is to prevent deadlock with disconnect; in some drivers (such as usb-storage)
the disconnect() or suspend() method will block waiting for a device reset to com-
plete.

Return
A negative error code for failure, otherwise 0.

int usb_get_current_frame_number(struct usb_device * dev)
return current bus frame number

Parameters
struct usb_device * dev the device whose bus is being queried

Return
The current frame number for the USB host controller used with the given USB
device. This can be used when scheduling isochronous requests.

Note
Different kinds of host controller have different “scheduling horizons”. While
one type might support scheduling only 32 frames into the future, others could
support scheduling up to 1024 frames into the future.

void * usb_alloc_coherent(struct usb_device * dev, size_t size,
gfp_t mem_flags, dma_addr_t * dma)

allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP

Parameters
struct usb_device * dev device the buffer will be used with

size_t size requested buffer size

gfp_t mem_flags affect whether allocation may block

dma_addr_t * dma used to return DMA address of buffer

20.1. The Linux-USB Host Side API 577

Linux Driver-api Documentation

Return
Either null (indicating no buffer could be allocated), or the cpu-space pointer to a
buffer that may be used to perform DMA to the specified device. Such cpu-space
buffers are returned along with the DMA address (through the pointer provided).

Note
These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags to
avoid behaviors like using“DMA bounce buffers”, or thrashing IOMMU hardware
during URB completion/resubmit. The implementation varies between platforms,
depending on details of how DMA will work to this device. Using these buffers
also eliminates cacheline sharing problems on architectures where CPU caches
are not DMA-coherent. On systems without bus-snooping caches, these buffers
are uncached.

Description
When the buffer is no longer used, free it with usb_free_coherent().

void usb_free_coherent(struct usb_device * dev, size_t size, void * addr,
dma_addr_t dma)

free memory allocated with usb_alloc_coherent()

Parameters
struct usb_device * dev device the buffer was used with

size_t size requested buffer size

void * addr CPU address of buffer

dma_addr_t dma DMA address of buffer

Description
This reclaims an I/O buffer, letting it be reused. The memory must have been
allocated using usb_alloc_coherent(), and the parameters must match those
provided in that allocation request.

int usb_hub_clear_tt_buffer(struct urb * urb)
clear control/bulk TT state in high speed hub

Parameters
struct urb * urb an URB associated with the failed or incomplete split transac-

tion

Description
High speed HCDs use this to tell the hub driver that some split control or bulk
transaction failed in a way that requires clearing internal state of a transaction
translator. This is normally detected (and reported) from interrupt context.

It may not be possible for that hub to handle additional full (or low) speed trans-
actions until that state is fully cleared out.

Return
0 if successful. A negative error code otherwise.

578 Chapter 20. Linux USB API

Linux Driver-api Documentation

void usb_set_device_state(struct usb_device * udev, enum
usb_device_state new_state)

change a device’s current state (usbcore, hcds)
Parameters
struct usb_device * udev pointer to device whose state should be changed

enum usb_device_state new_state new state value to be stored

Description
udev->state is _not_ fully protected by the device lock. Although most tran-
sitions are made only while holding the lock, the state can can change to
USB_STATE_NOTATTACHED at almost any time. This is so that devices can
be marked as disconnected as soon as possible, without having to wait for any
semaphores to be released. As a result, all changes to any device’s state must be
protected by the device_state_lock spinlock.

Once a device has been added to the device tree, all changes to its state should be
made using this routine. The state should _not_ be set directly.

If udev->state is already USB_STATE_NOTATTACHED then no change is
made. Otherwise udev->state is set to new_state, and if new_state is
USB_STATE_NOTATTACHED then all of udev’s descendants’states are also set
to USB_STATE_NOTATTACHED.

void usb_root_hub_lost_power(struct usb_device * rhdev)
called by HCD if the root hub lost Vbus power

Parameters
struct usb_device * rhdev struct usb_device for the root hub

Description
The USB host controller driver calls this function when its root hub is resumed and
Vbus power has been interrupted or the controller has been reset. The routine
marks rhdev as having lost power. When the hub driver is resumed it will take
notice and carry out power-session recovery for all the“USB-PERSIST”-enabled
child devices; the others will be disconnected.

int usb_reset_device(struct usb_device * udev)
warn interface drivers and perform a USB port reset

Parameters
struct usb_device * udev device to reset (not in NOTATTACHED state)

Description
Warns all drivers bound to registered interfaces (using their pre_reset method),
performs the port reset, and then lets the drivers know that the reset is over (using
their post_reset method).

If an interface is currently being probed or disconnected, we assume its driver
knows how to handle resets. For all other interfaces, if the driver doesn’t have
pre_reset and post_reset methods then we attempt to unbind it and rebind after-
ward.

Return

20.1. The Linux-USB Host Side API 579

Linux Driver-api Documentation

The same as for usb_reset_and_verify_device().

Note
The caller must own the device lock. For example, it’s safe to use this
from a driver probe() routine after downloading new firmware. For calls
that might not occur during probe(), drivers should lock the device using
usb_lock_device_for_reset().

void usb_queue_reset_device(struct usb_interface * iface)
Reset a USB device from an atomic context

Parameters
struct usb_interface * iface USB interface belonging to the device to reset

Description
This function can be used to reset a USB device from an atomic context, where
usb_reset_device() won’t work (as it blocks).
Doing a reset via this method is functionally equivalent to calling
usb_reset_device(), except for the fact that it is delayed to a workqueue.
This means that any drivers bound to other interfaces might be unbound, as well
as users from usbfs in user space.

Corner cases:

• Scheduling two resets at the same time from two different drivers attached
to two different interfaces of the same device is possible; depending on how
the driver attached to each interface handles ->pre_reset(), the second reset
might happen or not.

• If the reset is delayed so long that the interface is unbound from its driver,
the reset will be skipped.

• This function can be called during .probe(). It can also be called during .dis-
connect(), but doing so is pointless because the reset will not occur. If you
really want to reset the device during .disconnect(), call usb_reset_device()
directly – but watch out for nested unbinding issues!

struct usb_device * usb_hub_find_child(struct usb_device * hdev,
int port1)

Get the pointer of child device attached to the port which is specified by
port1.

Parameters
struct usb_device * hdev USB device belonging to the usb hub

int port1 port num to indicate which port the child device is attached to.

Description
USB drivers call this function to get hub’s child device pointer.
Return
NULL if input param is invalid and child’s usb_device pointer if non-NULL.

580 Chapter 20. Linux USB API

Linux Driver-api Documentation

20.1.6 Host Controller APIs

These APIs are only for use by host controller drivers, most of which implement
standard register interfaces such as XHCI, EHCI, OHCI, or UHCI. UHCI was one
of the first interfaces, designed by Intel and also used by VIA; it doesn’t do much in
hardware. OHCI was designed later, to have the hardware do more work (bigger
transfers, tracking protocol state, and so on). EHCI was designed with USB 2.0;
its design has features that resemble OHCI (hardware does much more work) as
well as UHCI (some parts of ISO support, TD list processing). XHCI was designed
with USB 3.0. It continues to shift support for functionality into hardware.

There are host controllers other than the “big three”, although most PCI based
controllers (and a few non-PCI based ones) use one of those interfaces. Not all host
controllers use DMA; some use PIO, and there is also a simulator and a virtual host
controller to pipe USB over the network.

The same basic APIs are available to drivers for all those controllers. For historical
reasons they are in two layers: struct usb_bus is a rather thin layer that became
available in the 2.2 kernels, while struct usb_hcd is a more featureful layer that
lets HCDs share common code, to shrink driver size and significantly reduce hcd-
specific behaviors.

long usb_calc_bus_time(int speed, int is_input, int isoc, int bytecount)
approximate periodic transaction time in nanoseconds

Parameters
int speed from dev->speed; USB_SPEED_{LOW,FULL,HIGH}

int is_input true iff the transaction sends data to the host

int isoc true for isochronous transactions, false for interrupt ones

int bytecount how many bytes in the transaction.

Return
Approximate bus time in nanoseconds for a periodic transaction.

Note
See USB 2.0 spec section 5.11.3; only periodic transfers need to be scheduled in
software, this function is only used for such scheduling.

int usb_hcd_link_urb_to_ep(struct usb_hcd * hcd, struct urb * urb)
add an URB to its endpoint queue

Parameters
struct usb_hcd * hcd host controller to which urb was submitted
struct urb * urb URB being submitted

Description
Host controller drivers should call this routine in their enqueue() method. The
HCD’s private spinlock must be held and interrupts must be disabled. The ac-
tions carried out here are required for URB submission, as well as for endpoint
shutdown and for usb_kill_urb.

Return

20.1. The Linux-USB Host Side API 581

Linux Driver-api Documentation

0 for no error, otherwise a negative error code (in which case the enqueue()
method must fail). If no error occurs but enqueue() fails anyway, it must call
usb_hcd_unlink_urb_from_ep() before releasing the private spinlock and return-
ing.

int usb_hcd_check_unlink_urb(struct usb_hcd * hcd, struct urb * urb,
int status)

check whether an URB may be unlinked

Parameters
struct usb_hcd * hcd host controller to which urb was submitted
struct urb * urb URB being checked for unlinkability

int status error code to store in urb if the unlink succeeds
Description
Host controller drivers should call this routine in their dequeue() method. The
HCD’s private spinlock must be held and interrupts must be disabled. The actions
carried out here are required for making sure than an unlink is valid.

Return
0 for no error, otherwise a negative error code (in which case the dequeue() method
must fail). The possible error codes are:

-EIDRM: urb was not submitted or has already completed. The
completion function may not have been called yet.

-EBUSY: urb has already been unlinked.
void usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd, struct urb * urb)

remove an URB from its endpoint queue

Parameters
struct usb_hcd * hcd host controller to which urb was submitted
struct urb * urb URB being unlinked

Description
Host controller drivers should call this routine before calling
usb_hcd_giveback_urb(). The HCD’s private spinlock must be held and
interrupts must be disabled. The actions carried out here are required for URB
completion.

void usb_hcd_giveback_urb(struct usb_hcd * hcd, struct urb * urb,
int status)

return URB from HCD to device driver

Parameters
struct usb_hcd * hcd host controller returning the URB

struct urb * urb urb being returned to the USB device driver.

int status completion status code for the URB.

Context
in_interrupt()

582 Chapter 20. Linux USB API

Linux Driver-api Documentation

Description
This hands the URB from HCD to its USB device driver, using its completion func-
tion. The HCD has freed all per-urb resources (and is done using urb->hcpriv). It
also released all HCD locks; the device driver won’t cause problems if it frees,
modifies, or resubmits this URB.

If urb was unlinked, the value of status will be overridden by urb->unlinked.
Erroneous short transfers are detected in case the HCD hasn’t checked for them.

int usb_alloc_streams(struct usb_interface * interface, struct
usb_host_endpoint ** eps, unsigned int num_eps,
unsigned int num_streams, gfp_t mem_flags)

allocate bulk endpoint stream IDs.

Parameters
struct usb_interface * interface alternate setting that includes all end-

points.

struct usb_host_endpoint ** eps array of endpoints that need streams.

unsigned int num_eps number of endpoints in the array.

unsigned int num_streams number of streams to allocate.

gfp_t mem_flags flags hcd should use to allocate memory.

Description
Sets up a group of bulk endpoints to have num_streams stream IDs available.
Drivers may queue multiple transfers to different stream IDs, which may complete
in a different order than they were queued.

Return
On success, the number of allocated streams. On failure, a negative error code.

int usb_free_streams(struct usb_interface * interface, struct
usb_host_endpoint ** eps, unsigned int num_eps,
gfp_t mem_flags)

free bulk endpoint stream IDs.

Parameters
struct usb_interface * interface alternate setting that includes all end-

points.

struct usb_host_endpoint ** eps array of endpoints to remove streams from.

unsigned int num_eps number of endpoints in the array.

gfp_t mem_flags flags hcd should use to allocate memory.

Description
Reverts a group of bulk endpoints back to not using stream IDs. Can fail if we are
given bad arguments, or HCD is broken.

Return
0 on success. On failure, a negative error code.

20.1. The Linux-USB Host Side API 583

Linux Driver-api Documentation

void usb_hcd_resume_root_hub(struct usb_hcd * hcd)
called by HCD to resume its root hub

Parameters
struct usb_hcd * hcd host controller for this root hub

Description
The USB host controller calls this function when its root hub is suspended (with
the remote wakeup feature enabled) and a remote wakeup request is received.
The routine submits a workqueue request to resume the root hub (that is, manage
its downstream ports again).

int usb_bus_start_enum(struct usb_bus * bus, unsigned port_num)
start immediate enumeration (for OTG)

Parameters
struct usb_bus * bus the bus (must use hcd framework)

unsigned port_num 1-based number of port; usually bus->otg_port

Context
in_interrupt()

Description
Starts enumeration, with an immediate reset followed later by hub_wq identifying
and possibly configuring the device. This is needed by OTG controller drivers,
where it helps meet HNP protocol timing requirements for starting a port reset.

Return
0 if successful.

irqreturn_t usb_hcd_irq(int irq, void * __hcd)
hook IRQs to HCD framework (bus glue)

Parameters
int irq the IRQ being raised

void * __hcd pointer to the HCD whose IRQ is being signaled

Description
If the controller isn’t HALTed, calls the driver’s irq handler. Checks whether the
controller is now dead.

Return
IRQ_HANDLED if the IRQ was handled. IRQ_NONE otherwise.

void usb_hc_died(struct usb_hcd * hcd)
report abnormal shutdown of a host controller (bus glue)

Parameters
struct usb_hcd * hcd pointer to the HCD representing the controller

Description

584 Chapter 20. Linux USB API

Linux Driver-api Documentation

This is called by bus glue to report a USB host controller that died while operations
may still have been pending. It’s called automatically by the PCI glue, so only
glue for non-PCI busses should need to call it.

Only call this function with the primary HCD.

struct usb_hcd * usb_create_shared_hcd(const struct hc_driver * driver,
struct device * dev, const char
* bus_name, struct usb_hcd
* primary_hcd)

create and initialize an HCD structure

Parameters
const struct hc_driver * driver HC driver that will use this hcd

struct device * dev device for this HC, stored in hcd->self.controller

const char * bus_name value to store in hcd->self.bus_name

struct usb_hcd * primary_hcd a pointer to the usb_hcd structure that is shar-
ing the PCI device. Only allocate certain resources for the primary HCD

Context
!in_interrupt()

Description
Allocate a struct usb_hcd, with extra space at the end for the HC driver’s private
data. Initialize the generic members of the hcd structure.

Return
On success, a pointer to the created and initialized HCD structure. On failure (e.g.
if memory is unavailable), NULL.

struct usb_hcd * usb_create_hcd(const struct hc_driver * driver, struct de-
vice * dev, const char * bus_name)

create and initialize an HCD structure

Parameters
const struct hc_driver * driver HC driver that will use this hcd

struct device * dev device for this HC, stored in hcd->self.controller

const char * bus_name value to store in hcd->self.bus_name

Context
!in_interrupt()

Description
Allocate a struct usb_hcd, with extra space at the end for the HC driver’s private
data. Initialize the generic members of the hcd structure.

Return
On success, a pointer to the created and initialized HCD structure. On failure (e.g.
if memory is unavailable), NULL.

20.1. The Linux-USB Host Side API 585

Linux Driver-api Documentation

int usb_add_hcd(struct usb_hcd * hcd, unsigned int irqnum, unsigned
long irqflags)

finish generic HCD structure initialization and register

Parameters
struct usb_hcd * hcd the usb_hcd structure to initialize

unsigned int irqnum Interrupt line to allocate

unsigned long irqflags Interrupt type flags

Description
Finish the remaining parts of generic HCD initialization: allocate the buffers of
consistent memory, register the bus, request the IRQ line, and call the driver’s
reset() and start() routines.

void usb_remove_hcd(struct usb_hcd * hcd)
shutdown processing for generic HCDs

Parameters
struct usb_hcd * hcd the usb_hcd structure to remove

Context
!in_interrupt()

Description
Disconnects the root hub, then reverses the effects of usb_add_hcd(), invoking
the HCD’s stop() method.
int usb_hcd_pci_probe(struct pci_dev * dev, const struct pci_device_id * id,

const struct hc_driver * driver)
initialize PCI-based HCDs

Parameters
struct pci_dev * dev USB Host Controller being probed

const struct pci_device_id * id pci hotplug id connecting controller to HCD
framework

const struct hc_driver * driver USB HC driver handle

Context
!in_interrupt()

Description
Allocates basic PCI resources for this USB host controller, and then invokes
the start() method for the HCD associated with it through the hotplug entry’s
driver_data.

Store this function in the HCD’s struct pci_driver as probe().
Return
0 if successful.

586 Chapter 20. Linux USB API

Linux Driver-api Documentation

void usb_hcd_pci_remove(struct pci_dev * dev)
shutdown processing for PCI-based HCDs

Parameters
struct pci_dev * dev USB Host Controller being removed

Context
!in_interrupt()

Description
Reverses the effect of usb_hcd_pci_probe(), first invoking the HCD’s stop()
method. It is always called from a thread context, normally“rmmod”,“apmd”,
or something similar.

Store this function in the HCD’s struct pci_driver as remove().
void usb_hcd_pci_shutdown(struct pci_dev * dev)

shutdown host controller

Parameters
struct pci_dev * dev USB Host Controller being shutdown

int hcd_buffer_create(struct usb_hcd * hcd)
initialize buffer pools

Parameters
struct usb_hcd * hcd the bus whose buffer pools are to be initialized

Context
!in_interrupt()

Description
Call this as part of initializing a host controller that uses the dma memory alloca-
tors. It initializes some pools of dma-coherent memory that will be shared by all
drivers using that controller.

Call hcd_buffer_destroy() to clean up after using those pools.

Return
0 if successful. A negative errno value otherwise.

void hcd_buffer_destroy(struct usb_hcd * hcd)
deallocate buffer pools

Parameters
struct usb_hcd * hcd the bus whose buffer pools are to be destroyed

Context
!in_interrupt()

Description
This frees the buffer pools created by hcd_buffer_create().

20.1. The Linux-USB Host Side API 587

Linux Driver-api Documentation

20.1.7 The USB character device nodes

This chapter presents the Linux character device nodes. You may prefer to avoid
writing new kernel code for your USB driver. User mode device drivers are usually
packaged as applications or libraries, andmay use character devices through some
programming library that wraps it. Such libraries include:

• libusb for C/C++, and

• jUSB for Java.

Some old information about it can be seen at the“USB Device Filesystem”section
of the USB Guide. The latest copy of the USB Guide can be found at http://www.
linux-usb.org/

Note:
• They were used to be implemented via usbfs, but this is not part of the sysfs
debug interface.

• This particular documentation is incomplete, especially with respect to the
asynchronous mode. As of kernel 2.5.66 the code and this (new) documenta-
tion need to be cross-reviewed.

What files are in “devtmpfs”?

Conventionally mounted at /dev/bus/usb/, usbfs features include:

• /dev/bus/usb/BBB/DDD ⋯magic files exposing the each device’s configura-
tion descriptors, and supporting a series of ioctls for making device requests,
including I/O to devices. (Purely for access by programs.)

Each bus is given a number (BBB) based on when it was enumerated; within each
bus, each device is given a similar number (DDD). Those BBB/DDD paths are not
“stable”identifiers; expect them to change even if you always leave the devices
plugged in to the same hub port. Don’t even think of saving these in application
configuration files. Stable identifiers are available, for user mode applications that
want to use them. HID and networking devices expose these stable IDs, so that
for example you can be sure that you told the right UPS to power down its second
server. Pleast note that it doesn’t (yet) expose those IDs.

/dev/bus/usb/BBB/DDD

Use these files in one of these basic ways:

• They can be read, producing first the device descriptor (18 bytes) and then
the descriptors for the current configuration. See the USB 2.0 spec for de-
tails about those binary data formats. You’ll need to convert most multibyte
values from little endian format to your native host byte order, although a few
of the fields in the device descriptor (both of the BCD-encoded fields, and the
vendor and product IDs) will be byteswapped for you. Note that configura-
tion descriptors include descriptors for interfaces, altsettings, endpoints, and
maybe additional class descriptors.

588 Chapter 20. Linux USB API

http://libusb.sourceforge.net
http://jUSB.sourceforge.net
http://www.linux-usb.org/
http://www.linux-usb.org/

Linux Driver-api Documentation

• Perform USB operations using ioctl() requests to make endpoint I/O requests
(synchronously or asynchronously) or manage the device. These requests
need the CAP_SYS_RAWIO capability, as well as filesystem access permissions.
Only one ioctl request can be made on one of these device files at a time. This
means that if you are synchronously reading an endpoint from one thread, you
won’t be able to write to a different endpoint from another thread until the
read completes. This works for half duplex protocols, but otherwise you’d
use asynchronous i/o requests.

Each connected USB device has one file. The BBB indicates the bus number. The
DDD indicates the device address on that bus. Both of these numbers are assigned
sequentially, and can be reused, so you can’t rely on them for stable access to de-
vices. For example, it’s relatively common for devices to re-enumerate while they
are still connected (perhaps someone jostled their power supply, hub, or USB ca-
ble), so a device might be 002/027when you first connect it and 002/048 sometime
later.

These files can be read as binary data. The binary data consists of first the device
descriptor, then the descriptors for each configuration of the device. Multi-byte
fields in the device descriptor are converted to host endianness by the kernel. The
configuration descriptors are in bus endian format! The configuration descriptor
are wTotalLength bytes apart. If a device returns less configuration descriptor
data than indicated by wTotalLength there will be a hole in the file for the missing
bytes. This information is also shown in text form by the /sys/kernel/debug/
usb/devices file, described later.

These files may also be used to write user-level drivers for the USB devices. You
would open the /dev/bus/usb/BBB/DDD file read/write, read its descriptors to
make sure it’s the device you expect, and then bind to an interface (or perhaps
several) using an ioctl call. You would issue more ioctls to the device to commu-
nicate to it using control, bulk, or other kinds of USB transfers. The IOCTLs are
listed in the <linux/usbdevice_fs.h> file, and at this writing the source code
(linux/drivers/usb/core/devio.c) is the primary reference for how to access
devices through those files.

Note that since by default these BBB/DDD files are writable only by root, only root
canwrite such usermode drivers. You can selectively grant read/write permissions
to other users by using chmod. Also, usbfs mount options such as devmode=0666
may be helpful.

Life Cycle of User Mode Drivers

Such a driver first needs to find a device file for a device it knows how to handle.
Maybe it was told about it because a /sbin/hotplug event handling agent chose
that driver to handle the new device. Or maybe it’s an application that scans all
the /dev/bus/usb device files, and ignores most devices. In either case, it should
read() all the descriptors from the device file, and check them against what it
knows how to handle. It might just reject everything except a particular vendor
and product ID, or need a more complex policy.

Never assume there will only be one such device on the system at a time! If your
code can’t handle more than one device at a time, at least detect when there’s
more than one, and have your users choose which device to use.

20.1. The Linux-USB Host Side API 589

Linux Driver-api Documentation

Once your user mode driver knows what device to use, it interacts with it in either
of two styles. The simple style is to make only control requests; some devices don’t
need more complex interactions than those. (An example might be software using
vendor-specific control requests for some initialization or configuration tasks, with
a kernel driver for the rest.)

More likely, you need a more complex style driver: one using non-control end-
points, reading or writing data and claiming exclusive use of an interface. Bulk
transfers are easiest to use, but only their sibling interrupt transfers work with low
speed devices. Both interrupt and isochronous transfers offer service guarantees
because their bandwidth is reserved. Such “periodic”transfers are awkward to
use through usbfs, unless you’re using the asynchronous calls. However, interrupt
transfers can also be used in a synchronous “one shot”style.
Your user-mode driver should never need to worry about cleaning up request state
when the device is disconnected, although it should close its open file descriptors
as soon as it starts seeing the ENODEV errors.

The ioctl() Requests

To use these ioctls, you need to include the following headers in your userspace
program:

#include <linux/usb.h>
#include <linux/usbdevice_fs.h>
#include <asm/byteorder.h>

The standard USB device model requests, from“Chapter 9”of the USB 2.0 spec-
ification, are automatically included from the <linux/usb/ch9.h> header.

Unless noted otherwise, the ioctl requests described here will update the modifi-
cation time on the usbfs file to which they are applied (unless they fail). A return of
zero indicates success; otherwise, a standard USB error code is returned (These
are documented in USB Error codes).

Each of these files multiplexes access to several I/O streams, one per endpoint.
Each device has one control endpoint (endpoint zero) which supports a limited
RPC style RPC access. Devices are configured by hub_wq (in the kernel) setting
a device-wide configuration that affects things like power consumption and basic
functionality. The endpoints are part of USB interfaces, whichmay have altsettings
affecting things like which endpoints are available. Many devices only have a
single configuration and interface, so drivers for them will ignore configurations
and altsettings.

590 Chapter 20. Linux USB API

Linux Driver-api Documentation

Management/Status Requests

A number of usbfs requests don’t deal very directly with device I/O. They mostly
relate to device management and status. These are all synchronous requests.

USBDEVFS_CLAIMINTERFACE This is used to force usbfs to claim a specific
interface, which has not previously been claimed by usbfs or any other kernel
driver. The ioctl parameter is an integer holding the number of the interface
(bInterfaceNumber from descriptor).

Note that if your driver doesn’t claim an interface before trying to use one
of its endpoints, and no other driver has bound to it, then the interface is
automatically claimed by usbfs.

This claim will be released by a RELEASEINTERFACE ioctl, or by closing the
file descriptor. File modification time is not updated by this request.

USBDEVFS_CONNECTINFO Says whether the device is lowspeed. The ioctl pa-
rameter points to a structure like this:

struct usbdevfs_connectinfo {
unsigned int devnum;
unsigned char slow;

};

File modification time is not updated by this request.

You can’t tell whether a“not slow”device is connected at high speed (480
MBit/sec) or just full speed (12 MBit/sec). You should know the devnum value
already, it’s the DDD value of the device file name.

USBDEVFS_GETDRIVER Returns the name of the kernel driver bound to a given
interface (a string). Parameter is a pointer to this structure, which is modi-
fied:

struct usbdevfs_getdriver {
unsigned int interface;
char driver[USBDEVFS_MAXDRIVERNAME + 1];

};

File modification time is not updated by this request.

USBDEVFS_IOCTL Passes a request from userspace through to a kernel driver
that has an ioctl entry in the struct usb_driver it registered:

struct usbdevfs_ioctl {
int ifno;
int ioctl_code;
void *data;

};

/* user mode call looks like this.
* 'request' becomes the driver->ioctl() 'code' parameter.
* the size of 'param' is encoded in 'request', and that data
* is copied to or from the driver->ioctl() 'buf' parameter.
*/

static int
(continues on next page)

20.1. The Linux-USB Host Side API 591

Linux Driver-api Documentation

(continued from previous page)
usbdev_ioctl (int fd, int ifno, unsigned request, void *param)
{

struct usbdevfs_ioctl wrapper;

wrapper.ifno = ifno;
wrapper.ioctl_code = request;
wrapper.data = param;

return ioctl (fd, USBDEVFS_IOCTL, &wrapper);
}

File modification time is not updated by this request.

This request lets kernel drivers talk to user mode code through filesystem
operations even when they don’t create a character or block special device.
It’s also been used to do things like ask devices what device special file
should be used. Two pre-defined ioctls are used to disconnect and reconnect
kernel drivers, so that user mode code can completely manage binding and
configuration of devices.

USBDEVFS_RELEASEINTERFACE This is used to release the claim usbfs made
on interface, either implicitly or because of a USBDEVFS_CLAIMINTERFACE
call, before the file descriptor is closed. The ioctl parameter is an integer
holding the number of the interface (bInterfaceNumber from descriptor); File
modification time is not updated by this request.

Warning: No security check is made to ensure that the task which made
the claim is the one which is releasing it. This means that user mode driver
may interfere other ones.

USBDEVFS_RESETEP Resets the data toggle value for an endpoint (bulk or in-
terrupt) to DATA0. The ioctl parameter is an integer endpoint number (1 to
15, as identified in the endpoint descriptor), with USB_DIR_IN added if the
device’s endpoint sends data to the host.

Warning: Avoid using this request. It should probably be removed. Using
it typically means the device and driver will lose toggle synchronization.
If you really lost synchronization, you likely need to completely handshake
with the device, using a request like CLEAR_HALT or SET_INTERFACE.

USBDEVFS_DROP_PRIVILEGES This is used to relinquish the ability to do cer-
tain operations which are considered to be privileged on a usbfs file descrip-
tor. This includes claiming arbitrary interfaces, resetting a device on which
there are currently claimed interfaces from other users, and issuing USBDE-
VFS_IOCTL calls. The ioctl parameter is a 32 bit mask of interfaces the user
is allowed to claim on this file descriptor. You may issue this ioctl more than
one time to narrow said mask.

592 Chapter 20. Linux USB API

Linux Driver-api Documentation

Synchronous I/O Support

Synchronous requests involve the kernel blocking until the user mode request
completes, either by finishing successfully or by reporting an error. In most cases
this is the simplest way to use usbfs, although as noted above it does prevent
performing I/O to more than one endpoint at a time.

USBDEVFS_BULK Issues a bulk read or write request to the device. The ioctl
parameter is a pointer to this structure:

struct usbdevfs_bulktransfer {
unsigned int ep;
unsigned int len;
unsigned int timeout; /* in milliseconds */
void *data;

};

The ep value identifies a bulk endpoint number (1 to 15, as identified in an
endpoint descriptor), masked with USB_DIR_IN when referring to an end-
point which sends data to the host from the device. The length of the data
buffer is identified by len; Recent kernels support requests up to about
128KBytes. FIXME say how read length is returned, and how short reads
are handled..

USBDEVFS_CLEAR_HALT Clears endpoint halt (stall) and resets the endpoint
toggle. This is only meaningful for bulk or interrupt endpoints. The ioctl
parameter is an integer endpoint number (1 to 15, as identified in an endpoint
descriptor), masked with USB_DIR_IN when referring to an endpoint which
sends data to the host from the device.

Use this on bulk or interrupt endpoints which have stalled, returning -EPIPE
status to a data transfer request. Do not issue the control request directly,
since that could invalidate the host’s record of the data toggle.

USBDEVFS_CONTROL Issues a control request to the device. The ioctl param-
eter points to a structure like this:

struct usbdevfs_ctrltransfer {
__u8 bRequestType;
__u8 bRequest;
__u16 wValue;
__u16 wIndex;
__u16 wLength;
__u32 timeout; /* in milliseconds */
void *data;

};

The first eight bytes of this structure are the contents of the SETUP packet
to be sent to the device; see the USB 2.0 specification for details. The bRe-
questType value is composed by combining a USB_TYPE_* value, a USB_DIR_*
value, and a USB_RECIP_* value (from linux/usb.h). If wLength is nonzero,
it describes the length of the data buffer, which is either written to the device
(USB_DIR_OUT) or read from the device (USB_DIR_IN).

At this writing, you can’t transfer more than 4 KBytes of data to or from a
device; usbfs has a limit, and some host controller drivers have a limit. (That’

20.1. The Linux-USB Host Side API 593

Linux Driver-api Documentation

s not usually a problem.) Also there’s no way to say it’s not OK to get a short
read back from the device.

USBDEVFS_RESET Does a USB level device reset. The ioctl parameter is ig-
nored. After the reset, this rebinds all device interfaces. File modification
time is not updated by this request.

Warning: Avoid using this call until some usbcore bugs get fixed, since it does
not fully synchronize device, interface, and driver (not just usbfs) state.

USBDEVFS_SETINTERFACE Sets the alternate setting for an interface. The
ioctl parameter is a pointer to a structure like this:

struct usbdevfs_setinterface {
unsigned int interface;
unsigned int altsetting;

};

File modification time is not updated by this request.

Those struct members are from some interface descriptor applying to the
current configuration. The interface number is the bInterfaceNumber value,
and the altsetting number is the bAlternateSetting value. (This resets each
endpoint in the interface.)

USBDEVFS_SETCONFIGURATION Issues the usb_set_configuration() call
for the device. The parameter is an integer holding the number of a config-
uration (bConfigurationValue from descriptor). File modification time is not
updated by this request.

Warning: Avoid using this call until some usbcore bugs get fixed, since it does
not fully synchronize device, interface, and driver (not just usbfs) state.

Asynchronous I/O Support

As mentioned above, there are situations where it may be important to initiate
concurrent operations from user mode code. This is particularly important for
periodic transfers (interrupt and isochronous), but it can be used for other kinds
of USB requests too. In such cases, the asynchronous requests described here are
essential. Rather than submitting one request and having the kernel block until it
completes, the blocking is separate.

These requests are packaged into a structure that resembles the URB used by ker-
nel device drivers. (No POSIX Async I/O support here, sorry.) It identifies the end-
point type (USBDEVFS_URB_TYPE_*), endpoint (number, masked with USB_DIR_IN
as appropriate), buffer and length, and a user“context”value serving to uniquely
identify each request. (It’s usually a pointer to per-request data.) Flags canmodify
requests (not as many as supported for kernel drivers).

Each request can specify a realtime signal number (between SIGRTMIN and
SIGRTMAX, inclusive) to request a signal be sent when the request completes.

594 Chapter 20. Linux USB API

Linux Driver-api Documentation

When usbfs returns these urbs, the status value is updated, and the buffer may
have beenmodified. Except for isochronous transfers, the actual_length is updated
to say how many bytes were transferred; if the USBDEVFS_URB_DISABLE_SPD
flag is set (“short packets are not OK”), if fewer bytes were read than were
requested then you get an error report:

struct usbdevfs_iso_packet_desc {
unsigned int length;
unsigned int actual_length;
unsigned int status;

};

struct usbdevfs_urb {
unsigned char type;
unsigned char endpoint;
int status;
unsigned int flags;
void *buffer;
int buffer_length;
int actual_length;
int start_frame;
int number_of_packets;
int error_count;
unsigned int signr;
void *usercontext;
struct usbdevfs_iso_packet_desc iso_frame_desc[];

};

For these asynchronous requests, the file modification time reflects when the re-
quest was initiated. This contrasts with their use with the synchronous requests,
where it reflects when requests complete.

USBDEVFS_DISCARDURB TBS File modification time is not updated by this re-
quest.

USBDEVFS_DISCSIGNAL TBS File modification time is not updated by this re-
quest.

USBDEVFS_REAPURB TBS Filemodification time is not updated by this request.

USBDEVFS_REAPURBNDELAY TBS File modification time is not updated by
this request.

USBDEVFS_SUBMITURB TBS

20.1.8 The USB devices

The USB devices are now exported via debugfs:

• /sys/kernel/debug/usb/devices ⋯a text file showing each of the USB de-
vices on known to the kernel, and their configuration descriptors. You can
also poll() this to learn about new devices.

20.1. The Linux-USB Host Side API 595

Linux Driver-api Documentation

/sys/kernel/debug/usb/devices

This file is handy for status viewing tools in user mode, which can scan the text
format and ignore most of it. More detailed device status (including class and
vendor status) is available from device-specific files. For information about the
current format of this file, see below.

This file, in combination with the poll() system call, can also be used to detect
when devices are added or removed:

int fd;
struct pollfd pfd;

fd = open("/sys/kernel/debug/usb/devices", O_RDONLY);
pfd = { fd, POLLIN, 0 };
for (;;) {

/* The first time through, this call will return immediately. */
poll(&pfd, 1, -1);

/* To see what's changed, compare the file's previous and current
contents or scan the filesystem. (Scanning is more precise.) */

}

Note that this behavior is intended to be used for informational and debug pur-
poses. It would be more appropriate to use programs such as udev or HAL to
initialize a device or start a user-mode helper program, for instance.

In this file, each device’s output has multiple lines of ASCII output.
I made it ASCII instead of binary on purpose, so that someone can obtain some
useful data from it without the use of an auxiliary program. However, with an
auxiliary program, the numbers in the first 4 columns of each T: line (topology
info: Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram.

Each line is tagged with a one-character ID for that line:

T = Topology (etc.)
B = Bandwidth (applies only to USB host controllers, which are
virtualized as root hubs)
D = Device descriptor info.
P = Product ID info. (from Device descriptor, but they won't fit
together on one line)
S = String descriptors.
C = Configuration descriptor info. (* = active configuration)
I = Interface descriptor info.
E = Endpoint descriptor info.

596 Chapter 20. Linux USB API

Linux Driver-api Documentation

/sys/kernel/debug/usb/devices output format

Legend:: d = decimal number (may have leading spaces or 0’s) x = hexadecimal
number (may have leading spaces or 0’s) s = string

Topology info

T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd
| | | | | | | | |__MaxChildren
| | | | | | | |__Device Speed in Mbps
| | | | | | |__DeviceNumber
| | | | | |__Count of devices at this level
| | | | |__Connector/Port on Parent for this device
| | | |__Parent DeviceNumber
| | |__Level in topology for this bus
| |__Bus number
|__Topology info tag

Speed may be:

1.5 Mbit/s for low speed USB
12 Mbit/s for full speed USB
480 Mbit/s for high speed USB (added for USB 2.0); also used for

Wireless USB, which has no fixed speed
5000Mbit/s for SuperSpeed USB (added for USB 3.0)

For reasons lost in the mists of time, the Port number is always too low by 1. For
example, a device plugged into port 4 will show up with Port=03.

Bandwidth info

B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd
| | | |__Number of isochronous requests
| | |__Number of interrupt requests
| |__Total Bandwidth allocated to this bus
|__Bandwidth info tag

Bandwidth allocation is an approximation of how much of one frame (millisecond)
is in use. It reflects only periodic transfers, which are the only transfers that
reserve bandwidth. Control and bulk transfers use all other bandwidth, including
reserved bandwidth that is not used for transfers (such as for short packets).

The percentage is how much of the “reserved”bandwidth is scheduled by those
transfers. For a low or full speed bus (loosely,“USB 1.1”), 90% of the bus band-
width is reserved. For a high speed bus (loosely, “USB 2.0”) 80% is reserved.

20.1. The Linux-USB Host Side API 597

Linux Driver-api Documentation

Device descriptor info & Product ID info

D: Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
P: Vendor=xxxx ProdID=xxxx Rev=xx.xx

where:

D: Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
| | | | | | |__NumberConfigurations
| | | | | |__MaxPacketSize of Default␣
↪→Endpoint
| | | | |__DeviceProtocol
| | | |__DeviceSubClass
| | |__DeviceClass
| |__Device USB version
|__Device info tag #1

where:

P: Vendor=xxxx ProdID=xxxx Rev=xx.xx
| | | |__Product revision number
| | |__Product ID code
| |__Vendor ID code
|__Device info tag #2

String descriptor info

S: Manufacturer=ssss
| |__Manufacturer of this device as read from the device.
| For USB host controller drivers (virtual root hubs) this may
| be omitted, or (for newer drivers) will identify the kernel
| version and the driver which provides this hub emulation.
|__String info tag

S: Product=ssss
| |__Product description of this device as read from the device.
| For older USB host controller drivers (virtual root hubs) this
| indicates the driver; for newer ones, it's a product (and vendor)
| description that often comes from the kernel's PCI ID database.
|__String info tag

S: SerialNumber=ssss
| |__Serial Number of this device as read from the device.
| For USB host controller drivers (virtual root hubs) this is
| some unique ID, normally a bus ID (address or slot name) that
| can't be shared with any other device.
|__String info tag

598 Chapter 20. Linux USB API

Linux Driver-api Documentation

Configuration descriptor info

C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA
| | | | | |__MaxPower in mA
| | | | |__Attributes
| | | |__ConfiguratioNumber
| | |__NumberOfInterfaces
| |__ "*" indicates the active configuration (others are " ")
|__Config info tag

USB devicesmay havemultiple configurations, each of which act rather differently.
For example, a bus-powered configuration might be much less capable than one
that is self-powered. Only one device configuration can be active at a time; most
devices have only one configuration.

Each configuration consists of one or more interfaces. Each interface serves a
distinct“function”, which is typically bound to a different USB device driver. One
common example is a USB speaker with an audio interface for playback, and a
HID interface for use with software volume control.

Interface descriptor info (can be multiple per Config)

I:* If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss
| | | | | | | | |__Driver name
| | | | | | | | or "(none)"
| | | | | | | |__InterfaceProtocol
| | | | | | |__InterfaceSubClass
| | | | | |__InterfaceClass
| | | | |__NumberOfEndpoints
| | | |__AlternateSettingNumber
| | |__InterfaceNumber
| |__ "*" indicates the active altsetting (others are " ")
|__Interface info tag

A given interface may have one or more“alternate”settings. For example, default
settings may not use more than a small amount of periodic bandwidth. To use
significant fractions of bus bandwidth, drivers must select a non-default altsetting.

Only one setting for an interface may be active at a time, and only one driver may
bind to an interface at a time. Most devices have only one alternate setting per
interface.

Endpoint descriptor info (can be multiple per Interface)

E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddss
| | | | |__Interval (max) between transfers
| | | |__EndpointMaxPacketSize
| | |__Attributes(EndpointType)
| |__EndpointAddress(I=In,O=Out)
|__Endpoint info tag

20.1. The Linux-USB Host Side API 599

Linux Driver-api Documentation

The interval is nonzero for all periodic (interrupt or isochronous) endpoints. For
high speed endpoints the transfer interval may be measured in microseconds
rather than milliseconds.

For high speed periodic endpoints, the EndpointMaxPacketSize reflects the per-
microframe data transfer size. For “high bandwidth”endpoints, that can reflect
two or three packets (for up to 3KBytes every 125 usec) per endpoint.

With the Linux-USB stack, periodic bandwidth reservations use the transfer inter-
vals and sizes provided by URBs, which can be less than those found in endpoint
descriptor.

Usage examples

If a user or script is interested only in Topology info, for example, use something
like grep ^T: /sys/kernel/debug/usb/devices for only the Topology lines. A
command like grep -i ^[tdp]: /sys/kernel/debug/usb/devices can be used
to list only the lines that begin with the characters in square brackets, where the
valid characters are TDPCIE. With a slightly more able script, it can display any
selected lines (for example, only T, D, and P lines) and change their output format.
(The procusb Perl script is the beginning of this idea. It will list only selected lines
[selected from TBDPSCIE] or“All”lines from /sys/kernel/debug/usb/devices.)

The Topology lines can be used to generate a graphic/pictorial of the USB devices
on a system’s root hub. (See more below on how to do this.)
The Interface lines can be used to determine what driver is being used for each
device, and which altsetting it activated.

The Configuration lines could be used to list maximum power (in milliamps) that
a system’s USB devices are using. For example, grep ^C: /sys/kernel/debug/
usb/devices.

Here’s an example, from a system which has a UHCI root hub, an external hub
connected to the root hub, and a mouse and a serial converter connected to the
external hub.

T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
B: Alloc= 28/900 us (3%), #Int= 2, #Iso= 0
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 0.00
S: Product=USB UHCI Root Hub
S: SerialNumber=dce0
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms

T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0451 ProdID=1446 Rev= 1.00
C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms

T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
(continues on next page)

600 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
D: Ver= 1.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=04b4 ProdID=0001 Rev= 0.00
C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=mouse
E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms

T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
D: Ver= 1.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0565 ProdID=0001 Rev= 1.08
S: Manufacturer=Peracom Networks, Inc.
S: Product=Peracom USB to Serial Converter
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc) Sub=00 Prot=00 Driver=serial
E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl= 16ms
E: Ad=01(O) Atr=02(Bulk) MxPS= 16 Ivl= 16ms
E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms

Selecting only the T: and I: lines from this (for example, by using procusb ti),
we have

T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=mouse
T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc) Sub=00 Prot=00 Driver=serial

Physically this looks like (or could be converted to):

+------------------+
| PC/root_hub (12)| Dev# = 1
+------------------+ (nn) is Mbps.

Level 0 | CN.0 | CN.1 | [CN = connector/port #]
+------------------+

/
/

+-----------------------+
Level 1 | Dev#2: 4-port hub (12)|

+-----------------------+
|CN.0 |CN.1 |CN.2 |CN.3 |
+-----------------------+

\ ____________________
_____ \

\ \
+--------------------+ +--------------------+

Level 2 | Dev# 3: mouse (1.5)| | Dev# 4: serial (12)|
+--------------------+ +--------------------+

Or, in a more tree-like structure (ports [Connectors] without connections could be
omitted):

PC: Dev# 1, root hub, 2 ports, 12 Mbps
|_ CN.0: Dev# 2, hub, 4 ports, 12 Mbps

|_ CN.0: Dev #3, mouse, 1.5 Mbps
(continues on next page)

20.1. The Linux-USB Host Side API 601

Linux Driver-api Documentation

(continued from previous page)
|_ CN.1:
|_ CN.2: Dev #4, serial, 12 Mbps
|_ CN.3:

|_ CN.1:

20.2 USB Gadget API for Linux

Author David Brownell
Date 20 August 2004

20.2.1 Introduction

This document presents a Linux-USB “Gadget”kernel mode API, for use within
peripherals and other USB devices that embed Linux. It provides an overview of
the API structure, and shows how that fits into a system development project. This
is the first such API released on Linux to address a number of important problems,
including:

• Supports USB 2.0, for high speed devices which can stream data at several
dozen megabytes per second.

• Handles devices with dozens of endpoints just as well as ones with just two
fixed-function ones. Gadget drivers can be written so they’re easy to port to
new hardware.

• Flexible enough to expose more complex USB device capabilities such as mul-
tiple configurations, multiple interfaces, composite devices, and alternate in-
terface settings.

• USB “On-The-Go”(OTG) support, in conjunction with updates to the Linux-
USB host side.

• Sharing data structures and API models with the Linux-USB host side API.
This helps the OTG support, and looks forward to more-symmetric frame-
works (where the same I/O model is used by both host and device side
drivers).

• Minimalist, so it’s easier to support new device controller hardware. I/O
processing doesn’t imply large demands for memory or CPU resources.

Most Linux developers will not be able to use this API, since they have USB host
hardware in a PC, workstation, or server. Linux users with embedded systems
are more likely to have USB peripheral hardware. To distinguish drivers running
inside such hardware from the more familiar Linux“USB device drivers”, which
are host side proxies for the real USB devices, a different term is used: the drivers
inside the peripherals are “USB gadget drivers”. In USB protocol interactions,
the device driver is the master (or “client driver”) and the gadget driver is the
slave (or “function driver”).
The gadget API resembles the host side Linux-USB API in that both use queues of
request objects to package I/O buffers, and those requests may be submitted or

602 Chapter 20. Linux USB API

Linux Driver-api Documentation

canceled. They share common definitions for the standard USB Chapter 9 mes-
sages, structures, and constants. Also, both APIs bind and unbind drivers to de-
vices. The APIs differ in detail, since the host side’s current URB framework
exposes a number of implementation details and assumptions that are inappro-
priate for a gadget API. While the model for control transfers and configuration
management is necessarily different (one side is a hardware-neutral master, the
other is a hardware-aware slave), the endpoint I/0 API used here should also be
usable for an overhead-reduced host side API.

20.2.2 Structure of Gadget Drivers

A system running inside a USB peripheral normally has at least three layers inside
the kernel to handle USB protocol processing, and may have additional layers in
user space code. The gadget API is used by the middle layer to interact with the
lowest level (which directly handles hardware).

In Linux, from the bottom up, these layers are:

USB Controller Driver This is the lowest software level. It is the only layer
that talks to hardware, through registers, fifos, dma, irqs, and the like.
The <linux/usb/gadget.h> API abstracts the peripheral controller endpoint
hardware. That hardware is exposed through endpoint objects, which accept
streams of IN/OUT buffers, and through callbacks that interact with gadget
drivers. Since normal USB devices only have one upstream port, they only
have one of these drivers. The controller driver can support any number of
different gadget drivers, but only one of them can be used at a time.

Examples of such controller hardware include the PCI-based NetChip 2280
USB 2.0 high speed controller, the SA-11x0 or PXA-25x UDC (found within
many PDAs), and a variety of other products.

Gadget Driver The lower boundary of this driver implements hardware-neutral
USB functions, using calls to the controller driver. Because such hardware
varies widely in capabilities and restrictions, and is used in embedded en-
vironments where space is at a premium, the gadget driver is often config-
ured at compile time to work with endpoints supported by one particular con-
troller. Gadget drivers may be portable to several different controllers, using
conditional compilation. (Recent kernels substantially simplify the work in-
volved in supporting new hardware, by autoconfiguring endpoints automati-
cally for many bulk-oriented drivers.) Gadget driver responsibilities include:

• handling setup requests (ep0 protocol responses) possibly including
class-specific functionality

• returning configuration and string descriptors

• (re)setting configurations and interface altsettings, including enabling
and configuring endpoints

• handling life cycle events, such as managing bindings to hardware, USB
suspend/resume, remote wakeup, and disconnection from the USB host.

• managing IN and OUT transfers on all currently enabled endpoints

Such drivers may be modules of proprietary code, although that approach is
discouraged in the Linux community.

20.2. USB Gadget API for Linux 603

Linux Driver-api Documentation

Upper Level Most gadget drivers have an upper boundary that connects to some
Linux driver or framework in Linux. Through that boundary flows the data
which the gadget driver produces and/or consumes through protocol trans-
fers over USB. Examples include:

• user mode code, using generic (gadgetfs) or application specific files in
/dev

• networking subsystem (for network gadgets, like the CDC Ethernet
Model gadget driver)

• data capture drivers, perhaps video4Linux or a scanner driver; or test
and measurement hardware.

• input subsystem (for HID gadgets)

• sound subsystem (for audio gadgets)

• file system (for PTP gadgets)

• block i/o subsystem (for usb-storage gadgets)

• ⋯and more
Additional Layers Other layers may exist. These could include kernel layers,

such as network protocol stacks, as well as user mode applications building
on standard POSIX system call APIs such as open(), close(), read() and
write(). On newer systems, POSIX Async I/O calls may be an option. Such
user mode code will not necessarily be subject to the GNU General Public
License (GPL).

OTG-capable systems will also need to include a standard Linux-USB host side
stack, with usbcore, one or more Host Controller Drivers (HCDs), USB Device
Drivers to support the OTG “Targeted Peripheral List”, and so forth. There will
also be an OTG Controller Driver, which is visible to gadget and device driver
developers only indirectly. That helps the host and device side USB controllers
implement the two new OTG protocols (HNP and SRP). Roles switch (host to pe-
ripheral, or vice versa) using HNP during USB suspend processing, and SRP can
be viewed as a more battery-friendly kind of device wakeup protocol.

Over time, reusable utilities are evolving to help make some gadget driver tasks
simpler. For example, building configuration descriptors from vectors of descrip-
tors for the configurations interfaces and endpoints is now automated, and many
drivers now use autoconfiguration to choose hardware endpoints and initialize
their descriptors. A potential example of particular interest is code implementing
standard USB-IF protocols for HID, networking, storage, or audio classes. Some
developers are interested in KDB or KGDB hooks, to let target hardware be re-
motely debugged. Most such USB protocol code doesn’t need to be hardware-
specific, any more than network protocols like X11, HTTP, or NFS are. Such
gadget-side interface drivers should eventually be combined, to implement com-
posite devices.

604 Chapter 20. Linux USB API

Linux Driver-api Documentation

20.2.3 Kernel Mode Gadget API

Gadget drivers declare themselves through a struct usb_gadget_driver, which is
responsible for most parts of enumeration for a struct usb_gadget. The response
to a set_configuration usually involves enabling one or more of the struct usb_ep
objects exposed by the gadget, and submitting one or more struct usb_request
buffers to transfer data. Understand those four data types, and their operations,
and you will understand how this API works.

Note: Other than the“Chapter 9”data types, most of the significant data types
and functions are described here.

However, some relevant information is likely omitted from what you are reading.
One example of such information is endpoint autoconfiguration. You’ll have to
read the header file, and use example source code (such as that for“Gadget Zero”
), to fully understand the API.

The part of the API implementing some basic driver capabilities is specific to the
version of the Linux kernel that’s in use. The 2.6 and upper kernel versions include
a driver model framework that has no analogue on earlier kernels; so those parts
of the gadget API are not fully portable. (They are implemented on 2.4 kernels,
but in a different way.) The driver model state is another part of this API that is
ignored by the kerneldoc tools.

The core API does not expose every possible hardware feature, only the most
widely available ones. There are significant hardware features, such as device-to-
device DMA (without temporary storage in a memory buffer) that would be added
using hardware-specific APIs.

This API allows drivers to use conditional compilation to handle endpoint capa-
bilities of different hardware, but doesn’t require that. Hardware tends to have
arbitrary restrictions, relating to transfer types, addressing, packet sizes, buffer-
ing, and availability. As a rule, such differences only matter for “endpoint zero”
logic that handles device configuration and management. The API supports lim-
ited run-time detection of capabilities, through naming conventions for endpoints.
Many drivers will be able to at least partially autoconfigure themselves. In particu-
lar, driver init sections will often have endpoint autoconfiguration logic that scans
the hardware’s list of endpoints to find ones matching the driver requirements
(relying on those conventions), to eliminate some of the most common reasons for
conditional compilation.

Like the Linux-USB host side API, this API exposes the “chunky”nature of USB
messages: I/O requests are in terms of one or more“packets”, and packet bound-
aries are visible to drivers. Compared to RS-232 serial protocols, USB resembles
synchronous protocols like HDLC (N bytes per frame, multipoint addressing, host
as the primary station and devices as secondary stations) more than asynchronous
ones (tty style: 8 data bits per frame, no parity, one stop bit). So for example the
controller drivers won’t buffer two single byte writes into a single two-byte USB IN
packet, although gadget drivers may do so when they implement protocols where
packet boundaries (and “short packets”) are not significant.

20.2. USB Gadget API for Linux 605

Linux Driver-api Documentation

Driver Life Cycle

Gadget drivers make endpoint I/O requests to hardware without needing to know
many details of the hardware, but driver setup/configuration code needs to handle
some differences. Use the API like this:

1. Register a driver for the particular device side usb controller hardware, such
as the net2280 on PCI (USB 2.0), sa11x0 or pxa25x as found in Linux PDAs,
and so on. At this point the device is logically in the USB ch9 initial state
(attached), drawing no power and not usable (since it does not yet support
enumeration). Any host should not see the device, since it’s not activated
the data line pullup used by the host to detect a device, even if VBUS power
is available.

2. Register a gadget driver that implements some higher level device function.
That will then bind() to a usb_gadget, which activates the data line pullup
sometime after detecting VBUS.

3. The hardware driver can now start enumerating. The steps it handles are to
accept USB power and set_address requests. Other steps are handled by the
gadget driver. If the gadget driver module is unloaded before the host starts
to enumerate, steps before step 7 are skipped.

4. The gadget driver’s setup() call returns usb descriptors, based both on
what the bus interface hardware provides and on the functionality being im-
plemented. That can involve alternate settings or configurations, unless the
hardware prevents such operation. For OTG devices, each configuration de-
scriptor includes an OTG descriptor.

5. The gadget driver handles the last step of enumeration, when the USB host
issues a set_configuration call. It enables all endpoints used in that con-
figuration, with all interfaces in their default settings. That involves using a
list of the hardware’s endpoints, enabling each endpoint according to its de-
scriptor. It may also involve using usb_gadget_vbus_draw to let more power
be drawn from VBUS, as allowed by that configuration. For OTG devices,
setting a configuration may also involve reporting HNP capabilities through
a user interface.

6. Do real work and perform data transfers, possibly involving changes to in-
terface settings or switching to new configurations, until the device is dis-
connect()ed from the host. Queue any number of transfer requests to each
endpoint. It may be suspended and resumed several times before being dis-
connected. On disconnect, the drivers go back to step 3 (above).

7. When the gadget driver module is being unloaded, the driver unbind() call-
back is issued. That lets the controller driver be unloaded.

Drivers will normally be arranged so that just loading the gadget driver module (or
statically linking it into a Linux kernel) allows the peripheral device to be enumer-
ated, but some drivers will defer enumeration until some higher level component
(like a user mode daemon) enables it. Note that at this lowest level there are no
policies about how ep0 configuration logic is implemented, except that it should
obey USB specifications. Such issues are in the domain of gadget drivers, includ-
ing knowing about implementation constraints imposed by some USB controllers
or understanding that composite devices might happen to be built by integrating

606 Chapter 20. Linux USB API

Linux Driver-api Documentation

reusable components.

Note that the lifecycle above can be slightly different for OTG devices. Other
than providing an additional OTG descriptor in each configuration, only the HNP-
related differences are particularly visible to driver code. They involve report-
ing requirements during the SET_CONFIGURATION request, and the option to in-
voke HNP during some suspend callbacks. Also, SRP changes the semantics of
usb_gadget_wakeup slightly.

USB 2.0 Chapter 9 Types and Constants

Gadget drivers rely on common USB structures and constants defined in the
linux/usb/ch9.h header file, which is standard in Linux 2.6+ kernels. These are
the same types and constants used by host side drivers (and usbcore).

Core Objects and Methods

These are declared in <linux/usb/gadget.h>, and are used by gadget drivers to
interact with USB peripheral controller drivers.

struct usb_request
describes one i/o request

Definition

struct usb_request {
void *buf;
unsigned length;
dma_addr_t dma;
struct scatterlist *sg;
unsigned num_sgs;
unsigned num_mapped_sgs;
unsigned stream_id:16;
unsigned is_last:1;
unsigned no_interrupt:1;
unsigned zero:1;
unsigned short_not_ok:1;
unsigned dma_mapped:1;
void (*complete)(struct usb_ep *ep, struct usb_request *req);
void *context;
struct list_head list;
unsigned frame_number;
int status;
unsigned actual;

};

Members
buf Buffer used for data. Always provide this; some controllers only use PIO, or

don’t use DMA for some endpoints.
length Length of that data

dma DMA address corresponding to‘buf’. If you don’t set this field, and the usb
controller needs one, it is responsible for mapping and unmapping the buffer.

20.2. USB Gadget API for Linux 607

Linux Driver-api Documentation

sg a scatterlist for SG-capable controllers.

num_sgs number of SG entries

num_mapped_sgs number of SG entries mapped to DMA (internal)

stream_id The stream id, when USB3.0 bulk streams are being used

is_last Indicates if this is the last request of a stream_id before switching to a
different stream (required for DWC3 controllers).

no_interrupt If true, hints that no completion irq is needed. Helpful sometimes
with deep request queues that are handled directly by DMA controllers.

zero If true, when writing data, makes the last packet be“short”by adding a zero
length packet as needed;

short_not_ok When reading data, makes short packets be treated as errors
(queue stops advancing till cleanup).

dma_mapped Indicates if request has been mapped to DMA (internal)

complete Function called when request completes, so this request and its buffer
may be re-used. The function will always be called with interrupts disabled,
and it must not sleep. Reads terminate with a short packet, or when the
buffer fills, whichever comes first. When writes terminate, some data bytes
will usually still be in flight (often in a hardware fifo). Errors (for reads or
writes) stop the queue from advancing until the completion function returns,
so that any transfers invalidated by the error may first be dequeued.

context For use by the completion callback

list For use by the gadget driver.

frame_number Reports the interval number in (micro)frame in which the
isochronous transfer was transmitted or received.

status Reports completion code, zero or a negative errno. Normally, faults block
the transfer queue from advancing until the completion callback returns.
Code “-ESHUTDOWN”indicates completion caused by device disconnect,
or when the driver disabled the endpoint.

actual Reports bytes transferred to/from the buffer. For reads (OUT transfers)
this may be less than the requested length. If the short_not_ok flag is set,
short reads are treated as errors even when status otherwise indicates suc-
cessful completion. Note that for writes (IN transfers) some data bytes may
still reside in a device-side FIFO when the request is reported as complete.

Description
These are allocated/freed through the endpoint they’re used with. The hardware’s
driver can add extra per-request data to the memory it returns, which often avoids
separate memory allocations (potential failures), later when the request is queued.

Request flags affect request handling, such as whether a zero length packet is writ-
ten (the“zero”flag), whether a short read should be treated as an error (blocking
request queue advance, the “short_not_ok”flag), or hinting that an interrupt is
not required (the “no_interrupt”flag, for use with deep request queues).

608 Chapter 20. Linux USB API

Linux Driver-api Documentation

Bulk endpoints can use any size buffers, and can also be used for interrupt trans-
fers. interrupt-only endpoints can be much less functional.

NOTE
this is analogous to ‘struct urb’on the host side, except that it’s thinner and
promotes more pre-allocation.

struct usb_ep_caps
endpoint capabilities description

Definition

struct usb_ep_caps {
unsigned type_control:1;
unsigned type_iso:1;
unsigned type_bulk:1;
unsigned type_int:1;
unsigned dir_in:1;
unsigned dir_out:1;

};

Members
type_control Endpoint supports control type (reserved for ep0).

type_iso Endpoint supports isochronous transfers.

type_bulk Endpoint supports bulk transfers.

type_int Endpoint supports interrupt transfers.

dir_in Endpoint supports IN direction.

dir_out Endpoint supports OUT direction.

struct usb_ep
device side representation of USB endpoint

Definition

struct usb_ep {
void *driver_data;
const char *name;
const struct usb_ep_ops *ops;
struct list_head ep_list;
struct usb_ep_caps caps;
bool claimed;
bool enabled;
unsigned maxpacket:16;
unsigned maxpacket_limit:16;
unsigned max_streams:16;
unsigned mult:2;
unsigned maxburst:5;
u8 address;
const struct usb_endpoint_descriptor *desc;
const struct usb_ss_ep_comp_descriptor *comp_desc;

};

Members

20.2. USB Gadget API for Linux 609

Linux Driver-api Documentation

driver_data for use by the gadget driver.

name identifier for the endpoint, such as “ep-a”or “ep9in-bulk”
ops Function pointers used to access hardware-specific operations.

ep_list the gadget’s ep_list holds all of its endpoints
caps The structure describing types and directions supported by endoint.

claimed True if this endpoint is claimed by a function.

enabled The current endpoint enabled/disabled state.

maxpacket The maximum packet size used on this endpoint. The initial value can
sometimes be reduced (hardware allowing), according to the endpoint de-
scriptor used to configure the endpoint.

maxpacket_limit The maximum packet size value which can be handled by this
endpoint. It’s set once by UDC driver when endpoint is initialized, and should
not be changed. Should not be confused with maxpacket.

max_streams Themaximum number of streams supported by this EP (0 - 16, actual
number is 2^n)

mult multiplier, ‘mult’value for SS Isoc EPs
maxburst the maximum number of bursts supported by this EP (for usb3)

address used to identify the endpoint when finding descriptor that matches con-
nection speed

desc endpoint descriptor. This pointer is set before the endpoint is enabled and
remains valid until the endpoint is disabled.

comp_desc In case of SuperSpeed support, this is the endpoint companion descrip-
tor that is used to configure the endpoint

Description
the bus controller driver lists all the general purpose endpoints in gadget->ep_list.
the control endpoint (gadget->ep0) is not in that list, and is accessed only in re-
sponse to a driver setup() callback.

struct usb_gadget
represents a usb slave device

Definition

struct usb_gadget {
struct work_struct work;
struct usb_udc *udc;
const struct usb_gadget_ops *ops;
struct usb_ep *ep0;
struct list_head ep_list;
enum usb_device_speed speed;
enum usb_device_speed max_speed;
enum usb_device_state state;
const char *name;
struct device dev;
unsigned isoch_delay;

(continues on next page)

610 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
unsigned out_epnum;
unsigned in_epnum;
unsigned mA;
struct usb_otg_caps *otg_caps;
unsigned sg_supported:1;
unsigned is_otg:1;
unsigned is_a_peripheral:1;
unsigned b_hnp_enable:1;
unsigned a_hnp_support:1;
unsigned a_alt_hnp_support:1;
unsigned hnp_polling_support:1;
unsigned host_request_flag:1;
unsigned quirk_ep_out_aligned_size:1;
unsigned quirk_altset_not_supp:1;
unsigned quirk_stall_not_supp:1;
unsigned quirk_zlp_not_supp:1;
unsigned quirk_avoids_skb_reserve:1;
unsigned is_selfpowered:1;
unsigned deactivated:1;
unsigned connected:1;
unsigned lpm_capable:1;
int irq;

};

Members
work (internal use) Workqueue to be used for sysfs_notify()

udc struct usb_udc pointer for this gadget

ops Function pointers used to access hardware-specific operations.

ep0 Endpoint zero, used when reading or writing responses to driver setup() re-
quests

ep_list List of other endpoints supported by the device.

speed Speed of current connection to USB host.

max_speed Maximal speed the UDC can handle. UDC must support this and all
slower speeds.

state the state we are now (attached, suspended, configured, etc)

name Identifies the controller hardware type. Used in diagnostics and sometimes
configuration.

dev Driver model state for this abstract device.

isoch_delay value from Set Isoch Delay request. Only valid on SS/SSP

out_epnum last used out ep number

in_epnum last used in ep number

mA last set mA value

otg_caps OTG capabilities of this gadget.

sg_supported true if we can handle scatter-gather

20.2. USB Gadget API for Linux 611

Linux Driver-api Documentation

is_otg True if the USB device port uses a Mini-AB jack, so that the gadget driver
must provide a USB OTG descriptor.

is_a_peripheral False unless is_otg, the“A”end of a USB cable is in the Mini-AB
jack, and HNP has been used to switch roles so that the“A”device currently
acts as A-Peripheral, not A-Host.

b_hnp_enable OTG device feature flag, indicating that the A-Host enabled HNP
support.

a_hnp_support OTG device feature flag, indicating that the A-Host supports HNP
at this port.

a_alt_hnp_support OTG device feature flag, indicating that the A-Host only sup-
ports HNP on a different root port.

hnp_polling_support OTG device feature flag, indicating if the OTG device in
peripheral mode can support HNP polling.

host_request_flag OTG device feature flag, indicating if A-Peripheral or B-
Peripheral wants to take host role.

quirk_ep_out_aligned_size epout requires buffer size to be aligned toMaxPack-
etSize.

quirk_altset_not_supp UDC controller doesn’t support alt settings.
quirk_stall_not_supp UDC controller doesn’t support stalling.
quirk_zlp_not_supp UDC controller doesn’t support ZLP.
quirk_avoids_skb_reserve udc/platform wants to avoid skb_reserve() in

u_ether.c to improve performance.

is_selfpowered if the gadget is self-powered.

deactivated True if gadget is deactivated - in deactivated state it cannot be con-
nected.

connected True if gadget is connected.

lpm_capable If the gadget max_speed is FULL or HIGH, this flag indicates that it
supports LPM as per the LPM ECN & errata.

irq the interrupt number for device controller.

Description
Gadgets have a mostly-portable “gadget driver”implementing device functions,
handling all usb configurations and interfaces. Gadget drivers talk to hardware-
specific code indirectly, through ops vectors. That insulates the gadget driver
from hardware details, and packages the hardware endpoints through generic i/o
queues. The“usb_gadget”and“usb_ep”interfaces provide that insulation from
the hardware.

Except for the driver data, all fields in this structure are read-only to the gadget
driver. That driver data is part of the “driver model”infrastructure in 2.6 (and
later) kernels, and for earlier systems is grouped in a similar structure that’s not
known to the rest of the kernel.

612 Chapter 20. Linux USB API

Linux Driver-api Documentation

Values of the three OTG device feature flags are updated before the setup() call
corresponding to USB_REQ_SET_CONFIGURATION, and before driver suspend()
calls. They are valid only when is_otg, and when the device is acting as a B-
Peripheral (so is_a_peripheral is false).

size_t usb_ep_align(struct usb_ep * ep, size_t len)
returns len aligned to ep’s maxpacketsize.

Parameters
struct usb_ep * ep the endpoint whose maxpacketsize is used to align len
size_t len buffer size’s length to align to ep’s maxpacketsize
Description
This helper is used to align buffer’s size to an ep’s maxpacketsize.
size_t usb_ep_align_maybe(struct usb_gadget * g, struct usb_ep * ep,

size_t len)
returns len aligned to ep’s maxpacketsize if gadget requires
quirk_ep_out_aligned_size, otherwise returns len.

Parameters
struct usb_gadget * g controller to check for quirk

struct usb_ep * ep the endpoint whose maxpacketsize is used to align len
size_t len buffer size’s length to align to ep’s maxpacketsize
Description
This helper is used in case it’s required for any reason to check and maybe align
buffer’s size to an ep’s maxpacketsize.
int gadget_is_altset_supported(struct usb_gadget * g)

return true iff the hardware supports altsettings

Parameters
struct usb_gadget * g controller to check for quirk

int gadget_is_stall_supported(struct usb_gadget * g)
return true iff the hardware supports stalling

Parameters
struct usb_gadget * g controller to check for quirk

int gadget_is_zlp_supported(struct usb_gadget * g)
return true iff the hardware supports zlp

Parameters
struct usb_gadget * g controller to check for quirk

int gadget_avoids_skb_reserve(struct usb_gadget * g)
return true iff the hardware would like to avoid skb_reserve to improve per-
formance.

Parameters
struct usb_gadget * g controller to check for quirk

20.2. USB Gadget API for Linux 613

Linux Driver-api Documentation

int gadget_is_dualspeed(struct usb_gadget * g)
return true iff the hardware handles high speed

Parameters
struct usb_gadget * g controller that might support both high and full speeds

int gadget_is_superspeed(struct usb_gadget * g)
return true if the hardware handles superspeed

Parameters
struct usb_gadget * g controller that might support superspeed

int gadget_is_superspeed_plus(struct usb_gadget * g)
return true if the hardware handles superspeed plus

Parameters
struct usb_gadget * g controller that might support superspeed plus

int gadget_is_otg(struct usb_gadget * g)
return true iff the hardware is OTG-ready

Parameters
struct usb_gadget * g controller that might have a Mini-AB connector

Description
This is a runtime test, since kernels with a USB-OTG stack sometimes run on
boards which only have a Mini-B (or Mini-A) connector.

struct usb_gadget_driver
driver for usb ‘slave’devices

Definition

struct usb_gadget_driver {
char *function;
enum usb_device_speed max_speed;
int (*bind)(struct usb_gadget *gadget, struct usb_gadget_driver *driver);
void (*unbind)(struct usb_gadget *);
int (*setup)(struct usb_gadget *, const struct usb_ctrlrequest *);
void (*disconnect)(struct usb_gadget *);
void (*suspend)(struct usb_gadget *);
void (*resume)(struct usb_gadget *);
void (*reset)(struct usb_gadget *);
struct device_driver driver;
char *udc_name;
struct list_head pending;
unsigned match_existing_only:1;

};

Members
function String describing the gadget’s function
max_speed Highest speed the driver handles.

bind the driver’s bind callback

614 Chapter 20. Linux USB API

Linux Driver-api Documentation

unbind Invoked when the driver is unbound from a gadget, usually from rmmod
(after a disconnect is reported). Called in a context that permits sleeping.

setup Invoked for ep0 control requests that aren’t handled by the hardware level
driver. Most calls must be handled by the gadget driver, including descriptor
and configuration management. The 16 bit members of the setup data are
in USB byte order. Called in_interrupt; this may not sleep. Driver queues a
response to ep0, or returns negative to stall.

disconnect Invoked after all transfers have been stopped, when the host is dis-
connected. May be called in_interrupt; this may not sleep. Some devices can’
t detect disconnect, so this might not be called except as part of controller
shutdown.

suspend Invoked on USB suspend. May be called in_interrupt.

resume Invoked on USB resume. May be called in_interrupt.

reset Invoked on USB bus reset. It is mandatory for all gadget drivers and should
be called in_interrupt.

driver Driver model state for this driver.

udc_name A name of UDC this driver should be bound to. If udc_name is NULL,
this driver will be bound to any available UDC.

pending UDC core private data used for deferred probe of this driver.

match_existing_only If udc is not found, return an error and don’t add this
gadget driver to list of pending driver

Description
Devices are disabled till a gadget driver successfully bind()s, which means the
driver will handle setup() requests needed to enumerate (and meet “chapter 9”
requirements) then do some useful work.

If gadget->is_otg is true, the gadget driver must provide an OTG descriptor during
enumeration, or else fail the bind() call. In such cases, no USB traffic may flow
until both bind() returns without having called usb_gadget_disconnect(), and the
USB host stack has initialized.

Drivers use hardware-specific knowledge to configure the usb hardware. endpoint
addressing is only one of several hardware characteristics that are in descriptors
the ep0 implementation returns from setup() calls.

Except for ep0 implementation, most driver code shouldn’t need change to run
on top of different usb controllers. It’ll use endpoints set up by that ep0 imple-
mentation.

The usb controller driver handles a few standard usb requests. Those in-
clude set_address, and feature flags for devices, interfaces, and endpoints (the
get_status, set_feature, and clear_feature requests).

Accordingly, the driver’s setup() callbackmust always implement all get_descriptor
requests, returning at least a device descriptor and a configuration descriptor.
Drivers must make sure the endpoint descriptors match any hardware constraints.
Some hardware also constrains other descriptors. (The pxa250 allows only con-
figurations 1, 2, or 3).

20.2. USB Gadget API for Linux 615

Linux Driver-api Documentation

The driver’s setup() callback must also implement set_configuration, and should
also implement set_interface, get_configuration, and get_interface. Setting a con-
figuration (or interface) is where endpoints should be activated or (config 0) shut
down.

(Note that only the default control endpoint is supported. Neither hosts nor de-
vices generally support control traffic except to ep0.)

Most devices will ignore USB suspend/resume operations, and so will not provide
those callbacks. However, some may need to change modes when the host is not
longer directing those activities. For example, local controls (buttons, dials, etc)
may need to be re-enabled since the (remote) host can’t do that any longer; or
an error state might be cleared, to make the device behave identically whether or
not power is maintained.

int usb_gadget_probe_driver(struct usb_gadget_driver * driver)
probe a gadget driver

Parameters
struct usb_gadget_driver * driver the driver being registered

Context
can sleep

Description
Call this in your gadget driver’s module initialization function, to tell the under-
lying usb controller driver about your driver. The bind() function will be called
to bind it to a gadget before this registration call returns. It’s expected that the
bind() function will be in init sections.
int usb_gadget_unregister_driver(struct usb_gadget_driver * driver)

unregister a gadget driver

Parameters
struct usb_gadget_driver * driver the driver being unregistered

Context
can sleep

Description
Call this in your gadget driver’s module cleanup function, to tell the underlying
usb controller that your driver is going away. If the controller is connected to a
USB host, it will first disconnect(). The driver is also requested to unbind() and
clean up any device state, before this procedure finally returns. It’s expected
that the unbind() functions will in in exit sections, so may not be linked in some
kernels.

struct usb_string
wraps a C string and its USB id

Definition

616 Chapter 20. Linux USB API

Linux Driver-api Documentation

struct usb_string {
u8 id;
const char *s;

};

Members
id the (nonzero) ID for this string

s the string, in UTF-8 encoding

Description
If you’re using usb_gadget_get_string(), use this to wrap a string together with
its ID.

struct usb_gadget_strings
a set of USB strings in a given language

Definition

struct usb_gadget_strings {
u16 language;
struct usb_string *strings;

};

Members
language identifies the strings’language (0x0409 for en-us)
strings array of strings with their ids

Description
If you’re using usb_gadget_get_string(), use this to wrap all the strings for a
given language.

void usb_free_descriptors(struct usb_descriptor_header ** v)
free descriptors returned by usb_copy_descriptors()

Parameters
struct usb_descriptor_header ** v vector of descriptors

Optional Utilities

The core API is sufficient for writing a USB Gadget Driver, but some optional util-
ities are provided to simplify common tasks. These utilities include endpoint au-
toconfiguration.

int usb_gadget_get_string(const struct usb_gadget_strings * table, int id,
u8 * buf)

fill out a string descriptor

Parameters
const struct usb_gadget_strings * table of c strings encoded using UTF-8

int id string id, from low byte of wValue in get string descriptor

20.2. USB Gadget API for Linux 617

Linux Driver-api Documentation

u8 * buf at least 256 bytes, must be 16-bit aligned

Description
Finds the UTF-8 string matching the ID, and converts it into a string descriptor in
utf16-le. Returns length of descriptor (always even) or negative errno

If your driver needs stings in multiple languages, you’ll probably“switch (wIndex)
{ ⋯}”in your ep0 string descriptor logic, using this routine after choosing which
set of UTF-8 strings to use. Note that US-ASCII is a strict subset of UTF-8; any
string bytes with the eighth bit set will be multibyte UTF-8 characters, not ISO-
8859/1 characters (which are also widely used in C strings).

bool usb_validate_langid(u16 langid)
validate usb language identifiers

Parameters
u16 langid undescribed

Description
Returns true for valid language identifier, otherwise false.

int usb_descriptor_fillbuf(void * buf, unsigned buflen, const struct
usb_descriptor_header ** src)

fill buffer with descriptors

Parameters
void * buf Buffer to be filled

unsigned buflen Size of buf

const struct usb_descriptor_header ** src Array of descriptor pointers,
terminated by null pointer.

Description
Copies descriptors into the buffer, returning the length or a negative error code if
they can’t all be copied. Useful when assembling descriptors for an associated
set of interfaces used as part of configuring a composite device; or in other cases
where sets of descriptors need to be marshaled.

int usb_gadget_config_buf(const struct usb_config_descriptor * config,
void * buf, unsigned length, const struct
usb_descriptor_header ** desc)

builts a complete configuration descriptor

Parameters
const struct usb_config_descriptor * config Header for the descriptor, in-

cluding characteristics such as power requirements and number of inter-
faces.

void * buf Buffer for the resulting configuration descriptor.

unsigned length Length of buffer. If this is not big enough to hold the entire
configuration descriptor, an error code will be returned.

618 Chapter 20. Linux USB API

Linux Driver-api Documentation

const struct usb_descriptor_header ** desc Null-terminated vector of
pointers to the descriptors (interface, endpoint, etc) defining all functions in
this device configuration.

Description
This copies descriptors into the response buffer, building a descriptor for that
configuration. It returns the buffer length or a negative status code. The con-
fig.wTotalLength field is set to match the length of the result, but other descriptor
fields (including power usage and interface count) must be set by the caller.

Gadget drivers could use this when constructing a config descriptor in response
to USB_REQ_GET_DESCRIPTOR. They will need to patch the resulting bDescrip-
torType value if USB_DT_OTHER_SPEED_CONFIG is needed.

struct usb_descriptor_header ** usb_copy_descriptors(struct
usb_descriptor_header
** src)

copy a vector of USB descriptors

Parameters
struct usb_descriptor_header ** src null-terminated vector to copy

Context
initialization code, which may sleep

Description
This makes a copy of a vector of USB descriptors. Its primary use is to support
usb_function objects which can have multiple copies, each needing different de-
scriptors. Functions may have static tables of descriptors, which are used as
templates and customized with identifiers (for interfaces, strings, endpoints, and
more) as needed by a given function instance.

Composite Device Framework

The core API is sufficient for writing drivers for composite USB devices (with more
than one function in a given configuration), and also multi-configuration devices
(also more than one function, but not necessarily sharing a given configuration).
There is however an optional framework which makes it easier to reuse and com-
bine functions.

Devices using this framework provide a struct usb_composite_driver, which in
turn provides one or more struct usb_configuration instances. Each such config-
uration includes at least one struct usb_function, which packages a user visible
role such as “network link”or “mass storage device”. Management functions
may also exist, such as “Device Firmware Upgrade”.
struct usb_os_desc_ext_prop

describes one “Extended Property”
Definition

struct usb_os_desc_ext_prop {
struct list_head entry;

(continues on next page)

20.2. USB Gadget API for Linux 619

Linux Driver-api Documentation

(continued from previous page)
u8 type;
int name_len;
char *name;
int data_len;
char *data;
struct config_item item;

};

Members
entry used to keep a list of extended properties

type Extended Property type

name_len Extended Property unicode name length, including terminating ‘0’
name Extended Property name

data_len Length of Extended Property blob (for unicode store double len)

data Extended Property blob

item Represents this Extended Property in configfs

struct usb_os_desc
describes OS descriptors associated with one interface

Definition

struct usb_os_desc {
char *ext_compat_id;
struct list_head ext_prop;
int ext_prop_len;
int ext_prop_count;
struct mutex *opts_mutex;
struct config_group group;
struct module *owner;

};

Members
ext_compat_id 16 bytes of “Compatible ID”and “Subcompatible ID”
ext_prop Extended Properties list

ext_prop_len Total length of Extended Properties blobs

ext_prop_count Number of Extended Properties

opts_mutex Optional mutex protecting config data of a usb_function_instance

group Represents OS descriptors associated with an interface in configfs

owner Module associated with this OS descriptor

struct usb_os_desc_table
describes OS descriptors associated with one interface of a usb_function

Definition

620 Chapter 20. Linux USB API

Linux Driver-api Documentation

struct usb_os_desc_table {
int if_id;
struct usb_os_desc *os_desc;

};

Members
if_id Interface id

os_desc“Extended Compatibility ID”and“Extended Properties”of the interface
Description
Each interface can have at most one “Extended Compatibility ID”and a number
of “Extended Properties”.
struct usb_function

describes one function of a configuration

Definition

struct usb_function {
const char *name;
struct usb_gadget_strings **strings;
struct usb_descriptor_header **fs_descriptors;
struct usb_descriptor_header **hs_descriptors;
struct usb_descriptor_header **ss_descriptors;
struct usb_descriptor_header **ssp_descriptors;
struct usb_configuration *config;
struct usb_os_desc_table *os_desc_table;
unsigned os_desc_n;
int (*bind)(struct usb_configuration *, struct usb_function *);
void (*unbind)(struct usb_configuration *, struct usb_function *);
void (*free_func)(struct usb_function *f);
struct module *mod;
int (*set_alt)(struct usb_function *, unsigned interface, unsigned alt);
int (*get_alt)(struct usb_function *, unsigned interface);
void (*disable)(struct usb_function *);
int (*setup)(struct usb_function *, const struct usb_ctrlrequest *);
bool (*req_match)(struct usb_function *,const struct usb_ctrlrequest *,␣

↪→bool config0);
void (*suspend)(struct usb_function *);
void (*resume)(struct usb_function *);
int (*get_status)(struct usb_function *);
int (*func_suspend)(struct usb_function *, u8 suspend_opt);

};

Members
name For diagnostics, identifies the function.

strings tables of strings, keyed by identifiers assigned during bind() and by lan-
guage IDs provided in control requests

fs_descriptors Table of full (or low) speed descriptors, using interface and string
identifiers assigned during bind(). If this pointer is null, the function will not
be available at full speed (or at low speed).

20.2. USB Gadget API for Linux 621

Linux Driver-api Documentation

hs_descriptors Table of high speed descriptors, using interface and string iden-
tifiers assigned during bind(). If this pointer is null, the function will not be
available at high speed.

ss_descriptors Table of super speed descriptors, using interface and string iden-
tifiers assigned during bind(). If this pointer is null after initiation, the func-
tion will not be available at super speed.

ssp_descriptors Table of super speed plus descriptors, using interface and
string identifiers assigned during bind(). If this pointer is null after initia-
tion, the function will not be available at super speed plus.

config assigned when usb_add_function() is called; this is the configuration
with which this function is associated.

os_desc_table Table of (interface id, os descriptors) pairs. The function can ex-
pose more than one interface. If an interface is a member of an IAD, only the
first interface of IAD has its entry in the table.

os_desc_n Number of entries in os_desc_table

bind Before the gadget can register, all of its functions bind() to the available
resources including string and interface identifiers used in interface or class
descriptors; endpoints; I/O buffers; and so on.

unbind Reverses bind; called as a side effect of unregistering the driver which
added this function.

free_func free the struct usb_function.

mod (internal) points to the module that created this structure.

set_alt (REQUIRED) Reconfigures altsettings; function drivers may initialize
usb_ep.driver data at this time (when it is used). Note that setting an in-
terface to its current altsetting resets interface state, and that all interfaces
have a disabled state.

get_alt Returns the active altsetting. If this is not provided, then only altsetting
zero is supported.

disable (REQUIRED) Indicates the function should be disabled. Reasons include
host resetting or reconfiguring the gadget, and disconnection.

setup Used for interface-specific control requests.

req_match Tests if a given class request can be handled by this function.

suspend Notifies functions when the host stops sending USB traffic.

resume Notifies functions when the host restarts USB traffic.

get_status Returns function status as a reply to GetStatus() request when the
recipient is Interface.

func_suspend callback to be called when SetFeature(FUNCTION_SUSPEND) is
reseived

Description
A single USB function uses one or more interfaces, and should in most cases
support operation at both full and high speeds. Each function is associated by

622 Chapter 20. Linux USB API

Linux Driver-api Documentation

usb_add_function() with a one configuration; that function causes bind() to be
called so resources can be allocated as part of setting up a gadget driver. Those re-
sources include endpoints, which should be allocated using usb_ep_autoconfig().
To support dual speed operation, a function driver provides descriptors for both
high and full speed operation. Except in rare cases that don’t involve bulk end-
points, each speed needs different endpoint descriptors.

Function drivers choose their own strategies for managing instance data. The
simplest strategy just declares it“static’, which means the function can only be
activated once. If the function needs to be exposed in more than one configuration
at a given speed, it needs to support multiple usb_function structures (one for each
configuration).

A more complex strategy might encapsulate a usb_function structure inside a
driver-specific instance structure to allows multiple activations. An example of
multiple activations might be a CDC ACM function that supports two or more
distinct instances within the same configuration, providing several independent
logical data links to a USB host.

struct usb_configuration
represents one gadget configuration

Definition

struct usb_configuration {
const char *label;
struct usb_gadget_strings **strings;
const struct usb_descriptor_header **descriptors;
void (*unbind)(struct usb_configuration *);
int (*setup)(struct usb_configuration *, const struct usb_ctrlrequest *);
u8 bConfigurationValue;
u8 iConfiguration;
u8 bmAttributes;
u16 MaxPower;
struct usb_composite_dev *cdev;

};

Members
label For diagnostics, describes the configuration.

strings Tables of strings, keyed by identifiers assigned during bind() and by lan-
guage IDs provided in control requests.

descriptors Table of descriptors preceding all function descriptors. Examples
include OTG and vendor-specific descriptors.

unbind Reverses bind; called as a side effect of unregistering the driver which
added this configuration.

setup Used to delegate control requests that aren’t handled by standard device
infrastructure or directed at a specific interface.

bConfigurationValue Copied into configuration descriptor.

iConfiguration Copied into configuration descriptor.

bmAttributes Copied into configuration descriptor.

20.2. USB Gadget API for Linux 623

Linux Driver-api Documentation

MaxPower Power consumtion in mA. Used to compute bMaxPower in the configu-
ration descriptor after considering the bus speed.

cdev assigned by usb_add_config() before calling bind(); this is the device as-
sociated with this configuration.

Description
Configurations are building blocks for gadget drivers structured around function
drivers. Simple USB gadgets require only one function and one configuration, and
handle dual-speed hardware by always providing the same functionality. Slightly
more complex gadgets may have more than one single-function configuration at a
given speed; or have configurations that only work at one speed.

Composite devices are, by definition, ones with configurations which include more
than one function.

The lifecycle of a usb_configuration includes allocation, initialization of the fields
described above, and calling usb_add_config() to set up internal data and bind it
to a specific device. The configuration’s bind() method is then used to initialize
all the functions and then call usb_add_function() for them.

Those functions would normally be independent of each other, but that’s not
mandatory. CDC WMC devices are an example where functions often depend on
other functions, with some functions subsidiary to others. Such interdependency
may be managed in any way, so long as all of the descriptors complete by the time
the composite driver returns from its bind() routine.

struct usb_composite_driver
groups configurations into a gadget

Definition

struct usb_composite_driver {
const char *name;
const struct usb_device_descriptor *dev;
struct usb_gadget_strings **strings;
enum usb_device_speed max_speed;
unsigned needs_serial:1;
int (*bind)(struct usb_composite_dev *cdev);
int (*unbind)(struct usb_composite_dev *);
void (*disconnect)(struct usb_composite_dev *);
void (*suspend)(struct usb_composite_dev *);
void (*resume)(struct usb_composite_dev *);
struct usb_gadget_driver gadget_driver;

};

Members
name For diagnostics, identifies the driver.

dev Template descriptor for the device, including default device identifiers.

strings tables of strings, keyed by identifiers assigned during bind and language
IDs provided in control requests. Note: The first entries are predefined. The
first entry that may be used is USB_GADGET_FIRST_AVAIL_IDX

max_speed Highest speed the driver supports.

624 Chapter 20. Linux USB API

Linux Driver-api Documentation

needs_serial set to 1 if the gadget needs userspace to provide a serial number.
If one is not provided, warning will be printed.

bind (REQUIRED) Used to allocate resources that are shared across the whole de-
vice, such as string IDs, and add its configurations using usb_add_config().
This may fail by returning a negative errno value; it should return zero on
successful initialization.

unbind Reverses bind; called as a side effect of unregistering this driver.
disconnect optional driver disconnect method

suspend Notifies when the host stops sending USB traffic, after function notifica-
tions

resume Notifies configuration when the host restarts USB traffic, before function
notifications

gadget_driver Gadget driver controlling this driver

Description
Devices default to reporting self powered operation. Devices which rely on bus
powered operation should report this in their bind method.
Before returning from bind, various fields in the template descriptor may be over-
ridden. These include the idVendor/idProduct/bcdDevice values normally to bind
the appropriate host side driver, and the three strings (iManufacturer, iProduct,
iSerialNumber) normally used to provide user meaningful device identifiers. (The
strings will not be defined unless they are defined in dev and strings.) The cor-
rect ep0 maxpacket size is also reported, as defined by the underlying controller
driver.

module_usb_composite_driver(__usb_composite_driver)
Helper macro for registering a USB gadget composite driver

Parameters
__usb_composite_driver usb_composite_driver struct

Description
Helper macro for USB gadget composite drivers which do not do anything special
in module init/exit. This eliminates a lot of boilerplate. Each module may only use
this macro once, and calling it replaces module_init() and module_exit()

struct usb_composite_dev
represents one composite usb gadget

Definition

struct usb_composite_dev {
struct usb_gadget *gadget;
struct usb_request *req;
struct usb_request *os_desc_req;
struct usb_configuration *config;
u8 qw_sign[OS_STRING_QW_SIGN_LEN];
u8 b_vendor_code;
struct usb_configuration *os_desc_config;
unsigned int use_os_string:1;

(continues on next page)

20.2. USB Gadget API for Linux 625

Linux Driver-api Documentation

(continued from previous page)
unsigned int setup_pending:1;
unsigned int os_desc_pending:1;

};

Members
gadget read-only, abstracts the gadget’s usb peripheral controller
req used for control responses; buffer is pre-allocated

os_desc_req used for OS descriptors responses; buffer is pre-allocated

config the currently active configuration

qw_sign qwSignature part of the OS string

b_vendor_code bMS_VendorCode part of the OS string

os_desc_config the configuration to be used with OS descriptors

use_os_string false by default, interested gadgets set it

setup_pending true when setup request is queued but not completed

os_desc_pending true when os_desc request is queued but not completed

Description
One of these devices is allocated and initialized before the associated device driver’
s bind() is called.

OPEN ISSUE: it appears that some WUSB devices will need to be built by com-
bining a normal (wired) gadget with a wireless one. This revision of the gadget
framework should probably try to make sure doing that won’t hurt too much.
One notion for how to handle Wireless USB devices involves:

(a) a second gadget here, discovery mechanism TBD, but likely needing separate
“register/unregister WUSB gadget”calls;

(b) updates to usb_gadget to include flags “is it wireless”, “is it wired”, plus
(presumably in a wrapper structure) bandgroup and PHY info;

(c) presumably a wireless_ep wrapping a usb_ep, and reporting wireless-specific
parameters like maxburst and maxsequence;

(d) configurations that are specific to wireless links;

(e) function drivers that understand wireless configs and will support wireless
for (additional) function instances;

(f) a function to support association setup (like CBAF), not necessarily requiring
a wireless adapter;

(g) composite device setup that can create one or more wireless configs, includ-
ing appropriate association setup support;

(h) more, TBD.

626 Chapter 20. Linux USB API

Linux Driver-api Documentation

int config_ep_by_speed_and_alt(struct usb_gadget * g, struct
usb_function * f, struct usb_ep * _ep,
u8 alt)

configures the given endpoint according to gadget speed.

Parameters
struct usb_gadget * g pointer to the gadget

struct usb_function * f usb function

struct usb_ep * _ep the endpoint to configure

u8 alt alternate setting number

Return
error code, 0 on success

Description
This function chooses the right descriptors for a given endpoint according to gad-
get speed and saves it in the endpoint desc field. If the endpoint already has a
descriptor assigned to it - overwrites it with currently corresponding descriptor.
The endpoint maxpacket field is updated according to the chosen descriptor.

Note
the supplied function should hold all the descriptors for supported speeds

int config_ep_by_speed(struct usb_gadget * g, struct usb_function * f,
struct usb_ep * _ep)

configures the given endpoint according to gadget speed.

Parameters
struct usb_gadget * g pointer to the gadget

struct usb_function * f usb function

struct usb_ep * _ep the endpoint to configure

Return
error code, 0 on success

Description
This function chooses the right descriptors for a given endpoint according to gad-
get speed and saves it in the endpoint desc field. If the endpoint already has a
descriptor assigned to it - overwrites it with currently corresponding descriptor.
The endpoint maxpacket field is updated according to the chosen descriptor.

Note
the supplied function should hold all the descriptors for supported speeds

int usb_add_function(struct usb_configuration * config, struct usb_function
* function)

add a function to a configuration

Parameters
struct usb_configuration * config the configuration

20.2. USB Gadget API for Linux 627

Linux Driver-api Documentation

struct usb_function * function the function being added

Context
single threaded during gadget setup

Description
After initialization, each configuration must have one or more functions added to
it. Adding a function involves calling its bind() method to allocate resources such
as interface and string identifiers and endpoints.

This function returns the value of the function’s bind(), which is zero for success
else a negative errno value.

int usb_function_deactivate(struct usb_function * function)
prevent function and gadget enumeration

Parameters
struct usb_function * function the function that isn’t yet ready to respond
Description
Blocks response of the gadget driver to host enumeration by preventing the data
line pullup from being activated. This is normally called during bind() processing
to change from the initial“ready to respond”state, or when a required resource
becomes available.

For example, drivers that serve as a passthrough to a userspace daemon can block
enumeration unless that daemon (such as an OBEX, MTP, or print server) is ready
to handle host requests.

Not all systems support software control of their USB peripheral data pullups.

Returns zero on success, else negative errno.

int usb_function_activate(struct usb_function * function)
allow function and gadget enumeration

Parameters
struct usb_function * function function on which

usb_function_activate() was called

Description
Reverses effect of usb_function_deactivate(). If no more functions are delaying
their activation, the gadget driver will respond to host enumeration procedures.

Returns zero on success, else negative errno.

int usb_interface_id(struct usb_configuration * config, struct usb_function
* function)

allocate an unused interface ID

Parameters
struct usb_configuration * config configuration associated with the inter-

face

struct usb_function * function function handling the interface

628 Chapter 20. Linux USB API

Linux Driver-api Documentation

Context
single threaded during gadget setup

Description
usb_interface_id() is called from usb_function.bind() callbacks to allocate new
interface IDs. The function driver will then store that ID in interface, association,
CDC union, and other descriptors. It will also handle any control requests targeted
at that interface, particularly changing its altsetting via set_alt(). There may also
be class-specific or vendor-specific requests to handle.

All interface identifier should be allocated using this routine, to ensure that for
example different functions don’t wrongly assign different meanings to the same
identifier. Note that since interface identifiers are configuration-specific, functions
used in more than one configuration (or more than once in a given configuration)
need multiple versions of the relevant descriptors.

Returns the interface ID which was allocated; or -ENODEV if no more interface
IDs can be allocated.

int usb_add_config(struct usb_composite_dev * cdev, struct
usb_configuration * config, int (*bind)(struct
usb_configuration *))

add a configuration to a device.

Parameters
struct usb_composite_dev * cdev wraps the USB gadget

struct usb_configuration * config the configuration, with bConfigurationVa-
lue assigned

int (*)(struct usb_configuration *) bind the configuration’s bind function
Context
single threaded during gadget setup

Description
One of the main tasks of a composite bind() routine is to add each of the configu-
rations it supports, using this routine.

This function returns the value of the configuration’s bind(), which is zero for suc-
cess else a negative errno value. Binding configurations assigns global resources
including string IDs, and per-configuration resources such as interface IDs and
endpoints.

int usb_string_id(struct usb_composite_dev * cdev)
allocate an unused string ID

Parameters
struct usb_composite_dev * cdev the device whose string descriptor IDs are

being allocated

Context
single threaded during gadget setup

Description

20.2. USB Gadget API for Linux 629

Linux Driver-api Documentation

usb_string_id() is called from bind() callbacks to allocate string IDs. Drivers
for functions, configurations, or gadgets will then store that ID in the appropriate
descriptors and string table.

All string identifier should be allocated using this, usb_string_ids_tab() or
usb_string_ids_n() routine, to ensure that for example different functions don’
t wrongly assign different meanings to the same identifier.

int usb_string_ids_tab(struct usb_composite_dev * cdev, struct usb_string
* str)

allocate unused string IDs in batch

Parameters
struct usb_composite_dev * cdev the device whose string descriptor IDs are

being allocated

struct usb_string * str an array of usb_string objects to assign numbers to

Context
single threaded during gadget setup

Description
usb_string_ids() is called from bind() callbacks to allocate string IDs. Drivers for
functions, configurations, or gadgets will then copy IDs from the string table to
the appropriate descriptors and string table for other languages.

All string identifier should be allocated using this, usb_string_id() or
usb_string_ids_n() routine, to ensure that for example different functions don’
t wrongly assign different meanings to the same identifier.

struct usb_string * usb_gstrings_attach(struct usb_composite_dev * cdev,
struct usb_gadget_strings ** sp,
unsigned n_strings)

attach gadget strings to a cdev and assign ids

Parameters
struct usb_composite_dev * cdev the device whose string descriptor IDs are

being allocated and attached.

struct usb_gadget_strings ** sp an array of usb_gadget_strings to attach.

unsigned n_strings number of entries in each usb_strings array (sp[]->strings)

Description
This function will create a deep copy of usb_gadget_strings and usb_string and
attach it to the cdev. The actual string (usb_string.s) will not be copied but only
a referenced will be made. The struct usb_gadget_strings array may contain mul-
tiple languages and should be NULL terminated. The ->language pointer of each
struct usb_gadget_strings has to contain the same amount of entries. For instance:
sp[0] is en-US, sp[1] is es-ES. It is expected that the first usb_string entry of es-
ES contains the translation of the first usb_string entry of en-US. Therefore both
entries become the same id assign.

int usb_string_ids_n(struct usb_composite_dev * c, unsigned n)
allocate unused string IDs in batch

630 Chapter 20. Linux USB API

Linux Driver-api Documentation

Parameters
struct usb_composite_dev * c the device whose string descriptor IDs are be-

ing allocated

unsigned n number of string IDs to allocate

Context
single threaded during gadget setup

Description
Returns the first requested ID. This ID and next n-1 IDs are now valid IDs. At least
provided that n is non-zero because if it is, returns last requested ID which is now
very useful information.

usb_string_ids_n() is called from bind() callbacks to allocate string IDs. Drivers
for functions, configurations, or gadgets will then store that ID in the appropriate
descriptors and string table.

All string identifier should be allocated using this, usb_string_id() or
usb_string_ids_n() routine, to ensure that for example different functions don’
t wrongly assign different meanings to the same identifier.

int usb_composite_probe(struct usb_composite_driver * driver)
register a composite driver

Parameters
struct usb_composite_driver * driver the driver to register

Context
single threaded during gadget setup

Description
This function is used to register drivers using the composite driver framework.
The return value is zero, or a negative errno value. Those values normally come
from the driver’s bind method, which does all the work of setting up the driver
to match the hardware.

On successful return, the gadget is ready to respond to requests from the host, un-
less one of its components invokes usb_gadget_disconnect() while it was binding.
That would usually be done in order to wait for some userspace participation.

void usb_composite_unregister(struct usb_composite_driver * driver)
unregister a composite driver

Parameters
struct usb_composite_driver * driver the driver to unregister

Description
This function is used to unregister drivers using the composite driver framework.

void usb_composite_setup_continue(struct usb_composite_dev * cdev)
Continue with the control transfer

Parameters

20.2. USB Gadget API for Linux 631

Linux Driver-api Documentation

struct usb_composite_dev * cdev the composite device who’s control transfer
was kept waiting

Description
This function must be called by the USB function driver to continue with the con-
trol transfer’s data/status stage in case it had requested to delay the data/status
stages. A USB function’s setup handler (e.g. set_alt()) can request the com-
posite framework to delay the setup request’s data/status stages by returning
USB_GADGET_DELAYED_STATUS.

Composite Device Functions

At this writing, a few of the current gadget drivers have been converted to this
framework. Near-term plans include converting all of them, except for gadgetfs.

20.2.4 Peripheral Controller Drivers

The first hardware supporting this API was the NetChip 2280 controller, which
supports USB 2.0 high speed and is based on PCI. This is the net2280 driver mod-
ule. The driver supports Linux kernel versions 2.4 and 2.6; contact NetChip Tech-
nologies for development boards and product information.

Other hardware working in the gadget framework includes: Intel’s PXA 25x and
IXP42x series processors (pxa2xx_udc), Toshiba TC86c001“Goku-S”(goku_udc),
Renesas SH7705/7727 (sh_udc), MediaQ 11xx (mq11xx_udc), Hynix HMS30C7202
(h7202_udc), National 9303/4 (n9604_udc), Texas Instruments OMAP (omap_udc),
Sharp LH7A40x (lh7a40x_udc), andmore. Most of those are full speed controllers.

At this writing, there are people at work on drivers in this framework for several
other USB device controllers, with plans tomakemany of them bewidely available.

A partial USB simulator, the dummy_hcd driver, is available. It can act like a
net2280, a pxa25x, or an sa11x0 in terms of available endpoints and device speeds;
and it simulates control, bulk, and to some extent interrupt transfers. That lets you
develop some parts of a gadget driver on a normal PC, without any special hard-
ware, and perhaps with the assistance of tools such as GDB running with User
Mode Linux. At least one person has expressed interest in adapting that approach,
hooking it up to a simulator for a microcontroller. Such simulators can help debug
subsystems where the runtime hardware is unfriendly to software development,
or is not yet available.

Support for other controllers is expected to be developed and contributed over
time, as this driver framework evolves.

632 Chapter 20. Linux USB API

Linux Driver-api Documentation

20.2.5 Gadget Drivers

In addition to Gadget Zero (used primarily for testing and development with
drivers for usb controller hardware), other gadget drivers exist.

There’s an ethernet gadget driver, which implements one of the most useful Com-
munications Device Class (CDC) models. One of the standards for cable modem
interoperability even specifies the use of this ethernet model as one of two manda-
tory options. Gadgets using this code look to a USB host as if they’re an Ethernet
adapter. It provides access to a network where the gadget’s CPU is one host,
which could easily be bridging, routing, or firewalling access to other networks.
Since some hardware can’t fully implement the CDC Ethernet requirements, this
driver also implements a“good parts only”subset of CDC Ethernet. (That subset
doesn’t advertise itself as CDC Ethernet, to avoid creating problems.)
Support for Microsoft’s RNDIS protocol has been contributed by Pengutronix and
Auerswald GmbH. This is like CDC Ethernet, but it runs on more slightly USB
hardware (but less than the CDC subset). However, its main claim to fame is
being able to connect directly to recent versions of Windows, using drivers that
Microsoft bundles and supports, making it much simpler to network withWindows.

There is also support for user mode gadget drivers, using gadgetfs. This provides
a User Mode API that presents each endpoint as a single file descriptor. I/O is done
using normal read() and read() calls. Familiar tools like GDB and pthreads can
be used to develop and debug user mode drivers, so that once a robust controller
driver is available many applications for it won’t require new kernel mode soft-
ware. Linux 2.6 Async I/O (AIO) support is available, so that user mode software
can stream data with only slightly more overhead than a kernel driver.

There’s a USB Mass Storage class driver, which provides a different solution for
interoperability with systems such asMS-Windows andMacOS. ThatMass Storage
driver uses a file or block device as backing store for a drive, like the loop driver.
The USB host uses the BBB, CB, or CBI versions of the mass storage class spec-
ification, using transparent SCSI commands to access the data from the backing
store.

There’s a“serial line”driver, useful for TTY style operation over USB. The latest
version of that driver supports CDC ACM style operation, like a USB modem, and
so on most hardware it can interoperate easily with MS-Windows. One interesting
use of that driver is in boot firmware (like a BIOS), which can sometimes use that
model with very small systems without real serial lines.

Support for other kinds of gadget is expected to be developed and contributed
over time, as this driver framework evolves.

20.2. USB Gadget API for Linux 633

Linux Driver-api Documentation

20.2.6 USB On-The-GO (OTG)

USB OTG support on Linux 2.6 was initially developed by Texas Instruments for
OMAP 16xx and 17xx series processors. Other OTG systems should work in similar
ways, but the hardware level details could be very different.

Systems need specialized hardware support to implement OTG, notably includ-
ing a special Mini-AB jack and associated transceiver to support Dual-Role op-
eration: they can act either as a host, using the standard Linux-USB host side
driver stack, or as a peripheral, using this gadget framework. To do that, the sys-
tem software relies on small additions to those programming interfaces, and on a
new internal component (here called an“OTG Controller”) affecting which driver
stack connects to the OTG port. In each role, the system can re-use the existing
pool of hardware-neutral drivers, layered on top of the controller driver interfaces
(usb_bus or usb_gadget). Such drivers need at most minor changes, and most of
the calls added to support OTG can also benefit non-OTG products.

• Gadget drivers test the is_otg flag, and use it to determine whether or not
to include an OTG descriptor in each of their configurations.

• Gadget drivers may need changes to support the two new OTG protocols,
exposed in new gadget attributes such as b_hnp_enable flag. HNP support
should be reported through a user interface (two LEDs could suffice), and is
triggered in some cases when the host suspends the peripheral. SRP support
can be user-initiated just like remote wakeup, probably by pressing the same
button.

• On the host side, USB device drivers need to be taught to trigger HNP at ap-
propriate moments, using usb_suspend_device(). That also conserves bat-
tery power, which is useful even for non-OTG configurations.

• Also on the host side, a driver must support the OTG “Targeted Peripheral
List”. That’s just a whitelist, used to reject peripherals not supported with
a given Linux OTG host. This whitelist is product-specific; each product must
modify otg_whitelist.h to match its interoperability specification.

Non-OTG Linux hosts, like PCs andworkstations, normally have some solution
for adding drivers, so that peripherals that aren’t recognized can eventually
be supported. That approach is unreasonable for consumer products that
may never have their firmware upgraded, and where it’s usually unrealistic to
expect traditional PC/workstation/server kinds of support model to work. For
example, it’s often impractical to change device firmware once the product
has been distributed, so driver bugs can’t normally be fixed if they’re found
after shipment.

Additional changes are needed below those hardware-neutral usb_bus and
usb_gadget driver interfaces; those aren’t discussed here in any detail. Those
affect the hardware-specific code for each USB Host or Peripheral controller, and
how the HCD initializes (since OTG can be active only on a single port). They
also involve what may be called an OTG Controller Driver, managing the OTG
transceiver and the OTG state machine logic as well as much of the root hub be-
havior for the OTG port. The OTG controller driver needs to activate and deacti-
vate USB controllers depending on the relevant device role. Some related changes
were needed inside usbcore, so that it can identify OTG-capable devices and re-
spond appropriately to HNP or SRP protocols.

634 Chapter 20. Linux USB API

http://www.omap.com

Linux Driver-api Documentation

20.3 USB Anchors

20.3.1 What is anchor?

A USB driver needs to support some callbacks requiring a driver to cease all IO to
an interface. To do so, a driver has to keep track of the URBs it has submitted to
know they’ve all completed or to call usb_kill_urb for them. The anchor is a data
structure takes care of keeping track of URBs and provides methods to deal with
multiple URBs.

20.3.2 Allocation and Initialisation

There’s no API to allocate an anchor. It is simply declared as struct usb_anchor.
init_usb_anchor() must be called to initialise the data structure.

20.3.3 Deallocation

Once it has no more URBs associated with it, the anchor can be freed with normal
memory management operations.

20.3.4 Association and disassociation of URBs with anchors

An association of URBs to an anchor is made by an explicit call to
usb_anchor_urb(). The association is maintained until an URB is finished by (suc-
cessful) completion. Thus disassociation is automatic. A function is provided to
forcibly finish (kill) all URBs associated with an anchor. Furthermore, disassocia-
tion can be made with usb_unanchor_urb()

20.3.5 Operations on multitudes of URBs

usb_kill_anchored_urbs()

This function kills all URBs associated with an anchor. The URBs are called in the
reverse temporal order they were submitted. This way no data can be reordered.

usb_unlink_anchored_urbs()

This function unlinks all URBs associated with an anchor. The URBs are pro-
cessed in the reverse temporal order they were submitted. This is similar to
usb_kill_anchored_urbs(), but it will not sleep. Therefore no guarantee is made
that the URBs have been unlinked when the call returns. They may be unlinked
later but will be unlinked in finite time.

20.3. USB Anchors 635

Linux Driver-api Documentation

usb_scuttle_anchored_urbs()

All URBs of an anchor are unanchored en masse.

usb_wait_anchor_empty_timeout()

This function waits for all URBs associated with an anchor to finish or a time-
out, whichever comes first. Its return value will tell you whether the timeout was
reached.

usb_anchor_empty()

Returns true if no URBs are associated with an anchor. Locking is the caller’s
responsibility.

usb_get_from_anchor()

Returns the oldest anchored URB of an anchor. The URB is unanchored and re-
turned with a reference. As you may mix URBs to several destinations in one an-
chor you have no guarantee the chronologically first submitted URB is returned.

20.4 USB bulk streams

20.4.1 Background

Bulk endpoint streams were added in the USB 3.0 specification. Streams allow a
device driver to overload a bulk endpoint so that multiple transfers can be queued
at once.

Streams are defined in sections 4.4.6.4 and 8.12.1.4 of the Universal Serial Bus
3.0 specification at https://www.usb.org/developers/docs/ The USB Attached SCSI
Protocol, which uses streams to queue multiple SCSI commands, can be found on
the T10 website (https://t10.org/).

20.4.2 Device-side implications

Once a buffer has been queued to a stream ring, the device is notified (through
an out-of-band mechanism on another endpoint) that data is ready for that stream
ID. The device then tells the host which “stream”it wants to start. The host can
also initiate a transfer on a stream without the device asking, but the device can
refuse that transfer. Devices can switch between streams at any time.

636 Chapter 20. Linux USB API

https://www.usb.org/developers/docs/
https://t10.org/

Linux Driver-api Documentation

20.4.3 Driver implications

int usb_alloc_streams(struct usb_interface *interface,
struct usb_host_endpoint **eps, unsigned int num_eps,
unsigned int num_streams, gfp_t mem_flags);

Device drivers will call this API to request that the host controller driver allocate
memory so the driver can use up to num_streams stream IDs. They must pass an
array of usb_host_endpoints that need to be setup with similar stream IDs. This is
to ensure that a UASP driver will be able to use the same stream ID for the bulk
IN and OUT endpoints used in a Bi-directional command sequence.

The return value is an error condition (if one of the endpoints doesn’t support
streams, or the xHCI driver ran out of memory), or the number of streams the host
controller allocated for this endpoint. The xHCI host controller hardware declares
how many stream IDs it can support, and each bulk endpoint on a SuperSpeed
device will say how many stream IDs it can handle. Therefore, drivers should be
able to deal with being allocated less stream IDs than they requested.

Do NOT call this function if you have URBs enqueued for any of the endpoints
passed in as arguments. Do not call this function to request less than two streams.

Drivers will only be allowed to call this API once for the same endpoint without
calling usb_free_streams(). This is a simplification for the xHCI host controller
driver, and may change in the future.

20.4.4 Picking new Stream IDs to use

Stream ID 0 is reserved, and should not be used to communicate with devices. If
usb_alloc_streams() returns with a value of N, you may use streams 1 though
N. To queue an URB for a specific stream, set the urb->stream_id value. If the
endpoint does not support streams, an error will be returned.

Note that new API to choose the next stream ID will have to be added if the xHCI
driver supports secondary stream IDs.

20.4.5 Clean up

If a driver wishes to stop using streams to communicate with the device, it should
call:

void usb_free_streams(struct usb_interface *interface,
struct usb_host_endpoint **eps, unsigned int num_eps,
gfp_t mem_flags);

All stream IDs will be deallocated when the driver releases the interface, to ensure
that drivers that don’t support streams will be able to use the endpoint.

20.4. USB bulk streams 637

Linux Driver-api Documentation

20.5 USB core callbacks

20.5.1 What callbacks will usbcore do?

Usbcore will call into a driver through callbacks defined in the driver structure
and through the completion handler of URBs a driver submits. Only the former
are in the scope of this document. These two kinds of callbacks are completely
independent of each other. Information on the completion callback can be found
in USB Request Block (URB).

The callbacks defined in the driver structure are:

1. Hotplugging callbacks:

• @probe: Called to see if the driver is willing to manage a particular interface
on a device.

• @disconnect: Called when the interface is no longer accessible, usually be-
cause its device has been (or is being) disconnected or the driver module
is being unloaded.

2. Odd backdoor through usbfs:

• @ioctl: Used for drivers that want to talk to userspace through the “usbfs”
filesystem. This lets devices provide ways to expose information to user
space regardless of where they do (or don’t) show up otherwise in the
filesystem.

3. Power management (PM) callbacks:

• @suspend: Called when the device is going to be suspended.
• @resume: Called when the device is being resumed.
• @reset_resume: Called when the suspended device has been reset instead

of being resumed.

4. Device level operations:

• @pre_reset: Called when the device is about to be reset.
• @post_reset: Called after the device has been reset

The ioctl interface (2) should be used only if you have a very good reason. Sysfs
is preferred these days. The PM callbacks are covered separately in Power Man-
agement for USB.

20.5.2 Calling conventions

All callbacks aremutually exclusive. There’s no need for locking against other USB
callbacks. All callbacks are called from a task context. You may sleep. However,
it is important that all sleeps have a small fixed upper limit in time. In particular
you must not call out to user space and await results.

638 Chapter 20. Linux USB API

Linux Driver-api Documentation

20.5.3 Hotplugging callbacks

These callbacks are intended to associate and disassociate a driver with an inter-
face. A driver’s bond to an interface is exclusive.

The probe() callback

int (*probe) (struct usb_interface *intf,
const struct usb_device_id *id);

Accept or decline an interface. If you accept the device return 0, otherwise -
ENODEV or -ENXIO. Other error codes should be used only if a genuine error
occurred during initialisation which prevented a driver from accepting a device
that would else have been accepted. You are strongly encouraged to use usbcore’
s facility, usb_set_intfdata(), to associate a data structure with an interface, so that
you know which internal state and identity you associate with a particular inter-
face. The device will not be suspended and you may do IO to the interface you are
called for and endpoint 0 of the device. Device initialisation that doesn’t take too
long is a good idea here.

The disconnect() callback

void (*disconnect) (struct usb_interface *intf);

This callback is a signal to break any connection with an interface. You are not
allowed any IO to a device after returning from this callback. You also may not do
any other operation that may interfere with another driver bound the interface, eg.
a power management operation. If you are called due to a physical disconnection,
all your URBs will be killed by usbcore. Note that in this case disconnect will
be called some time after the physical disconnection. Thus your driver must be
prepared to deal with failing IO even prior to the callback.

20.5.4 Device level callbacks

pre_reset

int (*pre_reset)(struct usb_interface *intf);

A driver or user space is triggering a reset on the device which contains the inter-
face passed as an argument. Cease IO, wait for all outstanding URBs to complete,
and save any device state you need to restore. No more URBs may be submitted
until the post_reset method is called.

If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if you are
in atomic context.

20.5. USB core callbacks 639

Linux Driver-api Documentation

post_reset

int (*post_reset)(struct usb_interface *intf);

The reset has completed. Restore any saved device state and begin using the
device again.

If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if you are
in atomic context.

20.5.5 Call sequences

No callbacks other than probe will be invoked for an interface that isn’t bound to
your driver.

Probe will never be called for an interface bound to a driver. Hence following a
successful probe, disconnect will be called before there is another probe for the
same interface.

Once your driver is bound to an interface, disconnect can be called at any time
except in between pre_reset and post_reset. pre_reset is always followed by
post_reset, even if the reset failed or the device has been unplugged.

suspend is always followed by one of: resume, reset_resume, or disconnect.

20.6 USB DMA

In Linux 2.5 kernels (and later), USB device drivers have additional control over
how DMA may be used to perform I/O operations. The APIs are detailed in the
kernel usb programming guide (kerneldoc, from the source code).

20.6.1 API overview

The big picture is that USB drivers can continue to ignoremost DMA issues, though
they still must provide DMA-ready buffers (see Documentation/DMA-API-HOWTO.
txt). That’s how they’ve worked through the 2.4 (and earlier) kernels, or they
can now be DMA-aware.

DMA-aware usb drivers:

• New calls enable DMA-aware drivers, letting them allocate dma buffers and
manage dma mappings for existing dma-ready buffers (see below).

• URBs have an additional“transfer_dma”field, as well as a transfer_flags bit
saying if it’s valid. (Control requests also have “setup_dma”, but drivers
must not use it.)

•“usbcore”will map this DMA address, if a DMA-aware driver didn’t do it first
and set URB_NO_TRANSFER_DMA_MAP. HCDs don’t manage dma mappings for
URBs.

640 Chapter 20. Linux USB API

Linux Driver-api Documentation

• There’s a new “generic DMA API”, parts of which are usable by USB de-
vice drivers. Never use dma_set_mask() on any USB interface or device; that
would potentially break all devices sharing that bus.

20.6.2 Eliminating copies

It’s good to avoid making CPUs copy data needlessly. The costs can add up, and
effects like cache-trashing can impose subtle penalties.

• If you’re doing lots of small data transfers from the same buffer all the time,
that can really burn up resources on systems which use an IOMMU tomanage
the DMA mappings. It can cost MUCH more to set up and tear down the
IOMMU mappings with each request than perform the I/O!

For those specific cases, USB has primitives to allocate less expensive mem-
ory. They work like kmalloc and kfree versions that give you the right kind
of addresses to store in urb->transfer_buffer and urb->transfer_dma. You’d
also set URB_NO_TRANSFER_DMA_MAP in urb->transfer_flags:

void *usb_alloc_coherent (struct usb_device *dev, size_t size,
int mem_flags, dma_addr_t *dma);

void usb_free_coherent (struct usb_device *dev, size_t size,
void *addr, dma_addr_t dma);

Most drivers should NOT be using these primitives; they don’t need to use
this type of memory (“dma-coherent”), and memory returned from kmalloc()
will work just fine.

The memory buffer returned is“dma-coherent”; sometimes you might need
to force a consistent memory access ordering by using memory barriers.
It’s not using a streaming DMA mapping, so it’s good for small trans-
fers on systems where the I/O would otherwise thrash an IOMMU mapping.
(See Documentation/DMA-API-HOWTO.txt for definitions of “coherent”and
“streaming”DMA mappings.)
Asking for 1/Nth of a page (as well as asking for N pages) is reasonably space-
efficient.

On most systems the memory returned will be uncached, because the seman-
tics of dma-coherent memory require either bypassing CPU caches or using
cache hardware with bus-snooping support. While x86 hardware has such
bus-snooping, many other systems use software to flush cache lines to pre-
vent DMA conflicts.

• Devices on some EHCI controllers could handle DMA to/from high memory.

Unfortunately, the current Linux DMA infrastructure doesn’t have a sane
way to expose these capabilities ⋯and in any case, HIGHMEM is mostly a
design wart specific to x86_32. So your best bet is to ensure you never pass
a highmem buffer into a USB driver. That’s easy; it’s the default behavior.
Just don’t override it; e.g. with NETIF_F_HIGHDMA.
This may force your callers to do some bounce buffering, copying from high
memory to “normal”DMA memory. If you can come up with a good way to

20.6. USB DMA 641

Linux Driver-api Documentation

fix this issue (for x86_32 machines with over 1 GByte of memory), feel free to
submit patches.

20.6.3 Working with existing buffers

Existing buffers aren’t usable for DMAwithout first beingmapped into the DMA ad-
dress space of the device. However, most buffers passed to your driver can safely
be used with such DMA mapping. (See the first section of Documentation/DMA-
API-HOWTO.txt, titled “What memory is DMA-able?”)
• When you’re using scatterlists, you can map everything at once. On some
systems, this kicks in an IOMMU and turns the scatterlists into single DMA
transactions:

int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int nents);

void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int n_hw_ents);

void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
struct scatterlist *sg, int n_hw_ents);

It’s probably easier to use the new usb_sg_*() calls, which do the DMA
mapping and apply other tweaks to make scatterlist i/o be fast.

• Some drivers may prefer to work with the model that they’re mapping large
buffers, synchronizing their safe re-use. (If there’s no re-use, then let usbcore
do themap/unmap.) Large periodic transfersmake good examples here, since
it’s cheaper to just synchronize the buffer than to unmap it each time an urb
completes and then re-map it on during resubmission.

These calls all work with initialized urbs: urb->dev, urb->pipe,
urb->transfer_buffer, and urb->transfer_buffer_length must all
be valid when these calls are used (urb->setup_packet must be valid too if
urb is a control request):

struct urb *usb_buffer_map (struct urb *urb);

void usb_buffer_dmasync (struct urb *urb);

void usb_buffer_unmap (struct urb *urb);

The calls manage urb->transfer_dma for you, and set
URB_NO_TRANSFER_DMA_MAP so that usbcore won’t map or unmap the
buffer. They cannot be used for setup_packet buffers in control requests.

Note that several of those interfaces are currently commented out, since they don’t
have current users. See the source code. Other than the dmasync calls (where the
underlying DMA primitives have changed), most of them can easily be commented
back in if you want to use them.

642 Chapter 20. Linux USB API

Linux Driver-api Documentation

20.7 USB Request Block (URB)

Revised 2000-Dec-05
Again 2002-Jul-06
Again 2005-Sep-19
Again 2017-Mar-29

Note: The USB subsystem now has a substantial section at The Linux-USB Host
Side API section, generated from the current source code. This particular docu-
mentation file isn’t complete and may not be updated to the last version; don’t
rely on it except for a quick overview.

20.7.1 Basic concept or ‘What is an URB?’

The basic idea of the new driver is message passing, the message itself is called
USB Request Block, or URB for short.

• An URB consists of all relevant information to execute any USB transaction
and deliver the data and status back.

• Execution of an URB is inherently an asynchronous operation, i.e. the
usb_submit_urb() call returns immediately after it has successfully queued
the requested action.

• Transfers for one URB can be canceled with usb_unlink_urb() at any time.

• Each URB has a completion handler, which is called after the action has been
successfully completed or canceled. The URB also contains a context-pointer
for passing information to the completion handler.

• Each endpoint for a device logically supports a queue of requests. You can
fill that queue, so that the USB hardware can still transfer data to an end-
point while your driver handles completion of another. This maximizes use of
USB bandwidth, and supports seamless streaming of data to (or from) devices
when using periodic transfer modes.

20.7.2 The URB structure

Some of the fields in struct urb are:

struct urb
{
// (IN) device and pipe specify the endpoint queue

struct usb_device *dev; // pointer to associated USB device
unsigned int pipe; // endpoint information

unsigned int transfer_flags; // URB_ISO_ASAP, URB_SHORT_NOT_OK,␣
↪→etc.

(continues on next page)

20.7. USB Request Block (URB) 643

Linux Driver-api Documentation

(continued from previous page)
// (IN) all urbs need completion routines

void *context; // context for completion routine
usb_complete_t complete; // pointer to completion routine

// (OUT) status after each completion
int status; // returned status

// (IN) buffer used for data transfers
void *transfer_buffer; // associated data buffer
u32 transfer_buffer_length; // data buffer length
int number_of_packets; // size of iso_frame_desc

// (OUT) sometimes only part of CTRL/BULK/INTR transfer_buffer is used
u32 actual_length; // actual data buffer length

// (IN) setup stage for CTRL (pass a struct usb_ctrlrequest)
unsigned char *setup_packet; // setup packet (control only)

// Only for PERIODIC transfers (ISO, INTERRUPT)
// (IN/OUT) start_frame is set unless URB_ISO_ASAP isn't set

int start_frame; // start frame
int interval; // polling interval

// ISO only: packets are only "best effort"; each can have errors
int error_count; // number of errors
struct usb_iso_packet_descriptor iso_frame_desc[0];

};

Your drivermust create the“pipe”value using values from the appropriate endpoint
descriptor in an interface that it’s claimed.

20.7.3 How to get an URB?

URBs are allocated by calling usb_alloc_urb():

struct urb *usb_alloc_urb(int isoframes, int mem_flags)

Return value is a pointer to the allocated URB, 0 if allocation failed. The param-
eter isoframes specifies the number of isochronous transfer frames you want to
schedule. For CTRL/BULK/INT, use 0. The mem_flags parameter holds standard
memory allocation flags, letting you control (among other things) whether the un-
derlying code may block or not.

To free an URB, use usb_free_urb():

void usb_free_urb(struct urb *urb)

You may free an urb that you’ve submitted, but which hasn’t yet been returned
to you in a completion callback. It will automatically be deallocated when it is no
longer in use.

644 Chapter 20. Linux USB API

Linux Driver-api Documentation

20.7.4 What has to be filled in?

Depending on the type of transaction, there are some inline functions defined
in linux/usb.h to simplify the initialization, such as usb_fill_control_urb(),
usb_fill_bulk_urb() and usb_fill_int_urb(). In general, they need the usb
device pointer, the pipe (usual format from usb.h), the transfer buffer, the desired
transfer length, the completion handler, and its context. Take a look at the some
existing drivers to see how they’re used.
Flags:

• For ISO there are two startup behaviors: Specified start_frame or ASAP.

• For ASAP set URB_ISO_ASAP in transfer_flags.

If short packets should NOT be tolerated, set URB_SHORT_NOT_OK in transfer_flags.

20.7.5 How to submit an URB?

Just call usb_submit_urb():

int usb_submit_urb(struct urb *urb, int mem_flags)

The mem_flags parameter, such as GFP_ATOMIC, controls memory allocation, such
as whether the lower levels may block when memory is tight.

It immediately returns, either with status 0 (request queued) or some error code,
usually caused by the following:

• Out of memory (-ENOMEM)

• Unplugged device (-ENODEV)

• Stalled endpoint (-EPIPE)

• Too many queued ISO transfers (-EAGAIN)

• Too many requested ISO frames (-EFBIG)

• Invalid INT interval (-EINVAL)

• More than one packet for INT (-EINVAL)

After submission, urb->status is -EINPROGRESS; however, you should never look
at that value except in your completion callback.

For isochronous endpoints, your completion handlers should (re)submit URBs to
the same endpoint with the URB_ISO_ASAP flag, using multi-buffering, to get seam-
less ISO streaming.

20.7. USB Request Block (URB) 645

Linux Driver-api Documentation

20.7.6 How to cancel an already running URB?

There are two ways to cancel an URB you’ve submitted but which hasn’t been
returned to your driver yet. For an asynchronous cancel, call usb_unlink_urb():

int usb_unlink_urb(struct urb *urb)

It removes the urb from the internal list and frees all allocatedHWdescriptors. The
status is changed to reflect unlinking. Note that the URB will not normally have
finished when usb_unlink_urb() returns; you must still wait for the completion
handler to be called.

To cancel an URB synchronously, call usb_kill_urb():

void usb_kill_urb(struct urb *urb)

It does everything usb_unlink_urb() does, and in addition it waits until after the
URB has been returned and the completion handler has finished. It also marks
the URB as temporarily unusable, so that if the completion handler or anyone else
tries to resubmit it they will get a -EPERM error. Thus you can be sure that when
usb_kill_urb() returns, the URB is totally idle.

There is a lifetime issue to consider. An URB may complete at any time, and the
completion handler may free the URB. If this happens while usb_unlink_urb() or
usb_kill_urb() is running, it will cause a memory-access violation. The driver is
responsible for avoiding this, which often means some sort of lock will be needed
to prevent the URB from being deallocated while it is still in use.

On the other hand, since usb_unlink_urb may end up calling the completion han-
dler, the handler must not take any lock that is held when usb_unlink_urb is in-
voked. The general solution to this problem is to increment the URB’s refer-
ence count while holding the lock, then drop the lock and call usb_unlink_urb or
usb_kill_urb, and then decrement the URB’s reference count. You increment the
reference count by calling :c:func`usb_get_urb`:

struct urb *usb_get_urb(struct urb *urb)

(ignore the return value; it is the same as the argument) and decrement the ref-
erence count by calling usb_free_urb(). Of course, none of this is necessary if
there’s no danger of the URB being freed by the completion handler.

20.7.7 What about the completion handler?

The handler is of the following type:

typedef void (*usb_complete_t)(struct urb *)

I.e., it gets the URB that caused the completion call. In the completion handler, you
should have a look at urb->status to detect any USB errors. Since the context
parameter is included in the URB, you can pass information to the completion
handler.

Note that even when an error (or unlink) is reported, data may have been trans-
ferred. That’s because USB transfers are packetized; it might take sixteen packets

646 Chapter 20. Linux USB API

Linux Driver-api Documentation

to transfer your 1KByte buffer, and ten of them might have transferred success-
fully before the completion was called.

Warning: NEVER SLEEP IN A COMPLETION HANDLER.
These are often called in atomic context.

In the current kernel, completion handlers run with local interrupts disabled, but
in the future this will be changed, so don’t assume that local IRQs are always
disabled inside completion handlers.

20.7.8 How to do isochronous (ISO) transfers?

Besides the fields present on a bulk transfer, for ISO, you also also have to set
urb->interval to say how often to make transfers; it’s often one per frame
(which is once every microframe for highspeed devices). The actual interval used
will be a power of two that’s no bigger than what you specify. You can use the
usb_fill_int_urb() macro to fill most ISO transfer fields.

For ISO transfers you also have to fill a usb_iso_packet_descriptor structure,
allocated at the end of the URB by usb_alloc_urb(), for each packet you want to
schedule.

The usb_submit_urb() call modifies urb->interval to the implemented interval
value that is less than or equal to the requested interval value. If URB_ISO_ASAP
scheduling is used, urb->start_frame is also updated.

For each entry you have to specify the data offset for this frame (base is trans-
fer_buffer), and the length you want to write/expect to read. After completion,
actual_length contains the actual transferred length and status contains the re-
sulting status for the ISO transfer for this frame. It is allowed to specify a vary-
ing length from frame to frame (e.g. for audio synchronisation/adaptive transfer
rates). You can also use the length 0 to omit one or more frames (striping).

For scheduling you can choose your own start frame or URB_ISO_ASAP. As ex-
plained earlier, if you always keep at least one URB queued and your completion
keeps (re)submitting a later URB, you’ll get smooth ISO streaming (if usb band-
width utilization allows).

If you specify your own start frame, make sure it’s several frames in advance of
the current frame. You might want this model if you’re synchronizing ISO data
with some other event stream.

20.7. USB Request Block (URB) 647

Linux Driver-api Documentation

20.7.9 How to start interrupt (INT) transfers?

Interrupt transfers, like isochronous transfers, are periodic, and happen in in-
tervals that are powers of two (1, 2, 4 etc) units. Units are frames for full
and low speed devices, and microframes for high speed ones. You can use the
usb_fill_int_urb() macro to fill INT transfer fields.

The usb_submit_urb() call modifies urb->interval to the implemented interval
value that is less than or equal to the requested interval value.

In Linux 2.6, unlike earlier versions, interrupt URBs are not automagically
restarted when they complete. They end when the completion handler is called,
just like other URBs. If you want an interrupt URB to be restarted, your completion
handler must resubmit it. s

20.8 Power Management for USB

Author Alan Stern <stern@rowland.harvard.edu>
Date Last-updated: February 2014

20.8.1 What is Power Management?

Power Management (PM) is the practice of saving energy by suspending parts of a
computer system when they aren’t being used. While a component is suspended
it is in a nonfunctional low-power state; it might even be turned off completely. A
suspended component can be resumed (returned to a functional full-power state)
when the kernel needs to use it. (There also are forms of PM in which components
are placed in a less functional but still usable state instead of being suspended; an
example would be reducing the CPU’s clock rate. This document will not discuss
those other forms.)

When the parts being suspended include the CPU and most of the rest of the sys-
tem, we speak of it as a “system suspend”. When a particular device is turned
off while the system as a whole remains running, we call it a “dynamic suspend”
(also known as a “runtime suspend”or “selective suspend”). This document
concentrates mostly on how dynamic PM is implemented in the USB subsystem,
although system PM is covered to some extent (see Documentation/power/*.rst
for more information about system PM).

System PM support is present only if the kernel was built with CONFIG_SUSPEND or
CONFIG_HIBERNATION enabled. Dynamic PM support

for USB is present whenever the kernel was built with CONFIG_PM enabled.

[Historically, dynamic PM support for USB was present only if the ker-
nel had been built with CONFIG_USB_SUSPEND enabled (which depended on
CONFIG_PM_RUNTIME). Starting with the 3.10 kernel release, dynamic PM support
for USB was present whenever the kernel was built with CONFIG_PM_RUNTIME en-
abled. The CONFIG_USB_SUSPEND option had been eliminated.]

648 Chapter 20. Linux USB API

mailto:stern@rowland.harvard.edu

Linux Driver-api Documentation

20.8.2 What is Remote Wakeup?

When a device has been suspended, it generally doesn’t resume until the computer
tells it to. Likewise, if the entire computer has been suspended, it generally doesn’
t resume until the user tells it to, say by pressing a power button or opening the
cover.

However some devices have the capability of resuming by themselves, or asking
the kernel to resume them, or even telling the entire computer to resume. This
capability goes by several names such as “Wake On LAN”; we will refer to it
generically as“remote wakeup”. When a device is enabled for remote wakeup and
it is suspended, it may resume itself (or send a request to be resumed) in response
to some external event. Examples include a suspended keyboard resuming when
a key is pressed, or a suspended USB hub resuming when a device is plugged in.

20.8.3 When is a USB device idle?

A device is idle whenever the kernel thinks it’s not busy doing anything important
and thus is a candidate for being suspended. The exact definition depends on the
device’s driver; drivers are allowed to declare that a device isn’t idle even when
there’s no actual communication taking place. (For example, a hub isn’t consid-
ered idle unless all the devices plugged into that hub are already suspended.) In
addition, a device isn’t considered idle so long as a program keeps its usbfs file
open, whether or not any I/O is going on.

If a USB device has no driver, its usbfs file isn’t open, and it isn’t being accessed
through sysfs, then it definitely is idle.

20.8.4 Forms of dynamic PM

Dynamic suspends occur when the kernel decides to suspend an idle device. This
is called autosuspend for short. In general, a device won’t be autosuspended
unless it has been idle for some minimum period of time, the so-called idle-delay
time.

Of course, nothing the kernel does on its own initiative should prevent the com-
puter or its devices from working properly. If a device has been autosuspended
and a program tries to use it, the kernel will automatically resume the device
(autoresume). For the same reason, an autosuspended device will usually have
remote wakeup enabled, if the device supports remote wakeup.

It is worth mentioning that many USB drivers don’t support autosuspend. In fact,
at the time of this writing (Linux 2.6.23) the only drivers which do support it are the
hub driver, kaweth, asix, usblp, usblcd, and usb-skeleton (which doesn’t count). If
a non-supporting driver is bound to a device, the device won’t be autosuspended.
In effect, the kernel pretends the device is never idle.

We can categorize power management events in two broad classes: external and
internal. External events are those triggered by some agent outside the USB stack:
system suspend/resume (triggered by userspace), manual dynamic resume (also
triggered by userspace), and remote wakeup (triggered by the device). Internal
events are those triggered within the USB stack: autosuspend and autoresume.

20.8. Power Management for USB 649

Linux Driver-api Documentation

Note that all dynamic suspend events are internal; external agents are not allowed
to issue dynamic suspends.

20.8.5 The user interface for dynamic PM

The user interface for controlling dynamic PM is located in the power/ subdirec-
tory of each USB device’s sysfs directory, that is, in /sys/bus/usb/devices/...
/power/ where“⋯”is the device’s ID. The relevant attribute files are: wakeup,
control, and autosuspend_delay_ms. (There may also be a file named level;
this file was deprecated as of the 2.6.35 kernel and replaced by the control
file. In 2.6.38 the autosuspend file will be deprecated and replaced by the
autosuspend_delay_ms file. The only difference is that the newer file expresses
the delay in milliseconds whereas the older file uses seconds. Confusingly, both
files are present in 2.6.37 but only autosuspend works.)

power/wakeup

This file is empty if the device does not support remote wakeup.
Otherwise the file contains either the word enabled or the word
disabled, and you can write those words to the file. The setting
determines whether or not remote wakeupwill be enabled when
the device is next suspended. (If the setting is changed while
the device is suspended, the change won’t take effect until the
following suspend.)

power/control

This file contains one of two words: on or auto. You can write
those words to the file to change the device’s setting.
• on means that the device should be resumed and autosus-
pend is not allowed. (Of course, system suspends are still
allowed.)

• auto is the normal state in which the kernel is allowed to
autosuspend and autoresume the device.

(In kernels up to 2.6.32, you could also specify suspend, mean-
ing that the device should remain suspended and autoresume
was not allowed. This setting is no longer supported.)

power/autosuspend_delay_ms

This file contains an integer value, which is the number of mil-
liseconds the device should remain idle before the kernel will
autosuspend it (the idle-delay time). The default is 2000. 0
means to autosuspend as soon as the device becomes idle, and
negative values mean never to autosuspend. You can write a
number to the file to change the autosuspend idle-delay time.

Writing -1 to power/autosuspend_delay_ms and writing on to power/control do
essentially the same thing – they both prevent the device from being autosus-
pended. Yes, this is a redundancy in the API.

(In 2.6.21 writing 0 to power/autosuspend would prevent the device from being
autosuspended; the behavior was changed in 2.6.22. The power/autosuspend

650 Chapter 20. Linux USB API

Linux Driver-api Documentation

attribute did not exist prior to 2.6.21, and the power/level attribute did
not exist prior to 2.6.22. power/control was added in 2.6.34, and power/
autosuspend_delay_ms was added in 2.6.37 but did not become functional until
2.6.38.)

20.8.6 Changing the default idle-delay time

The default autosuspend idle-delay time (in seconds) is controlled by a module
parameter in usbcore. You can specify the value when usbcore is loaded. For
example, to set it to 5 seconds instead of 2 you would do:

modprobe usbcore autosuspend=5

Equivalently, you could add to a configuration file in /etc/modprobe.d a line saying:

options usbcore autosuspend=5

Some distributions load the usbcore module very early during the boot process,
by means of a program or script running from an initramfs image. To alter the
parameter value you would have to rebuild that image.

If usbcore is compiled into the kernel rather than built as a loadable module, you
can add:

usbcore.autosuspend=5

to the kernel’s boot command line.
Finally, the parameter value can be changed while the system is running. If you
do:

echo 5 >/sys/module/usbcore/parameters/autosuspend

then each new USB device will have its autosuspend idle-delay initialized to 5.
(The idle-delay values for already existing devices will not be affected.)

Setting the initial default idle-delay to -1 will prevent any autosuspend of any USB
device. This has the benefit of allowing you then to enable autosuspend for se-
lected devices.

20.8.7 Warnings

The USB specification states that all USB devices must support power manage-
ment. Nevertheless, the sad fact is that many devices do not support it very well.
You can suspend them all right, but when you try to resume them they disconnect
themselves from the USB bus or they stop working entirely. This seems to be espe-
cially prevalent among printers and scanners, but plenty of other types of device
have the same deficiency.

For this reason, by default the kernel disables autosuspend (the power/control
attribute is initialized to on) for all devices other than hubs. Hubs, at least, appear
to be reasonably well-behaved in this regard.

20.8. Power Management for USB 651

Linux Driver-api Documentation

(In 2.6.21 and 2.6.22 this wasn’t the case. Autosuspend was enabled by default
for almost all USB devices. A number of people experienced problems as a result.)

This means that non-hub devices won’t be autosuspended unless the user or a
program explicitly enables it. As of this writing there aren’t any widespread
programs which will do this; we hope that in the near future device managers
such as HAL will take on this added responsibility. In the meantime you can always
carry out the necessary operations by hand or add them to a udev script. You can
also change the idle-delay time; 2 seconds is not the best choice for every device.

If a driver knows that its device has proper suspend/resume support, it can enable
autosuspend all by itself. For example, the video driver for a laptop’s webcam
might do this (in recent kernels they do), since these devices are rarely used and
so should normally be autosuspended.

Sometimes it turns out that even when a device does work okay with autosus-
pend there are still problems. For example, the usbhid driver, which manages
keyboards and mice, has autosuspend support. Tests with a number of keyboards
show that typing on a suspended keyboard, while causing the keyboard to do a re-
mote wakeup all right, will nonetheless frequently result in lost keystrokes. Tests
with mice show that some of them will issue a remote-wakeup request in response
to button presses but not to motion, and some in response to neither.

The kernel will not prevent you from enabling autosuspend on devices that can’t
handle it. It is even possible in theory to damage a device by suspending it at the
wrong time. (Highly unlikely, but possible.) Take care.

20.8.8 The driver interface for Power Management

The requirements for a USB driver to support external power management are
pretty modest; the driver need only define:

.suspend

.resume

.reset_resume

methods in its usb_driver structure, and the reset_resume method is optional.
The methods’jobs are quite simple:
• The suspend method is called to warn the driver that the device is going to
be suspended. If the driver returns a negative error code, the suspend will
be aborted. Normally the driver will return 0, in which case it must cancel
all outstanding URBs (usb_kill_urb()) and not submit any more.

• The resume method is called to tell the driver that the device has been re-
sumed and the driver can return to normal operation. URBs may once more
be submitted.

• The reset_resumemethod is called to tell the driver that the device has been
resumed and it also has been reset. The driver should redo any necessary
device initialization, since the device has probably lost most or all of its state
(although the interfaces will be in the same altsettings as before the suspend).

If the device is disconnected or powered down while it is suspended, the
disconnectmethod will be called instead of the resume or reset_resumemethod.

652 Chapter 20. Linux USB API

Linux Driver-api Documentation

This is also quite likely to happen when waking up from hibernation, as many sys-
tems do not maintain suspend current to the USB host controllers during hiberna-
tion. (It’s possible to work around the hibernation-forces-disconnect problem by
using the USB Persist facility.)

The reset_resume method is used by the USB Persist facility (see USB device
persistence during system suspend) and it can also be used under certain circum-
stances when CONFIG_USB_PERSIST is not enabled. Currently, if a device is reset
during a resume and the driver does not have a reset_resume method, the driver
won’t receive any notification about the resume. Later kernels will call the driver’
s disconnect method; 2.6.23 doesn’t do this.
USB drivers are bound to interfaces, so their suspend and resume methods get
called when the interfaces are suspended or resumed. In principle one might want
to suspend some interfaces on a device (i.e., force the drivers for those interface to
stop all activity) without suspending the other interfaces. The USB core doesn’t
allow this; all interfaces are suspended when the device itself is suspended and all
interfaces are resumed when the device is resumed. It isn’t possible to suspend
or resume some but not all of a device’s interfaces. The closest you can come is
to unbind the interfaces’drivers.

20.8.9 The driver interface for autosuspend and autoresume

To support autosuspend and autoresume, a driver should implement all three of the
methods listed above. In addition, a driver indicates that it supports autosuspend
by setting the .supports_autosuspend flag in its usb_driver structure. It is then
responsible for informing the USB core whenever one of its interfaces becomes
busy or idle. The driver does so by calling these six functions:

int usb_autopm_get_interface(struct usb_interface *intf);
void usb_autopm_put_interface(struct usb_interface *intf);
int usb_autopm_get_interface_async(struct usb_interface *intf);
void usb_autopm_put_interface_async(struct usb_interface *intf);
void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);

The functions work by maintaining a usage counter in the usb_interface’s em-
bedded device structure. When the counter is > 0 then the interface is deemed
to be busy, and the kernel will not autosuspend the interface’s device. When the
usage counter is = 0 then the interface is considered to be idle, and the kernel
may autosuspend the device.

Drivers must be careful to balance their overall changes to the usage counter.
Unbalanced“get”s will remain in effect when a driver is unbound from its interface,
preventing the device from going into runtime suspend should the interface be
bound to a driver again. On the other hand, drivers are allowed to achieve this
balance by calling the usb_autopm_* functions even after their disconnect routine
has returned – say from within a work-queue routine – provided they retain an
active reference to the interface (via usb_get_intf and usb_put_intf).

Drivers using the async routines are responsible for their own synchronization and
mutual exclusion.

usb_autopm_get_interface() increments the usage counter and does

20.8. Power Management for USB 653

Linux Driver-api Documentation

an autoresume if the device is suspended. If the autoresume fails, the
counter is decremented back.

usb_autopm_put_interface() decrements the usage counter and at-
tempts an autosuspend if the new value is = 0.

usb_autopm_get_interface_async() and usb_autopm_put_interface_async()
do almost the same things as their non-async counterparts. The big
difference is that they use a workqueue to do the resume or suspend
part of their jobs. As a result they can be called in an atomic context,
such as an URB’s completion handler, but when they return the device
will generally not yet be in the desired state.

usb_autopm_get_interface_no_resume() and
usb_autopm_put_interface_no_suspend() merely increment or
decrement the usage counter; they do not attempt to carry out an
autoresume or an autosuspend. Hence they can be called in an atomic
context.

The simplest usage pattern is that a driver calls usb_autopm_get_interface() in
its open routine and usb_autopm_put_interface() in its close or release routine.
But other patterns are possible.

The autosuspend attempts mentioned above will often fail for one reason or an-
other. For example, the power/control attribute might be set to on, or another
interface in the same device might not be idle. This is perfectly normal. If the
reason for failure was that the device hasn’t been idle for long enough, a timer
is scheduled to carry out the operation automatically when the autosuspend idle-
delay has expired.

Autoresume attempts also can fail, although failure would mean that the device is
no longer present or operating properly. Unlike autosuspend, there’s no idle-delay
for an autoresume.

20.8.10 Other parts of the driver interface

Drivers can enable autosuspend for their devices by calling:

usb_enable_autosuspend(struct usb_device *udev);

in their probe() routine, if they know that the device is capable of suspending
and resuming correctly. This is exactly equivalent to writing auto to the device’s
power/control attribute. Likewise, drivers can disable autosuspend by calling:

usb_disable_autosuspend(struct usb_device *udev);

This is exactly the same as writing on to the power/control attribute.

Sometimes a driver needs to make sure that remote wakeup is enabled during
autosuspend. For example, there’s not much point autosuspending a keyboard if
the user can’t cause the keyboard to do a remote wakeup by typing on it. If the
driver sets intf->needs_remote_wakeup to 1, the kernel won’t autosuspend the
device if remote wakeup isn’t available. (If the device is already autosuspended,
though, setting this flag won’t cause the kernel to autoresume it. Normally a driver

654 Chapter 20. Linux USB API

Linux Driver-api Documentation

would set this flag in its probemethod, at which time the device is guaranteed not
to be autosuspended.)

If a driver does its I/O asynchronously in interrupt context, it should
call usb_autopm_get_interface_async() before starting output and
usb_autopm_put_interface_async() when the output queue drains. When
it receives an input event, it should call:

usb_mark_last_busy(struct usb_device *udev);

in the event handler. This tells the PM core that the device was just busy and
therefore the next autosuspend idle-delay expiration should be pushed back. Many
of the usb_autopm_* routines also make this call, so drivers need to worry only
when interrupt-driven input arrives.

Asynchronous operation is always subject to races. For example, a driver may
call the usb_autopm_get_interface_async() routine at a time when the core has
just finished deciding the device has been idle for long enough but not yet gotten
around to calling the driver’s suspend method. The suspend method must be
responsible for synchronizing with the I/O request routine and the URB completion
handler; it should cause autosuspends to fail with -EBUSY if the driver needs to
use the device.

External suspend calls should never be allowed to fail in this way, only autosuspend
calls. The driver can tell them apart by applying the PMSG_IS_AUTO() macro to
the message argument to the suspend method; it will return True for internal PM
events (autosuspend) and False for external PM events.

20.8.11 Mutual exclusion

For external events – but not necessarily for autosuspend or autoresume – the de-
vice semaphore (udev->dev.sem) will be held when a suspend or resume method
is called. This implies that external suspend/resume events are mutually exclu-
sive with calls to probe, disconnect, pre_reset, and post_reset; the USB core
guarantees that this is true of autosuspend/autoresume events as well.

If a driver wants to block all suspend/resume calls during some critical section,
the best way is to lock the device and call usb_autopm_get_interface() (and do
the reverse at the end of the critical section). Holding the device semaphore will
block all external PM calls, and the usb_autopm_get_interface() will prevent
any internal PM calls, even if it fails. (Exercise: Why?)

20.8.12 Interaction between dynamic PM and system PM

Dynamic power management and system power management can interact in a
couple of ways.

Firstly, a device may already be autosuspended when a system suspend occurs.
Since system suspends are supposed to be as transparent as possible, the de-
vice should remain suspended following the system resume. But this theory may
not work out well in practice; over time the kernel’s behavior in this regard has
changed. As of 2.6.37 the policy is to resume all devices during a system resume
and let them handle their own runtime suspends afterward.

20.8. Power Management for USB 655

Linux Driver-api Documentation

Secondly, a dynamic power-management event may occur as a system suspend
is underway. The window for this is short, since system suspends don’t take
long (a few seconds usually), but it can happen. For example, a suspended device
may send a remote-wakeup signal while the system is suspending. The remote
wakeup may succeed, which would cause the system suspend to abort. If the re-
mote wakeup doesn’t succeed, it may still remain active and thus cause the system
to resume as soon as the system suspend is complete. Or the remote wakeup may
fail and get lost. Which outcome occurs depends on timing and on the hardware
and firmware design.

20.8.13 xHCI hardware link PM

xHCI host controller provides hardware link power management to usb2.0 (xHCI
1.0 feature) and usb3.0 devices which support link PM. By enabling hardware LPM,
the host can automatically put the device into lower power state(L1 for usb2.0
devices, or U1/U2 for usb3.0 devices), which state device can enter and resume
very quickly.

The user interface for controlling hardware LPM is located in the power/ subdi-
rectory of each USB device’s sysfs directory, that is, in /sys/bus/usb/devices/
.../power/ where “⋯”is the device’s ID. The relevant attribute files are
usb2_hardware_lpm and usb3_hardware_lpm.

power/usb2_hardware_lpm

When a USB2 device which support LPM is plugged to a xHCI
host root hub which support software LPM, the host will run a
software LPM test for it; if the device enters L1 state and re-
sume successfully and the host supports USB2 hardware LPM,
this file will show up and driver will enable hardware LPM
for the device. You can write y/Y/1 or n/N/0 to the file to en-
able/disable USB2 hardware LPMmanually. This is for test pur-
pose mainly.

power/usb3_hardware_lpm_u1 power/usb3_hardware_lpm_u2

When a USB 3.0 lpm-capable device is plugged in to a xHCI host
which supports link PM, it will check if U1 and U2 exit laten-
cies have been set in the BOS descriptor; if the check is passed
and the host supports USB3 hardware LPM, USB3 hardware
LPM will be enabled for the device and these files will be cre-
ated. The files hold a string value (enable or disable) indicating
whether or not USB3 hardware LPM U1 or U2 is enabled for
the device.

656 Chapter 20. Linux USB API

Linux Driver-api Documentation

20.8.14 USB Port Power Control

In addition to suspending endpoint devices and enabling hardware controlled
link power management, the USB subsystem also has the capability to dis-
able power to ports under some conditions. Power is controlled through Set/
ClearPortFeature(PORT_POWER) requests to a hub. In the case of a root or
platform-internal hub the host controller driver translates PORT_POWER requests
into platform firmware (ACPI) method calls to set the port power state. For more
background see the Linux Plumbers Conference 2012 slides1 and video2:

Upon receiving a ClearPortFeature(PORT_POWER) request a USB port is logically
off, and may trigger the actual loss of VBUS to the port3. VBUS may be maintained
in the case where a hub gangs multiple ports into a shared power well causing
power to remain until all ports in the gang are turned off. VBUS may also be
maintained by hub ports configured for a charging application. In any event a
logically off port will lose connection with its device, not respond to hotplug events,
and not respond to remote wakeup events.

Warning: turning off a port may result in the inability to hot add a device.
Please see “User Interface for Port Power Control”for details.

As far as the effect on the device itself it is similar to what a device goes through
during system suspend, i.e. the power session is lost. Any USB device or driver
that misbehaves with system suspend will be similarly affected by a port power
cycle event. For this reason the implementation shares the same device recovery
path (and honors the same quirks) as the system resume path for the hub.

20.8.15 User Interface for Port Power Control

The port power control mechanism uses the PM runtime system. Poweroff
is requested by clearing the power/pm_qos_no_power_off flag of the port de-
vice (defaults to 1). If the port is disconnected it will immediately receive a
ClearPortFeature(PORT_POWER) request. Otherwise, it will honor the pm runtime
rules and require the attached child device and all descendants to be suspended.
This mechanism is dependent on the hub advertising port power switching in its
hub descriptor (wHubCharacteristics logical power switching mode field).

Note, some interface devices/drivers do not support autosuspend. Userspace may
need to unbind the interface drivers before the usb_device will suspend. An un-
bound interface device is suspended by default. When unbinding, be careful to
unbind interface drivers, not the driver of the parent usb device. Also, leave hub
interface drivers bound. If the driver for the usb device (not interface) is unbound
the kernel is no longer able to resume the device. If a hub interface driver is
unbound, control of its child ports is lost and all attached child-devices will dis-
connect. A good rule of thumb is that if the ‘driver/module’link for a device

1 http://dl.dropbox.com/u/96820575/sarah-sharp-lpt-port-power-off2-mini.pdf
2 http://linuxplumbers.ubicast.tv/videos/usb-port-power-off-kerneluserspace-api/
3 USB 3.1 Section 10.12
wakeup note: if a device is configured to send wakeup events the port power control implemen-

tation will block poweroff attempts on that port.

20.8. Power Management for USB 657

http://dl.dropbox.com/u/96820575/sarah-sharp-lpt-port-power-off2-mini.pdf
http://linuxplumbers.ubicast.tv/videos/usb-port-power-off-kerneluserspace-api/

Linux Driver-api Documentation

points to /sys/module/usbcore then unbinding it will interfere with port power
control.

Example of the relevant files for port power control. Note, in this example these
files are relative to a usb hub device (prefix):

prefix=/sys/devices/pci0000:00/0000:00:14.0/usb3/3-1

attached child device +
hub port device + |

hub interface device + | |
v v v

$prefix/3-1:1.0/3-1-port1/device

$prefix/3-1:1.0/3-1-port1/power/pm_qos_no_power_off
$prefix/3-1:1.0/3-1-port1/device/power/control
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intf0>/driver/unbind
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intf1>/driver/unbind
...
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intfN>/driver/unbind

In addition to these files some ports may have a ‘peer’link to a port on another
hub. The expectation is that all superspeed ports have a hi-speed peer:

$prefix/3-1:1.0/3-1-port1/peer -> ../../../../usb2/2-1/2-1:1.0/2-1-port1
../../../../usb2/2-1/2-1:1.0/2-1-port1/peer -> ../../../../usb3/3-1/3-1:1.
↪→0/3-1-port1

Distinct from ‘companion ports’, or ‘ehci/xhci shared switchover ports’peer
ports are simply the hi-speed and superspeed interface pins that are combined
into a single usb3 connector. Peer ports share the same ancestor XHCI device.

While a superspeed port is powered off a device may downgrade its connection
and attempt to connect to the hi-speed pins. The implementation takes steps to
prevent this:

1. Port suspend is sequenced to guarantee that hi-speed ports are powered-off
before their superspeed peer is permitted to power-off. The implication is
that the setting pm_qos_no_power_off to zero on a superspeed port may not
cause the port to power-off until its highspeed peer has gone to its runtime
suspend state. Userspace must take care to order the suspensions if it wants
to guarantee that a superspeed port will power-off.

2. Port resume is sequenced to force a superspeed port to power-on prior to its
highspeed peer.

3. Port resume always triggers an attached child device to resume. After a
power session is lost the device may have been removed, or need reset. Re-
suming the child device when the parent port regains power resolves those
states and clamps the maximum port power cycle frequency at the rate the
child device can suspend (autosuspend-delay) and resume (reset-resume la-
tency).

Sysfs files relevant for port power control:

<hubdev-portX>/power/pm_qos_no_power_off: This writable flag con-
trols the state of an idle port. Once all children and descen-

658 Chapter 20. Linux USB API

Linux Driver-api Documentation

dants have suspended the port may suspend/poweroff provided that
pm_qos_no_power_off is‘0’. If pm_qos_no_power_off is‘1’the port
will remain active/powered regardless of the stats of descendants.
Defaults to 1.

<hubdev-portX>/power/runtime_status: This file reflects whether the
port is‘active’(power is on) or‘suspended’(logically off). There
is no indication to userspace whether VBUS is still supplied.

<hubdev-portX>/connect_type: An advisory read-only flag to
userspace indicating the location and connection type of the
port. It returns one of four values‘hotplug’,‘hardwired’,‘not
used’, and ‘unknown’. All values, besides unknown, are set by
platform firmware.

hotplug indicates an externally connectable/visible port on the plat-
form. Typically userspace would choose to keep such a port pow-
ered to handle new device connection events.

hardwired refers to a port that is not visible but connectable. Exam-
ples are internal ports for USB bluetooth that can be disconnected
via an external switch or a port with a hardwired USB camera. It
is expected to be safe to allow these ports to suspend provided
pm_qos_no_power_off is coordinated with any switch that gates con-
nections. Userspace must arrange for the device to be connected
prior to the port powering off, or to activate the port prior to en-
abling connection via a switch.

not used refers to an internal port that is expected to never have a
device connected to it. These may be empty internal ports, or ports
that are not physically exposed on a platform. Considered safe to
be powered-off at all times.

unknown means platform firmware does not provide information for
this port. Most commonly refers to external hub ports which should
be considered ‘hotplug’for policy decisions.

Note:
• since we are relying on the BIOS to get this ACPI information
correct, the USB port descriptions may be missing or wrong.

• Take care in clearing pm_qos_no_power_off. Once power is off
this port will not respond to new connect events.

Once a child device is attached additional constraints are applied before
the port is allowed to poweroff.

<child>/power/control: Must be auto, and the port will not power
down until <child>/power/runtime_status reflects the ‘sus-
pended’state. Default value is controlled by child device driver.

<child>/power/persist: This defaults to 1 for most devices and indi-
cates if kernel can persist the device’s configuration across a power

20.8. Power Management for USB 659

Linux Driver-api Documentation

session loss (suspend / port-power event). When this value is 0
(quirky devices), port poweroff is disabled.

<child>/driver/unbind: Wakeup capable devices will block port
poweroff. At this time the only mechanism to clear the usb-internal
wakeup-capability for an interface device is to unbind its driver.

Summary of poweroff pre-requisite settings relative to a port device:

echo 0 > power/pm_qos_no_power_off
echo 0 > peer/power/pm_qos_no_power_off # if it exists
echo auto > power/control # this is the default value
echo auto > <child>/power/control
echo 1 > <child>/power/persist # this is the default value

20.8.16 Suggested Userspace Port Power Policy

As noted above userspace needs to be careful and deliberate about what ports are
enabled for poweroff.

The default configuration is that all ports start with power/pm_qos_no_power_off
set to 1 causing ports to always remain active.

Given confidence in the platform firmware’s description of the ports (ACPI
_PLD record for a port populates ‘connect_type’) userspace can clear
pm_qos_no_power_off for all‘not used’ports. The same can be done for‘hard-
wired’ports provided poweroff is coordinated with any connection switch for the
port.

A more aggressive userspace policy is to enable USB port power off for all ports
(set <hubdev-portX>/power/pm_qos_no_power_off to 0) when some external fac-
tor indicates the user has stopped interacting with the system. For example, a
distro may want to enable power off all USB ports when the screen blanks, and
re-power them when the screen becomes active. Smart phones and tablets may
want to power off USB ports when the user pushes the power button.

20.9 USB hotplugging

20.9.1 Linux Hotplugging

In hotpluggable busses like USB (and Cardbus PCI), end-users plug devices into
the bus with power on. In most cases, users expect the devices to become imme-
diately usable. That means the system must do many things, including:

• Find a driver that can handle the device. That may involve loading a kernel
module; newer drivers can use module-init-tools to publish their device (and
class) support to user utilities.

• Bind a driver to that device. Bus frameworks do that using a device driver’s
probe() routine.

660 Chapter 20. Linux USB API

Linux Driver-api Documentation

• Tell other subsystems to configure the new device. Print queues may need
to be enabled, networks brought up, disk partitions mounted, and so on. In
some cases these will be driver-specific actions.

This involves a mix of kernel mode and user mode actions. Making devices be
immediately usable means that any user mode actions can’t wait for an adminis-
trator to do them: the kernel must trigger them, either passively (triggering some
monitoring daemon to invoke a helper program) or actively (calling such a user
mode helper program directly).

Those triggered actions must support a system’s administrative policies; such
programs are called“policy agents”here. Typically they involve shell scripts that
dispatch to more familiar administration tools.

Because some of those actions rely on information about drivers (metadata) that is
currently available only when the drivers are dynamically linked, you get the best
hotplugging when you configure a highly modular system.

20.9.2 Kernel Hotplug Helper (/sbin/hotplug)

There is a kernel parameter: /proc/sys/kernel/hotplug, which normally holds
the pathname /sbin/hotplug. That parameter names a program which the kernel
may invoke at various times.

The /sbin/hotplug program can be invoked by any subsystem as part of its reaction
to a configuration change, from a thread in that subsystem. Only one parameter
is required: the name of a subsystem being notified of some kernel event. That
name is used as the first key for further event dispatch; any other argument and
environment parameters are specified by the subsystem making that invocation.

Hotplug software and other resources is available at:

http://linux-hotplug.sourceforge.net

Mailing list information is also available at that site.

20.9.3 USB Policy Agent

The USB subsystem currently invokes /sbin/hotplug when USB devices are
added or removed from system. The invocation is done by the kernel hub
workqueue [hub_wq], or else as part of root hub initialization (done by init, mod-
probe, kapmd, etc). Its single command line parameter is the string “usb”, and
it passes these environment variables:

ACTION add, remove
PRODUCT USB vendor, product, and version codes (hex)
TYPE device class codes (decimal)
INTERFACE interface 0 class codes (decimal)

If “usbdevfs”is configured, DEVICE and DEVFS are also passed. DEVICE is the
pathname of the device, and is useful for devices with multiple and/or alternate
interfaces that complicate driver selection. By design, USB hotplugging is inde-
pendent of usbdevfs: you can do most essential parts of USB device setup without

20.9. USB hotplugging 661

http://linux-hotplug.sourceforge.net

Linux Driver-api Documentation

using that filesystem, and without running a user mode daemon to detect changes
in system configuration.

Currently available policy agent implementations can load drivers for modules,
and can invoke driver-specific setup scripts. The newest ones leverage USB
module-init-tools support. Later agents might unload drivers.

20.9.4 USB Modutils Support

Current versions of module-init-tools will create a modules.usbmap file which con-
tains the entries from each driver’s MODULE_DEVICE_TABLE. Such files can be used
by various user mode policy agents to make sure all the right driver modules get
loaded, either at boot time or later.

See linux/usb.h for full information about such table entries; or look at existing
drivers. Each table entry describes one or more criteria to be used when matching
a driver to a device or class of devices. The specific criteria are identified by bits set
in“match_flags”, paired with field values. You can construct the criteria directly,
or with macros such as these, and use driver_info to store more information:

USB_DEVICE (vendorId, productId)
... matching devices with specified vendor and product ids

USB_DEVICE_VER (vendorId, productId, lo, hi)
... like USB_DEVICE with lo <= productversion <= hi

USB_INTERFACE_INFO (class, subclass, protocol)
... matching specified interface class info

USB_DEVICE_INFO (class, subclass, protocol)
... matching specified device class info

A short example, for a driver that supports several specific USB devices and their
quirks, might have a MODULE_DEVICE_TABLE like this:

static const struct usb_device_id mydriver_id_table[] = {
{ USB_DEVICE (0x9999, 0xaaaa), driver_info: QUIRK_X },
{ USB_DEVICE (0xbbbb, 0x8888), driver_info: QUIRK_Y|QUIRK_Z },
...
{ } /* end with an all-zeroes entry */

};
MODULE_DEVICE_TABLE(usb, mydriver_id_table);

Most USB device drivers should pass these tables to the USB subsystem as well as
to the module management subsystem. Not all, though: some driver frameworks
connect using interfaces layered over USB, and so they won’t need such a struct
usb_driver.

Drivers that connect directly to the USB subsystem should be declared something
like this:

static struct usb_driver mydriver = {
.name = "mydriver",
.id_table = mydriver_id_table,
.probe = my_probe,
.disconnect = my_disconnect,

(continues on next page)

662 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
/*
if using the usb chardev framework:

.minor = MY_USB_MINOR_START,

.fops = my_file_ops,
if exposing any operations through usbdevfs:

.ioctl = my_ioctl,
*/

};

When the USB subsystem knows about a driver’s device ID table, it’s used
when choosing drivers to probe(). The thread doing new device processing checks
drivers’device ID entries from the MODULE_DEVICE_TABLE against interface and
device descriptors for the device. It will only call probe() if there is a match, and
the third argument to probe() will be the entry that matched.

If you don’t provide an id_table for your driver, then your driver may get probed
for each new device; the third parameter to probe() will be NULL.

20.10 USB device persistence during system suspend

Author Alan Stern <stern@rowland.harvard.edu>
Date September 2, 2006 (Updated February 25, 2008)

20.10.1 What is the problem?

According to the USB specification, when a USB bus is suspended the bus must
continue to supply suspend current (around 1-5 mA). This is so that devices can
maintain their internal state and hubs can detect connect-change events (devices
being plugged in or unplugged). The technical term is “power session”.
If a USB device’s power session is interrupted then the system is required to
behave as though the device has been unplugged. It’s a conservative approach;
in the absence of suspend current the computer has no way to know what has
actually happened. Perhaps the same device is still attached or perhaps it was
removed and a different device plugged into the port. The system must assume
the worst.

By default, Linux behaves according to the spec. If a USB host controller loses
power during a system suspend, then when the system wakes up all the devices
attached to that controller are treated as though they had disconnected. This is
always safe and it is the “officially correct”thing to do.
For many sorts of devices this behavior doesn’t matter in the least. If the kernel
wants to believe that your USB keyboard was unplugged while the system was
asleep and a new keyboard was plugged in when the system woke up, who cares?
It’ll still work the same when you type on it.
Unfortunately problems _can_ arise, particularly with mass-storage devices. The
effect is exactly the same as if the device really had been unplugged while the
system was suspended. If you had a mounted filesystem on the device, you’re
out of luck – everything in that filesystem is now inaccessible. This is especially

20.10. USB device persistence during system suspend 663

mailto:stern@rowland.harvard.edu

Linux Driver-api Documentation

annoying if your root filesystem was located on the device, since your system will
instantly crash.

Loss of power isn’t the only mechanism to worry about. Anything that interrupts
a power session will have the same effect. For example, even though suspend
current may have been maintained while the system was asleep, on many systems
during the initial stages of wakeup the firmware (i.e., the BIOS) resets the moth-
erboard’s USB host controllers. Result: all the power sessions are destroyed and
again it’s as though you had unplugged all the USB devices. Yes, it’s entirely
the BIOS’s fault, but that doesn’t do _you_ any good unless you can convince the
BIOS supplier to fix the problem (lots of luck!).

On many systems the USB host controllers will get reset after a suspend-to-RAM.
On almost all systems, no suspend current is available during hibernation (also
known as swsusp or suspend-to-disk). You can check the kernel log after resuming
to see if either of these has happened; look for lines saying “root hub lost power
or was reset”.
In practice, people are forced to unmount any filesystems on a USB device before
suspending. If the root filesystem is on a USB device, the system can’t be sus-
pended at all. (All right, it _can_ be suspended – but it will crash as soon as it
wakes up, which isn’t much better.)

20.10.2 What is the solution?

The kernel includes a feature called USB-persist. It tries to work around these
issues by allowing the core USB device data structures to persist across a power-
session disruption.

It works like this. If the kernel sees that a USB host controller is not in the expected
state during resume (i.e., if the controller was reset or otherwise had lost power)
then it applies a persistence check to each of the USB devices below that controller
for which the“persist”attribute is set. It doesn’t try to resume the device; that
can’t work once the power session is gone. Instead it issues a USB port reset
and then re-enumerates the device. (This is exactly the same thing that happens
whenever a USB device is reset.) If the re-enumeration shows that the device now
attached to that port has the same descriptors as before, including the Vendor
and Product IDs, then the kernel continues to use the same device structure. In
effect, the kernel treats the device as though it had merely been reset instead of
unplugged.

The same thing happens if the host controller is in the expected state but a USB
device was unplugged and then replugged, or if a USB device fails to carry out a
normal resume.

If no device is now attached to the port, or if the descriptors are different from
what the kernel remembers, then the treatment is what you would expect. The
kernel destroys the old device structure and behaves as though the old device had
been unplugged and a new device plugged in.

The end result is that the USB device remains available and usable. Filesystem
mounts and memory mappings are unaffected, and the world is now a good and
happy place.

664 Chapter 20. Linux USB API

Linux Driver-api Documentation

Note that the“USB-persist”feature will be applied only to those devices for which
it is enabled. You can enable the feature by doing (as root):

echo 1 >/sys/bus/usb/devices/.../power/persist

where the “⋯”should be filled in the with the device’s ID. Disable the feature
by writing 0 instead of 1. For hubs the feature is automatically and permanently
enabled and the power/persist file doesn’t even exist, so you only have to worry
about setting it for devices where it really matters.

20.10.3 Is this the best solution?

Perhaps not. Arguably, keeping track of mounted filesystems and memory map-
pings across device disconnects should be handled by a centralized Logical Volume
Manager. Such a solution would allow you to plug in a USB flash device, create a
persistent volume associated with it, unplug the flash device, plug it back in later,
and still have the same persistent volume associated with the device. As such it
would be more far-reaching than USB-persist.

On the other hand, writing a persistent volume manager would be a big job and
using it would require significant input from the user. This solution is much quicker
and easier – and it exists now, a giant point in its favor!

Furthermore, the USB-persist feature applies to _all_ USB devices, not just mass-
storage devices. It might turn out to be equally useful for other device types, such
as network interfaces.

20.10.4 WARNING: USB-persist can be dangerous!!

When recovering an interrupted power session the kernel does its best to make
sure the USB device hasn’t been changed; that is, the same device is still plugged
into the port as before. But the checks aren’t guaranteed to be 100% accurate.

If you replace one USB device with another of the same type (same manufacturer,
same IDs, and so on) there’s an excellent chance the kernel won’t detect the
change. The serial number string and other descriptors are compared with the
kernel’s stored values, but this might not help since manufacturers frequently
omit serial numbers entirely in their devices.

Furthermore it’s quite possible to leave a USB device exactly the same while
changing its media. If you replace the flash memory card in a USB card reader
while the system is asleep, the kernel will have no way to know you did it. The
kernel will assume that nothing has happened and will continue to use the partition
tables, inodes, and memory mappings for the old card.

If the kernel gets fooled in this way, it’s almost certain to cause data corruption
and to crash your system. You’ll have no one to blame but yourself.
For those devices with avoid_reset_quirk attribute being set, persist maybe fail
because they may morph after reset.

YOU HAVE BEEN WARNED! USE AT YOUR OWN RISK!

20.10. USB device persistence during system suspend 665

Linux Driver-api Documentation

That having been said, most of the time there shouldn’t be any trouble at all. The
USB-persist feature can be extremely useful. Make the most of it.

20.11 USB Error codes

Revised 2004-Oct-21
This is the documentation of (hopefully) all possible error codes (and their inter-
pretation) that can be returned from usbcore.

Some of them are returned by the Host Controller Drivers (HCDs), which device
drivers only see through usbcore. As a rule, all the HCDs should behave the same
except for transfer speed dependent behaviors and the way certain faults are re-
ported.

20.11.1 Error codes returned by usb_submit_urb()

Non-USB-specific:

0 URB submission went fine
-ENOMEM no memory for allocation of internal structures

USB-specific:

666 Chapter 20. Linux USB API

Linux Driver-api Documentation

-EBUSY The URB is already active.
-ENODEV specified USB-device or bus doesn’t

exist
-ENOENT specified interface or endpoint does

not exist or is not enabled
-ENXIO host controller driver does not support

queuing of this type of urb. (treat as a
host controller bug.)

-EINVAL
a) Invalid transfer type specified (or
not supported)

b) Invalid or unsupported periodic
transfer interval

c) ISO: attempted to change trans-
fer interval

d) ISO: number_of_packets is < 0
e) various other cases

-EXDEV ISO: URB_ISO_ASAP wasn’t specified
and all the frames the URB would be
scheduled in have already expired.

-EFBIG Host controller driver can’t schedule
that many ISO frames.

-EPIPE The pipe type specified in the URB
doesn’t match the endpoint’s actual
type.

-EMSGSIZE
(a) endpoint maxpacket size is zero;

it is not usable in the current in-
terface altsetting.

(b) ISO packet is larger than the end-
point maxpacket.

(c) requested data transfer length is
invalid: negative or too large for
the host controller.

-ENOSPC This request would overcommit the
usb bandwidth reserved for periodic
transfers (interrupt, isochronous).

-ESHUTDOWN The device or host controller has been
disabled due to some problem that
could not be worked around.

-EPERM Submission failed because
urb->reject was set.

-EHOSTUNREACH URB was rejected because the device
is suspended.

-ENOEXEC A control URB doesn’t contain a Setup
packet.

20.11. USB Error codes 667

Linux Driver-api Documentation

20.11.2 Error codes returned by in urb->status or in
iso_frame_desc[n].status (for ISO)

USB device drivers may only test urb status values in completion handlers. This
is because otherwise there would be a race between HCDs updating these values
on one CPU, and device drivers testing them on another CPU.

A transfer’s actual_length may be positive even when an error has been reported.
That’s because transfers often involve several packets, so that one or more packets
could finish before an error stops further endpoint I/O.

For isochronous URBs, the urb status value is non-zero only if the URB is un-
linked, the device is removed, the host controller is disabled, or the total trans-
ferred length is less than the requested length and the URB_SHORT_NOT_OK flag
is set. Completion handlers for isochronous URBs should only see urb->status
set to zero, -ENOENT, -ECONNRESET, -ESHUTDOWN, or -EREMOTEIO. Individual frame
descriptor status fields may report more status codes.

668 Chapter 20. Linux USB API

Linux Driver-api Documentation

0 Transfer completed successfully
-ENOENT URB was synchronously unlinked by

usb_unlink_urb()
-EINPROGRESS URB still pending, no results yet (That

is, if drivers see this it’s a bug.)
-EPROTO1,2

a) bitstuff error
b) no response packet received
within the prescribed bus turn-
around time

c) unknown USB error

-EILSEQ1,2
a) CRC mismatch
b) no response packet received
within the prescribed bus turn-
around time

c) unknown USB error
Note that often the controller hard-
ware does not distinguish among cases
a), b), and c), so a driver cannot tell
whether there was a protocol error, a
failure to respond (often caused by de-
vice disconnect), or some other fault.

-ETIME2 No response packet received within
the prescribed bus turn-around time.
This error may instead be reported as
-EPROTO or -EILSEQ.

-ETIMEDOUT Synchronous USB message functions
use this code to indicate timeout ex-
pired before the transfer completed,
and no other error was reported by HC.

-EPIPE2 Endpoint stalled. For non-control
endpoints, reset this status with
usb_clear_halt().

-ECOMM During an IN transfer, the host con-
troller received data from an endpoint
faster than it could be written to sys-
tem memory

-ENOSR During an OUT transfer, the host con-
troller could not retrieve data from sys-
tem memory fast enough to keep up
with the USB data rate

-EOVERFLOW1 The amount of data returned by the
endpoint was greater than either the
max packet size of the endpoint or the
remaining buffer size. “Babble”.

-EREMOTEIO The data read from the endpoint
did not fill the specified buffer,
and URB_SHORT_NOT_OK was set in
urb->transfer_flags.

-ENODEV Device was removed. Often preceded
by a burst of other errors, since the
hub driver doesn’t detect device re-
moval events immediately.

-EXDEV ISO transfer only partially completed
(only set in iso_frame_desc[n].
status, not urb->status)

-EINVAL ISO madness, if this happens: Log off
and go home

-ECONNRESET URB was asynchronously unlinked by
usb_unlink_urb()

-ESHUTDOWN The device or host controller has been
disabled due to some problem that
could not be worked around, such as
a physical disconnect.

20.11. USB Error codes 669

Linux Driver-api Documentation

20.11.3 Error codes returned by usbcore-functions

Note: expect also other submit and transfer status codes

usb_register():

-EINVAL error during registering new driver

usb_get_*/usb_set_*(), usb_control_msg(), usb_bulk_msg():

-ETIMEDOUT Timeout expired before the transfer completed.

20.12 Writing USB Device Drivers

Author Greg Kroah-Hartman

20.12.1 Introduction

The Linux USB subsystem has grown from supporting only two different types of
devices in the 2.2.7 kernel (mice and keyboards), to over 20 different types of
devices in the 2.4 kernel. Linux currently supports almost all USB class devices
(standard types of devices like keyboards, mice, modems, printers and speakers)
and an ever-growing number of vendor-specific devices (such as USB to serial
converters, digital cameras, Ethernet devices and MP3 players). For a full list of
the different USB devices currently supported, see Resources.

The remaining kinds of USB devices that do not have support on Linux are almost
all vendor-specific devices. Each vendor decides to implement a custom protocol to
talk to their device, so a custom driver usually needs to be created. Some vendors
are open with their USB protocols and help with the creation of Linux drivers,
while others do not publish them, and developers are forced to reverse-engineer.
See Resources for some links to handy reverse-engineering tools.

Because each different protocol causes a new driver to be created, I have written
a generic USB driver skeleton, modelled after the pci-skeleton.c file in the kernel
source tree upon which many PCI network drivers have been based. This USB
skeleton can be found at drivers/usb/usb-skeleton.c in the kernel source tree. In
this article I will walk through the basics of the skeleton driver, explaining the
different pieces and what needs to be done to customize it to your specific device.

1 Error codes like -EPROTO, -EILSEQ and -EOVERFLOW normally indicate hardware problems such
as bad devices (including firmware) or cables.

2 This is also one of several codes that different kinds of host controller use to indicate a transfer
has failed because of device disconnect. In the interval before the hub driver starts disconnect
processing, devices may receive such fault reports for every request.

670 Chapter 20. Linux USB API

Linux Driver-api Documentation

20.12.2 Linux USB Basics

If you are going to write a Linux USB driver, please become familiar with the USB
protocol specification. It can be found, along with many other useful documents,
at the USB home page (see Resources). An excellent introduction to the Linux
USB subsystem can be found at the USB Working Devices List (see Resources). It
explains how the Linux USB subsystem is structured and introduces the reader to
the concept of USB urbs (USB Request Blocks), which are essential to USB drivers.

The first thing a Linux USB driver needs to do is register itself with the Linux USB
subsystem, giving it some information about which devices the driver supports
and which functions to call when a device supported by the driver is inserted or
removed from the system. All of this information is passed to the USB subsystem
in the usb_driver structure. The skeleton driver declares a usb_driver as:

static struct usb_driver skel_driver = {
.name = "skeleton",
.probe = skel_probe,
.disconnect = skel_disconnect,
.fops = &skel_fops,
.minor = USB_SKEL_MINOR_BASE,
.id_table = skel_table,

};

The variable name is a string that describes the driver. It is used in informational
messages printed to the system log. The probe and disconnect function pointers
are called when a device that matches the information provided in the id_table
variable is either seen or removed.

The fops and minor variables are optional. Most USB drivers hook into another
kernel subsystem, such as the SCSI, network or TTY subsystem. These types of
drivers register themselves with the other kernel subsystem, and any user-space
interactions are provided through that interface. But for drivers that do not have
a matching kernel subsystem, such as MP3 players or scanners, a method of inter-
acting with user space is needed. The USB subsystem provides a way to register a
minor device number and a set of file_operations function pointers that enable
this user-space interaction. The skeleton driver needs this kind of interface, so it
provides a minor starting number and a pointer to its file_operations functions.

The USB driver is then registered with a call to usb_register(), usually in the
driver’s init function, as shown here:
static int __init usb_skel_init(void)
{

int result;

/* register this driver with the USB subsystem */
result = usb_register(&skel_driver);
if (result < 0) {

err("usb_register failed for the "__FILE__ "driver."
"Error number %d", result);

return -1;
}

return 0;
(continues on next page)

20.12. Writing USB Device Drivers 671

Linux Driver-api Documentation

(continued from previous page)
}
module_init(usb_skel_init);

When the driver is unloaded from the system, it needs to deregister itself with the
USB subsystem. This is done with the usb_deregister() function:

static void __exit usb_skel_exit(void)
{

/* deregister this driver with the USB subsystem */
usb_deregister(&skel_driver);

}
module_exit(usb_skel_exit);

To enable the linux-hotplug system to load the driver automatically when the de-
vice is plugged in, you need to create a MODULE_DEVICE_TABLE. The following code
tells the hotplug scripts that this module supports a single device with a specific
vendor and product ID:

/* table of devices that work with this driver */
static struct usb_device_id skel_table [] = {

{ USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) },
{ } /* Terminating entry */

};
MODULE_DEVICE_TABLE (usb, skel_table);

There are other macros that can be used in describing a struct usb_device_id for
drivers that support a whole class of USB drivers. See usb.h for more information
on this.

20.12.3 Device operation

When a device is plugged into the USB bus that matches the device ID pattern
that your driver registered with the USB core, the probe function is called. The
usb_device structure, interface number and the interface ID are passed to the
function:

static int skel_probe(struct usb_interface *interface,
const struct usb_device_id *id)

The driver now needs to verify that this device is actually one that it can accept.
If so, it returns 0. If not, or if any error occurs during initialization, an errorcode
(such as -ENOMEM or -ENODEV) is returned from the probe function.

In the skeleton driver, we determine what end points are marked as bulk-in and
bulk-out. We create buffers to hold the data that will be sent and received from
the device, and a USB urb to write data to the device is initialized.

Conversely, when the device is removed from the USB bus, the disconnect function
is called with the device pointer. The driver needs to clean any private data that
has been allocated at this time and to shut down any pending urbs that are in the
USB system.

Now that the device is plugged into the system and the driver is bound to the
device, any of the functions in the file_operations structure that were passed to

672 Chapter 20. Linux USB API

Linux Driver-api Documentation

the USB subsystem will be called from a user program trying to talk to the device.
The first function called will be open, as the program tries to open the device
for I/O. We increment our private usage count and save a pointer to our internal
structure in the file structure. This is done so that future calls to file operations
will enable the driver to determine which device the user is addressing. All of this
is done with the following code:

/* increment our usage count for the module */
++skel->open_count;

/* save our object in the file's private structure */
file->private_data = dev;

After the open function is called, the read and write functions are called to receive
and send data to the device. In the skel_write function, we receive a pointer to
some data that the user wants to send to the device and the size of the data. The
function determines how much data it can send to the device based on the size
of the write urb it has created (this size depends on the size of the bulk out end
point that the device has). Then it copies the data from user space to kernel space,
points the urb to the data and submits the urb to the USB subsystem. This can be
seen in the following code:

/* we can only write as much as 1 urb will hold */
bytes_written = (count > skel->bulk_out_size) ? skel->bulk_out_size :␣
↪→count;

/* copy the data from user space into our urb */
copy_from_user(skel->write_urb->transfer_buffer, buffer, bytes_written);

/* set up our urb */
usb_fill_bulk_urb(skel->write_urb,

skel->dev,
usb_sndbulkpipe(skel->dev, skel->bulk_out_endpointAddr),
skel->write_urb->transfer_buffer,
bytes_written,
skel_write_bulk_callback,
skel);

/* send the data out the bulk port */
result = usb_submit_urb(skel->write_urb);
if (result) {

err("Failed submitting write urb, error %d", result);
}

When the write urb is filled up with the proper information using the
usb_fill_bulk_urb() function, we point the urb’s completion callback to call
our own skel_write_bulk_callback function. This function is called when the
urb is finished by the USB subsystem. The callback function is called in interrupt
context, so caution must be taken not to do very much processing at that time.
Our implementation of skel_write_bulk_callback merely reports if the urb was
completed successfully or not and then returns.

The read function works a bit differently from the write function in that we do
not use an urb to transfer data from the device to the driver. Instead we call
the usb_bulk_msg() function, which can be used to send or receive data from a

20.12. Writing USB Device Drivers 673

Linux Driver-api Documentation

device without having to create urbs and handle urb completion callback functions.
We call the usb_bulk_msg() function, giving it a buffer into which to place any
data received from the device and a timeout value. If the timeout period expires
without receiving any data from the device, the function will fail and return an
error message. This can be shown with the following code:

/* do an immediate bulk read to get data from the device */
retval = usb_bulk_msg (skel->dev,

usb_rcvbulkpipe (skel->dev,
skel->bulk_in_endpointAddr),
skel->bulk_in_buffer,
skel->bulk_in_size,
&count, HZ*10);

/* if the read was successful, copy the data to user space */
if (!retval) {

if (copy_to_user (buffer, skel->bulk_in_buffer, count))
retval = -EFAULT;

else
retval = count;

}

The usb_bulk_msg() function can be very useful for doing single reads or writes
to a device; however, if you need to read or write constantly to a device, it is
recommended to set up your own urbs and submit them to the USB subsystem.

When the user program releases the file handle that it has been using to talk to the
device, the release function in the driver is called. In this function we decrement
our private usage count and wait for possible pending writes:

/* decrement our usage count for the device */
--skel->open_count;

One of the more difficult problems that USB drivers must be able to handle
smoothly is the fact that the USB device may be removed from the system at any
point in time, even if a program is currently talking to it. It needs to be able to
shut down any current reads and writes and notify the user-space programs that
the device is no longer there. The following code (function skel_delete) is an
example of how to do this:

static inline void skel_delete (struct usb_skel *dev)
{

kfree (dev->bulk_in_buffer);
if (dev->bulk_out_buffer != NULL)

usb_free_coherent (dev->udev, dev->bulk_out_size,
dev->bulk_out_buffer,
dev->write_urb->transfer_dma);

usb_free_urb (dev->write_urb);
kfree (dev);

}

If a program currently has an open handle to the device, we reset the flag
device_present. For every read, write, release and other functions that expect
a device to be present, the driver first checks this flag to see if the device is still
present. If not, it releases that the device has disappeared, and a -ENODEV error
is returned to the user-space program. When the release function is eventually
called, it determines if there is no device and if not, it does the cleanup that the

674 Chapter 20. Linux USB API

Linux Driver-api Documentation

skel_disconnect function normally does if there are no open files on the device
(see Listing 5).

20.12.4 Isochronous Data

This usb-skeleton driver does not have any examples of interrupt or isochronous
data being sent to or from the device. Interrupt data is sent almost exactly as
bulk data is, with a few minor exceptions. Isochronous data works differently with
continuous streams of data being sent to or from the device. The audio and video
camera drivers are very good examples of drivers that handle isochronous data
and will be useful if you also need to do this.

20.12.5 Conclusion

Writing Linux USB device drivers is not a difficult task as the usb-skeleton driver
shows. This driver, combined with the other current USB drivers, should provide
enough examples to help a beginning author create a working driver in a minimal
amount of time. The linux-usb-devel mailing list archives also contain a lot of
helpful information.

20.12.6 Resources

The Linux USB Project: http://www.linux-usb.org/

Linux Hotplug Project: http://linux-hotplug.sourceforge.net/

linux-usb Mailing List Archives: https://lore.kernel.org/linux-usb/

Programming Guide for Linux USB Device Drivers: http://lmu.web.psi.ch/docu/
manuals/software_manuals/linux_sl/usb_linux_programming_guide.pdf

USB Home Page: http://www.usb.org

20.13 Synopsys DesignWare Core SuperSpeed USB 3.0
Controller

Author Felipe Balbi <felipe.balbi@linux.intel.com>
Date April 2017

20.13.1 Introduction

The Synopsys DesignWare Core SuperSpeed USB 3.0 Controller (hereinafter re-
ferred to as DWC3) is a USB SuperSpeed compliant controller which can be con-
figured in one of 4 ways:

1. Peripheral-only configuration

2. Host-only configuration

3. Dual-Role configuration

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 675

http://www.linux-usb.org/
http://linux-hotplug.sourceforge.net/
https://lore.kernel.org/linux-usb/
http://lmu.web.psi.ch/docu/manuals/software_manuals/linux_sl/usb_linux_programming_guide.pdf
http://lmu.web.psi.ch/docu/manuals/software_manuals/linux_sl/usb_linux_programming_guide.pdf
http://www.usb.org
mailto:felipe.balbi@linux.intel.com

Linux Driver-api Documentation

4. Hub configuration

Linux currently supports several versions of this controller. In all likelyhood, the
version in your SoC is already supported. At the time of this writing, known tested
versions range from 2.02a to 3.10a. As a rule of thumb, anything above 2.02a
should work reliably well.

Currently, we have many known users for this driver. In alphabetical order:

1. Cavium

2. Intel Corporation

3. Qualcomm

4. Rockchip

5. ST

6. Samsung

7. Texas Instruments

8. Xilinx

20.13.2 Summary of Features

For details about features supported by your version of DWC3, consult your IP
team and/or Synopsys DesignWare Core SuperSpeed USB 3.0 Controller Data-
book. Following is a list of features supported by the driver at the time of this
writing:

1. Up to 16 bidirectional endpoints (including the control pipe - ep0)

2. Flexible endpoint configuration

3. Simultaneous IN and OUT transfer support

4. Scatter-list support

5. Up to 256 TRBs1 per endpoint

6. Support for all transfer types (Control, Bulk, Interrupt, and Isochronous)

7. SuperSpeed Bulk Streams

8. Link Power Management

9. Trace Events for debugging

10. DebugFS3 interface

These features have all been exercised with many of the in-tree gadget drivers.
We have verified both ConfigFS4 and legacy gadget drivers.

1 Transfer Request Block
3 The Debug File System
4 The Config File System

676 Chapter 20. Linux USB API

Linux Driver-api Documentation

20.13.3 Driver Design

The DWC3 driver sits on the drivers/usb/dwc3/ directory. All files related to this
driver are in this one directory. This makes it easy for new-comers to read the
code and understand how it behaves.

Because of DWC3’s configuration flexibility, the driver is a little complex in some
places but it should be rather straightforward to understand.

The biggest part of the driver refers to the Gadget API.

20.13.4 Known Limitations

Like any other HW, DWC3 has its own set of limitations. To avoid constant ques-
tions about such problems, we decided to document them here and have a single
location to where we could point users.

OUT Transfer Size Requirements

According to Synopsys Databook, all OUT transfer TRBs1 must have their size field
set to a value which is integer divisible by the endpoint’s wMaxPacketSize. This
means that e.g. in order to receive a Mass Storage CBW5, req->length must either
be set to a value that’s divisible by wMaxPacketSize (1024 on SuperSpeed, 512
on HighSpeed, etc), or DWC3 driver must add a Chained TRB pointing to a throw-
away buffer for the remaining length. Without this, OUT transfers will NOT start.
Note that as of this writing, this won’t be a problem because DWC3 is fully capable
of appending a chained TRB for the remaining length and completely hide this
detail from the gadget driver. It’s still worth mentioning because this seems to
be the largest source of queries about DWC3 and non-working transfers.

TRB Ring Size Limitation

We, currently, have a hard limit of 256 TRBs1 per endpoint, with the last TRB being
a Link TRB2 pointing back to the first. This limit is arbitrary but it has the benefit
of adding up to exactly 4096 bytes, or 1 Page.

DWC3 driver will try its best to cope with more than 255 requests and, for the
most part, it should work normally. However this is not something that has been
exercised very frequently. If you experience any problems, see section Reporting
Bugs below.

5 Command Block Wrapper
2 Transfer Request Block pointing to another Transfer Request Block.

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 677

Linux Driver-api Documentation

20.13.5 Reporting Bugs

Whenever you encounter a problem with DWC3, first and foremost you should
make sure that:

1. You’re running latest tag from Linus’tree
2. You can reproduce the error without any out-of-tree changes to DWC3

3. You have checked that it’s not a fault on the host machine
After all these are verified, then here’s how to capture enough information so we
can be of any help to you.

Required Information

DWC3 relies exclusively on Trace Events for debugging. Everything is exposed
there, with some extra bits being exposed to DebugFS3.

In order to capture DWC3’s Trace Events you should run the following commands
before plugging the USB cable to a host machine:

mkdir -p /d
mkdir -p /t
mount -t debugfs none /d
mount -t tracefs none /t
echo 81920 > /t/buffer_size_kb
echo 1 > /t/events/dwc3/enable

After this is done, you can connect your USB cable and reproduce the problem. As
soon as the fault is reproduced, make a copy of files trace and regdump, like so:

cp /t/trace /root/trace.txt
cat /d/*dwc3*/regdump > /root/regdump.txt

Make sure to compress trace.txt and regdump.txt in a tarball and email it to me
with linux-usb in Cc. If you want to be extra sure that I’ll help you, write your
subject line in the following format:

[BUG REPORT] usb: dwc3: Bug while doing XYZ
On the email body, make sure to detail what you doing, which gadget driver you
were using, how to reproduce the problem, what SoC you’re using, which OS (and
its version) was running on the Host machine.

With all this information, we should be able to understand what’s going on and
be helpful to you.

678 Chapter 20. Linux USB API

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
mailto:felipe.balbi@linux.intel.com
mailto:linux-usb@vger.kernel.org

Linux Driver-api Documentation

20.13.6 Debugging

First and foremost a disclaimer:

DISCLAIMER: The information available on DebugFS and/or TraceFS can
change at any time at any Major Linux Kernel Release. If writing
scripts, do **NOT** assume information to be available in the
current format.

With that out of the way, let’s carry on.
If you’re willing to debug your own problem, you deserve a round of applause :-)
Anyway, there isn’t much to say here other than Trace Events will be really helpful
in figuring out issues with DWC3. Also, access to Synopsys Databook will be really
valuable in this case.

A USB Sniffer can be helpful at times but it’s not entirely required, there’s a lot
that can be understood without looking at the wire.

Feel free to email me and Cc linux-usb if you need any help.

DebugFS

DebugFS is very good for gathering snapshots of what’s going on with DWC3 and/or
any endpoint.

On DWC3’s DebugFS directory, you will find the following files and directories:
ep[0..15]{in,out}/ link_state regdump testmode

link_state

When read, link_state will print out one of U0, U1, U2, U3, SS.Disabled, RX.
Detect, SS.Inactive, Polling, Recovery, Hot Reset, Compliance, Loopback,
Reset, Resume or UNKNOWN link state.

This file can also be written to in order to force link to one of the states above.

regdump

File name is self-explanatory. When read, regdump will print out a register dump
of DWC3. Note that this file can be grepped to find the information you want.

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 679

mailto:felipe.balbi@linux.intel.com
mailto:linux-usb@vger.kernel.org

Linux Driver-api Documentation

testmode

When read, testmode will print out a name of one of the specified USB 2.0 Test-
modes (test_j, test_k, test_se0_nak, test_packet, test_force_enable) or the
string no test in case no tests are currently being executed.

In order to start any of these test modes, the same strings can be written to the
file and DWC3 will enter the requested test mode.

ep[0..15]{in,out}

For each endpoint we expose one directory following the naming convention
epnumdir (ep0in, ep0out, ep1in, ⋯). Inside each of these directories you will
find the following files:

descriptor_fetch_queue event_queue rx_fifo_queue rx_info_queue
rx_request_queue transfer_type trb_ring tx_fifo_queue tx_request_queue

With access to Synopsys Databook, you can decode the information on them.

transfer_type

When read, transfer_type will print out one of control, bulk, interrupt or
isochronous depending on what the endpoint descriptor says. If the endpoint
hasn’t been enabled yet, it will print --.

trb_ring

When read, trb_ring will print out details about all TRBs on the ring. It will also
tell you where our enqueue and dequeue pointers are located in the ring:

buffer_addr,size,type,ioc,isp_imi,csp,chn,lst,hwo
000000002c754000,481,normal,1,0,1,0,0,0
000000002c75c000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c75c000,481,normal,1,0,1,0,0,0
000000002c784000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c784000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0

(continues on next page)

680 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c784000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c784000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c75c000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0

(continues on next page)

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 681

Linux Driver-api Documentation

(continued from previous page)
000000002c754000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c75c000,481,normal,1,0,1,0,0,0
000000002c780000,481,normal,1,0,1,0,0,0
000000002c784000,481,normal,1,0,1,0,0,0
000000002c788000,481,normal,1,0,1,0,0,0
000000002c78c000,481,normal,1,0,1,0,0,0
000000002c790000,481,normal,1,0,1,0,0,0
000000002c754000,481,normal,1,0,1,0,0,0
000000002c758000,481,normal,1,0,1,0,0,0
000000002c75c000,512,normal,1,0,1,0,0,1 D
0000000000000000,0,UNKNOWN,0,0,0,0,0,0 E
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0

(continues on next page)

682 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0

(continues on next page)

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 683

Linux Driver-api Documentation

(continued from previous page)
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0

(continues on next page)

684 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
0000000000000000,0,UNKNOWN,0,0,0,0,0,0
00000000381ab000,0,link,0,0,0,0,0,1

Trace Events

DWC3 also provides several trace events which help us gathering information
about the behavior of the driver during runtime.

In order to use these events, youmust enable CONFIG_FTRACE in your kernel config.

For details about how enable DWC3 events, see section Reporting Bugs.
The following subsections will give details about each Event Class and each Event
defined by DWC3.

MMIO

It is sometimes useful to look at every MMIO access when looking for bugs. Be-
cause of that, DWC3 offers two Trace Events (one for dwc3_readl() and one for
dwc3_writel()). TP_printk follows:

TP_printk("addr %p value %08x", __entry->base + __entry->offset,
__entry->value)

Interrupt Events

Every IRQ event can be logged and decoded into a human readable string. Because
every event will be different, we don’t give an example other than the TP_printk
format used:

TP_printk("event (%08x): %s", __entry->event,
dwc3_decode_event(__entry->event, __entry->ep0state))

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 685

Linux Driver-api Documentation

Control Request

Every USB Control Request can be logged to the trace buffer. The output format
is:

TP_printk("%s", dwc3_decode_ctrl(__entry->bRequestType,
__entry->bRequest, __entry->wValue,
__entry->wIndex, __entry->wLength)

)

Note that Standard Control Requests will be decoded into human-readable strings
with their respective arguments. Class and Vendor requests will be printed out a
sequence of 8 bytes in hex format.

Lifetime of a struct usb_request

The entire lifetime of a struct usb_request can be tracked on the trace buffer. We
have one event for each of allocation, free, queueing, dequeueing, and giveback.
Output format is:

TP_printk("%s: req %p length %u/%u %s%s%s ==> %d",
__get_str(name), __entry->req, __entry->actual, __entry->length,
__entry->zero ? "Z" : "z",
__entry->short_not_ok ? "S" : "s",
__entry->no_interrupt ? "i" : "I",
__entry->status

)

Generic Commands

We can log and decode every Generic Command with its completion code. Format
is:

TP_printk("cmd '%s' [%x] param %08x --> status: %s",
dwc3_gadget_generic_cmd_string(__entry->cmd),
__entry->cmd, __entry->param,
dwc3_gadget_generic_cmd_status_string(__entry->status)

)

Endpoint Commands

Endpoints commands can also be logged together with completion code. Format
is:

TP_printk("%s: cmd '%s' [%d] params %08x %08x %08x --> status: %s",
__get_str(name), dwc3_gadget_ep_cmd_string(__entry->cmd),
__entry->cmd, __entry->param0,
__entry->param1, __entry->param2,
dwc3_ep_cmd_status_string(__entry->cmd_status)

)

686 Chapter 20. Linux USB API

Linux Driver-api Documentation

Lifetime of a TRB

A TRB Lifetime is simple. We are either preparing a TRB or completing it. With
these two events, we can see how a TRB changes over time. Format is:

TP_printk("%s: %d/%d trb %p buf %08x%08x size %s%d ctrl %08x (%c%c%c%c:%c
↪→%c:%s)",

__get_str(name), __entry->queued, __entry->allocated,
__entry->trb, __entry->bph, __entry->bpl,
({char *s;
int pcm = ((__entry->size >> 24) & 3) + 1;
switch (__entry->type) {
case USB_ENDPOINT_XFER_INT:
case USB_ENDPOINT_XFER_ISOC:

switch (pcm) {
case 1:

s = "1x ";
break;

case 2:
s = "2x ";
break;

case 3:
s = "3x ";
break;

}
default:

s = "";
} s; }),
DWC3_TRB_SIZE_LENGTH(__entry->size), __entry->ctrl,
__entry->ctrl & DWC3_TRB_CTRL_HWO ? 'H' : 'h',
__entry->ctrl & DWC3_TRB_CTRL_LST ? 'L' : 'l',
__entry->ctrl & DWC3_TRB_CTRL_CHN ? 'C' : 'c',
__entry->ctrl & DWC3_TRB_CTRL_CSP ? 'S' : 's',
__entry->ctrl & DWC3_TRB_CTRL_ISP_IMI ? 'S' : 's',
__entry->ctrl & DWC3_TRB_CTRL_IOC ? 'C' : 'c',

dwc3_trb_type_string(DWC3_TRBCTL_TYPE(__entry->ctrl))
)

Lifetime of an Endpoint

And endpoint’s lifetime is summarized with enable and disable operations, both
of which can be traced. Format is:

TP_printk("%s: mps %d/%d streams %d burst %d ring %d/%d flags %c:%c%c%c%c
↪→%c:%c:%c",

__get_str(name), __entry->maxpacket,
__entry->maxpacket_limit, __entry->max_streams,
__entry->maxburst, __entry->trb_enqueue,
__entry->trb_dequeue,
__entry->flags & DWC3_EP_ENABLED ? 'E' : 'e',
__entry->flags & DWC3_EP_STALL ? 'S' : 's',
__entry->flags & DWC3_EP_WEDGE ? 'W' : 'w',
__entry->flags & DWC3_EP_TRANSFER_STARTED ? 'B' : 'b',
__entry->flags & DWC3_EP_PENDING_REQUEST ? 'P' : 'p',

(continues on next page)

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 687

Linux Driver-api Documentation

(continued from previous page)
__entry->flags & DWC3_EP_END_TRANSFER_PENDING ? 'E' : 'e',
__entry->direction ? '<' : '>'

)

20.13.7 Structures, Methods and Definitions

struct dwc3_event_buffer
Software event buffer representation

Definition

struct dwc3_event_buffer {
void *buf;
void *cache;
unsigned length;
unsigned int lpos;
unsigned int count;
unsigned int flags;

#define DWC3_EVENT_PENDING BIT(0);
dma_addr_t dma;
struct dwc3 *dwc;

};

Members
buf _THE_ buffer

cache The buffer cache used in the threaded interrupt

length size of this buffer

lpos event offset

count cache of last read event count register

flags flags related to this event buffer

dma dma_addr_t

dwc pointer to DWC controller

struct dwc3_ep
device side endpoint representation

Definition

struct dwc3_ep {
struct usb_ep endpoint;
struct list_head cancelled_list;
struct list_head pending_list;
struct list_head started_list;
void __iomem *regs;
struct dwc3_trb *trb_pool;
dma_addr_t trb_pool_dma;
struct dwc3 *dwc;
u32 saved_state;
unsigned flags;

(continues on next page)

688 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
#define DWC3_EP_ENABLED BIT(0);
#define DWC3_EP_STALL BIT(1);
#define DWC3_EP_WEDGE BIT(2);
#define DWC3_EP_TRANSFER_STARTED BIT(3);
#define DWC3_EP_END_TRANSFER_PENDING BIT(4);
#define DWC3_EP_PENDING_REQUEST BIT(5);
#define DWC3_EP_DELAY_START BIT(6);
#define DWC3_EP_WAIT_TRANSFER_COMPLETE BIT(7);
#define DWC3_EP_IGNORE_NEXT_NOSTREAM BIT(8);
#define DWC3_EP_FORCE_RESTART_STREAM BIT(9);
#define DWC3_EP_FIRST_STREAM_PRIMED BIT(10);
#define DWC3_EP0_DIR_IN BIT(31);

u8 trb_enqueue;
u8 trb_dequeue;
u8 number;
u8 type;
u8 resource_index;
u32 frame_number;
u32 interval;
char name[20];
unsigned direction:1;
unsigned stream_capable:1;
u8 combo_num;
int start_cmd_status;

};

Members
endpoint usb endpoint

cancelled_list list of cancelled requests for this endpoint

pending_list list of pending requests for this endpoint

started_list list of started requests on this endpoint

regs pointer to first endpoint register

trb_pool array of transaction buffers

trb_pool_dma dma address of trb_pool
dwc pointer to DWC controller

saved_state ep state saved during hibernation

flags endpoint flags (wedged, stalled, ⋯)
trb_enqueue enqueue ‘pointer’into TRB array
trb_dequeue dequeue ‘pointer’into TRB array
number endpoint number (1 - 15)

type set to bmAttributes & USB_ENDPOINT_XFERTYPE_MASK

resource_index Resource transfer index

frame_number set to the frame number we want this transfer to start (ISOC)

interval the interval on which the ISOC transfer is started

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 689

Linux Driver-api Documentation

name a human readable name e.g. ep1out-bulk

direction true for TX, false for RX

stream_capable true when streams are enabled

combo_num the test combination BIT[15:14] of the frame number to test
isochronous START TRANSFER command failure workaround

start_cmd_status the status of testing START TRANSFER command with
combo_num = ‘b00

struct dwc3_trb
transfer request block (hw format)

Definition

struct dwc3_trb {
u32 bpl;
u32 bph;
u32 size;
u32 ctrl;

};

Members
bpl DW0-3

bph DW4-7

size DW8-B

ctrl DWC-F

struct dwc3_hwparams
copy of HWPARAMS registers

Definition

struct dwc3_hwparams {
u32 hwparams0;
u32 hwparams1;
u32 hwparams2;
u32 hwparams3;
u32 hwparams4;
u32 hwparams5;
u32 hwparams6;
u32 hwparams7;
u32 hwparams8;

};

Members
hwparams0 GHWPARAMS0

hwparams1 GHWPARAMS1

hwparams2 GHWPARAMS2

hwparams3 GHWPARAMS3

hwparams4 GHWPARAMS4

690 Chapter 20. Linux USB API

Linux Driver-api Documentation

hwparams5 GHWPARAMS5

hwparams6 GHWPARAMS6

hwparams7 GHWPARAMS7

hwparams8 GHWPARAMS8

struct dwc3_request
representation of a transfer request

Definition

struct dwc3_request {
struct usb_request request;
struct list_head list;
struct dwc3_ep *dep;
struct scatterlist *sg;
struct scatterlist *start_sg;
unsigned num_pending_sgs;
unsigned int num_queued_sgs;
unsigned remaining;
unsigned int status;

#define DWC3_REQUEST_STATUS_QUEUED 0;
#define DWC3_REQUEST_STATUS_STARTED 1;
#define DWC3_REQUEST_STATUS_CANCELLED 2;
#define DWC3_REQUEST_STATUS_COMPLETED 3;
#define DWC3_REQUEST_STATUS_UNKNOWN -1;

u8 epnum;
struct dwc3_trb *trb;
dma_addr_t trb_dma;
unsigned num_trbs;
unsigned needs_extra_trb:1;
unsigned direction:1;
unsigned mapped:1;

};

Members
request struct usb_request to be transferred

list a list_head used for request queueing

dep struct dwc3_ep owning this request

sg pointer to first incomplete sg

start_sg pointer to the sg which should be queued next

num_pending_sgs counter to pending sgs

num_queued_sgs counter to the number of sgs which already got queued

remaining amount of data remaining

status internal dwc3 request status tracking

epnum endpoint number to which this request refers

trb pointer to struct dwc3_trb

trb_dma DMA address of trb

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 691

Linux Driver-api Documentation

num_trbs number of TRBs used by this request

needs_extra_trb true when request needs one extra TRB (either due to ZLP or
unaligned OUT)

direction IN or OUT direction flag

mapped true when request has been dma-mapped

struct dwc3
representation of our controller

Definition

struct dwc3 {
struct work_struct drd_work;
struct dwc3_trb *ep0_trb;
void *bounce;
void *scratchbuf;
u8 *setup_buf;
dma_addr_t ep0_trb_addr;
dma_addr_t bounce_addr;
dma_addr_t scratch_addr;
struct dwc3_request ep0_usb_req;
struct completion ep0_in_setup;
spinlock_t lock;
struct device *dev;
struct device *sysdev;
struct platform_device *xhci;
struct resource xhci_resources[DWC3_XHCI_RESOURCES_NUM];
struct dwc3_event_buffer *ev_buf;
struct dwc3_ep *eps[DWC3_ENDPOINTS_NUM];
struct usb_gadget gadget;
struct usb_gadget_driver *gadget_driver;
struct clk_bulk_data *clks;
int num_clks;
struct reset_control *reset;
struct usb_phy *usb2_phy;
struct usb_phy *usb3_phy;
struct phy *usb2_generic_phy;
struct phy *usb3_generic_phy;
bool phys_ready;
struct ulpi *ulpi;
bool ulpi_ready;
void __iomem *regs;
size_t regs_size;
enum usb_dr_mode dr_mode;
u32 current_dr_role;
u32 desired_dr_role;
struct extcon_dev *edev;
struct notifier_block edev_nb;
enum usb_phy_interface hsphy_mode;
struct usb_role_switch *role_sw;
enum usb_dr_mode role_switch_default_mode;
u32 fladj;
u32 irq_gadget;
u32 otg_irq;
u32 current_otg_role;

(continues on next page)

692 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
u32 desired_otg_role;
bool otg_restart_host;
u32 nr_scratch;
u32 u1u2;
u32 maximum_speed;
u32 ip;

#define DWC3_IP 0x5533;
#define DWC31_IP 0x3331;
#define DWC32_IP 0x3332;

u32 revision;
#define DWC3_REVISION_ANY 0x0;
#define DWC3_REVISION_173A 0x5533173a;
#define DWC3_REVISION_175A 0x5533175a;
#define DWC3_REVISION_180A 0x5533180a;
#define DWC3_REVISION_183A 0x5533183a;
#define DWC3_REVISION_185A 0x5533185a;
#define DWC3_REVISION_187A 0x5533187a;
#define DWC3_REVISION_188A 0x5533188a;
#define DWC3_REVISION_190A 0x5533190a;
#define DWC3_REVISION_194A 0x5533194a;
#define DWC3_REVISION_200A 0x5533200a;
#define DWC3_REVISION_202A 0x5533202a;
#define DWC3_REVISION_210A 0x5533210a;
#define DWC3_REVISION_220A 0x5533220a;
#define DWC3_REVISION_230A 0x5533230a;
#define DWC3_REVISION_240A 0x5533240a;
#define DWC3_REVISION_250A 0x5533250a;
#define DWC3_REVISION_260A 0x5533260a;
#define DWC3_REVISION_270A 0x5533270a;
#define DWC3_REVISION_280A 0x5533280a;
#define DWC3_REVISION_290A 0x5533290a;
#define DWC3_REVISION_300A 0x5533300a;
#define DWC3_REVISION_310A 0x5533310a;
#define DWC3_REVISION_330A 0x5533330a;
#define DWC31_REVISION_ANY 0x0;
#define DWC31_REVISION_110A 0x3131302a;
#define DWC31_REVISION_120A 0x3132302a;
#define DWC31_REVISION_160A 0x3136302a;
#define DWC31_REVISION_170A 0x3137302a;
#define DWC31_REVISION_180A 0x3138302a;
#define DWC31_REVISION_190A 0x3139302a;
#define DWC32_REVISION_ANY 0x0;
#define DWC32_REVISION_100A 0x3130302a;

u32 version_type;
#define DWC31_VERSIONTYPE_ANY 0x0;
#define DWC31_VERSIONTYPE_EA01 0x65613031;
#define DWC31_VERSIONTYPE_EA02 0x65613032;
#define DWC31_VERSIONTYPE_EA03 0x65613033;
#define DWC31_VERSIONTYPE_EA04 0x65613034;
#define DWC31_VERSIONTYPE_EA05 0x65613035;
#define DWC31_VERSIONTYPE_EA06 0x65613036;

enum dwc3_ep0_next ep0_next_event;
enum dwc3_ep0_state ep0state;
enum dwc3_link_state link_state;
u16 u2sel;
u16 u2pel;

(continues on next page)

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 693

Linux Driver-api Documentation

(continued from previous page)
u8 u1sel;
u8 u1pel;
u8 speed;
u8 num_eps;
struct dwc3_hwparams hwparams;
struct dentry *root;
struct debugfs_regset32 *regset;
u32 dbg_lsp_select;
u8 test_mode;
u8 test_mode_nr;
u8 lpm_nyet_threshold;
u8 hird_threshold;
u8 rx_thr_num_pkt_prd;
u8 rx_max_burst_prd;
u8 tx_thr_num_pkt_prd;
u8 tx_max_burst_prd;
const char *hsphy_interface;
unsigned connected:1;
unsigned delayed_status:1;
unsigned ep0_bounced:1;
unsigned ep0_expect_in:1;
unsigned has_hibernation:1;
unsigned sysdev_is_parent:1;
unsigned has_lpm_erratum:1;
unsigned is_utmi_l1_suspend:1;
unsigned is_fpga:1;
unsigned pending_events:1;
unsigned pullups_connected:1;
unsigned setup_packet_pending:1;
unsigned three_stage_setup:1;
unsigned dis_start_transfer_quirk:1;
unsigned usb3_lpm_capable:1;
unsigned usb2_lpm_disable:1;
unsigned disable_scramble_quirk:1;
unsigned u2exit_lfps_quirk:1;
unsigned u2ss_inp3_quirk:1;
unsigned req_p1p2p3_quirk:1;
unsigned del_p1p2p3_quirk:1;
unsigned del_phy_power_chg_quirk:1;
unsigned lfps_filter_quirk:1;
unsigned rx_detect_poll_quirk:1;
unsigned dis_u3_susphy_quirk:1;
unsigned dis_u2_susphy_quirk:1;
unsigned dis_enblslpm_quirk:1;
unsigned dis_u1_entry_quirk:1;
unsigned dis_u2_entry_quirk:1;
unsigned dis_rxdet_inp3_quirk:1;
unsigned dis_u2_freeclk_exists_quirk:1;
unsigned dis_del_phy_power_chg_quirk:1;
unsigned dis_tx_ipgap_linecheck_quirk:1;
unsigned parkmode_disable_ss_quirk:1;
unsigned tx_de_emphasis_quirk:1;
unsigned tx_de_emphasis:2;
unsigned dis_metastability_quirk:1;
u16 imod_interval;

};

694 Chapter 20. Linux USB API

Linux Driver-api Documentation

Members
drd_work workqueue used for role swapping

ep0_trb trb which is used for the ctrl_req

bounce address of bounce buffer

scratchbuf address of scratch buffer

setup_buf used while precessing STD USB requests

ep0_trb_addr dma address of ep0_trb
bounce_addr dma address of bounce
scratch_addr dma address of scratchbuf

ep0_usb_req dummy req used while handling STD USB requests

ep0_in_setup one control transfer is completed and enter setup phase

lock for synchronizing

dev pointer to our struct device

sysdev pointer to the DMA-capable device

xhci pointer to our xHCI child

xhci_resources struct resources for our xhci child
ev_buf struct dwc3_event_buffer pointer

eps endpoint array

gadget device side representation of the peripheral controller

gadget_driver pointer to the gadget driver

clks array of clocks

num_clks number of clocks

reset reset control

usb2_phy pointer to USB2 PHY

usb3_phy pointer to USB3 PHY

usb2_generic_phy pointer to USB2 PHY

usb3_generic_phy pointer to USB3 PHY

phys_ready flag to indicate that PHYs are ready

ulpi pointer to ulpi interface

ulpi_ready flag to indicate that ULPI is initialized

regs base address for our registers

regs_size address space size

dr_mode requested mode of operation

current_dr_role current role of operation when in dual-role mode

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 695

Linux Driver-api Documentation

desired_dr_role desired role of operation when in dual-role mode

edev extcon handle

edev_nb extcon notifier

hsphy_mode UTMI phy mode, one of following: - USB-
PHY_INTERFACE_MODE_UTMI - USBPHY_INTERFACE_MODE_UTMIW

role_sw usb_role_switch handle

role_switch_default_mode default operation mode of controller while usb role
is USB_ROLE_NONE.

fladj frame length adjustment

irq_gadget peripheral controller’s IRQ number
otg_irq IRQ number for OTG IRQs

current_otg_role current role of operation while using the OTG block

desired_otg_role desired role of operation while using the OTG block

otg_restart_host flag that OTG controller needs to restart host

nr_scratch number of scratch buffers

u1u2 only used on revisions <1.83a for workaround

maximum_speed maximum speed requested (mainly for testing purposes)

ip controller’s ID
revision controller’s version of an IP
version_type VERSIONTYPE register contents, a sub release of a revision

ep0_next_event hold the next expected event

ep0state state of endpoint zero

link_state link state

u2sel parameter from Set SEL request.

u2pel parameter from Set SEL request.

u1sel parameter from Set SEL request.

u1pel parameter from Set SEL request.

speed device speed (super, high, full, low)

num_eps number of endpoints

hwparams copy of hwparams registers

root debugfs root folder pointer

regset debugfs pointer to regdump file

dbg_lsp_select current debug lsp mux register selection

test_mode true when we’re entering a USB test mode
test_mode_nr test feature selector

696 Chapter 20. Linux USB API

Linux Driver-api Documentation

lpm_nyet_threshold LPM NYET response threshold

hird_threshold HIRD threshold

rx_thr_num_pkt_prd periodic ESS receive packet count

rx_max_burst_prd max periodic ESS receive burst size

tx_thr_num_pkt_prd periodic ESS transmit packet count

tx_max_burst_prd max periodic ESS transmit burst size

hsphy_interface“utmi”or “ulpi”
connected true when we’re connected to a host, false otherwise
delayed_status true when gadget driver asks for delayed status

ep0_bounced true when we used bounce buffer

ep0_expect_in true when we expect a DATA IN transfer

has_hibernation true when dwc3 was configured with Hibernation

sysdev_is_parent true when dwc3 device has a parent driver

has_lpm_erratum true when core was configured with LPM Erratum. Note that
there’s now way for software to detect this in runtime.

is_utmi_l1_suspend the core asserts output signal 0 - utmi_sleep_n 1 -
utmi_l1_suspend_n

is_fpga true when we are using the FPGA board

pending_events true when we have pending IRQs to be handled

pullups_connected true when Run/Stop bit is set

setup_packet_pending true when there’s a Setup Packet in FIFO. Workaround
three_stage_setup set if we perform a three phase setup

dis_start_transfer_quirk set if start_transfer failure SW workaround is not
needed for DWC_usb31 version 1.70a-ea06 and below

usb3_lpm_capable set if hadrware supports Link Power Management

usb2_lpm_disable set to disable usb2 lpm

disable_scramble_quirk set if we enable the disable scramble quirk

u2exit_lfps_quirk set if we enable u2exit lfps quirk

u2ss_inp3_quirk set if we enable P3 OK for U2/SS Inactive quirk

req_p1p2p3_quirk set if we enable request p1p2p3 quirk

del_p1p2p3_quirk set if we enable delay p1p2p3 quirk

del_phy_power_chg_quirk set if we enable delay phy power change quirk

lfps_filter_quirk set if we enable LFPS filter quirk

rx_detect_poll_quirk set if we enable rx_detect to polling lfps quirk

dis_u3_susphy_quirk set if we disable usb3 suspend phy

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 697

Linux Driver-api Documentation

dis_u2_susphy_quirk set if we disable usb2 suspend phy

dis_enblslpm_quirk set if we clear enblslpm in GUSB2PHYCFG, disabling the
suspend signal to the PHY.

dis_u1_entry_quirk set if link entering into U1 state needs to be disabled.

dis_u2_entry_quirk set if link entering into U2 state needs to be disabled.

dis_rxdet_inp3_quirk set if we disable Rx.Detect in P3

dis_u2_freeclk_exists_quirk set if we clear u2_freeclk_exists in
GUSB2PHYCFG, specify that USB2 PHY doesn’t provide a free-running PHY
clock.

dis_del_phy_power_chg_quirk set if we disable delay phy power change quirk.

dis_tx_ipgap_linecheck_quirk set if we disable u2mac linestate check during
HS transmit.

parkmode_disable_ss_quirk set if we need to disable all SuperSpeed instances
in park mode.

tx_de_emphasis_quirk set if we enable Tx de-emphasis quirk

tx_de_emphasis Tx de-emphasis value 0 - -6dB de-emphasis 1 - -3.5dB de-
emphasis 2 - No de-emphasis 3 - Reserved

dis_metastability_quirk set to disable metastability quirk.

imod_interval set the interrupt moderation interval in 250ns increments or 0 to
disable.

struct dwc3_event_depevt
Device Endpoint Events

Definition

struct dwc3_event_depevt {
u32 one_bit:1;
u32 endpoint_number:5;
u32 endpoint_event:4;
u32 reserved11_10:2;
u32 status:4;

#define DEPEVT_STATUS_TRANSFER_ACTIVE BIT(3);
#define DEPEVT_STATUS_BUSERR BIT(0);
#define DEPEVT_STATUS_SHORT BIT(1);
#define DEPEVT_STATUS_IOC BIT(2);
#define DEPEVT_STATUS_LST BIT(3) ;
#define DEPEVT_STATUS_MISSED_ISOC BIT(3) ;
#define DEPEVT_STREAMEVT_FOUND 1;
#define DEPEVT_STREAMEVT_NOTFOUND 2;
#define DEPEVT_STREAM_PRIME 0xfffe;
#define DEPEVT_STREAM_NOSTREAM 0x0;
#define DEPEVT_STATUS_CONTROL_DATA 1;
#define DEPEVT_STATUS_CONTROL_STATUS 2;
#define DEPEVT_STATUS_CONTROL_PHASE(n) ((n) & 3);
#define DEPEVT_TRANSFER_NO_RESOURCE 1;
#define DEPEVT_TRANSFER_BUS_EXPIRY 2;

u32 parameters:16;
(continues on next page)

698 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
#define DEPEVT_PARAMETER_CMD(n) (((n) & (0xf << 8)) >> 8);
};

Members
one_bit indicates this is an endpoint event (not used)

endpoint_number number of the endpoint

endpoint_event The event we have: 0x00 - Reserved 0x01 - XferComplete 0x02
- XferInProgress 0x03 - XferNotReady 0x04 - RxTxFifoEvt (IN->Underrun,
OUT->Overrun) 0x05 - Reserved 0x06 - StreamEvt 0x07 - EPCmdCmplt

reserved11_10 Reserved, don’t use.
status Indicates the status of the event. Refer to databook for more information.

parameters Parameters of the current event. Refer to databook for more infor-
mation.

struct dwc3_event_devt
Device Events

Definition

struct dwc3_event_devt {
u32 one_bit:1;
u32 device_event:7;
u32 type:4;
u32 reserved15_12:4;
u32 event_info:9;
u32 reserved31_25:7;

};

Members
one_bit indicates this is a non-endpoint event (not used)

device_event indicates it’s a device event. Should read as 0x00
type indicates the type of device event. 0 - DisconnEvt 1 - USBRst 2 - ConnectDone

3 - ULStChng 4 - WkUpEvt 5 - Reserved 6 - EOPF 7 - SOF 8 - Reserved 9 -
ErrticErr 10 - CmdCmplt 11 - EvntOverflow 12 - VndrDevTstRcved

reserved15_12 Reserved, not used

event_info Information about this event

reserved31_25 Reserved, not used

struct dwc3_event_gevt
Other Core Events

Definition

struct dwc3_event_gevt {
u32 one_bit:1;
u32 device_event:7;
u32 phy_port_number:4;

(continues on next page)

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 699

Linux Driver-api Documentation

(continued from previous page)
u32 reserved31_12:20;

};

Members
one_bit indicates this is a non-endpoint event (not used)

device_event indicates it’s (0x03) Carkit or (0x04) I2C event.
phy_port_number self-explanatory

reserved31_12 Reserved, not used.

union dwc3_event
representation of Event Buffer contents

Definition

union dwc3_event {
u32 raw;
struct dwc3_event_type type;
struct dwc3_event_depevt depevt;
struct dwc3_event_devt devt;
struct dwc3_event_gevt gevt;

};

Members
raw raw 32-bit event

type the type of the event

depevt Device Endpoint Event

devt Device Event

gevt Global Event

struct dwc3_gadget_ep_cmd_params
representation of endpoint command parameters

Definition

struct dwc3_gadget_ep_cmd_params {
u32 param2;
u32 param1;
u32 param0;

};

Members
param2 third parameter

param1 second parameter

param0 first parameter

struct dwc3_request * next_request(struct list_head * list)
gets the next request on the given list

Parameters

700 Chapter 20. Linux USB API

Linux Driver-api Documentation

struct list_head * list the request list to operate on

Description
Caller should take care of locking. This function return NULL or the first request
available on list.
void dwc3_gadget_move_started_request(struct dwc3_request * req)

move req to the started_list
Parameters
struct dwc3_request * req the request to be moved

Description
Caller should take care of locking. This function will move req from its current
list to the endpoint’s started_list.
void dwc3_gadget_move_cancelled_request(struct dwc3_request * req)

move req to the cancelled_list
Parameters
struct dwc3_request * req the request to be moved

Description
Caller should take care of locking. This function will move req from its current
list to the endpoint’s cancelled_list.
void dwc3_gadget_ep_get_transfer_index(struct dwc3_ep * dep)

Gets transfer index from HW

Parameters
struct dwc3_ep * dep dwc3 endpoint

Description
Caller should take care of locking. Returns the transfer resource index for a given
endpoint.

void dwc3_gadget_dctl_write_safe(struct dwc3 * dwc, u32 value)
write to DCTL safe from link state change

Parameters
struct dwc3 * dwc pointer to our context structure

u32 value value to write to DCTL

Description
Use this function when doing read-modify-write to DCTL. It will not send link state
change request.

int dwc3_gadget_set_test_mode(struct dwc3 * dwc, int mode)
enables usb2 test modes

Parameters
struct dwc3 * dwc pointer to our context structure

int mode the mode to set (J, K SE0 NAK, Force Enable)

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 701

Linux Driver-api Documentation

Description
Caller should take care of locking. This function will return 0 on success or -
EINVAL if wrong Test Selector is passed.

int dwc3_gadget_get_link_state(struct dwc3 * dwc)
gets current state of usb link

Parameters
struct dwc3 * dwc pointer to our context structure

Description
Caller should take care of locking. This function will return the link state on suc-
cess (>= 0) or -ETIMEDOUT.

int dwc3_gadget_set_link_state(struct dwc3 * dwc, enum
dwc3_link_state state)

sets usb link to a particular state

Parameters
struct dwc3 * dwc pointer to our context structure

enum dwc3_link_state state the state to put link into

Description
Caller should take care of locking. This function will return 0 on success or -
ETIMEDOUT.

void dwc3_ep_inc_trb(u8 * index)
increment a trb index.

Parameters
u8 * index Pointer to the TRB index to increment.

Description
The index should never point to the link TRB. After incrementing, if it is point to
the link TRB, wrap around to the beginning. The link TRB is always at the last TRB
entry.

void dwc3_ep_inc_enq(struct dwc3_ep * dep)
increment endpoint’s enqueue pointer

Parameters
struct dwc3_ep * dep The endpoint whose enqueue pointer we’re incrementing
void dwc3_ep_inc_deq(struct dwc3_ep * dep)

increment endpoint’s dequeue pointer
Parameters
struct dwc3_ep * dep The endpoint whose enqueue pointer we’re incrementing
void dwc3_gadget_giveback(struct dwc3_ep * dep, struct dwc3_request

* req, int status)
call struct usb_request’s ->complete callback

Parameters

702 Chapter 20. Linux USB API

Linux Driver-api Documentation

struct dwc3_ep * dep The endpoint to whom the request belongs to

struct dwc3_request * req The request we’re giving back
int status completion code for the request

Description
Must be called with controller’s lock held and interrupts disabled. This function
will unmap req and call its ->complete() callback to notify upper layers that it has
completed.

int dwc3_send_gadget_generic_command(struct dwc3 * dwc, unsigned cmd,
u32 param)

issue a generic command for the controller

Parameters
struct dwc3 * dwc pointer to the controller context

unsigned cmd the command to be issued

u32 param command parameter

Description
Caller should take care of locking. Issue cmd with a given param to dwc and wait
for its completion.

int dwc3_send_gadget_ep_cmd(struct dwc3_ep * dep, unsigned cmd, struct
dwc3_gadget_ep_cmd_params * params)

issue an endpoint command

Parameters
struct dwc3_ep * dep the endpoint to which the command is going to be issued

unsigned cmd the command to be issued

struct dwc3_gadget_ep_cmd_params * params parameters to the command

Description
Caller should handle locking. This function will issue cmd with given params to
dep and wait for its completion.
int dwc3_gadget_start_config(struct dwc3_ep * dep)

configure ep resources

Parameters
struct dwc3_ep * dep endpoint that is being enabled

Description
Issue a DWC3_DEPCMD_DEPSTARTCFG command to dep. After the command’s com-
pletion, it will set Transfer Resource for all available endpoints.

The assignment of transfer resources cannot perfectly follow the data book due to
the fact that the controller driver does not have all knowledge of the configuration
in advance. It is given this information piecemeal by the composite gadget frame-
work after every SET_CONFIGURATION and SET_INTERFACE. Trying to follow

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 703

Linux Driver-api Documentation

the databook programming model in this scenario can cause errors. For two rea-
sons:

1) The databook says to do DWC3_DEPCMD_DEPSTARTCFG for every
USB_REQ_SET_CONFIGURATION and USB_REQ_SET_INTERFACE (8.1.5). This is
incorrect in the scenario of multiple interfaces.

2) The databook does not mention doing more DWC3_DEPCMD_DEPXFERCFG for new
endpoint on alt setting (8.1.6).

The following simplified method is used instead:

All hardware endpoints can be assigned a transfer resource and this set-
ting will stay persistent until either a core reset or hibernation. So
whenever we do a DWC3_DEPCMD_DEPSTARTCFG``(0) we can go ahead and do
``DWC3_DEPCMD_DEPXFERCFG for every hardware endpoint as well. We are guar-
anteed that there are as many transfer resources as endpoints.

This function is called for each endpoint when it is being enabled but is triggered
only when called for EP0-out, which always happens first, and which should only
happen in one of the above conditions.

int __dwc3_gadget_ep_enable(struct dwc3_ep * dep, unsigned int action)
initializes a hw endpoint

Parameters
struct dwc3_ep * dep endpoint to be initialized

unsigned int action one of INIT, MODIFY or RESTORE

Description
Caller should take care of locking. Execute all necessary commands to initialize a
HW endpoint so it can be used by a gadget driver.

int __dwc3_gadget_ep_disable(struct dwc3_ep * dep)
disables a hw endpoint

Parameters
struct dwc3_ep * dep the endpoint to disable

Description
This function undoes what __dwc3_gadget_ep_enable did and also removes re-
quests which are currently being processed by the hardware and those which are
not yet scheduled.

Caller should take care of locking.

struct dwc3_trb * dwc3_ep_prev_trb(struct dwc3_ep * dep, u8 index)
returns the previous TRB in the ring

Parameters
struct dwc3_ep * dep The endpoint with the TRB ring

u8 index The index of the current TRB in the ring

Description

704 Chapter 20. Linux USB API

Linux Driver-api Documentation

Returns the TRB prior to the one pointed to by the index. If the index is 0, we will
wrap backwards, skip the link TRB, and return the one just before that.

void dwc3_prepare_one_trb(struct dwc3_ep * dep, struct dwc3_request
* req, unsigned chain, unsigned node)

setup one TRB from one request

Parameters
struct dwc3_ep * dep endpoint for which this request is prepared

struct dwc3_request * req dwc3_request pointer

unsigned chain should this TRB be chained to the next?

unsigned node only for isochronous endpoints. First TRB needs different type.

int dwc3_gadget_start_isoc_quirk(struct dwc3_ep * dep)
workaround invalid frame number

Parameters
struct dwc3_ep * dep isoc endpoint

Description
This function tests for the correct combination of BIT[15:14] from the 16-bit mi-
croframe number reported by the XferNotReady event for the future frame number
to start the isoc transfer.

In DWC_usb31 version 1.70a-ea06 and prior, for highspeed and fullspeed
isochronous IN, BIT[15:14] of the 16-bit microframe number reported by the
XferNotReady event are invalid. The driver uses this number to schedule the
isochronous transfer and passes it to the START TRANSFER command. Because
this number is invalid, the command may fail. If BIT[15:14] matches the internal
16-bit microframe, the START TRANSFER command will pass and the transfer will
start at the scheduled time, if it is off by 1, the command will still pass, but the
transfer will start 2 seconds in the future. For all other conditions, the START
TRANSFER command will fail with bus-expiry.

In order to workaround this issue, we can test for the correct combination of
BIT[15:14] by sending START TRANSFER commands with different values of
BIT[15:14]: ‘b00, ‘b01, ‘b10, and ‘b11. Each combination is 2^14 uframe
apart (or 2 seconds). 4 seconds into the future will result in a bus-expiry status.
As the result, within the 4 possible combinations for BIT[15:14], there will be 2
successful and 2 failure START COMMAND status. One of the 2 successful com-
mand status will result in a 2-second delay start. The smaller BIT[15:14] value is
the correct combination.

Since there are only 4 outcomes and the results are ordered, we can simply test
2 START TRANSFER commands with BIT[15:14] combinations‘b00 and‘b01 to
deduce the smaller successful combination.

Let test0 = test status for combination ‘b00 and test1 = test status for ‘b01 of
BIT[15:14]. The correct combination is as follow:

if test0 fails and test1 passes, BIT[15:14] is ‘b01 if test0 fails and test1 fails,
BIT[15:14] is‘b10 if test0 passes and test1 fails, BIT[15:14] is‘b11 if test0 passes
and test1 passes, BIT[15:14] is ‘b00

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 705

Linux Driver-api Documentation

Synopsys STAR 9001202023: Wrong microframe number for isochronous IN end-
points.

void dwc3_gadget_setup_nump(struct dwc3 * dwc)
calculate and initialize NUMP field of DWC3_DCFG

Parameters
struct dwc3 * dwc pointer to our context structure

Description
The following looks like complex but it’s actually very simple. In order to calculate
the number of packets we can burst at once on OUT transfers, we’re gonna use
RxFIFO size.

To calculate RxFIFO size we need two numbers: MDWIDTH = size, in bits, of
the internal memory bus RAM2_DEPTH = depth, in MDWIDTH, of internal RAM2
(where RxFIFO sits)

Given these two numbers, the formula is simple:

RxFIFO Size = (RAM2_DEPTH * MDWIDTH / 8) - 24 - 16;

24 bytes is for 3x SETUP packets 16 bytes is a clock domain crossing tolerance

Given RxFIFO Size, NUMP = RxFIFOSize / 1024;

int dwc3_gadget_init(struct dwc3 * dwc)
initializes gadget related registers

Parameters
struct dwc3 * dwc pointer to our controller context structure

Description
Returns 0 on success otherwise negative errno.

DWC3_DEFAULT_AUTOSUSPEND_DELAY()
DesignWare USB3 DRD Controller Core file

Parameters
Description
Copyright (C) 2010-2011 Texas Instruments Incorporated - http://www.ti.com

Authors: Felipe Balbi <balbi**ti.com**>, Sebastian Andrzej Siewior
<bigeasy**linutronix.de**>

int dwc3_get_dr_mode(struct dwc3 * dwc)
Validates and sets dr_mode

Parameters
struct dwc3 * dwc pointer to our context structure

int dwc3_core_soft_reset(struct dwc3 * dwc)
Issues core soft reset and PHY reset

Parameters
struct dwc3 * dwc pointer to our context structure

706 Chapter 20. Linux USB API

http://www.ti.com

Linux Driver-api Documentation

void dwc3_free_one_event_buffer(struct dwc3 * dwc, struct
dwc3_event_buffer * evt)

Frees one event buffer

Parameters
struct dwc3 * dwc Pointer to our controller context structure

struct dwc3_event_buffer * evt Pointer to event buffer to be freed

struct dwc3_event_buffer * dwc3_alloc_one_event_buffer(struct dwc3
* dwc, un-
signed length)

Allocates one event buffer structure

Parameters
struct dwc3 * dwc Pointer to our controller context structure

unsigned length size of the event buffer

Description
Returns a pointer to the allocated event buffer structure on success otherwise
ERR_PTR(errno).

void dwc3_free_event_buffers(struct dwc3 * dwc)
frees all allocated event buffers

Parameters
struct dwc3 * dwc Pointer to our controller context structure

int dwc3_alloc_event_buffers(struct dwc3 * dwc, unsigned length)
Allocates num event buffers of size length

Parameters
struct dwc3 * dwc pointer to our controller context structure

unsigned length size of event buffer

Description
Returns 0 on success otherwise negative errno. In the error case, dwc may contain
some buffers allocated but not all which were requested.

int dwc3_event_buffers_setup(struct dwc3 * dwc)
setup our allocated event buffers

Parameters
struct dwc3 * dwc pointer to our controller context structure

Description
Returns 0 on success otherwise negative errno.

int dwc3_phy_setup(struct dwc3 * dwc)
Configure USB PHY Interface of DWC3 Core

Parameters
struct dwc3 * dwc Pointer to our controller context structure

20.13. Synopsys DesignWare Core SuperSpeed USB 3.0 Controller 707

Linux Driver-api Documentation

Description
Returns 0 on success. The USB PHY interfaces are configured but not initial-
ized. The PHY interfaces and the PHYs get initialized together with the core in
dwc3_core_init.

int dwc3_core_init(struct dwc3 * dwc)
Low-level initialization of DWC3 Core

Parameters
struct dwc3 * dwc Pointer to our controller context structure

Description
Returns 0 on success otherwise negative errno.

20.14 Writing a MUSB Glue Layer

Author Apelete Seketeli

20.14.1 Introduction

The Linux MUSB subsystem is part of the larger Linux USB subsystem. It provides
support for embedded USB Device Controllers (UDC) that do not use Universal
Host Controller Interface (UHCI) or Open Host Controller Interface (OHCI).

Instead, these embedded UDC rely on the USB On-the-Go (OTG) specification
which they implement at least partially. The silicon reference design used in most
cases is the Multipoint USB Highspeed Dual-Role Controller (MUSB HDRC) found
in the Mentor Graphics Inventra™ design.

As a self-taught exercise I have written an MUSB glue layer for the Ingenic JZ4740
SoC, modelled after the many MUSB glue layers in the kernel source tree. This
layer can be found at drivers/usb/musb/jz4740.c. In this documentation I will
walk through the basics of the jz4740.c glue layer, explaining the different pieces
and what needs to be done in order to write your own device glue layer.

20.14.2 Linux MUSB Basics

To get started on the topic, please read USB On-the-Go Basics (see Resources)
which provides an introduction of USB OTG operation at the hardware level. A
couple of wiki pages by Texas Instruments and Analog Devices also provide an
overview of the Linux kernel MUSB configuration, albeit focused on some spe-
cific devices provided by these companies. Finally, getting acquainted with the
USB specification at USB home page may come in handy, with practical instance
provided through the Writing USB Device Drivers documentation (again, see Re-
sources).

Linux USB stack is a layered architecture in which the MUSB controller hardware
sits at the lowest. The MUSB controller driver abstract the MUSB controller hard-
ware to the Linux USB stack:

708 Chapter 20. Linux USB API

Linux Driver-api Documentation

| | <------- drivers/usb/gadget
| Linux USB Core Stack | <------- drivers/usb/host
| | <------- drivers/usb/core

⬍

| | <------ drivers/usb/musb/musb_gadget.c
| MUSB Controller driver | <------ drivers/usb/musb/musb_host.c
| | <------ drivers/usb/musb/musb_core.c

⬍

| MUSB Platform Specific Driver |
| | <-- drivers/usb/musb/jz4740.c
aka "Glue Layer"

⬍

MUSB Controller Hardware

As outlined above, the glue layer is actually the platform specific code sitting in
between the controller driver and the controller hardware.

Just like a Linux USB driver needs to register itself with the Linux USB subsys-
tem, the MUSB glue layer needs first to register itself with the MUSB controller
driver. This will allow the controller driver to know about which device the glue
layer supports and which functions to call when a supported device is detected or
released; remember we are talking about an embedded controller chip here, so no
insertion or removal at run-time.

All of this information is passed to the MUSB controller driver through a
platform_driver structure defined in the glue layer as:

static struct platform_driver jz4740_driver = {
.probe = jz4740_probe,
.remove = jz4740_remove,
.driver = {

.name = "musb-jz4740",
},

};

The probe and remove function pointers are called when a matching device is
detected and, respectively, released. The name string describes the device sup-
ported by this glue layer. In the current case it matches a platform_device struc-
ture declared in arch/mips/jz4740/platform.c. Note that we are not using de-
vice tree bindings here.

In order to register itself to the controller driver, the glue layer goes through a few
steps, basically allocating the controller hardware resources and initialising a cou-
ple of circuits. To do so, it needs to keep track of the information used throughout
these steps. This is done by defining a private jz4740_glue structure:

struct jz4740_glue {
(continues on next page)

20.14. Writing a MUSB Glue Layer 709

Linux Driver-api Documentation

(continued from previous page)
struct device *dev;
struct platform_device *musb;
struct clk *clk;

};

The dev and musb members are both device structure variables. The first one
holds generic information about the device, since it’s the basic device structure,
and the latter holds information more closely related to the subsystem the device
is registered to. The clk variable keeps information related to the device clock
operation.

Let’s go through the steps of the probe function that leads the glue layer to register
itself to the controller driver.

Note: For the sake of readability each function will be split in logical parts, each
part being shown as if it was independent from the others.

static int jz4740_probe(struct platform_device *pdev)
{

struct platform_device *musb;
struct jz4740_glue *glue;
struct clk *clk;
int ret;

glue = devm_kzalloc(&pdev->dev, sizeof(*glue), GFP_KERNEL);
if (!glue)

return -ENOMEM;

musb = platform_device_alloc("musb-hdrc", PLATFORM_DEVID_AUTO);
if (!musb) {

dev_err(&pdev->dev, "failed to allocate musb device\n");
return -ENOMEM;

}

clk = devm_clk_get(&pdev->dev, "udc");
if (IS_ERR(clk)) {

dev_err(&pdev->dev, "failed to get clock\n");
ret = PTR_ERR(clk);
goto err_platform_device_put;

}

ret = clk_prepare_enable(clk);
if (ret) {

dev_err(&pdev->dev, "failed to enable clock\n");
goto err_platform_device_put;

}

musb->dev.parent = &pdev->dev;

glue->dev = &pdev->dev;
glue->musb = musb;
glue->clk = clk;

(continues on next page)

710 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
return 0;

err_platform_device_put:
platform_device_put(musb);
return ret;

}

The first few lines of the probe function allocate and assign the glue, musb
and clk variables. The GFP_KERNEL flag (line 8) allows the allocation process
to sleep and wait for memory, thus being usable in a locking situation. The
PLATFORM_DEVID_AUTO flag (line 12) allows automatic allocation and management
of device IDs in order to avoid device namespace collisions with explicit IDs. With
devm_clk_get() (line 18) the glue layer allocates the clock – the devm_ prefix in-
dicates that clk_get() is managed: it automatically frees the allocated clock re-
source data when the device is released – and enable it.

Then comes the registration steps:

static int jz4740_probe(struct platform_device *pdev)
{

struct musb_hdrc_platform_data *pdata = &jz4740_musb_platform_data;

pdata->platform_ops = &jz4740_musb_ops;

platform_set_drvdata(pdev, glue);

ret = platform_device_add_resources(musb, pdev->resource,
pdev->num_resources);

if (ret) {
dev_err(&pdev->dev, "failed to add resources\n");
goto err_clk_disable;

}

ret = platform_device_add_data(musb, pdata, sizeof(*pdata));
if (ret) {

dev_err(&pdev->dev, "failed to add platform_data\n");
goto err_clk_disable;

}

return 0;

err_clk_disable:
clk_disable_unprepare(clk);

err_platform_device_put:
platform_device_put(musb);
return ret;

}

The first step is to pass the device data privately held by the glue layer on to
the controller driver through platform_set_drvdata() (line 7). Next is passing
on the device resources information, also privately held at that point, through
platform_device_add_resources() (line 9).

Finally comes passing on the platform specific data to the controller driver (line
16). Platform data will be discussed in Device Platform Data, but here we are look-

20.14. Writing a MUSB Glue Layer 711

Linux Driver-api Documentation

ing at the platform_ops function pointer (line 5) in musb_hdrc_platform_data
structure (line 3). This function pointer allows the MUSB controller driver to know
which function to call for device operation:

static const struct musb_platform_ops jz4740_musb_ops = {
.init = jz4740_musb_init,
.exit = jz4740_musb_exit,

};

Here we have the minimal case where only init and exit functions are called by
the controller driver when needed. Fact is the JZ4740 MUSB controller is a basic
controller, lacking some features found in other controllers, otherwise we may
also have pointers to a few other functions like a power management function or
a function to switch between OTG and non-OTG modes, for instance.

At that point of the registration process, the controller driver actually calls the init
function:

static int jz4740_musb_init(struct musb *musb)
{

musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2);
if (!musb->xceiv) {

pr_err("HS UDC: no transceiver configured\n");
return -ENODEV;

}

/* Silicon does not implement ConfigData register.
* Set dyn_fifo to avoid reading EP config from hardware.
*/

musb->dyn_fifo = true;

musb->isr = jz4740_musb_interrupt;

return 0;
}

The goal of jz4740_musb_init() is to get hold of the transceiver driver data of
the MUSB controller hardware and pass it on to the MUSB controller driver, as
usual. The transceiver is the circuitry inside the controller hardware responsible
for sending/receiving the USB data. Since it is an implementation of the physical
layer of the OSI model, the transceiver is also referred to as PHY.

Getting hold of the MUSB PHY driver data is done with usb_get_phy() which re-
turns a pointer to the structure containing the driver instance data. The next cou-
ple of instructions (line 12 and 14) are used as a quirk and to setup IRQ handling
respectively. Quirks and IRQ handling will be discussed later in Device Quirks and
Handling IRQs

static int jz4740_musb_exit(struct musb *musb)
{

usb_put_phy(musb->xceiv);

return 0;
}

Acting as the counterpart of init, the exit function releases the MUSB PHY driver

712 Chapter 20. Linux USB API

Linux Driver-api Documentation

when the controller hardware itself is about to be released.

Again, note that init and exit are fairly simple in this case due to the basic set
of features of the JZ4740 controller hardware. When writing an musb glue layer
for a more complex controller hardware, you might need to take care of more
processing in those two functions.

Returning from the init function, the MUSB controller driver jumps back into the
probe function:

static int jz4740_probe(struct platform_device *pdev)
{

ret = platform_device_add(musb);
if (ret) {

dev_err(&pdev->dev, "failed to register musb device\n");
goto err_clk_disable;

}

return 0;

err_clk_disable:
clk_disable_unprepare(clk);

err_platform_device_put:
platform_device_put(musb);
return ret;

}

This is the last part of the device registration process where the glue layer adds
the controller hardware device to Linux kernel device hierarchy: at this stage, all
known information about the device is passed on to the Linux USB core stack:

static int jz4740_remove(struct platform_device *pdev)
{

struct jz4740_glue *glue = platform_get_drvdata(pdev);

platform_device_unregister(glue->musb);
clk_disable_unprepare(glue->clk);

return 0;
}

Acting as the counterpart of probe, the remove function unregister the MUSB
controller hardware (line 5) and disable the clock (line 6), allowing it to be gated.

20.14.3 Handling IRQs

Additionally to the MUSB controller hardware basic setup and registration, the
glue layer is also responsible for handling the IRQs:

static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci)
{

unsigned long flags;
irqreturn_t retval = IRQ_NONE;
struct musb *musb = __hci;

(continues on next page)

20.14. Writing a MUSB Glue Layer 713

Linux Driver-api Documentation

(continued from previous page)
spin_lock_irqsave(&musb->lock, flags);

musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB);
musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX);
musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX);

/*
* The controller is gadget only, the state of the host mode␣

↪→IRQ bits is
* undefined. Mask them to make sure that the musb driver␣

↪→core will
* never see them set
*/

musb->int_usb &= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME |
MUSB_INTR_RESET | MUSB_INTR_SOF;

if (musb->int_usb || musb->int_tx || musb->int_rx)
retval = musb_interrupt(musb);

spin_unlock_irqrestore(&musb->lock, flags);

return retval;
}

Here the glue layer mostly has to read the relevant hardware registers and pass
their values on to the controller driver which will handle the actual event that
triggered the IRQ.

The interrupt handler critical section is protected by the spin_lock_irqsave()
and counterpart spin_unlock_irqrestore() functions (line 7 and 24 respec-
tively), which prevent the interrupt handler code to be run by two different threads
at the same time.

Then the relevant interrupt registers are read (line 9 to 11):

• MUSB_INTRUSB: indicates which USB interrupts are currently active,

• MUSB_INTRTX: indicates which of the interrupts for TX endpoints are currently
active,

• MUSB_INTRRX: indicates which of the interrupts for TX endpoints are currently
active.

Note that musb_readb() is used to read 8-bit registers at most, while
musb_readw() allows us to read at most 16-bit registers. There are other functions
that can be used depending on the size of your device registers. See musb_io.h
for more information.

Instruction on line 18 is another quirk specific to the JZ4740 USB device controller,
which will be discussed later in Device Quirks.

The glue layer still needs to register the IRQ handler though. Remember the in-
struction on line 14 of the init function:

static int jz4740_musb_init(struct musb *musb)
{

(continues on next page)

714 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
musb->isr = jz4740_musb_interrupt;

return 0;
}

This instruction sets a pointer to the glue layer IRQ handler function, in order
for the controller hardware to call the handler back when an IRQ comes from the
controller hardware. The interrupt handler is now implemented and registered.

20.14.4 Device Platform Data

In order to write an MUSB glue layer, you need to have some data describing the
hardware capabilities of your controller hardware, which is called the platform
data.

Platform data is specific to your hardware, though it may cover a broad range of
devices, and is generally found somewhere in the arch/ directory, depending on
your device architecture.

For instance, platform data for the JZ4740 SoC is found in arch/mips/jz4740/
platform.c. In the platform.c file each device of the JZ4740 SoC is described
through a set of structures.

Here is the part of arch/mips/jz4740/platform.c that covers the USB Device
Controller (UDC):

/* USB Device Controller */
struct platform_device jz4740_udc_xceiv_device = {

.name = "usb_phy_gen_xceiv",

.id = 0,
};

static struct resource jz4740_udc_resources[] = {
[0] = {

.start = JZ4740_UDC_BASE_ADDR,

.end = JZ4740_UDC_BASE_ADDR + 0x10000 - 1,

.flags = IORESOURCE_MEM,
},
[1] = {

.start = JZ4740_IRQ_UDC,

.end = JZ4740_IRQ_UDC,

.flags = IORESOURCE_IRQ,

.name = "mc",
},

};

struct platform_device jz4740_udc_device = {
.name = "musb-jz4740",
.id = -1,
.dev = {

.dma_mask = &jz4740_udc_device.dev.coherent_dma_
↪→mask,

.coherent_dma_mask = DMA_BIT_MASK(32),
},

(continues on next page)

20.14. Writing a MUSB Glue Layer 715

Linux Driver-api Documentation

(continued from previous page)
.num_resources = ARRAY_SIZE(jz4740_udc_resources),
.resource = jz4740_udc_resources,

};

The jz4740_udc_xceiv_device platform device structure (line 2) describes the
UDC transceiver with a name and id number.

At the time of this writing, note that usb_phy_gen_xceiv is the specific name
to be used for all transceivers that are either built-in with reference USB IP or
autonomous and doesn’t require any PHY programming. You will need to set
CONFIG_NOP_USB_XCEIV=y in the kernel configuration to make use of the cor-
responding transceiver driver. The id field could be set to -1 (equivalent to
PLATFORM_DEVID_NONE), -2 (equivalent to PLATFORM_DEVID_AUTO) or start with 0
for the first device of this kind if we want a specific id number.

The jz4740_udc_resources resource structure (line 7) defines the UDC registers
base addresses.

The first array (line 9 to 11) defines the UDC registers base memory addresses:
start points to the first register memory address, end points to the last register
memory address and the flags member defines the type of resource we are deal-
ing with. So IORESOURCE_MEM is used to define the registers memory addresses.
The second array (line 14 to 17) defines the UDC IRQ registers addresses. Since
there is only one IRQ register available for the JZ4740 UDC, start and end point
at the same address. The IORESOURCE_IRQ flag tells that we are dealing with IRQ
resources, and the name mc is in fact hard-coded in the MUSB core in order for
the controller driver to retrieve this IRQ resource by querying it by its name.

Finally, the jz4740_udc_device platform device structure (line 21) describes the
UDC itself.

The musb-jz4740 name (line 22) defines the MUSB driver that is used for this de-
vice; remember this is in fact the name that we used in the jz4740_driver platform
driver structure in Linux MUSB Basics. The id field (line 23) is set to -1 (equivalent
to PLATFORM_DEVID_NONE) since we do not need an id for the device: the MUSB
controller driver was already set to allocate an automatic id in Linux MUSB Ba-
sics. In the dev field we care for DMA related information here. The dma_mask
field (line 25) defines the width of the DMA mask that is going to be used, and
coherent_dma_mask (line 26) has the same purpose but for the alloc_coherent
DMA mappings: in both cases we are using a 32 bits mask. Then the resource
field (line 29) is simply a pointer to the resource structure defined before, while
the num_resources field (line 28) keeps track of the number of arrays defined in
the resource structure (in this case there were two resource arrays defined be-
fore).

With this quick overview of the UDC platform data at the arch/ level now done, let’
s get back to the MUSB glue layer specific platform data in drivers/usb/musb/
jz4740.c:

static struct musb_hdrc_config jz4740_musb_config = {
/* Silicon does not implement USB OTG. */
.multipoint = 0,
/* Max EPs scanned, driver will decide which EP can be used.␣

↪→*/
(continues on next page)

716 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
.num_eps = 4,
/* RAMbits needed to configure EPs from table */
.ram_bits = 9,
.fifo_cfg = jz4740_musb_fifo_cfg,
.fifo_cfg_size = ARRAY_SIZE(jz4740_musb_fifo_cfg),

};

static struct musb_hdrc_platform_data jz4740_musb_platform_data =
↪→{

.mode = MUSB_PERIPHERAL,

.config = &jz4740_musb_config,
};

First the glue layer configures some aspects of the controller driver opera-
tion related to the controller hardware specifics. This is done through the
jz4740_musb_config musb_hdrc_config structure.

Defining the OTG capability of the controller hardware, the multipoint member
(line 3) is set to 0 (equivalent to false) since the JZ4740 UDC is not OTG compati-
ble. Then num_eps (line 5) defines the number of USB endpoints of the controller
hardware, including endpoint 0: here we have 3 endpoints + endpoint 0. Next is
ram_bits (line 7) which is the width of the RAM address bus for the MUSB con-
troller hardware. This information is needed when the controller driver cannot au-
tomatically configure endpoints by reading the relevant controller hardware reg-
isters. This issue will be discussed when we get to device quirks in Device Quirks.
Last two fields (line 8 and 9) are also about device quirks: fifo_cfg points to the
USB endpoints configuration table and fifo_cfg_size keeps track of the size of
the number of entries in that configuration table. More on that later in Device
Quirks.

Then this configuration is embedded inside jz4740_musb_platform_data
musb_hdrc_platform_data structure (line 11): config is a pointer to the config-
uration structure itself, and mode tells the controller driver if the controller hard-
ware may be used as MUSB_HOST only, MUSB_PERIPHERAL only or MUSB_OTG which
is a dual mode.

Remember that jz4740_musb_platform_data is then used to convey platform data
information as we have seen in the probe function in Linux MUSB Basics.

20.14.5 Device Quirks

Completing the platform data specific to your device, you may also need to write
some code in the glue layer to work around some device specific limitations. These
quirks may be due to some hardware bugs, or simply be the result of an incomplete
implementation of the USB On-the-Go specification.

The JZ4740 UDC exhibits such quirks, some of which we will discuss here for the
sake of insight even though these might not be found in the controller hardware
you are working on.

Let’s get back to the init function first:

20.14. Writing a MUSB Glue Layer 717

Linux Driver-api Documentation

static int jz4740_musb_init(struct musb *musb)
{

musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2);
if (!musb->xceiv) {

pr_err("HS UDC: no transceiver configured\n");
return -ENODEV;

}

/* Silicon does not implement ConfigData register.
* Set dyn_fifo to avoid reading EP config from hardware.
*/

musb->dyn_fifo = true;

musb->isr = jz4740_musb_interrupt;

return 0;
}

Instruction on line 12 helps the MUSB controller driver to work around the fact
that the controller hardware is missing registers that are used for USB endpoints
configuration.

Without these registers, the controller driver is unable to read the endpoints con-
figuration from the hardware, so we use line 12 instruction to bypass reading the
configuration from silicon, and rely on a hard-coded table that describes the end-
points configuration instead:

static struct musb_fifo_cfg jz4740_musb_fifo_cfg[] = {
{ .hw_ep_num = 1, .style = FIFO_TX, .maxpacket = 512, },
{ .hw_ep_num = 1, .style = FIFO_RX, .maxpacket = 512, },
{ .hw_ep_num = 2, .style = FIFO_TX, .maxpacket = 64, },

};

Looking at the configuration table above, we see that each endpoints is described
by three fields: hw_ep_num is the endpoint number, style is its direction (either
FIFO_TX for the controller driver to send packets in the controller hardware, or
FIFO_RX to receive packets from hardware), and maxpacket defines the maximum
size of each data packet that can be transmitted over that endpoint. Reading
from the table, the controller driver knows that endpoint 1 can be used to send
and receive USB data packets of 512 bytes at once (this is in fact a bulk in/out
endpoint), and endpoint 2 can be used to send data packets of 64 bytes at once
(this is in fact an interrupt endpoint).

Note that there is no information about endpoint 0 here: that one is implemented
by default in every silicon design, with a predefined configuration according to
the USB specification. For more examples of endpoint configuration tables, see
musb_core.c.

Let’s now get back to the interrupt handler function:
static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci)
{

unsigned long flags;
irqreturn_t retval = IRQ_NONE;
struct musb *musb = __hci;

(continues on next page)

718 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)

spin_lock_irqsave(&musb->lock, flags);

musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB);
musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX);
musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX);

/*
* The controller is gadget only, the state of the host mode␣

↪→IRQ bits is
* undefined. Mask them to make sure that the musb driver␣

↪→core will
* never see them set
*/

musb->int_usb &= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME |
MUSB_INTR_RESET | MUSB_INTR_SOF;

if (musb->int_usb || musb->int_tx || musb->int_rx)
retval = musb_interrupt(musb);

spin_unlock_irqrestore(&musb->lock, flags);

return retval;
}

Instruction on line 18 above is a way for the controller driver to work around the
fact that some interrupt bits used for USB host mode operation are missing in the
MUSB_INTRUSB register, thus left in an undefined hardware state, since this MUSB
controller hardware is used in peripheral mode only. As a consequence, the glue
layer masks these missing bits out to avoid parasite interrupts by doing a logical
AND operation between the value read from MUSB_INTRUSB and the bits that are
actually implemented in the register.

These are only a couple of the quirks found in the JZ4740 USB device controller.
Some others were directly addressed in the MUSB core since the fixes were
generic enough to provide a better handling of the issues for others controller
hardware eventually.

20.14.6 Conclusion

Writing a Linux MUSB glue layer should be a more accessible task, as this docu-
mentation tries to show the ins and outs of this exercise.

The JZ4740 USB device controller being fairly simple, I hope its glue layer serves
as a good example for the curious mind. Used with the current MUSB glue lay-
ers, this documentation should provide enough guidance to get started; should
anything gets out of hand, the linux-usb mailing list archive is another helpful re-
source to browse through.

20.14. Writing a MUSB Glue Layer 719

Linux Driver-api Documentation

20.14.7 Acknowledgements

Many thanks to Lars-Peter Clausen and Maarten ter Huurne for answering my
questions while I was writing the JZ4740 glue layer and for helping me out getting
the code in good shape.

I would also like to thank the Qi-Hardware community at large for its cheerful
guidance and support.

20.14.8 Resources

USB Home Page: https://www.usb.org

linux-usb Mailing List Archives: https://marc.info/?l=linux-usb

USB On-the-Go Basics: https://www.maximintegrated.com/app-notes/index.mvp/
id/1822

Writing USB Device Drivers

Texas Instruments USB Configuration Wiki Page: http://processors.wiki.ti.com/
index.php/Usbgeneralpage

20.15 USB Type-C connector class

20.15.1 Introduction

The typec class is meant for describing the USB Type-C ports in a system to the
user space in unified fashion. The class is designed to provide nothing else except
the user space interface implementation in hope that it can be utilized on as many
platforms as possible.

The platforms are expected to register every USB Type-C port they have with the
class. In a normal case the registration will be done by a USB Type-C or PD PHY
driver, but it may be a driver for firmware interface such as UCSI, driver for USB
PD controller or even driver for Thunderbolt3 controller. This document considers
the component registering the USB Type-C ports with the class as“port driver”.
On top of showing the capabilities, the class also offer user space control over the
roles and alternate modes of ports, partners and cable plugs when the port driver
is capable of supporting those features.

The class provides an API for the port drivers described in this document. The
attributes are described in Documentation/ABI/testing/sysfs-class-typec.

720 Chapter 20. Linux USB API

https://www.usb.org
https://marc.info/?l=linux-usb
https://www.maximintegrated.com/app-notes/index.mvp/id/1822
https://www.maximintegrated.com/app-notes/index.mvp/id/1822
http://processors.wiki.ti.com/index.php/Usbgeneralpage
http://processors.wiki.ti.com/index.php/Usbgeneralpage

Linux Driver-api Documentation

20.15.2 User space interface

Every port will be presented as its own device under /sys/class/typec/. The first
port will be named “port0”, the second “port1”and so on.
When connected, the partner will be presented also as its own device under
/sys/class/typec/. The parent of the partner device will always be the port it is
attached to. The partner attached to port“port0”will be named“port0-partner”
. Full path to the device would be /sys/class/typec/port0/port0-partner/.

The cable and the two plugs on it may also be optionally presented as their own
devices under /sys/class/typec/. The cable attached to the port“port0”port will be
named port0-cable and the plug on the SOP Prime end (see USB Power Delivery
Specification ch. 2.4) will be named“port0-plug0”and on the SOP Double Prime
end“port0-plug1”. The parent of a cable will always be the port, and the parent
of the cable plugs will always be the cable.

If the port, partner or cable plug supports Alternate Modes, every supported Alter-
nate Mode SVID will have their own device describing them. Note that the Alter-
nate Mode devices will not be attached to the typec class. The parent of an alter-
nate mode will be the device that supports it, so for example an alternate mode of
port0-partner will be presented under /sys/class/typec/port0-partner/. Every mode
that is supported will have its own group under the Alternate Mode device named
“mode<index>”, for example /sys/class/typec/port0/<alternate mode>/mode1/.
The requests for entering/exiting a mode can be done with“active”attribute file
in that group.

20.15.3 Driver API

Registering the ports

The port drivers will describe every Type-C port they control with struct
typec_capability data structure, and register them with the following API:

struct typec_port * typec_register_port(struct device * parent, const
struct typec_capability * cap)

Register a USB Type-C Port

Parameters
struct device * parent Parent device

const struct typec_capability * cap Description of the port

Description
Registers a device for USB Type-C Port described in cap.
Returns handle to the port on success or ERR_PTR on failure.

void typec_unregister_port(struct typec_port * port)
Unregister a USB Type-C Port

Parameters
struct typec_port * port The port to be unregistered

20.15. USB Type-C connector class 721

Linux Driver-api Documentation

Description
Unregister device created with typec_register_port().

When registering the ports, the prefer_role member in struct typec_capability de-
serves special notice. If the port that is being registered does not have initial role
preference, which means the port does not execute Try.SNK or Try.SRC by default,
the member must have value TYPEC_NO_PREFERRED_ROLE. Otherwise if the
port executes Try.SNK by default, the member must have value TYPEC_DEVICE,
and with Try.SRC the value must be TYPEC_HOST.

Registering Partners

After successful connection of a partner, the port driver needs to register the
partner with the class. Details about the partner need to be described in struct
typec_partner_desc. The class copies the details of the partner during registration.
The class offers the following API for registering/unregistering partners.

struct typec_partner * typec_register_partner(struct typec_port * port,
struct typec_partner_desc
* desc)

Register a USB Type-C Partner

Parameters
struct typec_port * port The USB Type-C Port the partner is connected to

struct typec_partner_desc * desc Description of the partner

Description
Registers a device for USB Type-C Partner described in desc.
Returns handle to the partner on success or ERR_PTR on failure.

void typec_unregister_partner(struct typec_partner * partner)
Unregister a USB Type-C Partner

Parameters
struct typec_partner * partner The partner to be unregistered

Description
Unregister device created with typec_register_partner().

The class will provide a handle to struct typec_partner if the registration was suc-
cessful, or NULL.

If the partner is USB Power Delivery capable, and the port driver is able to show
the result of Discover Identity command, the partner descriptor structure should
include handle to struct usb_pd_identity instance. The class will then create a
sysfs directory for the identity under the partner device. The result of Discover
Identity command can then be reported with the following API:

int typec_partner_set_identity(struct typec_partner * partner)
Report result from Discover Identity command

Parameters

722 Chapter 20. Linux USB API

Linux Driver-api Documentation

struct typec_partner * partner The partner updated identity values

Description
This routine is used to report that the result of Discover Identity USB power de-
livery command has become available.

Registering Cables

After successful connection of a cable that supports USB Power Delivery Struc-
tured VDM “Discover Identity”, the port driver needs to register the cable and
one or two plugs, depending if there is CC Double Prime controller present in the
cable or not. So a cable capable of SOP Prime communication, but not SOP Double
Prime communication, should only have one plug registered. For more informa-
tion about SOP communication, please read chapter about it from the latest USB
Power Delivery specification.

The plugs are represented as their own devices. The cable is registered first,
followed by registration of the cable plugs. The cable will be the parent device for
the plugs. Details about the cable need to be described in struct typec_cable_desc
and about a plug in struct typec_plug_desc. The class copies the details during
registration. The class offers the following API for registering/unregistering cables
and their plugs:

struct typec_plug * typec_register_plug(struct typec_cable * cable, struct
typec_plug_desc * desc)

Register a USB Type-C Cable Plug

Parameters
struct typec_cable * cable USB Type-C Cable with the plug

struct typec_plug_desc * desc Description of the cable plug

Description
Registers a device for USB Type-C Cable Plug described in desc. A USB Type-C
Cable Plug represents a plug with electronics in it that can response to USB Power
Delivery SOP Prime or SOP Double Prime packages.

Returns handle to the cable plug on success or ERR_PTR on failure.

void typec_unregister_plug(struct typec_plug * plug)
Unregister a USB Type-C Cable Plug

Parameters
struct typec_plug * plug The cable plug to be unregistered

Description
Unregister device created with typec_register_plug().

struct typec_cable * typec_register_cable(struct typec_port * port, struct
typec_cable_desc * desc)

Register a USB Type-C Cable

Parameters
struct typec_port * port The USB Type-C Port the cable is connected to

20.15. USB Type-C connector class 723

Linux Driver-api Documentation

struct typec_cable_desc * desc Description of the cable

Description
Registers a device for USB Type-C Cable described in desc. The cable will be
parent for the optional cable plug devises.

Returns handle to the cable on success or ERR_PTR on failure.

void typec_unregister_cable(struct typec_cable * cable)
Unregister a USB Type-C Cable

Parameters
struct typec_cable * cable The cable to be unregistered

Description
Unregister device created with typec_register_cable().

The class will provide a handle to struct typec_cable and struct typec_plug if the
registration is successful, or NULL if it isn’t.
If the cable is USB Power Delivery capable, and the port driver is able to show
the result of Discover Identity command, the cable descriptor structure should
include handle to struct usb_pd_identity instance. The class will then create a
sysfs directory for the identity under the cable device. The result of Discover
Identity command can then be reported with the following API:

int typec_cable_set_identity(struct typec_cable * cable)
Report result from Discover Identity command

Parameters
struct typec_cable * cable The cable updated identity values

Description
This routine is used to report that the result of Discover Identity USB power de-
livery command has become available.

Notifications

When the partner has executed a role change, or when the default roles change
during connection of a partner or cable, the port driver must use the following
APIs to report it to the class:

void typec_set_data_role(struct typec_port * port, enum
typec_data_role role)

Report data role change

Parameters
struct typec_port * port The USB Type-C Port where the role was changed

enum typec_data_role role The new data role

Description
This routine is used by the port drivers to report data role changes.

724 Chapter 20. Linux USB API

Linux Driver-api Documentation

void typec_set_pwr_role(struct typec_port * port, enum typec_role role)
Report power role change

Parameters
struct typec_port * port The USB Type-C Port where the role was changed

enum typec_role role The new data role

Description
This routine is used by the port drivers to report power role changes.

void typec_set_vconn_role(struct typec_port * port, enum typec_role role)
Report VCONN source change

Parameters
struct typec_port * port The USB Type-C Port which VCONN role changed

enum typec_role role Source when port is sourcing VCONN, or Sink when it’s
not

Description
This routine is used by the port drivers to report if the VCONN source is changes.

void typec_set_pwr_opmode(struct typec_port * port, enum
typec_pwr_opmode opmode)

Report changed power operation mode

Parameters
struct typec_port * port The USB Type-C Port where the mode was changed

enum typec_pwr_opmode opmode New power operation mode

Description
This routine is used by the port drivers to report changed power operation mode
in port. The modes are USB (default), 1.5A, 3.0A as defined in USB Type-C spec-
ification, and “USB Power Delivery”when the power levels are negotiated with
methods defined in USB Power Delivery specification.

Alternate Modes

USB Type-C ports, partners and cable plugs may support Alternate Modes. Each
AlternateModewill have identifier called SVID, which is either a Standard ID given
by USB-IF or vendor ID, and each supported SVID can have 1 - 6 modes. The class
provides struct typec_mode_desc for describing individual mode of a SVID, and
struct typec_altmode_desc which is a container for all the supported modes.

Ports that support Alternate Modes need to register each SVID they support with
the following API:

struct typec_altmode * typec_port_register_altmode(struct typec_port
* port, const struct
typec_altmode_desc
* desc)

20.15. USB Type-C connector class 725

Linux Driver-api Documentation

Register USB Type-C Port Alternate Mode

Parameters
struct typec_port * port USB Type-C Port that supports the alternate mode

const struct typec_altmode_desc * desc Description of the alternate mode

Description
This routine is used to register an alternate mode that port is capable of support-
ing.

Returns handle to the alternate mode on success or ERR_PTR on failure.

If a partner or cable plug provides a list of SVIDs as response to USB Power Deliv-
ery Structured VDM Discover SVIDs message, each SVID needs to be registered.

API for the partners:

struct typec_altmode * typec_partner_register_altmode(struct
typec_partner
* partner,
const struct
typec_altmode_desc
* desc)

Register USB Type-C Partner Alternate Mode

Parameters
struct typec_partner * partner USB Type-C Partner that supports the alter-

nate mode

const struct typec_altmode_desc * desc Description of the alternate mode

Description
This routine is used to register each alternate mode individually that partner has
listed in response to Discover SVIDs command. The modes for a SVID listed in
response to Discover Modes command need to be listed in an array in desc.
Returns handle to the alternate mode on success or NULL on failure.

API for the Cable Plugs:

struct typec_altmode * typec_plug_register_altmode(struct typec_plug
* plug, const struct
typec_altmode_desc
* desc)

Register USB Type-C Cable Plug Alternate Mode

Parameters
struct typec_plug * plug USB Type-C Cable Plug that supports the alternate

mode

const struct typec_altmode_desc * desc Description of the alternate mode

Description
This routine is used to register each alternate mode individually that plug has
listed in response to Discover SVIDs command. The modes for a SVID that the

726 Chapter 20. Linux USB API

Linux Driver-api Documentation

plug lists in response to Discover Modes command need to be listed in an array in
desc.
Returns handle to the alternate mode on success or ERR_PTR on failure.

So ports, partners and cable plugs will register the alternate modes with their own
functions, but the registration will always return a handle to struct typec_altmode
on success, or NULL. The unregistration will happen with the same function:

void typec_unregister_altmode(struct typec_altmode * adev)
Unregister Alternate Mode

Parameters
struct typec_altmode * adev The alternate mode to be unregistered

Description
Unregister device created with typec_partner_register_altmode(),
typec_plug_register_altmode() or typec_port_register_altmode().

If a partner or cable plug enters or exits a mode, the port driver needs to notify
the class with the following API:

void typec_altmode_update_active(struct typec_altmode * adev,
bool active)

Report Enter/Exit mode

Parameters
struct typec_altmode * adev Handle to the alternate mode

bool active True when the mode has been entered

Description
If a partner or cable plug executes Enter/Exit Mode command successfully, the
drivers use this routine to report the updated state of the mode.

Multiplexer/DeMultiplexer Switches

USB Type-C connectors may have one or more mux/demux switches behind them.
Since the plugs can be inserted right-side-up or upside-down, a switch is needed
to route the correct data pairs from the connector to the USB controllers. If Alter-
nate or Accessory Modes are supported, another switch is needed that can route
the pins on the connector to some other component besides USB. USB Type-C
Connector Class supplies an API for registering those switches.

struct typec_switch * typec_switch_register(struct device * parent, const
struct typec_switch_desc
* desc)

Register USB Type-C orientation switch

Parameters
struct device * parent Parent device

const struct typec_switch_desc * desc Orientation switch description

20.15. USB Type-C connector class 727

Linux Driver-api Documentation

Description
This function registers a switch that can be used for routing the correct data pairs
depending on the cable plug orientation from the USB Type-C connector to the
USB controllers. USB Type-C plugs can be inserted right-side-up or upside-down.

void typec_switch_unregister(struct typec_switch * sw)
Unregister USB Type-C orientation switch

Parameters
struct typec_switch * sw USB Type-C orientation switch

Description
Unregister switch that was registered with typec_switch_register().

struct typec_mux * typec_mux_register(struct device * parent, const struct
typec_mux_desc * desc)

Register Multiplexer routing USB Type-C pins

Parameters
struct device * parent Parent device

const struct typec_mux_desc * desc Multiplexer description

Description
USB Type-C connectors can be used for alternate modes of operation besides USB
when Accessory/Alternate Modes are supported. With some of those modes, the
pins on the connector need to be reconfigured. This function registers multiplexer
switches routing the pins on the connector.

void typec_mux_unregister(struct typec_mux * mux)
Unregister Multiplexer Switch

Parameters
struct typec_mux * mux USB Type-C Connector Multiplexer/DeMultiplexer

Description
Unregister mux that was registered with typec_mux_register().

In most cases the same physical mux will handle both the orientation and mode.
However, as the port drivers will be responsible for the orientation, and the al-
ternate mode drivers for the mode, the two are always separated into their own
logical components: “mux”for the mode and “switch”for the orientation.
When a port is registered, USB Type-C Connector Class requests both the mux and
the switch for the port. The drivers can then use the following API for controlling
them:

int typec_set_orientation(struct typec_port * port, enum
typec_orientation orientation)

Set USB Type-C cable plug orientation

Parameters
struct typec_port * port USB Type-C Port

728 Chapter 20. Linux USB API

Linux Driver-api Documentation

enum typec_orientation orientation USB Type-C cable plug orientation

Description
Set cable plug orientation for port.
int typec_set_mode(struct typec_port * port, int mode)

Set mode of operation for USB Type-C connector

Parameters
struct typec_port * port USB Type-C connector

int mode Accessory Mode, USB Operation or Safe State

Description
Configure port for Accessory Modemode. This function will configure the muxes
needed for mode.
If the connector is dual-role capable, there may also be a switch for the data role.
USB Type-C Connector Class does not supply separate API for them. The port
drivers can use USB Role Class API with those.

Illustration of the muxes behind a connector that supports an alternate mode:

Connector

\ Orientation /

|

/ Mode \

/ \
------------------------ --------------------
| Alt Mode | / USB Role \
------------------------ ------------------------

/ \
------------------------ ------------------------
| USB Host | | USB Device |
------------------------ ------------------------

20.16 API for USB Type-C Alternate Mode drivers

20.16.1 Introduction

Alternate modes require communication with the partner using Vendor Defined
Messages (VDM) as defined in USB Type-C andUSB Power Delivery Specifications.
The communication is SVID (Standard or Vendor ID) specific, i.e. specific for every
alternate mode, so every alternate mode will need a custom driver.

USB Type-C bus allows binding a driver to the discovered partner alternate modes
by using the SVID and the mode number.

20.16. API for USB Type-C Alternate Mode drivers 729

Linux Driver-api Documentation

USB Type-C Connector Class provides a device for every alternate mode a port
supports, and separate device for every alternate mode the partner supports. The
drivers for the alternate modes are bound to the partner alternate mode devices,
and the port alternate mode devices must be handled by the port drivers.

When a new partner alternate mode device is registered, it is linked to the al-
ternate mode device of the port that the partner is attached to, that has match-
ing SVID and mode. Communication between the port driver and alternate mode
driver will happen using the same API.

The port alternate mode devices are used as a proxy between the partner and the
alternate mode drivers, so the port drivers are only expected to pass the SVID
specific commands from the alternate mode drivers to the partner, and from the
partners to the alternate mode drivers. No direct SVID specific communication is
needed from the port drivers, but the port drivers need to provide the operation
callbacks for the port alternate mode devices, just like the alternate mode drivers
need to provide them for the partner alternate mode devices.

20.16.2 Usage:

General

By default, the alternate mode drivers are responsible for entering the mode. It
is also possible to leave the decision about entering the mode to the user space
(See Documentation/ABI/testing/sysfs-class-typec). Port drivers should not enter
any modes on their own.

->vdm is the most important callback in the operation callbacks vector. It will be
used to deliver all the SVID specific commands from the partner to the alternate
mode driver, and vice versa in case of port drivers. The drivers send the SVID
specific commands to each other using typec_altmode_vdm().

If the communication with the partner using the SVID specific commands results in
need to reconfigure the pins on the connector, the alternate mode driver needs to
notify the bus using typec_altmode_notify(). The driver passes the negotiated
SVID specific pin configuration value to the function as parameter. The bus driver
will then configure the mux behind the connector using that value as the state
value for the mux.

NOTE: The SVID specific pin configuration values must always start from
TYPEC_STATE_MODAL. USB Type-C specification defines two default states for the
connector: TYPEC_STATE_USB and TYPEC_STATE_SAFE. These values are reserved
by the bus as the first possible values for the state. When the alternate mode is
entered, the bus will put the connector into TYPEC_STATE_SAFE before sending En-
ter or Exit Mode command as defined in USB Type-C Specification, and also put
the connector back to TYPEC_STATE_USB after the mode has been exited.

An example of working definitions for SVID specific pin configurations would look
like this:

enum {
ALTMODEX_CONF_A = TYPEC_STATE_MODAL,
ALTMODEX_CONF_B,

(continues on next page)

730 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
...

};

Helper macro TYPEC_MODAL_STATE() can also be used:

#define ALTMODEX_CONF_A = TYPEC_MODAL_STATE(0);
#define ALTMODEX_CONF_B = TYPEC_MODAL_STATE(1);

Cable plug alternate modes

The alternate mode drivers are not bound to cable plug alternate mode devices,
only to the partner alternate mode devices. If the alternate mode supports, or
requires, a cable that responds to SOP Prime, and optionally SOP Double Prime
messages, the driver for that alternate mode must request handle to the cable plug
alternate modes using typec_altmode_get_plug(), and take over their control.

20.16.3 Driver API

Alternate mode driver registering/unregistering

Alternate mode driver operations

int typec_altmode_notify(struct typec_altmode * adev, unsigned long conf,
void * data)

Communication between the OS and alternate mode driver

Parameters
struct typec_altmode * adev Handle to the alternate mode

unsigned long conf Alternate mode specific configuration value

void * data Alternate mode specific data

Description
The primary purpose for this function is to allow the alternate mode drivers to tell
which pin configuration has been negotiated with the partner. That information
will then be used for example to configure the muxes. Communication to the other
direction is also possible, and low level device drivers can also send notifications
to the alternate mode drivers. The actual communication will be specific for every
SVID.

int typec_altmode_enter(struct typec_altmode * adev, u32 * vdo)
Enter Mode

Parameters
struct typec_altmode * adev The alternate mode

u32 * vdo VDO for the Enter Mode command

Description

20.16. API for USB Type-C Alternate Mode drivers 731

Linux Driver-api Documentation

The alternate mode drivers use this function to enter mode. The port drivers use
this to inform the alternate mode drivers that the partner has initiated Enter Mode
command. If the alternate mode does not require VDO, vdo must be NULL.
int typec_altmode_exit(struct typec_altmode * adev)

Exit Mode

Parameters
struct typec_altmode * adev The alternate mode

Description
The partner of adev has initiated Exit Mode command.
void typec_altmode_attention(struct typec_altmode * adev, u32 vdo)

Attention command

Parameters
struct typec_altmode * adev The alternate mode

u32 vdo VDO for the Attention command

Description
Notifies the partner of adev about Attention command.
int typec_altmode_vdm(struct typec_altmode * adev, const u32 header,

const u32 * vdo, int count)
Send Vendor Defined Messages (VDM) to the partner

Parameters
struct typec_altmode * adev Alternate mode handle

const u32 header VDM Header

const u32 * vdo Array of Vendor Defined Data Objects

int count Number of Data Objects

Description
The alternate mode drivers use this function for SVID specific communication with
the partner. The port drivers use it to deliver the Structured VDMs received from
the partners to the alternate mode drivers.

API for the port drivers

struct typec_altmode * typec_match_altmode(struct typec_altmode
** altmodes, size_t n,
u16 svid, u8 mode)

Match SVID and mode to an array of alternate modes

Parameters
struct typec_altmode ** altmodes Array of alternate modes

size_t n Number of elements in the array, or -1 for NULL terminated arrays

u16 svid Standard or Vendor ID to match with

732 Chapter 20. Linux USB API

Linux Driver-api Documentation

u8 mode Mode to match with

Description
Return pointer to an alternate mode with SVID matching svid, or NULL when no
match is found.

Cable Plug operations

struct typec_altmode * typec_altmode_get_plug(struct typec_altmode
* adev, enum
typec_plug_index index)

Find cable plug alternate mode

Parameters
struct typec_altmode * adev Handle to partner alternate mode

enum typec_plug_index index Cable plug index

Description
Increment reference count for cable plug alternate mode device. Returns handle
to the cable plug alternate mode, or NULL if none is found.

void typec_altmode_put_plug(struct typec_altmode * plug)
Decrement cable plug alternate mode reference count

Parameters
struct typec_altmode * plug Handle to the cable plug alternate mode

20.17 USB3 debug port

Author Lu Baolu <baolu.lu@linux.intel.com>
Date March 2017

20.17.1 GENERAL

This is a HOWTO for using the USB3 debug port on x86 systems.

Before using any kernel debugging functionality based on USB3 debug port, you
need to:

1) check whether any USB3 debug port is available in
your system;

2) check which port is used for debugging purposes;
3) have a USB 3.0 super-speed A-to-A debugging cable.

20.17. USB3 debug port 733

mailto:baolu.lu@linux.intel.com

Linux Driver-api Documentation

20.17.2 INTRODUCTION

The xHCI debug capability (DbC) is an optional but standalone functionality pro-
vided by the xHCI host controller. The xHCI specification describes DbC in the
section 7.6.

When DbC is initialized and enabled, it will present a debug device through the
debug port (normally the first USB3 super-speed port). The debug device is fully
compliant with the USB framework and provides the equivalent of a very high
performance full-duplex serial link between the debug target (the system under
debugging) and a debug host.

20.17.3 EARLY PRINTK

DbC has been designed to log early printk messages. One use for this feature is
kernel debugging. For example, when your machine crashes very early before the
regular console code is initialized. Other uses include simpler, lockless logging
instead of a full- blown printk console driver and klogd.

On the debug target system, you need to customize a debugging kernel with CON-
FIG_EARLY_PRINTK_USB_XDBC enabled. And, add below kernel boot parameter:

"earlyprintk=xdbc"

If there are multiple xHCI controllers in your system, you can append a host con-
toller index to this kernel parameter. This index starts from 0.

Current design doesn’t support DbC runtime suspend/resume. As the result, you’
d better disable runtime power management for USB subsystem by adding below
kernel boot parameter:

"usbcore.autosuspend=-1"

Before starting the debug target, you should connect the debug port to a USB
port (root port or port of any external hub) on the debug host. The cable used to
connect these two ports should be a USB 3.0 super-speed A-to-A debugging cable.

During early boot of the debug target, DbC will be detected and initialized. After
initialization, the debug host should be able to enumerate the debug device in
debug target. The debug host will then bind the debug device with the usb_debug
driver module and create the /dev/ttyUSB device.

If the debug device enumeration goes smoothly, you should be able to see below
kernel messages on the debug host:

tail -f /var/log/kern.log
[1815.983374] usb 4-3: new SuperSpeed USB device number 4 using xhci_hcd
[1815.999595] usb 4-3: LPM exit latency is zeroed, disabling LPM.
[1815.999899] usb 4-3: New USB device found, idVendor=1d6b, idProduct=0004
[1815.999902] usb 4-3: New USB device strings: Mfr=1, Product=2,␣
↪→SerialNumber=3
[1815.999903] usb 4-3: Product: Remote GDB
[1815.999904] usb 4-3: Manufacturer: Linux
[1815.999905] usb 4-3: SerialNumber: 0001

(continues on next page)

734 Chapter 20. Linux USB API

Linux Driver-api Documentation

(continued from previous page)
[1816.000240] usb_debug 4-3:1.0: xhci_dbc converter detected
[1816.000360] usb 4-3: xhci_dbc converter now attached to ttyUSB0

You can use any communication program, for example minicom, to read and view
the messages. Below simple bash scripts can help you to check the sanity of the
setup.

===== start of bash scripts =============
#!/bin/bash

while true ; do
while [! -d /sys/class/tty/ttyUSB0] ; do

:
done

cat /dev/ttyUSB0
done
===== end of bash scripts ===============

20.17.4 Serial TTY

The DbC support has been added to the xHCI driver. You can get a debug device
provided by the DbC at runtime.

In order to use this, you need to make sure your kernel has been configured to
support USB_XHCI_DBGCAP. A sysfs attribute under the xHCI device node is used
to enable or disable DbC. By default, DbC is disabled:

root@target:/sys/bus/pci/devices/0000:00:14.0# cat dbc
disabled

Enable DbC with the following command:

root@target:/sys/bus/pci/devices/0000:00:14.0# echo enable > dbc

You can check the DbC state at anytime:

root@target:/sys/bus/pci/devices/0000:00:14.0# cat dbc
enabled

Connect the debug target to the debug host with a USB 3.0 super- speed A-to-A
debugging cable. You can see /dev/ttyDBC0 created on the debug target. You will
see below kernel message lines:

root@target: tail -f /var/log/kern.log
[182.730103] xhci_hcd 0000:00:14.0: DbC connected
[191.169420] xhci_hcd 0000:00:14.0: DbC configured
[191.169597] xhci_hcd 0000:00:14.0: DbC now attached to /dev/ttyDBC0

Accordingly, the DbC state has been brought up to:

root@target:/sys/bus/pci/devices/0000:00:14.0# cat dbc
configured

20.17. USB3 debug port 735

Linux Driver-api Documentation

On the debug host, you will see the debug device has been enumerated. You will
see below kernel message lines:

root@host: tail -f /var/log/kern.log
[79.454780] usb 2-2.1: new SuperSpeed USB device number 3 using xhci_hcd
[79.475003] usb 2-2.1: LPM exit latency is zeroed, disabling LPM.
[79.475389] usb 2-2.1: New USB device found, idVendor=1d6b,␣
↪→idProduct=0010
[79.475390] usb 2-2.1: New USB device strings: Mfr=1, Product=2,␣
↪→SerialNumber=3
[79.475391] usb 2-2.1: Product: Linux USB Debug Target
[79.475392] usb 2-2.1: Manufacturer: Linux Foundation
[79.475393] usb 2-2.1: SerialNumber: 0001

The debug device works now. You can use any communication or debugging pro-
gram to talk between the host and the target.

736 Chapter 20. Linux USB API

CHAPTER

TWENTYONE

FIREWIRE (IEEE 1394) DRIVER INTERFACE GUIDE

21.1 Introduction and Overview

The Linux FireWire subsystem adds some interfaces into the Linux system to
use/maintain+any resource on IEEE 1394 bus.

The main purpose of these interfaces is to access address space on each node
on IEEE 1394 bus by ISO/IEC 13213 (IEEE 1212) procedure, and to control
isochronous resources on the bus by IEEE 1394 procedure.

Two types of interfaces are added, according to consumers of the interface. A set
of userspace interfaces is available via firewire character devices. A set of kernel
interfaces is available via exported symbols in firewire-core module.

21.2 Firewire char device data structures

What: /dev/fw[0-9]+
Date: May 2007
KernelVersion: 2.6.22
Contact: linux1394-devel@lists.sourceforge.net
Description:

The character device files /dev/fw* are the␣
↪→interface between

firewire-core and IEEE 1394 device drivers␣
↪→implemented in

userspace. The ioctl(2)- and read(2)-based ABI is␣
↪→defined and

documented in <linux/firewire-cdev.h>.

This ABI offers most of the features which␣
↪→firewire-core also

exposes to kernelspace IEEE 1394 drivers.

Each /dev/fw* is associated with one IEEE 1394 node,
↪→ which can

be remote or local nodes. Operations on a /dev/fw*␣
↪→file have

different scope:
- The 1394 node which is associated with the file:

737

Linux Driver-api Documentation

- Asynchronous request transmission
- Get the Configuration ROM
- Query node ID
- Query maximum speed of the path between␣

↪→this node
and local node

- The 1394 bus (i.e. "card") to which the node is␣
↪→attached to:

- Isochronous stream transmission and␣
↪→reception

- Asynchronous stream transmission and␣
↪→reception

- Asynchronous broadcast request␣
↪→transmission

- PHY packet transmission and reception
- Allocate, reallocate, deallocate␣

↪→isochronous
resources (channels, bandwidth) at the␣

↪→bus's IRM
- Query node IDs of local node, root node,

↪→ IRM, bus
manager

- Query cycle time
- Bus reset initiation, bus reset event␣

↪→reception
- All 1394 buses:

- Allocation of IEEE 1212 address ranges␣
↪→on the local

link layers, reception of inbound␣
↪→requests to such

an address range, asynchronous response␣
↪→transmission

to inbound requests
- Addition of descriptors or directories␣

↪→to the local
nodes' Configuration ROM

Due to the different scope of operations and in␣
↪→order to let

userland implement different access permission␣
↪→models, some

operations are restricted to /dev/fw* files that␣
↪→are associated

with a local node:
- Addition of descriptors or directories␣

↪→to the local
nodes' Configuration ROM

- PHY packet transmission and reception

A /dev/fw* file remains associated with one␣
↪→particular node

738 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

during its entire life time. Bus topology changes,␣
↪→and hence

node ID changes, are tracked by firewire-core. ABI␣
↪→users do not

need to be aware of topology.

The following file operations are supported:

open(2)
Currently the only useful flags are O_RDWR.

ioctl(2)
Initiate various actions. Some take immediate␣

↪→effect, others
are performed asynchronously while or after the␣

↪→ioctl returns.
See the inline documentation in <linux/

↪→firewire-cdev.h> for
descriptions of all ioctls.

poll(2), select(2), epoll_wait(2) etc.
Watch for events to become available to be read.

read(2)
Receive various events. There are solicited events␣

↪→like
outbound asynchronous transaction completion or␣

↪→isochronous
buffer completion, and unsolicited events such as␣

↪→bus resets,
request reception, or PHY packet reception. Always␣

↪→use a read
buffer which is large enough to receive the largest␣

↪→event that
could ever arrive. See <linux/firewire-cdev.h> for␣

↪→descriptions
of all event types and for which ioctls affect␣

↪→reception of
events.

mmap(2)
Allocate a DMA buffer for isochronous reception or␣

↪→transmission
and map it into the process address space. The␣

↪→arguments should
be used as follows: addr = NULL, length = the␣

↪→desired buffer
size, i.e. number of packets times size of largest␣

↪→packet,
prot = at least PROT_READ for reception and at␣

↪→least PROT_WRITE

21.2. Firewire char device data structures 739

Linux Driver-api Documentation

for transmission, flags = MAP_SHARED, fd = the␣
↪→handle to the

/dev/fw*, offset = 0.

Isochronous reception works in packet-per-buffer␣
↪→fashion except

for multichannel reception which works in␣
↪→buffer-fill mode.

munmap(2)
Unmap the isochronous I/O buffer from the process␣

↪→address space.

close(2)
Besides stopping and freeing I/O contexts that were␣

↪→associated
with the file descriptor, back out any changes to␣

↪→the local
nodes' Configuration ROM. Deallocate isochronous␣

↪→channels and
bandwidth at the IRM that were marked for␣

↪→kernel-assisted
re- and deallocation.

Users: libraw1394
libdc1394
libhinawa
tools like linux-firewire-utils, fwhack, ...

struct fw_cdev_event_common
Common part of all fw_cdev_event_* types

Definition

struct fw_cdev_event_common {
__u64 closure;
__u32 type;

};

Members
closure For arbitrary use by userspace

type Discriminates the fw_cdev_event_* types

Description
This struct may be used to access generic members of all fw_cdev_event_* types
regardless of the specific type.

Data passed in the closure field for a request will be returned in the corresponding
event. It is big enough to hold a pointer on all platforms. The ioctl used to set
closure depends on the type of event.

740 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

struct fw_cdev_event_bus_reset
Sent when a bus reset occurred

Definition

struct fw_cdev_event_bus_reset {
__u64 closure;
__u32 type;
__u32 node_id;
__u32 local_node_id;
__u32 bm_node_id;
__u32 irm_node_id;
__u32 root_node_id;
__u32 generation;

};

Members
closure See fw_cdev_event_common; set by FW_CDEV_IOC_GET_INFO ioctl

type See fw_cdev_event_common; always FW_CDEV_EVENT_BUS_RESET

node_id New node ID of this node

local_node_id Node ID of the local node, i.e. of the controller

bm_node_id Node ID of the bus manager

irm_node_id Node ID of the iso resource manager

root_node_id Node ID of the root node

generation New bus generation

Description
This event is sent when the bus the device belongs to goes through a bus reset.
It provides information about the new bus configuration, such as new node ID for
this device, new root ID, and others.

If bm_node_id is 0xffff right after bus reset it can be reread by an
FW_CDEV_IOC_GET_INFO ioctl after bus manager selection was finished. Kernels
with ABI version < 4 do not set bm_node_id.
struct fw_cdev_event_response

Sent when a response packet was received

Definition

struct fw_cdev_event_response {
__u64 closure;
__u32 type;
__u32 rcode;
__u32 length;
__u32 data[0];

};

Members

21.2. Firewire char device data structures 741

Linux Driver-api Documentation

closure See fw_cdev_event_common; set by FW_CDEV_IOC_SEND_REQUEST or
FW_CDEV_IOC_SEND_BROADCAST_REQUEST or FW_CDEV_IOC_SEND_STREAM_PACKET
ioctl

type See fw_cdev_event_common; always FW_CDEV_EVENT_RESPONSE

rcode Response code returned by the remote node

length Data length, i.e. the response’s payload size in bytes
data Payload data, if any

Description
This event is sent when the stack receives a response to an outgoing request sent
by FW_CDEV_IOC_SEND_REQUEST ioctl. The payload data for responses carrying
data (read and lock responses) follows immediately and can be accessed through
the data field.
The event is also generated after conclusions of transactions that do not involve re-
sponse packets. This includes unified write transactions, broadcast write transac-
tions, and transmission of asynchronous stream packets. rcode indicates success
or failure of such transmissions.

struct fw_cdev_event_request
Old version of fw_cdev_event_request2

Definition

struct fw_cdev_event_request {
__u64 closure;
__u32 type;
__u32 tcode;
__u64 offset;
__u32 handle;
__u32 length;
__u32 data[0];

};

Members
closure See fw_cdev_event_common; set by FW_CDEV_IOC_ALLOCATE ioctl

type See fw_cdev_event_common; always FW_CDEV_EVENT_REQUEST

tcode Transaction code of the incoming request

offset The offset into the 48-bit per-node address space

handle Reference to the kernel-side pending request

length Data length, i.e. the request’s payload size in bytes
data Incoming data, if any

Description
This event is sent instead of fw_cdev_event_request2 if the kernel or the client
implements ABI version <= 3. fw_cdev_event_request lacks essential informa-
tion; use fw_cdev_event_request2 instead.

742 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

struct fw_cdev_event_request2
Sent on incoming request to an address region

Definition

struct fw_cdev_event_request2 {
__u64 closure;
__u32 type;
__u32 tcode;
__u64 offset;
__u32 source_node_id;
__u32 destination_node_id;
__u32 card;
__u32 generation;
__u32 handle;
__u32 length;
__u32 data[0];

};

Members
closure See fw_cdev_event_common; set by FW_CDEV_IOC_ALLOCATE ioctl

type See fw_cdev_event_common; always FW_CDEV_EVENT_REQUEST2

tcode Transaction code of the incoming request

offset The offset into the 48-bit per-node address space

source_node_id Sender node ID

destination_node_id Destination node ID

card The index of the card from which the request came

generation Bus generation in which the request is valid

handle Reference to the kernel-side pending request

length Data length, i.e. the request’s payload size in bytes
data Incoming data, if any

Description
This event is sent when the stack receives an incoming request to an address re-
gion registered using the FW_CDEV_IOC_ALLOCATE ioctl. The request is guaranteed
to be completely contained in the specified region. Userspace is responsible for
sending the response by FW_CDEV_IOC_SEND_RESPONSE ioctl, using the same han-
dle.
The payload data for requests carrying data (write and lock requests) follows im-
mediately and can be accessed through the data field.
Unlike fw_cdev_event_request, tcode of lock requests is one of the firewire-core
specific TCODE_LOCK_MASK_SWAP⋯``TCODE_LOCK_VENDOR_DEPENDENT``, i.e.
encodes the extended transaction code.

cardmay differ from fw_cdev_get_info.card because requests are received from
all cards of the Linux host. source_node_id, destination_node_id, and genera-
tion pertain to that card. Destination node ID and bus generation may therefore
differ from the corresponding fields of the last fw_cdev_event_bus_reset.

21.2. Firewire char device data structures 743

Linux Driver-api Documentation

destination_node_id may also differ from the current node ID because of a non-
local bus ID part or in case of a broadcast write request. Note, a client must call
an FW_CDEV_IOC_SEND_RESPONSE ioctl even in case of a broadcast write request;
the kernel will then release the kernel-side pending request but will not actually
send a response packet.

In case of a write request to FCP_REQUEST or FCP_RESPONSE, the kernel al-
ready sent a write response immediately after the request was received; in this
case the client must still call an FW_CDEV_IOC_SEND_RESPONSE ioctl to release the
kernel-side pending request, though another response won’t be sent.
If the client subsequently needs to initiate requests to the sender node of an
fw_cdev_event_request2, it needs to use a device file with matching card index,
node ID, and generation for outbound requests.

struct fw_cdev_event_iso_interrupt
Sent when an iso packet was completed

Definition

struct fw_cdev_event_iso_interrupt {
__u64 closure;
__u32 type;
__u32 cycle;
__u32 header_length;
__u32 header[0];

};

Members
closure See fw_cdev_event_common; set by FW_CDEV_CREATE_ISO_CONTEXT ioctl

type See fw_cdev_event_common; always FW_CDEV_EVENT_ISO_INTERRUPT

cycle Cycle counter of the last completed packet

header_length Total length of following headers, in bytes

header Stripped headers, if any

Description
This event is sent when the controller has completed an fw_cdev_iso_packet
with the FW_CDEV_ISO_INTERRUPT bit set, when explicitly requested with
FW_CDEV_IOC_FLUSH_ISO, or when there have been so many completed packets
without the interrupt bit set that the kernel’s internal buffer for header is about
to overflow. (In the last case, ABI versions < 5 drop header data up to the next
interrupt packet.)

Isochronous transmit events (context type FW_CDEV_ISO_CONTEXT_TRANSMIT):

In version 3 and some implementations of version 2 of the ABI, header_length is
a multiple of 4 and header contains timestamps of all packets up until the inter-
rupt packet. The format of the timestamps is as described below for isochronous
reception. In version 1 of the ABI, header_length was 0.

Isochronous receive events (context type FW_CDEV_ISO_CONTEXT_RECEIVE):

The headers stripped of all packets up until and including the interrupt packet are
returned in the header field. The amount of header data per packet is as specified

744 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

at iso context creation by fw_cdev_create_iso_context.header_size.

Hence, _interrupt.header_length / _context.header_size is the number of packets
received in this interrupt event. The client can now iterate through the mmap()’
ed DMA buffer according to this number of packets and to the buffer sizes as the
client specified in fw_cdev_queue_iso.

Since version 2 of this ABI, the portion for each packet in _interrupt.header con-
sists of the 1394 isochronous packet header, followed by a timestamp quadlet if
fw_cdev_create_iso_context.header_size > 4, followed by quadlets from the
packet payload if fw_cdev_create_iso_context.header_size > 8.

Format of 1394 iso packet header: 16 bits data_length, 2 bits tag, 6 bits channel,
4 bits tcode, 4 bits sy, in big endian byte order. data_length is the actual received
size of the packet without the four 1394 iso packet header bytes.

Format of timestamp: 16 bits invalid, 3 bits cycleSeconds, 13 bits cycleCount, in
big endian byte order.

In version 1 of the ABI, no timestamp quadlet was inserted; instead, payload data
followed directly after the 1394 is header if header_size > 4. Behaviour of ver. 1
of this ABI is no longer available since ABI ver. 2.

struct fw_cdev_event_iso_interrupt_mc
An iso buffer chunk was completed

Definition

struct fw_cdev_event_iso_interrupt_mc {
__u64 closure;
__u32 type;
__u32 completed;

};

Members
closure See fw_cdev_event_common; set by FW_CDEV_CREATE_ISO_CONTEXT ioctl

type FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL

completed Offset into the receive buffer; data before this offset is valid

Description
This event is sent in multichannel contexts (context type
FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL) for fw_cdev_iso_packet buffer
chunks that have been completely filled and that have the FW_CDEV_ISO_INTERRUPT
bit set, or when explicitly requested with FW_CDEV_IOC_FLUSH_ISO.

The buffer is continuously filled with the following data, per packet:
• the 1394 iso packet header as described at
fw_cdev_event_iso_interrupt, but in little endian byte order,

• packet payload (as many bytes as specified in the data_length field of the
1394 iso packet header) in big endian byte order,

• 0⋯3 padding bytes as needed to align the following trailer quadlet,
• trailer quadlet, containing the reception timestamp as described at
fw_cdev_event_iso_interrupt, but in little endian byte order.

21.2. Firewire char device data structures 745

Linux Driver-api Documentation

Hence the per-packet size is data_length (rounded up to a multiple of 4) + 8. When
processing the data, stop before a packet that would cross the completed offset.
A packet near the end of a buffer chunk will typically spill over into the next queued
buffer chunk. It is the responsibility of the client to check for this condition, as-
semble a broken-up packet from its parts, and not to re-queue any buffer chunks
in which as yet unread packet parts reside.

struct fw_cdev_event_iso_resource
Iso resources were allocated or freed

Definition

struct fw_cdev_event_iso_resource {
__u64 closure;
__u32 type;
__u32 handle;
__s32 channel;
__s32 bandwidth;

};

Members
closure See fw_cdev_event_common; set by``FW_CDEV_IOC_(DE)ALLOCATE_ISO_RESOURCE(_ONCE)``

ioctl

type FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED or FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED

handle Reference by which an allocated resource can be deallocated

channel Isochronous channel which was (de)allocated, if any

bandwidth Bandwidth allocation units which were (de)allocated, if any

Description
An FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED event is sent after an isochronous
resource was allocated at the IRM. The client has to check channel and band-
width for whether the allocation actually succeeded.
An FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED event is sent after an isochronous
resource was deallocated at the IRM. It is also sent when automatic reallocation
after a bus reset failed.

channel is <0 if no channel was (de)allocated or if reallocation failed. bandwidth
is 0 if no bandwidth was (de)allocated or if reallocation failed.

struct fw_cdev_event_phy_packet
A PHY packet was transmitted or received

Definition

struct fw_cdev_event_phy_packet {
__u64 closure;
__u32 type;
__u32 rcode;
__u32 length;
__u32 data[0];

};

746 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

Members
closure See fw_cdev_event_common; set by FW_CDEV_IOC_SEND_PHY_PACKET or

FW_CDEV_IOC_RECEIVE_PHY_PACKETS ioctl

type FW_CDEV_EVENT_PHY_PACKET_SENT or %⋯_RECEIVED
rcode RCODE_⋯, indicates success or failure of transmission
length Data length in bytes

data Incoming data

Description
If type is FW_CDEV_EVENT_PHY_PACKET_SENT, length is 0 and data empty, except
in case of a ping packet: Then, length is 4, and data**[0] is the ping time in
49.152MHz clocks if **rcode is RCODE_COMPLETE.
If type is FW_CDEV_EVENT_PHY_PACKET_RECEIVED, length is 8 and data consists of
the two PHY packet quadlets, in host byte order.

union fw_cdev_event
Convenience union of fw_cdev_event_* types

Definition

union fw_cdev_event {
struct fw_cdev_event_common common;
struct fw_cdev_event_bus_reset bus_reset;
struct fw_cdev_event_response response;
struct fw_cdev_event_request request;
struct fw_cdev_event_request2 request2;
struct fw_cdev_event_iso_interrupt iso_interrupt;
struct fw_cdev_event_iso_interrupt_mc iso_interrupt_mc;
struct fw_cdev_event_iso_resource iso_resource;
struct fw_cdev_event_phy_packet phy_packet;

};

Members
common Valid for all types

bus_reset Valid if common.type == FW_CDEV_EVENT_BUS_RESET

response Valid if common.type == FW_CDEV_EVENT_RESPONSE

request Valid if common.type == FW_CDEV_EVENT_REQUEST

request2 Valid if common.type == FW_CDEV_EVENT_REQUEST2

iso_interrupt Valid if common.type == FW_CDEV_EVENT_ISO_INTERRUPT

iso_interrupt_mc Valid if common.type== FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL

iso_resource Valid if common.type== FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED
or FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED

phy_packet Valid if common.type == FW_CDEV_EVENT_PHY_PACKET_SENT or
FW_CDEV_EVENT_PHY_PACKET_RECEIVED

Description

21.2. Firewire char device data structures 747

Linux Driver-api Documentation

Convenience union for userspace use. Events could be read(2) into an appropri-
ately aligned char buffer and then cast to this union for further processing. Note
that for a request, response or iso_interrupt event, the data[] or header[] may
make the size of the full event larger than sizeof(union fw_cdev_event). Also note
that if you attempt to read(2) an event into a buffer that is not large enough for it,
the data that does not fit will be discarded so that the next read(2) will return a
new event.

struct fw_cdev_get_info
General purpose information ioctl

Definition

struct fw_cdev_get_info {
__u32 version;
__u32 rom_length;
__u64 rom;
__u64 bus_reset;
__u64 bus_reset_closure;
__u32 card;

};

Members
version The version field is just a running serial number. Both an input parameter

(ABI version implemented by the client) and output parameter (ABI version
implemented by the kernel). A client shall fill in the ABI version for which
the client was implemented. This is necessary for forward compatibility.

rom_length If rom is non-zero, up to rom_length bytes of Configuration ROM
will be copied into that user space address. In either case, rom_length is
updated with the actual length of the Configuration ROM.

rom If non-zero, address of a buffer to be filled by a copy of the device’s Config-
uration ROM

bus_reset If non-zero, address of a buffer to be filled by a struct
fw_cdev_event_bus_reset with the current state of the bus. This does not
cause a bus reset to happen.

bus_reset_closure Value of closure in this and subsequent bus reset events

card The index of the card this device belongs to

Description
The FW_CDEV_IOC_GET_INFO ioctl is usually the very first one which a client per-
forms right after it opened a /dev/fw* file.

As a side effect, reception of FW_CDEV_EVENT_BUS_RESET events to be read(2) is
started by this ioctl.

struct fw_cdev_send_request
Send an asynchronous request packet

Definition

748 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

struct fw_cdev_send_request {
__u32 tcode;
__u32 length;
__u64 offset;
__u64 closure;
__u64 data;
__u32 generation;

};

Members
tcode Transaction code of the request

length Length of outgoing payload, in bytes

offset 48-bit offset at destination node

closure Passed back to userspace in the response event

data Userspace pointer to payload

generation The bus generation where packet is valid

Description
Send a request to the device. This ioctl implements all outgoing requests.
Both quadlet and block request specify the payload as a pointer to the data
in the data field. Once the transaction completes, the kernel writes an
fw_cdev_event_response event back. The closure field is passed back to user
space in the response event.

struct fw_cdev_send_response
Send an asynchronous response packet

Definition

struct fw_cdev_send_response {
__u32 rcode;
__u32 length;
__u64 data;
__u32 handle;

};

Members
rcode Response code as determined by the userspace handler

length Length of outgoing payload, in bytes

data Userspace pointer to payload

handle The handle from the fw_cdev_event_request

Description
Send a response to an incoming request. By setting up an address range using
the FW_CDEV_IOC_ALLOCATE ioctl, userspace can listen for incoming requests. An
incoming request will generate an FW_CDEV_EVENT_REQUEST, and userspace must
send a reply using this ioctl. The event has a handle to the kernel-side pending
transaction, which should be used with this ioctl.

21.2. Firewire char device data structures 749

Linux Driver-api Documentation

struct fw_cdev_allocate
Allocate a CSR in an address range

Definition

struct fw_cdev_allocate {
__u64 offset;
__u64 closure;
__u32 length;
__u32 handle;
__u64 region_end;

};

Members
offset Start offset of the address range

closure To be passed back to userspace in request events

length Length of the CSR, in bytes

handle Handle to the allocation, written by the kernel

region_end First address above the address range (added in ABI v4, 2.6.36)

Description
Allocate an address range in the 48-bit address space on the local node (the con-
troller). This allows userspace to listen for requests with an offset within that
address range. Every time when the kernel receives a request within the range,
an fw_cdev_event_request2 event will be emitted. (If the kernel or the client
implements ABI version <= 3, an fw_cdev_event_request will be generated in-
stead.)

The closure field is passed back to userspace in these request events. The handle
field is an out parameter, returning a handle to the allocated range to be used for
later deallocation of the range.

The address range is allocated on all local nodes. The address allocation is exclu-
sive except for the FCP command and response registers. If an exclusive address
region is already in use, the ioctl fails with errno set to EBUSY.

If kernel and client implement ABI version >= 4, the kernel looks up a free spot of
size length inside [offset..**region_end**) and, if found, writes the start address
of the new CSR back in offset. I.e. offset is an in and out parameter. If this
automatic placement of a CSR in a bigger address range is not desired, the client
simply needs to set region_end = offset + length.
If the kernel or the client implements ABI version <= 3, region_end is ignored
and effectively assumed to be offset + length.
region_end is only present in a kernel header >= 2.6.36. If necessary, this can
for example be tested by #ifdef FW_CDEV_EVENT_REQUEST2.

struct fw_cdev_deallocate
Free a CSR address range or isochronous resource

Definition

750 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

struct fw_cdev_deallocate {
__u32 handle;

};

Members
handle Handle to the address range or iso resource, as returned by the kernel

when the range or resource was allocated

struct fw_cdev_initiate_bus_reset
Initiate a bus reset

Definition

struct fw_cdev_initiate_bus_reset {
__u32 type;

};

Members
type FW_CDEV_SHORT_RESET or FW_CDEV_LONG_RESET

Description
Initiate a bus reset for the bus this device is on. The bus reset can be either the
original (long) bus reset or the arbitrated (short) bus reset introduced in 1394a-
2000.

The ioctl returns immediately. A subsequent fw_cdev_event_bus_reset indicates
when the reset actually happened. Since ABI v4, this may be considerably later
than the ioctl because the kernel ensures a grace period between subsequent bus
resets as per IEEE 1394 bus management specification.

struct fw_cdev_add_descriptor
Add contents to the local node’s config ROM

Definition

struct fw_cdev_add_descriptor {
__u32 immediate;
__u32 key;
__u64 data;
__u32 length;
__u32 handle;

};

Members
immediate If non-zero, immediate key to insert before pointer

key Upper 8 bits of root directory pointer

data Userspace pointer to contents of descriptor block

length Length of descriptor block data, in quadlets

handle Handle to the descriptor, written by the kernel

Description

21.2. Firewire char device data structures 751

Linux Driver-api Documentation

Add a descriptor block and optionally a preceding immediate key to the local node’
s Configuration ROM.

The key field specifies the upper 8 bits of the descriptor root directory pointer and
the data and length fields specify the contents. The key should be of the form
0xXX000000. The offset part of the root directory entry will be filled in by the
kernel.

If not 0, the immediate field specifies an immediate key which will be inserted
before the root directory pointer.

immediate, key, and data array elements are CPU-endian quadlets.
If successful, the kernel adds the descriptor and writes back a handle to the
kernel-side object to be used for later removal of the descriptor block and im-
mediate key. The kernel will also generate a bus reset to signal the change of the
Configuration ROM to other nodes.

This ioctl affects the Configuration ROMs of all local nodes. The ioctl only succeeds
on device files which represent a local node.

struct fw_cdev_remove_descriptor
Remove contents from the Configuration ROM

Definition

struct fw_cdev_remove_descriptor {
__u32 handle;

};

Members
handle Handle to the descriptor, as returned by the kernel when the descriptor

was added

Description
Remove a descriptor block and accompanying immediate key from the local nodes’
Configuration ROMs. The kernel will also generate a bus reset to signal the change
of the Configuration ROM to other nodes.

struct fw_cdev_create_iso_context
Create a context for isochronous I/O

Definition

struct fw_cdev_create_iso_context {
__u32 type;
__u32 header_size;
__u32 channel;
__u32 speed;
__u64 closure;
__u32 handle;

};

Members
type FW_CDEV_ISO_CONTEXT_TRANSMIT or FW_CDEV_ISO_CONTEXT_RECEIVE or

FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL

752 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

header_size Header size to strip in single-channel reception

channel Channel to bind to in single-channel reception or transmission

speed Transmission speed

closure To be returned in fw_cdev_event_iso_interrupt or
fw_cdev_event_iso_interrupt_multichannel

handle Handle to context, written back by kernel

Description
Prior to sending or receiving isochronous I/O, a context must be created. The con-
text records information about the transmit or receive configuration and typically
maps to an underlying hardware resource. A context is set up for either sending
or receiving. It is bound to a specific isochronous channel.
In case of multichannel reception, header_size and channel are ignored and the
channels are selected by FW_CDEV_IOC_SET_ISO_CHANNELS.

For FW_CDEV_ISO_CONTEXT_RECEIVE contexts, header_size must be at least 4 and
must be a multiple of 4. It is ignored in other context types.

speed is ignored in receive context types.
If a context was successfully created, the kernel writes back a handle to the con-
text, which must be passed in for subsequent operations on that context.

Limitations: No more than one iso context can be created per fd. The total number
of contexts that all userspace and kernelspace drivers can create on a card at a
time is a hardware limit, typically 4 or 8 contexts per direction, and of them at
most one multichannel receive context.

struct fw_cdev_set_iso_channels
Select channels in multichannel reception

Definition

struct fw_cdev_set_iso_channels {
__u64 channels;
__u32 handle;

};

Members
channels Bitmask of channels to listen to

handle Handle of the mutichannel receive context

Description
channels is the bitwise or of 1ULL << n for each channel n to listen to.
The ioctl fails with errno EBUSY if there is already another receive context on a
channel in channels. In that case, the bitmask of all unoccupied channels is re-
turned in channels.
struct fw_cdev_iso_packet

Isochronous packet

Definition

21.2. Firewire char device data structures 753

Linux Driver-api Documentation

struct fw_cdev_iso_packet {
__u32 control;
__u32 header[0];

};

Members
control Contains the header length (8 uppermost bits), the sy field (4 bits), the

tag field (2 bits), a sync flag or a skip flag (1 bit), an interrupt flag (1 bit), and
the payload length (16 lowermost bits)

header Header and payload in case of a transmit context.

Description
struct fw_cdev_iso_packet is used to describe isochronous packet queues. Use
the FW_CDEV_ISO_* macros to fill in control. The header array is empty in case
of receive contexts.

Context type FW_CDEV_ISO_CONTEXT_TRANSMIT:

control.HEADER_LENGTH must be a multiple of 4. It specifies the numbers of
bytes in header that will be prepended to the packet’s payload. These bytes are
copied into the kernel and will not be accessed after the ioctl has returned.

The control.SY and TAG fields are copied to the iso packet header. These fields
are specified by IEEE 1394a and IEC 61883-1.

The control.SKIP flag specifies that no packet is to be sent in a frame. When
using this, all other fields except control.INTERRUPT must be zero.
When a packet with the control.INTERRUPT flag set has been completed, an
fw_cdev_event_iso_interrupt event will be sent.

Context type FW_CDEV_ISO_CONTEXT_RECEIVE:

control.HEADER_LENGTH must be a multiple of the context’s header_size. If
the HEADER_LENGTH is larger than the context’s header_size, multiple packets
are queued for this entry.

The control.SY and TAG fields are ignored.
If the control.SYNC flag is set, the context drops all packets until a packet with
a sy field is received which matches fw_cdev_start_iso.sync.

control.PAYLOAD_LENGTH defines how many payload bytes can be received
for one packet (in addition to payload quadlets that have been defined as headers
and are stripped and returned in the fw_cdev_event_iso_interrupt structure).
If more bytes are received, the additional bytes are dropped. If less bytes are
received, the remaining bytes in this part of the payload buffer will not be written
to, not even by the next packet. I.e., packets received in consecutive frames will
not necessarily be consecutive in memory. If an entry has queuedmultiple packets,
the PAYLOAD_LENGTH is divided equally among them.

When a packet with the control.INTERRUPT flag set has been completed, an
fw_cdev_event_iso_interrupt event will be sent. An entry that has queued mul-
tiple receive packets is completed when its last packet is completed.

Context type FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

754 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

Here, fw_cdev_iso_packet would be more aptly named _iso_buffer_chunk since
it specifies a chunk of the mmap()’ed buffer, while the number and alignment of
packets to be placed into the buffer chunk is not known beforehand.

control.PAYLOAD_LENGTH is the size of the buffer chunk and specifies room
for header, payload, padding, and trailer bytes of one or more packets. It must be
a multiple of 4.

control.HEADER_LENGTH, TAG and SY are ignored. SYNC is treated as de-
scribed for single-channel reception.

When a buffer chunk with the control.INTERRUPT flag set has been filled en-
tirely, an fw_cdev_event_iso_interrupt_mc event will be sent.

struct fw_cdev_queue_iso
Queue isochronous packets for I/O

Definition

struct fw_cdev_queue_iso {
__u64 packets;
__u64 data;
__u32 size;
__u32 handle;

};

Members
packets Userspace pointer to an array of fw_cdev_iso_packet

data Pointer into mmap()’ed payload buffer
size Size of the packets array, in bytes
handle Isochronous context handle

Description
Queue a number of isochronous packets for reception or transmission. This ioctl
takes a pointer to an array of fw_cdev_iso_packet structs, which describe how to
transmit from or receive into a contiguous region of a mmap()’ed payload buffer.
As part of transmit packet descriptors, a series of headers can be supplied, which
will be prepended to the payload during DMA.

The kernel may or may not queue all packets, but will write back updated values
of the packets, data and size fields, so the ioctl can be resubmitted easily.
In case of a multichannel receive context, data must be quadlet-aligned relative
to the buffer start.

struct fw_cdev_start_iso
Start an isochronous transmission or reception

Definition

struct fw_cdev_start_iso {
__s32 cycle;
__u32 sync;
__u32 tags;

(continues on next page)

21.2. Firewire char device data structures 755

Linux Driver-api Documentation

(continued from previous page)
__u32 handle;

};

Members
cycle Cycle in which to start I/O. If cycle is greater than or equal to 0, the I/O will

start on that cycle.

sync Determines the value to wait for for receive packets that have the
FW_CDEV_ISO_SYNC bit set

tags Tag filter bit mask. Only valid for isochronous reception. De-
termines the tag values for which packets will be accepted. Use
FW_CDEV_ISO_CONTEXT_MATCH_* macros to set tags.

handle Isochronous context handle within which to transmit or receive

struct fw_cdev_stop_iso
Stop an isochronous transmission or reception

Definition

struct fw_cdev_stop_iso {
__u32 handle;

};

Members
handle Handle of isochronous context to stop

struct fw_cdev_flush_iso
flush completed iso packets

Definition

struct fw_cdev_flush_iso {
__u32 handle;

};

Members
handle handle of isochronous context to flush

Description
For FW_CDEV_ISO_CONTEXT_TRANSMIT or FW_CDEV_ISO_CONTEXT_RECEIVE contexts,
report any completed packets.

For FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL contexts, report the current
offset in the receive buffer, if it has changed; this is typically in the middle of some
buffer chunk.

Any FW_CDEV_EVENT_ISO_INTERRUPT or FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL
events generated by this ioctl are sent synchronously, i.e., are available for reading
from the file descriptor when this ioctl returns.

struct fw_cdev_get_cycle_timer
read cycle timer register

756 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

Definition

struct fw_cdev_get_cycle_timer {
__u64 local_time;
__u32 cycle_timer;

};

Members
local_time system time, in microseconds since the Epoch

cycle_timer Cycle Time register contents

Description
Same as FW_CDEV_IOC_GET_CYCLE_TIMER2, but fixed to use CLOCK_REALTIME and
only with microseconds resolution.

In version 1 and 2 of the ABI, this ioctl returned unreliable (non- monotonic) cy-
cle_timer values on certain controllers.
struct fw_cdev_get_cycle_timer2

read cycle timer register

Definition

struct fw_cdev_get_cycle_timer2 {
__s64 tv_sec;
__s32 tv_nsec;
__s32 clk_id;
__u32 cycle_timer;

};

Members
tv_sec system time, seconds

tv_nsec system time, sub-seconds part in nanoseconds

clk_id input parameter, clock from which to get the system time

cycle_timer Cycle Time register contents

Description
The FW_CDEV_IOC_GET_CYCLE_TIMER2 ioctl reads the isochronous cycle timer and
also the system clock. This allows to correlate reception time of isochronous pack-
ets with system time.

clk_id lets you choose a clock like with POSIX’clock_gettime function. Sup-
ported clk_id values are POSIX’CLOCK_REALTIME and CLOCK_MONOTONIC and Linux’
CLOCK_MONOTONIC_RAW.

cycle_timer consists of 7 bits cycleSeconds, 13 bits cycleCount, and 12 bits cy-
cleOffset, in host byte order. Cf. the Cycle Time register per IEEE 1394 or
Isochronous Cycle Timer register per OHCI-1394.

struct fw_cdev_allocate_iso_resource
(De)allocate a channel or bandwidth

Definition

21.2. Firewire char device data structures 757

Linux Driver-api Documentation

struct fw_cdev_allocate_iso_resource {
__u64 closure;
__u64 channels;
__u32 bandwidth;
__u32 handle;

};

Members
closure Passed back to userspace in corresponding iso resource events

channels Isochronous channels of which one is to be (de)allocated

bandwidth Isochronous bandwidth units to be (de)allocated

handle Handle to the allocation, written by the kernel (only valid in case of
FW_CDEV_IOC_ALLOCATE_ISO_RESOURCE ioctls)

Description
The FW_CDEV_IOC_ALLOCATE_ISO_RESOURCE ioctl initiates allocation of an
isochronous channel and/or of isochronous bandwidth at the isochronous re-
source manager (IRM). Only one of the channels specified in channels is
allocated. An FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED is sent after communica-
tion with the IRM, indicating success or failure in the event data. The kernel will
automatically reallocate the resources after bus resets. Should a reallocation fail,
an FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED event will be sent. The kernel
will also automatically deallocate the resources when the file descriptor is closed.

The FW_CDEV_IOC_DEALLOCATE_ISO_RESOURCE ioctl can be used to initiate
deallocation of resources which were allocated as described above. An
FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED event concludes this operation.

The FW_CDEV_IOC_ALLOCATE_ISO_RESOURCE_ONCE ioctl is a vari-
ant of allocation without automatic re- or deallocation. An
FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED event concludes this operation,
indicating success or failure in its data.

The FW_CDEV_IOC_DEALLOCATE_ISO_RESOURCE_ONCE ioctl works like
FW_CDEV_IOC_ALLOCATE_ISO_RESOURCE_ONCE except that resources are freed
instead of allocated. An FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED event
concludes this operation.

To summarize, FW_CDEV_IOC_ALLOCATE_ISO_RESOURCE allocates iso
resources for the lifetime of the fd or handle. In contrast,
FW_CDEV_IOC_ALLOCATE_ISO_RESOURCE_ONCE allocates iso resources for the
duration of a bus generation.

channels is a host-endian bitfield with the least significant bit representing chan-
nel 0 and the most significant bit representing channel 63: 1ULL << c for each
channel c that is a candidate for (de)allocation.

bandwidth is expressed in bandwidth allocation units, i.e. the time to send one
quadlet of data (payload or header data) at speed S1600.

struct fw_cdev_send_stream_packet
send an asynchronous stream packet

758 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

Definition

struct fw_cdev_send_stream_packet {
__u32 length;
__u32 tag;
__u32 channel;
__u32 sy;
__u64 closure;
__u64 data;
__u32 generation;
__u32 speed;

};

Members
length Length of outgoing payload, in bytes

tag Data format tag

channel Isochronous channel to transmit to

sy Synchronization code

closure Passed back to userspace in the response event

data Userspace pointer to payload

generation The bus generation where packet is valid

speed Speed to transmit at

Description
The FW_CDEV_IOC_SEND_STREAM_PACKET ioctl sends an asynchronous stream
packet to every device which is listening to the specified channel. The kernel
writes an fw_cdev_event_response event which indicates success or failure of
the transmission.

struct fw_cdev_send_phy_packet
send a PHY packet

Definition

struct fw_cdev_send_phy_packet {
__u64 closure;
__u32 data[2];
__u32 generation;

};

Members
closure Passed back to userspace in the PHY-packet-sent event

data First and second quadlet of the PHY packet

generation The bus generation where packet is valid

Description
The FW_CDEV_IOC_SEND_PHY_PACKET ioctl sends a PHY packet to all
nodes on the same card as this device. After transmission, an
FW_CDEV_EVENT_PHY_PACKET_SENT event is generated.

21.2. Firewire char device data structures 759

Linux Driver-api Documentation

The payload data[] shall be specified in host byte order. Usually, data[1] needs to
be the bitwise inverse of data[0]. VersaPHY packets are an exception to this rule.
The ioctl is only permitted on device files which represent a local node.

struct fw_cdev_receive_phy_packets
start reception of PHY packets

Definition

struct fw_cdev_receive_phy_packets {
__u64 closure;

};

Members
closure Passed back to userspace in phy packet events

Description
This ioctl activates issuing of FW_CDEV_EVENT_PHY_PACKET_RECEIVED due to incom-
ing PHY packets from any node on the same bus as the device.

The ioctl is only permitted on device files which represent a local node.

21.3 Firewire device probing and sysfs interfaces

What: /sys/bus/firewire/devices/fw[0-9]+/
Date: May 2007
KernelVersion: 2.6.22
Contact: linux1394-devel@lists.sourceforge.net
Description:

IEEE 1394 node device attributes.
Read-only. Mutable during the node device's␣

↪→lifetime.
See IEEE 1212 for semantic definitions.

config_rom
Contents of the Configuration ROM register.
Binary attribute; an array of host-endian␣

↪→u32.

guid
The node's EUI-64 in the bus information␣

↪→block of
Configuration ROM.
Hexadecimal string representation of an u64.

What: /sys/bus/firewire/devices/fw[0-9]+/units
Date: June 2009
KernelVersion: 2.6.31
Contact: linux1394-devel@lists.sourceforge.net
Description:

760 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

IEEE 1394 node device attribute.
Read-only. Mutable during the node device's␣

↪→lifetime.
See IEEE 1212 for semantic definitions.

units
Summary of all units present in an IEEE␣

↪→1394 node.
Contains space-separated tuples of␣

↪→specifier_id and
version of each unit present in the node. ␣

↪→Specifier_id
and version are hexadecimal string␣

↪→representations of
u24 of the respective unit directory␣

↪→entries.
Specifier_id and version within each tuple␣

↪→are separated
by a colon.

Users: udev rules to set ownership and access permissions␣
↪→or ACLs of

/dev/fw[0-9]+ character device files

What: /sys/bus/firewire/devices/fw[0-9]+/is_local
Date: July 2012
KernelVersion: 3.6
Contact: linux1394-devel@lists.sourceforge.net
Description:

IEEE 1394 node device attribute.
Read-only and immutable.

Values: 1: The sysfs entry represents a local node (a␣
↪→controller card).

0: The sysfs entry represents a remote node.

What: /sys/bus/firewire/devices/fw[0-9]+[.][0-9]+/
Date: May 2007
KernelVersion: 2.6.22
Contact: linux1394-devel@lists.sourceforge.net
Description:

IEEE 1394 unit device attributes.
Read-only. Immutable during the unit device's␣

↪→lifetime.
See IEEE 1212 for semantic definitions.

modalias
Same as MODALIAS in the uevent at device␣

↪→creation.

21.3. Firewire device probing and sysfs interfaces 761

Linux Driver-api Documentation

rom_index
Offset of the unit directory within the␣

↪→parent device's
(node device's) Configuration ROM, in␣

↪→quadlets.
Decimal string representation.

What: /sys/bus/firewire/devices/*/
Date: May 2007
KernelVersion: 2.6.22
Contact: linux1394-devel@lists.sourceforge.net
Description:

Attributes common to IEEE 1394 node devices and␣
↪→unit devices.

Read-only. Mutable during the node device's␣
↪→lifetime.

Immutable during the unit device's lifetime.
See IEEE 1212 for semantic definitions.

These attributes are only created if the root␣
↪→directory of an

IEEE 1394 node or the unit directory of an IEEE␣
↪→1394 unit

actually contains according entries.

hardware_version
Hexadecimal string representation of an u24.

hardware_version_name
Contents of a respective textual descriptor␣

↪→leaf.

model
Hexadecimal string representation of an u24.

model_name
Contents of a respective textual descriptor␣

↪→leaf.

specifier_id
Hexadecimal string representation of an u24.
Mandatory in unit directories according to␣

↪→IEEE 1212.

vendor
Hexadecimal string representation of an u24.
Mandatory in the root directory according␣

↪→to IEEE 1212.

vendor_name

762 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

Contents of a respective textual descriptor␣
↪→leaf.

version
Hexadecimal string representation of an u24.
Mandatory in unit directories according to␣

↪→IEEE 1212.

What: /sys/bus/firewire/drivers/sbp2/fw*/host*/target*/
↪→*:*:*:*/ieee1394_id

formerly
/sys/bus/ieee1394/drivers/sbp2/fw*/host*/target*/

↪→*:*:*:*/ieee1394_id
Date: Feb 2004
KernelVersion: 2.6.4
Contact: linux1394-devel@lists.sourceforge.net
Description:

SCSI target port identifier and logical unit␣
↪→identifier of a

logical unit of an SBP-2 target. The identifiers␣
↪→are specified

in SAM-2...SAM-4 annex A. They are persistent and␣
↪→world-wide

unique properties the SBP-2 attached target.

Read-only attribute, immutable during the target's␣
↪→lifetime.

Format, as exposed by firewire-sbp2 since 2.6.22,␣
↪→May 2007:

Colon-separated hexadecimal string representations␣
↪→of

u64 EUI-64 : u24 directory_ID : u16 LUN
without 0x prefixes, without whitespace. The␣

↪→former sbp2 driver
(removed in 2.6.37 after being superseded by␣

↪→firewire-sbp2) used
a somewhat shorter format which was not as close to␣

↪→SAM.

Users: udev rules to create /dev/disk/by-id/ symlinks

int fw_csr_string(const u32 * directory, int key, char * buf, size_t size)
reads a string from the configuration ROM

Parameters
const u32 * directory e.g. root directory or unit directory

int key the key of the preceding directory entry

char * buf where to put the string

21.3. Firewire device probing and sysfs interfaces 763

Linux Driver-api Documentation

size_t size size of buf, in bytes
Description
The string is taken from a minimal ASCII text descriptor leaf after the immedi-
ate entry with key. The string is zero-terminated. An overlong string is silently
truncated such that it and the zero byte fit into size.
Returns strlen(buf) or a negative error code.

21.4 Firewire core transaction interfaces

void fw_send_request(struct fw_card * card, struct fw_transaction
* t, int tcode, int destination_id, int generation,
int speed, unsigned long long offset, void * payload,
size_t length, fw_transaction_callback_t callback,
void * callback_data)

submit a request packet for transmission

Parameters
struct fw_card * card interface to send the request at

struct fw_transaction * t transaction instance to which the request belongs

int tcode transaction code

int destination_id destination node ID, consisting of bus_ID and phy_ID

int generation bus generation in which request and response are valid

int speed transmission speed

unsigned long long offset 48bit wide offset into destination’s address space
void * payload data payload for the request subaction

size_t length length of the payload, in bytes

fw_transaction_callback_t callback function to be called when the transac-
tion is completed

void * callback_data data to be passed to the transaction completion callback

Description
Submit a request packet into the asynchronous request transmission queue.
Can be called from atomic context. If you prefer a blocking API, use
fw_run_transaction() in a context that can sleep.

In case of lock requests, specify one of the firewire-core specific TCODE_ constants
instead of TCODE_LOCK_REQUEST in tcode.
Make sure that the value in destination_id is not older than the one in genera-
tion. Otherwise the request is in danger to be sent to a wrong node.
In case of asynchronous stream packets i.e. TCODE_STREAM_DATA, the caller needs
to synthesize destination_id with fw_stream_packet_destination_id(). It will con-
tain tag, channel, and sy data instead of a node ID then.

764 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

The payload buffer at data is going to be DMA-mapped except in case of length
<= 8 or of local (loopback) requests. Hence make sure that the buffer complies
with the restrictions of the streaming DMA mapping API. payload must not be
freed before the callback is called.
In case of request types without payload, data is NULL and length is 0.
After the transaction is completed successfully or unsuccessfully, the callback
will be called. Among its parameters is the response code which is either one of
the rcodes per IEEE 1394 or, in case of internal errors, the firewire-core specific
RCODE_SEND_ERROR. The other firewire-core specific rcodes (RCODE_CANCELLED,
RCODE_BUSY, RCODE_GENERATION, RCODE_NO_ACK) denote transaction timeout, busy
responder, stale request generation, or missing ACK respectively.

Note some timing corner cases: fw_send_request() may complete much ear-
lier than when the request packet actually hits the wire. On the other hand,
transaction completion and hence execution of callback may happen even before
fw_send_request() returns.

int fw_run_transaction(struct fw_card * card, int tcode, int destination_id,
int generation, int speed, unsigned long
long offset, void * payload, size_t length)

send request and sleep until transaction is completed

Parameters
struct fw_card * card card interface for this request

int tcode transaction code

int destination_id destination node ID, consisting of bus_ID and phy_ID

int generation bus generation in which request and response are valid

int speed transmission speed

unsigned long long offset 48bit wide offset into destination’s address space
void * payload data payload for the request subaction

size_t length length of the payload, in bytes

Description
Returns the RCODE. See fw_send_request() for parameter documentation. Un-
like fw_send_request(), data points to the payload of the request or/and to the
payload of the response. DMA mapping restrictions apply to outbound request
payloads of >= 8 bytes but not to inbound response payloads.

int fw_core_add_address_handler(struct fw_address_handler * handler,
const struct fw_address_region
* region)

register for incoming requests

Parameters
struct fw_address_handler * handler callback

const struct fw_address_region * region region in the IEEE 1212 node
space address range

21.4. Firewire core transaction interfaces 765

Linux Driver-api Documentation

Description
region->start, ->end, and handler->length have to be quadlet-aligned.

When a request is received that falls within the specified address range, the spec-
ified callback is invoked. The parameters passed to the callback give the details
of the particular request.

To be called in process context. Return value: 0 on success, non-zero otherwise.

The start offset of the handler’s address region is determined by
fw_core_add_address_handler() and is returned in handler->offset.

Address allocations are exclusive, except for the FCP registers.

void fw_core_remove_address_handler(struct fw_address_handler
* handler)

unregister an address handler

Parameters
struct fw_address_handler * handler callback

Description
To be called in process context.

When fw_core_remove_address_handler() returns, handler->callback() is
guaranteed to not run on any CPU anymore.

int fw_get_request_speed(struct fw_request * request)
returns speed at which the request was received

Parameters
struct fw_request * request firewire request data

const char * fw_rcode_string(int rcode)
convert a firewire result code to an error description

Parameters
int rcode the result code

21.5 Firewire Isochronous I/O interfaces

void fw_iso_resource_manage(struct fw_card * card, int generation,
u64 channels_mask, int * channel, int
* bandwidth, bool allocate)

Allocate or deallocate a channel and/or bandwidth

Parameters
struct fw_card * card card interface for this action

int generation bus generation

u64 channels_mask bitmask for channel allocation

int * channel pointer for returning channel allocation result

int * bandwidth pointer for returning bandwidth allocation result

766 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

Linux Driver-api Documentation

bool allocate whether to allocate (true) or deallocate (false)

Description
In parameters: card, generation, channels_mask, bandwidth, allocate Out param-
eters: channel, bandwidth

This function blocks (sleeps) during communication with the IRM.

Allocates or deallocates at most one channel out of channels_mask. channels_mask
is a bitfield with MSB for channel 63 and LSB for channel 0. (Note, the IRM’s
CHANNELS_AVAILABLE is a big-endian bitfield with MSB for channel 0 and LSB
for channel 63.) Allocates or deallocates as many bandwidth allocation units as
specified.

Returns channel < 0 if no channel was allocated or deallocated. Returns band-
width = 0 if no bandwidth was allocated or deallocated.

If generation is stale, deallocations succeed but allocations fail with channel =
-EAGAIN.

If channel allocation fails, no bandwidth will be allocated either. If bandwidth
allocation fails, no channel will be allocated either. But deallocations of channel
and bandwidth are tried independently of each other’s success.

21.5. Firewire Isochronous I/O interfaces 767

Linux Driver-api Documentation

768 Chapter 21. Firewire (IEEE 1394) driver Interface Guide

CHAPTER

TWENTYTWO

THE LINUX PCI DRIVER IMPLEMENTER’S API GUIDE

Table of contents

22.1 PCI Support Library

unsigned char pci_bus_max_busnr(struct pci_bus * bus)
returns maximum PCI bus number of given bus’children

Parameters
struct pci_bus * bus pointer to PCI bus structure to search

Description
Given a PCI bus, returns the highest PCI bus number present in the set including
the given PCI bus and its list of child PCI buses.

int pci_status_get_and_clear_errors(struct pci_dev * pdev)
return and clear error bits in PCI_STATUS

Parameters
struct pci_dev * pdev the PCI device

Description
Returns error bits set in PCI_STATUS and clears them.

int pci_find_capability(struct pci_dev * dev, int cap)
query for devices’capabilities

Parameters
struct pci_dev * dev PCI device to query

int cap capability code

Description
Tell if a device supports a given PCI capability. Returns the address of the re-
quested capability structure within the device’s PCI configuration space or 0 in
case the device does not support it. Possible values for cap include:

PCI_CAP_ID_PM Power Management PCI_CAP_ID_AGP Accelerated
Graphics Port PCI_CAP_ID_VPD Vital Product Data PCI_CAP_ID_SLOTID
Slot Identification PCI_CAP_ID_MSI Message Signalled Interrupts

769

Linux Driver-api Documentation

PCI_CAP_ID_CHSWP CompactPCI HotSwap PCI_CAP_ID_PCIX PCI-X
PCI_CAP_ID_EXP PCI Express

int pci_bus_find_capability(struct pci_bus * bus, unsigned int devfn,
int cap)

query for devices’capabilities
Parameters
struct pci_bus * bus the PCI bus to query

unsigned int devfn PCI device to query

int cap capability code

Description
Like pci_find_capability() but works for PCI devices that do not have a pci_dev
structure set up yet.

Returns the address of the requested capability structure within the device’s PCI
configuration space or 0 in case the device does not support it.

int pci_find_next_ext_capability(struct pci_dev * dev, int start, int cap)
Find an extended capability

Parameters
struct pci_dev * dev PCI device to query

int start address at which to start looking (0 to start at beginning of list)

int cap capability code

Description
Returns the address of the next matching extended capability structure within the
device’s PCI configuration space or 0 if the device does not support it. Some
capabilities can occur several times, e.g., the vendor-specific capability, and this
provides a way to find them all.

int pci_find_ext_capability(struct pci_dev * dev, int cap)
Find an extended capability

Parameters
struct pci_dev * dev PCI device to query

int cap capability code

Description
Returns the address of the requested extended capability structure within the de-
vice’s PCI configuration space or 0 if the device does not support it. Possible
values for cap include:

PCI_EXT_CAP_ID_ERR Advanced Error Reporting PCI_EXT_CAP_ID_VC
Virtual Channel PCI_EXT_CAP_ID_DSN Device Serial Number
PCI_EXT_CAP_ID_PWR Power Budgeting

u64 pci_get_dsn(struct pci_dev * dev)
Read and return the 8-byte Device Serial Number

770 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

Parameters
struct pci_dev * dev PCI device to query

Description
Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
Number.

Returns the DSN, or zero if the capability does not exist.

int pci_find_next_ht_capability(struct pci_dev * dev, int pos, int ht_cap)
query a device’s Hypertransport capabilities

Parameters
struct pci_dev * dev PCI device to query

int pos Position from which to continue searching

int ht_cap Hypertransport capability code

Description
To be used in conjunction with pci_find_ht_capability() to search for all
capabilities matching ht_cap. pos should always be a value returned from
pci_find_ht_capability().

NB. To be 100% safe against broken PCI devices, the caller should take steps to
avoid an infinite loop.

int pci_find_ht_capability(struct pci_dev * dev, int ht_cap)
query a device’s Hypertransport capabilities

Parameters
struct pci_dev * dev PCI device to query

int ht_cap Hypertransport capability code

Description
Tell if a device supports a given Hypertransport capability. Returns an address
within the device’s PCI configuration space or 0 in case the device does not
support the request capability. The address points to the PCI capability, of type
PCI_CAP_ID_HT, which has a Hypertransport capability matching ht_cap.
struct resource * pci_find_parent_resource(const struct pci_dev * dev,

struct resource * res)
return resource region of parent bus of given region

Parameters
const struct pci_dev * dev PCI device structure contains resources to be

searched

struct resource * res child resource record for which parent is sought

Description
For given resource region of given device, return the resource region of parent
bus the given region is contained in.

22.1. PCI Support Library 771

Linux Driver-api Documentation

struct resource * pci_find_resource(struct pci_dev * dev, struct resource
* res)

Return matching PCI device resource

Parameters
struct pci_dev * dev PCI device to query

struct resource * res Resource to look for

Description
Goes over standard PCI resources (BARs) and checks if the given resource is par-
tially or fully contained in any of them. In that case the matching resource is
returned, NULL otherwise.

int pci_platform_power_transition(struct pci_dev * dev,
pci_power_t state)

Use platform to change device power state

Parameters
struct pci_dev * dev PCI device to handle.

pci_power_t state State to put the device into.

int pci_set_power_state(struct pci_dev * dev, pci_power_t state)
Set the power state of a PCI device

Parameters
struct pci_dev * dev PCI device to handle.

pci_power_t state PCI power state (D0, D1, D2, D3hot) to put the device into.

Description
Transition a device to a new power state, using the platform firmware and/or the
device’s PCI PM registers.

RETURN VALUE: -EINVAL if the requested state is invalid. -EIO if device does
not support PCI PM or its PM capabilities register has a wrong version, or device
doesn’t support the requested state. 0 if the transition is to D1 or D2 but D1
and D2 are not supported. 0 if device already is in the requested state. 0 if the
transition is to D3 but D3 is not supported. 0 if device’s power state has been
successfully changed.

pci_power_t pci_choose_state(struct pci_dev * dev, pm_message_t state)
Choose the power state of a PCI device

Parameters
struct pci_dev * dev PCI device to be suspended

pm_message_t state target sleep state for the whole system. This is the value
that is passed to suspend() function.

Description
Returns PCI power state suitable for given device and given system message.

int pci_save_state(struct pci_dev * dev)
save the PCI configuration space of a device before suspending

772 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

Parameters
struct pci_dev * dev PCI device that we’re dealing with
void pci_restore_state(struct pci_dev * dev)

Restore the saved state of a PCI device

Parameters
struct pci_dev * dev PCI device that we’re dealing with
struct pci_saved_state * pci_store_saved_state(struct pci_dev * dev)

Allocate and return an opaque struct containing the device saved state.

Parameters
struct pci_dev * dev PCI device that we’re dealing with
Description
Return NULL if no state or error.

int pci_load_saved_state(struct pci_dev * dev, struct pci_saved_state
* state)

Reload the provided save state into struct pci_dev.

Parameters
struct pci_dev * dev PCI device that we’re dealing with
struct pci_saved_state * state Saved state returned from

pci_store_saved_state()

int pci_load_and_free_saved_state(struct pci_dev * dev, struct
pci_saved_state ** state)

Reload the save state pointed to by state, and free the memory allocated for
it.

Parameters
struct pci_dev * dev PCI device that we’re dealing with
struct pci_saved_state ** state Pointer to saved state returned from

pci_store_saved_state()

int pci_reenable_device(struct pci_dev * dev)
Resume abandoned device

Parameters
struct pci_dev * dev PCI device to be resumed

NOTE
This function is a backend of pci_default_resume() and is not supposed to be called
by normal code, write proper resume handler and use it instead.

int pci_enable_device_io(struct pci_dev * dev)
Initialize a device for use with IO space

Parameters
struct pci_dev * dev PCI device to be initialized

22.1. PCI Support Library 773

Linux Driver-api Documentation

Description
Initialize device before it’s used by a driver. Ask low-level code to enable I/O
resources. Wake up the device if it was suspended. Beware, this function can fail.

int pci_enable_device_mem(struct pci_dev * dev)
Initialize a device for use with Memory space

Parameters
struct pci_dev * dev PCI device to be initialized

Description
Initialize device before it’s used by a driver. Ask low-level code to enable Memory
resources. Wake up the device if it was suspended. Beware, this function can fail.

int pci_enable_device(struct pci_dev * dev)
Initialize device before it’s used by a driver.

Parameters
struct pci_dev * dev PCI device to be initialized

Description
Initialize device before it’s used by a driver. Ask low-level code to enable I/O and
memory. Wake up the device if it was suspended. Beware, this function can fail.

Note we don’t actually enable the device many times if we call this function re-
peatedly (we just increment the count).

int pcim_enable_device(struct pci_dev * pdev)
Managed pci_enable_device()

Parameters
struct pci_dev * pdev PCI device to be initialized

Description
Managed pci_enable_device().

void pcim_pin_device(struct pci_dev * pdev)
Pin managed PCI device

Parameters
struct pci_dev * pdev PCI device to pin

Description
Pin managed PCI device pdev. Pinned device won’t be disabled on driver detach.
pdev must have been enabled with pcim_enable_device().
void pci_disable_device(struct pci_dev * dev)

Disable PCI device after use

Parameters
struct pci_dev * dev PCI device to be disabled

774 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

Description
Signal to the system that the PCI device is not in use by the system anymore. This
only involves disabling PCI bus-mastering, if active.

Note we don’t actually disable the device until all callers of pci_enable_device()
have called pci_disable_device().

int pci_set_pcie_reset_state(struct pci_dev * dev, enum
pcie_reset_state state)

set reset state for device dev

Parameters
struct pci_dev * dev the PCIe device reset

enum pcie_reset_state state Reset state to enter into

Description
Sets the PCI reset state for the device.

bool pci_pme_capable(struct pci_dev * dev, pci_power_t state)
check the capability of PCI device to generate PME#

Parameters
struct pci_dev * dev PCI device to handle.

pci_power_t state PCI state from which device will issue PME#.

void pci_pme_active(struct pci_dev * dev, bool enable)
enable or disable PCI device’s PME# function

Parameters
struct pci_dev * dev PCI device to handle.

bool enable‘true’to enable PME# generation; ‘false’to disable it.
Description
The caller must verify that the device is capable of generating PME# before calling
this function with enable equal to ‘true’.
int pci_enable_wake(struct pci_dev * pci_dev, pci_power_t state,

bool enable)
change wakeup settings for a PCI device

Parameters
struct pci_dev * pci_dev Target device

pci_power_t state PCI state from which device will issue wakeup events

bool enable Whether or not to enable event generation

Description
If enable is set, check device_may_wakeup() for the device before calling
__pci_enable_wake() for it.

int pci_wake_from_d3(struct pci_dev * dev, bool enable)
enable/disable device to wake up from D3_hot or D3_cold

22.1. PCI Support Library 775

Linux Driver-api Documentation

Parameters
struct pci_dev * dev PCI device to prepare

bool enable True to enable wake-up event generation; false to disable

Description
Many drivers want the device to wake up the system from D3_hot or D3_cold and
this function allows them to set that up cleanly - pci_enable_wake() should not
be called twice in a row to enable wake-up due to PCI PM vs ACPI ordering con-
straints.

This function only returns error code if the device is not allowed to wake up the
system from sleep or it is not capable of generating PME# from both D3_hot and
D3_cold and the platform is unable to enable wake-up power for it.

int pci_prepare_to_sleep(struct pci_dev * dev)
prepare PCI device for system-wide transition into a sleep state

Parameters
struct pci_dev * dev Device to handle.

Description
Choose the power state appropriate for the device depending on whether it can
wake up the system and/or is power manageable by the platform (PCI_D3hot is the
default) and put the device into that state.

int pci_back_from_sleep(struct pci_dev * dev)
turn PCI device on during system-wide transition into working state

Parameters
struct pci_dev * dev Device to handle.

Description
Disable device’s system wake-up capability and put it into D0.

bool pci_dev_run_wake(struct pci_dev * dev)
Check if device can generate run-time wake-up events.

Parameters
struct pci_dev * dev Device to check.

Description
Return true if the device itself is capable of generating wake-up events (through
the platform or using the native PCIe PME) or if the device supports PME and one
of its upstream bridges can generate wake-up events.

void pci_d3cold_enable(struct pci_dev * dev)
Enable D3cold for device

Parameters
struct pci_dev * dev PCI device to handle

Description

776 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

This function can be used in drivers to enable D3cold from the device they handle.
It also updates upstream PCI bridge PM capabilities accordingly.

void pci_d3cold_disable(struct pci_dev * dev)
Disable D3cold for device

Parameters
struct pci_dev * dev PCI device to handle

Description
This function can be used in drivers to disable D3cold from the device they handle.
It also updates upstream PCI bridge PM capabilities accordingly.

int pci_enable_atomic_ops_to_root(struct pci_dev * dev, u32 cap_mask)
enable AtomicOp requests to root port

Parameters
struct pci_dev * dev the PCI device

u32 cap_mask mask of desired AtomicOp sizes, including
one or more of: PCI_EXP_DEVCAP2_ATOMIC_COMP32
PCI_EXP_DEVCAP2_ATOMIC_COMP64 PCI_EXP_DEVCAP2_ATOMIC_COMP128

Description
Return 0 if all upstream bridges support AtomicOp routing, egress blocking is dis-
abled on all upstream ports, and the root port supports the requested completion
capabilities (32-bit, 64-bit and/or 128-bit AtomicOp completion), or negative oth-
erwise.

u8 pci_common_swizzle(struct pci_dev * dev, u8 * pinp)
swizzle INTx all the way to root bridge

Parameters
struct pci_dev * dev the PCI device

u8 * pinp pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)

Description
Perform INTx swizzling for a device. This traverses through all PCI-to-PCI bridges
all the way up to a PCI root bus.

void pci_release_region(struct pci_dev * pdev, int bar)
Release a PCI bar

Parameters
struct pci_dev * pdev PCI device whose resources were previously reserved

by pci_request_region()

int bar BAR to release

Description
Releases the PCI I/O and memory resources previously reserved by a successful
call to pci_request_region(). Call this function only after all use of the PCI
regions has ceased.

22.1. PCI Support Library 777

Linux Driver-api Documentation

int pci_request_region(struct pci_dev * pdev, int bar, const char
* res_name)

Reserve PCI I/O and memory resource

Parameters
struct pci_dev * pdev PCI device whose resources are to be reserved

int bar BAR to be reserved

const char * res_name Name to be associated with resource

Description
Mark the PCI region associated with PCI device pdev BAR bar as being reserved
by owner res_name. Do not access any address inside the PCI regions unless this
call returns successfully.

Returns 0 on success, or EBUSY on error. A warning message is also printed on
failure.

void pci_release_selected_regions(struct pci_dev * pdev, int bars)
Release selected PCI I/O and memory resources

Parameters
struct pci_dev * pdev PCI device whose resources were previously reserved

int bars Bitmask of BARs to be released

Description
Release selected PCI I/O and memory resources previously reserved. Call this
function only after all use of the PCI regions has ceased.

int pci_request_selected_regions(struct pci_dev * pdev, int bars, const
char * res_name)

Reserve selected PCI I/O and memory resources

Parameters
struct pci_dev * pdev PCI device whose resources are to be reserved

int bars Bitmask of BARs to be requested

const char * res_name Name to be associated with resource

void pci_release_regions(struct pci_dev * pdev)
Release reserved PCI I/O and memory resources

Parameters
struct pci_dev * pdev PCI device whose resources were previously reserved

by pci_request_regions()

Description
Releases all PCI I/O and memory resources previously reserved by a successful
call to pci_request_regions(). Call this function only after all use of the PCI
regions has ceased.

int pci_request_regions(struct pci_dev * pdev, const char * res_name)
Reserve PCI I/O and memory resources

778 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

Parameters
struct pci_dev * pdev PCI device whose resources are to be reserved

const char * res_name Name to be associated with resource.

Description
Mark all PCI regions associated with PCI device pdev as being reserved by owner
res_name. Do not access any address inside the PCI regions unless this call re-
turns successfully.

Returns 0 on success, or EBUSY on error. A warning message is also printed on
failure.

int pci_request_regions_exclusive(struct pci_dev * pdev, const char
* res_name)

Reserve PCI I/O and memory resources

Parameters
struct pci_dev * pdev PCI device whose resources are to be reserved

const char * res_name Name to be associated with resource.

Description
Mark all PCI regions associated with PCI device pdev as being reserved by owner
res_name. Do not access any address inside the PCI regions unless this call re-
turns successfully.

pci_request_regions_exclusive() will mark the region so that /dev/mem and
the sysfs MMIO access will not be allowed.

Returns 0 on success, or EBUSY on error. A warning message is also printed on
failure.

int pci_remap_iospace(const struct resource * res, phys_addr_t phys_addr)
Remap the memory mapped I/O space

Parameters
const struct resource * res Resource describing the I/O space

phys_addr_t phys_addr physical address of range to be mapped

Description
Remap the memory mapped I/O space described by the res and the CPU physical
address phys_addr into virtual address space. Only architectures that have mem-
ory mapped IO functions defined (and the PCI_IOBASE value defined) should call
this function.

void pci_unmap_iospace(struct resource * res)
Unmap the memory mapped I/O space

Parameters
struct resource * res resource to be unmapped

Description

22.1. PCI Support Library 779

Linux Driver-api Documentation

Unmap the CPU virtual address res from virtual address space. Only architec-
tures that have memory mapped IO functions defined (and the PCI_IOBASE value
defined) should call this function.

int devm_pci_remap_iospace(struct device * dev, const struct resource
* res, phys_addr_t phys_addr)

Managed pci_remap_iospace()

Parameters
struct device * dev Generic device to remap IO address for

const struct resource * res Resource describing the I/O space

phys_addr_t phys_addr physical address of range to be mapped

Description
Managed pci_remap_iospace(). Map is automatically unmapped on driver de-
tach.

void __iomem * devm_pci_remap_cfgspace(struct device * dev, re-
source_size_t offset, re-
source_size_t size)

Managed pci_remap_cfgspace()

Parameters
struct device * dev Generic device to remap IO address for

resource_size_t offset Resource address to map

resource_size_t size Size of map

Description
Managed pci_remap_cfgspace(). Map is automatically unmapped on driver detach.

void __iomem * devm_pci_remap_cfg_resource(struct device * dev, struct
resource * res)

check, request region and ioremap cfg resource

Parameters
struct device * dev generic device to handle the resource for

struct resource * res configuration space resource to be handled

Description
Checks that a resource is a valid memory region, requests the memory region and
ioremapswith pci_remap_cfgspace() API that ensures the proper PCI configuration
space memory attributes are guaranteed.

All operations are managed and will be undone on driver detach.

Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
on failure. Usage example:

780 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_pci_remap_cfg_resource(&pdev->dev, res);
if (IS_ERR(base))

return PTR_ERR(base);

void pci_set_master(struct pci_dev * dev)
enables bus-mastering for device dev

Parameters
struct pci_dev * dev the PCI device to enable

Description
Enables bus-mastering on the device and calls pcibios_set_master() to do the
needed arch specific settings.

void pci_clear_master(struct pci_dev * dev)
disables bus-mastering for device dev

Parameters
struct pci_dev * dev the PCI device to disable

int pci_set_cacheline_size(struct pci_dev * dev)
ensure the CACHE_LINE_SIZE register is programmed

Parameters
struct pci_dev * dev the PCI device for which MWI is to be enabled

Description
Helper function for pci_set_mwi. Originally copied from drivers/net/acenic.c.
Copyright 1998-2001 by Jes Sorensen, <jes**trained**-monkey.org>.

Return
An appropriate -ERRNO error value on error, or zero for success.

int pci_set_mwi(struct pci_dev * dev)
enables memory-write-invalidate PCI transaction

Parameters
struct pci_dev * dev the PCI device for which MWI is enabled

Description
Enables the Memory-Write-Invalidate transaction in PCI_COMMAND.

Return
An appropriate -ERRNO error value on error, or zero for success.

int pcim_set_mwi(struct pci_dev * dev)
a device-managed pci_set_mwi()

Parameters
struct pci_dev * dev the PCI device for which MWI is enabled

22.1. PCI Support Library 781

Linux Driver-api Documentation

Description
Managed pci_set_mwi().

Return
An appropriate -ERRNO error value on error, or zero for success.

int pci_try_set_mwi(struct pci_dev * dev)
enables memory-write-invalidate PCI transaction

Parameters
struct pci_dev * dev the PCI device for which MWI is enabled

Description
Enables the Memory-Write-Invalidate transaction in PCI_COMMAND. Callers are not
required to check the return value.

Return
An appropriate -ERRNO error value on error, or zero for success.

void pci_clear_mwi(struct pci_dev * dev)
disables Memory-Write-Invalidate for device dev

Parameters
struct pci_dev * dev the PCI device to disable

Description
Disables PCI Memory-Write-Invalidate transaction on the device

void pci_intx(struct pci_dev * pdev, int enable)
enables/disables PCI INTx for device dev

Parameters
struct pci_dev * pdev the PCI device to operate on

int enable boolean: whether to enable or disable PCI INTx

Description
Enables/disables PCI INTx for device pdev
bool pci_check_and_mask_intx(struct pci_dev * dev)

mask INTx on pending interrupt

Parameters
struct pci_dev * dev the PCI device to operate on

Description
Check if the device dev has its INTx line asserted, mask it and return true in that
case. False is returned if no interrupt was pending.

bool pci_check_and_unmask_intx(struct pci_dev * dev)
unmask INTx if no interrupt is pending

Parameters
struct pci_dev * dev the PCI device to operate on

782 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

Description
Check if the device dev has its INTx line asserted, unmask it if not and return
true. False is returned and the mask remains active if there was still an interrupt
pending.

int pci_wait_for_pending_transaction(struct pci_dev * dev)
wait for pending transaction

Parameters
struct pci_dev * dev the PCI device to operate on

Description
Return 0 if transaction is pending 1 otherwise.

bool pcie_has_flr(struct pci_dev * dev)
check if a device supports function level resets

Parameters
struct pci_dev * dev device to check

Description
Returns true if the device advertises support for PCIe function level resets.

int pcie_flr(struct pci_dev * dev)
initiate a PCIe function level reset

Parameters
struct pci_dev * dev device to reset

Description
Initiate a function level reset on dev. The caller should ensure the device supports
FLR before calling this function, e.g. by using the pcie_has_flr() helper.

int pci_bridge_secondary_bus_reset(struct pci_dev * dev)
Reset the secondary bus on a PCI bridge.

Parameters
struct pci_dev * dev Bridge device

Description
Use the bridge control register to assert reset on the secondary bus. Devices on
the secondary bus are left in power-on state.

int __pci_reset_function_locked(struct pci_dev * dev)
reset a PCI device function while holding the dev mutex lock.

Parameters
struct pci_dev * dev PCI device to reset

Description
Some devices allow an individual function to be reset without affecting other func-
tions in the same device. The PCI device must be responsive to PCI config space
in order to use this function.

22.1. PCI Support Library 783

Linux Driver-api Documentation

The device function is presumed to be unused and the caller is holding the device
mutex lock when this function is called.

Resetting the device will make the contents of PCI configuration space random,
so any caller of this must be prepared to reinitialise the device including MSI, bus
mastering, BARs, decoding IO and memory spaces, etc.

Returns 0 if the device function was successfully reset or negative if the device
doesn’t support resetting a single function.
int pci_reset_function(struct pci_dev * dev)

quiesce and reset a PCI device function

Parameters
struct pci_dev * dev PCI device to reset

Description
Some devices allow an individual function to be reset without affecting other func-
tions in the same device. The PCI device must be responsive to PCI config space
in order to use this function.

This function does not just reset the PCI portion of a device, but clears
all the state associated with the device. This function differs from
__pci_reset_function_locked() in that it saves and restores device state over
the reset and takes the PCI device lock.

Returns 0 if the device function was successfully reset or negative if the device
doesn’t support resetting a single function.
int pci_reset_function_locked(struct pci_dev * dev)

quiesce and reset a PCI device function

Parameters
struct pci_dev * dev PCI device to reset

Description
Some devices allow an individual function to be reset without affecting other func-
tions in the same device. The PCI device must be responsive to PCI config space
in order to use this function.

This function does not just reset the PCI portion of a device, but clears
all the state associated with the device. This function differs from
__pci_reset_function_locked() in that it saves and restores device state over
the reset. It also differs from pci_reset_function() in that it requires the PCI
device lock to be held.

Returns 0 if the device function was successfully reset or negative if the device
doesn’t support resetting a single function.
int pci_try_reset_function(struct pci_dev * dev)

quiesce and reset a PCI device function

Parameters
struct pci_dev * dev PCI device to reset

784 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

Description
Same as above, except return -EAGAIN if unable to lock device.

int pci_probe_reset_slot(struct pci_slot * slot)
probe whether a PCI slot can be reset

Parameters
struct pci_slot * slot PCI slot to probe

Description
Return 0 if slot can be reset, negative if a slot reset is not supported.

int pci_probe_reset_bus(struct pci_bus * bus)
probe whether a PCI bus can be reset

Parameters
struct pci_bus * bus PCI bus to probe

Description
Return 0 if bus can be reset, negative if a bus reset is not supported.

int pci_reset_bus(struct pci_dev * pdev)
Try to reset a PCI bus

Parameters
struct pci_dev * pdev top level PCI device to reset via slot/bus

Description
Same as above except return -EAGAIN if the bus cannot be locked

int pcix_get_max_mmrbc(struct pci_dev * dev)
get PCI-X maximum designed memory read byte count

Parameters
struct pci_dev * dev PCI device to query

Description
Returns mmrbc: maximum designed memory read count in bytes or appropriate
error value.

int pcix_get_mmrbc(struct pci_dev * dev)
get PCI-X maximum memory read byte count

Parameters
struct pci_dev * dev PCI device to query

Description
Returns mmrbc: maximummemory read count in bytes or appropriate error value.

int pcix_set_mmrbc(struct pci_dev * dev, int mmrbc)
set PCI-X maximum memory read byte count

Parameters

22.1. PCI Support Library 785

Linux Driver-api Documentation

struct pci_dev * dev PCI device to query

int mmrbc maximum memory read count in bytes valid values are 512, 1024,
2048, 4096

Description
If possible sets maximum memory read byte count, some bridges have errata that
prevent this.

int pcie_get_readrq(struct pci_dev * dev)
get PCI Express read request size

Parameters
struct pci_dev * dev PCI device to query

Description
Returns maximum memory read request in bytes or appropriate error value.

int pcie_set_readrq(struct pci_dev * dev, int rq)
set PCI Express maximum memory read request

Parameters
struct pci_dev * dev PCI device to query

int rq maximum memory read count in bytes valid values are 128, 256, 512,
1024, 2048, 4096

Description
If possible sets maximum memory read request in bytes

int pcie_get_mps(struct pci_dev * dev)
get PCI Express maximum payload size

Parameters
struct pci_dev * dev PCI device to query

Description
Returns maximum payload size in bytes

int pcie_set_mps(struct pci_dev * dev, int mps)
set PCI Express maximum payload size

Parameters
struct pci_dev * dev PCI device to query

int mps maximum payload size in bytes valid values are 128, 256, 512, 1024,
2048, 4096

Description
If possible sets maximum payload size

u32 pcie_bandwidth_available(struct pci_dev * dev, struct pci_dev
** limiting_dev, enum pci_bus_speed
* speed, enum pcie_link_width * width)

determineminimum link settings of a PCIe device and its bandwidth limitation

786 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

Parameters
struct pci_dev * dev PCI device to query

struct pci_dev ** limiting_dev storage for device causing the bandwidth lim-
itation

enum pci_bus_speed * speed storage for speed of limiting device

enum pcie_link_width * width storage for width of limiting device

Description
Walk up the PCI device chain and find the point where the minimum bandwidth is
available. Return the bandwidth available there and (if limiting_dev, speed, and
width pointers are supplied) information about that point. The bandwidth returned
is in Mb/s, i.e., megabits/second of raw bandwidth.

enum pci_bus_speed pcie_get_speed_cap(struct pci_dev * dev)
query for the PCI device’s link speed capability

Parameters
struct pci_dev * dev PCI device to query

Description
Query the PCI device speed capability. Return the maximum link speed supported
by the device.

enum pcie_link_width pcie_get_width_cap(struct pci_dev * dev)
query for the PCI device’s link width capability

Parameters
struct pci_dev * dev PCI device to query

Description
Query the PCI device width capability. Return the maximum link width supported
by the device.

void pcie_print_link_status(struct pci_dev * dev)
Report the PCI device’s link speed and width

Parameters
struct pci_dev * dev PCI device to query

Description
Report the available bandwidth at the device.

int pci_select_bars(struct pci_dev * dev, unsigned long flags)
Make BAR mask from the type of resource

Parameters
struct pci_dev * dev the PCI device for which BAR mask is made

unsigned long flags resource type mask to be selected

Description
This helper routine makes bar mask from the type of resource.

22.1. PCI Support Library 787

Linux Driver-api Documentation

int pci_add_dynid(struct pci_driver * drv, unsigned int vendor, un-
signed int device, unsigned int subvendor, un-
signed int subdevice, unsigned int class, unsigned
int class_mask, unsigned long driver_data)

add a new PCI device ID to this driver and re-probe devices

Parameters
struct pci_driver * drv target pci driver

unsigned int vendor PCI vendor ID

unsigned int device PCI device ID

unsigned int subvendor PCI subvendor ID

unsigned int subdevice PCI subdevice ID

unsigned int class PCI class

unsigned int class_mask PCI class mask

unsigned long driver_data private driver data

Description
Adds a new dynamic pci device ID to this driver and causes the driver to probe for
all devices again. drv must have been registered prior to calling this function.
Context
Does GFP_KERNEL allocation.

Return
0 on success, -errno on failure.

const struct pci_device_id * pci_match_id(const struct pci_device_id * ids,
struct pci_dev * dev)

See if a pci device matches a given pci_id table

Parameters
const struct pci_device_id * ids array of PCI device id structures to search

in

struct pci_dev * dev the PCI device structure to match against.

Description
Used by a driver to check whether a PCI device present in the system is in its list of
supported devices. Returns the matching pci_device_id structure or NULL if there
is no match.

Deprecated, don’t use this as it will not catch any dynamic ids that a driver might
want to check for.

int __pci_register_driver(struct pci_driver * drv, struct module * owner,
const char * mod_name)

register a new pci driver

Parameters
struct pci_driver * drv the driver structure to register

788 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

struct module * owner owner module of drv

const char * mod_name module name string

Description
Adds the driver structure to the list of registered drivers. Returns a negative value
on error, otherwise 0. If no error occurred, the driver remains registered even if
no device was claimed during registration.

void pci_unregister_driver(struct pci_driver * drv)
unregister a pci driver

Parameters
struct pci_driver * drv the driver structure to unregister

Description
Deletes the driver structure from the list of registered PCI drivers, gives it a chance
to clean up by calling its remove() function for each device it was responsible for,
and marks those devices as driverless.

struct pci_driver * pci_dev_driver(const struct pci_dev * dev)
get the pci_driver of a device

Parameters
const struct pci_dev * dev the device to query

Description
Returns the appropriate pci_driver structure or NULL if there is no registered driver
for the device.

struct pci_dev * pci_dev_get(struct pci_dev * dev)
increments the reference count of the pci device structure

Parameters
struct pci_dev * dev the device being referenced

Description
Each live reference to a device should be refcounted.

Drivers for PCI devices should normally record such references in their probe()
methods, when they bind to a device, and release them by calling pci_dev_put(),
in their disconnect() methods.

A pointer to the device with the incremented reference counter is returned.

void pci_dev_put(struct pci_dev * dev)
release a use of the pci device structure

Parameters
struct pci_dev * dev device that’s been disconnected
Description
Must be called when a user of a device is finished with it. When the last user of
the device calls this function, the memory of the device is freed.

22.1. PCI Support Library 789

Linux Driver-api Documentation

void pci_stop_and_remove_bus_device(struct pci_dev * dev)
remove a PCI device and any children

Parameters
struct pci_dev * dev the device to remove

Description
Remove a PCI device from the device lists, informing the drivers that the device
has been removed. We also remove any subordinate buses and children in a depth-
first manner.

For each device we remove, delete the device structure from the device lists, re-
move the /proc entry, and notify userspace (/sbin/hotplug).

struct pci_bus * pci_find_bus(int domain, int busnr)
locate PCI bus from a given domain and bus number

Parameters
int domain number of PCI domain to search

int busnr number of desired PCI bus

Description
Given a PCI bus number and domain number, the desired PCI bus is located in
the global list of PCI buses. If the bus is found, a pointer to its data structure is
returned. If no bus is found, NULL is returned.

struct pci_bus * pci_find_next_bus(const struct pci_bus * from)
begin or continue searching for a PCI bus

Parameters
const struct pci_bus * from Previous PCI bus found, or NULL for new search.

Description
Iterates through the list of known PCI buses. A new search is initiated by passing
NULL as the from argument. Otherwise if from is not NULL, searches continue
from next device on the global list.

struct pci_dev * pci_get_slot(struct pci_bus * bus, unsigned int devfn)
locate PCI device for a given PCI slot

Parameters
struct pci_bus * bus PCI bus on which desired PCI device resides

unsigned int devfn encodes number of PCI slot in which the desired PCI device
resides and the logical device number within that slot in case of multi-function
devices.

Description
Given a PCI bus and slot/function number, the desired PCI device is located in the
list of PCI devices. If the device is found, its reference count is increased and this
function returns a pointer to its data structure. The caller must decrement the
reference count by calling pci_dev_put(). If no device is found, NULL is returned.

790 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

struct pci_dev * pci_get_domain_bus_and_slot(int domain, unsigned
int bus, unsigned
int devfn)

locate PCI device for a given PCI domain (segment), bus, and slot

Parameters
int domain PCI domain/segment on which the PCI device resides.

unsigned int bus PCI bus on which desired PCI device resides

unsigned int devfn encodes number of PCI slot in which the desired PCI device
resides and the logical device number within that slot in case of multi-function
devices.

Description
Given a PCI domain, bus, and slot/function number, the desired PCI device is lo-
cated in the list of PCI devices. If the device is found, its reference count is in-
creased and this function returns a pointer to its data structure. The caller must
decrement the reference count by calling pci_dev_put(). If no device is found,
NULL is returned.

struct pci_dev * pci_get_subsys(unsigned int vendor, unsigned int device,
unsigned int ss_vendor, unsigned
int ss_device, struct pci_dev * from)

begin or continue searching for a PCI device by ven-
dor/subvendor/device/subdevice id

Parameters
unsigned int vendor PCI vendor id to match, or PCI_ANY_ID to match all vendor

ids

unsigned int device PCI device id to match, or PCI_ANY_ID to match all device
ids

unsigned int ss_vendor PCI subsystem vendor id to match, or PCI_ANY_ID to
match all vendor ids

unsigned int ss_device PCI subsystem device id to match, or PCI_ANY_ID to
match all device ids

struct pci_dev * from Previous PCI device found in search, or NULL for new
search.

Description
Iterates through the list of known PCI devices. If a PCI device is found with a
matching vendor, device, ss_vendor and ss_device, a pointer to its device struc-
ture is returned, and the reference count to the device is incremented. Otherwise,
NULL is returned. A new search is initiated by passing NULL as the from argument.
Otherwise if from is not NULL, searches continue from next device on the global
list. The reference count for from is always decremented if it is not NULL.

struct pci_dev * pci_get_device(unsigned int vendor, unsigned int device,
struct pci_dev * from)

begin or continue searching for a PCI device by vendor/device id

Parameters

22.1. PCI Support Library 791

Linux Driver-api Documentation

unsigned int vendor PCI vendor id to match, or PCI_ANY_ID to match all vendor
ids

unsigned int device PCI device id to match, or PCI_ANY_ID to match all device
ids

struct pci_dev * from Previous PCI device found in search, or NULL for new
search.

Description
Iterates through the list of known PCI devices. If a PCI device is found with a
matching vendor and device, the reference count to the device is incremented
and a pointer to its device structure is returned. Otherwise, NULL is returned. A
new search is initiated by passing NULL as the from argument. Otherwise if from
is not NULL, searches continue from next device on the global list. The reference
count for from is always decremented if it is not NULL.

struct pci_dev * pci_get_class(unsigned int class, struct pci_dev * from)
begin or continue searching for a PCI device by class

Parameters
unsigned int class search for a PCI device with this class designation

struct pci_dev * from Previous PCI device found in search, or NULL for new
search.

Description
Iterates through the list of known PCI devices. If a PCI device is found with a
matching class, the reference count to the device is incremented and a pointer
to its device structure is returned. Otherwise, NULL is returned. A new search is
initiated by passing NULL as the from argument. Otherwise if from is not NULL,
searches continue from next device on the global list. The reference count for
from is always decremented if it is not NULL.

int pci_dev_present(const struct pci_device_id * ids)
Returns 1 if device matching the device list is present, 0 if not.

Parameters
const struct pci_device_id * ids A pointer to a null terminated list of struct

pci_device_id structures that describe the type of PCI device the caller is try-
ing to find.

Description
Obvious fact: You do not have a reference to any device that might be found by this
function, so if that device is removed from the system right after this function is
finished, the value will be stale. Use this function to find devices that are usually
built into a system, or for a general hint as to if another device happens to be
present at this specific moment in time.

void pci_msi_mask_irq(struct irq_data * data)
Generic IRQ chip callback to mask PCI/MSI interrupts

Parameters
struct irq_data * data pointer to irqdata associated to that interrupt

792 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

void pci_msi_unmask_irq(struct irq_data * data)
Generic IRQ chip callback to unmask PCI/MSI interrupts

Parameters
struct irq_data * data pointer to irqdata associated to that interrupt

int pci_msi_vec_count(struct pci_dev * dev)
Return the number of MSI vectors a device can send

Parameters
struct pci_dev * dev device to report about

Description
This function returns the number of MSI vectors a device requested via Multiple
Message Capable register. It returns a negative errno if the device is not capable
sending MSI interrupts. Otherwise, the call succeeds and returns a power of two,
up to a maximum of 2^5 (32), according to the MSI specification.

int pci_msix_vec_count(struct pci_dev * dev)
return the number of device’s MSI-X table entries

Parameters
struct pci_dev * dev pointer to the pci_dev data structure of MSI-X device

function This function returns the number of device’s MSI-X table entries
and therefore the number of MSI-X vectors device is capable of sending. It
returns a negative errno if the device is not capable of sending MSI-X inter-
rupts.

int pci_msi_enabled(void)
is MSI enabled?

Parameters
void no arguments

Description
Returns true if MSI has not been disabled by the command-line option pci=nomsi.

int pci_enable_msix_range(struct pci_dev * dev, struct msix_entry
* entries, int minvec, int maxvec)

configure device’s MSI-X capability structure
Parameters
struct pci_dev * dev pointer to the pci_dev data structure of MSI-X device

function

struct msix_entry * entries pointer to an array of MSI-X entries

int minvec minimum number of MSI-X IRQs requested

int maxvec maximum number of MSI-X IRQs requested

Description
Setup the MSI-X capability structure of device function with a maximum possible
number of interrupts in the range betweenminvec andmaxvec upon its software

22.1. PCI Support Library 793

Linux Driver-api Documentation

driver call to request for MSI-X mode enabled on its hardware device function.
It returns a negative errno if an error occurs. If it succeeds, it returns the actual
number of interrupts allocated and indicates the successful configuration of MSI-X
capability structure with new allocated MSI-X interrupts.

int pci_alloc_irq_vectors_affinity(struct pci_dev * dev, un-
signed int min_vecs, unsigned
int max_vecs, unsigned int flags,
struct irq_affinity * affd)

allocate multiple IRQs for a device

Parameters
struct pci_dev * dev PCI device to operate on

unsigned int min_vecs minimum number of vectors required (must be >= 1)

unsigned int max_vecs maximum (desired) number of vectors

unsigned int flags flags or quirks for the allocation

struct irq_affinity * affd optional description of the affinity requirements

Description
Allocate up to max_vecs interrupt vectors for dev, using MSI-X or MSI vectors if
available, and fall back to a single legacy vector if neither is available. Return the
number of vectors allocated, (which might be smaller than max_vecs) if success-
ful, or a negative error code on error. If less than min_vecs interrupt vectors are
available for dev the function will fail with -ENOSPC.
To get the Linux IRQ number used for a vector that can be passed to request_irq()
use the pci_irq_vector() helper.

void pci_free_irq_vectors(struct pci_dev * dev)
free previously allocated IRQs for a device

Parameters
struct pci_dev * dev PCI device to operate on

Description
Undoes the allocations and enabling in pci_alloc_irq_vectors().

int pci_irq_vector(struct pci_dev * dev, unsigned int nr)
return Linux IRQ number of a device vector

Parameters
struct pci_dev * dev PCI device to operate on

unsigned int nr device-relative interrupt vector index (0-based).

const struct cpumask * pci_irq_get_affinity(struct pci_dev * dev, int nr)
return the affinity of a particular MSI vector

Parameters
struct pci_dev * dev PCI device to operate on

int nr device-relative interrupt vector index (0-based).

794 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

struct irq_domain * pci_msi_create_irq_domain(struct fwnode_handle
* fwnode, struct
msi_domain_info * info,
struct irq_domain
* parent)

Create a MSI interrupt domain

Parameters
struct fwnode_handle * fwnode Optional fwnode of the interrupt controller

struct msi_domain_info * info MSI domain info

struct irq_domain * parent Parent irq domain

Description
Updates the domain and chip ops and creates a MSI interrupt domain.

Return
A domain pointer or NULL in case of failure.

int pci_bus_alloc_resource(struct pci_bus * bus, struct resource * res,
resource_size_t size, resource_size_t align, re-
source_size_t min, unsigned long type_mask,
resource_size_t (*alignf)(void *, const struct
resource *, resource_size_t, resource_size_t),
void * alignf_data)

allocate a resource from a parent bus

Parameters
struct pci_bus * bus PCI bus

struct resource * res resource to allocate

resource_size_t size size of resource to allocate

resource_size_t align alignment of resource to allocate

resource_size_t min minimum /proc/iomem address to allocate

unsigned long type_mask IORESOURCE_* type flags

resource_size_t (*)(void *, const struct resource *, resource_size_t, resource_size_t) alignf
resource alignment function

void * alignf_data data argument for resource alignment function

Description
Given the PCI bus a device resides on, the size, minimum address, alignment and
type, try to find an acceptable resource allocation for a specific device resource.

void pci_bus_add_device(struct pci_dev * dev)
start driver for a single device

Parameters
struct pci_dev * dev device to add

22.1. PCI Support Library 795

Linux Driver-api Documentation

Description
This adds add sysfs entries and start device drivers

void pci_bus_add_devices(const struct pci_bus * bus)
start driver for PCI devices

Parameters
const struct pci_bus * bus bus to check for new devices

Description
Start driver for PCI devices and add some sysfs entries.

struct pci_ops * pci_bus_set_ops(struct pci_bus * bus, struct pci_ops * ops)
Set raw operations of pci bus

Parameters
struct pci_bus * bus pci bus struct

struct pci_ops * ops new raw operations

Description
Return previous raw operations

void pci_cfg_access_lock(struct pci_dev * dev)
Lock PCI config reads/writes

Parameters
struct pci_dev * dev pci device struct

Description
When access is locked, any userspace reads or writes to config space and concur-
rent lock requests will sleep until access is allowed via pci_cfg_access_unlock()
again.

bool pci_cfg_access_trylock(struct pci_dev * dev)
try to lock PCI config reads/writes

Parameters
struct pci_dev * dev pci device struct

Description
Same as pci_cfg_access_lock, but will return 0 if access is already locked, 1 other-
wise. This function can be used from atomic contexts.

void pci_cfg_access_unlock(struct pci_dev * dev)
Unlock PCI config reads/writes

Parameters
struct pci_dev * dev pci device struct

Description
This function allows PCI config accesses to resume.

796 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

enum pci_lost_interrupt_reason pci_lost_interrupt(struct pci_dev
* pdev)

reports a lost PCI interrupt

Parameters
struct pci_dev * pdev device whose interrupt is lost

Description
The primary function of this routine is to report a lost interrupt in a standard way
which users can recognise (instead of blaming the driver).

Return
a suggestion for fixing it (although the driver is not required to act on this).

int pci_request_irq(struct pci_dev * dev, unsigned int nr,
irq_handler_t handler, irq_handler_t thread_fn, void
* dev_id, const char * fmt, ...)

allocate an interrupt line for a PCI device

Parameters
struct pci_dev * dev PCI device to operate on

unsigned int nr device-relative interrupt vector index (0-based).

irq_handler_t handler Function to be called when the IRQ occurs. Primary han-
dler for threaded interrupts. If NULL and thread_fn != NULL the default
primary handler is installed.

irq_handler_t thread_fn Function called from the IRQ handler thread If NULL,
no IRQ thread is created

void * dev_id Cookie passed back to the handler function

const char * fmt Printf-like format string naming the handler

... variable arguments

Description
This call allocates interrupt resources and enables the interrupt line and IRQ han-
dling. From the point this call is made handler and thread_fn may be invoked.
All interrupts requested using this function might be shared.

dev_id must not be NULL and must be globally unique.
void pci_free_irq(struct pci_dev * dev, unsigned int nr, void * dev_id)

free an interrupt allocated with pci_request_irq

Parameters
struct pci_dev * dev PCI device to operate on

unsigned int nr device-relative interrupt vector index (0-based).

void * dev_id Device identity to free

Description
Remove an interrupt handler. The handler is removed and if the interrupt line is
no longer in use by any driver it is disabled. The caller must ensure the interrupt

22.1. PCI Support Library 797

Linux Driver-api Documentation

is disabled on the device before calling this function. The function does not return
until any executing interrupts for this IRQ have completed.

This function must not be called from interrupt context.

bool pcie_relaxed_ordering_enabled(struct pci_dev * dev)
Probe for PCIe relaxed ordering enable

Parameters
struct pci_dev * dev PCI device to query

Description
Returns true if the device has enabled relaxed ordering attribute.

int pci_scan_slot(struct pci_bus * bus, int devfn)
Scan a PCI slot on a bus for devices

Parameters
struct pci_bus * bus PCI bus to scan

int devfn slot number to scan (must have zero function)

Description
Scan a PCI slot on the specified PCI bus for devices, adding discovered devices to
the bus->devices list. New devices will not have is_added set.
Returns the number of new devices found.

unsigned int pci_scan_child_bus(struct pci_bus * bus)
Scan devices below a bus

Parameters
struct pci_bus * bus Bus to scan for devices

Description
Scans devices below bus including subordinate buses. Returns new subordinate
number including all the found devices.

unsigned int pci_rescan_bus(struct pci_bus * bus)
Scan a PCI bus for devices

Parameters
struct pci_bus * bus PCI bus to scan

Description
Scan a PCI bus and child buses for new devices, add them, and enable them.

Returns the max number of subordinate bus discovered.

struct pci_slot * pci_create_slot(struct pci_bus * parent, int slot_nr,
const char * name, struct hotplug_slot
* hotplug)

create or increment refcount for physical PCI slot

Parameters
struct pci_bus * parent struct pci_bus of parent bridge

798 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

int slot_nr PCI_SLOT(pci_dev->devfn) or -1 for placeholder

const char * name user visible string presented in /sys/bus/pci/slots/<name>

struct hotplug_slot * hotplug set if caller is hotplug driver, NULL otherwise

Description
PCI slots have first class attributes such as address, speed, width, and a struct
pci_slot is used to manage them. This interface will either return a new struct
pci_slot to the caller, or if the pci_slot already exists, its refcount will be incre-
mented.

Slots are uniquely identified by a pci_bus, slot_nr tuple.
There are known platforms with broken firmware that assign the same name to
multiple slots. Workaround these broken platforms by renaming the slots on behalf
of the caller. If firmware assigns name N to multiple slots:

The first slot is assignedN The second slot is assignedN-1 The third slot is assigned
N-2 etc.

Placeholder slots: In most cases, pci_bus, slot_nr will be sufficient to uniquely
identify a slot. There is one notable exception - pSeries (rpaphp), where the
slot_nr cannot be determined until a device is actually inserted into the slot. In
this scenario, the caller may pass -1 for slot_nr.
The following semantics are imposed when the caller passes slot_nr == -1. First,
we no longer check for an existing struct pci_slot, as there may bemany slots with
slot_nr of -1. The other change in semantics is user-visible, which is the‘address’
parameter presented in sysfs will consist solely of a dddd:bb tuple, where dddd is
the PCI domain of the struct pci_bus and bb is the bus number. In other words,
the devfn of the ‘placeholder’slot will not be displayed.
void pci_destroy_slot(struct pci_slot * slot)

decrement refcount for physical PCI slot

Parameters
struct pci_slot * slot struct pci_slot to decrement

Description
struct pci_slot is refcounted, so destroying them is really easy; we just call kob-
ject_put on its kobj and let our release methods do the rest.

void pci_hp_create_module_link(struct pci_slot * pci_slot)
create symbolic link to the hotplug driver module.

Parameters
struct pci_slot * pci_slot struct pci_slot

Description
Helper function for pci_hotplug_core.c to create symbolic link to the hotplug driver
module.

void pci_hp_remove_module_link(struct pci_slot * pci_slot)
remove symbolic link to the hotplug driver module.

Parameters

22.1. PCI Support Library 799

Linux Driver-api Documentation

struct pci_slot * pci_slot struct pci_slot

Description
Helper function for pci_hotplug_core.c to remove symbolic link to the hotplug
driver module.

int pci_enable_rom(struct pci_dev * pdev)
enable ROM decoding for a PCI device

Parameters
struct pci_dev * pdev PCI device to enable

Description
Enable ROM decoding on dev. This involves simply turning on the last bit of the
PCI ROM BAR. Note that some cards may share address decoders between the
ROM and other resources, so enabling it may disable access to MMIO registers or
other card memory.

void pci_disable_rom(struct pci_dev * pdev)
disable ROM decoding for a PCI device

Parameters
struct pci_dev * pdev PCI device to disable

Description
Disable ROM decoding on a PCI device by turning off the last bit in the ROM BAR.

void __iomem * pci_map_rom(struct pci_dev * pdev, size_t * size)
map a PCI ROM to kernel space

Parameters
struct pci_dev * pdev pointer to pci device struct

size_t * size pointer to receive size of pci window over ROM

Return
kernel virtual pointer to image of ROM

Description
Map a PCI ROM into kernel space. If ROM is boot video ROM, the shadow BIOS
copy will be returned instead of the actual ROM.

void pci_unmap_rom(struct pci_dev * pdev, void __iomem * rom)
unmap the ROM from kernel space

Parameters
struct pci_dev * pdev pointer to pci device struct

void __iomem * rom virtual address of the previous mapping

Description
Remove a mapping of a previously mapped ROM

800 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

int pci_enable_sriov(struct pci_dev * dev, int nr_virtfn)
enable the SR-IOV capability

Parameters
struct pci_dev * dev the PCI device

int nr_virtfn number of virtual functions to enable

Description
Returns 0 on success, or negative on failure.

void pci_disable_sriov(struct pci_dev * dev)
disable the SR-IOV capability

Parameters
struct pci_dev * dev the PCI device

int pci_num_vf(struct pci_dev * dev)
return number of VFs associated with a PF device_release_driver

Parameters
struct pci_dev * dev the PCI device

Description
Returns number of VFs, or 0 if SR-IOV is not enabled.

int pci_vfs_assigned(struct pci_dev * dev)
returns number of VFs are assigned to a guest

Parameters
struct pci_dev * dev the PCI device

Description
Returns number of VFs belonging to this device that are assigned to a guest. If
device is not a physical function returns 0.

int pci_sriov_set_totalvfs(struct pci_dev * dev, u16 numvfs)

• reduce the TotalVFs available

Parameters
struct pci_dev * dev the PCI PF device

u16 numvfs number that should be used for TotalVFs supported

Description
Should be called from PF driver’s probe routine with device’s mutex held.
Returns 0 if PF is an SRIOV-capable device and value of numvfs valid. If not a
PF return -ENOSYS; if numvfs is invalid return -EINVAL; if VFs already enabled,
return -EBUSY.

int pci_sriov_get_totalvfs(struct pci_dev * dev)

• get total VFs supported on this device

Parameters

22.1. PCI Support Library 801

Linux Driver-api Documentation

struct pci_dev * dev the PCI PF device

Description
For a PCIe device with SRIOV support, return the PCIe SRIOV capability value of
TotalVFs or the value of driver_max_VFs if the driver reduced it. Otherwise 0.

int pci_sriov_configure_simple(struct pci_dev * dev, int nr_virtfn)
helper to configure SR-IOV

Parameters
struct pci_dev * dev the PCI device

int nr_virtfn number of virtual functions to enable, 0 to disable

Description
Enable or disable SR-IOV for devices that don’t require any PF setup before en-
abling SR-IOV. Return value is negative on error, or number of VFs allocated on
success.

ssize_t pci_read_legacy_io(struct file * filp, struct kobject * kobj, struct
bin_attribute * bin_attr, char * buf, loff_t off,
size_t count)

read byte(s) from legacy I/O port space

Parameters
struct file * filp open sysfs file

struct kobject * kobj kobject corresponding to file to read from

struct bin_attribute * bin_attr struct bin_attribute for this file

char * buf buffer to store results

loff_t off offset into legacy I/O port space

size_t count number of bytes to read

Description
Reads 1, 2, or 4 bytes from legacy I/O port space using an arch specific callback
routine (pci_legacy_read).

ssize_t pci_write_legacy_io(struct file * filp, struct kobject * kobj, struct
bin_attribute * bin_attr, char * buf, loff_t off,
size_t count)

write byte(s) to legacy I/O port space

Parameters
struct file * filp open sysfs file

struct kobject * kobj kobject corresponding to file to read from

struct bin_attribute * bin_attr struct bin_attribute for this file

char * buf buffer containing value to be written

loff_t off offset into legacy I/O port space

size_t count number of bytes to write

802 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

Description
Writes 1, 2, or 4 bytes from legacy I/O port space using an arch specific callback
routine (pci_legacy_write).

int pci_mmap_legacy_mem(struct file * filp, struct kobject * kobj, struct
bin_attribute * attr, struct vm_area_struct * vma)

map legacy PCI memory into user memory space

Parameters
struct file * filp open sysfs file

struct kobject * kobj kobject corresponding to device to be mapped

struct bin_attribute * attr struct bin_attribute for this file

struct vm_area_struct * vma struct vm_area_struct passed to mmap

Description
Uses an arch specific callback, pci_mmap_legacy_mem_page_range, to mmap
legacy memory space (first meg of bus space) into application virtual memory
space.

int pci_mmap_legacy_io(struct file * filp, struct kobject * kobj, struct
bin_attribute * attr, struct vm_area_struct * vma)

map legacy PCI IO into user memory space

Parameters
struct file * filp open sysfs file

struct kobject * kobj kobject corresponding to device to be mapped

struct bin_attribute * attr struct bin_attribute for this file

struct vm_area_struct * vma struct vm_area_struct passed to mmap

Description
Uses an arch specific callback, pci_mmap_legacy_io_page_range, to mmap legacy
IO space (first meg of bus space) into application virtual memory space. Returns
-ENOSYS if the operation isn’t supported
void pci_adjust_legacy_attr(struct pci_bus * b, enum

pci_mmap_state mmap_type)
adjustment of legacy file attributes

Parameters
struct pci_bus * b bus to create files under

enum pci_mmap_state mmap_type I/O port or memory

Description
Stub implementation. Can be overridden by arch if necessary.

void pci_create_legacy_files(struct pci_bus * b)
create legacy I/O port and memory files

Parameters
struct pci_bus * b bus to create files under

22.1. PCI Support Library 803

Linux Driver-api Documentation

Description
Some platforms allow access to legacy I/O port and ISA memory space on a per-
bus basis. This routine creates the files and ties them into their associated read,
write and mmap files from pci-sysfs.c

On error unwind, but don’t propagate the error to the caller as it is ok to set up
the PCI bus without these files.

int pci_mmap_resource(struct kobject * kobj, struct bin_attribute * attr,
struct vm_area_struct * vma, int write_combine)

map a PCI resource into user memory space

Parameters
struct kobject * kobj kobject for mapping

struct bin_attribute * attr struct bin_attribute for the file being mapped

struct vm_area_struct * vma struct vm_area_struct passed into the mmap

int write_combine 1 for write_combine mapping

Description
Use the regular PCI mapping routines to map a PCI resource into userspace.

void pci_remove_resource_files(struct pci_dev * pdev)
cleanup resource files

Parameters
struct pci_dev * pdev dev to cleanup

Description
If we created resource files for pdev, remove them from sysfs and free their re-
sources.

int pci_create_resource_files(struct pci_dev * pdev)
create resource files in sysfs for dev

Parameters
struct pci_dev * pdev dev in question

Description
Walk the resources in pdev creating files for each resource available.
ssize_t pci_write_rom(struct file * filp, struct kobject * kobj, struct

bin_attribute * bin_attr, char * buf, loff_t off,
size_t count)

used to enable access to the PCI ROM display

Parameters
struct file * filp sysfs file

struct kobject * kobj kernel object handle

struct bin_attribute * bin_attr struct bin_attribute for this file

char * buf user input

804 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

loff_t off file offset

size_t count number of byte in input

Description
writing anything except 0 enables it

ssize_t pci_read_rom(struct file * filp, struct kobject * kobj, struct
bin_attribute * bin_attr, char * buf, loff_t off,
size_t count)

read a PCI ROM

Parameters
struct file * filp sysfs file

struct kobject * kobj kernel object handle

struct bin_attribute * bin_attr struct bin_attribute for this file

char * buf where to put the data we read from the ROM

loff_t off file offset

size_t count number of bytes to read

Description
Put count bytes starting at off into buf from the ROM in the PCI device corre-
sponding to kobj.
void pci_remove_sysfs_dev_files(struct pci_dev * pdev)

cleanup PCI specific sysfs files

Parameters
struct pci_dev * pdev device whose entries we should free

Description
Cleanup when pdev is removed from sysfs.

22.2 PCI Hotplug Support Library

int __pci_hp_register(struct hotplug_slot * slot, struct pci_bus * bus,
int devnr, const char * name, struct module * owner,
const char * mod_name)

register a hotplug_slot with the PCI hotplug subsystem

Parameters
struct hotplug_slot * slot pointer to the struct hotplug_slot to register

struct pci_bus * bus bus this slot is on

int devnr device number

const char * name name registered with kobject core

struct module * owner caller module owner

const char * mod_name caller module name

22.2. PCI Hotplug Support Library 805

Linux Driver-api Documentation

Description
Prepares a hotplug slot for in-kernel use and immediately publishes it to user space
in one go. Drivers may alternatively carry out the two steps separately by invoking
pci_hp_initialize() and pci_hp_add().

Returns 0 if successful, anything else for an error.

int __pci_hp_initialize(struct hotplug_slot * slot, struct pci_bus * bus,
int devnr, const char * name, struct module
* owner, const char * mod_name)

prepare hotplug slot for in-kernel use

Parameters
struct hotplug_slot * slot pointer to the struct hotplug_slot to initialize

struct pci_bus * bus bus this slot is on

int devnr slot number

const char * name name registered with kobject core

struct module * owner caller module owner

const char * mod_name caller module name

Description
Allocate and fill in a PCI slot for use by a hotplug driver. Once this has been
called, the driver may invoke hotplug_slot_name() to get the slot’s unique name.
The driver must be prepared to handle a ->reset_slot callback from this point on.

Returns 0 on success or a negative int on error.

int pci_hp_add(struct hotplug_slot * slot)
publish hotplug slot to user space

Parameters
struct hotplug_slot * slot pointer to the struct hotplug_slot to publish

Description
Make a hotplug slot’s sysfs interface available and inform user space of its addition
by sending a uevent. The hotplug driver must be prepared to handle all struct
hotplug_slot_ops callbacks from this point on.

Returns 0 on success or a negative int on error.

void pci_hp_deregister(struct hotplug_slot * slot)
deregister a hotplug_slot with the PCI hotplug subsystem

Parameters
struct hotplug_slot * slot pointer to the struct hotplug_slot to deregister

Description
The slot must have been registered with the pci hotplug subsystem previously
with a call to pci_hp_register().

Returns 0 if successful, anything else for an error.

806 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

void pci_hp_del(struct hotplug_slot * slot)
unpublish hotplug slot from user space

Parameters
struct hotplug_slot * slot pointer to the struct hotplug_slot to unpublish

Description
Remove a hotplug slot’s sysfs interface.
Returns 0 on success or a negative int on error.

void pci_hp_destroy(struct hotplug_slot * slot)
remove hotplug slot from in-kernel use

Parameters
struct hotplug_slot * slot pointer to the struct hotplug_slot to destroy

Description
Destroy a PCI slot used by a hotplug driver. Once this has been called, the driver
may no longer invoke hotplug_slot_name() to get the slot’s unique name. The
driver no longer needs to handle a ->reset_slot callback from this point on.

Returns 0 on success or a negative int on error.

22.3 PCI Peer-to-Peer DMA Support

The PCI bus has pretty decent support for performing DMA transfers between two
devices on the bus. This type of transaction is henceforth called Peer-to-Peer (or
P2P). However, there are a number of issues that make P2P transactions tricky to
do in a perfectly safe way.

One of the biggest issues is that PCI doesn’t require forwarding transactions be-
tween hierarchy domains, and in PCIe, each Root Port defines a separate hierarchy
domain. To make things worse, there is no simple way to determine if a given Root
Complex supports this or not. (See PCIe r4.0, sec 1.3.1). Therefore, as of this writ-
ing, the kernel only supports doing P2P when the endpoints involved are all behind
the same PCI bridge, as such devices are all in the same PCI hierarchy domain,
and the spec guarantees that all transactions within the hierarchy will be routable,
but it does not require routing between hierarchies.

The second issue is that to make use of existing interfaces in Linux, memory that
is used for P2P transactions needs to be backed by struct pages. However, PCI
BARs are not typically cache coherent so there are a few corner case gotchas with
these pages so developers need to be careful about what they do with them.

22.3. PCI Peer-to-Peer DMA Support 807

Linux Driver-api Documentation

22.3.1 Driver Writer’s Guide

In a given P2P implementation there may be three or more different types of kernel
drivers in play:

• Provider - A driver which provides or publishes P2P resources like memory
or doorbell registers to other drivers.

• Client - A driver which makes use of a resource by setting up a DMA transac-
tion to or from it.

• Orchestrator - A driver which orchestrates the flow of data between clients
and providers.

In many cases there could be overlap between these three types (i.e., it may be
typical for a driver to be both a provider and a client).

For example, in the NVMe Target Copy Offload implementation:

• The NVMe PCI driver is both a client, provider and orchestrator in that it
exposes any CMB (Controller Memory Buffer) as a P2P memory resource
(provider), it accepts P2P memory pages as buffers in requests to be used
directly (client) and it can also make use of the CMB as submission queue
entries (orchestrator).

• The RDMA driver is a client in this arrangement so that an RNIC can DMA
directly to the memory exposed by the NVMe device.

• The NVMe Target driver (nvmet) can orchestrate the data from the RNIC to
the P2P memory (CMB) and then to the NVMe device (and vice versa).

This is currently the only arrangement supported by the kernel but one could imag-
ine slight tweaks to this that would allow for the same functionality. For example,
if a specific RNIC added a BAR with some memory behind it, its driver could add
support as a P2P provider and then the NVMe Target could use the RNIC’s mem-
ory instead of the CMB in cases where the NVMe cards in use do not have CMB
support.

Provider Drivers

A provider simply needs to register a BAR (or a portion of a BAR) as a P2P DMA
resource using pci_p2pdma_add_resource(). This will register struct pages for
all the specified memory.

After that it may optionally publish all of its resources as P2P memory using
pci_p2pmem_publish(). This will allow any orchestrator drivers to find and use
the memory. When marked in this way, the resource must be regular memory with
no side effects.

For the time being this is fairly rudimentary in that all resources are typically going
to be P2P memory. Future work will likely expand this to include other types of
resources like doorbells.

808 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

Client Drivers

A client driver typically only has to conditionally change its DMA map rou-
tine to use the mapping function pci_p2pdma_map_sg() instead of the usual
dma_map_sg() function. Memory mapped in this way does not need to be un-
mapped.

The client may also, optionally, make use of is_pci_p2pdma_page() to determine
when to use the P2P mapping functions and when to use the regular mapping
functions. In some situations, it may be more appropriate to use a flag to indicate
a given request is P2P memory and map appropriately. It is important to ensure
that struct pages that back P2Pmemory stay out of code that does not have support
for them as other code may treat the pages as regular memory which may not be
appropriate.

Orchestrator Drivers

The first task an orchestrator driver must do is compile a list of all client devices
that will be involved in a given transaction. For example, the NVMe Target driver
creates a list including the namespace block device and the RNIC in use. If the
orchestrator has access to a specific P2P provider to use it may check compatibility
using pci_p2pdma_distance() otherwise it may find a memory provider that’s
compatible with all clients using pci_p2pmem_find(). If more than one provider
is supported, the one nearest to all the clients will be chosen first. If more than one
provider is an equal distance away, the one returned will be chosen at random (it
is not an arbitrary but truly random). This function returns the PCI device to use
for the provider with a reference taken and therefore when it’s no longer needed
it should be returned with pci_dev_put().

Once a provider is selected, the orchestrator can then use pci_alloc_p2pmem()
and pci_free_p2pmem() to allocate P2P memory from the provider.
pci_p2pmem_alloc_sgl() and pci_p2pmem_free_sgl() are convenience func-
tions for allocating scatter-gather lists with P2P memory.

Struct Page Caveats

Driver writers should be very careful about not passing these special struct pages
to code that isn’t prepared for it. At this time, the kernel interfaces do not have
any checks for ensuring this. This obviously precludes passing these pages to
userspace.

P2P memory is also technically IO memory but should never have any side effects
behind it. Thus, the order of loads and stores should not be important and iore-
adX(), iowriteX() and friends should not be necessary.

22.3. PCI Peer-to-Peer DMA Support 809

Linux Driver-api Documentation

22.3.2 P2P DMA Support Library

int pci_p2pdma_add_resource(struct pci_dev * pdev, int bar, size_t size,
u64 offset)

add memory for use as p2p memory

Parameters
struct pci_dev * pdev the device to add the memory to

int bar PCI BAR to add

size_t size size of the memory to add, may be zero to use the whole BAR

u64 offset offset into the PCI BAR

Description
The memory will be given ZONE_DEVICE struct pages so that it may be used with
any DMA request.

int pci_p2pdma_distance_many(struct pci_dev * provider, struct device
** clients, int num_clients, bool verbose)

Determine the cumulative distance between a p2pdma provider and the
clients in use.

Parameters
struct pci_dev * provider p2pdma provider to check against the client list

struct device ** clients array of devices to check (NULL-terminated)

int num_clients number of clients in the array

bool verbose if true, print warnings for devices when we return -1

Description
Returns -1 if any of the clients are not compatible, otherwise returns a positive
number where a lower number is the preferable choice. (If there’s one client that’
s the same as the provider it will return 0, which is best choice).

“compatible”means the provider and the clients are either all behind the same
PCI root port or the host bridges connected to each of the devices are listed in the
‘pci_p2pdma_whitelist’.
bool pci_has_p2pmem(struct pci_dev * pdev)

check if a given PCI device has published any p2pmem

Parameters
struct pci_dev * pdev PCI device to check

struct pci_dev * pci_p2pmem_find_many(struct device ** clients,
int num_clients)

find a peer-to-peer DMA memory device compatible with the specified list of
clients and shortest distance (as determined by pci_p2pmem_dma())

Parameters
struct device ** clients array of devices to check (NULL-terminated)

int num_clients number of client devices in the list

810 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

Description
If multiple devices are behind the same switch, the one “closest”to the client
devices in use will be chosen first. (So if one of the providers is the same as one
of the clients, that provider will be used ahead of any other providers that are
unrelated). If multiple providers are an equal distance away, one will be chosen at
random.

Returns a pointer to the PCI device with a reference taken (use pci_dev_put to
return the reference) or NULL if no compatible device is found. The found provider
will also be assigned to the client list.

void * pci_alloc_p2pmem(struct pci_dev * pdev, size_t size)
allocate peer-to-peer DMA memory

Parameters
struct pci_dev * pdev the device to allocate memory from

size_t size number of bytes to allocate

Description
Returns the allocated memory or NULL on error.

void pci_free_p2pmem(struct pci_dev * pdev, void * addr, size_t size)
free peer-to-peer DMA memory

Parameters
struct pci_dev * pdev the device the memory was allocated from

void * addr address of the memory that was allocated

size_t size number of bytes that were allocated

pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev * pdev, void
* addr)

return the PCI bus address for a given virtual address obtained with
pci_alloc_p2pmem()

Parameters
struct pci_dev * pdev the device the memory was allocated from

void * addr address of the memory that was allocated

struct scatterlist * pci_p2pmem_alloc_sgl(struct pci_dev * pdev, unsigned
int * nents, u32 length)

allocate peer-to-peer DMA memory in a scatterlist

Parameters
struct pci_dev * pdev the device to allocate memory from

unsigned int * nents the number of SG entries in the list

u32 length number of bytes to allocate

Return
NULL on error or struct scatterlist pointer and nents on success

22.3. PCI Peer-to-Peer DMA Support 811

Linux Driver-api Documentation

void pci_p2pmem_free_sgl(struct pci_dev * pdev, struct scatterlist * sgl)
free a scatterlist allocated by pci_p2pmem_alloc_sgl()

Parameters
struct pci_dev * pdev the device to allocate memory from

struct scatterlist * sgl the allocated scatterlist

void pci_p2pmem_publish(struct pci_dev * pdev, bool publish)
publish the peer-to-peer DMA memory for use by other devices with
pci_p2pmem_find()

Parameters
struct pci_dev * pdev the device with peer-to-peer DMA memory to publish

bool publish set to true to publish the memory, false to unpublish it

Description
Published memory can be used by other PCI device drivers for peer-2-peer DMA
operations. Non-published memory is reserved for exclusive use of the device
driver that registers the peer-to-peer memory.

int pci_p2pdma_map_sg_attrs(struct device * dev, struct scatterlist * sg,
int nents, enum dma_data_direction dir, un-
signed long attrs)

map a PCI peer-to-peer scatterlist for DMA

Parameters
struct device * dev device doing the DMA request

struct scatterlist * sg scatter list to map

int nents elements in the scatterlist

enum dma_data_direction dir DMA direction

unsigned long attrs DMA attributes passed to dma_map_sg() (if called)

Description
Scatterlists mapped with this function should be unmapped using
pci_p2pdma_unmap_sg_attrs().

Returns the number of SG entries mapped or 0 on error.

void pci_p2pdma_unmap_sg_attrs(struct device * dev, struct scatterlist * sg,
int nents, enum dma_data_direction dir,
unsigned long attrs)

unmap a PCI peer-to-peer scatterlist that was mapped with
pci_p2pdma_map_sg()

Parameters
struct device * dev device doing the DMA request

struct scatterlist * sg scatter list to map

int nents number of elements returned by pci_p2pdma_map_sg()

enum dma_data_direction dir DMA direction

812 Chapter 22. The Linux PCI driver implementer’s API guide

Linux Driver-api Documentation

unsigned long attrs DMA attributes passed to dma_unmap_sg() (if called)

int pci_p2pdma_enable_store(const char * page, struct pci_dev ** p2p_dev,
bool * use_p2pdma)

parse a configfs/sysfs attribute store to enable p2pdma

Parameters
const char * page contents of the value to be stored

struct pci_dev ** p2p_dev returns the PCI device that was selected to be used
(if one was specified in the stored value)

bool * use_p2pdma returns whether to enable p2pdma or not

Description
Parses an attribute value to decide whether to enable p2pdma. The value can
select a PCI device (using its full BDF device name) or a boolean (in any format
strtobool() accepts). A false value disables p2pdma, a true value expects the caller
to automatically find a compatible device and specifying a PCI device expects the
caller to use the specific provider.

pci_p2pdma_enable_show() should be used as the show operation for the at-
tribute.

Returns 0 on success

ssize_t pci_p2pdma_enable_show(char * page, struct pci_dev * p2p_dev,
bool use_p2pdma)

show a configfs/sysfs attribute indicating whether p2pdma is enabled

Parameters
char * page contents of the stored value

struct pci_dev * p2p_dev the selected p2p device (NULL if no device is se-
lected)

bool use_p2pdma whether p2pdma has been enabled

Description
Attributes that use pci_p2pdma_enable_store() should use this function to show
the value of the attribute.

Returns 0 on success

22.3. PCI Peer-to-Peer DMA Support 813

Linux Driver-api Documentation

814 Chapter 22. The Linux PCI driver implementer’s API guide

CHAPTER

TWENTYTHREE

SERIAL PERIPHERAL INTERFACE (SPI)

SPI is the “Serial Peripheral Interface”, widely used with embedded systems
because it is a simple and efficient interface: basically a multiplexed shift register.
Its three signal wires hold a clock (SCK, often in the range of 1-20 MHz), a“Master
Out, Slave In”(MOSI) data line, and a “Master In, Slave Out”(MISO) data line.
SPI is a full duplex protocol; for each bit shifted out the MOSI line (one per clock)
another is shifted in on the MISO line. Those bits are assembled into words of
various sizes on the way to and from system memory. An additional chipselect line
is usually active-low (nCS); four signals are normally used for each peripheral, plus
sometimes an interrupt.

The SPI bus facilities listed here provide a generalized interface to declare SPI
busses and devices, manage them according to the standard Linux driver model,
and perform input/output operations. At this time, only “master”side interfaces
are supported, where Linux talks to SPI peripherals and does not implement such a
peripheral itself. (Interfaces to support implementing SPI slaves would necessarily
look different.)

The programming interface is structured around two kinds of driver, and two kinds
of device. A“Controller Driver”abstracts the controller hardware, whichmay be as
simple as a set of GPIO pins or as complex as a pair of FIFOs connected to dual DMA
engines on the other side of the SPI shift register (maximizing throughput). Such
drivers bridge between whatever bus they sit on (often the platform bus) and SPI,
and expose the SPI side of their device as a struct spi_master. SPI devices are
children of that master, represented as a struct spi_device and manufactured
from struct spi_board_info descriptors which are usually provided by board-
specific initialization code. A struct spi_driver is called a “Protocol Driver”,
and is bound to a spi_device using normal driver model calls.

The I/O model is a set of queued messages. Protocol drivers submit one or more
struct spi_message objects, which are processed and completed asynchronously.
(There are synchronous wrappers, however.) Messages are built from one or more
struct spi_transfer objects, each of which wraps a full duplex SPI transfer. A
variety of protocol tweaking options are needed, because different chips adopt
very different policies for how they use the bits transferred with SPI.

struct spi_statistics
statistics for spi transfers

Definition

815

Linux Driver-api Documentation

struct spi_statistics {
spinlock_t lock;
unsigned long messages;
unsigned long transfers;
unsigned long errors;
unsigned long timedout;
unsigned long spi_sync;
unsigned long spi_sync_immediate;
unsigned long spi_async;
unsigned long long bytes;
unsigned long long bytes_rx;
unsigned long long bytes_tx;

#define SPI_STATISTICS_HISTO_SIZE 17;
unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
unsigned long transfers_split_maxsize;

};

Members
lock lock protecting this structure

messages number of spi-messages handled

transfers number of spi_transfers handled

errors number of errors during spi_transfer

timedout number of timeouts during spi_transfer

spi_sync number of times spi_sync is used

spi_sync_immediate number of times spi_sync is executed immediately in calling
context without queuing and scheduling

spi_async number of times spi_async is used

bytes number of bytes transferred to/from device

bytes_rx number of bytes received from device

bytes_tx number of bytes sent to device

transfer_bytes_histo transfer bytes histogramm

transfers_split_maxsize number of transfers that have been split because of
maxsize limit

struct spi_delay
SPI delay information

Definition

struct spi_delay {
#define SPI_DELAY_UNIT_USECS 0;
#define SPI_DELAY_UNIT_NSECS 1;
#define SPI_DELAY_UNIT_SCK 2;

u16 value;
u8 unit;

};

Members

816 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

value Value for the delay

unit Unit for the delay

struct spi_device
Controller side proxy for an SPI slave device

Definition

struct spi_device {
struct device dev;
struct spi_controller *controller;
struct spi_controller *master;
u32 max_speed_hz;
u8 chip_select;
u8 bits_per_word;
bool rt;
u32 mode;

#define SPI_CPHA 0x01 ;
#define SPI_CPOL 0x02 ;
#define SPI_MODE_0 (0|0) ;
#define SPI_MODE_1 (0|SPI_CPHA);
#define SPI_MODE_2 (SPI_CPOL|0);
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA);
#define SPI_CS_HIGH 0x04 ;
#define SPI_LSB_FIRST 0x08 ;
#define SPI_3WIRE 0x10 ;
#define SPI_LOOP 0x20 ;
#define SPI_NO_CS 0x40 ;
#define SPI_READY 0x80 ;
#define SPI_TX_DUAL 0x100 ;
#define SPI_TX_QUAD 0x200 ;
#define SPI_RX_DUAL 0x400 ;
#define SPI_RX_QUAD 0x800 ;
#define SPI_CS_WORD 0x1000 ;
#define SPI_TX_OCTAL 0x2000 ;
#define SPI_RX_OCTAL 0x4000 ;
#define SPI_3WIRE_HIZ 0x8000 ;

int irq;
void *controller_state;
void *controller_data;
char modalias[SPI_NAME_SIZE];
const char *driver_override;
int cs_gpio;
struct gpio_desc *cs_gpiod;
struct spi_delay word_delay;
struct spi_statistics statistics;

};

Members
dev Driver model representation of the device.

controller SPI controller used with the device.

master Copy of controller, for backwards compatibility.

max_speed_hz Maximum clock rate to be used with this chip (on this board); may
be changed by the device’s driver. The spi_transfer.speed_hz can override
this for each transfer.

817

Linux Driver-api Documentation

chip_select Chipselect, distinguishing chips handled by controller.
bits_per_word Data transfers involve one or more words; word sizes like eight

or 12 bits are common. In-memory wordsizes are powers of two bytes (e.g.
20 bit samples use 32 bits). This may be changed by the device’s driver,
or left at the default (0) indicating protocol words are eight bit bytes. The
spi_transfer.bits_per_word can override this for each transfer.

rt Make the pump thread real time priority.

mode The spi mode defines how data is clocked out and in. This may be changed
by the device’s driver. The“active low”default for chipselect mode can be
overridden (by specifying SPI_CS_HIGH) as can the “MSB first”default for
each word in a transfer (by specifying SPI_LSB_FIRST).

irq Negative, or the number passed to request_irq() to receive interrupts from
this device.

controller_state Controller’s runtime state
controller_data Board-specific definitions for controller, such as FIFO initializa-

tion parameters; from board_info.controller_data

modalias Name of the driver to use with this device, or an alias for that name.
This appears in the sysfs “modalias”attribute for driver coldplugging, and
in uevents used for hotplugging

driver_override If the name of a driver is written to this attribute, then the de-
vice will bind to the named driver and only the named driver.

cs_gpio LEGACY: gpio number of the chipselect line (optional, -ENOENT when
not using a GPIO line) use cs_gpiod in new drivers by opting in on the
spi_master.

cs_gpiod gpio descriptor of the chipselect line (optional, NULL when not using a
GPIO line)

word_delay delay to be inserted between consecutive words of a transfer

statistics statistics for the spi_device

Description
A spi_device is used to interchange data between an SPI slave (usually a discrete
chip) and CPU memory.

In dev, the platform_data is used to hold information about this device that’s
meaningful to the device’s protocol driver, but not to its controller. One example
might be an identifier for a chip variant with slightly different functionality; an-
other might be information about how this particular board wires the chip’s pins.

struct spi_driver
Host side “protocol”driver

Definition

struct spi_driver {
const struct spi_device_id *id_table;

(continues on next page)

818 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

(continued from previous page)
int (*probe)(struct spi_device *spi);
int (*remove)(struct spi_device *spi);
void (*shutdown)(struct spi_device *spi);
struct device_driver driver;

};

Members
id_table List of SPI devices supported by this driver

probe Binds this driver to the spi device. Drivers can verify that the device
is actually present, and may need to configure characteristics (such as
bits_per_word) which weren’t needed for the initial configuration done during
system setup.

remove Unbinds this driver from the spi device

shutdown Standard shutdown callback used during system state transitions such
as powerdown/halt and kexec

driver SPI device drivers should initialize the name and owner field of this struc-
ture.

Description
This represents the kind of device driver that uses SPI messages to interact with
the hardware at the other end of a SPI link. It’s called a“protocol”driver because
it works through messages rather than talking directly to SPI hardware (which is
what the underlying SPI controller driver does to pass those messages). These
protocols are defined in the specification for the device(s) supported by the driver.

As a rule, those device protocols represent the lowest level interface supported
by a driver, and it will support upper level interfaces too. Examples of such upper
levels include frameworks like MTD, networking, MMC, RTC, filesystem character
device nodes, and hardware monitoring.

void spi_unregister_driver(struct spi_driver * sdrv)
reverse effect of spi_register_driver

Parameters
struct spi_driver * sdrv the driver to unregister

Context
can sleep

module_spi_driver(__spi_driver)
Helper macro for registering a SPI driver

Parameters
__spi_driver spi_driver struct

Description
Helper macro for SPI drivers which do not do anything special in module init/exit.
This eliminates a lot of boilerplate. Each module may only use this macro once,
and calling it replaces module_init() and module_exit()

819

Linux Driver-api Documentation

struct spi_controller
interface to SPI master or slave controller

Definition

struct spi_controller {
struct device dev;
struct list_head list;
s16 bus_num;
u16 num_chipselect;
u16 dma_alignment;
u32 mode_bits;
u32 buswidth_override_bits;
u32 bits_per_word_mask;

#define SPI_BPW_MASK(bits) BIT((bits) - 1);
#define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1);

u32 min_speed_hz;
u32 max_speed_hz;
u16 flags;

#define SPI_CONTROLLER_HALF_DUPLEX BIT(0) ;
#define SPI_CONTROLLER_NO_RX BIT(1) ;
#define SPI_CONTROLLER_NO_TX BIT(2) ;
#define SPI_CONTROLLER_MUST_RX BIT(3) ;
#define SPI_CONTROLLER_MUST_TX BIT(4) ;
#define SPI_MASTER_GPIO_SS BIT(5) ;

bool slave;
size_t (*max_transfer_size)(struct spi_device *spi);
size_t (*max_message_size)(struct spi_device *spi);
struct mutex io_mutex;
spinlock_t bus_lock_spinlock;
struct mutex bus_lock_mutex;
bool bus_lock_flag;
int (*setup)(struct spi_device *spi);
int (*set_cs_timing)(struct spi_device *spi, struct spi_delay *setup,␣

↪→struct spi_delay *hold, struct spi_delay *inactive);
int (*transfer)(struct spi_device *spi, struct spi_message *mesg);
void (*cleanup)(struct spi_device *spi);
bool (*can_dma)(struct spi_controller *ctlr,struct spi_device *spi,␣

↪→struct spi_transfer *xfer);
bool queued;
struct kthread_worker kworker;
struct task_struct *kworker_task;
struct kthread_work pump_messages;
spinlock_t queue_lock;
struct list_head queue;
struct spi_message *cur_msg;
bool idling;
bool busy;
bool running;
bool rt;
bool auto_runtime_pm;
bool cur_msg_prepared;
bool cur_msg_mapped;
struct completion xfer_completion;
size_t max_dma_len;
int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
int (*transfer_one_message)(struct spi_controller *ctlr, struct spi_

↪→message *mesg);
(continues on next page)

820 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

(continued from previous page)
int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
int (*prepare_message)(struct spi_controller *ctlr, struct spi_message␣

↪→*message);
int (*unprepare_message)(struct spi_controller *ctlr, struct spi_message␣

↪→*message);
int (*slave_abort)(struct spi_controller *ctlr);
void (*set_cs)(struct spi_device *spi, bool enable);
int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,␣

↪→struct spi_transfer *transfer);
void (*handle_err)(struct spi_controller *ctlr, struct spi_message␣

↪→*message);
const struct spi_controller_mem_ops *mem_ops;
struct spi_delay cs_setup;
struct spi_delay cs_hold;
struct spi_delay cs_inactive;
int *cs_gpios;
struct gpio_desc **cs_gpiods;
bool use_gpio_descriptors;
u8 unused_native_cs;
u8 max_native_cs;
struct spi_statistics statistics;
struct dma_chan *dma_tx;
struct dma_chan *dma_rx;
void *dummy_rx;
void *dummy_tx;
int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
bool ptp_sts_supported;
unsigned long irq_flags;

};

Members
dev device interface to this driver

list link with the global spi_controller list

bus_num board-specific (and often SOC-specific) identifier for a given SPI con-
troller.

num_chipselect chipselects are used to distinguish individual SPI slaves, and are
numbered from zero to num_chipselects. each slave has a chipselect signal,
but it’s common that not every chipselect is connected to a slave.

dma_alignment SPI controller constraint on DMA buffers alignment.

mode_bits flags understood by this controller driver

bits_per_word_mask A mask indicating which values of bits_per_word are sup-
ported by the driver. Bit n indicates that a bits_per_word n+1 is supported.
If set, the SPI core will reject any transfer with an unsupported bits_per_word.
If not set, this value is simply ignored, and it’s up to the individual driver to
perform any validation.

min_speed_hz Lowest supported transfer speed

max_speed_hz Highest supported transfer speed

flags other constraints relevant to this driver

821

Linux Driver-api Documentation

slave indicates that this is an SPI slave controller

max_transfer_size function that returns the max transfer size for a spi_device;
may be NULL, so the default SIZE_MAX will be used.

max_message_size function that returns the max message size for a spi_device;
may be NULL, so the default SIZE_MAX will be used.

io_mutex mutex for physical bus access

bus_lock_spinlock spinlock for SPI bus locking

bus_lock_mutex mutex for exclusion of multiple callers

bus_lock_flag indicates that the SPI bus is locked for exclusive use

setup updates the device mode and clocking records used by a device’s SPI con-
troller; protocol code may call this. This must fail if an unrecognized or un-
supported mode is requested. It’s always safe to call this unless transfers
are pending on the device whose settings are being modified.

set_cs_timing optional hook for SPI devices to request SPI master controller for
configuring specific CS setup time, hold time and inactive delay interms of
clock counts

transfer adds a message to the controller’s transfer queue.
cleanup frees controller-specific state

can_dma determine whether this controller supports DMA

queued whether this controller is providing an internal message queue

kworker thread struct for message pump

kworker_task pointer to task for message pump kworker thread

pump_messages work struct for scheduling work to the message pump

queue_lock spinlock to syncronise access to message queue

queue message queue

cur_msg the currently in-flight message

idling the device is entering idle state

busy message pump is busy

running message pump is running

rt whether this queue is set to run as a realtime task

auto_runtime_pm the core should ensure a runtime PM reference is held while
the hardware is prepared, using the parent device for the spidev

cur_msg_prepared spi_prepare_message was called for the currently in-flight
message

cur_msg_mapped message has been mapped for DMA

xfer_completion used by core transfer_one_message()

max_dma_len Maximum length of a DMA transfer for the device.

822 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

prepare_transfer_hardware a message will soon arrive from the queue so the
subsystem requests the driver to prepare the transfer hardware by issuing
this call

transfer_one_message the subsystem calls the driver to transfer a single mes-
sage while queuing transfers that arrive in the meantime. When the driver
is finished with this message, it must call spi_finalize_current_message()
so the subsystem can issue the next message

unprepare_transfer_hardware there are currently no more messages on the
queue so the subsystem notifies the driver that it may relax the hardware
by issuing this call

prepare_message set up the controller to transfer a single message, for example
doing DMA mapping. Called from threaded context.

unprepare_message undo any work done by prepare_message().

slave_abort abort the ongoing transfer request on an SPI slave controller

set_cs set the logic level of the chip select line. May be called from interrupt
context.

transfer_one transfer a single spi_transfer.

• return 0 if the transfer is finished,

• return 1 if the transfer is still in progress. When the driver is finished
with this transfer it must call spi_finalize_current_transfer() so the
subsystem can issue the next transfer. Note: transfer_one and trans-
fer_one_message are mutually exclusive; when both are set, the generic
subsystem does not call your transfer_one callback.

handle_err the subsystem calls the driver to handle an error that occurs in the
generic implementation of transfer_one_message().

mem_ops optimized/dedicated operations for interactions with SPI memory. This
field is optional and should only be implemented if the controller has native
support for memory like operations.

cs_setup delay to be introduced by the controller after CS is asserted

cs_hold delay to be introduced by the controller before CS is deasserted

cs_inactive delay to be introduced by the controller after CS is deasserted. If
cs_change_delay is used from spi_transfer, then the two delays will be
added up.

cs_gpios LEGACY: array of GPIO descs to use as chip select lines; one per CS
number. Any individual value may be -ENOENT for CS lines that are not
GPIOs (driven by the SPI controller itself). Use the cs_gpiods in new drivers.

cs_gpiods Array of GPIO descs to use as chip select lines; one per CS number.
Any individual value may be NULL for CS lines that are not GPIOs (driven by
the SPI controller itself).

use_gpio_descriptors Turns on the code in the SPI core to parse and grab GPIO
descriptors rather than using global GPIO numbers grabbed by the driver.
This will fill in cs_gpiods and cs_gpios should not be used, and SPI devices
will have the cs_gpiod assigned rather than cs_gpio.

823

Linux Driver-api Documentation

unused_native_cs When cs_gpiods is used, spi_register_controller() will fill
in this field with the first unused native CS, to be used by SPI controller drivers
that need to drive a native CS when using GPIO CS.

max_native_cs When cs_gpiods is used, and this field is filled in,
spi_register_controller() will validate all native CS (including the
unused native CS) against this value.

statistics statistics for the spi_controller

dma_tx DMA transmit channel

dma_rx DMA receive channel

dummy_rx dummy receive buffer for full-duplex devices

dummy_tx dummy transmit buffer for full-duplex devices

fw_translate_cs If the boot firmware uses different numbering scheme what
Linux expects, this optional hook can be used to translate between the two.

ptp_sts_supported If the driver sets this to true, it must provide a time snapshot
in spi_transfer->ptp_sts as close as possible to the moment in time when
spi_transfer->ptp_sts_word_pre and spi_transfer->ptp_sts_word_post
were transmitted. If the driver does not set this, the SPI core takes the snap-
shot as close to the driver hand-over as possible.

irq_flags Interrupt enable state during PTP system timestamping

Description
Each SPI controller can communicate with one or more spi_device children.
These make a small bus, sharing MOSI, MISO and SCK signals but not chip se-
lect signals. Each device may be configured to use a different clock rate, since
those shared signals are ignored unless the chip is selected.

The driver for an SPI controller manages access to those devices through a queue
of spi_message transactions, copying data between CPU memory and an SPI slave
device. For each such message it queues, it calls the message’s completion func-
tion when the transaction completes.

struct spi_res
spi resource management structure

Definition

struct spi_res {
struct list_head entry;
spi_res_release_t release;
unsigned long long data[];

};

Members
entry list entry

release release code called prior to freeing this resource

data extra data allocated for the specific use-case

824 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

Description
this is based on ideas from devres, but focused on life-cycle management during
spi_message processing

struct spi_transfer
a read/write buffer pair

Definition

struct spi_transfer {
const void *tx_buf;
void *rx_buf;
unsigned len;
dma_addr_t tx_dma;
dma_addr_t rx_dma;
struct sg_table tx_sg;
struct sg_table rx_sg;
unsigned cs_change:1;
unsigned tx_nbits:3;
unsigned rx_nbits:3;

#define SPI_NBITS_SINGLE 0x01 ;
#define SPI_NBITS_DUAL 0x02 ;
#define SPI_NBITS_QUAD 0x04 ;

u8 bits_per_word;
u16 delay_usecs;
struct spi_delay delay;
struct spi_delay cs_change_delay;
struct spi_delay word_delay;
u32 speed_hz;
u32 effective_speed_hz;
unsigned int ptp_sts_word_pre;
unsigned int ptp_sts_word_post;
struct ptp_system_timestamp *ptp_sts;
bool timestamped;
struct list_head transfer_list;

};

Members
tx_buf data to be written (dma-safe memory), or NULL

rx_buf data to be read (dma-safe memory), or NULL

len size of rx and tx buffers (in bytes)

tx_dma DMA address of tx_buf, if spi_message.is_dma_mapped
rx_dma DMA address of rx_buf, if spi_message.is_dma_mapped
tx_sg Scatterlist for transmit, currently not for client use

rx_sg Scatterlist for receive, currently not for client use

cs_change affects chipselect after this transfer completes

tx_nbits number of bits used for writing. If 0 the default (SPI_NBITS_SINGLE)
is used.

rx_nbits number of bits used for reading. If 0 the default (SPI_NBITS_SINGLE)
is used.

825

Linux Driver-api Documentation

bits_per_word select a bits_per_word other than the device default for this trans-
fer. If 0 the default (from spi_device) is used.

delay_usecs microseconds to delay after this transfer before (optionally) chang-
ing the chipselect status, then starting the next transfer or completing this
spi_message.

delay delay to be introduced after this transfer before (optionally) changing
the chipselect status, then starting the next transfer or completing this
spi_message.

cs_change_delay delay between cs deassert and assert when cs_change is set
and spi_transfer is not the last in spi_message

word_delay inter word delay to be introduced after each word size (set by
bits_per_word) transmission.

speed_hz Select a speed other than the device default for this transfer. If 0 the
default (from spi_device) is used.

effective_speed_hz the effective SCK-speed that was used to transfer this trans-
fer. Set to 0 if the spi bus driver does not support it.

ptp_sts_word_pre The word (subject to bits_per_word semantics) offset within
tx_buf for which the SPI device is requesting that the time snapshot for
this transfer begins. Upon completing the SPI transfer, this value may have
changed compared to what was requested, depending on the available snap-
shotting resolution (DMA transfer, ptp_sts_supported is false, etc).

ptp_sts_word_post See ptp_sts_word_post. The two can be equal (meaning
that a single byte should be snapshotted). If the core takes care of the
timestamp (if ptp_sts_supported is false for this controller), it will set
ptp_sts_word_pre to 0, and ptp_sts_word_post to the length of the trans-
fer. This is done purposefully (instead of setting to spi_transfer->len - 1) to
denote that a transfer-level snapshot taken from within the driver may still
be of higher quality.

ptp_sts Pointer to a memory location held by the SPI slave device where a
PTP system timestamp structure may lie. If drivers use PIO or their hard-
ware has some sort of assist for retrieving exact transfer timing, they can
(and should) assert ptp_sts_supported and populate this structure using
the ptp_read_system_*ts helper functions. The timestamp must represent the
time at which the SPI slave device has processed the word, i.e. the“pre”times-
tamp should be taken before transmitting the “pre”word, and the “post”
timestamp after receiving transmit confirmation from the controller for the
“post”word.

transfer_list transfers are sequenced through spi_message.transfers
Description
SPI transfers always write the same number of bytes as they read. Protocol drivers
should always provide rx_buf and/or tx_buf. In some cases, they may also want to
provide DMA addresses for the data being transferred; that may reduce overhead,
when the underlying driver uses dma.

If the transmit buffer is null, zeroes will be shifted out while filling rx_buf. If the
receive buffer is null, the data shifted in will be discarded. Only“len”bytes shift

826 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

out (or in). It’s an error to try to shift out a partial word. (For example, by shifting
out three bytes with word size of sixteen or twenty bits; the former uses two bytes
per word, the latter uses four bytes.)

In-memory data values are always in native CPU byte order, translated from the
wire byte order (big-endian except with SPI_LSB_FIRST). So for example when
bits_per_word is sixteen, buffers are 2N bytes long (len = 2N) and hold N sixteen
bit words in CPU byte order.

When the word size of the SPI transfer is not a power-of-two multiple of eight
bits, those in-memory words include extra bits. In-memory words are always seen
by protocol drivers as right-justified, so the undefined (rx) or unused (tx) bits are
always the most significant bits.

All SPI transfers start with the relevant chipselect active. Normally it stays se-
lected until after the last transfer in a message. Drivers can affect the chipselect
signal using cs_change.

(i) If the transfer isn’t the last one in the message, this flag is used to make the
chipselect briefly go inactive in the middle of the message. Toggling chipselect in
this way may be needed to terminate a chip command, letting a single spi_message
perform all of group of chip transactions together.

(ii) When the transfer is the last one in the message, the chip may stay selected
until the next transfer. On multi-device SPI busses with nothing blocking mes-
sages going to other devices, this is just a performance hint; starting a message to
another device deselects this one. But in other cases, this can be used to ensure
correctness. Some devices need protocol transactions to be built from a series
of spi_message submissions, where the content of one message is determined by
the results of previous messages and where the whole transaction ends when the
chipselect goes intactive.

When SPI can transfer in 1x,2x or 4x. It can get this transfer information from de-
vice through tx_nbits and rx_nbits. In Bi-direction, these two should both be set.
User can set transfer mode with SPI_NBITS_SINGLE(1x) SPI_NBITS_DUAL(2x)
and SPI_NBITS_QUAD(4x) to support these three transfer.

The code that submits an spi_message (and its spi_transfers) to the lower layers
is responsible for managing its memory. Zero-initialize every field you don’t set
up explicitly, to insulate against future API updates. After you submit a message
and its transfers, ignore them until its completion callback.

struct spi_message
one multi-segment SPI transaction

Definition

struct spi_message {
struct list_head transfers;
struct spi_device *spi;
unsigned is_dma_mapped:1;
void (*complete)(void *context);
void *context;
unsigned frame_length;
unsigned actual_length;
int status;

(continues on next page)

827

Linux Driver-api Documentation

(continued from previous page)
struct list_head queue;
void *state;
struct list_head resources;

};

Members
transfers list of transfer segments in this transaction

spi SPI device to which the transaction is queued

is_dma_mapped if true, the caller provided both dma and cpu virtual addresses for
each transfer buffer

complete called to report transaction completions

context the argument to complete() when it’s called
frame_length the total number of bytes in the message

actual_length the total number of bytes that were transferred in all successful
segments

status zero for success, else negative errno

queue for use by whichever driver currently owns the message

state for use by whichever driver currently owns the message

resources for resource management when the spi message is processed

Description
A spi_message is used to execute an atomic sequence of data transfers, each
represented by a struct spi_transfer. The sequence is “atomic”in the sense that
no other spi_message may use that SPI bus until that sequence completes. On
some systems, many such sequences can execute as as single programmed DMA
transfer. On all systems, these messages are queued, and might complete after
transactions to other devices. Messages sent to a given spi_device are always
executed in FIFO order.

The code that submits an spi_message (and its spi_transfers) to the lower layers
is responsible for managing its memory. Zero-initialize every field you don’t set
up explicitly, to insulate against future API updates. After you submit a message
and its transfers, ignore them until its completion callback.

void spi_message_init_with_transfers(struct spi_message * m, struct
spi_transfer * xfers, unsigned
int num_xfers)

Initialize spi_message and append transfers

Parameters
struct spi_message * m spi_message to be initialized

struct spi_transfer * xfers An array of spi transfers

unsigned int num_xfers Number of items in the xfer array

Description

828 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

This function initializes the given spi_message and adds each spi_transfer in the
given array to the message.

bool spi_is_bpw_supported(struct spi_device * spi, u32 bpw)
Check if bits per word is supported

Parameters
struct spi_device * spi SPI device

u32 bpw Bits per word

Description
This function checks to see if the SPI controller supports bpw.
Return
True if bpw is supported, false otherwise.
struct spi_replaced_transfers

structure describing the spi_transfer replacements that have occurred so that
they can get reverted

Definition

struct spi_replaced_transfers {
spi_replaced_release_t release;
void *extradata;
struct list_head replaced_transfers;
struct list_head *replaced_after;
size_t inserted;
struct spi_transfer inserted_transfers[];

};

Members
release some extra release code to get executed prior to relasing this structure

extradata pointer to some extra data if requested or NULL

replaced_transfers transfers that have been replaced and which need to get
restored

replaced_after the transfer after which the replaced_transfers are to get re-
inserted

inserted number of transfers inserted

inserted_transfers array of spi_transfers of array-size inserted, that have been
replacing replaced_transfers

note
that extradata will point to inserted_transfers**[**inserted] if some extra allo-
cation is requested, so alignment will be the same as for spi_transfers

int spi_sync_transfer(struct spi_device * spi, struct spi_transfer * xfers,
unsigned int num_xfers)

synchronous SPI data transfer

Parameters

829

Linux Driver-api Documentation

struct spi_device * spi device with which data will be exchanged

struct spi_transfer * xfers An array of spi_transfers

unsigned int num_xfers Number of items in the xfer array

Context
can sleep

Description
Does a synchronous SPI data transfer of the given spi_transfer array.

For more specific semantics see spi_sync().

Return
Return: zero on success, else a negative error code.

int spi_write(struct spi_device * spi, const void * buf, size_t len)
SPI synchronous write

Parameters
struct spi_device * spi device to which data will be written

const void * buf data buffer

size_t len data buffer size

Context
can sleep

Description
This function writes the buffer buf. Callable only from contexts that can sleep.

Return
zero on success, else a negative error code.

int spi_read(struct spi_device * spi, void * buf, size_t len)
SPI synchronous read

Parameters
struct spi_device * spi device from which data will be read

void * buf data buffer

size_t len data buffer size

Context
can sleep

Description
This function reads the buffer buf. Callable only from contexts that can sleep.

Return
zero on success, else a negative error code.

830 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

ssize_t spi_w8r8(struct spi_device * spi, u8 cmd)
SPI synchronous 8 bit write followed by 8 bit read

Parameters
struct spi_device * spi device with which data will be exchanged

u8 cmd command to be written before data is read back

Context
can sleep

Description
Callable only from contexts that can sleep.

Return
the (unsigned) eight bit number returned by the device, or else a negative error
code.

ssize_t spi_w8r16(struct spi_device * spi, u8 cmd)
SPI synchronous 8 bit write followed by 16 bit read

Parameters
struct spi_device * spi device with which data will be exchanged

u8 cmd command to be written before data is read back

Context
can sleep

Description
The number is returned in wire-order, which is at least sometimes big-endian.

Callable only from contexts that can sleep.

Return
the (unsigned) sixteen bit number returned by the device, or else a negative error
code.

ssize_t spi_w8r16be(struct spi_device * spi, u8 cmd)
SPI synchronous 8 bit write followed by 16 bit big-endian read

Parameters
struct spi_device * spi device with which data will be exchanged

u8 cmd command to be written before data is read back

Context
can sleep

Description
This function is similar to spi_w8r16, with the exception that it will convert the
read 16 bit data word from big-endian to native endianness.

Callable only from contexts that can sleep.

831

Linux Driver-api Documentation

Return
the (unsigned) sixteen bit number returned by the device in cpu endianness, or
else a negative error code.

struct spi_board_info
board-specific template for a SPI device

Definition

struct spi_board_info {
char modalias[SPI_NAME_SIZE];
const void *platform_data;
const struct property_entry *properties;
void *controller_data;
int irq;
u32 max_speed_hz;
u16 bus_num;
u16 chip_select;
u32 mode;

};

Members
modalias Initializes spi_device.modalias; identifies the driver.

platform_data Initializes spi_device.platform_data; the particular data stored
there is driver-specific.

properties Additional device properties for the device.

controller_data Initializes spi_device.controller_data; some controllers need
hints about hardware setup, e.g. for DMA.

irq Initializes spi_device.irq; depends on how the board is wired.

max_speed_hz Initializes spi_device.max_speed_hz; based on limits from the chip
datasheet and board-specific signal quality issues.

bus_num Identifies which spi_controller parents the spi_device; unused by
spi_new_device(), and otherwise depends on board wiring.

chip_select Initializes spi_device.chip_select; depends on how the board is
wired.

mode Initializes spi_device.mode; based on the chip datasheet, board wiring (some
devices support both 3WIRE and standard modes), and possibly presence of
an inverter in the chipselect path.

Description
When adding new SPI devices to the device tree, these structures serve as a par-
tial device template. They hold information which can’t always be determined
by drivers. Information that probe() can establish (such as the default transfer
wordsize) is not included here.

These structures are used in two places. Their primary role is to be stored in tables
of board-specific device descriptors, which are declared early in board initializa-
tion and then used (much later) to populate a controller’s device tree after the that
controller’s driver initializes. A secondary (and atypical) role is as a parameter

832 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

to spi_new_device() call, which happens after those controller drivers are active
in some dynamic board configuration models.

int spi_register_board_info(struct spi_board_info const * info, un-
signed n)

register SPI devices for a given board

Parameters
struct spi_board_info const * info array of chip descriptors

unsigned n how many descriptors are provided

Context
can sleep

Description
Board-specific early init code calls this (probably during arch_initcall) with seg-
ments of the SPI device table. Any device nodes are created later, after the rel-
evant parent SPI controller (bus_num) is defined. We keep this table of devices
forever, so that reloading a controller driver will not make Linux forget about
these hard-wired devices.

Other code can also call this, e.g. a particular add-on board might provide SPI
devices through its expansion connector, so code initializing that board would nat-
urally declare its SPI devices.

The board info passed can safely be __initdata ⋯but be careful of any embedded
pointers (platform_data, etc), they’re copied as-is. Device properties are deep-
copied though.

Return
zero on success, else a negative error code.

int __spi_register_driver(struct module * owner, struct spi_driver * sdrv)
register a SPI driver

Parameters
struct module * owner owner module of the driver to register

struct spi_driver * sdrv the driver to register

Context
can sleep

Return
zero on success, else a negative error code.

struct spi_device * spi_alloc_device(struct spi_controller * ctlr)
Allocate a new SPI device

Parameters
struct spi_controller * ctlr Controller to which device is connected

Context
can sleep

833

Linux Driver-api Documentation

Description
Allows a driver to allocate and initialize a spi_device without registering it imme-
diately. This allows a driver to directly fill the spi_device with device parameters
before calling spi_add_device() on it.

Caller is responsible to call spi_add_device() on the returned spi_device struc-
ture to add it to the SPI controller. If the caller needs to discard the spi_device
without adding it, then it should call spi_dev_put() on it.

Return
a pointer to the new device, or NULL.

int spi_add_device(struct spi_device * spi)
Add spi_device allocated with spi_alloc_device

Parameters
struct spi_device * spi spi_device to register

Description
Companion function to spi_alloc_device. Devices allocated with spi_alloc_device
can be added onto the spi bus with this function.

Return
0 on success; negative errno on failure

struct spi_device * spi_new_device(struct spi_controller * ctlr, struct
spi_board_info * chip)

instantiate one new SPI device

Parameters
struct spi_controller * ctlr Controller to which device is connected

struct spi_board_info * chip Describes the SPI device

Context
can sleep

Description
On typical mainboards, this is purely internal; and it’s not needed after board
init creates the hard-wired devices. Some development platforms may not be able
to use spi_register_board_info though, and this is exported so that for example a
USB or parport based adapter driver could add devices (which it would learn about
out-of-band).

Return
the new device, or NULL.

void spi_unregister_device(struct spi_device * spi)
unregister a single SPI device

Parameters
struct spi_device * spi spi_device to unregister

834 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

Description
Start making the passed SPI device vanish. Normally this would be handled by
spi_unregister_controller().

void spi_finalize_current_transfer(struct spi_controller * ctlr)
report completion of a transfer

Parameters
struct spi_controller * ctlr the controller reporting completion

Description
Called by SPI drivers using the core transfer_one_message() implementation to
notify it that the current interrupt driven transfer has finished and the next one
may be scheduled.

void spi_take_timestamp_pre(struct spi_controller * ctlr, struct
spi_transfer * xfer, size_t progress,
bool irqs_off)

helper for drivers to collect the beginning of the TX timestamp for the re-
quested byte from the SPI transfer. The frequency with which this function
must be called (once per word, once for the whole transfer, once per batch
of words etc) is arbitrary as long as the tx buffer offset is greater than or
equal to the requested byte at the time of the call. The timestamp is only
taken once, at the first such call. It is assumed that the driver advances its
tx buffer pointer monotonically.

Parameters
struct spi_controller * ctlr Pointer to the spi_controller structure of the

driver

struct spi_transfer * xfer Pointer to the transfer being timestamped

size_t progress How many words (not bytes) have been transferred so far

bool irqs_off If true, will disable IRQs and preemption for the duration of the
transfer, for less jitter in time measurement. Only compatible with PIO
drivers. If true, must follow up with spi_take_timestamp_post or otherwise
systemwill crash. WARNING: for fully predictable results, the CPU frequency
must also be under control (governor).

void spi_take_timestamp_post(struct spi_controller * ctlr, struct
spi_transfer * xfer, size_t progress,
bool irqs_off)

helper for drivers to collect the end of the TX timestamp for the requested
byte from the SPI transfer. Can be called with an arbitrary frequency: only
the first call where tx exceeds or is equal to the requested word will be times-
tamped.

Parameters
struct spi_controller * ctlr Pointer to the spi_controller structure of the

driver

struct spi_transfer * xfer Pointer to the transfer being timestamped

size_t progress How many words (not bytes) have been transferred so far

835

Linux Driver-api Documentation

bool irqs_off If true, will re-enable IRQs and preemption for the local CPU.

struct spi_message * spi_get_next_queued_message(struct spi_controller
* ctlr)

called by driver to check for queued messages

Parameters
struct spi_controller * ctlr the controller to check for queued messages

Description
If there are more messages in the queue, the next message is returned from this
call.

Return
the next message in the queue, else NULL if the queue is empty.

void spi_finalize_current_message(struct spi_controller * ctlr)
the current message is complete

Parameters
struct spi_controller * ctlr the controller to return the message to

Description
Called by the driver to notify the core that the message in the front of the queue
is complete and can be removed from the queue.

int spi_slave_abort(struct spi_device * spi)
abort the ongoing transfer request on an SPI slave controller

Parameters
struct spi_device * spi device used for the current transfer

struct spi_controller * __spi_alloc_controller(struct device * dev, un-
signed int size, bool slave)

allocate an SPI master or slave controller

Parameters
struct device * dev the controller, possibly using the platform_bus

unsigned int size how much zeroed driver-private data to allocate; the pointer
to this memory is in the driver_data field of the returned device, accessible
with spi_controller_get_devdata(); the memory is cacheline aligned; drivers
granting DMA access to portions of their private data need to round up size
using ALIGN(size, dma_get_cache_alignment()).

bool slave flag indicating whether to allocate an SPI master (false) or SPI slave
(true) controller

Context
can sleep

Description
This call is used only by SPI controller drivers, which are the only ones directly
touching chip registers. It’s how they allocate an spi_controller structure, prior
to calling spi_register_controller().

836 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

This must be called from context that can sleep.

The caller is responsible for assigning the bus number and initializing the con-
troller’s methods before calling spi_register_controller(); and (after errors
adding the device) calling spi_controller_put() to prevent a memory leak.

Return
the SPI controller structure on success, else NULL.

int spi_register_controller(struct spi_controller * ctlr)
register SPI master or slave controller

Parameters
struct spi_controller * ctlr initialized master, originally from

spi_alloc_master() or spi_alloc_slave()

Context
can sleep

Description
SPI controllers connect to their drivers using some non-SPI bus, such as
the platform bus. The final stage of probe() in that code includes calling
spi_register_controller() to hook up to this SPI bus glue.

SPI controllers use board specific (often SOC specific) bus numbers, and board-
specific addressing for SPI devices combines those numbers with chip select num-
bers. Since SPI does not directly support dynamic device identification, boards
need configuration tables telling which chip is at which address.

This must be called from context that can sleep. It returns zero on success, else a
negative error code (dropping the controller’s refcount). After a successful return,
the caller is responsible for calling spi_unregister_controller().

Return
zero on success, else a negative error code.

int devm_spi_register_controller(struct device * dev, struct
spi_controller * ctlr)

register managed SPI master or slave controller

Parameters
struct device * dev device managing SPI controller

struct spi_controller * ctlr initialized controller, originally from
spi_alloc_master() or spi_alloc_slave()

Context
can sleep

Description
Register a SPI device as with spi_register_controller() which will automati-
cally be unregistered and freed.

Return

837

Linux Driver-api Documentation

zero on success, else a negative error code.

void spi_unregister_controller(struct spi_controller * ctlr)
unregister SPI master or slave controller

Parameters
struct spi_controller * ctlr the controller being unregistered

Context
can sleep

Description
This call is used only by SPI controller drivers, which are the only ones directly
touching chip registers.

This must be called from context that can sleep.

Note that this function also drops a reference to the controller.

struct spi_controller * spi_busnum_to_master(u16 bus_num)
look up master associated with bus_num

Parameters
u16 bus_num the master’s bus number
Context
can sleep

Description
This call may be used with devices that are registered after arch init time. It
returns a refcounted pointer to the relevant spi_controller (which the caller must
release), or NULL if there is no such master registered.

Return
the SPI master structure on success, else NULL.

void * spi_res_alloc(struct spi_device * spi, spi_res_release_t release,
size_t size, gfp_t gfp)

allocate a spi resource that is life-cycle managed during the processing of a
spi_message while using spi_transfer_one

Parameters
struct spi_device * spi the spi device for which we allocate memory

spi_res_release_t release the release code to execute for this resource

size_t size size to alloc and return

gfp_t gfp GFP allocation flags

Return
the pointer to the allocated data

Description

838 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

This may get enhanced in the future to allocate from a memory pool of the
spi_device or spi_controller to avoid repeated allocations.
void spi_res_free(void * res)

free an spi resource

Parameters
void * res pointer to the custom data of a resource

void spi_res_add(struct spi_message * message, void * res)
add a spi_res to the spi_message

Parameters
struct spi_message * message the spi message

void * res the spi_resource

void spi_res_release(struct spi_controller * ctlr, struct spi_message
* message)

release all spi resources for this message

Parameters
struct spi_controller * ctlr the spi_controller
struct spi_message * message the spi_message
struct spi_replaced_transfers * spi_replace_transfers(struct spi_message

* msg, struct
spi_transfer
* xfer_first,
size_t remove,
size_t insert,
spi_replaced_release_t release,
size_t extradatasize,
gfp_t gfp)

replace transfers with several transfers and register change with
spi_message.resources

Parameters
struct spi_message * msg the spi_message we work upon

struct spi_transfer * xfer_first the first spi_transfer we want to replace

size_t remove number of transfers to remove

size_t insert the number of transfers we want to insert instead

spi_replaced_release_t release extra release code necessary in some circum-
stances

size_t extradatasize extra data to allocate (with alignment guarantees of
struct spi_transfer)

gfp_t gfp gfp flags

Return
pointer to spi_replaced_transfers, PTR_ERR(⋯) in case of errors.

839

Linux Driver-api Documentation

int spi_split_transfers_maxsize(struct spi_controller * ctlr, struct
spi_message * msg, size_t maxsize,
gfp_t gfp)

split spi transfers into multiple transfers when an individual transfer exceeds
a certain size

Parameters
struct spi_controller * ctlr the spi_controller for this transfer
struct spi_message * msg the spi_message to transform
size_t maxsize the maximum when to apply this

gfp_t gfp GFP allocation flags

Return
status of transformation

int spi_setup(struct spi_device * spi)
setup SPI mode and clock rate

Parameters
struct spi_device * spi the device whose settings are being modified

Context
can sleep, and no requests are queued to the device

Description
SPI protocol drivers may need to update the transfer mode if the device doesn’t
work with its default. They may likewise need to update clock rates or word sizes
from initial values. This function changes those settings, and must be called from
a context that can sleep. Except for SPI_CS_HIGH, which takes effect immediately,
the changes take effect the next time the device is selected and data is transferred
to or from it. When this function returns, the spi device is deselected.

Note that this call will fail if the protocol driver specifies an option that the un-
derlying controller or its driver does not support. For example, not all hardware
supports wire transfers using nine bit words, LSB-first wire encoding, or active-
high chipselects.

Return
zero on success, else a negative error code.

int spi_set_cs_timing(struct spi_device * spi, struct spi_delay * setup,
struct spi_delay * hold, struct spi_delay * inactive)

configure CS setup, hold, and inactive delays

Parameters
struct spi_device * spi the device that requires specific CS timing configura-

tion

struct spi_delay * setup CS setup time specified via spi_delay
struct spi_delay * hold CS hold time specified via spi_delay

840 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

struct spi_delay * inactive CS inactive delay between transfers specified via
spi_delay

Return
zero on success, else a negative error code.

int spi_async(struct spi_device * spi, struct spi_message * message)
asynchronous SPI transfer

Parameters
struct spi_device * spi device with which data will be exchanged

struct spi_message * message describes the data transfers, including comple-
tion callback

Context
any (irqs may be blocked, etc)

Description
This call may be used in_irq and other contexts which can’t sleep, as well as from
task contexts which can sleep.

The completion callback is invoked in a context which can’t sleep. Before that in-
vocation, the value of message->status is undefined. When the callback is issued,
message->status holds either zero (to indicate complete success) or a negative er-
ror code. After that callback returns, the driver which issued the transfer request
may deallocate the associated memory; it’s no longer in use by any SPI core or
controller driver code.

Note that although all messages to a spi_device are handled in FIFO order, mes-
sages may go to different devices in other orders. Some device might be higher
priority, or have various “hard”access time requirements, for example.
On detection of any fault during the transfer, processing of the entire message is
aborted, and the device is deselected. Until returning from the associated mes-
sage completion callback, no other spi_message queued to that device will be pro-
cessed. (This rule applies equally to all the synchronous transfer calls, which are
wrappers around this core asynchronous primitive.)

Return
zero on success, else a negative error code.

int spi_async_locked(struct spi_device * spi, struct spi_message
* message)

version of spi_async with exclusive bus usage

Parameters
struct spi_device * spi device with which data will be exchanged

struct spi_message * message describes the data transfers, including comple-
tion callback

Context
any (irqs may be blocked, etc)

841

Linux Driver-api Documentation

Description
This call may be used in_irq and other contexts which can’t sleep, as well as from
task contexts which can sleep.

The completion callback is invoked in a context which can’t sleep. Before that in-
vocation, the value of message->status is undefined. When the callback is issued,
message->status holds either zero (to indicate complete success) or a negative er-
ror code. After that callback returns, the driver which issued the transfer request
may deallocate the associated memory; it’s no longer in use by any SPI core or
controller driver code.

Note that although all messages to a spi_device are handled in FIFO order, mes-
sages may go to different devices in other orders. Some device might be higher
priority, or have various “hard”access time requirements, for example.
On detection of any fault during the transfer, processing of the entire message is
aborted, and the device is deselected. Until returning from the associated mes-
sage completion callback, no other spi_message queued to that device will be pro-
cessed. (This rule applies equally to all the synchronous transfer calls, which are
wrappers around this core asynchronous primitive.)

Return
zero on success, else a negative error code.

int spi_sync(struct spi_device * spi, struct spi_message * message)
blocking/synchronous SPI data transfers

Parameters
struct spi_device * spi device with which data will be exchanged

struct spi_message * message describes the data transfers

Context
can sleep

Description
This call may only be used from a context that may sleep. The sleep is non-
interruptible, and has no timeout. Low-overhead controller drivers may DMA di-
rectly into and out of the message buffers.

Note that the SPI device’s chip select is active during the message, and then
is normally disabled between messages. Drivers for some frequently-used devices
maywant tominimize costs of selecting a chip, by leaving it selected in anticipation
that the next message will go to the same chip. (That may increase power usage.)

Also, the caller is guaranteeing that the memory associated with the message will
not be freed before this call returns.

Return
zero on success, else a negative error code.

int spi_sync_locked(struct spi_device * spi, struct spi_message * message)
version of spi_sync with exclusive bus usage

Parameters

842 Chapter 23. Serial Peripheral Interface (SPI)

Linux Driver-api Documentation

struct spi_device * spi device with which data will be exchanged

struct spi_message * message describes the data transfers

Context
can sleep

Description
This call may only be used from a context that may sleep. The sleep is non-
interruptible, and has no timeout. Low-overhead controller drivers may DMA di-
rectly into and out of the message buffers.

This call should be used by drivers that require exclusive access to the SPI bus.
It has to be preceded by a spi_bus_lock call. The SPI bus must be released by a
spi_bus_unlock call when the exclusive access is over.

Return
zero on success, else a negative error code.

int spi_bus_lock(struct spi_controller * ctlr)
obtain a lock for exclusive SPI bus usage

Parameters
struct spi_controller * ctlr SPI bus master that should be locked for exclu-

sive bus access

Context
can sleep

Description
This call may only be used from a context that may sleep. The sleep is non-
interruptible, and has no timeout.

This call should be used by drivers that require exclusive access to the SPI bus.
The SPI bus must be released by a spi_bus_unlock call when the exclusive access
is over. Data transfer must be done by spi_sync_locked and spi_async_locked calls
when the SPI bus lock is held.

Return
always zero.

int spi_bus_unlock(struct spi_controller * ctlr)
release the lock for exclusive SPI bus usage

Parameters
struct spi_controller * ctlr SPI bus master that was locked for exclusive

bus access

Context
can sleep

Description
This call may only be used from a context that may sleep. The sleep is non-
interruptible, and has no timeout.

843

Linux Driver-api Documentation

This call releases an SPI bus lock previously obtained by an spi_bus_lock call.

Return
always zero.

int spi_write_then_read(struct spi_device * spi, const void * txbuf, un-
signed n_tx, void * rxbuf, unsigned n_rx)

SPI synchronous write followed by read

Parameters
struct spi_device * spi device with which data will be exchanged

const void * txbuf data to be written (need not be dma-safe)

unsigned n_tx size of txbuf, in bytes

void * rxbuf buffer into which data will be read (need not be dma-safe)

unsigned n_rx size of rxbuf, in bytes

Context
can sleep

Description
This performs a half duplex MicroWire style transaction with the device, sending
txbuf and then reading rxbuf. The return value is zero for success, else a negative
errno status code. This call may only be used from a context that may sleep.

Parameters to this routine are always copied using a small buffer. Performance-
sensitive or bulk transfer code should instead use spi_{async,sync}() calls with
dma-safe buffers.

Return
zero on success, else a negative error code.

844 Chapter 23. Serial Peripheral Interface (SPI)

CHAPTER

TWENTYFOUR

I2C AND SMBUS SUBSYSTEM

I2C (or without fancy typography, “I2C”) is an acronym for the “Inter-IC”bus,
a simple bus protocol which is widely used where low data rate communications
suffice. Since it’s also a licensed trademark, some vendors use another name
(such as“Two-Wire Interface”, TWI) for the same bus. I2C only needs two signals
(SCL for clock, SDA for data), conserving board real estate and minimizing signal
quality issues. Most I2C devices use seven bit addresses, and bus speeds of up
to 400 kHz; there’s a high speed extension (3.4 MHz) that’s not yet found wide
use. I2C is a multi-master bus; open drain signaling is used to arbitrate between
masters, as well as to handshake and to synchronize clocks from slower clients.

The Linux I2C programming interfaces support the master side of bus interac-
tions and the slave side. The programming interface is structured around two
kinds of driver, and two kinds of device. An I2C “Adapter Driver”abstracts the
controller hardware; it binds to a physical device (perhaps a PCI device or plat-
form_device) and exposes a struct i2c_adapter representing each I2C bus seg-
ment it manages. On each I2C bus segment will be I2C devices represented by a
struct i2c_client. Those devices will be bound to a struct i2c_driver, which
should follow the standard Linux driver model. There are functions to perform
various I2C protocol operations; at this writing all such functions are usable only
from task context.

The System Management Bus (SMBus) is a sibling protocol. Most SMBus systems
are also I2C conformant. The electrical constraints are tighter for SMBus, and
it standardizes particular protocol messages and idioms. Controllers that support
I2C can also support most SMBus operations, but SMBus controllers don’t support
all the protocol options that an I2C controller will. There are functions to perform
various SMBus protocol operations, either using I2C primitives or by issuing SM-
Bus commands to i2c_adapter devices which don’t support those I2C operations.

int i2c_master_recv(const struct i2c_client * client, char * buf, int count)
issue a single I2C message in master receive mode

Parameters
const struct i2c_client * client Handle to slave device

char * buf Where to store data read from slave

int count How many bytes to read, must be less than 64k since msg.len is u16

Description
Returns negative errno, or else the number of bytes read.

845

Linux Driver-api Documentation

int i2c_master_recv_dmasafe(const struct i2c_client * client, char * buf,
int count)

issue a single I2C message in master receive mode using a DMA safe buffer

Parameters
const struct i2c_client * client Handle to slave device

char * buf Where to store data read from slave, must be safe to use with DMA

int count How many bytes to read, must be less than 64k since msg.len is u16

Description
Returns negative errno, or else the number of bytes read.

int i2c_master_send(const struct i2c_client * client, const char * buf,
int count)

issue a single I2C message in master transmit mode

Parameters
const struct i2c_client * client Handle to slave device

const char * buf Data that will be written to the slave

int count How many bytes to write, must be less than 64k since msg.len is u16

Description
Returns negative errno, or else the number of bytes written.

int i2c_master_send_dmasafe(const struct i2c_client * client, const char
* buf, int count)

issue a single I2C message in master transmit mode using a DMA safe buffer

Parameters
const struct i2c_client * client Handle to slave device

const char * buf Data that will be written to the slave, must be safe to use with
DMA

int count How many bytes to write, must be less than 64k since msg.len is u16

Description
Returns negative errno, or else the number of bytes written.

struct i2c_device_identity
i2c client device identification

Definition

struct i2c_device_identity {
u16 manufacturer_id;

#define I2C_DEVICE_ID_NXP_SEMICONDUCTORS 0;
#define I2C_DEVICE_ID_NXP_SEMICONDUCTORS_1 1;
#define I2C_DEVICE_ID_NXP_SEMICONDUCTORS_2 2;
#define I2C_DEVICE_ID_NXP_SEMICONDUCTORS_3 3;
#define I2C_DEVICE_ID_RAMTRON_INTERNATIONAL 4;
#define I2C_DEVICE_ID_ANALOG_DEVICES 5;
#define I2C_DEVICE_ID_STMICROELECTRONICS 6;

(continues on next page)

846 Chapter 24. I2C and SMBus Subsystem

Linux Driver-api Documentation

(continued from previous page)
#define I2C_DEVICE_ID_ON_SEMICONDUCTOR 7;
#define I2C_DEVICE_ID_SPRINTEK_CORPORATION 8;
#define I2C_DEVICE_ID_ESPROS_PHOTONICS_AG 9;
#define I2C_DEVICE_ID_FUJITSU_SEMICONDUCTOR 10;
#define I2C_DEVICE_ID_FLIR 11;
#define I2C_DEVICE_ID_O2MICRO 12;
#define I2C_DEVICE_ID_ATMEL 13;
#define I2C_DEVICE_ID_NONE 0xffff;
u16 part_id;
u8 die_revision;

};

Members
manufacturer_id 0 - 4095, database maintained by NXP

part_id 0 - 511, according to manufacturer

die_revision 0 - 7, according to manufacturer

struct i2c_driver
represent an I2C device driver

Definition

struct i2c_driver {
unsigned int class;
int (*probe)(struct i2c_client *client, const struct i2c_device_id *id);
int (*remove)(struct i2c_client *client);
int (*probe_new)(struct i2c_client *client);
void (*shutdown)(struct i2c_client *client);
void (*alert)(struct i2c_client *client, enum i2c_alert_protocol␣

↪→protocol, unsigned int data);
int (*command)(struct i2c_client *client, unsigned int cmd, void *arg);
struct device_driver driver;
const struct i2c_device_id *id_table;
int (*detect)(struct i2c_client *client, struct i2c_board_info *info);
const unsigned short *address_list;
struct list_head clients;
bool disable_i2c_core_irq_mapping;

};

Members
class What kind of i2c device we instantiate (for detect)

probe Callback for device binding - soon to be deprecated

remove Callback for device unbinding

probe_new New callback for device binding

shutdown Callback for device shutdown

alert Alert callback, for example for the SMBus alert protocol

command Callback for bus-wide signaling (optional)

driver Device driver model driver

847

Linux Driver-api Documentation

id_table List of I2C devices supported by this driver

detect Callback for device detection

address_list The I2C addresses to probe (for detect)

clients List of detected clients we created (for i2c-core use only)

disable_i2c_core_irq_mapping Tell the i2c-core to not do irq-mapping

Description
The driver.owner field should be set to the module owner of this driver. The
driver.name field should be set to the name of this driver.

For automatic device detection, both detect and address_list must be defined.
class should also be set, otherwise only devices forced with module parame-
ters will be created. The detect function must fill at least the name field of the
i2c_board_info structure it is handed upon successful detection, and possibly also
the flags field.

If detect is missing, the driver will still work fine for enumerated devices. De-
tected devices simply won’t be supported. This is expected for the many
I2C/SMBus devices which can’t be detected reliably, and the ones which can
always be enumerated in practice.

The i2c_client structure which is handed to the detect callback is not
a real i2c_client. It is initialized just enough so that you can call
i2c_smbus_read_byte_data and friends on it. Don’t do anything else with it. In
particular, calling dev_dbg and friends on it is not allowed.

struct i2c_client
represent an I2C slave device

Definition

struct i2c_client {
unsigned short flags;

#define I2C_CLIENT_PEC 0x04 ;
#define I2C_CLIENT_TEN 0x10 ;
#define I2C_CLIENT_SLAVE 0x20 ;
#define I2C_CLIENT_HOST_NOTIFY 0x40 ;
#define I2C_CLIENT_WAKE 0x80 ;
#define I2C_CLIENT_SCCB 0x9000 ;

unsigned short addr;
char name[I2C_NAME_SIZE];
struct i2c_adapter *adapter;
struct device dev;
int init_irq;
int irq;
struct list_head detected;

#if IS_ENABLED(CONFIG_I2C_SLAVE);
i2c_slave_cb_t slave_cb;

#endif;
};

Members
flags see I2C_CLIENT_* for possible flags

848 Chapter 24. I2C and SMBus Subsystem

Linux Driver-api Documentation

addr Address used on the I2C bus connected to the parent adapter.

name Indicates the type of the device, usually a chip name that’s generic enough
to hide second-sourcing and compatible revisions.

adapter manages the bus segment hosting this I2C device

dev Driver model device node for the slave.

init_irq IRQ that was set at initialization

irq indicates the IRQ generated by this device (if any)

detected member of an i2c_driver.clients list or i2c-core’s userspace_devices list
slave_cb Callback when I2C slave mode of an adapter is used. The adapter calls

it to pass on slave events to the slave driver.

Description
An i2c_client identifies a single device (i.e. chip) connected to an i2c bus. The
behaviour exposed to Linux is defined by the driver managing the device.

struct i2c_board_info
template for device creation

Definition

struct i2c_board_info {
char type[I2C_NAME_SIZE];
unsigned short flags;
unsigned short addr;
const char *dev_name;
void *platform_data;
struct device_node *of_node;
struct fwnode_handle *fwnode;
const struct property_entry *properties;
const struct resource *resources;
unsigned int num_resources;
int irq;

};

Members
type chip type, to initialize i2c_client.name

flags to initialize i2c_client.flags

addr stored in i2c_client.addr

dev_name Overrides the default <busnr>-<addr> dev_name if set

platform_data stored in i2c_client.dev.platform_data

of_node pointer to OpenFirmware device node

fwnode device node supplied by the platform firmware

properties additional device properties for the device

resources resources associated with the device

num_resources number of resources in the resources array

849

Linux Driver-api Documentation

irq stored in i2c_client.irq

Description
I2C doesn’t actually support hardware probing, although controllers and devices
may be able to use I2C_SMBUS_QUICK to tell whether or not there’s a device at
a given address. Drivers commonly need more information than that, such as chip
type, configuration, associated IRQ, and so on.

i2c_board_info is used to build tables of information listing I2C devices that are
present. This information is used to grow the driver model tree. For mainboards
this is done statically using i2c_register_board_info(); bus numbers identify
adapters that aren’t yet available. For add-on boards, i2c_new_client_device()
does this dynamically with the adapter already known.

I2C_BOARD_INFO(dev_type, dev_addr)
macro used to list an i2c device and its address

Parameters
dev_type identifies the device type

dev_addr the device’s address on the bus.
Description
This macro initializes essential fields of a struct i2c_board_info, declaring what
has been provided on a particular board. Optional fields (such as associated irq,
or device-specific platform_data) are provided using conventional syntax.

struct i2c_algorithm
represent I2C transfer method

Definition

struct i2c_algorithm {
int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs, int␣

↪→num);
int (*master_xfer_atomic)(struct i2c_adapter *adap, struct i2c_msg *msgs,

↪→ int num);
int (*smbus_xfer)(struct i2c_adapter *adap, u16 addr,unsigned short␣

↪→flags, char read_write, u8 command, int size, union i2c_smbus_data␣
↪→*data);
int (*smbus_xfer_atomic)(struct i2c_adapter *adap, u16 addr,unsigned␣

↪→short flags, char read_write, u8 command, int size, union i2c_smbus_data␣
↪→*data);
u32 (*functionality)(struct i2c_adapter *adap);

#if IS_ENABLED(CONFIG_I2C_SLAVE);
int (*reg_slave)(struct i2c_client *client);
int (*unreg_slave)(struct i2c_client *client);

#endif;
};

Members
master_xfer Issue a set of i2c transactions to the given I2C adapter defined by the

msgs array, with nummessages available to transfer via the adapter specified
by adap.

850 Chapter 24. I2C and SMBus Subsystem

Linux Driver-api Documentation

master_xfer_atomic same asmaster_xfer. Yet, only using atomic context so e.g.
PMICs can be accessed very late before shutdown. Optional.

smbus_xfer Issue smbus transactions to the given I2C adapter. If this is not
present, then the bus layer will try and convert the SMBus calls into I2C
transfers instead.

smbus_xfer_atomic same as smbus_xfer. Yet, only using atomic context so e.g.
PMICs can be accessed very late before shutdown. Optional.

functionality Return the flags that this algorithm/adapter pair supports from
the I2C_FUNC_* flags.

reg_slave Register given client to I2C slave mode of this adapter

unreg_slave Unregister given client from I2C slave mode of this adapter

Description
The following structs are for those who like to implement new bus drivers:
i2c_algorithm is the interface to a class of hardware solutions which can be ad-
dressed using the same bus algorithms - i.e. bit-banging or the PCF8584 to name
two of the most common.

The return codes from the master_xfer{_atomic} fields should indicate the type
of error code that occurred during the transfer, as documented in the Kernel Doc-
umentation file Documentation/i2c/fault-codes.rst.

struct i2c_lock_operations
represent I2C locking operations

Definition

struct i2c_lock_operations {
void (*lock_bus)(struct i2c_adapter *adapter, unsigned int flags);
int (*trylock_bus)(struct i2c_adapter *adapter, unsigned int flags);
void (*unlock_bus)(struct i2c_adapter *adapter, unsigned int flags);

};

Members
lock_bus Get exclusive access to an I2C bus segment

trylock_bus Try to get exclusive access to an I2C bus segment

unlock_bus Release exclusive access to an I2C bus segment

Description
The main operations are wrapped by i2c_lock_bus and i2c_unlock_bus.

struct i2c_timings
I2C timing information

Definition

struct i2c_timings {
u32 bus_freq_hz;
u32 scl_rise_ns;
u32 scl_fall_ns;

(continues on next page)

851

Linux Driver-api Documentation

(continued from previous page)
u32 scl_int_delay_ns;
u32 sda_fall_ns;
u32 sda_hold_ns;
u32 digital_filter_width_ns;
u32 analog_filter_cutoff_freq_hz;

};

Members
bus_freq_hz the bus frequency in Hz

scl_rise_ns time SCL signal takes to rise in ns; t(r) in the I2C specification

scl_fall_ns time SCL signal takes to fall in ns; t(f) in the I2C specification

scl_int_delay_ns time IP core additionally needs to setup SCL in ns

sda_fall_ns time SDA signal takes to fall in ns; t(f) in the I2C specification

sda_hold_ns time IP core additionally needs to hold SDA in ns

digital_filter_width_ns width in ns of spikes on i2c lines that the IP core dig-
ital filter can filter out

analog_filter_cutoff_freq_hz threshold frequency for the low pass IP core
analog filter

struct i2c_bus_recovery_info
I2C bus recovery information

Definition

struct i2c_bus_recovery_info {
int (*recover_bus)(struct i2c_adapter *adap);
int (*get_scl)(struct i2c_adapter *adap);
void (*set_scl)(struct i2c_adapter *adap, int val);
int (*get_sda)(struct i2c_adapter *adap);
void (*set_sda)(struct i2c_adapter *adap, int val);
int (*get_bus_free)(struct i2c_adapter *adap);
void (*prepare_recovery)(struct i2c_adapter *adap);
void (*unprepare_recovery)(struct i2c_adapter *adap);
struct gpio_desc *scl_gpiod;
struct gpio_desc *sda_gpiod;

};

Members
recover_bus Recover routine. Either pass driver’s recover_bus() routine, or

i2c_generic_scl_recovery().

get_scl This gets current value of SCL line. Mandatory for generic SCL recovery.
Populated internally for generic GPIO recovery.

set_scl This sets/clears the SCL line. Mandatory for generic SCL recovery. Pop-
ulated internally for generic GPIO recovery.

get_sda This gets current value of SDA line. This or set_sda() is mandatory for
generic SCL recovery. Populated internally, if sda_gpio is a valid GPIO, for
generic GPIO recovery.

852 Chapter 24. I2C and SMBus Subsystem

Linux Driver-api Documentation

set_sda This sets/clears the SDA line. This or get_sda() is mandatory for generic
SCL recovery. Populated internally, if sda_gpio is a valid GPIO, for generic
GPIO recovery.

get_bus_free Returns the bus free state as seen from the IP core in case it has a
more complex internal logic than just reading SDA. Optional.

prepare_recovery This will be called before starting recovery. Platform may con-
figure padmux here for SDA/SCL line or something else they want.

unprepare_recovery This will be called after completing recovery. Platform may
configure padmux here for SDA/SCL line or something else they want.

scl_gpiod gpiod of the SCL line. Only required for GPIO recovery.

sda_gpiod gpiod of the SDA line. Only required for GPIO recovery.

struct i2c_adapter_quirks
describe flaws of an i2c adapter

Definition

struct i2c_adapter_quirks {
u64 flags;
int max_num_msgs;
u16 max_write_len;
u16 max_read_len;
u16 max_comb_1st_msg_len;
u16 max_comb_2nd_msg_len;

};

Members
flags see I2C_AQ_* for possible flags and read below

max_num_msgs maximum number of messages per transfer

max_write_len maximum length of a write message

max_read_len maximum length of a read message

max_comb_1st_msg_len maximum length of the first msg in a combined message

max_comb_2nd_msg_len maximum length of the second msg in a combined mes-
sage

Description
Note about combined messages: Some I2C controllers can only send one message
per transfer, plus something called combined message or write-then-read. This is
(usually) a small write message followed by a read message and barely enough to
access register based devices like EEPROMs. There is a flag to support this mode.
It implies max_num_msg = 2 and does the length checks with max_comb_*_len
because combined message mode usually has its own limitations. Because of HW
implementations, some controllers can actually do write-then-anything or other
variants. To support that, write-then-read has been broken out into smaller bits
like write-first and read-second which can be combined as needed.

void i2c_lock_bus(struct i2c_adapter * adapter, unsigned int flags)
Get exclusive access to an I2C bus segment

853

Linux Driver-api Documentation

Parameters
struct i2c_adapter * adapter Target I2C bus segment

unsigned int flags I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter,
I2C_LOCK_SEGMENT locks only this branch in the adapter tree

int i2c_trylock_bus(struct i2c_adapter * adapter, unsigned int flags)
Try to get exclusive access to an I2C bus segment

Parameters
struct i2c_adapter * adapter Target I2C bus segment

unsigned int flags I2C_LOCK_ROOT_ADAPTER tries to locks the root i2c
adapter, I2C_LOCK_SEGMENT tries to lock only this branch in the adapter
tree

Return
true if the I2C bus segment is locked, false otherwise

void i2c_unlock_bus(struct i2c_adapter * adapter, unsigned int flags)
Release exclusive access to an I2C bus segment

Parameters
struct i2c_adapter * adapter Target I2C bus segment

unsigned int flags I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter,
I2C_LOCK_SEGMENT unlocks only this branch in the adapter tree

void i2c_mark_adapter_suspended(struct i2c_adapter * adap)
Report suspended state of the adapter to the core

Parameters
struct i2c_adapter * adap Adapter to mark as suspended

Description
When using this helper to mark an adapter as suspended, the core will reject
further transfers to this adapter. The usage of this helper is optional but rec-
ommended for devices having distinct handlers for system suspend and runtime
suspend. More complex devices are free to implement custom solutions to reject
transfers when suspended.

void i2c_mark_adapter_resumed(struct i2c_adapter * adap)
Report resumed state of the adapter to the core

Parameters
struct i2c_adapter * adap Adapter to mark as resumed

Description
When using this helper to mark an adapter as resumed, the core
will allow further transfers to this adapter. See also further notes to
i2c_mark_adapter_suspended().

bool i2c_check_quirks(struct i2c_adapter * adap, u64 quirks)
Function for checking the quirk flags in an i2c adapter

854 Chapter 24. I2C and SMBus Subsystem

Linux Driver-api Documentation

Parameters
struct i2c_adapter * adap i2c adapter

u64 quirks quirk flags

Return
true if the adapter has all the specified quirk flags, false if not

module_i2c_driver(__i2c_driver)
Helper macro for registering a modular I2C driver

Parameters
__i2c_driver i2c_driver struct

Description
Helper macro for I2C drivers which do not do anything special in module init/exit.
This eliminates a lot of boilerplate. Each module may only use this macro once,
and calling it replaces module_init() and module_exit()

builtin_i2c_driver(__i2c_driver)
Helper macro for registering a builtin I2C driver

Parameters
__i2c_driver i2c_driver struct

Description
Helper macro for I2C drivers which do not do anything special in their init. This
eliminates a lot of boilerplate. Each driver may only use this macro once, and
calling it replaces device_initcall().

int i2c_register_board_info(int busnum, struct i2c_board_info const
* info, unsigned len)

statically declare I2C devices

Parameters
int busnum identifies the bus to which these devices belong

struct i2c_board_info const * info vector of i2c device descriptors

unsigned len how many descriptors in the vector; may be zero to reserve the
specified bus number.

Description
Systems using the Linux I2C driver stack can declare tables of board info while
they initialize. This should be done in board-specific init code near arch_initcall()
time, or equivalent, before any I2C adapter driver is registered. For example,
mainboard init code could define several devices, as could the init code for each
daughtercard in a board stack.

The I2C devices will be created later, after the adapter for the relevant bus has
been registered. After that moment, standard driver model tools are used to bind
“new style”I2C drivers to the devices. The bus number for any device declared
using this routine is not available for dynamic allocation.

855

Linux Driver-api Documentation

The board info passed can safely be __initdata, but be careful of embedded pointers
(for platform_data, functions, etc) since that won’t be copied. Device properties
are deep-copied though.

struct i2c_client * i2c_verify_client(struct device * dev)
return parameter as i2c_client, or NULL

Parameters
struct device * dev device, probably from some driver model iterator

Description
When traversing the driver model tree, perhaps using driver model iterators like
device_for_each_child(), you can’t assume very much about the nodes you find.
Use this function to avoid oopses caused by wrongly treating some non-I2C device
as an i2c_client.

struct i2c_client * i2c_new_client_device(struct i2c_adapter * adap, struct
i2c_board_info const * info)

instantiate an i2c device

Parameters
struct i2c_adapter * adap the adapter managing the device

struct i2c_board_info const * info describes one I2C device; bus_num is ig-
nored

Context
can sleep

Description
Create an i2c device. Binding is handled through driver model probe()/remove()
methods. A driver may be bound to this device when we return from this function,
or any later moment (e.g. maybe hotplugging will load the driver module). This
call is not appropriate for use by mainboard initialization logic, which usually runs
during an arch_initcall() long before any i2c_adapter could exist.

This returns the new i2c client, which may be saved for later use with
i2c_unregister_device(); or an ERR_PTR to describe the error.

void i2c_unregister_device(struct i2c_client * client)
reverse effect of i2c_new_*_device()

Parameters
struct i2c_client * client value returned from i2c_new_*_device()

Context
can sleep

struct i2c_client * i2c_new_dummy_device(struct i2c_adapter * adapter,
u16 address)

return a new i2c device bound to a dummy driver

Parameters
struct i2c_adapter * adapter the adapter managing the device

856 Chapter 24. I2C and SMBus Subsystem

Linux Driver-api Documentation

u16 address seven bit address to be used

Context
can sleep

Description
This returns an I2C client bound to the “dummy”driver, intended for use with
devices that consume multiple addresses. Examples of such chips include various
EEPROMS (like 24c04 and 24c08 models).

These dummy devices have two main uses. First, most I2C and SMBus calls except
i2c_transfer() need a client handle; the dummy will be that handle. And second,
this prevents the specified address from being bound to a different driver.

This returns the new i2c client, which should be saved for later use with
i2c_unregister_device(); or an ERR_PTR to describe the error.

struct i2c_client * devm_i2c_new_dummy_device(struct device * dev, struct
i2c_adapter * adapter,
u16 address)

return a new i2c device bound to a dummy driver

Parameters
struct device * dev device the managed resource is bound to

struct i2c_adapter * adapter the adapter managing the device

u16 address seven bit address to be used

Context
can sleep

Description
This is the device-managed version of i2c_new_dummy_device. It returns the
new i2c client or an ERR_PTR in case of an error.

struct i2c_client * i2c_new_ancillary_device(struct i2c_client * client,
const char * name,
u16 default_addr)

Helper to get the instantiated secondary address and create the associated
device

Parameters
struct i2c_client * client Handle to the primary client

const char * name Handle to specify which secondary address to get

u16 default_addr Used as a fallback if no secondary address was specified

Context
can sleep

Description
I2C clients can be composed of multiple I2C slaves bound together in a single
component. The I2C client driver then binds to the master I2C slave and needs to
create I2C dummy clients to communicate with all the other slaves.

857

Linux Driver-api Documentation

This function creates and returns an I2C dummy client whose I2C address is re-
trieved from the platform firmware based on the given slave name. If no address
is specified by the firmware default_addr is used.

On DT-based platforms the address is retrieved from the“reg”property entry cell
whose “reg-names”value matches the slave name.
This returns the new i2c client, which should be saved for later use with
i2c_unregister_device(); or an ERR_PTR to describe the error.

struct i2c_adapter * i2c_verify_adapter(struct device * dev)
return parameter as i2c_adapter or NULL

Parameters
struct device * dev device, probably from some driver model iterator

Description
When traversing the driver model tree, perhaps using driver model iterators like
device_for_each_child(), you can’t assume very much about the nodes you find.
Use this function to avoid oopses caused by wrongly treating some non-I2C device
as an i2c_adapter.

int i2c_handle_smbus_host_notify(struct i2c_adapter * adap, unsigned
short addr)

Forward a Host Notify event to the correct I2C client.

Parameters
struct i2c_adapter * adap the adapter

unsigned short addr the I2C address of the notifying device

Context
can’t sleep
Description
Helper function to be called from an I2C bus driver’s interrupt handler. It will
schedule the Host Notify IRQ.

int i2c_add_adapter(struct i2c_adapter * adapter)
declare i2c adapter, use dynamic bus number

Parameters
struct i2c_adapter * adapter the adapter to add

Context
can sleep

Description
This routine is used to declare an I2C adapter when its bus number doesn’t matter
or when its bus number is specified by an dt alias. Examples of bases when the
bus number doesn’t matter: I2C adapters dynamically added by USB links or PCI
plugin cards.

858 Chapter 24. I2C and SMBus Subsystem

Linux Driver-api Documentation

When this returns zero, a new bus number was allocated and stored in adap->nr,
and the specified adapter became available for clients. Otherwise, a negative er-
rno value is returned.

int i2c_add_numbered_adapter(struct i2c_adapter * adap)
declare i2c adapter, use static bus number

Parameters
struct i2c_adapter * adap the adapter to register (with adap->nr initialized)

Context
can sleep

Description
This routine is used to declare an I2C adapter when its bus number matters. For
example, use it for I2C adapters from system-on-chip CPUs, or otherwise built in
to the system’s mainboard, and where i2c_board_info is used to properly configure
I2C devices.

If the requested bus number is set to -1, then this function will behave identically
to i2c_add_adapter, and will dynamically assign a bus number.

If no devices have pre-been declared for this bus, then be sure to register the
adapter before any dynamically allocated ones. Otherwise the required bus ID
may not be available.

When this returns zero, the specified adapter became available for clients using
the bus number provided in adap->nr. Also, the table of I2C devices pre-declared
using i2c_register_board_info() is scanned, and the appropriate driver model
device nodes are created. Otherwise, a negative errno value is returned.

void i2c_del_adapter(struct i2c_adapter * adap)
unregister I2C adapter

Parameters
struct i2c_adapter * adap the adapter being unregistered

Context
can sleep

Description
This unregisters an I2C adapter which was previously registered by
i2c_add_adapter or i2c_add_numbered_adapter.
void i2c_parse_fw_timings(struct device * dev, struct i2c_timings * t,

bool use_defaults)
get I2C related timing parameters from firmware

Parameters
struct device * dev The device to scan for I2C timing properties

struct i2c_timings * t the i2c_timings struct to be filled with values

bool use_defaults bool to use sane defaults derived from the I2C specification
when properties are not found, otherwise don’t update

859

Linux Driver-api Documentation

Description
Scan the device for the generic I2C properties describing timing parameters for
the signal and fill the given struct with the results. If a property was not found and
use_defaults was true, thenmaximum timings are assumed which are derived from
the I2C specification. If use_defaults is not used, the results will be as before, so
drivers can apply their own defaults before calling this helper. The latter is mainly
intended for avoiding regressions of existing drivers which want to switch to this
function. New drivers almost always should use the defaults.

void i2c_del_driver(struct i2c_driver * driver)
unregister I2C driver

Parameters
struct i2c_driver * driver the driver being unregistered

Context
can sleep

int __i2c_transfer(struct i2c_adapter * adap, struct i2c_msg * msgs,
int num)

unlocked flavor of i2c_transfer

Parameters
struct i2c_adapter * adap Handle to I2C bus

struct i2c_msg * msgs One or more messages to execute before STOP is issued
to terminate the operation; each message begins with a START.

int num Number of messages to be executed.

Description
Returns negative errno, else the number of messages executed.

Adapter lock must be held when calling this function. No debug logging takes
place. adap->algo->master_xfer existence isn’t checked.
int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg * msgs, int num)

execute a single or combined I2C message

Parameters
struct i2c_adapter * adap Handle to I2C bus

struct i2c_msg * msgs One or more messages to execute before STOP is issued
to terminate the operation; each message begins with a START.

int num Number of messages to be executed.

Description
Returns negative errno, else the number of messages executed.

Note that there is no requirement that each message be sent to the same slave
address, although that is the most common model.

int i2c_transfer_buffer_flags(const struct i2c_client * client, char * buf,
int count, u16 flags)

issue a single I2C message transferring data to/from a buffer

860 Chapter 24. I2C and SMBus Subsystem

Linux Driver-api Documentation

Parameters
const struct i2c_client * client Handle to slave device

char * buf Where the data is stored

int count How many bytes to transfer, must be less than 64k since msg.len is
u16

u16 flags The flags to be used for the message, e.g. I2C_M_RD for reads

Description
Returns negative errno, or else the number of bytes transferred.

int i2c_get_device_id(const struct i2c_client * client, struct
i2c_device_identity * id)

get manufacturer, part id and die revision of a device

Parameters
const struct i2c_client * client The device to query

struct i2c_device_identity * id The queried information

Description
Returns negative errno on error, zero on success.

u8 * i2c_get_dma_safe_msg_buf(struct i2c_msg * msg, unsigned
int threshold)

get a DMA safe buffer for the given i2c_msg

Parameters
struct i2c_msg * msg the message to be checked

unsigned int threshold the minimum number of bytes for which using DMA
makes sense. Should at least be 1.

Return
NULL if a DMA safe buffer was not obtained. Use msg->buf with PIO.

Or a valid pointer to be used with DMA. After use, release it by calling
i2c_put_dma_safe_msg_buf().

Description
This function must only be called from process context!

void i2c_put_dma_safe_msg_buf(u8 * buf, struct i2c_msg * msg,
bool xferred)

release DMA safe buffer and sync with i2c_msg

Parameters
u8 * buf the buffer obtained from i2c_get_dma_safe_msg_buf(). May be NULL.

struct i2c_msg * msg the message which the buffer corresponds to

bool xferred bool saying if the message was transferred

s32 i2c_smbus_read_byte(const struct i2c_client * client)
SMBus “receive byte”protocol

861

Linux Driver-api Documentation

Parameters
const struct i2c_client * client Handle to slave device

Description
This executes the SMBus “receive byte”protocol, returning negative errno else
the byte received from the device.

s32 i2c_smbus_write_byte(const struct i2c_client * client, u8 value)
SMBus “send byte”protocol

Parameters
const struct i2c_client * client Handle to slave device

u8 value Byte to be sent

Description
This executes the SMBus“send byte”protocol, returning negative errno else zero
on success.

s32 i2c_smbus_read_byte_data(const struct i2c_client * client,
u8 command)

SMBus “read byte”protocol
Parameters
const struct i2c_client * client Handle to slave device

u8 command Byte interpreted by slave

Description
This executes the SMBus “read byte”protocol, returning negative errno else a
data byte received from the device.

s32 i2c_smbus_write_byte_data(const struct i2c_client * client,
u8 command, u8 value)

SMBus “write byte”protocol
Parameters
const struct i2c_client * client Handle to slave device

u8 command Byte interpreted by slave

u8 value Byte being written

Description
This executes the SMBus“write byte”protocol, returning negative errno else zero
on success.

s32 i2c_smbus_read_word_data(const struct i2c_client * client,
u8 command)

SMBus “read word”protocol
Parameters
const struct i2c_client * client Handle to slave device

u8 command Byte interpreted by slave

862 Chapter 24. I2C and SMBus Subsystem

Linux Driver-api Documentation

Description
This executes the SMBus “read word”protocol, returning negative errno else a
16-bit unsigned “word”received from the device.

s32 i2c_smbus_write_word_data(const struct i2c_client * client,
u8 command, u16 value)

SMBus “write word”protocol
Parameters
const struct i2c_client * client Handle to slave device

u8 command Byte interpreted by slave

u16 value 16-bit “word”being written
Description
This executes the SMBus “write word”protocol, returning negative errno else
zero on success.

s32 i2c_smbus_read_block_data(const struct i2c_client * client,
u8 command, u8 * values)

SMBus “block read”protocol
Parameters
const struct i2c_client * client Handle to slave device

u8 command Byte interpreted by slave

u8 * values Byte array into which data will be read; big enough to hold the data
returned by the slave. SMBus allows at most 32 bytes.

Description
This executes the SMBus“block read”protocol, returning negative errno else the
number of data bytes in the slave’s response.
Note that using this function requires that the client’s adapter support the
I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
support this; its emulation through I2C messaging relies on a specific mechanism
(I2C_M_RECV_LEN) which may not be implemented.

s32 i2c_smbus_write_block_data(const struct i2c_client * client,
u8 command, u8 length, const u8
* values)

SMBus “block write”protocol
Parameters
const struct i2c_client * client Handle to slave device

u8 command Byte interpreted by slave

u8 length Size of data block; SMBus allows at most 32 bytes

const u8 * values Byte array which will be written.

Description
This executes the SMBus “block write”protocol, returning negative errno else
zero on success.

863

Linux Driver-api Documentation

s32 i2c_smbus_xfer(struct i2c_adapter * adapter, u16 addr, un-
signed short flags, char read_write, u8 command,
int protocol, union i2c_smbus_data * data)

execute SMBus protocol operations

Parameters
struct i2c_adapter * adapter Handle to I2C bus

u16 addr Address of SMBus slave on that bus

unsigned short flags I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)

char read_write I2C_SMBUS_READ or I2C_SMBUS_WRITE

u8 command Byte interpreted by slave, for protocols which use such bytes

int protocol SMBus protocol operation to execute, such as
I2C_SMBUS_PROC_CALL

union i2c_smbus_data * data Data to be read or written

Description
This executes an SMBus protocol operation, and returns a negative errno code
else zero on success.

s32 i2c_smbus_read_i2c_block_data_or_emulated(const struct i2c_client
* client, u8 command,
u8 length, u8
* values)

read block or emulate

Parameters
const struct i2c_client * client Handle to slave device

u8 command Byte interpreted by slave

u8 length Size of data block; SMBus allows at most I2C_SMBUS_BLOCK_MAX
bytes

u8 * values Byte array into which data will be read; big enough to hold the
data returned by the slave. SMBus allows at most I2C_SMBUS_BLOCK_MAX
bytes.

Description
This executes the SMBus “block read”protocol if supported by the adapter. If
block read is not supported, it emulates it using either word or byte read protocols
depending on availability.

The addresses of the I2C slave device that are accessed with this function must
be mapped to a linear region, so that a block read will have the same effect as a
byte read. Before using this function you must double-check if the I2C slave does
support exchanging a block transfer with a byte transfer.

struct i2c_client * i2c_new_smbus_alert_device(struct i2c_adapter
* adapter, struct
i2c_smbus_alert_setup
* setup)

get ara client for SMBus alert support

864 Chapter 24. I2C and SMBus Subsystem

Linux Driver-api Documentation

Parameters
struct i2c_adapter * adapter the target adapter

struct i2c_smbus_alert_setup * setup setup data for the SMBus alert han-
dler

Context
can sleep

Description
Setup handling of the SMBus alert protocol on a given I2C bus segment.

Handling can be done either through our IRQ handler, or by the adapter (from its
handler, periodic polling, or whatever).

This returns the ara client, which should be saved for later use with
i2c_handle_smbus_alert() and ultimately i2c_unregister_device(); or an ER-
RPTR to indicate an error.

865

Linux Driver-api Documentation

866 Chapter 24. I2C and SMBus Subsystem

CHAPTER

TWENTYFIVE

IPMB DRIVER FOR A SATELLITE MC

The Intelligent Platform Management Bus or IPMB, is an I2C bus that provides
a standardized interconnection between different boards within a chassis. This
interconnection is between the baseboard management (BMC) and chassis elec-
tronics. IPMB is also associated with the messaging protocol through the IPMB
bus.

The devices using the IPMB are usually management controllers that performman-
agement functions such as servicing the front panel interface, monitoring the base-
board, hot-swapping disk drivers in the system chassis, etc⋯
When an IPMB is implemented in the system, the BMC serves as a controller to
give system software access to the IPMB. The BMC sends IPMI requests to a de-
vice (usually a Satellite Management Controller or Satellite MC) via IPMB and the
device sends a response back to the BMC.

For more information on IPMB and the format of an IPMB message, refer to the
IPMB and IPMI specifications.

25.1 IPMB driver for Satellite MC

ipmb-dev-int - This is the driver needed on a Satellite MC to receive IPMB mes-
sages from a BMC and send a response back. This driver works with the I2C driver
and a userspace program such as OpenIPMI:

1) It is an I2C slave backend driver. So, it defines a callback function to set
the Satellite MC as an I2C slave. This callback function handles the received
IPMI requests.

2) It defines the read and write functions to enable a user space program (such
as OpenIPMI) to communicate with the kernel.

867

Linux Driver-api Documentation

25.2 Load the IPMB driver

The driver needs to be loaded at boot time or manually first. First, make sure you
have the following in your config file: CONFIG_IPMB_DEVICE_INTERFACE=y

1) If you want the driver to be loaded at boot time:

a) Add this entry to your ACPI table, under the appropriate SMBus:

Device (SMB0) // Example SMBus host controller
{
Name (_HID, "<Vendor-Specific HID>") // Vendor-Specific HID
Name (_UID, 0) // Unique ID of particular host controller
:
:
Device (IPMB)
{

Name (_HID, "IPMB0001") // IPMB device interface
Name (_UID, 0) // Unique device identifier

}
}

b) Example for device tree:

&i2c2 {
status = "okay";

ipmb@10 {
compatible = "ipmb-dev";
reg = <0x10>;
i2c-protocol;

};
};

If xmit of data to be done using raw i2c block vs smbus then“i2c-protocol”needs
to be defined as above.

2) Manually from Linux:

modprobe ipmb-dev-int

25.3 Instantiate the device

After loading the driver, you can instantiate the device as described in
‘Documentation/i2c/instantiating-devices.rst’. If you have multiple BMCs, each
connected to your Satellite MC via a different I2C bus, you can instantiate a de-
vice for each of those BMCs.

The name of the instantiated device contains the I2C bus number associated with
it as follows:

BMC1 ------ IPMB/I2C bus 1 ---------| /dev/ipmb-1
Satellite MC

BMC1 ------ IPMB/I2C bus 2 ---------| /dev/ipmb-2

868 Chapter 25. IPMB Driver for a Satellite MC

Linux Driver-api Documentation

For instance, you can instantiate the ipmb-dev-int device from user space at the 7
bit address 0x10 on bus 2:

echo ipmb-dev 0x1010 > /sys/bus/i2c/devices/i2c-2/new_device

This will create the device file /dev/ipmb-2, which can be accessed by the user
space program. The device needs to be instantiated before running the user space
program.

25.3. Instantiate the device 869

Linux Driver-api Documentation

870 Chapter 25. IPMB Driver for a Satellite MC

CHAPTER

TWENTYSIX

THE LINUX IPMI DRIVER

Author Corey Minyard <minyard@mvista.com> /
<minyard@acm.org>

The Intelligent Platform Management Interface, or IPMI, is a standard for control-
ling intelligent devices that monitor a system. It provides for dynamic discovery
of sensors in the system and the ability to monitor the sensors and be informed
when the sensor’s values change or go outside certain boundaries. It also has a
standardized database for field-replaceable units (FRUs) and a watchdog timer.

To use this, you need an interface to an IPMI controller in your system (called a
Baseboard Management Controller, or BMC) and management software that can
use the IPMI system.

This document describes how to use the IPMI driver for Linux. If you are not
familiar with IPMI itself, see the web site at http://www.intel.com/design/servers/
ipmi/index.htm. IPMI is a big subject and I can’t cover it all here!

26.1 Configuration

The Linux IPMI driver is modular, which means you have to pick several things to
have it work right depending on your hardware. Most of these are available in the
‘Character Devices’menu then the IPMI menu.
No matter what, you must pick ‘IPMI top-level message handler’to use IPMI.
What you do beyond that depends on your needs and hardware.

The message handler does not provide any user-level interfaces. Kernel code (like
the watchdog) can still use it. If you need access from userland, you need to select
‘Device interface for IPMI’if you want access through a device driver.
The driver interface depends on your hardware. If your system properly provides
the SMBIOS info for IPMI, the driver will detect it and just work. If you have a
board with a standard interface (These will generally be either“KCS”,“SMIC”,
or“BT”, consult your hardware manual), choose the‘IPMI SI handler’option. A
driver also exists for direct I2C access to the IPMI management controller. Some
boards support this, but it is unknown if it will work on every board. For this,
choose‘IPMI SMBus handler’, but be ready to try to do some figuring to see if it
will work on your system if the SMBIOS/APCI information is wrong or not present.
It is fairly safe to have both these enabled and let the drivers auto-detect what is
present.

871

mailto:minyard@mvista.com
mailto:minyard@acm.org
http://www.intel.com/design/servers/ipmi/index.htm
http://www.intel.com/design/servers/ipmi/index.htm

Linux Driver-api Documentation

You should generally enable ACPI on your system, as systems with IPMI can have
ACPI tables describing them.

If you have a standard interface and the boardmanufacturer has done their job cor-
rectly, the IPMI controller should be automatically detected (via ACPI or SMBIOS
tables) and should just work. Sadly, many boards do not have this information.
The driver attempts standard defaults, but they may not work. If you fall into this
situation, you need to read the section below named ‘The SI Driver’or “The
SMBus Driver”on how to hand-configure your system.
IPMI defines a standard watchdog timer. You can enable this with the ‘IPMI
Watchdog Timer’config option. If you compile the driver into the kernel, then via
a kernel command-line option you can have the watchdog timer start as soon as it
initializes. It also have a lot of other options, see the ‘Watchdog’section below
for more details. Note that you can also have the watchdog continue to run if it is
closed (by default it is disabled on close). Go into the ‘Watchdog Cards’menu,
enable ‘Watchdog Timer Support’, and enable the option ‘Disable watchdog
shutdown on close’.
IPMI systems can often be powered off using IPMI commands. Select ‘IPMI
Poweroff’to do this. The driver will auto-detect if the system can be powered
off by IPMI. It is safe to enable this even if your system doesn’t support this op-
tion. This works on ATCA systems, the Radisys CPI1 card, and any IPMI system
that supports standard chassis management commands.

If you want the driver to put an event into the event log on a panic, enable the
‘Generate a panic event to all BMCs on a panic’option. If you want the whole
panic string put into the event log using OEM events, enable the‘Generate OEM
events containing the panic string’option. You can also enable these dynamically
by setting themodule parameter named“panic_op”in the ipmi_msghandler module
to“event”or“string”. Setting that parameter to“none”disables this function.

26.2 Basic Design

The Linux IPMI driver is designed to be very modular and flexible, you only need
to take the pieces you need and you can use it in many different ways. Because of
that, it’s broken into many chunks of code. These chunks (by module name) are:
ipmi_msghandler - This is the central piece of software for the IPMI system. It
handles all messages, message timing, and responses. The IPMI users tie into
this, and the IPMI physical interfaces (called System Management Interfaces, or
SMIs) also tie in here. This provides the kernelland interface for IPMI, but does
not provide an interface for use by application processes.

ipmi_devintf - This provides a userland IOCTL interface for the IPMI driver, each
open file for this device ties in to the message handler as an IPMI user.

ipmi_si - A driver for various system interfaces. This supports KCS, SMIC, and BT
interfaces. Unless you have an SMBus interface or your own custom interface,
you probably need to use this.

ipmi_ssif - A driver for accessing BMCs on the SMBus. It uses the I2C kernel driver’
s SMBus interfaces to send and receive IPMI messages over the SMBus.

872 Chapter 26. The Linux IPMI Driver

Linux Driver-api Documentation

ipmi_powernv - A driver for access BMCs on POWERNV systems.

ipmi_watchdog - IPMI requires systems to have a very capable watchdog timer.
This driver implements the standard Linux watchdog timer interface on top of the
IPMI message handler.

ipmi_poweroff - Some systems support the ability to be turned off via IPMI com-
mands.

bt-bmc - This is not part of the main driver, but instead a driver for accessing a
BMC-side interface of a BT interface. It is used on BMCs running Linux to provide
an interface to the host.

These are all individually selectable via configuration options.

Much documentation for the interface is in the include files. The IPMI include files
are:

linux/ipmi.h - Contains the user interface and IOCTL interface for IPMI.

linux/ipmi_smi.h - Contains the interface for system management interfaces
(things that interface to IPMI controllers) to use.

linux/ipmi_msgdefs.h - General definitions for base IPMI messaging.

26.3 Addressing

The IPMI addressing works much like IP addresses, you have an overlay to handle
the different address types. The overlay is:

struct ipmi_addr
{

int addr_type;
short channel;
char data[IPMI_MAX_ADDR_SIZE];

};

The addr_type determines what the address really is. The driver currently under-
stands two different types of addresses.

“System Interface”addresses are defined as:
struct ipmi_system_interface_addr
{

int addr_type;
short channel;

};

and the type is IPMI_SYSTEM_INTERFACE_ADDR_TYPE. This is used for
talking straight to the BMC on the current card. The channel must be
IPMI_BMC_CHANNEL.

Messages that are destined to go out on the IPMB bus use the
IPMI_IPMB_ADDR_TYPE address type. The format is:

26.3. Addressing 873

Linux Driver-api Documentation

struct ipmi_ipmb_addr
{

int addr_type;
short channel;
unsigned char slave_addr;
unsigned char lun;

};

The “channel”here is generally zero, but some devices support more than one
channel, it corresponds to the channel as defined in the IPMI spec.

26.4 Messages

Messages are defined as:

struct ipmi_msg
{

unsigned char netfn;
unsigned char lun;
unsigned char cmd;
unsigned char *data;
int data_len;

};

The driver takes care of adding/stripping the header information. The data portion
is just the data to be send (do NOT put addressing info here) or the response. Note
that the completion code of a response is the first item in“data”, it is not stripped
out because that is how all the messages are defined in the spec (and thus makes
counting the offsets a little easier :-).

When using the IOCTL interface from userland, you must provide a block of data
for “data”, fill it, and set data_len to the length of the block of data, even when
receiving messages. Otherwise the driver will have no place to put the message.

Messages coming up from the message handler in kernelland will come in as:

struct ipmi_recv_msg
{

struct list_head link;

/* The type of message as defined in the "Receive Types"
defines above. */

int recv_type;

ipmi_user_t *user;
struct ipmi_addr addr;
long msgid;
struct ipmi_msg msg;

/* Call this when done with the message. It will presumably free
the message and do any other necessary cleanup. */

void (*done)(struct ipmi_recv_msg *msg);

/* Place-holder for the data, don't make any assumptions about
(continues on next page)

874 Chapter 26. The Linux IPMI Driver

Linux Driver-api Documentation

(continued from previous page)
the size or existence of this, since it may change. */

unsigned char msg_data[IPMI_MAX_MSG_LENGTH];
};

You should look at the receive type and handle the message appropriately.

26.5 The Upper Layer Interface (Message Handler)

The upper layer of the interface provides the users with a consistent view of the
IPMI interfaces. It allows multiple SMI interfaces to be addressed (because some
boards actually have multiple BMCs on them) and the user should not have to care
what type of SMI is below them.

26.5.1 Watching For Interfaces

When your code comes up, the IPMI driver may or may not have detected if IPMI
devices exist. So you might have to defer your setup until the device is detected,
or you might be able to do it immediately. To handle this, and to allow for discov-
ery, you register an SMI watcher with ipmi_smi_watcher_register() to iterate over
interfaces and tell you when they come and go.

26.5.2 Creating the User

To use the message handler, you must first create a user using ipmi_create_user.
The interface number specifies which SMI you want to connect to, and you must
supply callback functions to be called when data comes in. The callback function
can run at interrupt level, so be careful using the callbacks. This also allows to
you pass in a piece of data, the handler_data, that will be passed back to you on
all calls.

Once you are done, call ipmi_destroy_user() to get rid of the user.

From userland, opening the device automatically creates a user, and closing the
device automatically destroys the user.

26.5.3 Messaging

To send a message from kernel-land, the ipmi_request_settime() call does pretty
much all message handling. Most of the parameter are self-explanatory. However,
it takes a “msgid”parameter. This is NOT the sequence number of messages. It
is simply a long value that is passed back when the response for the message is
returned. You may use it for anything you like.

Responses come back in the function pointed to by the ipmi_recv_hndl field of the
“handler”that you passed in to ipmi_create_user(). Remember again, these may
be running at interrupt level. Remember to look at the receive type, too.

From userland, you fill out an ipmi_req_t structure and use the IP-
MICTL_SEND_COMMAND ioctl. For incoming stuff, you can use select() or poll()

26.5. The Upper Layer Interface (Message Handler) 875

Linux Driver-api Documentation

to wait for messages to come in. However, you cannot use read() to get them, you
must call the IPMICTL_RECEIVE_MSG with the ipmi_recv_t structure to actually
get the message. Remember that you must supply a pointer to a block of data in
the msg.data field, and you must fill in the msg.data_len field with the size of the
data. This gives the receiver a place to actually put the message.

If the message cannot fit into the data you provide, you will get an EMSGSIZE
error and the driver will leave the data in the receive queue. If you want to get it
and have it truncate the message, us the IPMICTL_RECEIVE_MSG_TRUNC ioctl.

When you send a command (which is defined by the lowest-order bit of the netfn
per the IPMI spec) on the IPMB bus, the driver will automatically assign the se-
quence number to the command and save the command. If the response is not
receive in the IPMI-specified 5 seconds, it will generate a response automatically
saying the command timed out. If an unsolicited response comes in (if it was after
5 seconds, for instance), that response will be ignored.

In kernelland, after you receive a message and are done with it, you MUST call
ipmi_free_recv_msg() on it, or you will leak messages. Note that you should
NEVER mess with the “done”field of a message, that is required to properly
clean up the message.

Note that when sending, there is an ipmi_request_supply_msgs() call that lets you
supply the smi and receive message. This is useful for pieces of code that need
to work even if the system is out of buffers (the watchdog timer uses this, for
instance). You supply your own buffer and own free routines. This is not recom-
mended for normal use, though, since it is tricky to manage your own buffers.

26.5.4 Events and Incoming Commands

The driver takes care of polling for IPMI events and receiving commands (com-
mands are messages that are not responses, they are commands that other things
on the IPMB bus have sent you). To receive these, you must register for them,
they will not automatically be sent to you.

To receive events, you must call ipmi_set_gets_events() and set the “val”to non-
zero. Any events that have been received by the driver since startup will immedi-
ately be delivered to the first user that registers for events. After that, if multiple
users are registered for events, they will all receive all events that come in.

For receiving commands, you have to individually register commands you want to
receive. Call ipmi_register_for_cmd() and supply the netfn and command name
for each command you want to receive. You also specify a bitmask of the channels
you want to receive the command from (or use IPMI_CHAN_ALL for all channels
if you don’t care). Only one user may be registered for each netfn/cmd/channel,
but different users may register for different commands, or the same command if
the channel bitmasks do not overlap.

From userland, equivalent IOCTLs are provided to do these functions.

876 Chapter 26. The Linux IPMI Driver

Linux Driver-api Documentation

26.6 The Lower Layer (SMI) Interface

As mentioned before, multiple SMI interfaces may be registered to the message
handler, each of these is assigned an interface number when they register with the
message handler. They are generally assigned in the order they register, although
if an SMI unregisters and then another one registers, all bets are off.

The ipmi_smi.h defines the interface for management interfaces, see that for more
details.

26.7 The SI Driver

The SI driver allows KCS, BT, and SMIC interfaces to be configured in the sys-
tem. It discovers interfaces through a host of different methods, depending on the
system.

You can specify up to four interfaces on the module load line and control some
module parameters:

modprobe ipmi_si.o type=<type1>,<type2>....
ports=<port1>,<port2>... addrs=<addr1>,<addr2>...
irqs=<irq1>,<irq2>...
regspacings=<sp1>,<sp2>,... regsizes=<size1>,<size2>,...
regshifts=<shift1>,<shift2>,...
slave_addrs=<addr1>,<addr2>,...
force_kipmid=<enable1>,<enable2>,...
kipmid_max_busy_us=<ustime1>,<ustime2>,...
unload_when_empty=[0|1]
trydmi=[0|1] tryacpi=[0|1]
tryplatform=[0|1] trypci=[0|1]

Each of these except try⋯items is a list, the first item for the first interface, second
item for the second interface, etc.

The si_type may be either“kcs”,“smic”, or“bt”. If you leave it blank, it defaults
to “kcs”.
If you specify addrs as non-zero for an interface, the driver will use the memory
address given as the address of the device. This overrides si_ports.

If you specify ports as non-zero for an interface, the driver will use the I/O port
given as the device address.

If you specify irqs as non-zero for an interface, the driver will attempt to use the
given interrupt for the device.

The other try⋯items disable discovery by their corresponding names. These are
all enabled by default, set them to zero to disable them. The tryplatform disables
openfirmware.

The next three parameters have to do with register layout. The registers used by
the interfaces may not appear at successive locations and they may not be in 8-bit
registers. These parameters allow the layout of the data in the registers to be
more precisely specified.

26.6. The Lower Layer (SMI) Interface 877

Linux Driver-api Documentation

The regspacings parameter give the number of bytes between successive register
start addresses. For instance, if the regspacing is set to 4 and the start address is
0xca2, then the address for the second register would be 0xca6. This defaults to
1.

The regsizes parameter gives the size of a register, in bytes. The data used by
IPMI is 8-bits wide, but it may be inside a larger register. This parameter allows
the read and write type to specified. It may be 1, 2, 4, or 8. The default is 1.

Since the register size may be larger than 32 bits, the IPMI data may not be in the
lower 8 bits. The regshifts parameter give the amount to shift the data to get to
the actual IPMI data.

The slave_addrs specifies the IPMI address of the local BMC. This is usually 0x20
and the driver defaults to that, but in case it’s not, it can be specified when the
driver starts up.

The force_ipmid parameter forcefully enables (if set to 1) or disables (if set to 0)
the kernel IPMI daemon. Normally this is auto-detected by the driver, but systems
with broken interrupts might need an enable, or users that don’t want the daemon
(don’t need the performance, don’t want the CPU hit) can disable it.
If unload_when_empty is set to 1, the driver will be unloaded if it doesn’t find
any interfaces or all the interfaces fail to work. The default is one. Setting to 0 is
useful with the hotmod, but is obviously only useful for modules.

When compiled into the kernel, the parameters can be specified on the kernel
command line as:

ipmi_si.type=<type1>,<type2>...
ipmi_si.ports=<port1>,<port2>... ipmi_si.addrs=<addr1>,<addr2>...
ipmi_si.irqs=<irq1>,<irq2>...
ipmi_si.regspacings=<sp1>,<sp2>,...
ipmi_si.regsizes=<size1>,<size2>,...
ipmi_si.regshifts=<shift1>,<shift2>,...
ipmi_si.slave_addrs=<addr1>,<addr2>,...
ipmi_si.force_kipmid=<enable1>,<enable2>,...
ipmi_si.kipmid_max_busy_us=<ustime1>,<ustime2>,...

It works the same as the module parameters of the same names.

If your IPMI interface does not support interrupts and is a KCS or SMIC interface,
the IPMI driver will start a kernel thread for the interface to help speed things
up. This is a low-priority kernel thread that constantly polls the IPMI driver while
an IPMI operation is in progress. The force_kipmid module parameter will all the
user to force this thread on or off. If you force it off and don’t have interrupts,
the driver will run VERY slowly. Don’t blame me, these interfaces suck.
Unfortunately, this thread can use a lot of CPU depending on the interface’s per-
formance. This can waste a lot of CPU and cause various issues with detecting
idle CPU and using extra power. To avoid this, the kipmid_max_busy_us sets the
maximum amount of time, in microseconds, that kipmid will spin before sleeping
for a tick. This value sets a balance between performance and CPU waste and
needs to be tuned to your needs. Maybe, someday, auto-tuning will be added, but
that’s not a simple thing and even the auto-tuning would need to be tuned to the
user’s desired performance.

878 Chapter 26. The Linux IPMI Driver

Linux Driver-api Documentation

The driver supports a hot add and remove of interfaces. This way, interfaces
can be added or removed after the kernel is up and running. This is done using
/sys/modules/ipmi_si/parameters/hotmod, which is a write-only parameter. You
write a string to this interface. The string has the format:

<op1>[:op2[:op3...]]

The “op”s are:
add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]

You can specify more than one interface on the line. The “opt”s are:
rsp=<regspacing>
rsi=<regsize>
rsh=<regshift>
irq=<irq>
ipmb=<ipmb slave addr>

and these have the same meanings as discussed above. Note that you can also
use this on the kernel command line for a more compact format for specifying an
interface. Note that when removing an interface, only the first three parameters
(si type, address type, and address) are used for the comparison. Any options are
ignored for removing.

26.8 The SMBus Driver (SSIF)

The SMBus driver allows up to 4 SMBus devices to be configured in the system.
By default, the driver will only register with something it finds in DMI or ACPI
tables. You can change this at module load time (for a module) with:

modprobe ipmi_ssif.o
addr=<i2caddr1>[,<i2caddr2>[,...]]
adapter=<adapter1>[,<adapter2>[...]]
dbg=<flags1>,<flags2>...
slave_addrs=<addr1>,<addr2>,...
tryacpi=[0|1] trydmi=[0|1]
[dbg_probe=1]

The addresses are normal I2C addresses. The adapter is the string name of the
adapter, as shown in /sys/class/i2c-adapter/i2c-<n>/name. It is NOT i2c-<n> it-
self. Also, the comparison is done ignoring spaces, so if the name is “This is an
I2C chip”you can say adapter_name=ThisisanI2cchip. This is because it’s hard
to pass in spaces in kernel parameters.

The debug flags are bit flags for each BMC found, they are: IPMI messages: 1,
driver state: 2, timing: 4, I2C probe: 8

The tryxxx parameters can be used to disable detecting interfaces from various
sources.

Setting dbg_probe to 1 will enable debugging of the probing and detection process
for BMCs on the SMBusses.

26.8. The SMBus Driver (SSIF) 879

Linux Driver-api Documentation

The slave_addrs specifies the IPMI address of the local BMC. This is usually 0x20
and the driver defaults to that, but in case it’s not, it can be specified when the
driver starts up.

Discovering the IPMI compliant BMC on the SMBus can cause devices on the I2C
bus to fail. The SMBus driver writes a “Get Device ID”IPMI message as a block
write to the I2C bus and waits for a response. This action can be detrimental to
some I2C devices. It is highly recommended that the known I2C address be given
to the SMBus driver in the smb_addr parameter unless you have DMI or ACPI data
to tell the driver what to use.

When compiled into the kernel, the addresses can be specified on the kernel com-
mand line as:

ipmb_ssif.addr=<i2caddr1>[,<i2caddr2>[...]]
ipmi_ssif.adapter=<adapter1>[,<adapter2>[...]]
ipmi_ssif.dbg=<flags1>[,<flags2>[...]]
ipmi_ssif.dbg_probe=1
ipmi_ssif.slave_addrs=<addr1>[,<addr2>[...]]
ipmi_ssif.tryacpi=[0|1] ipmi_ssif.trydmi=[0|1]

These are the same options as on the module command line.

The I2C driver does not support non-blocking access or polling, so this driver
cannod to IPMI panic events, extend the watchdog at panic time, or other panic-
related IPMI functions without special kernel patches and driver modifications.
You can get those at the openipmi web page.

The driver supports a hot add and remove of interfaces through the I2C sysfs
interface.

26.9 Other Pieces

26.10 Get the detailed info related with the IPMI device

Some users need more detailed information about a device, like where the address
came from or the raw base device for the IPMI interface. You can use the IPMI
smi_watcher to catch the IPMI interfaces as they come or go, and to grab the infor-
mation, you can use the function ipmi_get_smi_info(), which returns the following
structure:

struct ipmi_smi_info {
enum ipmi_addr_src addr_src;
struct device *dev;
union {

struct {
void *acpi_handle;

} acpi_info;
} addr_info;

};

Currently special info for only for SI_ACPI address sources is returned. Others
may be added as necessary.

880 Chapter 26. The Linux IPMI Driver

Linux Driver-api Documentation

Note that the dev pointer is included in the above structure, and assuming
ipmi_smi_get_info returns success, you must call put_device on the dev pointer.

26.11 Watchdog

A watchdog timer is provided that implements the Linux-standard watchdog timer
interface. It has three module parameters that can be used to control it:

modprobe ipmi_watchdog timeout=<t> pretimeout=<t> action=<action type>
preaction=<preaction type> preop=<preop type> start_now=x
nowayout=x ifnum_to_use=n panic_wdt_timeout=<t>

ifnum_to_use specifies which interface the watchdog timer should use. The default
is -1, which means to pick the first one registered.

The timeout is the number of seconds to the action, and the pretimeout is the
amount of seconds before the reset that the pre-timeout panic will occur (if pre-
timeout is zero, then pretimeout will not be enabled). Note that the pretimeout is
the time before the final timeout. So if the timeout is 50 seconds and the pretime-
out is 10 seconds, then the pretimeout will occur in 40 second (10 seconds before
the timeout). The panic_wdt_timeout is the value of timeout which is set on kernel
panic, in order to let actions such as kdump to occur during panic.

The action may be“reset”,“power_cycle”, or“power_off”, and specifies what
to do when the timer times out, and defaults to “reset”.
The preaction may be “pre_smi”for an indication through the SMI interface,
“pre_int”for an indication through the SMI with an interrupts, and “pre_nmi”
for a NMI on a preaction. This is how the driver is informed of the pretimeout.

The preop may be set to “preop_none”for no operation on a pretimeout,
“preop_panic”to set the preoperation to panic, or “preop_give_data”to provide
data to read from the watchdog device when the pretimeout occurs. A“pre_nmi”
setting CANNOT be used with“preop_give_data”because you can’t do data op-
erations from an NMI.

When preop is set to “preop_give_data”, one byte comes ready to read on the
device when the pretimeout occurs. Select and fasync work on the device, as well.

If start_now is set to 1, the watchdog timer will start running as soon as the driver
is loaded.

If nowayout is set to 1, the watchdog timer will not stop when the watch-
dog device is closed. The default value of nowayout is true if the CON-
FIG_WATCHDOG_NOWAYOUT option is enabled, or false if not.

When compiled into the kernel, the kernel command line is available for configur-
ing the watchdog:

ipmi_watchdog.timeout=<t> ipmi_watchdog.pretimeout=<t>
ipmi_watchdog.action=<action type>
ipmi_watchdog.preaction=<preaction type>
ipmi_watchdog.preop=<preop type>
ipmi_watchdog.start_now=x

(continues on next page)

26.11. Watchdog 881

Linux Driver-api Documentation

(continued from previous page)
ipmi_watchdog.nowayout=x
ipmi_watchdog.panic_wdt_timeout=<t>

The options are the same as the module parameter options.

The watchdog will panic and start a 120 second reset timeout if it gets a pre-action.
During a panic or a reboot, the watchdog will start a 120 timer if it is running to
make sure the reboot occurs.

Note that if you use the NMI preaction for the watchdog, you MUST NOT use the
nmi watchdog. There is no reasonable way to tell if an NMI comes from the IPMI
controller, so it must assume that if it gets an otherwise unhandled NMI, it must
be from IPMI and it will panic immediately.

Once you open the watchdog timer, you must write a‘V’character to the device
to close it, or the timer will not stop. This is a new semantic for the driver, but
makes it consistent with the rest of the watchdog drivers in Linux.

26.12 Panic Timeouts

The OpenIPMI driver supports the ability to put semi-custom and custom events in
the system event log if a panic occurs. if you enable the‘Generate a panic event
to all BMCs on a panic’option, you will get one event on a panic in a standard
IPMI event format. If you enable the‘Generate OEM events containing the panic
string’option, you will also get a bunch of OEM events holding the panic string.

The field settings of the events are:

• Generator ID: 0x21 (kernel)

• EvM Rev: 0x03 (this event is formatting in IPMI 1.0 format)

• Sensor Type: 0x20 (OS critical stop sensor)

• Sensor #: The first byte of the panic string (0 if no panic string)

• Event Dir | Event Type: 0x6f (Assertion, sensor-specific event info)

• Event Data 1: 0xa1 (Runtime stop in OEM bytes 2 and 3)

• Event data 2: second byte of panic string

• Event data 3: third byte of panic string

See the IPMI spec for the details of the event layout. This event is always sent to
the local management controller. It will handle routing the message to the right
place

Other OEM events have the following format:

• Record ID (bytes 0-1): Set by the SEL.

• Record type (byte 2): 0xf0 (OEM non-timestamped)

• byte 3: The slave address of the card saving the panic

882 Chapter 26. The Linux IPMI Driver

Linux Driver-api Documentation

• byte 4: A sequence number (starting at zero) The rest of the bytes (11 bytes)
are the panic string. If the panic string is longer than 11 bytes, multiple
messages will be sent with increasing sequence numbers.

Because you cannot send OEM events using the standard interface, this function
will attempt to find an SEL and add the events there. It will first query the capabil-
ities of the local management controller. If it has an SEL, then they will be stored
in the SEL of the local management controller. If not, and the local management
controller is an event generator, the event receiver from the local management
controller will be queried and the events sent to the SEL on that device. Other-
wise, the events go nowhere since there is nowhere to send them.

26.13 Poweroff

If the poweroff capability is selected, the IPMI driver will install a shutdown func-
tion into the standard poweroff function pointer. This is in the ipmi_poweroff
module. When the system requests a powerdown, it will send the proper IPMI
commands to do this. This is supported on several platforms.

There is a module parameter named “poweroff_powercycle”that may either be
zero (do a power down) or non-zero (do a power cycle, power the system off, then
power it on in a few seconds). Setting ipmi_poweroff.poweroff_control=x will do
the same thing on the kernel command line. The parameter is also available via
the proc filesystem in /proc/sys/dev/ipmi/poweroff_powercycle. Note that if the
system does not support power cycling, it will always do the power off.

The“ifnum_to_use”parameter specifies which interface the poweroff code should
use. The default is -1, which means to pick the first one registered.

Note that if you have ACPI enabled, the system will prefer using ACPI to power
off.

26.13. Poweroff 883

Linux Driver-api Documentation

884 Chapter 26. The Linux IPMI Driver

CHAPTER

TWENTYSEVEN

I3C SUBSYSTEM

27.1 I3C protocol

27.1.1 Disclaimer

This chapter will focus on aspects that matter to software developers. For every-
thing hardware related (like how things are transmitted on the bus, how collisions
are prevented, ⋯) please have a look at the I3C specification.
This document is just a brief introduction to the I3C protocol and the con-
cepts it brings to the table. If you need more information, please refer to
the MIPI I3C specification (can be downloaded here http://resources.mipi.org/
mipi-i3c-v1-download).

27.1.2 Introduction

The I3C (pronounced‘eye-three-see’) is a MIPI standardized protocol designed
to overcome I2C limitations (limited speed, external signals needed for interrupts,
no automatic detection of the devices connected to the bus, ⋯) while remaining
power-efficient.

27.1.3 I3C Bus

An I3C bus is made of several I3C devices and possibly some I2C devices as well,
but let’s focus on I3C devices for now.
An I3C device on the I3C bus can have one of the following roles:

• Master: the device is driving the bus. It’s the one in charge of initiating
transactions or deciding who is allowed to talk on the bus (slave generated
events are possible in I3C, see below).

• Slave: the device acts as a slave, and is not able to send frames to another
slave on the bus. The device can still send events to the master on its own
initiative if the master allowed it.

I3C is a multi-master protocol, so there might be several masters on a bus, though
only one device can act as a master at a given time. In order to gain bus ownership,
a master has to follow a specific procedure.

885

http://resources.mipi.org/mipi-i3c-v1-download
http://resources.mipi.org/mipi-i3c-v1-download

Linux Driver-api Documentation

Each device on the I3C bus has to be assigned a dynamic address to be able to
communicate. Until this is done, the device should only respond to a limited set of
commands. If it has a static address (also called legacy I2C address), the device
can reply to I2C transfers.

In addition to these per-device addresses, the protocol defines a broadcast address
in order to address all devices on the bus.

Once a dynamic address has been assigned to a device, this address will be used
for any direct communication with the device. Note that even after being assigned
a dynamic address, the device should still process broadcast messages.

27.1.4 I3C Device discovery

The I3C protocol defines a mechanism to automatically discover devices present
on the bus, their capabilities and the functionalities they provide. In this regard
I3C is closer to a discoverable bus like USB than it is to I2C or SPI.

The discovery mechanism is called DAA (Dynamic Address Assignment), because
it not only discovers devices but also assigns them a dynamic address.

During DAA, each I3C device reports 3 important things:

• BCR: Bus Characteristic Register. This 8-bit register describes the device bus
related capabilities

• DCR: Device Characteristic Register. This 8-bit register describes the func-
tionalities provided by the device

• Provisional ID: A 48-bit unique identifier. On a given bus there should be no
Provisional ID collision, otherwise the discovery mechanism may fail.

27.1.5 I3C slave events

The I3C protocol allows slaves to generate events on their own, and thus allows
them to take temporary control of the bus.

This mechanism is called IBI for In Band Interrupts, and as stated in the name, it
allows devices to generate interrupts without requiring an external signal.

During DAA, each device on the bus has been assigned an address, and this address
will serve as a priority identifier to determine who wins if 2 different devices are
generating an interrupt at the same moment on the bus (the lower the dynamic
address the higher the priority).

Masters are allowed to inhibit interrupts if they want to. This inhibition request
can be broadcast (applies to all devices) or sent to a specific device.

886 Chapter 27. I3C subsystem

Linux Driver-api Documentation

27.1.6 I3C Hot-Join

The Hot-Join mechanism is similar to USB hotplug. This mechanism allows slaves
to join the bus after it has been initialized by the master.

This covers the following use cases:

• the device is not powered when the bus is probed

• the device is hotplugged on the bus through an extension board

This mechanism is relying on slave events to inform the master that a new device
joined the bus and is waiting for a dynamic address.

The master is then free to address the request as it wishes: ignore it or assign a
dynamic address to the slave.

27.1.7 I3C transfer types

If you omit SMBus (which is just a standardization on how to access registers
exposed by I2C devices), I2C has only one transfer type.

I3C defines 3 different classes of transfer in addition to I2C transfers which are
here for backward compatibility with I2C devices.

I3C CCC commands

CCC (Common Command Code) commands are meant to be used for anything that
is related to bus management and all features that are common to a set of devices.

CCC commands contain an 8-bit CCC ID describing the command that is executed.
The MSB of this ID specifies whether this is a broadcast command (bit7 = 0) or a
unicast one (bit7 = 1).

The command ID can be followed by a payload. Depending on the command, this
payload is either sent by the master sending the command (write CCC command),
or sent by the slave receiving the command (read CCC command). Of course,
read accesses only apply to unicast commands. Note that, when sending a CCC
command to a specific device, the device address is passed in the first byte of the
payload.

The payload length is not explicitly passed on the bus, and should be extracted
from the CCC ID.

Note that vendors can use a dedicated range of CCC IDs for their own commands
(0x61-0x7f and 0xe0-0xef).

27.1. I3C protocol 887

Linux Driver-api Documentation

I3C Private SDR transfers

Private SDR (Single Data Rate) transfers should be used for anything that is device
specific and does not require high transfer speed.

It is the equivalent of I2C transfers but in the I3C world. Each transfer is passed
the device address (dynamic address assigned during DAA), a payload and a di-
rection.

The only difference with I2C is that the transfer is much faster (typical clock fre-
quency is 12.5MHz).

I3C HDR commands

HDR commands should be used for anything that is device specific and requires
high transfer speed.

The first thing attached to an HDR command is the HDRmode. There are currently
3 different modes defined by the I3C specification (refer to the specification for
more details):

• HDR-DDR: Double Data Rate mode

• HDR-TSP: Ternary Symbol Pure. Only usable on busses with no I2C devices

• HDR-TSL: Ternary Symbol Legacy. Usable on busses with I2C devices

When sending an HDR command, the whole bus has to enter HDR mode, which is
done using a broadcast CCC command. Once the bus has entered a specific HDR
mode, the master sends the HDR command. An HDR command is made of:

• one 16-bits command word in big endian

• N 16-bits data words in big endian

Those words may be wrapped with specific preambles/post-ambles which depend
on the chosen HDR mode and are detailed here (see the specification for more
details).

The 16-bits command word is made of:

• bit[15]: direction bit, read is 1, write is 0

• bit[14:8]: command code. Identifies the command being executed, the
amount of data words and their meaning

• bit[7:1]: I3C address of the device this command is addressed to

• bit[0]: reserved/parity-bit

888 Chapter 27. I3C subsystem

Linux Driver-api Documentation

27.1.8 Backward compatibility with I2C devices

The I3C protocol has been designed to be backward compatible with I2C devices.
This backward compatibility allows one to connect a mix of I2C and I3C devices
on the same bus, though, in order to be really efficient, I2C devices should be
equipped with 50 ns spike filters.

I2C devices can’t be discovered like I3C ones and have to be statically declared.
In order to let the master know what these devices are capable of (both in terms
of bus related limitations and functionalities), the software has to provide some
information, which is done through the LVR (Legacy I2C Virtual Register).

27.2 I3C device driver API

enum i3c_error_code
I3C error codes

Constants
I3C_ERROR_UNKNOWN unknown error, usually means the error is not I3C related

I3C_ERROR_M0 M0 error

I3C_ERROR_M1 M1 error

I3C_ERROR_M2 M2 error

Description
These are the standard error codes as defined by the I3C specification. When -EIO
is returned by the i3c_device_do_priv_xfers() or i3c_device_send_hdr_cmds()
one can check the error code in struct_i3c_priv_xfer.err or struct
i3c_hdr_cmd.err to get a better idea of what went wrong.

enum i3c_hdr_mode
HDR mode ids

Constants
I3C_HDR_DDR DDR mode

I3C_HDR_TSP TSP mode

I3C_HDR_TSL TSL mode

struct i3c_priv_xfer
I3C SDR private transfer

Definition

struct i3c_priv_xfer {
u8 rnw;
u16 len;
union {

void *in;
const void *out;

} data;
(continues on next page)

27.2. I3C device driver API 889

Linux Driver-api Documentation

(continued from previous page)
enum i3c_error_code err;

};

Members
rnw encodes the transfer direction. true for a read, false for a write

len transfer length in bytes of the transfer

data input/output buffer

data.in input buffer. Must point to a DMA-able buffer

data.out output buffer. Must point to a DMA-able buffer

err I3C error code

enum i3c_dcr
I3C DCR values

Constants
I3C_DCR_GENERIC_DEVICE generic I3C device

struct i3c_device_info
I3C device information

Definition

struct i3c_device_info {
u64 pid;
u8 bcr;
u8 dcr;
u8 static_addr;
u8 dyn_addr;
u8 hdr_cap;
u8 max_read_ds;
u8 max_write_ds;
u8 max_ibi_len;
u32 max_read_turnaround;
u16 max_read_len;
u16 max_write_len;

};

Members
pid Provisional ID

bcr Bus Characteristic Register

dcr Device Characteristic Register

static_addr static/I2C address

dyn_addr dynamic address

hdr_cap supported HDR modes

max_read_ds max read speed information

max_write_ds max write speed information

890 Chapter 27. I3C subsystem

Linux Driver-api Documentation

max_ibi_len max IBI payload length

max_read_turnaround max read turn-around time in micro-seconds

max_read_len max private SDR read length in bytes

max_write_len max private SDR write length in bytes

Description
These are all basic information that should be advertised by an I3C device. Some of
them are optional depending on the device type and device capabilities. For each
I3C slave attached to a master with i3c_master_add_i3c_dev_locked(), the core
will send the relevant CCC command to retrieve these data.

struct i3c_driver
I3C device driver

Definition

struct i3c_driver {
struct device_driver driver;
int (*probe)(struct i3c_device *dev);
int (*remove)(struct i3c_device *dev);
const struct i3c_device_id *id_table;

};

Members
driver inherit from device_driver

probe I3C device probe method

remove I3C device remove method

id_table I3C device match table. Will be used by the framework to decide which
device to bind to this driver

module_i3c_driver(__drv)
Register a module providing an I3C driver

Parameters
__drv the I3C driver to register

Description
Provide generic init/exit functions that simply register/unregister an I3C driver.
Should be used by any driver that does not require extra init/cleanup steps.

int i3c_i2c_driver_register(struct i3c_driver * i3cdrv, struct i2c_driver
* i2cdrv)

Register an i2c and an i3c driver

Parameters
struct i3c_driver * i3cdrv the I3C driver to register

struct i2c_driver * i2cdrv the I2C driver to register

Description

27.2. I3C device driver API 891

Linux Driver-api Documentation

This function registers both i2cdev and i3cdev, and fails if one of these registra-
tions fails. This is mainly useful for devices that support both I2C and I3C modes.
Note that when CONFIG_I3C is not enabled, this function only registers the I2C
driver.

Return
0 if both registrations succeeds, a negative error code otherwise.

void i3c_i2c_driver_unregister(struct i3c_driver * i3cdrv, struct
i2c_driver * i2cdrv)

Unregister an i2c and an i3c driver

Parameters
struct i3c_driver * i3cdrv the I3C driver to register

struct i2c_driver * i2cdrv the I2C driver to register

Description
This function unregisters both i3cdrv and i2cdrv. Note that when CONFIG_I3C
is not enabled, this function only unregisters the i2cdrv.
module_i3c_i2c_driver(__i3cdrv, __i2cdrv)

Register a module providing an I3C and an I2C driver

Parameters
__i3cdrv the I3C driver to register

__i2cdrv the I3C driver to register

Description
Provide generic init/exit functions that simply register/unregister an I3C and an
I2C driver. This macro can be used even if CONFIG_I3C is disabled, in this case,
only the I2C driver will be registered. Should be used by any driver that does not
require extra init/cleanup steps.

struct i3c_ibi_setup
IBI setup object

Definition

struct i3c_ibi_setup {
unsigned int max_payload_len;
unsigned int num_slots;
void (*handler)(struct i3c_device *dev, const struct i3c_ibi_payload␣

↪→*payload);
};

Members
max_payload_len maximum length of the payload associated to an IBI. If one IBI

appears to have a payload that is bigger than this number, the IBI will be
rejected.

num_slots number of pre-allocated IBI slots. This should be chosen so that the
system never runs out of IBI slots, otherwise you’ll lose IBIs.

892 Chapter 27. I3C subsystem

Linux Driver-api Documentation

handler IBI handler, every time an IBI is received. This handler is called in a
workqueue context. It is allowed to sleep and send new messages on the bus,
though it’s recommended to keep the processing done there as fast as possible
to avoid delaying processing of other queued on the same workqueue.

Description
Temporary structure used to pass information to i3c_device_request_ibi().
This object can be allocated on the stack since i3c_device_request_ibi() copies
every bit of information and do not use it after i3c_device_request_ibi() has re-
turned.

int i3c_device_do_priv_xfers(struct i3c_device * dev, struct i3c_priv_xfer
* xfers, int nxfers)

do I3C SDR private transfers directed to a specific device

Parameters
struct i3c_device * dev device with which the transfers should be done

struct i3c_priv_xfer * xfers array of transfers

int nxfers number of transfers

Description
Initiate one or several private SDR transfers with dev.
This function can sleep and thus cannot be called in atomic context.

Return
0 in case of success, a negative error core otherwise.

void i3c_device_get_info(struct i3c_device * dev, struct i3c_device_info
* info)

get I3C device information

Parameters
struct i3c_device * dev device we want information on

struct i3c_device_info * info the information object to fill in

Description
Retrieve I3C dev info.

int i3c_device_disable_ibi(struct i3c_device * dev)
Disable IBIs coming from a specific device

Parameters
struct i3c_device * dev device on which IBIs should be disabled

Description
This function disable IBIs coming from a specific device and wait for all pending
IBIs to be processed.

Return
0 in case of success, a negative error core otherwise.

27.2. I3C device driver API 893

Linux Driver-api Documentation

int i3c_device_enable_ibi(struct i3c_device * dev)
Enable IBIs coming from a specific device

Parameters
struct i3c_device * dev device on which IBIs should be enabled

Description
This function enable IBIs coming from a specific device and wait for all
pending IBIs to be processed. This should be called on a device where
i3c_device_request_ibi() has succeeded.

Note that IBIs from this device might be received before this function returns to
its caller.

Return
0 in case of success, a negative error core otherwise.

int i3c_device_request_ibi(struct i3c_device * dev, const struct
i3c_ibi_setup * req)

Request an IBI

Parameters
struct i3c_device * dev device for which we should enable IBIs

const struct i3c_ibi_setup * req setup requested for this IBI

Description
This function is responsible for pre-allocating all resources needed to process
IBIs coming from dev. When this function returns, the IBI is not enabled until
i3c_device_enable_ibi() is called.

Return
0 in case of success, a negative error core otherwise.

void i3c_device_free_ibi(struct i3c_device * dev)
Free all resources needed for IBI handling

Parameters
struct i3c_device * dev device on which you want to release IBI resources

Description
This function is responsible for de-allocating resources previously allocated
by i3c_device_request_ibi(). It should be called after disabling IBIs with
i3c_device_disable_ibi().

struct device * i3cdev_to_dev(struct i3c_device * i3cdev)
Returns the device embedded in i3cdev

Parameters
struct i3c_device * i3cdev I3C device

Return
a pointer to a device object.

894 Chapter 27. I3C subsystem

Linux Driver-api Documentation

struct i3c_device * dev_to_i3cdev(struct device * dev)
Returns the I3C device containing dev

Parameters
struct device * dev device object

Return
a pointer to an I3C device object.

const struct i3c_device_id * i3c_device_match_id(struct i3c_device
* i3cdev, const struct
i3c_device_id * id_table)

Returns the i3c_device_id entry matching i3cdev
Parameters
struct i3c_device * i3cdev I3C device

const struct i3c_device_id * id_table I3C device match table

Return
a pointer to an i3c_device_id object or NULL if there’s no match.
int i3c_driver_register_with_owner(struct i3c_driver * drv, struct mod-

ule * owner)
register an I3C device driver

Parameters
struct i3c_driver * drv driver to register

struct module * owner module that owns this driver

Description
Register drv to the core.
Return
0 in case of success, a negative error core otherwise.

void i3c_driver_unregister(struct i3c_driver * drv)
unregister an I3C device driver

Parameters
struct i3c_driver * drv driver to unregister

Description
Unregister drv.

27.2. I3C device driver API 895

Linux Driver-api Documentation

27.3 I3C master controller driver API

void i3c_bus_maintenance_lock(struct i3c_bus * bus)
Lock the bus for a maintenance operation

Parameters
struct i3c_bus * bus I3C bus to take the lock on

Description
This function takes the bus lock so that no other operations can occur on the bus.
This is needed for all kind of bus maintenance operation, like - enabling/disabling
slave events - re-triggering DAA - changing the dynamic address of a device - re-
linquishing mastership - ⋯
The reason for this kind of locking is that we don’t want drivers and core logic to
rely on I3C device information that could be changed behind their back.

void i3c_bus_maintenance_unlock(struct i3c_bus * bus)
Release the bus lock after a maintenance operation

Parameters
struct i3c_bus * bus I3C bus to release the lock on

Description
Should be called when the bus maintenance operation is done. See
i3c_bus_maintenance_lock() for more details on what these maintenance op-
erations are.

void i3c_bus_normaluse_lock(struct i3c_bus * bus)
Lock the bus for a normal operation

Parameters
struct i3c_bus * bus I3C bus to take the lock on

Description
This function takes the bus lock for any operation that is not a maintenance oper-
ation (see i3c_bus_maintenance_lock() for a non-exhaustive list of maintenance
operations). Basically all communications with I3C devices are normal operations
(HDR, SDR transfers or CCC commands that do not change bus state or I3C dy-
namic address).

Note that this lock is not guaranteeing serialization of normal operations. In other
words, transfer requests passed to the I3C master can be submitted in parallel
and I3C master drivers have to use their own locking to make sure two different
communications are not inter-mixed, or access to the output/input queue is not
done while the engine is busy.

void i3c_bus_normaluse_unlock(struct i3c_bus * bus)
Release the bus lock after a normal operation

Parameters
struct i3c_bus * bus I3C bus to release the lock on

896 Chapter 27. I3C subsystem

Linux Driver-api Documentation

Description
Should be called when a normal operation is done. See
i3c_bus_normaluse_lock() for more details on what these normal operations
are.

int i3c_master_get_free_addr(struct i3c_master_controller * master,
u8 start_addr)

get a free address on the bus

Parameters
struct i3c_master_controller * master I3C master object

u8 start_addr where to start searching

Description
This function must be called with the bus lock held in write mode.

Return
the first free address starting at start_addr (included) or -ENOMEM if there’s no
more address available.

int i3c_master_entdaa_locked(struct i3c_master_controller * master)
start a DAA (Dynamic Address Assignment) procedure

Parameters
struct i3c_master_controller * master master used to send frames on the

bus

Description
Send a ENTDAA CCC command to start a DAA procedure.

Note that this function only sends the ENTDAA CCC command, all the logic behind
dynamic address assignment has to be handled in the I3C master driver.

This function must be called with the bus lock held in write mode.

Return
0 in case of success, a positive I3C error code if the error is one of the official Mx
error codes, and a negative error code otherwise.

int i3c_master_disec_locked(struct i3c_master_controller * master,
u8 addr, u8 evts)

send a DISEC CCC command

Parameters
struct i3c_master_controller * master master used to send frames on the

bus

u8 addr a valid I3C slave address or I3C_BROADCAST_ADDR

u8 evts events to disable

Description
Send a DISEC CCC command to disable some or all events coming from a specific
slave, or all devices if addr is I3C_BROADCAST_ADDR.

27.3. I3C master controller driver API 897

Linux Driver-api Documentation

This function must be called with the bus lock held in write mode.

Return
0 in case of success, a positive I3C error code if the error is one of the official Mx
error codes, and a negative error code otherwise.

int i3c_master_enec_locked(struct i3c_master_controller * master,
u8 addr, u8 evts)

send an ENEC CCC command

Parameters
struct i3c_master_controller * master master used to send frames on the

bus

u8 addr a valid I3C slave address or I3C_BROADCAST_ADDR

u8 evts events to disable

Description
Sends an ENEC CCC command to enable some or all events coming from a specific
slave, or all devices if addr is I3C_BROADCAST_ADDR.
This function must be called with the bus lock held in write mode.

Return
0 in case of success, a positive I3C error code if the error is one of the official Mx
error codes, and a negative error code otherwise.

int i3c_master_defslvs_locked(struct i3c_master_controller * master)
send a DEFSLVS CCC command

Parameters
struct i3c_master_controller * master master used to send frames on the

bus

Description
Send a DEFSLVS CCC command containing all the devices known to the master.
This is useful when you have secondary masters on the bus to propagate device
information.

This should be called after all I3C devices have been discovered (in
other words, after the DAA procedure has finished) and instantiated in
i3c_master_controller_ops->bus_init(). It should also be called if a master
ACKed an Hot-Join request and assigned a dynamic address to the device joining
the bus.

This function must be called with the bus lock held in write mode.

Return
0 in case of success, a positive I3C error code if the error is one of the official Mx
error codes, and a negative error code otherwise.

int i3c_master_do_daa(struct i3c_master_controller * master)
do a DAA (Dynamic Address Assignment)

Parameters

898 Chapter 27. I3C subsystem

Linux Driver-api Documentation

struct i3c_master_controller * master master doing the DAA

Description
This function is instantiating an I3C device object and adding it to the I3C de-
vice list. All device information are automatically retrieved using standard CCC
commands.

The I3C device object is returned in case the master wants to attach private data
to it using i3c_dev_set_master_data().

This function must be called with the bus lock held in write mode.

Return
a 0 in case of success, an negative error code otherwise.

int i3c_master_set_info(struct i3c_master_controller * master, const
struct i3c_device_info * info)

set master device information

Parameters
struct i3c_master_controller * master master used to send frames on the

bus

const struct i3c_device_info * info I3C device information

Description
Set master device info. This should be called from
i3c_master_controller_ops->bus_init().

Not all i3c_device_info fields are meaningful for a master device. Here is a list
of fields that should be properly filled:

• i3c_device_info->dyn_addr

• i3c_device_info->bcr

• i3c_device_info->dcr

• i3c_device_info->pid

• i3c_device_info->hdr_cap if I3C_BCR_HDR_CAP bit is set in
i3c_device_info->bcr

This function must be called with the bus lock held in maintenance mode.

Return
0 if info contains valid information (not every piece of information can be checked,
but we can at least make sure info->dyn_addr and info->bcr are correct), -
EINVAL otherwise.

int i3c_master_bus_init(struct i3c_master_controller * master)
initialize an I3C bus

Parameters
struct i3c_master_controller * master main master initializing the bus

27.3. I3C master controller driver API 899

Linux Driver-api Documentation

Description
This function is following all initialisation steps described in the I3C specification:

1. Attach I2C and statically defined I3C devs to the master so that the master
can fill its internal device table appropriately

2. Call i3c_master_controller_ops->bus_init()method to initialize themas-
ter controller. That’s usually where the bus mode is selected (pure bus or
mixed fast/slow bus)

3. Instruct all devices on the bus to drop their dynamic address. This is particu-
larly important when the bus was previously configured by someone else (for
example the bootloader)

4. Disable all slave events.

5. Pre-assign dynamic addresses requested by the FW with SETDASA for I3C
devices that have a static address

6. Do a DAA (Dynamic Address Assignment) to assign dynamic addresses to all
remaining I3C devices

Once this is done, all I3C and I2C devices should be usable.

Return
a 0 in case of success, an negative error code otherwise.

int i3c_master_add_i3c_dev_locked(struct i3c_master_controller
* master, u8 addr)

add an I3C slave to the bus

Parameters
struct i3c_master_controller * master master used to send frames on the

bus

u8 addr I3C slave dynamic address assigned to the device

Description
This function is instantiating an I3C device object and adding it to the I3C de-
vice list. All device information are automatically retrieved using standard CCC
commands.

The I3C device object is returned in case the master wants to attach private data
to it using i3c_dev_set_master_data().

This function must be called with the bus lock held in write mode.

Return
a 0 in case of success, an negative error code otherwise.

void i3c_master_queue_ibi(struct i3c_dev_desc * dev, struct i3c_ibi_slot
* slot)

Queue an IBI

Parameters
struct i3c_dev_desc * dev the device this IBI is coming from

struct i3c_ibi_slot * slot the IBI slot used to store the payload

900 Chapter 27. I3C subsystem

Linux Driver-api Documentation

Description
Queue an IBI to the controller workqueue. The IBI handler attached to the dev
will be called from a workqueue context.

void i3c_generic_ibi_free_pool(struct i3c_generic_ibi_pool * pool)
Free a generic IBI pool

Parameters
struct i3c_generic_ibi_pool * pool the IBI pool to free

Description
Free all IBI slots allated by a generic IBI pool.

struct i3c_generic_ibi_pool * i3c_generic_ibi_alloc_pool(struct
i3c_dev_desc
* dev, const
struct
i3c_ibi_setup
* req)

Create a generic IBI pool

Parameters
struct i3c_dev_desc * dev the device this pool will be used for

const struct i3c_ibi_setup * req IBI setup request describing what the de-
vice driver expects

Description
Create a generic IBI pool based on the information provided in req.
Return
a valid IBI pool in case of success, an ERR_PTR() otherwise.

struct i3c_ibi_slot * i3c_generic_ibi_get_free_slot(struct
i3c_generic_ibi_pool
* pool)

Get a free slot from a generic IBI pool

Parameters
struct i3c_generic_ibi_pool * pool the pool to query an IBI slot on

Description
Search for a free slot in a generic IBI pool. The slot should be returned to the pool
using i3c_generic_ibi_recycle_slot() when it’s no longer needed.
Return
a pointer to a free slot, or NULL if there’s no free slot available.
void i3c_generic_ibi_recycle_slot(struct i3c_generic_ibi_pool * pool,

struct i3c_ibi_slot * s)
Return a slot to a generic IBI pool

Parameters
struct i3c_generic_ibi_pool * pool the pool to return the IBI slot to

27.3. I3C master controller driver API 901

Linux Driver-api Documentation

struct i3c_ibi_slot * s IBI slot to recycle

Description
Add an IBI slot back to its generic IBI pool. Should be called from the master
driver struct_master_controller_ops->recycle_ibi() method.

int i3c_master_register(struct i3c_master_controller * master,
struct device * parent, const struct
i3c_master_controller_ops * ops, bool secondary)

register an I3C master

Parameters
struct i3c_master_controller * master master used to send frames on the

bus

struct device * parent the parent device (the one that provides this I3C mas-
ter controller)

const struct i3c_master_controller_ops * ops the master controller opera-
tions

bool secondary true if you are registering a secondary master. Will return -
ENOTSUPP if set to true since secondary masters are not yet supported

Description
This function takes care of everything for you:

• creates and initializes the I3C bus

• populates the bus with static I2C devs if parent->of_node is not NULL
• registers all I3C devices added by the controller during bus initialization

• registers the I2C adapter and all I2C devices

Return
0 in case of success, a negative error code otherwise.

int i3c_master_unregister(struct i3c_master_controller * master)
unregister an I3C master

Parameters
struct i3c_master_controller * master master used to send frames on the

bus

Description
Basically undo everything done in i3c_master_register().

Return
0 in case of success, a negative error code otherwise.

struct i3c_i2c_dev_desc
Common part of the I3C/I2C device descriptor

Definition

902 Chapter 27. I3C subsystem

Linux Driver-api Documentation

struct i3c_i2c_dev_desc {
struct list_head node;
struct i3c_master_controller *master;
void *master_priv;

};

Members
node node element used to insert the slot into the I2C or I3C device list

master I3C master that instantiated this device. Will be used to do I2C/I3C trans-
fers

master_priv master private data assigned to the device. Can be used to add mas-
ter specific information

Description
This structure is describing common I3C/I2C dev information.

struct i2c_dev_boardinfo
I2C device board information

Definition

struct i2c_dev_boardinfo {
struct list_head node;
struct i2c_board_info base;
u8 lvr;

};

Members
node used to insert the boardinfo object in the I2C boardinfo list

base regular I2C board information

lvr LVR (Legacy Virtual Register) needed by the I3C core to know about the I2C
device limitations

Description
This structure is used to attach board-level information to an I2C device. Each I2C
device connected on the I3C bus should have one.

struct i2c_dev_desc
I2C device descriptor

Definition

struct i2c_dev_desc {
struct i3c_i2c_dev_desc common;
const struct i2c_dev_boardinfo *boardinfo;
struct i2c_client *dev;
u16 addr;
u8 lvr;

};

Members
common common part of the I2C device descriptor

27.3. I3C master controller driver API 903

Linux Driver-api Documentation

boardinfo pointer to the boardinfo attached to this I2C device

dev I2C device object registered to the I2C framework

addr I2C device address

lvr LVR (Legacy Virtual Register) needed by the I3C core to know about the I2C
device limitations

Description
Each I2C device connected on the bus will have an i2c_dev_desc. This
object is created by the core and later attached to the controller using
struct_i3c_master_controller->ops->attach_i2c_dev().

struct_i2c_dev_desc is the internal representation of an I2C device connected on
an I3C bus. This object is also passed to all struct_i3c_master_controller_ops
hooks.

struct i3c_ibi_slot
I3C IBI (In-Band Interrupt) slot

Definition

struct i3c_ibi_slot {
struct work_struct work;
struct i3c_dev_desc *dev;
unsigned int len;
void *data;

};

Members
work work associated to this slot. The IBI handler will be called from there

dev the I3C device that has generated this IBI

len length of the payload associated to this IBI

data payload buffer

Description
An IBI slot is an object pre-allocated by the controller and used when an IBI
comes in. Every time an IBI comes in, the I3C master driver should find a free
IBI slot in its IBI slot pool, retrieve the IBI payload and queue the IBI using
i3c_master_queue_ibi().

How IBI slots are allocated is left to the I3C master driver, though, for simple
kmalloc-based allocation, the generic IBI slot pool can be used.

struct i3c_device_ibi_info
IBI information attached to a specific device

Definition

struct i3c_device_ibi_info {
struct completion all_ibis_handled;
atomic_t pending_ibis;
unsigned int max_payload_len;
unsigned int num_slots;

(continues on next page)

904 Chapter 27. I3C subsystem

Linux Driver-api Documentation

(continued from previous page)
unsigned int enabled;
void (*handler)(struct i3c_device *dev, const struct i3c_ibi_payload␣

↪→*payload);
};

Members
all_ibis_handled used to be informed when no more IBIs are waiting to be pro-

cessed. Used by i3c_device_disable_ibi() to wait for all IBIs to be de-
queued

pending_ibis count the number of pending IBIs. Each pending IBI has its work
element queued to the controller workqueue

max_payload_len maximum payload length for an IBI coming from this device.
this value is specified when calling i3c_device_request_ibi() and should
not change at run time. All messages IBIs exceeding this limit should be
rejected by the master

num_slots number of IBI slots reserved for this device

enabled reflect the IBI status

handler IBI handler specified at i3c_device_request_ibi() call time. This han-
dler will be called from the controller workqueue, and as such is allowed to
sleep (though it is recommended to process the IBI as fast as possible to not
stall processing of other IBIs queued on the same workqueue). New I3C mes-
sages can be sent from the IBI handler

Description
The struct_i3c_device_ibi_info object is allocated when
i3c_device_request_ibi() is called and attached to a specific device. This
object is here to manage IBIs coming from a specific I3C device.

Note that this structure is the generic view of the IBI management infrastructure.
I3C master drivers may have their own internal representation which they can
associate to the device using controller-private data.

struct i3c_dev_boardinfo
I3C device board information

Definition

struct i3c_dev_boardinfo {
struct list_head node;
u8 init_dyn_addr;
u8 static_addr;
u64 pid;
struct device_node *of_node;

};

Members
node used to insert the boardinfo object in the I3C boardinfo list

init_dyn_addr initial dynamic address requested by the FW. We provide no guar-
antee that the device will end up using this address, but try our best to assign

27.3. I3C master controller driver API 905

Linux Driver-api Documentation

this specific address to the device

static_addr static address the I3C device listen on before it’s been assigned
a dynamic address by the master. Will be used during bus initialization to
assign it a specific dynamic address before starting DAA (Dynamic Address
Assignment)

pid I3C Provisional ID exposed by the device. This is a unique identifier that may
be used to attach boardinfo to i3c_dev_desc when the device does not have a
static address

of_node optional DT node in case the device has been described in the DT

Description
This structure is used to attach board-level information to an I3C device. Not all
I3C devices connected on the bus will have a boardinfo. It’s only needed if you
want to attach extra resources to a device or assign it a specific dynamic address.

struct i3c_dev_desc
I3C device descriptor

Definition

struct i3c_dev_desc {
struct i3c_i2c_dev_desc common;
struct i3c_device_info info;
struct mutex ibi_lock;
struct i3c_device_ibi_info *ibi;
struct i3c_device *dev;
const struct i3c_dev_boardinfo *boardinfo;

};

Members
common common part of the I3C device descriptor

info I3C device information. Will be automatically filled when you create your
device with i3c_master_add_i3c_dev_locked()

ibi_lock lock used to protect the struct_i3c_device->ibi

ibi IBI info attached to a device. Should be NULL until
i3c_device_request_ibi() is called

dev pointer to the I3C device object exposed to I3C device drivers. This should
never be accessed from I3C master controller drivers. Only core code should
manipulate it in when updating the dev <-> desc link or when propagating
IBI events to the driver

boardinfo pointer to the boardinfo attached to this I3C device

Description
Internal representation of an I3C device. This object is only used by the core
and passed to I3C master controller drivers when they’re requested to do some
operations on the device. The core maintains the link between the internal I3C dev
descriptor and the object exposed to the I3C device drivers (struct_i3c_device).

906 Chapter 27. I3C subsystem

Linux Driver-api Documentation

struct i3c_device
I3C device object

Definition

struct i3c_device {
struct device dev;
struct i3c_dev_desc *desc;
struct i3c_bus *bus;

};

Members
dev device object to register the I3C dev to the device model

desc pointer to an i3c device descriptor object. This link is updated every time
the I3C device is rediscovered with a different dynamic address assigned

bus I3C bus this device is attached to

Description
I3C device object exposed to I3C device drivers. The takes care of linking this
object to the relevant struct_i3c_dev_desc one. All I3C devs on the I3C bus are
represented, including I3C masters. For each of them, we have an instance of
struct i3c_device.

enum i3c_bus_mode
I3C bus mode

Constants
I3C_BUS_MODE_PURE only I3C devices are connected to the bus. No limitation ex-

pected

I3C_BUS_MODE_MIXED_FAST I2C devices with 50ns spike filter are present on the
bus. The only impact in this mode is that the high SCL pulse has to stay below
50ns to trick I2C devices when transmitting I3C frames

I3C_BUS_MODE_MIXED_LIMITED I2C devices without 50ns spike filter are present
on the bus. However they allow compliance up to the maximum SDR SCL
clock frequency.

I3C_BUS_MODE_MIXED_SLOW I2C devices without 50ns spike filter are present on
the bus

enum i3c_addr_slot_status
I3C address slot status

Constants
I3C_ADDR_SLOT_FREE address is free

I3C_ADDR_SLOT_RSVD address is reserved

I3C_ADDR_SLOT_I2C_DEV address is assigned to an I2C device

I3C_ADDR_SLOT_I3C_DEV address is assigned to an I3C device

I3C_ADDR_SLOT_STATUS_MASK address slot mask

27.3. I3C master controller driver API 907

Linux Driver-api Documentation

Description
On an I3C bus, addresses are assigned dynamically, and we need to know which
addresses are free to use and which ones are already assigned.

Addresses marked as reserved are those reserved by the I3C protocol (broadcast
address, ⋯).
struct i3c_bus

I3C bus object

Definition

struct i3c_bus {
struct i3c_dev_desc *cur_master;
int id;
unsigned long addrslots[((I2C_MAX_ADDR + 1) * 2) / BITS_PER_LONG];
enum i3c_bus_mode mode;
struct {

unsigned long i3c;
unsigned long i2c;

} scl_rate;
struct {

struct list_head i3c;
struct list_head i2c;

} devs;
struct rw_semaphore lock;

};

Members
cur_master I3C master currently driving the bus. Since I3C is multi-master this

can change over the time. Will be used to let a master know whether it needs
to request bus ownership before sending a frame or not

id bus ID. Assigned by the framework when register the bus

addrslots a bitmap with 2-bits per-slot to encode the address status and
ease the DAA (Dynamic Address Assignment) procedure (see enum
i3c_addr_slot_status)

mode bus mode (see enum i3c_bus_mode)

scl_rate SCL signal rate for I3C and I2C mode

scl_rate.i3c maximum rate for the clock signal when doing I3C SDR/priv trans-
fers

scl_rate.i2c maximum rate for the clock signal when doing I2C transfers

devs 2 lists containing all I3C/I2C devices connected to the bus

devs.i3c contains a list of I3C device descriptors representing I3C devices con-
nected on the bus and successfully attached to the I3C master

devs.i2c contains a list of I2C device descriptors representing I2C devices con-
nected on the bus and successfully attached to the I3C master

lock read/write lock on the bus. This is needed to protect against operations that
have an impact on the whole bus and the devices connected to it. For example,
when asking slaves to drop their dynamic address (RSTDAA CCC), we need to

908 Chapter 27. I3C subsystem

Linux Driver-api Documentation

make sure no one is trying to send I3C frames to these devices. Note that this
lock does not protect against concurrency between devices: several drivers
can send different I3C/I2C frames through the same master in parallel. This
is the responsibility of the master to guarantee that frames are actually sent
sequentially and not interlaced

Description
The I3C bus is represented with its own object and not implicitly described by
the I3C master to cope with the multi-master functionality, where one bus can be
shared amongst several masters, each of them requesting bus ownership when
they need to.

struct i3c_master_controller_ops
I3C master methods

Definition

struct i3c_master_controller_ops {
int (*bus_init)(struct i3c_master_controller *master);
void (*bus_cleanup)(struct i3c_master_controller *master);
int (*attach_i3c_dev)(struct i3c_dev_desc *dev);
int (*reattach_i3c_dev)(struct i3c_dev_desc *dev, u8 old_dyn_addr);
void (*detach_i3c_dev)(struct i3c_dev_desc *dev);
int (*do_daa)(struct i3c_master_controller *master);
bool (*supports_ccc_cmd)(struct i3c_master_controller *master, const␣

↪→struct i3c_ccc_cmd *cmd);
int (*send_ccc_cmd)(struct i3c_master_controller *master, struct i3c_ccc_

↪→cmd *cmd);
int (*priv_xfers)(struct i3c_dev_desc *dev,struct i3c_priv_xfer *xfers,␣

↪→int nxfers);
int (*attach_i2c_dev)(struct i2c_dev_desc *dev);
void (*detach_i2c_dev)(struct i2c_dev_desc *dev);
int (*i2c_xfers)(struct i2c_dev_desc *dev, const struct i2c_msg *xfers,␣

↪→int nxfers);
int (*request_ibi)(struct i3c_dev_desc *dev, const struct i3c_ibi_setup␣

↪→*req);
void (*free_ibi)(struct i3c_dev_desc *dev);
int (*enable_ibi)(struct i3c_dev_desc *dev);
int (*disable_ibi)(struct i3c_dev_desc *dev);
void (*recycle_ibi_slot)(struct i3c_dev_desc *dev, struct i3c_ibi_slot␣

↪→*slot);
};

Members
bus_init hook responsible for the I3C bus initialization. You should at least call

master_set_info() from there and set the busmode. You can also put controller
specific initialization in there. This method is mandatory.

bus_cleanup cleanup everything done in i3c_master_controller_ops->bus_init().
This method is optional.

attach_i3c_dev called every time an I3C device is attached to the bus. It can be
after a DAA or when a device is statically declared by the FW, in which case
it will only have a static address and the dynamic address will be 0. When
this function is called, device information have not been retrieved yet. This

27.3. I3C master controller driver API 909

Linux Driver-api Documentation

is a good place to attach master controller specific data to I3C devices. This
method is optional.

reattach_i3c_dev called every time an I3C device has its addressed changed. It
can be because the device has been powered down and has lost its address,
or it can happen when a device had a static address and has been assigned a
dynamic address with SETDASA. This method is optional.

detach_i3c_dev called when an I3C device is detached from the bus. Usually
happens when the master device is unregistered. This method is optional.

do_daa do a DAA (Dynamic Address Assignment) procedure. This is procedure
should send an ENTDAA CCC command and then add all devices discov-
ered sure the DAA using i3c_master_add_i3c_dev_locked(). Add devices
added with i3c_master_add_i3c_dev_locked() will then be attached or re-
attached to the controller. This method is mandatory.

supports_ccc_cmd should return true if the CCC command is supported, false
otherwise. This method is optional, if not provided the core assumes all CCC
commands are supported.

send_ccc_cmd send a CCC command This method is mandatory.

priv_xfers do one or several private I3C SDR transfers Thismethod ismandatory.

attach_i2c_dev called every time an I2C device is attached to the bus. This is
a good place to attach master controller specific data to I2C devices. This
method is optional.

detach_i2c_dev called when an I2C device is detached from the bus. Usually
happens when the master device is unregistered. This method is optional.

i2c_xfers do one or several I2C transfers. Note that, unlike i3c transfers,
the core does not guarantee that buffers attached to the transfers are
DMA-safe. If drivers want to have DMA-safe buffers, they should use the
i2c_get_dma_safe_msg_buf() and i2c_put_dma_safe_msg_buf() helpers
provided by the I2C framework. This method is mandatory.

request_ibi attach an IBI handler to an I3C device. This implies defining an IBI
handler and the constraints of the IBI (maximum payload length and number
of pre-allocated slots). Some controllers support less IBI-capable devices than
regular devices, so this method might return -EBUSY if there’s no more space
for an extra IBI registration This method is optional.

free_ibi free an IBI previously requested with ->request_ibi(). The IBI should
have been disabled with ->disable_irq() prior to that This method is manda-
tory only if ->request_ibi is not NULL.

enable_ibi enable the IBI. Only valid if ->request_ibi() has been called prior to
->enable_ibi(). The controller should first enable the IBI on the controller
end (for example, unmask the hardware IRQ) and then send the ENEC CCC
command (with the IBI flag set) to the I3C device. This method is mandatory
only if ->request_ibi is not NULL.

disable_ibi disable an IBI. First send the DISEC CCC command with the IBI flag
set and then deactivate the hardware IRQ on the controller end. This method
is mandatory only if ->request_ibi is not NULL.

910 Chapter 27. I3C subsystem

Linux Driver-api Documentation

recycle_ibi_slot recycle an IBI slot. Called every time an IBI has been pro-
cessed by its handler. The IBI slot should be put back in the IBI slot pool
so that the controller can re-use it for a future IBI This method is mandatory
only if ->request_ibi is not NULL.

struct i3c_master_controller
I3C master controller object

Definition

struct i3c_master_controller {
struct device dev;
struct i3c_dev_desc *this;
struct i2c_adapter i2c;
const struct i3c_master_controller_ops *ops;
unsigned int secondary : 1;
unsigned int init_done : 1;
struct {

struct list_head i3c;
struct list_head i2c;

} boardinfo;
struct i3c_bus bus;
struct workqueue_struct *wq;

};

Members
dev device to be registered to the device-model

this an I3C device object representing this master. This device will be added to
the list of I3C devs available on the bus

i2c I2C adapter used for backward compatibility. This adapter is registered to
the I2C subsystem to be as transparent as possible to existing I2C drivers

ops master operations. See struct i3c_master_controller_ops

secondary true if the master is a secondary master

init_done true when the bus initialization is done

boardinfo board-level information attached to devices connected on the bus

boardinfo.i3c list of I3C boardinfo objects

boardinfo.i2c list of I2C boardinfo objects

bus I3C bus exposed by this master

wq workqueue used to execute IBI handlers. Can also be used by master drivers if
they need to postpone operations that need to take place in a thread context.
Typical examples are Hot Join processing which requires taking the bus lock
in maintenance, which in turn, can only be done from a sleep-able context

Description
A struct i3c_master_controller has to be registered to the I3C subsystem
through i3c_master_register(). None of struct i3c_master_controller
fields should be set manually, just pass appropriate values to
i3c_master_register().

27.3. I3C master controller driver API 911

Linux Driver-api Documentation

i3c_bus_for_each_i2cdev(bus, dev)
iterate over all I2C devices present on the bus

Parameters
bus the I3C bus

dev an I2C device descriptor pointer updated to point to the current slot at each
iteration of the loop

Description
Iterate over all I2C devs present on the bus.

i3c_bus_for_each_i3cdev(bus, dev)
iterate over all I3C devices present on the bus

Parameters
bus the I3C bus

dev and I3C device descriptor pointer updated to point to the current slot at each
iteration of the loop

Description
Iterate over all I3C devs present on the bus.

void * i3c_dev_get_master_data(const struct i3c_dev_desc * dev)
get master private data attached to an I3C device descriptor

Parameters
const struct i3c_dev_desc * dev the I3C device descriptor to get private data

from

Return
the private data previously attached with i3c_dev_set_master_data() or

NULL if no data has been attached to the device.

void i3c_dev_set_master_data(struct i3c_dev_desc * dev, void * data)
attach master private data to an I3C device descriptor

Parameters
struct i3c_dev_desc * dev the I3C device descriptor to attach private data to

void * data private data

Description
This functions allows a master controller to attach per-device private data which
can then be retrieved with i3c_dev_get_master_data().

void * i2c_dev_get_master_data(const struct i2c_dev_desc * dev)
get master private data attached to an I2C device descriptor

Parameters
const struct i2c_dev_desc * dev the I2C device descriptor to get private data

from

Return

912 Chapter 27. I3C subsystem

Linux Driver-api Documentation

the private data previously attached with i2c_dev_set_master_data() or
NULL if no data has been attached to the device.

void i2c_dev_set_master_data(struct i2c_dev_desc * dev, void * data)
attach master private data to an I2C device descriptor

Parameters
struct i2c_dev_desc * dev the I2C device descriptor to attach private data to

void * data private data

Description
This functions allows a master controller to attach per-device private data which
can then be retrieved with i2c_device_get_master_data().

struct i3c_master_controller * i3c_dev_get_master(struct i3c_dev_desc
* dev)

get master used to communicate with a device

Parameters
struct i3c_dev_desc * dev I3C dev

Return
the master controller driving dev
struct i3c_master_controller * i2c_dev_get_master(struct i2c_dev_desc

* dev)
get master used to communicate with a device

Parameters
struct i2c_dev_desc * dev I2C dev

Return
the master controller driving dev
struct i3c_bus * i3c_master_get_bus(struct i3c_master_controller

* master)
get the bus attached to a master

Parameters
struct i3c_master_controller * master master object

Return
the I3C bus master is connected to

27.3. I3C master controller driver API 913

Linux Driver-api Documentation

914 Chapter 27. I3C subsystem

CHAPTER

TWENTYEIGHT

GENERIC SYSTEM INTERCONNECT SUBSYSTEM

28.1 Introduction

This framework is designed to provide a standard kernel interface to control the
settings of the interconnects on an SoC. These settings can be throughput, latency
and priority between multiple interconnected devices or functional blocks. This
can be controlled dynamically in order to save power or provide maximum perfor-
mance.

The interconnect bus is hardware with configurable parameters, which can be
set on a data path according to the requests received from various drivers. An
example of interconnect buses are the interconnects between various components
or functional blocks in chipsets. There can be multiple interconnects on an SoC
that can be multi-tiered.

Below is a simplified diagram of a real-world SoC interconnect bus topology.

+----------------+ +----------------+
| HW Accelerator |--->| M NoC |<---------------+
+----------------+ +----------------+ |

| | +------------+
+-----+ +-------------+ V +------+ | |
| DDR | | +--------+ | PCIe | | |
+-----+ | | Slaves | +------+ | |
^ ^ | +--------+ | | C NoC |
| | V V | |

+------------------+ +------------------------+ | | +-----
↪→+
| |-->| |-->| |-->| CPU␣
↪→|
| |-->| |<--| | +-----
↪→+
| Mem NoC | | S NoC | +------------+
| |<--| |---------+ |
| |<--| |<------+ | | +-------
↪→-+
+------------------+ +------------------------+ | | +-->|␣
↪→Slaves |
^ ^ ^ ^ ^ | | +-------

↪→-+
| | | | | | V

+------+ | +-----+ +-----+ +---------+ +----------------+ +-------
↪→-+

(continues on next page)

915

Linux Driver-api Documentation

(continued from previous page)
| CPUs | | | GPU | | DSP | | Masters |-->| P NoC |-->|␣
↪→Slaves |
+------+ | +-----+ +-----+ +---------+ +----------------+ +-------
↪→-+

|
+-------+
| Modem |
+-------+

28.2 Terminology

Interconnect provider is the software definition of the interconnect hardware. The
interconnect providers on the above diagram are M NoC, S NoC, C NoC, P NoC
and Mem NoC.

Interconnect node is the software definition of the interconnect hardware port.
Each interconnect provider consists of multiple interconnect nodes, which are con-
nected to other SoC components including other interconnect providers. The point
on the diagram where the CPUs connect to the memory is called an interconnect
node, which belongs to the Mem NoC interconnect provider.

Interconnect endpoints are the first or the last element of the path. Every endpoint
is a node, but not every node is an endpoint.

Interconnect path is everything between two endpoints including all the nodes that
have to be traversed to reach from a source to destination node. It may include
multiple master-slave pairs across several interconnect providers.

Interconnect consumers are the entities which make use of the data paths exposed
by the providers. The consumers send requests to providers requesting various
throughput, latency and priority. Usually the consumers are device drivers, that
send request based on their needs. An example for a consumer is a video decoder
that supports various formats and image sizes.

28.3 Interconnect providers

Interconnect provider is an entity that implements methods to initialize and con-
figure interconnect bus hardware. The interconnect provider drivers should be
registered with the interconnect provider core.

struct icc_onecell_data
driver data for onecell interconnect providers

Definition

struct icc_onecell_data {
unsigned int num_nodes;
struct icc_node *nodes[];

};

Members

916 Chapter 28. Generic System Interconnect Subsystem

Linux Driver-api Documentation

num_nodes number of nodes in this device

nodes array of pointers to the nodes in this device

struct icc_provider
interconnect provider (controller) entity that might provide multiple inter-
connect controls

Definition

struct icc_provider {
struct list_head provider_list;
struct list_head nodes;
int (*set)(struct icc_node *src, struct icc_node *dst);
int (*aggregate)(struct icc_node *node, u32 tag, u32 avg_bw, u32 peak_bw,

↪→ u32 *agg_avg, u32 *agg_peak);
void (*pre_aggregate)(struct icc_node *node);
struct icc_node* (*xlate)(struct of_phandle_args *spec, void *data);
struct device *dev;
int users;
void *data;

};

Members
provider_list list of the registered interconnect providers

nodes internal list of the interconnect provider nodes

set pointer to device specific set operation function

aggregate pointer to device specific aggregate operation function

pre_aggregate pointer to device specific function that is called before the aggre-
gation begins (optional)

xlate provider-specific callback for mapping nodes from phandle arguments

dev the device this interconnect provider belongs to

users count of active users

data pointer to private data

struct icc_node
entity that is part of the interconnect topology

Definition

struct icc_node {
int id;
const char *name;
struct icc_node **links;
size_t num_links;
struct icc_provider *provider;
struct list_head node_list;
struct list_head search_list;
struct icc_node *reverse;
u8 is_traversed:1;
struct hlist_head req_list;
u32 avg_bw;

(continues on next page)

28.3. Interconnect providers 917

Linux Driver-api Documentation

(continued from previous page)
u32 peak_bw;
void *data;

};

Members
id platform specific node id

name node name used in debugfs

links a list of targets pointing to where we can go next when traversing

num_links number of links to other interconnect nodes

provider points to the interconnect provider of this node

node_list the list entry in the parent provider’s “nodes”list
search_list list used when walking the nodes graph

reverse pointer to previous node when walking the nodes graph

is_traversed flag that is used when walking the nodes graph

req_list a list of QoS constraint requests associated with this node

avg_bw aggregated value of average bandwidth requests from all consumers

peak_bw aggregated value of peak bandwidth requests from all consumers

data pointer to private data

28.4 Interconnect consumers

Interconnect consumers are the clients which use the interconnect APIs to get
paths between endpoints and set their bandwidth/latency/QoS requirements for
these interconnect paths. These interfaces are not currently documented.

28.5 Interconnect debugfs interfaces

Like several other subsystems interconnect will create some files for debugging
and introspection. Files in debugfs are not considered ABI so application software
shouldn’t rely on format details change between kernel versions.
/sys/kernel/debug/interconnect/interconnect_summary:

Show all interconnect nodes in the system with their aggregated bandwidth re-
quest. Indented under each node show bandwidth requests from each device.

/sys/kernel/debug/interconnect/interconnect_graph:

Show the interconnect graph in the graphviz dot format. It shows all interconnect
nodes and links in the system and groups together nodes from the same provider
as subgraphs. The format is human-readable and can also be piped through dot to
generate diagrams in many graphical formats:

918 Chapter 28. Generic System Interconnect Subsystem

Linux Driver-api Documentation

$ cat /sys/kernel/debug/interconnect/interconnect_graph | \
dot -Tsvg > interconnect_graph.svg

28.5. Interconnect debugfs interfaces 919

Linux Driver-api Documentation

920 Chapter 28. Generic System Interconnect Subsystem

CHAPTER

TWENTYNINE

DEVICE FREQUENCY SCALING

29.1 Introduction

This framework provides a standard kernel interface for Dynamic Voltage and Fre-
quency Switching on arbitrary devices.

It exposes controls for adjusting frequency through sysfs files which are similar to
the cpufreq subsystem.

Devices for which current usage can be measured can have their frequency auto-
matically adjusted by governors.

29.2 API

Device drivers need to initialize a devfreq_profile and call the
devfreq_add_device() function to create a devfreq instance.

struct devfreq_dev_status
Data given from devfreq user device to governors. Represents the perfor-
mance statistics.

Definition

struct devfreq_dev_status {
unsigned long total_time;
unsigned long busy_time;
unsigned long current_frequency;
void *private_data;

};

Members
total_time The total time represented by this instance of devfreq_dev_status

busy_time The time that the device was working among the total_time.

current_frequency The operating frequency.

private_data An entry not specified by the devfreq framework. A device and a
specific governor may have their own protocol with private_data. However,
because this is governor-specific, a governor using this will be only compati-
ble with devices aware of it.

921

Linux Driver-api Documentation

struct devfreq_dev_profile
Devfreq’s user device profile

Definition

struct devfreq_dev_profile {
unsigned long initial_freq;
unsigned int polling_ms;
int (*target)(struct device *dev, unsigned long *freq, u32 flags);
int (*get_dev_status)(struct device *dev, struct devfreq_dev_status␣

↪→*stat);
int (*get_cur_freq)(struct device *dev, unsigned long *freq);
void (*exit)(struct device *dev);
unsigned long *freq_table;
unsigned int max_state;

};

Members
initial_freq The operating frequency when devfreq_add_device() is called.

polling_ms The polling interval in ms. 0 disables polling.

target The device should set its operating frequency at freq or lowest-upper-
than-freq value. If freq is higher than any operable frequency, set maximum.
Before returning, target function should set freq at the current frequency.
The “flags”parameter’s possible values are explained above with “DE-
VFREQ_FLAG_*”macros.

get_dev_status The device should provide the current performance status to
devfreq. Governors are recommended not to use this directly. Instead,
governors are recommended to use devfreq_update_stats() along with de-
vfreq.last_status.

get_cur_freq The device should provide the current frequency at which it is op-
erating.

exit An optional callback that is called when devfreq is removing the devfreq
object due to error or from devfreq_remove_device() call. If the user has
registered devfreq->nb at a notifier-head, this is the time to unregister it.

freq_table Optional list of frequencies to support statistics and freq_table must
be generated in ascending order.

max_state The size of freq_table.

struct devfreq_stats
Statistics of devfreq device behavior

Definition

struct devfreq_stats {
unsigned int total_trans;
unsigned int *trans_table;
u64 *time_in_state;
u64 last_update;

};

Members

922 Chapter 29. Device Frequency Scaling

Linux Driver-api Documentation

total_trans Number of devfreq transitions.

trans_table Statistics of devfreq transitions.

time_in_state Statistics of devfreq states.

last_update The last time stats were updated.

struct devfreq
Device devfreq structure

Definition

struct devfreq {
struct list_head node;
struct mutex lock;
struct device dev;
struct devfreq_dev_profile *profile;
const struct devfreq_governor *governor;
char governor_name[DEVFREQ_NAME_LEN];
struct notifier_block nb;
struct delayed_work work;
unsigned long previous_freq;
struct devfreq_dev_status last_status;
void *data;
struct dev_pm_qos_request user_min_freq_req;
struct dev_pm_qos_request user_max_freq_req;
unsigned long scaling_min_freq;
unsigned long scaling_max_freq;
bool stop_polling;
unsigned long suspend_freq;
unsigned long resume_freq;
atomic_t suspend_count;
struct devfreq_stats stats;
struct srcu_notifier_head transition_notifier_list;
struct notifier_block nb_min;
struct notifier_block nb_max;

};

Members
node list node - contains the devices with devfreq that have been registered.

lock a mutex to protect accessing devfreq.

dev device registered by devfreq class. dev.parent is the device using devfreq.

profile device-specific devfreq profile

governor method how to choose frequency based on the usage.

governor_name devfreq governor name for use with this devfreq

nb notifier block used to notify devfreq object that it should reevaluate operable
frequencies. Devfreq users may use devfreq.nb to the corresponding register
notifier call chain.

work delayed work for load monitoring.

previous_freq previously configured frequency value.

last_status devfreq user device info, performance statistics

29.2. API 923

Linux Driver-api Documentation

data Private data of the governor. The devfreq framework does not touch this.

user_min_freq_req PM QoS minimum frequency request from user (via sysfs)

user_max_freq_req PM QoS maximum frequency request from user (via sysfs)

scaling_min_freq Limit minimum frequency requested by OPP interface

scaling_max_freq Limit maximum frequency requested by OPP interface

stop_polling devfreq polling status of a device.

suspend_freq frequency of a device set during suspend phase.

resume_freq frequency of a device set in resume phase.

suspend_count suspend requests counter for a device.

stats Statistics of devfreq device behavior

transition_notifier_list list head of DEVFREQ_TRANSITION_NOTIFIER no-
tifier

nb_min Notifier block for DEV_PM_QOS_MIN_FREQUENCY

nb_max Notifier block for DEV_PM_QOS_MAX_FREQUENCY

Description
This structure stores the devfreq information for a given device.

Note that when a governor accesses entries in struct devfreq in its functions ex-
cept for the context of callbacks defined in struct devfreq_governor, the governor
should protect its access with the struct mutex lock in struct devfreq. A governor
may use this mutex to protect its own private data in void *data as well.

int update_devfreq(struct devfreq * devfreq)
Reevaluate the device and configure frequency

Parameters
struct devfreq * devfreq the devfreq device

Note
devfreq->lock must be held

struct devfreq_simple_ondemand_data
void *data fed to struct devfreq and devfreq_add_device

Definition

struct devfreq_simple_ondemand_data {
unsigned int upthreshold;
unsigned int downdifferential;

};

Members
upthreshold If the load is over this value, the frequency jumps. Specify 0 to use

the default. Valid value = 0 to 100.

924 Chapter 29. Device Frequency Scaling

Linux Driver-api Documentation

downdifferential If the load is under upthreshold - downdifferential, the gover-
nor may consider slowing the frequency down. Specify 0 to use the default.
Valid value = 0 to 100. downdifferential < upthreshold must hold.

Description
If the fed devfreq_simple_ondemand_data pointer is NULL to the governor, the
governor uses the default values.

struct devfreq_passive_data
void *data fed to struct devfreq and devfreq_add_device

Definition

struct devfreq_passive_data {
struct devfreq *parent;
int (*get_target_freq)(struct devfreq *this, unsigned long *freq);
struct devfreq *this;
struct notifier_block nb;

};

Members
parent the devfreq instance of parent device.

get_target_freq Optional callback, Returns desired operating frequency for the
device using passive governor. That is called when passive governor should
decide the next frequency by using the new frequency of parent devfreq de-
vice using governors except for passive governor. If the devfreq device has
the specific method to decide the next frequency, should use this callback.

this the devfreq instance of own device.

nb the notifier block for DEVFREQ_TRANSITION_NOTIFIER list

Description
The devfreq_passive_data have to set the devfreq instance of parent device with
governors except for the passive governor. But, don’t need to initialize the‘this’
and ‘nb’field because the devfreq core will handle them.
struct devfreq_event_dev

the devfreq-event device

Definition

struct devfreq_event_dev {
struct list_head node;
struct device dev;
struct mutex lock;
u32 enable_count;
const struct devfreq_event_desc *desc;

};

Members
node Contain the devfreq-event device that have been registered.

dev the device registered by devfreq-event class. dev.parent is the device using
devfreq-event.

29.2. API 925

Linux Driver-api Documentation

lock a mutex to protect accessing devfreq-event.

enable_count the number of enable function have been called.

desc the description for devfreq-event device.

Description
This structure contains devfreq-event device information.

struct devfreq_event_data
the devfreq-event data

Definition

struct devfreq_event_data {
unsigned long load_count;
unsigned long total_count;

};

Members
load_count load count of devfreq-event device for the given period.

total_count total count of devfreq-event device for the given period. each count
may represent a clock cycle, a time unit (ns/us/⋯), or anything the device
driver wants. Generally, utilization is load_count / total_count.

Description
This structure contains the data of devfreq-event device for polling period.

struct devfreq_event_ops
the operations of devfreq-event device

Definition

struct devfreq_event_ops {
int (*enable)(struct devfreq_event_dev *edev);
int (*disable)(struct devfreq_event_dev *edev);
int (*reset)(struct devfreq_event_dev *edev);
int (*set_event)(struct devfreq_event_dev *edev);
int (*get_event)(struct devfreq_event_dev *edev, struct devfreq_event_

↪→data *edata);
};

Members
enable Enable the devfreq-event device.

disable Disable the devfreq-event device.

reset Reset all setting of the devfreq-event device.

set_event Set the specific event type for the devfreq-event device.

get_event Get the result of the devfreq-event devie with specific event type.

Description
This structure contains devfreq-event device operations which can be imple-
mented by devfreq-event device drivers.

926 Chapter 29. Device Frequency Scaling

Linux Driver-api Documentation

struct devfreq_event_desc
the descriptor of devfreq-event device

Definition

struct devfreq_event_desc {
const char *name;
u32 event_type;
void *driver_data;
const struct devfreq_event_ops *ops;

};

Members
name the name of devfreq-event device.

event_type the type of the event determined and used by driver

driver_data the private data for devfreq-event driver.

ops the operation to control devfreq-event device.

Description
Each devfreq-event device is described with a this structure. This structure con-
tains the various data for devfreq-event device. The event_type describes what is
going to be counted in the register. It might choose to count e.g. read requests,
write data in bytes, etc. The full supported list of types is present in specyfic
header in: include/dt-bindings/pmu/.

int devfreq_update_status(struct devfreq * devfreq, unsigned long freq)
Update statistics of devfreq behavior

Parameters
struct devfreq * devfreq the devfreq instance

unsigned long freq the update target frequency

int update_devfreq(struct devfreq * devfreq)
Reevaluate the device and configure frequency.

Parameters
struct devfreq * devfreq the devfreq instance.

Note
Lock devfreq->lock before calling update_devfreq This function is exported

for governors.

void devfreq_monitor_start(struct devfreq * devfreq)
Start load monitoring of devfreq instance

Parameters
struct devfreq * devfreq the devfreq instance.

Description
Helper function for starting devfreq device load monitoring. By default delayed
work based monitoring is supported. Function to be called from governor in re-

29.2. API 927

Linux Driver-api Documentation

sponse to DEVFREQ_GOV_START event when device is added to devfreq frame-
work.

void devfreq_monitor_stop(struct devfreq * devfreq)
Stop load monitoring of a devfreq instance

Parameters
struct devfreq * devfreq the devfreq instance.

Description
Helper function to stop devfreq device load monitoring. Function to be called from
governor in response to DEVFREQ_GOV_STOP event when device is removed from
devfreq framework.

void devfreq_monitor_suspend(struct devfreq * devfreq)
Suspend load monitoring of a devfreq instance

Parameters
struct devfreq * devfreq the devfreq instance.

Description
Helper function to suspend devfreq device load monitoring. Function to be called
from governor in response to DEVFREQ_GOV_SUSPEND event or when polling
interval is set to zero.

Note
Though this function is same as devfreq_monitor_stop(), intentionally kept sep-
arate to provide hooks for collecting transition statistics.

void devfreq_monitor_resume(struct devfreq * devfreq)
Resume load monitoring of a devfreq instance

Parameters
struct devfreq * devfreq the devfreq instance.

Description
Helper function to resume devfreq device load monitoring. Function to be called
from governor in response to DEVFREQ_GOV_RESUME event or when polling in-
terval is set to non-zero.

void devfreq_update_interval(struct devfreq * devfreq, unsigned int
* delay)

Update device devfreq monitoring interval

Parameters
struct devfreq * devfreq the devfreq instance.

unsigned int * delay new polling interval to be set.

Description
Helper function to set new load monitoring polling interval. Function to be called
from governor in response to DEVFREQ_GOV_UPDATE_INTERVAL event.

928 Chapter 29. Device Frequency Scaling

Linux Driver-api Documentation

struct devfreq * devfreq_add_device(struct device * dev, struct de-
vfreq_dev_profile * profile, const
char * governor_name, void * data)

Add devfreq feature to the device

Parameters
struct device * dev the device to add devfreq feature.

struct devfreq_dev_profile * profile device-specific profile to run devfreq.

const char * governor_name name of the policy to choose frequency.

void * data private data for the governor. The devfreq framework does not touch
this value.

int devfreq_remove_device(struct devfreq * devfreq)
Remove devfreq feature from a device.

Parameters
struct devfreq * devfreq the devfreq instance to be removed

Description
The opposite of devfreq_add_device().

struct devfreq * devm_devfreq_add_device(struct device * dev, struct
devfreq_dev_profile * profile,
const char * governor_name,
void * data)

Resource-managed devfreq_add_device()

Parameters
struct device * dev the device to add devfreq feature.

struct devfreq_dev_profile * profile device-specific profile to run devfreq.

const char * governor_name name of the policy to choose frequency.

void * data private data for the governor. The devfreq framework does not touch
this value.

Description
This function manages automatically the memory of devfreq device using device
resource management and simplify the free operation for memory of devfreq de-
vice.

void devm_devfreq_remove_device(struct device * dev, struct devfreq
* devfreq)

Resource-managed devfreq_remove_device()

Parameters
struct device * dev the device from which to remove devfreq feature.

struct devfreq * devfreq the devfreq instance to be removed

int devfreq_suspend_device(struct devfreq * devfreq)
Suspend devfreq of a device.

Parameters

29.2. API 929

Linux Driver-api Documentation

struct devfreq * devfreq the devfreq instance to be suspended

Description
This function is intended to be called by the pm callbacks (e.g., runtime_suspend,
suspend) of the device driver that holds the devfreq.

int devfreq_resume_device(struct devfreq * devfreq)
Resume devfreq of a device.

Parameters
struct devfreq * devfreq the devfreq instance to be resumed

Description
This function is intended to be called by the pm callbacks (e.g., runtime_resume,
resume) of the device driver that holds the devfreq.

int devfreq_add_governor(struct devfreq_governor * governor)
Add devfreq governor

Parameters
struct devfreq_governor * governor the devfreq governor to be added

int devfreq_remove_governor(struct devfreq_governor * governor)
Remove devfreq feature from a device.

Parameters
struct devfreq_governor * governor the devfreq governor to be removed

struct dev_pm_opp * devfreq_recommended_opp(struct device * dev,
unsigned long * freq,
u32 flags)

Helper function to get proper OPP for the freq value given to target callback.

Parameters
struct device * dev The devfreq user device. (parent of devfreq)

unsigned long * freq The frequency given to target function

u32 flags Flags handed from devfreq framework.

Description
The callers are required to call dev_pm_opp_put() for the returned OPP after use.

int devfreq_register_opp_notifier(struct device * dev, struct devfreq
* devfreq)

Helper function to get devfreq notified for any changes in the OPP availability
changes

Parameters
struct device * dev The devfreq user device. (parent of devfreq)

struct devfreq * devfreq The devfreq object.

930 Chapter 29. Device Frequency Scaling

Linux Driver-api Documentation

int devfreq_unregister_opp_notifier(struct device * dev, struct devfreq
* devfreq)

Helper function to stop getting devfreq notified for any changes in the OPP
availability changes anymore.

Parameters
struct device * dev The devfreq user device. (parent of devfreq)

struct devfreq * devfreq The devfreq object.

Description
At exit() callback of devfreq_dev_profile, this must be included if de-
vfreq_recommended_opp is used.

int devm_devfreq_register_opp_notifier(struct device * dev, struct de-
vfreq * devfreq)

Resource-managed devfreq_register_opp_notifier()

Parameters
struct device * dev The devfreq user device. (parent of devfreq)

struct devfreq * devfreq The devfreq object.

void devm_devfreq_unregister_opp_notifier(struct device * dev, struct
devfreq * devfreq)

Resource-managed devfreq_unregister_opp_notifier()

Parameters
struct device * dev The devfreq user device. (parent of devfreq)

struct devfreq * devfreq The devfreq object.

int devfreq_register_notifier(struct devfreq * devfreq, struct noti-
fier_block * nb, unsigned int list)

Register a driver with devfreq

Parameters
struct devfreq * devfreq The devfreq object.

struct notifier_block * nb The notifier block to register.

unsigned int list DEVFREQ_TRANSITION_NOTIFIER.

int devm_devfreq_register_notifier(struct device * dev, struct devfreq
* devfreq, struct notifier_block * nb,
unsigned int list)

Parameters
struct device * dev The devfreq user device. (parent of devfreq)

struct devfreq * devfreq The devfreq object.

struct notifier_block * nb The notifier block to be unregistered.

unsigned int list DEVFREQ_TRANSITION_NOTIFIER.

Description
• Resource-managed devfreq_register_notifier()

29.2. API 931

Linux Driver-api Documentation

void devm_devfreq_unregister_notifier(struct device * dev, struct
devfreq * devfreq, struct no-
tifier_block * nb, unsigned
int list)

Parameters
struct device * dev The devfreq user device. (parent of devfreq)

struct devfreq * devfreq The devfreq object.

struct notifier_block * nb The notifier block to be unregistered.

unsigned int list DEVFREQ_TRANSITION_NOTIFIER.

Description
• Resource-managed devfreq_unregister_notifier()

int devfreq_event_enable_edev(struct devfreq_event_dev * edev)
Enable the devfreq-event dev and increase the enable_count of devfreq-event
dev.

Parameters
struct devfreq_event_dev * edev the devfreq-event device

Description
Note that this function increase the enable_count and enable the devfreq-event
device. The devfreq-event device should be enabled before using it by devfreq
device.

int devfreq_event_disable_edev(struct devfreq_event_dev * edev)
Disable the devfreq-event dev and decrease the enable_count of the devfreq-
event dev.

Parameters
struct devfreq_event_dev * edev the devfreq-event device

Description
Note that this function decrease the enable_count and disable the devfreq-event
device. After the devfreq-event device is disabled, devfreq device can’t use the
devfreq-event device for get/set/reset operations.

bool devfreq_event_is_enabled(struct devfreq_event_dev * edev)
Check whether devfreq-event dev is enabled or not.

Parameters
struct devfreq_event_dev * edev the devfreq-event device

Description
Note that this function check whether devfreq-event dev is enabled or not. If
return true, the devfreq-event dev is enabeld. If return false, the devfreq-event
dev is disabled.

int devfreq_event_set_event(struct devfreq_event_dev * edev)
Set event to devfreq-event dev to start.

932 Chapter 29. Device Frequency Scaling

Linux Driver-api Documentation

Parameters
struct devfreq_event_dev * edev the devfreq-event device

Description
Note that this function set the event to the devfreq-event device to start for getting
the event data which could be various event type.

int devfreq_event_get_event(struct devfreq_event_dev * edev, struct de-
vfreq_event_data * edata)

Get {load|total}_count from devfreq-event dev.

Parameters
struct devfreq_event_dev * edev the devfreq-event device

struct devfreq_event_data * edata the calculated data of devfreq-event de-
vice

Description
Note that this function get the calculated event data from devfreq-event dev after
stoping the progress of whole sequence of devfreq-event dev.

int devfreq_event_reset_event(struct devfreq_event_dev * edev)
Reset all opeations of devfreq-event dev.

Parameters
struct devfreq_event_dev * edev the devfreq-event device

Description
Note that this function stop all operations of devfreq-event dev and reset the cur-
rent event data to make the devfreq-event device into initial state.

struct devfreq_event_dev * devfreq_event_get_edev_by_phandle(struct
device
* dev,
int index)

Get the devfreq-event dev from devicetree.

Parameters
struct device * dev the pointer to the given device

int index the index into list of devfreq-event device

Description
Note that this function return the pointer of devfreq-event device.

int devfreq_event_get_edev_count(struct device * dev)
Get the count of devfreq-event dev

Parameters
struct device * dev the pointer to the given device

Description
Note that this function return the count of devfreq-event devices.

29.2. API 933

Linux Driver-api Documentation

struct devfreq_event_dev * devfreq_event_add_edev(struct device
* dev, struct de-
vfreq_event_desc
* desc)

Add new devfreq-event device.

Parameters
struct device * dev the device owning the devfreq-event device being created

struct devfreq_event_desc * desc the devfreq-event device’s decriptor which
include essential data for devfreq-event device.

Description
Note that this function add new devfreq-event device to devfreq-event class list
and register the device of the devfreq-event device.

int devfreq_event_remove_edev(struct devfreq_event_dev * edev)
Remove the devfreq-event device registered.

Parameters
struct devfreq_event_dev * edev the devfreq-event device

Description
Note that this function removes the registered devfreq-event device.

struct devfreq_event_dev * devm_devfreq_event_add_edev(struct device
* dev, struct de-
vfreq_event_desc
* desc)

Resource-managed devfreq_event_add_edev()

Parameters
struct device * dev the device owning the devfreq-event device being created

struct devfreq_event_desc * desc the devfreq-event device’s decriptor which
include essential data for devfreq-event device.

Description
Note that this function manages automatically the memory of devfreq-event device
using device resource management and simplify the free operation for memory of
devfreq-event device.

void devm_devfreq_event_remove_edev(struct device * dev, struct de-
vfreq_event_dev * edev)

Resource-managed devfreq_event_remove_edev()

Parameters
struct device * dev the device owning the devfreq-event device being created

struct devfreq_event_dev * edev the devfreq-event device

Description
Note that this function manages automatically the memory of devfreq-event device
using device resource management.

934 Chapter 29. Device Frequency Scaling

CHAPTER

THIRTY

HIGH SPEED SYNCHRONOUS SERIAL INTERFACE (HSI)

30.1 Introduction

High Speed Syncronous Interface (HSI) is a fullduplex, low latency protocol, that is
optimized for die-level interconnect between an Application Processor and a Base-
band chipset. It has been specified by the MIPI alliance in 2003 and implemented
by multiple vendors since then.

The HSI interface supports full duplex communication over multiple channels (typ-
ically 8) and is capable of reaching speeds up to 200 Mbit/s.

The serial protocol uses two signals, DATA and FLAG as combined data and clock
signals and an additional READY signal for flow control. An additionalWAKE signal
can be used to wakeup the chips from standby modes. The signals are commonly
prefixed by AC for signals going from the application die to the cellular die and CA
for signals going the other way around.

+------------+ +---------------+
Cellular		Application
Die		Die
	- - - - - - CAWAKE - - - - - - >	
T	------------ CADATA ------------>	R
X	------------ CAFLAG ------------>	X
	<----------- ACREADY ------------	
	< - - - - - ACWAKE - - - - - - -	
R	<----------- ACDATA -------------	T
X	<----------- ACFLAG -------------	X
	------------ CAREADY ----------->	
+------------+ +---------------+

935

Linux Driver-api Documentation

30.2 HSI Subsystem in Linux

In the Linux kernel the hsi subsystem is supposed to be used for HSI devices. The
hsi subsystem contains drivers for hsi controllers including support for multi-port
controllers and provides a generic API for using the HSI ports.

It also contains HSI client drivers, which make use of the generic API to implement
a protocol used on the HSI interface. These client drivers can use an arbitrary
number of channels.

30.3 hsi-char Device

Each port automatically registers a generic client driver called hsi_char, which pro-
vides a charecter device for userspace representing the HSI port. It can be used
to communicate via HSI from userspace. Userspace may configure the hsi_char
device using the following ioctl commands:

HSC_RESET flush the HSI port
HSC_SET_PM enable or disable the client.

HSC_SEND_BREAK send break

HSC_SET_RX set RX configuration

HSC_GET_RX get RX configuration

HSC_SET_TX set TX configuration

HSC_GET_TX get TX configuration

30.4 The kernel HSI API

struct hsi_channel
channel resource used by the hsi clients

Definition

struct hsi_channel {
unsigned int id;
const char *name;

};

Members
id Channel number

name Channel name

struct hsi_config
Configuration for RX/TX HSI modules

Definition

936 Chapter 30. High Speed Synchronous Serial Interface (HSI)

Linux Driver-api Documentation

struct hsi_config {
unsigned int mode;
struct hsi_channel *channels;
unsigned int num_channels;
unsigned int num_hw_channels;
unsigned int speed;
union {

unsigned int flow;
unsigned int arb_mode;

};
};

Members
mode Bit transmission mode (STREAM or FRAME)

channels Channel resources used by the client

num_channels Number of channel resources

num_hw_channels Number of channels the transceiver is configured for [1..16]

speed Max bit transmission speed (Kbit/s)

{unnamed_union} anonymous

flow RX flow type (SYNCHRONIZED or PIPELINE)

arb_mode Arbitration mode for TX frame (Round robin, priority)

struct hsi_board_info
HSI client board info

Definition

struct hsi_board_info {
const char *name;
unsigned int hsi_id;
unsigned int port;
struct hsi_config tx_cfg;
struct hsi_config rx_cfg;
void *platform_data;
struct dev_archdata *archdata;

};

Members
name Name for the HSI device

hsi_id HSI controller id where the client sits

port Port number in the controller where the client sits

tx_cfg HSI TX configuration

rx_cfg HSI RX configuration

platform_data Platform related data

archdata Architecture-dependent device data

30.4. The kernel HSI API 937

Linux Driver-api Documentation

struct hsi_client
HSI client attached to an HSI port

Definition

struct hsi_client {
struct device device;
struct hsi_config tx_cfg;
struct hsi_config rx_cfg;

};

Members
device Driver model representation of the device

tx_cfg HSI TX configuration

rx_cfg HSI RX configuration

struct hsi_client_driver
Driver associated to an HSI client

Definition

struct hsi_client_driver {
struct device_driver driver;

};

Members
driver Driver model representation of the driver

struct hsi_msg
HSI message descriptor

Definition

struct hsi_msg {
struct list_head link;
struct hsi_client *cl;
struct sg_table sgt;
void *context;
void (*complete)(struct hsi_msg *msg);
void (*destructor)(struct hsi_msg *msg);
int status;
unsigned int actual_len;
unsigned int channel;
unsigned int ttype:1;
unsigned int break_frame:1;

};

Members
link Free to use by the current descriptor owner

cl HSI device client that issues the transfer

sgt Head of the scatterlist array

context Client context data associated to the transfer

938 Chapter 30. High Speed Synchronous Serial Interface (HSI)

Linux Driver-api Documentation

complete Transfer completion callback

destructor Destructor to free resources when flushing

status Status of the transfer when completed

actual_len Actual length of data transferred on completion

channel Channel were to TX/RX the message

ttype Transfer type (TX if set, RX otherwise)

break_frame if true HSI will send/receive a break frame. Data buffers are ignored
in the request.

struct hsi_port
HSI port device

Definition

struct hsi_port {
struct device device;
struct hsi_config tx_cfg;
struct hsi_config rx_cfg;
unsigned int num;
unsigned int shared:1;
int claimed;
struct mutex lock;
int (*async)(struct hsi_msg *msg);
int (*setup)(struct hsi_client *cl);
int (*flush)(struct hsi_client *cl);
int (*start_tx)(struct hsi_client *cl);
int (*stop_tx)(struct hsi_client *cl);
int (*release)(struct hsi_client *cl);
struct blocking_notifier_head n_head;

};

Members
device Driver model representation of the device

tx_cfg Current TX path configuration

rx_cfg Current RX path configuration

num Port number

shared Set when port can be shared by different clients

claimed Reference count of clients which claimed the port

lock Serialize port claim

async Asynchronous transfer callback

setup Callback to set the HSI client configuration

flush Callback to clean the HW state and destroy all pending transfers

start_tx Callback to inform that a client wants to TX data

stop_tx Callback to inform that a client no longer wishes to TX data

release Callback to inform that a client no longer uses the port

30.4. The kernel HSI API 939

Linux Driver-api Documentation

n_head Notifier chain for signaling port events to the clients.

struct hsi_controller
HSI controller device

Definition

struct hsi_controller {
struct device device;
struct module *owner;
unsigned int id;
unsigned int num_ports;
struct hsi_port **port;

};

Members
device Driver model representation of the device

owner Pointer to the module owning the controller

id HSI controller ID

num_ports Number of ports in the HSI controller

port Array of HSI ports

unsigned int hsi_id(struct hsi_client * cl)
Get HSI controller ID associated to a client

Parameters
struct hsi_client * cl Pointer to a HSI client

Description
Return the controller id where the client is attached to

unsigned int hsi_port_id(struct hsi_client * cl)
Gets the port number a client is attached to

Parameters
struct hsi_client * cl Pointer to HSI client

Description
Return the port number associated to the client

int hsi_setup(struct hsi_client * cl)
Configure the client’s port

Parameters
struct hsi_client * cl Pointer to the HSI client

Description
When sharing ports, clients should either relay on a single client setup or have the
same setup for all of them.

Return -errno on failure, 0 on success

940 Chapter 30. High Speed Synchronous Serial Interface (HSI)

Linux Driver-api Documentation

int hsi_flush(struct hsi_client * cl)
Flush all pending transactions on the client’s port

Parameters
struct hsi_client * cl Pointer to the HSI client

Description
This function will destroy all pending hsi_msg in the port and reset the HW port
so it is ready to receive and transmit from a clean state.

Return -errno on failure, 0 on success

int hsi_async_read(struct hsi_client * cl, struct hsi_msg * msg)
Submit a read transfer

Parameters
struct hsi_client * cl Pointer to the HSI client

struct hsi_msg * msg HSI message descriptor of the transfer

Description
Return -errno on failure, 0 on success

int hsi_async_write(struct hsi_client * cl, struct hsi_msg * msg)
Submit a write transfer

Parameters
struct hsi_client * cl Pointer to the HSI client

struct hsi_msg * msg HSI message descriptor of the transfer

Description
Return -errno on failure, 0 on success

int hsi_start_tx(struct hsi_client * cl)
Signal the port that the client wants to start a TX

Parameters
struct hsi_client * cl Pointer to the HSI client

Description
Return -errno on failure, 0 on success

int hsi_stop_tx(struct hsi_client * cl)
Signal the port that the client no longer wants to transmit

Parameters
struct hsi_client * cl Pointer to the HSI client

Description
Return -errno on failure, 0 on success

void hsi_port_unregister_clients(struct hsi_port * port)
Unregister an HSI port

Parameters

30.4. The kernel HSI API 941

Linux Driver-api Documentation

struct hsi_port * port The HSI port to unregister

void hsi_unregister_controller(struct hsi_controller * hsi)
Unregister an HSI controller

Parameters
struct hsi_controller * hsi The HSI controller to register

int hsi_register_controller(struct hsi_controller * hsi)
Register an HSI controller and its ports

Parameters
struct hsi_controller * hsi The HSI controller to register

Description
Returns -errno on failure, 0 on success.

int hsi_register_client_driver(struct hsi_client_driver * drv)
Register an HSI client to the HSI bus

Parameters
struct hsi_client_driver * drv HSI client driver to register

Description
Returns -errno on failure, 0 on success.

void hsi_put_controller(struct hsi_controller * hsi)
Free an HSI controller

Parameters
struct hsi_controller * hsi Pointer to the HSI controller to freed

Description
HSI controller drivers should only use this function if they need to free their allo-
cated hsi_controller structures before a successful call to hsi_register_controller.
Other use is not allowed.

struct hsi_controller * hsi_alloc_controller(unsigned int n_ports,
gfp_t flags)

Allocate an HSI controller and its ports

Parameters
unsigned int n_ports Number of ports on the HSI controller

gfp_t flags Kernel allocation flags

Description
Return NULL on failure or a pointer to an hsi_controller on success.

void hsi_free_msg(struct hsi_msg * msg)
Free an HSI message

Parameters
struct hsi_msg * msg Pointer to the HSI message

942 Chapter 30. High Speed Synchronous Serial Interface (HSI)

Linux Driver-api Documentation

Description
Client is responsible to free the buffers pointed by the scatterlists.

struct hsi_msg * hsi_alloc_msg(unsigned int nents, gfp_t flags)
Allocate an HSI message

Parameters
unsigned int nents Number of memory entries

gfp_t flags Kernel allocation flags

Description
nents can be 0. This mainly makes sense for read transfer. In that case, HSI drivers
will call the complete callback when there is data to be read without consuming
it.

Return NULL on failure or a pointer to an hsi_msg on success.

int hsi_async(struct hsi_client * cl, struct hsi_msg * msg)
Submit an HSI transfer to the controller

Parameters
struct hsi_client * cl HSI client sending the transfer

struct hsi_msg * msg The HSI transfer passed to controller

Description
The HSI message must have the channel, ttype, complete and destructor fields set
beforehand. If nents > 0 then the client has to initialize also the scatterlists to
point to the buffers to write to or read from.

HSI controllers relay on pre-allocated buffers from their clients and they do not
allocate buffers on their own.

Once the HSI message transfer finishes, the HSI controller calls the complete call-
back with the status and actual_len fields of the HSI message updated. The com-
plete callback can be called before returning from hsi_async.

Returns -errno on failure or 0 on success

int hsi_claim_port(struct hsi_client * cl, unsigned int share)
Claim the HSI client’s port

Parameters
struct hsi_client * cl HSI client that wants to claim its port

unsigned int share Flag to indicate if the client wants to share the port or not.

Description
Returns -errno on failure, 0 on success.

void hsi_release_port(struct hsi_client * cl)
Release the HSI client’s port

Parameters
struct hsi_client * cl HSI client which previously claimed its port

30.4. The kernel HSI API 943

Linux Driver-api Documentation

int hsi_register_port_event(struct hsi_client * cl, void (*handler)(struct
hsi_client *, unsigned long))

Register a client to receive port events

Parameters
struct hsi_client * cl HSI client that wants to receive port events

void (*)(struct hsi_client *, unsigned long) handler Event handler call-
back

Description
Clients should register a callback to be able to receive events from the ports. Reg-
istration should happen after claiming the port. The handler can be called in in-
terrupt context.

Returns -errno on error, or 0 on success.

int hsi_unregister_port_event(struct hsi_client * cl)
Stop receiving port events for a client

Parameters
struct hsi_client * cl HSI client that wants to stop receiving port events

Description
Clients should call this function before releasing their associated port.

Returns -errno on error, or 0 on success.

int hsi_event(struct hsi_port * port, unsigned long event)
Notifies clients about port events

Parameters
struct hsi_port * port Port where the event occurred

unsigned long event The event type

Description
Clients should not be concerned about wake line behavior. However, due to a race
condition in HSI HW protocol, clients need to be notified about wake line changes,
so they can implement a workaround for it.

Events: HSI_EVENT_START_RX - Incoming wake line high HSI_EVENT_STOP_RX
- Incoming wake line down

Returns -errno on error, or 0 on success.

int hsi_get_channel_id_by_name(struct hsi_client * cl, char * name)
acquire channel id by channel name

Parameters
struct hsi_client * cl HSI client, which uses the channel

char * name name the channel is known under

Description

944 Chapter 30. High Speed Synchronous Serial Interface (HSI)

Linux Driver-api Documentation

Clients can call this function to get the hsi channel ids similar to requesting IRQs
or GPIOs by name. This function assumes the same channel configuration is used
for RX and TX.

Returns -errno on error or channel id on success.

30.4. The kernel HSI API 945

Linux Driver-api Documentation

946 Chapter 30. High Speed Synchronous Serial Interface (HSI)

CHAPTER

THIRTYONE

ERROR DETECTION AND CORRECTION (EDAC) DEVICES

31.1 Main Concepts used at the EDAC subsystem

There are several things to be aware of that aren’t at all obvious, like sockets,
*socket sets, banks, rows, chip-select rows, channels, etc⋯
These are some of the many terms that are thrown about that don’t always mean
what people think they mean (Inconceivable!). In the interest of creating a com-
mon ground for discussion, terms and their definitions will be established.

• Memory devices

The individual DRAM chips on a memory stick. These devices commonly output 4
and 8 bits each (x4, x8). Grouping several of these in parallel provides the number
of bits that the memory controller expects: typically 72 bits, in order to provide
64 bits + 8 bits of ECC data.

• Memory Stick

A printed circuit board that aggregates multiple memory devices in parallel. In
general, this is the Field Replaceable Unit (FRU) which gets replaced, in the case of
excessive errors. Most often it is also called DIMM (Dual Inline Memory Module).

• Memory Socket

A physical connector on the motherboard that accepts a single memory stick. Also
called as “slot”on several datasheets.
• Channel

A memory controller channel, responsible to communicate with a group of DIMMs.
Each channel has its own independent control (command) and data bus, and can
be used independently or grouped with other channels.

• Branch

It is typically the highest hierarchy on a Fully-Buffered DIMM memory controller.
Typically, it contains two channels. Two channels at the same branch can be used
in single mode or in lockstep mode. When lockstep is enabled, the cacheline is
doubled, but it generally brings some performance penalty. Also, it is generally
not possible to point to just one memory stick when an error occurs, as the error
correction code is calculated using two DIMMs instead of one. Due to that, it is
capable of correcting more errors than on single mode.

• Single-channel

947

Linux Driver-api Documentation

The data accessed by the memory controller is contained into one dimm only. E.
g. if the data is 64 bits-wide, the data flows to the CPU using one 64 bits parallel
access. Typically used with SDR, DDR, DDR2 and DDR3 memories. FB-DIMM and
RAMBUS use a different concept for channel, so this concept doesn’t apply there.
• Double-channel

The data size accessed by the memory controller is interlaced into two dimms,
accessed at the same time. E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
the data flows to the CPU using a 128 bits parallel access.

• Chip-select row

This is the name of the DRAM signal used to select the DRAM ranks to be accessed.
Common chip-select rows for single channel are 64 bits, for dual channel 128 bits.
It may not be visible by thememory controller, as someDIMM types have amemory
buffer that can hide direct access to it from the Memory Controller.

• Single-Ranked stick

A Single-ranked stick has 1 chip-select row of memory. Motherboards commonly
drive two chip-select pins to a memory stick. A single-ranked stick, will occupy
only one of those rows. The other will be unused.

• Double-Ranked stick

A double-ranked stick has two chip-select rows which access different sets of mem-
ory devices. The two rows cannot be accessed concurrently.

• Double-sided stick

DEPRECATED TERM, see Double-Ranked stick.
A double-sided stick has two chip-select rows which access different sets of mem-
ory devices. The two rows cannot be accessed concurrently. “Double-sided”is
irrespective of the memory devices being mounted on both sides of the memory
stick.

• Socket set

All of the memory sticks that are required for a single memory access or all of
the memory sticks spanned by a chip-select row. A single socket set has two chip-
select rows and if double-sided sticks are used these will occupy those chip-select
rows.

• Bank

This term is avoided because it is unclear when needing to distinguish between
chip-select rows and socket sets.

948 Chapter 31. Error Detection And Correction (EDAC) Devices

Linux Driver-api Documentation

31.2 Memory Controllers

Most of the EDAC core is focused on doing Memory Controller error detection.
The edac_mc_alloc(). It uses internally the struct mem_ctl_info to describe the
memory controllers, with is an opaque struct for the EDAC drivers. Only the EDAC
core is allowed to touch it.

enum dev_type
describe the type of memory DRAM chips used at the stick

Constants
DEV_UNKNOWN Can’t be determined, or MC doesn’t support detect it
DEV_X1 1 bit for data

DEV_X2 2 bits for data

DEV_X4 4 bits for data

DEV_X8 8 bits for data

DEV_X16 16 bits for data

DEV_X32 32 bits for data

DEV_X64 64 bits for data

Description
Typical values are x4 and x8.

enum hw_event_mc_err_type
type of the detected error

Constants
HW_EVENT_ERR_CORRECTED Corrected Error - Indicates that an ECC corrected er-

ror was detected

HW_EVENT_ERR_UNCORRECTED Uncorrected Error - Indicates an error that can’t be
corrected by ECC, but it is not fatal (maybe it is on an unused memory area,
or the memory controller could recover from it for example, by re-trying the
operation).

HW_EVENT_ERR_DEFERRED Deferred Error - Indicates an uncorrectable error whose
handling is not urgent. This could be due to hardware data poisoning where
the system can continue operation until the poisoned data is consumed. Pre-
emptive measures may also be taken, e.g. offlining pages, etc.

HW_EVENT_ERR_FATAL Fatal Error - Uncorrected error that could not be recovered.

HW_EVENT_ERR_INFO Informational - The CPER spec defines a forth type of error:
informational logs.

enum mem_type
memory types. For a more detailed reference, please see http://en.wikipedia.
org/wiki/DRAM

Constants
MEM_EMPTY Empty csrow

31.2. Memory Controllers 949

http://en.wikipedia.org/wiki/DRAM
http://en.wikipedia.org/wiki/DRAM

Linux Driver-api Documentation

MEM_RESERVED Reserved csrow type

MEM_UNKNOWN Unknown csrow type

MEM_FPM FPM - Fast Page Mode, used on systems up to 1995.

MEM_EDO EDO - Extended data out, used on systems up to 1998.

MEM_BEDO BEDO - Burst Extended data out, an EDO variant.

MEM_SDR SDR - Single data rate SDRAM http://en.wikipedia.org/wiki/
Synchronous_dynamic_random-access_memory They use 3 pins for chip
select: Pins 0 and 2 are for rank 0; pins 1 and 3 are for rank 1, if the memory
is dual-rank.

MEM_RDR Registered SDR SDRAM

MEM_DDR Double data rate SDRAM http://en.wikipedia.org/wiki/DDR_SDRAM

MEM_RDDR Registered Double data rate SDRAM This is a variant of the DDR mem-
ories. A registered memory has a buffer inside it, hiding part of the memory
details to the memory controller.

MEM_RMBS Rambus DRAM, used on a few Pentium III/IV controllers.

MEM_DDR2 DDR2 RAM, as described at JEDEC JESD79-2F. Those memories are la-
beled as “PC2-”instead of “PC”to differentiate from DDR.

MEM_FB_DDR2 Fully-Buffered DDR2, as described at JEDEC Std No. 205 and
JESD206. Those memories are accessed per DIMM slot, and not by a chip
select signal.

MEM_RDDR2 Registered DDR2 RAM This is a variant of the DDR2 memories.

MEM_XDR Rambus XDR It is an evolution of the original RAMBUS memories, cre-
ated to compete with DDR2. Weren’t used on any x86 arch, but cell_edac
PPC memory controller uses it.

MEM_DDR3 DDR3 RAM

MEM_RDDR3 Registered DDR3 RAM This is a variant of the DDR3 memories.

MEM_LRDDR3 Load-Reduced DDR3 memory.

MEM_DDR4 Unbuffered DDR4 RAM

MEM_RDDR4 Registered DDR4 RAM This is a variant of the DDR4 memories.

MEM_LRDDR4 Load-Reduced DDR4 memory.

MEM_NVDIMM Non-volatile RAM

enum edac_type
type - Error Detection and Correction capabilities and mode

Constants
EDAC_UNKNOWN Unknown if ECC is available

EDAC_NONE Doesn’t support ECC
EDAC_RESERVED Reserved ECC type

EDAC_PARITY Detects parity errors

950 Chapter 31. Error Detection And Correction (EDAC) Devices

http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
http://en.wikipedia.org/wiki/DDR_SDRAM

Linux Driver-api Documentation

EDAC_EC Error Checking - no correction

EDAC_SECDED Single bit error correction, Double detection

EDAC_S2ECD2ED Chipkill x2 devices - do these exist?

EDAC_S4ECD4ED Chipkill x4 devices

EDAC_S8ECD8ED Chipkill x8 devices

EDAC_S16ECD16ED Chipkill x16 devices

enum scrub_type
scrubbing capabilities

Constants
SCRUB_UNKNOWN Unknown if scrubber is available

SCRUB_NONE No scrubber

SCRUB_SW_PROG SW progressive (sequential) scrubbing

SCRUB_SW_SRC Software scrub only errors

SCRUB_SW_PROG_SRC Progressive software scrub from an error

SCRUB_SW_TUNABLE Software scrub frequency is tunable

SCRUB_HW_PROG HW progressive (sequential) scrubbing

SCRUB_HW_SRC Hardware scrub only errors

SCRUB_HW_PROG_SRC Progressive hardware scrub from an error

SCRUB_HW_TUNABLE Hardware scrub frequency is tunable

enum edac_mc_layer_type
memory controller hierarchy layer

Constants
EDAC_MC_LAYER_BRANCH memory layer is named “branch”
EDAC_MC_LAYER_CHANNEL memory layer is named “channel”
EDAC_MC_LAYER_SLOT memory layer is named “slot”
EDAC_MC_LAYER_CHIP_SELECT memory layer is named “chip select”
EDAC_MC_LAYER_ALL_MEM memory layout is unknown. All memory is mapped as

a single memory area. This is used when retrieving errors from a firmware
driven driver.

Description
This enum is used by the drivers to tell edac_mc_sysfs what name should be used
when describing a memory stick location.

struct edac_mc_layer
describes the memory controller hierarchy

Definition

31.2. Memory Controllers 951

Linux Driver-api Documentation

struct edac_mc_layer {
enum edac_mc_layer_type type;
unsigned size;
bool is_virt_csrow;

};

Members
type layer type

size number of components per layer. For example, if the channel layer has two
channels, size = 2

is_virt_csrow This layer is part of the“csrow”when old API compatibility mode
is enabled. Otherwise, it is a channel

struct rank_info
contains the information for one DIMM rank

Definition

struct rank_info {
int chan_idx;
struct csrow_info *csrow;
struct dimm_info *dimm;
u32 ce_count;

};

Members
chan_idx channel number where the rank is (typically, 0 or 1)

csrow A pointer to the chip select row structure (the parent structure). The loca-
tion of the rank is given by the (csrow->csrow_idx, chan_idx) vector.

dimm A pointer to the DIMM structure, where the DIMM label information is
stored.

ce_count number of correctable errors for this rank

Description
FIXME: Currently, the EDAC core model will assume one DIMM per rank.

This is a bad assumption, but it makes this patch easier. Later patches in
this series will fix this issue.

struct edac_raw_error_desc
Raw error report structure

Definition

struct edac_raw_error_desc {
char location[LOCATION_SIZE];
char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_

↪→LABELS];
long grain;
u16 error_count;
enum hw_event_mc_err_type type;
int top_layer;

(continues on next page)

952 Chapter 31. Error Detection And Correction (EDAC) Devices

Linux Driver-api Documentation

(continued from previous page)
int mid_layer;
int low_layer;
unsigned long page_frame_number;
unsigned long offset_in_page;
unsigned long syndrome;
const char *msg;
const char *other_detail;

};

Members
location location of the error

label label of the affected DIMM(s)

grain minimum granularity for an error report, in bytes

error_count number of errors of the same type

type severity of the error (CE/UE/Fatal)

top_layer top layer of the error (layer[0])

mid_layer middle layer of the error (layer[1])

low_layer low layer of the error (layer[2])

page_frame_number page where the error happened

offset_in_page page offset

syndrome syndrome of the error (or 0 if unknown or if the syndrome is not appli-
cable)

msg error message

other_detail other driver-specific detail about the error

struct dimm_info * edac_get_dimm_by_index(struct mem_ctl_info * mci,
int index)

Get DIMM info at index from a memory controller

Parameters
struct mem_ctl_info * mci MC descriptor struct mem_ctl_info

int index index in the memory controller’s DIMM array

Description
Returns a struct dimm_info * or NULL on failure.

struct dimm_info * edac_get_dimm(struct mem_ctl_info * mci, int layer0,
int layer1, int layer2)

Get DIMM info from a memory controller given by [layer0,layer1,layer2] po-
sition

Parameters
struct mem_ctl_info * mci MC descriptor struct mem_ctl_info

int layer0 layer0 position

31.2. Memory Controllers 953

Linux Driver-api Documentation

int layer1 layer1 position. Unused if n_layers < 2

int layer2 layer2 position. Unused if n_layers < 3

Description
For 1 layer, this function returns “dimms[layer0]”;
For 2 layers, this function is similar to allocating a two-dimensional array and
returning “dimms[layer0][layer1]”;
For 3 layers, this function is similar to allocating a tri-dimensional array and re-
turning “dimms[layer0][layer1][layer2]”;
struct mem_ctl_info * edac_mc_alloc(unsigned int mc_num, unsigned

int n_layers, struct edac_mc_layer
* layers, unsigned int sz_pvt)

Allocate and partially fill a struct mem_ctl_info.

Parameters
unsigned int mc_num Memory controller number

unsigned int n_layers Number of MC hierarchy layers

struct edac_mc_layer * layers Describes each layer as seen by the Memory
Controller

unsigned int sz_pvt size of private storage needed

Description
Everything is kmalloc’ed as one big chunk - more efficient. Only can be used if
all structures have the same lifetime - otherwise you have to allocate and initialize
your own structures.

Use edac_mc_free() to free mc structures allocated by this function.

Note: drivers handle multi-rank memories in different ways: in some drivers, one
multi-rank memory stick is mapped as one entry, while, in others, a single multi-
rank memory stick would be mapped into several entries. Currently, this function
will allocate multiple struct dimm_info on such scenarios, as grouping the multiple
ranks require drivers change.

Return
On success, return a pointer to struct mem_ctl_info pointer; NULL other-
wise

const char * edac_get_owner(void)
Return the owner’s mod_name of EDAC MC

Parameters
void no arguments

Return
Pointer to mod_name string when EDAC MC is owned. NULL otherwise.

954 Chapter 31. Error Detection And Correction (EDAC) Devices

Linux Driver-api Documentation

void edac_mc_free(struct mem_ctl_info * mci)
Frees a previously allocated mci structure

Parameters
struct mem_ctl_info * mci pointer to a struct mem_ctl_info structure

bool edac_has_mcs(void)
Check if any MCs have been allocated.

Parameters
void no arguments

Return
True if MC instances have been registered successfully. False otherwise.

struct mem_ctl_info * edac_mc_find(int idx)
Search for a mem_ctl_info structure whose index is idx.

Parameters
int idx index to be seek

Description
If found, return a pointer to the structure. Else return NULL.

struct mem_ctl_info * find_mci_by_dev(struct device * dev)
Scan list of controllers looking for the one that manages the dev device.

Parameters
struct device * dev pointer to a struct device related with the MCI

Return
on success, returns a pointer to struct mem_ctl_info; NULL otherwise.

struct mem_ctl_info * edac_mc_del_mc(struct device * dev)
Remove sysfs entries for mci structure associated with dev and remove mci
structure from global list.

Parameters
struct device * dev Pointer to struct device representing mci structure to re-

move.

Return
pointer to removed mci structure, or NULL if device not found.

int edac_mc_find_csrow_by_page(struct mem_ctl_info * mci, unsigned
long page)

Ancillary routine to identify what csrow contains a memory page.

Parameters
struct mem_ctl_info * mci pointer to a struct mem_ctl_info structure

unsigned long page memory page to find

31.2. Memory Controllers 955

Linux Driver-api Documentation

Return
on success, returns the csrow. -1 if not found.

void edac_raw_mc_handle_error(struct edac_raw_error_desc * e)
Reports a memory event to userspace without doing anything to discover the
error location.

Parameters
struct edac_raw_error_desc * e error description

Description
This raw function is used internally by edac_mc_handle_error(). It should only
be called directly when the hardware error come directly from BIOS, like in the
case of APEI GHES driver.

void edac_mc_handle_error(const enum hw_event_mc_err_type type, struct
mem_ctl_info * mci, const u16 error_count,
const unsigned long page_frame_number,
const unsigned long offset_in_page, const
unsigned long syndrome, const int top_layer,
const int mid_layer, const int low_layer, const
char * msg, const char * other_detail)

Reports a memory event to userspace.

Parameters
const enum hw_event_mc_err_type type severity of the error (CE/UE/Fatal)

struct mem_ctl_info * mci a struct mem_ctl_info pointer

const u16 error_count Number of errors of the same type

const unsigned long page_frame_number mem page where the error occurred

const unsigned long offset_in_page offset of the error inside the page

const unsigned long syndrome ECC syndrome

const int top_layer Memory layer[0] position

const int mid_layer Memory layer[1] position

const int low_layer Memory layer[2] position

const char * msg Message meaningful to the end users that explains the event

const char * other_detail Technical details about the event that may help
hardware manufacturers and EDAC developers to analyse the event

956 Chapter 31. Error Detection And Correction (EDAC) Devices

Linux Driver-api Documentation

31.3 PCI Controllers

The EDAC subsystem provides a mechanism to handle PCI controllers by calling
the edac_pci_alloc_ctl_info(). It will use the struct edac_pci_ctl_info to
describe the PCI controllers.

struct edac_pci_ctl_info * edac_pci_alloc_ctl_info(unsigned int sz_pvt,
const char
* edac_pci_name)

Parameters
unsigned int sz_pvt size of the private info at struct edac_pci_ctl_info

const char * edac_pci_name name of the PCI device

Description
The alloc() function for the ‘edac_pci’control info structure.

The chip driver will allocate one of these for each edac_pci it is going to con-
trol/register with the EDAC CORE.

Return
a pointer to struct edac_pci_ctl_info on success; NULL otherwise.

void edac_pci_free_ctl_info(struct edac_pci_ctl_info * pci)

Parameters
struct edac_pci_ctl_info * pci pointer to struct edac_pci_ctl_info

Description
Last action on the pci control structure.

Calls the remove sysfs information, which will unregister this control struct’s kobj.
When that kobj’s ref count goes to zero, its release function will be call and then
kfree() the memory.

int edac_pci_alloc_index(void)

Parameters
void no arguments

Return
allocated index number

int edac_pci_add_device(struct edac_pci_ctl_info * pci, int edac_idx)

Parameters
struct edac_pci_ctl_info * pci pointer to the edac_device structure to be

added to the list

int edac_idx A unique numeric identifier to be assigned to the‘edac_pci’struc-
ture.

Description

31.3. PCI Controllers 957

Linux Driver-api Documentation

edac_pci global list and create sysfs entries associated with edac_pci
structure.

Return
0 on Success, or an error code on failure

struct edac_pci_ctl_info * edac_pci_del_device(struct device * dev)

Parameters
struct device * dev Pointer to‘struct device’representing edac_pci structure

to remove

Description
Remove sysfs entries for specified edac_pci structure and then remove
edac_pci structure from global list

Return
Pointer to removed edac_pci structure, or NULL if device not found

struct edac_pci_ctl_info * edac_pci_create_generic_ctl(struct device
* dev, const char
* mod_name)

Parameters
struct device * dev pointer to struct device;

const char * mod_name name of the PCI device

Description
A generic constructor for a PCI parity polling device Some systems have
more than one domain of PCI busses. For systems with one domain, then
this API will provide for a generic poller.

This routine calls the edac_pci_alloc_ctl_info() for the generic device, with
default values

Return
Pointer to struct edac_pci_ctl_info on success, NULL on failure.
void edac_pci_release_generic_ctl(struct edac_pci_ctl_info * pci)

Parameters
struct edac_pci_ctl_info * pci pointer to struct edac_pci_ctl_info

Description
The release function of a generic EDAC PCI polling device

int edac_pci_create_sysfs(struct edac_pci_ctl_info * pci)

Parameters
struct edac_pci_ctl_info * pci pointer to struct edac_pci_ctl_info

Description
Create the controls/attributes for the specified EDAC PCI device

958 Chapter 31. Error Detection And Correction (EDAC) Devices

Linux Driver-api Documentation

void edac_pci_remove_sysfs(struct edac_pci_ctl_info * pci)

Parameters
struct edac_pci_ctl_info * pci pointer to struct edac_pci_ctl_info

Description
remove the controls and attributes for this EDAC PCI device

31.4 EDAC Blocks

The EDAC subsystem also provides a generic mechanism to report errors on other
parts of the hardware via edac_device_alloc_ctl_info() function.

The structures edac_dev_sysfs_block_attribute, edac_device_block,
edac_device_instance and edac_device_ctl_info provide a generic or ab-
stract ‘edac_device’representation at sysfs.
This set of structures and the code that implements the APIs for the same, provide
for registering EDAC type devices which are NOT standard memory or PCI, like:

• CPU caches (L1 and L2)

• DMA engines

• Core CPU switches

• Fabric switch units

• PCIe interface controllers

• other EDAC/ECC type devices that can be monitored for errors, etc.

It allows for a 2 level set of hierarchy.

For example, a cache could be composed of L1, L2 and L3 levels of cache. Each
CPU core would have its own L1 cache, while sharing L2 and maybe L3 caches.
On such case, those can be represented via the following sysfs nodes:

/sys/devices/system/edac/..

pci/ <existing pci directory (if available)>
mc/ <existing memory device directory>
cpu/cpu0/.. <L1 and L2 block directory>

/L1-cache/ce_count
/ue_count

/L2-cache/ce_count
/ue_count

cpu/cpu1/.. <L1 and L2 block directory>
/L1-cache/ce_count

/ue_count
/L2-cache/ce_count

/ue_count
...

the L1 and L2 directories would be "edac_device_block's"

int edac_device_add_device(struct edac_device_ctl_info * edac_dev)

31.4. EDAC Blocks 959

Linux Driver-api Documentation

Parameters
struct edac_device_ctl_info * edac_dev pointer to edac_device structure to

be added to the list ‘edac_device’structure.
Description

edac_device global list and create sysfs entries associated with
edac_device structure.

Return
0 on Success, or an error code on failure

struct edac_device_ctl_info * edac_device_del_device(struct device * dev)

Parameters
struct device * dev Pointer to struct device representing the edac device

structure to remove.

Description
Remove sysfs entries for specified edac_device structure and then re-
move edac_device structure from global list

Return
Pointer to removed edac_device structure, or NULL if device not found.

void edac_device_handle_ce_count(struct edac_device_ctl_info
* edac_dev, unsigned int count,
int inst_nr, int block_nr, const char
* msg)

Parameters
struct edac_device_ctl_info * edac_dev pointer to struct

edac_device_ctl_info

unsigned int count Number of errors to log.

int inst_nr number of the instance where the CE error happened

int block_nr number of the block where the CE error happened

const char * msg message to be printed

void edac_device_handle_ue_count(struct edac_device_ctl_info
* edac_dev, unsigned int count,
int inst_nr, int block_nr, const char
* msg)

Parameters
struct edac_device_ctl_info * edac_dev pointer to struct

edac_device_ctl_info

unsigned int count Number of errors to log.

int inst_nr number of the instance where the CE error happened

int block_nr number of the block where the CE error happened

const char * msg message to be printed

960 Chapter 31. Error Detection And Correction (EDAC) Devices

Linux Driver-api Documentation

void edac_device_handle_ce(struct edac_device_ctl_info * edac_dev,
int inst_nr, int block_nr, const char * msg)

Parameters
struct edac_device_ctl_info * edac_dev pointer to struct

edac_device_ctl_info

int inst_nr number of the instance where the CE error happened

int block_nr number of the block where the CE error happened

const char * msg message to be printed

void edac_device_handle_ue(struct edac_device_ctl_info * edac_dev,
int inst_nr, int block_nr, const char * msg)

Parameters
struct edac_device_ctl_info * edac_dev pointer to struct

edac_device_ctl_info

int inst_nr number of the instance where the UE error happened

int block_nr number of the block where the UE error happened

const char * msg message to be printed

int edac_device_alloc_index(void)

Parameters
void no arguments

Return
allocated index number

31.4. EDAC Blocks 961

Linux Driver-api Documentation

962 Chapter 31. Error Detection And Correction (EDAC) Devices

CHAPTER

THIRTYTWO

SCSI INTERFACES GUIDE

Author James Bottomley
Author Rob Landley

32.1 Introduction

32.1.1 Protocol vs bus

Once upon a time, the Small Computer Systems Interface defined both a parallel
I/O bus and a data protocol to connect a wide variety of peripherals (disk drives,
tape drives, modems, printers, scanners, optical drives, test equipment, and med-
ical devices) to a host computer.

Although the old parallel (fast/wide/ultra) SCSI bus has largely fallen out of use,
the SCSI command set is more widely used than ever to communicate with devices
over a number of different busses.

The SCSI protocol is a big-endian peer-to-peer packet based protocol. SCSI com-
mands are 6, 10, 12, or 16 bytes long, often followed by an associated data payload.

SCSI commands can be transported over just about any kind of bus, and are the
default protocol for storage devices attached to USB, SATA, SAS, Fibre Channel,
FireWire, and ATAPI devices. SCSI packets are also commonly exchanged over
Infiniband, I2O, TCP/IP (iSCSI), even Parallel ports.

32.1.2 Design of the Linux SCSI subsystem

The SCSI subsystem uses a three layer design, with upper, mid, and low layers.
Every operation involving the SCSI subsystem (such as reading a sector from a
disk) uses one driver at each of the 3 levels: one upper layer driver, one lower
layer driver, and the SCSI midlayer.

The SCSI upper layer provides the interface between userspace and the kernel, in
the form of block and char device nodes for I/O and ioctl(). The SCSI lower layer
contains drivers for specific hardware devices.

In between is the SCSI mid-layer, analogous to a network routing layer such as
the IPv4 stack. The SCSI mid-layer routes a packet based data protocol between
the upper layer’s /dev nodes and the corresponding devices in the lower layer.

963

http://www.t10.org/scsi-3.htm
http://i2o.shadowconnect.com/faq.php
https://en.wikipedia.org/wiki/ISCSI
http://cyberelk.net/tim/parport/parscsi.html

Linux Driver-api Documentation

It manages command queues, provides error handling and power management
functions, and responds to ioctl() requests.

32.2 SCSI upper layer

The upper layer supports the user-kernel interface by providing device nodes.

32.2.1 sd (SCSI Disk)

sd (sd_mod.o)

32.2.2 sr (SCSI CD-ROM)

sr (sr_mod.o)

32.2.3 st (SCSI Tape)

st (st.o)

32.2.4 sg (SCSI Generic)

sg (sg.o)

32.2.5 ch (SCSI Media Changer)

ch (ch.c)

32.3 SCSI mid layer

32.3.1 SCSI midlayer implementation

include/scsi/scsi_device.h

struct scsi_vpd
SCSI Vital Product Data

Definition

struct scsi_vpd {
struct rcu_head rcu;
int len;
unsigned char data[];

};

Members
rcu For kfree_rcu().

964 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

len Length in bytes of data.
data VPD data as defined in various T10 SCSI standard documents.

shost_for_each_device(sdev, shost)
iterate over all devices of a host

Parameters
sdev the struct scsi_device to use as a cursor

shost the struct scsi_host to iterate over

Description
Iterator that returns each device attached to shost. This loop takes a reference
on each device and releases it at the end. If you break out of the loop, you must
call scsi_device_put(sdev).

__shost_for_each_device(sdev, shost)
iterate over all devices of a host (UNLOCKED)

Parameters
sdev the struct scsi_device to use as a cursor

shost the struct scsi_host to iterate over

Description
Iterator that returns each device attached to shost. It does _not_ take a reference
on the scsi_device, so the whole loop must be protected by shost->host_lock.

Note
The only reason to use this is because you need to access the device list in interrupt
context. Otherwise you really want to use shost_for_each_device instead.

int scsi_device_supports_vpd(struct scsi_device * sdev)
test if a device supports VPD pages

Parameters
struct scsi_device * sdev the struct scsi_device to test

Description
If the‘try_vpd_pages’flag is set it takes precedence. Otherwise we will assume
VPD pages are supported if the SCSI level is at least SPC-3 and‘skip_vpd_pages’
is not set.

drivers/scsi/scsi.c

Main file for the SCSI midlayer.

int scsi_change_queue_depth(struct scsi_device * sdev, int depth)
change a device’s queue depth

Parameters
struct scsi_device * sdev SCSI Device in question

int depth number of commands allowed to be queued to the driver

32.3. SCSI mid layer 965

Linux Driver-api Documentation

Description
Sets the device queue depth and returns the new value.

int scsi_track_queue_full(struct scsi_device * sdev, int depth)
track QUEUE_FULL events to adjust queue depth

Parameters
struct scsi_device * sdev SCSI Device in question

int depth Current number of outstanding SCSI commands on this device, not
counting the one returned as QUEUE_FULL.

Description
This function will track successive QUEUE_FULL events on a specific SCSI

device to determine if and when there is a need to adjust the queue depth on
the device.

Lock Status: None held on entry

Return
0 - No change needed, >0 - Adjust queue depth to this new depth,

-1 - Drop back to untagged operation using host->cmd_per_lun as the
untagged command depth

Notes
Low level drivers may call this at any time and we will do“The Right

Thing.”We are interrupt context safe.
int scsi_get_vpd_page(struct scsi_device * sdev, u8 page, unsigned char

* buf, int buf_len)
Get Vital Product Data from a SCSI device

Parameters
struct scsi_device * sdev The device to ask

u8 page Which Vital Product Data to return

unsigned char * buf where to store the VPD

int buf_len number of bytes in the VPD buffer area

Description
SCSI devices may optionally supply Vital Product Data. Each ‘page’of VPD is
defined in the appropriate SCSI document (eg SPC, SBC). If the device supports
this VPD page, this routine returns a pointer to a buffer containing the data from
that page. The caller is responsible for calling kfree() on this pointer when it is no
longer needed. If we cannot retrieve the VPD page this routine returns NULL.

int scsi_report_opcode(struct scsi_device * sdev, unsigned char * buffer,
unsigned int len, unsigned char opcode)

Find out if a given command opcode is supported

Parameters
struct scsi_device * sdev scsi device to query

966 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

unsigned char * buffer scratch buffer (must be at least 20 bytes long)

unsigned int len length of buffer

unsigned char opcode opcode for command to look up

Description
Uses the REPORT SUPPORTED OPERATION CODES to look up the given opcode.
Returns -EINVAL if RSOC fails, 0 if the command opcode is unsupported and 1 if
the device claims to support the command.

int scsi_device_get(struct scsi_device * sdev)
get an additional reference to a scsi_device

Parameters
struct scsi_device * sdev device to get a reference to

Description
Gets a reference to the scsi_device and increments the use count of the underlying
LLDD module. You must hold host_lock of the parent Scsi_Host or already have a
reference when calling this.

This will fail if a device is deleted or cancelled, or when the LLD module is in the
process of being unloaded.

void scsi_device_put(struct scsi_device * sdev)
release a reference to a scsi_device

Parameters
struct scsi_device * sdev device to release a reference on.

Description
Release a reference to the scsi_device and decrements the use count of the under-
lying LLDD module. The device is freed once the last user vanishes.

void starget_for_each_device(struct scsi_target * starget, void * data,
void (*fn)(struct scsi_device *, void *))

helper to walk all devices of a target

Parameters
struct scsi_target * starget target whose devices we want to iterate over.

void * data Opaque passed to each function call.

void (*)(struct scsi_device *, void *) fn Function to call on each device

Description
This traverses over each device of starget. The devices have a reference that
must be released by scsi_host_put when breaking out of the loop.

void __starget_for_each_device(struct scsi_target * starget, void * data,
void (*fn)(struct scsi_device *, void *))

helper to walk all devices of a target (UNLOCKED)

Parameters
struct scsi_target * starget target whose devices we want to iterate over.

32.3. SCSI mid layer 967

Linux Driver-api Documentation

void * data parameter for callback fn()
void (*)(struct scsi_device *, void *) fn callback function that is invoked

for each device

Description
This traverses over each device of starget. It does _not_ take a reference on the
scsi_device, so the whole loop must be protected by shost->host_lock.

Note
The only reason why drivers would want to use this is because they need to
access the device list in irq context. Otherwise you really want to use star-
get_for_each_device instead.

struct scsi_device * __scsi_device_lookup_by_target(struct scsi_target
* starget, u64 lun)

find a device given the target (UNLOCKED)

Parameters
struct scsi_target * starget SCSI target pointer

u64 lun SCSI Logical Unit Number

Description
Looks up the scsi_device with the specified lun for a given starget. The returned
scsi_device does not have an additional reference. You must hold the host’s
host_lock over this call and any access to the returned scsi_device. A scsi_device
in state SDEV_DEL is skipped.

Note
The only reason why drivers should use this is because they need to ac-
cess the device list in irq context. Otherwise you really want to use
scsi_device_lookup_by_target instead.

struct scsi_device * scsi_device_lookup_by_target(struct scsi_target
* starget, u64 lun)

find a device given the target

Parameters
struct scsi_target * starget SCSI target pointer

u64 lun SCSI Logical Unit Number

Description
Looks up the scsi_device with the specified lun for a given starget. The re-
turned scsi_device has an additional reference that needs to be released with
scsi_device_put once you’re done with it.
struct scsi_device * __scsi_device_lookup(struct Scsi_Host * shost,

uint channel, uint id, u64 lun)
find a device given the host (UNLOCKED)

Parameters
struct Scsi_Host * shost SCSI host pointer

968 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

uint channel SCSI channel (zero if only one channel)

uint id SCSI target number (physical unit number)

u64 lun SCSI Logical Unit Number

Description
Looks up the scsi_device with the specified channel, id, lun for a given host. The
returned scsi_device does not have an additional reference. You must hold the
host’s host_lock over this call and any access to the returned scsi_device.
Note
The only reason why drivers would want to use this is because they need to access
the device list in irq context. Otherwise you really want to use scsi_device_lookup
instead.

struct scsi_device * scsi_device_lookup(struct Scsi_Host * shost,
uint channel, uint id, u64 lun)

find a device given the host

Parameters
struct Scsi_Host * shost SCSI host pointer

uint channel SCSI channel (zero if only one channel)

uint id SCSI target number (physical unit number)

u64 lun SCSI Logical Unit Number

Description
Looks up the scsi_device with the specified channel, id, lun for a given host. The
returned scsi_device has an additional reference that needs to be released with
scsi_device_put once you’re done with it.

drivers/scsi/scsicam.c

SCSI Common Access Method support functions, for use with HDIO_GETGEO, etc.

unsigned char * scsi_bios_ptable(struct block_device * dev)
Read PC partition table out of first sector of device.

Parameters
struct block_device * dev from this device

Description
Reads the first sector from the device and returns 0x42 bytes starting at

offset 0x1be.

Return
partition table in kmalloc(GFP_KERNEL) memory, or NULL on error.

bool scsi_partsize(struct block_device * bdev, sector_t capacity, int geom)
Parse cylinders/heads/sectors from PC partition table

32.3. SCSI mid layer 969

http://www.t10.org/ftp/t10/drafts/cam/cam-r12b.pdf

Linux Driver-api Documentation

Parameters
struct block_device * bdev block device to parse

sector_t capacity size of the disk in sectors

int geom output in form of [hds, cylinders, sectors]

Description
Determine the BIOS mapping/geometry used to create the partition table, storing
the results in geom.
Return
false on failure, true on success.

int scsicam_bios_param(struct block_device * bdev, sector_t capacity, int
* ip)

Determine geometry of a disk in cylinders/heads/sectors.

Parameters
struct block_device * bdev which device

sector_t capacity size of the disk in sectors

int * ip return value: ip[0]=heads, ip[1]=sectors, ip[2]=cylinders

Description
determine the BIOS mapping/geometry used for a drive in a SCSI-CAM

system, storing the results in ip as required by the HDIO_GETGEO ioctl().

Return
-1 on failure, 0 on success.

drivers/scsi/scsi_error.c

Common SCSI error/timeout handling routines.

void scsi_schedule_eh(struct Scsi_Host * shost)
schedule EH for SCSI host

Parameters
struct Scsi_Host * shost SCSI host to invoke error handling on.

Description
Schedule SCSI EH without scmd.

int scsi_block_when_processing_errors(struct scsi_device * sdev)
Prevent cmds from being queued.

Parameters
struct scsi_device * sdev Device on which we are performing recovery.

Description
We block until the host is out of error recovery, and then check to see
whether the host or the device is offline.

970 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

Return value: 0 when dev was taken offline by error recovery. 1 OK to proceed.
int scsi_check_sense(struct scsi_cmnd * scmd)

Examine scsi cmd sense

Parameters
struct scsi_cmnd * scmd Cmd to have sense checked.

Description
Return value: SUCCESS or FAILED or NEEDS_RETRY or ADD_TO_MLQUEUE
Notes

When a deferred error is detected the current command has not been
executed and needs retrying.

void scsi_eh_prep_cmnd(struct scsi_cmnd * scmd, struct scsi_eh_save
* ses, unsigned char * cmnd, int cmnd_size, un-
signed sense_bytes)

Save a scsi command info as part of error recovery

Parameters
struct scsi_cmnd * scmd SCSI command structure to hijack

struct scsi_eh_save * ses structure to save restore information

unsigned char * cmnd CDB to send. Can be NULL if no new cmnd is needed

int cmnd_size size in bytes of cmnd (must be <= BLK_MAX_CDB)
unsigned sense_bytes size of sense data to copy. or 0 (if != 0 cmnd is ignored)
Description
This function is used to save a scsi command information before re-execution as
part of the error recovery process. If sense_bytes is 0 the command sent must
be one that does not transfer any data. If sense_bytes != 0 cmnd is ignored and
this functions sets up a REQUEST_SENSE command and cmnd buffers to read
sense_bytes into scmd->sense_buffer.
void scsi_eh_restore_cmnd(struct scsi_cmnd * scmd, struct scsi_eh_save

* ses)
Restore a scsi command info as part of error recovery

Parameters
struct scsi_cmnd * scmd SCSI command structure to restore

struct scsi_eh_save * ses saved information from a coresponding call to
scsi_eh_prep_cmnd

Description
Undo any damage done by above scsi_eh_prep_cmnd().

void scsi_eh_finish_cmd(struct scsi_cmnd * scmd, struct list_head
* done_q)

Handle a cmd that eh is finished with.

Parameters

32.3. SCSI mid layer 971

Linux Driver-api Documentation

struct scsi_cmnd * scmd Original SCSI cmd that eh has finished.

struct list_head * done_q Queue for processed commands.

Notes
We don’t want to use the normal command completion while we are are
still handling errors - it may cause other commands to be queued, and
that would disturb what we are doing. Thus we really want to keep a
list of pending commands for final completion, and once we are ready to
leave error handling we handle completion for real.

int scsi_eh_get_sense(struct list_head * work_q, struct list_head * done_q)
Get device sense data.

Parameters
struct list_head * work_q Queue of commands to process.

struct list_head * done_q Queue of processed commands.

Description
See if we need to request sense information. if so, then get it now, so we
have a better idea of what to do.

Notes
This has the unfortunate side effect that if a shost adapter does not auto-
matically request sense information, we end up shutting it down before
we request it.

All drivers should request sense information internally these days, so for
now all I have to say is tough noogies if you end up in here.

XXX: Long term this code should go away, but that needs an audit of
all LLDDs first.

void scsi_eh_ready_devs(struct Scsi_Host * shost, struct list_head
* work_q, struct list_head * done_q)

check device ready state and recover if not.

Parameters
struct Scsi_Host * shost host to be recovered.

struct list_head * work_q list_head for pending commands.

struct list_head * done_q list_head for processed commands.

void scsi_eh_flush_done_q(struct list_head * done_q)
finish processed commands or retry them.

Parameters
struct list_head * done_q list_head of processed commands.

bool scsi_get_sense_info_fld(const u8 * sense_buffer, int sb_len, u64
* info_out)

get information field from sense data (either fixed or descriptor format)

Parameters

972 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

const u8 * sense_buffer byte array of sense data

int sb_len number of valid bytes in sense_buffer

u64 * info_out pointer to 64 integer where 8 or 4 byte information field will be
placed if found.

Description
Return value: true if information field found, false if not found.

drivers/scsi/scsi_devinfo.c

Manage scsi_dev_info_list, which tracks blacklisted and whitelisted devices.

int scsi_dev_info_list_add(int compatible, char * vendor, char * model,
char * strflags, blist_flags_t flags)

add one dev_info list entry.

Parameters
int compatible if true, null terminate short strings. Otherwise space pad.

char * vendor vendor string

char * model model (product) string

char * strflags integer string

blist_flags_t flags if strflags NULL, use this flag value

Description
Create and add one dev_info entry for vendor,model, strflags or flag.
If compatible, add to the tail of the list, do not space pad, and set
devinfo->compatible. The scsi_static_device_list entries are added with
compatible 1 and clfags NULL.

Return
0 OK, -error on failure.

struct scsi_dev_info_list * scsi_dev_info_list_find(const char
* vendor, const
char * model, enum
scsi_devinfo_key key)

find a matching dev_info list entry.

Parameters
const char * vendor full vendor string

const char * model full model (product) string

enum scsi_devinfo_key key specify list to use

Description
Finds the first dev_info entry matching vendor, model in list specified
by key.

32.3. SCSI mid layer 973

Linux Driver-api Documentation

Return
pointer to matching entry, or ERR_PTR on failure.

int scsi_dev_info_list_add_str(char * dev_list)
parse dev_list and add to the scsi_dev_info_list.

Parameters
char * dev_list string of device flags to add

Description
Parse dev_list, and add entries to the scsi_dev_info_list. dev_list is of the
form “vendor:product:flag,vendor:product:flag”. dev_list is modified
via strsep. Can be called for command line addition, for proc or mabye
a sysfs interface.

Return
0 if OK, -error on failure.

blist_flags_t scsi_get_device_flags(struct scsi_device * sdev, const un-
signed char * vendor, const unsigned
char * model)

get device specific flags from the dynamic device list.

Parameters
struct scsi_device * sdev scsi_device to get flags for

const unsigned char * vendor vendor name

const unsigned char * model model name

Description
Search the global scsi_dev_info_list (specified by list zero) for an entry
matching vendor andmodel, if found, return the matching flags value,
else return the host or global default settings. Called during scan time.

void scsi_exit_devinfo(void)
remove /proc/scsi/device_info & the scsi_dev_info_list

Parameters
void no arguments

int scsi_init_devinfo(void)
set up the dynamic device list.

Parameters
void no arguments

Description
Add command line entries from scsi_dev_flags, then add
scsi_static_device_list entries to the scsi device info list.

974 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

drivers/scsi/scsi_ioctl.c

Handle ioctl() calls for SCSI devices.

int scsi_ioctl(struct scsi_device * sdev, int cmd, void __user * arg)
Dispatch ioctl to scsi device

Parameters
struct scsi_device * sdev scsi device receiving ioctl

int cmd which ioctl is it

void __user * arg data associated with ioctl

Description
The scsi_ioctl() function differs from most ioctls in that it does not take a
major/minor number as the dev field. Rather, it takes a pointer to a struct
scsi_device.

drivers/scsi/scsi_lib.c

SCSI queuing library.

int __scsi_execute(struct scsi_device * sdev, const unsigned char * cmd,
int data_direction, void * buffer, unsigned bufflen, un-
signed char * sense, struct scsi_sense_hdr * sshdr,
int timeout, int retries, u64 flags, req_flags_t rq_flags,
int * resid)

insert request and wait for the result

Parameters
struct scsi_device * sdev scsi device

const unsigned char * cmd scsi command

int data_direction data direction

void * buffer data buffer

unsigned bufflen len of buffer

unsigned char * sense optional sense buffer

struct scsi_sense_hdr * sshdr optional decoded sense header

int timeout request timeout in seconds

int retries number of times to retry request

u64 flags flags for ->cmd_flags

req_flags_t rq_flags flags for ->rq_flags

int * resid optional residual length

Description
Returns the scsi_cmnd result field if a command was executed, or a negative Linux
error code if we didn’t get that far.

32.3. SCSI mid layer 975

Linux Driver-api Documentation

blk_status_t scsi_init_io(struct scsi_cmnd * cmd)
SCSI I/O initialization function.

Parameters
struct scsi_cmnd * cmd command descriptor we wish to initialize

Return
• BLK_STS_OK - on success

• BLK_STS_RESOURCE - if the failure is retryable

• BLK_STS_IOERR - if the failure is fatal

struct scsi_device * scsi_device_from_queue(struct request_queue * q)
return sdev associated with a request_queue

Parameters
struct request_queue * q The request queue to return the sdev from

Description
Return the sdev associated with a request queue or NULL if the request_queue
does not reference a SCSI device.

void scsi_block_requests(struct Scsi_Host * shost)
Utility function used by low-level drivers to prevent further commands from
being queued to the device.

Parameters
struct Scsi_Host * shost host in question

Description
There is no timer nor any other means by which the requests get unblocked other
than the low-level driver calling scsi_unblock_requests().

void scsi_unblock_requests(struct Scsi_Host * shost)
Utility function used by low-level drivers to allow further commands to be
queued to the device.

Parameters
struct Scsi_Host * shost host in question

Description
There is no timer nor any other means by which the requests get unblocked other
than the low-level driver calling scsi_unblock_requests(). This is done as an
API function so that changes to the internals of the scsi mid-layer won’t require
wholesale changes to drivers that use this feature.

int scsi_mode_select(struct scsi_device * sdev, int pf, int sp, int modepage,
unsigned char * buffer, int len, int timeout,
int retries, struct scsi_mode_data * data, struct
scsi_sense_hdr * sshdr)

issue a mode select

Parameters

976 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

struct scsi_device * sdev SCSI device to be queried

int pf Page format bit (1 == standard, 0 == vendor specific)

int sp Save page bit (0 == don’t save, 1 == save)
int modepage mode page being requested

unsigned char * buffer request buffer (may not be smaller than eight bytes)

int len length of request buffer.

int timeout command timeout

int retries number of retries before failing

struct scsi_mode_data * data returns a structure abstracting the mode
header data

struct scsi_sense_hdr * sshdr place to put sense data (or NULL if no sense
to be collected). must be SCSI_SENSE_BUFFERSIZE big.

Returns zero if successful; negative error number or scsi status on
error

int scsi_mode_sense(struct scsi_device * sdev, int dbd, int modepage, un-
signed char * buffer, int len, int timeout, int retries,
struct scsi_mode_data * data, struct scsi_sense_hdr
* sshdr)

issue a mode sense, falling back from 10 to six bytes if necessary.

Parameters
struct scsi_device * sdev SCSI device to be queried

int dbd set if mode sense will allow block descriptors to be returned

int modepage mode page being requested

unsigned char * buffer request buffer (may not be smaller than eight bytes)

int len length of request buffer.

int timeout command timeout

int retries number of retries before failing

struct scsi_mode_data * data returns a structure abstracting the mode
header data

struct scsi_sense_hdr * sshdr place to put sense data (or NULL if no sense
to be collected). must be SCSI_SENSE_BUFFERSIZE big.

Returns zero if unsuccessful, or the header offset (either 4 or 8 de-
pending on whether a six or ten byte command was issued) if suc-
cessful.

int scsi_test_unit_ready(struct scsi_device * sdev, int timeout, int retries,
struct scsi_sense_hdr * sshdr)

test if unit is ready

Parameters
struct scsi_device * sdev scsi device to change the state of.

32.3. SCSI mid layer 977

Linux Driver-api Documentation

int timeout command timeout

int retries number of retries before failing

struct scsi_sense_hdr * sshdr outpout pointer for decoded sense informa-
tion.

Returns zero if unsuccessful or an error if TUR failed. For removable media,
UNIT_ATTENTION sets ->changed flag.

int scsi_device_set_state(struct scsi_device * sdev, enum
scsi_device_state state)

Take the given device through the device state model.

Parameters
struct scsi_device * sdev scsi device to change the state of.

enum scsi_device_state state state to change to.

Returns zero if successful or an error if the requested transition is illegal.

void sdev_evt_send(struct scsi_device * sdev, struct scsi_event * evt)
send asserted event to uevent thread

Parameters
struct scsi_device * sdev scsi_device event occurred on

struct scsi_event * evt event to send

Assert scsi device event asynchronously.

struct scsi_event * sdev_evt_alloc(enum scsi_device_event evt_type,
gfp_t gfpflags)

allocate a new scsi event

Parameters
enum scsi_device_event evt_type type of event to allocate

gfp_t gfpflags GFP flags for allocation

Allocates and returns a new scsi_event.

void sdev_evt_send_simple(struct scsi_device * sdev, enum
scsi_device_event evt_type, gfp_t gfpflags)

send asserted event to uevent thread

Parameters
struct scsi_device * sdev scsi_device event occurred on

enum scsi_device_event evt_type type of event to send

gfp_t gfpflags GFP flags for allocation

Assert scsi device event asynchronously, given an event type.

int scsi_device_quiesce(struct scsi_device * sdev)
Block user issued commands.

Parameters

978 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

struct scsi_device * sdev scsi device to quiesce.

This works by trying to transition to the SDEV_QUIESCE state (which must
be a legal transition). When the device is in this state, only special requests
will be accepted, all others will be deferred. Since special requests may also
be requeued requests, a successful return doesn’t guarantee the device will
be totally quiescent.

Must be called with user context, may sleep.

Returns zero if unsuccessful or an error if not.

void scsi_device_resume(struct scsi_device * sdev)
Restart user issued commands to a quiesced device.

Parameters
struct scsi_device * sdev scsi device to resume.

Moves the device from quiesced back to running and restarts the queues.

Must be called with user context, may sleep.

int scsi_internal_device_block_nowait(struct scsi_device * sdev)
try to transition to the SDEV_BLOCK state

Parameters
struct scsi_device * sdev device to block

Description
Pause SCSI command processing on the specified device. Does not sleep.

Returns zero if successful or a negative error code upon failure.

Notes
This routine transitions the device to the SDEV_BLOCK state (which must
be a legal transition). When the device is in this state, command pro-
cessing is paused until the device leaves the SDEV_BLOCK state. See also
scsi_internal_device_unblock_nowait().

int scsi_internal_device_unblock_nowait(struct scsi_device
* sdev, enum
scsi_device_state new_state)

resume a device after a block request

Parameters
struct scsi_device * sdev device to resume

enum scsi_device_state new_state state to set the device to after unblocking

Description
Restart the device queue for a previously suspended SCSI device. Does not sleep.

Returns zero if successful or a negative error code upon failure.

Notes

32.3. SCSI mid layer 979

Linux Driver-api Documentation

This routine transitions the device to the SDEV_RUNNING state or to one of the
offline states (which must be a legal transition) allowing the midlayer to goose the
queue for this device.

void * scsi_kmap_atomic_sg(struct scatterlist * sgl, int sg_count, size_t
* offset, size_t * len)

find and atomically map an sg-elemnt

Parameters
struct scatterlist * sgl scatter-gather list

int sg_count number of segments in sg

size_t * offset offset in bytes into sg, on return offset into the mapped area

size_t * len bytes to map, on return number of bytes mapped

Description
Returns virtual address of the start of the mapped page

void scsi_kunmap_atomic_sg(void * virt)
atomically unmap a virtual address, previously mapped with
scsi_kmap_atomic_sg

Parameters
void * virt virtual address to be unmapped

int scsi_vpd_lun_id(struct scsi_device * sdev, char * id, size_t id_len)
return a unique device identification

Parameters
struct scsi_device * sdev SCSI device

char * id buffer for the identification

size_t id_len length of the buffer

Description
Copies a unique device identification into id based on the information in the VPD
page 0x83 of the device. The string will be formatted as a SCSI name string.

Returns the length of the identification or error on failure. If the identifier is longer
than the supplied buffer the actual identifier length is returned and the buffer is
not zero-padded.

drivers/scsi/scsi_lib_dma.c

SCSI library functions depending on DMA (map and unmap scatter-gather lists).

int scsi_dma_map(struct scsi_cmnd * cmd)
perform DMA mapping against command’s sg lists

Parameters
struct scsi_cmnd * cmd scsi command

980 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

Description
Returns the number of sg lists actually used, zero if the sg lists is NULL, or -
ENOMEM if the mapping failed.

void scsi_dma_unmap(struct scsi_cmnd * cmd)
unmap command’s sg lists mapped by scsi_dma_map

Parameters
struct scsi_cmnd * cmd scsi command

drivers/scsi/scsi_proc.c

The functions in this file provide an interface between the PROC file system and
the SCSI device drivers It is mainly used for debugging, statistics and to pass
information directly to the lowlevel driver. I.E. plumbing to manage /proc/scsi/*

void scsi_proc_hostdir_add(struct scsi_host_template * sht)
Create directory in /proc for a scsi host

Parameters
struct scsi_host_template * sht owner of this directory

Description
Sets sht->proc_dir to the new directory.

void scsi_proc_hostdir_rm(struct scsi_host_template * sht)
remove directory in /proc for a scsi host

Parameters
struct scsi_host_template * sht owner of directory

void scsi_proc_host_add(struct Scsi_Host * shost)
Add entry for this host to appropriate /proc dir

Parameters
struct Scsi_Host * shost host to add

void scsi_proc_host_rm(struct Scsi_Host * shost)
remove this host’s entry from /proc

Parameters
struct Scsi_Host * shost which host

int proc_print_scsidevice(struct device * dev, void * data)
return data about this host

Parameters
struct device * dev A scsi device

void * data struct seq_file to output to.

Description
prints Host, Channel, Id, Lun, Vendor, Model, Rev, Type, and revision.

32.3. SCSI mid layer 981

Linux Driver-api Documentation

int scsi_add_single_device(uint host, uint channel, uint id, uint lun)
Respond to user request to probe for/add device

Parameters
uint host user-supplied decimal integer

uint channel user-supplied decimal integer

uint id user-supplied decimal integer

uint lun user-supplied decimal integer

Description
called by writing “scsi add-single-device”to /proc/scsi/scsi.
does scsi_host_lookup() and either user_scan() if that transport type supports
it, or else scsi_scan_host_selected()

Note
this seems to be aimed exclusively at SCSI parallel busses.

int scsi_remove_single_device(uint host, uint channel, uint id, uint lun)
Respond to user request to remove a device

Parameters
uint host user-supplied decimal integer

uint channel user-supplied decimal integer

uint id user-supplied decimal integer

uint lun user-supplied decimal integer

Description
called by writing “scsi remove-single-device”to /proc/scsi/scsi. Does a
scsi_device_lookup() and scsi_remove_device()

ssize_t proc_scsi_write(struct file * file, const char __user * buf,
size_t length, loff_t * ppos)

handle writes to /proc/scsi/scsi

Parameters
struct file * file not used

const char __user * buf buffer to write

size_t length length of buf, at most PAGE_SIZE

loff_t * ppos not used

Description
this provides a legacy mechanism to add or remove devices by Host, Channel, ID,
and Lun. To use,“echo‘scsi add-single-device 0 1 2 3’> /proc/scsi/scsi”or“echo
‘scsi remove-single-device 0 1 2 3’> /proc/scsi/scsi”with “0 1 2 3”replaced by
the Host, Channel, Id, and Lun.

Note

982 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

this seems to be aimed at parallel SCSI.Mostmodern busses (USB, SATA, Firewire,
Fibre Channel, etc) dynamically assign these values to provide a unique identifier
and nothing more.

int proc_scsi_open(struct inode * inode, struct file * file)
glue function

Parameters
struct inode * inode not used

struct file * file passed to single_open()

Description
Associates proc_scsi_show with this file

int scsi_init_procfs(void)
create scsi and scsi/scsi in procfs

Parameters
void no arguments

void scsi_exit_procfs(void)
Remove scsi/scsi and scsi from procfs

Parameters
void no arguments

drivers/scsi/scsi_netlink.c

Infrastructure to provide async events from transports to userspace via netlink,
using a single NETLINK_SCSITRANSPORT protocol for all transports. See the
original patch submission for more details.

void scsi_nl_rcv_msg(struct sk_buff * skb)
Receive message handler.

Parameters
struct sk_buff * skb socket receive buffer

Description
Extracts message from a receive buffer. Validates message header and calls

appropriate transport message handler

void scsi_netlink_init(void)
Called by SCSI subsystem to initialize the SCSI transport netlink interface

Parameters
void no arguments

void scsi_netlink_exit(void)
Called by SCSI subsystem to disable the SCSI transport netlink interface

Parameters
void no arguments

32.3. SCSI mid layer 983

http://marc.info/?l=linux-scsi&m=115507374832500&w=2
http://marc.info/?l=linux-scsi&m=115507374832500&w=2

Linux Driver-api Documentation

drivers/scsi/scsi_scan.c

Scan a host to determine which (if any) devices are attached. The general scan-
ning/probing algorithm is as follows, exceptions are made to it depending on de-
vice specific flags, compilation options, and global variable (boot or module load
time) settings. A specific LUN is scanned via an INQUIRY command; if the LUN
has a device attached, a scsi_device is allocated and setup for it. For every id of
every channel on the given host, start by scanning LUN 0. Skip hosts that don’
t respond at all to a scan of LUN 0. Otherwise, if LUN 0 has a device attached,
allocate and setup a scsi_device for it. If target is SCSI-3 or up, issue a REPORT
LUN, and scan all of the LUNs returned by the REPORT LUN; else, sequentially
scan LUNs up until some maximum is reached, or a LUN is seen that cannot have
a device attached to it.

int scsi_complete_async_scans(void)
Wait for asynchronous scans to complete

Parameters
void no arguments

Description
When this function returns, any host which started scanning before this function
was called will have finished its scan. Hosts which started scanning after this
function was called may or may not have finished.

void scsi_unlock_floptical(struct scsi_device * sdev, unsigned char
* result)

unlock device via a special MODE SENSE command

Parameters
struct scsi_device * sdev scsi device to send command to

unsigned char * result area to store the result of the MODE SENSE

Description
Send a vendor specific MODE SENSE (not a MODE SELECT) command.
Called for BLIST_KEY devices.

struct scsi_device * scsi_alloc_sdev(struct scsi_target * starget, u64 lun,
void * hostdata)

allocate and setup a scsi_Device

Parameters
struct scsi_target * starget which target to allocate a scsi_device for

u64 lun which lun

void * hostdata usually NULL and set by ->slave_alloc instead

Description
Allocate, initialize for io, and return a pointer to a scsi_Device. Stores
the shost, channel, id, and lun in the scsi_Device, and adds scsi_Device
to the appropriate list.

Return value: scsi_Device pointer, or NULL on failure.

984 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

void scsi_target_reap_ref_release(struct kref * kref)
remove target from visibility

Parameters
struct kref * kref the reap_ref in the target being released

Description
Called on last put of reap_ref, which is the indication that no device under this
target is visible anymore, so render the target invisible in sysfs. Note: we have to
be in user context here because the target reaps should be done in places where
the scsi device visibility is being removed.

struct scsi_target * scsi_alloc_target(struct device * parent, int channel,
uint id)

allocate a new or find an existing target

Parameters
struct device * parent parent of the target (need not be a scsi host)

int channel target channel number (zero if no channels)

uint id target id number

Description
Return an existing target if one exists, provided it hasn’t already gone into STAR-
GET_DEL state, otherwise allocate a new target.

The target is returned with an incremented reference, so the caller is responsible
for both reaping and doing a last put

void scsi_target_reap(struct scsi_target * starget)
check to see if target is in use and destroy if not

Parameters
struct scsi_target * starget target to be checked

Description
This is used after removing a LUN or doing a last put of the target it checks atom-
ically that nothing is using the target and removes it if so.

int scsi_probe_lun(struct scsi_device * sdev, unsigned char * inq_result,
int result_len, blist_flags_t * bflags)

probe a single LUN using a SCSI INQUIRY

Parameters
struct scsi_device * sdev scsi_device to probe

unsigned char * inq_result area to store the INQUIRY result

int result_len len of inq_result

blist_flags_t * bflags store any bflags found here

Description
Probe the lun associated with req using a standard SCSI INQUIRY;

32.3. SCSI mid layer 985

Linux Driver-api Documentation

If the INQUIRY is successful, zero is returned and the INQUIRY data
is in inq_result; the scsi_level and INQUIRY length are copied to the
scsi_device any flags value is stored in *bflags.

int scsi_add_lun(struct scsi_device * sdev, unsigned char * inq_result,
blist_flags_t * bflags, int async)

allocate and fully initialze a scsi_device

Parameters
struct scsi_device * sdev holds information to be stored in the new

scsi_device

unsigned char * inq_result holds the result of a previous INQUIRY to the LUN

blist_flags_t * bflags black/white list flag

int async 1 if this device is being scanned asynchronously

Description
Initialize the scsi_device sdev. Optionally set fields based on values in
*bflags.

Return
SCSI_SCAN_NO_RESPONSE: could not allocate or setup a scsi_device
SCSI_SCAN_LUN_PRESENT: a new scsi_device was allocated and ini-
tialized

unsigned char * scsi_inq_str(unsigned char * buf, unsigned char * inq, un-
signed first, unsigned end)

print INQUIRY data from min to max index, strip trailing whitespace

Parameters
unsigned char * buf Output buffer with at least end-first+1 bytes of space

unsigned char * inq Inquiry buffer (input)

unsigned first Offset of string into inq

unsigned end Index after last character in inq

int scsi_probe_and_add_lun(struct scsi_target * starget, u64 lun,
blist_flags_t * bflagsp, struct scsi_device
** sdevp, enum scsi_scan_mode rescan, void
* hostdata)

probe a LUN, if a LUN is found add it

Parameters
struct scsi_target * starget pointer to target device structure

u64 lun LUN of target device

blist_flags_t * bflagsp store bflags here if not NULL

struct scsi_device ** sdevp probe the LUN corresponding to this scsi_device

enum scsi_scan_mode rescan if not equal to SCSI_SCAN_INITIAL skip some
code only needed on first scan

void * hostdata passed to scsi_alloc_sdev()

986 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

Description
Call scsi_probe_lun, if a LUN with an attached device is found, allocate
and set it up by calling scsi_add_lun.

Return
• SCSI_SCAN_NO_RESPONSE: could not allocate or setup a scsi_device

• SCSI_SCAN_TARGET_PRESENT: target responded, but no device is
attached at the LUN

• SCSI_SCAN_LUN_PRESENT: a new scsi_device was allocated and initialized

void scsi_sequential_lun_scan(struct scsi_target * starget,
blist_flags_t bflags, int scsi_level, enum
scsi_scan_mode rescan)

sequentially scan a SCSI target

Parameters
struct scsi_target * starget pointer to target structure to scan

blist_flags_t bflags black/white list flag for LUN 0

int scsi_level Which version of the standard does this device adhere to

enum scsi_scan_mode rescan passed to scsi_probe_add_lun()

Description
Generally, scan from LUN 1 (LUN 0 is assumed to already have been
scanned) to some maximum lun until a LUN is found with no device at-
tached. Use the bflags to figure out any oddities.

Modifies sdevscan->lun.

int scsi_report_lun_scan(struct scsi_target * starget, blist_flags_t bflags,
enum scsi_scan_mode rescan)

Scan using SCSI REPORT LUN results

Parameters
struct scsi_target * starget which target

blist_flags_t bflags Zero or a mix of BLIST_NOLUN, BLIST_REPORTLUN2, or
BLIST_NOREPORTLUN

enum scsi_scan_mode rescan nonzero if we can skip code only needed on first
scan

Description
Fast scanning for modern (SCSI-3) devices by sending a RE-
PORT LUN command. Scan the resulting list of LUNs by calling
scsi_probe_and_add_lun.

If BLINK_REPORTLUN2 is set, scan a target that supports more than 8
LUNs even if it’s older than SCSI-3. If BLIST_NOREPORTLUN is set,
return 1 always. If BLIST_NOLUN is set, return 0 always. If starget-
>no_report_luns is set, return 1 always.

Return

32.3. SCSI mid layer 987

Linux Driver-api Documentation

0: scan completed (or no memory, so further scanning is futile) 1: could
not scan with REPORT LUN

struct async_scan_data * scsi_prep_async_scan(struct Scsi_Host * shost)
prepare for an async scan

Parameters
struct Scsi_Host * shost the host which will be scanned

Return
a cookie to be passed to scsi_finish_async_scan()

Description
Tells the midlayer this host is going to do an asynchronous scan. It reserves the
host’s position in the scanning list and ensures that other asynchronous scans
started after this one won’t affect the ordering of the discovered devices.
void scsi_finish_async_scan(struct async_scan_data * data)

asynchronous scan has finished

Parameters
struct async_scan_data * data cookie returned from earlier call to

scsi_prep_async_scan()

Description
All the devices currently attached to this host have been found. This function
announces all the devices it has found to the rest of the system.

drivers/scsi/scsi_sysctl.c

Set up the sysctl entry: “/dev/scsi/logging_level”(DEV_SCSI_LOGGING_LEVEL)
which sets/returns scsi_logging_level.

drivers/scsi/scsi_sysfs.c

SCSI sysfs interface routines.

void scsi_remove_device(struct scsi_device * sdev)
unregister a device from the scsi bus

Parameters
struct scsi_device * sdev scsi_device to unregister

void scsi_remove_target(struct device * dev)
try to remove a target and all its devices

Parameters
struct device * dev generic starget or parent of generic stargets to be removed

Note
This is slightly racy. It is possible that if the user requests the addition of another
device then the target won’t be removed.

988 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

drivers/scsi/hosts.c

mid to lowlevel SCSI driver interface

void scsi_remove_host(struct Scsi_Host * shost)
remove a scsi host

Parameters
struct Scsi_Host * shost a pointer to a scsi host to remove

int scsi_add_host_with_dma(struct Scsi_Host * shost, struct device * dev,
struct device * dma_dev)

add a scsi host with dma device

Parameters
struct Scsi_Host * shost scsi host pointer to add

struct device * dev a struct device of type scsi class

struct device * dma_dev dma device for the host

Note
You rarely need to worry about this unless you’re in a virtualised host environ-
ments, so use the simpler scsi_add_host() function instead.

Description
Return value: 0 on success / != 0 for error
struct Scsi_Host * scsi_host_alloc(struct scsi_host_template * sht,

int privsize)
register a scsi host adapter instance.

Parameters
struct scsi_host_template * sht pointer to scsi host template

int privsize extra bytes to allocate for driver

Note
Allocate a new Scsi_Host and perform basic initialization. The host is
not published to the scsi midlayer until scsi_add_host is called.

Description
Return value: Pointer to a new Scsi_Host
struct Scsi_Host * scsi_host_lookup(unsigned short hostnum)

get a reference to a Scsi_Host by host no

Parameters
unsigned short hostnum host number to locate

Description
Return value: A pointer to located Scsi_Host or NULL.

32.3. SCSI mid layer 989

Linux Driver-api Documentation

The caller must do a scsi_host_put() to drop the reference that
scsi_host_get() took. The put_device() below dropped the reference from
class_find_device().

struct Scsi_Host * scsi_host_get(struct Scsi_Host * shost)
inc a Scsi_Host ref count

Parameters
struct Scsi_Host * shost Pointer to Scsi_Host to inc.

int scsi_host_busy(struct Scsi_Host * shost)
Return the host busy counter

Parameters
struct Scsi_Host * shost Pointer to Scsi_Host to inc.

void scsi_host_put(struct Scsi_Host * shost)
dec a Scsi_Host ref count

Parameters
struct Scsi_Host * shost Pointer to Scsi_Host to dec.

int scsi_queue_work(struct Scsi_Host * shost, struct work_struct * work)
Queue work to the Scsi_Host workqueue.

Parameters
struct Scsi_Host * shost Pointer to Scsi_Host.

struct work_struct * work Work to queue for execution.

Description
Return value: 1 - work queued for execution 0 - work is already queued -EINVAL

- work queue doesn’t exist
void scsi_flush_work(struct Scsi_Host * shost)

Flush a Scsi_Host’s workqueue.
Parameters
struct Scsi_Host * shost Pointer to Scsi_Host.

void scsi_host_complete_all_commands(struct Scsi_Host * shost,
int status)

Terminate all running commands

Parameters
struct Scsi_Host * shost Scsi Host on which commands should be terminated

int status Status to be set for the terminated commands

Description
There is no protection against modification of the number of outstanding com-
mands. It is the responsibility of the caller to ensure that concurrent I/O submis-
sion and/or completion is stopped when calling this function.

990 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

void scsi_host_busy_iter(struct Scsi_Host * shost, bool (*fn)(struct
scsi_cmnd *, void *, bool), void * priv)

Iterate over all busy commands

Parameters
struct Scsi_Host * shost Pointer to Scsi_Host.

bool (*)(struct scsi_cmnd *, void *, bool) fn Function to call on each
busy command

void * priv Data pointer passed to fn
Description
If locking against concurrent command completions is required ithas to be pro-
vided by the caller

drivers/scsi/scsi_common.c

general support functions

const char * scsi_device_type(unsigned type)
Return 17-char string indicating device type.

Parameters
unsigned type type number to look up

u64 scsilun_to_int(struct scsi_lun * scsilun)
convert a scsi_lun to an int

Parameters
struct scsi_lun * scsilun struct scsi_lun to be converted.

Description
Convert scsilun from a struct scsi_lun to a four-byte host byte-ordered
integer, and return the result. The caller must check for truncation be-
fore using this function.

Notes
For a description of the LUN format, post SCSI-3 see the SCSI Architec-
ture Model, for SCSI-3 see the SCSI Controller Commands.

Given a struct scsi_lun of: d2 04 0b 03 00 00 00 00, this function returns
the integer: 0x0b03d204

This encoding will return a standard integer LUN for LUNs smaller than
256, which typically use a single level LUN structure with addressing
method 0.

void int_to_scsilun(u64 lun, struct scsi_lun * scsilun)
reverts an int into a scsi_lun

Parameters
u64 lun integer to be reverted

struct scsi_lun * scsilun struct scsi_lun to be set.

32.3. SCSI mid layer 991

Linux Driver-api Documentation

Description
Reverts the functionality of the scsilun_to_int, which packed an 8-byte
lun value into an int. This routine unpacks the int back into the lun value.

Notes
Given an integer : 0x0b03d204, this function returns a struct scsi_lun
of: d2 04 0b 03 00 00 00 00

bool scsi_normalize_sense(const u8 * sense_buffer, int sb_len, struct
scsi_sense_hdr * sshdr)

normalize main elements from either fixed or descriptor sense data format
into a common format.

Parameters
const u8 * sense_buffer byte array containing sense data returned by device

int sb_len number of valid bytes in sense_buffer

struct scsi_sense_hdr * sshdr pointer to instance of structure that common
elements are written to.

Notes
The “main elements”from sense data are: response_code, sense_key,
asc, ascq and additional_length (only for descriptor format).

Typically this function can be called after a device has responded to a
SCSI command with the CHECK_CONDITION status.

Description
Return value: true if valid sense data information found, else false;
const u8 * scsi_sense_desc_find(const u8 * sense_buffer, int sb_len,

int desc_type)
search for a given descriptor type in descriptor sense data format.

Parameters
const u8 * sense_buffer byte array of descriptor format sense data

int sb_len number of valid bytes in sense_buffer

int desc_type value of descriptor type to find (e.g. 0 -> information)

Notes
only valid when sense data is in descriptor format

Description
Return value: pointer to start of (first) descriptor if found else NULL
void scsi_build_sense_buffer(int desc, u8 * buf, u8 key, u8 asc, u8 ascq)

build sense data in a buffer

Parameters
int desc Sense format (non-zero == descriptor format, 0 == fixed format)

u8 * buf Where to build sense data

992 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

u8 key Sense key

u8 asc Additional sense code

u8 ascq Additional sense code qualifier

int scsi_set_sense_information(u8 * buf, int buf_len, u64 info)
set the information field in a formatted sense data buffer

Parameters
u8 * buf Where to build sense data

int buf_len buffer length

u64 info 64-bit information value to be set

Description
Return value: 0 on success or -EINVAL for invalid sense buffer length
int scsi_set_sense_field_pointer(u8 * buf, int buf_len, u16 fp, u8 bp,

bool cd)
set the field pointer sense key specific information in a formatted sense data
buffer

Parameters
u8 * buf Where to build sense data

int buf_len buffer length

u16 fp field pointer to be set

u8 bp bit pointer to be set

bool cd command/data bit

Description
Return value: 0 on success or -EINVAL for invalid sense buffer length

32.3.2 Transport classes

Transport classes are service libraries for drivers in the SCSI lower layer, which
expose transport attributes in sysfs.

Fibre Channel transport

The file drivers/scsi/scsi_transport_fc.c defines transport attributes for Fibre Chan-
nel.

u32 fc_get_event_number(void)
Obtain the next sequential FC event number

Parameters
void no arguments

Notes

32.3. SCSI mid layer 993

Linux Driver-api Documentation

We could have inlined this, but it would have required fc_event_seq to
be exposed. For now, live with the subroutine call. Atomic used to avoid
lock/unlock⋯

void fc_host_post_fc_event(struct Scsi_Host * shost, u32 event_number,
enum fc_host_event_code event_code,
u32 data_len, char * data_buf, u64 vendor_id)

routine to do the work of posting an event on an fc_host.

Parameters
struct Scsi_Host * shost host the event occurred on

u32 event_number fc event number obtained from get_fc_event_number()

enum fc_host_event_code event_code fc_host event being posted

u32 data_len amount, in bytes, of event data

char * data_buf pointer to event data

u64 vendor_id value for Vendor id

Notes
This routine assumes no locks are held on entry.

void fc_host_post_event(struct Scsi_Host * shost, u32 event_number,
enum fc_host_event_code event_code,
u32 event_data)

called to post an even on an fc_host.

Parameters
struct Scsi_Host * shost host the event occurred on

u32 event_number fc event number obtained from get_fc_event_number()

enum fc_host_event_code event_code fc_host event being posted

u32 event_data 32bits of data for the event being posted

Notes
This routine assumes no locks are held on entry.

void fc_host_post_vendor_event(struct Scsi_Host * shost,
u32 event_number, u32 data_len, char
* data_buf, u64 vendor_id)

called to post a vendor unique event on an fc_host

Parameters
struct Scsi_Host * shost host the event occurred on

u32 event_number fc event number obtained from get_fc_event_number()

u32 data_len amount, in bytes, of vendor unique data

char * data_buf pointer to vendor unique data

u64 vendor_id Vendor id

Notes

994 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

This routine assumes no locks are held on entry.

void fc_host_fpin_rcv(struct Scsi_Host * shost, u32 fpin_len, char
* fpin_buf)

routine to process a received FPIN.

Parameters
struct Scsi_Host * shost host the FPIN was received on

u32 fpin_len length of FPIN payload, in bytes

char * fpin_buf pointer to FPIN payload

Notes
This routine assumes no locks are held on entry.

enum blk_eh_timer_return fc_eh_timed_out(struct scsi_cmnd * scmd)
FC Transport I/O timeout intercept handler

Parameters
struct scsi_cmnd * scmd The SCSI command which timed out

Description
This routine protects against error handlers getting invoked while a rport is in a
blocked state, typically due to a temporarily loss of connectivity. If the error han-
dlers are allowed to proceed, requests to abort i/o, reset the target, etc will likely
fail as there is no way to communicate with the device to perform the requested
function. These failures may result in the midlayer taking the device offline, re-
quiring manual intervention to restore operation.

This routine, called whenever an i/o times out, validates the state of the underlying
rport. If the rport is blocked, it returns EH_RESET_TIMER, which will continue to
reschedule the timeout. Eventually, either the device will return, or devloss_tmo
will fire, and when the timeout then fires, it will be handled normally. If the rport
is not blocked, normal error handling continues.

Notes
This routine assumes no locks are held on entry.

void fc_remove_host(struct Scsi_Host * shost)
called to terminate any fc_transport-related elements for a scsi host.

Parameters
struct Scsi_Host * shost Which Scsi_Host

Description
This routine is expected to be called immediately preceding the a driver’s call to
scsi_remove_host().

WARNING: A driver utilizing the fc_transport, which fails to call this
routine prior to scsi_remove_host(), will leave dangling objects in
/sys/class/fc_remote_ports. Access to any of these objects can result in
a system crash !!!

Notes

32.3. SCSI mid layer 995

Linux Driver-api Documentation

This routine assumes no locks are held on entry.

struct fc_rport * fc_remote_port_add(struct Scsi_Host * shost, int channel,
struct fc_rport_identifiers * ids)

notify fc transport of the existence of a remote FC port.

Parameters
struct Scsi_Host * shost scsi host the remote port is connected to.

int channel Channel on shost port connected to.

struct fc_rport_identifiers * ids The world wide names, fc address, and
FC4 port roles for the remote port.

Description
The LLDD calls this routine to notify the transport of the existence of a remote
port. The LLDD provides the unique identifiers (wwpn,wwn) of the port, it’s FC
address (port_id), and the FC4 roles that are active for the port.

For ports that are FCP targets (aka scsi targets), the FC transport maintains con-
sistent target id bindings on behalf of the LLDD. A consistent target id binding is
an assignment of a target id to a remote port identifier, which persists while the
scsi host is attached. The remote port can disappear, then later reappear, and it’s
target id assignment remains the same. This allows for shifts in FC addressing (if
binding by wwpn or wwnn) with no apparent changes to the scsi subsystem which
is based on scsi host number and target id values. Bindings are only valid during
the attachment of the scsi host. If the host detaches, then later re-attaches, target
id bindings may change.

This routine is responsible for returning a remote port structure. The routine will
search the list of remote ports it maintains internally on behalf of consistent target
id mappings. If found, the remote port structure will be reused. Otherwise, a new
remote port structure will be allocated.

Whenever a remote port is allocated, a new fc_remote_port class device is created.

Should not be called from interrupt context.

Notes
This routine assumes no locks are held on entry.

void fc_remote_port_delete(struct fc_rport * rport)
notifies the fc transport that a remote port is no longer in existence.

Parameters
struct fc_rport * rport The remote port that no longer exists

Description
The LLDD calls this routine to notify the transport that a remote port is no longer
part of the topology. Note: Although a port may no longer be part of the topology,
it may persist in the remote ports displayed by the fc_host. We do this under 2
conditions:

1) If the port was a scsi target, we delay its deletion by“blocking”it. This allows
the port to temporarily disappear, then reappear without disrupting the SCSI
device tree attached to it. During the“blocked”period the port will still exist.

996 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

2) If the port was a scsi target and disappears for longer than we expect, we’ll
delete the port and the tear down the SCSI device tree attached to it. How-
ever, we want to semi-persist the target id assigned to that port if it eventually
does exist. The port structure will remain (although with minimal informa-
tion) so that the target id bindings also remain.

If the remote port is not an FCP Target, it will be fully torn down and deallocated,
including the fc_remote_port class device.

If the remote port is an FCP Target, the port will be placed in a temporary blocked
state. From the LLDD’s perspective, the rport no longer exists. From the SCSI
midlayer’s perspective, the SCSI target exists, but all sdevs on it are blocked from
further I/O. The following is then expected.

If the remote port does not return (signaled by a LLDD call to
fc_remote_port_add()) within the dev_loss_tmo timeout, then the scsi
target is removed - killing all outstanding i/o and removing the scsi de-
vices attached to it. The port structure will be marked Not Present and
be partially cleared, leaving only enough information to recognize the
remote port relative to the scsi target id binding if it later appears. The
port will remain as long as there is a valid binding (e.g. until the user
changes the binding type or unloads the scsi host with the binding).

If the remote port returns within the dev_loss_tmo value (and matches
according to the target id binding type), the port structure will be
reused. If it is no longer a SCSI target, the target will be torn down.
If it continues to be a SCSI target, then the target will be unblocked (al-
lowing i/o to be resumed), and a scan will be activated to ensure that all
luns are detected.

Called from normal process context only - cannot be called from interrupt.

Notes
This routine assumes no locks are held on entry.

void fc_remote_port_rolechg(struct fc_rport * rport, u32 roles)
notifies the fc transport that the roles on a remote may have changed.

Parameters
struct fc_rport * rport The remote port that changed.

u32 roles New roles for this port.

Description
The LLDD calls this routine to notify the transport that the roles on a remote port
may have changed. The largest effect of this is if a port now becomes a FCP Target,
it must be allocated a scsi target id. If the port is no longer a FCP target, any scsi
target id value assigned to it will persist in case the role changes back to include
FCP Target. No changes in the scsi midlayer will be invoked if the role changes (in
the expectation that the role will be resumed. If it doesn’t normal error processing
will take place).

Should not be called from interrupt context.

Notes

32.3. SCSI mid layer 997

Linux Driver-api Documentation

This routine assumes no locks are held on entry.

int fc_block_rport(struct fc_rport * rport)
Block SCSI eh thread for blocked fc_rport.

Parameters
struct fc_rport * rport Remote port that scsi_eh is trying to recover.

Description
This routine can be called from a FC LLD scsi_eh callback. It blocks the
scsi_eh thread until the fc_rport leaves the FC_PORTSTATE_BLOCKED, or the
fast_io_fail_tmo fires. This is necessary to avoid the scsi_eh failing recovery ac-
tions for blocked rports which would lead to offlined SCSI devices.

Return
0 if the fc_rport left the state FC_PORTSTATE_BLOCKED. FAST_IO_FAIL if

the fast_io_fail_tmo fired, this should be passed back to scsi_eh.

int fc_block_scsi_eh(struct scsi_cmnd * cmnd)
Block SCSI eh thread for blocked fc_rport

Parameters
struct scsi_cmnd * cmnd SCSI command that scsi_eh is trying to recover

Description
This routine can be called from a FC LLD scsi_eh callback. It blocks the
scsi_eh thread until the fc_rport leaves the FC_PORTSTATE_BLOCKED, or the
fast_io_fail_tmo fires. This is necessary to avoid the scsi_eh failing recovery ac-
tions for blocked rports which would lead to offlined SCSI devices.

Return
0 if the fc_rport left the state FC_PORTSTATE_BLOCKED. FAST_IO_FAIL if

the fast_io_fail_tmo fired, this should be passed back to scsi_eh.

struct fc_vport * fc_vport_create(struct Scsi_Host * shost, int channel,
struct fc_vport_identifiers * ids)

Admin App or LLDD requests creation of a vport

Parameters
struct Scsi_Host * shost scsi host the virtual port is connected to.

int channel channel on shost port connected to.

struct fc_vport_identifiers * ids Theworld wide names, FC4 port roles, etc
for the virtual port.

Notes
This routine assumes no locks are held on entry.

int fc_vport_terminate(struct fc_vport * vport)
Admin App or LLDD requests termination of a vport

Parameters
struct fc_vport * vport fc_vport to be terminated

998 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

Description
Calls the LLDD vport_delete() function, then deallocates and removes the vport
from the shost and object tree.

Notes
This routine assumes no locks are held on entry.

iSCSI transport class

The file drivers/scsi/scsi_transport_iscsi.c defines transport attributes for the
iSCSI class, which sends SCSI packets over TCP/IP connections.

struct iscsi_bus_flash_session * iscsi_create_flashnode_sess(struct
Scsi_Host
* shost,
int index,
struct
iscsi_transport
* transport,
int dd_size)

Add flashnode session entry in sysfs

Parameters
struct Scsi_Host * shost pointer to host data

int index index of flashnode to add in sysfs

struct iscsi_transport * transport pointer to transport data

int dd_size total size to allocate

Description
Adds a sysfs entry for the flashnode session attributes

Return
pointer to allocated flashnode sess on success NULL on failure

struct iscsi_bus_flash_conn * iscsi_create_flashnode_conn(struct
Scsi_Host
* shost, struct
iscsi_bus_flash_session
* fnode_sess,
struct
iscsi_transport
* transport,
int dd_size)

Add flashnode conn entry in sysfs

Parameters
struct Scsi_Host * shost pointer to host data

struct iscsi_bus_flash_session * fnode_sess pointer to the parent flashn-
ode session entry

32.3. SCSI mid layer 999

Linux Driver-api Documentation

struct iscsi_transport * transport pointer to transport data

int dd_size total size to allocate

Description
Adds a sysfs entry for the flashnode connection attributes

Return
pointer to allocated flashnode conn on success NULL on failure

struct device * iscsi_find_flashnode_sess(struct Scsi_Host * shost, void
* data, int (*fn)(struct device
*dev, void *data))

finds flashnode session entry

Parameters
struct Scsi_Host * shost pointer to host data

void * data pointer to data containing value to use for comparison

int (*)(struct device *dev, void *data) fn function pointer that does ac-
tual comparison

Description
Finds the flashnode session object comparing the data passed using logic defined
in passed function pointer

Return
pointer to found flashnode session device object on success NULL on fail-
ure

struct device * iscsi_find_flashnode_conn(struct iscsi_bus_flash_session
* fnode_sess)

finds flashnode connection entry

Parameters
struct iscsi_bus_flash_session * fnode_sess pointer to parent flashnode

session entry

Description
Finds the flashnode connection object comparing the data passed using logic de-
fined in passed function pointer

Return
pointer to found flashnode connection device object on success NULL on
failure

void iscsi_destroy_flashnode_sess(struct iscsi_bus_flash_session
* fnode_sess)

destroy flashnode session entry

Parameters
struct iscsi_bus_flash_session * fnode_sess pointer to flashnode session

entry to be destroyed

1000 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

Description
Deletes the flashnode session entry and all children flashnode connection entries
from sysfs

void iscsi_destroy_all_flashnode(struct Scsi_Host * shost)
destroy all flashnode session entries

Parameters
struct Scsi_Host * shost pointer to host data

Description
Destroys all the flashnode session entries and all corresponding children flashnode
connection entries from sysfs

int iscsi_scan_finished(struct Scsi_Host * shost, unsigned long time)
helper to report when running scans are done

Parameters
struct Scsi_Host * shost scsi host

unsigned long time scan run time

Description
This function can be used by drives like qla4xxx to report to the scsi layer when
the scans it kicked off at module load time are done.

int iscsi_block_scsi_eh(struct scsi_cmnd * cmd)
block scsi eh until session state has transistioned

Parameters
struct scsi_cmnd * cmd scsi cmd passed to scsi eh handler

Description
If the session is down this function will wait for the recovery timer to fire or for
the session to be logged back in. If the recovery timer fires then FAST_IO_FAIL is
returned. The caller should pass this error value to the scsi eh.

void iscsi_unblock_session(struct iscsi_cls_session * session)
set a session as logged in and start IO.

Parameters
struct iscsi_cls_session * session iscsi session

Description
Mark a session as ready to accept IO.

struct iscsi_cls_session * iscsi_create_session(struct Scsi_Host * shost,
struct iscsi_transport
* transport, int dd_size,
unsigned int target_id)

create iscsi class session

Parameters
struct Scsi_Host * shost scsi host

32.3. SCSI mid layer 1001

Linux Driver-api Documentation

struct iscsi_transport * transport iscsi transport

int dd_size private driver data size

unsigned int target_id which target

Description
This can be called from a LLD or iscsi_transport.

struct iscsi_cls_conn * iscsi_create_conn(struct iscsi_cls_session
* session, int dd_size,
uint32_t cid)

create iscsi class connection

Parameters
struct iscsi_cls_session * session iscsi cls session

int dd_size private driver data size

uint32_t cid connection id

Description
This can be called from a LLD or iscsi_transport. The connection is child of the
session so cid must be unique for all connections on the session.

Since we do not support MCS, cid will normally be zero. In some cases for software
iscsi we could be trying to preallocate a connection struct in which case there could
be two connection structs and cid would be non-zero.

int iscsi_destroy_conn(struct iscsi_cls_conn * conn)
destroy iscsi class connection

Parameters
struct iscsi_cls_conn * conn iscsi cls session

Description
This can be called from a LLD or iscsi_transport.

int iscsi_session_event(struct iscsi_cls_session * session, enum
iscsi_uevent_e event)

send session destr. completion event

Parameters
struct iscsi_cls_session * session iscsi class session

enum iscsi_uevent_e event type of event

1002 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

Serial Attached SCSI (SAS) transport class

The file drivers/scsi/scsi_transport_sas.c defines transport attributes for Serial At-
tached SCSI, a variant of SATA aimed at large high-end systems.

The SAS transport class contains common code to deal with SAS HBAs, an aprox-
imated representation of SAS topologies in the driver model, and various sysfs
attributes to expose these topologies and management interfaces to userspace.

In addition to the basic SCSI core objects this transport class introduces two addi-
tional intermediate objects: The SAS PHY as represented by struct sas_phy defines
an “outgoing”PHY on a SAS HBA or Expander, and the SAS remote PHY repre-
sented by struct sas_rphy defines an “incoming”PHY on a SAS Expander or end
device. Note that this is purely a software concept, the underlying hardware for a
PHY and a remote PHY is the exactly the same.

There is no concept of a SAS port in this code, users can see what PHYs form a
wide port based on the port_identifier attribute, which is the same for all PHYs in
a port.

void sas_remove_children(struct device * dev)
tear down a devices SAS data structures

Parameters
struct device * dev device belonging to the sas object

Description
Removes all SAS PHYs and remote PHYs for a given object

void sas_remove_host(struct Scsi_Host * shost)
tear down a Scsi_Host’s SAS data structures

Parameters
struct Scsi_Host * shost Scsi Host that is torn down

Description
Removes all SAS PHYs and remote PHYs for a given Scsi_Host and remove the
Scsi_Host as well.

Note
Do not call scsi_remove_host() on the Scsi_Host any more, as it is already re-
moved.

u64 sas_get_address(struct scsi_device * sdev)
return the SAS address of the device

Parameters
struct scsi_device * sdev scsi device

Description
Returns the SAS address of the scsi device

unsigned int sas_tlr_supported(struct scsi_device * sdev)
checking TLR bit in vpd 0x90

32.3. SCSI mid layer 1003

Linux Driver-api Documentation

Parameters
struct scsi_device * sdev scsi device struct

Description
Check Transport Layer Retries are supported or not. If vpd page 0x90 is present,
TRL is supported.

void sas_disable_tlr(struct scsi_device * sdev)
setting TLR flags

Parameters
struct scsi_device * sdev scsi device struct

Description
Seting tlr_enabled flag to 0.

void sas_enable_tlr(struct scsi_device * sdev)
setting TLR flags

Parameters
struct scsi_device * sdev scsi device struct

Description
Seting tlr_enabled flag 1.

struct sas_phy * sas_phy_alloc(struct device * parent, int number)
allocates and initialize a SAS PHY structure

Parameters
struct device * parent Parent device

int number Phy index

Description
Allocates an SAS PHY structure. It will be added in the device tree below the
device specified by parent, which has to be either a Scsi_Host or sas_rphy.
Return

SAS PHY allocated or NULL if the allocation failed.

int sas_phy_add(struct sas_phy * phy)
add a SAS PHY to the device hierarchy

Parameters
struct sas_phy * phy The PHY to be added

Description
Publishes a SAS PHY to the rest of the system.

void sas_phy_free(struct sas_phy * phy)
free a SAS PHY

Parameters
struct sas_phy * phy SAS PHY to free

1004 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

Description
Frees the specified SAS PHY.

Note
This function must only be called on a PHY that has not successfully been
added using sas_phy_add().

void sas_phy_delete(struct sas_phy * phy)
remove SAS PHY

Parameters
struct sas_phy * phy SAS PHY to remove

Description
Removes the specified SAS PHY. If the SAS PHY has an associated remote PHY it
is removed before.

int scsi_is_sas_phy(const struct device * dev)
check if a struct device represents a SAS PHY

Parameters
const struct device * dev device to check

Return
1 if the device represents a SAS PHY, 0 else

int sas_port_add(struct sas_port * port)
add a SAS port to the device hierarchy

Parameters
struct sas_port * port port to be added

Description
publishes a port to the rest of the system

void sas_port_free(struct sas_port * port)
free a SAS PORT

Parameters
struct sas_port * port SAS PORT to free

Description
Frees the specified SAS PORT.

Note
This function must only be called on a PORT that has not successfully
been added using sas_port_add().

void sas_port_delete(struct sas_port * port)
remove SAS PORT

Parameters
struct sas_port * port SAS PORT to remove

32.3. SCSI mid layer 1005

Linux Driver-api Documentation

Description
Removes the specified SAS PORT. If the SAS PORT has an associated phys, unlink
them from the port as well.

int scsi_is_sas_port(const struct device * dev)
check if a struct device represents a SAS port

Parameters
const struct device * dev device to check

Return
1 if the device represents a SAS Port, 0 else

struct sas_phy * sas_port_get_phy(struct sas_port * port)
try to take a reference on a port member

Parameters
struct sas_port * port port to check

void sas_port_add_phy(struct sas_port * port, struct sas_phy * phy)
add another phy to a port to form a wide port

Parameters
struct sas_port * port port to add the phy to

struct sas_phy * phy phy to add

Description
When a port is initially created, it is empty (has no phys). All ports must have at
least one phy to operated, and all wide ports must have at least two. The current
code makes no difference between ports and wide ports, but the only object that
can be connected to a remote device is a port, so ports must be formed on all
devices with phys if they’re connected to anything.
void sas_port_delete_phy(struct sas_port * port, struct sas_phy * phy)

remove a phy from a port or wide port

Parameters
struct sas_port * port port to remove the phy from

struct sas_phy * phy phy to remove

Description
This operation is used for tearing down ports again. It must be done to every port
or wide port before calling sas_port_delete.

struct sas_rphy * sas_end_device_alloc(struct sas_port * parent)
allocate an rphy for an end device

Parameters
struct sas_port * parent which port

Description
Allocates an SAS remote PHY structure, connected to parent.

1006 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

Return
SAS PHY allocated or NULL if the allocation failed.

struct sas_rphy * sas_expander_alloc(struct sas_port * parent, enum
sas_device_type type)

allocate an rphy for an end device

Parameters
struct sas_port * parent which port

enum sas_device_type type SAS_EDGE_EXPANDER_DEVICE or
SAS_FANOUT_EXPANDER_DEVICE

Description
Allocates an SAS remote PHY structure, connected to parent.
Return

SAS PHY allocated or NULL if the allocation failed.

int sas_rphy_add(struct sas_rphy * rphy)
add a SAS remote PHY to the device hierarchy

Parameters
struct sas_rphy * rphy The remote PHY to be added

Description
Publishes a SAS remote PHY to the rest of the system.

void sas_rphy_free(struct sas_rphy * rphy)
free a SAS remote PHY

Parameters
struct sas_rphy * rphy SAS remote PHY to free

Description
Frees the specified SAS remote PHY.

Note
This function must only be called on a remote PHY that has
not successfully been added using sas_rphy_add() (or has been
sas_rphy_remove()’d)

void sas_rphy_delete(struct sas_rphy * rphy)
remove and free SAS remote PHY

Parameters
struct sas_rphy * rphy SAS remote PHY to remove and free

Description
Removes the specified SAS remote PHY and frees it.

void sas_rphy_unlink(struct sas_rphy * rphy)
unlink SAS remote PHY

32.3. SCSI mid layer 1007

Linux Driver-api Documentation

Parameters
struct sas_rphy * rphy SAS remote phy to unlink from its parent port

Description
Removes port reference to an rphy

void sas_rphy_remove(struct sas_rphy * rphy)
remove SAS remote PHY

Parameters
struct sas_rphy * rphy SAS remote phy to remove

Description
Removes the specified SAS remote PHY.

int scsi_is_sas_rphy(const struct device * dev)
check if a struct device represents a SAS remote PHY

Parameters
const struct device * dev device to check

Return
1 if the device represents a SAS remote PHY, 0 else

struct scsi_transport_template * sas_attach_transport(struct
sas_function_template
* ft)

instantiate SAS transport template

Parameters
struct sas_function_template * ft SAS transport class function template

void sas_release_transport(struct scsi_transport_template * t)
release SAS transport template instance

Parameters
struct scsi_transport_template * t transport template instance

SATA transport class

The SATA transport is handled by libata, which has its own book of documentation
in this directory.

1008 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

Parallel SCSI (SPI) transport class

The file drivers/scsi/scsi_transport_spi.c defines transport attributes for traditional
(fast/wide/ultra) SCSI busses.

void spi_schedule_dv_device(struct scsi_device * sdev)
schedule domain validation to occur on the device

Parameters
struct scsi_device * sdev The device to validate

Identical to spi_dv_device() above, except that the DV will be scheduled to
occur in a workqueue later. All memory allocations are atomic, so may be
called from any context including those holding SCSI locks.

void spi_display_xfer_agreement(struct scsi_target * starget)
Print the current target transfer agreement

Parameters
struct scsi_target * starget The target for which to display the agreement

Description
Each SPI port is required to maintain a transfer agreement for each other port on
the bus. This function prints a one-line summary of the current agreement; more
detailed information is available in sysfs.

int spi_populate_tag_msg(unsigned char * msg, struct scsi_cmnd * cmd)
place a tag message in a buffer

Parameters
unsigned char * msg pointer to the area to place the tag

struct scsi_cmnd * cmd pointer to the scsi command for the tag

Notes
designed to create the correct type of tag message for the particular
request. Returns the size of the tag message. May return 0 if TCQ is
disabled for this device.

SCSI RDMA (SRP) transport class

The file drivers/scsi/scsi_transport_srp.c defines transport attributes for SCSI over
Remote Direct Memory Access.

int srp_tmo_valid(int reconnect_delay, int fast_io_fail_tmo,
long dev_loss_tmo)

check timeout combination validity

Parameters
int reconnect_delay Reconnect delay in seconds.

int fast_io_fail_tmo Fast I/O fail timeout in seconds.

long dev_loss_tmo Device loss timeout in seconds.

32.3. SCSI mid layer 1009

Linux Driver-api Documentation

Description
The combination of the timeout parameters must be such that SCSI commands
are finished in a reasonable time. Hence do not allow the fast I/O fail timeout to
exceed SCSI_DEVICE_BLOCK_MAX_TIMEOUT nor allow dev_loss_tmo to exceed
that limit if failing I/O fast has been disabled. Furthermore, these parameters must
be such that multipath can detect failed paths timely. Hence do not allow all three
parameters to be disabled simultaneously.

void srp_start_tl_fail_timers(struct srp_rport * rport)
start the transport layer failure timers

Parameters
struct srp_rport * rport SRP target port.

Description
Start the transport layer fast I/O failure and device loss timers. Do not modify a
timer that was already started.

int srp_reconnect_rport(struct srp_rport * rport)
reconnect to an SRP target port

Parameters
struct srp_rport * rport SRP target port.

Description
Blocks SCSI command queueing before invoking reconnect() such that queuecom-
mand() won’t be invoked concurrently with reconnect() from outside the SCSI
EH. This is important since a reconnect() implementationmay reallocate resources
needed by queuecommand().

Notes
• This function neither waits until outstanding requests have finished nor tries
to abort these. It is the responsibility of the reconnect() function to finish
outstanding commands before reconnecting to the target port.

• It is the responsibility of the caller to ensure that the resources real-
located by the reconnect() function won’t be used while this function
is in progress. One possible strategy is to invoke this function from
the context of the SCSI EH thread only. Another possible strategy is
to lock the rport mutex inside each SCSI LLD callback that can be in-
voked by the SCSI EH (the scsi_host_template.eh_*() functions and also the
scsi_host_template.queuecommand() function).

enum blk_eh_timer_return srp_timed_out(struct scsi_cmnd * scmd)
SRP transport intercept of the SCSI timeout EH

Parameters
struct scsi_cmnd * scmd SCSI command.

Description
If a timeout occurs while an rport is in the blocked state, ask the SCSI EH to
continue waiting (BLK_EH_RESET_TIMER). Otherwise let the SCSI core handle
the timeout (BLK_EH_DONE).

1010 Chapter 32. SCSI Interfaces Guide

Linux Driver-api Documentation

Note
This function is called from soft-IRQ context and with the request queue lock held.

void srp_rport_get(struct srp_rport * rport)
increment rport reference count

Parameters
struct srp_rport * rport SRP target port.

void srp_rport_put(struct srp_rport * rport)
decrement rport reference count

Parameters
struct srp_rport * rport SRP target port.

struct srp_rport * srp_rport_add(struct Scsi_Host * shost, struct
srp_rport_identifiers * ids)

add a SRP remote port to the device hierarchy

Parameters
struct Scsi_Host * shost scsi host the remote port is connected to.

struct srp_rport_identifiers * ids The port id for the remote port.

Description
Publishes a port to the rest of the system.

void srp_rport_del(struct srp_rport * rport)
remove a SRP remote port

Parameters
struct srp_rport * rport SRP remote port to remove

Description
Removes the specified SRP remote port.

void srp_remove_host(struct Scsi_Host * shost)
tear down a Scsi_Host’s SRP data structures

Parameters
struct Scsi_Host * shost Scsi Host that is torn down

Description
Removes all SRP remote ports for a given Scsi_Host. Must be called just before
scsi_remove_host for SRP HBAs.

void srp_stop_rport_timers(struct srp_rport * rport)
stop the transport layer recovery timers

Parameters
struct srp_rport * rport SRP remote port for which to stop the timers.

32.3. SCSI mid layer 1011

Linux Driver-api Documentation

Description
Must be called after srp_remove_host() and scsi_remove_host(). The caller
must hold a reference on the rport (rport->dev) and on the SCSI host (rport-
>dev.parent).

struct scsi_transport_template * srp_attach_transport(struct
srp_function_template
* ft)

instantiate SRP transport template

Parameters
struct srp_function_template * ft SRP transport class function template

void srp_release_transport(struct scsi_transport_template * t)
release SRP transport template instance

Parameters
struct scsi_transport_template * t transport template instance

32.4 SCSI lower layer

32.4.1 Host Bus Adapter transport types

Many modern device controllers use the SCSI command set as a protocol to com-
municate with their devices through many different types of physical connections.

In SCSI language a bus capable of carrying SCSI commands is called a“transport”
, and a controller connecting to such a bus is called a “host bus adapter”(HBA).

Debug transport

The file drivers/scsi/scsi_debug.c simulates a host adapter with a variable number
of disks (or disk like devices) attached, sharing a common amount of RAM. Does a
lot of checking to make sure that we are not getting blocks mixed up, and panics
the kernel if anything out of the ordinary is seen.

To be more realistic, the simulated devices have the transport attributes of SAS
disks.

For documentation see http://sg.danny.cz/sg/sdebug26.html

todo

Parallel (fast/wide/ultra) SCSI, USB, SATA, SAS, Fibre Channel, FireWire, ATAPI
devices, Infiniband, I2O, Parallel ports, netlink⋯

1012 Chapter 32. SCSI Interfaces Guide

http://sg.danny.cz/sg/sdebug26.html

CHAPTER

THIRTYTHREE

LIBATA DEVELOPER’S GUIDE

Author Jeff Garzik

33.1 Introduction

libATA is a library used inside the Linux kernel to support ATA host controllers and
devices. libATA provides an ATA driver API, class transports for ATA and ATAPI
devices, and SCSI<->ATA translation for ATA devices according to the T10 SAT
specification.

This Guide documents the libATA driver API, library functions, library internals,
and a couple sample ATA low-level drivers.

33.2 libata Driver API

struct ata_port_operations is defined for every low-level libata hardware
driver, and it controls how the low-level driver interfaces with the ATA and SCSI
layers.

FIS-based drivers will hook into the system with ->qc_prep() and ->qc_issue()
high-level hooks. Hardware which behaves in a manner similar to PCI IDE hard-
ware may utilize several generic helpers, defining at a bare minimum the bus I/O
addresses of the ATA shadow register blocks.

33.2.1 struct ata_port_operations

Disable ATA port

void (*port_disable) (struct ata_port *);

Called from ata_bus_probe() error path, as well as when unregistering from the
SCSI module (rmmod, hot unplug). This function should do whatever needs to be
done to take the port out of use. In most cases, ata_port_disable() can be used
as this hook.

Called from ata_bus_probe() on a failed probe. Called from
ata_scsi_release().

1013

Linux Driver-api Documentation

Post-IDENTIFY device configuration

void (*dev_config) (struct ata_port *, struct ata_device *);

Called after IDENTIFY [PACKET] DEVICE is issued to each device found. Typically
used to apply device-specific fixups prior to issue of SET FEATURES - XFERMODE,
and prior to operation.

This entry may be specified as NULL in ata_port_operations.

Set PIO/DMA mode

void (*set_piomode) (struct ata_port *, struct ata_device *);
void (*set_dmamode) (struct ata_port *, struct ata_device *);
void (*post_set_mode) (struct ata_port *);
unsigned int (*mode_filter) (struct ata_port *, struct ata_device *,␣
↪→unsigned int);

Hooks called prior to the issue of SET FEATURES - XFER MODE command. The
optional ->mode_filter() hook is called when libata has built a mask of the pos-
sible modes. This is passed to the ->mode_filter() function which should return
a mask of valid modes after filtering those unsuitable due to hardware limits. It is
not valid to use this interface to add modes.

dev->pio_mode and dev->dma_mode are guaranteed to be valid when
->set_piomode() and when ->set_dmamode() is called. The timings for any
other drive sharing the cable will also be valid at this point. That is the library
records the decisions for the modes of each drive on a channel before it attempts
to set any of them.

->post_set_mode() is called unconditionally, after the SET FEATURES - XFER
MODE command completes successfully.

->set_piomode() is always called (if present), but ->set_dma_mode() is only
called if DMA is possible.

Taskfile read/write

void (*sff_tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
void (*sff_tf_read) (struct ata_port *ap, struct ata_taskfile *tf);

->tf_load() is called to load the given taskfile into hardware registers / DMA
buffers. ->tf_read() is called to read the hardware registers / DMA buffers, to ob-
tain the current set of taskfile register values. Most drivers for taskfile-based hard-
ware (PIO or MMIO) use ata_sff_tf_load() and ata_sff_tf_read() for these
hooks.

1014 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

PIO data read/write

void (*sff_data_xfer) (struct ata_device *, unsigned char *, unsigned int,␣
↪→int);

All bmdma-style drivers must implement this hook. This is the low-level operation
that actually copies the data bytes during a PIO data transfer. Typically the driver
will choose one of ata_sff_data_xfer(), or ata_sff_data_xfer32().

ATA command execute

void (*sff_exec_command)(struct ata_port *ap, struct ata_taskfile *tf);

causes an ATA command, previously loaded with ->tf_load(), to be initiated in
hardware. Most drivers for taskfile-based hardware use ata_sff_exec_command()
for this hook.

Per-cmd ATAPI DMA capabilities filter

int (*check_atapi_dma) (struct ata_queued_cmd *qc);

Allow low-level driver to filter ATA PACKET commands, returning a status indicat-
ing whether or not it is OK to use DMA for the supplied PACKET command.

This hook may be specified as NULL, in which case libata will assume that atapi
dma can be supported.

Read specific ATA shadow registers

u8 (*sff_check_status)(struct ata_port *ap);
u8 (*sff_check_altstatus)(struct ata_port *ap);

Reads the Status/AltStatus ATA shadow register from hardware. On some hard-
ware, reading the Status register has the side effect of clearing the interrupt con-
dition. Most drivers for taskfile-based hardware use ata_sff_check_status() for
this hook.

Write specific ATA shadow register

void (*sff_set_devctl)(struct ata_port *ap, u8 ctl);

Write the device control ATA shadow register to the hardware. Most drivers don’
t need to define this.

33.2. libata Driver API 1015

Linux Driver-api Documentation

Select ATA device on bus

void (*sff_dev_select)(struct ata_port *ap, unsigned int device);

Issues the low-level hardware command(s) that causes one of N hardware devices
to be considered ‘selected’(active and available for use) on the ATA bus. This
generally has no meaning on FIS-based devices.

Most drivers for taskfile-based hardware use ata_sff_dev_select() for this hook.

Private tuning method

void (*set_mode) (struct ata_port *ap);

By default libata performs drive and controller tuning in accordance with the ATA
timing rules and also applies blacklists and cable limits. Some controllers need
special handling and have custom tuning rules, typically raid controllers that use
ATA commands but do not actually do drive timing.

Warning
This hook should not be used to replace the standard controller tuning
logic when a controller has quirks. Replacing the default tuning logic
in that case would bypass handling for drive and bridge quirks that may
be important to data reliability. If a controller needs to filter the mode
selection it should use the mode_filter hook instead.

Control PCI IDE BMDMA engine

void (*bmdma_setup) (struct ata_queued_cmd *qc);
void (*bmdma_start) (struct ata_queued_cmd *qc);
void (*bmdma_stop) (struct ata_port *ap);
u8 (*bmdma_status) (struct ata_port *ap);

When setting up an IDE BMDMA transaction, these hooks arm (->bmdma_setup),
fire (->bmdma_start), and halt (->bmdma_stop) the hardware’s DMA engine.
->bmdma_status is used to read the standard PCI IDE DMA Status register.

These hooks are typically either no-ops, or simply not implemented, in FIS-based
drivers.

Most legacy IDE drivers use ata_bmdma_setup() for the bmdma_setup() hook.
ata_bmdma_setup() will write the pointer to the PRD table to the IDE PRD
Table Address register, enable DMA in the DMA Command register, and call
exec_command() to begin the transfer.

Most legacy IDE drivers use ata_bmdma_start() for the bmdma_start() hook.
ata_bmdma_start() will write the ATA_DMA_START flag to the DMA Command
register.

Many legacy IDE drivers use ata_bmdma_stop() for the bmdma_stop() hook.
ata_bmdma_stop() clears the ATA_DMA_START flag in the DMA command reg-
ister.

1016 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

Many legacy IDE drivers use ata_bmdma_status() as the bmdma_status() hook.

High-level taskfile hooks

enum ata_completion_errors (*qc_prep) (struct ata_queued_cmd *qc);
int (*qc_issue) (struct ata_queued_cmd *qc);

Higher-level hooks, these two hooks can potentially supersede several of the
above taskfile/DMA engine hooks. ->qc_prep is called after the buffers have
been DMA-mapped, and is typically used to populate the hardware’s DMA
scatter-gather table. Some drivers use the standard ata_bmdma_qc_prep() and
ata_bmdma_dumb_qc_prep() helper functions, but more advanced drivers roll their
own.

->qc_issue is used to make a command active, once the hardware and S/G
tables have been prepared. IDE BMDMA drivers use the helper function
ata_sff_qc_issue() for taskfile protocol-based dispatch. More advanced drivers
implement their own ->qc_issue.

ata_sff_qc_issue() calls ->sff_tf_load(), ->bmdma_setup(), and
->bmdma_start() as necessary to initiate a transfer.

Exception and probe handling (EH)

void (*eng_timeout) (struct ata_port *ap);
void (*phy_reset) (struct ata_port *ap);

Deprecated. Use ->error_handler() instead.

void (*freeze) (struct ata_port *ap);
void (*thaw) (struct ata_port *ap);

ata_port_freeze() is called when HSM violations or some other condition dis-
rupts normal operation of the port. A frozen port is not allowed to perform any
operation until the port is thawed, which usually follows a successful reset.

The optional ->freeze() callback can be used for freezing the port hardware-wise
(e.g. mask interrupt and stop DMA engine). If a port cannot be frozen hardware-
wise, the interrupt handler must ack and clear interrupts unconditionally while
the port is frozen.

The optional ->thaw() callback is called to perform the opposite of ->freeze():
prepare the port for normal operation once again. Unmask interrupts, start DMA
engine, etc.

void (*error_handler) (struct ata_port *ap);

->error_handler() is a driver’s hook into probe, hotplug, and recovery and other
exceptional conditions. The primary responsibility of an implementation is to call
ata_do_eh() or ata_bmdma_drive_eh() with a set of EH hooks as arguments:

‘prereset’hook (may be NULL) is called during an EH reset, before any other
actions are taken.

33.2. libata Driver API 1017

Linux Driver-api Documentation

‘postreset’hook (may be NULL) is called after the EH reset is performed. Based
on existing conditions, severity of the problem, and hardware capabilities,

Either ‘softreset’(may be NULL) or ‘hardreset’(may be NULL) will be called
to perform the low-level EH reset.

void (*post_internal_cmd) (struct ata_queued_cmd *qc);

Perform any hardware-specific actions necessary to finish processing after execut-
ing a probe-time or EH-time command via ata_exec_internal().

Hardware interrupt handling

irqreturn_t (*irq_handler)(int, void *, struct pt_regs *);
void (*irq_clear) (struct ata_port *);

->irq_handler is the interrupt handling routine registered with the system, by
libata. ->irq_clear is called during probe just before the interrupt handler is
registered, to be sure hardware is quiet.

The second argument, dev_instance, should be cast to a pointer to struct
ata_host_set.

Most legacy IDE drivers use ata_sff_interrupt() for the irq_handler hook,
which scans all ports in the host_set, determines which queued command was
active (if any), and calls ata_sff_host_intr(ap,qc).

Most legacy IDE drivers use ata_sff_irq_clear() for the irq_clear() hook,
which simply clears the interrupt and error flags in the DMA status register.

SATA phy read/write

int (*scr_read) (struct ata_port *ap, unsigned int sc_reg,
u32 *val);

int (*scr_write) (struct ata_port *ap, unsigned int sc_reg,
u32 val);

Read and write standard SATA phy registers. Currently only used if ->phy_reset
hook called the sata_phy_reset() helper function. sc_reg is one of SCR_STATUS,
SCR_CONTROL, SCR_ERROR, or SCR_ACTIVE.

Init and shutdown

int (*port_start) (struct ata_port *ap);
void (*port_stop) (struct ata_port *ap);
void (*host_stop) (struct ata_host_set *host_set);

->port_start() is called just after the data structures for each port are initialized.
Typically this is used to alloc per-port DMA buffers / tables / rings, enable DMA
engines, and similar tasks. Some drivers also use this entry point as a chance to
allocate driver-private memory for ap->private_data.

1018 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

Many drivers use ata_port_start() as this hook or call it from their own
port_start() hooks. ata_port_start() allocates space for a legacy IDE PRD
table and returns.

->port_stop() is called after ->host_stop(). Its sole function is to release
DMA/memory resources, now that they are no longer actively being used. Many
drivers also free driver-private data from port at this time.

->host_stop() is called after all ->port_stop() calls have completed. The hook
must finalize hardware shutdown, release DMA and other resources, etc. This
hook may be specified as NULL, in which case it is not called.

33.3 Error handling

This chapter describes how errors are handled under libata. Readers are advised
to read SCSI EH (Documentation/scsi/scsi_eh.rst) and ATA exceptions doc first.

33.3.1 Origins of commands

In libata, a command is represented with struct ata_queued_cmd or qc. qc’s
are preallocated during port initialization and repetitively used for command ex-
ecutions. Currently only one qc is allocated per port but yet-to-be-merged NCQ
branch allocates one for each tag and maps each qc to NCQ tag 1-to-1.

libata commands can originate from two sources - libata itself and SCSI midlayer.
libata internal commands are used for initialization and error handling. All normal
blk requests and commands for SCSI emulation are passed as SCSI commands
through queuecommand callback of SCSI host template.

33.3.2 How commands are issued

Internal commands First, qc is allocated and initialized using
ata_qc_new_init(). Although ata_qc_new_init() doesn’t implement
any wait or retry mechanism when qc is not available, internal commands
are currently issued only during initialization and error recovery, so no other
command is active and allocation is guaranteed to succeed.

Once allocated qc’s taskfile is initialized for the command to be exe-
cuted. qc currently has two mechanisms to notify completion. One is
via qc->complete_fn() callback and the other is completion qc->waiting.
qc->complete_fn() callback is the asynchronous path used by normal SCSI
translated commands and qc->waiting is the synchronous (issuer sleeps in
process context) path used by internal commands.

Once initialization is complete, host_set lock is acquired and the qc is issued.

SCSI commands All libata drivers use ata_scsi_queuecmd() as
hostt->queuecommand callback. scmds can either be simulated or translated.
No qc is involved in processing a simulated scmd. The result is computed
right away and the scmd is completed.

33.3. Error handling 1019

Linux Driver-api Documentation

For a translated scmd, ata_qc_new_init() is invoked to allocate a qc and
the scmd is translated into the qc. SCSI midlayer’s completion notification
function pointer is stored into qc->scsidone.

qc->complete_fn() callback is used for completion notification. ATA
commands use ata_scsi_qc_complete() while ATAPI commands use
atapi_qc_complete(). Both functions end up calling qc->scsidone to no-
tify upper layer when the qc is finished. After translation is completed, the
qc is issued with ata_qc_issue().

Note that SCSI midlayer invokes hostt->queuecommand while holding
host_set lock, so all above occur while holding host_set lock.

33.3.3 How commands are processed

Depending on which protocol and which controller are used, commands are pro-
cessed differently. For the purpose of discussion, a controller which uses taskfile
interface and all standard callbacks is assumed.

Currently 6 ATA command protocols are used. They can be sorted into the follow-
ing four categories according to how they are processed.

ATA NO DATA or DMA ATA_PROT_NODATA and ATA_PROT_DMA fall into this
category. These types of commands don’t require any software intervention
once issued. Device will raise interrupt on completion.

ATA PIO ATA_PROT_PIO is in this category. libata currently implements PIO with
polling. ATA_NIEN bit is set to turn off interrupt and pio_task on ata_wq
performs polling and IO.

ATAPI NODATA or DMA ATA_PROT_ATAPI_NODATA and
ATA_PROT_ATAPI_DMA are in this category. packet_task is used to poll
BSY bit after issuing PACKET command. Once BSY is turned off by the
device, packet_task transfers CDB and hands off processing to interrupt
handler.

ATAPI PIO ATA_PROT_ATAPI is in this category. ATA_NIEN bit is set and, as in
ATAPI NODATA or DMA, packet_task submits cdb. However, after submitting
cdb, further processing (data transfer) is handed off to pio_task.

33.3.4 How commands are completed

Once issued, all qc’s are either completed with ata_qc_complete() or time
out. For commands which are handled by interrupts, ata_host_intr() invokes
ata_qc_complete(), and, for PIO tasks, pio_task invokes ata_qc_complete(). In
error cases, packet_task may also complete commands.

ata_qc_complete() does the following.

1. DMA memory is unmapped.

2. ATA_QCFLAG_ACTIVE is cleared from qc->flags.

3. qc->complete_fn() callback is invoked. If the return value of the callback is
not zero. Completion is short circuited and ata_qc_complete() returns.

1020 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

4. __ata_qc_complete() is called, which does

1. qc->flags is cleared to zero.

2. ap->active_tag and qc->tag are poisoned.

3. qc->waiting is cleared & completed (in that order).

4. qc is deallocated by clearing appropriate bit in ap->qactive.

So, it basically notifies upper layer and deallocates qc. One exception is short-
circuit path in #3 which is used by atapi_qc_complete().

For all non-ATAPI commands, whether it fails or not, almost the same code path
is taken and very little error handling takes place. A qc is completed with success
status if it succeeded, with failed status otherwise.

However, failed ATAPI commands require more handling as REQUEST SENSE is
needed to acquire sense data. If an ATAPI command fails, ata_qc_complete()
is invoked with error status, which in turn invokes atapi_qc_complete() via
qc->complete_fn() callback.

This makes atapi_qc_complete() set scmd->result to
SAM_STAT_CHECK_CONDITION, complete the scmd and return 1. As the
sense data is empty but scmd->result is CHECK CONDITION, SCSI midlayer will
invoke EH for the scmd, and returning 1 makes ata_qc_complete() to return
without deallocating the qc. This leads us to ata_scsi_error() with partially
completed qc.

33.3.5 ata_scsi_error()

ata_scsi_error() is the current transportt->eh_strategy_handler() for li-
bata. As discussed above, this will be entered in two cases - timeout and ATAPI
error completion. This function calls low level libata driver’s eng_timeout() call-
back, the standard callback for which is ata_eng_timeout(). It checks if a qc is
active and calls ata_qc_timeout() on the qc if so. Actual error handling occurs
in ata_qc_timeout().

If EH is invoked for timeout, ata_qc_timeout() stops BMDMA and completes
the qc. Note that as we’re currently in EH, we cannot call scsi_done. As
described in SCSI EH doc, a recovered scmd should be either retried with
scsi_queue_insert() or finished with scsi_finish_command(). Here, we over-
ride qc->scsidone with scsi_finish_command() and calls ata_qc_complete().

If EH is invoked due to a failed ATAPI qc, the qc here is completed but not deallo-
cated. The purpose of this half-completion is to use the qc as place holder to make
EH code reach this place. This is a bit hackish, but it works.

Once control reaches here, the qc is deallocated by invoking
__ata_qc_complete() explicitly. Then, internal qc for REQUEST SENSE is
issued. Once sense data is acquired, scmd is finished by directly invoking
scsi_finish_command() on the scmd. Note that as we already have completed
and deallocated the qc which was associated with the scmd, we don’t need
to/cannot call ata_qc_complete() again.

33.3. Error handling 1021

Linux Driver-api Documentation

33.3.6 Problems with the current EH

• Error representation is too crude. Currently any and all error conditions are
represented with ATA STATUS and ERROR registers. Errors which aren’
t ATA device errors are treated as ATA device errors by setting ATA_ERR
bit. Better error descriptor which can properly represent ATA and other er-
rors/exceptions is needed.

• When handling timeouts, no action is taken to make device forget about the
timed out command and ready for new commands.

• EH handling via ata_scsi_error() is not properly protected from usual com-
mand processing. On EH entrance, the device is not in quiescent state. Timed
out commands may succeed or fail any time. pio_task and atapi_task may still
be running.

• Too weak error recovery. Devices / controllers causing HSMmismatch errors
and other errors quite often require reset to return to known state. Also, ad-
vanced error handling is necessary to support features like NCQ and hotplug.

• ATA errors are directly handled in the interrupt handler and PIO errors in
pio_task. This is problematic for advanced error handling for the following
reasons.

First, advanced error handling often requires context and internal qc execu-
tion.

Second, even a simple failure (say, CRC error) needs information gathering
and could trigger complex error handling (say, resetting & reconfiguring).
Having multiple code paths to gather information, enter EH and trigger ac-
tions makes life painful.

Third, scattered EH code makes implementing low level drivers difficult. Low
level drivers override libata callbacks. If EH is scattered over several places,
each affected callbacks should perform its part of error handling. This can
be error prone and painful.

33.4 libata Library

struct ata_link * ata_link_next(struct ata_link * link, struct ata_port * ap,
enum ata_link_iter_mode mode)

link iteration helper

Parameters
struct ata_link * link the previous link, NULL to start

struct ata_port * ap ATA port containing links to iterate

enum ata_link_iter_mode mode iteration mode, one of ATA_LITER_*

LOCKING: Host lock or EH context.

Return
Pointer to the next link.

1022 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

struct ata_device * ata_dev_next(struct ata_device * dev, struct ata_link
* link, enum ata_dev_iter_mode mode)

device iteration helper

Parameters
struct ata_device * dev the previous device, NULL to start

struct ata_link * link ATA link containing devices to iterate

enum ata_dev_iter_mode mode iteration mode, one of ATA_DITER_*

LOCKING: Host lock or EH context.

Return
Pointer to the next device.

int atapi_cmd_type(u8 opcode)
Determine ATAPI command type from SCSI opcode

Parameters
u8 opcode SCSI opcode

Determine ATAPI command type from opcode.
LOCKING: None.

Return
ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}

unsigned long ata_pack_xfermask(unsigned long pio_mask, unsigned
long mwdma_mask, unsigned
long udma_mask)

Pack pio, mwdma and udma masks into xfer_mask

Parameters
unsigned long pio_mask pio_mask

unsigned long mwdma_mask mwdma_mask

unsigned long udma_mask udma_mask

Pack pio_mask, mwdma_mask and udma_mask into a single unsigned int
xfer_mask.

LOCKING: None.

Return
Packed xfer_mask.

u8 ata_xfer_mask2mode(unsigned long xfer_mask)
Find matching XFER_* for the given xfer_mask

Parameters
unsigned long xfer_mask xfer_mask of interest

Return matching XFER_* value for xfer_mask. Only the highest bit of
xfer_mask is considered.

33.4. libata Library 1023

Linux Driver-api Documentation

LOCKING: None.

Return
Matching XFER_* value, 0xff if no match found.

unsigned long ata_xfer_mode2mask(u8 xfer_mode)
Find matching xfer_mask for XFER_*

Parameters
u8 xfer_mode XFER_* of interest

Return matching xfer_mask for xfer_mode.
LOCKING: None.

Return
Matching xfer_mask, 0 if no match found.

int ata_xfer_mode2shift(unsigned long xfer_mode)
Find matching xfer_shift for XFER_*

Parameters
unsigned long xfer_mode XFER_* of interest

Return matching xfer_shift for xfer_mode.
LOCKING: None.

Return
Matching xfer_shift, -1 if no match found.

const char * ata_mode_string(unsigned long xfer_mask)
convert xfer_mask to string

Parameters
unsigned long xfer_mask mask of bits supported; only highest bit counts.

Determine string which represents the highest speed (highest bit in mode-
mask).
LOCKING: None.

Return
Constant C string representing highest speed listed in mode_mask, or
the constant C string “<n/a>”.

unsigned int ata_dev_classify(const struct ata_taskfile * tf)
determine device type based on ATA-spec signature

Parameters
const struct ata_taskfile * tf ATA taskfile register set for device to be iden-

tified

Determine from taskfile register contents whether a device is ATA or ATAPI,
as per “Signature and persistence”section of ATA/PI spec (volume 1, sect
5.14).

1024 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

LOCKING: None.

Return
Device type, ATA_DEV_ATA, ATA_DEV_ATAPI, ATA_DEV_PMP, ATA_DEV_ZAC,
or ATA_DEV_UNKNOWN the event of failure.

void ata_id_string(const u16 * id, unsigned char * s, unsigned int ofs, un-
signed int len)

Convert IDENTIFY DEVICE page into string

Parameters
const u16 * id IDENTIFY DEVICE results we will examine

unsigned char * s string into which data is output

unsigned int ofs offset into identify device page

unsigned int len length of string to return. must be an even number.

The strings in the IDENTIFY DEVICE page are broken up into 16-bit chunks.
Run through the string, and output each 8-bit chunk linearly, regardless of
platform.

LOCKING: caller.

void ata_id_c_string(const u16 * id, unsigned char * s, unsigned int ofs,
unsigned int len)

Convert IDENTIFY DEVICE page into C string

Parameters
const u16 * id IDENTIFY DEVICE results we will examine

unsigned char * s string into which data is output

unsigned int ofs offset into identify device page

unsigned int len length of string to return. must be an odd number.

This function is identical to ata_id_string except that it trims trailing spaces
and terminates the resulting string with null. len must be actual maximum
length (even number) + 1.

LOCKING: caller.

unsigned long ata_id_xfermask(const u16 * id)
Compute xfermask from the given IDENTIFY data

Parameters
const u16 * id IDENTIFY data to compute xfer mask from

Compute the xfermask for this device. This is not as trivial as it seems if we
must consider early devices correctly.

FIXME: pre IDE drive timing (do we care ?).

LOCKING: None.

Return
Computed xfermask

33.4. libata Library 1025

Linux Driver-api Documentation

unsigned int ata_pio_need_iordy(const struct ata_device * adev)
check if iordy needed

Parameters
const struct ata_device * adev ATA device

Check if the current speed of the device requires IORDY. Used by various
controllers for chip configuration.

unsigned int ata_do_dev_read_id(struct ata_device * dev, struct
ata_taskfile * tf, u16 * id)

default ID read method

Parameters
struct ata_device * dev device

struct ata_taskfile * tf proposed taskfile

u16 * id data buffer

Issue the identify taskfile and hand back the buffer containing identify data.
For some RAID controllers and for pre ATA devices this function is wrapped
or replaced by the driver

int ata_cable_40wire(struct ata_port * ap)
return 40 wire cable type

Parameters
struct ata_port * ap port

Helper method for drivers which want to hardwire 40 wire cable detection.

int ata_cable_80wire(struct ata_port * ap)
return 80 wire cable type

Parameters
struct ata_port * ap port

Helper method for drivers which want to hardwire 80 wire cable detection.

int ata_cable_unknown(struct ata_port * ap)
return unknown PATA cable.

Parameters
struct ata_port * ap port

Helper method for drivers which have no PATA cable detection.

int ata_cable_ignore(struct ata_port * ap)
return ignored PATA cable.

Parameters
struct ata_port * ap port

Helper method for drivers which don’t use cable type to limit transfer mode.
int ata_cable_sata(struct ata_port * ap)

return SATA cable type

1026 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

Parameters
struct ata_port * ap port

Helper method for drivers which have SATA cables

struct ata_device * ata_dev_pair(struct ata_device * adev)
return other device on cable

Parameters
struct ata_device * adev device

Obtain the other device on the same cable, or if none is present NULL is
returned

int ata_do_set_mode(struct ata_link * link, struct ata_device ** r_failed_dev)
Program timings and issue SET FEATURES - XFER

Parameters
struct ata_link * link link on which timings will be programmed

struct ata_device ** r_failed_dev out parameter for failed device

Standard implementation of the function used to tune and set ATA device
disk transfer mode (PIO3, UDMA6, etc.). If ata_dev_set_mode() fails, pointer
to the failing device is returned in r_failed_dev.
LOCKING: PCI/etc. bus probe sem.

Return
0 on success, negative errno otherwise

int ata_wait_after_reset(struct ata_link * link, unsigned long deadline, int
(*check_ready)(struct ata_link *link))

wait for link to become ready after reset

Parameters
struct ata_link * link link to be waited on

unsigned long deadline deadline jiffies for the operation

int (*)(struct ata_link *link) check_ready callback to check link readi-
ness

Wait for link to become ready after reset.
LOCKING: EH context.

Return
0 if link is ready before deadline; otherwise, -errno.

int ata_std_prereset(struct ata_link * link, unsigned long deadline)
prepare for reset

Parameters
struct ata_link * link ATA link to be reset

33.4. libata Library 1027

Linux Driver-api Documentation

unsigned long deadline deadline jiffies for the operation

link is about to be reset. Initialize it. Failure from prereset makes libata
abort whole reset sequence and give up that port, so prereset should be best-
effort. It does its best to prepare for reset sequence but if things go wrong,
it should just whine, not fail.

LOCKING: Kernel thread context (may sleep)

Return
0 on success, -errno otherwise.

int sata_std_hardreset(struct ata_link * link, unsigned int * class, unsigned
long deadline)

COMRESET w/o waiting or classification

Parameters
struct ata_link * link link to reset

unsigned int * class resulting class of attached device

unsigned long deadline deadline jiffies for the operation

Standard SATA COMRESET w/o waiting or classification.

LOCKING: Kernel thread context (may sleep)

Return
0 if link offline, -EAGAIN if link online, -errno on errors.

void ata_std_postreset(struct ata_link * link, unsigned int * classes)
standard postreset callback

Parameters
struct ata_link * link the target ata_link

unsigned int * classes classes of attached devices

This function is invoked after a successful reset. Note that the device might
have been reset more than once using different reset methods before postre-
set is invoked.

LOCKING: Kernel thread context (may sleep)

unsigned int ata_dev_set_feature(struct ata_device * dev, u8 enable,
u8 feature)

Issue SET FEATURES - SATA FEATURES

Parameters
struct ata_device * dev Device to which command will be sent

u8 enable Whether to enable or disable the feature

u8 feature The sector count represents the feature to set

Issue SET FEATURES - SATA FEATURES command to device dev on port ap
with sector count

LOCKING: PCI/etc. bus probe sem.

1028 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

Return
0 on success, AC_ERR_* mask otherwise.

int ata_std_qc_defer(struct ata_queued_cmd * qc)
Check whether a qc needs to be deferred

Parameters
struct ata_queued_cmd * qc ATA command in question

Non-NCQ commands cannot run with any other command, NCQ or not. As
upper layer only knows the queue depth, we are responsible for maintaining
exclusion. This function checks whether a new command qc can be issued.
LOCKING: spin_lock_irqsave(host lock)

Return
ATA_DEFER_* if deferring is needed, 0 otherwise.

void ata_qc_complete(struct ata_queued_cmd * qc)
Complete an active ATA command

Parameters
struct ata_queued_cmd * qc Command to complete

Indicate to the mid and upper layers that an ATA command has completed,
with either an ok or not-ok status.

Refrain from calling this function multiple times when successfully complet-
ing multiple NCQ commands. ata_qc_complete_multiple() should be used in-
stead, which will properly update IRQ expect state.

LOCKING: spin_lock_irqsave(host lock)

u64 ata_qc_get_active(struct ata_port * ap)
get bitmask of active qcs

Parameters
struct ata_port * ap port in question

LOCKING: spin_lock_irqsave(host lock)

Return
Bitmask of active qcs

bool ata_link_online(struct ata_link * link)
test whether the given link is online

Parameters
struct ata_link * link ATA link to test

Test whether link is online. This is identical to ata_phys_link_online()
when there’s no slave link. When there’s a slave link, this function should
only be called on the master link and will return true if any of M/S links is
online.

LOCKING: None.

33.4. libata Library 1029

Linux Driver-api Documentation

Return
True if the port online status is available and online.

bool ata_link_offline(struct ata_link * link)
test whether the given link is offline

Parameters
struct ata_link * link ATA link to test

Test whether link is offline. This is identical to ata_phys_link_offline()
when there’s no slave link. When there’s a slave link, this function should
only be called on the master link and will return true if both M/S links are
offline.

LOCKING: None.

Return
True if the port offline status is available and offline.

int ata_host_suspend(struct ata_host * host, pm_message_t mesg)
suspend host

Parameters
struct ata_host * host host to suspend

pm_message_t mesg PM message

Suspend host. Actual operation is performed by port suspend.
void ata_host_resume(struct ata_host * host)

resume host

Parameters
struct ata_host * host host to resume

Resume host. Actual operation is performed by port resume.
struct ata_host * ata_host_alloc(struct device * dev, int max_ports)

allocate and init basic ATA host resources

Parameters
struct device * dev generic device this host is associated with

int max_ports maximum number of ATA ports associated with this host

Allocate and initialize basic ATA host resources. LLD calls this function to
allocate a host, initializes it fully and attaches it using ata_host_register().

max_ports ports are allocated and host->n_ports is initialized to
max_ports. The caller is allowed to decrease host->n_ports before calling
ata_host_register(). The unused ports will be automatically freed on
registration.

Return
Allocate ATA host on success, NULL on failure.

LOCKING: Inherited from calling layer (may sleep).

1030 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

struct ata_host * ata_host_alloc_pinfo(struct device * dev, const struct
ata_port_info *const * ppi,
int n_ports)

alloc host and init with port_info array

Parameters
struct device * dev generic device this host is associated with

const struct ata_port_info *const * ppi array of ATA port_info to initialize
host with

int n_ports number of ATA ports attached to this host

Allocate ATA host and initialize with info from ppi. If NULL terminated, ppi
may contain fewer entries than n_ports. The last entry will be used for the
remaining ports.

Return
Allocate ATA host on success, NULL on failure.

LOCKING: Inherited from calling layer (may sleep).

int ata_host_start(struct ata_host * host)
start and freeze ports of an ATA host

Parameters
struct ata_host * host ATA host to start ports for

Start and then freeze ports of host. Started status is recorded in host->flags,
so this function can be called multiple times. Ports are guaranteed to get
started only once. If host->ops isn’t initialized yet, its set to the first non-
dummy port ops.

LOCKING: Inherited from calling layer (may sleep).

Return
0 if all ports are started successfully, -errno otherwise.

void ata_host_init(struct ata_host * host, struct device * dev, struct
ata_port_operations * ops)

Initialize a host struct for sas (ipr, libsas)

Parameters
struct ata_host * host host to initialize

struct device * dev device host is attached to

struct ata_port_operations * ops port_ops

int ata_host_register(struct ata_host * host, struct scsi_host_template
* sht)

register initialized ATA host

Parameters
struct ata_host * host ATA host to register

33.4. libata Library 1031

Linux Driver-api Documentation

struct scsi_host_template * sht template for SCSI host

Register initialized ATA host. host is allocated using ata_host_alloc() and
fully initialized by LLD. This function starts ports, registers host with ATA
and SCSI layers and probe registered devices.

LOCKING: Inherited from calling layer (may sleep).

Return
0 on success, -errno otherwise.

int ata_host_activate(struct ata_host * host, int irq,
irq_handler_t irq_handler, unsigned long irq_flags,
struct scsi_host_template * sht)

start host, request IRQ and register it

Parameters
struct ata_host * host target ATA host

int irq IRQ to request

irq_handler_t irq_handler irq_handler used when requesting IRQ

unsigned long irq_flags irq_flags used when requesting IRQ

struct scsi_host_template * sht scsi_host_template to use when registering
the host

After allocating an ATA host and initializing it, most libata LLDs perform three
steps to activate the host - start host, request IRQ and register it. This helper
takes necessary arguments and performs the three steps in one go.

An invalid IRQ skips the IRQ registration and expects the host to have set
polling mode on the port. In this case, irq_handler should be NULL.
LOCKING: Inherited from calling layer (may sleep).

Return
0 on success, -errno otherwise.

void ata_host_detach(struct ata_host * host)
Detach all ports of an ATA host

Parameters
struct ata_host * host Host to detach

Detach all ports of host.
LOCKING: Kernel thread context (may sleep).

void ata_pci_remove_one(struct pci_dev * pdev)
PCI layer callback for device removal

Parameters
struct pci_dev * pdev PCI device that was removed

PCI layer indicates to libata via this hook that hot-unplug or module unload
event has occurred. Detach all ports. Resource release is handled via devres.

1032 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

LOCKING: Inherited from PCI layer (may sleep).

int ata_platform_remove_one(struct platform_device * pdev)
Platform layer callback for device removal

Parameters
struct platform_device * pdev Platform device that was removed

Platform layer indicates to libata via this hook that hot-unplug or module un-
load event has occurred. Detach all ports. Resource release is handled via
devres.

LOCKING: Inherited from platform layer (may sleep).

void ata_msleep(struct ata_port * ap, unsigned int msecs)
ATA EH owner aware msleep

Parameters
struct ata_port * ap ATA port to attribute the sleep to

unsigned int msecs duration to sleep in milliseconds

Sleeps msecs. If the current task is owner of ap’s EH, the ownership is
released before going to sleep and reacquired after the sleep is complete.
IOW, other ports sharing the ap->host will be allowed to own the EH while
this task is sleeping.

LOCKING: Might sleep.

u32 ata_wait_register(struct ata_port * ap, void __iomem * reg, u32 mask,
u32 val, unsigned long interval, unsigned
long timeout)

wait until register value changes

Parameters
struct ata_port * ap ATA port to wait register for, can be NULL

void __iomem * reg IO-mapped register

u32 mask Mask to apply to read register value

u32 val Wait condition

unsigned long interval polling interval in milliseconds

unsigned long timeout timeout in milliseconds

Waiting for some bits of register to change is a common operation for ATA
controllers. This function reads 32bit LE IO-mapped register reg and tests
for the following condition.

(*reg & mask) != val
If the condition is met, it returns; otherwise, the process is repeated after
interval_msec until timeout.
LOCKING: Kernel thread context (may sleep)

Return
The final register value.

33.4. libata Library 1033

Linux Driver-api Documentation

33.5 libata Core Internals

struct ata_link * ata_dev_phys_link(struct ata_device * dev)
find physical link for a device

Parameters
struct ata_device * dev ATA device to look up physical link for

Look up physical link which dev is attached to. Note that this is different
from dev->link only when dev is on slave link. For all other cases, it’s the
same as dev->link.
LOCKING: Don’t care.

Return
Pointer to the found physical link.

void ata_force_cbl(struct ata_port * ap)
force cable type according to libata.force

Parameters
struct ata_port * ap ATA port of interest

Force cable type according to libata.force and whine about it. The last en-
try which has matching port number is used, so it can be specified as part
of device force parameters. For example, both “a:40c,1.00:udma4”and
“1.00:40c,udma4”have the same effect.
LOCKING: EH context.

void ata_force_link_limits(struct ata_link * link)
force link limits according to libata.force

Parameters
struct ata_link * link ATA link of interest

Force link flags and SATA spd limit according to libata.force and whine about
it. When only the port part is specified (e.g. 1:), the limit applies to all links
connected to both the host link and all fan-out ports connected via PMP. If the
device part is specified as 0 (e.g. 1.00:), it specifies the first fan-out link not
the host link. Device number 15 always points to the host link whether PMP
is attached or not. If the controller has slave link, device number 16 points
to it.

LOCKING: EH context.

void ata_force_xfermask(struct ata_device * dev)
force xfermask according to libata.force

Parameters
struct ata_device * dev ATA device of interest

Force xfer_mask according to libata.force and whine about it. For consistency
with link selection, device number 15 selects the first device connected to the
host link.

1034 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

LOCKING: EH context.

void ata_force_horkage(struct ata_device * dev)
force horkage according to libata.force

Parameters
struct ata_device * dev ATA device of interest

Force horkage according to libata.force and whine about it. For consistency
with link selection, device number 15 selects the first device connected to the
host link.

LOCKING: EH context.

int ata_rwcmd_protocol(struct ata_taskfile * tf, struct ata_device * dev)
set taskfile r/w commands and protocol

Parameters
struct ata_taskfile * tf command to examine and configure

struct ata_device * dev device tf belongs to

Examine the device configuration and tf->flags to calculate the proper
read/write commands and protocol to use.

LOCKING: caller.

u64 ata_tf_read_block(const struct ata_taskfile * tf, struct ata_device
* dev)

Read block address from ATA taskfile

Parameters
const struct ata_taskfile * tf ATA taskfile of interest

struct ata_device * dev ATA device tf belongs to
LOCKING: None.

Read block address from tf. This function can handle all three address for-
mats - LBA, LBA48 and CHS. tf->protocol and flags select the address format
to use.

Return
Block address read from tf.

int ata_build_rw_tf(struct ata_taskfile * tf, struct ata_device * dev,
u64 block, u32 n_block, unsigned int tf_flags, un-
signed int tag, int class)

Build ATA taskfile for given read/write request

Parameters
struct ata_taskfile * tf Target ATA taskfile

struct ata_device * dev ATA device tf belongs to
u64 block Block address

u32 n_block Number of blocks

unsigned int tf_flags RW/FUA etc⋯

33.5. libata Core Internals 1035

Linux Driver-api Documentation

unsigned int tag tag

int class IO priority class

LOCKING: None.

Build ATA taskfile tf for read/write request described by block, n_block,
tf_flags and tag on dev.

Return
0 on success, -ERANGE if the request is too large for dev, -EINVAL if the
request is invalid.

void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long
* pio_mask, unsigned long * mwdma_mask,
unsigned long * udma_mask)

Unpack xfer_mask into pio, mwdma and udma masks

Parameters
unsigned long xfer_mask xfer_mask to unpack

unsigned long * pio_mask resulting pio_mask

unsigned long * mwdma_mask resulting mwdma_mask

unsigned long * udma_mask resulting udma_mask

Unpack xfer_mask into pio_mask, mwdma_mask and udma_mask. Any
NULL destination masks will be ignored.

int ata_read_native_max_address(struct ata_device * dev, u64
* max_sectors)

Read native max address

Parameters
struct ata_device * dev target device

u64 * max_sectors out parameter for the result native max address

Perform an LBA48 or LBA28 native size query upon the device in question.

Return
0 on success, -EACCES if command is aborted by the drive. -EIO on
other errors.

int ata_set_max_sectors(struct ata_device * dev, u64 new_sectors)
Set max sectors

Parameters
struct ata_device * dev target device

u64 new_sectors new max sectors value to set for the device

Set max sectors of dev to new_sectors.
Return

0 on success, -EACCES if command is aborted or denied (due to previous
non-volatile SET_MAX) by the drive. -EIO on other errors.

1036 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

int ata_hpa_resize(struct ata_device * dev)
Resize a device with an HPA set

Parameters
struct ata_device * dev Device to resize

Read the size of an LBA28 or LBA48 disk with HPA features and resize it if
required to the full size of the media. The caller must check the drive has the
HPA feature set enabled.

Return
0 on success, -errno on failure.

void ata_dump_id(const u16 * id)
IDENTIFY DEVICE info debugging output

Parameters
const u16 * id IDENTIFY DEVICE page to dump

Dump selected 16-bit words from the given IDENTIFY DEVICE page.

LOCKING: caller.

unsigned ata_exec_internal_sg(struct ata_device * dev, struct ata_taskfile
* tf, const u8 * cdb, int dma_dir, struct
scatterlist * sgl, unsigned int n_elem, un-
signed long timeout)

execute libata internal command

Parameters
struct ata_device * dev Device to which the command is sent

struct ata_taskfile * tf Taskfile registers for the command and the result

const u8 * cdb CDB for packet command

int dma_dir Data transfer direction of the command

struct scatterlist * sgl sg list for the data buffer of the command

unsigned int n_elem Number of sg entries

unsigned long timeout Timeout in msecs (0 for default)

Executes libata internal command with timeout. tf contains command on
entry and result on return. Timeout and error conditions are reported via
return value. No recovery action is taken after a command times out. It’s
caller’s duty to clean up after timeout.
LOCKING: None. Should be called with kernel context, might sleep.

Return
Zero on success, AC_ERR_* mask on failure

unsigned ata_exec_internal(struct ata_device * dev, struct ata_taskfile * tf,
const u8 * cdb, int dma_dir, void * buf, un-
signed int buflen, unsigned long timeout)

execute libata internal command

33.5. libata Core Internals 1037

Linux Driver-api Documentation

Parameters
struct ata_device * dev Device to which the command is sent

struct ata_taskfile * tf Taskfile registers for the command and the result

const u8 * cdb CDB for packet command

int dma_dir Data transfer direction of the command

void * buf Data buffer of the command

unsigned int buflen Length of data buffer

unsigned long timeout Timeout in msecs (0 for default)

Wrapper around ata_exec_internal_sg()which takes simple buffer instead
of sg list.

LOCKING: None. Should be called with kernel context, might sleep.

Return
Zero on success, AC_ERR_* mask on failure

u32 ata_pio_mask_no_iordy(const struct ata_device * adev)
Return the non IORDY mask

Parameters
const struct ata_device * adev ATA device

Compute the highest mode possible if we are not using iordy. Return -1 if no
iordy mode is available.

int ata_dev_read_id(struct ata_device * dev, unsigned int * p_class, un-
signed int flags, u16 * id)

Read ID data from the specified device

Parameters
struct ata_device * dev target device

unsigned int * p_class pointer to class of the target device (may be changed)

unsigned int flags ATA_READID_* flags

u16 * id buffer to read IDENTIFY data into

Read ID data from the specified device. ATA_CMD_ID_ATA is performed on
ATA devices and ATA_CMD_ID_ATAPI on ATAPI devices. This function also
issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.

FIXME: ATA_CMD_ID_ATA is optional for early drives and right now we abort
if we hit that case.

LOCKING: Kernel thread context (may sleep)

Return
0 on success, -errno otherwise.

unsigned int ata_read_log_page(struct ata_device * dev, u8 log, u8 page,
void * buf, unsigned int sectors)

read a specific log page

1038 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

Parameters
struct ata_device * dev target device

u8 log log to read

u8 page page to read

void * buf buffer to store read page

unsigned int sectors number of sectors to read

Read log page using READ_LOG_EXT command.

LOCKING: Kernel thread context (may sleep).

Return
0 on success, AC_ERR_* mask otherwise.

int ata_dev_configure(struct ata_device * dev)
Configure the specified ATA/ATAPI device

Parameters
struct ata_device * dev Target device to configure

Configure dev according to dev->id. Generic and low-level driver specific
fixups are also applied.

LOCKING: Kernel thread context (may sleep)

Return
0 on success, -errno otherwise

int ata_bus_probe(struct ata_port * ap)
Reset and probe ATA bus

Parameters
struct ata_port * ap Bus to probe

Master ATA bus probing function. Initiates a hardware-dependent bus reset,
then attempts to identify any devices found on the bus.

LOCKING: PCI/etc. bus probe sem.

Return
Zero on success, negative errno otherwise.

void sata_print_link_status(struct ata_link * link)
Print SATA link status

Parameters
struct ata_link * link SATA link to printk link status about

This function prints link speed and status of a SATA link.

LOCKING: None.

int sata_down_spd_limit(struct ata_link * link, u32 spd_limit)
adjust SATA spd limit downward

33.5. libata Core Internals 1039

Linux Driver-api Documentation

Parameters
struct ata_link * link Link to adjust SATA spd limit for

u32 spd_limit Additional limit

Adjust SATA spd limit of link downward. Note that this function only adjusts
the limit. The change must be applied using sata_set_spd().

If spd_limit is non-zero, the speed is limited to equal to or lower than
spd_limit if such speed is supported. If spd_limit is slower than any sup-
ported speed, only the lowest supported speed is allowed.

LOCKING: Inherited from caller.

Return
0 on success, negative errno on failure

u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
find xfer mode for the specified cycle duration

Parameters
unsigned int xfer_shift ATA_SHIFT_* value for transfer type to examine.

int cycle cycle duration in ns

Return matching xfer mode for cycle. The returned mode is of the transfer
type specified by xfer_shift. If cycle is too slow for xfer_shift, 0xff is re-
turned. If cycle is faster than the fastest known mode, the fasted mode is
returned.

LOCKING: None.

Return
Matching xfer_mode, 0xff if no match found.

int ata_down_xfermask_limit(struct ata_device * dev, unsigned int sel)
adjust dev xfer masks downward

Parameters
struct ata_device * dev Device to adjust xfer masks

unsigned int sel ATA_DNXFER_* selector

Adjust xfer masks of dev downward. Note that this function does not apply
the change. Invoking ata_set_mode() afterwards will apply the limit.

LOCKING: Inherited from caller.

Return
0 on success, negative errno on failure

int ata_wait_ready(struct ata_link * link, unsigned long deadline, int
(*check_ready)(struct ata_link *link))

wait for link to become ready

Parameters
struct ata_link * link link to be waited on

1040 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

unsigned long deadline deadline jiffies for the operation

int (*)(struct ata_link *link) check_ready callback to check link readi-
ness

Wait for link to become ready. check_ready should return positive number
if link is ready, 0 if it isn’t, -ENODEV if link doesn’t seem to be occupied,
other errno for other error conditions.

Transient -ENODEV conditions are allowed for ATA_TMOUT_FF_WAIT.

LOCKING: EH context.

Return
0 if link is ready before deadline; otherwise, -errno.

int ata_dev_same_device(struct ata_device * dev, unsigned int new_class,
const u16 * new_id)

Determine whether new ID matches configured device

Parameters
struct ata_device * dev device to compare against

unsigned int new_class class of the new device

const u16 * new_id IDENTIFY page of the new device

Compare new_class and new_id against dev and determine whether dev is
the device indicated by new_class and new_id.
LOCKING: None.

Return
1 if dev matches new_class and new_id, 0 otherwise.

int ata_dev_reread_id(struct ata_device * dev, unsigned int readid_flags)
Re-read IDENTIFY data

Parameters
struct ata_device * dev target ATA device

unsigned int readid_flags read ID flags

Re-read IDENTIFY page and make sure dev is still attached to the port.
LOCKING: Kernel thread context (may sleep)

Return
0 on success, negative errno otherwise

int ata_dev_revalidate(struct ata_device * dev, unsigned int new_class,
unsigned int readid_flags)

Revalidate ATA device

Parameters
struct ata_device * dev device to revalidate

unsigned int new_class new class code

33.5. libata Core Internals 1041

Linux Driver-api Documentation

unsigned int readid_flags read ID flags

Re-read IDENTIFY page, make sure dev is still attached to the port and re-
configure it according to the new IDENTIFY page.

LOCKING: Kernel thread context (may sleep)

Return
0 on success, negative errno otherwise

int ata_is_40wire(struct ata_device * dev)
check drive side detection

Parameters
struct ata_device * dev device

Perform drive side detection decoding, allowing for device vendors who can’
t follow the documentation.

int cable_is_40wire(struct ata_port * ap)
40/80/SATA decider

Parameters
struct ata_port * ap port to consider

This function encapsulates the policy for speed management in one place. At
the moment we don’t cache the result but there is a good case for setting
ap->cbl to the result when we are called with unknown cables (and figuring
out if it impacts hotplug at all).

Return 1 if the cable appears to be 40 wire.

void ata_dev_xfermask(struct ata_device * dev)
Compute supported xfermask of the given device

Parameters
struct ata_device * dev Device to compute xfermask for

Compute supported xfermask of dev and store it in dev->*_mask. This func-
tion is responsible for applying all known limits including host controller lim-
its, device blacklist, etc⋯
LOCKING: None.

unsigned int ata_dev_set_xfermode(struct ata_device * dev)
Issue SET FEATURES - XFER MODE command

Parameters
struct ata_device * dev Device to which command will be sent

Issue SET FEATURES - XFER MODE command to device dev on port ap.
LOCKING: PCI/etc. bus probe sem.

Return
0 on success, AC_ERR_* mask otherwise.

1042 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

unsigned int ata_dev_init_params(struct ata_device * dev, u16 heads,
u16 sectors)

Issue INIT DEV PARAMS command

Parameters
struct ata_device * dev Device to which command will be sent

u16 heads Number of heads (taskfile parameter)

u16 sectors Number of sectors (taskfile parameter)

LOCKING: Kernel thread context (may sleep)

Return
0 on success, AC_ERR_* mask otherwise.

int atapi_check_dma(struct ata_queued_cmd * qc)
Check whether ATAPI DMA can be supported

Parameters
struct ata_queued_cmd * qc Metadata associated with taskfile to check

Allow low-level driver to filter ATA PACKET commands, returning a status
indicating whether or not it is OK to use DMA for the supplied PACKET com-
mand.

LOCKING: spin_lock_irqsave(host lock)

Return
0 when ATAPI DMA can be used nonzero otherwise
void ata_sg_init(struct ata_queued_cmd * qc, struct scatterlist * sg, un-

signed int n_elem)
Associate command with scatter-gather table.

Parameters
struct ata_queued_cmd * qc Command to be associated

struct scatterlist * sg Scatter-gather table.

unsigned int n_elem Number of elements in s/g table.

Initialize the data-related elements of queued_cmd qc to point to a scatter-
gather table sg, containing n_elem elements.

LOCKING: spin_lock_irqsave(host lock)

void ata_sg_clean(struct ata_queued_cmd * qc)
Unmap DMA memory associated with command

Parameters
struct ata_queued_cmd * qc Command containing DMAmemory to be released

Unmap all mapped DMA memory associated with this command.

LOCKING: spin_lock_irqsave(host lock)

int ata_sg_setup(struct ata_queued_cmd * qc)
DMA-map the scatter-gather table associated with a command.

33.5. libata Core Internals 1043

Linux Driver-api Documentation

Parameters
struct ata_queued_cmd * qc Command with scatter-gather table to be mapped.

DMA-map the scatter-gather table associated with queued_cmd qc.
LOCKING: spin_lock_irqsave(host lock)

Return
Zero on success, negative on error.

void swap_buf_le16(u16 * buf, unsigned int buf_words)
swap halves of 16-bit words in place

Parameters
u16 * buf Buffer to swap

unsigned int buf_words Number of 16-bit words in buffer.

Swap halves of 16-bit words if needed to convert from little-endian byte order
to native cpu byte order, or vice-versa.

LOCKING: Inherited from caller.

struct ata_queued_cmd * ata_qc_new_init(struct ata_device * dev, int tag)
Request an available ATA command, and initialize it

Parameters
struct ata_device * dev Device from whom we request an available command

structure

int tag tag

LOCKING: None.

void ata_qc_free(struct ata_queued_cmd * qc)
free unused ata_queued_cmd

Parameters
struct ata_queued_cmd * qc Command to complete

Designed to free unused ata_queued_cmd object in case something prevents
using it.

LOCKING: spin_lock_irqsave(host lock)

void ata_qc_issue(struct ata_queued_cmd * qc)
issue taskfile to device

Parameters
struct ata_queued_cmd * qc command to issue to device

Prepare an ATA command to submission to device. This includes mapping
the data into a DMA-able area, filling in the S/G table, and finally writing the
taskfile to hardware, starting the command.

LOCKING: spin_lock_irqsave(host lock)

bool ata_phys_link_online(struct ata_link * link)
test whether the given link is online

1044 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

Parameters
struct ata_link * link ATA link to test

Test whether link is online. Note that this function returns 0 if online status
of link cannot be obtained, so ata_link_online(link) != !ata_link_offline(link).
LOCKING: None.

Return
True if the port online status is available and online.

bool ata_phys_link_offline(struct ata_link * link)
test whether the given link is offline

Parameters
struct ata_link * link ATA link to test

Test whether link is offline. Note that this function returns 0 if offline status
of link cannot be obtained, so ata_link_online(link) != !ata_link_offline(link).
LOCKING: None.

Return
True if the port offline status is available and offline.

void ata_dev_init(struct ata_device * dev)
Initialize an ata_device structure

Parameters
struct ata_device * dev Device structure to initialize

Initialize dev in preparation for probing.
LOCKING: Inherited from caller.

void ata_link_init(struct ata_port * ap, struct ata_link * link, int pmp)
Initialize an ata_link structure

Parameters
struct ata_port * ap ATA port link is attached to

struct ata_link * link Link structure to initialize

int pmp Port multiplier port number

Initialize link.
LOCKING: Kernel thread context (may sleep)

int sata_link_init_spd(struct ata_link * link)
Initialize link->sata_spd_limit

Parameters
struct ata_link * link Link to configure sata_spd_limit for

Initialize link->[hw_]sata_spd_limit to the currently configured value.

LOCKING: Kernel thread context (may sleep).

33.5. libata Core Internals 1045

Linux Driver-api Documentation

Return
0 on success, -errno on failure.

struct ata_port * ata_port_alloc(struct ata_host * host)
allocate and initialize basic ATA port resources

Parameters
struct ata_host * host ATA host this allocated port belongs to

Allocate and initialize basic ATA port resources.

Return
Allocate ATA port on success, NULL on failure.

LOCKING: Inherited from calling layer (may sleep).

void ata_finalize_port_ops(struct ata_port_operations * ops)
finalize ata_port_operations

Parameters
struct ata_port_operations * ops ata_port_operations to finalize

An ata_port_operations can inherit from another ops and that ops can again
inherit from another. This can go on as many times as necessary as long as
there is no loop in the inheritance chain.

Ops tables are finalized when the host is started. NULL or unspecified entries
are inherited from the closet ancestor which has the method and the entry
is populated with it. After finalization, the ops table directly points to all the
methods and ->inherits is no longer necessary and cleared.

Using ATA_OP_NULL, inheriting ops can force a method to NULL.

LOCKING: None.

void ata_port_detach(struct ata_port * ap)
Detach ATA port in preparation of device removal

Parameters
struct ata_port * ap ATA port to be detached

Detach all ATA devices and the associated SCSI devices of ap; then, remove
the associated SCSI host. ap is guaranteed to be quiescent on return from
this function.

LOCKING: Kernel thread context (may sleep).

void __ata_ehi_push_desc(struct ata_eh_info * ehi, const char * fmt, ...)
push error description without adding separator

Parameters
struct ata_eh_info * ehi target EHI

const char * fmt printf format string

Format string according to fmt and append it to ehi->desc.
LOCKING: spin_lock_irqsave(host lock)

1046 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

... variable arguments

void ata_ehi_push_desc(struct ata_eh_info * ehi, const char * fmt, ...)
push error description with separator

Parameters
struct ata_eh_info * ehi target EHI

const char * fmt printf format string

Format string according to fmt and append it to ehi->desc. If ehi->desc is
not empty, “, ”is added in-between.
LOCKING: spin_lock_irqsave(host lock)

... variable arguments

void ata_ehi_clear_desc(struct ata_eh_info * ehi)
clean error description

Parameters
struct ata_eh_info * ehi target EHI

Clear ehi->desc.
LOCKING: spin_lock_irqsave(host lock)

void ata_port_desc(struct ata_port * ap, const char * fmt, ...)
append port description

Parameters
struct ata_port * ap target ATA port

const char * fmt printf format string

Format string according to fmt and append it to port description. If port
description is not empty, ””is added in-between. This function is to be used
while initializing ata_host. The description is printed on host registration.

LOCKING: None.

... variable arguments

void ata_port_pbar_desc(struct ata_port * ap, int bar, ssize_t offset, const
char * name)

append PCI BAR description

Parameters
struct ata_port * ap target ATA port

int bar target PCI BAR

ssize_t offset offset into PCI BAR

const char * name name of the area

If offset is negative, this function formats a string which contains the name,
address, size and type of the BAR and appends it to the port description. If
offset is zero or positive, only name and offsetted address is appended.
LOCKING: None.

33.5. libata Core Internals 1047

Linux Driver-api Documentation

unsigned long ata_internal_cmd_timeout(struct ata_device * dev, u8 cmd)
determine timeout for an internal command

Parameters
struct ata_device * dev target device

u8 cmd internal command to be issued

Determine timeout for internal command cmd for dev.
LOCKING: EH context.

Return
Determined timeout.

void ata_internal_cmd_timed_out(struct ata_device * dev, u8 cmd)
notification for internal command timeout

Parameters
struct ata_device * dev target device

u8 cmd internal command which timed out

Notify EH that internal command cmd for dev timed out. This function
should be called only for commands whose timeouts are determined using
ata_internal_cmd_timeout().

LOCKING: EH context.

void ata_eh_acquire(struct ata_port * ap)
acquire EH ownership

Parameters
struct ata_port * ap ATA port to acquire EH ownership for

Acquire EH ownership for ap. This is the basic exclusion mechanism for ports
sharing a host. Only one port hanging off the same host can claim the own-
ership of EH.

LOCKING: EH context.

void ata_eh_release(struct ata_port * ap)
release EH ownership

Parameters
struct ata_port * ap ATA port to release EH ownership for

Release EH ownership for ap if the caller. The caller must have acquired EH
ownership using ata_eh_acquire() previously.

LOCKING: EH context.

void ata_scsi_error(struct Scsi_Host * host)
SCSI layer error handler callback

Parameters
struct Scsi_Host * host SCSI host on which error occurred

Handles SCSI-layer-thrown error events.

1048 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

LOCKING: Inherited from SCSI layer (none, can sleep)

Return
Zero.

void ata_scsi_cmd_error_handler(struct Scsi_Host * host, struct ata_port
* ap, struct list_head * eh_work_q)

error callback for a list of commands

Parameters
struct Scsi_Host * host scsi host containing the port

struct ata_port * ap ATA port within the host

struct list_head * eh_work_q list of commands to process

Description
process the given list of commands and return those finished to the ap-
>eh_done_q. This function is the first part of the libata error handler which pro-
cesses a given list of failed commands.

void ata_scsi_port_error_handler(struct Scsi_Host * host, struct ata_port
* ap)

recover the port after the commands

Parameters
struct Scsi_Host * host SCSI host containing the port

struct ata_port * ap the ATA port

Description
Handle the recovery of the port ap after all the commands have been recovered.
void ata_port_wait_eh(struct ata_port * ap)

Wait for the currently pending EH to complete

Parameters
struct ata_port * ap Port to wait EH for

Wait until the currently pending EH is complete.

LOCKING: Kernel thread context (may sleep).

void ata_eh_set_pending(struct ata_port * ap, int fastdrain)
set ATA_PFLAG_EH_PENDING and activate fast drain

Parameters
struct ata_port * ap target ATA port

int fastdrain activate fast drain

Set ATA_PFLAG_EH_PENDING and activate fast drain if fastdrain is non-
zero and EH wasn’t pending before. Fast drain ensures that EH kicks in in
timely manner.

LOCKING: spin_lock_irqsave(host lock)

33.5. libata Core Internals 1049

Linux Driver-api Documentation

void ata_qc_schedule_eh(struct ata_queued_cmd * qc)
schedule qc for error handling

Parameters
struct ata_queued_cmd * qc command to schedule error handling for

Schedule error handling for qc. EH will kick in as soon as other commands
are drained.

LOCKING: spin_lock_irqsave(host lock)

void ata_std_sched_eh(struct ata_port * ap)
non-libsas ata_ports issue eh with this common routine

Parameters
struct ata_port * ap ATA port to schedule EH for

LOCKING: inherited from ata_port_schedule_eh spin_lock_irqsave(host lock)

void ata_std_end_eh(struct ata_port * ap)
non-libsas ata_ports complete eh with this common routine

Parameters
struct ata_port * ap ATA port to end EH for

Description
In the libata object model there is a 1:1 mapping of ata_port to shost, so host fields
can be directly manipulated under ap->lock, in the libsas case we need to hold a
lock at the ha->level to coordinate these events.

LOCKING: spin_lock_irqsave(host lock)

void ata_port_schedule_eh(struct ata_port * ap)
schedule error handling without a qc

Parameters
struct ata_port * ap ATA port to schedule EH for

Schedule error handling for ap. EH will kick in as soon as all commands are
drained.

LOCKING: spin_lock_irqsave(host lock)

int ata_link_abort(struct ata_link * link)
abort all qc’s on the link

Parameters
struct ata_link * link ATA link to abort qc’s for

Abort all active qc’s active on link and schedule EH.
LOCKING: spin_lock_irqsave(host lock)

Return
Number of aborted qc’s.

int ata_port_abort(struct ata_port * ap)
abort all qc’s on the port

1050 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

Parameters
struct ata_port * ap ATA port to abort qc’s for

Abort all active qc’s of ap and schedule EH.
LOCKING: spin_lock_irqsave(host_set lock)

Return
Number of aborted qc’s.

void __ata_port_freeze(struct ata_port * ap)
freeze port

Parameters
struct ata_port * ap ATA port to freeze

This function is called when HSM violation or some other condition disrupts
normal operation of the port. Frozen port is not allowed to perform any op-
eration until the port is thawed, which usually follows a successful reset.

ap->ops->freeze() callback can be used for freezing the port hardware-wise
(e.g. mask interrupt and stop DMA engine). If a port cannot be frozen
hardware-wise, the interrupt handler must ack and clear interrupts uncon-
ditionally while the port is frozen.

LOCKING: spin_lock_irqsave(host lock)

int ata_port_freeze(struct ata_port * ap)
abort & freeze port

Parameters
struct ata_port * ap ATA port to freeze

Abort and freeze ap. The freeze operation must be called first, because some
hardware requires special operations before the taskfile registers are acces-
sible.

LOCKING: spin_lock_irqsave(host lock)

Return
Number of aborted commands.

void ata_eh_freeze_port(struct ata_port * ap)
EH helper to freeze port

Parameters
struct ata_port * ap ATA port to freeze

Freeze ap.
LOCKING: None.

void ata_eh_thaw_port(struct ata_port * ap)
EH helper to thaw port

Parameters

33.5. libata Core Internals 1051

Linux Driver-api Documentation

struct ata_port * ap ATA port to thaw

Thaw frozen port ap.
LOCKING: None.

void ata_eh_qc_complete(struct ata_queued_cmd * qc)
Complete an active ATA command from EH

Parameters
struct ata_queued_cmd * qc Command to complete

Indicate to the mid and upper layers that an ATA command has completed.
To be used from EH.

void ata_eh_qc_retry(struct ata_queued_cmd * qc)
Tell midlayer to retry an ATA command after EH

Parameters
struct ata_queued_cmd * qc Command to retry

Indicate to the mid and upper layers that an ATA command should be retried.
To be used from EH.

SCSI midlayer limits the number of retries to scmd->allowed. scmd->allowed
is incremented for commands which get retried due to unrelated failures (qc-
>err_mask is zero).

void ata_dev_disable(struct ata_device * dev)
disable ATA device

Parameters
struct ata_device * dev ATA device to disable

Disable dev.
Locking: EH context.

void ata_eh_detach_dev(struct ata_device * dev)
detach ATA device

Parameters
struct ata_device * dev ATA device to detach

Detach dev.
LOCKING: None.

void ata_eh_about_to_do(struct ata_link * link, struct ata_device * dev, un-
signed int action)

about to perform eh_action

Parameters
struct ata_link * link target ATA link

struct ata_device * dev target ATA dev for per-dev action (can be NULL)

unsigned int action action about to be performed

1052 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

Called just before performing EH actions to clear related bits in link-
>eh_info such that eh actions are not unnecessarily repeated.
LOCKING: None.

void ata_eh_done(struct ata_link * link, struct ata_device * dev, unsigned
int action)

EH action complete

Parameters
struct ata_link * link ATA link for which EH actions are complete

struct ata_device * dev target ATA dev for per-dev action (can be NULL)

unsigned int action action just completed

Called right after performing EH actions to clear related bits in link-
>eh_context.
LOCKING: None.

const char * ata_err_string(unsigned int err_mask)
convert err_mask to descriptive string

Parameters
unsigned int err_mask error mask to convert to string

Convert err_mask to descriptive string. Errors are prioritized according to
severity and only the most severe error is reported.

LOCKING: None.

Return
Descriptive string for err_mask

unsigned int atapi_eh_tur(struct ata_device * dev, u8 * r_sense_key)
perform ATAPI TEST_UNIT_READY

Parameters
struct ata_device * dev target ATAPI device

u8 * r_sense_key out parameter for sense_key

Perform ATAPI TEST_UNIT_READY.

LOCKING: EH context (may sleep).

Return
0 on success, AC_ERR_* mask on failure.

void ata_eh_request_sense(struct ata_queued_cmd * qc, struct scsi_cmnd
* cmd)

perform REQUEST_SENSE_DATA_EXT

Parameters
struct ata_queued_cmd * qc qc to performREQUEST_SENSE_SENSE_DATA_EXT

to

33.5. libata Core Internals 1053

Linux Driver-api Documentation

struct scsi_cmnd * cmd scsi command for which the sense code should be set

Perform REQUEST_SENSE_DATA_EXT after the device reported CHECK
SENSE. This function is an EH helper.

LOCKING: Kernel thread context (may sleep).

unsigned int atapi_eh_request_sense(struct ata_device * dev, u8
* sense_buf, u8 dfl_sense_key)

perform ATAPI REQUEST_SENSE

Parameters
struct ata_device * dev device to perform REQUEST_SENSE to

u8 * sense_buf result sense data buffer (SCSI_SENSE_BUFFERSIZE bytes long)

u8 dfl_sense_key default sense key to use

Perform ATAPI REQUEST_SENSE after the device reported CHECK SENSE.
This function is EH helper.

LOCKING: Kernel thread context (may sleep).

Return
0 on success, AC_ERR_* mask on failure

void ata_eh_analyze_serror(struct ata_link * link)
analyze SError for a failed port

Parameters
struct ata_link * link ATA link to analyze SError for

Analyze SError if available and further determine cause of failure.

LOCKING: None.

unsigned int ata_eh_analyze_tf(struct ata_queued_cmd * qc, const struct
ata_taskfile * tf)

analyze taskfile of a failed qc

Parameters
struct ata_queued_cmd * qc qc to analyze

const struct ata_taskfile * tf Taskfile registers to analyze

Analyze taskfile of qc and further determine cause of failure. This function
also requests ATAPI sense data if available.

LOCKING: Kernel thread context (may sleep).

Return
Determined recovery action

unsigned int ata_eh_speed_down_verdict(struct ata_device * dev)
Determine speed down verdict

Parameters

1054 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

struct ata_device * dev Device of interest

This function examines error ring of dev and determines whether NCQ needs
to be turned off, transfer speed should be stepped down, or falling back to PIO
is necessary.

ECAT_ATA_BUS : ATA_BUS error for any command

ECAT_TOUT_HSM [TIMEOUT for any command or HSM violation for] IO
commands

ECAT_UNK_DEV : Unknown DEV error for IO commands

ECAT_DUBIOUS_* [Identical to above three but occurred while] data trans-
fer hasn’t been verified.

Verdicts are

NCQ_OFF : Turn off NCQ.

SPEED_DOWN [Speed down transfer speed but don’t fall back] to PIO.
FALLBACK_TO_PIO : Fall back to PIO.

Even if multiple verdicts are returned, only one action is taken per error. An
action triggered by non-DUBIOUS errors clears ering, while one triggered by
DUBIOUS_* errors doesn’t. This is to expedite speed down decisions right
after device is initially configured.

The following are speed down rules. #1 and #2 deal with DUBIOUS errors.

1. If more than one DUBIOUS_ATA_BUS or DUBIOUS_TOUT_HSM errors
occurred during last 5 mins, SPEED_DOWN and FALLBACK_TO_PIO.

2. If more than one DUBIOUS_TOUT_HSM or DUBIOUS_UNK_DEV errors
occurred during last 5 mins, NCQ_OFF.

3. If more than 8 ATA_BUS, TOUT_HSM or UNK_DEV errors occurred dur-
ing last 5 mins, FALLBACK_TO_PIO

4. If more than 3 TOUT_HSM or UNK_DEV errors occurred during last 10
mins, NCQ_OFF.

5. If more than 3 ATA_BUS or TOUT_HSM errors, or more than 6 UNK_DEV
errors occurred during last 10 mins, SPEED_DOWN.

LOCKING: Inherited from caller.

Return
OR of ATA_EH_SPDN_* flags.

unsigned int ata_eh_speed_down(struct ata_device * dev, unsigned
int eflags, unsigned int err_mask)

record error and speed down if necessary

Parameters
struct ata_device * dev Failed device

unsigned int eflags mask of ATA_EFLAG_* flags

33.5. libata Core Internals 1055

Linux Driver-api Documentation

unsigned int err_mask err_mask of the error

Record error and examine error history to determine whether adjusting trans-
mission speed is necessary. It also sets transmission limits appropriately if
such adjustment is necessary.

LOCKING: Kernel thread context (may sleep).

Return
Determined recovery action.

int ata_eh_worth_retry(struct ata_queued_cmd * qc)
analyze error and decide whether to retry

Parameters
struct ata_queued_cmd * qc qc to possibly retry

Look at the cause of the error and decide if a retry might be useful or not.
We don’t want to retry media errors because the drive itself has probably
already taken 10-30 seconds doing its own internal retries before reporting
the failure.

bool ata_eh_quiet(struct ata_queued_cmd * qc)
check if we need to be quiet about a command error

Parameters
struct ata_queued_cmd * qc qc to check

Look at the qc flags anbd its scsi command request flags to determine if we
need to be quiet about the command failure.

void ata_eh_link_autopsy(struct ata_link * link)
analyze error and determine recovery action

Parameters
struct ata_link * link host link to perform autopsy on

Analyze why link failed and determine which recovery actions are needed.
This function also sets more detailed AC_ERR_* values and fills sense data for
ATAPI CHECK SENSE.

LOCKING: Kernel thread context (may sleep).

void ata_eh_autopsy(struct ata_port * ap)
analyze error and determine recovery action

Parameters
struct ata_port * ap host port to perform autopsy on

Analyze all links of ap and determine why they failed and which recovery
actions are needed.

LOCKING: Kernel thread context (may sleep).

const char * ata_get_cmd_descript(u8 command)
get description for ATA command

Parameters

1056 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

u8 command ATA command code to get description for

Return a textual description of the given command, or NULL if the command
is not known.

LOCKING: None

void ata_eh_link_report(struct ata_link * link)
report error handling to user

Parameters
struct ata_link * link ATA link EH is going on

Report EH to user.

LOCKING: None.

void ata_eh_report(struct ata_port * ap)
report error handling to user

Parameters
struct ata_port * ap ATA port to report EH about

Report EH to user.

LOCKING: None.

int ata_set_mode(struct ata_link * link, struct ata_device ** r_failed_dev)
Program timings and issue SET FEATURES - XFER

Parameters
struct ata_link * link link on which timings will be programmed

struct ata_device ** r_failed_dev out parameter for failed device

Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If ata_set_mode()
fails, pointer to the failing device is returned in r_failed_dev.
LOCKING: PCI/etc. bus probe sem.

Return
0 on success, negative errno otherwise

int atapi_eh_clear_ua(struct ata_device * dev)
Clear ATAPI UNIT ATTENTION after reset

Parameters
struct ata_device * dev ATAPI device to clear UA for

Resets and other operations can make an ATAPI device raise UNIT ATTEN-
TION which causes the next operation to fail. This function clears UA.

LOCKING: EH context (may sleep).

Return
0 on success, -errno on failure.

int ata_eh_maybe_retry_flush(struct ata_device * dev)
Retry FLUSH if necessary

33.5. libata Core Internals 1057

Linux Driver-api Documentation

Parameters
struct ata_device * dev ATA device which may need FLUSH retry

If dev failed FLUSH, it needs to be reported upper layer immediately as it
means that dev failed to remap and already lost at least a sector and further
FLUSH retrials won’t make any difference to the lost sector. However, if
FLUSH failed for other reasons, for example transmission error, FLUSHneeds
to be retried.

This function determines whether FLUSH failure retry is necessary and per-
forms it if so.

Return
0 if EH can continue, -errno if EH needs to be repeated.

int ata_eh_set_lpm(struct ata_link * link, enum ata_lpm_policy policy, struct
ata_device ** r_failed_dev)

configure SATA interface power management

Parameters
struct ata_link * link link to configure power management

enum ata_lpm_policy policy the link power management policy

struct ata_device ** r_failed_dev out parameter for failed device

Enable SATA Interface power management. This will enable Device Interface
Power Management (DIPM) for min_power and medium_power_with_dipm
policies, and then call driver specific callbacks for enabling Host Initiated
Power management.

LOCKING: EH context.

Return
0 on success, -errno on failure.

int ata_eh_recover(struct ata_port * ap, ata_prereset_fn_t prereset,
ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
ata_postreset_fn_t postreset, struct ata_link
** r_failed_link)

recover host port after error

Parameters
struct ata_port * ap host port to recover

ata_prereset_fn_t prereset prereset method (can be NULL)

ata_reset_fn_t softreset softreset method (can be NULL)

ata_reset_fn_t hardreset hardreset method (can be NULL)

ata_postreset_fn_t postreset postreset method (can be NULL)

struct ata_link ** r_failed_link out parameter for failed link

This is the alpha and omega, eum and yang, heart and soul of libata excep-
tion handling. On entry, actions required to recover each link and hotplug
requests are recorded in the link’s eh_context. This function executes all the

1058 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

operations with appropriate retrials and fallbacks to resurrect failed devices,
detach goners and greet newcomers.

LOCKING: Kernel thread context (may sleep).

Return
0 on success, -errno on failure.

void ata_eh_finish(struct ata_port * ap)
finish up EH

Parameters
struct ata_port * ap host port to finish EH for

Recovery is complete. Clean up EH states and retry or finish failed qcs.

LOCKING: None.

void ata_do_eh(struct ata_port * ap, ata_prereset_fn_t prereset,
ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
ata_postreset_fn_t postreset)

do standard error handling

Parameters
struct ata_port * ap host port to handle error for

ata_prereset_fn_t prereset prereset method (can be NULL)

ata_reset_fn_t softreset softreset method (can be NULL)

ata_reset_fn_t hardreset hardreset method (can be NULL)

ata_postreset_fn_t postreset postreset method (can be NULL)

Perform standard error handling sequence.

LOCKING: Kernel thread context (may sleep).

void ata_std_error_handler(struct ata_port * ap)
standard error handler

Parameters
struct ata_port * ap host port to handle error for

Standard error handler

LOCKING: Kernel thread context (may sleep).

void ata_eh_handle_port_suspend(struct ata_port * ap)
perform port suspend operation

Parameters
struct ata_port * ap port to suspend

Suspend ap.
LOCKING: Kernel thread context (may sleep).

void ata_eh_handle_port_resume(struct ata_port * ap)
perform port resume operation

33.5. libata Core Internals 1059

Linux Driver-api Documentation

Parameters
struct ata_port * ap port to resume

Resume ap.
LOCKING: Kernel thread context (may sleep).

33.6 libata SCSI translation/emulation

int ata_std_bios_param(struct scsi_device * sdev, struct block_device
* bdev, sector_t capacity, int geom)

generic bios head/sector/cylinder calculator used by sd.

Parameters
struct scsi_device * sdev SCSI device for which BIOS geometry is to be de-

termined

struct block_device * bdev block device associated with sdev
sector_t capacity capacity of SCSI device

int geom location to which geometry will be output

Generic bios head/sector/cylinder calculator used by sd. Most BIOSes nowa-
days expect a XXX/255/16 (CHS) mapping. Some situations may arise where
the disk is not bootable if this is not used.

LOCKING: Defined by the SCSI layer. We don’t really care.
Return

Zero.

void ata_scsi_unlock_native_capacity(struct scsi_device * sdev)
unlock native capacity

Parameters
struct scsi_device * sdev SCSI device to adjust device capacity for

This function is called if a partition on sdev extends beyond the end of the
device. It requests EH to unlock HPA.

LOCKING: Defined by the SCSI layer. Might sleep.

bool ata_scsi_dma_need_drain(struct request * rq)
Check whether data transfer may overflow

Parameters
struct request * rq request to be checked

ATAPI commands which transfer variable length data to host might overflow
due to application error or hardware bug. This function checks whether over-
flow should be drained and ignored for request.
LOCKING: None.

Return

1060 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

1 if ; otherwise, 0.

int ata_scsi_slave_config(struct scsi_device * sdev)
Set SCSI device attributes

Parameters
struct scsi_device * sdev SCSI device to examine

This is called before we actually start reading and writing to the device, to
configure certain SCSI mid-layer behaviors.

LOCKING: Defined by SCSI layer. We don’t really care.
void ata_scsi_slave_destroy(struct scsi_device * sdev)

SCSI device is about to be destroyed

Parameters
struct scsi_device * sdev SCSI device to be destroyed

sdev is about to be destroyed for hot/warm unplugging. If this unplugging
was initiated by libata as indicated by NULL dev->sdev, this function doesn’
t have to do anything. Otherwise, SCSI layer initiated warm-unplug is in
progress. Clear dev->sdev, schedule the device for ATA detach and invoke
EH.

LOCKING: Defined by SCSI layer. We don’t really care.
int ata_scsi_queuecmd(struct Scsi_Host * shost, struct scsi_cmnd * cmd)

Issue SCSI cdb to libata-managed device

Parameters
struct Scsi_Host * shost SCSI host of command to be sent

struct scsi_cmnd * cmd SCSI command to be sent

In some cases, this function translates SCSI commands into ATA taskfiles,
and queues the taskfiles to be sent to hardware. In other cases, this function
simulates a SCSI device by evaluating and responding to certain SCSI com-
mands. This creates the overall effect of ATA and ATAPI devices appearing
as SCSI devices.

LOCKING: ATA host lock

Return
Return value from __ata_scsi_queuecmd() if cmd can be queued, 0 oth-
erwise.

int ata_get_identity(struct ata_port * ap, struct scsi_device * sdev, void
__user * arg)

Handler for HDIO_GET_IDENTITY ioctl

Parameters
struct ata_port * ap target port

struct scsi_device * sdev SCSI device to get identify data for

void __user * arg User buffer area for identify data

33.6. libata SCSI translation/emulation 1061

Linux Driver-api Documentation

LOCKING: Defined by the SCSI layer. We don’t really care.
Return

Zero on success, negative errno on error.

int ata_cmd_ioctl(struct scsi_device * scsidev, void __user * arg)
Handler for HDIO_DRIVE_CMD ioctl

Parameters
struct scsi_device * scsidev Device to which we are issuing command

void __user * arg User provided data for issuing command

LOCKING: Defined by the SCSI layer. We don’t really care.
Return

Zero on success, negative errno on error.

int ata_task_ioctl(struct scsi_device * scsidev, void __user * arg)
Handler for HDIO_DRIVE_TASK ioctl

Parameters
struct scsi_device * scsidev Device to which we are issuing command

void __user * arg User provided data for issuing command

LOCKING: Defined by the SCSI layer. We don’t really care.
Return

Zero on success, negative errno on error.

struct ata_queued_cmd * ata_scsi_qc_new(struct ata_device * dev, struct
scsi_cmnd * cmd)

acquire new ata_queued_cmd reference

Parameters
struct ata_device * dev ATA device to which the new command is attached

struct scsi_cmnd * cmd SCSI command that originated this ATA command

Obtain a reference to an unused ata_queued_cmd structure, which is the basic
libata structure representing a single ATA command sent to the hardware.

If a command was available, fill in the SCSI-specific portions of the structure
with information on the current command.

LOCKING: spin_lock_irqsave(host lock)

Return
Command allocated, or NULL if none available.

void ata_dump_status(unsigned id, struct ata_taskfile * tf)
user friendly display of error info

Parameters
unsigned id id of the port in question

1062 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

struct ata_taskfile * tf ptr to filled out taskfile

Decode and dump the ATA error/status registers for the user so that they have
some idea what really happened at the non make-believe layer.

LOCKING: inherited from caller

void ata_to_sense_error(unsigned id, u8 drv_stat, u8 drv_err, u8 * sk, u8
* asc, u8 * ascq, int verbose)

convert ATA error to SCSI error

Parameters
unsigned id ATA device number

u8 drv_stat value contained in ATA status register

u8 drv_err value contained in ATA error register

u8 * sk the sense key we’ll fill out
u8 * asc the additional sense code we’ll fill out
u8 * ascq the additional sense code qualifier we’ll fill out
int verbose be verbose

Converts an ATA error into a SCSI error. Fill out pointers to SK, ASC, and
ASCQ bytes for later use in fixed or descriptor format sense blocks.

LOCKING: spin_lock_irqsave(host lock)

void ata_gen_ata_sense(struct ata_queued_cmd * qc)
generate a SCSI fixed sense block

Parameters
struct ata_queued_cmd * qc Command that we are erroring out

Generate sense block for a failed ATA command qc. Descriptor format is used
to accommodate LBA48 block address.

LOCKING: None.

unsigned int ata_scsi_start_stop_xlat(struct ata_queued_cmd * qc)
Translate SCSI START STOP UNIT command

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile

Sets up an ATA taskfile to issue STANDBY (to stop) or READ VERIFY (to
start). Perhaps these commands should be preceded by CHECK POWER
MODE to see what power mode the device is already in. [See SAT revision 5
at www.t10.org]

LOCKING: spin_lock_irqsave(host lock)

Return
Zero on success, non-zero on error.

unsigned int ata_scsi_flush_xlat(struct ata_queued_cmd * qc)
Translate SCSI SYNCHRONIZE CACHE command

33.6. libata SCSI translation/emulation 1063

Linux Driver-api Documentation

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile

Sets up an ATA taskfile to issue FLUSH CACHE or FLUSH CACHE EXT.

LOCKING: spin_lock_irqsave(host lock)

Return
Zero on success, non-zero on error.

void scsi_6_lba_len(const u8 * cdb, u64 * plba, u32 * plen)
Get LBA and transfer length

Parameters
const u8 * cdb SCSI command to translate

Calculate LBA and transfer length for 6-byte commands.

u64 * plba the LBA

u32 * plen the transfer length

void scsi_10_lba_len(const u8 * cdb, u64 * plba, u32 * plen)
Get LBA and transfer length

Parameters
const u8 * cdb SCSI command to translate

Calculate LBA and transfer length for 10-byte commands.

u64 * plba the LBA

u32 * plen the transfer length

void scsi_16_lba_len(const u8 * cdb, u64 * plba, u32 * plen)
Get LBA and transfer length

Parameters
const u8 * cdb SCSI command to translate

Calculate LBA and transfer length for 16-byte commands.

u64 * plba the LBA

u32 * plen the transfer length

unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd * qc)
Translate SCSI VERIFY command into an ATA one

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile

Converts SCSI VERIFY command to an ATA READ VERIFY command.

LOCKING: spin_lock_irqsave(host lock)

Return
Zero on success, non-zero on error.

1064 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd * qc)
Translate SCSI r/w command into an ATA one

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile

Converts any of six SCSI read/write commands into the ATA counterpart, in-
cluding starting sector (LBA), sector count, and taking into account the de-
vice’s LBA48 support.
Commands READ_6, READ_10, READ_16, WRITE_6, WRITE_10, and WRITE_16 are
currently supported.

LOCKING: spin_lock_irqsave(host lock)

Return
Zero on success, non-zero on error.

int ata_scsi_translate(struct ata_device * dev, struct scsi_cmnd * cmd,
ata_xlat_func_t xlat_func)

Translate then issue SCSI command to ATA device

Parameters
struct ata_device * dev ATA device to which the command is addressed

struct scsi_cmnd * cmd SCSI command to execute

ata_xlat_func_t xlat_func Actor which translates cmd to an ATA taskfile
Our ->queuecommand() function has decided that the SCSI command issued
can be directly translated into an ATA command, rather than handled inter-
nally.

This function sets up an ata_queued_cmd structure for the SCSI command,
and sends that ata_queued_cmd to the hardware.

The xlat_func argument (actor) returns 0 if ready to execute ATA command,
else 1 to finish translation. If 1 is returned then cmd->result (and possibly
cmd->sense_buffer) are assumed to be set reflecting an error condition or
clean (early) termination.

LOCKING: spin_lock_irqsave(host lock)

Return
0 on success, SCSI_ML_QUEUE_DEVICE_BUSY if the command needs
to be deferred.

void * ata_scsi_rbuf_get(struct scsi_cmnd * cmd, bool copy_in, unsigned
long * flags)

Map response buffer.

Parameters
struct scsi_cmnd * cmd SCSI command containing buffer to be mapped.

bool copy_in copy in from user buffer

Prepare buffer for simulated SCSI commands.

33.6. libata SCSI translation/emulation 1065

Linux Driver-api Documentation

LOCKING: spin_lock_irqsave(ata_scsi_rbuf_lock) on success

unsigned long * flags unsigned long variable to store irq enable status

Return
Pointer to response buffer.

void ata_scsi_rbuf_put(struct scsi_cmnd * cmd, bool copy_out, unsigned
long * flags)

Unmap response buffer.

Parameters
struct scsi_cmnd * cmd SCSI command containing buffer to be unmapped.

bool copy_out copy out result

unsigned long * flags flags passed to ata_scsi_rbuf_get()
Returns rbuf buffer. The result is copied to cmd’s buffer if copy_back is
true.

LOCKING: Unlocks ata_scsi_rbuf_lock.

void ata_scsi_rbuf_fill(struct ata_scsi_args * args, unsigned int (*ac-
tor)(struct ata_scsi_args *args, u8 *rbuf))

wrapper for SCSI command simulators

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of inter-

est.

unsigned int (*)(struct ata_scsi_args *args, u8 *rbuf) actor Callback
hook for desired SCSI command simulator

Takes care of the hard work of simulating a SCSI command⋯Mapping the
response buffer, calling the command’s handler, and handling the handler’
s return value. This return value indicates whether the handler wishes the
SCSI command to be completed successfully (0), or not (in which case cmd-
>result and sense buffer are assumed to be set).

LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_inq_std(struct ata_scsi_args * args, u8 * rbuf)
Simulate INQUIRY command

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of inter-

est.

u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.

Returns standard device identification data associated with non-VPD IN-
QUIRY command output.

LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_inq_00(struct ata_scsi_args * args, u8 * rbuf)
Simulate INQUIRY VPD page 0, list of pages

1066 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of inter-

est.

u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.

Returns list of inquiry VPD pages available.

LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_inq_80(struct ata_scsi_args * args, u8 * rbuf)
Simulate INQUIRY VPD page 80, device serial number

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of inter-

est.

u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.

Returns ATA device serial number.

LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_inq_83(struct ata_scsi_args * args, u8 * rbuf)
Simulate INQUIRY VPD page 83, device identity

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of inter-

est.

u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.

Yields two logical unit device identification designators:
• vendor specific ASCII containing the ATA serial number

• SAT defined “t10 vendor id based”containing ASCII vendor name (
“ATA “), model and serial numbers.

LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_inq_89(struct ata_scsi_args * args, u8 * rbuf)
Simulate INQUIRY VPD page 89, ATA info

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of inter-

est.

u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.

Yields SAT-specified ATA VPD page.

LOCKING: spin_lock_irqsave(host lock)

void modecpy(u8 * dest, const u8 * src, int n, bool changeable)
Prepare response for MODE SENSE

Parameters
u8 * dest output buffer

33.6. libata SCSI translation/emulation 1067

Linux Driver-api Documentation

const u8 * src data being copied

int n length of mode page

bool changeable whether changeable parameters are requested

Generate a generic MODE SENSE page for either current or changeable pa-
rameters.

LOCKING: None.

unsigned int ata_msense_caching(u16 * id, u8 * buf, bool changeable)
Simulate MODE SENSE caching info page

Parameters
u16 * id device IDENTIFY data

u8 * buf output buffer

bool changeable whether changeable parameters are requested

Generate a caching info page, which conditionally indicates write caching to
the SCSI layer, depending on device capabilities.

LOCKING: None.

unsigned int ata_msense_control(struct ata_device * dev, u8 * buf,
bool changeable)

Simulate MODE SENSE control mode page

Parameters
struct ata_device * dev ATA device of interest

u8 * buf output buffer

bool changeable whether changeable parameters are requested

Generate a generic MODE SENSE control mode page.

LOCKING: None.

unsigned int ata_msense_rw_recovery(u8 * buf, bool changeable)
Simulate MODE SENSE r/w error recovery page

Parameters
u8 * buf output buffer

bool changeable whether changeable parameters are requested

Generate a generic MODE SENSE r/w error recovery page.

LOCKING: None.

unsigned int ata_scsiop_mode_sense(struct ata_scsi_args * args, u8 * rbuf)
Simulate MODE SENSE 6, 10 commands

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of inter-

est.

1068 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.

Simulate MODE SENSE commands. Assume this is invoked for direct access
devices (e.g. disks) only. There should be no block descriptor for other device
types.

LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsiop_read_cap(struct ata_scsi_args * args, u8 * rbuf)
Simulate READ CAPACITY[16] commands

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of inter-

est.

u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.

Simulate READ CAPACITY commands.

LOCKING: None.

unsigned int ata_scsiop_report_luns(struct ata_scsi_args * args, u8
* rbuf)

Simulate REPORT LUNS command

Parameters
struct ata_scsi_args * args device IDENTIFY data / SCSI command of inter-

est.

u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.

Simulate REPORT LUNS command.

LOCKING: spin_lock_irqsave(host lock)

unsigned int atapi_xlat(struct ata_queued_cmd * qc)
Initialize PACKET taskfile

Parameters
struct ata_queued_cmd * qc command structure to be initialized

LOCKING: spin_lock_irqsave(host lock)

Return
Zero on success, non-zero on failure.

struct ata_device * ata_scsi_find_dev(struct ata_port * ap, const struct
scsi_device * scsidev)

lookup ata_device from scsi_cmnd

Parameters
struct ata_port * ap ATA port to which the device is attached

const struct scsi_device * scsidev SCSI device from which we derive the
ATA device

Given various information provided in struct scsi_cmnd, map that onto an ATA
bus, and using that mapping determine which ata_device is associated with
the SCSI command to be sent.

33.6. libata SCSI translation/emulation 1069

Linux Driver-api Documentation

LOCKING: spin_lock_irqsave(host lock)

Return
Associated ATA device, or NULL if not found.

unsigned int ata_scsi_pass_thru(struct ata_queued_cmd * qc)
convert ATA pass-thru CDB to taskfile

Parameters
struct ata_queued_cmd * qc command structure to be initialized

Handles either 12, 16, or 32-byte versions of the CDB.

Return
Zero on success, non-zero on failure.

size_t ata_format_dsm_trim_descr(struct scsi_cmnd * cmd, u32 trmax,
u64 sector, u32 count)

SATL Write Same to DSM Trim

Parameters
struct scsi_cmnd * cmd SCSI command being translated

u32 trmax Maximum number of entries that will fit in sector_size bytes.

u64 sector Starting sector

u32 count Total Range of request in logical sectors

Description
Rewrite the WRITE SAME descriptor to be a DSM TRIM little-endian formatted
descriptor.

Upto 64 entries of the format:
63:48 Range Length 47:0 LBA

Range Length of 0 is ignored. LBA’s should be sorted order and not overlap.
NOTE
this is the same format as ADD LBA(S) TO NV CACHE PINNED SET

Return
Number of bytes copied into sglist.

unsigned int ata_scsi_write_same_xlat(struct ata_queued_cmd * qc)
SATL Write Same to ATA SCT Write Same

Parameters
struct ata_queued_cmd * qc Command to be translated

Description
Translate a SCSI WRITE SAME command to be either a DSM TRIM command or
an SCT Write Same command. Based on WRITE SAME has the UNMAP flag:

• When set translate to DSM TRIM

1070 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

• When clear translate to SCT Write Same

unsigned int ata_scsiop_maint_in(struct ata_scsi_args * args, u8 * rbuf)
Simulate a subset of MAINTENANCE_IN

Parameters
struct ata_scsi_args * args deviceMAINTENANCE_IN data / SCSI command

of interest.

u8 * rbuf Response buffer, to which simulated SCSI cmd output is sent.

Yields a subset to satisfy scsi_report_opcode()

LOCKING: spin_lock_irqsave(host lock)

void ata_scsi_report_zones_complete(struct ata_queued_cmd * qc)
convert ATA output

Parameters
struct ata_queued_cmd * qc command structure returning the data

Convert T-13 little-endian field representation into T-10 big-endian field rep-
resentation. What a mess.

int ata_mselect_caching(struct ata_queued_cmd * qc, const u8 * buf,
int len, u16 * fp)

Simulate MODE SELECT for caching info page

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile

const u8 * buf input buffer

int len number of valid bytes in the input buffer

u16 * fp out parameter for the failed field on error

Prepare a taskfile to modify caching information for the device.

LOCKING: None.

int ata_mselect_control(struct ata_queued_cmd * qc, const u8 * buf,
int len, u16 * fp)

Simulate MODE SELECT for control page

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile

const u8 * buf input buffer

int len number of valid bytes in the input buffer

u16 * fp out parameter for the failed field on error

Prepare a taskfile to modify caching information for the device.

LOCKING: None.

unsigned int ata_scsi_mode_select_xlat(struct ata_queued_cmd * qc)
Simulate MODE SELECT 6, 10 commands

33.6. libata SCSI translation/emulation 1071

Linux Driver-api Documentation

Parameters
struct ata_queued_cmd * qc Storage for translated ATA taskfile

Converts a MODE SELECT command to an ATA SET FEATURES taskfile. As-
sume this is invoked for direct access devices (e.g. disks) only. There should
be no block descriptor for other device types.

LOCKING: spin_lock_irqsave(host lock)

unsigned int ata_scsi_var_len_cdb_xlat(struct ata_queued_cmd * qc)
SATL variable length CDB to Handler

Parameters
struct ata_queued_cmd * qc Command to be translated

Translate a SCSI variable length CDB to specified commands. It checks a
service action value in CDB to call corresponding handler.

Return
Zero on success, non-zero on failure

ata_xlat_func_t ata_get_xlat_func(struct ata_device * dev, u8 cmd)
check if SCSI to ATA translation is possible

Parameters
struct ata_device * dev ATA device

u8 cmd SCSI command opcode to consider

Look up the SCSI command given, and determine whether the SCSI command
is to be translated or simulated.

Return
Pointer to translation function if possible, NULL if not.

void ata_scsi_dump_cdb(struct ata_port * ap, struct scsi_cmnd * cmd)
dump SCSI command contents to dmesg

Parameters
struct ata_port * ap ATA port to which the command was being sent

struct scsi_cmnd * cmd SCSI command to dump

Prints the contents of a SCSI command via printk().

void ata_scsi_simulate(struct ata_device * dev, struct scsi_cmnd * cmd)
simulate SCSI command on ATA device

Parameters
struct ata_device * dev the target device

struct scsi_cmnd * cmd SCSI command being sent to device.

Interprets and directly executes a select list of SCSI commands that can be
handled internally.

LOCKING: spin_lock_irqsave(host lock)

1072 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

int ata_scsi_offline_dev(struct ata_device * dev)
offline attached SCSI device

Parameters
struct ata_device * dev ATA device to offline attached SCSI device for

This function is called from ata_eh_hotplug() and responsible for taking the
SCSI device attached to dev offline. This function is called with host lock
which protects dev->sdev against clearing.

LOCKING: spin_lock_irqsave(host lock)

Return
1 if attached SCSI device exists, 0 otherwise.

void ata_scsi_remove_dev(struct ata_device * dev)
remove attached SCSI device

Parameters
struct ata_device * dev ATA device to remove attached SCSI device for

This function is called from ata_eh_scsi_hotplug() and responsible for remov-
ing the SCSI device attached to dev.
LOCKING: Kernel thread context (may sleep).

void ata_scsi_media_change_notify(struct ata_device * dev)
send media change event

Parameters
struct ata_device * dev Pointer to the disk device with media change event

Tell the block layer to send a media change notification event.

LOCKING: spin_lock_irqsave(host lock)

void ata_scsi_hotplug(struct work_struct * work)
SCSI part of hotplug

Parameters
struct work_struct * work Pointer to ATA port to perform SCSI hotplug on

Perform SCSI part of hotplug. It’s executed from a separate workqueue after
EH completes. This is necessary because SCSI hot plugging requires working
EH and hot unplugging is synchronized with hot plugging with a mutex.

LOCKING: Kernel thread context (may sleep).

int ata_scsi_user_scan(struct Scsi_Host * shost, unsigned int channel, un-
signed int id, u64 lun)

indication for user-initiated bus scan

Parameters
struct Scsi_Host * shost SCSI host to scan

unsigned int channel Channel to scan

unsigned int id ID to scan

33.6. libata SCSI translation/emulation 1073

Linux Driver-api Documentation

u64 lun LUN to scan

This function is called when user explicitly requests bus scan. Set probe pend-
ing flag and invoke EH.

LOCKING: SCSI layer (we don’t care)
Return

Zero.

void ata_scsi_dev_rescan(struct work_struct * work)
initiate scsi_rescan_device()

Parameters
struct work_struct * work Pointer to ATA port to perform scsi_rescan_device()

After ATA pass thru (SAT) commands are executed successfully, libata need
to propagate the changes to SCSI layer.

LOCKING: Kernel thread context (may sleep).

33.7 ATA errors and exceptions

This chapter tries to identify what error/exception conditions exist for ATA/ATAPI
devices and describe how they should be handled in implementation-neutral way.

The term ‘error’is used to describe conditions where either an explicit error
condition is reported from device or a command has timed out.

The term‘exception’is either used to describe exceptional conditions which are
not errors (say, power or hotplug events), or to describe both errors and non-error
exceptional conditions. Where explicit distinction between error and exception is
necessary, the term ‘non-error exception’is used.

33.7.1 Exception categories

Exceptions are described primarily with respect to legacy taskfile + bus master
IDE interface. If a controller provides other better mechanism for error reporting,
mapping those into categories described below shouldn’t be difficult.
In the following sections, two recovery actions - reset and reconfiguring transport
- are mentioned. These are described further in EH recovery actions.

HSM violation

This error is indicatedwhen STATUS value doesn’t matchHSM requirement during
issuing or execution any ATA/ATAPI command.

• ATA_STATUS doesn’t contain !BSY && DRDY && !DRQ while trying to issue
a command.

• !BSY && !DRQ during PIO data transfer.

• DRQ on command completion.

1074 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

• !BSY && ERR after CDB transfer starts but before the last byte of CDB is
transferred. ATA/ATAPI standard states that“The device shall not terminate
the PACKET command with an error before the last byte of the command
packet has beenwritten”in the error outputs description of PACKET command
and the state diagram doesn’t include such transitions.

In these cases, HSM is violated and not much information regarding the error can
be acquired from STATUS or ERROR register. IOW, this error can be anything -
driver bug, faulty device, controller and/or cable.

As HSM is violated, reset is necessary to restore known state. Reconfiguring trans-
port for lower speed might be helpful too as transmission errors sometimes cause
this kind of errors.

ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION)

These are errors detected and reported by ATA/ATAPI devices indicating device
problems. For this type of errors, STATUS and ERROR register values are valid
and describe error condition. Note that some of ATA bus errors are detected
by ATA/ATAPI devices and reported using the same mechanism as device errors.
Those cases are described later in this section.

For ATA commands, this type of errors are indicated by !BSY && ERR during
command execution and on completion.

For ATAPI commands,

• !BSY && ERR && ABRT right after issuing PACKET indicates that PACKET
command is not supported and falls in this category.

• !BSY && ERR(==CHK) && !ABRT after the last byte of CDB is transferred
indicates CHECK CONDITION and doesn’t fall in this category.

• !BSY && ERR(==CHK) && ABRT after the last byte of CDB is transferred
probably indicates CHECK CONDITION and doesn’t fall in this category.

Of errors detected as above, the following are not ATA/ATAPI device errors but
ATA bus errors and should be handled according to ATA bus error.

CRC error during data transfer This is indicated by ICRC bit in the ERROR
register and means that corruption occurred during data transfer. Up to
ATA/ATAPI-7, the standard specifies that this bit is only applicable to UDMA
transfers but ATA/ATAPI-8 draft revision 1f says that the bit may be applicable
to multiword DMA and PIO.

ABRT error during data transfer or on completion Up to ATA/ATAPI-7, the
standard specifies that ABRT could be set on ICRC errors and on cases
where a device is not able to complete a command. Combined with the fact
that MWDMA and PIO transfer errors aren’t allowed to use ICRC bit up to
ATA/ATAPI-7, it seems to imply that ABRT bit alone could indicate transfer
errors.

However, ATA/ATAPI-8 draft revision 1f removes the part that ICRC errors
can turn on ABRT. So, this is kind of gray area. Some heuristics are needed
here.

ATA/ATAPI device errors can be further categorized as follows.

33.7. ATA errors and exceptions 1075

Linux Driver-api Documentation

Media errors This is indicated by UNC bit in the ERROR register. ATA devices
reports UNC error only after certain number of retries cannot recover the
data, so there’s nothing much else to do other than notifying upper layer.
READ and WRITE commands report CHS or LBA of the first failed sector but
ATA/ATAPI standard specifies that the amount of transferred data on error
completion is indeterminate, so we cannot assume that sectors preceding the
failed sector have been transferred and thus cannot complete those sectors
successfully as SCSI does.

Media changed / media change requested error <<TODO: fill here>>
Address error This is indicated by IDNF bit in the ERROR register. Report to

upper layer.

Other errors This can be invalid command or parameter indicated by ABRT ER-
ROR bit or some other error condition. Note that ABRT bit can indicate a lot
of things including ICRC and Address errors. Heuristics needed.

Depending on commands, not all STATUS/ERROR bits are applicable. These non-
applicable bits aremarkedwith“na”in the output descriptions but up to ATA/ATAPI-
7 no definition of “na”can be found. However, ATA/ATAPI-8 draft revision 1f
describes “N/A”as follows.

3.2.3.3a N/A A keyword the indicates a field has no defined value in
this standard and should not be checked by the host or device. N/A
fields should be cleared to zero.

So, it seems reasonable to assume that “na”bits are cleared to zero by devices
and thus need no explicit masking.

ATAPI device CHECK CONDITION

ATAPI device CHECKCONDITION error is indicated by set CHK bit (ERR bit) in the
STATUS register after the last byte of CDB is transferred for a PACKET command.
For this kind of errors, sense data should be acquired to gather information re-
garding the errors. REQUEST SENSE packet command should be used to acquire
sense data.

Once sense data is acquired, this type of errors can be handled similarly to other
SCSI errors. Note that sense data may indicate ATA bus error (e.g. Sense Key
04h HARDWARE ERROR && ASC/ASCQ 47h/00h SCSI PARITY ERROR). In such
cases, the error should be considered as an ATA bus error and handled according
to ATA bus error.

1076 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

ATA device error (NCQ)

NCQ command error is indicated by cleared BSY and set ERR bit during NCQ
command phase (one or more NCQ commands outstanding). Although STATUS
and ERROR registers will contain valid values describing the error, READ LOG
EXT is required to clear the error condition, determine which command has failed
and acquire more information.

READ LOG EXT Log Page 10h reports which tag has failed and taskfile register
values describing the error. With this information the failed command can be han-
dled as a normal ATA command error as in ATA/ATAPI device error (non-NCQ /
non-CHECK CONDITION) and all other in-flight commands must be retried. Note
that this retry should not be counted - it’s likely that commands retried this way
would have completed normally if it were not for the failed command.

Note that ATA bus errors can be reported as ATA device NCQ errors. This should
be handled as described in ATA bus error.

If READ LOG EXT Log Page 10h fails or reports NQ, we’re thoroughly screwed.
This condition should be treated according to HSM violation.

ATA bus error

ATA bus error means that data corruption occurred during transmission over ATA
bus (SATA or PATA). This type of errors can be indicated by

• ICRC or ABRT error as described in ATA/ATAPI device error (non-NCQ / non-
CHECK CONDITION).

• Controller-specific error completion with error information indicating trans-
mission error.

• On some controllers, command timeout. In this case, there may be a mecha-
nism to determine that the timeout is due to transmission error.

• Unknown/random errors, timeouts and all sorts of weirdities.

As described above, transmission errors can cause wide variety of symptoms rang-
ing from device ICRC error to random device lockup, and, for many cases, there
is no way to tell if an error condition is due to transmission error or not; there-
fore, it’s necessary to employ some kind of heuristic when dealing with errors and
timeouts. For example, encountering repetitive ABRT errors for known supported
command is likely to indicate ATA bus error.

Once it’s determined that ATA bus errors have possibly occurred, lowering ATA
bus transmission speed is one of actions which may alleviate the problem. See
Reconfigure transport for more information.

33.7. ATA errors and exceptions 1077

Linux Driver-api Documentation

PCI bus error

Data corruption or other failures during transmission over PCI (or other system
bus). For standard BMDMA, this is indicated by Error bit in the BMDMA Status
register. This type of errors must be logged as it indicates something is very wrong
with the system. Resetting host controller is recommended.

Late completion

This occurs when timeout occurs and the timeout handler finds out that the timed
out command has completed successfully or with error. This is usually caused by
lost interrupts. This type of errors must be logged. Resetting host controller is
recommended.

Unknown error (timeout)

This is when timeout occurs and the command is still processing or the host and
device are in unknown state. When this occurs, HSM could be in any valid or
invalid state. To bring the device to known state andmake it forget about the timed
out command, resetting is necessary. The timed out command may be retried.

Timeouts can also be caused by transmission errors. Refer to ATA bus error for
more details.

Hotplug and power management exceptions

<<TODO: fill here>>

33.7.2 EH recovery actions

This section discusses several important recovery actions.

Clearing error condition

Many controllers require its error registers to be cleared by error handler. Differ-
ent controllers may have different requirements.

For SATA, it’s strongly recommended to clear at least SError register during error
handling.

1078 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

Reset

During EH, resetting is necessary in the following cases.

• HSM is in unknown or invalid state

• HBA is in unknown or invalid state

• EH needs to make HBA/device forget about in-flight commands

• HBA/device behaves weirdly

Resetting during EHmight be a good idea regardless of error condition to improve
EH robustness. Whether to reset both or either one of HBA and device depends
on situation but the following scheme is recommended.

• When it’s known that HBA is in ready state but ATA/ATAPI device is in un-
known state, reset only device.

• If HBA is in unknown state, reset both HBA and device.

HBA resetting is implementation specific. For a controller complying to task-
file/BMDMA PCI IDE, stopping active DMA transaction may be sufficient iff
BMDMA state is the only HBA context. But even mostly taskfile/BMDMA PCI IDE
complying controllers may have implementation specific requirements and mech-
anism to reset themselves. This must be addressed by specific drivers.

OTOH, ATA/ATAPI standard describes in detail ways to reset ATA/ATAPI devices.

PATA hardware reset This is hardware initiated device reset signalled with as-
serted PATA RESET- signal. There is no standard way to initiate hardware
reset from software although some hardware provides registers that allow
driver to directly tweak the RESET- signal.

Software reset This is achieved by turning CONTROL SRST bit on for at least
5us. Both PATA and SATA support it but, in case of SATA, this may require
controller-specific support as the second Register FIS to clear SRST should
be transmitted while BSY bit is still set. Note that on PATA, this resets both
master and slave devices on a channel.

EXECUTE DEVICE DIAGNOSTIC command Although ATA/ATAPI standard
doesn’t describe exactly, EDD implies some level of resetting, possibly
similar level with software reset. Host-side EDD protocol can be handled
with normal command processing and most SATA controllers should be able
to handle EDD’s just like other commands. As in software reset, EDD affects
both devices on a PATA bus.

Although EDD does reset devices, this doesn’t suit error handling as EDD
cannot be issued while BSY is set and it’s unclear how it will act when device
is in unknown/weird state.

ATAPI DEVICE RESET command This is very similar to software reset except
that reset can be restricted to the selected device without affecting the other
device sharing the cable.

SATA phy reset This is the preferred way of resetting a SATA device. In effect,
it’s identical to PATA hardware reset. Note that this can be done with the
standard SCR Control register. As such, it’s usually easier to implement than
software reset.

33.7. ATA errors and exceptions 1079

Linux Driver-api Documentation

One more thing to consider when resetting devices is that resetting clears cer-
tain configuration parameters and they need to be set to their previous or newly
adjusted values after reset.

Parameters affected are.

• CHS set up with INITIALIZE DEVICE PARAMETERS (seldom used)

• Parameters set with SET FEATURES including transfer mode setting

• Block count set with SET MULTIPLE MODE

• Other parameters (SET MAX, MEDIA LOCK⋯)
ATA/ATAPI standard specifies that some parameters must be maintained across
hardware or software reset, but doesn’t strictly specify all of them. Always re-
configuring needed parameters after reset is required for robustness. Note that
this also applies when resuming from deep sleep (power-off).

Also, ATA/ATAPI standard requires that IDENTIFY DEVICE / IDENTIFY PACKET
DEVICE is issued after any configuration parameter is updated or a hardware reset
and the result used for further operation. OS driver is required to implement
revalidation mechanism to support this.

Reconfigure transport

For both PATA and SATA, a lot of corners are cut for cheap connectors, cables or
controllers and it’s quite common to see high transmission error rate. This can
be mitigated by lowering transmission speed.

The following is a possible scheme Jeff Garzik suggested.

If more than $N (3?) transmission errors happen in 15 minutes,

• if SATA, decrease SATA PHY speed. if speed cannot be decreased,

• decrease UDMA xfer speed. if at UDMA0, switch to PIO4,

• decrease PIO xfer speed. if at PIO3, complain, but continue

33.8 ata_piix Internals

int ich_pata_cable_detect(struct ata_port * ap)
Probe host controller cable detect info

Parameters
struct ata_port * ap Port for which cable detect info is desired

Read 80c cable indicator from ATA PCI device’s PCI config register. This
register is normally set by firmware (BIOS).

LOCKING: None (inherited from caller).

int piix_pata_prereset(struct ata_link * link, unsigned long deadline)
prereset for PATA host controller

Parameters

1080 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

struct ata_link * link Target link

unsigned long deadline deadline jiffies for the operation

LOCKING: None (inherited from caller).

void piix_set_piomode(struct ata_port * ap, struct ata_device * adev)
Initialize host controller PATA PIO timings

Parameters
struct ata_port * ap Port whose timings we are configuring

struct ata_device * adev Drive in question

Set PIO mode for device, in host controller PCI config space.

LOCKING: None (inherited from caller).

void do_pata_set_dmamode(struct ata_port * ap, struct ata_device * adev,
int isich)

Initialize host controller PATA PIO timings

Parameters
struct ata_port * ap Port whose timings we are configuring

struct ata_device * adev Drive in question

int isich set if the chip is an ICH device

Set UDMA mode for device, in host controller PCI config space.

LOCKING: None (inherited from caller).

void piix_set_dmamode(struct ata_port * ap, struct ata_device * adev)
Initialize host controller PATA DMA timings

Parameters
struct ata_port * ap Port whose timings we are configuring

struct ata_device * adev um

Set MW/UDMA mode for device, in host controller PCI config space.

LOCKING: None (inherited from caller).

void ich_set_dmamode(struct ata_port * ap, struct ata_device * adev)
Initialize host controller PATA DMA timings

Parameters
struct ata_port * ap Port whose timings we are configuring

struct ata_device * adev um

Set MW/UDMA mode for device, in host controller PCI config space.

LOCKING: None (inherited from caller).

int piix_check_450nx_errata(struct pci_dev * ata_dev)
Check for problem 450NX setup

Parameters

33.8. ata_piix Internals 1081

Linux Driver-api Documentation

struct pci_dev * ata_dev the PCI device to check

Check for the present of 450NX errata #19 and errata #25. If they are found
return an error code so we can turn off DMA

int piix_init_one(struct pci_dev * pdev, const struct pci_device_id * ent)
Register PIIX ATA PCI device with kernel services

Parameters
struct pci_dev * pdev PCI device to register

const struct pci_device_id * ent Entry in piix_pci_tbl matching with pdev
Called from kernel PCI layer. We probe for combined mode (sigh), and then
hand over control to libata, for it to do the rest.

LOCKING: Inherited from PCI layer (may sleep).

Return
Zero on success, or -ERRNO value.

33.9 sata_sil Internals

int sil_set_mode(struct ata_link * link, struct ata_device ** r_failed)
wrap set_mode functions

Parameters
struct ata_link * link link to set up

struct ata_device ** r_failed returned device when we fail

Wrap the libata method for device setup as after the setup we need to inspect
the results and do some configuration work

void sil_dev_config(struct ata_device * dev)
Apply device/host-specific errata fixups

Parameters
struct ata_device * dev Device to be examined

After the IDENTIFY [PACKET] DEVICE step is complete, and a device is
known to be present, this function is called. We apply two errata fixups which
are specific to Silicon Image, a Seagate and a Maxtor fixup.

For certain Seagate devices, we must limit the maximum sectors to under 8K.

For certain Maxtor devices, we must not program the drive beyond udma5.

Both fixups are unfairly pessimistic. As soon as I get more information on
these errata, I will create a more exhaustive list, and apply the fixups to only
the specific devices/hosts/firmwares that need it.

20040111 - Seagate drives affected by the Mod15Write bug are blacklisted
The Maxtor quirk is in the blacklist, but I’m keeping the original pessimistic
fix for the following reasons⋯- There seems to be less info on it, only one
device gleaned off the Windows driver, maybe only one is affected. More info

1082 Chapter 33. libATA Developer’s Guide

Linux Driver-api Documentation

would be greatly appreciated. - But then again UDMA5 is hardly anything to
complain about

33.10 Thanks

The bulk of the ATA knowledge comes thanks to long conversations with Andre
Hedrick (www.linux-ide.org), and long hours pondering the ATA and SCSI specifi-
cations.

Thanks to Alan Cox for pointing out similarities between SATA and SCSI, and in
general for motivation to hack on libata.

libata’s device detection method, ata_pio_devchk, and in general all the early
probing was based on extensive study of Hale Landis’s probe/reset code in his
ATADRVR driver (www.ata-atapi.com).

33.10. Thanks 1083

Linux Driver-api Documentation

1084 Chapter 33. libATA Developer’s Guide

CHAPTER

THIRTYFOUR

TARGET AND ISCSI INTERFACES GUIDE

34.1 Introduction and Overview

TBD

34.2 Target core device interfaces

This section is blank because no kerneldoc comments have been added to
drivers/target/target_core_device.c.

34.3 Target core transport interfaces

int transport_init_session(struct se_session * se_sess)
initialize a session object

Parameters
struct se_session * se_sess Session object pointer.

Description
The caller must have zero-initialized se_sess before calling this function.
struct se_session * transport_alloc_session(enum tar-

get_prot_op sup_prot_ops)
allocate a session object and initialize it

Parameters
enum target_prot_op sup_prot_ops bitmask that defines which T10-PI modes

are supported.

int transport_alloc_session_tags(struct se_session * se_sess, unsigned
int tag_num, unsigned int tag_size)

allocate target driver private data

Parameters
struct se_session * se_sess Session pointer.

unsigned int tag_num Maximum number of in-flight commands between initia-
tor and target.

1085

Linux Driver-api Documentation

unsigned int tag_size Size in bytes of the private data a target driver asso-
ciates with each command.

int target_submit_cmd_map_sgls(struct se_cmd * se_cmd, struct se_session
* se_sess, unsigned char * cdb, un-
signed char * sense, u64 unpacked_lun,
u32 data_length, int task_attr,
int data_dir, int flags, struct scatterlist
* sgl, u32 sgl_count, struct scatterlist
* sgl_bidi, u32 sgl_bidi_count, struct scat-
terlist * sgl_prot, u32 sgl_prot_count)

lookup unpacked lun and submit uninitialized se_cmd + use pre-allocated
SGL memory.

Parameters
struct se_cmd * se_cmd command descriptor to submit

struct se_session * se_sess associated se_sess for endpoint

unsigned char * cdb pointer to SCSI CDB

unsigned char * sense pointer to SCSI sense buffer

u64 unpacked_lun unpacked LUN to reference for struct se_lun

u32 data_length fabric expected data transfer length

int task_attr SAM task attribute

int data_dir DMA data direction

int flags flags for command submission from target_sc_flags_tables

struct scatterlist * sgl struct scatterlist memory for unidirectional mapping

u32 sgl_count scatterlist count for unidirectional mapping

struct scatterlist * sgl_bidi struct scatterlist memory for bidirectional
READ mapping

u32 sgl_bidi_count scatterlist count for bidirectional READ mapping

struct scatterlist * sgl_prot struct scatterlist memory protection informa-
tion

u32 sgl_prot_count scatterlist count for protection information

Description
Task tags are supported if the caller has set se_cmd->tag.
Returns non zero to signal active I/O shutdown failure. All other setup exceptions
will be returned as a SCSI CHECK_CONDITION response, but still return zero
here.

This may only be called from process context, and also currently assumes internal
allocation of fabric payload buffer by target-core.

1086 Chapter 34. target and iSCSI Interfaces Guide

Linux Driver-api Documentation

int target_submit_cmd(struct se_cmd * se_cmd, struct se_session * se_sess,
unsigned char * cdb, unsigned char * sense,
u64 unpacked_lun, u32 data_length, int task_attr,
int data_dir, int flags)

lookup unpacked lun and submit uninitialized se_cmd

Parameters
struct se_cmd * se_cmd command descriptor to submit

struct se_session * se_sess associated se_sess for endpoint

unsigned char * cdb pointer to SCSI CDB

unsigned char * sense pointer to SCSI sense buffer

u64 unpacked_lun unpacked LUN to reference for struct se_lun

u32 data_length fabric expected data transfer length

int task_attr SAM task attribute

int data_dir DMA data direction

int flags flags for command submission from target_sc_flags_tables

Description
Task tags are supported if the caller has set se_cmd->tag.
Returns non zero to signal active I/O shutdown failure. All other setup exceptions
will be returned as a SCSI CHECK_CONDITION response, but still return zero
here.

This may only be called from process context, and also currently assumes internal
allocation of fabric payload buffer by target-core.

It also assumes interal target core SGL memory allocation.

int target_submit_tmr(struct se_cmd * se_cmd, struct se_session * se_sess,
unsigned char * sense, u64 unpacked_lun, void
* fabric_tmr_ptr, unsigned char tm_type, gfp_t gfp,
u64 tag, int flags)

lookup unpacked lun and submit uninitialized se_cmd for TMR CDBs

Parameters
struct se_cmd * se_cmd command descriptor to submit

struct se_session * se_sess associated se_sess for endpoint

unsigned char * sense pointer to SCSI sense buffer

u64 unpacked_lun unpacked LUN to reference for struct se_lun

void * fabric_tmr_ptr fabric context for TMR req

unsigned char tm_type Type of TM request

gfp_t gfp gfp type for caller

u64 tag referenced task tag for TMR_ABORT_TASK

int flags submit cmd flags

34.3. Target core transport interfaces 1087

Linux Driver-api Documentation

Description
Callable from all contexts.

int target_get_sess_cmd(struct se_cmd * se_cmd, bool ack_kref)
Add command to active ->sess_cmd_list

Parameters
struct se_cmd * se_cmd command descriptor to add

bool ack_kref Signal that fabric will perform an ack target_put_sess_cmd()

int target_put_sess_cmd(struct se_cmd * se_cmd)
decrease the command reference count

Parameters
struct se_cmd * se_cmd command to drop a reference from

Description
Returns 1 if and only if this target_put_sess_cmd() call caused the refcount to
drop to zero. Returns zero otherwise.

void target_sess_cmd_list_set_waiting(struct se_session * se_sess)
Set sess_tearing_down so no new commands are queued.

Parameters
struct se_session * se_sess session to flag

void target_wait_for_sess_cmds(struct se_session * se_sess)
Wait for outstanding commands

Parameters
struct se_session * se_sess session to wait for active I/O

bool transport_wait_for_tasks(struct se_cmd * cmd)
set CMD_T_STOP and wait for t_transport_stop_comp

Parameters
struct se_cmd * cmd command to wait on

int target_send_busy(struct se_cmd * cmd)
Send SCSI BUSY status back to the initiator

Parameters
struct se_cmd * cmd SCSI command for which to send a BUSY reply.

Note
Only call this function if target_submit_cmd*() failed.

1088 Chapter 34. target and iSCSI Interfaces Guide

Linux Driver-api Documentation

34.4 Target-supported userspace I/O

34.4.1 Userspace I/O

Define a shared-memory interface for LIO to pass SCSI commands and data to
userspace for processing. This is to allow backends that are too complex for in-
kernel support to be possible.

It uses the UIO framework to do a lot of the device-creation and introspection work
for us.

See the .h file for how the ring is laid out. Note that while the command ring is
defined, the particulars of the data area are not. Offset values in the command
entry point to other locations internal to the mmap-ed area. There is separate
space outside the command ring for data buffers. This leaves maximum flexibility
for moving buffer allocations, or even page flipping or other allocation techniques,
without altering the command ring layout.

SECURITY: The user process must be assumed to be malicious. There’s no way to
prevent it breaking the command ring protocol if it wants, but in order to prevent
other issues we must only ever read data from the shared memory area, not offsets
or sizes. This applies to command ring entries as well as the mailbox. Extra code
needed for this may have a ‘UAM’comment.

34.4.2 Ring Design

Themmaped area is divided into three parts: 1) The mailbox (struct tcmu_mailbox,
below); 2) The command ring; 3) Everything beyond the command ring (data).

The mailbox tells userspace the offset of the command ring from the start of the
shared memory region, and how big the command ring is.

The kernel passes SCSI commands to userspace by putting a struct
tcmu_cmd_entry in the ring, updating mailbox->cmd_head, and poking userspace
via UIO’s interrupt mechanism.
tcmu_cmd_entry contains a header. If the header type is PAD, userspace should
skip hdr->length bytes (mod cmdr_size) to find the next cmd_entry.

Otherwise, the entry will contain offsets into the mmaped area that contain the
cdb and data buffers – the latter accessible via the iov array. iov addresses are
also offsets into the shared area.

When userspace is completed handling the command, set entry->rsp.scsi_status,
fill in rsp.sense_buffer if appropriate, and also set mailbox->cmd_tail equal to the
old cmd_tail plus hdr->length, mod cmdr_size. If cmd_tail doesn’t equal cmd_head,
it should process the next packet the same way, and so on.

34.4. Target-supported userspace I/O 1089

Linux Driver-api Documentation

34.5 iSCSI helper functions

void iscsi_prep_data_out_pdu(struct iscsi_task * task, struct iscsi_r2t_info
* r2t, struct iscsi_data * hdr)

initialize Data-Out

Parameters
struct iscsi_task * task scsi command task

struct iscsi_r2t_info * r2t R2T info

struct iscsi_data * hdr iscsi data in pdu

Notes
Initialize Data-Out within this R2T sequence and finds proper data_offset
within this SCSI command.

This function is called with connection lock taken.

void iscsi_complete_scsi_task(struct iscsi_task * task,
uint32_t exp_cmdsn,
uint32_t max_cmdsn)

finish scsi task normally

Parameters
struct iscsi_task * task iscsi task for scsi cmd

uint32_t exp_cmdsn expected cmd sn in cpu format

uint32_t max_cmdsn max cmd sn in cpu format

Description
This is used when drivers do not need or cannot perform lower level pdu process-
ing.

Called with session back_lock

struct iscsi_task * iscsi_itt_to_task(struct iscsi_conn * conn, itt_t itt)
look up task by itt

Parameters
struct iscsi_conn * conn iscsi connection

itt_t itt itt

Description
This should be used for mgmt tasks like login and nops, or if the LDD’s itt space
does not include the session age.

The session back_lock must be held.

int __iscsi_complete_pdu(struct iscsi_conn * conn, struct iscsi_hdr * hdr,
char * data, int datalen)

complete pdu

Parameters
struct iscsi_conn * conn iscsi conn

1090 Chapter 34. target and iSCSI Interfaces Guide

Linux Driver-api Documentation

struct iscsi_hdr * hdr iscsi header

char * data data buffer

int datalen len of data buffer

Description
Completes pdu processing by freeing any resources allocated at queuecommand
or send generic. session back_lock must be held and verify itt must have been
called.

struct iscsi_task * iscsi_itt_to_ctask(struct iscsi_conn * conn, itt_t itt)
look up ctask by itt

Parameters
struct iscsi_conn * conn iscsi connection

itt_t itt itt

Description
This should be used for cmd tasks.

The session back_lock must be held.

void iscsi_requeue_task(struct iscsi_task * task)
requeue task to run from session workqueue

Parameters
struct iscsi_task * task task to requeue

Description
LLDs that need to run a task from the session workqueue should call this. The
session frwd_lock must be held. This should only be called by software drivers.

void iscsi_suspend_queue(struct iscsi_conn * conn)
suspend iscsi_queuecommand

Parameters
struct iscsi_conn * conn iscsi conn to stop queueing IO on

Description
This grabs the session frwd_lock to make sure no one is in
xmit_task/queuecommand, and then sets suspend to prevent new commands
from being queued. This only needs to be called by offload drivers that need to
sync a path like ep disconnect with the iscsi_queuecommand/xmit_task. To start
IO again libiscsi will call iscsi_start_tx and iscsi_unblock_session when in FFP.

void iscsi_suspend_tx(struct iscsi_conn * conn)
suspend iscsi_data_xmit

Parameters
struct iscsi_conn * conn iscsi conn tp stop processing IO on.

Description

34.5. iSCSI helper functions 1091

Linux Driver-api Documentation

This function sets the suspend bit to prevent iscsi_data_xmit from sending new IO,
and if work is queued on the xmit thread it will wait for it to be completed.

int iscsi_eh_session_reset(struct scsi_cmnd * sc)
drop session and attempt relogin

Parameters
struct scsi_cmnd * sc scsi command

Description
This function will wait for a relogin, session termination from userspace, or a re-
covery/replacement timeout.

int iscsi_eh_recover_target(struct scsi_cmnd * sc)
reset target and possibly the session

Parameters
struct scsi_cmnd * sc scsi command

Description
This will attempt to send a warm target reset. If that fails, we will escalate to ERL0
session recovery.

int iscsi_host_add(struct Scsi_Host * shost, struct device * pdev)
add host to system

Parameters
struct Scsi_Host * shost scsi host

struct device * pdev parent device

Description
This should be called by partial offload and software iscsi drivers to add a host to
the system.

struct Scsi_Host * iscsi_host_alloc(struct scsi_host_template
* sht, int dd_data_size,
bool xmit_can_sleep)

allocate a host and driver data

Parameters
struct scsi_host_template * sht scsi host template

int dd_data_size driver host data size

bool xmit_can_sleep bool indicating if LLD will queue IO from a work queue

Description
This should be called by partial offload and software iscsi drivers. To access the
driver specific memory use the iscsi_host_priv() macro.

void iscsi_host_remove(struct Scsi_Host * shost)
remove host and sessions

Parameters

1092 Chapter 34. target and iSCSI Interfaces Guide

Linux Driver-api Documentation

struct Scsi_Host * shost scsi host

Description
If there are any sessions left, this will initiate the removal and wait for the com-
pletion.

struct iscsi_cls_session * iscsi_session_setup(struct iscsi_transport
* iscsit, struct
Scsi_Host * shost,
uint16_t cmds_max,
int dd_size,
int cmd_task_size,
uint32_t initial_cmdsn,
unsigned int id)

create iscsi cls session and host and session

Parameters
struct iscsi_transport * iscsit iscsi transport template

struct Scsi_Host * shost scsi host

uint16_t cmds_max session can queue

int dd_size private driver data size, added to session allocation size

int cmd_task_size LLD task private data size

uint32_t initial_cmdsn initial CmdSN

unsigned int id target ID to add to this session

Description
This can be used by software iscsi_transports that allocate a session per scsi host.

Callers should set cmds_max to the largest total numer (mgmt + scsi) of tasks
they support. The iscsi layer reserves ISCSI_MGMT_CMDS_MAX tasks for nop
handling and login/logout requests.

void iscsi_session_teardown(struct iscsi_cls_session * cls_session)
destroy session, host, and cls_session

Parameters
struct iscsi_cls_session * cls_session iscsi session

struct iscsi_cls_conn * iscsi_conn_setup(struct iscsi_cls_session
* cls_session, int dd_size,
uint32_t conn_idx)

create iscsi_cls_conn and iscsi_conn

Parameters
struct iscsi_cls_session * cls_session iscsi_cls_session

int dd_size private driver data size

uint32_t conn_idx cid

void iscsi_conn_teardown(struct iscsi_cls_conn * cls_conn)
teardown iscsi connection

34.5. iSCSI helper functions 1093

Linux Driver-api Documentation

Parameters
struct iscsi_cls_conn * cls_conn iscsi class connection

Description
TODO: we may need to make this into a two step process like scsi-mls remove +
put host

34.6 iSCSI boot information

struct iscsi_boot_kobj * iscsi_boot_create_target(struct iscsi_boot_kset
* boot_kset, int index,
void * data, ssize_t
(*show)(void *data,
int type, char *buf),
umode_t (*is_visible)
(void *data, int type),
void (*release) (void
*data))

create boot target sysfs dir

Parameters
struct iscsi_boot_kset * boot_kset boot kset

int index the target id

void * data driver specific data for target

ssize_t (*) (void *data, int type, char *buf) show attr show function

umode_t (*) (void *data, int type) is_visible attr visibility function

void (*) (void *data) release release function

Note
The boot sysfs lib will free the data passed in for the caller when all refs to the
target kobject have been released.

struct iscsi_boot_kobj * iscsi_boot_create_initiator(struct
iscsi_boot_kset
* boot_kset,
int index, void
* data, ssize_t
(*show)(void *data,
int type, char
*buf), umode_t
(*is_visible) (void
*data, int type),
void (*release)
(void *data))

create boot initiator sysfs dir

Parameters
struct iscsi_boot_kset * boot_kset boot kset

1094 Chapter 34. target and iSCSI Interfaces Guide

Linux Driver-api Documentation

int index the initiator id

void * data driver specific data

ssize_t (*) (void *data, int type, char *buf) show attr show function

umode_t (*) (void *data, int type) is_visible attr visibility function

void (*) (void *data) release release function

Note
The boot sysfs lib will free the data passed in for the caller when all refs to the
initiator kobject have been released.

struct iscsi_boot_kobj * iscsi_boot_create_ethernet(struct
iscsi_boot_kset
* boot_kset,
int index, void
* data, ssize_t
(*show)(void *data,
int type, char *buf),
umode_t (*is_visible)
(void *data, int type),
void (*release) (void
*data))

create boot ethernet sysfs dir

Parameters
struct iscsi_boot_kset * boot_kset boot kset

int index the ethernet device id

void * data driver specific data

ssize_t (*) (void *data, int type, char *buf) show attr show function

umode_t (*) (void *data, int type) is_visible attr visibility function

void (*) (void *data) release release function

Note
The boot sysfs lib will free the data passed in for the caller when all refs to the
ethernet kobject have been released.

struct iscsi_boot_kobj * iscsi_boot_create_acpitbl(struct iscsi_boot_kset
* boot_kset, int index,
void * data, ssize_t
(*show)(void *data,
int type, char *buf),
umode_t (*is_visible)
(void *data, int type),
void (*release) (void
*data))

create boot acpi table sysfs dir

Parameters
struct iscsi_boot_kset * boot_kset boot kset

34.6. iSCSI boot information 1095

Linux Driver-api Documentation

int index not used

void * data driver specific data

ssize_t (*)(void *data, int type, char *buf) show attr show function

umode_t (*)(void *data, int type) is_visible attr visibility function

void (*)(void *data) release release function

Note
The boot sysfs lib will free the data passed in for the caller when all refs to the
acpitbl kobject have been released.

struct iscsi_boot_kset * iscsi_boot_create_kset(const char * set_name)
creates root sysfs tree

Parameters
const char * set_name name of root dir

struct iscsi_boot_kset * iscsi_boot_create_host_kset(unsigned
int hostno)

creates root sysfs tree for a scsi host

Parameters
unsigned int hostno host number of scsi host

void iscsi_boot_destroy_kset(struct iscsi_boot_kset * boot_kset)
destroy kset and kobjects under it

Parameters
struct iscsi_boot_kset * boot_kset boot kset

Description
This will remove the kset and kobjects and attrs under it.

34.7 iSCSI transport class

The file drivers/scsi/scsi_transport_iscsi.c defines transport attributes for the
iSCSI class, which sends SCSI packets over TCP/IP connections.

struct iscsi_bus_flash_session * iscsi_create_flashnode_sess(struct
Scsi_Host
* shost,
int index,
struct
iscsi_transport
* transport,
int dd_size)

Add flashnode session entry in sysfs

Parameters
struct Scsi_Host * shost pointer to host data

int index index of flashnode to add in sysfs

1096 Chapter 34. target and iSCSI Interfaces Guide

Linux Driver-api Documentation

struct iscsi_transport * transport pointer to transport data

int dd_size total size to allocate

Description
Adds a sysfs entry for the flashnode session attributes

Return
pointer to allocated flashnode sess on success NULL on failure

struct iscsi_bus_flash_conn * iscsi_create_flashnode_conn(struct
Scsi_Host
* shost, struct
iscsi_bus_flash_session
* fnode_sess,
struct
iscsi_transport
* transport,
int dd_size)

Add flashnode conn entry in sysfs

Parameters
struct Scsi_Host * shost pointer to host data

struct iscsi_bus_flash_session * fnode_sess pointer to the parent flashn-
ode session entry

struct iscsi_transport * transport pointer to transport data

int dd_size total size to allocate

Description
Adds a sysfs entry for the flashnode connection attributes

Return
pointer to allocated flashnode conn on success NULL on failure

struct device * iscsi_find_flashnode_sess(struct Scsi_Host * shost, void
* data, int (*fn)(struct device
*dev, void *data))

finds flashnode session entry

Parameters
struct Scsi_Host * shost pointer to host data

void * data pointer to data containing value to use for comparison

int (*)(struct device *dev, void *data) fn function pointer that does ac-
tual comparison

Description
Finds the flashnode session object comparing the data passed using logic defined
in passed function pointer

Return

34.7. iSCSI transport class 1097

Linux Driver-api Documentation

pointer to found flashnode session device object on success NULL on fail-
ure

struct device * iscsi_find_flashnode_conn(struct iscsi_bus_flash_session
* fnode_sess)

finds flashnode connection entry

Parameters
struct iscsi_bus_flash_session * fnode_sess pointer to parent flashnode

session entry

Description
Finds the flashnode connection object comparing the data passed using logic de-
fined in passed function pointer

Return
pointer to found flashnode connection device object on success NULL on
failure

void iscsi_destroy_flashnode_sess(struct iscsi_bus_flash_session
* fnode_sess)

destroy flashnode session entry

Parameters
struct iscsi_bus_flash_session * fnode_sess pointer to flashnode session

entry to be destroyed

Description
Deletes the flashnode session entry and all children flashnode connection entries
from sysfs

void iscsi_destroy_all_flashnode(struct Scsi_Host * shost)
destroy all flashnode session entries

Parameters
struct Scsi_Host * shost pointer to host data

Description
Destroys all the flashnode session entries and all corresponding children flashnode
connection entries from sysfs

int iscsi_scan_finished(struct Scsi_Host * shost, unsigned long time)
helper to report when running scans are done

Parameters
struct Scsi_Host * shost scsi host

unsigned long time scan run time

Description
This function can be used by drives like qla4xxx to report to the scsi layer when
the scans it kicked off at module load time are done.

1098 Chapter 34. target and iSCSI Interfaces Guide

Linux Driver-api Documentation

int iscsi_block_scsi_eh(struct scsi_cmnd * cmd)
block scsi eh until session state has transistioned

Parameters
struct scsi_cmnd * cmd scsi cmd passed to scsi eh handler

Description
If the session is down this function will wait for the recovery timer to fire or for
the session to be logged back in. If the recovery timer fires then FAST_IO_FAIL is
returned. The caller should pass this error value to the scsi eh.

void iscsi_unblock_session(struct iscsi_cls_session * session)
set a session as logged in and start IO.

Parameters
struct iscsi_cls_session * session iscsi session

Description
Mark a session as ready to accept IO.

struct iscsi_cls_session * iscsi_create_session(struct Scsi_Host * shost,
struct iscsi_transport
* transport, int dd_size,
unsigned int target_id)

create iscsi class session

Parameters
struct Scsi_Host * shost scsi host

struct iscsi_transport * transport iscsi transport

int dd_size private driver data size

unsigned int target_id which target

Description
This can be called from a LLD or iscsi_transport.

struct iscsi_cls_conn * iscsi_create_conn(struct iscsi_cls_session
* session, int dd_size,
uint32_t cid)

create iscsi class connection

Parameters
struct iscsi_cls_session * session iscsi cls session

int dd_size private driver data size

uint32_t cid connection id

Description
This can be called from a LLD or iscsi_transport. The connection is child of the
session so cid must be unique for all connections on the session.

34.7. iSCSI transport class 1099

Linux Driver-api Documentation

Since we do not support MCS, cid will normally be zero. In some cases for software
iscsi we could be trying to preallocate a connection struct in which case there could
be two connection structs and cid would be non-zero.

int iscsi_destroy_conn(struct iscsi_cls_conn * conn)
destroy iscsi class connection

Parameters
struct iscsi_cls_conn * conn iscsi cls session

Description
This can be called from a LLD or iscsi_transport.

int iscsi_session_event(struct iscsi_cls_session * session, enum
iscsi_uevent_e event)

send session destr. completion event

Parameters
struct iscsi_cls_session * session iscsi class session

enum iscsi_uevent_e event type of event

34.8 iSCSI TCP interfaces

int iscsi_sw_tcp_recv(read_descriptor_t * rd_desc, struct sk_buff * skb, un-
signed int offset, size_t len)

TCP receive in sendfile fashion

Parameters
read_descriptor_t * rd_desc read descriptor

struct sk_buff * skb socket buffer

unsigned int offset offset in skb

size_t len skb->len - offset

int iscsi_sw_sk_state_check(struct sock * sk)
check socket state

Parameters
struct sock * sk socket

Description
If the socket is in CLOSE or CLOSE_WAIT we should not close the connection if
there is still some data pending.

Must be called with sk_callback_lock.

void iscsi_sw_tcp_write_space(struct sock * sk)
Called when more output buffer space is available

Parameters
struct sock * sk socket space is available for

1100 Chapter 34. target and iSCSI Interfaces Guide

Linux Driver-api Documentation

int iscsi_sw_tcp_xmit_segment(struct iscsi_tcp_conn * tcp_conn, struct
iscsi_segment * segment)

transmit segment

Parameters
struct iscsi_tcp_conn * tcp_conn the iSCSI TCP connection

struct iscsi_segment * segment the buffer to transmnit

Description
This function transmits as much of the buffer as the network layer will accept, and
returns the number of bytes transmitted.

If CRC hashing is enabled, the function will compute the hash as it goes. When
the entire segment has been transmitted, it will retrieve the hash value and send
it as well.

int iscsi_sw_tcp_xmit(struct iscsi_conn * conn)
TCP transmit

Parameters
struct iscsi_conn * conn iscsi connection

int iscsi_sw_tcp_xmit_qlen(struct iscsi_conn * conn)
return the number of bytes queued for xmit

Parameters
struct iscsi_conn * conn iscsi connection

int iscsi_tcp_segment_done(struct iscsi_tcp_conn * tcp_conn, struct
iscsi_segment * segment, int recv, un-
signed copied)

check whether the segment is complete

Parameters
struct iscsi_tcp_conn * tcp_conn iscsi tcp connection

struct iscsi_segment * segment iscsi segment to check

int recv set to one of this is called from the recv path

unsigned copied number of bytes copied

Description
Check if we’re done receiving this segment. If the receive buffer is full but we
expect more data, move on to the next entry in the scatterlist.

If the amount of data we received isn’t a multiple of 4, we will transparently
receive the pad bytes, too.

This function must be re-entrant.

void iscsi_tcp_hdr_recv_prep(struct iscsi_tcp_conn * tcp_conn)
prep segment for hdr reception

Parameters
struct iscsi_tcp_conn * tcp_conn iscsi connection to prep for

34.8. iSCSI TCP interfaces 1101

Linux Driver-api Documentation

Description
This function always passes NULL for the hash argument, because when this func-
tion is called we do not yet know the final size of the header and want to delay the
digest processing until we know that.

void iscsi_tcp_cleanup_task(struct iscsi_task * task)
free tcp_task resources

Parameters
struct iscsi_task * task iscsi task

Description
must be called with session back_lock

int iscsi_tcp_recv_segment_is_hdr(struct iscsi_tcp_conn * tcp_conn)
tests if we are reading in a header

Parameters
struct iscsi_tcp_conn * tcp_conn iscsi tcp conn

Description
returns non zero if we are currently processing or setup to process a header.

int iscsi_tcp_recv_skb(struct iscsi_conn * conn, struct sk_buff * skb, un-
signed int offset, bool offloaded, int * status)

Process skb

Parameters
struct iscsi_conn * conn iscsi connection

struct sk_buff * skb network buffer with header and/or data segment

unsigned int offset offset in skb

bool offloaded bool indicating if transfer was offloaded

int * status iscsi TCP status result

Description
Will return status of transfer in status. And will return number of bytes copied.
int iscsi_tcp_task_init(struct iscsi_task * task)

Initialize iSCSI SCSI_READ or SCSI_WRITE commands

Parameters
struct iscsi_task * task scsi command task

int iscsi_tcp_task_xmit(struct iscsi_task * task)
xmit normal PDU task

Parameters
struct iscsi_task * task iscsi command task

Description

1102 Chapter 34. target and iSCSI Interfaces Guide

Linux Driver-api Documentation

We’re expected to return 0 when everything was transmitted successfully, -
EAGAIN if there’s still data in the queue, or != 0 for any other kind of error.

34.8. iSCSI TCP interfaces 1103

Linux Driver-api Documentation

1104 Chapter 34. target and iSCSI Interfaces Guide

CHAPTER

THIRTYFIVE

MTD NAND DRIVER PROGRAMMING INTERFACE

Author Thomas Gleixner

35.1 Introduction

The generic NAND driver supports almost all NAND and AG-AND based chips and
connects them to the Memory Technology Devices (MTD) subsystem of the Linux
Kernel.

This documentation is provided for developers who want to implement board
drivers or filesystem drivers suitable for NAND devices.

35.2 Known Bugs And Assumptions

None.

35.3 Documentation hints

The function and structure docs are autogenerated. Each function and struct mem-
ber has a short description which is marked with an [XXX] identifier. The following
chapters explain the meaning of those identifiers.

35.3.1 Function identifiers [XXX]

The functions are marked with [XXX] identifiers in the short comment. The identi-
fiers explain the usage and scope of the functions. Following identifiers are used:

• [MTD Interface]

These functions provide the interface to the MTD kernel API. They are not
replaceable and provide functionality which is complete hardware indepen-
dent.

• [NAND Interface]

These functions are exported and provide the interface to the NAND kernel
API.

1105

Linux Driver-api Documentation

• [GENERIC]

Generic functions are not replaceable and provide functionality which is com-
plete hardware independent.

• [DEFAULT]

Default functions provide hardware related functionality which is suitable for
most of the implementations. These functions can be replaced by the board
driver if necessary. Those functions are called via pointers in the NAND chip
description structure. The board driver can set the functions which should
be replaced by board dependent functions before calling nand_scan(). If the
function pointer is NULL on entry to nand_scan() then the pointer is set to
the default function which is suitable for the detected chip type.

35.3.2 Struct member identifiers [XXX]

The struct members are marked with [XXX] identifiers in the comment. The iden-
tifiers explain the usage and scope of the members. Following identifiers are used:

• [INTERN]

These members are for NAND driver internal use only and must not be modi-
fied. Most of these values are calculated from the chip geometry information
which is evaluated during nand_scan().

• [REPLACEABLE]

Replaceable members hold hardware related functions which can be provided
by the board driver. The board driver can set the functions which should be
replaced by board dependent functions before calling nand_scan(). If the
function pointer is NULL on entry to nand_scan() then the pointer is set to
the default function which is suitable for the detected chip type.

• [BOARDSPECIFIC]

Board specific members hold hardware related information which must be
provided by the board driver. The board driver must set the function pointers
and datafields before calling nand_scan().

• [OPTIONAL]

Optional members can hold information relevant for the board driver. The
generic NAND driver code does not use this information.

35.4 Basic board driver

For most boards it will be sufficient to provide just the basic functions and fill out
some really board dependent members in the nand chip description structure.

1106 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

35.4.1 Basic defines

At least you have to provide a nand_chip structure and a storage for the ioremap’ed
chip address. You can allocate the nand_chip structure using kmalloc or you can
allocate it statically. The NAND chip structure embeds an mtd structure which
will be registered to the MTD subsystem. You can extract a pointer to the mtd
structure from a nand_chip pointer using the nand_to_mtd() helper.

Kmalloc based example

static struct mtd_info *board_mtd;
static void __iomem *baseaddr;

Static example

static struct nand_chip board_chip;
static void __iomem *baseaddr;

35.4.2 Partition defines

If you want to divide your device into partitions, then define a partitioning scheme
suitable to your board.

#define NUM_PARTITIONS 2
static struct mtd_partition partition_info[] = {

{ .name = "Flash partition 1",
.offset = 0,
.size = 8 * 1024 * 1024 },

{ .name = "Flash partition 2",
.offset = MTDPART_OFS_NEXT,
.size = MTDPART_SIZ_FULL },

};

35.4.3 Hardware control function

The hardware control function provides access to the control pins of the NAND
chip(s). The access can be done by GPIO pins or by address lines. If you use
address lines, make sure that the timing requirements are met.

GPIO based example

static void board_hwcontrol(struct mtd_info *mtd, int cmd)
{

switch(cmd){
case NAND_CTL_SETCLE: /* Set CLE pin high */ break;
case NAND_CTL_CLRCLE: /* Set CLE pin low */ break;
case NAND_CTL_SETALE: /* Set ALE pin high */ break;
case NAND_CTL_CLRALE: /* Set ALE pin low */ break;
case NAND_CTL_SETNCE: /* Set nCE pin low */ break;
case NAND_CTL_CLRNCE: /* Set nCE pin high */ break;

}
}

35.4. Basic board driver 1107

Linux Driver-api Documentation

Address lines based example. It’s assumed that the nCE pin is driven by a chip
select decoder.

static void board_hwcontrol(struct mtd_info *mtd, int cmd)
{

struct nand_chip *this = mtd_to_nand(mtd);
switch(cmd){

case NAND_CTL_SETCLE: this->legacy.IO_ADDR_W |= CLE_ADRR_BIT; ␣
↪→break;

case NAND_CTL_CLRCLE: this->legacy.IO_ADDR_W &= ~CLE_ADRR_BIT;␣
↪→break;

case NAND_CTL_SETALE: this->legacy.IO_ADDR_W |= ALE_ADRR_BIT; ␣
↪→break;

case NAND_CTL_CLRALE: this->legacy.IO_ADDR_W &= ~ALE_ADRR_BIT;␣
↪→break;

}
}

35.4.4 Device ready function

If the hardware interface has the ready busy pin of the NAND chip connected to a
GPIO or other accessible I/O pin, this function is used to read back the state of the
pin. The function has no arguments and should return 0, if the device is busy (R/B
pin is low) and 1, if the device is ready (R/B pin is high). If the hardware interface
does not give access to the ready busy pin, then the function must not be defined
and the function pointer this->legacy.dev_ready is set to NULL.

35.4.5 Init function

The init function allocates memory and sets up all the board specific parameters
and function pointers. When everything is set up nand_scan() is called. This func-
tion tries to detect and identify then chip. If a chip is found all the internal data
fields are initialized accordingly. The structure(s) have to be zeroed out first and
then filled with the necessary information about the device.

static int __init board_init (void)
{

struct nand_chip *this;
int err = 0;

/* Allocate memory for MTD device structure and private data */
this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
if (!this) {

printk ("Unable to allocate NAND MTD device structure.\n");
err = -ENOMEM;
goto out;

}

board_mtd = nand_to_mtd(this);

/* map physical address */
baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024);
if (!baseaddr) {

(continues on next page)

1108 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

(continued from previous page)
printk("Ioremap to access NAND chip failed\n");
err = -EIO;
goto out_mtd;

}

/* Set address of NAND IO lines */
this->legacy.IO_ADDR_R = baseaddr;
this->legacy.IO_ADDR_W = baseaddr;
/* Reference hardware control function */
this->hwcontrol = board_hwcontrol;
/* Set command delay time, see datasheet for correct value */
this->legacy.chip_delay = CHIP_DEPENDEND_COMMAND_DELAY;
/* Assign the device ready function, if available */
this->legacy.dev_ready = board_dev_ready;
this->eccmode = NAND_ECC_SOFT;

/* Scan to find existence of the device */
if (nand_scan (this, 1)) {

err = -ENXIO;
goto out_ior;

}

add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS);
goto out;

out_ior:
iounmap(baseaddr);

out_mtd:
kfree (this);

out:
return err;

}
module_init(board_init);

35.4.6 Exit function

The exit function is only necessary if the driver is compiled as a module. It releases
all resources which are held by the chip driver and unregisters the partitions in
the MTD layer.

#ifdef MODULE
static void __exit board_cleanup (void)
{

/* Unregister device */
WARN_ON(mtd_device_unregister(board_mtd));
/* Release resources */
nand_cleanup(mtd_to_nand(board_mtd));

/* unmap physical address */
iounmap(baseaddr);

/* Free the MTD device structure */
kfree (mtd_to_nand(board_mtd));

}
(continues on next page)

35.4. Basic board driver 1109

Linux Driver-api Documentation

(continued from previous page)
module_exit(board_cleanup);
#endif

35.5 Advanced board driver functions

This chapter describes the advanced functionality of the NAND driver. For a list
of functions which can be overridden by the board driver see the documentation
of the nand_chip structure.

35.5.1 Multiple chip control

The nand driver can control chip arrays. Therefore the board driver must provide
an own select_chip function. This function must (de)select the requested chip. The
function pointer in the nand_chip structure must be set before calling nand_scan().
The maxchip parameter of nand_scan() defines the maximum number of chips to
scan for. Make sure that the select_chip function can handle the requested number
of chips.

The nand driver concatenates the chips to one virtual chip and provides this virtual
chip to the MTD layer.

Note: The driver can only handle linear chip arrays of equally sized chips. There
is no support for parallel arrays which extend the buswidth.

GPIO based example

static void board_select_chip (struct mtd_info *mtd, int chip)
{

/* Deselect all chips, set all nCE pins high */
GPIO(BOARD_NAND_NCE) |= 0xff;
if (chip >= 0)

GPIO(BOARD_NAND_NCE) &= ~ (1 << chip);
}

Address lines based example. Its assumed that the nCE pins are connected to an
address decoder.

static void board_select_chip (struct mtd_info *mtd, int chip)
{

struct nand_chip *this = mtd_to_nand(mtd);

/* Deselect all chips */
this->legacy.IO_ADDR_R &= ~BOARD_NAND_ADDR_MASK;
this->legacy.IO_ADDR_W &= ~BOARD_NAND_ADDR_MASK;
switch (chip) {
case 0:

this->legacy.IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0;
this->legacy.IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0;
break;

....
case n:

(continues on next page)

1110 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

(continued from previous page)
this->legacy.IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn;
this->legacy.IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn;
break;

}
}

35.5.2 Hardware ECC support

Functions and constants

The nand driver supports three different types of hardware ECC.

• NAND_ECC_HW3_256

Hardware ECC generator providing 3 bytes ECC per 256 byte.

• NAND_ECC_HW3_512

Hardware ECC generator providing 3 bytes ECC per 512 byte.

• NAND_ECC_HW6_512

Hardware ECC generator providing 6 bytes ECC per 512 byte.

• NAND_ECC_HW8_512

Hardware ECC generator providing 8 bytes ECC per 512 byte.

If your hardware generator has a different functionality add it at the appropriate
place in nand_base.c

The board driver must provide following functions:

• enable_hwecc

This function is called before reading / writing to the chip. Reset or initial-
ize the hardware generator in this function. The function is called with an
argument which let you distinguish between read and write operations.

• calculate_ecc

This function is called after read / write from / to the chip. Transfer the ECC
from the hardware to the buffer. If the option NAND_HWECC_SYNDROME
is set then the function is only called on write. See below.

• correct_data

In case of an ECC error this function is called for error detection and cor-
rection. Return 1 respectively 2 in case the error can be corrected. If the
error is not correctable return -1. If your hardware generator matches the
default algorithm of the nand_ecc software generator then use the correction
function provided by nand_ecc instead of implementing duplicated code.

35.5. Advanced board driver functions 1111

Linux Driver-api Documentation

Hardware ECC with syndrome calculation

Many hardware ECC implementations provide Reed-Solomon codes and calculate
an error syndrome on read. The syndrome must be converted to a standard Reed-
Solomon syndrome before calling the error correction code in the generic Reed-
Solomon library.

The ECC bytes must be placed immediately after the data bytes in order to make
the syndrome generator work. This is contrary to the usual layout used by software
ECC. The separation of data and out of band area is not longer possible. The nand
driver code handles this layout and the remaining free bytes in the oob area are
managed by the autoplacement code. Provide a matching oob-layout in this case.
See rts_from4.c and diskonchip.c for implementation reference. In those cases we
must also use bad block tables on FLASH, because the ECC layout is interfering
with the bad block marker positions. See bad block table support for details.

35.5.3 Bad block table support

Most NAND chips mark the bad blocks at a defined position in the spare area.
Those blocks must not be erased under any circumstances as the bad block infor-
mation would be lost. It is possible to check the bad block mark each time when
the blocks are accessed by reading the spare area of the first page in the block.
This is time consuming so a bad block table is used.

The nand driver supports various types of bad block tables.

• Per device

The bad block table contains all bad block information of the device which
can consist of multiple chips.

• Per chip

A bad block table is used per chip and contains the bad block information for
this particular chip.

• Fixed offset

The bad block table is located at a fixed offset in the chip (device). This applies
to various DiskOnChip devices.

• Automatic placed

The bad block table is automatically placed and detected either at the end or
at the beginning of a chip (device)

• Mirrored tables

The bad block table is mirrored on the chip (device) to allow updates of the
bad block table without data loss.

nand_scan() calls the function nand_default_bbt(). nand_default_bbt() selects ap-
propriate default bad block table descriptors depending on the chip information
which was retrieved by nand_scan().

The standard policy is scanning the device for bad blocks and build a ram based
bad block table which allows faster access than always checking the bad block
information on the flash chip itself.

1112 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

Flash based tables

It may be desired or necessary to keep a bad block table in FLASH. For AG-AND
chips this is mandatory, as they have no factory marked bad blocks. They have
factorymarked good blocks. Themarker pattern is erasedwhen the block is erased
to be reused. So in case of powerloss before writing the pattern back to the chip
this block would be lost and added to the bad blocks. Therefore we scan the chip(s)
when we detect them the first time for good blocks and store this information in a
bad block table before erasing any of the blocks.

The blocks in which the tables are stored are protected against accidental access
by marking them bad in the memory bad block table. The bad block table man-
agement functions are allowed to circumvent this protection.

The simplest way to activate the FLASH based bad block table support is to set the
option NAND_BBT_USE_FLASH in the bbt_option field of the nand chip structure
before calling nand_scan(). For AG-AND chips is this done by default. This acti-
vates the default FLASH based bad block table functionality of the NAND driver.
The default bad block table options are

• Store bad block table per chip

• Use 2 bits per block

• Automatic placement at the end of the chip

• Use mirrored tables with version numbers

• Reserve 4 blocks at the end of the chip

User defined tables

User defined tables are created by filling out a nand_bbt_descr structure and
storing the pointer in the nand_chip structure member bbt_td before calling
nand_scan(). If a mirror table is necessary a second structure must be created
and a pointer to this structure must be stored in bbt_md inside the nand_chip
structure. If the bbt_md member is set to NULL then only the main table is used
and no scan for the mirrored table is performed.

The most important field in the nand_bbt_descr structure is the options field. The
options define most of the table properties. Use the predefined constants from
rawnand.h to define the options.

• Number of bits per block

The supported number of bits is 1, 2, 4, 8.

• Table per chip

Setting the constant NAND_BBT_PERCHIP selects that a bad block table is
managed for each chip in a chip array. If this option is not set then a per
device bad block table is used.

• Table location is absolute

Use the option constant NAND_BBT_ABSPAGE and define the absolute page
number where the bad block table starts in the field pages. If you have se-
lected bad block tables per chip and you have a multi chip array then the start

35.5. Advanced board driver functions 1113

Linux Driver-api Documentation

page must be given for each chip in the chip array. Note: there is no scan for
a table ident pattern performed, so the fields pattern, veroffs, offs, len can be
left uninitialized

• Table location is automatically detected

The table can either be located in the first or the last good blocks of the chip
(device). Set NAND_BBT_LASTBLOCK to place the bad block table at the
end of the chip (device). The bad block tables are marked and identified by a
pattern which is stored in the spare area of the first page in the block which
holds the bad block table. Store a pointer to the pattern in the pattern field.
Further the length of the pattern has to be stored in len and the offset in the
spare area must be given in the offs member of the nand_bbt_descr structure.
For mirrored bad block tables different patterns are mandatory.

• Table creation

Set the option NAND_BBT_CREATE to enable the table creation if no table
can be found during the scan. Usually this is done only once if a new chip is
found.

• Table write support

Set the option NAND_BBT_WRITE to enable the table write support. This
allows the update of the bad block table(s) in case a block has to be marked
bad due to wear. The MTD interface function block_markbad is calling the
update function of the bad block table. If the write support is enabled then
the table is updated on FLASH.

Note: Write support should only be enabled for mirrored tables with version
control.

• Table version control

Set the option NAND_BBT_VERSION to enable the table version control. It’s
highly recommended to enable this for mirrored tables with write support. It
makes sure that the risk of losing the bad block table information is reduced
to the loss of the information about the one worn out block which should be
marked bad. The version is stored in 4 consecutive bytes in the spare area
of the device. The position of the version number is defined by the member
veroffs in the bad block table descriptor.

• Save block contents on write

In case that the block which holds the bad block table does contain other
useful information, set the option NAND_BBT_SAVECONTENT. When the bad
block table is written then the whole block is read the bad block table is
updated and the block is erased and everything is written back. If this option
is not set only the bad block table is written and everything else in the block
is ignored and erased.

• Number of reserved blocks

For automatic placement some blocks must be reserved for bad block table
storage. The number of reserved blocks is defined in the maxblocks member
of the bad block table description structure. Reserving 4 blocks for mirrored
tables should be a reasonable number. This also limits the number of blocks
which are scanned for the bad block table ident pattern.

1114 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

35.5.4 Spare area (auto)placement

The nand driver implements different possibilities for placement of filesystem data
in the spare area,

• Placement defined by fs driver

• Automatic placement

The default placement function is automatic placement. The nand driver has built
in default placement schemes for the various chiptypes. If due to hardware ECC
functionality the default placement does not fit then the board driver can provide
a own placement scheme.

File system drivers can provide a own placement scheme which is used instead of
the default placement scheme.

Placement schemes are defined by a nand_oobinfo structure

struct nand_oobinfo {
int useecc;
int eccbytes;
int eccpos[24];
int oobfree[8][2];

};

• useecc

The useecc member controls the ecc and placement function. The
header file include/mtd/mtd-abi.h contains constants to select ecc
and placement. MTD_NANDECC_OFF switches off the ecc com-
plete. This is not recommended and available for testing and diag-
nosis only. MTD_NANDECC_PLACE selects caller defined placement,
MTD_NANDECC_AUTOPLACE selects automatic placement.

• eccbytes

The eccbytes member defines the number of ecc bytes per page.

• eccpos

The eccpos array holds the byte offsets in the spare area where the ecc codes
are placed.

• oobfree

The oobfree array defines the areas in the spare area which can be used for
automatic placement. The information is given in the format {offset, size}.
offset defines the start of the usable area, size the length in bytes. More than
one area can be defined. The list is terminated by an {0, 0} entry.

35.5. Advanced board driver functions 1115

Linux Driver-api Documentation

Placement defined by fs driver

The calling function provides a pointer to a nand_oobinfo structure which defines
the ecc placement. For writes the caller must provide a spare area buffer along
with the data buffer. The spare area buffer size is (number of pages) * (size of
spare area). For reads the buffer size is (number of pages) * ((size of spare area)
+ (number of ecc steps per page) * sizeof (int)). The driver stores the result of the
ecc check for each tuple in the spare buffer. The storage sequence is:

<spare data page 0><ecc result 0>...<ecc result n>

...

<spare data page n><ecc result 0>...<ecc result n>

This is a legacy mode used by YAFFS1.

If the spare area buffer is NULL then only the ECC placement is done according
to the given scheme in the nand_oobinfo structure.

Automatic placement

Automatic placement uses the built in defaults to place the ecc bytes in the spare
area. If filesystem data have to be stored / read into the spare area then the
calling function must provide a buffer. The buffer size per page is determined by
the oobfree array in the nand_oobinfo structure.

If the spare area buffer is NULL then only the ECC placement is done according
to the default builtin scheme.

35.5.5 Spare area autoplacement default schemes

1116 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

256 byte pagesize

Off-
set

Content Comment

0x00ECC
byte 0

Error correction code byte 0

0x01ECC
byte 1

Error correction code byte 1

0x02ECC
byte 2

Error correction code byte 2

0x03Auto-
place
0

0x04Auto-
place
1

0x05Bad
block
marker

If any bit in this byte is zero, then this block is bad. This applies
only to the first page in a block. In the remaining pages this byte
is reserved

0x06Auto-
place
2

0x07Auto-
place
3

35.5. Advanced board driver functions 1117

Linux Driver-api Documentation

512 byte pagesize

Off-
set

Con-
tent

Comment

0x00 ECC
byte 0

Error correction code byte 0 of the lower 256 Byte data in this
page

0x01 ECC
byte 1

Error correction code byte 1 of the lower 256 Bytes of data in
this page

0x02 ECC
byte 2

Error correction code byte 2 of the lower 256 Bytes of data in
this page

0x03 ECC
byte 3

Error correction code byte 0 of the upper 256 Bytes of data in
this page

0x04 re-
served

reserved

0x05 Bad
block
marker

If any bit in this byte is zero, then this block is bad. This applies
only to the first page in a block. In the remaining pages this
byte is reserved

0x06 ECC
byte 4

Error correction code byte 1 of the upper 256 Bytes of data in
this page

0x07 ECC
byte 5

Error correction code byte 2 of the upper 256 Bytes of data in
this page

0x08
-
0x0F

Auto-
place 0
- 7

1118 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

2048 byte pagesize

Off-
set

Con-
tent

Comment

0x00 Bad
block
marker

If any bit in this byte is zero, then this block is bad. This applies
only to the first page in a block. In the remaining pages this
byte is reserved

0x01 Re-
served

Reserved

0x02-
0x27

Auto-
place 0
- 37

0x28 ECC
byte 0

Error correction code byte 0 of the first 256 Byte data in this
page

0x29 ECC
byte 1

Error correction code byte 1 of the first 256 Bytes of data in
this page

0x2A ECC
byte 2

Error correction code byte 2 of the first 256 Bytes data in this
page

0x2B ECC
byte 3

Error correction code byte 0 of the second 256 Bytes of data in
this page

0x2C ECC
byte 4

Error correction code byte 1 of the second 256 Bytes of data in
this page

0x2D ECC
byte 5

Error correction code byte 2 of the second 256 Bytes of data in
this page

0x2E ECC
byte 6

Error correction code byte 0 of the third 256 Bytes of data in
this page

0x2F ECC
byte 7

Error correction code byte 1 of the third 256 Bytes of data in
this page

0x30 ECC
byte 8

Error correction code byte 2 of the third 256 Bytes of data in
this page

0x31 ECC
byte 9

Error correction code byte 0 of the fourth 256 Bytes of data in
this page

0x32 ECC
byte 10

Error correction code byte 1 of the fourth 256 Bytes of data in
this page

0x33 ECC
byte 11

Error correction code byte 2 of the fourth 256 Bytes of data in
this page

0x34 ECC
byte 12

Error correction code byte 0 of the fifth 256 Bytes of data in
this page

0x35 ECC
byte 13

Error correction code byte 1 of the fifth 256 Bytes of data in
this page

0x36 ECC
byte 14

Error correction code byte 2 of the fifth 256 Bytes of data in
this page

0x37 ECC
byte 15

Error correction code byte 0 of the sixth 256 Bytes of data in
this page

0x38 ECC
byte 16

Error correction code byte 1 of the sixth 256 Bytes of data in
this page

0x39 ECC
byte 17

Error correction code byte 2 of the sixth 256 Bytes of data in
this page

0x3A ECC
byte 18

Error correction code byte 0 of the seventh 256 Bytes of data
in this page

0x3B ECC
byte 19

Error correction code byte 1 of the seventh 256 Bytes of data
in this page

0x3C ECC
byte 20

Error correction code byte 2 of the seventh 256 Bytes of data
in this page

0x3D ECC
byte 21

Error correction code byte 0 of the eighth 256 Bytes of data in
this page

0x3E ECC
byte 22

Error correction code byte 1 of the eighth 256 Bytes of data in
this page

0x3F ECC
byte 23

Error correction code byte 2 of the eighth 256 Bytes of data in
this page

35.5. Advanced board driver functions 1119

Linux Driver-api Documentation

35.6 Filesystem support

The NAND driver provides all necessary functions for a filesystem via the MTD
interface.

Filesystems must be aware of the NAND peculiarities and restrictions. One major
restrictions of NAND Flash is, that you cannot write as often as you want to a
page. The consecutive writes to a page, before erasing it again, are restricted to
1-3 writes, depending on the manufacturers specifications. This applies similar to
the spare area.

Therefore NAND aware filesystems must either write in page size chunks or hold
a writebuffer to collect smaller writes until they sum up to pagesize. Available
NAND aware filesystems: JFFS2, YAFFS.

The spare area usage to store filesystem data is controlled by the spare area place-
ment functionality which is described in one of the earlier chapters.

35.7 Tools

The MTD project provides a couple of helpful tools to handle NAND Flash.

• flasherase, flasheraseall: Erase and format FLASH partitions

• nandwrite: write filesystem images to NAND FLASH

• nanddump: dump the contents of a NAND FLASH partitions

These tools are aware of the NAND restrictions. Please use those tools instead of
complaining about errors which are caused by non NAND aware access methods.

35.8 Constants

This chapter describes the constants which might be relevant for a driver devel-
oper.

35.8.1 Chip option constants

Constants for chip id table

These constants are defined in rawnand.h. They are OR-ed together to describe
the chip functionality:

/* Buswitdh is 16 bit */
#define NAND_BUSWIDTH_16 0x00000002
/* Device supports partial programming without padding */
#define NAND_NO_PADDING 0x00000004
/* Chip has cache program function */
#define NAND_CACHEPRG 0x00000008
/* Chip has copy back function */
#define NAND_COPYBACK 0x00000010

(continues on next page)

1120 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

(continued from previous page)
/* AND Chip which has 4 banks and a confusing page / block
* assignment. See Renesas datasheet for further information */

#define NAND_IS_AND 0x00000020
/* Chip has a array of 4 pages which can be read without
* additional ready /busy waits */

#define NAND_4PAGE_ARRAY 0x00000040

Constants for runtime options

These constants are defined in rawnand.h. They are OR-ed together to describe
the functionality:

/* The hw ecc generator provides a syndrome instead a ecc value on read
* This can only work if we have the ecc bytes directly behind the
* data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon␣
↪→generators */
#define NAND_HWECC_SYNDROME 0x00020000

35.8.2 ECC selection constants

Use these constants to select the ECC algorithm:

/* No ECC. Usage is not recommended ! */
#define NAND_ECC_NONE 0
/* Software ECC 3 byte ECC per 256 Byte data */
#define NAND_ECC_SOFT 1
/* Hardware ECC 3 byte ECC per 256 Byte data */
#define NAND_ECC_HW3_256 2
/* Hardware ECC 3 byte ECC per 512 Byte data */
#define NAND_ECC_HW3_512 3
/* Hardware ECC 6 byte ECC per 512 Byte data */
#define NAND_ECC_HW6_512 4
/* Hardware ECC 8 byte ECC per 512 Byte data */
#define NAND_ECC_HW8_512 6

35.8.3 Hardware control related constants

These constants describe the requested hardware access function when the board-
specific hardware control function is called:

/* Select the chip by setting nCE to low */
#define NAND_CTL_SETNCE 1
/* Deselect the chip by setting nCE to high */
#define NAND_CTL_CLRNCE 2
/* Select the command latch by setting CLE to high */
#define NAND_CTL_SETCLE 3
/* Deselect the command latch by setting CLE to low */
#define NAND_CTL_CLRCLE 4
/* Select the address latch by setting ALE to high */
#define NAND_CTL_SETALE 5

(continues on next page)

35.8. Constants 1121

Linux Driver-api Documentation

(continued from previous page)
/* Deselect the address latch by setting ALE to low */
#define NAND_CTL_CLRALE 6
/* Set write protection by setting WP to high. Not used! */
#define NAND_CTL_SETWP 7
/* Clear write protection by setting WP to low. Not used! */
#define NAND_CTL_CLRWP 8

35.8.4 Bad block table related constants

These constants describe the options used for bad block table descriptors:

/* Options for the bad block table descriptors */

/* The number of bits used per block in the bbt on the device */
#define NAND_BBT_NRBITS_MSK 0x0000000F
#define NAND_BBT_1BIT 0x00000001
#define NAND_BBT_2BIT 0x00000002
#define NAND_BBT_4BIT 0x00000004
#define NAND_BBT_8BIT 0x00000008
/* The bad block table is in the last good block of the device */
#define NAND_BBT_LASTBLOCK 0x00000010
/* The bbt is at the given page, else we must scan for the bbt */
#define NAND_BBT_ABSPAGE 0x00000020
/* bbt is stored per chip on multichip devices */
#define NAND_BBT_PERCHIP 0x00000080
/* bbt has a version counter at offset veroffs */
#define NAND_BBT_VERSION 0x00000100
/* Create a bbt if none axists */
#define NAND_BBT_CREATE 0x00000200
/* Write bbt if necessary */
#define NAND_BBT_WRITE 0x00001000
/* Read and write back block contents when writing bbt */
#define NAND_BBT_SAVECONTENT 0x00002000

35.9 Structures

This chapter contains the autogenerated documentation of the structures which
are used in the NAND driver and might be relevant for a driver developer. Each
struct member has a short description which is marked with an [XXX] identifier.
See the chapter “Documentation hints”for an explanation.
struct nand_parameters

NAND generic parameters from the parameter page

Definition

struct nand_parameters {
const char *model;
bool supports_set_get_features;
unsigned long set_feature_list[BITS_TO_LONGS(ONFI_FEATURE_NUMBER)];
unsigned long get_feature_list[BITS_TO_LONGS(ONFI_FEATURE_NUMBER)];

(continues on next page)

1122 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

(continued from previous page)
struct onfi_params *onfi;

};

Members
model Model name

supports_set_get_features The NAND chip supports setting/getting features

set_feature_list Bitmap of features that can be set

get_feature_list Bitmap of features that can be get

onfi ONFI specific parameters

struct nand_id
NAND id structure

Definition

struct nand_id {
u8 data[NAND_MAX_ID_LEN];
int len;

};

Members
data buffer containing the id bytes.

len ID length.

struct nand_ecc_step_info
ECC step information of ECC engine

Definition

struct nand_ecc_step_info {
int stepsize;
const int *strengths;
int nstrengths;

};

Members
stepsize data bytes per ECC step

strengths array of supported strengths

nstrengths number of supported strengths

struct nand_ecc_caps
capability of ECC engine

Definition

struct nand_ecc_caps {
const struct nand_ecc_step_info *stepinfos;
int nstepinfos;
int (*calc_ecc_bytes)(int step_size, int strength);

};

35.9. Structures 1123

Linux Driver-api Documentation

Members
stepinfos array of ECC step information

nstepinfos number of ECC step information

calc_ecc_bytes driver’s hook to calculate ECC bytes per step
struct nand_ecc_ctrl

Control structure for ECC

Definition

struct nand_ecc_ctrl {
enum nand_ecc_mode mode;
enum nand_ecc_algo algo;
int steps;
int size;
int bytes;
int total;
int strength;
int prepad;
int postpad;
unsigned int options;
void *priv;
u8 *calc_buf;
u8 *code_buf;
void (*hwctl)(struct nand_chip *chip, int mode);
int (*calculate)(struct nand_chip *chip, const uint8_t *dat, uint8_t␣

↪→*ecc_code);
int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,␣

↪→uint8_t *calc_ecc);
int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf, int oob_

↪→required, int page);
int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf, int␣

↪→oob_required, int page);
int (*read_page)(struct nand_chip *chip, uint8_t *buf, int oob_required,␣

↪→int page);
int (*read_subpage)(struct nand_chip *chip, uint32_t offs, uint32_t len,␣

↪→uint8_t *buf, int page);
int (*write_subpage)(struct nand_chip *chip, uint32_t offset,uint32_t␣

↪→data_len, const uint8_t *data_buf, int oob_required, int page);
int (*write_page)(struct nand_chip *chip, const uint8_t *buf, int oob_

↪→required, int page);
int (*write_oob_raw)(struct nand_chip *chip, int page);
int (*read_oob_raw)(struct nand_chip *chip, int page);
int (*read_oob)(struct nand_chip *chip, int page);
int (*write_oob)(struct nand_chip *chip, int page);

};

Members
mode ECC mode

algo ECC algorithm

steps number of ECC steps per page

size data bytes per ECC step

bytes ECC bytes per step

1124 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

total total number of ECC bytes per page

strength max number of correctible bits per ECC step

prepad padding information for syndrome based ECC generators

postpad padding information for syndrome based ECC generators

options ECC specific options (see NAND_ECC_XXX flags defined above)

priv pointer to private ECC control data

calc_buf buffer for calculated ECC, size is oobsize.

code_buf buffer for ECC read from flash, size is oobsize.

hwctl function to control hardware ECC generator. Must only be provided if an
hardware ECC is available

calculate function for ECC calculation or readback from ECC hardware

correct function for ECC correction, matching to ECC generator (sw/hw). Should
return a positive number representing the number of corrected bitflips, -
EBADMSG if the number of bitflips exceed ECC strength, or any other error
code if the error is not directly related to correction. If -EBADMSG is returned
the input buffers should be left untouched.

read_page_raw function to read a raw page without ECC. This function should
hide the specific layout used by the ECC controller and always return con-
tiguous in-band and out-of-band data even if they’re not stored contiguously
on the NAND chip (e.g. NAND_ECC_HW_SYNDROME interleaves in-band
and out-of-band data).

write_page_raw function to write a raw page without ECC. This function should
hide the specific layout used by the ECC controller and consider the passed
data as contiguous in-band and out-of-band data. ECC controller is respon-
sible for doing the appropriate transformations to adapt to its specific lay-
out (e.g. NAND_ECC_HW_SYNDROME interleaves in-band and out-of-band
data).

read_page function to read a page according to the ECC generator requirements;
returns maximum number of bitflips corrected in any single ECC step, -EIO
hw error

read_subpage function to read parts of the page covered by ECC; returns same
as read_page()

write_subpage function to write parts of the page covered by ECC.

write_page function to write a page according to the ECC generator require-
ments.

write_oob_raw function to write chip OOB data without ECC

read_oob_raw function to read chip OOB data without ECC

read_oob function to read chip OOB data

write_oob function to write chip OOB data

struct nand_sdr_timings
SDR NAND chip timings

35.9. Structures 1125

Linux Driver-api Documentation

Definition

struct nand_sdr_timings {
u64 tBERS_max;
u32 tCCS_min;
u64 tPROG_max;
u64 tR_max;
u32 tALH_min;
u32 tADL_min;
u32 tALS_min;
u32 tAR_min;
u32 tCEA_max;
u32 tCEH_min;
u32 tCH_min;
u32 tCHZ_max;
u32 tCLH_min;
u32 tCLR_min;
u32 tCLS_min;
u32 tCOH_min;
u32 tCS_min;
u32 tDH_min;
u32 tDS_min;
u32 tFEAT_max;
u32 tIR_min;
u32 tITC_max;
u32 tRC_min;
u32 tREA_max;
u32 tREH_min;
u32 tRHOH_min;
u32 tRHW_min;
u32 tRHZ_max;
u32 tRLOH_min;
u32 tRP_min;
u32 tRR_min;
u64 tRST_max;
u32 tWB_max;
u32 tWC_min;
u32 tWH_min;
u32 tWHR_min;
u32 tWP_min;
u32 tWW_min;

};

Members
tBERS_max Block erase time

tCCS_min Change column setup time

tPROG_max Page program time

tR_max Page read time

tALH_min ALE hold time

tADL_min ALE to data loading time

tALS_min ALE setup time

tAR_min ALE to RE# delay

1126 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

tCEA_max CE# access time

tCEH_min CE# high hold time

tCH_min CE# hold time

tCHZ_max CE# high to output hi-Z

tCLH_min CLE hold time

tCLR_min CLE to RE# delay

tCLS_min CLE setup time

tCOH_min CE# high to output hold

tCS_min CE# setup time

tDH_min Data hold time

tDS_min Data setup time

tFEAT_max Busy time for Set Features and Get Features

tIR_min Output hi-Z to RE# low

tITC_max Interface and Timing Mode Change time

tRC_min RE# cycle time

tREA_max RE# access time

tREH_min RE# high hold time

tRHOH_min RE# high to output hold

tRHW_min RE# high to WE# low

tRHZ_max RE# high to output hi-Z

tRLOH_min RE# low to output hold

tRP_min RE# pulse width

tRR_min Ready to RE# low (data only)

tRST_max Device reset time, measured from the falling edge of R/B# to the rising
edge of R/B#.

tWB_max WE# high to SR[6] low

tWC_min WE# cycle time

tWH_min WE# high hold time

tWHR_min WE# high to RE# low

tWP_min WE# pulse width

tWW_min WP# transition to WE# low

Description
This struct defines the timing requirements of a SDR NAND chip.
These information can be found in every NAND datasheets and
the timings meaning are described in the ONFI specifications:

35.9. Structures 1127

Linux Driver-api Documentation

www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
Parameters)

All these timings are expressed in picoseconds.

enum nand_data_interface_type
NAND interface timing type

Constants
NAND_SDR_IFACE Single Data Rate interface

struct nand_data_interface
NAND interface timing

Definition

struct nand_data_interface {
enum nand_data_interface_type type;
struct nand_timings {

unsigned int mode;
union {
struct nand_sdr_timings sdr;

};
} timings;

};

Members
type type of the timing

timings The timing information

timings.mode Timing mode as defined in the specification

{unnamed_union} anonymous

timings.sdr Use it when type is NAND_SDR_IFACE.
const struct nand_sdr_timings * nand_get_sdr_timings(const struct

nand_data_interface
* conf)

get SDR timing from data interface

Parameters
const struct nand_data_interface * conf The data interface

struct nand_op_cmd_instr
Definition of a command instruction

Definition

struct nand_op_cmd_instr {
u8 opcode;

};

Members
opcode the command to issue in one cycle

1128 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

struct nand_op_addr_instr
Definition of an address instruction

Definition

struct nand_op_addr_instr {
unsigned int naddrs;
const u8 *addrs;

};

Members
naddrs length of the addrs array
addrs array containing the address cycles to issue

struct nand_op_data_instr
Definition of a data instruction

Definition

struct nand_op_data_instr {
unsigned int len;
union {

void *in;
const void *out;

} buf;
bool force_8bit;

};

Members
len number of data bytes to move

buf buffer to fill

buf.in buffer to fill when reading from the NAND chip

buf.out buffer to read from when writing to the NAND chip

force_8bit force 8-bit access

Description
Please note that“in”and“out”are inverted from the ONFI specification and are
from the controller perspective, so a “in”is a read from the NAND chip while a
“out”is a write to the NAND chip.
struct nand_op_waitrdy_instr

Definition of a wait ready instruction

Definition

struct nand_op_waitrdy_instr {
unsigned int timeout_ms;

};

Members
timeout_ms maximum delay while waiting for the ready/busy pin in ms

35.9. Structures 1129

Linux Driver-api Documentation

enum nand_op_instr_type
Definition of all instruction types

Constants
NAND_OP_CMD_INSTR command instruction

NAND_OP_ADDR_INSTR address instruction

NAND_OP_DATA_IN_INSTR data in instruction

NAND_OP_DATA_OUT_INSTR data out instruction

NAND_OP_WAITRDY_INSTR wait ready instruction

struct nand_op_instr
Instruction object

Definition

struct nand_op_instr {
enum nand_op_instr_type type;
union {

struct nand_op_cmd_instr cmd;
struct nand_op_addr_instr addr;
struct nand_op_data_instr data;
struct nand_op_waitrdy_instr waitrdy;

} ctx;
unsigned int delay_ns;

};

Members
type the instruction type

ctx extra data associated to the instruction. You’ll have to use the appropriate
element depending on type

ctx.cmd use it if type is NAND_OP_CMD_INSTR
ctx.addr use it if type is NAND_OP_ADDR_INSTR
ctx.data use it if type is NAND_OP_DATA_IN_INSTR or NAND_OP_DATA_OUT_INSTR
ctx.waitrdy use it if type is NAND_OP_WAITRDY_INSTR
delay_ns delay the controller should apply after the instruction has been issued

on the bus. Most modern controllers have internal timings control logic, and
in this case, the controller driver can ignore this field.

struct nand_subop
a sub operation

Definition

struct nand_subop {
unsigned int cs;
const struct nand_op_instr *instrs;
unsigned int ninstrs;
unsigned int first_instr_start_off;
unsigned int last_instr_end_off;

};

1130 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

Members
cs the CS line to select for this NAND sub-operation

instrs array of instructions

ninstrs length of the instrs array
first_instr_start_off offset to start from for the first instruction of the sub-

operation

last_instr_end_off offset to end at (excluded) for the last instruction of the sub-
operation

Description
Both first_instr_start_off and last_instr_end_off only apply to data or address
instructions.

When an operation cannot be handled as is by the NAND controller, it will be split
by the parser into sub-operations which will be passed to the controller driver.

struct nand_op_parser_addr_constraints
Constraints for address instructions

Definition

struct nand_op_parser_addr_constraints {
unsigned int maxcycles;

};

Members
maxcycles maximum number of address cycles the controller can issue in a single

step

struct nand_op_parser_data_constraints
Constraints for data instructions

Definition

struct nand_op_parser_data_constraints {
unsigned int maxlen;

};

Members
maxlen maximum data length that the controller can handle in a single step

struct nand_op_parser_pattern_elem
One element of a pattern

Definition

struct nand_op_parser_pattern_elem {
enum nand_op_instr_type type;
bool optional;
union {

struct nand_op_parser_addr_constraints addr;
struct nand_op_parser_data_constraints data;

(continues on next page)

35.9. Structures 1131

Linux Driver-api Documentation

(continued from previous page)
} ctx;

};

Members
type the instructuction type

optional whether this element of the pattern is optional or mandatory

ctx address or data constraint

ctx.addr address constraint (number of cycles)

ctx.data data constraint (data length)

struct nand_op_parser_pattern
NAND sub-operation pattern descriptor

Definition

struct nand_op_parser_pattern {
const struct nand_op_parser_pattern_elem *elems;
unsigned int nelems;
int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);

};

Members
elems array of pattern elements

nelems number of pattern elements in elems array
exec the function that will issue a sub-operation

Description
A pattern is a list of elements, each element reprensenting one instruction with
its constraints. The pattern itself is used by the core to match NAND chip opera-
tion with NAND controller operations. Once a match between a NAND controller
operation pattern and a NAND chip operation (or a sub-set of a NAND operation)
is found, the pattern ->exec() hook is called so that the controller driver can issue
the operation on the bus.

Controller drivers should declare as many patterns as they support and pass
this list of patterns (created with the help of the following macro) to the
nand_op_parser_exec_op() helper.

struct nand_op_parser
NAND controller operation parser descriptor

Definition

struct nand_op_parser {
const struct nand_op_parser_pattern *patterns;
unsigned int npatterns;

};

Members
patterns array of supported patterns

1132 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

npatterns length of the patterns array
Description
The parser descriptor is just an array of supported patterns which will be iterated
by nand_op_parser_exec_op() everytime it tries to execute an NAND operation
(or tries to determine if a specific operation is supported).

It is worth mentioning that patterns will be tested in their declaration order, and
the first match will be taken, so it’s important to order patterns appropriately so
that simple/inefficient patterns are placed at the end of the list. Usually, this is
where you put single instruction patterns.

struct nand_operation
NAND operation descriptor

Definition

struct nand_operation {
unsigned int cs;
const struct nand_op_instr *instrs;
unsigned int ninstrs;

};

Members
cs the CS line to select for this NAND operation

instrs array of instructions to execute

ninstrs length of the instrs array
Description
The actual operation structure that will be passed to chip->exec_op().

struct nand_controller_ops
Controller operations

Definition

struct nand_controller_ops {
int (*attach_chip)(struct nand_chip *chip);
void (*detach_chip)(struct nand_chip *chip);
int (*exec_op)(struct nand_chip *chip,const struct nand_operation *op,␣

↪→bool check_only);
int (*setup_data_interface)(struct nand_chip *chip, int chipnr, const␣

↪→struct nand_data_interface *conf);
};

Members
attach_chip this method is called after the NAND detection phase after flash ID

and MTD fields such as erase size, page size and OOB size have been set
up. ECC requirements are available if provided by the NAND chip or device
tree. Typically used to choose the appropriate ECC configuration and allocate
associated resources. This hook is optional.

detach_chip free all resources allocated/claimed in nand_controller_ops-
>attach_chip(). This hook is optional.

35.9. Structures 1133

Linux Driver-api Documentation

exec_op controller specific method to execute NAND opera-
tions. This method replaces chip->legacy.cmdfunc(), chip-
>legacy.{read,write}_{buf,byte,word}(), chip->legacy.dev_ready() and
chip->legacy.waifunc().

setup_data_interface setup the data interface and timing. If chipnr is set to
NAND_DATA_IFACE_CHECK_ONLY this means the configuration should not be
applied but only checked. This hook is optional.

struct nand_controller
Structure used to describe a NAND controller

Definition

struct nand_controller {
struct mutex lock;
const struct nand_controller_ops *ops;

};

Members
lock lock used to serialize accesses to the NAND controller

ops NAND controller operations.

struct nand_legacy
NAND chip legacy fields/hooks

Definition

struct nand_legacy {
void __iomem *IO_ADDR_R;
void __iomem *IO_ADDR_W;
void (*select_chip)(struct nand_chip *chip, int cs);
u8 (*read_byte)(struct nand_chip *chip);
void (*write_byte)(struct nand_chip *chip, u8 byte);
void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,␣

↪→int page_addr);
int (*dev_ready)(struct nand_chip *chip);
int (*waitfunc)(struct nand_chip *chip);
int (*block_bad)(struct nand_chip *chip, loff_t ofs);
int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
int (*set_features)(struct nand_chip *chip, int feature_addr, u8␣

↪→*subfeature_para);
int (*get_features)(struct nand_chip *chip, int feature_addr, u8␣

↪→*subfeature_para);
int chip_delay;
struct nand_controller dummy_controller;

};

Members
IO_ADDR_R address to read the 8 I/O lines of the flash device

IO_ADDR_W address to write the 8 I/O lines of the flash device

select_chip select/deselect a specific target/die

1134 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

read_byte read one byte from the chip

write_byte write a single byte to the chip on the low 8 I/O lines

write_buf write data from the buffer to the chip

read_buf read data from the chip into the buffer

cmd_ctrl hardware specific function for controlling ALE/CLE/nCE. Also used to
write command and address

cmdfunc hardware specific function for writing commands to the chip.

dev_ready hardware specific function for accessing device ready/busy line. If set
to NULL no access to ready/busy is available and the ready/busy information
is read from the chip status register.

waitfunc hardware specific function for wait on ready.

block_bad check if a block is bad, using OOB markers

block_markbad mark a block bad

set_features set the NAND chip features

get_features get the NAND chip features

chip_delay chip dependent delay for transferring data from array to read regs
(tR).

dummy_controller dummy controller implementation for drivers that can only
control a single chip

Description
If you look at this structure you’re already wrong. These fields/hooks are all
deprecated.

struct nand_chip
NAND Private Flash Chip Data

Definition

struct nand_chip {
struct nand_device base;
struct nand_legacy legacy;
int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
unsigned int options;
unsigned int bbt_options;
int page_shift;
int phys_erase_shift;
int bbt_erase_shift;
int chip_shift;
int pagemask;
u8 *data_buf;
struct {

unsigned int bitflips;
int page;

} pagecache;
int subpagesize;
int onfi_timing_mode_default;

(continues on next page)

35.9. Structures 1135

Linux Driver-api Documentation

(continued from previous page)
unsigned int badblockpos;
int badblockbits;
struct nand_id id;
struct nand_parameters parameters;
struct nand_data_interface data_interface;
int cur_cs;
int read_retries;
struct mutex lock;
unsigned int suspended : 1;
int (*suspend)(struct nand_chip *chip);
void (*resume)(struct nand_chip *chip);
uint8_t *oob_poi;
struct nand_controller *controller;
struct nand_ecc_ctrl ecc;
unsigned long buf_align;
uint8_t *bbt;
struct nand_bbt_descr *bbt_td;
struct nand_bbt_descr *bbt_md;
struct nand_bbt_descr *badblock_pattern;
void *priv;
struct {

const struct nand_manufacturer *desc;
void *priv;

} manufacturer;
int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);

};

Members
base Inherit from the generic NAND device

legacy All legacy fields/hooks. If you develop a new driver, don’t even try to
use any of these fields/hooks, and if you’re modifying an existing driver that
is using those fields/hooks, you should consider reworking the driver avoid
using them.

setup_read_retry [FLASHSPECIFIC] flash (vendor) specific function for setting
the read-retry mode. Mostly needed for MLC NAND.

options [BOARDSPECIFIC] various chip options. They can partly be set to inform
nand_scan about special functionality. See the defines for further explana-
tion.

bbt_options [INTERN] bad block specific options. All options used here must
come from bbm.h. By default, these options will be copied to the appropriate
nand_bbt_descr’s.

page_shift [INTERN] number of address bits in a page (column address bits).

phys_erase_shift [INTERN] number of address bits in a physical eraseblock

bbt_erase_shift [INTERN] number of address bits in a bbt entry

chip_shift [INTERN] number of address bits in one chip

pagemask [INTERN] page number mask = number of (pages / chip) - 1

data_buf [INTERN] buffer for data, size is (page size + oobsize).

1136 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

pagecache Structure containing page cache related fields

pagecache.bitflips Number of bitflips of the cached page

pagecache.page Page number currently in the cache. -1 means no page is cur-
rently cached

subpagesize [INTERN] holds the subpagesize

onfi_timing_mode_default [INTERN] default ONFI timing mode. This field is
set to the actually used ONFI mode if the chip is ONFI compliant or deduced
from the datasheet if the NAND chip is not ONFI compliant.

badblockpos [INTERN] position of the bad block marker in the oob area.

badblockbits [INTERN] minimum number of set bits in a good block’s bad block
marker position; i.e., BBM == 11110111b is not bad when badblockbits ==
7

id [INTERN] holds NAND ID

parameters [INTERN] holds generic parameters under an easily readable form.

data_interface [INTERN] NAND interface timing information

cur_cs currently selected target. -1 means no target selected, otherwise we
should always have cur_cs >= 0 && cur_cs < nanddev_ntargets(). NAND
Controller drivers should not modify this value, but they’re allowed to read
it.

read_retries [INTERN] the number of read retry modes supported

lock lock protecting the suspended field. Also used to serialize accesses to the
NAND device.

suspended set to 1 when the device is suspended, 0 when it’s not.
suspend [REPLACEABLE] specific NAND device suspend operation

resume [REPLACEABLE] specific NAND device resume operation

oob_poi“poison value buffer,”used for laying out OOB data before writing
controller [REPLACEABLE] a pointer to a hardware controller structure which

is shared among multiple independent devices.

ecc [BOARDSPECIFIC] ECC control structure

buf_align minimum buffer alignment required by a platform

bbt [INTERN] bad block table pointer

bbt_td [REPLACEABLE] bad block table descriptor for flash lookup.

bbt_md [REPLACEABLE] bad block table mirror descriptor

badblock_pattern [REPLACEABLE] bad block scan pattern used for initial bad
block scan.

priv [OPTIONAL] pointer to private chip data

manufacturer [INTERN] Contains manufacturer information

manufacturer.desc [INTERN] Contains manufacturer’s description

35.9. Structures 1137

Linux Driver-api Documentation

manufacturer.priv [INTERN] Contains manufacturer private information

lock_area [REPLACEABLE] specific NAND chip lock operation

unlock_area [REPLACEABLE] specific NAND chip unlock operation

struct nand_flash_dev
NAND Flash Device ID Structure

Definition

struct nand_flash_dev {
char *name;
union {

struct {
uint8_t mfr_id;
uint8_t dev_id;

};
uint8_t id[NAND_MAX_ID_LEN];

};
unsigned int pagesize;
unsigned int chipsize;
unsigned int erasesize;
unsigned int options;
uint16_t id_len;
uint16_t oobsize;
struct {
uint16_t strength_ds;
uint16_t step_ds;

} ecc;
int onfi_timing_mode_default;

};

Members
name a human-readable name of the NAND chip

{unnamed_union} anonymous

{unnamed_struct} anonymous

mfr_id manufacturer ID part of the full chip ID array (refers the same memory
address as id[0])

dev_id device ID part of the full chip ID array (refers the same memory address
as id[1])

id full device ID array

pagesize size of the NAND page in bytes; if 0, then the real page size (as well as
the eraseblock size) is determined from the extended NAND chip ID array)

chipsize total chip size in MiB

erasesize eraseblock size in bytes (determined from the extended ID if 0)

options stores various chip bit options

id_len The valid length of the id.
oobsize OOB size

1138 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

ecc ECC correctability and step information from the datasheet.

ecc.strength_ds The ECC correctability from the datasheet, same as the
ecc_strength_ds in nand_chip{}.

ecc.step_ds The ECC step required by the ecc.strength_ds, same as the
ecc_step_ds in nand_chip{}, also from the datasheet. For example, the“4bit
ECC for each 512Byte”can be set with NAND_ECC_INFO(4, 512).

onfi_timing_mode_default the default ONFI timing mode entered after a NAND
reset. Should be deduced from timings described in the datasheet.

int nand_opcode_8bits(unsigned int command)

Parameters
unsigned int command opcode to check

void * nand_get_data_buf(struct nand_chip * chip)
Get the internal page buffer

Parameters
struct nand_chip * chip NAND chip object

Description
Returns the pre-allocated page buffer after invalidating the cache. This function
should be used by drivers that do not want to allocate their own bounce buffer and
still need such a buffer for specific operations (most commonly when reading OOB
data only).

Be careful to never call this function in the write/write_oob path, because the core
may have placed the data to be written out in this buffer.

Return
pointer to the page cache buffer

35.10 Public Functions Provided

This chapter contains the autogenerated documentation of the NAND kernel API
functions which are exported. Each function has a short description which is
marked with an [XXX] identifier. See the chapter “Documentation hints”for an
explanation.

void nand_extract_bits(u8 * dst, unsigned int dst_off, const u8 * src, un-
signed int src_off, unsigned int nbits)

Copy unaligned bits from one buffer to another one

Parameters
u8 * dst destination buffer

unsigned int dst_off bit offset at which the writing starts

const u8 * src source buffer

unsigned int src_off bit offset at which the reading starts

35.10. Public Functions Provided 1139

Linux Driver-api Documentation

unsigned int nbits number of bits to copy from src to dst
Description
Copy bits from one memory region to another (overlap authorized).

void nand_select_target(struct nand_chip * chip, unsigned int cs)
Select a NAND target (A.K.A. die)

Parameters
struct nand_chip * chip NAND chip object

unsigned int cs the CS line to select. Note that this CS id is always from the
chip PoV, not the controller one

Description
Select a NAND target so that further operations executed on chip go to the se-
lected NAND target.

void nand_deselect_target(struct nand_chip * chip)
Deselect the currently selected target

Parameters
struct nand_chip * chip NAND chip object

Description
Deselect the currently selected NAND target. The result of operations executed
on chip after the target has been deselected is undefined.
int nand_soft_waitrdy(struct nand_chip * chip, unsigned long timeout_ms)

Poll STATUS reg until RDY bit is set to 1

Parameters
struct nand_chip * chip NAND chip structure

unsigned long timeout_ms Timeout in ms

Description
Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. If that
does not happen whitin the specified timeout, -ETIMEDOUT is returned.

This helper is intended to be used when the controller does not have access to the
NAND R/B pin.

Be aware that calling this helper from an ->exec_op() implementation means -
>exec_op() must be re-entrant.

Return 0 if the NAND chip is ready, a negative error otherwise.

int nand_gpio_waitrdy(struct nand_chip * chip, struct gpio_desc * gpiod,
unsigned long timeout_ms)

Poll R/B GPIO pin until ready

Parameters
struct nand_chip * chip NAND chip structure

struct gpio_desc * gpiod GPIO descriptor of R/B pin

1140 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

unsigned long timeout_ms Timeout in ms

Description
Poll the R/B GPIO pin until it becomes ready. If that does not happen whitin the
specified timeout, -ETIMEDOUT is returned.

This helper is intended to be used when the controller has access to the NAND
R/B pin over GPIO.

Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.

int nand_read_page_op(struct nand_chip * chip, unsigned int page, unsigned
int offset_in_page, void * buf, unsigned int len)

Do a READ PAGE operation

Parameters
struct nand_chip * chip The NAND chip

unsigned int page page to read

unsigned int offset_in_page offset within the page

void * buf buffer used to store the data

unsigned int len length of the buffer

Description
This function issues a READ PAGE operation. This function does not se-
lect/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_change_read_column_op(struct nand_chip * chip, unsigned
int offset_in_page, void * buf, unsigned
int len, bool force_8bit)

Do a CHANGE READ COLUMN operation

Parameters
struct nand_chip * chip The NAND chip

unsigned int offset_in_page offset within the page

void * buf buffer used to store the data

unsigned int len length of the buffer

bool force_8bit force 8-bit bus access

Description
This function issues a CHANGE READ COLUMN operation. This function does not
select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_read_oob_op(struct nand_chip * chip, unsigned int page, unsigned
int offset_in_oob, void * buf, unsigned int len)

Do a READ OOB operation

Parameters

35.10. Public Functions Provided 1141

Linux Driver-api Documentation

struct nand_chip * chip The NAND chip

unsigned int page page to read

unsigned int offset_in_oob offset within the OOB area

void * buf buffer used to store the data

unsigned int len length of the buffer

Description
This function issues a READ OOB operation. This function does not select/unselect
the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_prog_page_begin_op(struct nand_chip * chip, unsigned int page,
unsigned int offset_in_page, const void * buf,
unsigned int len)

starts a PROG PAGE operation

Parameters
struct nand_chip * chip The NAND chip

unsigned int page page to write

unsigned int offset_in_page offset within the page

const void * buf buffer containing the data to write to the page

unsigned int len length of the buffer

Description
This function issues the first half of a PROG PAGE operation. This function does
not select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_prog_page_end_op(struct nand_chip * chip)
ends a PROG PAGE operation

Parameters
struct nand_chip * chip The NAND chip

Description
This function issues the second half of a PROG PAGE operation. This function does
not select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_prog_page_op(struct nand_chip * chip, unsigned int page, un-
signed int offset_in_page, const void * buf, unsigned
int len)

Do a full PROG PAGE operation

Parameters
struct nand_chip * chip The NAND chip

unsigned int page page to write

1142 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

unsigned int offset_in_page offset within the page

const void * buf buffer containing the data to write to the page

unsigned int len length of the buffer

Description
This function issues a full PROG PAGE operation. This function does not se-
lect/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_change_write_column_op(struct nand_chip * chip, unsigned
int offset_in_page, const void * buf,
unsigned int len, bool force_8bit)

Do a CHANGE WRITE COLUMN operation

Parameters
struct nand_chip * chip The NAND chip

unsigned int offset_in_page offset within the page

const void * buf buffer containing the data to send to the NAND

unsigned int len length of the buffer

bool force_8bit force 8-bit bus access

Description
This function issues a CHANGE WRITE COLUMN operation. This function does
not select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_readid_op(struct nand_chip * chip, u8 addr, void * buf, unsigned
int len)

Do a READID operation

Parameters
struct nand_chip * chip The NAND chip

u8 addr address cycle to pass after the READID command

void * buf buffer used to store the ID

unsigned int len length of the buffer

Description
This function sends a READID command and reads back the ID returned by the
NAND. This function does not select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_status_op(struct nand_chip * chip, u8 * status)
Do a STATUS operation

Parameters
struct nand_chip * chip The NAND chip

u8 * status out variable to store the NAND status

35.10. Public Functions Provided 1143

Linux Driver-api Documentation

Description
This function sends a STATUS command and reads back the status returned by the
NAND. This function does not select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_erase_op(struct nand_chip * chip, unsigned int eraseblock)
Do an erase operation

Parameters
struct nand_chip * chip The NAND chip

unsigned int eraseblock block to erase

Description
This function sends an ERASE command andwaits for theNAND to be ready before
returning. This function does not select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_reset_op(struct nand_chip * chip)
Do a reset operation

Parameters
struct nand_chip * chip The NAND chip

Description
This function sends a RESET command and waits for the NAND to be ready before
returning. This function does not select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_read_data_op(struct nand_chip * chip, void * buf, unsigned int len,
bool force_8bit, bool check_only)

Read data from the NAND

Parameters
struct nand_chip * chip The NAND chip

void * buf buffer used to store the data

unsigned int len length of the buffer

bool force_8bit force 8-bit bus access

bool check_only do not actually run the command, only checks if the controller
driver supports it

Description
This function does a raw data read on the bus. Usually used after launching
another NAND operation like nand_read_page_op(). This function does not se-
lect/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

1144 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

int nand_write_data_op(struct nand_chip * chip, const void * buf, unsigned
int len, bool force_8bit)

Write data from the NAND

Parameters
struct nand_chip * chip The NAND chip

const void * buf buffer containing the data to send on the bus

unsigned int len length of the buffer

bool force_8bit force 8-bit bus access

Description
This function does a raw data write on the bus. Usually used after launching an-
other NAND operation like nand_write_page_begin_op(). This function does not
select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_op_parser_exec_op(struct nand_chip * chip, const struct
nand_op_parser * parser, const struct
nand_operation * op, bool check_only)

exec_op parser

Parameters
struct nand_chip * chip the NAND chip

const struct nand_op_parser * parser patterns description provided by the
controller driver

const struct nand_operation * op the NAND operation to address

bool check_only when true, the function only checks if op can be handled but
does not execute the operation

Description
Helper function designed to ease integration of NAND controller drivers that only
support a limited set of instruction sequences. The supported sequences are de-
scribed in parser, and the framework takes care of splitting op into multiple sub-
operations (if required) and pass them back to the ->exec() callback of the match-
ing pattern if check_only is set to false.
NAND controller drivers should call this function from their own ->exec_op() im-
plementation.

Returns 0 on success, a negative error code otherwise. A failure can be caused
by an unsupported operation (none of the supported patterns is able to handle the
requested operation), or an error returned by one of the matching pattern->exec()
hook.

unsigned int nand_subop_get_addr_start_off(const struct nand_subop
* subop, unsigned
int instr_idx)

Get the start offset in an address array

Parameters

35.10. Public Functions Provided 1145

Linux Driver-api Documentation

const struct nand_subop * subop The entire sub-operation

unsigned int instr_idx Index of the instruction inside the sub-operation

Description
During driver development, one could be tempted to directly use the ->addr.addrs
field of address instructions. This is wrong as address instructions might be split.

Given an address instruction, returns the offset of the first cycle to issue.

unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop
* subop, unsigned
int instr_idx)

Get the remaining address cycles to assert

Parameters
const struct nand_subop * subop The entire sub-operation

unsigned int instr_idx Index of the instruction inside the sub-operation

Description
During driver development, one could be tempted to directly use the ->addr-
>naddrs field of a data instruction. This is wrong as instructions might be split.

Given an address instruction, returns the number of address cycle to issue.

unsigned int nand_subop_get_data_start_off(const struct nand_subop
* subop, unsigned
int instr_idx)

Get the start offset in a data array

Parameters
const struct nand_subop * subop The entire sub-operation

unsigned int instr_idx Index of the instruction inside the sub-operation

Description
During driver development, one could be tempted to directly use the ->data-
>buf.{in,out} field of data instructions. This is wrong as data instructions might
be split.

Given a data instruction, returns the offset to start from.

unsigned int nand_subop_get_data_len(const struct nand_subop * subop,
unsigned int instr_idx)

Get the number of bytes to retrieve

Parameters
const struct nand_subop * subop The entire sub-operation

unsigned int instr_idx Index of the instruction inside the sub-operation

Description
During driver development, one could be tempted to directly use the ->data->len
field of a data instruction. This is wrong as data instructions might be split.

Returns the length of the chunk of data to send/receive.

1146 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

int nand_reset(struct nand_chip * chip, int chipnr)
Reset and initialize a NAND device

Parameters
struct nand_chip * chip The NAND chip

int chipnr Internal die id

Description
Save the timings data structure, then apply SDR timings mode 0 (see
nand_reset_data_interface for details), do the reset operation, and apply back the
previous timings.

Returns 0 on success, a negative error code otherwise.

int nand_check_erased_ecc_chunk(void * data, int datalen, void
* ecc, int ecclen, void * extraoob,
int extraooblen, int bitflips_threshold)

check if an ECC chunk contains (almost) only 0xff data

Parameters
void * data data buffer to test

int datalen data length

void * ecc ECC buffer

int ecclen ECC length

void * extraoob extra OOB buffer

int extraooblen extra OOB length

int bitflips_threshold maximum number of bitflips

Description
Check if a data buffer and its associated ECC and OOB data contains only 0xff
pattern, which means the underlying region has been erased and is ready to be
programmed. The bitflips_threshold specify the maximum number of bitflips be-
fore considering the region as not erased.

Returns a positive number of bitflips less than or equal to bitflips_threshold, or -
ERROR_CODE for bitflips in excess of the threshold. In case of success, the passed
buffers are filled with 0xff.

Note
1/ ECC algorithms are working on pre-defined block sizes which are usually

different from the NAND page size. When fixing bitflips, ECC engines will
report the number of errors per chunk, and the NAND core infrastructure
expect you to return the maximum number of bitflips for the whole page.
This is why you should always use this function on a single chunk and not
on the whole page. After checking each chunk you should update your
max_bitflips value accordingly.

2/ When checking for bitflips in erased pages you should not only check
the payload data but also their associated ECC data, because a user might

35.10. Public Functions Provided 1147

Linux Driver-api Documentation

have programmed almost all bits to 1 but a few. In this case, we shouldn’t
consider the chunk as erased, and checking ECC bytes prevent this case.

3/ The extraoob argument is optional, and should be used if some of your OOB
data are protected by the ECC engine. It could also be used if you support
subpages and want to attach some extra OOB data to an ECC chunk.

int nand_read_page_raw(struct nand_chip * chip, uint8_t * buf,
int oob_required, int page)

[INTERN] read raw page data without ecc

Parameters
struct nand_chip * chip nand chip info structure

uint8_t * buf buffer to store read data

int oob_required caller requires OOB data read to chip->oob_poi

int page page number to read

Description
Not for syndrome calculating ECC controllers, which use a special oob layout.

int nand_monolithic_read_page_raw(struct nand_chip * chip, u8 * buf,
int oob_required, int page)

Monolithic page read in raw mode

Parameters
struct nand_chip * chip NAND chip info structure

u8 * buf buffer to store read data

int oob_required caller requires OOB data read to chip->oob_poi

int page page number to read

Description
This is a raw page read, ie. without any error detection/correction. Monolithic
means we are requesting all the relevant data (main plus eventually OOB) to be
loaded in the NAND cache and sent over the bus (from the NAND chip to the NAND
controller) in a single operation. This is an alternative to nand_read_page_raw(),
which first reads the main data, and if the OOB data is requested too, then reads
more data on the bus.

int nand_read_oob_std(struct nand_chip * chip, int page)
[REPLACEABLE] the most common OOB data read function

Parameters
struct nand_chip * chip nand chip info structure

int page page number to read

int nand_write_oob_std(struct nand_chip * chip, int page)
[REPLACEABLE] the most common OOB data write function

Parameters
struct nand_chip * chip nand chip info structure

1148 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

int page page number to write

int nand_write_page_raw(struct nand_chip * chip, const uint8_t * buf,
int oob_required, int page)

[INTERN] raw page write function

Parameters
struct nand_chip * chip nand chip info structure

const uint8_t * buf data buffer

int oob_required must write chip->oob_poi to OOB

int page page number to write

Description
Not for syndrome calculating ECC controllers, which use a special oob layout.

int nand_monolithic_write_page_raw(struct nand_chip * chip, const u8
* buf, int oob_required, int page)

Monolithic page write in raw mode

Parameters
struct nand_chip * chip NAND chip info structure

const u8 * buf data buffer to write

int oob_required must write chip->oob_poi to OOB

int page page number to write

Description
This is a raw page write, ie. without any error detection/correction. Monolithic
means we are requesting all the relevant data (main plus eventually OOB) to be
sent over the bus and effectively programmed into theNAND chip arrays in a single
operation. This is an alternative to nand_write_page_raw(), which first sends the
main data, then eventually send the OOB data by latching more data cycles on
the NAND bus, and finally sends the program command to synchronyze the NAND
chip cache.

int nand_ecc_choose_conf(struct nand_chip * chip, const struct
nand_ecc_caps * caps, int oobavail)

Set the ECC strength and ECC step size

Parameters
struct nand_chip * chip nand chip info structure

const struct nand_ecc_caps * caps ECC engine caps info structure

int oobavail OOB size that the ECC engine can use

Description
Choose the ECC configuration according to following logic

1. If both ECC step size and ECC strength are already set (usually by DT) then
check if it is supported by this controller.

2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.

35.10. Public Functions Provided 1149

Linux Driver-api Documentation

3. Otherwise, try to match the ECC step size and ECC strength closest to the
chip’s requirement. If available OOB size can’t fit the chip requirement then
fallback to the maximum ECC step size and ECC strength.

On success, the chosen ECC settings are set.

int nand_scan_with_ids(struct nand_chip * chip, unsigned int maxchips,
struct nand_flash_dev * ids)

[NAND Interface] Scan for the NAND device

Parameters
struct nand_chip * chip NAND chip object

unsigned int maxchips number of chips to scan for.

struct nand_flash_dev * ids optional flash IDs table

Description
This fills out all the uninitialized function pointers with the defaults. The flash ID
is read and the mtd/chip structures are filled with the appropriate values.

void nand_cleanup(struct nand_chip * chip)
[NAND Interface] Free resources held by the NAND device

Parameters
struct nand_chip * chip NAND chip object

void __nand_calculate_ecc(const unsigned char * buf, unsigned
int eccsize, unsigned char * code,
bool sm_order)

[NAND Interface] Calculate 3-byte ECC for 256/512-byte block

Parameters
const unsigned char * buf input buffer with raw data

unsigned int eccsize data bytes per ECC step (256 or 512)

unsigned char * code output buffer with ECC

bool sm_order Smart Media byte ordering

int nand_calculate_ecc(struct nand_chip * chip, const unsigned char * buf,
unsigned char * code)

[NAND Interface] Calculate 3-byte ECC for 256/512-byte block

Parameters
struct nand_chip * chip NAND chip object

const unsigned char * buf input buffer with raw data

unsigned char * code output buffer with ECC

int __nand_correct_data(unsigned char * buf, unsigned char * read_ecc,
unsigned char * calc_ecc, unsigned int eccsize,
bool sm_order)

[NAND Interface] Detect and correct bit error(s)

Parameters

1150 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

unsigned char * buf raw data read from the chip

unsigned char * read_ecc ECC from the chip

unsigned char * calc_ecc the ECC calculated from raw data

unsigned int eccsize data bytes per ECC step (256 or 512)

bool sm_order Smart Media byte order

Description
Detect and correct a 1 bit error for eccsize byte block

int nand_correct_data(struct nand_chip * chip, unsigned char * buf, un-
signed char * read_ecc, unsigned char * calc_ecc)

[NAND Interface] Detect and correct bit error(s)

Parameters
struct nand_chip * chip NAND chip object

unsigned char * buf raw data read from the chip

unsigned char * read_ecc ECC from the chip

unsigned char * calc_ecc the ECC calculated from raw data

Description
Detect and correct a 1 bit error for 256/512 byte block

35.11 Internal Functions Provided

This chapter contains the autogenerated documentation of the NAND driver in-
ternal functions. Each function has a short description which is marked with an
[XXX] identifier. See the chapter “Documentation hints”for an explanation. The
functions marked with [DEFAULT] might be relevant for a board driver developer.

void nand_release_device(struct nand_chip * chip)
[GENERIC] release chip

Parameters
struct nand_chip * chip NAND chip object

Description
Release chip lock and wake up anyone waiting on the device.

int nand_bbm_get_next_page(struct nand_chip * chip, int page)
Get the next page for bad block markers

Parameters
struct nand_chip * chip NAND chip object

int page First page to start checking for bad block marker usage

35.11. Internal Functions Provided 1151

Linux Driver-api Documentation

Description
Returns an integer that corresponds to the page offset within a block, for a page
that is used to store bad block markers. If no more pages are available, -EINVAL
is returned.

int nand_block_bad(struct nand_chip * chip, loff_t ofs)
[DEFAULT] Read bad block marker from the chip

Parameters
struct nand_chip * chip NAND chip object

loff_t ofs offset from device start

Description
Check, if the block is bad.

int nand_get_device(struct nand_chip * chip)
[GENERIC] Get chip for selected access

Parameters
struct nand_chip * chip NAND chip structure

Description
Lock the device and its controller for exclusive access

Return
-EBUSY if the chip has been suspended, 0 otherwise

int nand_check_wp(struct nand_chip * chip)
[GENERIC] check if the chip is write protected

Parameters
struct nand_chip * chip NAND chip object

Description
Check, if the device is write protected. The function expects, that the device is
already selected.

uint8_t * nand_fill_oob(struct nand_chip * chip, uint8_t * oob, size_t len,
struct mtd_oob_ops * ops)

[INTERN] Transfer client buffer to oob

Parameters
struct nand_chip * chip NAND chip object

uint8_t * oob oob data buffer

size_t len oob data write length

struct mtd_oob_ops * ops oob ops structure

int nand_do_write_oob(struct nand_chip * chip, loff_t to, struct
mtd_oob_ops * ops)

[MTD Interface] NAND write out-of-band

Parameters

1152 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

struct nand_chip * chip NAND chip object

loff_t to offset to write to

struct mtd_oob_ops * ops oob operation description structure

Description
NAND write out-of-band.

int nand_default_block_markbad(struct nand_chip * chip, loff_t ofs)
[DEFAULT] mark a block bad via bad block marker

Parameters
struct nand_chip * chip NAND chip object

loff_t ofs offset from device start

Description
This is the default implementation, which can be overridden by a hardware specific
driver. It provides the details for writing a bad block marker to a block.

int nand_markbad_bbm(struct nand_chip * chip, loff_t ofs)
mark a block by updating the BBM

Parameters
struct nand_chip * chip NAND chip object

loff_t ofs offset of the block to mark bad

int nand_block_markbad_lowlevel(struct nand_chip * chip, loff_t ofs)
mark a block bad

Parameters
struct nand_chip * chip NAND chip object

loff_t ofs offset from device start

Description
This function performs the generic NAND bad block marking steps (i.e., bad block
table(s) and/or marker(s)). We only allow the hardware driver to specify how to
write bad block markers to OOB (chip->legacy.block_markbad).

We try operations in the following order:

(1) erase the affected block, to allow OOB marker to be written cleanly

(2) write bad block marker to OOB area of affected block (unless flag
NAND_BBT_NO_OOB_BBM is present)

(3) update the BBT

Note that we retain the first error encountered in (2) or (3), finish the procedures,
and dump the error in the end.

int nand_block_isreserved(struct mtd_info * mtd, loff_t ofs)
[GENERIC] Check if a block is marked reserved.

Parameters

35.11. Internal Functions Provided 1153

Linux Driver-api Documentation

struct mtd_info * mtd MTD device structure

loff_t ofs offset from device start

Description
Check if the block is marked as reserved.

int nand_block_checkbad(struct nand_chip * chip, loff_t ofs, int allowbbt)
[GENERIC] Check if a block is marked bad

Parameters
struct nand_chip * chip NAND chip object

loff_t ofs offset from device start

int allowbbt 1, if its allowed to access the bbt area

Description
Check, if the block is bad. Either by reading the bad block table or calling of the
scan function.

void panic_nand_wait(struct nand_chip * chip, unsigned long timeo)
[GENERIC] wait until the command is done

Parameters
struct nand_chip * chip NAND chip structure

unsigned long timeo timeout

Description
Wait for command done. This is a helper function for nand_wait used when we
are in interrupt context. May happen when in panic and trying to write an oops
through mtdoops.

int nand_reset_data_interface(struct nand_chip * chip, int chipnr)
Reset data interface and timings

Parameters
struct nand_chip * chip The NAND chip

int chipnr Internal die id

Description
Reset the Data interface and timings to ONFI mode 0.

Returns 0 for success or negative error code otherwise.

int nand_setup_data_interface(struct nand_chip * chip, int chipnr)
Setup the best data interface and timings

Parameters
struct nand_chip * chip The NAND chip

int chipnr Internal die id

1154 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

Description
Find and configure the best data interface and NAND timings supported by
the chip and the driver. First tries to retrieve supported timing modes from
ONFI information, and if the NAND chip does not support ONFI, relies on the
->onfi_timing_mode_default specified in the nand_ids table.

Returns 0 for success or negative error code otherwise.

int nand_init_data_interface(struct nand_chip * chip)
find the best data interface and timings

Parameters
struct nand_chip * chip The NAND chip

Description
Find the best data interface and NAND timings supported by the chip and the
driver. First tries to retrieve supported timing modes from ONFI information, and
if the NAND chip does not support ONFI, relies on the ->onfi_timing_mode_default
specified in the nand_ids table. After this function nand_chip->data_interface is
initialized with the best timing mode available.

Returns 0 for success or negative error code otherwise.

int nand_fill_column_cycles(struct nand_chip * chip, u8 * addrs, unsigned
int offset_in_page)

fill the column cycles of an address

Parameters
struct nand_chip * chip The NAND chip

u8 * addrs Array of address cycles to fill

unsigned int offset_in_page The offset in the page

Description
Fills the first or the first two bytes of the addrs field depending on the NAND bus
width and the page size.

Returns the number of cycles needed to encode the column, or a negative error
code in case one of the arguments is invalid.

int nand_read_param_page_op(struct nand_chip * chip, u8 page, void * buf,
unsigned int len)

Do a READ PARAMETER PAGE operation

Parameters
struct nand_chip * chip The NAND chip

u8 page parameter page to read

void * buf buffer used to store the data

unsigned int len length of the buffer

Description

35.11. Internal Functions Provided 1155

Linux Driver-api Documentation

This function issues a READ PARAMETER PAGE operation. This function does not
select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_exit_status_op(struct nand_chip * chip)
Exit a STATUS operation

Parameters
struct nand_chip * chip The NAND chip

Description
This function sends a READ0 command to cancel the effect of the STATUS com-
mand to avoid reading only the status until a new read command is sent.

This function does not select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_set_features_op(struct nand_chip * chip, u8 feature, const void
* data)

Do a SET FEATURES operation

Parameters
struct nand_chip * chip The NAND chip

u8 feature feature id

const void * data 4 bytes of data

Description
This function sends a SET FEATURES command and waits for the NAND to be
ready before returning. This function does not select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

int nand_get_features_op(struct nand_chip * chip, u8 feature, void * data)
Do a GET FEATURES operation

Parameters
struct nand_chip * chip The NAND chip

u8 feature feature id

void * data 4 bytes of data

Description
This function sends a GET FEATURES command and waits for the NAND to be
ready before returning. This function does not select/unselect the CS line.

Returns 0 on success, a negative error code otherwise.

struct nand_op_parser_ctx
Context used by the parser

Definition

1156 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

struct nand_op_parser_ctx {
const struct nand_op_instr *instrs;
unsigned int ninstrs;
struct nand_subop subop;

};

Members
instrs array of all the instructions that must be addressed

ninstrs length of the instrs array
subop Sub-operation to be passed to the NAND controller

Description
This structure is used by the core to split NAND operations into sub-operations
that can be handled by the NAND controller.

bool nand_op_parser_must_split_instr(const struct
nand_op_parser_pattern_elem
* pat, const struct nand_op_instr
* instr, unsigned int
* start_offset)

Checks if an instruction must be split

Parameters
const struct nand_op_parser_pattern_elem * pat the parser pattern ele-

ment that matches instr
const struct nand_op_instr * instr pointer to the instruction to check

unsigned int * start_offset this is an in/out parameter. If instr has already
been split, then start_offset is the offset from which to start (either an ad-
dress cycle or an offset in the data buffer). Conversely, if the function returns
true (ie. instr must be split), this parameter is updated to point to the first
data/address cycle that has not been taken care of.

Description
Some NAND controllers are limited and cannot send X address cycles with a
unique operation, or cannot read/write more than Y bytes at the same time. In
this case, split the instruction that does not fit in a single controller-operation into
two or more chunks.

Returns true if the instruction must be split, false otherwise. The start_offset
parameter is also updated to the offset at which the next bundle of instruction
must start (if an address or a data instruction).

bool nand_op_parser_match_pat(const struct nand_op_parser_pattern
* pat, struct nand_op_parser_ctx * ctx)

Checks if a pattern matches the instructions remaining in the parser context

Parameters
const struct nand_op_parser_pattern * pat the pattern to test

struct nand_op_parser_ctx * ctx the parser context structure to match with
the pattern pat

35.11. Internal Functions Provided 1157

Linux Driver-api Documentation

Description
Check if patmatches the set or a sub-set of instructions remaining in ctx. Returns
true if this is the case, false ortherwise. When true is returned, ctx->subop is
updated with the set of instructions to be passed to the controller driver.

int nand_get_features(struct nand_chip * chip, int addr, u8
* subfeature_param)

wrapper to perform a GET_FEATURE

Parameters
struct nand_chip * chip NAND chip info structure

int addr feature address

u8 * subfeature_param the subfeature parameters, a four bytes array

Description
Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
operation cannot be handled.

int nand_set_features(struct nand_chip * chip, int addr, u8
* subfeature_param)

wrapper to perform a SET_FEATURE

Parameters
struct nand_chip * chip NAND chip info structure

int addr feature address

u8 * subfeature_param the subfeature parameters, a four bytes array

Description
Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
operation cannot be handled.

int nand_check_erased_buf(void * buf, int len, int bitflips_threshold)
check if a buffer contains (almost) only 0xff data

Parameters
void * buf buffer to test

int len buffer length

int bitflips_threshold maximum number of bitflips

Description
Check if a buffer contains only 0xff, which means the underlying region has been
erased and is ready to be programmed. The bitflips_threshold specify the maxi-
mum number of bitflips before considering the region is not erased. Returns a pos-
itive number of bitflips less than or equal to bitflips_threshold, or -ERROR_CODE
for bitflips in excess of the threshold.

Note

1158 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

The logic of this function has been extracted from the memweight implementation,
except that nand_check_erased_buf function exit before testing the whole buffer
if the number of bitflips exceed the bitflips_threshold value.

int nand_read_page_raw_notsupp(struct nand_chip * chip, u8 * buf,
int oob_required, int page)

dummy read raw page function

Parameters
struct nand_chip * chip nand chip info structure

u8 * buf buffer to store read data

int oob_required caller requires OOB data read to chip->oob_poi

int page page number to read

Description
Returns -ENOTSUPP unconditionally.

int nand_read_page_raw_syndrome(struct nand_chip * chip, uint8_t * buf,
int oob_required, int page)

[INTERN] read raw page data without ecc

Parameters
struct nand_chip * chip nand chip info structure

uint8_t * buf buffer to store read data

int oob_required caller requires OOB data read to chip->oob_poi

int page page number to read

Description
We need a special oob layout and handling even when OOB isn’t used.
int nand_read_page_swecc(struct nand_chip * chip, uint8_t * buf,

int oob_required, int page)
[REPLACEABLE] software ECC based page read function

Parameters
struct nand_chip * chip nand chip info structure

uint8_t * buf buffer to store read data

int oob_required caller requires OOB data read to chip->oob_poi

int page page number to read

int nand_read_subpage(struct nand_chip * chip, uint32_t data_offs,
uint32_t readlen, uint8_t * bufpoi, int page)

[REPLACEABLE] ECC based sub-page read function

Parameters
struct nand_chip * chip nand chip info structure

uint32_t data_offs offset of requested data within the page

uint32_t readlen data length

35.11. Internal Functions Provided 1159

Linux Driver-api Documentation

uint8_t * bufpoi buffer to store read data

int page page number to read

int nand_read_page_hwecc(struct nand_chip * chip, uint8_t * buf,
int oob_required, int page)

[REPLACEABLE] hardware ECC based page read function

Parameters
struct nand_chip * chip nand chip info structure

uint8_t * buf buffer to store read data

int oob_required caller requires OOB data read to chip->oob_poi

int page page number to read

Description
Not for syndrome calculating ECC controllers which need a special oob layout.

int nand_read_page_syndrome(struct nand_chip * chip, uint8_t * buf,
int oob_required, int page)

[REPLACEABLE] hardware ECC syndrome based page read

Parameters
struct nand_chip * chip nand chip info structure

uint8_t * buf buffer to store read data

int oob_required caller requires OOB data read to chip->oob_poi

int page page number to read

Description
The hw generator calculates the error syndrome automatically. Therefore we need
a special oob layout and handling.

uint8_t * nand_transfer_oob(struct nand_chip * chip, uint8_t * oob, struct
mtd_oob_ops * ops, size_t len)

[INTERN] Transfer oob to client buffer

Parameters
struct nand_chip * chip NAND chip object

uint8_t * oob oob destination address

struct mtd_oob_ops * ops oob ops structure

size_t len size of oob to transfer

int nand_setup_read_retry(struct nand_chip * chip, int retry_mode)
[INTERN] Set the READ RETRY mode

Parameters
struct nand_chip * chip NAND chip object

int retry_mode the retry mode to use

1160 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

Description
Some vendors supply a special command to shift the Vt threshold, to be used when
there are too many bitflips in a page (i.e., ECC error). After setting a new thresh-
old, the host should retry reading the page.

int nand_do_read_ops(struct nand_chip * chip, loff_t from, struct
mtd_oob_ops * ops)

[INTERN] Read data with ECC

Parameters
struct nand_chip * chip NAND chip object

loff_t from offset to read from

struct mtd_oob_ops * ops oob ops structure

Description
Internal function. Called with chip held.

int nand_read_oob_syndrome(struct nand_chip * chip, int page)
[REPLACEABLE] OOB data read function for HW ECC with syndromes

Parameters
struct nand_chip * chip nand chip info structure

int page page number to read

int nand_write_oob_syndrome(struct nand_chip * chip, int page)
[REPLACEABLE] OOB data write function for HW ECC with syndrome - only
for large page flash

Parameters
struct nand_chip * chip nand chip info structure

int page page number to write

int nand_do_read_oob(struct nand_chip * chip, loff_t from, struct
mtd_oob_ops * ops)

[INTERN] NAND read out-of-band

Parameters
struct nand_chip * chip NAND chip object

loff_t from offset to read from

struct mtd_oob_ops * ops oob operations description structure

Description
NAND read out-of-band data from the spare area.

int nand_read_oob(struct mtd_info * mtd, loff_t from, struct mtd_oob_ops
* ops)

[MTD Interface] NAND read data and/or out-of-band

Parameters
struct mtd_info * mtd MTD device structure

35.11. Internal Functions Provided 1161

Linux Driver-api Documentation

loff_t from offset to read from

struct mtd_oob_ops * ops oob operation description structure

Description
NAND read data and/or out-of-band data.

int nand_write_page_raw_notsupp(struct nand_chip * chip, const u8 * buf,
int oob_required, int page)

dummy raw page write function

Parameters
struct nand_chip * chip nand chip info structure

const u8 * buf data buffer

int oob_required must write chip->oob_poi to OOB

int page page number to write

Description
Returns -ENOTSUPP unconditionally.

int nand_write_page_raw_syndrome(struct nand_chip * chip, const uint8_t
* buf, int oob_required, int page)

[INTERN] raw page write function

Parameters
struct nand_chip * chip nand chip info structure

const uint8_t * buf data buffer

int oob_required must write chip->oob_poi to OOB

int page page number to write

Description
We need a special oob layout and handling even when ECC isn’t checked.
int nand_write_page_swecc(struct nand_chip * chip, const uint8_t * buf,

int oob_required, int page)
[REPLACEABLE] software ECC based page write function

Parameters
struct nand_chip * chip nand chip info structure

const uint8_t * buf data buffer

int oob_required must write chip->oob_poi to OOB

int page page number to write

int nand_write_page_hwecc(struct nand_chip * chip, const uint8_t * buf,
int oob_required, int page)

[REPLACEABLE] hardware ECC based page write function

Parameters
struct nand_chip * chip nand chip info structure

1162 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

const uint8_t * buf data buffer

int oob_required must write chip->oob_poi to OOB

int page page number to write

int nand_write_subpage_hwecc(struct nand_chip * chip, uint32_t offset,
uint32_t data_len, const uint8_t * buf,
int oob_required, int page)

[REPLACEABLE] hardware ECC based subpage write

Parameters
struct nand_chip * chip nand chip info structure

uint32_t offset column address of subpage within the page

uint32_t data_len data length

const uint8_t * buf data buffer

int oob_required must write chip->oob_poi to OOB

int page page number to write

int nand_write_page_syndrome(struct nand_chip * chip, const uint8_t * buf,
int oob_required, int page)

[REPLACEABLE] hardware ECC syndrome based page write

Parameters
struct nand_chip * chip nand chip info structure

const uint8_t * buf data buffer

int oob_required must write chip->oob_poi to OOB

int page page number to write

Description
The hw generator calculates the error syndrome automatically. Therefore we need
a special oob layout and handling.

int nand_write_page(struct nand_chip * chip, uint32_t offset, int data_len,
const uint8_t * buf, int oob_required, int page,
int raw)

write one page

Parameters
struct nand_chip * chip NAND chip descriptor

uint32_t offset address offset within the page

int data_len length of actual data to be written

const uint8_t * buf the data to write

int oob_required must write chip->oob_poi to OOB

int page page number to write

int raw use _raw version of write_page

35.11. Internal Functions Provided 1163

Linux Driver-api Documentation

int nand_do_write_ops(struct nand_chip * chip, loff_t to, struct
mtd_oob_ops * ops)

[INTERN] NAND write with ECC

Parameters
struct nand_chip * chip NAND chip object

loff_t to offset to write to

struct mtd_oob_ops * ops oob operations description structure

Description
NAND write with ECC.

int panic_nand_write(struct mtd_info * mtd, loff_t to, size_t len, size_t
* retlen, const uint8_t * buf)

[MTD Interface] NAND write with ECC

Parameters
struct mtd_info * mtd MTD device structure

loff_t to offset to write to

size_t len number of bytes to write

size_t * retlen pointer to variable to store the number of written bytes

const uint8_t * buf the data to write

Description
NANDwrite with ECC. Used when performing writes in interrupt context, this may
for example be called by mtdoops when writing an oops while in panic.

int nand_write_oob(struct mtd_info * mtd, loff_t to, struct mtd_oob_ops
* ops)

[MTD Interface] NAND write data and/or out-of-band

Parameters
struct mtd_info * mtd MTD device structure

loff_t to offset to write to

struct mtd_oob_ops * ops oob operation description structure

int nand_erase(struct mtd_info * mtd, struct erase_info * instr)
[MTD Interface] erase block(s)

Parameters
struct mtd_info * mtd MTD device structure

struct erase_info * instr erase instruction

Description
Erase one ore more blocks.

int nand_erase_nand(struct nand_chip * chip, struct erase_info * instr,
int allowbbt)

[INTERN] erase block(s)

1164 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

Parameters
struct nand_chip * chip NAND chip object

struct erase_info * instr erase instruction

int allowbbt allow erasing the bbt area

Description
Erase one ore more blocks.

void nand_sync(struct mtd_info * mtd)
[MTD Interface] sync

Parameters
struct mtd_info * mtd MTD device structure

Description
Sync is actually a wait for chip ready function.

int nand_block_isbad(struct mtd_info * mtd, loff_t offs)
[MTD Interface] Check if block at offset is bad

Parameters
struct mtd_info * mtd MTD device structure

loff_t offs offset relative to mtd start

int nand_block_markbad(struct mtd_info * mtd, loff_t ofs)
[MTD Interface] Mark block at the given offset as bad

Parameters
struct mtd_info * mtd MTD device structure

loff_t ofs offset relative to mtd start

int nand_suspend(struct mtd_info * mtd)
[MTD Interface] Suspend the NAND flash

Parameters
struct mtd_info * mtd MTD device structure

Description
Returns 0 for success or negative error code otherwise.

void nand_resume(struct mtd_info * mtd)
[MTD Interface] Resume the NAND flash

Parameters
struct mtd_info * mtd MTD device structure

void nand_shutdown(struct mtd_info * mtd)
[MTD Interface] Finish the current NAND operation and prevent further op-
erations

Parameters
struct mtd_info * mtd MTD device structure

35.11. Internal Functions Provided 1165

Linux Driver-api Documentation

int nand_lock(struct mtd_info * mtd, loff_t ofs, uint64_t len)
[MTD Interface] Lock the NAND flash

Parameters
struct mtd_info * mtd MTD device structure

loff_t ofs offset byte address

uint64_t len number of bytes to lock (must be a multiple of block/page size)

int nand_unlock(struct mtd_info * mtd, loff_t ofs, uint64_t len)
[MTD Interface] Unlock the NAND flash

Parameters
struct mtd_info * mtd MTD device structure

loff_t ofs offset byte address

uint64_t len number of bytes to unlock (must be a multiple of block/page size)

int nand_scan_ident(struct nand_chip * chip, unsigned int maxchips, struct
nand_flash_dev * table)

Scan for the NAND device

Parameters
struct nand_chip * chip NAND chip object

unsigned int maxchips number of chips to scan for

struct nand_flash_dev * table alternative NAND ID table

Description
This is the first phase of the normal nand_scan() function. It reads the flash ID and
sets up MTD fields accordingly.

This helper used to be called directly from controller drivers that needed to tweak
some ECC-related parameters before nand_scan_tail(). This separation pre-
vented dynamic allocations during this phase which was unconvenient and as been
banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.

int nand_check_ecc_caps(struct nand_chip * chip, const struct
nand_ecc_caps * caps, int oobavail)

check the sanity of preset ECC settings

Parameters
struct nand_chip * chip nand chip info structure

const struct nand_ecc_caps * caps ECC caps info structure

int oobavail OOB size that the ECC engine can use

Description
When ECC step size and strength are already set, check if they are supported by
the controller and the calculated ECC bytes fit within the chip’s OOB. On success,
the calculated ECC bytes is set.

1166 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

int nand_match_ecc_req(struct nand_chip * chip, const struct
nand_ecc_caps * caps, int oobavail)

meet the chip’s requirement with least ECC bytes
Parameters
struct nand_chip * chip nand chip info structure

const struct nand_ecc_caps * caps ECC engine caps info structure

int oobavail OOB size that the ECC engine can use

Description
If a chip’s ECC requirement is provided, try to meet it with the least number
of ECC bytes (i.e. with the largest number of OOB-free bytes). On success, the
chosen ECC settings are set.

int nand_maximize_ecc(struct nand_chip * chip, const struct nand_ecc_caps
* caps, int oobavail)

choose the max ECC strength available

Parameters
struct nand_chip * chip nand chip info structure

const struct nand_ecc_caps * caps ECC engine caps info structure

int oobavail OOB size that the ECC engine can use

Description
Choose the max ECC strength that is supported on the controller, and can fit within
the chip’s OOB. On success, the chosen ECC settings are set.
int nand_scan_tail(struct nand_chip * chip)

Scan for the NAND device

Parameters
struct nand_chip * chip NAND chip object

Description
This is the second phase of the normal nand_scan() function. It fills out all the
uninitialized function pointers with the defaults and scans for a bad block table if
appropriate.

int check_pattern(uint8_t * buf, int len, int paglen, struct nand_bbt_descr
* td)

[GENERIC] check if a pattern is in the buffer

Parameters
uint8_t * buf the buffer to search

int len the length of buffer to search

int paglen the pagelength

struct nand_bbt_descr * td search pattern descriptor

Description

35.11. Internal Functions Provided 1167

Linux Driver-api Documentation

Check for a pattern at the given place. Used to search bad block tables and good
/ bad block identifiers.

int check_short_pattern(uint8_t * buf, struct nand_bbt_descr * td)
[GENERIC] check if a pattern is in the buffer

Parameters
uint8_t * buf the buffer to search

struct nand_bbt_descr * td search pattern descriptor

Description
Check for a pattern at the given place. Used to search bad block tables and good
/ bad block identifiers. Same as check_pattern, but no optional empty check.

u32 add_marker_len(struct nand_bbt_descr * td)
compute the length of the marker in data area

Parameters
struct nand_bbt_descr * td BBT descriptor used for computation

Description
The length will be 0 if the marker is located in OOB area.

int read_bbt(struct nand_chip * this, uint8_t * buf, int page, int num, struct
nand_bbt_descr * td, int offs)

[GENERIC] Read the bad block table starting from page

Parameters
struct nand_chip * this NAND chip object

uint8_t * buf temporary buffer

int page the starting page

int num the number of bbt descriptors to read

struct nand_bbt_descr * td the bbt describtion table

int offs block number offset in the table

Description
Read the bad block table starting from page.

int read_abs_bbt(struct nand_chip * this, uint8_t * buf, struct
nand_bbt_descr * td, int chip)

[GENERIC] Read the bad block table starting at a given page

Parameters
struct nand_chip * this NAND chip object

uint8_t * buf temporary buffer

struct nand_bbt_descr * td descriptor for the bad block table

int chip read the table for a specific chip, -1 read all chips; applies only if
NAND_BBT_PERCHIP option is set

1168 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

Description
Read the bad block table for all chips starting at a given page. We assume that the
bbt bits are in consecutive order.

int scan_read_oob(struct nand_chip * this, uint8_t * buf, loff_t offs,
size_t len)

[GENERIC] Scan data+OOB region to buffer

Parameters
struct nand_chip * this NAND chip object

uint8_t * buf temporary buffer

loff_t offs offset at which to scan

size_t len length of data region to read

Description
Scan read data from data+OOB. May traverse multiple pages, interleaving
page,OOB,page,OOB,⋯in buf. Completes transfer and returns the “strongest”
ECC condition (error or bitflip). May quit on the first (non-ECC) error.

void read_abs_bbts(struct nand_chip * this, uint8_t * buf, struct
nand_bbt_descr * td, struct nand_bbt_descr * md)

[GENERIC] Read the bad block table(s) for all chips starting at a given page

Parameters
struct nand_chip * this NAND chip object

uint8_t * buf temporary buffer

struct nand_bbt_descr * td descriptor for the bad block table

struct nand_bbt_descr * md descriptor for the bad block table mirror

Description
Read the bad block table(s) for all chips starting at a given page. We assume that
the bbt bits are in consecutive order.

int create_bbt(struct nand_chip * this, uint8_t * buf, struct nand_bbt_descr
* bd, int chip)

[GENERIC] Create a bad block table by scanning the device

Parameters
struct nand_chip * this NAND chip object

uint8_t * buf temporary buffer

struct nand_bbt_descr * bd descriptor for the good/bad block search pattern

int chip create the table for a specific chip, -1 read all chips; applies only if
NAND_BBT_PERCHIP option is set

Description
Create a bad block table by scanning the device for the given good/bad block iden-
tify pattern.

35.11. Internal Functions Provided 1169

Linux Driver-api Documentation

int search_bbt(struct nand_chip * this, uint8_t * buf, struct nand_bbt_descr
* td)

[GENERIC] scan the device for a specific bad block table

Parameters
struct nand_chip * this NAND chip object

uint8_t * buf temporary buffer

struct nand_bbt_descr * td descriptor for the bad block table

Description
Read the bad block table by searching for a given ident pattern. Search is pre-
formed either from the beginning up or from the end of the device downwards.
The search starts always at the start of a block. If the option NAND_BBT_PERCHIP
is given, each chip is searched for a bbt, which contains the bad block information
of this chip. This is necessary to provide support for certain DOC devices.

The bbt ident pattern resides in the oob area of the first page in a block.

void search_read_bbts(struct nand_chip * this, uint8_t * buf, struct
nand_bbt_descr * td, struct nand_bbt_descr * md)

[GENERIC] scan the device for bad block table(s)

Parameters
struct nand_chip * this NAND chip object

uint8_t * buf temporary buffer

struct nand_bbt_descr * td descriptor for the bad block table

struct nand_bbt_descr * md descriptor for the bad block table mirror

Description
Search and read the bad block table(s).

int get_bbt_block(struct nand_chip * this, struct nand_bbt_descr * td, struct
nand_bbt_descr * md, int chip)

Get the first valid eraseblock suitable to store a BBT

Parameters
struct nand_chip * this the NAND device

struct nand_bbt_descr * td the BBT description

struct nand_bbt_descr * md the mirror BBT descriptor

int chip the CHIP selector

Description
This functions returns a positive block number pointing a valid eraseblock suitable
to store a BBT (i.e. in the range reserved for BBT), or -ENOSPC if all blocks are
already used of marked bad. If td->pages[chip] was already pointing to a valid
block we re-use it, otherwise we search for the next valid one.

void mark_bbt_block_bad(struct nand_chip * this, struct nand_bbt_descr
* td, int chip, int block)

Mark one of the block reserved for BBT bad

1170 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

Parameters
struct nand_chip * this the NAND device

struct nand_bbt_descr * td the BBT description

int chip the CHIP selector

int block the BBT block to mark

Description
Blocks reserved for BBT can become bad. This functions is an helper to mark such
blocks as bad. It takes care of updating the in-memory BBT, marking the block as
bad using a bad block marker and invalidating the associated td->pages[] entry.

int write_bbt(struct nand_chip * this, uint8_t * buf, struct nand_bbt_descr
* td, struct nand_bbt_descr * md, int chipsel)

[GENERIC] (Re)write the bad block table

Parameters
struct nand_chip * this NAND chip object

uint8_t * buf temporary buffer

struct nand_bbt_descr * td descriptor for the bad block table

struct nand_bbt_descr * md descriptor for the bad block table mirror

int chipsel selector for a specific chip, -1 for all

Description
(Re)write the bad block table.

int nand_memory_bbt(struct nand_chip * this, struct nand_bbt_descr * bd)
[GENERIC] create a memory based bad block table

Parameters
struct nand_chip * this NAND chip object

struct nand_bbt_descr * bd descriptor for the good/bad block search pattern

Description
The function creates a memory based bbt by scanning the device for manufacturer
/ software marked good / bad blocks.

int check_create(struct nand_chip * this, uint8_t * buf, struct
nand_bbt_descr * bd)

[GENERIC] create and write bbt(s) if necessary

Parameters
struct nand_chip * this the NAND device

uint8_t * buf temporary buffer

struct nand_bbt_descr * bd descriptor for the good/bad block search pattern

Description

35.11. Internal Functions Provided 1171

Linux Driver-api Documentation

The function checks the results of the previous call to read_bbt and creates / up-
dates the bbt(s) if necessary. Creation is necessary if no bbt was found for the
chip/device. Update is necessary if one of the tables is missing or the version nr.
of one table is less than the other.

int nand_update_bbt(struct nand_chip * this, loff_t offs)
update bad block table(s)

Parameters
struct nand_chip * this the NAND device

loff_t offs the offset of the newly marked block

Description
The function updates the bad block table(s).

void mark_bbt_region(struct nand_chip * this, struct nand_bbt_descr * td)
[GENERIC] mark the bad block table regions

Parameters
struct nand_chip * this the NAND device

struct nand_bbt_descr * td bad block table descriptor

Description
The bad block table regions are marked as “bad”to prevent accidental erasures
/ writes. The regions are identified by the mark 0x02.

void verify_bbt_descr(struct nand_chip * this, struct nand_bbt_descr * bd)
verify the bad block description

Parameters
struct nand_chip * this the NAND device

struct nand_bbt_descr * bd the table to verify

Description
This functions performs a few sanity checks on the bad block description table.

int nand_scan_bbt(struct nand_chip * this, struct nand_bbt_descr * bd)
[NAND Interface] scan, find, read and maybe create bad block table(s)

Parameters
struct nand_chip * this the NAND device

struct nand_bbt_descr * bd descriptor for the good/bad block search pattern

Description
The function checks, if a bad block table(s) is/are already available. If not it scans
the device for manufacturer marked good / bad blocks and writes the bad block
table(s) to the selected place.

The bad block table memory is allocated here. It must be freed by calling the
nand_free_bbt function.

1172 Chapter 35. MTD NAND Driver Programming Interface

Linux Driver-api Documentation

int nand_create_badblock_pattern(struct nand_chip * this)
[INTERN] Creates a BBT descriptor structure

Parameters
struct nand_chip * this NAND chip to create descriptor for

Description
This function allocates and initializes a nand_bbt_descr for BBM detection based
on the properties of this. The new descriptor is stored in this->badblock_pattern.
Thus, this->badblock_pattern should be NULL when passed to this function.

int nand_isreserved_bbt(struct nand_chip * this, loff_t offs)
[NAND Interface] Check if a block is reserved

Parameters
struct nand_chip * this NAND chip object

loff_t offs offset in the device

int nand_isbad_bbt(struct nand_chip * this, loff_t offs, int allowbbt)
[NAND Interface] Check if a block is bad

Parameters
struct nand_chip * this NAND chip object

loff_t offs offset in the device

int allowbbt allow access to bad block table region

int nand_markbad_bbt(struct nand_chip * this, loff_t offs)
[NAND Interface] Mark a block bad in the BBT

Parameters
struct nand_chip * this NAND chip object

loff_t offs offset of the bad block

35.12 Credits

The following people have contributed to the NAND driver:

1. Steven J. Hillsjhill@realitydiluted.com

2. David Woodhousedwmw2@infradead.org

3. Thomas Gleixnertglx@linutronix.de

A lot of users have provided bugfixes, improvements and helping hands for testing.
Thanks a lot.

The following people have contributed to this document:

1. Thomas Gleixnertglx@linutronix.de

35.12. Credits 1173

mailto:sjhill@realitydiluted.com
mailto:dwmw2@infradead.org
mailto:tglx@linutronix.de
mailto:tglx@linutronix.de

Linux Driver-api Documentation

1174 Chapter 35. MTD NAND Driver Programming Interface

CHAPTER

THIRTYSIX

PARALLEL PORT DEVICES

int parport_yield(struct pardevice * dev)
relinquish a parallel port temporarily

Parameters
struct pardevice * dev a device on the parallel port

Description
This function relinquishes the port if it would be helpful to other drivers to do
so. Afterwards it tries to reclaim the port using parport_claim(), and the return
value is the same as for parport_claim(). If it fails, the port is left unclaimed and
it is the driver’s responsibility to reclaim the port.

The parport_yield() and parport_yield_blocking() functions are for marking
points in the driver at which other drivers may claim the port and use their devices.
Yielding the port is similar to releasing it and reclaiming it, but is more efficient
because no action is taken if there are no other devices needing the port. In fact,
nothing is done even if there are other devices waiting but the current device is
still within its “timeslice”. The default timeslice is half a second, but it can be
adjusted via the /proc interface.

int parport_yield_blocking(struct pardevice * dev)
relinquish a parallel port temporarily

Parameters
struct pardevice * dev a device on the parallel port

Description
This function relinquishes the port if it would be helpful to other drivers to do so.
Afterwards it tries to reclaim the port using parport_claim_or_block(), and the
return value is the same as for parport_claim_or_block().

int parport_wait_event(struct parport * port, signed long timeout)
wait for an event on a parallel port

Parameters
struct parport * port port to wait on

signed long timeout time to wait (in jiffies)

This function waits for up to timeout jiffies for an interrupt to occur on a
parallel port. If the port timeout is set to zero, it returns immediately.

1175

Linux Driver-api Documentation

If an interrupt occurs before the timeout period elapses, this function returns
zero immediately. If it times out, it returns one. An error code less than zero
indicates an error (most likely a pending signal), and the calling code should
finish what it’s doing as soon as it can.

int parport_wait_peripheral(struct parport * port, unsigned char mask,
unsigned char result)

wait for status lines to change in 35ms

Parameters
struct parport * port port to watch

unsigned char mask status lines to watch

unsigned char result desired values of chosen status lines

This function waits until the masked status lines have the desired values, or
until 35ms have elapsed (see IEEE 1284-1994 page 24 to 25 for why this value
in particular is hardcoded). The mask and result parameters are bitmasks,
with the bits defined by the constants in parport.h: PARPORT_STATUS_BUSY,
and so on.

The port is polled quickly to start off with, in anticipation of a fast response
from the peripheral. This fast polling time is configurable (using /proc), and
defaults to 500usec. If the timeout for this port (see parport_set_timeout())
is zero, the fast polling time is 35ms, and this function does not call schedule().

If the timeout for this port is non-zero, after the fast polling fails it uses
parport_wait_event() to wait for up to 10ms, waking up if an interrupt oc-
curs.

int parport_negotiate(struct parport * port, int mode)
negotiate an IEEE 1284 mode

Parameters
struct parport * port port to use

int mode mode to negotiate to

Use this to negotiate to a particular IEEE 1284 transfer mode. The
mode parameter should be one of the constants in parport.h starting
IEEE1284_MODE_xxx.

The return value is 0 if the peripheral has accepted the negotiation to the
mode specified, -1 if the peripheral is not IEEE 1284 compliant (or not
present), or 1 if the peripheral has rejected the negotiation.

ssize_t parport_write(struct parport * port, const void * buffer, size_t len)
write a block of data to a parallel port

Parameters
struct parport * port port to write to

const void * buffer data buffer (in kernel space)

size_t len number of bytes of data to transfer

1176 Chapter 36. Parallel Port Devices

Linux Driver-api Documentation

This will write up to len bytes of buffer to the port specified, us-
ing the IEEE 1284 transfer mode most recently negotiated to (using
parport_negotiate()), as long as that mode supports forward transfers
(host to peripheral).

It is the caller’s responsibility to ensure that the first len bytes of buffer are
valid.

This function returns the number of bytes transferred (if zero or positive), or
else an error code.

ssize_t parport_read(struct parport * port, void * buffer, size_t len)
read a block of data from a parallel port

Parameters
struct parport * port port to read from

void * buffer data buffer (in kernel space)

size_t len number of bytes of data to transfer

This will read up to len bytes of buffer to the port specified, us-
ing the IEEE 1284 transfer mode most recently negotiated to (using
parport_negotiate()), as long as that mode supports reverse transfers (pe-
ripheral to host).

It is the caller’s responsibility to ensure that the first len bytes of buffer are
available to write to.

This function returns the number of bytes transferred (if zero or positive), or
else an error code.

long parport_set_timeout(struct pardevice * dev, long inactivity)
set the inactivity timeout for a device

Parameters
struct pardevice * dev device on a port

long inactivity inactivity timeout (in jiffies)

This sets the inactivity timeout for a particular device on a port. This affects
functions like parport_wait_peripheral(). The special value 0 means not
to call schedule() while dealing with this device.

The return value is the previous inactivity timeout.

Any callers of parport_wait_event() for this device are woken up.

int __parport_register_driver(struct parport_driver * drv, struct module
* owner, const char * mod_name)

register a parallel port device driver

Parameters
struct parport_driver * drv structure describing the driver

struct module * owner owner module of drv

const char * mod_name module name string

1177

Linux Driver-api Documentation

This can be called by a parallel port device driver in order to receive noti-
fications about ports being found in the system, as well as ports no longer
available.

If devmodel is true then the new device model is used for registration.

The drv structure is allocated by the caller and must not be deallocated until
after calling parport_unregister_driver().

If using the non device model: The driver’s attach() function may block. The
port that attach() is given will be valid for the duration of the callback, but if
the driver wants to take a copy of the pointer it must call parport_get_port()
to do so. Calling parport_register_device() on that port will do this for you.

The driver’s detach() function may block. The port that detach() is given will
be valid for the duration of the callback, but if the driver wants to take a copy
of the pointer it must call parport_get_port() to do so.

Returns 0 on success. The non device model will always succeeds. but the
new device model can fail and will return the error code.

void parport_unregister_driver(struct parport_driver * drv)
deregister a parallel port device driver

Parameters
struct parport_driver * drv structure describing the driver that was given to

parport_register_driver()

This should be called by a parallel port device driver that has reg-
istered itself using parport_register_driver() when it is about to be
unloaded.

When it returns, the driver’s attach() routine will no longer be called,
and for each port that attach() was called for, the detach() routine will
have been called.

All the driver’s attach() and detach() calls are guaranteed to have
finished by the time this function returns.

struct parport * parport_get_port(struct parport * port)
increment a port’s reference count

Parameters
struct parport * port the port

This ensures that a struct parport pointer remains valid until the matching
parport_put_port() call.

void parport_put_port(struct parport * port)
decrement a port’s reference count

Parameters
struct parport * port the port

This should be called once for each call to parport_get_port(), once the
port is no longer needed. When the reference count reaches zero (port is no
longer used), free_port is called.

1178 Chapter 36. Parallel Port Devices

Linux Driver-api Documentation

struct parport * parport_register_port(unsigned long base, int irq,
int dma, struct par-
port_operations * ops)

register a parallel port

Parameters
unsigned long base base I/O address

int irq IRQ line

int dma DMA channel

struct parport_operations * ops pointer to the port driver’s port operations
structure

When a parallel port (lowlevel) driver finds a port that should be made avail-
able to parallel port device drivers, it should call parport_register_port().
The base, irq, and dma parameters are for the convenience of port drivers,
and for ports where they aren’t meaningful needn’t be set to anything spe-
cial. They can be altered afterwards by adjusting the relevant members of
the parport structure that is returned and represents the port. They should
not be tampered with after calling parport_announce_port, however.

If there are parallel port device drivers in the system that have registered
themselves using parport_register_driver(), they are not told about the port
at this time; that is done by parport_announce_port().

The ops structure is allocated by the caller, and must not be deallocated be-
fore calling parport_remove_port().

If there is no memory to allocate a new parport structure, this function will
return NULL.

void parport_announce_port(struct parport * port)
tell device drivers about a parallel port

Parameters
struct parport * port parallel port to announce

After a port driver has registered a parallel port with parport_register_port,
and performed any necessary initialisation or adjustments, it should call
parport_announce_port() in order to notify all device drivers that have
called parport_register_driver(). Their attach() functions will be called, with
port as the parameter.

void parport_remove_port(struct parport * port)
deregister a parallel port

Parameters
struct parport * port parallel port to deregister

When a parallel port driver is forcibly unloaded, or a parallel port becomes
inaccessible, the port drivermust call this function in order to deal with device
drivers that still want to use it.

The parport structure associated with the port has its operations structure
replaced with one containing‘null’operations that return errors or just don’

1179

Linux Driver-api Documentation

t do anything.

Any drivers that have registered themselves using parport_register_driver()
are notified that the port is no longer accessible by having their detach()
routines called with port as the parameter.

struct pardevice * parport_register_dev_model(struct parport * port,
const char * name,
const struct pardev_cb
* par_dev_cb, int id)

register a device on a parallel port

Parameters
struct parport * port port to which the device is attached

const char * name a name to refer to the device

const struct pardev_cb * par_dev_cb struct containing callbacks

int id device number to be given to the device

This function, called by parallel port device drivers, declares that a device is
connected to a port, and tells the system all it needs to know.

The struct pardev_cb contains pointer to callbacks. preemption callback func-
tion, preempt, is called when this device driver has claimed access to the port
but another device driver wants to use it. It is given, private, as its parame-
ter, and should return zero if it is willing for the system to release the port to
another driver on its behalf. If it wants to keep control of the port it should re-
turn non-zero, and no action will be taken. It is good manners for the driver to
try to release the port at the earliest opportunity after its preemption callback
rejects a preemption attempt. Note that if a preemption callback is happy for
preemption to go ahead, there is no need to release the port; it is done au-
tomatically. This function may not block, as it may be called from interrupt
context. If the device driver does not support preemption, preempt can be
NULL.

The wake-up (“kick”) callback function, wakeup, is called when the port
is available to be claimed for exclusive access; that is, parport_claim() is
guaranteed to succeedwhen called from inside thewake-up callback function.
If the driver wants to claim the port it should do so; otherwise, it need not take
any action. This function may not block, as it may be called from interrupt
context. If the device driver does not want to be explicitly invited to claim the
port in this way, wakeup can be NULL.
The interrupt handler, irq_func, is called when an interrupt arrives from the
parallel port. Note that if a device driver wants to use interrupts it should
use parport_enable_irq(), and can also check the irq member of the parport
structure representing the port.

The parallel port (lowlevel) driver is the one that has called request_irq() and
whose interrupt handler is called first. This handler does whatever needs
to be done to the hardware to acknowledge the interrupt (for PC-style ports
there is nothing special to be done). It then tells the IEEE 1284 code about
the interrupt, which may involve reacting to an IEEE 1284 event depending

1180 Chapter 36. Parallel Port Devices

Linux Driver-api Documentation

on the current IEEE 1284 phase. After this, it calls irq_func. Needless to
say, irq_func will be called from interrupt context, and may not block.

The PARPORT_DEV_EXCL flag is for preventing port sharing, and so should only
be used when sharing the port with other device drivers is impossible and
would lead to incorrect behaviour. Use it sparingly! Normally, flags will be
zero.

This function returns a pointer to a structure that represents the device on
the port, or NULL if there is not enough memory to allocate space for that
structure.

void parport_unregister_device(struct pardevice * dev)
deregister a device on a parallel port

Parameters
struct pardevice * dev pointer to structure representing device

This undoes the effect of parport_register_device().

struct parport * parport_find_number(int number)
find a parallel port by number

Parameters
int number parallel port number

This returns the parallel port with the specified number, or NULL if there is
none.

There is an implicit parport_get_port() done already; to throw away
the reference to the port that parport_find_number() gives you, use
parport_put_port().

struct parport * parport_find_base(unsigned long base)
find a parallel port by base address

Parameters
unsigned long base base I/O address

This returns the parallel port with the specified base address, or NULL if there
is none.

There is an implicit parport_get_port() done already; to throw away
the reference to the port that parport_find_base() gives you, use
parport_put_port().

int parport_claim(struct pardevice * dev)
claim access to a parallel port device

Parameters
struct pardevice * dev pointer to structure representing a device on the port

This function will not block and so can be used from interrupt context. If
parport_claim() succeeds in claiming access to the port it returns zero and
the port is available to use. It may fail (returning non-zero) if the port is in
use by another driver and that driver is not willing to relinquish control of the
port.

1181

Linux Driver-api Documentation

int parport_claim_or_block(struct pardevice * dev)
claim access to a parallel port device

Parameters
struct pardevice * dev pointer to structure representing a device on the port

This behaves like parport_claim(), but will block if necessary to wait for
the port to be free. A return value of 1 indicates that it slept; 0 means that it
succeeded without needing to sleep. A negative error code indicates failure.

void parport_release(struct pardevice * dev)
give up access to a parallel port device

Parameters
struct pardevice * dev pointer to structure representing parallel port device

This function cannot fail, but it should not be called without the port claimed.
Similarly, if the port is already claimed you should not try claiming it again.

struct pardevice * parport_open(int devnum, const char * name)
find a device by canonical device number

Parameters
int devnum canonical device number

const char * name name to associate with the device

This function is similar to parport_register_device(), except that it locates a
device by its number rather than by the port it is attached to.

All parameters except for devnum are the same as for par-
port_register_device(). The return value is the same as for par-
port_register_device().

void parport_close(struct pardevice * dev)
close a device opened with parport_open()

Parameters
struct pardevice * dev device to close

This is to parport_open() as parport_unregister_device() is to par-
port_register_device().

1182 Chapter 36. Parallel Port Devices

CHAPTER

THIRTYSEVEN

16X50 UART DRIVER

void uart_update_timeout(struct uart_port * port, unsigned int cflag, un-
signed int baud)

update per-port FIFO timeout.

Parameters
struct uart_port * port uart_port structure describing the port

unsigned int cflag termios cflag value

unsigned int baud speed of the port

Set the port FIFO timeout value. The cflag value should reflect the actual
hardware settings.

unsigned int uart_get_baud_rate(struct uart_port * port, struct ktermios
* termios, struct ktermios * old, unsigned
int min, unsigned int max)

return baud rate for a particular port

Parameters
struct uart_port * port uart_port structure describing the port in question.

struct ktermios * termios desired termios settings.

struct ktermios * old old termios (or NULL)

unsigned int min minimum acceptable baud rate

unsigned int max maximum acceptable baud rate

Decode the termios structure into a numeric baud rate, taking account of the
magic 38400 baud rate (with spd_* flags), and mapping the B0 rate to 9600
baud.

If the new baud rate is invalid, try the old termios setting. If it’s still invalid,
we try 9600 baud.

Update the termios structure to reflect the baud rate we’re actually going
to be using. Don’t do this for the case where B0 is requested (“hang up”).

unsigned int uart_get_divisor(struct uart_port * port, unsigned int baud)
return uart clock divisor

Parameters
struct uart_port * port uart_port structure describing the port.

1183

Linux Driver-api Documentation

unsigned int baud desired baud rate

Calculate the uart clock divisor for the port.

void uart_console_write(struct uart_port * port, const char * s, unsigned
int count, void (*putchar)(struct uart_port *, int))

write a console message to a serial port

Parameters
struct uart_port * port the port to write the message

const char * s array of characters

unsigned int count number of characters in string to write

void (*)(struct uart_port *, int) putchar function to write character to
port

int uart_parse_earlycon(char * p, unsigned char * iotype, resource_size_t
* addr, char ** options)

Parse earlycon options

Parameters
char * p ptr to 2nd field (ie., just beyond ‘<name>,’)
unsigned char * iotype ptr for decoded iotype (out)

resource_size_t * addr ptr for decoded mapbase/iobase (out)

char ** options ptr for <options> field; NULL if not present (out)

Decodes earlycon kernel command line parameters of the form
earlycon=<name>,io|mmio|mmio16|mmio32|mmio32be|mmio32native,<addr>,<options>
console=<name>,io|mmio|mmio16|mmio32|mmio32be|mmio32native,<addr>,<options>

The optional form

earlycon=<name>,0x<addr>,<options> con-
sole=<name>,0x<addr>,<options>

is also accepted; the returned iotype will be UPIO_MEM.
Returns 0 on success or -EINVAL on failure

void uart_parse_options(const char * options, int * baud, int * parity, int
* bits, int * flow)

Parse serial port baud/parity/bits/flow control.

Parameters
const char * options pointer to option string

int * baud pointer to an ‘int’variable for the baud rate.
int * parity pointer to an ‘int’variable for the parity.
int * bits pointer to an ‘int’variable for the number of data bits.
int * flow pointer to an ‘int’variable for the flow control character.

uart_parse_options decodes a string containing the serial console options.
The format of the string is <baud><parity><bits><flow>, eg: 115200n8r

1184 Chapter 37. 16x50 UART Driver

Linux Driver-api Documentation

int uart_set_options(struct uart_port * port, struct console * co, int baud,
int parity, int bits, int flow)

setup the serial console parameters

Parameters
struct uart_port * port pointer to the serial ports uart_port structure

struct console * co console pointer

int baud baud rate

int parity parity character - ‘n’(none), ‘o’(odd), ‘e’(even)
int bits number of data bits

int flow flow control character - ‘r’(rts)
int uart_register_driver(struct uart_driver * drv)

register a driver with the uart core layer

Parameters
struct uart_driver * drv low level driver structure

Register a uart driver with the core driver. We in turn register with the tty
layer, and initialise the core driver per-port state.

We have a proc file in /proc/tty/driver which is named after the normal driver.

drv->port should be NULL, and the per-port structures should be registered
using uart_add_one_port after this call has succeeded.

void uart_unregister_driver(struct uart_driver * drv)
remove a driver from the uart core layer

Parameters
struct uart_driver * drv low level driver structure

Remove all references to a driver from the core driver. The low level driver
must have removed all its ports via the uart_remove_one_port() if it regis-
tered them with uart_add_one_port(). (ie, drv->port == NULL)

int uart_add_one_port(struct uart_driver * drv, struct uart_port * uport)
attach a driver-defined port structure

Parameters
struct uart_driver * drv pointer to the uart low level driver structure for this

port

struct uart_port * uport uart port structure to use for this port.

This allows the driver to register its own uart_port structure with the core
driver. The main purpose is to allow the low level uart drivers to expand
uart_port, rather than having yet more levels of structures.

int uart_remove_one_port(struct uart_driver * drv, struct uart_port * uport)
detach a driver defined port structure

Parameters

1185

Linux Driver-api Documentation

struct uart_driver * drv pointer to the uart low level driver structure for this
port

struct uart_port * uport uart port structure for this port

This unhooks (and hangs up) the specified port structure from the core driver.
No further calls will be made to the low-level code for this port.

void uart_handle_dcd_change(struct uart_port * uport, unsigned int status)
handle a change of carrier detect state

Parameters
struct uart_port * uport uart_port structure for the open port

unsigned int status new carrier detect status, nonzero if active

Caller must hold uport->lock

void uart_handle_cts_change(struct uart_port * uport, unsigned int status)
handle a change of clear-to-send state

Parameters
struct uart_port * uport uart_port structure for the open port

unsigned int status new clear to send status, nonzero if active

Caller must hold uport->lock

void uart_insert_char(struct uart_port * port, unsigned int status, un-
signed int overrun, unsigned int ch, unsigned
int flag)

push a char to the uart layer

Parameters
struct uart_port * port corresponding port

unsigned int status state of the serial port RX buffer (LSR for 8250)

unsigned int overrun mask of overrun bits in status
unsigned int ch character to push

unsigned int flag flag for the character (see TTY_NORMAL and friends)

Description
User is responsible to call tty_flip_buffer_push when they are done with insertion.

int uart_get_rs485_mode(struct uart_port * port)
retrieve rs485 properties for given uart

Parameters
struct uart_port * port undescribed

Description
This function implements the device tree binding described in Documenta-
tion/devicetree/bindings/serial/rs485.txt.

1186 Chapter 37. 16x50 UART Driver

Linux Driver-api Documentation

struct uart_8250_port * serial8250_get_port(int line)
retrieve struct uart_8250_port

Parameters
int line serial line number

Description
This function retrieves struct uart_8250_port for the specific line. This struct must
not be used to perform a 8250 or serial core operation which is not accessible
otherwise. Its only purpose is to make the struct accessible to the runtime-pm
callbacks for context suspend/restore. The lock assumption made here is none
because runtime-pm suspend/resume callbacks should not be invoked if there is
any operation performed on the port.

void serial8250_suspend_port(int line)
suspend one serial port

Parameters
int line serial line number

Suspend one serial port.

void serial8250_resume_port(int line)
resume one serial port

Parameters
int line serial line number

Resume one serial port.

int serial8250_register_8250_port(struct uart_8250_port * up)
register a serial port

Parameters
struct uart_8250_port * up serial port template

Configure the serial port specified by the request. If the port exists and is in
use, it is hung up and unregistered first.

The port is then probed and if necessary the IRQ is autodetected If this fails
an error is returned.

On success the port is ready to use and the line number is returned.

void serial8250_unregister_port(int line)
remove a 16x50 serial port at runtime

Parameters
int line serial line number

Remove one serial port. This may not be called from interrupt context. We
hand the port back to the our control.

1187

Linux Driver-api Documentation

1188 Chapter 37. 16x50 UART Driver

CHAPTER

THIRTYEIGHT

PULSE-WIDTH MODULATION (PWM)

Pulse-width modulation is a modulation technique primarily used to control power
supplied to electrical devices.

The PWM framework provides an abstraction for providers and consumers of PWM
signals. A controller that provides one or more PWM signals is registered as
struct pwm_chip. Providers are expected to embed this structure in a driver-
specific structure. This structure contains fields that describe a particular chip.

A chip exposes one or more PWM signal sources, each of which exposed as a
struct pwm_device. Operations can be performed on PWM devices to control the
period, duty cycle, polarity and active state of the signal.

Note that PWM devices are exclusive resources: they can always only be used by
one consumer at a time.

enum pwm_polarity
polarity of a PWM signal

Constants
PWM_POLARITY_NORMAL a high signal for the duration of the duty- cycle, followed

by a low signal for the remainder of the pulse period

PWM_POLARITY_INVERSED a low signal for the duration of the duty- cycle, followed
by a high signal for the remainder of the pulse period

struct pwm_args
board-dependent PWM arguments

Definition

struct pwm_args {
unsigned int period;
enum pwm_polarity polarity;

};

Members
period reference period

polarity reference polarity

Description
This structure describes board-dependent arguments attached to a PWM device.
These arguments are usually retrieved from the PWM lookup table or device tree.

1189

Linux Driver-api Documentation

Do not confuse this with the PWM state: PWM arguments represent the initial
configuration that users want to use on this PWM device rather than the current
PWM hardware state.

struct pwm_device
PWM channel object

Definition

struct pwm_device {
const char *label;
unsigned long flags;
unsigned int hwpwm;
unsigned int pwm;
struct pwm_chip *chip;
void *chip_data;
struct pwm_args args;
struct pwm_state state;
struct pwm_state last;

};

Members
label name of the PWM device

flags flags associated with the PWM device

hwpwm per-chip relative index of the PWM device

pwm global index of the PWM device

chip PWM chip providing this PWM device

chip_data chip-private data associated with the PWM device

args PWM arguments

state last applied state

last last implemented state (for PWM_DEBUG)

void pwm_get_state(const struct pwm_device * pwm, struct pwm_state
* state)

retrieve the current PWM state

Parameters
const struct pwm_device * pwm PWM device

struct pwm_state * state state to fill with the current PWM state

void pwm_init_state(const struct pwm_device * pwm, struct pwm_state
* state)

prepare a new state to be applied with pwm_apply_state()

Parameters
const struct pwm_device * pwm PWM device

struct pwm_state * state state to fill with the prepared PWM state

Description

1190 Chapter 38. Pulse-Width Modulation (PWM)

Linux Driver-api Documentation

This functions prepares a state that can later be tweaked and applied to the PWM
device with pwm_apply_state(). This is a convenient function that first retrieves
the current PWM state and the replaces the period and polarity fields with the
reference values defined in pwm->args. Once the function returns, you can ad-
just the ->enabled and ->duty_cycle fields according to your needs before calling
pwm_apply_state().

->duty_cycle is initially set to zero to avoid cases where the current ->duty_cycle
value exceed the pwm_args->period one, which would trigger an error if the user
calls pwm_apply_state() without adjusting ->duty_cycle first.

unsigned int pwm_get_relative_duty_cycle(const struct pwm_state
* state, unsigned int scale)

Get a relative duty cycle value

Parameters
const struct pwm_state * state PWM state to extract the duty cycle from

unsigned int scale target scale of the relative duty cycle

Description
This functions converts the absolute duty cycle stored in state (expressed in
nanosecond) into a value relative to the period.

For example if you want to get the duty_cycle expressed in percent, call:

pwm_get_state(pwm, state); duty = pwm_get_relative_duty_cycle(state, 100);

int pwm_set_relative_duty_cycle(struct pwm_state * state, unsigned
int duty_cycle, unsigned int scale)

Set a relative duty cycle value

Parameters
struct pwm_state * state PWM state to fill

unsigned int duty_cycle relative duty cycle value

unsigned int scale scale in which duty_cycle is expressed
Description
This functions converts a relative into an absolute duty cycle (expressed in
nanoseconds), and puts the result in state->duty_cycle.

For example if you want to configure a 50% duty cycle, call:

pwm_init_state(pwm, state); pwm_set_relative_duty_cycle(state, 50, 100);
pwm_apply_state(pwm, state);

This functions returns -EINVAL if duty_cycle and/or scale are inconsistent (scale
== 0 or duty_cycle > scale).
struct pwm_ops

PWM controller operations

Definition

1191

Linux Driver-api Documentation

struct pwm_ops {
int (*request)(struct pwm_chip *chip, struct pwm_device *pwm);
void (*free)(struct pwm_chip *chip, struct pwm_device *pwm);
int (*capture)(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_

↪→capture *result, unsigned long timeout);
int (*apply)(struct pwm_chip *chip, struct pwm_device *pwm, const struct␣

↪→pwm_state *state);
void (*get_state)(struct pwm_chip *chip, struct pwm_device *pwm, struct␣

↪→pwm_state *state);
struct module *owner;
int (*config)(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns,

↪→ int period_ns);
int (*set_polarity)(struct pwm_chip *chip, struct pwm_device *pwm, enum␣

↪→pwm_polarity polarity);
int (*enable)(struct pwm_chip *chip, struct pwm_device *pwm);
void (*disable)(struct pwm_chip *chip, struct pwm_device *pwm);

};

Members
request optional hook for requesting a PWM

free optional hook for freeing a PWM

capture capture and report PWM signal

apply atomically apply a new PWM config

get_state get the current PWM state. This function is only called once per PWM
device when the PWM chip is registered.

owner helps prevent removal of modules exporting active PWMs

config configure duty cycles and period length for this PWM

set_polarity configure the polarity of this PWM

enable enable PWM output toggling

disable disable PWM output toggling

struct pwm_chip
abstract a PWM controller

Definition

struct pwm_chip {
struct device *dev;
const struct pwm_ops *ops;
int base;
unsigned int npwm;
struct pwm_device * (*of_xlate)(struct pwm_chip *pc, const struct of_

↪→phandle_args *args);
unsigned int of_pwm_n_cells;
struct list_head list;
struct pwm_device *pwms;

};

Members
dev device providing the PWMs

1192 Chapter 38. Pulse-Width Modulation (PWM)

Linux Driver-api Documentation

ops callbacks for this PWM controller

base number of first PWM controlled by this chip

npwm number of PWMs controlled by this chip

of_xlate request a PWM device given a device tree PWM specifier

of_pwm_n_cells number of cells expected in the device tree PWM specifier

list list node for internal use

pwms array of PWM devices allocated by the framework

struct pwm_capture
PWM capture data

Definition

struct pwm_capture {
unsigned int period;
unsigned int duty_cycle;

};

Members
period period of the PWM signal (in nanoseconds)

duty_cycle duty cycle of the PWM signal (in nanoseconds)

int pwm_config(struct pwm_device * pwm, int duty_ns, int period_ns)
change a PWM device configuration

Parameters
struct pwm_device * pwm PWM device

int duty_ns“on”time (in nanoseconds)
int period_ns duration (in nanoseconds) of one cycle

Return
0 on success or a negative error code on failure.

int pwm_enable(struct pwm_device * pwm)
start a PWM output toggling

Parameters
struct pwm_device * pwm PWM device

Return
0 on success or a negative error code on failure.

void pwm_disable(struct pwm_device * pwm)
stop a PWM output toggling

Parameters
struct pwm_device * pwm PWM device

int pwm_set_chip_data(struct pwm_device * pwm, void * data)
set private chip data for a PWM

1193

Linux Driver-api Documentation

Parameters
struct pwm_device * pwm PWM device

void * data pointer to chip-specific data

Return
0 on success or a negative error code on failure.

void * pwm_get_chip_data(struct pwm_device * pwm)
get private chip data for a PWM

Parameters
struct pwm_device * pwm PWM device

Return
A pointer to the chip-private data for the PWM device.

int pwmchip_add_with_polarity(struct pwm_chip * chip, enum
pwm_polarity polarity)

register a new PWM chip

Parameters
struct pwm_chip * chip the PWM chip to add

enum pwm_polarity polarity initial polarity of PWM channels

Description
Register a new PWM chip. If chip->base < 0 then a dynamically assigned base will
be used. The initial polarity for all channels is specified by the polarity parameter.
Return
0 on success or a negative error code on failure.

int pwmchip_add(struct pwm_chip * chip)
register a new PWM chip

Parameters
struct pwm_chip * chip the PWM chip to add

Description
Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
will be used. The initial polarity for all channels is normal.

Return
0 on success or a negative error code on failure.

int pwmchip_remove(struct pwm_chip * chip)
remove a PWM chip

Parameters
struct pwm_chip * chip the PWM chip to remove

1194 Chapter 38. Pulse-Width Modulation (PWM)

Linux Driver-api Documentation

Description
Removes a PWM chip. This function may return busy if the PWM chip provides a
PWM device that is still requested.

Return
0 on success or a negative error code on failure.

struct pwm_device * pwm_request(int pwm, const char * label)
request a PWM device

Parameters
int pwm global PWM device index

const char * label PWM device label

Description
This function is deprecated, use pwm_get() instead.

Return
A pointer to a PWM device or an ERR_PTR()-encoded error code on failure.

struct pwm_device * pwm_request_from_chip(struct pwm_chip * chip, un-
signed int index, const char
* label)

request a PWM device relative to a PWM chip

Parameters
struct pwm_chip * chip PWM chip

unsigned int index per-chip index of the PWM to request

const char * label a literal description string of this PWM

Return
A pointer to the PWM device at the given index of the given PWM chip. A negative
error code is returned if the index is not valid for the specified PWM chip or if the
PWM device cannot be requested.

void pwm_free(struct pwm_device * pwm)
free a PWM device

Parameters
struct pwm_device * pwm PWM device

Description
This function is deprecated, use pwm_put() instead.

int pwm_apply_state(struct pwm_device * pwm, const struct pwm_state
* state)

atomically apply a new state to a PWM device

Parameters
struct pwm_device * pwm PWM device

const struct pwm_state * state new state to apply

1195

Linux Driver-api Documentation

int pwm_capture(struct pwm_device * pwm, struct pwm_capture * result, un-
signed long timeout)

capture and report a PWM signal

Parameters
struct pwm_device * pwm PWM device

struct pwm_capture * result structure to fill with capture result

unsigned long timeout time to wait, in milliseconds, before giving up on capture

Return
0 on success or a negative error code on failure.

int pwm_adjust_config(struct pwm_device * pwm)
adjust the current PWM config to the PWM arguments

Parameters
struct pwm_device * pwm PWM device

Description
This function will adjust the PWM config to the PWM arguments provided by the
DT or PWM lookup table. This is particularly useful to adapt the bootloader config
to the Linux one.

struct pwm_device * of_pwm_get(struct device * dev, struct device_node
* np, const char * con_id)

request a PWM via the PWM framework

Parameters
struct device * dev device for PWM consumer

struct device_node * np device node to get the PWM from

const char * con_id consumer name

Description
Returns the PWM device parsed from the phandle and index specified in the
“pwms”property of a device tree node or a negative error-code on failure. Val-
ues parsed from the device tree are stored in the returned PWM device object.

If con_id is NULL, the first PWM device listed in the “pwms”property will be
requested. Otherwise the “pwm-names”property is used to do a reverse lookup
of the PWM index. This also means that the “pwm-names”property becomes
mandatory for devices that look up the PWM device via the con_id parameter.

Return
A pointer to the requested PWM device or an ERR_PTR()-encoded error code on
failure.

struct pwm_device * pwm_get(struct device * dev, const char * con_id)
look up and request a PWM device

Parameters
struct device * dev device for PWM consumer

1196 Chapter 38. Pulse-Width Modulation (PWM)

Linux Driver-api Documentation

const char * con_id consumer name

Description
Lookup is first attempted using DT. If the device was not instantiated from a device
tree, a PWM chip and a relative index is looked up via a table supplied by board
setup code (see pwm_add_table()).

Once a PWM chip has been found the specified PWM device will be requested and
is ready to be used.

Return
A pointer to the requested PWM device or an ERR_PTR()-encoded error code on
failure.

void pwm_put(struct pwm_device * pwm)
release a PWM device

Parameters
struct pwm_device * pwm PWM device

struct pwm_device * devm_pwm_get(struct device * dev, const char * con_id)
resource managed pwm_get()

Parameters
struct device * dev device for PWM consumer

const char * con_id consumer name

Description
This function performs like pwm_get() but the acquired PWM device will automat-
ically be released on driver detach.

Return
A pointer to the requested PWM device or an ERR_PTR()-encoded error code on
failure.

struct pwm_device * devm_of_pwm_get(struct device * dev, struct de-
vice_node * np, const char * con_id)

resource managed of_pwm_get()

Parameters
struct device * dev device for PWM consumer

struct device_node * np device node to get the PWM from

const char * con_id consumer name

Description
This function performs like of_pwm_get() but the acquired PWM device will auto-
matically be released on driver detach.

Return
A pointer to the requested PWM device or an ERR_PTR()-encoded error code on
failure.

1197

Linux Driver-api Documentation

struct pwm_device * devm_fwnode_pwm_get(struct device * dev, struct fwn-
ode_handle * fwnode, const
char * con_id)

request a resource managed PWM from firmware node

Parameters
struct device * dev device for PWM consumer

struct fwnode_handle * fwnode firmware node to get the PWM from

const char * con_id consumer name

Description
Returns the PWM device parsed from the firmware node. See of_pwm_get() and
acpi_pwm_get() for a detailed description.

Return
A pointer to the requested PWM device or an ERR_PTR()-encoded error code on
failure.

void devm_pwm_put(struct device * dev, struct pwm_device * pwm)
resource managed pwm_put()

Parameters
struct device * dev device for PWM consumer

struct pwm_device * pwm PWM device

Description
Release a PWM previously allocated using devm_pwm_get(). Calling this func-
tion is usually not needed because devm-allocated resources are automatically
released on driver detach.

1198 Chapter 38. Pulse-Width Modulation (PWM)

CHAPTER

THIRTYNINE

INTEL(R) MANAGEMENT ENGINE INTERFACE (INTEL(R)
MEI)

Copyright © 2019 Intel Corporation

39.1 Introduction

The Intel Management Engine (Intel ME) is an isolated and protected comput-
ing resource (Co-processor) residing inside certain Intel chipsets. The Intel ME
provides support for computer/IT management and security features. The actual
feature set depends on the Intel chipset SKU.

The Intel Management Engine Interface (Intel MEI, previously known as HECI) is
the interface between the Host and Intel ME. This interface is exposed to the host
as a PCI device, actually multiple PCI devices might be exposed. The Intel MEI
Driver is in charge of the communication channel between a host application and
the Intel ME features.

Each Intel ME feature, or Intel ME Client is addressed by a unique GUID and
each client has its own protocol. The protocol is message-based with a header and
payload up to maximal number of bytes advertised by the client, upon connection.

39.2 Intel MEI Driver

The driver exposes a character device with device nodes /dev/meiX.

An application maintains communication with an Intel ME feature while
/dev/meiX is open. The binding to a specific feature is performed by calling
MEI_CONNECT_CLIENT_IOCTL, which passes the desired GUID. The number of in-
stances of an Intel ME feature that can be opened at the same time depends on
the Intel ME feature, but most of the features allow only a single instance.

The driver is transparent to data that are passed between firmware feature and
host application.

Because some of the Intel ME features can change the system configuration, the
driver by default allows only a privileged user to access it.

The session is terminated calling close(int fd)().

A code snippet for an application communicating with Intel AMTHI client:

1199

Linux Driver-api Documentation

struct mei_connect_client_data data;
fd = open(MEI_DEVICE);

data.d.in_client_uuid = AMTHI_GUID;

ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &data);

printf("Ver=%d, MaxLen=%ld\n",
data.d.in_client_uuid.protocol_version,
data.d.in_client_uuid.max_msg_length);

[...]

write(fd, amthi_req_data, amthi_req_data_len);

[...]

read(fd, &amthi_res_data, amthi_res_data_len);

[...]
close(fd);

User space API

39.3 IOCTLs:

The Intel MEI Driver supports the following IOCTL commands:

39.3.1 IOCTL_MEI_CONNECT_CLIENT

Connect to firmware Feature/Client.

Usage:

struct mei_connect_client_data client_data;

ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &client_data);

Inputs:

struct mei_connect_client_data - contain the following
Input field:

in_client_uuid - GUID of the FW Feature that needs
to connect to.

Outputs:
out_client_properties - Client Properties: MTU and Protocol␣

↪→Version.

Error returns:

ENOTTY No such client (i.e. wrong GUID) or connection is not␣
↪→allowed.

(continues on next page)

1200 Chapter 39. Intel(R) Management Engine Interface (Intel(R) MEI)

Linux Driver-api Documentation

(continued from previous page)
EINVAL Wrong IOCTL Number
ENODEV Device or Connection is not initialized or ready.
ENOMEM Unable to allocate memory to client internal data.
EFAULT Fatal Error (e.g. Unable to access user input data)
EBUSY Connection Already Open

Note max_msg_length (MTU) in client properties describes the maxi-
mum data that can be sent or received. (e.g. if MTU=2K, can send
requests up to bytes 2k and received responses up to 2k bytes).

39.3.2 IOCTL_MEI_NOTIFY_SET

Enable or disable event notifications.

Usage:

uint32_t enable;

ioctl(fd, IOCTL_MEI_NOTIFY_SET, &enable);

uint32_t enable = 1;
or
uint32_t enable[disable] = 0;

Error returns:

EINVAL Wrong IOCTL Number
ENODEV Device is not initialized or the client not connected
ENOMEM Unable to allocate memory to client internal data.
EFAULT Fatal Error (e.g. Unable to access user input data)
EOPNOTSUPP if the device doesn't support the feature

Note The client must be connected in order to enable notification events

39.3.3 IOCTL_MEI_NOTIFY_GET

Retrieve event

Usage:
uint32_t event;
ioctl(fd, IOCTL_MEI_NOTIFY_GET, &event);

Outputs:
1 - if an event is pending
0 - if there is no even pending

Error returns:
EINVAL Wrong IOCTL Number
ENODEV Device is not initialized or the client not connected
ENOMEM Unable to allocate memory to client internal data.

(continues on next page)

39.3. IOCTLs: 1201

Linux Driver-api Documentation

(continued from previous page)
EFAULT Fatal Error (e.g. Unable to access user input data)
EOPNOTSUPP if the device doesn't support the feature

Note The client must be connected and event notification has to be en-
abled in order to receive an event

39.4 Supported Chipsets

82X38/X48 Express and newer

linux-mei@linux.intel.com

39.5 Intel(R) Management Engine (ME) Client bus API

39.5.1 Rationale

The MEI character device is useful for dedicated applications to send and receive
data to the many FW appliance found in Intel’s ME from the user space. However,
for some of the ME functionalities it makes sense to leverage existing software
stack and expose them through existing kernel subsystems.

In order to plug seamlessly into the kernel device driver model we add kernel
virtual bus abstraction on top of the MEI driver. This allows implementing Linux
kernel drivers for the various MEI features as a stand alone entities found in their
respective subsystem. Existing device drivers can even potentially be re-used by
adding an MEI CL bus layer to the existing code.

39.5.2 MEI CL bus API

A driver implementation for an MEI Client is very similar to any other existing bus
based device drivers. The driver registers itself as an MEI CL bus driver through
the struct mei_cl_driver structure defined in include/linux/mei_cl_bus.c

struct mei_cl_driver {
struct device_driver driver;
const char *name;

const struct mei_cl_device_id *id_table;

int (*probe)(struct mei_cl_device *dev, const struct mei_cl_id␣
↪→*id);

int (*remove)(struct mei_cl_device *dev);
};

The mei_cl_device_id structure defined in include/linux/mod_devicetable.h al-
lows a driver to bind itself against a device name.

1202 Chapter 39. Intel(R) Management Engine Interface (Intel(R) MEI)

mailto:linux-mei@linux.intel.com

Linux Driver-api Documentation

struct mei_cl_device_id {
char name[MEI_CL_NAME_SIZE];
uuid_le uuid;
__u8 version;
kernel_ulong_t driver_info;

};

To actually register a driver on the ME Client bus one must call the
mei_cl_add_driver() API. This is typically called at module initialization time.

Once the driver is registered and bound to the device, a driver will typically try to
do some I/O on this bus and this should be done through the mei_cl_send() and
mei_cl_recv() functions. More detailed information is in API: section.

In order for a driver to be notified about pending traffic or event, the
driver should register a callback via mei_cl_devev_register_rx_cb() and
mei_cldev_register_notify_cb() function respectively.

API:

ssize_t mei_cldev_send(struct mei_cl_device * cldev, u8 * buf, size_t length)
me device send (write)

Parameters
struct mei_cl_device * cldev me client device

u8 * buf buffer to send

size_t length buffer length

Return
written size in bytes or < 0 on error

ssize_t mei_cldev_recv_nonblock(struct mei_cl_device * cldev, u8 * buf,
size_t length)

non block client receive (read)

Parameters
struct mei_cl_device * cldev me client device

u8 * buf buffer to receive

size_t length buffer length

Return
read size in bytes of < 0 on error -EAGAIN if function will block.
ssize_t mei_cldev_recv(struct mei_cl_device * cldev, u8 * buf, size_t length)

client receive (read)

Parameters
struct mei_cl_device * cldev me client device

u8 * buf buffer to receive

size_t length buffer length

39.5. Intel(R) Management Engine (ME) Client bus API 1203

Linux Driver-api Documentation

Return
read size in bytes of < 0 on error

int mei_cldev_register_rx_cb(struct mei_cl_device * cldev,
mei_cldev_cb_t rx_cb)

register Rx event callback

Parameters
struct mei_cl_device * cldev me client devices

mei_cldev_cb_t rx_cb callback function

Return
0 on success -EALREADY if an callback is already registered <0 on other errors
int mei_cldev_register_notif_cb(struct mei_cl_device * cldev,

mei_cldev_cb_t notif_cb)
register FW notification event callback

Parameters
struct mei_cl_device * cldev me client devices

mei_cldev_cb_t notif_cb callback function

Return
0 on success -EALREADY if an callback is already registered <0 on other errors
void * mei_cldev_get_drvdata(const struct mei_cl_device * cldev)

driver data getter

Parameters
const struct mei_cl_device * cldev mei client device

Return
driver private data

void mei_cldev_set_drvdata(struct mei_cl_device * cldev, void * data)
driver data setter

Parameters
struct mei_cl_device * cldev mei client device

void * data data to store

const uuid_le * mei_cldev_uuid(const struct mei_cl_device * cldev)
return uuid of the underlying me client

Parameters
const struct mei_cl_device * cldev mei client device

Return
me client uuid

u8 mei_cldev_ver(const struct mei_cl_device * cldev)
return protocol version of the underlying me client

1204 Chapter 39. Intel(R) Management Engine Interface (Intel(R) MEI)

Linux Driver-api Documentation

Parameters
const struct mei_cl_device * cldev mei client device

Return
me client protocol version

bool mei_cldev_enabled(struct mei_cl_device * cldev)
check whether the device is enabled

Parameters
struct mei_cl_device * cldev mei client device

Return
true if me client is initialized and connected

int mei_cldev_enable(struct mei_cl_device * cldev)
enable me client device create connection with me client

Parameters
struct mei_cl_device * cldev me client device

Return
0 on success and < 0 on error

int mei_cldev_disable(struct mei_cl_device * cldev)
disable me client device disconnect form the me client

Parameters
struct mei_cl_device * cldev me client device

Return
0 on success and < 0 on error

39.5.3 Example

As a theoretical example let’s pretend the ME comes with a “contact”NFC IP.
The driver init and exit routines for this device would look like:

#define CONTACT_DRIVER_NAME "contact"

static struct mei_cl_device_id contact_mei_cl_tbl[] = {
{ CONTACT_DRIVER_NAME, },

/* required last entry */
{ }

};
MODULE_DEVICE_TABLE(mei_cl, contact_mei_cl_tbl);

static struct mei_cl_driver contact_driver = {
.id_table = contact_mei_tbl,
.name = CONTACT_DRIVER_NAME,

.probe = contact_probe,
(continues on next page)

39.5. Intel(R) Management Engine (ME) Client bus API 1205

Linux Driver-api Documentation

(continued from previous page)
.remove = contact_remove,

};

static int contact_init(void)
{

int r;

r = mei_cl_driver_register(&contact_driver);
if (r) {

pr_err(CONTACT_DRIVER_NAME ": driver registration failed\n
↪→");

return r;
}

return 0;
}

static void __exit contact_exit(void)
{

mei_cl_driver_unregister(&contact_driver);
}

module_init(contact_init);
module_exit(contact_exit);

And the driver’s simplified probe routine would look like that:
int contact_probe(struct mei_cl_device *dev, struct mei_cl_device_id *id)
{

[...]
mei_cldev_enable(dev);

mei_cldev_register_rx_cb(dev, contact_rx_cb);

return 0;
}

In the probe routine the driver first enable the MEI device and then registers an
rx handler which is as close as it can get to registering a threaded IRQ handler.
The handler implementation will typically call mei_cldev_recv() and then process
received data.

#define MAX_PAYLOAD 128
#define HDR_SIZE 4
static void conntact_rx_cb(struct mei_cl_device *cldev)
{

struct contact *c = mei_cldev_get_drvdata(cldev);
unsigned char payload[MAX_PAYLOAD];
ssize_t payload_sz;

payload_sz = mei_cldev_recv(cldev, payload, MAX_PAYLOAD)
if (reply_size < HDR_SIZE) {

return;
}

(continues on next page)

1206 Chapter 39. Intel(R) Management Engine Interface (Intel(R) MEI)

Linux Driver-api Documentation

(continued from previous page)
c->process_rx(payload);

}

39.5.4 MEI Client Bus Drivers

HDCP:

ME FW as a security engine provides the capability for setting up HDCP2.2 pro-
tocol negotiation between the Intel graphics device and an HDC2.2 sink.

ME FW prepares HDCP2.2 negotiation parameters, signs and encrypts them ac-
cording the HDCP 2.2 spec. The Intel graphics sends the created blob to the
HDCP2.2 sink.

Similarly, the HDCP2.2 sink’s response is transferred to ME FW for decryption
and verification.

Once all the steps of HDCP2.2 negotiation are completed, upon request ME FW
will configure the port as authenticated and supply the HDCP encryption keys to
Intel graphics hardware.

mei_hdcp driver

The mei_hdcp driver acts as a translation layer between HDCP 2.2 protocol imple-
menter (I915) and ME FW by translating HDCP2.2 negotiation messages to ME
FW command payloads and vice versa.

mei_hdcp api

int mei_hdcp_initiate_session(struct device * dev, struct hdcp_port_data
* data, struct hdcp2_ake_init * ake_data)

Initiate a Wired HDCP2.2 Tx Session in ME FW

Parameters
struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

struct hdcp2_ake_init * ake_data AKE_Init msg output.

Return
0 on Success, <0 on Failure.

39.5. Intel(R) Management Engine (ME) Client bus API 1207

Linux Driver-api Documentation

int mei_hdcp_verify_receiver_cert_prepare_km(struct device * dev,
struct hdcp_port_data
* data, struct
hdcp2_ake_send_cert
* rx_cert, bool
* km_stored, struct
hdcp2_ake_no_stored_km
* ek_pub_km, size_t
* msg_sz)

Verify the Receiver Certificate AKE_Send_Cert and prepare
AKE_Stored_Km/AKE_No_Stored_Km

Parameters
struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

struct hdcp2_ake_send_cert * rx_cert AKE_Send_Cert for verification

bool * km_stored Pairing status flag output

struct hdcp2_ake_no_stored_km * ek_pub_km AKE_Stored_Km/AKE_No_Stored_Km
output msg

size_t * msg_sz size of AKE_XXXXX_Km output msg

Return
0 on Success, <0 on Failure

int mei_hdcp_verify_hprime(struct device * dev, struct hdcp_port_data
* data, struct hdcp2_ake_send_hprime
* rx_hprime)

Verify AKE_Send_H_prime at ME FW.

Parameters
struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

struct hdcp2_ake_send_hprime * rx_hprime AKE_Send_H_prime msg for ME
FW verification

Return
0 on Success, <0 on Failure

int mei_hdcp_store_pairing_info(struct device * dev, struct
hdcp_port_data * data, struct
hdcp2_ake_send_pairing_info
* pairing_info)

Store pairing info received at ME FW

Parameters
struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

1208 Chapter 39. Intel(R) Management Engine Interface (Intel(R) MEI)

Linux Driver-api Documentation

struct hdcp2_ake_send_pairing_info * pairing_info
AKE_Send_Pairing_Info msg input to ME FW

Return
0 on Success, <0 on Failure

int mei_hdcp_initiate_locality_check(struct device * dev, struct
hdcp_port_data * data, struct
hdcp2_lc_init * lc_init_data)

Prepare LC_Init

Parameters
struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

struct hdcp2_lc_init * lc_init_data LC_Init msg output

Return
0 on Success, <0 on Failure

int mei_hdcp_verify_lprime(struct device * dev, struct hdcp_port_data
* data, struct hdcp2_lc_send_lprime
* rx_lprime)

Verify lprime.

Parameters
struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

struct hdcp2_lc_send_lprime * rx_lprime LC_Send_L_prime msg for ME FW
verification

Return
0 on Success, <0 on Failure

int mei_hdcp_get_session_key(struct device * dev, struct hdcp_port_data
* data, struct hdcp2_ske_send_eks
* ske_data)

Prepare SKE_Send_Eks.

Parameters
struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

struct hdcp2_ske_send_eks * ske_data SKE_Send_Eks msg output from ME
FW.

Return
0 on Success, <0 on Failure

39.5. Intel(R) Management Engine (ME) Client bus API 1209

Linux Driver-api Documentation

int mei_hdcp_repeater_check_flow_prepare_ack(struct device * dev,
struct hdcp_port_data
* data, struct
hdcp2_rep_send_receiverid_list
* rep_topology, struct
hdcp2_rep_send_ack
* rep_send_ack)

Validate the Downstream topology and prepare rep_ack.

Parameters
struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

struct hdcp2_rep_send_receiverid_list * rep_topology Receiver ID List to
be validated

struct hdcp2_rep_send_ack * rep_send_ack repeater ack from ME FW.

Return
0 on Success, <0 on Failure

int mei_hdcp_verify_mprime(struct device * dev, struct hdcp_port_data
* data, struct hdcp2_rep_stream_ready
* stream_ready)

Verify mprime.

Parameters
struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

struct hdcp2_rep_stream_ready * stream_ready RepeaterAuth_Stream_Ready
msg for ME FW verification.

Return
0 on Success, <0 on Failure

int mei_hdcp_enable_authentication(struct device * dev, struct
hdcp_port_data * data)

Mark a port as authenticated through ME FW

Parameters
struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

Return
0 on Success, <0 on Failure

int mei_hdcp_close_session(struct device * dev, struct hdcp_port_data
* data)

Close the Wired HDCP Tx session of ME FW per port. This also disables the
authenticated state of the port.

Parameters

1210 Chapter 39. Intel(R) Management Engine Interface (Intel(R) MEI)

Linux Driver-api Documentation

struct device * dev device corresponding to the mei_cl_device

struct hdcp_port_data * data Intel HW specific hdcp data

Return
0 on Success, <0 on Failure

int mei_hdcp_component_match(struct device * dev, int subcomponent, void
* data)

compare function for matching mei hdcp.

Parameters
struct device * dev master device

int subcomponent subcomponent to match (I915_COMPONENT_HDCP)

void * data compare data (mei hdcp device)

Description
The function checks if the driver is i915, the subcomponent is HDCP
and the grand parent of hdcp and the parent of i915 are the same PCH
device.

Return
• 1 - if components match

• 0 - otherwise

MEI NFC

Some Intel 8 and 9 Serieses chipsets supports NFC devices connected behind the
Intel Management Engine controller. MEI client bus exposes the NFC chips as
NFC phy devices and enables binding with Microread and NXP PN544 NFC device
driver from the Linux NFC subsystem.

39.6 Intel(R) Active Management Technology (Intel
AMT)

Prominent usage of the Intel ME Interface is to communicate with Intel(R) Active
Management Technology (Intel AMT) implemented in firmware running on the
Intel ME.

Intel AMT provides the ability to manage a host remotely out-of-band (OOB) even
when the operating system running on the host processor has crashed or is in a
sleep state.

Some examples of Intel AMT usage are:
• Monitoring hardware state and platform components

• Remote power off/on (useful for green computing or overnight IT main-
tenance)

• OS updates

39.6. Intel(R) Active Management Technology (Intel AMT) 1211

Linux Driver-api Documentation

mei/bus(nfc)

me fw (nfc)

drivers/nfc/mei_phy

drivers/nfc/microread/mei drivers/nfc/pn544/mei

net/nfc

neard

Fig. 1: MEI NFC Stack

1212 Chapter 39. Intel(R) Management Engine Interface (Intel(R) MEI)

Linux Driver-api Documentation

• Storage of useful platform information such as software assets

• Built-in hardware KVM

• Selective network isolation of Ethernet and IP protocol flows based on
policies set by a remote management console

• IDE device redirection from remote management console

Intel AMT (OOB) communication is based on SOAP (deprecated starting with Re-
lease 6.0) over HTTP/S orWS-Management protocol over HTTP/S that are received
from a remote management console application.

For more information about Intel AMT: https://software.intel.com/sites/
manageability/AMT_Implementation_and_Reference_Guide/default.htm

39.6.1 Intel AMT Applications

1) Intel Local Management Service (Intel LMS)

Applications running locally on the platform communicate with Intel AMT
Release 2.0 and later releases in the same way that network applications
do via SOAP over HTTP (deprecated starting with Release 6.0) or with WS-
Management over SOAP over HTTP. This means that some Intel AMT features
can be accessed from a local application using the same network interface as
a remote application communicating with Intel AMT over the network.

When a local application sends a message addressed to the local In-
tel AMT host name, the Intel LMS, which listens for traffic directed to
the host name, intercepts the message and routes it to the Intel MEI.
For more information: https://software.intel.com/sites/manageability/AMT_
Implementation_and_Reference_Guide/default.htm Under“About Intel AMT”
=> “Local Access”
For downloading Intel LMS: https://github.com/intel/lms

The Intel LMS opens a connection using the Intel MEI driver to the Intel
LMS firmware feature using a defined GUID and then communicates with
the feature using a protocol called Intel AMT Port Forwarding Protocol (Intel
APF protocol). The protocol is used to maintain multiple sessions with Intel
AMT from a single application.

See the protocol specification in the Intel AMT Software Development Kit
(SDK) https://software.intel.com/sites/manageability/AMT_Implementation_
and_Reference_Guide/default.htm Under “SDK Resources”=> “Intel(R)
vPro(TM) Gateway (MPS)”=> “Information for Intel(R) vPro(TM) Gateway
Developers”=>“Description of the Intel AMT Port Forwarding (APF) Proto-
col”

2) Intel AMT Remote configuration using a Local Agent

A Local Agent enables IT personnel to configure Intel AMT out-of-the-box
without requiring installing additional data to enable setup. The remote con-
figuration process may involve an ISV-developed remote configuration agent
that runs on the host. For more information: https://software.intel.com/sites/

39.6. Intel(R) Active Management Technology (Intel AMT) 1213

https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
https://github.com/intel/lms
https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm

Linux Driver-api Documentation

manageability/AMT_Implementation_and_Reference_Guide/default.htm Un-
der“Setup and Configuration of Intel AMT”=>“SDK Tools Supporting Setup
and Configuration”=> “Using the Local Agent Sample”

39.6.2 Intel AMT OS Health Watchdog

The Intel AMT Watchdog is an OS Health (Hang/Crash) watchdog. Whenever the
OS hangs or crashes, Intel AMT will send an event to any subscriber to this event.
This mechanism means that IT knows when a platform crashes even when there
is a hard failure on the host.

The Intel AMT Watchdog is composed of two parts:
1) Firmware feature - receives the heartbeats and sends an event when the
heartbeats stop.

2) Intel MEI iAMT watchdog driver - connects to the watchdog feature, con-
figures the watchdog and sends the heartbeats.

The Intel iAMT watchdog MEI driver uses the kernel watchdog API to configure
the Intel AMT Watchdog and to send heartbeats to it. The default timeout of the
watchdog is 120 seconds.

If the Intel AMT is not enabled in the firmware then the watchdog client won’t
enumerate on the me client bus and watchdog devices won’t be exposed.
—linux-mei@linux.intel.com

1214 Chapter 39. Intel(R) Management Engine Interface (Intel(R) MEI)

https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
https://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
mailto:linux-mei@linux.intel.com

CHAPTER

FORTY

MEMORY TECHNOLOGY DEVICE (MTD)

40.1 Upgrading BIOS using intel-spi

Many Intel CPUs like Baytrail and Braswell include SPI serial flash host controller
which is used to hold BIOS and other platform specific data. Since contents of the
SPI serial flash is crucial for machine to function, it is typically protected by differ-
ent hardware protectionmechanisms to avoid accidental (or on purpose) overwrite
of the content.

Not all manufacturers protect the SPI serial flash, mainly because it allows up-
grading the BIOS image directly from an OS.

The intel-spi driver makes it possible to read and write the SPI serial flash, if
certain protection bits are not set and locked. If it finds any of them set, the whole
MTD device is made read-only to prevent partial overwrites. By default the driver
exposes SPI serial flash contents as read-only but it can be changed from kernel
command line, passing “intel-spi.writeable=1”.
Please keep in mind that overwriting the BIOS image on SPI serial flash might
render the machine unbootable and requires special equipment like Dediprog to
revive. You have been warned!

Below are the steps how to upgrade MinnowBoard MAX BIOS directly from Linux.

1) Download and extract the latest Minnowboard MAX BIOS SPI image [1]. At
the time writing this the latest image is v92.

2) Install mtd-utils package [2]. We need this in order to erase the SPI serial
flash. Distros like Debian and Fedora have this prepackaged with name“mtd-
utils”.

3) Add“intel-spi.writeable=1”to the kernel command line and reboot the board
(you can also reload the driver passing“writeable=1”as module parameter
to modprobe).

4) Once the board is up and running again, find the right MTD partition (it is
named as “BIOS”):
cat /proc/mtd
dev: size erasesize name
mtd0: 00800000 00001000 "BIOS"

So here it will be /dev/mtd0 but it may vary.

5) Make backup of the existing image first:

1215

Linux Driver-api Documentation

dd if=/dev/mtd0ro of=bios.bak
16384+0 records in
16384+0 records out
8388608 bytes (8.4 MB) copied, 10.0269 s, 837 kB/s

6) Verify the backup:

sha1sum /dev/mtd0ro bios.bak fdbb011920572ca6c991377c4b418a0502668b73
/dev/mtd0ro fdbb011920572ca6c991377c4b418a0502668b73
bios.bak

The SHA1 sums must match. Otherwise do not continue any further!

7) Erase the SPI serial flash. After this step, do not reboot the board! Otherwise
it will not start anymore:

flash_erase /dev/mtd0 0 0
Erasing 4 Kibyte @ 7ff000 -- 100 % complete

8) Once completed without errors you can write the new BIOS image:

dd if=MNW2MAX1.X64.0092.R01.1605221712.bin of=/dev/mtd0

9) Verify that the new content of the SPI serial flash matches the new BIOS
image:

sha1sum /dev/mtd0ro MNW2MAX1.X64.0092.R01.1605221712.bin
9b4df9e4be2057fceec3a5529ec3d950836c87a2 /dev/mtd0ro
9b4df9e4be2057fceec3a5529ec3d950836c87a2 MNW2MAX1.X64.0092.R01.
↪→1605221712.bin

The SHA1 sums should match.

10) Now you can reboot your board and observe the new BIOS starting up prop-
erly.

40.1.1 References

[1] https://firmware.intel.com/sites/default/files/MinnowBoard%2EMAX_
%2EX64%2E92%2ER01%2Ezip

[2] http://www.linux-mtd.infradead.org/

40.2 NAND Error-correction Code

40.2.1 Introduction

Having looked at the linux mtd/nand driver and more specific at nand_ecc.c I felt
there was room for optimisation. I bashed the code for a few hours performing
tricks like table lookup removing superfluous code etc. After that the speed was
increased by 35-40%. Still I was not too happy as I felt there was additional room
for improvement.

1216 Chapter 40. Memory Technology Device (MTD)

https://firmware.intel.com/sites/default/files/MinnowBoard%2EMAX_%2EX64%2E92%2ER01%2Ezip
https://firmware.intel.com/sites/default/files/MinnowBoard%2EMAX_%2EX64%2E92%2ER01%2Ezip
http://www.linux-mtd.infradead.org/

Linux Driver-api Documentation

Bad! I was hooked. I decided to annotate my steps in this file. Perhaps it is useful
to someone or someone learns something from it.

40.2.2 The problem

NAND flash (at least SLC one) typically has sectors of 256 bytes. However NAND
flash is not extremely reliable so some error detection (and sometimes correction)
is needed.

This is done by means of a Hamming code. I’ll try to explain it in laymans terms
(and apologies to all the pro’s in the field in case I do not use the right terminology,
my coding theory class was almost 30 years ago, and I must admit it was not one
of my favourites).

As I said before the ecc calculation is performed on sectors of 256 bytes. This
is done by calculating several parity bits over the rows and columns. The parity
used is even parity which means that the parity bit = 1 if the data over which the
parity is calculated is 1 and the parity bit = 0 if the data over which the parity is
calculated is 0. So the total number of bits over the data over which the parity is
calculated + the parity bit is even. (see wikipedia if you can’t follow this). Parity
is often calculated by means of an exclusive or operation, sometimes also referred
to as xor. In C the operator for xor is ^

Back to ecc. Let’s give a small figure:

byte
0:

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ⋯ rp14

byte
1:

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ⋯ rp14

byte
2:

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ⋯ rp14

byte
3:

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ⋯ rp14

byte
4:

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ⋯ rp14

⋯
byte
254:

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ⋯ rp15

byte
255:

bit7
cp1
cp3
cp5

bit6
cp0
cp3
cp5

bit5
cp1
cp2
cp5

bit4
cp0
cp2
cp5

bit3
cp1
cp3
cp4

bit2
cp0
cp3
cp4

bit1
cp1
cp2
cp4

bit0
cp0
cp2
cp4

rp1 rp3 rp5 ⋯ rp15

This figure represents a sector of 256 bytes. cp is my abbreviation for column
parity, rp for row parity.

Let’s start to explain column parity.
• cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.

so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.

Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.

40.2. NAND Error-correction Code 1217

Linux Driver-api Documentation

• cp2 is the parity over bit0, bit1, bit4 and bit5

• cp3 is the parity over bit2, bit3, bit6 and bit7.

• cp4 is the parity over bit0, bit1, bit2 and bit3.

• cp5 is the parity over bit4, bit5, bit6 and bit7.

Note that each of cp0 .. cp5 is exactly one bit.

Row parity actually works almost the same.

• rp0 is the parity of all even bytes (0, 2, 4, 6, ⋯252, 254)
• rp1 is the parity of all odd bytes (1, 3, 5, 7, ⋯, 253, 255)
• rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ⋯(so handle two bytes, then skip
2 bytes).

• rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ⋯)
• for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.

so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ⋯)
• and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..

The story now becomes quite boring. I guess you get the idea.

• rp6 covers 8 bytes then skips 8 etc

• rp7 skips 8 bytes then covers 8 etc

• rp8 covers 16 bytes then skips 16 etc

• rp9 skips 16 bytes then covers 16 etc

• rp10 covers 32 bytes then skips 32 etc

• rp11 skips 32 bytes then covers 32 etc

• rp12 covers 64 bytes then skips 64 etc

• rp13 skips 64 bytes then covers 64 etc

• rp14 covers 128 bytes then skips 128

• rp15 skips 128 bytes then covers 128

In the end the parity bits are grouped together in three bytes as follows:

ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00
ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08
ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1

I detected after writing this that ST application note AN1823 (http://www.st.com/
stonline/) gives a much nicer picture.(but they use line parity as term where I use
row parity) Oh well, I’m graphically challenged, so suffer with me for a moment
:-)

And I could not reuse the ST picture anyway for copyright reasons.

1218 Chapter 40. Memory Technology Device (MTD)

http://www.st.com/stonline/
http://www.st.com/stonline/

Linux Driver-api Documentation

40.2.3 Attempt 0

Implementing the parity calculation is pretty simple. In C pseudocode:

for (i = 0; i < 256; i++)
{

if (i & 0x01)
rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;

else
rp0 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp0;

if (i & 0x02)
rp3 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp3;

else
rp2 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp2;

if (i & 0x04)
rp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp5;

else
rp4 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp4;

if (i & 0x08)
rp7 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp7;

else
rp6 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp6;

if (i & 0x10)
rp9 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp9;

else
rp8 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp8;

if (i & 0x20)
rp11 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp11;

else
rp10 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp10;

if (i & 0x40)
rp13 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp13;

else
rp12 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp12;

if (i & 0x80)
rp15 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp15;

else
rp14 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp14;

cp0 = bit6 ^ bit4 ^ bit2 ^ bit0 ^ cp0;
cp1 = bit7 ^ bit5 ^ bit3 ^ bit1 ^ cp1;
cp2 = bit5 ^ bit4 ^ bit1 ^ bit0 ^ cp2;
cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5

}

40.2. NAND Error-correction Code 1219

Linux Driver-api Documentation

40.2.4 Analysis 0

C does have bitwise operators but not really operators to do the above efficiently
(and most hardware has no such instructions either). Therefore without imple-
menting this it was clear that the code above was not going to bring me a Nobel
prize :-)

Fortunately the exclusive or operation is commutative, so we can combine the
values in any order. So instead of calculating all the bits individually, let us try
to rearrange things. For the column parity this is easy. We can just xor the bytes
and in the end filter out the relevant bits. This is pretty nice as it will bring all cp
calculation out of the for loop.

Similarly we can first xor the bytes for the various rows. This leads to:

40.2.5 Attempt 1

const char parity[256] = {
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0

};

void ecc1(const unsigned char *buf, unsigned char *code)
{

int i;
const unsigned char *bp = buf;
unsigned char cur;
unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
unsigned char par;

par = 0;
rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;

for (i = 0; i < 256; i++)
{

cur = *bp++;
par ^= cur;

(continues on next page)

1220 Chapter 40. Memory Technology Device (MTD)

Linux Driver-api Documentation

(continued from previous page)
if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;

}
code[0] =

(parity[rp7] << 7) |
(parity[rp6] << 6) |
(parity[rp5] << 5) |
(parity[rp4] << 4) |
(parity[rp3] << 3) |
(parity[rp2] << 2) |
(parity[rp1] << 1) |
(parity[rp0]);

code[1] =
(parity[rp15] << 7) |
(parity[rp14] << 6) |
(parity[rp13] << 5) |
(parity[rp12] << 4) |
(parity[rp11] << 3) |
(parity[rp10] << 2) |
(parity[rp9] << 1) |
(parity[rp8]);

code[2] =
(parity[par & 0xf0] << 7) |
(parity[par & 0x0f] << 6) |
(parity[par & 0xcc] << 5) |
(parity[par & 0x33] << 4) |
(parity[par & 0xaa] << 3) |
(parity[par & 0x55] << 2);

code[0] = ~code[0];
code[1] = ~code[1];
code[2] = ~code[2];

}

Still pretty straightforward. The last three invert statements are there to give a
checksum of 0xff 0xff 0xff for an empty flash. In an empty flash all data is 0xff, so
the checksum then matches.

I also introduced the parity lookup. I expected this to be the fastest way to calcu-
late the parity, but I will investigate alternatives later on.

40.2. NAND Error-correction Code 1221

Linux Driver-api Documentation

40.2.6 Analysis 1

The code works, but is not terribly efficient. On my system it took almost 4 times
as much time as the linux driver code. But hey, if it was that easy this would have
been done long before. No pain. no gain.

Fortunately there is plenty of room for improvement.

In step 1 we moved from bit-wise calculation to byte-wise calculation. However in
C we can also use the unsigned long data type and virtually every modern micro-
processor supports 32 bit operations, so why not try to write our code in such a
way that we process data in 32 bit chunks.

Of course this means some modification as the row parity is byte by byte. A quick
analysis: for the column parity we use the par variable. When extending to 32 bits
we can in the end easily calculate rp0 and rp1 from it. (because par now consists
of 4 bytes, contributing to rp1, rp0, rp1, rp0 respectively, from MSB to LSB) also
rp2 and rp3 can be easily retrieved from par as rp3 covers the first two MSBs and
rp2 covers the last two LSBs.

Note that of course now the loop is executed only 64 times (256/4). And note that
care must taken wrt byte ordering. The way bytes are ordered in a long is machine
dependent, and might affect us. Anyway, if there is an issue: this code is developed
on x86 (to be precise: a DELL PC with a D920 Intel CPU)

And of course the performance might depend on alignment, but I expect that the
I/O buffers in the nand driver are aligned properly (and otherwise that should be
fixed to get maximum performance).

Let’s give it a try⋯

40.2.7 Attempt 2

extern const char parity[256];

void ecc2(const unsigned char *buf, unsigned char *code)
{

int i;
const unsigned long *bp = (unsigned long *)buf;
unsigned long cur;
unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
unsigned long par;

par = 0;
rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;

for (i = 0; i < 64; i++)
{

cur = *bp++;
par ^= cur;
if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;

(continues on next page)

1222 Chapter 40. Memory Technology Device (MTD)

Linux Driver-api Documentation

(continued from previous page)
if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;

}
/*

we need to adapt the code generation for the fact that rp vars are␣
↪→now

long; also the column parity calculation needs to be changed.
we'll bring rp4 to 15 back to single byte entities by shifting and
xoring

*/
rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
par ^= (par >> 16);
rp1 = (par >> 8); rp1 &= 0xff;
rp0 = (par & 0xff);
par ^= (par >> 8); par &= 0xff;

code[0] =
(parity[rp7] << 7) |
(parity[rp6] << 6) |
(parity[rp5] << 5) |
(parity[rp4] << 4) |
(parity[rp3] << 3) |
(parity[rp2] << 2) |
(parity[rp1] << 1) |
(parity[rp0]);

code[1] =
(parity[rp15] << 7) |
(parity[rp14] << 6) |
(parity[rp13] << 5) |
(parity[rp12] << 4) |
(parity[rp11] << 3) |
(parity[rp10] << 2) |
(parity[rp9] << 1) |
(parity[rp8]);

code[2] =
(parity[par & 0xf0] << 7) |
(parity[par & 0x0f] << 6) |
(parity[par & 0xcc] << 5) |
(parity[par & 0x33] << 4) |
(parity[par & 0xaa] << 3) |

(continues on next page)

40.2. NAND Error-correction Code 1223

Linux Driver-api Documentation

(continued from previous page)
(parity[par & 0x55] << 2);

code[0] = ~code[0];
code[1] = ~code[1];
code[2] = ~code[2];

}

The parity array is not shown any more. Note also that for these examples I kinda
deviated from my regular programming style by allowing multiple statements on
a line, not using { } in then and else blocks with only a single statement and by
using operators like ^=

40.2.8 Analysis 2

The code (of course) works, and hurray: we are a little bit faster than the linux
driver code (about 15%). But wait, don’t cheer too quickly. There is more to be
gained. If we look at e.g. rp14 and rp15 we see that we either xor our data with
rp14 or with rp15. However we also have par which goes over all data. This means
there is no need to calculate rp14 as it can be calculated from rp15 through rp14
= par ^ rp15, because par = rp14 ^ rp15; (or if desired we can avoid calculating
rp15 and calculate it from rp14). That is why some places refer to inverse parity.
Of course the same thing holds for rp4/5, rp6/7, rp8/9, rp10/11 and rp12/13. Ef-
fectively this means we can eliminate the else clause from the if statements. Also
we can optimise the calculation in the end a little bit by going from long to byte
first. Actually we can even avoid the table lookups

40.2.9 Attempt 3

Odd replaced:

if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;

with:

if (i & 0x01) rp5 ^= cur;
if (i & 0x02) rp7 ^= cur;
if (i & 0x04) rp9 ^= cur;
if (i & 0x08) rp11 ^= cur;
if (i & 0x10) rp13 ^= cur;
if (i & 0x20) rp15 ^= cur;

and outside the loop added:

rp4 = par ^ rp5;
rp6 = par ^ rp7;
rp8 = par ^ rp9;
rp10 = par ^ rp11;

(continues on next page)

1224 Chapter 40. Memory Technology Device (MTD)

Linux Driver-api Documentation

(continued from previous page)
rp12 = par ^ rp13;
rp14 = par ^ rp15;

And after that the code takes about 30% more time, although the number of state-
ments is reduced. This is also reflected in the assembly code.

40.2.10 Analysis 3

Very weird. Guess it has to do with caching or instruction parallellism or so. I
also tried on an eeePC (Celeron, clocked at 900 Mhz). Interesting observation
was that this one is only 30% slower (according to time) executing the code as my
3Ghz D920 processor.

Well, it was expected not to be easy so maybe instead move to a different track:
let’s move back to the code from attempt2 and do some loop unrolling. This will
eliminate a few if statements. I’ll try different amounts of unrolling to see what
works best.

40.2.11 Attempt 4

Unrolled the loop 1, 2, 3 and 4 times. For 4 the code starts with:

for (i = 0; i < 4; i++)
{

cur = *bp++;
par ^= cur;
rp4 ^= cur;
rp6 ^= cur;
rp8 ^= cur;
rp10 ^= cur;
if (i & 0x1) rp13 ^= cur; else rp12 ^= cur;
if (i & 0x2) rp15 ^= cur; else rp14 ^= cur;
cur = *bp++;
par ^= cur;
rp5 ^= cur;
rp6 ^= cur;
...

40.2.12 Analysis 4

Unrolling once gains about 15%

Unrolling twice keeps the gain at about 15%

Unrolling three times gives a gain of 30% compared to attempt 2.

Unrolling four times gives a marginal improvement compared to unrolling three
times.

I decided to proceed with a four time unrolled loop anyway. It was my gut feeling
that in the next steps I would obtain additional gain from it.

40.2. NAND Error-correction Code 1225

Linux Driver-api Documentation

The next step was triggered by the fact that par contains the xor of all bytes and
rp4 and rp5 each contain the xor of half of the bytes. So in effect par = rp4 ^
rp5. But as xor is commutative we can also say that rp5 = par ^ rp4. So no need
to keep both rp4 and rp5 around. We can eliminate rp5 (or rp4, but I already
foresaw another optimisation). The same holds for rp6/7, rp8/9, rp10/11 rp12/13
and rp14/15.

40.2.13 Attempt 5

Effectively so all odd digit rp assignments in the loop were removed. This included
the else clause of the if statements. Of course after the loop we need to correct
things by adding code like:

rp5 = par ^ rp4;

Also the initial assignments (rp5 = 0; etc) could be removed. Along the line I also
removed the initialisation of rp0/1/2/3.

40.2.14 Analysis 5

Measurements showed this was a good move. The run-time roughly halved com-
pared with attempt 4 with 4 times unrolled, and we only require 1/3rd of the pro-
cessor time compared to the current code in the linux kernel.

However, still I thought there was more. I didn’t like all the if statements. Why
not keep a running parity and only keep the last if statement. Time for yet another
version!

40.2.15 Attempt 6

THe code within the for loop was changed to:

for (i = 0; i < 4; i++)
{

cur = *bp++; tmppar = cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;

cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;

cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur;
cur = *bp++; tmppar ^= cur; rp8 ^= cur;

cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;

(continues on next page)

1226 Chapter 40. Memory Technology Device (MTD)

Linux Driver-api Documentation

(continued from previous page)
cur = *bp++; tmppar ^= cur;

par ^= tmppar;
if ((i & 0x1) == 0) rp12 ^= tmppar;
if ((i & 0x2) == 0) rp14 ^= tmppar;

}

As you can see tmppar is used to accumulate the parity within a for iteration. In
the last 3 statements is added to par and, if needed, to rp12 and rp14.

While making the changes I also found that I could exploit that tmppar contains
the running parity for this iteration. So instead of having: rp4 ^= cur; rp6 ^= cur;
I removed the rp6 ^= cur; statement and did rp6 ^= tmppar; on next statement.
A similar change was done for rp8 and rp10

40.2.16 Analysis 6

Measuring this code again showed big gain. When executing the original linux
code 1 million times, this took about 1 second on my system. (using time to mea-
sure the performance). After this iteration I was back to 0.075 sec. Actually I
had to decide to start measuring over 10 million iterations in order not to lose too
much accuracy. This one definitely seemed to be the jackpot!

There is a little bit more room for improvement though. There are three places
with statements:

rp4 ^= cur; rp6 ^= cur;

It seems more efficient to also maintain a variable rp4_6 in the while loop; This
eliminates 3 statements per loop. Of course after the loop we need to correct by
adding:

rp4 ^= rp4_6;
rp6 ^= rp4_6

Furthermore there are 4 sequential assignments to rp8. This can be encoded
slightly more efficiently by saving tmppar before those 4 lines and later do rp8
= rp8 ^ tmppar ^ notrp8; (where notrp8 is the value of rp8 before those 4 lines).
Again a use of the commutative property of xor. Time for a new test!

40.2.17 Attempt 7

The new code now looks like:

for (i = 0; i < 4; i++)
{

cur = *bp++; tmppar = cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;

(continues on next page)

40.2. NAND Error-correction Code 1227

Linux Driver-api Documentation

(continued from previous page)
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;

notrp8 = tmppar;
cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur;
rp8 = rp8 ^ tmppar ^ notrp8;

cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
cur = *bp++; tmppar ^= cur; rp6 ^= cur;
cur = *bp++; tmppar ^= cur; rp4 ^= cur;
cur = *bp++; tmppar ^= cur;

par ^= tmppar;
if ((i & 0x1) == 0) rp12 ^= tmppar;
if ((i & 0x2) == 0) rp14 ^= tmppar;

}
rp4 ^= rp4_6;
rp6 ^= rp4_6;

Not a big change, but every penny counts :-)

40.2.18 Analysis 7

Actually this made things worse. Not very much, but I don’t want to move into
the wrong direction. Maybe something to investigate later. Could have to do with
caching again.

Guess that is what there is to win within the loop. Maybe unrolling one more time
will help. I’ll keep the optimisations from 7 for now.

40.2.19 Attempt 8

Unrolled the loop one more time.

40.2.20 Analysis 8

This makes things worse. Let’s stick with attempt 6 and continue from there.
Although it seems that the code within the loop cannot be optimised further there
is still room to optimize the generation of the ecc codes. We can simply calculate
the total parity. If this is 0 then rp4 = rp5 etc. If the parity is 1, then rp4 = !rp5;

But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits in the
result byte and then do something like:

code[0] |= (code[0] << 1);

Lets test this.

1228 Chapter 40. Memory Technology Device (MTD)

Linux Driver-api Documentation

40.2.21 Attempt 9

Changed the code but again this slightly degrades performance. Tried all kind of
other things, like having dedicated parity arrays to avoid the shift after parity[rp7]
<< 7; No gain. Change the lookup using the parity array by using shift operators
(e.g. replace parity[rp7] << 7 with:

rp7 ^= (rp7 << 4);
rp7 ^= (rp7 << 2);
rp7 ^= (rp7 << 1);
rp7 &= 0x80;

No gain.

The only marginal change was inverting the parity bits, so we can remove the last
three invert statements.

Ah well, pity this does not deliver more. Then again 10 million iterations using the
linux driver code takes between 13 and 13.5 seconds, whereas my code now takes
about 0.73 seconds for those 10 million iterations. So basically I’ve improved the
performance by a factor 18 on my system. Not that bad. Of course on different
hardware you will get different results. No warranties!

But of course there is no such thing as a free lunch. The codesize almost tripled
(from 562 bytes to 1434 bytes). Then again, it is not that much.

40.2.22 Correcting errors

For correcting errors I again used the ST application note as a starter, but I also
peeked at the existing code.

The algorithm itself is pretty straightforward. Just xor the given and the calculated
ecc. If all bytes are 0 there is no problem. If 11 bits are 1 we have one correctable
bit error. If there is 1 bit 1, we have an error in the given ecc code.

It proved to be fastest to do some table lookups. Performance gain introduced by
this is about a factor 2 on my system when a repair had to be done, and 1% or so
if no repair had to be done.

Code size increased from 330 bytes to 686 bytes for this function. (gcc 4.2, -O3)

40.2.23 Conclusion

The gain when calculating the ecc is tremendous. Om my development hardware
a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
embedded system with a MIPS core a factor 7 was obtained.

On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor 5
(big endian mode, gcc 4.1.2, -O3)

For correction not much gain could be obtained (as bitflips are rare). Then again
there are also much less cycles spent there.

It seems there is not much more gain possible in this, at least when programmed
in C. Of course it might be possible to squeeze something more out of it with an

40.2. NAND Error-correction Code 1229

Linux Driver-api Documentation

assembler program, but due to pipeline behaviour etc this is very tricky (at least
for intel hw).

Author: Frans Meulenbroeks

Copyright (C) 2008 Koninklijke Philips Electronics NV.

40.3 SPI NOR framework

40.3.1 Part I - Why do we need this framework?

SPI bus controllers (drivers/spi/) only deal with streams of bytes; the bus controller
operates agnostic of the specific device attached. However, some controllers (such
as Freescale’s QuadSPI controller) cannot easily handle arbitrary streams of bytes,
but rather are designed specifically for SPI NOR.

In particular, Freescale’s QuadSPI controller must know the NOR commands to
find the right LUT sequence. Unfortunately, the SPI subsystem has no notion of
opcodes, addresses, or data payloads; a SPI controller simply knows to send or
receive bytes (Tx and Rx). Therefore, we must define a new layering scheme under
which the controller driver is aware of the opcodes, addressing, and other details
of the SPI NOR protocol.

40.3.2 Part II - How does the framework work?

This framework just adds a new layer between the MTD and the SPI bus driver.
With this new layer, the SPI NOR controller driver does not depend on the m25p80
code anymore.

Before this framework, the layer is like:

MTD

m25p80

SPI bus driver

SPI NOR chip

After this framework, the layer is like:
MTD

SPI NOR framework

m25p80

SPI bus driver

SPI NOR chip

With the SPI NOR controller driver (Freescale QuadSPI), it looks like:
MTD

(continues on next page)

1230 Chapter 40. Memory Technology Device (MTD)

Linux Driver-api Documentation

(continued from previous page)
SPI NOR framework

fsl-quadSPI

SPI NOR chip

40.3.3 Part III - How can drivers use the framework?

The main API is spi_nor_scan(). Before you call the hook, a driver should initial-
ize the necessary fields for spi_nor{}. Please see drivers/mtd/spi-nor/spi-nor.c for
detail. Please also refer to spi-fsl-qspi.c when you want to write a new driver for
a SPI NOR controller. Another API is spi_nor_restore(), this is used to restore the
status of SPI flash chip such as addressing mode. Call it whenever detach the
driver from device or reboot the system.

40.3. SPI NOR framework 1231

Linux Driver-api Documentation

1232 Chapter 40. Memory Technology Device (MTD)

CHAPTER

FORTYONE

MMC/SD/SDIO CARD SUPPORT

41.1 SD and MMC Block Device Attributes

These attributes are defined for the block devices associated with the SD or MMC
device.

The following attributes are read/write.

force_ro Enforce read-only access even if write protect switch is off.

41.1.1 SD and MMC Device Attributes

All attributes are read-only.

1233

Linux Driver-api Documentation

cid Card Identification Register
csd Card Specific Data Register
scr SD Card Configuration Register

(SD only)
date Manufacturing Date (from CID

Register)
fwrev Firmware/Product Revision (from

CID Register) (SD and MMCv1
only)

hwrev Hardware/Product Revision (from
CID Register) (SD and MMCv1
only)

manfid Manufacturer ID (from CID Reg-
ister)

name Product Name (from CID Regis-
ter)

oemid OEM/Application ID (from CID
Register)

prv Product Revision (from CID Reg-
ister) (SD and MMCv4 only)

serial Product Serial Number (from CID
Register)

erase_size Erase group size
preferred_erase_size Preferred erase size
raw_rpmb_size_mult RPMB partition size
rel_sectors Reliable write sector count
ocr Operation Conditions Register
dsr Driver Stage Register
cmdq_en Command Queue enabled:

1 => enabled, 0 => not
enabled

Note on Erase Size and Preferred Erase Size:

“erase_size”is the minimum size, in bytes, of an erase operation. For
MMC, “erase_size”is the erase group size reported by the card. Note
that“erase_size”does not apply to trim or secure trim operations where
the minimum size is always one 512 byte sector. For SD,“erase_size”is
512 if the card is block-addressed, 0 otherwise.

SD/MMC cards can erase an arbitrarily large area up to and including
the whole card. When erasing a large area it may be desirable to do it
in smaller chunks for three reasons:

1. A single erase command will make all other I/O on the card wait.
This is not a problem if the whole card is being erased, but erasing
one partition will make I/O for another partition on the same card
wait for the duration of the erase - which could be a several minutes.

2. To be able to inform the user of erase progress.

1234 Chapter 41. MMC/SD/SDIO card support

Linux Driver-api Documentation

3. The erase timeout becomes too large to be very useful. Because the
erase timeout contains a margin which is multiplied by the size of
the erase area, the value can end up being several minutes for large
areas.

“erase_size”is not themost efficient unit to erase (especially for SDwhere
it is just one sector), hence“preferred_erase_size”provides a good chunk
size for erasing large areas.

For MMC,“preferred_erase_size”is the high-capacity erase size if a card
specifies one, otherwise it is based on the capacity of the card.

For SD, “preferred_erase_size”is the allocation unit size specified by
the card.

“preferred_erase_size”is in bytes.
Note on raw_rpmb_size_mult:

“raw_rpmb_size_mult”is a multiple of 128kB block.
RPMB size in byte is calculated by using the following equation:

RPMB partition size = 128kB x raw_rpmb_size_mult

41.2 SD and MMC Device Partitions

Device partitions are additional logical block devices present on the SD/MMC de-
vice.

As of this writing, MMC boot partitions as supported and exposed as
/dev/mmcblkXboot0 and /dev/mmcblkXboot1, where X is the index of the parent
/dev/mmcblkX.

41.2.1 MMC Boot Partitions

Read and write access is provided to the two MMC boot partitions. Due to the
sensitive nature of the boot partition contents, which often store a bootloader or
bootloader configuration tables crucial to booting the platform, write access is
disabled by default to reduce the chance of accidental bricking.

To enable write access to /dev/mmcblkXbootY, disable the forced read-only access
with:

echo 0 > /sys/block/mmcblkXbootY/force_ro

To re-enable read-only access:

echo 1 > /sys/block/mmcblkXbootY/force_ro

The boot partitions can also be locked read only until the next power on, with:

echo 1 > /sys/block/mmcblkXbootY/ro_lock_until_next_power_on

41.2. SD and MMC Device Partitions 1235

Linux Driver-api Documentation

This is a feature of the card and not of the kernel. If the card does not support
boot partition locking, the file will not exist. If the feature has been disabled on
the card, the file will be read-only.

The boot partitions can also be locked permanently, but this feature is not acces-
sible through sysfs in order to avoid accidental or malicious bricking.

41.3 MMC Asynchronous Request

41.3.1 Rationale

How significant is the cache maintenance overhead?

It depends. Fast eMMC and multiple cache levels with speculative cache pre-fetch
makes the cache overhead relatively significant. If the DMA preparations for the
next request are done in parallel with the current transfer, the DMA preparation
overhead would not affect the MMC performance.

The intention of non-blocking (asynchronous) MMC requests is to minimize the
time between when an MMC request ends and another MMC request begins.

Using mmc_wait_for_req(), the MMC controller is idle while dma_map_sg and
dma_unmap_sg are processing. Using non-blocking MMC requests makes it pos-
sible to prepare the caches for next job in parallel with an active MMC request.

41.3.2 MMC block driver

The mmc_blk_issue_rw_rq() in the MMC block driver is made non-blocking.

The increase in throughput is proportional to the time it takes to prepare (major
part of preparations are dma_map_sg() and dma_unmap_sg()) a request and how
fast the memory is. The faster the MMC/SD is the more significant the prepare
request time becomes. Roughly the expected performance gain is 5% for large
writes and 10% on large reads on a L2 cache platform. In power save mode, when
clocks run on a lower frequency, the DMA preparationmay cost evenmore. As long
as these slower preparations are run in parallel with the transfer performance won’
t be affected.

41.3.3 Details on measurements from IOZone and mmc_test

https://wiki.linaro.org/WorkingGroups/Kernel/Specs/StoragePerfMMC-async-req

1236 Chapter 41. MMC/SD/SDIO card support

https://wiki.linaro.org/WorkingGroups/Kernel/Specs/StoragePerfMMC-async-req

Linux Driver-api Documentation

41.3.4 MMC core API extension

There is one new public function mmc_start_req().

It starts a new MMC command request for a host. The function isn’t truly non-
blocking. If there is an ongoing async request it waits for completion of that re-
quest and starts the new one and returns. It doesn’t wait for the new request
to complete. If there is no ongoing request it starts the new request and returns
immediately.

41.3.5 MMC host extensions

There are two optional members in the mmc_host_ops – pre_req() and post_req() –
that the host driver may implement in order to move work to before and after the
actual mmc_host_ops.request() function is called.

In the DMA case pre_req() may do dma_map_sg() and prepare the DMA descriptor,
and post_req() runs the dma_unmap_sg().

41.3.6 Optimize for the first request

The first request in a series of requests can’t be prepared in parallel with the
previous transfer, since there is no previous request.

The argument is_first_req in pre_req() indicates that there is no previous request.
The host driver may optimize for this scenario to minimize the performance loss.
A way to optimize for this is to split the current request in two chunks, prepare the
first chunk and start the request, and finally prepare the second chunk and start
the transfer.

Pseudocode to handle is_first_req scenario with minimal prepare overhead:

if (is_first_req && req->size > threshold)
/* start MMC transfer for the complete transfer size */
mmc_start_command(MMC_CMD_TRANSFER_FULL_SIZE);

/*
* Begin to prepare DMA while cmd is being processed by MMC.
* The first chunk of the request should take the same time
* to prepare as the "MMC process command time".
* If prepare time exceeds MMC cmd time
* the transfer is delayed, guesstimate max 4k as first chunk size.
*/
prepare_1st_chunk_for_dma(req);
/* flush pending desc to the DMAC (dmaengine.h) */
dma_issue_pending(req->dma_desc);

prepare_2nd_chunk_for_dma(req);
/*
* The second issue_pending should be called before MMC runs out
* of the first chunk. If the MMC runs out of the first data chunk
* before this call, the transfer is delayed.
*/

dma_issue_pending(req->dma_desc);

41.3. MMC Asynchronous Request 1237

Linux Driver-api Documentation

41.4 MMC tools introduction

There is one MMC test tools called mmc-utils, which is maintained by Chris Ball,
you can find it at the below public git repository:

http://git.kernel.org/cgit/linux/kernel/git/cjb/mmc-utils.git/

41.4.1 Functions

The mmc-utils tools can do the following:

• Print and parse extcsd data.

• Determine the eMMC writeprotect status.

• Set the eMMC writeprotect status.

• Set the eMMC data sector size to 4KB by disabling emulation.

• Create general purpose partition.

• Enable the enhanced user area.

• Enable write reliability per partition.

• Print the response to STATUS_SEND (CMD13).

• Enable the boot partition.

• Set Boot Bus Conditions.

• Enable the eMMC BKOPS feature.

• Permanently enable the eMMC H/W Reset feature.

• Permanently disable the eMMC H/W Reset feature.

• Send Sanitize command.

• Program authentication key for the device.

• Counter value for the rpmb device will be read to stdout.

• Read from rpmb device to output.

• Write to rpmb device from data file.

• Enable the eMMC cache feature.

• Disable the eMMC cache feature.

• Print and parse CID data.

• Print and parse CSD data.

• Print and parse SCR data.

1238 Chapter 41. MMC/SD/SDIO card support

http://git.kernel.org/cgit/linux/kernel/git/cjb/mmc-utils.git/

CHAPTER

FORTYTWO

NON-VOLATILE MEMORY DEVICE (NVDIMM)

42.1 LIBNVDIMM: Non-Volatile Devices

libnvdimm - kernel / libndctl - userspace helper library

linux-nvdimm@lists.01.org

Version 13

42.1.1 Glossary

PMEM: A system-physical-address range where writes are persistent. A block
device composed of PMEM is capable of DAX. A PMEM address range may
span an interleave of several DIMMs.

BLK: A set of one or more programmable memory mapped apertures provided
by a DIMM to access its media. This indirection precludes the performance
benefit of interleaving, but enables DIMM-bounded failure modes.

DPA: DIMM Physical Address, is a DIMM-relative offset. With one DIMM in the
system there would be a 1:1 system-physical-address:DPA association. Once
more DIMMs are added a memory controller interleave must be decoded to
determine the DPA associated with a given system-physical-address. BLK
capacity always has a 1:1 relationship with a single-DIMM’s DPA range.

DAX: File system extensions to bypass the page cache and block layer to mmap
persistentmemory, from a PMEMblock device, directly into a process address
space.

DSM: Device Specific Method: ACPI method to to control specific device - in this
case the firmware.

DCR: NVDIMM Control Region Structure defined in ACPI 6 Section 5.2.25.5. It
defines a vendor-id, device-id, and interface format for a given DIMM.

BTT: Block Translation Table: Persistent memory is byte addressable. Existing
software may have an expectation that the power-fail-atomicity of writes is at
least one sector, 512 bytes. The BTT is an indirection table with atomic update
semantics to front a PMEM/BLK block device driver and present arbitrary
atomic sector sizes.

LABEL: Metadata stored on a DIMM device that partitions and identifies (persis-
tently names) storage between PMEM and BLK. It also partitions BLK stor-

1239

mailto:linux-nvdimm@lists.01.org

Linux Driver-api Documentation

age to host BTTs with different parameters per BLK-partition. Note that tra-
ditional partition tables, GPT/MBR, are layered on top of a BLK or PMEM
device.

42.1.2 Overview

The LIBNVDIMM subsystem provides support for three types of NVDIMMs,
namely, PMEM, BLK, and NVDIMM devices that can simultaneously support both
PMEM and BLK mode access. These three modes of operation are described by
the“NVDIMMFirmware Interface Table”(NFIT) in ACPI 6. While the LIBNVDIMM
implementation is generic and supports pre-NFIT platforms, it was guided by the
superset of capabilities need to support this ACPI 6 definition for NVDIMM re-
sources. The bulk of the kernel implementation is in place to handle the case
where DPA accessible via PMEM is aliased with DPA accessible via BLK. When
that occurs a LABEL is needed to reserve DPA for exclusive access via one mode
a time.

Supporting Documents

ACPI 6: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
NVDIMM Namespace: http://pmem.io/documents/NVDIMM_Namespace_Spec.

pdf

DSM Interface Example: http://pmem.io/documents/NVDIMM_DSM_Interface_
Example.pdf

Driver Writer’s Guide: http://pmem.io/documents/NVDIMM_Driver_Writers_
Guide.pdf

Git Trees

LIBNVDIMM: https://git.kernel.org/cgit/linux/kernel/git/djbw/nvdimm.git
LIBNDCTL: https://github.com/pmem/ndctl.git
PMEM: https://github.com/01org/prd

42.1.3 LIBNVDIMM PMEM and BLK

Prior to the arrival of the NFIT, non-volatile memory was described to a system
in various ad-hoc ways. Usually only the bare minimum was provided, namely,
a single system-physical-address range where writes are expected to be durable
after a system power loss. Now, the NFIT specification standardizes not only the
description of PMEM, but also BLK and platform message-passing entry points for
control and configuration.

For each NVDIMM access method (PMEM, BLK), LIBNVDIMM provides a block
device driver:

1. PMEM (nd_pmem.ko): Drives a system-physical-address range. This range
is contiguous in system memory and may be interleaved (hardware memory

1240 Chapter 42. Non-Volatile Memory Device (NVDIMM)

http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
http://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
http://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
https://git.kernel.org/cgit/linux/kernel/git/djbw/nvdimm.git
https://github.com/pmem/ndctl.git
https://github.com/01org/prd

Linux Driver-api Documentation

controller striped) across multiple DIMMs. When interleaved the platform
may optionally provide details of which DIMMs are participating in the inter-
leave.

Note that while LIBNVDIMM describes system-physical-address ranges that
may alias with BLK access as ND_NAMESPACE_PMEM ranges and those
without alias as ND_NAMESPACE_IO ranges, to the nd_pmem driver there is
no distinction. The different device-types are an implementation detail that
userspace can exploit to implement policies like“only interface with address
ranges from certain DIMMs”. It is worth noting that when aliasing is present
and a DIMM lacks a label, then no block device can be created by default as
userspace needs to do at least one allocation of DPA to the PMEM range. In
contrast ND_NAMESPACE_IO ranges, once registered, can be immediately
attached to nd_pmem.

2. BLK (nd_blk.ko): This driver performs I/O using a set of platform defined
apertures. A set of apertures will access just one DIMM. Multiple windows
(apertures) allow multiple concurrent accesses, much like tagged-command-
queuing, and would likely be used by different threads or different CPUs.

The NFIT specification defines a standard format for a BLK-aperture, but the
spec also allows for vendor specific layouts, and non-NFIT BLK implementa-
tions may have other designs for BLK I/O. For this reason“nd_blk”calls back
into platform-specific code to perform the I/O.

One such implementation is defined in the“Driver Writer’s Guide”and“DSM
Interface Example”.

42.1.4 Why BLK?

While PMEM provides direct byte-addressable CPU-load/store access to NVDIMM
storage, it does not provide the best system RAS (recovery, availability, and ser-
viceability) model. An access to a corrupted system-physical-address address
causes a CPU exception while an access to a corrupted address through an BLK-
aperture causes that block window to raise an error status in a register. The latter
is more alignedwith the standard error model that host-bus-adapter attached disks
present.

Also, if an administrator ever wants to replace a memory it is easier to service a
system at DIMM module boundaries. Compare this to PMEM where data could be
interleaved in an opaque hardware specific manner across several DIMMs.

PMEM vs BLK

BLK-apertures solve these RAS problems, but their presence is also the major con-
tributing factor to the complexity of the ND subsystem. They complicate the im-
plementation because PMEM and BLK alias in DPA space. Any given DIMM’s DPA-
range may contribute to one or more system-physical-address sets of interleaved
DIMMs, and may also be accessed in its entirety through its BLK-aperture. Access-
ing a DPA through a system-physical-address while simultaneously accessing the
same DPA through a BLK-aperture has undefined results. For this reason, DIMMs
with this dual interface configuration include a DSM function to store/retrieve

42.1. LIBNVDIMM: Non-Volatile Devices 1241

Linux Driver-api Documentation

a LABEL. The LABEL effectively partitions the DPA-space into exclusive system-
physical-address and BLK-aperture accessible regions. For simplicity a DIMM is
allowed a PMEM “region”per each interleave set in which it is a member. The
remaining DPA space can be carved into an arbitrary number of BLK devices with
discontiguous extents.

BLK-REGIONs, PMEM-REGIONs, Atomic Sectors, and DAX

One of the few reasons to allow multiple BLK namespaces per REGION is so that
each BLK-namespace can be configured with a BTT with unique atomic sector
sizes. While a PMEM device can host a BTT the LABEL specification does not
provide for a sector size to be specified for a PMEM namespace.

This is due to the expectation that the primary usage model for PMEM is via DAX,
and the BTT is incompatible with DAX. However, for the cases where an application
or filesystem still needs atomic sector update guarantees it can register a BTT on
a PMEM device or partition. See LIBNVDIMM/NDCTL: Block Translation Table
“btt”

42.1.5 Example NVDIMM Platform

For the remainder of this document the following diagram will be referenced for
any example sysfs layouts:

(a) (b) DIMM BLK-
↪→REGION

+-------------------+--------+--------+--------+
+------+ | pm0.0 | blk2.0 | pm1.0 | blk2.1 | 0 ␣
↪→region2
| imc0 +--+- - - region0- - - +--------+ +--------+
+--+---+ | pm0.0 | blk3.0 | pm1.0 | blk3.1 | 1 ␣
↪→region3

| +-------------------+--------v v--------+
+--+---+ | |
| cpu0 | region1
+--+---+ | |

| +----------------------------^ ^--------+
+--+---+ | blk4.0 | pm1.0 | blk4.0 | 2 ␣
↪→region4
| imc1 +--+----------------------------| +--------+
+------+ | blk5.0 | pm1.0 | blk5.0 | 3 ␣
↪→region5

+----------------------------+--------+--------+

In this platform we have four DIMMs and two memory controllers in one socket.
Each unique interface (BLK or PMEM) to DPA space is identified by a region device
with a dynamically assigned id (REGION0 - REGION5).

1. The first portion of DIMM0 and DIMM1 are interleaved as RE-
GION0. A single PMEM namespace is created in the REGION0-SPA-
range that spans most of DIMM0 and DIMM1 with a user-specified
name of“pm0.0”. Some of that interleaved system-physical-address

1242 Chapter 42. Non-Volatile Memory Device (NVDIMM)

Linux Driver-api Documentation

range is reclaimed as BLK-aperture accessed space starting at DPA-
offset (a) into each DIMM. In that reclaimed space we create two
BLK-aperture “namespaces”from REGION2 and REGION3 where
“blk2.0”and“blk3.0”are just human readable names that could be
set to any user-desired name in the LABEL.

2. In the last portion of DIMM0 and DIMM1 we have an interleaved
system-physical-address range, REGION1, that spans those two
DIMMs as well as DIMM2 and DIMM3. Some of REGION1 is allo-
cated to a PMEMnamespace named“pm1.0”, the rest is reclaimed in
4 BLK-aperture namespaces (for each DIMM in the interleave set),
“blk2.1”, “blk3.1”, “blk4.0”, and “blk5.0”.
3. The portion of DIMM2 and DIMM3 that do not participate in the
REGION1 interleaved system-physical-address range (i.e. the DPA
address past offset (b) are also included in the“blk4.0”and“blk5.0”
namespaces. Note, that this example shows that BLK-aperture
namespaces don’t need to be contiguous in DPA-space.

This bus is provided by the kernel under the device
/sys/devices/platform/nfit_test.0 when the nfit_test.ko module from
tools/testing/nvdimm is loaded. This not only test LIBNVDIMM but the
acpi_nfit.ko driver as well.

42.1.6 LIBNVDIMM Kernel Device Model and LIBNDCTL Userspace
API

What follows is a description of the LIBNVDIMM sysfs layout and a corresponding
object hierarchy diagram as viewed through the LIBNDCTL API. The example sysfs
paths and diagrams are relative to the Example NVDIMM Platform which is also
the LIBNVDIMM bus used in the LIBNDCTL unit test.

LIBNDCTL: Context

Every API call in the LIBNDCTL library requires a context that holds the logging
parameters and other library instance state. The library is based on the libabc
template:

https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git

LIBNDCTL: instantiate a new library context example

struct ndctl_ctx *ctx;

if (ndctl_new(&ctx) == 0)
return ctx;

else
return NULL;

42.1. LIBNVDIMM: Non-Volatile Devices 1243

https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git

Linux Driver-api Documentation

LIBNVDIMM/LIBNDCTL: Bus

A bus has a 1:1 relationship with an NFIT. The current expectation for ACPI based
systems is that there is only ever one platform-global NFIT. That said, it is trivial to
register multiple NFITs, the specification does not preclude it. The infrastructure
supports multiple busses and we use this capability to test multiple NFIT configu-
rations in the unit test.

LIBNVDIMM: control class device in /sys/class

This character device accepts DSM messages to be passed to DIMM identified by
its NFIT handle:

/sys/class/nd/ndctl0
|-- dev
|-- device -> ../../../ndbus0
|-- subsystem -> ../../../../../../../class/nd

LIBNVDIMM: bus

struct nvdimm_bus *nvdimm_bus_register(struct device *parent,
struct nvdimm_bus_descriptor *nfit_desc);

/sys/devices/platform/nfit_test.0/ndbus0
|-- commands
|-- nd
|-- nfit
|-- nmem0
|-- nmem1
|-- nmem2
|-- nmem3
|-- power
|-- provider
|-- region0
|-- region1
|-- region2
|-- region3
|-- region4
|-- region5
|-- uevent
`-- wait_probe

1244 Chapter 42. Non-Volatile Memory Device (NVDIMM)

Linux Driver-api Documentation

LIBNDCTL: bus enumeration example

Find the bus handle that describes the bus from Example NVDIMM Platform:

static struct ndctl_bus *get_bus_by_provider(struct ndctl_ctx *ctx,
const char *provider)

{
struct ndctl_bus *bus;

ndctl_bus_foreach(ctx, bus)
if (strcmp(provider, ndctl_bus_get_provider(bus)) == 0)

return bus;

return NULL;
}

bus = get_bus_by_provider(ctx, "nfit_test.0");

LIBNVDIMM/LIBNDCTL: DIMM (NMEM)

The DIMM device provides a character device for sending commands to hardware,
and it is a container for LABELs. If the DIMM is defined by NFIT then an optional
‘nfit’attribute sub-directory is available to add NFIT-specifics.
Note that the kernel device name for“DIMMs”is“nmemX”. The NFIT describes
these devices via “Memory Device to System Physical Address Range Mapping
Structure”, and there is no requirement that they actually be physical DIMMs, so
we use a more generic name.

LIBNVDIMM: DIMM (NMEM)

struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_
↪→data,

const struct attribute_group **groups, unsigned long flags,
unsigned long *dsm_mask);

/sys/devices/platform/nfit_test.0/ndbus0
|-- nmem0
| |-- available_slots
| |-- commands
| |-- dev
| |-- devtype
| |-- driver -> ../../../../../bus/nd/drivers/nvdimm
| |-- modalias
| |-- nfit
| | |-- device
| | |-- format
| | |-- handle
| | |-- phys_id
| | |-- rev_id
| | |-- serial
| | `-- vendor

(continues on next page)

42.1. LIBNVDIMM: Non-Volatile Devices 1245

Linux Driver-api Documentation

(continued from previous page)
| |-- state
| |-- subsystem -> ../../../../../bus/nd
| `-- uevent
|-- nmem1
[..]

LIBNDCTL: DIMM enumeration example

Note, in this example we are assuming NFIT-defined DIMMs which are identified
by an “nfit_handle”a 32-bit value where:
• Bit 3:0 DIMM number within the memory channel

• Bit 7:4 memory channel number

• Bit 11:8 memory controller ID

• Bit 15:12 socket ID (within scope of a Node controller if node controller is
present)

• Bit 27:16 Node Controller ID

• Bit 31:28 Reserved

static struct ndctl_dimm *get_dimm_by_handle(struct ndctl_bus *bus,
unsigned int handle)

{
struct ndctl_dimm *dimm;

ndctl_dimm_foreach(bus, dimm)
if (ndctl_dimm_get_handle(dimm) == handle)

return dimm;

return NULL;
}

#define DIMM_HANDLE(n, s, i, c, d) \
(((n & 0xfff) << 16) | ((s & 0xf) << 12) | ((i & 0xf) << 8) \
| ((c & 0xf) << 4) | (d & 0xf))

dimm = get_dimm_by_handle(bus, DIMM_HANDLE(0, 0, 0, 0, 0));

LIBNVDIMM/LIBNDCTL: Region

A generic REGION device is registered for each PMEM range or BLK-aperture
set. Per the example there are 6 regions: 2 PMEM and 4 BLK-aperture sets on the
“nfit_test.0”bus. The primary role of regions are to be a container of“mappings”
. A mapping is a tuple of <DIMM, DPA-start-offset, length>.

LIBNVDIMM provides a built-in driver for these REGION devices. This driver is
responsible for reconciling the aliased DPA mappings across all regions, pars-
ing the LABEL, if present, and then emitting NAMESPACE devices with the re-
solved/exclusive DPA-boundaries for the nd_pmem or nd_blk device driver to con-
sume.

1246 Chapter 42. Non-Volatile Memory Device (NVDIMM)

Linux Driver-api Documentation

In addition to the generic attributes of“mapping”s,“interleave_ways”and“size”
the REGION device also exports some convenience attributes.“nstype”indicates
the integer type of namespace-device this region emits,“devtype”duplicates the
DEVTYPE variable stored by udev at the‘add’event,“modalias”duplicates the
MODALIAS variable stored by udev at the ‘add’event, and finally, the optional
“spa_index”is provided in the case where the region is defined by a SPA.
LIBNVDIMM: region:

struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc);

struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc);

/sys/devices/platform/nfit_test.0/ndbus0
|-- region0
| |-- available_size
| |-- btt0
| |-- btt_seed
| |-- devtype
| |-- driver -> ../../../../../bus/nd/drivers/nd_region
| |-- init_namespaces
| |-- mapping0
| |-- mapping1
| |-- mappings
| |-- modalias
| |-- namespace0.0
| |-- namespace_seed
| |-- numa_node
| |-- nfit
| | `-- spa_index
| |-- nstype
| |-- set_cookie
| |-- size
| |-- subsystem -> ../../../../../bus/nd
| `-- uevent
|-- region1
[..]

LIBNDCTL: region enumeration example

Sample region retrieval routines based on NFIT-unique data like“spa_index”(in-
terleave set id) for PMEM and “nfit_handle”(dimm id) for BLK:

static struct ndctl_region *get_pmem_region_by_spa_index(struct ndctl_bus␣
↪→*bus,

unsigned int spa_index)
{

struct ndctl_region *region;

ndctl_region_foreach(bus, region) {
if (ndctl_region_get_type(region) != ND_DEVICE_REGION_PMEM)

continue;
if (ndctl_region_get_spa_index(region) == spa_index)

(continues on next page)

42.1. LIBNVDIMM: Non-Volatile Devices 1247

Linux Driver-api Documentation

(continued from previous page)
return region;

}
return NULL;

}

static struct ndctl_region *get_blk_region_by_dimm_handle(struct ndctl_bus␣
↪→*bus,

unsigned int handle)
{

struct ndctl_region *region;

ndctl_region_foreach(bus, region) {
struct ndctl_mapping *map;

if (ndctl_region_get_type(region) != ND_DEVICE_REGION_
↪→BLOCK)

continue;
ndctl_mapping_foreach(region, map) {

struct ndctl_dimm *dimm = ndctl_mapping_get_
↪→dimm(map);

if (ndctl_dimm_get_handle(dimm) == handle)
return region;

}
}
return NULL;

}

Why Not Encode the Region Type into the Region Name?

At first glance it seems since NFIT defines just PMEM and BLK interface types that
we should simply name REGION devices with something derived from those type
names. However, the ND subsystem explicitly keeps the REGION name generic
and expects userspace to always consider the region-attributes for four reasons:

1. There are already more than two REGION and“namespace”types. For PMEM
there are two subtypes. As mentioned previously we have PMEM where the
constituent DIMM devices are known and anonymous PMEM. For BLK re-
gions the NFIT specification already anticipates vendor specific implemen-
tations. The exact distinction of what a region contains is in the region-
attributes not the region-name or the region-devtype.

2. A region with zero child-namespaces is a possible configuration. For example,
the NFIT allows for a DCR to be published without a corresponding BLK-
aperture. This equates to a DIMM that can only accept control/configuration
messages, but no i/o through a descendant block device. Again, this “type”
is advertised in the attributes (‘mappings’== 0) and the name does not tell
you much.

3. What if a third major interface type arises in the future? Outside of vendor
specific implementations, it’s not difficult to envision a third class of interface
type beyond BLK and PMEM. With a generic name for the REGION level of
the device-hierarchy old userspace implementations can still make sense of
new kernel advertised region-types. Userspace can always rely on the generic

1248 Chapter 42. Non-Volatile Memory Device (NVDIMM)

Linux Driver-api Documentation

region attributes like“mappings”,“size”, etc and the expected child devices
named “namespace”. This generic format of the device-model hierarchy
allows the LIBNVDIMM and LIBNDCTL implementations to be more uniform
and future-proof.

4. There are more robust mechanisms for determining the major type of a region
than a device name. See the next section, HowDo I Determine theMajor Type
of a Region?

How Do I Determine the Major Type of a Region?

Outside of the blanket recommendation of“use libndctl”, or simply looking at the
kernel header (/usr/include/linux/ndctl.h) to decode the“nstype”integer attribute,
here are some other options.

1. module alias lookup

The whole point of region/namespace device type differentiation is to de-
cide which block-device driver will attach to a given LIBNVDIMMnames-
pace. One can simply use the modalias to lookup the resulting module.
It’s important to note that this method is robust in the presence of a
vendor-specific driver down the road. If a vendor-specific implementa-
tion wants to supplant the standard nd_blk driver it can with minimal
impact to the rest of LIBNVDIMM.

In fact, a vendor may also want to have a vendor-specific region-driver
(outside of nd_region). For example, if a vendor defined its own LABEL
format it would need its own region driver to parse that LABEL and emit
the resulting namespaces. The output from module resolution is more
accurate than a region-name or region-devtype.

2. udev

The kernel “devtype”is registered in the udev database:
udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region0
P: /devices/platform/nfit_test.0/ndbus0/region0
E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region0
E: DEVTYPE=nd_pmem
E: MODALIAS=nd:t2
E: SUBSYSTEM=nd

udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region4
P: /devices/platform/nfit_test.0/ndbus0/region4
E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region4
E: DEVTYPE=nd_blk
E: MODALIAS=nd:t3
E: SUBSYSTEM=nd

⋯and is available as a region attribute, but keep in mind that the“dev-
type”does not indicate sub-type variations and scripts should really be
understanding the other attributes.

42.1. LIBNVDIMM: Non-Volatile Devices 1249

Linux Driver-api Documentation

3. type specific attributes

As it currently stands a BLK-aperture region will never have a
“nfit/spa_index”attribute, but neither will a non-NFIT PMEM region. A
BLK region with a“mappings”value of 0 is, as mentioned above, a DIMM
that does not allow I/O. A PMEM region with a“mappings”value of zero
is a simple system-physical-address range.

LIBNVDIMM/LIBNDCTL: Namespace

A REGION, after resolving DPA aliasing and LABEL specified boundaries, surfaces
one or more“namespace”devices. The arrival of a“namespace”device currently
triggers either the nd_blk or nd_pmem driver to load and register a disk/block
device.

LIBNVDIMM: namespace

Here is a sample layout from the three major types of NAMESPACE where names-
pace0.0 represents DIMM-info-backed PMEM (note that it has a‘uuid’attribute),
namespace2.0 represents a BLK namespace (note it has a‘sector_size’attribute)
that, and namespace6.0 represents an anonymous PMEM namespace (note that
has no ‘uuid’attribute due to not support a LABEL):
/sys/devices/platform/nfit_test.0/ndbus0/region0/namespace0.0
|-- alt_name
|-- devtype
|-- dpa_extents
|-- force_raw
|-- modalias
|-- numa_node
|-- resource
|-- size
|-- subsystem -> ../../../../../../bus/nd
|-- type
|-- uevent
`-- uuid
/sys/devices/platform/nfit_test.0/ndbus0/region2/namespace2.0
|-- alt_name
|-- devtype
|-- dpa_extents
|-- force_raw
|-- modalias
|-- numa_node
|-- sector_size
|-- size
|-- subsystem -> ../../../../../../bus/nd
|-- type
|-- uevent
`-- uuid
/sys/devices/platform/nfit_test.1/ndbus1/region6/namespace6.0
|-- block
| `-- pmem0

(continues on next page)

1250 Chapter 42. Non-Volatile Memory Device (NVDIMM)

Linux Driver-api Documentation

(continued from previous page)
|-- devtype
|-- driver -> ../../../../../../bus/nd/drivers/pmem
|-- force_raw
|-- modalias
|-- numa_node
|-- resource
|-- size
|-- subsystem -> ../../../../../../bus/nd
|-- type
`-- uevent

LIBNDCTL: namespace enumeration example

Namespaces are indexed relative to their parent region, example below. These
indexes are mostly static from boot to boot, but subsystem makes no guarantees
in this regard. For a static namespace identifier use its ‘uuid’attribute.
static struct ndctl_namespace
*get_namespace_by_id(struct ndctl_region *region, unsigned int id)
{

struct ndctl_namespace *ndns;

ndctl_namespace_foreach(region, ndns)
if (ndctl_namespace_get_id(ndns) == id)

return ndns;

return NULL;
}

LIBNDCTL: namespace creation example

Idle namespaces are automatically created by the kernel if a given region has
enough available capacity to create a new namespace. Namespace instantiation
involves finding an idle namespace and configuring it. For themost part the setting
of namespace attributes can occur in any order, the only constraint is that‘uuid’
must be set before‘size’. This enables the kernel to track DPA allocations internally
with a static identifier:

static int configure_namespace(struct ndctl_region *region,
struct ndctl_namespace *ndns,
struct namespace_parameters *parameters)

{
char devname[50];

snprintf(devname, sizeof(devname), "namespace%d.%d",
ndctl_region_get_id(region), paramaters->id);

ndctl_namespace_set_alt_name(ndns, devname);
/* 'uuid' must be set prior to setting size! */
ndctl_namespace_set_uuid(ndns, paramaters->uuid);
ndctl_namespace_set_size(ndns, paramaters->size);

(continues on next page)

42.1. LIBNVDIMM: Non-Volatile Devices 1251

Linux Driver-api Documentation

(continued from previous page)
/* unlike pmem namespaces, blk namespaces have a sector size */
if (parameters->lbasize)

ndctl_namespace_set_sector_size(ndns, parameters->lbasize);
ndctl_namespace_enable(ndns);

}

Why the Term “namespace”?

1. Why not “volume”for instance? “volume”ran the risk of confusing ND
(libnvdimm subsystem) to a volume manager like device-mapper.

2. The term originated to describe the sub-devices that can be created within
a NVME controller (see the nvme specification: http://www.nvmexpress.org/
specifications/), and NFIT namespaces are meant to parallel the capabilities
and configurability of NVME-namespaces.

LIBNVDIMM/LIBNDCTL: Block Translation Table “btt”

A BTT (design document: http://pmem.io/2014/09/23/btt.html) is a stacked block
device driver that fronts either the whole block device or a partition of a block
device emitted by either a PMEM or BLK NAMESPACE.

LIBNVDIMM: btt layout

Every region will start out with at least one BTT device which is the seed device.
To activate it set the“namespace”,“uuid”, and“sector_size”attributes and then
bind the device to the nd_pmem or nd_blk driver depending on the region type:

/sys/devices/platform/nfit_test.1/ndbus0/region0/btt0/
|-- namespace
|-- delete
|-- devtype
|-- modalias
|-- numa_node
|-- sector_size
|-- subsystem -> ../../../../../bus/nd
|-- uevent
`-- uuid

LIBNDCTL: btt creation example

Similar to namespaces an idle BTT device is automatically created per region.
Each time this “seed”btt device is configured and enabled a new seed is cre-
ated. Creating a BTT configuration involves two steps of finding and idle BTT and
assigning it to consume a PMEM or BLK namespace:

1252 Chapter 42. Non-Volatile Memory Device (NVDIMM)

http://www.nvmexpress.org/specifications/
http://www.nvmexpress.org/specifications/
http://pmem.io/2014/09/23/btt.html

Linux Driver-api Documentation

static struct ndctl_btt *get_idle_btt(struct ndctl_region *region)
{

struct ndctl_btt *btt;

ndctl_btt_foreach(region, btt)
if (!ndctl_btt_is_enabled(btt)

&& !ndctl_btt_is_configured(btt))
return btt;

return NULL;
}

static int configure_btt(struct ndctl_region *region,
struct btt_parameters *parameters)

{
btt = get_idle_btt(region);

ndctl_btt_set_uuid(btt, parameters->uuid);
ndctl_btt_set_sector_size(btt, parameters->sector_size);
ndctl_btt_set_namespace(btt, parameters->ndns);
/* turn off raw mode device */
ndctl_namespace_disable(parameters->ndns);
/* turn on btt access */
ndctl_btt_enable(btt);

}

Once instantiated a new inactive btt seed device will appear underneath the re-
gion.

Once a“namespace”is removed from a BTT that instance of the BTT device will
be deleted or otherwise reset to default values. This deletion is only at the device
model level. In order to destroy a BTT the “info block”needs to be destroyed.
Note, that to destroy a BTT the media needs to be written in raw mode. By de-
fault, the kernel will autodetect the presence of a BTT and disable raw mode. This
autodetect behavior can be suppressed by enabling raw mode for the namespace
via the ndctl_namespace_set_raw_mode() API.

Summary LIBNDCTL Diagram

For the given example above, here is the view of the objects as seen by the LIB-
NDCTL API:

+---+
|CTX| +---------+ +--------------+ +---------------+
+-+-+ +-> REGION0 +---> NAMESPACE0.0 +--> PMEM8 "pm0.0" |

| | +---------+ +--------------+ +---------------+
+-------+ | | +---------+ +--------------+ +---------------+
| DIMM0 <-+ | +-> REGION1 +---> NAMESPACE1.0 +--> PMEM6 "pm1.0" |
+-------+ | | | +---------+ +--------------+ +---------------+
| DIMM1 <-+ +-v--+ | +---------+ +--------------+ +---------------+
+-------+ +-+BUS0+---> REGION2 +-+-> NAMESPACE2.0 +--> ND6 "blk2.0" |
| DIMM2 <-+ +----+ | +---------+ | +--------------+ +---------------------
↪→-+
+-------+ | | +-> NAMESPACE2.1 +--> ND5 "blk2.1" |␣
↪→BTT2 |

(continues on next page)

42.1. LIBNVDIMM: Non-Volatile Devices 1253

Linux Driver-api Documentation

(continued from previous page)
| DIMM3 <-+ | +--------------+ +---------------------
↪→-+
+-------+ | +---------+ +--------------+ +---------------+

+-> REGION3 +-+-> NAMESPACE3.0 +--> ND4 "blk3.0" |
| +---------+ | +--------------+ +---------------------

↪→-+
| +-> NAMESPACE3.1 +--> ND3 "blk3.1" |␣

↪→BTT1 |
| +--------------+ +---------------------

↪→-+
| +---------+ +--------------+ +---------------+
+-> REGION4 +---> NAMESPACE4.0 +--> ND2 "blk4.0" |
| +---------+ +--------------+ +---------------+
| +---------+ +--------------+ +---------------------

↪→-+
+-> REGION5 +---> NAMESPACE5.0 +--> ND1 "blk5.0" |␣

↪→BTT0 |
+---------+ +--------------+ +---------------+-----

↪→-+

42.2 BTT - Block Translation Table

42.2.1 1. Introduction

Persistent memory based storage is able to perform IO at byte (or more accurately,
cache line) granularity. However, we often want to expose such storage as tradi-
tional block devices. The block drivers for persistent memory will do exactly this.
However, they do not provide any atomicity guarantees. Traditional SSDs typically
provide protection against torn sectors in hardware, using stored energy in capac-
itors to complete in-flight block writes, or perhaps in firmware. We don’t have
this luxury with persistent memory - if a write is in progress, and we experience a
power failure, the block will contain a mix of old and new data. Applications may
not be prepared to handle such a scenario.

The Block Translation Table (BTT) provides atomic sector update semantics for
persistent memory devices, so that applications that rely on sector writes not being
torn can continue to do so. The BTT manifests itself as a stacked block device, and
reserves a portion of the underlying storage for its metadata. At the heart of it, is
an indirection table that re-maps all the blocks on the volume. It can be thought
of as an extremely simple file system that only provides atomic sector updates.

1254 Chapter 42. Non-Volatile Memory Device (NVDIMM)

Linux Driver-api Documentation

42.2.2 2. Static Layout

The underlying storage on which a BTT can be laid out is not limited in any way.
The BTT, however, splits the available space into chunks of up to 512 GiB, called
“Arenas”.
Each arena follows the same layout for its metadata, and all references in an arena
are internal to it (with the exception of one field that points to the next arena). The
following depicts the “On-disk”metadata layout:

Backing Store +-------> Arena
+---------------+ | +------------------+
| | | | Arena info block |
| Arena 0 +---+ | 4K |
| 512G | +------------------+
| | | |
+---------------+ | |
Arena 1		Data Blocks
512G		
+---------------+		
.		
.		
.		
+---------------+ +------------------+

| |
| BTT Map |
| |
| |
+------------------+
| |
| BTT Flog |
| |
+------------------+
| Info block copy |
| 4K |
+------------------+

42.2.3 3. Theory of Operation

a. The BTT Map

The map is a simple lookup/indirection table that maps an LBA to an internal block.
Each map entry is 32 bits. The two most significant bits are special flags, and the
remaining form the internal block number.

42.2. BTT - Block Translation Table 1255

Linux Driver-api Documentation

Bit Description
31 - 30 Error and Zero flags - Used in the fol-

lowing way:
== == ␣
↪→==
31 30 Description
== == ␣
↪→==
0 0 Initial state. Reads return␣
↪→zeroes; Premap = Postmap
0 1 Zero state: Reads return␣
↪→zeroes
1 0 Error state: Reads fail;␣
↪→Writes clear 'E' bit
1 1 Normal Block – has valid␣
↪→postmap
== == ␣
↪→==

29 - 0 Mappings to internal‘postmap’blocks

Some of the terminology that will be subsequently used:

Ex-
ternal
LBA

LBA as made visible to upper layers.

ABA Arena Block Address - Block offset/number within an arena
Premap
ABA

The block offset into an arena, which was decided upon by range check-
ing the External LBA

Postmap
ABA

The block number in the“Data Blocks”area obtained after indirection
from the map

nfree The number of free blocks that are maintained at any given time. This
is the number of concurrent writes that can happen to the arena.

For example, after adding a BTT, we surface a disk of 1024G. We get a read for the
external LBA at 768G. This falls into the second arena, and of the 512G worth of
blocks that this arena contributes, this block is at 256G. Thus, the premap ABA is
256G. We now refer to the map, and find out the mapping for block ‘X’(256G)
points to block ‘Y’, say ‘64’. Thus the postmap ABA is 64.

b. The BTT Flog

The BTT provides sector atomicity by making every write an “allocating write”,
i.e. Every write goes to a“free”block. A running list of free blocks is maintained
in the form of the BTT flog. ‘Flog’is a combination of the words“free list”and
“log”. The flog contains ‘nfree’entries, and an entry contains:

1256 Chapter 42. Non-Volatile Memory Device (NVDIMM)

Linux Driver-api Documentation

lba The premap ABA that is being written to
old_mapThe old postmap ABA - after ‘this’write completes, this will be a free

block.
new_mapThe new postmap ABA. The map will up updated to reflect this lba-

>postmap_aba mapping, but we log it here in case we have to recover.
seq Sequence number to mark which of the 2 sections of this flog entry is

valid/newest. It cycles between 01->10->11->01 (binary) under normal
operation, with 00 indicating an uninitialized state.

lba’ alternate lba entry
old_map’alternate old postmap entry
new_map’alternate new postmap entry
seq’ alternate sequence number.

Each of the above fields is 32-bit, making one entry 32 bytes. Entries are also
padded to 64 bytes to avoid cache line sharing or aliasing. Flog updates are done
such that for any entry being written, it: a. overwrites the‘old’section in the entry
based on sequence numbers b. writes the ‘new’section such that the sequence
number is written last.

c. The concept of lanes

While‘nfree’describes the number of concurrent IOs an arena can process con-
currently, ‘nlanes’is the number of IOs the BTT device as a whole can process:
nlanes = min(nfree, num_cpus)

A lane number is obtained at the start of any IO, and is used for indexing into all
the on-disk and in-memory data structures for the duration of the IO. If there are
more CPUs than the max number of available lanes, than lanes are protected by
spinlocks.

d. In-memory data structure: Read Tracking Table (RTT)

Consider a case where we have two threads, one doing reads and the other, writes.
We can hit a condition where the writer thread grabs a free block to do a new IO,
but the (slow) reader thread is still reading from it. In other words, the reader
consulted a map entry, and started reading the corresponding block. A writer
started writing to the same external LBA, and finished the write updating the map
for that external LBA to point to its new postmap ABA. At this point the internal,
postmap block that the reader is (still) reading has been inserted into the list of
free blocks. If another write comes in for the same LBA, it can grab this free block,
and start writing to it, causing the reader to read incorrect data. To prevent this,
we introduce the RTT.

The RTT is a simple, per arena table with ‘nfree’entries. Every reader inserts
into rtt[lane_number], the postmap ABA it is reading, and clears it after the read
is complete. Every writer thread, after grabbing a free block, checks the RTT for
its presence. If the postmap free block is in the RTT, it waits till the reader clears
the RTT entry, and only then starts writing to it.

42.2. BTT - Block Translation Table 1257

Linux Driver-api Documentation

e. In-memory data structure: map locks

Consider a case where two writer threads are writing to the same LBA. There can
be a race in the following sequence of steps:

free[lane] = map[premap_aba]
map[premap_aba] = postmap_aba

Both threads can update their respective free[lane] with the same old, freed
postmap_aba. This has made the layout inconsistent by losing a free entry, and at
the same time, duplicating another free entry for two lanes.

To solve this, we could have a single map lock (per arena) that has to be taken
before performing the above sequence, but we feel that could be too contentious.
Instead we use an array of (nfree) map_locks that is indexed by (premap_aba mod-
ulo nfree).

f. Reconstruction from the Flog

On startup, we analyze the BTT flog to create our list of free blocks. We walk
through all the entries, and for each lane, of the set of two possible ‘sections’,
we always look at the most recent one only (based on the sequence number). The
reconstruction rules/steps are simple:

• Read map[log_entry.lba].

• If log_entry.new matches the map entry, then log_entry.old is free.

• If log_entry.new does not match the map entry, then log_entry.new is free.
(This case can only be caused by power-fails/unsafe shutdowns)

g. Summarizing - Read and Write flows

Read:

1. Convert external LBA to arena number + pre-map ABA

2. Get a lane (and take lane_lock)

3. Read map to get the entry for this pre-map ABA

4. Enter post-map ABA into RTT[lane]

5. If TRIM flag set in map, return zeroes, and end IO (go to step 8)

6. If ERROR flag set in map, end IO with EIO (go to step 8)

7. Read data from this block

8. Remove post-map ABA entry from RTT[lane]

9. Release lane (and lane_lock)

Write:

1. Convert external LBA to Arena number + pre-map ABA

2. Get a lane (and take lane_lock)

1258 Chapter 42. Non-Volatile Memory Device (NVDIMM)

Linux Driver-api Documentation

3. Use lane to index into in-memory free list and obtain a new block, next flog
index, next sequence number

4. Scan the RTT to check if free block is present, and spin/wait if it is.

5. Write data to this free block

6. Read map to get the existing post-map ABA entry for this pre-map ABA

7. Write flog entry: [premap_aba / old postmap_aba / new postmap_aba /
seq_num]

8. Write new post-map ABA into map.

9. Write old post-map entry into the free list

10. Calculate next sequence number and write into the free list entry

11. Release lane (and lane_lock)

42.2.4 4. Error Handling

An arena would be in an error state if any of the metadata is corrupted irrecover-
ably, either due to a bug or a media error. The following conditions indicate an
error:

• Info block checksum does not match (and recovering from the copy also fails)

• All internal available blocks are not uniquely and entirely addressed by the
sum of mapped blocks and free blocks (from the BTT flog).

• Rebuilding free list from the flog reveals missing/duplicate/impossible entries

• A map entry is out of bounds

If any of these error conditions are encountered, the arena is put into a read only
state using a flag in the info block.

42.2.5 5. Usage

The BTT can be set up on any disk (namespace) exposed by the libnvdimm subsys-
tem (pmem, or blk mode). The easiest way to set up such a namespace is using
the ‘ndctl’utility [1]:
For example, the ndctl command line to setup a btt with a 4k sector size is:

ndctl create-namespace -f -e namespace0.0 -m sector -l 4k

See ndctl create-namespace –help for more options.

[1]: https://github.com/pmem/ndctl

42.2. BTT - Block Translation Table 1259

https://github.com/pmem/ndctl

Linux Driver-api Documentation

42.3 NVDIMM Security

42.3.1 1. Introduction

With the introduction of Intel Device Specific Methods (DSM) v1.8 specification
[1], security DSMs are introduced. The spec added the following security DSMs:
“get security state”, “set passphrase”, “disable passphrase”, “unlock unit”,
“freeze lock”,“secure erase”, and“overwrite”. A security_ops data structure has
been added to struct dimm in order to support the security operations and generic
APIs are exposed to allow vendor neutral operations.

42.3.2 2. Sysfs Interface

The“security”sysfs attribute is provided in the nvdimm sysfs directory. For exam-
ple: /sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0012:00/ndbus0/nmem0/security

The“show”attribute of that attribute will display the security state for that DIMM.
The following states are available: disabled, unlocked, locked, frozen, and over-
write. If security is not supported, the sysfs attribute will not be visible.

The“store”attribute takes several commands when it is being written to in order
to support some of the security functionalities: update <old_keyid> <new_keyid>
- enable or update passphrase. disable <keyid> - disable enabled security and
remove key. freeze - freeze changing of security states. erase <keyid> - delete
existing user encryption key. overwrite <keyid> - wipe the entire nvdimm. mas-
ter_update <keyid> <new_keyid> - enable or update master passphrase. mas-
ter_erase <keyid> - delete existing user encryption key.

42.3.3 3. Key Management

The key is associated to the payload by the DIMM id. For example: # cat
/sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0012:00/ndbus0/nmem0/nfit/id
8089-a2-1740-00000133 The DIMM id would be provided along with the key
payload (passphrase) to the kernel.

The security keys are managed on the basis of a single key per DIMM. The key
“passphrase”is expected to be 32bytes long. This is similar to the ATA security
specification [2]. A key is initially acquired via the request_key() kernel API call
during nvdimm unlock. It is up to the user to make sure that all the keys are in
the kernel user keyring for unlock.

A nvdimm encrypted-key of format enc32 has the description format of:
nvdimm:<bus-provider-specific-unique-id>

See file Documentation/security/keys/trusted-encrypted.rst for creating
encrypted-keys of enc32 format. TPM usage with a master trusted key is preferred
for sealing the encrypted-keys.

1260 Chapter 42. Non-Volatile Memory Device (NVDIMM)

Linux Driver-api Documentation

42.3.4 4. Unlocking

When the DIMMs are being enumerated by the kernel, the kernel will attempt
to retrieve the key from the kernel user keyring. This is the only time a locked
DIMM can be unlocked. Once unlocked, the DIMM will remain unlocked until
reboot. Typically an entity (i.e. shell script) will inject all the relevant encrypted-
keys into the kernel user keyring during the initramfs phase. This provides the
unlock function access to all the related keys that contain the passphrase for the
respective nvdimms. It is also recommended that the keys are injected before
libnvdimm is loaded by modprobe.

42.3.5 5. Update

When doing an update, it is expected that the existing key is removed from the
kernel user keyring and reinjected as different (old) key. It’s irrelevant what the
key description is for the old key since we are only interested in the keyid when
doing the update operation. It is also expected that the new key is injected with the
description format described from earlier in this document. The update command
written to the sysfs attribute will be with the format: update <old keyid> <new
keyid>

If there is no old keyid due to a security enabling, then a 0 should be passed in.

42.3.6 6. Freeze

The freeze operation does not require any keys. The security config can be frozen
by a user with root privelege.

42.3.7 7. Disable

The security disable command format is: disable <keyid>

An key with the current passphrase payload that is tied to the nvdimm should be
in the kernel user keyring.

42.3.8 8. Secure Erase

The command format for doing a secure erase is: erase <keyid>

An key with the current passphrase payload that is tied to the nvdimm should be
in the kernel user keyring.

42.3. NVDIMM Security 1261

Linux Driver-api Documentation

42.3.9 9. Overwrite

The command format for doing an overwrite is: overwrite <keyid>

Overwrite can be done without a key if security is not enabled. A key serial of 0
can be passed in to indicate no key.

The sysfs attribute“security”can be polled to wait on overwrite completion. Over-
write can last tens of minutes or more depending on nvdimm size.

An encrypted-key with the current user passphrase that is tied to the nvdimm
should be injected and its keyid should be passed in via sysfs.

42.3.10 10. Master Update

The command format for doing a master update is: update <old keyid> <new
keyid>

The operating mechanism for master update is identical to update except the mas-
ter passphrase key is passed to the kernel. The master passphrase key is just
another encrypted-key.

This command is only available when security is disabled.

42.3.11 11. Master Erase

The command format for doing a master erase is: master_erase <current keyid>

This command has the same operating mechanism as erase except the master
passphrase key is passed to the kernel. The master passphrase key is just another
encrypted-key.

This command is only available when the master security is enabled, indicated by
the extended security status.

[1]: http://pmem.io/documents/NVDIMM_DSM_Interface-V1.8.pdf

[2]: http://www.t13.org/documents/UploadedDocuments/docs2006/
e05179r4-ACS-SecurityClarifications.pdf

1262 Chapter 42. Non-Volatile Memory Device (NVDIMM)

http://pmem.io/documents/NVDIMM_DSM_Interface-V1.8.pdf
http://www.t13.org/documents/UploadedDocuments/docs2006/e05179r4-ACS-SecurityClarifications.pdf
http://www.t13.org/documents/UploadedDocuments/docs2006/e05179r4-ACS-SecurityClarifications.pdf

CHAPTER

FORTYTHREE

W1: DALLAS’1-WIRE BUS

Author David Fries

43.1 W1 API internal to the kernel

43.1.1 include/linux/w1.h

W1 kernel API functions.

struct w1_reg_num
broken out slave device id

Definition

struct w1_reg_num {
#if defined(__LITTLE_ENDIAN_BITFIELD);

__u64 family:8,id:48, crc:8;
#elif defined(__BIG_ENDIAN_BITFIELD);

__u64 crc:8,id:48, family:8;
#else;
#error "Please fix <asm/byteorder.h>";
#endif;
};

Members
family identifies the type of device

id along with family is the unique device id

crc checksum of the other bytes

crc checksum of the other bytes

id along with family is the unique device id

family identifies the type of device

struct w1_slave
holds a single slave device on the bus

Definition

1263

Linux Driver-api Documentation

struct w1_slave {
struct module *owner;
unsigned char name[W1_MAXNAMELEN];
struct list_head w1_slave_entry;
struct w1_reg_num reg_num;
atomic_t refcnt;
int ttl;
unsigned long flags;
struct w1_master *master;
struct w1_family *family;
void *family_data;
struct device dev;
struct device *hwmon;

};

Members
owner Points to the one wire “wire”kernel module.
name Device id is ascii.

w1_slave_entry data for the linked list

reg_num the slave id in binary

refcnt reference count, delete when 0

ttl decrement per search this slave isn’t found, deatch at 0
flags bit flags for W1_SLAVE_ACTIVE W1_SLAVE_DETACH

master bus which this slave is on

family module for device family type

family_data pointer for use by the family module

dev kernel device identifier

hwmon pointer to hwmon device

struct w1_bus_master
operations available on a bus master

Definition

struct w1_bus_master {
void *data;
u8 (*read_bit)(void *);
void (*write_bit)(void *, u8);
u8 (*touch_bit)(void *, u8);
u8 (*read_byte)(void *);
void (*write_byte)(void *, u8);
u8 (*read_block)(void *, u8 *, int);
void (*write_block)(void *, const u8 *, int);
u8 (*triplet)(void *, u8);
u8 (*reset_bus)(void *);
u8 (*set_pullup)(void *, int);
void (*search)(void *, struct w1_master *, u8, w1_slave_found_callback);
char *dev_id;

};

1264 Chapter 43. W1: Dallas’1-wire bus

Linux Driver-api Documentation

Members
data the first parameter in all the functions below

read_bit Sample the line level return the level read (0 or 1)
write_bit Sets the line level

touch_bit the lowest-level function for devices that really support the 1-wire pro-
tocol. touch_bit(0) = write-0 cycle touch_bit(1) = write-1 / read cycle return
the bit read (0 or 1)

read_byte Reads a bytes. Same as 8 touch_bit(1) calls. return the byte read
write_byte Writes a byte. Same as 8 touch_bit(x) calls.

read_block Same as a series of read_byte() calls return the number of bytes read
write_block Same as a series of write_byte() calls

triplet Combines two reads and a smart write for ROM searches return bit0=Id
bit1=comp_id bit2=dir_taken

reset_bus long write-0 with a read for the presence pulse detection return -
1=Error, 0=Device present, 1=No device present

set_pullup Put out a strong pull-up pulse of the specified duration. return -
1=Error, 0=completed

search Really nice hardware can handles the different types of ROM search
w1_master* is passed to the slave found callback. u8 is search_type,
W1_SEARCH or W1_ALARM_SEARCH

dev_id Optional device id string, which w1 slaves could use for creating names,
which then give a connection to the w1 master

Note
read_bit and write_bit are very low level functions and should only be used with
hardware that doesn’t really support 1-wire operations, like a parallel/serial port.
Either define read_bit and write_bit OR define, at minimum, touch_bit and re-
set_bus.

enum w1_master_flags
bitfields used in w1_master.flags

Constants
W1_ABORT_SEARCH abort searching early on shutdown

W1_WARN_MAX_COUNT limit warning when the maximum count is reached

struct w1_master
one per bus master

Definition

struct w1_master {
struct list_head w1_master_entry;
struct module *owner;
unsigned char name[W1_MAXNAMELEN];
struct mutex list_mutex;

(continues on next page)

43.1. W1 API internal to the kernel 1265

Linux Driver-api Documentation

(continued from previous page)
struct list_head slist;
struct list_head async_list;
int max_slave_count, slave_count;
unsigned long attempts;
int slave_ttl;
int initialized;
u32 id;
int search_count;
u64 search_id;
atomic_t refcnt;
void *priv;
int enable_pullup;
int pullup_duration;
long flags;
struct task_struct *thread;
struct mutex mutex;
struct mutex bus_mutex;
struct device_driver *driver;
struct device dev;
struct w1_bus_master *bus_master;
u32 seq;

};

Members
w1_master_entry master linked list

owner module owner

name dynamically allocate bus name

list_mutex protect slist and async_list

slist linked list of slaves

async_list linked list of netlink commands to execute

max_slave_count maximum number of slaves to search for at a time

slave_count current number of slaves known

attempts number of searches ran

slave_ttl number of searches before a slave is timed out

initialized prevent init/removal race conditions

id w1 bus number

search_count number of automatic searches to run, -1 unlimited

search_id allows continuing a search

refcnt reference count

priv private data storage

enable_pullup allows a strong pullup

pullup_duration time for the next strong pullup

flags one of w1_master_flags

1266 Chapter 43. W1: Dallas’1-wire bus

Linux Driver-api Documentation

thread thread for bus search and netlink commands

mutex protect most of w1_master

bus_mutex pretect concurrent bus access

driver sysfs driver

dev sysfs device

bus_master io operations available

seq sequence number used for netlink broadcasts

struct w1_family_ops
operations for a family type

Definition

struct w1_family_ops {
int (*add_slave)(struct w1_slave *sl);
void (*remove_slave)(struct w1_slave *sl);
const struct attribute_group **groups;
const struct hwmon_chip_info *chip_info;

};

Members
add_slave add_slave

remove_slave remove_slave

groups sysfs group

chip_info pointer to struct hwmon_chip_info

struct w1_family
reference counted family structure.

Definition

struct w1_family {
struct list_head family_entry;
u8 fid;
struct w1_family_ops *fops;
const struct of_device_id *of_match_table;
atomic_t refcnt;

};

Members
family_entry family linked list

fid 8 bit family identifier

fops operations for this family

of_match_table open firmware match table

refcnt reference counter

module_w1_family(__w1_family)
Helper macro for registering a 1-Wire families

43.1. W1 API internal to the kernel 1267

Linux Driver-api Documentation

Parameters
__w1_family w1_family struct

Description
Helper macro for 1-Wire families which do not do anything special in module
init/exit. This eliminates a lot of boilerplate. Each module may only use this macro
once, and calling it replaces module_init() and module_exit()

43.1.2 drivers/w1/w1.c

W1 core functions.

void w1_search(struct w1_master * dev, u8 search_type,
w1_slave_found_callback cb)

Performs a ROM Search & registers any devices found.

Parameters
struct w1_master * dev The master device to search

u8 search_type W1_SEARCH to search all devices, or W1_ALARM_SEARCH to
return only devices in the alarmed state

w1_slave_found_callback cb Function to call when a device is found

Description
The 1-wire search is a simple binary tree search. For each bit of the address, we
read two bits and write one bit. The bit written will put to sleep all devies that
don’t match that bit. When the two reads differ, the direction choice is obvious.
When both bits are 0, we must choose a path to take. When we can scan all 64
bits without having to choose a path, we are done.

See “Application note 187 1-wire search algorithm”at www.maxim-ic.com
int w1_process_callbacks(struct w1_master * dev)

execute each dev->async_list callback entry

Parameters
struct w1_master * dev w1_master device

Description
The w1 master list_mutex must be held.

Return
1 if there were commands to executed 0 otherwise

1268 Chapter 43. W1: Dallas’1-wire bus

Linux Driver-api Documentation

43.1.3 drivers/w1/w1_family.c

Allows registering device family operations.

int w1_register_family(struct w1_family * newf)
register a device family driver

Parameters
struct w1_family * newf family to register

void w1_unregister_family(struct w1_family * fent)
unregister a device family driver

Parameters
struct w1_family * fent family to unregister

43.1.4 drivers/w1/w1_internal.h

W1 internal initialization for master devices.

struct w1_async_cmd
execute callback from the w1_process kthread

Definition

struct w1_async_cmd {
struct list_head async_entry;
void (*cb)(struct w1_master *dev, struct w1_async_cmd *async_cmd);

};

Members
async_entry link entry

cb callback function, must list_del and destroy this list before returning

Description
When inserted into the w1_master async_list, w1_process will execute the call-
back. Embed this into the structure with the command details.

43.1.5 drivers/w1/w1_int.c

W1 internal initialization for master devices.

int w1_add_master_device(struct w1_bus_master * master)
registers a new master device

Parameters
struct w1_bus_master * master master bus device to register

void w1_remove_master_device(struct w1_bus_master * bm)
unregister a master device

Parameters
struct w1_bus_master * bm master bus device to remove

43.1. W1 API internal to the kernel 1269

Linux Driver-api Documentation

43.1.6 drivers/w1/w1_netlink.h

W1 external netlink API structures and commands.

enum w1_cn_msg_flags
bitfield flags for struct cn_msg.flags

Constants
W1_CN_BUNDLE Request bundling replies into fewer messagse. Be prepared

to handle multiple struct cn_msg, struct w1_netlink_msg, and struct
w1_netlink_cmd in one packet.

enum w1_netlink_message_types
message type

Constants
W1_SLAVE_ADD notification that a slave device was added

W1_SLAVE_REMOVE notification that a slave device was removed

W1_MASTER_ADD notification that a new bus master was added

W1_MASTER_REMOVE notification that a bus masterwas removed

W1_MASTER_CMD initiate operations on a specific master

W1_SLAVE_CMD sends reset, selects the slave, then does a read/write/touch opera-
tion

W1_LIST_MASTERS used to determine the bus master identifiers

struct w1_netlink_msg
holds w1 message type, id, and result

Definition

struct w1_netlink_msg {
__u8 type;
__u8 status;
__u16 len;
union {

__u8 id[8];
struct w1_mst {
__u32 id;
__u32 res;

} mst;
} id;
__u8 data[];

};

Members
type one of enum w1_netlink_message_types

status kernel feedback for success 0 or errno failure value

len length of data following w1_netlink_msg

id union holding bus master id (msg.id) and slave device id (id[8]).

1270 Chapter 43. W1: Dallas’1-wire bus

Linux Driver-api Documentation

id.id Slave ID (8 bytes)

id.mst bus master identification

id.mst.id bus master ID

id.mst.res bus master reserved

data start address of any following data

Description
The base message structure for w1 messages over netlink. The netlink connec-
tor data sequence is, struct nlmsghdr, struct cn_msg, then one or more struct
w1_netlink_msg (each with optional data).

enum w1_commands
commands available for master or slave operations

Constants
W1_CMD_READ read len bytes

W1_CMD_WRITE write len bytes

W1_CMD_SEARCH initiate a standard search, returns only the slave devices found
during that search

W1_CMD_ALARM_SEARCH search for devices that are currently alarming

W1_CMD_TOUCH Touches a series of bytes.

W1_CMD_RESET sends a bus reset on the given master

W1_CMD_SLAVE_ADD adds a slave to the given master, 8 byte slave id at data[0]

W1_CMD_SLAVE_REMOVE removes a slave to the given master, 8 byte slave id at
data[0]

W1_CMD_LIST_SLAVES list of slaves registered on this master

W1_CMD_MAX number of available commands

struct w1_netlink_cmd
holds the command and data

Definition

struct w1_netlink_cmd {
__u8 cmd;
__u8 res;
__u16 len;
__u8 data[];

};

Members
cmd one of enum w1_commands

res reserved

len length of data following w1_netlink_cmd

data start address of any following data

43.1. W1 API internal to the kernel 1271

Linux Driver-api Documentation

Description
One ormore struct w1_netlink_cmd is placed starting at w1_netlink_msg.data each
with optional data.

43.1.7 drivers/w1/w1_io.c

W1 input/output.

u8 w1_touch_bit(struct w1_master * dev, int bit)
Generates a write-0 or write-1 cycle and samples the level.

Parameters
struct w1_master * dev the master device

int bit 0 - write a 0, 1 - write a 0 read the level

void w1_write_8(struct w1_master * dev, u8 byte)
Writes 8 bits.

Parameters
struct w1_master * dev the master device

u8 byte the byte to write

u8 w1_triplet(struct w1_master * dev, int bdir)

• Does a triplet - used for searching ROM addresses.

Parameters
struct w1_master * dev the master device

int bdir the bit to write if both id_bit and comp_bit are 0

Description
Return bits: bit 0 = id_bit bit 1 = comp_bit bit 2 = dir_taken
If both bits 0 & 1 are set, the search should be restarted.

Return
bit fields - see above

u8 w1_read_8(struct w1_master * dev)
Reads 8 bits.

Parameters
struct w1_master * dev the master device

Return
the byte read

void w1_write_block(struct w1_master * dev, const u8 * buf, int len)
Writes a series of bytes.

Parameters
struct w1_master * dev the master device

1272 Chapter 43. W1: Dallas’1-wire bus

Linux Driver-api Documentation

const u8 * buf pointer to the data to write

int len the number of bytes to write

void w1_touch_block(struct w1_master * dev, u8 * buf, int len)
Touches a series of bytes.

Parameters
struct w1_master * dev the master device

u8 * buf pointer to the data to write

int len the number of bytes to write

u8 w1_read_block(struct w1_master * dev, u8 * buf, int len)
Reads a series of bytes.

Parameters
struct w1_master * dev the master device

u8 * buf pointer to the buffer to fill

int len the number of bytes to read

Return
the number of bytes read

int w1_reset_bus(struct w1_master * dev)
Issues a reset bus sequence.

Parameters
struct w1_master * dev the master device

Return
0=Device present, 1=No device present or error

int w1_reset_select_slave(struct w1_slave * sl)
reset and select a slave

Parameters
struct w1_slave * sl the slave to select

Description
Resets the bus and then selects the slave by sending either a skip rom or a rom
match. A skip rom is issued if there is only one device registered on the bus. The
w1 master lock must be held.

Return
0=success, anything else=error

int w1_reset_resume_command(struct w1_master * dev)
resume instead of another match ROM

Parameters
struct w1_master * dev the master device

43.1. W1 API internal to the kernel 1273

Linux Driver-api Documentation

Description
When the workflow with a slave amongst many requires several successive com-
mands a reset between each, this function is similar to doing a reset then a match
ROM for the last matched ROM. The advantage being that the matched ROM step
is skipped in favor of the resume command. The slave must support the command
of course.

If the bus has only one slave, traditionnaly the match ROM is skipped and a“SKIP
ROM”is done for efficiency. On multi-slave busses, this doesn’t work of course,
but the resume command is the next best thing.

The w1 master lock must be held.

void w1_next_pullup(struct w1_master * dev, int delay)
register for a strong pullup

Parameters
struct w1_master * dev the master device

int delay time in milliseconds

Description
Put out a strong pull-up of the specified duration after the next write operation.
Not all hardware supports strong pullups. Hardware that doesn’t support strong
pullups will sleep for the given time after the write operation without a strong
pullup. This is a one shot request for the next write, specifying zero will clear a
previous request. The w1 master lock must be held.

Return
0=success, anything else=error

void w1_write_bit(struct w1_master * dev, int bit)
Generates a write-0 or write-1 cycle.

Parameters
struct w1_master * dev the master device

int bit bit to write

Description
Only call if dev->bus_master->touch_bit is NULL

void w1_pre_write(struct w1_master * dev)
pre-write operations

Parameters
struct w1_master * dev the master device

Description
Pre-write operation, currently only supporting strong pullups. Program the hard-
ware for a strong pullup, if one has been requested and the hardware supports it.

void w1_post_write(struct w1_master * dev)
post-write options

1274 Chapter 43. W1: Dallas’1-wire bus

Linux Driver-api Documentation

Parameters
struct w1_master * dev the master device

Description
Post-write operation, currently only supporting strong pullups. If a strong pullup
was requested, clear it if the hardware supports them, or execute the delay other-
wise, in either case clear the request.

u8 w1_read_bit(struct w1_master * dev)
Generates a write-1 cycle and samples the level.

Parameters
struct w1_master * dev the master device

Description
Only call if dev->bus_master->touch_bit is NULL

43.1. W1 API internal to the kernel 1275

Linux Driver-api Documentation

1276 Chapter 43. W1: Dallas’1-wire bus

CHAPTER

FORTYFOUR

THE LINUX RAPIDIO SUBSYSTEM

44.1 Introduction

The RapidIO standard is a packet-based fabric interconnect standard designed for
use in embedded systems. Development of the RapidIO standard is directed by the
RapidIO Trade Association (RTA). The current version of the RapidIO specification
is publicly available for download from the RTA web-site [1].

This document describes the basics of the Linux RapidIO subsystem and provides
information on its major components.

44.1.1 1 Overview

Because the RapidIO subsystem follows the Linux device model it is integrated
into the kernel similarly to other buses by defining RapidIO-specific device and
bus types and registering them within the device model.

The Linux RapidIO subsystem is architecture independent and therefore defines
architecture-specific interfaces that provide support for common RapidIO subsys-
tem operations.

44.1.2 2. Core Components

A typical RapidIO network is a combination of endpoints and switches. Each of
these components is represented in the subsystem by an associated data struc-
ture. The core logical components of the RapidIO subsystem are defined in in-
clude/linux/rio.h file.

2.1 Master Port

A master port (or mport) is a RapidIO interface controller that is local to the pro-
cessor executing the Linux code. A master port generates and receives RapidIO
packets (transactions). In the RapidIO subsystem each master port is represented
by a rio_mport data structure. This structure contains master port specific re-
sources such as mailboxes and doorbells. The rio_mport also includes a unique
host device ID that is valid when a master port is configured as an enumerating
host.

1277

Linux Driver-api Documentation

RapidIO master ports are serviced by subsystem specific mport device drivers
that provide functionality defined for this subsystem. To provide a hardware inde-
pendent interface for RapidIO subsystem operations, rio_mport structure includes
rio_ops data structure which contains pointers to hardware specific implementa-
tions of RapidIO functions.

2.2 Device

A RapidIO device is any endpoint (other than mport) or switch in the network. All
devices are presented in the RapidIO subsystem by corresponding rio_dev data
structure. Devices form one global device list and per-network device lists (de-
pending on number of available mports and networks).

2.3 Switch

A RapidIO switch is a special class of device that routes packets between its ports
towards their final destination. The packet destination port within a switch is de-
fined by an internal routing table. A switch is presented in the RapidIO subsystem
by rio_dev data structure expanded by additional rio_switch data structure, which
contains switch specific information such as copy of the routing table and pointers
to switch specific functions.

The RapidIO subsystem defines the format and initialization method for subsystem
specific switch drivers that are designed to provide hardware-specific implemen-
tation of common switch management routines.

2.4 Network

A RapidIO network is a combination of interconnected endpoint and switch de-
vices. Each RapidIO network known to the system is represented by correspond-
ing rio_net data structure. This structure includes lists of all devices and local
master ports that form the same network. It also contains a pointer to the default
master port that is used to communicate with devices within the network.

2.5 Device Drivers

RapidIO device-specific drivers follow Linux Kernel Driver Model and are intended
to support specific RapidIO devices attached to the RapidIO network.

2.6 Subsystem Interfaces

RapidIO interconnect specification defines features that may be used to provide
one or more common service layers for all participating RapidIO devices. These
common services may act separately from device-specific drivers or be used by
device-specific drivers. Example of such service provider is the RIONET driver
which implements Ethernet-over-RapidIO interface. Because only one driver can
be registered for a device, all common RapidIO services have to be registered as
subsystem interfaces. This allows to have multiple common services attached to
the same device without blocking attachment of a device-specific driver.

1278 Chapter 44. The Linux RapidIO Subsystem

Linux Driver-api Documentation

44.1.3 3. Subsystem Initialization

In order to initialize the RapidIO subsystem, a platformmust initialize and register
at least one master port within the RapidIO network. To register mport within the
subsystem controller driver’s initialization code calls function rio_register_mport()
for each available master port.

After all active master ports are registered with a RapidIO subsystem, an enu-
meration and/or discovery routine may be called automatically or by user-space
command.

RapidIO subsystem can be configured to be built as a statically linked or modular
component of the kernel (see details below).

44.1.4 4. Enumeration and Discovery

4.1 Overview

RapidIO subsystem configuration options allow users to build enumeration and
discovery methods as statically linked components or loadable modules. An enu-
meration/discovery method implementation and available input parameters define
how any given method can be attached to available RapidIO mports: simply to all
available mports OR individually to the specified mport device.

Depending on selected enumeration/discovery build configuration, there are sev-
eral methods to initiate an enumeration and/or discovery process:

(a) Statically linked enumeration and discovery process can be started
automatically during kernel initialization time using corresponding mod-
ule parameters. This was the original method used since introduction of
RapidIO subsystem. Now this method relies on enumerator module pa-
rameter which is‘rio-scan.scan’for existing basic enumeration/discovery
method. When automatic start of enumeration/discovery is used a user
has to ensure that all discovering endpoints are started before the enu-
merating endpoint and are waiting for enumeration to be completed.
Configuration option CONFIG_RAPIDIO_DISC_TIMEOUT defines time
that discovering endpoint waits for enumeration to be completed. If the
specified timeout expires the discovery process is terminated without
obtaining RapidIO network information. NOTE: a timed out discovery
process may be restarted later using a user-space command as it is de-
scribed below (if the given endpoint was enumerated successfully).

(b) Statically linked enumeration and discovery process can be started
by a command from user space. This initiation method provides more
flexibility for a system startup compared to the option (a) above. After all
participating endpoints have been successfully booted, an enumeration
process shall be started first by issuing a user-space command, after
an enumeration is completed a discovery process can be started on all
remaining endpoints.

(c) Modular enumeration and discovery process can be started by a
command from user space. After an enumeration/discovery module is
loaded, a network scan process can be started by issuing a user-space

44.1. Introduction 1279

Linux Driver-api Documentation

command. Similar to the option (b) above, an enumerator has to be
started first.

(d) Modular enumeration and discovery process can be started by a mod-
ule initialization routine. In this case an enumerating module shall be
loaded first.

When a network scan process is started it calls an enumeration or discovery rou-
tine depending on the configured role of a master port: host or agent.

Enumeration is performed by a master port if it is configured as a host port by
assigning a host destination ID greater than or equal to zero. The host destination
ID can be assigned to a master port using various methods depending on RapidIO
subsystem build configuration:

(a) For a statically linked RapidIO subsystem core use command line
parameter “rapidio.hdid=”with a list of destination ID assignments in
order of mport device registration. For example, in a system with two
RapidIO controllers the command line parameter“rapidio.hdid=-1,7”will
result in assignment of the host destination ID=7 to the second RapidIO
controller, while the first one will be assigned destination ID=-1.

(b) If the RapidIO subsystem core is built as a loadable module, in addi-
tion to the method shown above, the host destination ID(s) can be spec-
ified using traditional methods of passing module parameter “hdid=”
during its loading:

• from command line: “modprobe rapidio hdid=-1,7”, or
• frommodprobe configuration file using configuration command“op-
tions”, like in this example:“options rapidio hdid=-1,7”. An example
of modprobe configuration file is provided in the section below.

NOTES: (i) if “hdid=”parameter is omitted all available mport will be assigned
destination ID = -1;

(ii) the “hdid=”parameter in systems with multiple mports can have desti-
nation ID assignments omitted from the end of list (default = -1).

If the host device ID for a specific master port is set to -1, the discovery process
will be performed for it.

The enumeration and discovery routines use RapidIO maintenance transactions to
access the configuration space of devices.

NOTE: If RapidIO switch-specific device drivers are built as loadable modules they
must be loaded before enumeration/discovery process starts. This requirement
is cased by the fact that enumeration/discovery methods invoke vendor-specific
callbacks on early stages.

1280 Chapter 44. The Linux RapidIO Subsystem

Linux Driver-api Documentation

4.2 Automatic Start of Enumeration and Discovery

Automatic enumeration/discovery start method is applicable only to built-in enu-
meration/discovery RapidIO configuration selection. To enable automatic enumer-
ation/discovery start by existing basic enumerator method set use boot command
line parameter “rio-scan.scan=1”.
This configuration requires synchronized start of all RapidIO endpoints that form
a network which will be enumerated/discovered. Discovering endpoints have to
be started before an enumeration starts to ensure that all RapidIO controllers
have been initialized and are ready to be discovered. Configuration parameter
CONFIG_RAPIDIO_DISC_TIMEOUT defines time (in seconds) which a discovering
endpoint will wait for enumeration to be completed.

When automatic enumeration/discovery start is selected, basic method’s initial-
ization routine calls rio_init_mports() to perform enumeration or discovery for all
known mport devices.

Depending on RapidIO network size and configuration this automatic enumera-
tion/discovery start method may be difficult to use due to the requirement for
synchronized start of all endpoints.

4.3 User-space Start of Enumeration and Discovery

User-space start of enumeration and discovery can be used with built-in and mod-
ular build configurations. For user-space controlled start RapidIO subsystem cre-
ates the sysfs write-only attribute file‘/sys/bus/rapidio/scan’. To initiate an enu-
meration or discovery process on specific mport device, a user needs to write
mport_ID (not RapidIO destination ID) into that file. The mport_ID is a sequential
number (0 ⋯RIO_MAX_MPORTS) assigned during mport device registration. For
example for machine with single RapidIO controller, mport_ID for that controller
always will be 0.

To initiate RapidIO enumeration/discovery on all available mports a user may write
‘-1’(or RIO_MPORT_ANY) into the scan attribute file.

4.4 Basic Enumeration Method

This is an original enumeration/discovery method which is available since first
release of RapidIO subsystem code. The enumeration process is implemented ac-
cording to the enumeration algorithm outlined in the RapidIO Interconnect Spec-
ification: Annex I [1].

This method can be configured as statically linked or loadable module. The
method’s single parameter “scan”allows to trigger the enumeration/discovery
process from module initialization routine.

This enumeration/discovery method can be started only once and does not support
unloading if it is built as a module.

The enumeration process traverses the network using a recursive depth-first al-
gorithm. When a new device is found, the enumerator takes ownership of that
device by writing into the Host Device ID Lock CSR. It does this to ensure that

44.1. Introduction 1281

Linux Driver-api Documentation

the enumerator has exclusive right to enumerate the device. If device ownership
is successfully acquired, the enumerator allocates a new rio_dev structure and
initializes it according to device capabilities.

If the device is an endpoint, a unique device ID is assigned to it and its value is
written into the device’s Base Device ID CSR.
If the device is a switch, the enumerator allocates an additional rio_switch struc-
ture to store switch specific information. Then the switch’s vendor ID and device
ID are queried against a table of known RapidIO switches. Each switch table entry
contains a pointer to a switch-specific initialization routine that initializes point-
ers to the rest of switch specific operations, and performs hardware initialization
if necessary. A RapidIO switch does not have a unique device ID; it relies on
hopcount and routing for device ID of an attached endpoint if access to its config-
uration registers is required. If a switch (or chain of switches) does not have any
endpoint (except enumerator) attached to it, a fake device ID will be assigned to
configure a route to that switch. In the case of a chain of switches without end-
point, one fake device ID is used to configure a route through the entire chain and
switches are differentiated by their hopcount value.

For both endpoints and switches the enumerator writes a unique component tag
into device’s Component Tag CSR. That unique value is used by the error man-
agement notification mechanism to identify a device that is reporting an error
management event.

Enumeration beyond a switch is completed by iterating over each active egress
port of that switch. For each active link, a route to a default device ID (0xFF for 8-
bit systems and 0xFFFF for 16-bit systems) is temporarily written into the routing
table. The algorithm recurs by calling itself with hopcount + 1 and the default
device ID in order to access the device on the active port.

After the host has completed enumeration of the entire network it releases devices
by clearing device ID locks (calls rio_clear_locks()). For each endpoint in the sys-
tem, it sets the Discovered bit in the Port General Control CSR to indicate that
enumeration is completed and agents are allowed to execute passive discovery of
the network.

The discovery process is performed by agents and is similar to the enumeration
process that is described above. However, the discovery process is performed
without changes to the existing routing because agents only gather information
about RapidIO network structure and are building an internal map of discovered
devices. This way each Linux-based component of the RapidIO subsystem has a
complete view of the network. The discovery process can be performed simulta-
neously by several agents. After initializing its RapidIO master port each agent
waits for enumeration completion by the host for the configured wait time period.
If this wait time period expires before enumeration is completed, an agent skips
RapidIO discovery and continues with remaining kernel initialization.

1282 Chapter 44. The Linux RapidIO Subsystem

Linux Driver-api Documentation

4.5 Adding New Enumeration/Discovery Method

RapidIO subsystem code organization allows addition of new enumera-
tion/discovery methods as new configuration options without significant impact
to the core RapidIO code.

A new enumeration/discovery method has to be attached to one or more mport de-
vices before an enumeration/discovery process can be started. Normally, method’
s module initialization routine calls rio_register_scan() to attach an enumerator
to a specified mport device (or devices). The basic enumerator implementation
demonstrates this process.

4.6 Using Loadable RapidIO Switch Drivers

In the case when RapidIO switch drivers are built as loadable modules a user must
ensure that they are loaded before the enumeration/discovery starts. This process
can be automated by specifying pre- or post- dependencies in the RapidIO-specific
modprobe configuration file as shown in the example below.

File /etc/modprobe.d/rapidio.conf:

Configure RapidIO subsystem modules

Set enumerator host destination ID (overrides kernel command line option)
options rapidio hdid=-1,2

Load RapidIO switch drivers immediately after rapidio core module was␣
↪→loaded
softdep rapidio post: idt_gen2 idtcps tsi57x

OR :

Load RapidIO switch drivers just before rio-scan enumerator module is␣
↪→loaded
softdep rio-scan pre: idt_gen2 idtcps tsi57x

NOTE: In the example above, one of “softdep”commands must be removed or
commented out to keep required module loading sequence.

44.1.5 5. References

[1] RapidIO Trade Association. RapidIO Interconnect Specifications.
http://www.rapidio.org.

[2] Rapidio TA. Technology Comparisons. http://www.rapidio.org/education/
technology_comparisons/

[3] RapidIO support for Linux. http://lwn.net/Articles/139118/
[4] Matt Porter. RapidIO for Linux. Ottawa Linux Symposium, 2005

http://www.kernel.org/doc/ols/2005/ols2005v2-pages-43-56.pdf

44.1. Introduction 1283

http://www.rapidio.org
http://www.rapidio.org/education/technology_comparisons/
http://www.rapidio.org/education/technology_comparisons/
http://lwn.net/Articles/139118/
http://www.kernel.org/doc/ols/2005/ols2005v2-pages-43-56.pdf

Linux Driver-api Documentation

44.2 Sysfs entries

The RapidIO sysfs files have moved to: Documentation/ABI/testing/sysfs-bus-
rapidio and Documentation/ABI/testing/sysfs-class-rapidio

44.3 RapidIO subsystem mport driver for IDT Tsi721 PCI
Express-to-SRIO bridge.

44.3.1 1. Overview

This driver implements all currently defined RapidIO mport callback functions. It
supports maintenance read and write operations, inbound and outbound RapidIO
doorbells, inbound maintenance port-writes and RapidIO messaging.

To generate SRIO maintenance transactions this driver uses one of Tsi721 DMA
channels. This mechanism provides access to larger range of hop counts and des-
tination IDs without need for changes in outbound window translation.

RapidIO messaging support uses dedicated messaging channels for each mailbox.
For inbound messages this driver uses destination ID matching to forward mes-
sages into the corresponding message queue. Messaging callbacks are imple-
mented to be fully compatible with RIONET driver (Ethernet over RapidIO mes-
saging services).

1. Module parameters:

• ‘dbg_level’
– This parameter allows to control amount of debug information
generated by this device driver. This parameter is formed by
set of This parameter can be changed bit masks that corre-
spond to the specific functional block. For mask definitions see
‘drivers/rapidio/devices/tsi721.h’This parameter can be changed dy-
namically. Use CONFIG_RAPIDIO_DEBUG=y to enable debug output
at the top level.

• ‘dma_desc_per_channel’
– This parameter defines number of hardware buffer descriptors allo-
cated for each registered Tsi721 DMA channel. Its default value is
128.

• ‘dma_txqueue_sz’
– DMA transactions queue size. Defines number of pending transaction
requests that can be accepted by each DMA channel. Default value
is 16.

• ‘dma_sel’
– DMA channel selection mask. Bitmask that defines which hardware
DMA channels (0 ⋯6) will be registered with DmaEngine core. If bit
is set to 1, the corresponding DMA channel will be registered. DMA

1284 Chapter 44. The Linux RapidIO Subsystem

Linux Driver-api Documentation

channels not selected by this mask will not be used by this device
driver. Default value is 0x7f (use all channels).

• ‘pcie_mrrs’
– override value for PCIe Maximum Read Request Size (MRRS). This
parameter gives an ability to override MRRS value set during PCIe
configuration process. Tsi721 supports read request sizes up to
4096B. Value for this parameter must be set as defined by PCIe spec-
ification: 0 = 128B, 1 = 256B, 2 = 512B, 3 = 1024B, 4 = 2048B and
5 = 4096B. Default value is ‘-1’(= keep platform setting).

• ‘mbox_sel’
– RIO messaging MBOX selection mask. This is a bitmask that defines
messaging MBOXes are managed by this device driver. Mask bits 0 -
3 correspond to MBOX0 - MBOX3. MBOX is under driver’s control
if the corresponding bit is set to ‘1’. Default value is 0x0f (= all).

44.3.2 2. Known problems

None.

44.3.3 3. DMA Engine Support

Tsi721 mport driver supports DMA data transfers between local system mem-
ory and remote RapidIO devices. This functionality is implemented according to
SLAVE mode API defined by common Linux kernel DMA Engine framework.

Depending on system requirements RapidIO DMA operations can be in-
cluded/excluded by setting CONFIG_RAPIDIO_DMA_ENGINE option. Tsi721 mini-
port driver uses seven out of eight available BDMA channels to support DMA
data transfers. One BDMA channel is reserved for generation of maintenance
read/write requests.

If Tsi721 mport driver have been built with RAPIDIO_DMA_ENGINE support in-
cluded, this driver will accept DMA-specific module parameter:

“dma_desc_per_channel”
• defines number of hardware buffer descriptors used by each
BDMA channel of Tsi721 (by default - 128).

4. Version History

1.1.0DMA operations re-worked to support data scatter/gather lists
larger than hardware buffer descriptors ring.

1.0.0Initial driver release.

44.3. RapidIO subsystem mport driver for IDT Tsi721 PCI
Express-to-SRIO bridge.

1285

Linux Driver-api Documentation

44.3.4 5. License

Copyright(c) 2011 Integrated Device Technology, Inc. All rights re-
served.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

44.4 RapidIO subsystem mport character device driver
(rio_mport_cdev.c)

44.4.1 1. Overview

This device driver is the result of collaboration within the RapidIO.org Software
Task Group (STG) between Texas Instruments, Freescale, Prodrive Technologies,
Nokia Networks, BAE and IDT. Additional input was received from other mem-
bers of RapidIO.org. The objective was to create a character mode driver inter-
face which exposes the capabilities of RapidIO devices directly to applications, in
a manner that allows the numerous and varied RapidIO implementations to inter-
operate.

This driver (MPORT_CDEV) provides access to basic RapidIO subsystem oper-
ations for user-space applications. Most of RapidIO operations are supported
through ‘ioctl’system calls.

When loaded this device driver creates filesystem nodes named rio_mportX in /dev
directory for each registered RapidIO mport device.‘X’in the node name matches
to unique port ID assigned to each local mport device.

Using available set of ioctl commands user-space applications can perform follow-
ing RapidIO bus and subsystem operations:

• Reads and writes from/to configuration registers of mport devices
(RIO_MPORT_MAINT_READ_LOCAL/RIO_MPORT_MAINT_WRITE_LOCAL)

• Reads and writes from/to configuration registers of re-
mote RapidIO devices. This operations are defined
as RapidIO Maintenance reads/writes in RIO spec.
(RIO_MPORT_MAINT_READ_REMOTE/RIO_MPORT_MAINT_WRITE_REMOTE)

• Set RapidIO Destination ID for mport devices
(RIO_MPORT_MAINT_HDID_SET)

1286 Chapter 44. The Linux RapidIO Subsystem

Linux Driver-api Documentation

• Set RapidIO Component Tag for mport devices
(RIO_MPORT_MAINT_COMPTAG_SET)

• Query logical index of mport devices (RIO_MPORT_MAINT_PORT_IDX_GET)

• Query capabilities and RapidIO link configuration of mport devices
(RIO_MPORT_GET_PROPERTIES)

• Enable/Disable reporting of RapidIO doorbell events to user-space applica-
tions (RIO_ENABLE_DOORBELL_RANGE/RIO_DISABLE_DOORBELL_RANGE)

• Enable/Disable reporting of RIO port-write events to user-space applications
(RIO_ENABLE_PORTWRITE_RANGE/RIO_DISABLE_PORTWRITE_RANGE)

• Query/Control type of events reported through this driver: doorbells, port-
writes or both (RIO_SET_EVENT_MASK/RIO_GET_EVENT_MASK)

• Configure/Map mport’s outbound requests window(s) for spe-
cific size, RapidIO destination ID, hopcount and request type
(RIO_MAP_OUTBOUND/RIO_UNMAP_OUTBOUND)

• Configure/Map mport’s inbound requests window(s) for spe-
cific size, RapidIO base address and local memory base address
(RIO_MAP_INBOUND/RIO_UNMAP_INBOUND)

• Allocate/Free contiguous DMA coherent memory buffer for DMA data trans-
fers to/from remote RapidIO devices (RIO_ALLOC_DMA/RIO_FREE_DMA)

• Initiate DMA data transfers to/from remote RapidIO devices
(RIO_TRANSFER). Supports blocking, asynchronous and posted (a.k.a
‘fire-and-forget’) data transfer modes.
• Check/Wait for completion of asynchronous DMA data transfer
(RIO_WAIT_FOR_ASYNC)

• Manage device objects supported by RapidIO subsystem
(RIO_DEV_ADD/RIO_DEV_DEL). This allows implementation of various
RapidIO fabric enumeration algorithms as user-space applications while
using remaining functionality provided by kernel RapidIO subsystem.

44.4.2 2. Hardware Compatibility

This device driver uses standard interfaces defined by kernel RapidIO subsystem
and therefore it can be used with any mport device driver registered by RapidIO
subsystem with limitations set by available mport implementation.

At this moment the most common limitation is availability of RapidIO-specific DMA
engine framework for specific mport device. Users should verify available func-
tionality of their platform when planning to use this driver:

• IDT Tsi721 PCIe-to-RapidIO bridge device and its mport device driver are
fully compatible with this driver.

• Freescale SoCs ‘fsl_rio’mport driver does not have implementation for
RapidIO specific DMA engine support and therefore DMA data transfers
mport_cdev driver are not available.

44.4. RapidIO subsystem mport character device driver
(rio_mport_cdev.c)

1287

Linux Driver-api Documentation

44.4.3 3. Module parameters

• ‘dma_timeout’
– DMA transfer completion timeout (in msec, default value 3000). This
parameter set a maximum completion wait time for SYNC mode DMA
transfer requests and for RIO_WAIT_FOR_ASYNC ioctl requests.

• ‘dbg_level’
– This parameter allows to control amount of debug information gen-
erated by this device driver. This parameter is formed by set of bit
masks that correspond to the specific functional blocks. For mask
definitions see‘drivers/rapidio/devices/rio_mport_cdev.c’This param-
eter can be changed dynamically. Use CONFIG_RAPIDIO_DEBUG=y
to enable debug output at the top level.

44.4.4 4. Known problems

None.

44.4.5 5. User-space Applications and API

API library and applications that use this device driver are available from Ra-
pidIO.org.

44.4.6 6. TODO List

• Add support for sending/receiving “raw”RapidIO messaging packets.
• Add memory mapped DMA data transfers as an option when RapidIO-specific
DMA is not available.

44.5 RapidIO subsystem Channelized Messaging char-
acter device driver (rio_cm.c)

44.5.1 1. Overview

This device driver is the result of collaboration within the RapidIO.org Software
Task Group (STG) between Texas Instruments, Prodrive Technologies, Nokia Net-
works, BAE and IDT. Additional input was received from other members of Ra-
pidIO.org.

The objective was to create a character mode driver interface which exposes mes-
saging capabilities of RapidIO endpoint devices (mports) directly to applications,
in a manner that allows the numerous and varied RapidIO implementations to in-
teroperate.

This driver (RIO_CM) provides to user-space applications shared access to RapidIO
mailbox messaging resources.

1288 Chapter 44. The Linux RapidIO Subsystem

Linux Driver-api Documentation

RapidIO specification (Part 2) defines that endpoint devices may have up to four
messaging mailboxes in case of multi-packet message (up to 4KB) and up to 64
mailboxes if single-packet messages (up to 256 B) are used. In addition to proto-
col definition limitations, a particular hardware implementation can have reduced
number ofmessagingmailboxes. RapidIO aware applicationsmust therefore share
the messaging resources of a RapidIO endpoint.

Main purpose of this device driver is to provide RapidIO mailbox messaging capa-
bility to large number of user-space processes by introducing socket-like opera-
tions using a single messaging mailbox. This allows applications to use the limited
RapidIO messaging hardware resources efficiently.

Most of device driver’s operations are supported through ‘ioctl’system calls.

When loaded this device driver creates a single file system node named rio_cm in
/dev directory common for all registered RapidIO mport devices.

Following ioctl commands are available to user-space applications:

• RIO_CM_MPORT_GET_LIST: Returns to caller list of local mport de-
vices that support messaging operations (number of entries up to
RIO_MAX_MPORTS). Each list entry is combination of mport’s index
in the system and RapidIO destination ID assigned to the port.

• RIO_CM_EP_GET_LIST_SIZE: Returns number of messaging capable re-
mote endpoints in a RapidIO network associated with the specified mport
device.

• RIO_CM_EP_GET_LIST: Returns list of RapidIO destination IDs for messag-
ing capable remote endpoints (peers) available in a RapidIO network as-
sociated with the specified mport device.

• RIO_CM_CHAN_CREATE: Creates RapidIO message exchange channel
data structure with channel ID assigned automatically or as requested
by a caller.

• RIO_CM_CHAN_BIND: Binds the specified channel data structure to the
specified mport device.

• RIO_CM_CHAN_LISTEN: Enables listening for connection requests on the
specified channel.

• RIO_CM_CHAN_ACCEPT: Accepts a connection request from peer on the
specified channel. If wait timeout for this request is specified by a caller it
is a blocking call. If timeout set to 0 this is non-blocking call - ioctl handler
checks for a pending connection request and if one is not available exits
with -EGAIN error status immediately.

• RIO_CM_CHAN_CONNECT: Sends a connection request to a remote
peer/channel.

• RIO_CM_CHAN_SEND: Sends a data message through the specified chan-
nel. The handler for this request assumes that message buffer specified
by a caller includes the reserved space for a packet header required by
this driver.

• RIO_CM_CHAN_RECEIVE: Receives a data message through a connected
channel. If the channel does not have an incoming message ready to

44.5. RapidIO subsystem Channelized Messaging character device
driver (rio_cm.c)

1289

Linux Driver-api Documentation

return this ioctl handler will wait for new message until timeout specified
by a caller expires. If timeout value is set to 0, ioctl handler uses a default
value defined by MAX_SCHEDULE_TIMEOUT.

• RIO_CM_CHAN_CLOSE: Closes a specified channel and frees associated
buffers. If the specified channel is in the CONNECTED state, sends close
notification to the remote peer.

The ioctl command codes and corresponding data structures intended for use by
user-space applications are defined in ‘include/uapi/linux/rio_cm_cdev.h’.

44.5.2 2. Hardware Compatibility

This device driver uses standard interfaces defined by kernel RapidIO subsystem
and therefore it can be used with any mport device driver registered by RapidIO
subsystem with limitations set by available mport HW implementation of messag-
ing mailboxes.

44.5.3 3. Module parameters

• ‘dbg_level’
– This parameter allows to control amount of debug information gen-
erated by this device driver. This parameter is formed by set of bit
masks that correspond to the specific functional block. For mask def-
initions see‘drivers/rapidio/devices/rio_cm.c’This parameter can be
changed dynamically. Use CONFIG_RAPIDIO_DEBUG=y to enable
debug output at the top level.

• ‘cmbox’
– Number of RapidIO mailbox to use (default value is 1). This parame-
ter allows to set messaging mailbox number that will be used within
entire RapidIO network. It can be used when default mailbox is used
by other device drivers or is not supported by some nodes in the Ra-
pidIO network.

• ‘chstart’
– Start channel number for dynamic assignment. Default value - 256.
Allows to exclude channel numbers below this parameter from dy-
namic allocation to avoid conflicts with software components that use
reserved predefined channel numbers.

1290 Chapter 44. The Linux RapidIO Subsystem

Linux Driver-api Documentation

44.5.4 4. Known problems

None.

44.5.5 5. User-space Applications and API Library

Messaging API library and applications that use this device driver are available
from RapidIO.org.

44.5.6 6. TODO List

• Add support for system notification messages (reserved channel 0).

44.5. RapidIO subsystem Channelized Messaging character device
driver (rio_cm.c)

1291

Linux Driver-api Documentation

1292 Chapter 44. The Linux RapidIO Subsystem

CHAPTER

FORTYFIVE

WRITING S390 CHANNEL DEVICE DRIVERS

Author Cornelia Huck

45.1 Introduction

This document describes the interfaces available for device drivers that drive s390
based channel attached I/O devices. This includes interfaces for interaction with
the hardware and interfaces for interacting with the common driver core. Those
interfaces are provided by the s390 common I/O layer.

The document assumes a familarity with the technical terms associated with the
s390 channel I/O architecture. For a description of this architecture, please refer
to the“z/Architecture: Principles of Operation”, IBM publication no. SA22-7832.

While most I/O devices on a s390 system are typically driven through the channel
I/O mechanism described here, there are various other methods (like the diag
interface). These are out of the scope of this document.

The s390 common I/O layer also provides access to some devices that are not
strictly considered I/O devices. They are considered here as well, although they
are not the focus of this document.

Some additional information can also be found in the kernel source under
Documentation/s390/driver-model.rst.

45.2 The css bus

The css bus contains the subchannels available on the system. They fall into sev-
eral categories:

• Standard I/O subchannels, for use by the system. They have a child device
on the ccw bus and are described below.

• I/O subchannels bound to the vfio-ccw driver. See Documentation/s390/vfio-
ccw.rst.

• Message subchannels. No Linux driver currently exists.

• CHSC subchannels (at most one). The chsc subchannel driver can be used to
send asynchronous chsc commands.

• eADM subchannels. Used for talking to storage class memory.

1293

Linux Driver-api Documentation

45.3 The ccw bus

The ccw bus typically contains the majority of devices available to a s390 system.
Named after the channel command word (ccw), the basic command structure used
to address its devices, the ccw bus contains so-called channel attached devices.
They are addressed via I/O subchannels, visible on the css bus. A device driver
for channel-attached devices, however, will never interact with the subchannel
directly, but only via the I/O device on the ccw bus, the ccw device.

45.3.1 I/O functions for channel-attached devices

Some hardware structures have been translated into C structures for use by the
common I/O layer and device drivers. For more information on the hardware struc-
tures represented here, please consult the Principles of Operation.

struct ccw1
channel command word

Definition

struct ccw1 {
__u8 cmd_code;
__u8 flags;
__u16 count;
__u32 cda;

};

Members
cmd_code command code

flags flags, like IDA addressing, etc.

count byte count

cda data address

Description
The ccw is the basic structure to build channel programs that perform operations
with the device or the control unit. Only Format-1 channel command words are
supported.

struct ccw0
channel command word

Definition

struct ccw0 {
__u8 cmd_code;
__u32 cda : 24;
__u8 flags;
__u8 reserved;
__u16 count;

};

Members

1294 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

cmd_code command code

cda data address

flags flags, like IDA addressing, etc.

reserved will be ignored

count byte count

Description
The format-0 ccw structure.

struct erw
extended report word

Definition

struct erw {
__u32 res0 : 3;
__u32 auth : 1;
__u32 pvrf : 1;
__u32 cpt : 1;
__u32 fsavf : 1;
__u32 cons : 1;
__u32 scavf : 1;
__u32 fsaf : 1;
__u32 scnt : 6;
__u32 res16 : 16;

};

Members
res0 reserved

auth authorization check

pvrf path-verification-required flag

cpt channel-path timeout

fsavf failing storage address validity flag

cons concurrent sense

scavf secondary ccw address validity flag

fsaf failing storage address format

scnt sense count, if cons == 1

res16 reserved

struct erw_eadm
EADM Subchannel extended report word

Definition

struct erw_eadm {
__u32 : 16;
__u32 b : 1;
__u32 r : 1;

(continues on next page)

45.3. The ccw bus 1295

Linux Driver-api Documentation

(continued from previous page)
__u32 : 14;

};

Members
b aob error

r arsb error

struct sublog
subchannel logout area

Definition

struct sublog {
__u32 res0 : 1;
__u32 esf : 7;
__u32 lpum : 8;
__u32 arep : 1;
__u32 fvf : 5;
__u32 sacc : 2;
__u32 termc : 2;
__u32 devsc : 1;
__u32 serr : 1;
__u32 ioerr : 1;
__u32 seqc : 3;

};

Members
res0 reserved

esf extended status flags

lpum last path used mask

arep ancillary report

fvf field-validity flags

sacc storage access code

termc termination code

devsc device-status check

serr secondary error

ioerr i/o-error alert

seqc sequence code

struct esw0
Format 0 Extended Status Word (ESW)

Definition

struct esw0 {
struct sublog sublog;
struct erw erw;

(continues on next page)

1296 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

(continued from previous page)
__u32 faddr[2];
__u32 saddr;

};

Members
sublog subchannel logout

erw extended report word

faddr failing storage address

saddr secondary ccw address

struct esw1
Format 1 Extended Status Word (ESW)

Definition

struct esw1 {
__u8 zero0;
__u8 lpum;
__u16 zero16;
struct erw erw;
__u32 zeros[3];

};

Members
zero0 reserved zeros

lpum last path used mask

zero16 reserved zeros

erw extended report word

zeros three fullwords of zeros

struct esw2
Format 2 Extended Status Word (ESW)

Definition

struct esw2 {
__u8 zero0;
__u8 lpum;
__u16 dcti;
struct erw erw;
__u32 zeros[3];

};

Members
zero0 reserved zeros

lpum last path used mask

dcti device-connect-time interval

erw extended report word

45.3. The ccw bus 1297

Linux Driver-api Documentation

zeros three fullwords of zeros

struct esw3
Format 3 Extended Status Word (ESW)

Definition

struct esw3 {
__u8 zero0;
__u8 lpum;
__u16 res;
struct erw erw;
__u32 zeros[3];

};

Members
zero0 reserved zeros

lpum last path used mask

res reserved

erw extended report word

zeros three fullwords of zeros

struct esw_eadm
EADM Subchannel Extended Status Word (ESW)

Definition

struct esw_eadm {
__u32 sublog;
struct erw_eadm erw;
__u32 : 32;
__u32 : 32;
__u32 : 32;

};

Members
sublog subchannel logout

erw extended report word

struct irb
interruption response block

Definition

struct irb {
union scsw scsw;
union {

struct esw0 esw0;
struct esw1 esw1;
struct esw2 esw2;
struct esw3 esw3;
struct esw_eadm eadm;

} esw;
(continues on next page)

1298 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

(continued from previous page)
__u8 ecw[32];

};

Members
scsw subchannel status word

esw extended status word

ecw extended control word

Description
The irb that is handed to the device driver when an interrupt occurs. For solicited
interrupts, the common I/O layer already performs checks whether a field is valid;
a field not being valid is always passed as 0. If a unit check occurred, ecw may
contain sense data; this is retrieved by the common I/O layer itself if the device
doesn’t support concurrent sense (so that the device driver never needs to perform
basic sense itself). For unsolicited interrupts, the irb is passed as-is (expect for
sense data, if applicable).

struct ciw
command information word (CIW) layout

Definition

struct ciw {
__u32 et : 2;
__u32 reserved : 2;
__u32 ct : 4;
__u32 cmd : 8;
__u32 count : 16;

};

Members
et entry type

reserved reserved bits

ct command type

cmd command code

count command count

struct ccw_dev_id
unique identifier for ccw devices

Definition

struct ccw_dev_id {
u8 ssid;
u16 devno;

};

Members
ssid subchannel set id

45.3. The ccw bus 1299

Linux Driver-api Documentation

devno device number

Description
This structure is not directly based on any hardware structure. The hardware iden-
tifies a device by its device number and its subchannel, which is in turn identified
by its id. In order to get a unique identifier for ccw devices across subchannel
sets, struct ccw_dev_id has been introduced.
int ccw_dev_id_is_equal(struct ccw_dev_id * dev_id1, struct ccw_dev_id

* dev_id2)
compare two ccw_dev_ids

Parameters
struct ccw_dev_id * dev_id1 a ccw_dev_id

struct ccw_dev_id * dev_id2 another ccw_dev_id

Return
1 if the two structures are equal field-by-field, 0 if not.

Context
any

u8 pathmask_to_pos(u8 mask)
find the position of the left-most bit in a pathmask

Parameters
u8 mask pathmask with at least one bit set

45.3.2 ccw devices

Devices that want to initiate channel I/O need to attach to the ccw bus. Interac-
tion with the driver core is done via the common I/O layer, which provides the
abstractions of ccw devices and ccw device drivers.

The functions that initiate or terminate channel I/O all act upon a ccw device struc-
ture. Device drivers must not bypass those functions or strange side effects may
happen.

struct ccw_device
channel attached device

Definition

struct ccw_device {
spinlock_t *ccwlock;
struct ccw_device_id id;
struct ccw_driver *drv;
struct device dev;
int online;
void (*handler) (struct ccw_device *, unsigned long, struct irb *);

};

Members

1300 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

ccwlock pointer to device lock

id id of this device

drv ccw driver for this device

dev embedded device structure

online online status of device

handler interrupt handler

Description
handler is a member of the device rather than the driver since a driver can have
different interrupt handlers for different ccw devices (multi-subchannel drivers).

struct ccw_driver
device driver for channel attached devices

Definition

struct ccw_driver {
struct ccw_device_id *ids;
int (*probe) (struct ccw_device *);
void (*remove) (struct ccw_device *);
int (*set_online) (struct ccw_device *);
int (*set_offline) (struct ccw_device *);
int (*notify) (struct ccw_device *, int);
void (*path_event) (struct ccw_device *, int *);
void (*shutdown) (struct ccw_device *);
int (*prepare) (struct ccw_device *);
void (*complete) (struct ccw_device *);
int (*freeze)(struct ccw_device *);
int (*thaw) (struct ccw_device *);
int (*restore)(struct ccw_device *);
enum uc_todo (*uc_handler) (struct ccw_device *, struct irb *);
struct device_driver driver;
enum interruption_class int_class;

};

Members
ids ids supported by this driver

probe function called on probe

remove function called on remove

set_online called when setting device online

set_offline called when setting device offline

notify notify driver of device state changes

path_event notify driver of channel path events

shutdown called at device shutdown

prepare prepare for pm state transition

complete undo work done in prepare
freeze callback for freezing during hibernation snapshotting

45.3. The ccw bus 1301

Linux Driver-api Documentation

thaw undo work done in freeze
restore callback for restoring after hibernation

uc_handler callback for unit check handler

driver embedded device driver structure

int_class interruption class to use for accounting interrupts

int ccw_device_set_offline(struct ccw_device * cdev)
disable a ccw device for I/O

Parameters
struct ccw_device * cdev target ccw device

Description
This function calls the driver’s set_offline() function for cdev, if given, and then
disables cdev.
Return

0 on success and a negative error value on failure.

Context
enabled, ccw device lock not held

int ccw_device_set_online(struct ccw_device * cdev)
enable a ccw device for I/O

Parameters
struct ccw_device * cdev target ccw device

Description
This function first enables cdev and then calls the driver’s set_online() function
for cdev, if given. If set_online() returns an error, cdev is disabled again.
Return

0 on success and a negative error value on failure.

Context
enabled, ccw device lock not held

struct ccw_device * get_ccwdev_by_dev_id(struct ccw_dev_id * dev_id)
obtain device from a ccw device id

Parameters
struct ccw_dev_id * dev_id id of the device to be searched

Description
This function searches all devices attached to the ccw bus for a device matching
dev_id.
Return

If a device is found its reference count is increased and returned; else
NULL is returned.

1302 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

struct ccw_device * get_ccwdev_by_busid(struct ccw_driver * cdrv, const
char * bus_id)

obtain device from a bus id

Parameters
struct ccw_driver * cdrv driver the device is owned by

const char * bus_id bus id of the device to be searched

Description
This function searches all devices owned by cdrv for a device with a bus id match-
ing bus_id.
Return

If a match is found, its reference count of the found device is increased
and it is returned; else NULL is returned.

int ccw_driver_register(struct ccw_driver * cdriver)
register a ccw driver

Parameters
struct ccw_driver * cdriver driver to be registered

Description
This function is mainly a wrapper around driver_register().

Return
0 on success and a negative error value on failure.

void ccw_driver_unregister(struct ccw_driver * cdriver)
deregister a ccw driver

Parameters
struct ccw_driver * cdriver driver to be deregistered

Description
This function is mainly a wrapper around driver_unregister().

int ccw_device_siosl(struct ccw_device * cdev)
initiate logging

Parameters
struct ccw_device * cdev ccw device

Description
This function is used to invoke model-dependent logging within the channel sub-
system.

int ccw_device_set_options_mask(struct ccw_device * cdev, unsigned
long flags)

set some options and unset the rest

Parameters
struct ccw_device * cdev device for which the options are to be set

45.3. The ccw bus 1303

Linux Driver-api Documentation

unsigned long flags options to be set

Description
All flags specified in flags are set, all flags not specified in flags are cleared.
Return

0 on success, -EINVAL on an invalid flag combination.

int ccw_device_set_options(struct ccw_device * cdev, unsigned long flags)
set some options

Parameters
struct ccw_device * cdev device for which the options are to be set

unsigned long flags options to be set

Description
All flags specified in flags are set, the remainder is left untouched.
Return

0 on success, -EINVAL if an invalid flag combination would ensue.

void ccw_device_clear_options(struct ccw_device * cdev, unsigned
long flags)

clear some options

Parameters
struct ccw_device * cdev device for which the options are to be cleared

unsigned long flags options to be cleared

Description
All flags specified in flags are cleared, the remainder is left untouched.
int ccw_device_is_pathgroup(struct ccw_device * cdev)

determine if paths to this device are grouped

Parameters
struct ccw_device * cdev ccw device

Description
Return non-zero if there is a path group, zero otherwise.

int ccw_device_is_multipath(struct ccw_device * cdev)
determine if device is operating in multipath mode

Parameters
struct ccw_device * cdev ccw device

Description
Return non-zero if device is operating in multipath mode, zero otherwise.

int ccw_device_clear(struct ccw_device * cdev, unsigned long intparm)
terminate I/O request processing

1304 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

Parameters
struct ccw_device * cdev target ccw device

unsigned long intparm interruption parameter to be returned upon conclusion
of csch

Description
ccw_device_clear() calls csch on cdev’s subchannel.
Return

0 on success, -ENODEV on device not operational, -EINVAL on invalid de-
vice state.

Context
Interrupts disabled, ccw device lock held

int ccw_device_start_timeout_key(struct ccw_device * cdev, struct
ccw1 * cpa, unsigned long intparm,
__u8 lpm, __u8 key, unsigned
long flags, int expires)

start a s390 channel program with timeout and key

Parameters
struct ccw_device * cdev target ccw device

struct ccw1 * cpa logical start address of channel program

unsigned long intparm user specific interruption parameter; will be presented
back to cdev’s interrupt handler. Allows a device driver to associate the
interrupt with a particular I/O request.

__u8 lpm defines the channel path to be used for a specific I/O request. A value
of 0 will make cio use the opm.

__u8 key storage key to be used for the I/O

unsigned long flags additional flags; defines the action to be performed for I/O
processing.

int expires timeout value in jiffies

Description
Start a S/390 channel program. When the interrupt arrives, the IRQ handler is
called, either immediately, delayed (dev-end missing, or sense required) or never
(no IRQ handler registered). This function notifies the device driver if the channel
program has not completed during the time specified by expires. If a timeout oc-
curs, the channel program is terminated via xsch, hsch or csch, and the device’s in-
terrupt handler will be called with an irb containing ERR_PTR(-ETIMEDOUT). The in-
terruption handler will echo back the intparm specified here, unless another inter-
ruption parameter is specified by a subsequent invocation of ccw_device_halt()
or ccw_device_clear().

Return

45.3. The ccw bus 1305

Linux Driver-api Documentation

0, if the operation was successful; -EBUSY, if the device is busy, or status
pending; -EACCES, if no path specified in lpm is operational; -ENODEV, if
the device is not operational.

Context
Interrupts disabled, ccw device lock held

int ccw_device_start_key(struct ccw_device * cdev, struct ccw1 * cpa, un-
signed long intparm, __u8 lpm, __u8 key, un-
signed long flags)

start a s390 channel program with key

Parameters
struct ccw_device * cdev target ccw device

struct ccw1 * cpa logical start address of channel program

unsigned long intparm user specific interruption parameter; will be presented
back to cdev’s interrupt handler. Allows a device driver to associate the
interrupt with a particular I/O request.

__u8 lpm defines the channel path to be used for a specific I/O request. A value
of 0 will make cio use the opm.

__u8 key storage key to be used for the I/O

unsigned long flags additional flags; defines the action to be performed for I/O
processing.

Description
Start a S/390 channel program. When the interrupt arrives, the IRQ handler is
called, either immediately, delayed (dev-end missing, or sense required) or never
(no IRQ handler registered). The interruption handler will echo back the intparm
specified here, unless another interruption parameter is specified by a subsequent
invocation of ccw_device_halt() or ccw_device_clear().

Return
0, if the operation was successful; -EBUSY, if the device is busy, or status
pending; -EACCES, if no path specified in lpm is operational; -ENODEV, if
the device is not operational.

Context
Interrupts disabled, ccw device lock held

int ccw_device_start(struct ccw_device * cdev, struct ccw1 * cpa, unsigned
long intparm, __u8 lpm, unsigned long flags)

start a s390 channel program

Parameters
struct ccw_device * cdev target ccw device

struct ccw1 * cpa logical start address of channel program

unsigned long intparm user specific interruption parameter; will be presented
back to cdev’s interrupt handler. Allows a device driver to associate the
interrupt with a particular I/O request.

1306 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

__u8 lpm defines the channel path to be used for a specific I/O request. A value
of 0 will make cio use the opm.

unsigned long flags additional flags; defines the action to be performed for I/O
processing.

Description
Start a S/390 channel program. When the interrupt arrives, the IRQ handler is
called, either immediately, delayed (dev-end missing, or sense required) or never
(no IRQ handler registered). The interruption handler will echo back the intparm
specified here, unless another interruption parameter is specified by a subsequent
invocation of ccw_device_halt() or ccw_device_clear().

Return
0, if the operation was successful; -EBUSY, if the device is busy, or status
pending; -EACCES, if no path specified in lpm is operational; -ENODEV, if
the device is not operational.

Context
Interrupts disabled, ccw device lock held

int ccw_device_start_timeout(struct ccw_device * cdev, struct ccw1 * cpa,
unsigned long intparm, __u8 lpm, unsigned
long flags, int expires)

start a s390 channel program with timeout

Parameters
struct ccw_device * cdev target ccw device

struct ccw1 * cpa logical start address of channel program

unsigned long intparm user specific interruption parameter; will be presented
back to cdev’s interrupt handler. Allows a device driver to associate the
interrupt with a particular I/O request.

__u8 lpm defines the channel path to be used for a specific I/O request. A value
of 0 will make cio use the opm.

unsigned long flags additional flags; defines the action to be performed for I/O
processing.

int expires timeout value in jiffies

Description
Start a S/390 channel program. When the interrupt arrives, the IRQ handler is
called, either immediately, delayed (dev-end missing, or sense required) or never
(no IRQ handler registered). This function notifies the device driver if the channel
program has not completed during the time specified by expires. If a timeout oc-
curs, the channel program is terminated via xsch, hsch or csch, and the device’s in-
terrupt handler will be called with an irb containing ERR_PTR(-ETIMEDOUT). The in-
terruption handler will echo back the intparm specified here, unless another inter-
ruption parameter is specified by a subsequent invocation of ccw_device_halt()
or ccw_device_clear().

Return

45.3. The ccw bus 1307

Linux Driver-api Documentation

0, if the operation was successful; -EBUSY, if the device is busy, or status
pending; -EACCES, if no path specified in lpm is operational; -ENODEV, if
the device is not operational.

Context
Interrupts disabled, ccw device lock held

int ccw_device_halt(struct ccw_device * cdev, unsigned long intparm)
halt I/O request processing

Parameters
struct ccw_device * cdev target ccw device

unsigned long intparm interruption parameter to be returned upon conclusion
of hsch

Description
ccw_device_halt() calls hsch on cdev’s subchannel. The interruption handler
will echo back the intparm specified here, unless another interruption parameter
is specified by a subsequent invocation of ccw_device_clear().

Return
0 on success, -ENODEV on device not operational, -EINVAL on invalid de-
vice state, -EBUSY on device busy or interrupt pending.

Context
Interrupts disabled, ccw device lock held

int ccw_device_resume(struct ccw_device * cdev)
resume channel program execution

Parameters
struct ccw_device * cdev target ccw device

Description
ccw_device_resume() calls rsch on cdev’s subchannel.
Return

0 on success, -ENODEV on device not operational, -EINVAL on invalid de-
vice state, -EBUSY on device busy or interrupt pending.

Context
Interrupts disabled, ccw device lock held

struct ciw * ccw_device_get_ciw(struct ccw_device * cdev, __u32 ct)
Search for CIW command in extended sense data.

Parameters
struct ccw_device * cdev ccw device to inspect

__u32 ct command type to look for

Description

1308 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

During SenseID, command information words (CIWs) describing special com-
mands available to the device may have been stored in the extended sense data.
This function searches for CIWs of a specified command type in the extended sense
data.

Return
NULL if no extended sense data has been stored or if no CIW of the spec-
ified command type could be found, else a pointer to the CIW of the
specified command type.

__u8 ccw_device_get_path_mask(struct ccw_device * cdev)
get currently available paths

Parameters
struct ccw_device * cdev ccw device to be queried

Return
0 if no subchannel for the device is available, else the mask of currently
available paths for the ccw device’s subchannel.

struct channel_path_desc_fmt0 * ccw_device_get_chp_desc(struct
ccw_device
* cdev,
int chp_idx)

return newly allocated channel-path descriptor

Parameters
struct ccw_device * cdev device to obtain the descriptor for

int chp_idx index of the channel path

Description
On success return a newly allocated copy of the channel-path description data
associated with the given channel path. Return NULL on error.

u8 * ccw_device_get_util_str(struct ccw_device * cdev, int chp_idx)
return newly allocated utility strings

Parameters
struct ccw_device * cdev device to obtain the utility strings for

int chp_idx index of the channel path

Description
On success return a newly allocated copy of the utility strings associated with the
given channel path. Return NULL on error.

void ccw_device_get_id(struct ccw_device * cdev, struct ccw_dev_id
* dev_id)

obtain a ccw device id

Parameters
struct ccw_device * cdev device to obtain the id for

struct ccw_dev_id * dev_id where to fill in the values

45.3. The ccw bus 1309

Linux Driver-api Documentation

int ccw_device_tm_start_timeout_key(struct ccw_device * cdev, struct
tcw * tcw, unsigned long intparm,
u8 lpm, u8 key, int expires)

perform start function

Parameters
struct ccw_device * cdev ccw device on which to perform the start function

struct tcw * tcw transport-command word to be started

unsigned long intparm user defined parameter to be passed to the interrupt
handler

u8 lpm mask of paths to use

u8 key storage key to use for storage access

int expires time span in jiffies after which to abort request

Description
Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.

int ccw_device_tm_start_key(struct ccw_device * cdev, struct tcw * tcw,
unsigned long intparm, u8 lpm, u8 key)

perform start function

Parameters
struct ccw_device * cdev ccw device on which to perform the start function

struct tcw * tcw transport-command word to be started

unsigned long intparm user defined parameter to be passed to the interrupt
handler

u8 lpm mask of paths to use

u8 key storage key to use for storage access

Description
Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.

int ccw_device_tm_start(struct ccw_device * cdev, struct tcw * tcw, un-
signed long intparm, u8 lpm)

perform start function

Parameters
struct ccw_device * cdev ccw device on which to perform the start function

struct tcw * tcw transport-command word to be started

unsigned long intparm user defined parameter to be passed to the interrupt
handler

u8 lpm mask of paths to use

Description

1310 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.

int ccw_device_tm_start_timeout(struct ccw_device * cdev, struct tcw
* tcw, unsigned long intparm, u8 lpm,
int expires)

perform start function

Parameters
struct ccw_device * cdev ccw device on which to perform the start function

struct tcw * tcw transport-command word to be started

unsigned long intparm user defined parameter to be passed to the interrupt
handler

u8 lpm mask of paths to use

int expires time span in jiffies after which to abort request

Description
Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.

int ccw_device_get_mdc(struct ccw_device * cdev, u8 mask)
accumulate max data count

Parameters
struct ccw_device * cdev ccw device for which the max data count is accumu-

lated

u8 mask mask of paths to use

Description
Return the number of 64K-bytes blocks all paths at least support for a transport
command. Return value 0 indicates failure.

int ccw_device_tm_intrg(struct ccw_device * cdev)
perform interrogate function

Parameters
struct ccw_device * cdev ccw device on which to perform the interrogate func-

tion

Description
Perform an interrogate function on the given ccw device. Return zero on success,
non-zero otherwise.

void ccw_device_get_schid(struct ccw_device * cdev, struct subchannel_id
* schid)

obtain a subchannel id

Parameters
struct ccw_device * cdev device to obtain the id for

struct subchannel_id * schid where to fill in the values

45.3. The ccw bus 1311

Linux Driver-api Documentation

int ccw_device_pnso(struct ccw_device * cdev, struct
chsc_pnso_area * pnso_area, struct
chsc_pnso_resume_token resume_token, int cnc)

Perform Network-Subchannel Operation

Parameters
struct ccw_device * cdev device on which PNSO is performed

struct chsc_pnso_area * pnso_area request and response block for the oper-
ation

struct chsc_pnso_resume_token resume_token resume token for multiblock
response

int cnc Boolean change-notification control

Description
pnso_area must be allocated by the caller with get_zeroed_page(GFP_KERNEL)

Returns 0 on success.

45.3.3 The channel-measurement facility

The channel-measurement facility provides a means to collect measurement data
which is made available by the channel subsystem for each channel attached de-
vice.

struct cmbdata
channel measurement block data for user space

Definition

struct cmbdata {
__u64 size;
__u64 elapsed_time;
__u64 ssch_rsch_count;
__u64 sample_count;
__u64 device_connect_time;
__u64 function_pending_time;
__u64 device_disconnect_time;
__u64 control_unit_queuing_time;
__u64 device_active_only_time;
__u64 device_busy_time;
__u64 initial_command_response_time;

};

Members
size size of the stored data

elapsed_time time since last sampling

ssch_rsch_count number of ssch and rsch

sample_count number of samples

device_connect_time time of device connect

1312 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

function_pending_time time of function pending

device_disconnect_time time of device disconnect

control_unit_queuing_time time of control unit queuing

device_active_only_time time of device active only

device_busy_time time of device busy (ext. format)

initial_command_response_time initial command response time (ext. format)

Description
All values are stored as 64 bit for simplicity, especially in 32 bit emulation mode.
All time values are normalized to nanoseconds. Currently, two formats are known,
which differ by the size of this structure, i.e. the last two members are only set
when the extended channel measurement facility (first shipped in z990 machines)
is activated. Potentially, more fields could be added, which would result in a new
ioctl number.

int enable_cmf(struct ccw_device * cdev)
switch on the channel measurement for a specific device

Parameters
struct ccw_device * cdev The ccw device to be enabled

Enable channel measurements for cdev. If this is called on a device for which
channel measurement is already enabled a reset of the measurement data is
triggered.

Return
0 for success or a negative error value.

Context
non-atomic

int disable_cmf(struct ccw_device * cdev)
switch off the channel measurement for a specific device

Parameters
struct ccw_device * cdev The ccw device to be disabled

Return
0 for success or a negative error value.

Context
non-atomic

u64 cmf_read(struct ccw_device * cdev, int index)
read one value from the current channel measurement block

Parameters
struct ccw_device * cdev the channel to be read

int index the index of the value to be read

45.3. The ccw bus 1313

Linux Driver-api Documentation

Return
The value read or 0 if the value cannot be read.

Context
any

int cmf_readall(struct ccw_device * cdev, struct cmbdata * data)
read the current channel measurement block

Parameters
struct ccw_device * cdev the channel to be read

struct cmbdata * data a pointer to a data block that will be filled

Return
0 on success, a negative error value otherwise.

Context
any

45.4 The ccwgroup bus

The ccwgroup bus only contains artificial devices, created by the user. Many net-
working devices (e.g. qeth) are in fact composed of several ccw devices (like read,
write and data channel for qeth). The ccwgroup bus provides a mechanism to cre-
ate a meta-device which contains those ccw devices as slave devices and can be
associated with the netdevice.

45.4.1 ccw group devices

struct ccwgroup_device
ccw group device

Definition

struct ccwgroup_device {
enum {

CCWGROUP_OFFLINE,
CCWGROUP_ONLINE,

} state;
unsigned int count;
struct device dev;
struct work_struct ungroup_work;
struct ccw_device *cdev[0];

};

Members
state online/offline state

count number of attached slave devices

dev embedded device structure

1314 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

ungroup_work work to be done when a ccwgroup notifier has action type
BUS_NOTIFY_UNBIND_DRIVER

cdev variable number of slave devices, allocated as needed

struct ccwgroup_driver
driver for ccw group devices

Definition

struct ccwgroup_driver {
int (*setup) (struct ccwgroup_device *);
void (*remove) (struct ccwgroup_device *);
int (*set_online) (struct ccwgroup_device *);
int (*set_offline) (struct ccwgroup_device *);
void (*shutdown)(struct ccwgroup_device *);
struct device_driver driver;
struct ccw_driver *ccw_driver;

};

Members
setup function called during device creation to setup the device

remove function called on remove

set_online function called when device is set online

set_offline function called when device is set offline

shutdown function called when device is shut down

driver embedded driver structure

ccw_driver supported ccw_driver (optional)

int ccwgroup_set_online(struct ccwgroup_device * gdev)
enable a ccwgroup device

Parameters
struct ccwgroup_device * gdev target ccwgroup device

Description
This function attempts to put the ccwgroup device into the online state.

Return
0 on success and a negative error value on failure.

int ccwgroup_set_offline(struct ccwgroup_device * gdev)
disable a ccwgroup device

Parameters
struct ccwgroup_device * gdev target ccwgroup device

Description
This function attempts to put the ccwgroup device into the offline state.

Return
0 on success and a negative error value on failure.

45.4. The ccwgroup bus 1315

Linux Driver-api Documentation

int ccwgroup_create_dev(struct device * parent, struct ccwgroup_driver
* gdrv, int num_devices, const char * buf)

create and register a ccw group device

Parameters
struct device * parent parent device for the new device

struct ccwgroup_driver * gdrv driver for the new group device

int num_devices number of slave devices

const char * buf buffer containing comma separated bus ids of slave devices

Description
Create and register a new ccw group device as a child of parent. Slave devices
are obtained from the list of bus ids given in buf.
Return

0 on success and an error code on failure.

Context
non-atomic

int ccwgroup_driver_register(struct ccwgroup_driver * cdriver)
register a ccw group driver

Parameters
struct ccwgroup_driver * cdriver driver to be registered

Description
This function is mainly a wrapper around driver_register().

void ccwgroup_driver_unregister(struct ccwgroup_driver * cdriver)
deregister a ccw group driver

Parameters
struct ccwgroup_driver * cdriver driver to be deregistered

Description
This function is mainly a wrapper around driver_unregister().

struct ccwgroup_device * get_ccwgroupdev_by_busid(struct ccw-
group_driver * gdrv,
char * bus_id)

obtain device from a bus id

Parameters
struct ccwgroup_driver * gdrv driver the device is owned by

char * bus_id bus id of the device to be searched

Description
This function searches all devices owned by gdrv for a device with a bus id match-
ing bus_id.

1316 Chapter 45. Writing s390 channel device drivers

Linux Driver-api Documentation

Return
If a match is found, its reference count of the found device is increased
and it is returned; else NULL is returned.

int ccwgroup_probe_ccwdev(struct ccw_device * cdev)
probe function for slave devices

Parameters
struct ccw_device * cdev ccw device to be probed

Description
This is a dummy probe function for ccw devices that are slave devices in a ccw
group device.

Return
always 0

void ccwgroup_remove_ccwdev(struct ccw_device * cdev)
remove function for slave devices

Parameters
struct ccw_device * cdev ccw device to be removed

Description
This is a remove function for ccw devices that are slave devices in a ccw group
device. It sets the ccw device offline and also deregisters the embedding ccw
group device.

45.5 Generic interfaces

The following section contains interfaces in use not only by drivers dealing with
ccw devices, but drivers for various other s390 hardware as well.

45.5.1 Adapter interrupts

The common I/O layer provides helper functions for dealing with adapter inter-
rupts and interrupt vectors.

int register_adapter_interrupt(struct airq_struct * airq)
register adapter interrupt handler

Parameters
struct airq_struct * airq pointer to adapter interrupt descriptor

Description
Returns 0 on success, or -EINVAL.

void unregister_adapter_interrupt(struct airq_struct * airq)
unregister adapter interrupt handler

Parameters

45.5. Generic interfaces 1317

Linux Driver-api Documentation

struct airq_struct * airq pointer to adapter interrupt descriptor

struct airq_iv * airq_iv_create(unsigned long bits, unsigned long flags)
create an interrupt vector

Parameters
unsigned long bits number of bits in the interrupt vector

unsigned long flags allocation flags

Description
Returns a pointer to an interrupt vector structure

void airq_iv_release(struct airq_iv * iv)
release an interrupt vector

Parameters
struct airq_iv * iv pointer to interrupt vector structure

unsigned long airq_iv_alloc(struct airq_iv * iv, unsigned long num)
allocate irq bits from an interrupt vector

Parameters
struct airq_iv * iv pointer to an interrupt vector structure

unsigned long num number of consecutive irq bits to allocate

Description
Returns the bit number of the first irq in the allocated block of irqs, or -1UL if no
bit is available or the AIRQ_IV_ALLOC flag has not been specified

void airq_iv_free(struct airq_iv * iv, unsigned long bit, unsigned long num)
free irq bits of an interrupt vector

Parameters
struct airq_iv * iv pointer to interrupt vector structure

unsigned long bit number of the first irq bit to free

unsigned long num number of consecutive irq bits to free

unsigned long airq_iv_scan(struct airq_iv * iv, unsigned long start, un-
signed long end)

scan interrupt vector for non-zero bits

Parameters
struct airq_iv * iv pointer to interrupt vector structure

unsigned long start bit number to start the search

unsigned long end bit number to end the search

Description
Returns the bit number of the next non-zero interrupt bit, or -1UL if the scan
completed without finding any more any non-zero bits.

1318 Chapter 45. Writing s390 channel device drivers

CHAPTER

FORTYSIX

VME DEVICE DRIVERS

46.1 Driver registration

As with other subsystems within the Linux kernel, VME device drivers register
with the VME subsystem, typically called from the devices init routine. This is
achieved via a call to vme_register_driver().

A pointer to a structure of type struct vme_driver must be provided to the reg-
istration function. Along with the maximum number of devices your driver is able
to support.

At the minimum, the‘.name’,‘.match’and‘.probe’elements of struct vme_driver
should be correctly set. The‘.name’element is a pointer to a string holding the
device driver’s name.
The‘.match’function allows control over which VME devices should be registered
with the driver. The match function should return 1 if a device should be probed
and 0 otherwise. This examplematch function (from vme_user.c) limits the number
of devices probed to one:

#define USER_BUS_MAX 1
...
static int vme_user_match(struct vme_dev *vdev)
{

if (vdev->id.num >= USER_BUS_MAX)
return 0;

return 1;
}

The ‘.probe’element should contain a pointer to the probe routine. The probe
routine is passed a struct vme_dev pointer as an argument.

Here, the ‘num’field refers to the sequential device ID for this specific driver.
The bridge number (or bus number) can be accessed using dev->bridge->num.

A function is also provided to unregister the driver from the VME core called
vme_unregister_driver() and should usually be called from the device driver’
s exit routine.

1319

Linux Driver-api Documentation

46.2 Resource management

Once a driver has registered with the VME core the provided match routine will be
called the number of times specified during the registration. If a match succeeds,
a non-zero value should be returned. A zero return value indicates failure. For all
successful matches, the probe routine of the corresponding driver is called. The
probe routine is passed a pointer to the devices device structure. This pointer
should be saved, it will be required for requesting VME resources.

The driver can request ownership of one or more master windows
(vme_master_request()), slave windows (vme_slave_request()) and/or dma
channels (vme_dma_request()). Rather than allowing the device driver to request
a specific window or DMA channel (which may be used by a different driver) the
API allows a resource to be assigned based on the required attributes of the driver
in question. For slave windows these attributes are split into the VME address
spaces that need to be accessed in ‘aspace’and VME bus cycle types required
in‘cycle’. Master windows add a further set of attributes in‘width’specifying
the required data transfer widths. These attributes are defined as bitmasks
and as such any combination of the attributes can be requested for a single
window, the core will assign a window that meets the requirements, returning
a pointer of type vme_resource that should be used to identify the allocated
resource when it is used. For DMA controllers, the request function requires the
potential direction of any transfers to be provided in the route attributes. This is
typically VME-to-MEM and/or MEM-to-VME, though some hardware can support
VME-to-VME and MEM-to-MEM transfers as well as test pattern generation. If
an unallocated window fitting the requirements can not be found a NULL pointer
will be returned.

Functions are also provided to free window allocations once they are no
longer required. These functions (vme_master_free(), vme_slave_free() and
vme_dma_free()) should be passed the pointer to the resource provided during
resource allocation.

46.3 Master windows

Master windows provide access from the local processor[s] out onto the VME bus.
The number of windows available and the available access modes is dependent on
the underlying chipset. A window must be configured before it can be used.

46.3.1 Master window configuration

Once a master window has been assigned vme_master_set() can be used to con-
figure it and vme_master_get() to retrieve the current settings. The address
spaces, transfer widths and cycle types are the same as described under resource
management, however some of the options are mutually exclusive. For example,
only one address space may be specified.

1320 Chapter 46. VME Device Drivers

Linux Driver-api Documentation

46.3.2 Master window access

The function vme_master_read() can be used to read from and
vme_master_write() used to write to configured master windows.

In addition to simple reads and writes, vme_master_rmw() is provided to do a read-
modify-write transaction. Parts of a VME window can also be mapped into user
space memory using vme_master_mmap().

46.4 Slave windows

Slave windows provide devices on the VME bus access into mapped portions of
the local memory. The number of windows available and the access modes that
can be used is dependent on the underlying chipset. A window must be configured
before it can be used.

46.4.1 Slave window configuration

Once a slave window has been assigned vme_slave_set() can be used to configure
it and vme_slave_get() to retrieve the current settings.

The address spaces, transfer widths and cycle types are the same as described
under resource management, however some of the options are mutually exclusive.
For example, only one address space may be specified.

46.4.2 Slave window buffer allocation

Functions are provided to allow the user to allocate (vme_alloc_consistent())
and free (vme_free_consistent()) contiguous buffers which will be accessible
by the VME bridge. These functions do not have to be used, other methods can
be used to allocate a buffer, though care must be taken to ensure that they are
contiguous and accessible by the VME bridge.

46.4.3 Slave window access

Slave windows map local memory onto the VME bus, the standard methods for
accessing memory should be used.

46.5 DMA channels

The VME DMA transfer provides the ability to run link-list DMA transfers. The
API introduces the concept of DMA lists. Each DMA list is a link-list which can
be passed to a DMA controller. Multiple lists can be created, extended, executed,
reused and destroyed.

46.4. Slave windows 1321

Linux Driver-api Documentation

46.5.1 List Management

The function vme_new_dma_list() is provided to create and
vme_dma_list_free() to destroy DMA lists. Execution of a list will not au-
tomatically destroy the list, thus enabling a list to be reused for repetitive
tasks.

46.5.2 List Population

An item can be added to a list using vme_dma_list_add() (the source and desti-
nation attributes need to be created before calling this function, this is covered
under “Transfer Attributes”).

Note: The detailed attributes of the transfers source and destination are not
checked until an entry is added to a DMA list, the request for a DMA channel
purely checks the directions in which the controller is expected to transfer data.
As a result it is possible for this call to return an error, for example if the source
or destination is in an unsupported VME address space.

46.5.3 Transfer Attributes

The attributes for the source and destination are handled separately from adding
an item to a list. This is due to the diverse attributes required for each type of
source and destination. There are functions to create attributes for PCI, VME and
pattern sources and destinations (where appropriate):

• PCI source or destination: vme_dma_pci_attribute()

• VME source or destination: vme_dma_vme_attribute()

• Pattern source: vme_dma_pattern_attribute()

The function vme_dma_free_attribute() should be used to free an attribute.

46.5.4 List Execution

The function vme_dma_list_exec() queues a list for execution andwill return once
the list has been executed.

46.6 Interrupts

The VME API provides functions to attach and detach callbacks to specific VME
level and status ID combinations and for the generation of VME interrupts with
specific VME level and status IDs.

1322 Chapter 46. VME Device Drivers

Linux Driver-api Documentation

46.6.1 Attaching Interrupt Handlers

The function vme_irq_request() can be used to attach and vme_irq_free() to
free a specific VME level and status ID combination. Any given combination can
only be assigned a single callback function. A void pointer parameter is provided,
the value of which is passed to the callback function, the use of this pointer is user
undefined. The callback parameters are as follows. Care must be taken in writing
a callback function, callback functions run in interrupt context:

void callback(int level, int statid, void *priv);

46.6.2 Interrupt Generation

The function vme_irq_generate() can be used to generate a VME interrupt at a
given VME level and VME status ID.

46.7 Location monitors

The VMEAPI provides the following functionality to configure the locationmonitor.

46.7.1 Location Monitor Management

The function vme_lm_request() is provided to request the use of a block of location
monitors and vme_lm_free() to free them after they are no longer required. Each
block may provide a number of location monitors, monitoring adjacent locations.
The function vme_lm_count() can be used to determine how many locations are
provided.

46.7.2 Location Monitor Configuration

Once a bank of location monitors has been allocated, the function vme_lm_set() is
provided to configure the location and mode of the location monitor. The function
vme_lm_get() can be used to retrieve existing settings.

46.7.3 Location Monitor Use

The function vme_lm_attach() enables a callback to be attached and
vme_lm_detach() allows on to be detached from each location monitor location.
Each location monitor can monitor a number of adjacent locations. The callback
function is declared as follows.

void callback(void *data);

46.7. Location monitors 1323

Linux Driver-api Documentation

46.8 Slot Detection

The function vme_slot_num() returns the slot ID of the provided bridge.

46.9 Bus Detection

The function vme_bus_num() returns the bus ID of the provided bridge.

46.10 VME API

struct vme_dev
Structure representing a VME device

Definition

struct vme_dev {
int num;
struct vme_bridge *bridge;
struct device dev;
struct list_head drv_list;
struct list_head bridge_list;

};

Members
num The device number

bridge Pointer to the bridge device this device is on

dev Internal device structure

drv_list List of devices (per driver)

bridge_list List of devices (per bridge)

struct vme_driver
Structure representing a VME driver

Definition

struct vme_driver {
const char *name;
int (*match)(struct vme_dev *);
int (*probe)(struct vme_dev *);
int (*remove)(struct vme_dev *);
struct device_driver driver;
struct list_head devices;

};

Members
name Driver name, should be unique among VME drivers and usually the same as

the module name.

match Callback used to determine whether probe should be run.

1324 Chapter 46. VME Device Drivers

Linux Driver-api Documentation

probe Callback for device binding, called when new device is detected.

remove Callback, called on device removal.

driver Underlying generic device driver structure.

devices List of VME devices (struct vme_dev) associated with this driver.

void * vme_alloc_consistent(struct vme_resource * resource, size_t size,
dma_addr_t * dma)

Allocate contiguous memory.

Parameters
struct vme_resource * resource Pointer to VME resource.

size_t size Size of allocation required.

dma_addr_t * dma Pointer to variable to store physical address of allocation.

Description
Allocate a contiguous block of memory for use by the driver. This is used to create
the buffers for the slave windows.

Return
Virtual address of allocation on success, NULL on failure.

void vme_free_consistent(struct vme_resource * resource, size_t size, void
* vaddr, dma_addr_t dma)

Free previously allocated memory.

Parameters
struct vme_resource * resource Pointer to VME resource.

size_t size Size of allocation to free.

void * vaddr Virtual address of allocation.

dma_addr_t dma Physical address of allocation.

Description
Free previously allocated block of contiguous memory.

size_t vme_get_size(struct vme_resource * resource)
Helper function returning size of a VME window

Parameters
struct vme_resource * resource Pointer to VME slave or master resource.

Description
Determine the size of the VME window provided. This is a helper function, wrap-
pering the call to vme_master_get or vme_slave_get depending on the type of win-
dow resource handed to it.

Return
Size of the window on success, zero on failure.

46.10. VME API 1325

Linux Driver-api Documentation

struct vme_resource * vme_slave_request(struct vme_dev * vdev,
u32 address, u32 cycle)

Request a VME slave window resource.

Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver

instance.

u32 address Required VME address space.

u32 cycle Required VME data transfer cycle type.

Description
Request use of a VME window resource capable of being set for the requested
address space and data transfer cycle.

Return
Pointer to VME resource on success, NULL on failure.

int vme_slave_set(struct vme_resource * resource, int enabled, un-
signed long long vme_base, unsigned long long size,
dma_addr_t buf_base, u32 aspace, u32 cycle)

Set VME slave window configuration.

Parameters
struct vme_resource * resource Pointer to VME slave resource.

int enabled State to which the window should be configured.

unsigned long long vme_base Base address for the window.

unsigned long long size Size of the VME window.

dma_addr_t buf_base Based address of buffer used to provide VME slave window
storage.

u32 aspace VME address space for the VME window.

u32 cycle VME data transfer cycle type for the VME window.

Description
Set configuration for provided VME slave window.

Return
Zero on success, -EINVAL if operation is not supported on this device, if

an invalid resource has been provided or invalid attributes are provided.
Hardware specific errors may also be returned.

int vme_slave_get(struct vme_resource * resource, int * enabled, un-
signed long long * vme_base, unsigned long long * size,
dma_addr_t * buf_base, u32 * aspace, u32 * cycle)

Retrieve VME slave window configuration.

Parameters
struct vme_resource * resource Pointer to VME slave resource.

int * enabled Pointer to variable for storing state.

1326 Chapter 46. VME Device Drivers

Linux Driver-api Documentation

unsigned long long * vme_base Pointer to variable for storing window base ad-
dress.

unsigned long long * size Pointer to variable for storing window size.

dma_addr_t * buf_base Pointer to variable for storing slave buffer base address.

u32 * aspace Pointer to variable for storing VME address space.

u32 * cycle Pointer to variable for storing VME data transfer cycle type.

Description
Return configuration for provided VME slave window.

Return
Zero on success, -EINVAL if operation is not supported on this device or if

an invalid resource has been provided.

void vme_slave_free(struct vme_resource * resource)
Free VME slave window

Parameters
struct vme_resource * resource Pointer to VME slave resource.

Description
Free the provided slave resource so that it may be reallocated.

struct vme_resource * vme_master_request(struct vme_dev * vdev,
u32 address, u32 cycle,
u32 dwidth)

Request a VME master window resource.

Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver

instance.

u32 address Required VME address space.

u32 cycle Required VME data transfer cycle type.

u32 dwidth Required VME data transfer width.

Description
Request use of a VME window resource capable of being set for the requested
address space, data transfer cycle and width.

Return
Pointer to VME resource on success, NULL on failure.

int vme_master_set(struct vme_resource * resource, int enabled, un-
signed long long vme_base, unsigned long long size,
u32 aspace, u32 cycle, u32 dwidth)

Set VME master window configuration.

Parameters
struct vme_resource * resource Pointer to VME master resource.

46.10. VME API 1327

Linux Driver-api Documentation

int enabled State to which the window should be configured.

unsigned long long vme_base Base address for the window.

unsigned long long size Size of the VME window.

u32 aspace VME address space for the VME window.

u32 cycle VME data transfer cycle type for the VME window.

u32 dwidth VME data transfer width for the VME window.

Description
Set configuration for provided VME master window.

Return
Zero on success, -EINVAL if operation is not supported on this device, if

an invalid resource has been provided or invalid attributes are provided.
Hardware specific errors may also be returned.

int vme_master_get(struct vme_resource * resource, int * enabled, unsigned
long long * vme_base, unsigned long long * size, u32
* aspace, u32 * cycle, u32 * dwidth)

Retrieve VME master window configuration.

Parameters
struct vme_resource * resource Pointer to VME master resource.

int * enabled Pointer to variable for storing state.

unsigned long long * vme_base Pointer to variable for storing window base ad-
dress.

unsigned long long * size Pointer to variable for storing window size.

u32 * aspace Pointer to variable for storing VME address space.

u32 * cycle Pointer to variable for storing VME data transfer cycle type.

u32 * dwidth Pointer to variable for storing VME data transfer width.

Description
Return configuration for provided VME master window.

Return
Zero on success, -EINVAL if operation is not supported on this device or if

an invalid resource has been provided.

ssize_t vme_master_read(struct vme_resource * resource, void * buf,
size_t count, loff_t offset)

Read data from VME space into a buffer.

Parameters
struct vme_resource * resource Pointer to VME master resource.

void * buf Pointer to buffer where data should be transferred.

size_t count Number of bytes to transfer.

1328 Chapter 46. VME Device Drivers

Linux Driver-api Documentation

loff_t offset Offset into VME master window at which to start transfer.

Description
Perform read of count bytes of data from location on VME bus which maps into
the VME master window at offset to buf.

Return
Number of bytes read, -EINVAL if resource is not a VME master resource

or read operation is not supported. -EFAULT returned if invalid offset is
provided. Hardware specific errors may also be returned.

ssize_t vme_master_write(struct vme_resource * resource, void * buf,
size_t count, loff_t offset)

Write data out to VME space from a buffer.

Parameters
struct vme_resource * resource Pointer to VME master resource.

void * buf Pointer to buffer holding data to transfer.

size_t count Number of bytes to transfer.

loff_t offset Offset into VME master window at which to start transfer.

Description
Perform write of count bytes of data from buf to location on VME bus which maps
into the VME master window at offset.

Return
Number of bytes written, -EINVAL if resource is not a VME master

resource or write operation is not supported. -EFAULT returned if in-
valid offset is provided. Hardware specific errors may also be returned.

unsigned int vme_master_rmw(struct vme_resource * resource, unsigned
int mask, unsigned int compare, unsigned
int swap, loff_t offset)

Perform read-modify-write cycle.

Parameters
struct vme_resource * resource Pointer to VME master resource.

unsigned int mask Bits to be compared and swapped in operation.

unsigned int compare Bits to be compared with data read from offset.

unsigned int swap Bits to be swapped in data read from offset.

loff_t offset Offset into VME master window at which to perform operation.

Description
Perform read-modify-write cycle on provided location: - Location on VME bus is
read. - Bits selected by mask are compared with compare. - Where a selected bit
matches that in compare and are selected in swap, the bit is swapped. - Result
written back to location on VME bus.

Return

46.10. VME API 1329

Linux Driver-api Documentation

Bytes written on success, -EINVAL if resource is not a VME master
resource or RMW operation is not supported. Hardware specific errors
may also be returned.

int vme_master_mmap(struct vme_resource * resource, struct vm_area_struct
* vma)

Mmap region of VME master window.

Parameters
struct vme_resource * resource Pointer to VME master resource.

struct vm_area_struct * vma Pointer to definition of user mapping.

Description
Memory map a region of the VME master window into user space.

Return
Zero on success, -EINVAL if resource is not a VME master resource or -

EFAULT if map exceeds window size. Other generic mmap errors may also
be returned.

void vme_master_free(struct vme_resource * resource)
Free VME master window

Parameters
struct vme_resource * resource Pointer to VME master resource.

Description
Free the provided master resource so that it may be reallocated.

struct vme_resource * vme_dma_request(struct vme_dev * vdev, u32 route)
Request a DMA controller.

Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver

instance.

u32 route Required src/destination combination.

Description
Request a VME DMA controller with capability to perform transfers bewteen re-
quested source/destination combination.

Return
Pointer to VME DMA resource on success, NULL on failure.

struct vme_dma_list * vme_new_dma_list(struct vme_resource * resource)
Create new VME DMA list.

Parameters
struct vme_resource * resource Pointer to VME DMA resource.

Description

1330 Chapter 46. VME Device Drivers

Linux Driver-api Documentation

Create a new VME DMA list. It is the responsibility of the user to free the list once
it is no longer required with vme_dma_list_free().

Return
Pointer to new VME DMA list, NULL on allocation failure or invalid VME

DMA resource.

struct vme_dma_attr * vme_dma_pattern_attribute(u32 pattern, u32 type)
Create “Pattern”type VME DMA list attribute.

Parameters
u32 pattern Value to use used as pattern

u32 type Type of pattern to be written.

Description
Create VME DMA list attribute for pattern generation. It is the responsibility of
the user to free used attributes using vme_dma_free_attribute().

Return
Pointer to VME DMA attribute, NULL on failure.

struct vme_dma_attr * vme_dma_pci_attribute(dma_addr_t address)
Create “PCI”type VME DMA list attribute.

Parameters
dma_addr_t address PCI base address for DMA transfer.

Description
Create VME DMA list attribute pointing to a location on PCI for DMA trans-
fers. It is the responsibility of the user to free used attributes using
vme_dma_free_attribute().

Return
Pointer to VME DMA attribute, NULL on failure.

struct vme_dma_attr * vme_dma_vme_attribute(unsigned long
long address, u32 aspace,
u32 cycle, u32 dwidth)

Create “VME”type VME DMA list attribute.
Parameters
unsigned long long address VME base address for DMA transfer.

u32 aspace VME address space to use for DMA transfer.

u32 cycle VME bus cycle to use for DMA transfer.

u32 dwidth VME data width to use for DMA transfer.

Description
Create VME DMA list attribute pointing to a location on the VME bus for DMA
transfers. It is the responsibility of the user to free used attributes using
vme_dma_free_attribute().

46.10. VME API 1331

Linux Driver-api Documentation

Return
Pointer to VME DMA attribute, NULL on failure.

void vme_dma_free_attribute(struct vme_dma_attr * attributes)
Free DMA list attribute.

Parameters
struct vme_dma_attr * attributes Pointer to DMA list attribute.

Description
Free VME DMA list attribute. VME DMA list attributes can be safely freed once
vme_dma_list_add() has returned.

int vme_dma_list_add(struct vme_dma_list * list, struct vme_dma_attr * src,
struct vme_dma_attr * dest, size_t count)

Add enty to a VME DMA list.

Parameters
struct vme_dma_list * list Pointer to VME list.

struct vme_dma_attr * src Pointer to DMA list attribute to use as source.

struct vme_dma_attr * dest Pointer to DMA list attribute to use as destination.

size_t count Number of bytes to transfer.

Description
Add an entry to the provided VME DMA list. Entry requires pointers to source and
destination DMA attributes and a count.

Please note, the attributes supported as source and destinations for transfers are
hardware dependent.

Return
Zero on success, -EINVAL if operation is not supported on this device or if

the link list has already been submitted for execution. Hardware specific
errors also possible.

int vme_dma_list_exec(struct vme_dma_list * list)
Queue a VME DMA list for execution.

Parameters
struct vme_dma_list * list Pointer to VME list.

Description
Queue the provided VME DMA list for execution. The call will return once the list
has been executed.

Return
Zero on success, -EINVAL if operation is not supported on this device.

Hardware specific errors also possible.

int vme_dma_list_free(struct vme_dma_list * list)
Free a VME DMA list.

1332 Chapter 46. VME Device Drivers

Linux Driver-api Documentation

Parameters
struct vme_dma_list * list Pointer to VME list.

Description
Free the provided DMA list and all its entries.

Return
Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource is

still in use. Hardware specific errors also possible.

int vme_dma_free(struct vme_resource * resource)
Free a VME DMA resource.

Parameters
struct vme_resource * resource Pointer to VME DMA resource.

Description
Free the provided DMA resource so that it may be reallocated.

Return
Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource is

still active.

int vme_irq_request(struct vme_dev * vdev, int level, int statid, void (*call-
back)(int, int, void *), void * priv_data)

Request a specific VME interrupt.

Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver

instance.

int level Interrupt priority being requested.

int statid Interrupt vector being requested.

void (*)(int, int, void *) callback Pointer to callback function called
when VME interrupt/vector received.

void * priv_data Generic pointer that will be passed to the callback function.

Description
Request callback to be attached as a handler for VME interrupts with provided
level and statid.

Return
Zero on success, -EINVAL on invalid vme device, level or if the function is

not supported, -EBUSY if the level/statid combination is already in use. Hard-
ware specific errors also possible.

void vme_irq_free(struct vme_dev * vdev, int level, int statid)
Free a VME interrupt.

Parameters

46.10. VME API 1333

Linux Driver-api Documentation

struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver
instance.

int level Interrupt priority of interrupt being freed.

int statid Interrupt vector of interrupt being freed.

Description
Remove previously attached callback from VME interrupt priority/vector.

int vme_irq_generate(struct vme_dev * vdev, int level, int statid)
Generate VME interrupt.

Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver

instance.

int level Interrupt priority at which to assert the interrupt.

int statid Interrupt vector to associate with the interrupt.

Description
Generate a VME interrupt of the provided level and with the provided statid.

Return
Zero on success, -EINVAL on invalid vme device, level or if the function is

not supported. Hardware specific errors also possible.

struct vme_resource * vme_lm_request(struct vme_dev * vdev)
Request a VME location monitor

Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver

instance.

Description
Allocate a location monitor resource to the driver. A location monitor allows the
driver to monitor accesses to a contiguous number of addresses on the VME bus.

Return
Pointer to a VME resource on success or NULL on failure.

int vme_lm_count(struct vme_resource * resource)
Determine number of VME Addresses monitored

Parameters
struct vme_resource * resource Pointer to VME location monitor resource.

Description
The number of contiguous addresses monitored is hardware dependent. Return
the number of contiguous addresses monitored by the location monitor.

Return
Count of addresses monitored or -EINVAL when provided with an invalid

location monitor resource.

1334 Chapter 46. VME Device Drivers

Linux Driver-api Documentation

int vme_lm_set(struct vme_resource * resource, unsigned long long lm_base,
u32 aspace, u32 cycle)

Configure location monitor

Parameters
struct vme_resource * resource Pointer to VME location monitor resource.

unsigned long long lm_base Base address to monitor.

u32 aspace VME address space to monitor.

u32 cycle VME bus cycle type to monitor.

Description
Set the base address, address space and cycle type of accesses to be monitored
by the location monitor.

Return
Zero on success, -EINVAL when provided with an invalid location monitor

resource or function is not supported. Hardware specific errors may also be
returned.

int vme_lm_get(struct vme_resource * resource, unsigned long long
* lm_base, u32 * aspace, u32 * cycle)

Retrieve location monitor settings

Parameters
struct vme_resource * resource Pointer to VME location monitor resource.

unsigned long long * lm_base Pointer used to output the base address moni-
tored.

u32 * aspace Pointer used to output the address space monitored.

u32 * cycle Pointer used to output the VME bus cycle type monitored.

Description
Retrieve the base address, address space and cycle type of accesses to be moni-
tored by the location monitor.

Return
Zero on success, -EINVAL when provided with an invalid location monitor

resource or function is not supported. Hardware specific errors may also be
returned.

int vme_lm_attach(struct vme_resource * resource, int monitor, void (*call-
back)(void *), void * data)

Provide callback for location monitor address

Parameters
struct vme_resource * resource Pointer to VME location monitor resource.

int monitor Offset to which callback should be attached.

void (*)(void *) callback Pointer to callback function called when triggered.

void * data Generic pointer that will be passed to the callback function.

46.10. VME API 1335

Linux Driver-api Documentation

Description
Attach a callback to the specificed offset into the location monitors monitored ad-
dresses. A generic pointer is provided to allow data to be passed to the callback
when called.

Return
Zero on success, -EINVAL when provided with an invalid location monitor

resource or function is not supported. Hardware specific errors may also be
returned.

int vme_lm_detach(struct vme_resource * resource, int monitor)
Remove callback for location monitor address

Parameters
struct vme_resource * resource Pointer to VME location monitor resource.

int monitor Offset to which callback should be removed.

Description
Remove the callback associated with the specificed offset into the location moni-
tors monitored addresses.

Return
Zero on success, -EINVAL when provided with an invalid location monitor

resource or function is not supported. Hardware specific errors may also be
returned.

void vme_lm_free(struct vme_resource * resource)
Free allocated VME location monitor

Parameters
struct vme_resource * resource Pointer to VME location monitor resource.

Description
Free allocation of a VME location monitor.

WARNING: This function currently expects that any callbacks that have
been attached to the location monitor have been removed.

Return
Zero on success, -EINVAL when provided with an invalid location monitor

resource.

int vme_slot_num(struct vme_dev * vdev)
Retrieve slot ID

Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver

instance.

Description
Retrieve the slot ID associated with the provided VME device.

Return

1336 Chapter 46. VME Device Drivers

Linux Driver-api Documentation

The slot ID on success, -EINVAL if VME bridge cannot be determined or
the function is not supported. Hardware specific errors may also be returned.

int vme_bus_num(struct vme_dev * vdev)
Retrieve bus number

Parameters
struct vme_dev * vdev Pointer to VME device struct vme_dev assigned to driver

instance.

Description
Retrieve the bus enumeration associated with the provided VME device.

Return
The bus number on success, -EINVAL if VME bridge cannot be

determined.

int vme_register_driver(struct vme_driver * drv, unsigned int ndevs)
Register a VME driver

Parameters
struct vme_driver * drv Pointer to VME driver structure to register.

unsigned int ndevs Maximum number of devices to allow to be enumerated.

Description
Register a VME device driver with the VME subsystem.

Return
Zero on success, error value on registration failure.

void vme_unregister_driver(struct vme_driver * drv)
Unregister a VME driver

Parameters
struct vme_driver * drv Pointer to VME driver structure to unregister.

Description
Unregister a VME device driver from the VME subsystem.

46.10. VME API 1337

Linux Driver-api Documentation

1338 Chapter 46. VME Device Drivers

CHAPTER

FORTYSEVEN

LINUX 802.11 DRIVER DEVELOPER’S GUIDE

47.1 Introduction

Explaining wireless 802.11 networking in the Linux kernel

Copyright 2007-2009 Johannes Berg

These books attempt to give a description of the various subsystems that play a
role in 802.11 wireless networking in Linux. Since these books are for kernel
developers they attempts to document the structures and functions used in the
kernel as well as giving a higher-level overview.

The reader is expected to be familiar with the 802.11 standard as published by the
IEEE in 802.11-2007 (or possibly later versions). References to this standard will
be given as “802.11-2007 8.1.5”.

47.2 cfg80211 subsystem

cfg80211 is the configuration API for 802.11 devices in Linux. It bridges userspace
and drivers, and offers some utility functionality associated with 802.11. cfg80211
must, directly or indirectly via mac80211, be used by all modern wireless drivers
in Linux, so that they offer a consistent API through nl80211. For backward com-
patibility, cfg80211 also offers wireless extensions to userspace, but hides them
from drivers completely.

Additionally, cfg80211 contains code to help enforce regulatory spectrum use re-
strictions.

47.2.1 Device registration

In order for a driver to use cfg80211, it must register the hardware device with
cfg80211. This happens through a number of hardware capability structs de-
scribed below.

The fundamental structure for each device is the‘wiphy’, of which each instance
describes a physical wireless device connected to the system. Each such wiphy
can have zero, one, or many virtual interfaces associated with it, which need to be
identified as such by pointing the network interface’s ieee80211_ptr pointer to a
struct wireless_dev which further describes the wireless part of the interface,
normally this struct is embedded in the network interface’s private data area.

1339

Linux Driver-api Documentation

Drivers can optionally allow creating or destroying virtual interfaces on the fly,
but without at least one or the ability to create some the wireless device isn’t
useful.

Eachwiphy structure contains device capability information, and also has a pointer
to the various operations the driver offers. The definitions and structures here
describe these capabilities in detail.

enum ieee80211_channel_flags
channel flags

Constants
IEEE80211_CHAN_DISABLED This channel is disabled.

IEEE80211_CHAN_NO_IR do not initiate radiation, this includes sending probe re-
quests or beaconing.

IEEE80211_CHAN_RADAR Radar detection is required on this channel.

IEEE80211_CHAN_NO_HT40PLUS extension channel above this channel is not per-
mitted.

IEEE80211_CHAN_NO_HT40MINUS extension channel below this channel is not per-
mitted.

IEEE80211_CHAN_NO_OFDM OFDM is not allowed on this channel.

IEEE80211_CHAN_NO_80MHZ If the driver supports 80 MHz on the band, this flag
indicates that an 80MHz channel cannot use this channel as the control or any
of the secondary channels. This may be due to the driver or due to regulatory
bandwidth restrictions.

IEEE80211_CHAN_NO_160MHZ If the driver supports 160 MHz on the band, this flag
indicates that an 160 MHz channel cannot use this channel as the control
or any of the secondary channels. This may be due to the driver or due to
regulatory bandwidth restrictions.

IEEE80211_CHAN_INDOOR_ONLY see NL80211_FREQUENCY_ATTR_INDOOR_ONLY

IEEE80211_CHAN_IR_CONCURRENT see NL80211_FREQUENCY_ATTR_IR_CONCURRENT

IEEE80211_CHAN_NO_20MHZ 20 MHz bandwidth is not permitted on this channel.

IEEE80211_CHAN_NO_10MHZ 10 MHz bandwidth is not permitted on this channel.

IEEE80211_CHAN_NO_HE HE operation is not permitted on this channel.

Description
Channel flags set by the regulatory control code.

struct ieee80211_channel
channel definition

Definition

struct ieee80211_channel {
enum nl80211_band band;
u32 center_freq;
u16 freq_offset;

(continues on next page)

1340 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

(continued from previous page)
u16 hw_value;
u32 flags;
int max_antenna_gain;
int max_power;
int max_reg_power;
bool beacon_found;
u32 orig_flags;
int orig_mag, orig_mpwr;
enum nl80211_dfs_state dfs_state;
unsigned long dfs_state_entered;
unsigned int dfs_cac_ms;

};

Members
band band this channel belongs to.

center_freq center frequency in MHz

freq_offset offset from center_freq, in KHz
hw_value hardware-specific value for the channel

flags channel flags from enum ieee80211_channel_flags.

max_antenna_gain maximum antenna gain in dBi

max_power maximum transmission power (in dBm)

max_reg_power maximum regulatory transmission power (in dBm)

beacon_found helper to regulatory code to indicate when a beacon has been found
on this channel. Use regulatory_hint_found_beacon() to enable this, this is
useful only on 5 GHz band.

orig_flags channel flags at registration time, used by regulatory code to support
devices with additional restrictions

orig_mag internal use

orig_mpwr internal use

dfs_state current state of this channel. Only relevant if radar is required on this
channel.

dfs_state_entered timestamp (jiffies) when the dfs state was entered.

dfs_cac_ms DFS CAC time in milliseconds, this is valid for DFS channels.

Description
This structure describes a single channel for use with cfg80211.

enum ieee80211_rate_flags
rate flags

Constants
IEEE80211_RATE_SHORT_PREAMBLE Hardware can send with short preamble on

this bitrate; only relevant in 2.4GHz band and with CCK rates.

47.2. cfg80211 subsystem 1341

Linux Driver-api Documentation

IEEE80211_RATE_MANDATORY_A This bitrate is a mandatory rate when used with
802.11a (on the 5 GHz band); filled by the core code when registering the
wiphy.

IEEE80211_RATE_MANDATORY_B This bitrate is a mandatory rate when used with
802.11b (on the 2.4 GHz band); filled by the core code when registering the
wiphy.

IEEE80211_RATE_MANDATORY_G This bitrate is a mandatory rate when used with
802.11g (on the 2.4 GHz band); filled by the core code when registering the
wiphy.

IEEE80211_RATE_ERP_G This is an ERP rate in 802.11g mode.

IEEE80211_RATE_SUPPORTS_5MHZ Rate can be used in 5 MHz mode

IEEE80211_RATE_SUPPORTS_10MHZ Rate can be used in 10 MHz mode

Description
Hardware/specification flags for rates. These are structured in a way that allows
using the same bitrate structure for different bands/PHY modes.

struct ieee80211_rate
bitrate definition

Definition

struct ieee80211_rate {
u32 flags;
u16 bitrate;
u16 hw_value, hw_value_short;

};

Members
flags rate-specific flags

bitrate bitrate in units of 100 Kbps

hw_value driver/hardware value for this rate

hw_value_short driver/hardware value for this rate when short preamble is used

Description
This structure describes a bitrate that an 802.11 PHY can operate with. The two
values hw_value and hw_value_short are only for driver use when pointers to
this structure are passed around.

struct ieee80211_sta_ht_cap
STA’s HT capabilities

Definition

struct ieee80211_sta_ht_cap {
u16 cap;
bool ht_supported;
u8 ampdu_factor;
u8 ampdu_density;

(continues on next page)

1342 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

(continued from previous page)
struct ieee80211_mcs_info mcs;

};

Members
cap HT capabilities map as described in 802.11n spec

ht_supported is HT supported by the STA

ampdu_factor Maximum A-MPDU length factor

ampdu_density Minimum A-MPDU spacing

mcs Supported MCS rates

Description
This structure describes most essential parameters needed to describe 802.11n
HT capabilities for an STA.

struct ieee80211_supported_band
frequency band definition

Definition

struct ieee80211_supported_band {
struct ieee80211_channel *channels;
struct ieee80211_rate *bitrates;
enum nl80211_band band;
int n_channels;
int n_bitrates;
struct ieee80211_sta_ht_cap ht_cap;
struct ieee80211_sta_vht_cap vht_cap;
struct ieee80211_edmg edmg_cap;
u16 n_iftype_data;
const struct ieee80211_sband_iftype_data *iftype_data;

};

Members
channels Array of channels the hardware can operate in in this band.

bitrates Array of bitrates the hardware can operate with in this band. Must be
sorted to give a valid“supported rates”IE, i.e. CCK rates first, then OFDM.

band the band this structure represents

n_channels Number of channels in channels
n_bitrates Number of bitrates in bitrates
ht_cap HT capabilities in this band

vht_cap VHT capabilities in this band

edmg_cap EDMG capabilities in this band

n_iftype_data number of iftype data entries

47.2. cfg80211 subsystem 1343

Linux Driver-api Documentation

iftype_data interface type data entries. Note that the bits in types_mask inside
this structure cannot overlap (i.e. only one occurrence of each type is allowed
across all instances of iftype_data).

Description
This structure describes a frequency band a wiphy is able to operate in.

enum cfg80211_signal_type
signal type

Constants
CFG80211_SIGNAL_TYPE_NONE no signal strength information available

CFG80211_SIGNAL_TYPE_MBM signal strength in mBm (100*dBm)

CFG80211_SIGNAL_TYPE_UNSPEC signal strength, increasing from 0 through 100

enum wiphy_params_flags
set_wiphy_params bitfield values

Constants
WIPHY_PARAM_RETRY_SHORT wiphy->retry_short has changed

WIPHY_PARAM_RETRY_LONG wiphy->retry_long has changed

WIPHY_PARAM_FRAG_THRESHOLD wiphy->frag_threshold has changed

WIPHY_PARAM_RTS_THRESHOLD wiphy->rts_threshold has changed

WIPHY_PARAM_COVERAGE_CLASS coverage class changed

WIPHY_PARAM_DYN_ACK dynack has been enabled

WIPHY_PARAM_TXQ_LIMIT TXQ packet limit has been changed

WIPHY_PARAM_TXQ_MEMORY_LIMIT TXQ memory limit has been changed

WIPHY_PARAM_TXQ_QUANTUM TXQ scheduler quantum

enum wiphy_flags
wiphy capability flags

Constants
WIPHY_FLAG_SUPPORTS_EXT_KEK_KCK The device supports bigger kek and kck keys

WIPHY_FLAG_NETNS_OK if not set, do not allow changing the netns of this wiphy at
all

WIPHY_FLAG_PS_ON_BY_DEFAULT if set to true, powersave will be enabled by de-
fault – this flag will be set depending on the kernel’s default on wiphy_new(),
but can be changed by the driver if it has a good reason to override the default

WIPHY_FLAG_4ADDR_AP supports 4addr mode even on AP (with a single station on a
VLAN interface). This flag also serves an extra purpose of supporting 4ADDR
AP mode on devices which do not support AP/VLAN iftype.

WIPHY_FLAG_4ADDR_STATION supports 4addr mode even as a station

1344 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

WIPHY_FLAG_CONTROL_PORT_PROTOCOL This device supports setting the control
port protocol ethertype. The device also honours the control_port_no_encrypt
flag.

WIPHY_FLAG_IBSS_RSN The device supports IBSS RSN.

WIPHY_FLAG_MESH_AUTH The device supports mesh authentication by routing auth
frames to userspace. See NL80211_MESH_SETUP_USERSPACE_AUTH.

WIPHY_FLAG_SUPPORTS_FW_ROAM The device supports roaming feature in the
firmware.

WIPHY_FLAG_AP_UAPSD The device supports uapsd on AP.

WIPHY_FLAG_SUPPORTS_TDLS The device supports TDLS (802.11z) operation.

WIPHY_FLAG_TDLS_EXTERNAL_SETUP The device does not handle TDLS (802.11z)
link setup/discovery operations internally. Setup, discovery and teardown
packets should be sent through the NL80211_CMD_TDLS_MGMT com-
mand. When this flag is not set, NL80211_CMD_TDLS_OPER should be
used for asking the driver/firmware to perform a TDLS operation.

WIPHY_FLAG_HAVE_AP_SME device integrates AP SME

WIPHY_FLAG_REPORTS_OBSS the device will report beacons from other
BSSes when there are virtual interfaces in AP mode by calling
cfg80211_report_obss_beacon().

WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD When operating as an AP, the device re-
sponds to probe-requests in hardware.

WIPHY_FLAG_OFFCHAN_TX Device supports direct off-channel TX.

WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL Device supports remain-on-channel call.

WIPHY_FLAG_SUPPORTS_5_10_MHZ Device supports 5 MHz and 10 MHz channels.

WIPHY_FLAG_HAS_CHANNEL_SWITCH Device supports channel switch in beaconing
mode (AP, IBSS, Mesh, ⋯).

WIPHY_FLAG_HAS_STATIC_WEP The device supports static WEP key installation be-
fore connection.

struct wiphy
wireless hardware description

Definition

struct wiphy {
u8 perm_addr[ETH_ALEN];
u8 addr_mask[ETH_ALEN];
struct mac_address *addresses;
const struct ieee80211_txrx_stypes *mgmt_stypes;
const struct ieee80211_iface_combination *iface_combinations;
int n_iface_combinations;
u16 software_iftypes;
u16 n_addresses;
u16 interface_modes;
u16 max_acl_mac_addrs;
u32 flags, regulatory_flags, features;

(continues on next page)

47.2. cfg80211 subsystem 1345

Linux Driver-api Documentation

(continued from previous page)
u8 ext_features[DIV_ROUND_UP(NUM_NL80211_EXT_FEATURES, 8)];
u32 ap_sme_capa;
enum cfg80211_signal_type signal_type;
int bss_priv_size;
u8 max_scan_ssids;
u8 max_sched_scan_reqs;
u8 max_sched_scan_ssids;
u8 max_match_sets;
u16 max_scan_ie_len;
u16 max_sched_scan_ie_len;
u32 max_sched_scan_plans;
u32 max_sched_scan_plan_interval;
u32 max_sched_scan_plan_iterations;
int n_cipher_suites;
const u32 *cipher_suites;
int n_akm_suites;
const u32 *akm_suites;
const struct wiphy_iftype_akm_suites *iftype_akm_suites;
unsigned int num_iftype_akm_suites;
u8 retry_short;
u8 retry_long;
u32 frag_threshold;
u32 rts_threshold;
u8 coverage_class;
char fw_version[ETHTOOL_FWVERS_LEN];
u32 hw_version;

#ifdef CONFIG_PM;
const struct wiphy_wowlan_support *wowlan;
struct cfg80211_wowlan *wowlan_config;

#endif;
u16 max_remain_on_channel_duration;
u8 max_num_pmkids;
u32 available_antennas_tx;
u32 available_antennas_rx;
u32 probe_resp_offload;
const u8 *extended_capabilities, *extended_capabilities_mask;
u8 extended_capabilities_len;
const struct wiphy_iftype_ext_capab *iftype_ext_capab;
unsigned int num_iftype_ext_capab;
const void *privid;
struct ieee80211_supported_band *bands[NUM_NL80211_BANDS];
void (*reg_notifier)(struct wiphy *wiphy, struct regulatory_request␣

↪→*request);
const struct ieee80211_regdomain __rcu *regd;
struct device dev;
bool registered;
struct dentry *debugfsdir;
const struct ieee80211_ht_cap *ht_capa_mod_mask;
const struct ieee80211_vht_cap *vht_capa_mod_mask;
struct list_head wdev_list;
possible_net_t _net;

#ifdef CONFIG_CFG80211_WEXT;
const struct iw_handler_def *wext;

#endif;
const struct wiphy_coalesce_support *coalesce;
const struct wiphy_vendor_command *vendor_commands;

(continues on next page)

1346 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

(continued from previous page)
const struct nl80211_vendor_cmd_info *vendor_events;
int n_vendor_commands, n_vendor_events;
u16 max_ap_assoc_sta;
u8 max_num_csa_counters;
u32 bss_select_support;
u8 nan_supported_bands;
u32 txq_limit;
u32 txq_memory_limit;
u32 txq_quantum;
unsigned long tx_queue_len;
u8 support_mbssid:1, support_only_he_mbssid:1;
const struct cfg80211_pmsr_capabilities *pmsr_capa;
struct {

u64 peer, vif;
u8 max_retry;

} tid_config_support;
u8 max_data_retry_count;
char priv[] ;

};

Members
perm_addr permanent MAC address of this device

addr_mask If the device supports multiple MAC addresses by masking, set this to
a mask with variable bits set to 1, e.g. if the last four bits are variable then
set it to 00-00-00-00-00-0f. The actual variable bits shall be determined by
the interfaces added, with interfaces not matching the mask being rejected
to be brought up.

addresses If the device has more than one address, set this pointer to a list of
addresses (6 bytes each). The first one will be used by default for perm_addr.
In this case, the mask should be set to all-zeroes. In this case it is assumed
that the device can handle the same number of arbitrary MAC addresses.

mgmt_stypes bitmasks of frame subtypes that can be subscribed to or transmitted
through nl80211, points to an array indexed by interface type

iface_combinations Valid interface combinations array, should not list single in-
terface types.

n_iface_combinations number of entries in iface_combinations array.
software_iftypes bitmask of software interface types, these are not subject to

any restrictions since they are purely managed in SW.

n_addresses number of addresses in addresses.
interface_modes bitmask of interfaces types valid for this wiphy, must be set by

driver

max_acl_mac_addrs Maximumnumber ofMAC addresses that the device supports
for ACL.

flags wiphy flags, see enum wiphy_flags

regulatory_flags wiphy regulatory flags, see enum
ieee80211_regulatory_flags

47.2. cfg80211 subsystem 1347

Linux Driver-api Documentation

features features advertised to nl80211, see enum nl80211_feature_flags.

ext_features extended features advertised to nl80211, see enum
nl80211_ext_feature_index.

ap_sme_capa AP SME capabilities, flags from enum nl80211_ap_sme_features.

signal_type signal type reported in struct cfg80211_bss.

bss_priv_size each BSS struct has private data allocated with it, this variable
determines its size

max_scan_ssids maximum number of SSIDs the device can scan for in any given
scan

max_sched_scan_reqs maximum number of scheduled scan requests that the de-
vice can run concurrently.

max_sched_scan_ssids maximum number of SSIDs the device can scan for in any
given scheduled scan

max_match_sets maximum number of match sets the device can handle when per-
forming a scheduled scan, 0 if filtering is not supported.

max_scan_ie_len maximum length of user-controlled IEs device can add to probe
request frames transmitted during a scan, must not include fixed IEs like
supported rates

max_sched_scan_ie_len same as max_scan_ie_len, but for scheduled scans

max_sched_scan_plans maximum number of scan plans (scan interval and num-
ber of iterations) for scheduled scan supported by the device.

max_sched_scan_plan_interval maximum interval (in seconds) for a single scan
plan supported by the device.

max_sched_scan_plan_iterations maximum number of iterations for a single
scan plan supported by the device.

n_cipher_suites number of supported cipher suites

cipher_suites supported cipher suites

n_akm_suites number of supported AKM suites

akm_suites supported AKM suites. These are the default AKMs supported
if the supported AKMs not advertized for a specific interface type in
iftype_akm_suites.

iftype_akm_suites array of supported akm suites info per interface type.
Note that the bits in iftypes_mask inside this structure cannot overlap
(i.e. only one occurrence of each type is allowed across all instances of
iftype_akm_suites).

num_iftype_akm_suites number of interface types for which supported akm
suites are specified separately.

retry_short Retry limit for short frames (dot11ShortRetryLimit)

retry_long Retry limit for long frames (dot11LongRetryLimit)

1348 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

frag_threshold Fragmentation threshold (dot11FragmentationThreshold); -1 =
fragmentation disabled, only odd values >= 256 used

rts_threshold RTS threshold (dot11RTSThreshold); -1 = RTS/CTS disabled

coverage_class current coverage class

fw_version firmware version for ethtool reporting

hw_version hardware version for ethtool reporting

wowlan WoWLAN support information

wowlan_config current WoWLAN configuration; this should usually not be used
since access to it is necessarily racy, use the parameter passed to the sus-
pend() operation instead.

max_remain_on_channel_duration Maximum time a remain-on-channel opera-
tion may request, if implemented.

max_num_pmkids maximum number of PMKIDs supported by device

available_antennas_tx bitmap of antennas which are available to be configured
as TX antennas. Antenna configuration commands will be rejected unless this
or available_antennas_rx is set.

available_antennas_rx bitmap of antennas which are available to be configured
as RX antennas. Antenna configuration commands will be rejected unless this
or available_antennas_tx is set.

probe_resp_offload Bitmap of supported protocols for probe response offload-
ing. See enum nl80211_probe_resp_offload_support_attr. Only valid
when the wiphy flagWIPHY_FLAG_AP_PROBE_RESP_OFFLOAD is set.

extended_capabilities extended capabilities supported by the driver, additional
capabilities might be supported by userspace; these are the 802.11 extended
capabilities (“Extended Capabilities element”) and are in the same format as
in the information element. See 802.11-2012 8.4.2.29 for the defined fields.
These are the default extended capabilities to be used if the capabilities are
not specified for a specific interface type in iftype_ext_capab.

extended_capabilities_mask mask of the valid values

extended_capabilities_len length of the extended capabilities

iftype_ext_capab array of extended capabilities per interface type

num_iftype_ext_capab number of interface types for which extended capabilities
are specified separately.

privid a pointer that drivers can use to identify if an arbitrary wiphy is theirs,
e.g. in global notifiers

bands information about bands/channels supported by this device

reg_notifier the driver’s regulatory notification callback, note that if your driver
uses wiphy_apply_custom_regulatory() the reg_notifier’s request can be
passed as NULL

regd the driver’s regulatory domain, if one was requested via the
regulatory_hint() API. This can be used by the driver on the reg_notifier()

47.2. cfg80211 subsystem 1349

Linux Driver-api Documentation

if it chooses to ignore future regulatory domain changes caused by other
drivers.

dev (virtual) struct device for this wiphy. The item in /sys/class/ieee80211/ points
to this. You need use set_wiphy_dev() (see below).

registered protects ->resume and ->suspend sysfs callbacks against unregister
hardware

debugfsdir debugfs directory used for this wiphy (ieee80211/<wiphyname>). It
will be renamed automatically on wiphy renames

ht_capa_mod_mask Specify what ht_cap values can be over-ridden. If null, then
none can be over-ridden.

vht_capa_mod_mask Specify what VHT capabilities can be over-ridden. If null,
then none can be over-ridden.

wdev_list the list of associated (virtual) interfaces; this list must not be modified
by the driver, but can be read with RTNL/RCU protection.

_net the network namespace this wiphy currently lives in

wext wireless extension handlers

coalesce packet coalescing support information

vendor_commands array of vendor commands supported by the hardware

vendor_events array of vendor events supported by the hardware

n_vendor_commands number of vendor commands

n_vendor_events number of vendor events

max_ap_assoc_sta maximumnumber of associated stations supported in APmode
(including P2P GO) or 0 to indicate no such limit is advertised. The driver is
allowed to advertise a theoretical limit that it can reach in some cases, but
may not always reach.

max_num_csa_counters Number of supported csa_counters in beacons and probe
responses. This value should be set if the driver wishes to limit the number
of csa counters. Default (0) means infinite.

bss_select_support bitmask indicating the BSS selection criteria supported by
the driver in the .connect() callback. The bit position maps to the attribute
indices defined in enum nl80211_bss_select_attr.

nan_supported_bands bands supported by the device in NAN mode, a bitmap of
enum nl80211_band values. For instance, for NL80211_BAND_2GHZ, bit 0
would be set (i.e. BIT(NL80211_BAND_2GHZ)).

txq_limit configuration of internal TX queue frame limit

txq_memory_limit configuration internal TX queue memory limit

txq_quantum configuration of internal TX queue scheduler quantum

tx_queue_len allow setting transmit queue len for drivers not using
wake_tx_queue

support_mbssid can HW support association with nontransmitted AP

1350 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

support_only_he_mbssid don’t parseMBSSID elements if it is not HE AP, in order
to avoid compatibility issues. support_mbssid must be set for this to have
any effect.

pmsr_capa peer measurement capabilities

tid_config_support describes the per-TID config support that the device has

tid_config_support.peer bitmap of attributes (configurations) supported by the
driver for each peer

tid_config_support.vif bitmap of attributes (configurations) supported by the
driver for each vif

tid_config_support.max_retry maximum supported retry count for long/short
retry configuration

max_data_retry_count maximum supported per TID retry count for con-
figuration through the NL80211_TID_CONFIG_ATTR_RETRY_SHORT and
NL80211_TID_CONFIG_ATTR_RETRY_LONG attributes

priv driver private data (sized according to wiphy_new() parameter)

struct wireless_dev
wireless device state

Definition

struct wireless_dev {
struct wiphy *wiphy;
enum nl80211_iftype iftype;
struct list_head list;
struct net_device *netdev;
u32 identifier;
struct list_head mgmt_registrations;
spinlock_t mgmt_registrations_lock;
u8 mgmt_registrations_need_update:1;
struct mutex mtx;
bool use_4addr, is_running;
u8 address[ETH_ALEN] ;
u8 ssid[IEEE80211_MAX_SSID_LEN];
u8 ssid_len, mesh_id_len, mesh_id_up_len;
struct cfg80211_conn *conn;
struct cfg80211_cached_keys *connect_keys;
enum ieee80211_bss_type conn_bss_type;
u32 conn_owner_nlportid;
struct work_struct disconnect_wk;
u8 disconnect_bssid[ETH_ALEN];
struct list_head event_list;
spinlock_t event_lock;
struct cfg80211_internal_bss *current_bss;
struct cfg80211_chan_def preset_chandef;
struct cfg80211_chan_def chandef;
bool ibss_fixed;
bool ibss_dfs_possible;
bool ps;
int ps_timeout;
int beacon_interval;
u32 ap_unexpected_nlportid;

(continues on next page)

47.2. cfg80211 subsystem 1351

Linux Driver-api Documentation

(continued from previous page)
u32 owner_nlportid;
bool nl_owner_dead;
bool cac_started;
unsigned long cac_start_time;
unsigned int cac_time_ms;

#ifdef CONFIG_CFG80211_WEXT;
struct {

struct cfg80211_ibss_params ibss;
struct cfg80211_connect_params connect;
struct cfg80211_cached_keys *keys;
const u8 *ie;
size_t ie_len;
u8 bssid[ETH_ALEN];
u8 prev_bssid[ETH_ALEN];
u8 ssid[IEEE80211_MAX_SSID_LEN];
s8 default_key, default_mgmt_key;
bool prev_bssid_valid;

} wext;
#endif;

struct cfg80211_cqm_config *cqm_config;
struct list_head pmsr_list;
spinlock_t pmsr_lock;
struct work_struct pmsr_free_wk;
unsigned long unprot_beacon_reported;

};

Members
wiphy pointer to hardware description

iftype interface type

list (private) Used to collect the interfaces

netdev (private) Used to reference back to the netdev, may be NULL

identifier (private) Identifier used in nl80211 to identify this wireless device if
it has no netdev

mgmt_registrations list of registrations for management frames

mgmt_registrations_lock lock for the list

mgmt_registrations_need_update mgmt registrations were updated, need to
propagate the update to the driver

mtx mutex used to lock data in this struct, may be used by drivers and some API
functions require it held

use_4addr indicates 4addr mode is used on this interface, must be set by driver
(if supported) on add_interface BEFORE registering the netdev and may
otherwise be used by driver read-only, will be update by cfg80211 on
change_interface

is_running true if this is a non-netdev device that has been started, e.g. the P2P
Device.

address The address for this device, valid only if netdev is NULL

1352 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

ssid (private) Used by the internal configuration code

ssid_len (private) Used by the internal configuration code

mesh_id_len (private) Used by the internal configuration code

mesh_id_up_len (private) Used by the internal configuration code

conn (private) cfg80211 software SME connection state machine data

connect_keys (private) keys to set after connection is established

conn_bss_type connecting/connected BSS type

conn_owner_nlportid (private) connection owner socket port ID

disconnect_wk (private) auto-disconnect work

disconnect_bssid (private) the BSSID to use for auto-disconnect

event_list (private) list for internal event processing

event_lock (private) lock for event list

current_bss (private) Used by the internal configuration code

preset_chandef (private) Used by the internal configuration code to track the
channel to be used for AP later

chandef (private) Used by the internal configuration code to track the user-set
channel definition.

ibss_fixed (private) IBSS is using fixed BSSID

ibss_dfs_possible (private) IBSS may change to a DFS channel

ps powersave mode is enabled

ps_timeout dynamic powersave timeout

beacon_interval beacon interval used on this device for transmitting beacons, 0
when not valid

ap_unexpected_nlportid (private) netlink port ID of application registered for
unexpected class 3 frames (AP mode)

owner_nlportid (private) owner socket port ID

nl_owner_dead (private) owner socket went away

cac_started true if DFS channel availability check has been started

cac_start_time timestamp (jiffies) when the dfs state was entered.

cac_time_ms CAC time in ms

wext (private) Used by the internal wireless extensions compat code

wext.ibss (private) IBSS data part of wext handling

wext.connect (private) connection handling data

wext.keys (private) (WEP) key data

wext.ie (private) extra elements for association

wext.ie_len (private) length of extra elements

47.2. cfg80211 subsystem 1353

Linux Driver-api Documentation

wext.bssid (private) selected network BSSID

wext.prev_bssid (private) previous BSSID for reassociation

wext.ssid (private) selected network SSID

wext.default_key (private) selected default key index

wext.default_mgmt_key (private) selected default management key index

wext.prev_bssid_valid (private) previous BSSID validity

cqm_config (private) nl80211 RSSI monitor state

pmsr_list (private) peer measurement requests

pmsr_lock (private) peer measurements requests/results lock

pmsr_free_wk (private) peer measurements cleanup work

unprot_beacon_reported (private) timestamp of last unprotected beacon report

Description
For netdevs, this structure must be allocated by the driver that uses the
ieee80211_ptr field in struct net_device (this is intentional so it can be allocated
along with the netdev.) It need not be registered then as netdev registration will
be intercepted by cfg80211 to see the new wireless device.

For non-netdev uses, it must also be allocated by the driver in response to the
cfg80211 callbacks that require it, as there’s no netdev registration in that case
it may not be allocated outside of callback operations that return it.

struct wiphy * wiphy_new(const struct cfg80211_ops * ops, int sizeof_priv)
create a new wiphy for use with cfg80211

Parameters
const struct cfg80211_ops * ops The configuration operations for this device

int sizeof_priv The size of the private area to allocate

Description
Create a new wiphy and associate the given operations with it. sizeof_priv bytes
are allocated for private use.

Return
A pointer to the new wiphy. This pointer must be assigned to each netdev’s
ieee80211_ptr for proper operation.

void wiphy_read_of_freq_limits(struct wiphy * wiphy)
read frequency limits from device tree

Parameters
struct wiphy * wiphy the wireless device to get extra limits for

Description
Some devices may have extra limitations specified in DT. This may be useful for
chipsets that normally support more bands but are limited due to board design
(e.g. by antennas or external power amplifier).

1354 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

This function reads info from DT and uses it to modify channels (disable unavail-
able ones). It’s usually a bad idea to use it in drivers with shared channel data as
DT limitations are device specific. You should make sure to call it only if channels
in wiphy are copied and can be modified without affecting other devices.

As this function access device node it has to be called after set_wiphy_dev. It also
modifies channels so they have to be set first. If using this helper, call it before
wiphy_register().

int wiphy_register(struct wiphy * wiphy)
register a wiphy with cfg80211

Parameters
struct wiphy * wiphy The wiphy to register.

Return
A non-negative wiphy index or a negative error code.

void wiphy_unregister(struct wiphy * wiphy)
deregister a wiphy from cfg80211

Parameters
struct wiphy * wiphy The wiphy to unregister.

Description
After this call, no more requests can be made with this priv pointer, but the call
may sleep to wait for an outstanding request that is being handled.

void wiphy_free(struct wiphy * wiphy)
free wiphy

Parameters
struct wiphy * wiphy The wiphy to free

const char * wiphy_name(const struct wiphy * wiphy)
get wiphy name

Parameters
const struct wiphy * wiphy The wiphy whose name to return

Return
The name of wiphy.
struct device * wiphy_dev(struct wiphy * wiphy)

get wiphy dev pointer

Parameters
struct wiphy * wiphy The wiphy whose device struct to look up

Return
The dev of wiphy.
void * wiphy_priv(struct wiphy * wiphy)

return priv from wiphy

47.2. cfg80211 subsystem 1355

Linux Driver-api Documentation

Parameters
struct wiphy * wiphy the wiphy whose priv pointer to return

Return
The priv of wiphy.
struct wiphy * priv_to_wiphy(void * priv)

return the wiphy containing the priv

Parameters
void * priv a pointer previously returned by wiphy_priv

Return
The wiphy of priv.
void set_wiphy_dev(struct wiphy * wiphy, struct device * dev)

set device pointer for wiphy

Parameters
struct wiphy * wiphy The wiphy whose device to bind

struct device * dev The device to parent it to

void * wdev_priv(struct wireless_dev * wdev)
return wiphy priv from wireless_dev

Parameters
struct wireless_dev * wdev The wireless device whose wiphy’s priv pointer to

return

Return
The wiphy priv of wdev.
struct ieee80211_iface_limit

limit on certain interface types

Definition

struct ieee80211_iface_limit {
u16 max;
u16 types;

};

Members
max maximum number of interfaces of these types

types interface types (bits)

struct ieee80211_iface_combination
possible interface combination

Definition

1356 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

struct ieee80211_iface_combination {
const struct ieee80211_iface_limit *limits;
u32 num_different_channels;
u16 max_interfaces;
u8 n_limits;
bool beacon_int_infra_match;
u8 radar_detect_widths;
u8 radar_detect_regions;
u32 beacon_int_min_gcd;

};

Members
limits limits for the given interface types

num_different_channels can use up to this many different channels

max_interfaces maximum number of interfaces in total allowed in this group

n_limits number of limitations

beacon_int_infra_match In this combination, the beacon intervals between in-
frastructure and AP types must match. This is required only in special cases.

radar_detect_widths bitmap of channel widths supported for radar detection

radar_detect_regions bitmap of regions supported for radar detection

beacon_int_min_gcd This interface combination supports different beacon inter-
vals.

= 0 all beacon intervals for different interface must be same.
> 0 any beacon interval for the interface part of this combination AND GCD

of all beacon intervals from beaconing interfaces of this combination
must be greater or equal to this value.

Description
With this structure the driver can describe which interface combinations it sup-
ports concurrently.

1. Allow #STA <= 1, #AP <= 1, matching BI, channels = 1, 2 total:

struct ieee80211_iface_limit limits1[] = {
{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
{ .max = 1, .types = BIT(NL80211_IFTYPE_AP}, },

};
struct ieee80211_iface_combination combination1 = {

.limits = limits1,

.n_limits = ARRAY_SIZE(limits1),

.max_interfaces = 2,

.beacon_int_infra_match = true,
};

2. Allow #{AP, P2P-GO} <= 8, channels = 1, 8 total:

struct ieee80211_iface_limit limits2[] = {
{ .max = 8, .types = BIT(NL80211_IFTYPE_AP) |

(continues on next page)

47.2. cfg80211 subsystem 1357

Linux Driver-api Documentation

(continued from previous page)
BIT(NL80211_IFTYPE_P2P_GO), },

};
struct ieee80211_iface_combination combination2 = {

.limits = limits2,

.n_limits = ARRAY_SIZE(limits2),

.max_interfaces = 8,

.num_different_channels = 1,
};

3. Allow #STA <= 1, #{P2P-client,P2P-GO} <= 3 on two channels, 4 total.

This allows for an infrastructure connection and three P2P connections.

struct ieee80211_iface_limit limits3[] = {
{ .max = 1, .types = BIT(NL80211_IFTYPE_STATION), },
{ .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) |

BIT(NL80211_IFTYPE_P2P_CLIENT), },
};
struct ieee80211_iface_combination combination3 = {

.limits = limits3,

.n_limits = ARRAY_SIZE(limits3),

.max_interfaces = 4,

.num_different_channels = 2,
};

Examples
int cfg80211_check_combinations(struct wiphy * wiphy, struct

iface_combination_params * params)
check interface combinations

Parameters
struct wiphy * wiphy the wiphy

struct iface_combination_params * params the interface combinations pa-
rameter

Description
This function can be called by the driver to check whether a combination of inter-
faces and their types are allowed according to the interface combinations.

47.2.2 Actions and configuration

Each wireless device and each virtual interface offer a set of configuration oper-
ations and other actions that are invoked by userspace. Each of these actions is
described in the operations structure, and the parameters these operations use
are described separately.

Additionally, some operations are asynchronous and expect to get status informa-
tion via some functions that drivers need to call.

Scanning and BSS list handling with its associated functionality is described in a
separate chapter.

1358 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

struct cfg80211_ops
backend description for wireless configuration

Definition

struct cfg80211_ops {
int (*suspend)(struct wiphy *wiphy, struct cfg80211_wowlan *wow);
int (*resume)(struct wiphy *wiphy);
void (*set_wakeup)(struct wiphy *wiphy, bool enabled);
struct wireless_dev * (*add_virtual_intf)(struct wiphy *wiphy,const char␣

↪→*name,unsigned char name_assign_type,enum nl80211_iftype type, struct␣
↪→vif_params *params);
int (*del_virtual_intf)(struct wiphy *wiphy, struct wireless_dev *wdev);
int (*change_virtual_intf)(struct wiphy *wiphy,struct net_device *dev,

↪→enum nl80211_iftype type, struct vif_params *params);
int (*add_key)(struct wiphy *wiphy, struct net_device *netdev,u8 key_

↪→index, bool pairwise, const u8 *mac_addr, struct key_params *params);
int (*get_key)(struct wiphy *wiphy, struct net_device *netdev,u8 key_

↪→index, bool pairwise, const u8 *mac_addr,void *cookie, void␣
↪→(*callback)(void *cookie, struct key_params*));
int (*del_key)(struct wiphy *wiphy, struct net_device *netdev, u8 key_

↪→index, bool pairwise, const u8 *mac_addr);
int (*set_default_key)(struct wiphy *wiphy,struct net_device *netdev, u8␣

↪→key_index, bool unicast, bool multicast);
int (*set_default_mgmt_key)(struct wiphy *wiphy,struct net_device␣

↪→*netdev, u8 key_index);
int (*set_default_beacon_key)(struct wiphy *wiphy,struct net_device␣

↪→*netdev, u8 key_index);
int (*start_ap)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→cfg80211_ap_settings *settings);
int (*change_beacon)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→cfg80211_beacon_data *info);
int (*stop_ap)(struct wiphy *wiphy, struct net_device *dev);
int (*add_station)(struct wiphy *wiphy, struct net_device *dev,const u8␣

↪→*mac, struct station_parameters *params);
int (*del_station)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→station_del_parameters *params);
int (*change_station)(struct wiphy *wiphy, struct net_device *dev,const␣

↪→u8 *mac, struct station_parameters *params);
int (*get_station)(struct wiphy *wiphy, struct net_device *dev, const u8␣

↪→*mac, struct station_info *sinfo);
int (*dump_station)(struct wiphy *wiphy, struct net_device *dev, int idx,

↪→ u8 *mac, struct station_info *sinfo);
int (*add_mpath)(struct wiphy *wiphy, struct net_device *dev, const u8␣

↪→*dst, const u8 *next_hop);
int (*del_mpath)(struct wiphy *wiphy, struct net_device *dev, const u8␣

↪→*dst);
int (*change_mpath)(struct wiphy *wiphy, struct net_device *dev, const␣

↪→u8 *dst, const u8 *next_hop);
int (*get_mpath)(struct wiphy *wiphy, struct net_device *dev, u8 *dst,␣

↪→u8 *next_hop, struct mpath_info *pinfo);
int (*dump_mpath)(struct wiphy *wiphy, struct net_device *dev,int idx,␣

↪→u8 *dst, u8 *next_hop, struct mpath_info *pinfo);
int (*get_mpp)(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8␣

↪→*mpp, struct mpath_info *pinfo);
int (*dump_mpp)(struct wiphy *wiphy, struct net_device *dev,int idx, u8␣

↪→*dst, u8 *mpp, struct mpath_info *pinfo);
(continues on next page)

47.2. cfg80211 subsystem 1359

Linux Driver-api Documentation

(continued from previous page)
int (*get_mesh_config)(struct wiphy *wiphy,struct net_device *dev,␣

↪→struct mesh_config *conf);
int (*update_mesh_config)(struct wiphy *wiphy,struct net_device *dev,␣

↪→u32 mask, const struct mesh_config *nconf);
int (*join_mesh)(struct wiphy *wiphy, struct net_device *dev,const␣

↪→struct mesh_config *conf, const struct mesh_setup *setup);
int (*leave_mesh)(struct wiphy *wiphy, struct net_device *dev);
int (*join_ocb)(struct wiphy *wiphy, struct net_device *dev, struct ocb_

↪→setup *setup);
int (*leave_ocb)(struct wiphy *wiphy, struct net_device *dev);
int (*change_bss)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→bss_parameters *params);
int (*set_txq_params)(struct wiphy *wiphy, struct net_device *dev,␣

↪→struct ieee80211_txq_params *params);
int (*libertas_set_mesh_channel)(struct wiphy *wiphy,struct net_device␣

↪→*dev, struct ieee80211_channel *chan);
int (*set_monitor_channel)(struct wiphy *wiphy, struct cfg80211_chan_def␣

↪→*chandef);
int (*scan)(struct wiphy *wiphy, struct cfg80211_scan_request *request);
void (*abort_scan)(struct wiphy *wiphy, struct wireless_dev *wdev);
int (*auth)(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_

↪→auth_request *req);
int (*assoc)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→cfg80211_assoc_request *req);
int (*deauth)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→cfg80211_deauth_request *req);
int (*disassoc)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→cfg80211_disassoc_request *req);
int (*connect)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→cfg80211_connect_params *sme);
int (*update_connect_params)(struct wiphy *wiphy,struct net_device *dev,

↪→struct cfg80211_connect_params *sme, u32 changed);
int (*disconnect)(struct wiphy *wiphy, struct net_device *dev, u16␣

↪→reason_code);
int (*join_ibss)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→cfg80211_ibss_params *params);
int (*leave_ibss)(struct wiphy *wiphy, struct net_device *dev);
int (*set_mcast_rate)(struct wiphy *wiphy, struct net_device *dev, int␣

↪→rate[NUM_NL80211_BANDS]);
int (*set_wiphy_params)(struct wiphy *wiphy, u32 changed);
int (*set_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, enum␣

↪→nl80211_tx_power_setting type, int mbm);
int (*get_tx_power)(struct wiphy *wiphy, struct wireless_dev *wdev, int␣

↪→*dbm);
int (*set_wds_peer)(struct wiphy *wiphy, struct net_device *dev, const␣

↪→u8 *addr);
void (*rfkill_poll)(struct wiphy *wiphy);

#ifdef CONFIG_NL80211_TESTMODE;
int (*testmode_cmd)(struct wiphy *wiphy, struct wireless_dev *wdev, void␣

↪→*data, int len);
int (*testmode_dump)(struct wiphy *wiphy, struct sk_buff *skb,struct␣

↪→netlink_callback *cb, void *data, int len);
#endif;

int (*set_bitrate_mask)(struct wiphy *wiphy,struct net_device *dev,const␣
↪→u8 *peer, const struct cfg80211_bitrate_mask *mask);
int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev, int␣

↪→idx, struct survey_info *info); (continues on next page)

1360 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

(continued from previous page)
int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev, struct␣

↪→cfg80211_pmksa *pmksa);
int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev, struct␣

↪→cfg80211_pmksa *pmksa);
int (*flush_pmksa)(struct wiphy *wiphy, struct net_device *netdev);
int (*remain_on_channel)(struct wiphy *wiphy,struct wireless_dev *wdev,

↪→struct ieee80211_channel *chan,unsigned int duration, u64 *cookie);
int (*cancel_remain_on_channel)(struct wiphy *wiphy,struct wireless_dev␣

↪→*wdev, u64 cookie);
int (*mgmt_tx)(struct wiphy *wiphy, struct wireless_dev *wdev,struct␣

↪→cfg80211_mgmt_tx_params *params, u64 *cookie);
int (*mgmt_tx_cancel_wait)(struct wiphy *wiphy,struct wireless_dev *wdev,

↪→ u64 cookie);
int (*set_power_mgmt)(struct wiphy *wiphy, struct net_device *dev, bool␣

↪→enabled, int timeout);
int (*set_cqm_rssi_config)(struct wiphy *wiphy,struct net_device *dev,␣

↪→s32 rssi_thold, u32 rssi_hyst);
int (*set_cqm_rssi_range_config)(struct wiphy *wiphy,struct net_device␣

↪→*dev, s32 rssi_low, s32 rssi_high);
int (*set_cqm_txe_config)(struct wiphy *wiphy,struct net_device *dev,␣

↪→u32 rate, u32 pkts, u32 intvl);
void (*update_mgmt_frame_registrations)(struct wiphy *wiphy,struct␣

↪→wireless_dev *wdev, struct mgmt_frame_regs *upd);
int (*set_antenna)(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant);
int (*get_antenna)(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant);
int (*sched_scan_start)(struct wiphy *wiphy,struct net_device *dev,␣

↪→struct cfg80211_sched_scan_request *request);
int (*sched_scan_stop)(struct wiphy *wiphy, struct net_device *dev, u64␣

↪→reqid);
int (*set_rekey_data)(struct wiphy *wiphy, struct net_device *dev,␣

↪→struct cfg80211_gtk_rekey_data *data);
int (*tdls_mgmt)(struct wiphy *wiphy, struct net_device *dev,const u8␣

↪→*peer, u8 action_code, u8 dialog_token,u16 status_code, u32 peer_
↪→capability, bool initiator, const u8 *buf, size_t len);
int (*tdls_oper)(struct wiphy *wiphy, struct net_device *dev, const u8␣

↪→*peer, enum nl80211_tdls_operation oper);
int (*probe_client)(struct wiphy *wiphy, struct net_device *dev, const␣

↪→u8 *peer, u64 *cookie);
int (*set_noack_map)(struct wiphy *wiphy,struct net_device *dev, u16␣

↪→noack_map);
int (*get_channel)(struct wiphy *wiphy,struct wireless_dev *wdev, struct␣

↪→cfg80211_chan_def *chandef);
int (*start_p2p_device)(struct wiphy *wiphy, struct wireless_dev *wdev);
void (*stop_p2p_device)(struct wiphy *wiphy, struct wireless_dev *wdev);
int (*set_mac_acl)(struct wiphy *wiphy, struct net_device *dev, const␣

↪→struct cfg80211_acl_data *params);
int (*start_radar_detection)(struct wiphy *wiphy,struct net_device *dev,

↪→struct cfg80211_chan_def *chandef, u32 cac_time_ms);
void (*end_cac)(struct wiphy *wiphy, struct net_device *dev);
int (*update_ft_ies)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→cfg80211_update_ft_ies_params *ftie);
int (*crit_proto_start)(struct wiphy *wiphy,struct wireless_dev *wdev,

↪→enum nl80211_crit_proto_id protocol, u16 duration);
void (*crit_proto_stop)(struct wiphy *wiphy, struct wireless_dev *wdev);
int (*set_coalesce)(struct wiphy *wiphy, struct cfg80211_coalesce␣

↪→*coalesce);
(continues on next page)

47.2. cfg80211 subsystem 1361

Linux Driver-api Documentation

(continued from previous page)
int (*channel_switch)(struct wiphy *wiphy,struct net_device *dev, struct␣

↪→cfg80211_csa_settings *params);
int (*set_qos_map)(struct wiphy *wiphy,struct net_device *dev, struct␣

↪→cfg80211_qos_map *qos_map);
int (*set_ap_chanwidth)(struct wiphy *wiphy, struct net_device *dev,␣

↪→struct cfg80211_chan_def *chandef);
int (*add_tx_ts)(struct wiphy *wiphy, struct net_device *dev,u8 tsid,␣

↪→const u8 *peer, u8 user_prio, u16 admitted_time);
int (*del_tx_ts)(struct wiphy *wiphy, struct net_device *dev, u8 tsid,␣

↪→const u8 *peer);
int (*tdls_channel_switch)(struct wiphy *wiphy,struct net_device *dev,

↪→const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef);
void (*tdls_cancel_channel_switch)(struct wiphy *wiphy,struct net_device␣

↪→*dev, const u8 *addr);
int (*start_nan)(struct wiphy *wiphy, struct wireless_dev *wdev, struct␣

↪→cfg80211_nan_conf *conf);
void (*stop_nan)(struct wiphy *wiphy, struct wireless_dev *wdev);
int (*add_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev,␣

↪→struct cfg80211_nan_func *nan_func);
void (*del_nan_func)(struct wiphy *wiphy, struct wireless_dev *wdev, u64␣

↪→cookie);
int (*nan_change_conf)(struct wiphy *wiphy,struct wireless_dev *wdev,

↪→struct cfg80211_nan_conf *conf, u32 changes);
int (*set_multicast_to_unicast)(struct wiphy *wiphy,struct net_device␣

↪→*dev, const bool enabled);
int (*get_txq_stats)(struct wiphy *wiphy,struct wireless_dev *wdev,␣

↪→struct cfg80211_txq_stats *txqstats);
int (*set_pmk)(struct wiphy *wiphy, struct net_device *dev, const struct␣

↪→cfg80211_pmk_conf *conf);
int (*del_pmk)(struct wiphy *wiphy, struct net_device *dev, const u8␣

↪→*aa);
int (*external_auth)(struct wiphy *wiphy, struct net_device *dev, struct␣

↪→cfg80211_external_auth_params *params);
int (*tx_control_port)(struct wiphy *wiphy,struct net_device *dev,const␣

↪→u8 *buf, size_t len,const u8 *dest, const __be16 proto,const bool␣
↪→noencrypt, u64 *cookie);
int (*get_ftm_responder_stats)(struct wiphy *wiphy,struct net_device␣

↪→*dev, struct cfg80211_ftm_responder_stats *ftm_stats);
int (*start_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev, struct␣

↪→cfg80211_pmsr_request *request);
void (*abort_pmsr)(struct wiphy *wiphy, struct wireless_dev *wdev,␣

↪→struct cfg80211_pmsr_request *request);
int (*update_owe_info)(struct wiphy *wiphy, struct net_device *dev,␣

↪→struct cfg80211_update_owe_info *owe_info);
int (*probe_mesh_link)(struct wiphy *wiphy, struct net_device *dev,␣

↪→const u8 *buf, size_t len);
int (*set_tid_config)(struct wiphy *wiphy, struct net_device *dev,␣

↪→struct cfg80211_tid_config *tid_conf);
int (*reset_tid_config)(struct wiphy *wiphy, struct net_device *dev,␣

↪→const u8 *peer, u8 tids);
};

Members
suspend wiphy device needs to be suspended. The variable wow will be NULL or

contain the enabled Wake-on-Wireless triggers that are configured for the

1362 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

device.

resume wiphy device needs to be resumed

set_wakeup Called when WoWLAN is enabled/disabled, use this callback to call
device_set_wakeup_enable() to enable/disable wakeup from the device.

add_virtual_intf create a new virtual interface with the given name, must set
the struct wireless_dev’s iftype. Beware: You must create the new netdev
in the wiphy’s network namespace! Returns the struct wireless_dev, or an
ERR_PTR. For P2P device wdevs, the driver must also set the address member
in the wdev.

del_virtual_intf remove the virtual interface

change_virtual_intf change type/configuration of virtual interface, keep the
struct wireless_dev’s iftype updated.

add_key add a key with the given parameters. mac_addr will be NULL when
adding a group key.

get_key get information about the key with the given parameters. mac_addr will
be NULL when requesting information for a group key. All pointers given to
the callback function need not be valid after it returns. This function should
return an error if it is not possible to retrieve the key, -ENOENT if it doesn’t
exist.

del_key remove a key given themac_addr (NULL for a group key) and key_index,
return -ENOENT if the key doesn’t exist.

set_default_key set the default key on an interface

set_default_mgmt_key set the default management frame key on an interface

set_default_beacon_key set the default Beacon frame key on an interface

start_ap Start acting in AP mode defined by the parameters.

change_beacon Change the beacon parameters for an access point mode inter-
face. This should reject the call when AP mode wasn’t started.

stop_ap Stop being an AP, including stopping beaconing.

add_station Add a new station.

del_station Remove a station

change_station Modify a given station. Note that flags changes are not much val-
idated in cfg80211, in particular the auth/assoc/authorized flags might come
to the driver in invalid combinations – make sure to check them, also against
the existing state! Drivers must call cfg80211_check_station_change() to val-
idate the information.

get_station get station information for the station identified bymac
dump_station dump station callback – resume dump at index idx
add_mpath add a fixed mesh path

del_mpath delete a given mesh path

change_mpath change a given mesh path

47.2. cfg80211 subsystem 1363

Linux Driver-api Documentation

get_mpath get a mesh path for the given parameters

dump_mpath dump mesh path callback – resume dump at index idx
get_mpp get a mesh proxy path for the given parameters

dump_mpp dump mesh proxy path callback – resume dump at index idx
get_mesh_config Get the current mesh configuration

update_mesh_config Update mesh parameters on a running mesh. The mask is
a bitfield which tells us which parameters to set, and which to leave alone.

join_mesh join the mesh network with the specified parameters (invoked with the
wireless_dev mutex held)

leave_mesh leave the current mesh network (invoked with the wireless_devmutex
held)

join_ocb join the OCB network with the specified parameters (invoked with the
wireless_dev mutex held)

leave_ocb leave the current OCB network (invoked with the wireless_dev mutex
held)

change_bss Modify parameters for a given BSS.

set_txq_params Set TX queue parameters

libertas_set_mesh_channel Only for backward compatibility for libertas, as it
doesn’t implement join_mesh and needs to set the channel to join the mesh
instead.

set_monitor_channel Set themonitor mode channel for the device. If other inter-
faces are active this callback should reject the configuration. If no interfaces
are active or the device is down, the channel should be stored for when a
monitor interface becomes active.

scan Request to do a scan. If returning zero, the scan request is given the driver,
and will be valid until passed to cfg80211_scan_done(). For scan results,
call cfg80211_inform_bss(); you can call this outside the scan/scan_done
bracket too.

abort_scan Tell the driver to abort an ongoing scan. The driver shall indicate the
status of the scan through cfg80211_scan_done().

auth Request to authenticate with the specified peer (invoked with the wire-
less_dev mutex held)

assoc Request to (re)associate with the specified peer (invoked with the wire-
less_dev mutex held)

deauth Request to deauthenticate from the specified peer (invoked with the wire-
less_dev mutex held)

disassoc Request to disassociate from the specified peer (invoked with the wire-
less_dev mutex held)

connect Connect to the ESS with the specified parameters. When con-
nected, call cfg80211_connect_result()/cfg80211_connect_bss() with
status code WLAN_STATUS_SUCCESS. If the connection fails for some reason,

1364 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

call cfg80211_connect_result()/cfg80211_connect_bss() with the status
code from the AP or cfg80211_connect_timeout() if no frame with status
code was received. The driver is allowed to roam to other BSSes within the
ESS when the other BSS matches the connect parameters. When such roam-
ing is initiated by the driver, the driver is expected to verify that the target
matches the configured security parameters and to use Reassociation Re-
quest frame instead of Association Request frame. The connect function can
also be used to request the driver to perform a specific roam when connected
to an ESS. In that case, the prev_bssid parameter is set to the BSSID of the
currently associated BSS as an indication of requesting reassociation. In both
the driver-initiated and new connect() call initiated roaming cases, the result
of roaming is indicated with a call to cfg80211_roamed(). (invoked with the
wireless_dev mutex held)

update_connect_params Update the connect parameters while connected to a
BSS. The updated parameters can be used by driver/firmware for sub-
sequent BSS selection (roaming) decisions and to form the Authentica-
tion/(Re)Association Request frames. This call does not request an imme-
diate disassociation or reassociation with the current BSS, i.e., this impacts
only subsequent (re)associations. The bits in changed are defined in enum
cfg80211_connect_params_changed. (invoked with the wireless_dev mutex
held)

disconnect Disconnect from the BSS/ESS or stop connection attempts if connec-
tion is in progress. Once done, call cfg80211_disconnected() in case con-
nection was already established (invoked with the wireless_dev mutex held),
otherwise call cfg80211_connect_timeout().

join_ibss Join the specified IBSS (or create if necessary). Once done, call
cfg80211_ibss_joined(), also call that function when changing BSSID due
to a merge. (invoked with the wireless_dev mutex held)

leave_ibss Leave the IBSS. (invoked with the wireless_dev mutex held)

set_mcast_rate Set the specified multicast rate (only if vif is in ADHOC or MESH
mode)

set_wiphy_params Notify that wiphy parameters have changed; changed bitfield
(see enum wiphy_params_flags) describes which values have changed. The
actual parameter values are available in struct wiphy. If returning an error,
no value should be changed.

set_tx_power set the transmit power according to the parameters, the power
passed is in mBm, to get dBm use MBM_TO_DBM(). The wdev may be NULL
if power was set for the wiphy, and will always be NULL unless the driver
supports per-vif TX power (as advertised by the nl80211 feature flag.)

get_tx_power store the current TX power into the dbm variable; return 0 if suc-
cessful

set_wds_peer set the WDS peer for a WDS interface

rfkill_poll polls the hw rfkill line, use cfg80211 reporting functions to adjust
rfkill hw state

testmode_cmd run a test mode command; wdev may be NULL

47.2. cfg80211 subsystem 1365

Linux Driver-api Documentation

testmode_dump Implement a test mode dump. The cb->args[2] and up may be
used by the function, but 0 and 1 must not be touched. Additionally, return
error codes other than -ENOBUFS and -ENOENT will terminate the dump
and return to userspace with an error, so be careful. If any data was passed
in from userspace then the data/len arguments will be present and point to
the data contained in NL80211_ATTR_TESTDATA.

set_bitrate_mask set the bitrate mask configuration

dump_survey get site survey information.

set_pmksa Cache a PMKID for a BSSID. This is mostly useful for fullmac devices
running firmwares capable of generating the (re) association RSN IE. It allows
for faster roaming between WPA2 BSSIDs.

del_pmksa Delete a cached PMKID.

flush_pmksa Flush all cached PMKIDs.

remain_on_channel Request the driver to remain awake on the specified chan-
nel for the specified duration to complete an off-channel operation (e.g.,
public action frame exchange). When the driver is ready on the re-
quested channel, it must indicate this with an event notification by calling
cfg80211_ready_on_channel().

cancel_remain_on_channel Cancel an on-going remain-on-channel operation.
This allows the operation to be terminated prior to timeout based on the du-
ration value.

mgmt_tx Transmit a management frame.

mgmt_tx_cancel_wait Cancel the wait time from transmitting a management
frame on another channel

set_power_mgmt Configure WLAN power management. A timeout value of -1 al-
lows the driver to adjust the dynamic ps timeout value.

set_cqm_rssi_config Configure connection quality monitor RSSI threshold. Af-
ter configuration, the driver should (soon) send an event indicating the cur-
rent level is above/below the configured threshold; this may need some care
when the configuration is changed (without first being disabled.)

set_cqm_rssi_range_config Configure two RSSI thresholds in the connec-
tion quality monitor. An event is to be sent only when the signal
level is found to be outside the two values. The driver should set
NL80211_EXT_FEATURE_CQM_RSSI_LIST if this method is implemented. If it
is provided then there’s no point providing set_cqm_rssi_config.

set_cqm_txe_config Configure connection quality monitor TX error thresholds.

update_mgmt_frame_registrations Notify the driver that management frame
registrations were updated. The callback is allowed to sleep.

set_antenna Set antenna configuration (tx_ant, rx_ant) on the device. Parame-
ters are bitmaps of allowed antennas to use for TX/RX. Drivers may reject
TX/RX mask combinations they cannot support by returning -EINVAL (also
see nl80211.h NL80211_ATTR_WIPHY_ANTENNA_TX).

get_antenna Get current antenna configuration from device (tx_ant, rx_ant).

1366 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

sched_scan_start Tell the driver to start a scheduled scan.

sched_scan_stop Tell the driver to stop an ongoing scheduled scan with given
request id. This call must stop the scheduled scan and be ready for starting
a new one before it returns, i.e. sched_scan_start may be called immedi-
ately after that again and should not fail in that case. The driver should not
call cfg80211_sched_scan_stopped() for a requested stop (when this method
returns 0).

set_rekey_data give the data necessary for GTK rekeying to the driver

tdls_mgmt Transmit a TDLS management frame.

tdls_oper Perform a high-level TDLS operation (e.g. TDLS link setup).

probe_client probe an associated client, must return a cookie that it later passes
to cfg80211_probe_status().

set_noack_map Set the NoAck Map for the TIDs.

get_channel Get the current operating channel for the virtual interface. For mon-
itor interfaces, it should return NULL unless there’s a single current monitor-
ing channel.

start_p2p_device Start the given P2P device.

stop_p2p_device Stop the given P2P device.

set_mac_acl Sets MAC address control list in AP and P2P GO mode. Parameters
include ACL policy, an array of MAC address of stations and the number of
MAC addresses. If there is already a list in driver this new list replaces the
existing one. Driver has to clear its ACL when number of MAC addresses
entries is passed as 0. Drivers which advertise the support for MAC based
ACL have to implement this callback.

start_radar_detection Start radar detection in the driver.

end_cac End running CAC, probably because a related CAC was finished on an-
other phy.

update_ft_ies Provide updated Fast BSS Transition information to the driver. If
the SME is in the driver/firmware, this information can be used in building
Authentication and Reassociation Request frames.

crit_proto_start Indicates a critical protocol needs more link reliability for a
given duration (milliseconds). The protocol is provided so the driver can take
the most appropriate actions.

crit_proto_stop Indicates critical protocol no longer needs increased link relia-
bility. This operation can not fail.

set_coalesce Set coalesce parameters.

channel_switch initiate channel-switch procedure (with CSA). Driver is responsi-
ble for veryfing if the switch is possible. Since this is inherently tricky driver
may decide to disconnect an interface later with cfg80211_stop_iface(). This
doesn’t mean driver can accept everything. It should do it’s best to verify
requests and reject them as soon as possible.

set_qos_map Set QoS mapping information to the driver

47.2. cfg80211 subsystem 1367

Linux Driver-api Documentation

set_ap_chanwidth Set the AP (including P2P GO) mode channel width for the
given interface This is used e.g. for dynamic HT 20/40 MHz channel width
changes during the lifetime of the BSS.

add_tx_ts validate (if admitted_time is 0) or add a TX TS to the device with the
given parameters; action frame exchange has been handled by userspace so
this just has to modify the TX path to take the TS into account. If the ad-
mitted time is 0 just validate the parameters to make sure the session can be
created at all; it is valid to just always return success for that but that may re-
sult in inefficient behaviour (handshake with the peer followed by immediate
teardown when the addition is later rejected)

del_tx_ts remove an existing TX TS

tdls_channel_switch Start channel-switching with a TDLS peer. The driver is re-
sponsible for continually initiating channel-switching operations and return-
ing to the base channel for communication with the AP.

tdls_cancel_channel_switch Stop channel-switching with a TDLS peer. Both
peers must be on the base channel when the call completes.

start_nan Start the NAN interface.

stop_nan Stop the NAN interface.

add_nan_func Add a NAN function. Returns negative value on failure. On success
nan_func ownership is transferred to the driver and it may access it outside
of the scope of this function. The driver should free the nan_func when no
longer needed by calling cfg80211_free_nan_func(). On success the driver
should assign an instance_id in the provided nan_func.

del_nan_func Delete a NAN function.

nan_change_conf changes NAN configuration. The changed parameters must be
specified in changes (using enum cfg80211_nan_conf_changes); All other
parameters must be ignored.

set_multicast_to_unicast configure multicast to unicast conversion for BSS

get_txq_stats Get TXQ stats for interface or phy. If wdev is NULL, this function
should return phy stats, and interface stats otherwise.

set_pmk configure the PMK to be used for offloaded 802.1X 4-Way handshake. If
not deleted through del_pmk the PMK remains valid until disconnect upon
which the driver should clear it. (invoked with the wireless_dev mutex held)

del_pmk delete the previously configured PMK for the given authenticator. (in-
voked with the wireless_dev mutex held)

external_auth indicates result of offloaded authentication processing from user
space

tx_control_port TX a control port frame (EAPoL). The noencrypt parameter tells
the driver that the frame should not be encrypted.

get_ftm_responder_stats Retrieve FTM responder statistics, if available. Statis-
tics should be cumulative, currently no way to reset is provided.

start_pmsr start peer measurement (e.g. FTM)

1368 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

abort_pmsr abort peer measurement

update_owe_info Provide updated OWE info to driver. Driver implementing SME
but offloading OWE processing to the user space will get the updated DH IE
through this interface.

probe_mesh_link Probe direct Mesh peer’s link quality by sending data frame
and overrule HWMP path selection algorithm.

set_tid_config TID specific configuration, this can be peer or BSS specific This
callback may sleep.

reset_tid_config Reset TID specific configuration for the peer, for the given
TIDs. This callback may sleep.

Description
This struct is registered by fullmac card drivers and/or wireless stacks in order to
handle configuration requests on their interfaces.

All callbacks except where otherwise noted should return 0 on success or a nega-
tive error code.

All operations are currently invoked under rtnl for consistency with the wireless
extensions but this is subject to reevaluation as soon as this code is used more
widely and we have a first user without wext.

struct vif_params
describes virtual interface parameters

Definition

struct vif_params {
u32 flags;
int use_4addr;
u8 macaddr[ETH_ALEN];
const u8 *vht_mumimo_groups;
const u8 *vht_mumimo_follow_addr;

};

Members
flags monitor interface flags, unchanged if 0, otherwise MONITOR_FLAG_CHANGED

will be set

use_4addr use 4-address frames

macaddr address to use for this virtual interface. If this parameter is set to zero
address the driver may determine the address as needed. This feature is only
fully supported by drivers that enable the NL80211_FEATURE_MAC_ON_CREATE
flag. Others may support creating * only p2p devices with specified MAC.

vht_mumimo_groups MU-MIMO groupID, used for monitoring MU-MIMO packets
belonging to that MU-MIMO groupID; NULL if not changed

vht_mumimo_follow_addr MU-MIMO follow address, used for monitoring MU-
MIMO packets going to the specified station; NULL if not changed

struct key_params
key information

47.2. cfg80211 subsystem 1369

Linux Driver-api Documentation

Definition

struct key_params {
const u8 *key;
const u8 *seq;
int key_len;
int seq_len;
u16 vlan_id;
u32 cipher;
enum nl80211_key_mode mode;

};

Members
key key material

seq sequence counter (IV/PN) for TKIP and CCMP keys, only used with the
get_key() callback, must be in little endian, length given by seq_len.

key_len length of key material

seq_len length of seq.
vlan_id vlan_id for VLAN group key (if nonzero)

cipher cipher suite selector

mode key install mode (RX_TX, NO_TX or SET_TX)

Description
Information about a key

enum survey_info_flags
survey information flags

Constants
SURVEY_INFO_NOISE_DBM noise (in dBm) was filled in

SURVEY_INFO_IN_USE channel is currently being used

SURVEY_INFO_TIME active time (in ms) was filled in

SURVEY_INFO_TIME_BUSY busy time was filled in

SURVEY_INFO_TIME_EXT_BUSY extension channel busy time was filled in

SURVEY_INFO_TIME_RX receive time was filled in

SURVEY_INFO_TIME_TX transmit time was filled in

SURVEY_INFO_TIME_SCAN scan time was filled in

SURVEY_INFO_TIME_BSS_RX local BSS receive time was filled in

Description
Used by the driver to indicate which info in struct survey_info it has filled in
during the get_survey().

struct survey_info
channel survey response

Definition

1370 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

struct survey_info {
struct ieee80211_channel *channel;
u64 time;
u64 time_busy;
u64 time_ext_busy;
u64 time_rx;
u64 time_tx;
u64 time_scan;
u64 time_bss_rx;
u32 filled;
s8 noise;

};

Members
channel the channel this survey record reports, may be NULL for a single record

to report global statistics

time amount of time in ms the radio was turn on (on the channel)

time_busy amount of time the primary channel was sensed busy

time_ext_busy amount of time the extension channel was sensed busy

time_rx amount of time the radio spent receiving data

time_tx amount of time the radio spent transmitting data

time_scan amount of time the radio spent for scanning

time_bss_rx amount of time the radio spent receiving data on a local BSS

filled bitflag of flags from enum survey_info_flags

noise channel noise in dBm. This and all following fields are optional

Description
Used by dump_survey() to report back per-channel survey information.

This structure can later be expanded with things like channel duty cycle etc.

struct cfg80211_beacon_data
beacon data

Definition

struct cfg80211_beacon_data {
const u8 *head, *tail;
const u8 *beacon_ies;
const u8 *proberesp_ies;
const u8 *assocresp_ies;
const u8 *probe_resp;
const u8 *lci;
const u8 *civicloc;
s8 ftm_responder;
size_t head_len, tail_len;
size_t beacon_ies_len;
size_t proberesp_ies_len;
size_t assocresp_ies_len;
size_t probe_resp_len;

(continues on next page)

47.2. cfg80211 subsystem 1371

Linux Driver-api Documentation

(continued from previous page)
size_t lci_len;
size_t civicloc_len;

};

Members
head head portion of beacon (before TIM IE) or NULL if not changed

tail tail portion of beacon (after TIM IE) or NULL if not changed

beacon_ies extra information element(s) to add into Beacon frames or NULL

proberesp_ies extra information element(s) to add into Probe Response frames
or NULL

assocresp_ies extra information element(s) to add into (Re)Association Re-
sponse frames or NULL

probe_resp probe response template (AP mode only)

lci Measurement Report element content, starting with Measurement Token
(measurement type 8)

civicloc Measurement Report element content, starting with Measurement To-
ken (measurement type 11)

ftm_responder enable FTM responder functionality; -1 for no change (which also
implies no change in LCI/civic location data)

head_len length of head
tail_len length of tail
beacon_ies_len length of beacon_ies in octets

proberesp_ies_len length of proberesp_ies in octets

assocresp_ies_len length of assocresp_ies in octets

probe_resp_len length of probe response template (probe_resp)
lci_len LCI data length

civicloc_len Civic location data length

struct cfg80211_ap_settings
AP configuration

Definition

struct cfg80211_ap_settings {
struct cfg80211_chan_def chandef;
struct cfg80211_beacon_data beacon;
int beacon_interval, dtim_period;
const u8 *ssid;
size_t ssid_len;
enum nl80211_hidden_ssid hidden_ssid;
struct cfg80211_crypto_settings crypto;
bool privacy;
enum nl80211_auth_type auth_type;

(continues on next page)

1372 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

(continued from previous page)
enum nl80211_smps_mode smps_mode;
int inactivity_timeout;
u8 p2p_ctwindow;
bool p2p_opp_ps;
const struct cfg80211_acl_data *acl;
bool pbss;
struct cfg80211_bitrate_mask beacon_rate;
const struct ieee80211_ht_cap *ht_cap;
const struct ieee80211_vht_cap *vht_cap;
const struct ieee80211_he_cap_elem *he_cap;
const struct ieee80211_he_operation *he_oper;
bool ht_required, vht_required, he_required;
bool twt_responder;
u32 flags;
struct ieee80211_he_obss_pd he_obss_pd;
struct cfg80211_he_bss_color he_bss_color;

};

Members
chandef defines the channel to use

beacon beacon data

beacon_interval beacon interval

dtim_period DTIM period

ssid SSID to be used in the BSS (note: may be NULL if not provided from user
space)

ssid_len length of ssid
hidden_ssid whether to hide the SSID in Beacon/Probe Response frames

crypto crypto settings

privacy the BSS uses privacy

auth_type Authentication type (algorithm)

smps_mode SMPS mode

inactivity_timeout time in seconds to determine station’s inactivity.
p2p_ctwindow P2P CT Window

p2p_opp_ps P2P opportunistic PS

acl ACL configuration used by the drivers which has support for MAC address
based access control

pbss If set, start as a PCP instead of AP. Relevant for DMG networks.

beacon_rate bitrate to be used for beacons

ht_cap HT capabilities (or NULL if HT isn’t enabled)
vht_cap VHT capabilities (or NULL if VHT isn’t enabled)
he_cap HE capabilities (or NULL if HE isn’t enabled)

47.2. cfg80211 subsystem 1373

Linux Driver-api Documentation

he_oper HE operation IE (or NULL if HE isn’t enabled)
ht_required stations must support HT

vht_required stations must support VHT

he_required stations must support HE

twt_responder Enable Target Wait Time

flags flags, as defined in enum cfg80211_ap_settings_flags

he_obss_pd OBSS Packet Detection settings

he_bss_color BSS Color settings

Description
Used to configure an AP interface.

struct station_parameters
station parameters

Definition

struct station_parameters {
const u8 *supported_rates;
struct net_device *vlan;
u32 sta_flags_mask, sta_flags_set;
u32 sta_modify_mask;
int listen_interval;
u16 aid;
u16 vlan_id;
u16 peer_aid;
u8 supported_rates_len;
u8 plink_action;
u8 plink_state;
const struct ieee80211_ht_cap *ht_capa;
const struct ieee80211_vht_cap *vht_capa;
u8 uapsd_queues;
u8 max_sp;
enum nl80211_mesh_power_mode local_pm;
u16 capability;
const u8 *ext_capab;
u8 ext_capab_len;
const u8 *supported_channels;
u8 supported_channels_len;
const u8 *supported_oper_classes;
u8 supported_oper_classes_len;
u8 opmode_notif;
bool opmode_notif_used;
int support_p2p_ps;
const struct ieee80211_he_cap_elem *he_capa;
u8 he_capa_len;
u16 airtime_weight;
struct sta_txpwr txpwr;
const struct ieee80211_he_6ghz_capa *he_6ghz_capa;

};

Members

1374 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

supported_rates supported rates in IEEE 802.11 format (or NULL for no change)

vlan vlan interface station should belong to

sta_flags_mask station flags that changed (bitmask of BIT(NL80211_STA_FLAG_
⋯))

sta_flags_set station flags values (bitmask of BIT(NL80211_STA_FLAG_⋯))
sta_modify_mask bitmap indicating which parameters changed (for

those that don’t have a natural “no change”value), see enum
station_parameters_apply_mask

listen_interval listen interval or -1 for no change

aid AID or zero for no change

vlan_id VLAN ID for station (if nonzero)

peer_aid mesh peer AID or zero for no change

supported_rates_len number of supported rates

plink_action plink action to take

plink_state set the peer link state for a station

ht_capa HT capabilities of station

vht_capa VHT capabilities of station

uapsd_queues bitmap of queues configured for uapsd. same format as the AC
bitmap in the QoS info field

max_sp max Service Period. same format as the MAX_SP in the QoS info field (but
already shifted down)

local_pm local link-specific mesh power save mode (no change when set to un-
known)

capability station capability

ext_capab extended capabilities of the station

ext_capab_len number of extended capabilities

supported_channels supported channels in IEEE 802.11 format

supported_channels_len number of supported channels

supported_oper_classes supported oper classes in IEEE 802.11 format

supported_oper_classes_len number of supported operating classes

opmode_notif operating mode field from Operating Mode Notification

opmode_notif_used information if operating mode field is used

support_p2p_ps information if station supports P2P PS mechanism

he_capa HE capabilities of station

he_capa_len the length of the HE capabilities

airtime_weight airtime scheduler weight for this station

47.2. cfg80211 subsystem 1375

Linux Driver-api Documentation

txpwr transmit power for an associated station

he_6ghz_capa HE 6 GHz Band capabilities of station

Description
Used to change and create a new station.

enum rate_info_flags
bitrate info flags

Constants
RATE_INFO_FLAGS_MCS mcs field filled with HT MCS

RATE_INFO_FLAGS_VHT_MCS mcs field filled with VHT MCS

RATE_INFO_FLAGS_SHORT_GI 400ns guard interval

RATE_INFO_FLAGS_DMG 60GHz MCS

RATE_INFO_FLAGS_HE_MCS HE MCS information

RATE_INFO_FLAGS_EDMG 60GHz MCS in EDMG mode

Description
Used by the driver to indicate the specific rate transmission type for 802.11n trans-
missions.

struct rate_info
bitrate information

Definition

struct rate_info {
u8 flags;
u8 mcs;
u16 legacy;
u8 nss;
u8 bw;
u8 he_gi;
u8 he_dcm;
u8 he_ru_alloc;
u8 n_bonded_ch;

};

Members
flags bitflag of flags from enum rate_info_flags

mcs mcs index if struct describes an HT/VHT/HE rate

legacy bitrate in 100kbit/s for 802.11abg

nss number of streams (VHT & HE only)

bw bandwidth (from enum rate_info_bw)

he_gi HE guard interval (from enum nl80211_he_gi)

he_dcm HE DCM value

1376 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

he_ru_alloc HE RU allocation (from enum nl80211_he_ru_alloc, only valid if
bw is RATE_INFO_BW_HE_RU)

n_bonded_ch In case of EDMG the number of bonded channels (1-4)

Description
Information about a receiving or transmitting bitrate

struct station_info
station information

Definition

struct station_info {
u64 filled;
u32 connected_time;
u32 inactive_time;
u64 assoc_at;
u64 rx_bytes;
u64 tx_bytes;
u16 llid;
u16 plid;
u8 plink_state;
s8 signal;
s8 signal_avg;
u8 chains;
s8 chain_signal[IEEE80211_MAX_CHAINS];
s8 chain_signal_avg[IEEE80211_MAX_CHAINS];
struct rate_info txrate;
struct rate_info rxrate;
u32 rx_packets;
u32 tx_packets;
u32 tx_retries;
u32 tx_failed;
u32 rx_dropped_misc;
struct sta_bss_parameters bss_param;
struct nl80211_sta_flag_update sta_flags;
int generation;
const u8 *assoc_req_ies;
size_t assoc_req_ies_len;
u32 beacon_loss_count;
s64 t_offset;
enum nl80211_mesh_power_mode local_pm;
enum nl80211_mesh_power_mode peer_pm;
enum nl80211_mesh_power_mode nonpeer_pm;
u32 expected_throughput;
u64 tx_duration;
u64 rx_duration;
u64 rx_beacon;
u8 rx_beacon_signal_avg;
u8 connected_to_gate;
struct cfg80211_tid_stats *pertid;
s8 ack_signal;
s8 avg_ack_signal;
u16 airtime_weight;
u32 rx_mpdu_count;
u32 fcs_err_count;

(continues on next page)

47.2. cfg80211 subsystem 1377

Linux Driver-api Documentation

(continued from previous page)
u32 airtime_link_metric;

};

Members
filled bitflag of flags using the bits of enum nl80211_sta_info to indicate the

relevant values in this struct for them

connected_time time(in secs) since a station is last connected

inactive_time time since last station activity (tx/rx) in milliseconds

assoc_at bootime (ns) of the last association

rx_bytes bytes (size of MPDUs) received from this station

tx_bytes bytes (size of MPDUs) transmitted to this station

llid mesh local link id

plid mesh peer link id

plink_state mesh peer link state

signal The signal strength, type depends on the wiphy’s signal_type. For
CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.

signal_avg Average signal strength, type depends on the wiphy’s signal_type.
For CFG80211_SIGNAL_TYPE_MBM, value is expressed in _dBm_.

chains bitmask for filled values in chain_signal, chain_signal_avg
chain_signal per-chain signal strength of last received packet in dBm

chain_signal_avg per-chain signal strength average in dBm

txrate current unicast bitrate from this station

rxrate current unicast bitrate to this station

rx_packets packets (MSDUs & MMPDUs) received from this station

tx_packets packets (MSDUs & MMPDUs) transmitted to this station

tx_retries cumulative retry counts (MPDUs)

tx_failed number of failed transmissions (MPDUs) (retries exceeded, no ACK)

rx_dropped_misc Dropped for un-specified reason.

bss_param current BSS parameters

sta_flags station flags mask & values

generation generation number for nl80211 dumps. This number should increase
every time the list of stations changes, i.e. when a station is added or re-
moved, so that userspace can tell whether it got a consistent snapshot.

assoc_req_ies IEs from (Re)Association Request. This is used only when in AP
mode with drivers that do not use user space MLME/SME implementation.
The information is provided for the cfg80211_new_sta() calls to notify user
space of the IEs.

1378 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

assoc_req_ies_len Length of assoc_req_ies buffer in octets.

beacon_loss_count Number of times beacon loss event has triggered.

t_offset Time offset of the station relative to this host.

local_pm local mesh STA power save mode

peer_pm peer mesh STA power save mode

nonpeer_pm non-peer mesh STA power save mode

expected_throughput expected throughput in kbps (including 802.11 headers)
towards this station.

tx_duration aggregate PPDU duration(usecs) for all the frames to a peer

rx_duration aggregate PPDU duration(usecs) for all the frames from a peer

rx_beacon number of beacons received from this peer

rx_beacon_signal_avg signal strength average (in dBm) for beacons received
from this peer

connected_to_gate true if mesh STA has a path to mesh gate

pertid per-TID statistics, see struct cfg80211_tid_stats, using the last
(IEEE80211_NUM_TIDS) index for MSDUs not encapsulated in QoS-MPDUs.
Note that this doesn’t use the filled bit, but is used if non-NULL.

ack_signal signal strength (in dBm) of the last ACK frame.

avg_ack_signal average rssi value of ack packet for the no of msdu’s has been
sent.

airtime_weight current airtime scheduling weight

rx_mpdu_count number of MPDUs received from this station

fcs_err_count number of packets (MPDUs) received from this station with an
FCS error. This counter should be incremented only when TA of the received
packet with an FCS error matches the peer MAC address.

airtime_link_metric mesh airtime link metric.

Description
Station information filled by driver for get_station() and dump_station.

enum monitor_flags
monitor flags

Constants
MONITOR_FLAG_CHANGED set if the flags were changed

MONITOR_FLAG_FCSFAIL pass frames with bad FCS

MONITOR_FLAG_PLCPFAIL pass frames with bad PLCP

MONITOR_FLAG_CONTROL pass control frames

MONITOR_FLAG_OTHER_BSS disable BSSID filtering

MONITOR_FLAG_COOK_FRAMES report frames after processing

47.2. cfg80211 subsystem 1379

Linux Driver-api Documentation

MONITOR_FLAG_ACTIVE active monitor, ACKs frames on its MAC address

Description
Monitor interface configuration flags. Note that these must be the bits according
to the nl80211 flags.

enum mpath_info_flags
mesh path information flags

Constants
MPATH_INFO_FRAME_QLEN frame_qlen filled
MPATH_INFO_SN sn filled
MPATH_INFO_METRIC metric filled
MPATH_INFO_EXPTIME exptime filled
MPATH_INFO_DISCOVERY_TIMEOUT discovery_timeout filled
MPATH_INFO_DISCOVERY_RETRIES discovery_retries filled
MPATH_INFO_FLAGS flags filled
MPATH_INFO_HOP_COUNT hop_count filled
MPATH_INFO_PATH_CHANGE path_change_count filled
Description
Used by the driver to indicate which info in struct mpath_info it has filled in
during get_station() or dump_station().

struct mpath_info
mesh path information

Definition

struct mpath_info {
u32 filled;
u32 frame_qlen;
u32 sn;
u32 metric;
u32 exptime;
u32 discovery_timeout;
u8 discovery_retries;
u8 flags;
u8 hop_count;
u32 path_change_count;
int generation;

};

Members
filled bitfield of flags from enum mpath_info_flags

frame_qlen number of queued frames for this destination

sn target sequence number

metric metric (cost) of this mesh path

1380 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

exptime expiration time for the mesh path from now, in msecs

discovery_timeout total mesh path discovery timeout, in msecs

discovery_retries mesh path discovery retries

flags mesh path flags

hop_count hops to destination

path_change_count total number of path changes to destination

generation generation number for nl80211 dumps. This number should increase
every time the list of mesh paths changes, i.e. when a station is added or
removed, so that userspace can tell whether it got a consistent snapshot.

Description
Mesh path information filled by driver for get_mpath() and dump_mpath().

struct bss_parameters
BSS parameters

Definition

struct bss_parameters {
int use_cts_prot;
int use_short_preamble;
int use_short_slot_time;
const u8 *basic_rates;
u8 basic_rates_len;
int ap_isolate;
int ht_opmode;
s8 p2p_ctwindow, p2p_opp_ps;

};

Members
use_cts_prot Whether to use CTS protection (0 = no, 1 = yes, -1 = do not change)

use_short_preamble Whether the use of short preambles is allowed (0 = no, 1 =
yes, -1 = do not change)

use_short_slot_time Whether the use of short slot time is allowed (0 = no, 1 =
yes, -1 = do not change)

basic_rates basic rates in IEEE 802.11 format (or NULL for no change)

basic_rates_len number of basic rates

ap_isolate do not forward packets between connected stations

ht_opmode HT Operation mode (u16 = opmode, -1 = do not change)

p2p_ctwindow P2P CT Window (-1 = no change)

p2p_opp_ps P2P opportunistic PS (-1 = no change)

Description
Used to change BSS parameters (mainly for AP mode).

struct ieee80211_txq_params
TX queue parameters

47.2. cfg80211 subsystem 1381

Linux Driver-api Documentation

Definition

struct ieee80211_txq_params {
enum nl80211_ac ac;
u16 txop;
u16 cwmin;
u16 cwmax;
u8 aifs;

};

Members
ac AC identifier

txop Maximum burst time in units of 32 usecs, 0 meaning disabled

cwmin Minimum contention window [a value of the form 2^n-1 in the range
1..32767]

cwmax Maximum contention window [a value of the form 2^n-1 in the range
1..32767]

aifs Arbitration interframe space [0..255]

struct cfg80211_crypto_settings
Crypto settings

Definition

struct cfg80211_crypto_settings {
u32 wpa_versions;
u32 cipher_group;
int n_ciphers_pairwise;
u32 ciphers_pairwise[NL80211_MAX_NR_CIPHER_SUITES];
int n_akm_suites;
u32 akm_suites[NL80211_MAX_NR_AKM_SUITES];
bool control_port;
__be16 control_port_ethertype;
bool control_port_no_encrypt;
bool control_port_over_nl80211;
bool control_port_no_preauth;
struct key_params *wep_keys;
int wep_tx_key;
const u8 *psk;
const u8 *sae_pwd;
u8 sae_pwd_len;

};

Members
wpa_versions indicates which, if any, WPA versions are enabled (from enum

nl80211_wpa_versions)

cipher_group group key cipher suite (or 0 if unset)

n_ciphers_pairwise number of AP supported unicast ciphers

ciphers_pairwise unicast key cipher suites

n_akm_suites number of AKM suites

1382 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

akm_suites AKM suites

control_port Whether user space controls IEEE 802.1X port, i.e., sets/clears
NL80211_STA_FLAG_AUTHORIZED. If true, the driver is required to assume that
the port is unauthorized until authorized by user space. Otherwise, port is
marked authorized by default.

control_port_ethertype the control port protocol that should be allowed
through even on unauthorized ports

control_port_no_encrypt TRUE to prevent encryption of control port protocol
frames.

control_port_over_nl80211 TRUE if userspace expects to exchange control port
frames over NL80211 instead of the network interface.

control_port_no_preauth disables pre-auth rx over the nl80211 control port for
mac80211

wep_keys static WEP keys, if not NULL points to an array of
CFG80211_MAX_WEP_KEYS WEP keys

wep_tx_key key index (0..3) of the default TX static WEP key

psk PSK (for devices supporting 4-way-handshake offload)

sae_pwd password for SAE authentication (for devices supporting SAE offload)

sae_pwd_len length of SAE password (for devices supporting SAE offload)

struct cfg80211_auth_request
Authentication request data

Definition

struct cfg80211_auth_request {
struct cfg80211_bss *bss;
const u8 *ie;
size_t ie_len;
enum nl80211_auth_type auth_type;
const u8 *key;
u8 key_len, key_idx;
const u8 *auth_data;
size_t auth_data_len;

};

Members
bss The BSS to authenticate with, the callee must obtain a reference to it if it

needs to keep it.

ie Extra IEs to add to Authentication frame or NULL

ie_len Length of ie buffer in octets

auth_type Authentication type (algorithm)

key WEP key for shared key authentication

key_len length of WEP key for shared key authentication

key_idx index of WEP key for shared key authentication

47.2. cfg80211 subsystem 1383

Linux Driver-api Documentation

auth_data Fields and elements in Authentication frames. This contains the au-
thentication frame body (non-IE and IE data), excluding the Authentication
algorithm number, i.e., starting at the Authentication transaction sequence
number field.

auth_data_len Length of auth_data buffer in octets

Description
This structure provides information needed to complete IEEE 802.11 authentica-
tion.

struct cfg80211_assoc_request
(Re)Association request data

Definition

struct cfg80211_assoc_request {
struct cfg80211_bss *bss;
const u8 *ie, *prev_bssid;
size_t ie_len;
struct cfg80211_crypto_settings crypto;
bool use_mfp;
u32 flags;
struct ieee80211_ht_cap ht_capa;
struct ieee80211_ht_cap ht_capa_mask;
struct ieee80211_vht_cap vht_capa, vht_capa_mask;
const u8 *fils_kek;
size_t fils_kek_len;
const u8 *fils_nonces;

};

Members
bss The BSS to associate with. If the call is successful the driver is given

a reference that it must give back to cfg80211_send_rx_assoc() or to
cfg80211_assoc_timeout(). To ensure proper refcounting, new association
requests while already associating must be rejected.

ie Extra IEs to add to (Re)Association Request frame or NULL

prev_bssid previous BSSID, if not NULL use reassociate frame. This is used to
indicate a request to reassociate within the ESS instead of a request do the
initial association with the ESS. When included, this is set to the BSSID of
the current association, i.e., to the value that is included in the Current AP
address field of the Reassociation Request frame.

ie_len Length of ie buffer in octets

crypto crypto settings

use_mfp Use management frame protection (IEEE 802.11w) in this association

flags See enum cfg80211_assoc_req_flags

ht_capa HT Capabilities over-rides. Values set in ht_capa_mask will be used in
ht_capa. Un-supported values will be ignored.

ht_capa_mask The bits of ht_capa which are to be used.

vht_capa VHT capability override

1384 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

vht_capa_mask VHT capability mask indicating which fields to use

fils_kek FILS KEK for protecting (Re)Association Request/Response frame or
NULL if FILS is not used.

fils_kek_len Length of fils_kek in octets

fils_nonces FILS nonces (part of AAD) for protecting (Re)Association Re-
quest/Response frame or NULL if FILS is not used. This field starts with 16
octets of STA Nonce followed by 16 octets of AP Nonce.

Description
This structure provides information needed to complete IEEE 802.11
(re)association.

struct cfg80211_deauth_request
Deauthentication request data

Definition

struct cfg80211_deauth_request {
const u8 *bssid;
const u8 *ie;
size_t ie_len;
u16 reason_code;
bool local_state_change;

};

Members
bssid the BSSID of the BSS to deauthenticate from

ie Extra IEs to add to Deauthentication frame or NULL

ie_len Length of ie buffer in octets

reason_code The reason code for the deauthentication

local_state_change if set, change local state only and do not set a deauth frame

Description
This structure provides information needed to complete IEEE 802.11 deauthenti-
cation.

struct cfg80211_disassoc_request
Disassociation request data

Definition

struct cfg80211_disassoc_request {
struct cfg80211_bss *bss;
const u8 *ie;
size_t ie_len;
u16 reason_code;
bool local_state_change;

};

Members
bss the BSS to disassociate from

47.2. cfg80211 subsystem 1385

Linux Driver-api Documentation

ie Extra IEs to add to Disassociation frame or NULL

ie_len Length of ie buffer in octets

reason_code The reason code for the disassociation

local_state_change This is a request for a local state only, i.e., no Disassociation
frame is to be transmitted.

Description
This structure provides information needed to complete IEEE 802.11 disassocia-
tion.

struct cfg80211_ibss_params
IBSS parameters

Definition

struct cfg80211_ibss_params {
const u8 *ssid;
const u8 *bssid;
struct cfg80211_chan_def chandef;
const u8 *ie;
u8 ssid_len, ie_len;
u16 beacon_interval;
u32 basic_rates;
bool channel_fixed;
bool privacy;
bool control_port;
bool control_port_over_nl80211;
bool userspace_handles_dfs;
int mcast_rate[NUM_NL80211_BANDS];
struct ieee80211_ht_cap ht_capa;
struct ieee80211_ht_cap ht_capa_mask;
struct key_params *wep_keys;
int wep_tx_key;

};

Members
ssid The SSID, will always be non-null.

bssid Fixed BSSID requested, maybe be NULL, if set do not search for IBSSs with
a different BSSID.

chandef defines the channel to use if no other IBSS to join can be found

ie information element(s) to include in the beacon

ssid_len The length of the SSID, will always be non-zero.

ie_len length of that

beacon_interval beacon interval to use

basic_rates bitmap of basic rates to use when creating the IBSS

channel_fixed The channel should be fixed – do not search for IBSSs to join on
other channels.

privacy this is a protected network, keys will be configured after joining

1386 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

control_port whether user space controls IEEE 802.1X port, i.e., sets/clears
NL80211_STA_FLAG_AUTHORIZED. If true, the driver is required to assume that
the port is unauthorized until authorized by user space. Otherwise, port is
marked authorized by default.

control_port_over_nl80211 TRUE if userspace expects to exchange control port
frames over NL80211 instead of the network interface.

userspace_handles_dfs whether user space controls DFS operation, i.e.
changes the channel when a radar is detected. This is required to operate
on DFS channels.

mcast_rate per-band multicast rate index + 1 (0: disabled)

ht_capa HT Capabilities over-rides. Values set in ht_capa_mask will be used in
ht_capa. Un-supported values will be ignored.

ht_capa_mask The bits of ht_capa which are to be used.

wep_keys static WEP keys, if not NULL points to an array of
CFG80211_MAX_WEP_KEYS WEP keys

wep_tx_key key index (0..3) of the default TX static WEP key

Description
This structure defines the IBSS parameters for the join_ibss() method.

struct cfg80211_connect_params
Connection parameters

Definition

struct cfg80211_connect_params {
struct ieee80211_channel *channel;
struct ieee80211_channel *channel_hint;
const u8 *bssid;
const u8 *bssid_hint;
const u8 *ssid;
size_t ssid_len;
enum nl80211_auth_type auth_type;
const u8 *ie;
size_t ie_len;
bool privacy;
enum nl80211_mfp mfp;
struct cfg80211_crypto_settings crypto;
const u8 *key;
u8 key_len, key_idx;
u32 flags;
int bg_scan_period;
struct ieee80211_ht_cap ht_capa;
struct ieee80211_ht_cap ht_capa_mask;
struct ieee80211_vht_cap vht_capa;
struct ieee80211_vht_cap vht_capa_mask;
bool pbss;
struct cfg80211_bss_selection bss_select;
const u8 *prev_bssid;
const u8 *fils_erp_username;
size_t fils_erp_username_len;

(continues on next page)

47.2. cfg80211 subsystem 1387

Linux Driver-api Documentation

(continued from previous page)
const u8 *fils_erp_realm;
size_t fils_erp_realm_len;
u16 fils_erp_next_seq_num;
const u8 *fils_erp_rrk;
size_t fils_erp_rrk_len;
bool want_1x;
struct ieee80211_edmg edmg;

};

Members
channel The channel to use or NULL if not specified (auto-select based on scan

results)

channel_hint The channel of the recommended BSS for initial connection or NULL
if not specified

bssid The AP BSSID or NULL if not specified (auto-select based on scan results)

bssid_hint The recommended AP BSSID for initial connection to the BSS or NULL
if not specified. Unlike the bssid parameter, the driver is allowed to ignore
this bssid_hint if it has knowledge of a better BSS to use.

ssid SSID

ssid_len Length of ssid in octets

auth_type Authentication type (algorithm)

ie IEs for association request

ie_len Length of assoc_ie in octets

privacy indicates whether privacy-enabled APs should be used

mfp indicate whether management frame protection is used

crypto crypto settings

key WEP key for shared key authentication

key_len length of WEP key for shared key authentication

key_idx index of WEP key for shared key authentication

flags See enum cfg80211_assoc_req_flags

bg_scan_period Background scan period in seconds or -1 to indicate that default
value is to be used.

ht_capa HT Capabilities over-rides. Values set in ht_capa_mask will be used in
ht_capa. Un-supported values will be ignored.

ht_capa_mask The bits of ht_capa which are to be used.

vht_capa VHT Capability overrides

vht_capa_mask The bits of vht_capa which are to be used.

pbss if set, connect to a PCP instead of AP. Valid for DMG networks.

bss_select criteria to be used for BSS selection.

1388 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

prev_bssid previous BSSID, if not NULL use reassociate frame. This is used to
indicate a request to reassociate within the ESS instead of a request do the
initial association with the ESS. When included, this is set to the BSSID of
the current association, i.e., to the value that is included in the Current AP
address field of the Reassociation Request frame.

fils_erp_username EAP re-authentication protocol (ERP) username part of the
NAI or NULL if not specified. This is used to construct FILS wrapped data IE.

fils_erp_username_len Length of fils_erp_username in octets.
fils_erp_realm EAP re-authentication protocol (ERP) realm part of NAI or NULL

if not specified. This specifies the domain name of ER server and is used to
construct FILS wrapped data IE.

fils_erp_realm_len Length of fils_erp_realm in octets.

fils_erp_next_seq_num The next sequence number to use in the FILS ERP mes-
sages. This is also used to construct FILS wrapped data IE.

fils_erp_rrk ERP re-authentication Root Key (rRK) used to derive additional
keys in FILS or NULL if not specified.

fils_erp_rrk_len Length of fils_erp_rrk in octets.
want_1x indicates user-space supports and wants to use 802.1X driver offload of

4-way handshake.

edmg define the EDMG channels. This may specify multiple channels and bonding
options for the driver to choose from, based on BSS configuration.

Description
This structure provides information needed to complete IEEE 802.11 authentica-
tion and association.

struct cfg80211_pmksa
PMK Security Association

Definition

struct cfg80211_pmksa {
const u8 *bssid;
const u8 *pmkid;
const u8 *pmk;
size_t pmk_len;
const u8 *ssid;
size_t ssid_len;
const u8 *cache_id;
u32 pmk_lifetime;
u8 pmk_reauth_threshold;

};

Members
bssid The AP’s BSSID (may be NULL).
pmkid The identifier to refer a PMKSA.

pmk The PMK for the PMKSA identified by pmkid. This is used for key derivation
by a FILS STA. Otherwise, NULL.

47.2. cfg80211 subsystem 1389

Linux Driver-api Documentation

pmk_len Length of the pmk. The length of pmk can differ depending on the hash
algorithm used to generate this.

ssid SSID to specify the ESS within which a PMKSA is valid when using FILS
cache identifier (may be NULL).

ssid_len Length of the ssid in octets.
cache_id 2-octet cache identifier advertized by a FILS AP identifying the scope of

PMKSA. This is valid only if ssid_len is non-zero (may be NULL).
pmk_lifetime Maximum lifetime for PMKSA in seconds

(dot11RSNAConfigPMKLifetime) or 0 if not specified. The configured
PMKSA must not be used for PMKSA caching after expiration and any
keys derived from this PMK become invalid on expiration, i.e., the current
association must be dropped if the PMK used for it expires.

pmk_reauth_threshold Threshold time for reauthentication (percentage of PMK
lifetime, dot11RSNAConfigPMKReauthThreshold) or 0 if not specified.
Drivers are expected to trigger a full authentication instead of using this
PMKSA for caching when reassociating to a new BSS after this threshold
to generate a new PMK before the current one expires.

Description
This structure is passed to the set/del_pmksa() method for PMKSA caching.

void cfg80211_rx_mlme_mgmt(struct net_device * dev, const u8 * buf,
size_t len)

notification of processed MLME management frame

Parameters
struct net_device * dev network device

const u8 * buf authentication frame (header + body)

size_t len length of the frame data

Description
This function is called whenever an authentication, disassociation or deau-
thentication frame has been received and processed in station mode. Af-
ter being asked to authenticate via cfg80211_ops::auth() the driver must call
either this function or cfg80211_auth_timeout(). After being asked to as-
sociate via cfg80211_ops::assoc() the driver must call either this function or
cfg80211_auth_timeout(). While connected, the driver must calls this for re-
ceived and processed disassociation and deauthentication frames. If the frame
couldn’t be used because it was unprotected, the driver must call the function
cfg80211_rx_unprot_mlme_mgmt() instead.

This function may sleep. The caller must hold the corresponding wdev’s mutex.
void cfg80211_auth_timeout(struct net_device * dev, const u8 * addr)

notification of timed out authentication

Parameters
struct net_device * dev network device

1390 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

const u8 * addr The MAC address of the device with which the authentication
timed out

Description
This function may sleep. The caller must hold the corresponding wdev’s mutex.
void cfg80211_rx_assoc_resp(struct net_device * dev, struct cfg80211_bss

* bss, const u8 * buf, size_t len,
int uapsd_queues, const u8 * req_ies,
size_t req_ies_len)

notification of processed association response

Parameters
struct net_device * dev network device

struct cfg80211_bss * bss the BSS that association was requested with, own-
ership of the pointer moves to cfg80211 in this call

const u8 * buf (Re)Association Response frame (header + body)

size_t len length of the frame data

int uapsd_queues bitmap of queues configured for uapsd. Same format as the
AC bitmap in the QoS info field

const u8 * req_ies information elements from the (Re)Association Request
frame

size_t req_ies_len length of req_ies data

Description
After being asked to associate via cfg80211_ops::assoc() the driver must call either
this function or cfg80211_auth_timeout().

This function may sleep. The caller must hold the corresponding wdev’s mutex.
void cfg80211_assoc_timeout(struct net_device * dev, struct cfg80211_bss

* bss)
notification of timed out association

Parameters
struct net_device * dev network device

struct cfg80211_bss * bss The BSS entry with which association timed out.

Description
This function may sleep. The caller must hold the corresponding wdev’s mutex.
void cfg80211_tx_mlme_mgmt(struct net_device * dev, const u8 * buf,

size_t len)
notification of transmitted deauth/disassoc frame

Parameters
struct net_device * dev network device

const u8 * buf 802.11 frame (header + body)

size_t len length of the frame data

47.2. cfg80211 subsystem 1391

Linux Driver-api Documentation

Description
This function is called whenever deauthentication has been processed in station
mode. This includes both received deauthentication frames and locally generated
ones. This function may sleep. The caller must hold the corresponding wdev’s
mutex.

void cfg80211_ibss_joined(struct net_device * dev, const u8 * bssid, struct
ieee80211_channel * channel, gfp_t gfp)

notify cfg80211 that device joined an IBSS

Parameters
struct net_device * dev network device

const u8 * bssid the BSSID of the IBSS joined

struct ieee80211_channel * channel the channel of the IBSS joined

gfp_t gfp allocation flags

Description
This function notifies cfg80211 that the device joined an IBSS or switched to a
different BSSID. Before this function can be called, either a beacon has to have
been received from the IBSS, or one of the cfg80211_inform_bss{,_frame} func-
tions must have been called with the locally generated beacon – this guarantees
that there is always a scan result for this IBSS. cfg80211 will handle the rest.

struct cfg80211_connect_resp_params
Connection response params

Definition

struct cfg80211_connect_resp_params {
int status;
const u8 *bssid;
struct cfg80211_bss *bss;
const u8 *req_ie;
size_t req_ie_len;
const u8 *resp_ie;
size_t resp_ie_len;
struct cfg80211_fils_resp_params fils;
enum nl80211_timeout_reason timeout_reason;

};

Members
status Status code, WLAN_STATUS_SUCCESS for successful connection, use

WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you the real
status code for failures. If this call is used to report a failure due to a time-
out (e.g., not receiving an Authentication frame from the AP) instead of an
explicit rejection by the AP, -1 is used to indicate that this is a failure, but
without a status code. timeout_reason is used to report the reason for the
timeout in that case.

bssid The BSSID of the AP (may be NULL)

bss Entry of bss to which STA got connected to, can be obtained through
cfg80211_get_bss() (may be NULL). But it is recommended to store the bss

1392 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

from the connect_request and hold a reference to it and return through this
param to avoid a warning if the bss is expired during the connection, esp. for
those drivers implementing connect op. Only one parameter among bssid
and bss needs to be specified.

req_ie Association request IEs (may be NULL)

req_ie_len Association request IEs length

resp_ie Association response IEs (may be NULL)

resp_ie_len Association response IEs length

fils FILS connection response parameters.

timeout_reason Reason for connection timeout. This is used when the con-
nection fails due to a timeout instead of an explicit rejection from the
AP. NL80211_TIMEOUT_UNSPECIFIED is used when the timeout reason is not
known. This value is used only if status < 0 to indicate that the failure is due
to a timeout and not due to explicit rejection by the AP. This value is ignored
in other cases (status >= 0).

void cfg80211_connect_done(struct net_device * dev, struct
cfg80211_connect_resp_params * params,
gfp_t gfp)

notify cfg80211 of connection result

Parameters
struct net_device * dev network device

struct cfg80211_connect_resp_params * params connection response param-
eters

gfp_t gfp allocation flags

Description
It should be called by the underlying driver once execution of the con-
nection request from connect() has been completed. This is similar to
cfg80211_connect_bss(), but takes a structure pointer for connection re-
sponse parameters. Only one of the functions among cfg80211_connect_bss(),
cfg80211_connect_result(), cfg80211_connect_timeout(), and
cfg80211_connect_done() should be called.

void cfg80211_connect_result(struct net_device * dev, const u8 * bssid,
const u8 * req_ie, size_t req_ie_len, const
u8 * resp_ie, size_t resp_ie_len, u16 status,
gfp_t gfp)

notify cfg80211 of connection result

Parameters
struct net_device * dev network device

const u8 * bssid the BSSID of the AP

const u8 * req_ie association request IEs (maybe be NULL)

size_t req_ie_len association request IEs length

47.2. cfg80211 subsystem 1393

Linux Driver-api Documentation

const u8 * resp_ie association response IEs (may be NULL)

size_t resp_ie_len assoc response IEs length

u16 status status code, WLAN_STATUS_SUCCESS for successful connection, use
WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you the real
status code for failures.

gfp_t gfp allocation flags

Description
It should be called by the underlying driver once execution of the con-
nection request from connect() has been completed. This is similar
to cfg80211_connect_bss() which allows the exact bss entry to be
specified. Only one of the functions among cfg80211_connect_bss(),
cfg80211_connect_result(), cfg80211_connect_timeout(), and
cfg80211_connect_done() should be called.

void cfg80211_connect_bss(struct net_device * dev, const u8 * bssid,
struct cfg80211_bss * bss, const u8 * req_ie,
size_t req_ie_len, const u8 * resp_ie,
size_t resp_ie_len, int status, gfp_t gfp, enum
nl80211_timeout_reason timeout_reason)

notify cfg80211 of connection result

Parameters
struct net_device * dev network device

const u8 * bssid the BSSID of the AP

struct cfg80211_bss * bss Entry of bss to which STA got connected to, can be
obtained through cfg80211_get_bss() (may be NULL). But it is recommended
to store the bss from the connect_request and hold a reference to it and return
through this param to avoid a warning if the bss is expired during the con-
nection, esp. for those drivers implementing connect op. Only one parameter
among bssid and bss needs to be specified.

const u8 * req_ie association request IEs (maybe be NULL)

size_t req_ie_len association request IEs length

const u8 * resp_ie association response IEs (may be NULL)

size_t resp_ie_len assoc response IEs length

int status status code, WLAN_STATUS_SUCCESS for successful connection, use
WLAN_STATUS_UNSPECIFIED_FAILURE if your device cannot give you the real
status code for failures. If this call is used to report a failure due to a time-
out (e.g., not receiving an Authentication frame from the AP) instead of an
explicit rejection by the AP, -1 is used to indicate that this is a failure, but
without a status code. timeout_reason is used to report the reason for the
timeout in that case.

gfp_t gfp allocation flags

enum nl80211_timeout_reason timeout_reason reason for connection timeout.
This is used when the connection fails due to a timeout instead of an explicit

1394 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

rejection from the AP. NL80211_TIMEOUT_UNSPECIFIED is used when the time-
out reason is not known. This value is used only if status < 0 to indicate that
the failure is due to a timeout and not due to explicit rejection by the AP. This
value is ignored in other cases (status >= 0).

Description
It should be called by the underlying driver once execution of the
connection request from connect() has been completed. This is sim-
ilar to cfg80211_connect_result(), but with the option of identify-
ing the exact bss entry for the connection. Only one of the func-
tions among cfg80211_connect_bss(), cfg80211_connect_result(),
cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.

void cfg80211_connect_timeout(struct net_device * dev, const
u8 * bssid, const u8 * req_ie,
size_t req_ie_len, gfp_t gfp, enum
nl80211_timeout_reason timeout_reason)

notify cfg80211 of connection timeout

Parameters
struct net_device * dev network device

const u8 * bssid the BSSID of the AP

const u8 * req_ie association request IEs (maybe be NULL)

size_t req_ie_len association request IEs length

gfp_t gfp allocation flags

enum nl80211_timeout_reason timeout_reason reason for connection timeout.

Description
It should be called by the underlying driver whenever connect() has
failed in a sequence where no explicit authentication/association rejec-
tion was received from the AP. This could happen, e.g., due to not be-
ing able to send out the Authentication or Association Request frame
or timing out while waiting for the response. Only one of the func-
tions among cfg80211_connect_bss(), cfg80211_connect_result(),
cfg80211_connect_timeout(), and cfg80211_connect_done() should be called.

void cfg80211_roamed(struct net_device * dev, struct cfg80211_roam_info
* info, gfp_t gfp)

notify cfg80211 of roaming

Parameters
struct net_device * dev network device

struct cfg80211_roam_info * info information about the new BSS. struct
cfg80211_roam_info.

gfp_t gfp allocation flags

Description

47.2. cfg80211 subsystem 1395

Linux Driver-api Documentation

This function may be called with the driver passing either the BSSID of the new
AP or passing the bss entry to avoid a race in timeout of the bss entry. It should
be called by the underlying driver whenever it roamed from one AP to another
while connected. Drivers which have roaming implemented in firmware should
pass the bss entry to avoid a race in bss entry timeout where the bss entry
of the new AP is seen in the driver, but gets timed out by the time it is ac-
cessed in __cfg80211_roamed() due to delay in scheduling rdev->event_work. In
case of any failures, the reference is released either in cfg80211_roamed() or in
__cfg80211_romed(), Otherwise, it will be released while disconnecting from the
current bss.

void cfg80211_disconnected(struct net_device * dev, u16 reason, const
u8 * ie, size_t ie_len, bool locally_generated,
gfp_t gfp)

notify cfg80211 that connection was dropped

Parameters
struct net_device * dev network device

u16 reason reason code for the disconnection, set it to 0 if unknown

const u8 * ie information elements of the deauth/disassoc frame (may be NULL)

size_t ie_len length of IEs

bool locally_generated disconnection was requested locally

gfp_t gfp allocation flags

Description
After it calls this function, the driver should enter an idle state and not try to
connect to any AP any more.

void cfg80211_ready_on_channel(struct wireless_dev * wdev, u64 cookie,
struct ieee80211_channel * chan, un-
signed int duration, gfp_t gfp)

notification of remain_on_channel start

Parameters
struct wireless_dev * wdev wireless device

u64 cookie the request cookie

struct ieee80211_channel * chan The current channel (from re-
main_on_channel request)

unsigned int duration Duration in milliseconds that the driver intents to re-
main on the channel

gfp_t gfp allocation flags

void cfg80211_remain_on_channel_expired(struct wireless_dev
* wdev, u64 cookie, struct
ieee80211_channel * chan,
gfp_t gfp)

remain_on_channel duration expired

Parameters

1396 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

struct wireless_dev * wdev wireless device

u64 cookie the request cookie

struct ieee80211_channel * chan The current channel (from re-
main_on_channel request)

gfp_t gfp allocation flags

void cfg80211_new_sta(struct net_device * dev, const u8 * mac_addr, struct
station_info * sinfo, gfp_t gfp)

notify userspace about station

Parameters
struct net_device * dev the netdev

const u8 * mac_addr the station’s address
struct station_info * sinfo the station information

gfp_t gfp allocation flags

bool cfg80211_rx_mgmt(struct wireless_dev * wdev, int freq, int sig_dbm,
const u8 * buf, size_t len, u32 flags)

notification of received, unprocessed management frame

Parameters
struct wireless_dev * wdev wireless device receiving the frame

int freq Frequency on which the frame was received in MHz

int sig_dbm signal strength in dBm, or 0 if unknown

const u8 * buf Management frame (header + body)

size_t len length of the frame data

u32 flags flags, as defined in enum nl80211_rxmgmt_flags

Description
This function is called whenever an Action frame is received for a station mode
interface, but is not processed in kernel.

Return
true if a user space application has registered for this frame. For action frames,
that makes it responsible for rejecting unrecognized action frames; false other-
wise, in which case for action frames the driver is responsible for rejecting the
frame.

void cfg80211_mgmt_tx_status(struct wireless_dev * wdev, u64 cookie,
const u8 * buf, size_t len, bool ack,
gfp_t gfp)

notification of TX status for management frame

Parameters
struct wireless_dev * wdev wireless device receiving the frame

u64 cookie Cookie returned by cfg80211_ops::mgmt_tx()

const u8 * buf Management frame (header + body)

47.2. cfg80211 subsystem 1397

Linux Driver-api Documentation

size_t len length of the frame data

bool ack Whether frame was acknowledged

gfp_t gfp context flags

Description
This function is called whenever a management frame was requested to be trans-
mitted with cfg80211_ops::mgmt_tx() to report the TX status of the transmission
attempt.

void cfg80211_cqm_rssi_notify(struct net_device * dev, enum
nl80211_cqm_rssi_threshold_event rssi_event,
s32 rssi_level, gfp_t gfp)

connection quality monitoring rssi event

Parameters
struct net_device * dev network device

enum nl80211_cqm_rssi_threshold_event rssi_event the triggered RSSI
event

s32 rssi_level new RSSI level value or 0 if not available

gfp_t gfp context flags

Description
This function is called when a configured connection quality monitoring rssi
threshold reached event occurs.

void cfg80211_cqm_pktloss_notify(struct net_device * dev, const u8
* peer, u32 num_packets, gfp_t gfp)

notify userspace about packetloss to peer

Parameters
struct net_device * dev network device

const u8 * peer peer’s MAC address
u32 num_packets how many packets were lost – should be a fixed threshold but

probably no less than maybe 50, or maybe a throughput dependent threshold
(to account for temporary interference)

gfp_t gfp context flags

void cfg80211_michael_mic_failure(struct net_device * dev,
const u8 * addr, enum
nl80211_key_type key_type,
int key_id, const u8 * tsc, gfp_t gfp)

notification of Michael MIC failure (TKIP)

Parameters
struct net_device * dev network device

const u8 * addr The source MAC address of the frame

enum nl80211_key_type key_type The key type that the received frame used

int key_id Key identifier (0..3). Can be -1 if missing.

1398 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

const u8 * tsc The TSC value of the frame that generated the MIC failure (6
octets)

gfp_t gfp allocation flags

Description
This function is called whenever the local MAC detects a MIC failure in a received
frame. This matches with MLME-MICHAELMICFAILURE.indication() primitive.

47.2.3 Scanning and BSS list handling

The scanning process itself is fairly simple, but cfg80211 offers quite a bit of helper
functionality. To start a scan, the scan operation will be invoked with a scan def-
inition. This scan definition contains the channels to scan, and the SSIDs to send
probe requests for (including the wildcard, if desired). A passive scan is indi-
cated by having no SSIDs to probe. Additionally, a scan request may contain extra
information elements that should be added to the probe request. The IEs are
guaranteed to be well-formed, and will not exceed the maximum length the driver
advertised in the wiphy structure.

When scanning finds a BSS, cfg80211 needs to be notified of that, because it is
responsible for maintaining the BSS list; the driver should not maintain a list itself.
For this notification, various functions exist.

Since drivers do not maintain a BSS list, there are also a number of functions to
search for a BSS and obtain information about it from the BSS structure cfg80211
maintains. The BSS list is also made available to userspace.

struct cfg80211_ssid
SSID description

Definition

struct cfg80211_ssid {
u8 ssid[IEEE80211_MAX_SSID_LEN];
u8 ssid_len;

};

Members
ssid the SSID

ssid_len length of the ssid

struct cfg80211_scan_request
scan request description

Definition

struct cfg80211_scan_request {
struct cfg80211_ssid *ssids;
int n_ssids;
u32 n_channels;
enum nl80211_bss_scan_width scan_width;
const u8 *ie;
size_t ie_len;

(continues on next page)

47.2. cfg80211 subsystem 1399

Linux Driver-api Documentation

(continued from previous page)
u16 duration;
bool duration_mandatory;
u32 flags;
u32 rates[NUM_NL80211_BANDS];
struct wireless_dev *wdev;
u8 mac_addr[ETH_ALEN] ;
u8 mac_addr_mask[ETH_ALEN] ;
u8 bssid[ETH_ALEN] ;
struct wiphy *wiphy;
unsigned long scan_start;
struct cfg80211_scan_info info;
bool notified;
bool no_cck;
struct ieee80211_channel *channels[];

};

Members
ssids SSIDs to scan for (active scan only)

n_ssids number of SSIDs

n_channels total number of channels to scan

scan_width channel width for scanning

ie optional information element(s) to add into Probe Request or NULL

ie_len length of ie in octets

duration how long to listen on each channel, in TUs. If duration_mandatory is
not set, this is the maximum dwell time and the actual dwell time may be
shorter.

duration_mandatory if set, the scan duration must be as specified by the
duration field.

flags bit field of flags controlling operation

rates bitmap of rates to advertise for each band

wdev the wireless device to scan for

mac_addr MAC address used with randomisation

mac_addr_mask MAC address mask used with randomisation, bits that are 0 in
the mask should be randomised, bits that are 1 should be taken from the
mac_addr

bssid BSSID to scan for (most commonly, the wildcard BSSID)

wiphy the wiphy this was for

scan_start time (in jiffies) when the scan started

info (internal) information about completed scan

notified (internal) scan request was notified as done or aborted

no_cck used to send probe requests at non CCK rate in 2GHz band

channels channels to scan on.

1400 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

void cfg80211_scan_done(struct cfg80211_scan_request * request, struct
cfg80211_scan_info * info)

notify that scan finished

Parameters
struct cfg80211_scan_request * request the corresponding scan request

struct cfg80211_scan_info * info information about the completed scan

struct cfg80211_bss
BSS description

Definition

struct cfg80211_bss {
struct ieee80211_channel *channel;
enum nl80211_bss_scan_width scan_width;
const struct cfg80211_bss_ies __rcu *ies;
const struct cfg80211_bss_ies __rcu *beacon_ies;
const struct cfg80211_bss_ies __rcu *proberesp_ies;
struct cfg80211_bss *hidden_beacon_bss;
struct cfg80211_bss *transmitted_bss;
struct list_head nontrans_list;
s32 signal;
u16 beacon_interval;
u16 capability;
u8 bssid[ETH_ALEN];
u8 chains;
s8 chain_signal[IEEE80211_MAX_CHAINS];
u8 bssid_index;
u8 max_bssid_indicator;
u8 priv[] ;

};

Members
channel channel this BSS is on

scan_width width of the control channel

ies the information elements (Note that there is no guarantee that these are well-
formed!); this is a pointer to either the beacon_ies or proberesp_ies depend-
ing on whether Probe Response frame has been received. It is always non-
NULL.

beacon_ies the information elements from the last Beacon frame (implementation
note: if hidden_beacon_bss is set this struct doesn’t own the beacon_ies,
but they’re just pointers to the ones from the hidden_beacon_bss struct)

proberesp_ies the information elements from the last Probe Response frame

hidden_beacon_bss in case this BSS struct represents a probe response from a
BSS that hides the SSID in its beacon, this points to the BSS struct that holds
the beacon data. beacon_ies is still valid, of course, and points to the same
data as hidden_beacon_bss->beacon_ies in that case.

transmitted_bss pointer to the transmitted BSS, if this is a non-transmitted one
(multi-BSSID support)

47.2. cfg80211 subsystem 1401

Linux Driver-api Documentation

nontrans_list list of non-transmitted BSS, if this is a transmitted one (multi-
BSSID support)

signal signal strength value (type depends on the wiphy’s signal_type)
beacon_interval the beacon interval as from the frame

capability the capability field in host byte order

bssid BSSID of the BSS

chains bitmask for filled values in chain_signal.
chain_signal per-chain signal strength of last received BSS in dBm.

bssid_index index in the multiple BSS set

max_bssid_indicator max number of members in the BSS set

priv private area for driver use, has at least wiphy->bss_priv_size bytes

Description
This structure describes a BSS (which may also be a mesh network) for use in scan
results and similar.

struct cfg80211_inform_bss
BSS inform data

Definition

struct cfg80211_inform_bss {
struct ieee80211_channel *chan;
enum nl80211_bss_scan_width scan_width;
s32 signal;
u64 boottime_ns;
u64 parent_tsf;
u8 parent_bssid[ETH_ALEN] ;
u8 chains;
s8 chain_signal[IEEE80211_MAX_CHAINS];

};

Members
chan channel the frame was received on

scan_width scan width that was used

signal signal strength value, according to the wiphy’s signal type
boottime_ns timestamp (CLOCK_BOOTTIME) when the information was re-

ceived; should match the time when the frame was actually received by the
device (not just by the host, in case it was buffered on the device) and be
accurate to about 10ms. If the frame isn’t buffered, just passing the return
value of ktime_get_boottime_ns() is likely appropriate.

parent_tsf the time at the start of reception of the first octet of the timestamp
field of the frame. The time is the TSF of the BSS specified by parent_bssid.

parent_bssid the BSS according to which parent_tsf is set. This is set to the
BSS that requested the scan in which the beacon/probe was received.

chains bitmask for filled values in chain_signal.

1402 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

chain_signal per-chain signal strength of last received BSS in dBm.

struct cfg80211_bss * cfg80211_inform_bss_frame_data(struct wiphy
* wiphy, struct
cfg80211_inform_bss
* data, struct
ieee80211_mgmt
* mgmt,
size_t len,
gfp_t gfp)

inform cfg80211 of a received BSS frame

Parameters
struct wiphy * wiphy the wiphy reporting the BSS

struct cfg80211_inform_bss * data the BSS metadata

struct ieee80211_mgmt * mgmt the management frame (probe response or bea-
con)

size_t len length of the management frame

gfp_t gfp context flags

Description
This informs cfg80211 that BSS information was found and the BSS should be
updated/added.

Return
A referenced struct, must be released with cfg80211_put_bss()! Or NULL on error.

struct cfg80211_bss * cfg80211_inform_bss_data(struct wiphy
* wiphy, struct
cfg80211_inform_bss
* data, enum
cfg80211_bss_frame_type ftype,
const u8 * bssid,
u64 tsf, u16 capability,
u16 beacon_interval,
const u8 * ie,
size_t ielen, gfp_t gfp)

inform cfg80211 of a new BSS

Parameters
struct wiphy * wiphy the wiphy reporting the BSS

struct cfg80211_inform_bss * data the BSS metadata

enum cfg80211_bss_frame_type ftype frame type (if known)

const u8 * bssid the BSSID of the BSS

u64 tsf the TSF sent by the peer in the beacon/probe response (or 0)

u16 capability the capability field sent by the peer

47.2. cfg80211 subsystem 1403

Linux Driver-api Documentation

u16 beacon_interval the beacon interval announced by the peer

const u8 * ie additional IEs sent by the peer

size_t ielen length of the additional IEs

gfp_t gfp context flags

Description
This informs cfg80211 that BSS information was found and the BSS should be
updated/added.

Return
A referenced struct, must be released with cfg80211_put_bss()! Or NULL on error.

void cfg80211_unlink_bss(struct wiphy * wiphy, struct cfg80211_bss * bss)
unlink BSS from internal data structures

Parameters
struct wiphy * wiphy the wiphy

struct cfg80211_bss * bss the bss to remove

Description
This function removes the given BSS from the internal data structures thereby
making it no longer show up in scan results etc. Use this function when you detect
a BSS is gone. Normally BSSes will also time out, so it is not necessary to use this
function at all.

const u8 * cfg80211_find_ie(u8 eid, const u8 * ies, int len)
find information element in data

Parameters
u8 eid element ID

const u8 * ies data consisting of IEs

int len length of data

Return
NULL if the element ID could not be found or if the element is invalid (claims to be
longer than the given data), or a pointer to the first byte of the requested element,
that is the byte containing the element ID.

Note
There are no checks on the element length other than having to fit into the given
data.

const u8 * ieee80211_bss_get_ie(struct cfg80211_bss * bss, u8 id)
find IE with given ID

Parameters
struct cfg80211_bss * bss the bss to search

u8 id the element ID

1404 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

Description
Note that the return value is an RCU-protected pointer, so rcu_read_lock() must
be held when calling this function.

Return
NULL if not found.

47.2.4 Utility functions

cfg80211 offers a number of utility functions that can be useful.

int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
convert channel number to frequency

Parameters
int chan channel number

enum nl80211_band band band, necessary due to channel number overlap

Return
The corresponding frequency (in MHz), or 0 if the conversion failed.

int ieee80211_frequency_to_channel(int freq)
convert frequency to channel number

Parameters
int freq center frequency in MHz

Return
The corresponding channel, or 0 if the conversion failed.

struct ieee80211_channel * ieee80211_get_channel(struct wiphy * wiphy,
int freq)

get channel struct from wiphy for specified frequency

Parameters
struct wiphy * wiphy the struct wiphy to get the channel for

int freq the center frequency (in MHz) of the channel

Return
The channel struct from wiphy at freq.
struct ieee80211_rate * ieee80211_get_response_rate(struct

ieee80211_supported_band
* sband,
u32 basic_rates,
int bitrate)

get basic rate for a given rate

Parameters
struct ieee80211_supported_band * sband the band to look for rates in

u32 basic_rates bitmap of basic rates

47.2. cfg80211 subsystem 1405

Linux Driver-api Documentation

int bitrate the bitrate for which to find the basic rate

Return
The basic rate corresponding to a given bitrate, that is the next lower bitrate con-
tained in the basic rate map, which is, for this function, given as a bitmap of indices
of rates in the band’s bitrate table.
unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)

get header length in bytes from frame control

Parameters
__le16 fc frame control field in little-endian format

Return
The header length in bytes.

unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)
get header length from data

Parameters
const struct sk_buff * skb the frame

Description
Given an skb with a raw 802.11 header at the data pointer this function returns
the 802.11 header length.

Return
The 802.11 header length in bytes (not including encryption headers). Or 0 if the
data in the sk_buff is too short to contain a valid 802.11 header.

struct ieee80211_radiotap_iterator
tracks walk thru present radiotap args

Definition

struct ieee80211_radiotap_iterator {
struct ieee80211_radiotap_header *_rtheader;
const struct ieee80211_radiotap_vendor_namespaces *_vns;
const struct ieee80211_radiotap_namespace *current_namespace;
unsigned char *_arg, *_next_ns_data;
__le32 *_next_bitmap;
unsigned char *this_arg;
int this_arg_index;
int this_arg_size;
int is_radiotap_ns;
int _max_length;
int _arg_index;
uint32_t _bitmap_shifter;
int _reset_on_ext;

};

Members
_rtheader pointer to the radiotap header we are walking through

_vns vendor namespace definitions

1406 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

current_namespace pointer to the current namespace definition (or internally
NULL if the current namespace is unknown)

_arg next argument pointer

_next_ns_data beginning of the next namespace’s data
_next_bitmap internal pointer to next present u32

this_arg pointer to current radiotap arg; it is valid after each
call to ieee80211_radiotap_iterator_next() but also after
ieee80211_radiotap_iterator_init() where it will point to the beginning
of the actual data portion

this_arg_index index of current arg, valid after each successful call to
ieee80211_radiotap_iterator_next()

this_arg_size length of the current arg, for convenience

is_radiotap_ns indicates whether the current namespace is the default radiotap
namespace or not

_max_length length of radiotap header in cpu byte ordering

_arg_index next argument index

_bitmap_shifter internal shifter for curr u32 bitmap, b0 set == arg present

_reset_on_ext internal; reset the arg index to 0 when going to the next bitmap
word

Description
Describes the radiotap parser state. Fields prefixed with an underscore must not
be used by users of the parser, only by the parser internally.

47.2.5 Data path helpers

In addition to generic utilities, cfg80211 also offers functions that help implement
the data path for devices that do not do the 802.11/802.3 conversion on the device.

int ieee80211_data_to_8023(struct sk_buff * skb, const u8 * addr, enum
nl80211_iftype iftype)

convert an 802.11 data frame to 802.3

Parameters
struct sk_buff * skb the 802.11 data frame

const u8 * addr the device MAC address

enum nl80211_iftype iftype the virtual interface type

Return
0 on success. Non-zero on error.

47.2. cfg80211 subsystem 1407

Linux Driver-api Documentation

void ieee80211_amsdu_to_8023s(struct sk_buff * skb, struct sk_buff_head
* list, const u8 * addr, enum
nl80211_iftype iftype, const unsigned
int extra_headroom, const u8 * check_da,
const u8 * check_sa)

decode an IEEE 802.11n A-MSDU frame

Parameters
struct sk_buff * skb The input A-MSDU frame without any headers.

struct sk_buff_head * list The output list of 802.3 frames. It must be allo-
cated and initialized by by the caller.

const u8 * addr The device MAC address.

enum nl80211_iftype iftype The device interface type.

const unsigned int extra_headroom The hardware extra headroom for SKBs in
the list.

const u8 * check_da DA to check in the inner ethernet header, or NULL

const u8 * check_sa SA to check in the inner ethernet header, or NULL

Description
Decode an IEEE 802.11 A-MSDU and convert it to a list of 802.3 frames. The list
will be empty if the decode fails. The skb must be fully header-less before being
passed in here; it is freed in this function.

unsigned int cfg80211_classify8021d(struct sk_buff * skb, struct
cfg80211_qos_map * qos_map)

determine the 802.1p/1d tag for a data frame

Parameters
struct sk_buff * skb the data frame

struct cfg80211_qos_map * qos_map Interworking QoS mapping or NULL if not
in use

Return
The 802.1p/1d tag.

47.2.6 Regulatory enforcement infrastructure

TODO

int regulatory_hint(struct wiphy * wiphy, const char * alpha2)
driver hint to the wireless core a regulatory domain

Parameters
struct wiphy * wiphy the wireless device giving the hint (used only for report-

ing conflicts)

const char * alpha2 the ISO/IEC 3166 alpha2 the driver claims its regulatory
domain should be in. If rd is set this should be NULL. Note that if you set
this to NULL you should still set rd->alpha2 to some accepted alpha2.

1408 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

Description
Wireless drivers can use this function to hint to the wireless core what it believes
should be the current regulatory domain by giving it an ISO/IEC 3166 alpha2 coun-
try code it knows its regulatory domain should be in or by providing a completely
build regulatory domain. If the driver provides an ISO/IEC 3166 alpha2 userspace
will be queried for a regulatory domain structure for the respective country.

The wiphy must have been registered to cfg80211 prior to this call. For cfg80211
drivers this means you must first use wiphy_register(), for mac80211 drivers
you must first use ieee80211_register_hw().

Drivers should check the return value, its possible you can get an -ENOMEM.

Return
0 on success. -ENOMEM.

void wiphy_apply_custom_regulatory(struct wiphy * wiphy, const struct
ieee80211_regdomain * regd)

apply a custom driver regulatory domain

Parameters
struct wiphy * wiphy the wireless device we want to process the regulatory do-

main on

const struct ieee80211_regdomain * regd the custom regulatory domain to
use for this wiphy

Description
Drivers can sometimes have custom regulatory domains which do not apply to a
specific country. Drivers can use this to apply such custom regulatory domains.
This routine must be called prior to wiphy registration. The custom regulatory
domain will be trusted completely and as such previous default channel settings
will be disregarded. If no rule is found for a channel on the regulatory domain the
channel will be disabled. Drivers using this for a wiphy should also set the wiphy
flag REGULATORY_CUSTOM_REG or cfg80211 will set it for the wiphy that called
this helper.

const struct ieee80211_reg_rule * freq_reg_info(struct wiphy * wiphy,
u32 center_freq)

get regulatory information for the given frequency

Parameters
struct wiphy * wiphy the wiphy for which we want to process this rule for

u32 center_freq Frequency in KHz for which we want regulatory information for

Description
Use this function to get the regulatory rule for a specific frequency on a given
wireless device. If the device has a specific regulatory domain it wants to follow
we respect that unless a country IE has been received and processed already.

Return
A valid pointer, or, when an error occurs, for example if no rule can be found, the
return value is encoded using ERR_PTR(). Use IS_ERR() to check and PTR_ERR()

47.2. cfg80211 subsystem 1409

Linux Driver-api Documentation

to obtain the numeric return value. The numeric return value will be -ERANGE
if we determine the given center_freq does not even have a regulatory rule for a
frequency range in the center_freq’s band. See freq_in_rule_band() for our current
definition of a band – this is purely subjective and right now it’s 802.11 specific.

47.2.7 RFkill integration

RFkill integration in cfg80211 is almost invisible to drivers, as cfg80211 automat-
ically registers an rfkill instance for each wireless device it knows about. Soft
kill is also translated into disconnecting and turning all interfaces off, drivers are
expected to turn off the device when all interfaces are down.

However, devices may have a hard RFkill line, in which case they also need to
interact with the rfkill subsystem, via cfg80211. They can do this with a few helper
functions documented here.

void wiphy_rfkill_set_hw_state(struct wiphy * wiphy, bool blocked)
notify cfg80211 about hw block state

Parameters
struct wiphy * wiphy the wiphy

bool blocked block status

void wiphy_rfkill_start_polling(struct wiphy * wiphy)
start polling rfkill

Parameters
struct wiphy * wiphy the wiphy

void wiphy_rfkill_stop_polling(struct wiphy * wiphy)
stop polling rfkill

Parameters
struct wiphy * wiphy the wiphy

47.2.8 Test mode

Test mode is a set of utility functions to allow drivers to interact with driver-specific
tools to aid, for instance, factory programming.

This chapter describes how drivers interact with it, for more information see the
nl80211 book’s chapter on it.
struct sk_buff * cfg80211_testmode_alloc_reply_skb(struct wiphy

* wiphy,
int approxlen)

allocate testmode reply

Parameters
struct wiphy * wiphy the wiphy

int approxlen an upper bound of the length of the data that will be put into the
skb

1410 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

Description
This function allocates and pre-fills an skb for a reply to the testmode command.
Since it is intended for a reply, calling it outside of the testmode_cmd operation
is invalid.

The returned skb is pre-filled with the wiphy index and set up in a way that any
data that is put into the skb (with skb_put(), nla_put() or similar) will end up being
within the NL80211_ATTR_TESTDATA attribute, so all that needs to be done with the
skb is adding data for the corresponding userspace tool which can then read that
data out of the testdata attribute. You must not modify the skb in any other way.

When done, call cfg80211_testmode_reply() with the skb and return its error
code as the result of the testmode_cmd operation.
Return
An allocated and pre-filled skb. NULL if any errors happen.

int cfg80211_testmode_reply(struct sk_buff * skb)
send the reply skb

Parameters
struct sk_buff * skb The skb, must have been allocated with

cfg80211_testmode_alloc_reply_skb()

Description
Since calling this function will usually be the last thing before returning from the
testmode_cmd you should return the error code. Note that this function con-
sumes the skb regardless of the return value.

Return
An error code or 0 on success.

struct sk_buff * cfg80211_testmode_alloc_event_skb(struct wiphy
* wiphy,
int approxlen,
gfp_t gfp)

allocate testmode event

Parameters
struct wiphy * wiphy the wiphy

int approxlen an upper bound of the length of the data that will be put into the
skb

gfp_t gfp allocation flags

Description
This function allocates and pre-fills an skb for an event on the testmode multicast
group.

The returned skb is set up in the same way as with
cfg80211_testmode_alloc_reply_skb() but prepared for an event. As there, you
should simply add data to it that will then end up in the NL80211_ATTR_TESTDATA
attribute. Again, you must not modify the skb in any other way.

47.2. cfg80211 subsystem 1411

Linux Driver-api Documentation

When done filling the skb, call cfg80211_testmode_event() with the skb to send
the event.

Return
An allocated and pre-filled skb. NULL if any errors happen.

void cfg80211_testmode_event(struct sk_buff * skb, gfp_t gfp)
send the event

Parameters
struct sk_buff * skb The skb, must have been allocated with

cfg80211_testmode_alloc_event_skb()

gfp_t gfp allocation flags

Description
This function sends the given skb, which must have been allocated by
cfg80211_testmode_alloc_event_skb(), as an event. It always consumes it.

47.3 mac80211 subsystem (basics)

You should read and understand the information contained within this part of the
book while implementing a mac80211 driver. In some chapters, advanced usage
is noted, those may be skipped if this isn’t needed.
This part of the book only covers station andmonitor mode functionality, additional
information required to implement the other modes is covered in the second part
of the book.

47.3.1 Basic hardware handling

TBD

This chapter shall contain information on getting a hw struct allocated and regis-
tered with mac80211.

Since it is required to allocate rates/modes before registering a hw struct, this
chapter shall also contain information on setting up the rate/mode structs.

Additionally, some discussion about the callbacks and the general programming
model should be in here, including the definition of ieee80211_ops which will be
referred to a lot.

Finally, a discussion of hardware capabilities should be done with references to
other parts of the book.

struct ieee80211_hw
hardware information and state

Definition

1412 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

struct ieee80211_hw {
struct ieee80211_conf conf;
struct wiphy *wiphy;
const char *rate_control_algorithm;
void *priv;
unsigned long flags[BITS_TO_LONGS(NUM_IEEE80211_HW_FLAGS)];
unsigned int extra_tx_headroom;
unsigned int extra_beacon_tailroom;
int vif_data_size;
int sta_data_size;
int chanctx_data_size;
int txq_data_size;
u16 queues;
u16 max_listen_interval;
s8 max_signal;
u8 max_rates;
u8 max_report_rates;
u8 max_rate_tries;
u16 max_rx_aggregation_subframes;
u16 max_tx_aggregation_subframes;
u8 max_tx_fragments;
u8 offchannel_tx_hw_queue;
u8 radiotap_mcs_details;
u16 radiotap_vht_details;
struct {

int units_pos;
s16 accuracy;

} radiotap_timestamp;
netdev_features_t netdev_features;
u8 uapsd_queues;
u8 uapsd_max_sp_len;
u8 n_cipher_schemes;
const struct ieee80211_cipher_scheme *cipher_schemes;
u8 max_nan_de_entries;
u8 tx_sk_pacing_shift;
u8 weight_multiplier;
u32 max_mtu;

};

Members
conf struct ieee80211_conf, device configuration, don’t use.
wiphy This points to the struct wiphy allocated for this 802.11 PHY. You

must fill in the perm_addr and dev members of this structure using
SET_IEEE80211_DEV() and SET_IEEE80211_PERM_ADDR(). Additionally, all
supported bands (with channels, bitrates) are registered here.

rate_control_algorithm rate control algorithm for this hardware. If unset
(NULL), the default algorithm will be used. Must be set before calling
ieee80211_register_hw().

priv pointer to private area that was allocated for driver use along with this struc-
ture.

flags hardware flags, see enum ieee80211_hw_flags.

extra_tx_headroom headroom to reserve in each transmit skb for use by the

47.3. mac80211 subsystem (basics) 1413

Linux Driver-api Documentation

driver (e.g. for transmit headers.)

extra_beacon_tailroom tailroom to reserve in each beacon tx skb. Can be used
by drivers to add extra IEs.

vif_data_size size (in bytes) of the drv_priv data area within struct
ieee80211_vif.

sta_data_size size (in bytes) of the drv_priv data area within struct
ieee80211_sta.

chanctx_data_size size (in bytes) of the drv_priv data area within struct
ieee80211_chanctx_conf.

txq_data_size size (in bytes) of the drv_priv data area within struct
ieee80211_txq.

queues number of available hardware transmit queues for data packets.
WMM/QoS requires at least four, these queues need to have configurable
access parameters.

max_listen_interval max listen interval in units of beacon interval that HW sup-
ports

max_signal Maximum value for signal (rssi) in RX information, used only when
IEEE80211_HW_SIGNAL_UNSPEC or IEEE80211_HW_SIGNAL_DB

max_rates maximum number of alternate rate retry stages the hw can handle.

max_report_rates maximum number of alternate rate retry stages the hw can
report back.

max_rate_tries maximum number of tries for each stage

max_rx_aggregation_subframes maximum buffer size (number of sub-frames) to
be used for A-MPDU block ack receiver aggregation. This is only relevant
if the device has restrictions on the number of subframes, if it relies on
mac80211 to do reordering it shouldn’t be set.

max_tx_aggregation_subframes maximum number of subframes in an aggregate
an HT/HE device will transmit. In HT AddBA we’ll advertise a constant value
of 64 as some older APs crash if the window size is smaller (an example is
LinkSys WRT120N with FW v1.0.07 build 002 Jun 18 2012). For AddBA to
HE capable peers this value will be used.

max_tx_fragments maximum number of tx buffers per (A)-MSDU, sum of 1 +
skb_shinfo(skb)->nr_frags for each skb in the frag_list.

offchannel_tx_hw_queue HW queue ID to use for offchannel TX (if
IEEE80211_HW_QUEUE_CONTROL is set)

radiotap_mcs_details lists which MCS information can the HW reports, by
default it is set to _MCS, _GI and _BW but doesn’t include _FMT. Use
IEEE80211_RADIOTAP_MCS_HAVE_* values, only adding _BW is supported to-
day.

radiotap_vht_details lists which VHTMCS information the HW reports, the de-
fault is _GI | _BANDWIDTH. Use the IEEE80211_RADIOTAP_VHT_KNOWN_* val-
ues.

1414 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

radiotap_timestamp Information for the radiotap timestamp field; if the
units_pos member is set to a non-negative value then the timestamp field
will be added and populated from the struct ieee80211_rx_status de-
vice_timestamp.

radiotap_timestamp.units_pos Must be set to a combina-
tion of a IEEE80211_RADIOTAP_TIMESTAMP_UNIT_* and a
IEEE80211_RADIOTAP_TIMESTAMP_SPOS_* value.

radiotap_timestamp.accuracy If non-negative, fills the accuracy in the radiotap
field and the accuracy known flag will be set.

netdev_features netdev features to be set in each netdev created from this HW.
Note that not all features are usable with mac80211, other features will be
rejected during HW registration.

uapsd_queues This bitmap is included in (re)association frame to indicate for each
access category if it is uAPSD trigger-enabled and delivery- enabled. Use
IEEE80211_WMM_IE_STA_QOSINFO_AC_* to set this bitmap. Each bit cor-
responds to different AC. Value‘1’in specific bit means that corresponding
AC is both trigger- and delivery-enabled. ‘0’means neither enabled.

uapsd_max_sp_len maximum number of total buffered frames the WMM AP may
deliver to a WMM STA during any Service Period triggered by the WMM STA.
Use IEEE80211_WMM_IE_STA_QOSINFO_SP_* for correct values.

n_cipher_schemes a size of an array of cipher schemes definitions.

cipher_schemes a pointer to an array of cipher scheme definitions supported by
HW.

max_nan_de_entries maximum number of NAN DE functions supported by the
device.

tx_sk_pacing_shift Pacing shift to set on TCP sockets when frames from them
are encountered. The default should typically not be changed, unless the
driver has good reasons for needing more buffers.

weight_multiplier Driver specific airtime weight multiplier used while refilling
deficit of each TXQ.

max_mtu the max mtu could be set.

Description
This structure contains the configuration and hardware information for an 802.11
PHY.

enum ieee80211_hw_flags
hardware flags

Constants
IEEE80211_HW_HAS_RATE_CONTROL The hardware or firmware includes rate con-

trol, and cannot be controlled by the stack. As such, no rate control algorithm
should be instantiated, and the TX rate reported to userspace will be taken
from the TX status instead of the rate control algorithm. Note that this re-
quires that the driver implement a number of callbacks so it has the correct
information, it needs to have the set_rts_threshold callback and must look

47.3. mac80211 subsystem (basics) 1415

Linux Driver-api Documentation

at the BSS config use_cts_prot for G/N protection, use_short_slot for slot
timing in 2.4 GHz and use_short_preamble for preambles for CCK frames.

IEEE80211_HW_RX_INCLUDES_FCS Indicates that received frames passed to the
stack include the FCS at the end.

IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING Some wireless LAN chipsets
buffer broadcast/multicast frames for power saving stations in the hard-
ware/firmware and others rely on the host system for such buffering. This
option is used to configure the IEEE 802.11 upper layer to buffer broadcast
and multicast frames when there are power saving stations so that the driver
can fetch them with ieee80211_get_buffered_bc().

IEEE80211_HW_SIGNAL_UNSPEC Hardware can provide signal values but we don’
t know its units. We expect values between 0 and max_signal. If possible
please provide dB or dBm instead.

IEEE80211_HW_SIGNAL_DBM Hardware gives signal values in dBm, decibel differ-
ence from one milliwatt. This is the preferred method since it is standardized
between different devices. max_signal does not need to be set.

IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC This device needs to get data from bea-
con before association (i.e. dtim_period).

IEEE80211_HW_SPECTRUM_MGMT Hardware supports spectrum management de-
fined in 802.11h Measurement, Channel Switch, Quieting, TPC

IEEE80211_HW_AMPDU_AGGREGATION Hardware supports 11n A-MPDU aggrega-
tion.

IEEE80211_HW_SUPPORTS_PS Hardware has power save support (i.e. can go to
sleep).

IEEE80211_HW_PS_NULLFUNC_STACK Hardware requires nullfunc frame handling
in stack, implies stack support for dynamic PS.

IEEE80211_HW_SUPPORTS_DYNAMIC_PS Hardware has support for dynamic PS.

IEEE80211_HW_MFP_CAPABLE Hardware supports management frame protection
(MFP, IEEE 802.11w).

IEEE80211_HW_WANT_MONITOR_VIF The driver would like to be informed of a vir-
tual monitor interface when monitor interfaces are the only active interfaces.

IEEE80211_HW_NO_AUTO_VIF The driver would like for no wlanX to be created. It
is expected user-space will create vifs as desired (and thus have them named
as desired).

IEEE80211_HW_SW_CRYPTO_CONTROL The driver wants to control which of the
crypto algorithms can be done in software - so don’t automatically try to
fall back to it if hardware crypto fails, but do so only if the driver returns 1.
This also forces the driver to advertise its supported cipher suites.

IEEE80211_HW_SUPPORT_FAST_XMIT The driver/hardware supports fast-xmit, this
currently requires only the ability to calculate the duration for frames.

IEEE80211_HW_REPORTS_TX_ACK_STATUS Hardware can provide ack status reports
of Tx frames to the stack.

1416 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

IEEE80211_HW_CONNECTION_MONITOR The hardware performs its own connection
monitoring, including periodic keep-alives to the AP and probing the AP on
beacon loss.

IEEE80211_HW_QUEUE_CONTROL The driver wants to control per-interface queue
mapping in order to use different queues (not just one per AC) for different
virtual interfaces. See the doc section on HW queue control for more details.

IEEE80211_HW_SUPPORTS_PER_STA_GTK The device’s crypto engine supports per-
station GTKs as used by IBSS RSN or during fast transition. If the device
doesn’t support per-station GTKs, but can be asked not to decrypt group
addressed frames, then IBSS RSN support is still possible but software crypto
will be used. Advertise the wiphy flag only in that case.

IEEE80211_HW_AP_LINK_PS When operating in AP mode the device autonomously
manages the PS status of connected stations. When this flag is set mac80211
will not trigger PS mode for connected stations based on the PM bit of incom-
ing frames. Use ieee80211_start_ps()/ieee8021_end_ps() to manually config-
ure the PS mode of connected stations.

IEEE80211_HW_TX_AMPDU_SETUP_IN_HW The device handles TX A-MPDU session
setup strictly in HW. mac80211 should not attempt to do this in software.

IEEE80211_HW_SUPPORTS_RC_TABLE The driver supports using a rate selection ta-
ble provided by the rate control algorithm.

IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF Use the P2P Device address for any P2P
Interface. This will be honoured even if more than one interface is supported.

IEEE80211_HW_TIMING_BEACON_ONLY Use sync timing from beacon frames only, to
allow getting TBTT of a DTIM beacon.

IEEE80211_HW_SUPPORTS_HT_CCK_RATES Hardware supports mixing HT/CCK
rates and can cope with CCK rates in an aggregation session (e.g. by not
using aggregation for such frames.)

IEEE80211_HW_CHANCTX_STA_CSA Support 802.11h based channel-switch (CSA)
for a single active channel while using channel contexts. When support is
not enabled the default action is to disconnect when getting the CSA frame.

IEEE80211_HW_SUPPORTS_CLONED_SKBS The driver will never modify the payload
or tailroom of TX skbs without copying them first.

IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS The HW supports scanning on all
bands in one command, mac80211 doesn’t have to run separate scans per
band.

IEEE80211_HW_TDLS_WIDER_BW The device/driver supports wider bandwidth than
then BSS bandwidth for a TDLS link on the base channel.

IEEE80211_HW_SUPPORTS_AMSDU_IN_AMPDU The driver supports receiving A-
MSDUs within A-MPDU.

IEEE80211_HW_BEACON_TX_STATUS The device/driver provides TX status for sent
beacons.

IEEE80211_HW_NEEDS_UNIQUE_STA_ADDR Hardware (or driver) requires that each
station has a unique address, i.e. each station entry can be identified by just

47.3. mac80211 subsystem (basics) 1417

Linux Driver-api Documentation

its MAC address; this prevents, for example, the same station from connect-
ing to two virtual AP interfaces at the same time.

IEEE80211_HW_SUPPORTS_REORDERING_BUFFER Hardware (or driver) manages the
reordering buffer internally, guaranteeingmac80211 receives frames in order
and does not need to manage its own reorder buffer or BA session timeout.

IEEE80211_HW_USES_RSS The device uses RSS and thus requires parallel RX,
which implies using per-CPU station statistics.

IEEE80211_HW_TX_AMSDU Hardware (or driver) supports software aggregated A-
MSDU frames. Requires software tx queueing and fast-xmit support. When
not using minstrel/minstrel_ht rate control, the driver must limit the maxi-
mum A-MSDU size based on the current tx rate by setting max_rc_amsdu_len
in struct ieee80211_sta.

IEEE80211_HW_TX_FRAG_LIST Hardware (or driver) supports sending frag_list
skbs, needed for zero-copy software A-MSDU.

IEEE80211_HW_REPORTS_LOW_ACK The driver (or firmware) reports low ack event
by ieee80211_report_low_ack() based on its own algorithm. For such drivers,
mac80211 packet loss mechanism will not be triggered and driver is com-
pletely depending on firmware event for station kickout.

IEEE80211_HW_SUPPORTS_TX_FRAG Hardware does fragmentation by itself. The
stack will not do fragmentation. The callback for set_frag_threshold should
be set as well.

IEEE80211_HW_SUPPORTS_TDLS_BUFFER_STA Hardware supports buffer STA on
TDLS links.

IEEE80211_HW_DEAUTH_NEED_MGD_TX_PREP The driver requires the
mgd_prepare_tx() callback to be called before transmission of a deau-
thentication frame in case the association was completed but no beacon
was heard. This is required in multi-channel scenarios, where the virtual
interface might not be given air time for the transmission of the frame, as it
is not synced with the AP/P2P GO yet, and thus the deauthentication frame
might not be transmitted.

IEEE80211_HW_DOESNT_SUPPORT_QOS_NDP The driver (or firmware) doesn’t sup-
port QoS NDP for AP probing - that’s most likely a driver bug.

IEEE80211_HW_BUFF_MMPDU_TXQ use the TXQ for bufferable MMPDUs, this of
course requires the driver to use TXQs to start with.

IEEE80211_HW_SUPPORTS_VHT_EXT_NSS_BW (Hardware) rate control supports VHT
extended NSS BW (dot11VHTExtendedNSSBWCapable). This flag will be set
if the selected rate control algorithm sets RATE_CTRL_CAPA_VHT_EXT_NSS_BW
but if the rate control is built-in then it must be set by the driver. See also the
documentation for that flag.

IEEE80211_HW_STA_MMPDU_TXQ use the extra non-TID per-station TXQ for all MM-
PDUs on station interfaces. This of course requires the driver to use TXQs to
start with.

IEEE80211_HW_TX_STATUS_NO_AMPDU_LEN Driver does not report accurate A-
MPDU length in tx status information

1418 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

IEEE80211_HW_SUPPORTS_MULTI_BSSID Hardware supports multi BSSID

IEEE80211_HW_SUPPORTS_ONLY_HE_MULTI_BSSID Hardware supports multi BSSID
only for HE APs. Applies if IEEE80211_HW_SUPPORTS_MULTI_BSSID is
set.

IEEE80211_HW_AMPDU_KEYBORDER_SUPPORT The card and driver is only aggregat-
ing MPDUs with the same keyid, allowing mac80211 to keep Tx A-MPDU
sessions active while rekeying with Extended Key ID.

NUM_IEEE80211_HW_FLAGS number of hardware flags, used for sizing arrays

Description
These flags are used to indicate hardware capabilities to the stack. Generally, flags
here should have their meaning done in a way that the simplest hardware doesn’t
need setting any particular flags. There are some exceptions to this rule, however,
so you are advised to review these flags carefully.

void SET_IEEE80211_DEV(struct ieee80211_hw * hw, struct device * dev)
set device for 802.11 hardware

Parameters
struct ieee80211_hw * hw the struct ieee80211_hw to set the device for

struct device * dev the struct device of this 802.11 device

void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw * hw, const u8 * addr)
set the permanent MAC address for 802.11 hardware

Parameters
struct ieee80211_hw * hw the struct ieee80211_hw to set the MAC address

for

const u8 * addr the address to set

struct ieee80211_ops
callbacks from mac80211 to the driver

Definition

struct ieee80211_ops {
void (*tx)(struct ieee80211_hw *hw,struct ieee80211_tx_control *control,␣

↪→struct sk_buff *skb);
int (*start)(struct ieee80211_hw *hw);
void (*stop)(struct ieee80211_hw *hw);

#ifdef CONFIG_PM;
int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan);
int (*resume)(struct ieee80211_hw *hw);
void (*set_wakeup)(struct ieee80211_hw *hw, bool enabled);

#endif;
int (*add_interface)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (*change_interface)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif, enum nl80211_iftype new_type, bool p2p);
void (*remove_interface)(struct ieee80211_hw *hw, struct ieee80211_vif␣

↪→*vif);
int (*config)(struct ieee80211_hw *hw, u32 changed);
void (*bss_info_changed)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif,struct ieee80211_bss_conf *info, u32 changed); (continues on next page)

47.3. mac80211 subsystem (basics) 1419

Linux Driver-api Documentation

(continued from previous page)
int (*start_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (*stop_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
u64 (*prepare_multicast)(struct ieee80211_hw *hw, struct netdev_hw_addr_

↪→list *mc_list);
void (*configure_filter)(struct ieee80211_hw *hw,unsigned int changed_

↪→flags,unsigned int *total_flags, u64 multicast);
void (*config_iface_filter)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif,unsigned int filter_flags, unsigned int changed_flags);
int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool␣

↪→set);
int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,struct␣

↪→ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf␣
↪→*key);
void (*update_tkip_key)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif,struct ieee80211_key_conf *conf,struct ieee80211_sta *sta, u32 iv32,
↪→ u16 *phase1key);
void (*set_rekey_data)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,

↪→ struct cfg80211_gtk_rekey_data *data);
void (*set_default_unicast_key)(struct ieee80211_hw *hw, struct␣

↪→ieee80211_vif *vif, int idx);
int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,␣

↪→struct ieee80211_scan_request *req);
void (*cancel_hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif␣

↪→*vif);
int (*sched_scan_start)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif,struct cfg80211_sched_scan_request *req, struct ieee80211_scan_ies␣
↪→*ies);
int (*sched_scan_stop)(struct ieee80211_hw *hw, struct ieee80211_vif␣

↪→*vif);
void (*sw_scan_start)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,␣

↪→const u8 *mac_addr);
void (*sw_scan_complete)(struct ieee80211_hw *hw, struct ieee80211_vif␣

↪→*vif);
int (*get_stats)(struct ieee80211_hw *hw, struct ieee80211_low_level_

↪→stats *stats);
void (*get_key_seq)(struct ieee80211_hw *hw,struct ieee80211_key_conf␣

↪→*key, struct ieee80211_key_seq *seq);
int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value);
int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,␣

↪→struct ieee80211_sta *sta);
int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,␣

↪→struct ieee80211_sta *sta);
#ifdef CONFIG_MAC80211_DEBUGFS;

void (*sta_add_debugfs)(struct ieee80211_hw *hw,struct ieee80211_vif␣
↪→*vif,struct ieee80211_sta *sta, struct dentry *dir);
#endif;

void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,␣
↪→enum sta_notify_cmd, struct ieee80211_sta *sta);
int (*sta_set_txpwr)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,␣

↪→struct ieee80211_sta *sta);
int (*sta_state)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,

↪→struct ieee80211_sta *sta,enum ieee80211_sta_state old_state, enum␣
↪→ieee80211_sta_state new_state);
void (*sta_pre_rcu_remove)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif, struct ieee80211_sta *sta);
(continues on next page)

1420 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

(continued from previous page)
void (*sta_rc_update)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,

↪→struct ieee80211_sta *sta, u32 changed);
void (*sta_rate_tbl_update)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif, struct ieee80211_sta *sta);
void (*sta_statistics)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,

↪→struct ieee80211_sta *sta, struct station_info *sinfo);
int (*conf_tx)(struct ieee80211_hw *hw,struct ieee80211_vif *vif, u16 ac,

↪→ const struct ieee80211_tx_queue_params *params);
u64 (*get_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (*set_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64␣

↪→tsf);
void (*offset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,␣

↪→s64 offset);
void (*reset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (*tx_last_beacon)(struct ieee80211_hw *hw);
int (*ampdu_action)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,␣

↪→struct ieee80211_ampdu_params *params);
int (*get_survey)(struct ieee80211_hw *hw, int idx, struct survey_info␣

↪→*survey);
void (*rfkill_poll)(struct ieee80211_hw *hw);
void (*set_coverage_class)(struct ieee80211_hw *hw, s16 coverage_class);

#ifdef CONFIG_NL80211_TESTMODE;
int (*testmode_cmd)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,␣

↪→void *data, int len);
int (*testmode_dump)(struct ieee80211_hw *hw, struct sk_buff *skb,struct␣

↪→netlink_callback *cb, void *data, int len);
#endif;

void (*flush)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32␣
↪→queues, bool drop);
void (*channel_switch)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,

↪→ struct ieee80211_channel_switch *ch_switch);
int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
int (*remain_on_channel)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif,struct ieee80211_channel *chan,int duration, enum ieee80211_roc_
↪→type type);
int (*cancel_remain_on_channel)(struct ieee80211_hw *hw, struct␣

↪→ieee80211_vif *vif);
int (*set_ringparam)(struct ieee80211_hw *hw, u32 tx, u32 rx);
void (*get_ringparam)(struct ieee80211_hw *hw, u32 *tx, u32 *tx_max, u32␣

↪→*rx, u32 *rx_max);
bool (*tx_frames_pending)(struct ieee80211_hw *hw);
int (*set_bitrate_mask)(struct ieee80211_hw *hw, struct ieee80211_vif␣

↪→*vif, const struct cfg80211_bitrate_mask *mask);
void (*event_callback)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,

↪→ const struct ieee80211_event *event);
void (*allow_buffered_frames)(struct ieee80211_hw *hw,struct ieee80211_

↪→sta *sta,u16 tids, int num_frames,enum ieee80211_frame_release_type␣
↪→reason, bool more_data);
void (*release_buffered_frames)(struct ieee80211_hw *hw,struct ieee80211_

↪→sta *sta,u16 tids, int num_frames,enum ieee80211_frame_release_type␣
↪→reason, bool more_data);
int (*get_et_sset_count)(struct ieee80211_hw *hw, struct ieee80211_vif␣

↪→*vif, int sset);
void (*get_et_stats)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,␣

↪→struct ethtool_stats *stats, u64 *data);
(continues on next page)

47.3. mac80211 subsystem (basics) 1421

Linux Driver-api Documentation

(continued from previous page)
void (*get_et_strings)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,

↪→ u32 sset, u8 *data);
void (*mgd_prepare_tx)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,

↪→ u16 duration);
void (*mgd_protect_tdls_discover)(struct ieee80211_hw *hw, struct␣

↪→ieee80211_vif *vif);
int (*add_chanctx)(struct ieee80211_hw *hw, struct ieee80211_chanctx_

↪→conf *ctx);
void (*remove_chanctx)(struct ieee80211_hw *hw, struct ieee80211_chanctx_

↪→conf *ctx);
void (*change_chanctx)(struct ieee80211_hw *hw,struct ieee80211_chanctx_

↪→conf *ctx, u32 changed);
int (*assign_vif_chanctx)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif, struct ieee80211_chanctx_conf *ctx);
void (*unassign_vif_chanctx)(struct ieee80211_hw *hw,struct ieee80211_

↪→vif *vif, struct ieee80211_chanctx_conf *ctx);
int (*switch_vif_chanctx)(struct ieee80211_hw *hw,struct ieee80211_vif_

↪→chanctx_switch *vifs,int n_vifs, enum ieee80211_chanctx_switch_mode␣
↪→mode);
void (*reconfig_complete)(struct ieee80211_hw *hw, enum ieee80211_

↪→reconfig_type reconfig_type);
#if IS_ENABLED(CONFIG_IPV6);

void (*ipv6_addr_change)(struct ieee80211_hw *hw,struct ieee80211_vif␣
↪→*vif, struct inet6_dev *idev);
#endif;

void (*channel_switch_beacon)(struct ieee80211_hw *hw,struct ieee80211_
↪→vif *vif, struct cfg80211_chan_def *chandef);
int (*pre_channel_switch)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif, struct ieee80211_channel_switch *ch_switch);
int (*post_channel_switch)(struct ieee80211_hw *hw, struct ieee80211_vif␣

↪→*vif);
void (*abort_channel_switch)(struct ieee80211_hw *hw, struct ieee80211_

↪→vif *vif);
void (*channel_switch_rx_beacon)(struct ieee80211_hw *hw,struct␣

↪→ieee80211_vif *vif, struct ieee80211_channel_switch *ch_switch);
int (*join_ibss)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (*leave_ibss)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
u32 (*get_expected_throughput)(struct ieee80211_hw *hw, struct ieee80211_

↪→sta *sta);
int (*get_txpower)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,␣

↪→int *dbm);
int (*tdls_channel_switch)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif,struct ieee80211_sta *sta, u8 oper_class,struct cfg80211_chan_def␣
↪→*chandef, struct sk_buff *tmpl_skb, u32 ch_sw_tm_ie);
void (*tdls_cancel_channel_switch)(struct ieee80211_hw *hw,struct␣

↪→ieee80211_vif *vif, struct ieee80211_sta *sta);
void (*tdls_recv_channel_switch)(struct ieee80211_hw *hw,struct␣

↪→ieee80211_vif *vif, struct ieee80211_tdls_ch_sw_params *params);
void (*wake_tx_queue)(struct ieee80211_hw *hw, struct ieee80211_txq␣

↪→*txq);
void (*sync_rx_queues)(struct ieee80211_hw *hw);
int (*start_nan)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,␣

↪→struct cfg80211_nan_conf *conf);
int (*stop_nan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (*nan_change_conf)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,

↪→ struct cfg80211_nan_conf *conf, u32 changes);
(continues on next page)

1422 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

(continued from previous page)
int (*add_nan_func)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,␣

↪→const struct cfg80211_nan_func *nan_func);
void (*del_nan_func)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,␣

↪→u8 instance_id);
bool (*can_aggregate_in_amsdu)(struct ieee80211_hw *hw,struct sk_buff␣

↪→*head, struct sk_buff *skb);
int (*get_ftm_responder_stats)(struct ieee80211_hw *hw,struct ieee80211_

↪→vif *vif, struct cfg80211_ftm_responder_stats *ftm_stats);
int (*start_pmsr)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,␣

↪→struct cfg80211_pmsr_request *request);
void (*abort_pmsr)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,␣

↪→struct cfg80211_pmsr_request *request);
int (*set_tid_config)(struct ieee80211_hw *hw,struct ieee80211_vif *vif,

↪→struct ieee80211_sta *sta, struct cfg80211_tid_config *tid_conf);
int (*reset_tid_config)(struct ieee80211_hw *hw,struct ieee80211_vif␣

↪→*vif, struct ieee80211_sta *sta, u8 tids);
};

Members
tx Handler that 802.11 module calls for each transmitted frame. skb contains

the buffer starting from the IEEE 802.11 header. The low-level driver should
send the frame out based on configuration in the TX control data. This handler
should, preferably, never fail and stop queues appropriately. Must be atomic.

start Called before the first netdevice attached to the hardware is enabled. This
should turn on the hardware and must turn on frame reception (for possibly
enabledmonitor interfaces.) Returns negative error codes, thesemay be seen
in userspace, or zero. When the device is started it should not have a MAC
address to avoid acknowledging frames before a non-monitor device is added.
Must be implemented and can sleep.

stop Called after last netdevice attached to the hardware is disabled. This should
turn off the hardware (at least it must turn off frame reception.) May be
called right after add_interface if that rejects an interface. If you added any
work onto the mac80211 workqueue you should ensure to cancel it on this
callback. Must be implemented and can sleep.

suspend Suspend the device; mac80211 itself will quiesce before and stop trans-
mitting and doing any other configuration, and then ask the device to sus-
pend. This is only invoked when WoWLAN is configured, otherwise the de-
vice is deconfigured completely and reconfigured at resume time. The driver
may also impose special conditions under which it wants to use the“normal”
suspend (deconfigure), say if it only supports WoWLAN when the device is
associated. In this case, it must return 1 from this function.

resume If WoWLAN was configured, this indicates that mac80211 is now resum-
ing its operation, after this the device must be fully functional again. If this
returns an error, the only way out is to also unregister the device. If it re-
turns 1, then mac80211 will also go through the regular complete restart on
resume.

set_wakeup Enable or disable wakeup when WoWLAN configuration is modified.
The reason is that device_set_wakeup_enable() is supposed to be called when
the configuration changes, not only in suspend().

47.3. mac80211 subsystem (basics) 1423

Linux Driver-api Documentation

add_interface Called when a netdevice attached to the hardware is enabled. Be-
cause it is not called for monitor mode devices, start and stop must be im-
plemented. The driver should perform any initialization it needs before the
device can be enabled. The initial configuration for the interface is given in
the conf parameter. The callback may refuse to add an interface by returning
a negative error code (which will be seen in userspace.) Must be implemented
and can sleep.

change_interface Called when a netdevice changes type. This callback is op-
tional, but only if it is supported can interface types be switched while the
interface is UP. The callback may sleep. Note that while an interface is being
switched, it will not be found by the interface iteration callbacks.

remove_interface Notifies a driver that an interface is going down. The stop
callback is called after this if it is the last interface and no monitor inter-
faces are present. When all interfaces are removed, the MAC address in the
hardware must be cleared so the device no longer acknowledges packets, the
mac_addr member of the conf structure is, however, set to the MAC address
of the device going away. Hence, this callback must be implemented. It can
sleep.

config Handler for configuration requests. IEEE 802.11 code calls this function
to change hardware configuration, e.g., channel. This function should never
fail but returns a negative error code if it does. The callback can sleep.

bss_info_changed Handler for configuration requests related to BSS parameters
that may vary during BSS’s lifespan, and may affect low level driver (e.g.
assoc/disassoc status, erp parameters). This function should not be used if no
BSS has been set, unless for association indication. The changed parameter
indicates which of the bss parameters has changed when a call is made. The
callback can sleep.

start_ap Start operation on the AP interface, this is called after all the infor-
mation in bss_conf is set and beacon can be retrieved. A channel context
is bound before this is called. Note that if the driver uses software scan
or ROC, this (and stop_ap) isn’t called when the AP is just “paused”for
scanning/ROC, which is indicated by the beacon being disabled/enabled via
bss_info_changed.

stop_ap Stop operation on the AP interface.

prepare_multicast Prepare for multicast filter configuration. This callback is
optional, and its return value is passed to configure_filter(). This callback
must be atomic.

configure_filter Configure the device’s RX filter. See the section “Frame
filtering”for more information. This callback must be implemented and can
sleep.

config_iface_filter Configure the interface’s RX filter. This callback is optional
and is used to configure which frames should be passed to mac80211. The
filter_flags is the combination of FIF_* flags. The changed_flags is a bit mask
that indicates which flags are changed. This callback can sleep.

set_tim Set TIM bit. mac80211 calls this function when a TIM bit must be set or
cleared for a given STA. Must be atomic.

1424 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

set_key See the section “Hardware crypto acceleration”This callback is only
called between add_interface and remove_interface calls, i.e. while the given
virtual interface is enabled. Returns a negative error code if the key can’t
be added. The callback can sleep.

update_tkip_key See the section “Hardware crypto acceleration”This call-
back will be called in the context of Rx. Called for drivers which set
IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. The callbackmust be atomic.

set_rekey_data If the device supports GTK rekeying, for example while the host
is suspended, it can assign this callback to retrieve the data necessary to do
GTK rekeying, this is the KEK, KCK and replay counter. After rekeying was
done it should (for example during resume) notify userspace of the new replay
counter using ieee80211_gtk_rekey_notify().

set_default_unicast_key Set the default (unicast) key index, useful for WEP
when the device sends data packets autonomously, e.g. for ARP offloading.
The index can be 0-3, or -1 for unsetting it.

hw_scan Ask the hardware to service the scan request, no need to start the scan
state machine in stack. The scan must honour the channel configuration done
by the regulatory agent in the wiphy’s registered bands. The hardware (or
the driver) needs to make sure that power save is disabled. The req ie/ie_len
members are rewritten by mac80211 to contain the entire IEs after the SSID,
so that drivers need not look at these at all but just send them after the
SSID –mac80211 includes the (extended) supported rates andHT information
(where applicable). When the scan finishes, ieee80211_scan_completed()
must be called; note that it also must be called when the scan cannot finish
due to any error unless this callback returned a negative error code. This
callback is also allowed to return the special return value 1, this indicates
that hardware scan isn’t desirable right now and a software scan should be
done instead. A driver wishing to use this capability must ensure its (hard-
ware) scan capabilities aren’t advertised as more capable than mac80211’s
software scan is. The callback can sleep.

cancel_hw_scan Ask the low-level tp cancel the active hw scan. The driver should
ask the hardware to cancel the scan (if possible), but the scan will be com-
pleted only after the driver will call ieee80211_scan_completed(). This call-
back is needed for wowlan, to prevent enqueueing a new scan_work after the
low-level driver was already suspended. The callback can sleep.

sched_scan_start Ask the hardware to start scanning repeatedly at specific in-
tervals. The driver must call the ieee80211_sched_scan_results() function
whenever it finds results. This process will continue until sched_scan_stop is
called.

sched_scan_stop Tell the hardware to stop an ongoing scheduled scan. In this
case, ieee80211_sched_scan_stopped() must not be called.

sw_scan_start Notifier function that is called just before a soft-
ware scan is started. Can be NULL, if the driver doesn’t
need this notification. The mac_addr parameter allows support-
ing NL80211_SCAN_FLAG_RANDOM_ADDR, the driver may set the
NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR flag if it can use this
parameter. The callback can sleep.

47.3. mac80211 subsystem (basics) 1425

Linux Driver-api Documentation

sw_scan_complete Notifier function that is called just after a software scan fin-
ished. Can be NULL, if the driver doesn’t need this notification. The callback
can sleep.

get_stats Return low-level statistics. Returns zero if statistics are available. The
callback can sleep.

get_key_seq If your device implements encryption in hardware and does IV/PN
assignment then this callback should be provided to read the IV/PN for the
given key from hardware. The callback must be atomic.

set_frag_threshold Configuration of fragmentation threshold. Assign this if the
device does fragmentation by itself. Note that to prevent the stack from doing
fragmentation IEEE80211_HW_SUPPORTS_TX_FRAG should be set as well.
The callback can sleep.

set_rts_threshold Configuration of RTS threshold (if device needs it) The call-
back can sleep.

sta_add Notifies low level driver about addition of an associated station, AP,
IBSS/WDS/mesh peer etc. This callback can sleep.

sta_remove Notifies low level driver about removal of an associated station, AP,
IBSS/WDS/mesh peer etc. Note that after the callback returns it isn’t safe to
use the pointer, not even RCU protected; no RCU grace period is guaranteed
between returning here and freeing the station. See sta_pre_rcu_remove if
needed. This callback can sleep.

sta_add_debugfs Drivers can use this callback to add debugfs files when a sta-
tion is added to mac80211’s station list. This callback should be within a
CONFIG_MAC80211_DEBUGFS conditional. This callback can sleep.

sta_notify Notifies low level driver about power state transition of an associated
station, AP, IBSS/WDS/mesh peer etc. For a VIF operating in AP mode, this
callback will not be called when the flag IEEE80211_HW_AP_LINK_PS is set.
Must be atomic.

sta_set_txpwr Configure the station tx power. This callback set the tx power for
the station. This callback can sleep.

sta_state Notifies low level driver about state transition of a station (which can
be the AP, a client, IBSS/WDS/mesh peer etc.) This callback is mutually ex-
clusive with sta_add/sta_remove. It must not fail for down transitions but
may fail for transitions up the list of states. Also note that after the callback
returns it isn’t safe to use the pointer, not even RCU protected - no RCU
grace period is guaranteed between returning here and freeing the station.
See sta_pre_rcu_remove if needed. The callback can sleep.

sta_pre_rcu_remove Notify driver about station removal before RCU synchroni-
sation. This is useful if a driver needs to have station pointers protected using
RCU, it can then use this call to clear the pointers instead of waiting for an
RCU grace period to elapse in sta_state. The callback can sleep.

sta_rc_update Notifies the driver of changes to the bitrates that can be used
to transmit to the station. The changes are advertised with bits from enum
ieee80211_rate_control_changed and the values are reflected in the station
data. This callback should only be used when the driver uses hardware rate

1426 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

control (IEEE80211_HW_HAS_RATE_CONTROL) since otherwise the rate control
algorithm is notified directly. Must be atomic.

sta_rate_tbl_update Notifies the driver that the rate table changed. This is only
used if the configured rate control algorithm actually uses the new rate table
API, and is therefore optional. Must be atomic.

sta_statistics Get statistics for this station. For example with beacon filtering,
the statistics kept by mac80211 might not be accurate, so let the driver pre-
fill the statistics. The driver can fill most of the values (indicating which by
setting the filled bitmap), but not all of them make sense - see the source for
which ones are possible. Statistics that the driver doesn’t fill will be filled
by mac80211. The callback can sleep.

conf_tx Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), bursting)
for a hardware TX queue. Returns a negative error code on failure. The
callback can sleep.

get_tsf Get the current TSF timer value from firmware/hardware. Currently, this
is only used for IBSS mode BSSID merging and debugging. Is not a required
function. The callback can sleep.

set_tsf Set the TSF timer to the specified value in the firmware/hardware. Cur-
rently, this is only used for IBSS mode debugging. Is not a required function.
The callback can sleep.

offset_tsf Offset the TSF timer by the specified value in the firmware/hardware.
Preferred to set_tsf as it avoids delay between calling set_tsf() and hardware
getting programmed, which will show up as TSF delay. Is not a required
function. The callback can sleep.

reset_tsf Reset the TSF timer and allow firmware/hardware to synchronize with
other STAs in the IBSS. This is only used in IBSS mode. This function is
optional if the firmware/hardware takes full care of TSF synchronization. The
callback can sleep.

tx_last_beacon Determine whether the last IBSS beacon was sent by us. This is
needed only for IBSSmode and the result of this function is used to determine
whether to reply to Probe Requests. Returns non-zero if this device sent the
last beacon. The callback can sleep.

ampdu_action Perform a certain A-MPDU action. The RA/TID combination deter-
mines the destination and TID we want the ampdu action to be performed for.
The action is defined through ieee80211_ampdu_mlme_action. When the ac-
tion is set to IEEE80211_AMPDU_TX_OPERATIONAL the driver may neither send
aggregates containing more subframes than buf_size nor send aggregates
in a way that lost frames would exceed the buffer size. If just limiting the
aggregate size, this would be possible with a buf_size of 8:

• TX: 1.....7

• RX: 2....7 (lost frame #1)

• TX: 8..1...

which is invalid since #1 was now re-transmitted well past the buffer size of
8. Correct ways to retransmit #1 would be:

47.3. mac80211 subsystem (basics) 1427

Linux Driver-api Documentation

• TX: 1 or

• TX: 18 or

• TX: 81

Even 189 would be wrong since 1 could be lost again.

Returns a negative error code on failure. The driver may return
IEEE80211_AMPDU_TX_START_IMMEDIATE for IEEE80211_AMPDU_TX_START if
the session can start immediately.

The callback can sleep.

get_survey Return per-channel survey information

rfkill_poll Poll rfkill hardware state. If you need this, you also need
to set wiphy->rfkill_poll to true before registration, and need to call
wiphy_rfkill_set_hw_state() in the callback. The callback can sleep.

set_coverage_class Set slot time for given coverage class as specified in IEEE
802.11-2007 section 17.3.8.6 and modify ACK timeout accordingly; coverage
class equals to -1 to enable ACK timeout estimation algorithm (dynack). To
disable dynack set valid value for coverage class. This callback is not required
and may sleep.

testmode_cmd Implement a cfg80211 test mode command. The passed vif may
be NULL. The callback can sleep.

testmode_dump Implement a cfg80211 test mode dump. The callback can sleep.

flush Flush all pending frames from the hardware queue, making sure that the
hardware queues are empty. The queues parameter is a bitmap of queues
to flush, which is useful if different virtual interfaces use different hardware
queues; it may also indicate all queues. If the parameter drop is set to true,
pending frames may be dropped. Note that vif can be NULL. The callback
can sleep.

channel_switch Drivers that need (or want) to offload the channel switch opera-
tion for CSAs received from the AP may implement this callback. They must
then call ieee80211_chswitch_done() to indicate completion of the channel
switch.

set_antenna Set antenna configuration (tx_ant, rx_ant) on the device. Parame-
ters are bitmaps of allowed antennas to use for TX/RX. Drivers may reject
TX/RX mask combinations they cannot support by returning -EINVAL (also
see nl80211.h NL80211_ATTR_WIPHY_ANTENNA_TX).

get_antenna Get current antenna configuration from device (tx_ant, rx_ant).

remain_on_channel Starts an off-channel period on the given channel, must
call back to ieee80211_ready_on_channel() when on that channel. Note
that normal channel traffic is not stopped as this is intended for hw of-
fload. Frames to transmit on the off-channel channel are transmitted
normally except for the IEEE80211_TX_CTL_TX_OFFCHAN flag. When the
duration (which will always be non-zero) expires, the driver must call
ieee80211_remain_on_channel_expired(). Note that this callback may be
called while the device is in IDLE and must be accepted in this case. This
callback may sleep.

1428 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

cancel_remain_on_channel Requests that an ongoing off-channel period is
aborted before it expires. This callback may sleep.

set_ringparam Set tx and rx ring sizes.

get_ringparam Get tx and rx ring current and maximum sizes.

tx_frames_pending Check if there is any pending frame in the hardware queues
before entering power save.

set_bitrate_mask Set a mask of rates to be used for rate control selection when
transmitting a frame. Currently only legacy rates are handled. The callback
can sleep.

event_callback Notify driver about any event in mac80211. See enum
ieee80211_event_type for the different types. The callback must be atomic.

allow_buffered_frames Prepare device to allow the given number of frames to
go out to the given station. The frames will be sent by mac80211 via the
usual TX path after this call. The TX information for frames released will also
have the IEEE80211_TX_CTL_NO_PS_BUFFER flag set and the last one will also
have IEEE80211_TX_STATUS_EOSP set. In case frames from multiple TIDs are
released and the driver might reorder them between the TIDs, it must set the
IEEE80211_TX_STATUS_EOSP flag on the last frame and clear it on all others
and also handle the EOSP bit in the QoS header correctly. Alternatively, it
can also call the ieee80211_sta_eosp() function. The tids parameter is a
bitmap and tells the driver which TIDs the frames will be on; it will at most
have two bits set. This callback must be atomic.

release_buffered_frames Release buffered frames according to the given pa-
rameters. In the case where the driver buffers some frames for sleeping
stations mac80211 will use this callback to tell the driver to release some
frames, either for PS-poll or uAPSD. Note that if the more_data parameter
is false the driver must check if there are more frames on the given TIDs,
and if there are more than the frames being released then it must still set
the more-data bit in the frame. If the more_data parameter is true, then of
course the more-data bit must always be set. The tids parameter tells the
driver which TIDs to release frames from, for PS-poll it will always have only
a single bit set. In the case this is used for a PS-poll initiated release, the
num_frames parameter will always be 1 so code can be shared. In this case
the driver must also set IEEE80211_TX_STATUS_EOSP flag on the TX status
(and must report TX status) so that the PS-poll period is properly ended. This
is used to avoid sending multiple responses for a retried PS-poll frame. In the
case this is used for uAPSD, the num_frames parameter may be bigger than
one, but the driver may send fewer frames (it must send at least one, how-
ever). In this case it is also responsible for setting the EOSP flag in the QoS
header of the frames. Also, when the service period ends, the driver must
set IEEE80211_TX_STATUS_EOSP on the last frame in the SP. Alternatively, it
may call the function ieee80211_sta_eosp() to inform mac80211 of the end
of the SP. This callback must be atomic.

get_et_sset_count Ethtool API to get string-set count.

get_et_stats Ethtool API to get a set of u64 stats.

get_et_strings Ethtool API to get a set of strings to describe stats and perhaps

47.3. mac80211 subsystem (basics) 1429

Linux Driver-api Documentation

other supported types of ethtool data-sets.

mgd_prepare_tx Prepare for transmitting a management frame for association
before associated. In multi-channel scenarios, a virtual interface is bound to
a channel before it is associated, but as it isn’t associated yet it need not
necessarily be given airtime, in particular since any transmission to a P2P
GO needs to be synchronized against the GO’s powersave state. mac80211
will call this function before transmitting a management frame prior to hav-
ing successfully associated to allow the driver to give it channel time for the
transmission, to get a response and to be able to synchronize with the GO. For
drivers that set IEEE80211_HW_DEAUTH_NEED_MGD_TX_PREP, mac80211 would
also call this function before transmitting a deauthentication frame in case
that no beacon was heard from the AP/P2P GO. The callback will be called
before each transmission and upon return mac80211 will transmit the frame
right away. If duration is greater than zero, mac80211 hints to the driver the
duration for which the operation is requested. The callback is optional and
can (should!) sleep.

mgd_protect_tdls_discover Protect a TDLS discovery session. After sending a
TDLS discovery-request, we expect a reply to arrive on the AP’s channel. We
must stay on the channel (no PSM, scan, etc.), since a TDLS setup-response
is a direct packet not buffered by the AP. mac80211 will call this function
just before the transmission of a TDLS discovery-request. The recommended
period of protection is at least 2 * (DTIM period). The callback is optional and
can sleep.

add_chanctx Notifies device driver about new channel context creation. This call-
back may sleep.

remove_chanctx Notifies device driver about channel context destruction. This
callback may sleep.

change_chanctx Notifies device driver about channel context changes that may
happen when combining different virtual interfaces on the same channel con-
text with different settings This callback may sleep.

assign_vif_chanctx Notifies device driver about channel context being bound to
vif. Possible use is for hw queue remapping. This callback may sleep.

unassign_vif_chanctx Notifies device driver about channel context being un-
bound from vif. This callback may sleep.

switch_vif_chanctx switch a number of vifs from one chanctx to another, as
specified in the list of ieee80211_vif_chanctx_switch passed to the driver,
according to the mode defined in ieee80211_chanctx_switch_mode. This
callback may sleep.

reconfig_complete Called after a call to ieee80211_restart_hw() and during re-
sume, when the reconfiguration has completed. This can help the driver im-
plement the reconfiguration step (and indicate mac80211 is ready to receive
frames). This callback may sleep.

ipv6_addr_change IPv6 address assignment on the given interface changed. Cur-
rently, this is only called for managed or P2P client interfaces. This callback
is optional; it must not sleep.

1430 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

channel_switch_beacon Starts a channel switch to a new channel. Beacons
are modified to include CSA or ECSA IEs before calling this function. The
corresponding count fields in these IEs must be decremented, and when
they reach 1 the driver must call ieee80211_csa_finish(). Drivers which use
ieee80211_beacon_get() get the csa counter decremented by mac80211,
but must check if it is 1 using ieee80211_csa_is_complete() after the beacon
has been transmitted and then call ieee80211_csa_finish(). If the CSA count
starts as zero or 1, this function will not be called, since there won’t be any
time to beacon before the switch anyway.

pre_channel_switch This is an optional callback that is called before a channel
switch procedure is started (ie. when a STA gets a CSA or a userspace initi-
ated channel-switch), allowing the driver to prepare for the channel switch.

post_channel_switch This is an optional callback that is called after a channel
switch procedure is completed, allowing the driver to go back to a normal
configuration.

abort_channel_switch This is an optional callback that is called when channel
switch procedure was completed, allowing the driver to go back to a normal
configuration.

channel_switch_rx_beacon This is an optional callback that is called when chan-
nel switch procedure is in progress and additional beacon with CSA IE was
received, allowing driver to track changes in count.

join_ibss Join an IBSS (on an IBSS interface); this is called after all information
in bss_conf is set up and the beacon can be retrieved. A channel context is
bound before this is called.

leave_ibss Leave the IBSS again.

get_expected_throughput extract the expected throughput towards the speci-
fied station. The returned value is expressed in Kbps. It returns 0 if the RC
algorithm does not have proper data to provide.

get_txpower get current maximum tx power (in dBm) based on configuration and
hardware limits.

tdls_channel_switch Start channel-switching with a TDLS peer. The driver is re-
sponsible for continually initiating channel-switching operations and return-
ing to the base channel for communication with the AP. The driver receives
a channel-switch request template and the location of the switch-timing IE
within the template as part of the invocation. The template is valid only within
the call, and the driver can optionally copy the skb for further re-use.

tdls_cancel_channel_switch Stop channel-switching with a TDLS peer. Both
peers must be on the base channel when the call completes.

tdls_recv_channel_switch a TDLS channel-switch related frame (request or re-
sponse) has been received from a remote peer. The driver gets parameters
parsed from the incoming frame and may use them to continue an ongoing
channel-switch operation. In addition, a channel-switch response template is
provided, together with the location of the switch-timing IE within the tem-
plate. The skb can only be used within the function call.

wake_tx_queue Called when new packets have been added to the queue.

47.3. mac80211 subsystem (basics) 1431

Linux Driver-api Documentation

sync_rx_queues Process all pending frames in RSS queues. This is a synchroniza-
tion which is needed in case driver has in its RSS queues pending frames that
were received prior to the control path action currently taken (e.g. disasso-
ciation) but are not processed yet.

start_nan join an existing NAN cluster, or create a new one.

stop_nan leave the NAN cluster.

nan_change_conf change NAN configuration. The data in cfg80211_nan_conf
contains full new configuration and changes specify which parameters are
changed with respect to the last NAN config. The driver gets both full con-
figuration and the changed parameters since some devices may need the full
configuration while others need only the changed parameters.

add_nan_func Add a NAN function. Returns 0 on success. The data in
cfg80211_nan_func must not be referenced outside the scope of this call.

del_nan_func Remove a NAN function. The driver
must call ieee80211_nan_func_terminated() with
NL80211_NAN_FUNC_TERM_REASON_USER_REQUEST reason code
upon removal.

can_aggregate_in_amsdu Called in order to determine if HW supports aggregat-
ing two specific frames in the same A-MSDU. The relation between the skbs
should be symmetric and transitive. Note that while skb is always a real
frame, head may or may not be an A-MSDU.

get_ftm_responder_stats Retrieve FTM responder statistics, if available. Statis-
tics should be cumulative, currently no way to reset is provided.

start_pmsr start peer measurement (e.g. FTM) (this call can sleep)

abort_pmsr abort peer measurement (this call can sleep)

set_tid_config Apply TID specific configurations. This callback may sleep.

reset_tid_config Reset TID specific configuration for the peer. This callback
may sleep.

Description
This structure contains various callbacks that the driver may handle or, in some
cases, must handle, for example to configure the hardware to a new channel or to
transmit a frame.

struct ieee80211_hw * ieee80211_alloc_hw(size_t priv_data_len, const
struct ieee80211_ops * ops)

Allocate a new hardware device

Parameters
size_t priv_data_len length of private data

const struct ieee80211_ops * ops callbacks for this device

Description
This must be called once for each hardware device. The returned pointer must be
used to refer to this device when calling other functions. mac80211 allocates a

1432 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

private data area for the driver pointed to by priv in struct ieee80211_hw, the
size of this area is given as priv_data_len.
Return
A pointer to the new hardware device, or NULL on error.

int ieee80211_register_hw(struct ieee80211_hw * hw)
Register hardware device

Parameters
struct ieee80211_hw * hw the device to register as returned by

ieee80211_alloc_hw()

Description
You must call this function before any other functions in mac80211. Note that
before a hardware can be registered, you need to fill the contained wiphy’s infor-
mation.

Return
0 on success. An error code otherwise.

void ieee80211_unregister_hw(struct ieee80211_hw * hw)
Unregister a hardware device

Parameters
struct ieee80211_hw * hw the hardware to unregister

Description
This function instructs mac80211 to free allocated resources and unregister net-
devices from the networking subsystem.

void ieee80211_free_hw(struct ieee80211_hw * hw)
free hardware descriptor

Parameters
struct ieee80211_hw * hw the hardware to free

Description
This function frees everything that was allocated, including the private data for the
driver. You must call ieee80211_unregister_hw() before calling this function.

47.3.2 PHY configuration

TBD

This chapter should describe PHY handling including start/stop callbacks and the
various structures used.

struct ieee80211_conf
configuration of the device

Definition

47.3. mac80211 subsystem (basics) 1433

Linux Driver-api Documentation

struct ieee80211_conf {
u32 flags;
int power_level, dynamic_ps_timeout;
u16 listen_interval;
u8 ps_dtim_period;
u8 long_frame_max_tx_count, short_frame_max_tx_count;
struct cfg80211_chan_def chandef;
bool radar_enabled;
enum ieee80211_smps_mode smps_mode;

};

Members
flags configuration flags defined above

power_level requested transmit power (in dBm), backward compatibility value
only that is set to the minimum of all interfaces

dynamic_ps_timeout The dynamic powersave timeout (in ms), see the powersave
documentation below. This variable is valid only when the CONF_PS flag is
set.

listen_interval listen interval in units of beacon interval

ps_dtim_period The DTIM period of the AP we’re connected to, for use in power
saving. Power saving will not be enabled until a beacon has been received
and the DTIM period is known.

long_frame_max_tx_count Maximum number of transmissions for a“long”frame
(a frame not RTS protected), called “dot11LongRetryLimit”in 802.11, but
actually means the number of transmissions not the number of retries

short_frame_max_tx_count Maximum number of transmissions for a “short”
frame, called“dot11ShortRetryLimit”in 802.11, but actually means the num-
ber of transmissions not the number of retries

chandef the channel definition to tune to

radar_enabled whether radar detection is enabled

smps_mode spatial multiplexing powersave mode; note that
IEEE80211_SMPS_STATIC is used when the device is not configured for
an HT channel. Note that this is only valid if channel contexts are not used,
otherwise each channel context has the number of chains listed.

Description
This struct indicates how the driver shall configure the hardware.

enum ieee80211_conf_flags
configuration flags

Constants
IEEE80211_CONF_MONITOR there’s a monitor interface present – use this to deter-

mine for example whether to calculate timestamps for packets or not, do not
use instead of filter flags!

IEEE80211_CONF_PS Enable 802.11 power save mode (managed mode only). This
is the power save mode defined by IEEE 802.11-2007 section 11.2, mean-

1434 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

ing that the hardware still wakes up for beacons, is able to transmit frames
and receive the possible acknowledgment frames. Not to be confused with
hardware specific wakeup/sleep states, driver is responsible for that. See the
section “Powersave support”for more.

IEEE80211_CONF_IDLE The device is running, but idle; if the flag is set the driver
should be prepared to handle configuration requests but may turn the device
off as much as possible. Typically, this flag will be set when an interface is
set UP but not associated or scanning, but it can also be unset in that case
when monitor interfaces are active.

IEEE80211_CONF_OFFCHANNEL The device is currently not on its main operating
channel.

Description
Flags to define PHY configuration options

47.3.3 Virtual interfaces

TBD

This chapter should describe virtual interface basics that are relevant to
the driver (VLANs, MGMT etc are not.) It should explain the use of the
add_iface/remove_iface callbacks as well as the interface configuration callbacks.

Things related to AP mode should be discussed there.

Things related to supporting multiple interfaces should be in the appropriate chap-
ter, a BIG FAT note should be here about this though and the recommendation to
allow only a single interface in STA mode at first!

struct ieee80211_vif
per-interface data

Definition

struct ieee80211_vif {
enum nl80211_iftype type;
struct ieee80211_bss_conf bss_conf;
u8 addr[ETH_ALEN] ;
bool p2p;
bool csa_active;
bool mu_mimo_owner;
u8 cab_queue;
u8 hw_queue[IEEE80211_NUM_ACS];
struct ieee80211_txq *txq;
struct ieee80211_chanctx_conf __rcu *chanctx_conf;
u32 driver_flags;

#ifdef CONFIG_MAC80211_DEBUGFS;
struct dentry *debugfs_dir;

#endif;
bool probe_req_reg;
bool rx_mcast_action_reg;
bool txqs_stopped[IEEE80211_NUM_ACS];
u8 drv_priv[] ;

};

47.3. mac80211 subsystem (basics) 1435

Linux Driver-api Documentation

Members
type type of this virtual interface

bss_conf BSS configuration for this interface, either our own or the BSS we’re
associated to

addr address of this interface

p2p indicates whether this AP or STA interface is a p2p interface, i.e. a GO or
p2p-sta respectively

csa_active marks whether a channel switch is going on. Internally it is write-
protected by sdata_lock and local->mtx so holding either is fine for read ac-
cess.

mu_mimo_owner indicates interface owns MU-MIMO capability

cab_queue content-after-beacon (DTIM beacon really) queue, AP mode only

hw_queue hardware queue for each AC

txq the multicast data TX queue (if driver uses the TXQ abstraction)

chanctx_conf The channel context this interface is assigned to, or NULL when it
is not assigned. This pointer is RCU-protected due to the TX path needing to
access it; even though the netdev carrier will always be off when it is NULL
there can still be races and packets could be processed after it switches back
to NULL.

driver_flags flags/capabilities the driver has for this interface, these need to be
set (or cleared) when the interface is added or, if supported by the driver, the
interface type is changed at runtime, mac80211 will never touch this field

debugfs_dir debugfs dentry, can be used by drivers to create own per interface
debug files. Note that it will be NULL for the virtual monitor interface (if that
is requested.)

probe_req_reg probe requests should be reported to mac80211 for this interface.

rx_mcast_action_reg multicast Action frames should be reported to mac80211
for this interface.

txqs_stopped per AC flag to indicate that intermediate TXQs are stopped, pro-
tected by fq->lock.

drv_priv data area for driver use, will always be aligned to sizeof(void *).

Description
Data in this structure is continually present for driver use during the life of a virtual
interface.

1436 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

47.3.4 Receive and transmit processing

what should be here

TBD

This should describe the receive and transmit paths in mac80211/the drivers as
well as transmit status handling.

Frame format

As a general rule, when frames are passed between mac80211 and the driver, they
start with the IEEE 802.11 header and include the same octets that are sent over
the air except for the FCS which should be calculated by the hardware.

There are, however, various exceptions to this rule for advanced features:

The first exception is for hardware encryption and decryption offload where the
IV/ICV may or may not be generated in hardware.

Secondly, when the hardware handles fragmentation, the frame handed to the
driver from mac80211 is the MSDU, not the MPDU.

Packet alignment

Drivers always need to pass packets that are aligned to two-byte boundaries to the
stack.

Additionally, should, if possible, align the payload data in a way that guarantees
that the contained IP header is aligned to a four-byte boundary. In the case of
regular frames, this simply means aligning the payload to a four-byte boundary
(because either the IP header is directly contained, or IV/RFC1042 headers that
have a length divisible by four are in front of it). If the payload data is not prop-
erly aligned and the architecture doesn’t support efficient unaligned operations,
mac80211 will align the data.

With A-MSDU frames, however, the payload data address must yield two modulo
four because there are 14-byte 802.3 headers within the A-MSDU frames that push
the IP header further back to a multiple of four again. Thankfully, the specs were
sane enough this time around to require padding each A-MSDU subframe to a
length that is a multiple of four.

Padding like Atheros hardware adds which is between the 802.11 header and the
payload is not supported, the driver is required to move the 802.11 header to be
directly in front of the payload in that case.

47.3. mac80211 subsystem (basics) 1437

Linux Driver-api Documentation

Calling into mac80211 from interrupts

Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
called in hardware interrupt context. The low-level driver must not call any other
functions in hardware interrupt context. If there is a need for such call, the low-
level driver should first ACK the interrupt and perform the IEEE 802.11 code call
after this, e.g. from a scheduled workqueue or even tasklet function.

NOTE: If the driver opts to use the _irqsafe() functions, it may not also
use the non-IRQ-safe functions!

functions/definitions

struct ieee80211_rx_status
receive status

Definition

struct ieee80211_rx_status {
u64 mactime;
u64 boottime_ns;
u32 device_timestamp;
u32 ampdu_reference;
u32 flag;
u16 freq: 13, freq_offset: 1;
u8 enc_flags;
u8 encoding:2, bw:3, he_ru:3;
u8 he_gi:2, he_dcm:1;
u8 rate_idx;
u8 nss;
u8 rx_flags;
u8 band;
u8 antenna;
s8 signal;
u8 chains;
s8 chain_signal[IEEE80211_MAX_CHAINS];
u8 ampdu_delimiter_crc;
u8 zero_length_psdu_type;

};

Members
mactime value in microseconds of the 64-bit Time Synchronization Function (TSF)

timer when the first data symbol (MPDU) arrived at the hardware.

boottime_ns CLOCK_BOOTTIME timestamp the frame was received at, this is
needed only for beacons and probe responses that update the scan cache.

device_timestamp arbitrary timestamp for the device, mac80211 doesn’t use it
but can store it and pass it back to the driver for synchronisation

ampdu_reference A-MPDU reference number, must be a different value for each
A-MPDU but the same for each subframe within one A-MPDU

flag RX_FLAG_*

1438 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

freq frequency the radio was tuned to when receiving this frame, in MHz This
field must be set for management frames, but isn’t strictly needed for data
(other) frames - for those it only affects radiotap reporting.

freq_offset freq has a positive offset of 500Khz.
enc_flags uses bits from enum mac80211_rx_encoding_flags

encoding enum mac80211_rx_encoding

bw enum rate_info_bw

he_ru HE RU, from enum nl80211_he_ru_alloc

he_gi HE GI, from enum nl80211_he_gi

he_dcm HE DCM value

rate_idx index of data rate into band’s supported rates or MCS index if HT or
VHT is used (RX_FLAG_HT/RX_FLAG_VHT)

nss number of streams (VHT and HE only)

rx_flags internal RX flags for mac80211

band the active band when this frame was received

antenna antenna used

signal signal strength when receiving this frame, either in dBm, in
dB or unspecified depending on the hardware capabilities flags
IEEE80211_HW_SIGNAL_*

chains bitmask of receive chains for which separate signal strength values were
filled.

chain_signal per-chain signal strength, in dBm (unlike signal, doesn’t support
dB or unspecified units)

ampdu_delimiter_crc A-MPDU delimiter CRC

zero_length_psdu_type radiotap type of the 0-length PSDU

Description
The low-level driver should provide this information (the subset supported by hard-
ware) to the 802.11 code with each received frame, in the skb’s control buffer
(cb).

enum mac80211_rx_encoding_flags
MCS & bandwidth flags

Constants
RX_ENC_FLAG_SHORTPRE Short preamble was used for this frame

RX_ENC_FLAG_SHORT_GI Short guard interval was used

RX_ENC_FLAG_HT_GF This frame was received in a HT-greenfield transmission, if
the driver fills this value it should add IEEE80211_RADIOTAP_MCS_HAVE_FMT
to hw.radiotap_mcs_details to advertise that fact.

RX_ENC_FLAG_STBC_MASK STBC 2 bit bitmask. 1 - Nss=1, 2 - Nss=2, 3 - Nss=3

47.3. mac80211 subsystem (basics) 1439

Linux Driver-api Documentation

RX_ENC_FLAG_LDPC LDPC was used

RX_ENC_FLAG_BF packet was beamformed

enum mac80211_rx_flags
receive flags

Constants
RX_FLAG_MMIC_ERROR Michael MIC error was reported on this frame. Use to-

gether with RX_FLAG_MMIC_STRIPPED.

RX_FLAG_DECRYPTED This frame was decrypted in hardware.

RX_FLAG_MACTIME_PLCP_START The timestamp passed in the RX status (mactime
field) is valid and contains the time the SYNC preamble was received.

RX_FLAG_MMIC_STRIPPED the Michael MIC is stripped off this frame, verification
has been done by the hardware.

RX_FLAG_IV_STRIPPED The IV and ICV are stripped from this frame. If this flag is
set, the stack cannot do any replay detection hence the driver or hardware
will have to do that.

RX_FLAG_FAILED_FCS_CRC Set this flag if the FCS check failed on the frame.

RX_FLAG_FAILED_PLCP_CRC Set this flag if the PCLP check failed on the frame.

RX_FLAG_MACTIME_START The timestamp passed in the RX status (mactime field)
is valid and contains the time the first symbol of the MPDUwas received. This
is useful in monitor mode and for proper IBSS merging.

RX_FLAG_NO_SIGNAL_VAL The signal strength value is not present. Valid only for
data frames (mainly A-MPDU)

RX_FLAG_AMPDU_DETAILS A-MPDU details are known, in particular the reference
number (ampdu_reference) must be populated and be a distinct number for
each A-MPDU

RX_FLAG_PN_VALIDATED Currently only valid for CCMP/GCMP frames, this flag
indicates that the PN was verified for replay protection. Note that this
flag is also currently only supported when a frame is also decrypted (ie.
RX_FLAG_DECRYPTED must be set)

RX_FLAG_DUP_VALIDATED The driver should set this flag if it did de-duplication by
itself.

RX_FLAG_AMPDU_LAST_KNOWN last subframe is known, should be set on all sub-
frames of a single A-MPDU

RX_FLAG_AMPDU_IS_LAST this subframe is the last subframe of the A-MPDU

RX_FLAG_AMPDU_DELIM_CRC_ERROR A delimiter CRC error has been detected on
this subframe

RX_FLAG_AMPDU_DELIM_CRC_KNOWN The delimiter CRC field is known (the CRC is
stored in the ampdu_delimiter_crc field)

RX_FLAG_MACTIME_END The timestamp passed in the RX status (mactime field) is
valid and contains the time the last symbol of the MPDU (including FCS) was
received.

1440 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

RX_FLAG_ONLY_MONITOR Report frame only to monitor interfaces without process-
ing it in any regular way. This is useful if drivers offload some frames but still
want to report them for sniffing purposes.

RX_FLAG_SKIP_MONITOR Process and report frame to all interfaces except monitor
interfaces. This is useful if drivers offload some frames but still want to report
them for sniffing purposes.

RX_FLAG_AMSDU_MORE Some drivers may prefer to report separate A-MSDU sub-
frames instead of a one huge frame for performance reasons. All, but the last
MSDU from an A-MSDU should have this flag set. E.g. if an A-MSDU has 3
frames, the first 2 must have the flag set, while the 3rd (last) one must not
have this flag set. The flag is used to deal with retransmission/duplication
recovery properly since A-MSDU subframes share the same sequence num-
ber. Reported subframes can be either regular MSDU or singly A-MSDUs.
Subframes must not be interleaved with other frames.

RX_FLAG_RADIOTAP_VENDOR_DATA This frame contains vendor-specific radiotap
data in the skb->data (before the frame) as described by the struct
ieee80211_vendor_radiotap.

RX_FLAG_MIC_STRIPPED The mic was stripped of this packet. Decryption was done
by the hardware

RX_FLAG_ALLOW_SAME_PN Allow the same PN as same packet before. This is used
for AMSDU subframes which can have the same PN as the first subframe.

RX_FLAG_ICV_STRIPPED The ICV is stripped from this frame. CRC checking must
be done in the hardware.

RX_FLAG_AMPDU_EOF_BIT Value of the EOF bit in the A-MPDU delimiter for this
frame

RX_FLAG_AMPDU_EOF_BIT_KNOWN The EOF value is known

RX_FLAG_RADIOTAP_HE HE radiotap data is present (struct
ieee80211_radiotap_he, mac80211 will fill in

• DATA3_DATA_MCS

• DATA3_DATA_DCM

• DATA3_CODING

• DATA5_GI

• DATA5_DATA_BW_RU_ALLOC

• DATA6_NSTS

• DATA3_STBC

from the RX info data, so leave those zeroed when building this data)

RX_FLAG_RADIOTAP_HE_MU HE MU radiotap data is present (struct
ieee80211_radiotap_he_mu)

RX_FLAG_RADIOTAP_LSIG L-SIG radiotap data is present

RX_FLAG_NO_PSDU use the frame only for radiotap reporting, with the “0-
length PSDU”field included there. The value for it is in struct

47.3. mac80211 subsystem (basics) 1441

Linux Driver-api Documentation

ieee80211_rx_status. Note that if this value isn’t known the frame shouldn’
t be reported.

Description
These flags are used with the flag member of struct ieee80211_rx_status.

enum mac80211_tx_info_flags
flags to describe transmission information/status

Constants
IEEE80211_TX_CTL_REQ_TX_STATUS require TX status callback for this frame.

IEEE80211_TX_CTL_ASSIGN_SEQ The driver has to assign a sequence
number to this frame, taking care of not overwriting the frag-
ment number and increasing the sequence number only when the
IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
assign sequence numbers to QoS-data frames but cannot do so correctly for
non-QoS-data and management frames because beacons need them from
that counter as well and mac80211 cannot guarantee proper sequencing. If
this flag is set, the driver should instruct the hardware to assign a sequence
number to the frame or assign one itself. Cf. IEEE 802.11-2007 7.1.3.4.1
paragraph 3. This flag will always be set for beacons and always be clear for
frames without a sequence number field.

IEEE80211_TX_CTL_NO_ACK tell the low level not to wait for an ack

IEEE80211_TX_CTL_CLEAR_PS_FILT clear powersave filter for destination station

IEEE80211_TX_CTL_FIRST_FRAGMENT this is a first fragment of the frame

IEEE80211_TX_CTL_SEND_AFTER_DTIM send this frame after DTIM beacon

IEEE80211_TX_CTL_AMPDU this frame should be sent as part of an A-MPDU

IEEE80211_TX_CTL_INJECTED Frame was injected, internal to mac80211.

IEEE80211_TX_STAT_TX_FILTERED The frame was not transmitted because the
destination STA was in powersave mode. Note that to avoid race conditions,
the filter must be set by the hardware or firmware upon receiving a frame
that indicates that the station went to sleep (must be done on device to filter
frames already on the queue) and may only be unset after mac80211 gives the
OK for that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
since only then is it guaranteed that no more frames are in the hardware
queue.

IEEE80211_TX_STAT_ACK Frame was acknowledged

IEEE80211_TX_STAT_AMPDU The frame was aggregated, so status is for the whole
aggregation.

IEEE80211_TX_STAT_AMPDU_NO_BACK no block ack was returned, so consider us-
ing block ack request (BAR).

IEEE80211_TX_CTL_RATE_CTRL_PROBE internal to mac80211, can be set by rate
control algorithms to indicate probe rate, will be cleared for fragmented
frames (except on the last fragment)

1442 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

IEEE80211_TX_INTFL_OFFCHAN_TX_OK Internal to mac80211. Used to indicate
that a frame can be transmitted while the queues are stopped for off-channel
operation.

IEEE80211_TX_INTFL_NEED_TXPROCESSING completely internal to mac80211,
used to indicate that a pending frame requires TX processing before it can
be sent out.

IEEE80211_TX_INTFL_RETRIED completely internal to mac80211, used to indicate
that a frame was already retried due to PS

IEEE80211_TX_INTFL_DONT_ENCRYPT completely internal to mac80211, used to in-
dicate frame should not be encrypted

IEEE80211_TX_CTL_NO_PS_BUFFER This frame is a response to a poll frame (PS-
Poll or uAPSD) or a non-bufferable MMPDU and must be sent although the
station is in powersave mode.

IEEE80211_TX_CTL_MORE_FRAMES More frames will be passed to the transmit func-
tion after the current frame, this can be used by drivers to kick the DMA queue
only if unset or when the queue gets full.

IEEE80211_TX_INTFL_RETRANSMISSION This frame is being retransmitted after TX
status because the destination was asleep, it must not be modified again (no
seqno assignment, crypto, etc.)

IEEE80211_TX_INTFL_MLME_CONN_TX This frame was transmitted by the MLME
code for connection establishment, this indicates that its status should kick
the MLME state machine.

IEEE80211_TX_INTFL_NL80211_FRAME_TX Frame was requested through nl80211
MLME command (internal to mac80211 to figure out whether to send TX
status to user space)

IEEE80211_TX_CTL_LDPC tells the driver to use LDPC for this frame

IEEE80211_TX_CTL_STBC Enables Space-Time Block Coding (STBC) for this frame
and selects the maximum number of streams that it can use.

IEEE80211_TX_CTL_TX_OFFCHAN Marks this packet to be transmitted on the off-
channel channel when a remain-on-channel offload is done in hardware – nor-
mal packets still flow and are expected to be handled properly by the device.

IEEE80211_TX_INTFL_TKIP_MIC_FAILURE Marks this packet to be used for TKIP
testing. It will be sent out with incorrect Michael MIC key to allow TKIP
countermeasures to be tested.

IEEE80211_TX_CTL_NO_CCK_RATE This frame will be sent at non CCK rate. This
flag is actually used for management frame especially for P2P frames not
being sent at CCK rate in 2GHz band.

IEEE80211_TX_STATUS_EOSP This packet marks the end of service period, when its
status is reported the service period ends. For frames in an SP that mac80211
transmits, it is already set; for driver frames the driver may set this flag. It is
also used to do the same for PS-Poll responses.

IEEE80211_TX_CTL_USE_MINRATE This frame will be sent at lowest rate. This flag
is used to send nullfunc frame at minimum rate when the nullfunc is used for
connection monitoring purpose.

47.3. mac80211 subsystem (basics) 1443

Linux Driver-api Documentation

IEEE80211_TX_CTL_DONTFRAG Don’t fragment this packet even if it would be frag-
mented by size (this is optional, only used for monitor injection).

IEEE80211_TX_STAT_NOACK_TRANSMITTED A frame that was marked with
IEEE80211_TX_CTL_NO_ACK has been successfully transmitted with-
out any errors (like issues specific to the driver/HW). This flag must
not be set for frames that don’t request no-ack behaviour with
IEEE80211_TX_CTL_NO_ACK.

Description
These flags are used with the flags member of ieee80211_tx_info.
Note
If you have to add new flags to the enumeration, then don’t forget to up-

date IEEE80211_TX_TEMPORARY_FLAGS when necessary.

enum mac80211_tx_control_flags
flags to describe transmit control

Constants
IEEE80211_TX_CTRL_PORT_CTRL_PROTO this frame is a port control protocol frame

(e.g. EAP)

IEEE80211_TX_CTRL_PS_RESPONSE This frame is a response to a poll frame (PS-
Poll or uAPSD).

IEEE80211_TX_CTRL_RATE_INJECT This frame is injected with rate information

IEEE80211_TX_CTRL_AMSDU This frame is an A-MSDU frame

IEEE80211_TX_CTRL_FAST_XMIT This frame is going through the fast_xmit path

IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP This frame skips mesh path lookup

IEEE80211_TX_CTRL_HW_80211_ENCAP This frame uses hardware encapsulation
(header conversion)

Description
These flags are used in tx_info->control.flags.

enum mac80211_rate_control_flags
per-rate flags set by the Rate Control algorithm.

Constants
IEEE80211_TX_RC_USE_RTS_CTS Use RTS/CTS exchange for this rate.

IEEE80211_TX_RC_USE_CTS_PROTECT CTS-to-self protection is required. This is
set if the current BSS requires ERP protection.

IEEE80211_TX_RC_USE_SHORT_PREAMBLE Use short preamble.

IEEE80211_TX_RC_MCS HT rate.

IEEE80211_TX_RC_GREEN_FIELD Indicates whether this rate should be used in
Greenfield mode.

IEEE80211_TX_RC_40_MHZ_WIDTH Indicates if the Channel Width should be 40
MHz.

1444 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

IEEE80211_TX_RC_DUP_DATA The frame should be transmitted on both
of the adjacent 20 MHz channels, if the current channel type is
NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.

IEEE80211_TX_RC_SHORT_GI Short Guard interval should be used for this rate.

IEEE80211_TX_RC_VHT_MCS VHT MCS rate, in this case the idx field is split into a
higher 4 bits (Nss) and lower 4 bits (MCS number)

IEEE80211_TX_RC_80_MHZ_WIDTH Indicates 80 MHz transmission

IEEE80211_TX_RC_160_MHZ_WIDTH Indicates 160 MHz transmission (80+80 isn’t
supported yet)

Description
These flags are set by the Rate control algorithm for each rate during tx, in the
flags member of struct ieee80211_tx_rate.
struct ieee80211_tx_rate

rate selection/status

Definition

struct ieee80211_tx_rate {
s8 idx;
u16 count:5, flags:11;

};

Members
idx rate index to attempt to send with

count number of tries in this rate before going to the next rate

flags rate control flags (enum mac80211_rate_control_flags)

Description
A value of -1 for idx indicates an invalid rate and, if used in an array of retry rates,
that no more rates should be tried.

When used for transmit status reporting, the driver should always report the rate
along with the flags it used.

struct ieee80211_tx_info contains an array of these structs in the control infor-
mation, and it will be filled by the rate control algorithm according to what should
be sent. For example, if this array contains, in the format { <idx>, <count> } the
information:

{ 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }

then this means that the frame should be transmitted up to twice at rate 3, up to
twice at rate 2, and up to four times at rate 1 if it doesn’t get acknowledged. Say
it gets acknowledged by the peer after the fifth attempt, the status information
should then contain:

{ 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...

47.3. mac80211 subsystem (basics) 1445

Linux Driver-api Documentation

since it was transmitted twice at rate 3, twice at rate 2 and once at rate 1 after
which we received an acknowledgement.

struct ieee80211_tx_info
skb transmit information

Definition

struct ieee80211_tx_info {
u32 flags;
u32 band:3,ack_frame_id:13,hw_queue:4, tx_time_est:10;
union {

struct {
union {

struct {
struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
s8 rts_cts_rate_idx;
u8 use_rts:1;
u8 use_cts_prot:1;
u8 short_preamble:1;
u8 skip_table:1;

};
unsigned long jiffies;

};
struct ieee80211_vif *vif;
struct ieee80211_key_conf *hw_key;
u32 flags;
codel_time_t enqueue_time;

} control;
struct {

u64 cookie;
} ack;
struct {

struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
s32 ack_signal;
u8 ampdu_ack_len;
u8 ampdu_len;
u8 antenna;
u16 tx_time;
bool is_valid_ack_signal;
void *status_driver_data[19 / sizeof(void *)];

} status;
struct {

struct ieee80211_tx_rate driver_rates[IEEE80211_TX_MAX_RATES];
u8 pad[4];
void *rate_driver_data[IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE /␣

↪→sizeof(void *)];
};
void *driver_data[IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void␣

↪→*)];
};

};

Members
flags transmit info flags, defined above

band the band to transmit on (use for checking for races)

1446 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

ack_frame_id internal frame ID for TX status, used internally

hw_queue HW queue to put the frame on, skb_get_queue_mapping() gives the AC

tx_time_est TX time estimate in units of 4us, used internally

{unnamed_union} anonymous

control union part for control data

{unnamed_union} anonymous

{unnamed_struct} anonymous

control.rates TX rates array to try

control.rts_cts_rate_idx rate for RTS or CTS

control.use_rts use RTS

control.use_cts_prot use RTS/CTS

control.short_preamble use short preamble (CCK only)

control.skip_table skip externally configured rate table

control.jiffies timestamp for expiry on powersave clients

control.vif virtual interface (may be NULL)

control.hw_key key to encrypt with (may be NULL)

control.flags control flags, see enum mac80211_tx_control_flags

control.enqueue_time enqueue time (for iTXQs)

ack union part for pure ACK data

ack.cookie cookie for the ACK

status union part for status data

status.rates attempted rates

status.ack_signal ACK signal

status.ampdu_ack_len AMPDU ack length

status.ampdu_len AMPDU length

status.antenna (legacy, kept only for iwlegacy)

status.tx_time airtime consumed for transmission

status.is_valid_ack_signal ACK signal is valid

status.status_driver_data driver use area

{unnamed_struct} anonymous

driver_rates alias to control.rates to reserve space
pad padding

rate_driver_data driver use area if driver needs control.rates
driver_data array of driver_data pointers

47.3. mac80211 subsystem (basics) 1447

Linux Driver-api Documentation

Description
This structure is placed in skb->cb for three uses:

(1) mac80211 TX control - mac80211 tells the driver what to do

(2) driver internal use (if applicable)

(3) TX status information - driver tells mac80211 what happened

void ieee80211_tx_info_clear_status(struct ieee80211_tx_info * info)
clear TX status

Parameters
struct ieee80211_tx_info * info The struct ieee80211_tx_info to be

cleared.

Description
When the driver passes an skb back to mac80211, it must report a number of
things in TX status. This function clears everything in the TX status but the rate
control information (it does clear the count since you need to fill that in anyway).

NOTE
You can only use this function if you do NOT use info->driver_data! Use

info->rate_driver_data instead if you need only the less space that allows.

void ieee80211_rx(struct ieee80211_hw * hw, struct sk_buff * skb)
receive frame

Parameters
struct ieee80211_hw * hw the hardware this frame came in on

struct sk_buff * skb the buffer to receive, owned by mac80211 after this call

Description
Use this function to hand received frames to mac80211. The receive buffer in skb
must start with an IEEE 802.11 header. In case of a paged skb is used, the driver
is recommended to put the ieee80211 header of the frame on the linear part of the
skb to avoid memory allocation and/or memcpy by the stack.
This function may not be called in IRQ context. Calls to this function for a
single hardware must be synchronized against each other. Calls to this func-
tion, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be mixed for
a single hardware. Must not run concurrently with ieee80211_tx_status() or
ieee80211_tx_status_ni().

In process context use instead ieee80211_rx_ni().

void ieee80211_rx_ni(struct ieee80211_hw * hw, struct sk_buff * skb)
receive frame (in process context)

Parameters
struct ieee80211_hw * hw the hardware this frame came in on

struct sk_buff * skb the buffer to receive, owned by mac80211 after this call

1448 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

Description
Like ieee80211_rx() but can be called in process context (internally disables bot-
tom halves).

Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may
not be mixed for a single hardware. Must not run concurrently with
ieee80211_tx_status() or ieee80211_tx_status_ni().

void ieee80211_rx_irqsafe(struct ieee80211_hw * hw, struct sk_buff
* skb)

receive frame

Parameters
struct ieee80211_hw * hw the hardware this frame came in on

struct sk_buff * skb the buffer to receive, owned by mac80211 after this call

Description
Like ieee80211_rx() but can be called in IRQ context (internally defers to a
tasklet.)

Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not be mixed
for a single hardware.Must not run concurrently with ieee80211_tx_status() or
ieee80211_tx_status_ni().

struct ieee80211_tx_status
extended tx status info for rate control

Definition

struct ieee80211_tx_status {
struct ieee80211_sta *sta;
struct ieee80211_tx_info *info;
struct sk_buff *skb;
struct rate_info *rate;

};

Members
sta Station that the packet was transmitted for

info Basic tx status information

skb Packet skb (can be NULL if not provided by the driver)

rate The TX rate that was used when sending the packet

void ieee80211_tx_status(struct ieee80211_hw * hw, struct sk_buff * skb)
transmit status callback

Parameters
struct ieee80211_hw * hw the hardware the frame was transmitted by

struct sk_buff * skb the frame that was transmitted, owned by mac80211 af-
ter this call

Description

47.3. mac80211 subsystem (basics) 1449

Linux Driver-api Documentation

Call this function for all transmitted frames after they have been transmitted. It is
permissible to not call this function for multicast frames but this can affect statis-
tics.

This function may not be called in IRQ context. Calls to this function for a sin-
gle hardware must be synchronized against each other. Calls to this function,
ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe() may not be
mixed for a single hardware. Must not run concurrently with ieee80211_rx()
or ieee80211_rx_ni().

void ieee80211_tx_status_ni(struct ieee80211_hw * hw, struct sk_buff
* skb)

transmit status callback (in process context)

Parameters
struct ieee80211_hw * hw the hardware the frame was transmitted by

struct sk_buff * skb the frame that was transmitted, owned by mac80211 af-
ter this call

Description
Like ieee80211_tx_status() but can be called in process context.

Calls to this function, ieee80211_tx_status() and
ieee80211_tx_status_irqsafe() may not be mixed for a single hardware.

void ieee80211_tx_status_irqsafe(struct ieee80211_hw * hw, struct
sk_buff * skb)

IRQ-safe transmit status callback

Parameters
struct ieee80211_hw * hw the hardware the frame was transmitted by

struct sk_buff * skb the frame that was transmitted, owned by mac80211 af-
ter this call

Description
Like ieee80211_tx_status() but can be called in IRQ context (internally defers
to a tasklet.)

Calls to this function, ieee80211_tx_status() and ieee80211_tx_status_ni()
may not be mixed for a single hardware.

void ieee80211_rts_get(struct ieee80211_hw * hw, struct ieee80211_vif
* vif, const void * frame, size_t frame_len, const
struct ieee80211_tx_info * frame_txctl, struct
ieee80211_rts * rts)

RTS frame generation function

Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().

struct ieee80211_vif * vif struct ieee80211_vif pointer from the
add_interface callback.

1450 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

const void * frame pointer to the frame that is going to be protected by the
RTS.

size_t frame_len the frame length (in octets).

const struct ieee80211_tx_info * frame_txctl struct
ieee80211_tx_info of the frame.

struct ieee80211_rts * rts The buffer where to store the RTS frame.

Description
If the RTS frames are generated by the host system (i.e., not in hard-
ware/firmware), the low-level driver uses this function to receive the next RTS
frame from the 802.11 code. The low-level is responsible for calling this function
before and RTS frame is needed.

__le16 ieee80211_rts_duration(struct ieee80211_hw * hw, struct
ieee80211_vif * vif, size_t frame_len, const
struct ieee80211_tx_info * frame_txctl)

Get the duration field for an RTS frame

Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().

struct ieee80211_vif * vif struct ieee80211_vif pointer from the
add_interface callback.

size_t frame_len the length of the frame that is going to be protected by the
RTS.

const struct ieee80211_tx_info * frame_txctl struct
ieee80211_tx_info of the frame.

Description
If the RTS is generated in firmware, but the host system must provide the duration
field, the low-level driver uses this function to receive the duration field value in
little-endian byteorder.

Return
The duration.

void ieee80211_ctstoself_get(struct ieee80211_hw * hw, struct
ieee80211_vif * vif, const void
* frame, size_t frame_len, const struct
ieee80211_tx_info * frame_txctl, struct
ieee80211_cts * cts)

CTS-to-self frame generation function

Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().

struct ieee80211_vif * vif struct ieee80211_vif pointer from the
add_interface callback.

const void * frame pointer to the frame that is going to be protected by the
CTS-to-self.

47.3. mac80211 subsystem (basics) 1451

Linux Driver-api Documentation

size_t frame_len the frame length (in octets).

const struct ieee80211_tx_info * frame_txctl struct
ieee80211_tx_info of the frame.

struct ieee80211_cts * cts The buffer where to store the CTS-to-self frame.

Description
If the CTS-to-self frames are generated by the host system (i.e., not in hard-
ware/firmware), the low-level driver uses this function to receive the next CTS-
to-self frame from the 802.11 code. The low-level is responsible for calling this
function before and CTS-to-self frame is needed.

__le16 ieee80211_ctstoself_duration(struct ieee80211_hw * hw,
struct ieee80211_vif * vif,
size_t frame_len, const struct
ieee80211_tx_info * frame_txctl)

Get the duration field for a CTS-to-self frame

Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().

struct ieee80211_vif * vif struct ieee80211_vif pointer from the
add_interface callback.

size_t frame_len the length of the frame that is going to be protected by the
CTS-to-self.

const struct ieee80211_tx_info * frame_txctl struct
ieee80211_tx_info of the frame.

Description
If the CTS-to-self is generated in firmware, but the host system must provide the
duration field, the low-level driver uses this function to receive the duration field
value in little-endian byteorder.

Return
The duration.

__le16 ieee80211_generic_frame_duration(struct ieee80211_hw * hw,
struct ieee80211_vif * vif,
enum nl80211_band band,
size_t frame_len, struct
ieee80211_rate * rate)

Calculate the duration field for a frame

Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().

struct ieee80211_vif * vif struct ieee80211_vif pointer from the
add_interface callback.

enum nl80211_band band the band to calculate the frame duration on

size_t frame_len the length of the frame.

1452 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

struct ieee80211_rate * rate the rate at which the frame is going to be trans-
mitted.

Description
Calculate the duration field of some generic frame, given its length and transmis-
sion rate (in 100kbps).

Return
The duration.

void ieee80211_wake_queue(struct ieee80211_hw * hw, int queue)
wake specific queue

Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().

int queue queue number (counted from zero).

Description
Drivers should use this function instead of netif_wake_queue.

void ieee80211_stop_queue(struct ieee80211_hw * hw, int queue)
stop specific queue

Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().

int queue queue number (counted from zero).

Description
Drivers should use this function instead of netif_stop_queue.

void ieee80211_wake_queues(struct ieee80211_hw * hw)
wake all queues

Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().

Description
Drivers should use this function instead of netif_wake_queue.

void ieee80211_stop_queues(struct ieee80211_hw * hw)
stop all queues

Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().

Description
Drivers should use this function instead of netif_stop_queue.

int ieee80211_queue_stopped(struct ieee80211_hw * hw, int queue)
test status of the queue

Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().

47.3. mac80211 subsystem (basics) 1453

Linux Driver-api Documentation

int queue queue number (counted from zero).

Description
Drivers should use this function instead of netif_stop_queue.

Return
true if the queue is stopped. false otherwise.

47.3.5 Frame filtering

mac80211 requires to see many management frames for proper operation, and
users may want to see many more frames when in monitor mode. However, for
best CPU usage and power consumption, having as few frames as possible perco-
late through the stack is desirable. Hence, the hardware should filter as much as
possible.

To achieve this, mac80211 uses filter flags (see below) to tell the driver’s config-
ure_filter() function which frames should be passed to mac80211 and which should
be filtered out.

Before configure_filter() is invoked, the prepare_multicast() callback is invoked
with the parameters mc_count and mc_list for the combined multicast address
list of all virtual interfaces. It’s use is optional, and it returns a u64 that is
passed to configure_filter(). Additionally, configure_filter() has the arguments
changed_flags telling which flags were changed and total_flags with the new
flag states.

If your device has no multicast address filters your driver will need to check both
the FIF_ALLMULTI flag and the mc_count parameter to see whether multicast
frames should be accepted or dropped.

All unsupported flags in total_flags must be cleared. Hardware does not support
a flag if it is incapable of _passing_ the frame to the stack. Otherwise the driver
must ignore the flag, but not clear it. You must _only_ clear the flag (announce
no support for the flag to mac80211) if you are not able to pass the packet type
to the stack (so the hardware always filters it). So for example, you should clear
FIF_CONTROL, if your hardware always filters control frames. If your hardware
always passes control frames to the kernel and is incapable of filtering them, you
do _not_ clear the FIF_CONTROL flag. This rule applies to all other FIF flags as
well.

enum ieee80211_filter_flags
hardware filter flags

Constants
FIF_ALLMULTI pass all multicast frames, this is used if requested by the user or if

the hardware is not capable of filtering by multicast address.

FIF_FCSFAIL pass frames with failed FCS (but you need to set the
RX_FLAG_FAILED_FCS_CRC for them)

FIF_PLCPFAIL pass frames with failed PLCP CRC (but you need to set the
RX_FLAG_FAILED_PLCP_CRC for them

1454 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

FIF_BCN_PRBRESP_PROMISC This flag is set during scanning to indicate to the hard-
ware that it should not filter beacons or probe responses by BSSID. Filtering
them can greatly reduce the amount of processing mac80211 needs to do and
the amount of CPU wakeups, so you should honour this flag if possible.

FIF_CONTROL pass control frames (except for PS Poll) addressed to this station

FIF_OTHER_BSS pass frames destined to other BSSes

FIF_PSPOLL pass PS Poll frames

FIF_PROBE_REQ pass probe request frames

FIF_MCAST_ACTION pass multicast Action frames

Description
These flags determine what the filter in hardware should be programmed to let
through and what should not be passed to the stack. It is always safe to pass more
frames than requested, but this has negative impact on power consumption.

47.3.6 The mac80211 workqueue

mac80211 provides its ownworkqueue for drivers and internal mac80211 use. The
workqueue is a single threaded workqueue and can only be accessed by helpers
for sanity checking. Drivers must ensure all work added onto the mac80211
workqueue should be cancelled on the driver stop() callback.

mac80211 will flushed the workqueue upon interface removal and during suspend.

All work performed on the mac80211 workqueue must not acquire the RTNL lock.

void ieee80211_queue_work(struct ieee80211_hw * hw, struct work_struct
* work)

add work onto the mac80211 workqueue

Parameters
struct ieee80211_hw * hw the hardware struct for the interface we are adding

work for

struct work_struct * work the work we want to add onto the mac80211
workqueue

Description
Drivers and mac80211 use this to add work onto the mac80211 workqueue. This
helper ensures drivers are not queueing work when they should not be.

void ieee80211_queue_delayed_work(struct ieee80211_hw * hw, struct
delayed_work * dwork, unsigned
long delay)

add work onto the mac80211 workqueue

Parameters
struct ieee80211_hw * hw the hardware struct for the interface we are adding

work for

47.3. mac80211 subsystem (basics) 1455

Linux Driver-api Documentation

struct delayed_work * dwork delayable work to queue onto the mac80211
workqueue

unsigned long delay number of jiffies to wait before queueing

Description
Drivers and mac80211 use this to queue delayed work onto the mac80211
workqueue.

47.4 mac80211 subsystem (advanced)

Information contained within this part of the book is of interest only for advanced
interaction of mac80211 with drivers to exploit more hardware capabilities and
improve performance.

47.4.1 LED support

Mac80211 supports various ways of blinking LEDs. Wherever possible, device
LEDs should be exposed as LED class devices and hooked up to the appropriate
trigger, which will then be triggered appropriately by mac80211.

const char * ieee80211_get_tx_led_name(struct ieee80211_hw * hw)
get name of TX LED

Parameters
struct ieee80211_hw * hw the hardware to get the LED trigger name for

Description
mac80211 creates a transmit LED trigger for each wireless hardware that can be
used to drive LEDs if your driver registers a LED device. This function returns the
name (or NULL if not configured for LEDs) of the trigger so you can automatically
link the LED device.

Return
The name of the LED trigger. NULL if not configured for LEDs.

const char * ieee80211_get_rx_led_name(struct ieee80211_hw * hw)
get name of RX LED

Parameters
struct ieee80211_hw * hw the hardware to get the LED trigger name for

Description
mac80211 creates a receive LED trigger for each wireless hardware that can be
used to drive LEDs if your driver registers a LED device. This function returns the
name (or NULL if not configured for LEDs) of the trigger so you can automatically
link the LED device.

Return
The name of the LED trigger. NULL if not configured for LEDs.

1456 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

const char * ieee80211_get_assoc_led_name(struct ieee80211_hw * hw)
get name of association LED

Parameters
struct ieee80211_hw * hw the hardware to get the LED trigger name for

Description
mac80211 creates a association LED trigger for each wireless hardware that can
be used to drive LEDs if your driver registers a LED device. This function returns
the name (or NULL if not configured for LEDs) of the trigger so you can automati-
cally link the LED device.

Return
The name of the LED trigger. NULL if not configured for LEDs.

const char * ieee80211_get_radio_led_name(struct ieee80211_hw * hw)
get name of radio LED

Parameters
struct ieee80211_hw * hw the hardware to get the LED trigger name for

Description
mac80211 creates a radio change LED trigger for each wireless hardware that
can be used to drive LEDs if your driver registers a LED device. This function
returns the name (or NULL if not configured for LEDs) of the trigger so you can
automatically link the LED device.

Return
The name of the LED trigger. NULL if not configured for LEDs.

struct ieee80211_tpt_blink
throughput blink description

Definition

struct ieee80211_tpt_blink {
int throughput;
int blink_time;

};

Members
throughput throughput in Kbit/sec

blink_time blink time in milliseconds (full cycle, ie. one off + one on period)

enum ieee80211_tpt_led_trigger_flags
throughput trigger flags

Constants
IEEE80211_TPT_LEDTRIG_FL_RADIO enable blinking with radio

IEEE80211_TPT_LEDTRIG_FL_WORK enable blinking when working

IEEE80211_TPT_LEDTRIG_FL_CONNECTED enable blinking when at least one inter-
face is connected in some way, including being an AP

47.4. mac80211 subsystem (advanced) 1457

Linux Driver-api Documentation

const char * ieee80211_create_tpt_led_trigger(struct ieee80211_hw
* hw, unsigned
int flags, const struct
ieee80211_tpt_blink
* blink_table, unsigned
int blink_table_len)

create throughput LED trigger

Parameters
struct ieee80211_hw * hw the hardware to create the trigger for

unsigned int flags trigger flags, see enum ieee80211_tpt_led_trigger_flags

const struct ieee80211_tpt_blink * blink_table the blink table – needs to
be ordered by throughput

unsigned int blink_table_len size of the blink table

Return
NULL (in case of error, or if no LED triggers are configured) or the name of the new
trigger.

Note
This function must be called before ieee80211_register_hw().

47.4.2 Hardware crypto acceleration

mac80211 is capable of taking advantage of many hardware acceleration designs
for encryption and decryption operations.

The set_key() callback in the struct ieee80211_ops for a given device is called
to enable hardware acceleration of encryption and decryption. The callback takes
a sta parameter that will be NULL for default keys or keys used for transmission
only, or point to the station information for the peer for individual keys. Multiple
transmission keys with the same key index may be used when VLANs are config-
ured for an access point.

When transmitting, the TX control data will use the hw_key_idx selected by the
driver by modifying the struct ieee80211_key_conf pointed to by the key pa-
rameter to the set_key() function.

The set_key() call for the SET_KEY command should return 0 if the key is now in
use, -EOPNOTSUPP or -ENOSPC if it couldn’t be added; if you return 0 then hw_key_idx
must be assigned to the hardware key index, you are free to use the full u8 range.

Note that in the case that the IEEE80211_HW_SW_CRYPTO_CONTROL flag is
set, mac80211 will not automatically fall back to software crypto if enabling hard-
ware crypto failed. The set_key() call may also return the value 1 to permit this
specific key/algorithm to be done in software.

When the cmd is DISABLE_KEY then it must succeed.

Note that it is permissible to not decrypt a frame even if a key for it has been
uploaded to hardware, the stack will not make any decision based on whether a
key has been uploaded or not but rather based on the receive flags.

1458 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

The struct ieee80211_key_conf structure pointed to by the key parameter is
guaranteed to be valid until another call to set_key() removes it, but it can only be
used as a cookie to differentiate keys.

In TKIP some HW need to be provided a phase 1 key, for RX decryption acceler-
ation (i.e. iwlwifi). Those drivers should provide update_tkip_key handler. The
update_tkip_key() call updates the driver with the new phase 1 key. This happens
every time the iv16 wraps around (every 65536 packets). The set_key() call will
happen only once for each key (unless the AP did rekeying), it will not include a
valid phase 1 key. The valid phase 1 key is provided by update_tkip_key only. The
trigger that makes mac80211 call this handler is software decryption with wrap
around of iv16.

The set_default_unicast_key() call updates the default WEP key index configured
to the hardware for WEP encryption type. This is required for devices that support
offload of data packets (e.g. ARP responses).

Mac80211 drivers should set theNL80211_EXT_FEATURE_CAN_REPLACE_PTK0
flag when they are able to replace in-use PTK keys according to to following re-
quirements: 1) They do not hand over frames decrypted with the old key to

enum set_key_cmd
key command

Constants
SET_KEY a key is set

DISABLE_KEY a key must be disabled

Description
Used with the set_key() callback in struct ieee80211_ops, this indicates whether
a key is being removed or added.

struct ieee80211_key_conf
key information

Definition

struct ieee80211_key_conf {
atomic64_t tx_pn;
u32 cipher;
u8 icv_len;
u8 iv_len;
u8 hw_key_idx;
s8 keyidx;
u16 flags;
u8 keylen;
u8 key[];

};

Members
tx_pn PN used for TX keys, may be used by the driver as well if it needs to do

software PN assignment by itself (e.g. due to TSO)

cipher The key’s cipher suite selector.

47.4. mac80211 subsystem (advanced) 1459

Linux Driver-api Documentation

icv_len The ICV length for this key type

iv_len The IV length for this key type

hw_key_idx To be set by the driver, this is the key index the driver wants to be
given when a frame is transmitted and needs to be encrypted in hardware.

keyidx the key index (0-3)

flags key flags, see enum ieee80211_key_flags.

keylen key material length

key key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) data
block: - Temporal Encryption Key (128 bits) - Temporal Authenticator Tx MIC
Key (64 bits) - Temporal Authenticator Rx MIC Key (64 bits)

Description
This key information is given by mac80211 to the driver by the set_key() callback
in struct ieee80211_ops.

enum ieee80211_key_flags
key flags

Constants
IEEE80211_KEY_FLAG_GENERATE_IV_MGMT This flag should be set by the driver for

a CCMP/GCMP key to indicate that is requires IV generation only for man-
agement frames (MFP).

IEEE80211_KEY_FLAG_GENERATE_IV This flag should be set by the driver to indi-
cate that it requires IV generation for this particular key. Setting this flag
does not necessarily mean that SKBs will have sufficient tailroom for ICV or
MIC.

IEEE80211_KEY_FLAG_GENERATE_MMIC This flag should be set by the driver for a
TKIP key if it requires Michael MIC generation in software.

IEEE80211_KEY_FLAG_PAIRWISE Set by mac80211, this flag indicates that the key
is pairwise rather then a shared key.

IEEE80211_KEY_FLAG_SW_MGMT_TX This flag should be set by the driver for a
CCMP/GCMP key if it requires CCMP/GCMP encryption of management
frames (MFP) to be done in software.

IEEE80211_KEY_FLAG_PUT_IV_SPACE This flag should be set by the driver if space
should be prepared for the IV, but the IV itself should not be generated. Do
not set together with IEEE80211_KEY_FLAG_GENERATE_IV on the same
key. Setting this flag does not necessarily mean that SKBs will have sufficient
tailroom for ICV or MIC.

IEEE80211_KEY_FLAG_RX_MGMT This key will be used to decrypt received manage-
ment frames. The flag can help drivers that have a hardware crypto imple-
mentation that doesn’t deal with management frames properly by allowing
them to not upload the keys to hardware and fall back to software crypto.
Note that this flag deals only with RX, if your crypto engine can’t deal with TX
you can also set the IEEE80211_KEY_FLAG_SW_MGMT_TX flag to encrypt such
frames in SW.

1460 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

IEEE80211_KEY_FLAG_RESERVE_TAILROOM This flag should be set by the driver for
a key to indicate that sufficient tailroom must always be reserved for ICV or
MIC, even when HW encryption is enabled.

IEEE80211_KEY_FLAG_PUT_MIC_SPACE This flag should be set by the driver for
a TKIP key if it only requires MIC space. Do not set together with
IEEE80211_KEY_FLAG_GENERATE_MMIC on the same key.

IEEE80211_KEY_FLAG_NO_AUTO_TX Key needs explicit Tx activation.

IEEE80211_KEY_FLAG_GENERATE_MMIE This flag should be set by the driver for a
AES_CMAC key to indicate that it requires sequence number generation only

Description
These flags are used for communication about keys between the driver and
mac80211, with the flags parameter of struct ieee80211_key_conf.

void ieee80211_get_tkip_p1k(struct ieee80211_key_conf * keyconf, struct
sk_buff * skb, u16 * p1k)

get a TKIP phase 1 key

Parameters
struct ieee80211_key_conf * keyconf the parameter passed with the set key

struct sk_buff * skb the packet to take the IV32 value from that will be en-
crypted with this P1K

u16 * p1k a buffer to which the key will be written, as 5 u16 values

Description
This function returns the TKIP phase 1 key for the IV32 taken from the given
packet.

void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf * keyconf,
u32 iv32, u16 * p1k)

get a TKIP phase 1 key for IV32

Parameters
struct ieee80211_key_conf * keyconf the parameter passed with the set key

u32 iv32 IV32 to get the P1K for

u16 * p1k a buffer to which the key will be written, as 5 u16 values

Description
This function returns the TKIP phase 1 key for the given IV32.

void ieee80211_get_tkip_p2k(struct ieee80211_key_conf * keyconf, struct
sk_buff * skb, u8 * p2k)

get a TKIP phase 2 key

Parameters
struct ieee80211_key_conf * keyconf the parameter passed with the set key

struct sk_buff * skb the packet to take the IV32/IV16 values from that will be
encrypted with this key

u8 * p2k a buffer to which the key will be written, 16 bytes

47.4. mac80211 subsystem (advanced) 1461

Linux Driver-api Documentation

Description
This function computes the TKIP RC4 key for the IV values in the packet.

47.4.3 Powersave support

mac80211 has support for various powersave implementations.

First, it can support hardware that handles all powersaving by itself, such
hardware should simply set the IEEE80211_HW_SUPPORTS_PS hardware flag.
In that case, it will be told about the desired powersave mode with the
IEEE80211_CONF_PS flag depending on the association status. The hardware must
take care of sending nullfunc frames when necessary, i.e. when entering and leav-
ing powersave mode. The hardware is required to look at the AID in beacons and
signal to the AP that it woke up when it finds traffic directed to it.

IEEE80211_CONF_PS flag enabled means that the powersave mode defined in IEEE
802.11-2007 section 11.2 is enabled. This is not to be confused with hardware
wakeup and sleep states. Driver is responsible for waking up the hardware before
issuing commands to the hardware and putting it back to sleep at appropriate
times.

When PS is enabled, hardware needs to wakeup for beacons and receive the
buffered multicast/broadcast frames after the beacon. Also it must be possible
to send frames and receive the acknowledment frame.

Other hardware designs cannot send nullfunc frames by themselves and
also need software support for parsing the TIM bitmap. This is also
supported by mac80211 by combining the IEEE80211_HW_SUPPORTS_PS and
IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still required
to pass up beacons. The hardware is still required to handle waking up for multi-
cast traffic; if it cannot the driver must handle that as best as it can, mac80211 is
too slow to do that.

Dynamic powersave is an extension to normal powersave in which the hardware
stays awake for a user-specified period of time after sending a frame so that reply
frames need not be buffered and therefore delayed to the next wakeup. It’s com-
promise of getting good enough latency when there’s data traffic and still saving
significantly power in idle periods.

Dynamic powersave is simply supported by mac80211 enabling and disabling
PS based on traffic. Driver needs to only set IEEE80211_HW_SUPPORTS_PS
flag and mac80211 will handle everything automatically. Addition-
ally, hardware having support for the dynamic PS feature may set the
IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support dy-
namic PS mode itself. The driver needs to look at the dynamic_ps_timeout
hardware configuration value and use it that value whenever IEEE80211_CONF_PS
is set. In this case mac80211 will disable dynamic PS feature in stack and will
just keep IEEE80211_CONF_PS enabled whenever user has enabled powersave.

Driver informs U-APSD client support by enabling
IEEE80211_VIF_SUPPORTS_UAPSD flag. The mode is configured through the
uapsd parameter in conf_tx() operation. Hardware needs to send the QoS Null-
func frames and stay awake until the service period has ended. To utilize U-APSD,

1462 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

dynamic powersave is disabled for voip AC and all frames from that AC are
transmitted with powersave enabled.

Note: U-APSD client mode is not yet supported with
IEEE80211_HW_PS_NULLFUNC_STACK.

47.4.4 Beacon filter support

Some hardware have beacon filter support to reduce host cpu wakeups which will
reduce system power consumption. It usually works so that the firmware creates a
checksum of the beacon but omits all constantly changing elements (TSF, TIM etc).
Whenever the checksum changes the beacon is forwarded to the host, otherwise
it will be just dropped. That way the host will only receive beacons where some
relevant information (for example ERP protection orWMMsettings) have changed.

Beacon filter support is advertised with the IEEE80211_VIF_BEACON_FILTER inter-
face capability. The driver needs to enable beacon filter support whenever power
save is enabled, that is IEEE80211_CONF_PS is set. When power save is enabled,
the stack will not check for beacon loss and the driver needs to notify about loss
of beacons with ieee80211_beacon_loss().

The time (or number of beacons missed) until the firmware notifies the
driver of a beacon loss event (which in turn causes the driver to call
ieee80211_beacon_loss()) should be configurable and will be controlled by
mac80211 and the roaming algorithm in the future.

Since there may be constantly changing information elements that nothing in
the software stack cares about, we will, in the future, have mac80211 tell the
driver which information elements are interesting in the sense that we want to
see changes in them. This will include

• a list of information element IDs

• a list of OUIs for the vendor information element

Ideally, the hardware would filter out any beacons without changes in the re-
quested elements, but if it cannot support that it may, at the expense of some
efficiency, filter out only a subset. For example, if the device doesn’t support
checking for OUIs it should pass up all changes in all vendor information elements.

Note that change, for the sake of simplification, also includes information elements
appearing or disappearing from the beacon.

Some hardware supports an “ignore list”instead, just make sure nothing that
was requested is on the ignore list, and include commonly changing information
element IDs in the ignore list, for example 11 (BSS load) and the various vendor-
assigned IEs with unknown contents (128, 129, 133-136, 149, 150, 155, 156, 173,
176, 178, 179, 219); for forward compatibility it could also include some currently
unused IDs.

In addition to these capabilities, hardware should support notifying the host of
changes in the beacon RSSI. This is relevant to implement roaming when no traf-
fic is flowing (when traffic is flowing we see the RSSI of the received data packets).
This can consist in notifying the host when the RSSI changes significantly or when

47.4. mac80211 subsystem (advanced) 1463

Linux Driver-api Documentation

it drops below or rises above configurable thresholds. In the future these thresh-
olds will also be configured by mac80211 (which gets them from userspace) to
implement them as the roaming algorithm requires.

If the hardware cannot implement this, the driver should ask it to periodically pass
beacon frames to the host so that software can do the signal strength threshold
checking.

void ieee80211_beacon_loss(struct ieee80211_vif * vif)
inform hardware does not receive beacons

Parameters
struct ieee80211_vif * vif struct ieee80211_vif pointer from the

add_interface callback.

Description
When beacon filtering is enabled with IEEE80211_VIF_BEACON_FILTER and
IEEE80211_CONF_PS is set, the driver needs to inform whenever the hardware is
not receiving beacons with this function.

47.4.5 Multiple queues and QoS support

TBD

struct ieee80211_tx_queue_params
transmit queue configuration

Definition

struct ieee80211_tx_queue_params {
u16 txop;
u16 cw_min;
u16 cw_max;
u8 aifs;
bool acm;
bool uapsd;
bool mu_edca;
struct ieee80211_he_mu_edca_param_ac_rec mu_edca_param_rec;

};

Members
txop maximum burst time in units of 32 usecs, 0 meaning disabled

cw_min minimum contention window [a value of the form 2^n-1 in the range
1..32767]

cw_max maximum contention window [like cw_min]
aifs arbitration interframe space [0..255]

acm is mandatory admission control required for the access category

uapsd is U-APSD mode enabled for the queue

mu_edca is the MU EDCA configured

mu_edca_param_rec MU EDCA Parameter Record for HE

1464 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

Description
The information provided in this structure is required for QoS transmit queue con-
figuration. Cf. IEEE 802.11 7.3.2.29.

47.4.6 Access point mode support

TBD

Some parts of the if_conf should be discussed here instead

Insert notes about VLAN interfaces with hw crypto here or in the hw crypto chap-
ter.

support for powersaving clients

In order to implement AP and P2P GO modes, mac80211 has support for client
powersaving, both“legacy”PS (PS-Poll/null data) and uAPSD. There currently is
no support for sAPSD.

There is one assumption that mac80211 makes, namely that a client will not poll
with PS-Poll and trigger with uAPSD at the same time. Both are supported, and
both can be used by the same client, but they can’t be used concurrently by the
same client. This simplifies the driver code.

The first thing to keep in mind is that there is a flag for complete driver implemen-
tation: IEEE80211_HW_AP_LINK_PS. If this flag is set, mac80211 expects the driver
to handle most of the state machine for powersaving clients and will ignore the
PM bit in incoming frames. Drivers then use ieee80211_sta_ps_transition() to
inform mac80211 of stations’powersave transitions. In this mode, mac80211 also
doesn’t handle PS-Poll/uAPSD.
In the mode without IEEE80211_HW_AP_LINK_PS, mac80211 will check the PM bit
in incoming frames for client powersave transitions. When a station goes to sleep,
we will stop transmitting to it. There is, however, a race condition: a station might
go to sleep while there is data buffered on hardware queues. If the device has
support for this it will reject frames, and the driver should give the frames back
to mac80211 with the IEEE80211_TX_STAT_TX_FILTERED flag set which will cause
mac80211 to retry the frame when the station wakes up. The driver is also notified
of powersave transitions by calling its sta_notify callback.
When the station is asleep, it has three choices: it can wake up, it can PS-Poll, or
it can possibly start a uAPSD service period. Waking up is implemented by sim-
ply transmitting all buffered (and filtered) frames to the station. This is the easi-
est case. When the station sends a PS-Poll or a uAPSD trigger frame, mac80211
will inform the driver of this with the allow_buffered_frames callback; this call-
back is optional. mac80211 will then transmit the frames as usual and set the
IEEE80211_TX_CTL_NO_PS_BUFFER on each frame. The last frame in the service
period (or the only response to a PS-Poll) also has IEEE80211_TX_STATUS_EOSP set
to indicate that it ends the service period; as this frame must have TX status re-
port it also sets IEEE80211_TX_CTL_REQ_TX_STATUS. When TX status is reported
for this frame, the service period is marked has having ended and a new one can
be started by the peer.

47.4. mac80211 subsystem (advanced) 1465

Linux Driver-api Documentation

Additionally, non-bufferable MMPDUs can also be transmitted by mac80211 with
the IEEE80211_TX_CTL_NO_PS_BUFFER set in them.

Another race condition can happen on some devices like iwlwifi when there are
frames queued for the station and it wakes up or polls; the frames that are already
queued could end up being transmitted first instead, causing reordering and/or
wrong processing of the EOSP. The cause is that allowing frames to be transmitted
to a certain station is out-of-band communication to the device. To allow this prob-
lem to be solved, the driver can call ieee80211_sta_block_awake() if frames are
buffered when it is notified that the station went to sleep. When all these frames
have been filtered (see above), it must call the function again to indicate that the
station is no longer blocked.

If the driver buffers frames in the driver for aggregation in any way, it must use
the ieee80211_sta_set_buffered() call when it is notified of the station going to
sleep to inform mac80211 of any TIDs that have frames buffered. Note that when
a station wakes up this information is reset (hence the requirement to call it when
informed of the station going to sleep). Then, when a service period starts for any
reason, release_buffered_frames is called with the number of frames to be re-
leased and which TIDs they are to come from. In this case, the driver is responsible
for setting the EOSP (for uAPSD) and MORE_DATA bits in the released frames, to
help themore_data parameter is passed to tell the driver if there is more data on
other TIDs – the TIDs to release frames from are ignored since mac80211 doesn’
t know how many frames the buffers for those TIDs contain.

If the driver also implement GOmode, where absence periods may shorten service
periods (or abort PS-Poll responses), it must filter those response frames except
in the case of frames that are buffered in the driver – those must remain buffered
to avoid reordering. Because it is possible that no frames are released in this
case, the driver must call ieee80211_sta_eosp() to indicate to mac80211 that
the service period ended anyway.

Finally, if frames from multiple TIDs are released from mac80211 but the driver
might reorder them, it must clear & set the flags appropriately (only the last
frame may have IEEE80211_TX_STATUS_EOSP) and also take care of the EOSP and
MORE_DATA bits in the frame. The driver may also use ieee80211_sta_eosp()
in this case.

Note that if the driver ever buffers frames other than QoS-data frames, it must
take care to never send a non-QoS-data frame as the last frame in a service period,
adding a QoS-nulldata frame after a non-QoS-data frame if needed.

struct sk_buff * ieee80211_get_buffered_bc(struct ieee80211_hw * hw,
struct ieee80211_vif * vif)

accessing buffered broadcast and multicast frames

Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw().

struct ieee80211_vif * vif struct ieee80211_vif pointer from the
add_interface callback.

Description
Function for accessing buffered broadcast and multicast frames. If hard-
ware/firmware does not implement buffering of broadcast/multicast frames when

1466 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

power saving is used, 802.11 code buffers them in the host memory. The low-level
driver uses this function to fetch next buffered frame. In most cases, this is used
when generating beacon frame.

Return
A pointer to the next buffered skb or NULL if no more buffered frames are avail-
able.

Note
buffered frames are returned only after DTIM beacon frame was gener-
ated with ieee80211_beacon_get() and the low-level driver must thus call
ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns NULL if
the previous generated beacon was not DTIM, so the low-level driver does not need
to check for DTIM beacons separately and should be able to use common code for
all beacons.

struct sk_buff * ieee80211_beacon_get(struct ieee80211_hw * hw, struct
ieee80211_vif * vif)

beacon generation function

Parameters
struct ieee80211_hw * hw pointer obtained from ieee80211_alloc_hw().

struct ieee80211_vif * vif struct ieee80211_vif pointer from the
add_interface callback.

Description
See ieee80211_beacon_get_tim().

Return
See ieee80211_beacon_get_tim().

void ieee80211_sta_eosp(struct ieee80211_sta * pubsta)
notify mac80211 about end of SP

Parameters
struct ieee80211_sta * pubsta the station

Description
When a device transmits frames in a way that it can’t tell mac80211 in the TX
status about the EOSP, it must clear the IEEE80211_TX_STATUS_EOSP bit and call
this function instead. This applies for PS-Poll as well as uAPSD.

Note that just like with _tx_status() and _rx() drivers must not mix calls to
irqsafe/non-irqsafe versions, this function must not be mixed with those either.
Use the all irqsafe, or all non-irqsafe, don’t mix!
NB: the _irqsafe version of this function doesn’t exist, no driver needs it

right now. Don’t call this function if you’d need the _irqsafe version, look
at the git history and restore the _irqsafe version!

enum ieee80211_frame_release_type
frame release reason

Constants

47.4. mac80211 subsystem (advanced) 1467

Linux Driver-api Documentation

IEEE80211_FRAME_RELEASE_PSPOLL frame released for PS-Poll

IEEE80211_FRAME_RELEASE_UAPSD frame(s) released due to frame received on
trigger-enabled AC

int ieee80211_sta_ps_transition(struct ieee80211_sta * sta, bool start)
PS transition for connected sta

Parameters
struct ieee80211_sta * sta currently connected sta

bool start start or stop PS

Description
When operating in AP mode with the IEEE80211_HW_AP_LINK_PS flag set, use this
function to inform mac80211 about a connected station entering/leaving PS mode.

This function may not be called in IRQ context or with softirqs enabled.

Calls to this function for a single hardware must be synchronized against each
other.

Return
0 on success. -EINVAL when the requested PS mode is already set.

int ieee80211_sta_ps_transition_ni(struct ieee80211_sta * sta,
bool start)

PS transition for connected sta (in process context)

Parameters
struct ieee80211_sta * sta currently connected sta

bool start start or stop PS

Description
Like ieee80211_sta_ps_transition() but can be called in process context (in-
ternally disables bottom halves). Concurrent call restriction still applies.

Return
Like ieee80211_sta_ps_transition().

void ieee80211_sta_set_buffered(struct ieee80211_sta * sta, u8 tid,
bool buffered)

inform mac80211 about driver-buffered frames

Parameters
struct ieee80211_sta * sta struct ieee80211_sta pointer for the sleeping

station

u8 tid the TID that has buffered frames

bool buffered indicates whether or not frames are buffered for this TID

Description
If a driver buffers frames for a powersave station instead of passing them back to
mac80211 for retransmission, the station may still need to be told that there are
buffered frames via the TIM bit.

1468 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

This function informs mac80211 whether or not there are frames that are buffered
in the driver for a given TID; mac80211 can then use this data to set the TIM bit
(NOTE: This may call back into the driver’s set_tim call! Beware of the locking!)

If all frames are released to the station (due to PS-poll or uAPSD) then the
driver needs to inform mac80211 that there no longer are frames buffered. How-
ever, when the station wakes up mac80211 assumes that all buffered frames
will be transmitted and clears this data, drivers need to make sure they inform
mac80211 about all buffered frames on the sleep transition (sta_notify() with
STA_NOTIFY_SLEEP).

Note that technically mac80211 only needs to know this per AC, not per TID, but
since driver buffering will inevitably happen per TID (since it is related to aggre-
gation) it is easier to make mac80211 map the TID to the AC as required instead
of keeping track in all drivers that use this API.

void ieee80211_sta_block_awake(struct ieee80211_hw * hw, struct
ieee80211_sta * pubsta, bool block)

block station from waking up

Parameters
struct ieee80211_hw * hw the hardware

struct ieee80211_sta * pubsta the station

bool block whether to block or unblock

Description
Some devices require that all frames that are on the queues for a specific station
that went to sleep are flushed before a poll response or frames after the station
woke up can be delivered to that it. Note that such frames must be rejected by the
driver as filtered, with the appropriate status flag.

This function allows implementing this mode in a race-free manner.

To do this, a driver must keep track of the number of frames still enqueued for
a specific station. If this number is not zero when the station goes to sleep, the
driver must call this function to forcemac80211 to consider the station to be asleep
regardless of the station’s actual state. Once the number of outstanding frames
reaches zero, the driver must call this function again to unblock the station. That
will cause mac80211 to be able to send ps-poll responses, and if the station queried
in the meantime then frames will also be sent out as a result of this. Additionally,
the driver will be notified that the station woke up some time after it is unblocked,
regardless of whether the station actually woke up while blocked or not.

47.4. mac80211 subsystem (advanced) 1469

Linux Driver-api Documentation

47.4.7 Supporting multiple virtual interfaces

TBD

Note: WDS with identical MAC address should almost always be OK

Insert notes about having multiple virtual interfaces with different MAC addresses
here, note which configurations are supported by mac80211, add notes about sup-
porting hw crypto with it.

void ieee80211_iterate_active_interfaces(struct ieee80211_hw * hw,
u32 iter_flags, void (*iter-
ator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void * data)

iterate active interfaces

Parameters
struct ieee80211_hw * hw the hardware struct of which the interfaces should

be iterated over

u32 iter_flags iteration flags, see enum ieee80211_interface_iteration_flags

void (*)(void *data, u8 *mac, struct ieee80211_vif *vif) iterator the
iterator function to call

void * data first argument of the iterator function

Description
This function iterates over the interfaces associated with a given hardware
that are currently active and calls the callback for them. This function
allows the iterator function to sleep, when the iterator function is atomic
ieee80211_iterate_active_interfaces_atomic can be used. Does not iterate
over a new interface during add_interface().

void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw
* hw, u32 iter_flags,
void (*iterator)(void
*data, u8 *mac,
struct ieee80211_vif
*vif), void * data)

iterate active interfaces

Parameters
struct ieee80211_hw * hw the hardware struct of which the interfaces should

be iterated over

u32 iter_flags iteration flags, see enum ieee80211_interface_iteration_flags

void (*)(void *data, u8 *mac, struct ieee80211_vif *vif) iterator the
iterator function to call, cannot sleep

void * data first argument of the iterator function

Description

1470 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

This function iterates over the interfaces associated with a given hardware
that are currently active and calls the callback for them. This function re-
quires the iterator callback function to be atomic, if that is not desired, use
ieee80211_iterate_active_interfaces instead. Does not iterate over a new in-
terface during add_interface().

47.4.8 Station handling

TODO

struct ieee80211_sta
station table entry

Definition

struct ieee80211_sta {
u32 supp_rates[NUM_NL80211_BANDS];
u8 addr[ETH_ALEN];
u16 aid;
struct ieee80211_sta_ht_cap ht_cap;
struct ieee80211_sta_vht_cap vht_cap;
struct ieee80211_sta_he_cap he_cap;
struct ieee80211_he_6ghz_capa he_6ghz_capa;
u16 max_rx_aggregation_subframes;
bool wme;
u8 uapsd_queues;
u8 max_sp;
u8 rx_nss;
enum ieee80211_sta_rx_bandwidth bandwidth;
enum ieee80211_smps_mode smps_mode;
struct ieee80211_sta_rates __rcu *rates;
bool tdls;
bool tdls_initiator;
bool mfp;
u8 max_amsdu_subframes;
u16 max_amsdu_len;
bool support_p2p_ps;
u16 max_rc_amsdu_len;
u16 max_tid_amsdu_len[IEEE80211_NUM_TIDS];
struct ieee80211_sta_txpwr txpwr;
struct ieee80211_txq *txq[IEEE80211_NUM_TIDS + 1];
u8 drv_priv[] ;

};

Members
supp_rates Bitmap of supported rates (per band)

addr MAC address

aid AID we assigned to the station if we’re an AP
ht_cap HT capabilities of this STA; restricted to our own capabilities

vht_cap VHT capabilities of this STA; restricted to our own capabilities

he_cap HE capabilities of this STA

he_6ghz_capa on 6 GHz, holds the HE 6 GHz band capabilities

47.4. mac80211 subsystem (advanced) 1471

Linux Driver-api Documentation

max_rx_aggregation_subframes maximal amount of frames in a single AMPDU
that this station is allowed to transmit to us. Can be modified by driver.

wme indicates whether the STA supports QoS/WME (if local devices does, other-
wise always false)

uapsd_queues bitmap of queues configured for uapsd. Only valid if wme is sup-
ported. The bits order is like in IEEE80211_WMM_IE_STA_QOSINFO_AC_*.

max_sp max Service Period. Only valid if wme is supported.

rx_nss in HT/VHT, themaximum number of spatial streams the station can receive
at themoment, changed by operatingmode notifications and capabilities. The
value is only valid after the station moves to associated state.

bandwidth current bandwidth the station can receive with

smps_mode current SMPS mode (off, static or dynamic)

rates rate control selection table

tdls indicates whether the STA is a TDLS peer

tdls_initiator indicates the STA is an initiator of the TDLS link. Only valid if
the STA is a TDLS peer in the first place.

mfp indicates whether the STA uses management frame protection or not.

max_amsdu_subframes indicates the maximal number of MSDUs in a single A-
MSDU. Taken from the Extended Capabilities element. 0 means unlimited.

max_amsdu_len indicates the maximal length of an A-MSDU in bytes. This field
is always valid for packets with a VHT preamble. For packets with a HT
preamble, additional limits apply:

• If the skb is transmitted as part of a BA agreement, the A-MSDUmaximal
size is min(max_amsdu_len, 4065) bytes.

• If the skb is not part of a BA agreement, the A-MSDU maximal size is
min(max_amsdu_len, 7935) bytes.

Both additional HT limits must be enforced by the low level driver. This is
defined by the spec (IEEE 802.11-2012 section 8.3.2.2 NOTE 2).

support_p2p_ps indicates whether the STA supports P2P PS mechanism or not.

max_rc_amsdu_len MaximumA-MSDU size in bytes recommended by rate control.

max_tid_amsdu_len Maximum A-MSDU size in bytes for this TID

txpwr the station tx power configuration

txq per-TID data TX queues (if driver uses the TXQ abstraction); note that the last
entry (IEEE80211_NUM_TIDS) is used for non-data frames

drv_priv data area for driver use, will always be aligned to sizeof(void *), size is
determined in hw information.

Description
A station table entry represents a station we are possibly communicating with.
Since stations are RCU-managed in mac80211, any ieee80211_sta pointer you get
access to must either be protected by rcu_read_lock() explicitly or implicitly, or

1472 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

you must take good care to not use such a pointer after a call to your sta_remove
callback that removed it.

enum sta_notify_cmd
sta notify command

Constants
STA_NOTIFY_SLEEP a station is now sleeping

STA_NOTIFY_AWAKE a sleeping station woke up

Description
Used with the sta_notify() callback in struct ieee80211_ops, this indicates if an
associated station made a power state transition.

struct ieee80211_sta * ieee80211_find_sta(struct ieee80211_vif * vif,
const u8 * addr)

find a station

Parameters
struct ieee80211_vif * vif virtual interface to look for station on

const u8 * addr station’s address
Return
The station, if found. NULL otherwise.

Note
This function must be called under RCU lock and the resulting pointer is only valid
under RCU lock as well.

struct ieee80211_sta * ieee80211_find_sta_by_ifaddr(struct
ieee80211_hw
* hw, const u8
* addr, const u8
* localaddr)

find a station on hardware

Parameters
struct ieee80211_hw * hw pointer as obtained from ieee80211_alloc_hw()

const u8 * addr remote station’s address
const u8 * localaddr local address (vif->sdata->vif.addr). Use NULL for‘any’

.

Return
The station, if found. NULL otherwise.

Note
This function must be called under RCU lock and the resulting pointer is only valid
under RCU lock as well.

NOTE

47.4. mac80211 subsystem (advanced) 1473

Linux Driver-api Documentation

You may pass NULL for localaddr, but then you will just get the first STA
that matches the remote address ‘addr’. We can have multiple STA as-
sociated with multiple logical stations (e.g. consider a station connecting to
another BSSID on the same AP hardware without disconnecting first). In this
case, the result of this method with localaddr NULL is not reliable.

Description
DO NOT USE THIS FUNCTION with localaddr NULL if at all possible.

47.4.9 Hardware scan offload

TBD

void ieee80211_scan_completed(struct ieee80211_hw * hw, struct
cfg80211_scan_info * info)

completed hardware scan

Parameters
struct ieee80211_hw * hw the hardware that finished the scan

struct cfg80211_scan_info * info information about the completed scan

Description
When hardware scan offload is used (i.e. the hw_scan() callback is assigned) this
function needs to be called by the driver to notify mac80211 that the scan finished.
This function can be called from any context, including hardirq context.

47.4.10 Aggregation

TX A-MPDU aggregation

Aggregation on the TX side requires setting the hardware flag
IEEE80211_HW_AMPDU_AGGREGATION. The driver will then be handed packets
with a flag indicating A-MPDU aggregation. The driver or device is responsible
for actually aggregating the frames, as well as deciding how many and which to
aggregate.

When TX aggregation is started by some subsystem (usually the rate control algo-
rithm would be appropriate) by calling the ieee80211_start_tx_ba_session()
function, the driver will be notified via its ampdu_action function, with the
IEEE80211_AMPDU_TX_START action.

In response to that, the driver is later required to call the
ieee80211_start_tx_ba_cb_irqsafe() function, which will really start the
aggregation session after the peer has also responded. If the peer responds
negatively, the session will be stopped again right away. Note that it is possible
for the aggregation session to be stopped before the driver has indicated that it
is done setting it up, in which case it must not indicate the setup completion.

Also note that, since we also need to wait for a response from the
peer, the driver is notified of the completion of the handshake by the
IEEE80211_AMPDU_TX_OPERATIONAL action to the ampdu_action callback.

1474 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

Similarly, when the aggregation session is stopped by the peer or something calling
ieee80211_stop_tx_ba_session(), the driver’s ampdu_action function will be
called with the action IEEE80211_AMPDU_TX_STOP. In this case, the call must not
fail, and the driver must later call ieee80211_stop_tx_ba_cb_irqsafe(). Note
that the sta can get destroyed before the BA tear down is complete.

RX A-MPDU aggregation

Aggregation on the RX side requires only implementing the ampdu_action call-
back that is invoked to start/stop any block-ack sessions for RX aggregation.

When RX aggregation is started by the peer, the driver is notified via am-
pdu_action function, with the IEEE80211_AMPDU_RX_START action, and may reject
the request in which case a negative response is sent to the peer, if it accepts it a
positive response is sent.

While the session is active, the device/driver are required to de-aggregate frames
and pass them up one by one to mac80211, which will handle the reorder buffer.

When the aggregation session is stopped again by the peer or our-
selves, the driver’s ampdu_action function will be called with the action
IEEE80211_AMPDU_RX_STOP. In this case, the call must not fail.

enum ieee80211_ampdu_mlme_action
A-MPDU actions

Constants
IEEE80211_AMPDU_RX_START start RX aggregation

IEEE80211_AMPDU_RX_STOP stop RX aggregation

IEEE80211_AMPDU_TX_START start TX aggregation, the driver
must either call ieee80211_start_tx_ba_cb_irqsafe()
or call ieee80211_start_tx_ba_cb_irqsafe() with status
IEEE80211_AMPDU_TX_START_DELAY_ADDBA to delay addba after
ieee80211_start_tx_ba_cb_irqsafe is called, or just return the special
status IEEE80211_AMPDU_TX_START_IMMEDIATE.

IEEE80211_AMPDU_TX_STOP_CONT stop TX aggregation but continue transmitting
queued packets, now unaggregated. After all packets are transmitted the
driver has to call ieee80211_stop_tx_ba_cb_irqsafe().

IEEE80211_AMPDU_TX_STOP_FLUSH stop TX aggregation and flush all packets,
called when the station is removed. There’s no need or reason to call
ieee80211_stop_tx_ba_cb_irqsafe() in this case asmac80211 assumes the
session is gone and removes the station.

IEEE80211_AMPDU_TX_STOP_FLUSH_CONT called when TX aggregation is stopped
but the driver hasn’t called ieee80211_stop_tx_ba_cb_irqsafe() yet and
now the connection is dropped and the station will be removed. Drivers
should clean up and drop remaining packets when this is called.

IEEE80211_AMPDU_TX_OPERATIONAL TX aggregation has become operational

Description

47.4. mac80211 subsystem (advanced) 1475

Linux Driver-api Documentation

These flags are used with the ampdu_action() callback in struct ieee80211_ops
to indicate which action is needed.

Note that drivers MUST be able to deal with a TX aggregation ses-
sion being stopped even before they OK’ed starting it by calling
ieee80211_start_tx_ba_cb_irqsafe, because the peer might receive the addBA
frame and send a delBA right away!

47.4.11 Spatial Multiplexing Powersave (SMPS)

SMPS (Spatial multiplexing power save) is a mechanism to conserve power in an
802.11n implementation. For details on the mechanism and rationale, please refer
to 802.11 (as amended by 802.11n-2009) “11.2.3 SM power save”.
The mac80211 implementation is capable of sending action frames to update the
AP about the station’s SMPSmode, and will instruct the driver to enter the specific
mode. It will also announce the requested SMPS mode during the association
handshake. Hardware support for this feature is required, and can be indicated
by hardware flags.

The default mode will be “automatic”, which nl80211/cfg80211 defines to be
dynamic SMPS in (regular) powersave, and SMPS turned off otherwise.

To support this feature, the driver must set the appropriate hardware support
flags, and handle the SMPS flag to the config() operation. It will then with this
mechanism be instructed to enter the requested SMPS mode while associated to
an HT AP.

void ieee80211_request_smps(struct ieee80211_vif * vif, enum
ieee80211_smps_mode smps_mode)

request SM PS transition

Parameters
struct ieee80211_vif * vif struct ieee80211_vif pointer from the

add_interface callback.

enum ieee80211_smps_mode smps_mode new SM PS mode

Description
This allows the driver to request an SM PS transition in managed mode. This is
useful when the driver has more information than the stack about possible inter-
ference, for example by bluetooth.

enum ieee80211_smps_mode
spatial multiplexing power save mode

Constants
IEEE80211_SMPS_AUTOMATIC automatic

IEEE80211_SMPS_OFF off

IEEE80211_SMPS_STATIC static

IEEE80211_SMPS_DYNAMIC dynamic

IEEE80211_SMPS_NUM_MODES internal, don’t use

1476 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

TBD

This part of the book describes the rate control algorithm interface and how it
relates to mac80211 and drivers.

47.4.12 Rate Control API

TBD

int ieee80211_start_tx_ba_session(struct ieee80211_sta * sta, u16 tid,
u16 timeout)

Start a tx Block Ack session.

Parameters
struct ieee80211_sta * sta the station for which to start a BA session

u16 tid the TID to BA on.

u16 timeout session timeout value (in TUs)

Return
success if addBA request was sent, failure otherwise

Description
Although mac80211/low level driver/user space application can estimate the need
to start aggregation on a certain RA/TID, the session level will be managed by the
mac80211.

void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif * vif, const
u8 * ra, u16 tid)

low level driver ready to aggregate.

Parameters
struct ieee80211_vif * vif struct ieee80211_vif pointer from the

add_interface callback

const u8 * ra receiver address of the BA session recipient.

u16 tid the TID to BA on.

Description
This function must be called by low level driver once it has finished with prepara-
tions for the BA session. It can be called from any context.

int ieee80211_stop_tx_ba_session(struct ieee80211_sta * sta, u16 tid)
Stop a Block Ack session.

Parameters
struct ieee80211_sta * sta the station whose BA session to stop

u16 tid the TID to stop BA.

Return
negative error if the TID is invalid, or no aggregation active

Description

47.4. mac80211 subsystem (advanced) 1477

Linux Driver-api Documentation

Although mac80211/low level driver/user space application can estimate the need
to stop aggregation on a certain RA/TID, the session level will be managed by the
mac80211.

void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif * vif, const
u8 * ra, u16 tid)

low level driver ready to stop aggregate.

Parameters
struct ieee80211_vif * vif struct ieee80211_vif pointer from the

add_interface callback

const u8 * ra receiver address of the BA session recipient.

u16 tid the desired TID to BA on.

Description
This function must be called by low level driver once it has finished with prepara-
tions for the BA session tear down. It can be called from any context.

enum ieee80211_rate_control_changed
flags to indicate what changed

Constants
IEEE80211_RC_BW_CHANGED The bandwidth that can be used to transmit to this

station changed. The actual bandwidth is in the station information – for
HT20/40 the IEEE80211_HT_CAP_SUP_WIDTH_20_40 flag changes, for HT
and VHT the bandwidth field changes.

IEEE80211_RC_SMPS_CHANGED The SMPS state of the station changed.

IEEE80211_RC_SUPP_RATES_CHANGED The supported rate set of this peer changed
(in IBSS mode) due to discovering more information about the peer.

IEEE80211_RC_NSS_CHANGED N_SS (number of spatial streams) was changed by
the peer

struct ieee80211_tx_rate_control
rate control information for/from RC algo

Definition

struct ieee80211_tx_rate_control {
struct ieee80211_hw *hw;
struct ieee80211_supported_band *sband;
struct ieee80211_bss_conf *bss_conf;
struct sk_buff *skb;
struct ieee80211_tx_rate reported_rate;
bool rts, short_preamble;
u32 rate_idx_mask;
u8 *rate_idx_mcs_mask;
bool bss;

};

Members
hw The hardware the algorithm is invoked for.

1478 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

sband The band this frame is being transmitted on.

bss_conf the current BSS configuration

skb the skb that will be transmitted, the control information in it needs to be filled
in

reported_rate The rate control algorithm can fill this in to indicate which rate
should be reported to userspace as the current rate and used for rate calcu-
lations in the mesh network.

rts whether RTS will be used for this frame because it is longer than the RTS
threshold

short_preamble whether mac80211 will request short-preamble transmission if
the selected rate supports it

rate_idx_mask user-requested (legacy) rate mask

rate_idx_mcs_mask user-requested MCS rate mask (NULL if not in use)

bss whether this frame is sent out in AP or IBSS mode

TBD

This part of the book describes mac80211 internals.

47.4.13 Key handling

Key handling basics

Key handling in mac80211 is done based on per-interface (sub_if_data) keys and
per-station keys. Since each station belongs to an interface, each station key also
belongs to that interface.

Hardware acceleration is done on a best-effort basis for algorithms that are im-
plemented in software, for each key the hardware is asked to enable that key for
offloading but if it cannot do that the key is simply kept for software encryption
(unless it is for an algorithm that isn’t implemented in software). There is cur-
rently no way of knowing whether a key is handled in SW or HW except by looking
into debugfs.

All key management is internally protected by a mutex. Within all other parts
of mac80211, key references are, just as STA structure references, protected
by RCU. Note, however, that some things are unprotected, namely the key-
>sta dereferences within the hardware acceleration functions. This means that
sta_info_destroy() must remove the key which waits for an RCU grace period.

47.4. mac80211 subsystem (advanced) 1479

Linux Driver-api Documentation

MORE TBD

TBD

47.4.14 Receive processing

TBD

47.4.15 Transmit processing

TBD

47.4.16 Station info handling

Programming information

struct sta_info
STA information

Definition

struct sta_info {
struct list_head list, free_list;
struct rcu_head rcu_head;
struct rhlist_head hash_node;
u8 addr[ETH_ALEN];
struct ieee80211_local *local;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_key __rcu *gtk[NUM_DEFAULT_KEYS +NUM_DEFAULT_MGMT_KEYS␣

↪→+ NUM_DEFAULT_BEACON_KEYS];
struct ieee80211_key __rcu *ptk[NUM_DEFAULT_KEYS];
u8 ptk_idx;
struct rate_control_ref *rate_ctrl;
void *rate_ctrl_priv;
spinlock_t rate_ctrl_lock;
spinlock_t lock;
struct ieee80211_fast_tx __rcu *fast_tx;
struct ieee80211_fast_rx __rcu *fast_rx;
struct ieee80211_sta_rx_stats __percpu *pcpu_rx_stats;

#ifdef CONFIG_MAC80211_MESH;
struct mesh_sta *mesh;

#endif;
struct work_struct drv_deliver_wk;
u16 listen_interval;
bool dead;
bool removed;
bool uploaded;
enum ieee80211_sta_state sta_state;
unsigned long _flags;
spinlock_t ps_lock;
struct sk_buff_head ps_tx_buf[IEEE80211_NUM_ACS];
struct sk_buff_head tx_filtered[IEEE80211_NUM_ACS];
unsigned long driver_buffered_tids;

(continues on next page)

1480 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

(continued from previous page)
unsigned long txq_buffered_tids;
u64 assoc_at;
long last_connected;
struct ieee80211_sta_rx_stats rx_stats;
struct {

struct ewma_signal signal;
struct ewma_signal chain_signal[IEEE80211_MAX_CHAINS];

} rx_stats_avg;
__le16 last_seq_ctrl[IEEE80211_NUM_TIDS + 1];
struct {

unsigned long filtered;
unsigned long retry_failed, retry_count;
unsigned int lost_packets;
unsigned long last_tdls_pkt_time;
u64 msdu_retries[IEEE80211_NUM_TIDS + 1];
u64 msdu_failed[IEEE80211_NUM_TIDS + 1];
unsigned long last_ack;
s8 last_ack_signal;
bool ack_signal_filled;
struct ewma_avg_signal avg_ack_signal;

} status_stats;
struct {

u64 packets[IEEE80211_NUM_ACS];
u64 bytes[IEEE80211_NUM_ACS];
struct ieee80211_tx_rate last_rate;
u64 msdu[IEEE80211_NUM_TIDS + 1];

} tx_stats;
u16 tid_seq[IEEE80211_QOS_CTL_TID_MASK + 1];
struct airtime_info airtime[IEEE80211_NUM_ACS];
u16 airtime_weight;
struct sta_ampdu_mlme ampdu_mlme;

#ifdef CONFIG_MAC80211_DEBUGFS;
struct dentry *debugfs_dir;

#endif;
enum ieee80211_sta_rx_bandwidth cur_max_bandwidth;
enum ieee80211_smps_mode known_smps_mode;
const struct ieee80211_cipher_scheme *cipher_scheme;
struct codel_params cparams;
u8 reserved_tid;
struct cfg80211_chan_def tdls_chandef;
struct ieee80211_sta sta;

};

Members
list global linked list entry

free_list list entry for keeping track of stations to free

rcu_head RCU head used for freeing this station struct

hash_node hash node for rhashtable

addr station’s MAC address - duplicated from public part to let the hash table
work with just a single cacheline

local pointer to the global information

47.4. mac80211 subsystem (advanced) 1481

Linux Driver-api Documentation

sdata virtual interface this station belongs to

gtk group keys negotiated with this station, if any

ptk peer keys negotiated with this station, if any

ptk_idx last installed peer key index

rate_ctrl rate control algorithm reference

rate_ctrl_priv rate control private per-STA pointer

rate_ctrl_lock spinlock used to protect rate control data (data inside the algo-
rithm, so serializes calls there)

lock used for locking all fields that require locking, see comments in the header
file.

fast_tx TX fastpath information

fast_rx RX fastpath information

pcpu_rx_stats per-CPU RX statistics, assigned only if the driver needs this (by
advertising the USES_RSS hw flag)

mesh mesh STA information

drv_deliver_wk used for delivering frames after driver PS unblocking

listen_interval listen interval of this station, when we’re acting as AP
dead set to true when sta is unlinked

removed set to true when sta is being removed from sta_list

uploaded set to true when sta is uploaded to the driver

sta_state duplicates information about station state (for debug)

_flags STA flags, see enum ieee80211_sta_info_flags, do not use directly

ps_lock used for powersave (when mac80211 is the AP) related locking

ps_tx_buf buffers (per AC) of frames to transmit to this station when it leaves
power saving state or polls

tx_filtered buffers (per AC) of frames we already tried to transmit but were
filtered by hardware due to STA having entered power saving state, these
are also delivered to the station when it leaves powersave or polls for frames

driver_buffered_tids bitmap of TIDs the driver has data buffered on

txq_buffered_tids bitmap of TIDs that mac80211 has txq data buffered on

assoc_at clock boottime (in ns) of last association

last_connected time (in seconds) when a station got connected

rx_stats RX statistics

rx_stats_avg averaged RX statistics

rx_stats_avg.signal averaged signal

rx_stats_avg.chain_signal averaged per-chain signal

1482 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

last_seq_ctrl last received seq/frag number from this STA (per TID plus one for
non-QoS frames)

status_stats TX status statistics

status_stats.filtered # of filtered frames

status_stats.retry_failed # of frames that failed after retry

status_stats.retry_count # of retries attempted

status_stats.lost_packets # of lost packets

status_stats.last_tdls_pkt_time timestamp of last TDLS packet

status_stats.msdu_retries # of MSDU retries

status_stats.msdu_failed # of failed MSDUs

status_stats.last_ack last ack timestamp (jiffies)

status_stats.last_ack_signal last ACK signal

status_stats.ack_signal_filled last ACK signal validity

status_stats.avg_ack_signal average ACK signal

tx_stats TX statistics

tx_stats.packets # of packets transmitted

tx_stats.bytes # of bytes in all packets transmitted

tx_stats.last_rate last TX rate

tx_stats.msdu # of transmitted MSDUs per TID

tid_seq per-TID sequence numbers for sending to this STA

airtime per-AC struct airtime_info describing airtime statistics for this station

airtime_weight station weight for airtime fairness calculation purposes

ampdu_mlme A-MPDU state machine state

debugfs_dir debug filesystem directory dentry

cur_max_bandwidth maximum bandwidth to use for TX to the station, taken from
HT/VHT capabilities or VHT operating mode notification

known_smps_mode the smps_mode the client thinks we are in. Relevant for AP only.

cipher_scheme optional cipher scheme for this station

cparams CoDel parameters for this station.

reserved_tid reserved TID (if any, otherwise IEEE80211_TID_UNRESERVED)

tdls_chandef a TDLS peer can have a wider chandef that is compatible to the
BSS one.

sta station information we share with the driver

Description
This structure collects information about a station that mac80211 is communicat-
ing with.

47.4. mac80211 subsystem (advanced) 1483

Linux Driver-api Documentation

enum ieee80211_sta_info_flags
Stations flags

Constants
WLAN_STA_AUTH Station is authenticated.

WLAN_STA_ASSOC Station is associated.

WLAN_STA_PS_STA Station is in power-save mode

WLAN_STA_AUTHORIZED Station is authorized to send/receive traffic. This bit is al-
ways checked so needs to be enabled for all stations when virtual port control
is not in use.

WLAN_STA_SHORT_PREAMBLE Station is capable of receiving short-preamble frames.

WLAN_STA_WDS Station is one of our WDS peers.

WLAN_STA_CLEAR_PS_FILT Clear PS filter in hardware (using the
IEEE80211_TX_CTL_CLEAR_PS_FILT control flag) when the next frame
to this station is transmitted.

WLAN_STA_MFP Management frame protection is used with this STA.

WLAN_STA_BLOCK_BA Used to deny ADDBA requests (both TX and RX) during sus-
pend/resume and station removal.

WLAN_STA_PS_DRIVER driver requires keeping this station in power-save mode log-
ically to flush frames that might still be in the queues

WLAN_STA_PSPOLL Station sent PS-poll while driver was keeping station in power-
save mode, reply when the driver unblocks.

WLAN_STA_TDLS_PEER Station is a TDLS peer.

WLAN_STA_TDLS_PEER_AUTH This TDLS peer is authorized to send direct packets.
This means the link is enabled.

WLAN_STA_TDLS_INITIATOR We are the initiator of the TDLS link with this station.

WLAN_STA_TDLS_CHAN_SWITCH This TDLS peer supports TDLS channel-switching

WLAN_STA_TDLS_OFF_CHANNEL The local STA is currently off-channel with this
TDLS peer

WLAN_STA_TDLS_WIDER_BW This TDLS peer supports working on a wider bw on the
BSS base channel.

WLAN_STA_UAPSD Station requested unscheduled SP while driver was keeping sta-
tion in power-save mode, reply when the driver unblocks the station.

WLAN_STA_SP Station is in a service period, so don’t try to reply to other uAPSD
trigger frames or PS-Poll.

WLAN_STA_4ADDR_EVENT 4-addr event was already sent for this frame.

WLAN_STA_INSERTED This station is inserted into the hash table.

WLAN_STA_RATE_CONTROL rate control was initialized for this station.

WLAN_STA_TOFFSET_KNOWN toffset calculated for this station is valid.

WLAN_STA_MPSP_OWNER local STA is owner of a mesh Peer Service Period.

1484 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

WLAN_STA_MPSP_RECIPIENT local STA is recipient of a MPSP.

WLAN_STA_PS_DELIVER station woke up, but we’re still blocking TX until pending
frames are delivered

WLAN_STA_USES_ENCRYPTION This station was configured for encryption, so drop
all packets without a key later.

NUM_WLAN_STA_FLAGS number of defined flags

Description
These flags are used with struct sta_info’s flags member, but only indirectly
with set_sta_flag() and friends.

STA information lifetime rules

STA info structures (struct sta_info) are managed in a hash table for faster
lookup and a list for iteration. They are managed using RCU, i.e. access to the list
and hash table is protected by RCU.

Upon allocating a STA info structure with sta_info_alloc(), the caller owns that
structure. It must then insert it into the hash table using either sta_info_insert()
or sta_info_insert_rcu(); only in the latter case (which acquires an rcu read section
but must not be called from within one) will the pointer still be valid after the call.
Note that the caller may not do much with the STA info before inserting it, in
particular, it may not start any mesh peer link management or add encryption
keys.

When the insertion fails (sta_info_insert()) returns non-zero), the structure will
have been freed by sta_info_insert()!

Station entries are added by mac80211 when you establish a link with a peer. This
means different things for the different type of interfaces we support. For a regular
station this mean we add the AP sta when we receive an association response from
the AP. For IBSS this occurs when get to know about a peer on the same IBSS. For
WDS we add the sta for the peer immediately upon device open. When using AP
mode we add stations for each respective station upon request from userspace
through nl80211.

In order to remove a STA info structure, various sta_info_destroy_*() calls are avail-
able.

There is no concept of ownership on a STA entry, each structure is owned by the
global hash table/list until it is removed. All users of the structure need to be RCU
protected so that the structure won’t be freed before they are done using it.

47.4. mac80211 subsystem (advanced) 1485

Linux Driver-api Documentation

47.4.17 Aggregation Functions

struct sta_ampdu_mlme
STA aggregation information.

Definition

struct sta_ampdu_mlme {
struct mutex mtx;
struct tid_ampdu_rx __rcu *tid_rx[IEEE80211_NUM_TIDS];
u8 tid_rx_token[IEEE80211_NUM_TIDS];
unsigned long tid_rx_timer_expired[BITS_TO_LONGS(IEEE80211_NUM_TIDS)];
unsigned long tid_rx_stop_requested[BITS_TO_LONGS(IEEE80211_NUM_TIDS)];
unsigned long tid_rx_manage_offl[BITS_TO_LONGS(2 * IEEE80211_NUM_TIDS)];
unsigned long agg_session_valid[BITS_TO_LONGS(IEEE80211_NUM_TIDS)];
unsigned long unexpected_agg[BITS_TO_LONGS(IEEE80211_NUM_TIDS)];
struct work_struct work;
struct tid_ampdu_tx __rcu *tid_tx[IEEE80211_NUM_TIDS];
struct tid_ampdu_tx *tid_start_tx[IEEE80211_NUM_TIDS];
unsigned long last_addba_req_time[IEEE80211_NUM_TIDS];
u8 addba_req_num[IEEE80211_NUM_TIDS];
u8 dialog_token_allocator;

};

Members
mtx mutex to protect all TX data (except non-NULL assignments to tid_tx[idx],

which are protected by the sta spinlock) tid_start_tx is also protected by sta-
>lock.

tid_rx aggregation info for Rx per TID – RCU protected

tid_rx_token dialog tokens for valid aggregation sessions

tid_rx_timer_expired bitmap indicating on which TIDs the RX timer expired un-
til the work for it runs

tid_rx_stop_requested bitmap indicating which BA sessions per TID the driver
requested to close until the work for it runs

tid_rx_manage_offl bitmap indicating which BA sessions were requested to be
treated as started/stopped due to offloading

agg_session_valid bitmap indicating which TID has a rx BA session open on

unexpected_agg bitmap indicating which TID already sent a delBA due to unex-
pected aggregation related frames outside a session

work work struct for starting/stopping aggregation

tid_tx aggregation info for Tx per TID

tid_start_tx sessions where start was requested

last_addba_req_time timestamp of the last addBA request.

addba_req_num number of times addBA request has been sent.

dialog_token_allocator dialog token enumerator for each new session;

1486 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

struct tid_ampdu_tx
TID aggregation information (Tx).

Definition

struct tid_ampdu_tx {
struct rcu_head rcu_head;
struct timer_list session_timer;
struct timer_list addba_resp_timer;
struct sk_buff_head pending;
struct sta_info *sta;
unsigned long state;
unsigned long last_tx;
u16 timeout;
u8 dialog_token;
u8 stop_initiator;
bool tx_stop;
u16 buf_size;
u16 failed_bar_ssn;
bool bar_pending;
bool amsdu;
u8 tid;

};

Members
rcu_head rcu head for freeing structure

session_timer check if we keep Tx-ing on the TID (by timeout value)

addba_resp_timer timer for peer’s response to addba request
pending pending frames queue – use sta’s spinlock to protect
sta station we are attached to

state session state (see above)

last_tx jiffies of last tx activity

timeout session timeout value to be filled in ADDBA requests

dialog_token dialog token for aggregation session

stop_initiator initiator of a session stop

tx_stop TX DelBA frame when stopping

buf_size reorder buffer size at receiver

failed_bar_ssn ssn of the last failed BAR tx attempt

bar_pending BAR needs to be re-sent

amsdu support A-MSDU withing A-MDPU

tid TID number

Description
This structure’s lifetime is managed by RCU, assignments to the array holding it
must hold the aggregation mutex.

47.4. mac80211 subsystem (advanced) 1487

Linux Driver-api Documentation

The TX path can access it under RCU lock-free if, and only if, the state has the
flag HT_AGG_STATE_OPERATIONAL set. Otherwise, the TX path must also acquire
the spinlock and re-check the state, see comments in the tx code touching it.

struct tid_ampdu_rx
TID aggregation information (Rx).

Definition

struct tid_ampdu_rx {
struct rcu_head rcu_head;
spinlock_t reorder_lock;
u64 reorder_buf_filtered;
struct sk_buff_head *reorder_buf;
unsigned long *reorder_time;
struct sta_info *sta;
struct timer_list session_timer;
struct timer_list reorder_timer;
unsigned long last_rx;
u16 head_seq_num;
u16 stored_mpdu_num;
u16 ssn;
u16 buf_size;
u16 timeout;
u8 tid;
u8 auto_seq:1,removed:1, started:1;

};

Members
rcu_head RCU head used for freeing this struct

reorder_lock serializes access to reorder buffer, see below.

reorder_buf_filtered bitmap indicating where there are filtered frames in the
reorder buffer that should be ignored when releasing frames

reorder_buf buffer to reorder incoming aggregated MPDUs. An MPDU may be
an A-MSDU with individually reported subframes.

reorder_time jiffies when skb was added

sta station we are attached to

session_timer check if peer keeps Tx-ing on the TID (by timeout value)

reorder_timer releases expired frames from the reorder buffer.

last_rx jiffies of last rx activity

head_seq_num head sequence number in reordering buffer.

stored_mpdu_num number of MPDUs in reordering buffer

ssn Starting Sequence Number expected to be aggregated.

buf_size buffer size for incoming A-MPDUs

timeout reset timer value (in TUs).

tid TID number

1488 Chapter 47. Linux 802.11 Driver Developer’s Guide

Linux Driver-api Documentation

auto_seq used for offloaded BA sessions to automatically pick head_seq_and and
ssn.

removed this session is removed (but might have been found due to RCU)

started this session has started (head ssn or higher was received)

Description
This structure’s lifetime is managed by RCU, assignments to the array holding it
must hold the aggregation mutex.

The reorder_lock is used to protect the members of this struct, except for time-
out, buf_size and dialog_token, which are constant across the lifetime of the
struct (the dialog token being used only for debugging).

47.4.18 Synchronisation Functions

TBD

Locking, lots of RCU

47.4. mac80211 subsystem (advanced) 1489

Linux Driver-api Documentation

1490 Chapter 47. Linux 802.11 Driver Developer’s Guide

CHAPTER

FORTYEIGHT

THE USERSPACE I/O HOWTO

Author Hans-Jürgen Koch Linux developer, Linutronix
Date 2006-12-11

48.1 About this document

48.1.1 Translations

If you know of any translations for this document, or you are interested in trans-
lating it, please email me hjk@hansjkoch.de.

48.1.2 Preface

For many types of devices, creating a Linux kernel driver is overkill. All that is
really needed is someway to handle an interrupt and provide access to thememory
space of the device. The logic of controlling the device does not necessarily have
to be within the kernel, as the device does not need to take advantage of any of
other resources that the kernel provides. One such common class of devices that
are like this are for industrial I/O cards.

To address this situation, the userspace I/O system (UIO) was designed. For typical
industrial I/O cards, only a very small kernel module is needed. The main part of
the driver will run in user space. This simplifies development and reduces the risk
of serious bugs within a kernel module.

Please note that UIO is not an universal driver interface. Devices that are already
handled well by other kernel subsystems (like networking or serial or USB) are
no candidates for an UIO driver. Hardware that is ideally suited for an UIO driver
fulfills all of the following:

• The device has memory that can be mapped. The device can be controlled
completely by writing to this memory.

• The device usually generates interrupts.

• The device does not fit into one of the standard kernel subsystems.

1491

mailto:hjk@hansjkoch.de

Linux Driver-api Documentation

48.1.3 Acknowledgments

I’d like to thank Thomas Gleixner and Benedikt Spranger of Linutronix, who have
not only written most of the UIO code, but also helped greatly writing this HOWTO
by giving me all kinds of background information.

48.1.4 Feedback

Find something wrong with this document? (Or perhaps something right?) I would
love to hear from you. Please email me at hjk@hansjkoch.de.

48.2 About UIO

If you use UIO for your card’s driver, here’s what you get:
• only one small kernel module to write and maintain.

• develop the main part of your driver in user space, with all the tools and
libraries you’re used to.

• bugs in your driver won’t crash the kernel.
• updates of your driver can take place without recompiling the kernel.

48.2.1 How UIO works

Each UIO device is accessed through a device file and several sysfs attribute files.
The device file will be called /dev/uio0 for the first device, and /dev/uio1, /dev/
uio2 and so on for subsequent devices.

/dev/uioX is used to access the address space of the card. Just use mmap() to
access registers or RAM locations of your card.

Interrupts are handled by reading from /dev/uioX. A blocking read() from /dev/
uioX will return as soon as an interrupt occurs. You can also use select() on
/dev/uioX to wait for an interrupt. The integer value read from /dev/uioX repre-
sents the total interrupt count. You can use this number to figure out if you missed
some interrupts.

For some hardware that has more than one interrupt source internally, but not
separate IRQmask and status registers, theremight be situations where userspace
cannot determine what the interrupt source was if the kernel handler disables
them by writing to the chip’s IRQ register. In such a case, the kernel has to disable
the IRQ completely to leave the chip’s register untouched. Now the userspace
part can determine the cause of the interrupt, but it cannot re-enable interrupts.
Another cornercase is chips where re-enabling interrupts is a read-modify-write
operation to a combined IRQ status/acknowledge register. This would be racy if a
new interrupt occurred simultaneously.

To address these problems, UIO also implements a write() function. It is normally
not used and can be ignored for hardware that has only a single interrupt source

1492 Chapter 48. The Userspace I/O HOWTO

mailto:hjk@hansjkoch.de

Linux Driver-api Documentation

or has separate IRQ mask and status registers. If you need it, however, a write to /
dev/uioXwill call the irqcontrol() function implemented by the driver. You have
to write a 32-bit value that is usually either 0 or 1 to disable or enable interrupts.
If a driver does not implement irqcontrol(), write() will return with -ENOSYS.

To handle interrupts properly, your custom kernel module can provide its own
interrupt handler. It will automatically be called by the built-in handler.

For cards that don’t generate interrupts but need to be polled, there is the pos-
sibility to set up a timer that triggers the interrupt handler at configurable time
intervals. This interrupt simulation is done by calling uio_event_notify() from
the timer’s event handler.
Each driver provides attributes that are used to read or write variables. These
attributes are accessible through sysfs files. A custom kernel driver module can
add its own attributes to the device owned by the uio driver, but not added to the
UIO device itself at this time. This might change in the future if it would be found
to be useful.

The following standard attributes are provided by the UIO framework:

• name: The name of your device. It is recommended to use the name of your
kernel module for this.

• version: A version string defined by your driver. This allows the user space
part of your driver to deal with different versions of the kernel module.

• event: The total number of interrupts handled by the driver since the last
time the device node was read.

These attributes appear under the /sys/class/uio/uioX directory. Please note
that this directory might be a symlink, and not a real directory. Any userspace
code that accesses it must be able to handle this.

Each UIO device can make one or more memory regions available for memory
mapping. This is necessary because some industrial I/O cards require access to
more than one PCI memory region in a driver.

Each mapping has its own directory in sysfs, the first mapping appears as /sys/
class/uio/uioX/maps/map0/. Subsequent mappings create directories map1/,
map2/, and so on. These directories will only appear if the size of the mapping
is not 0.

Each mapX/ directory contains four read-only files that show attributes of the mem-
ory:

• name: A string identifier for this mapping. This is optional, the string can be
empty. Drivers can set this to make it easier for userspace to find the correct
mapping.

• addr: The address of memory that can be mapped.

• size: The size, in bytes, of the memory pointed to by addr.

• offset: The offset, in bytes, that has to be added to the pointer returned by
mmap() to get to the actual device memory. This is important if the device’
s memory is not page aligned. Remember that pointers returned by mmap()
are always page aligned, so it is good style to always add this offset.

48.2. About UIO 1493

Linux Driver-api Documentation

From userspace, the different mappings are distinguished by adjusting the offset
parameter of the mmap() call. To map the memory of mapping N, you have to use
N times the page size as your offset:

offset = N * getpagesize();

Sometimes there is hardware with memory-like regions that can not be mapped
with the technique described here, but there are still ways to access them from
userspace. Themost common example are x86 ioports. On x86 systems, userspace
can access these ioports using ioperm(), iopl(), inb(), outb(), and similar func-
tions.

Since these ioport regions can not be mapped, they will not appear under /sys/
class/uio/uioX/maps/ like the normal memory described above. Without infor-
mation about the port regions a hardware has to offer, it becomes difficult for the
userspace part of the driver to find out which ports belong to which UIO device.

To address this situation, the new directory /sys/class/uio/uioX/portio/ was
added. It only exists if the driver wants to pass information about one or more port
regions to userspace. If that is the case, subdirectories named port0, port1, and
so on, will appear underneath /sys/class/uio/uioX/portio/.

Each portX/ directory contains four read-only files that show name, start, size,
and type of the port region:

• name: A string identifier for this port region. The string is optional and can
be empty. Drivers can set it to make it easier for userspace to find a certain
port region.

• start: The first port of this region.

• size: The number of ports in this region.

• porttype: A string describing the type of port.

48.3 Writing your own kernel module

Please have a look at uio_cif.c as an example. The following paragraphs explain
the different sections of this file.

48.3.1 struct uio_info

This structure tells the framework the details of your driver, Some of the members
are required, others are optional.

• const char *name: Required. The name of your driver as it will appear in
sysfs. I recommend using the name of your module for this.

• const char *version: Required. This string appears in /sys/class/uio/
uioX/version.

• struct uio_mem mem[MAX_UIO_MAPS]: Required if you have memory that
can be mapped with mmap(). For each mapping you need to fill one of the
uio_mem structures. See the description below for details.

1494 Chapter 48. The Userspace I/O HOWTO

Linux Driver-api Documentation

• struct uio_port port[MAX_UIO_PORTS_REGIONS]: Required if you want
to pass information about ioports to userspace. For each port region you
need to fill one of the uio_port structures. See the description below for
details.

• long irq: Required. If your hardware generates an interrupt, it’s your mod-
ules task to determine the irq number during initialization. If you don’t have
a hardware generated interrupt but want to trigger the interrupt handler in
some other way, set irq to UIO_IRQ_CUSTOM. If you had no interrupt at all,
you could set irq to UIO_IRQ_NONE, though this rarely makes sense.

• unsigned long irq_flags: Required if you’ve set irq to a hardware inter-
rupt number. The flags given here will be used in the call to request_irq().

• int (*mmap)(struct uio_info *info, struct vm_area_struct *vma):
Optional. If you need a special mmap() function, you can set it here. If this
pointer is not NULL, your mmap() will be called instead of the built-in one.

• int (*open)(struct uio_info *info, struct inode *inode): Optional.
You might want to have your own open(), e.g. to enable interrupts only when
your device is actually used.

• int (*release)(struct uio_info *info, struct inode *inode): Op-
tional. If you define your own open(), you will probably also want a custom
release() function.

• int (*irqcontrol)(struct uio_info *info, s32 irq_on): Optional. If
you need to be able to enable or disable interrupts from userspace by writing
to /dev/uioX, you can implement this function. The parameter irq_on will
be 0 to disable interrupts and 1 to enable them.

Usually, your device will have one or more memory regions that can be mapped
to user space. For each region, you have to set up a struct uio_mem in the mem[]
array. Here’s a description of the fields of struct uio_mem:

• const char *name: Optional. Set this to help identify the memory region, it
will show up in the corresponding sysfs node.

• int memtype: Required if the mapping is used. Set this to UIO_MEM_PHYS
if you you have physical memory on your card to be mapped.
Use UIO_MEM_LOGICAL for logical memory (e.g. allocated with
__get_free_pages() but not kmalloc()). There’s also UIO_MEM_VIRTUAL for
virtual memory.

• phys_addr_t addr: Required if the mapping is used. Fill in the address of
your memory block. This address is the one that appears in sysfs.

• resource_size_t size: Fill in the size of the memory block that addr points
to. If size is zero, the mapping is considered unused. Note that you must
initialize size with zero for all unused mappings.

• void *internal_addr: If you have to access this memory region from within
your kernel module, you will want to map it internally by using something
like ioremap(). Addresses returned by this function cannot be mapped to
user space, so you must not store it in addr. Use internal_addr instead to
remember such an address.

48.3. Writing your own kernel module 1495

Linux Driver-api Documentation

Please do not touch the map element of struct uio_mem! It is used by the UIO
framework to set up sysfs files for this mapping. Simply leave it alone.

Sometimes, your device can have one or more port regions which can not be
mapped to userspace. But if there are other possibilities for userspace to access
these ports, it makes sense to make information about the ports available in sysfs.
For each region, you have to set up a struct uio_port in the port[] array. Here’
s a description of the fields of struct uio_port:

• char *porttype: Required. Set this to one of the predefined constants. Use
UIO_PORT_X86 for the ioports found in x86 architectures.

• unsigned long start: Required if the port region is used. Fill in the number
of the first port of this region.

• unsigned long size: Fill in the number of ports in this region. If size is
zero, the region is considered unused. Note that you must initialize size
with zero for all unused regions.

Please do not touch the portio element of struct uio_port! It is used internally
by the UIO framework to set up sysfs files for this region. Simply leave it alone.

48.3.2 Adding an interrupt handler

What you need to do in your interrupt handler depends on your hardware and on
how you want to handle it. You should try to keep the amount of code in your
kernel interrupt handler low. If your hardware requires no action that you have to
perform after each interrupt, then your handler can be empty.

If, on the other hand, your hardware needs some action to be performed after each
interrupt, then you must do it in your kernel module. Note that you cannot rely on
the userspace part of your driver. Your userspace program can terminate at any
time, possibly leaving your hardware in a state where proper interrupt handling
is still required.

There might also be applications where you want to read data from your hardware
at each interrupt and buffer it in a piece of kernel memory you’ve allocated for
that purpose. With this technique you could avoid loss of data if your userspace
program misses an interrupt.

A note on shared interrupts: Your driver should support interrupt sharing when-
ever this is possible. It is possible if and only if your driver can detect whether
your hardware has triggered the interrupt or not. This is usually done by looking
at an interrupt status register. If your driver sees that the IRQ bit is actually set,
it will perform its actions, and the handler returns IRQ_HANDLED. If the driver
detects that it was not your hardware that caused the interrupt, it will do noth-
ing and return IRQ_NONE, allowing the kernel to call the next possible interrupt
handler.

If you decide not to support shared interrupts, your card won’t work in computers
with no free interrupts. As this frequently happens on the PC platform, you can
save yourself a lot of trouble by supporting interrupt sharing.

1496 Chapter 48. The Userspace I/O HOWTO

Linux Driver-api Documentation

48.3.3 Using uio_pdrv for platform devices

In many cases, UIO drivers for platform devices can be handled in a generic way.
In the same place where you define your struct platform_device, you simply
also implement your interrupt handler and fill your struct uio_info. A pointer
to this struct uio_info is then used as platform_data for your platform device.

You also need to set up an array of struct resource containing addresses and
sizes of your memory mappings. This information is passed to the driver using the
.resource and .num_resources elements of struct platform_device.

You now have to set the .name element of struct platform_device to "uio_pdrv"
to use the generic UIO platform device driver. This driver will fill the mem[] array
according to the resources given, and register the device.

The advantage of this approach is that you only have to edit a file you need to edit
anyway. You do not have to create an extra driver.

48.3.4 Using uio_pdrv_genirq for platform devices

Especially in embedded devices, you frequently find chips where the irq pin is tied
to its own dedicated interrupt line. In such cases, where you can be really sure
the interrupt is not shared, we can take the concept of uio_pdrv one step further
and use a generic interrupt handler. That’s what uio_pdrv_genirq does.
The setup for this driver is the same as described above for uio_pdrv, except
that you do not implement an interrupt handler. The .handler element of
struct uio_info must remain NULL. The .irq_flags element must not contain
IRQF_SHARED.

You will set the .name element of struct platform_device to "uio_pdrv_genirq"
to use this driver.

The generic interrupt handler of uio_pdrv_genirqwill simply disable the interrupt
line using disable_irq_nosync(). After doing its work, userspace can reenable
the interrupt by writing 0x00000001 to the UIO device file. The driver already
implements an irq_control() to make this possible, you must not implement your
own.

Using uio_pdrv_genirq not only saves a few lines of interrupt handler code. You
also do not need to know anything about the chip’s internal registers to create
the kernel part of the driver. All you need to know is the irq number of the pin the
chip is connected to.

When used in a device-tree enabled system, the driver needs to be probed with the
"of_id" module parameter set to the "compatible" string of the node the driver
is supposed to handle. By default, the node’s name (without the unit address)
is exposed as name for the UIO device in userspace. To set a custom name, a
property named "linux,uio-name" may be specified in the DT node.

48.3. Writing your own kernel module 1497

Linux Driver-api Documentation

48.3.5 Using uio_dmem_genirq for platform devices

In addition to statically allocated memory ranges, they may also be a desire to use
dynamically allocated regions in a user space driver. In particular, being able to
access memory made available through the dma-mapping API, may be particularly
useful. The uio_dmem_genirq driver provides a way to accomplish this.

This driver is used in a similar manner to the "uio_pdrv_genirq" driver with re-
spect to interrupt configuration and handling.

Set the .name element of struct platform_device to "uio_dmem_genirq" to use
this driver.

When using this driver, fill in the .platform_data element of struct
platform_device, which is of type struct uio_dmem_genirq_pdata and which
contains the following elements:

• struct uio_info uioinfo: The same structure used as the
uio_pdrv_genirq platform data

• unsigned int *dynamic_region_sizes: Pointer to list of sizes of dynamic
memory regions to be mapped into user space.

• unsigned int num_dynamic_regions: Number of elements in
dynamic_region_sizes array.

The dynamic regions defined in the platform data will be appended to the `` mem[]
`` array after the platform device resources, which implies that the total number
of static and dynamic memory regions cannot exceed MAX_UIO_MAPS.

The dynamic memory regions will be allocated when the UIO device file, /dev/
uioX is opened. Similar to static memory resources, the memory region informa-
tion for dynamic regions is then visible via sysfs at /sys/class/uio/uioX/maps/
mapY/*. The dynamic memory regions will be freed when the UIO device file is
closed. When no processes are holding the device file open, the address returned
to userspace is ~0.

48.4 Writing a driver in userspace

Once you have a working kernel module for your hardware, you can write the
userspace part of your driver. You don’t need any special libraries, your driver
can be written in any reasonable language, you can use floating point numbers
and so on. In short, you can use all the tools and libraries you’d normally use for
writing a userspace application.

1498 Chapter 48. The Userspace I/O HOWTO

Linux Driver-api Documentation

48.4.1 Getting information about your UIO device

Information about all UIO devices is available in sysfs. The first thing you should
do in your driver is check name and version to make sure you’re talking to the
right device and that its kernel driver has the version you expect.

You should also make sure that the memory mapping you need exists and has the
size you expect.

There is a tool called lsuio that lists UIO devices and their attributes. It is avail-
able here:

http://www.osadl.org/projects/downloads/UIO/user/

With lsuio you can quickly check if your kernel module is loaded and which at-
tributes it exports. Have a look at the manpage for details.

The source code of lsuio can serve as an example for getting information about
an UIO device. The file uio_helper.c contains a lot of functions you could use in
your userspace driver code.

48.4.2 mmap() device memory

After you made sure you’ve got the right device with the memory mappings you
need, all you have to do is to call mmap() to map the device’s memory to userspace.
The parameter offset of the mmap() call has a special meaning for UIO devices:
It is used to select which mapping of your device you want to map. To map the
memory of mapping N, you have to use N times the page size as your offset:

offset = N * getpagesize();

N starts from zero, so if you’ve got only one memory range to map, set offset =
0. A drawback of this technique is that memory is always mapped beginning with
its start address.

48.4.3 Waiting for interrupts

After you successfully mapped your devices memory, you can access it like an ordi-
nary array. Usually, you will perform some initialization. After that, your hardware
starts working and will generate an interrupt as soon as it’s finished, has some
data available, or needs your attention because an error occurred.

/dev/uioX is a read-only file. A read() will always block until an interrupt occurs.
There is only one legal value for the count parameter of read(), and that is the
size of a signed 32 bit integer (4). Any other value for count causes read() to fail.
The signed 32 bit integer read is the interrupt count of your device. If the value is
one more than the value you read the last time, everything is OK. If the difference
is greater than one, you missed interrupts.

You can also use select() on /dev/uioX.

48.4. Writing a driver in userspace 1499

http://www.osadl.org/projects/downloads/UIO/user/

Linux Driver-api Documentation

48.5 Generic PCI UIO driver

The generic driver is a kernel module named uio_pci_generic. It can work with any
device compliant to PCI 2.3 (circa 2002) and any compliant PCI Express device.
Using this, you only need to write the userspace driver, removing the need to write
a hardware-specific kernel module.

48.5.1 Making the driver recognize the device

Since the driver does not declare any device ids, it will not get loaded automatically
and will not automatically bind to any devices, you must load it and allocate id to
the driver yourself. For example:

modprobe uio_pci_generic
echo "8086 10f5" > /sys/bus/pci/drivers/uio_pci_generic/new_id

If there already is a hardware specific kernel driver for your device, the generic
driver still won’t bind to it, in this case if you want to use the generic driver (why
would you?) you’ll have to manually unbind the hardware specific driver and bind
the generic driver, like this:

echo -n 0000:00:19.0 > /sys/bus/pci/drivers/e1000e/unbind
echo -n 0000:00:19.0 > /sys/bus/pci/drivers/uio_pci_generic/bind

You can verify that the device has been bound to the driver by looking for it in
sysfs, for example like the following:

ls -l /sys/bus/pci/devices/0000:00:19.0/driver

Which if successful should print:

.../0000:00:19.0/driver -> ../../../bus/pci/drivers/uio_pci_generic

Note that the generic driver will not bind to old PCI 2.2 devices. If binding the
device failed, run the following command:

dmesg

and look in the output for failure reasons.

48.5.2 Things to know about uio_pci_generic

Interrupts are handled using the Interrupt Disable bit in the PCI command reg-
ister and Interrupt Status bit in the PCI status register. All devices compliant to
PCI 2.3 (circa 2002) and all compliant PCI Express devices should support these
bits. uio_pci_generic detects this support, and won’t bind to devices which do not
support the Interrupt Disable Bit in the command register.

On each interrupt, uio_pci_generic sets the Interrupt Disable bit. This prevents the
device from generating further interrupts until the bit is cleared. The userspace
driver should clear this bit before blocking and waiting for more interrupts.

1500 Chapter 48. The Userspace I/O HOWTO

Linux Driver-api Documentation

48.5.3 Writing userspace driver using uio_pci_generic

Userspace driver can use pci sysfs interface, or the libpci library that wraps it, to
talk to the device and to re-enable interrupts by writing to the command register.

48.5.4 Example code using uio_pci_generic

Here is some sample userspace driver code using uio_pci_generic:

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>

int main()
{

int uiofd;
int configfd;
int err;
int i;
unsigned icount;
unsigned char command_high;

uiofd = open("/dev/uio0", O_RDONLY);
if (uiofd < 0) {

perror("uio open:");
return errno;

}
configfd = open("/sys/class/uio/uio0/device/config", O_RDWR);
if (configfd < 0) {

perror("config open:");
return errno;

}

/* Read and cache command value */
err = pread(configfd, &command_high, 1, 5);
if (err != 1) {

perror("command config read:");
return errno;

}
command_high &= ~0x4;

for(i = 0;; ++i) {
/* Print out a message, for debugging. */
if (i == 0)

fprintf(stderr, "Started uio test driver.\n");
else

fprintf(stderr, "Interrupts: %d\n", icount);

/**/
/* Here we got an interrupt from the

device. Do something to it. */
(continues on next page)

48.5. Generic PCI UIO driver 1501

Linux Driver-api Documentation

(continued from previous page)
/**/

/* Re-enable interrupts. */
err = pwrite(configfd, &command_high, 1, 5);
if (err != 1) {

perror("config write:");
break;

}

/* Wait for next interrupt. */
err = read(uiofd, &icount, 4);
if (err != 4) {

perror("uio read:");
break;

}

}
return errno;

}

48.6 Generic Hyper-V UIO driver

The generic driver is a kernel module named uio_hv_generic. It supports devices
on the Hyper-V VMBus similar to uio_pci_generic on PCI bus.

48.6.1 Making the driver recognize the device

Since the driver does not declare any device GUID’s, it will not get loaded au-
tomatically and will not automatically bind to any devices, you must load it and
allocate id to the driver yourself. For example, to use the network device class
GUID:

modprobe uio_hv_generic
echo "f8615163-df3e-46c5-913f-f2d2f965ed0e" > /sys/bus/vmbus/drivers/uio_
↪→hv_generic/new_id

If there already is a hardware specific kernel driver for the device, the generic
driver still won’t bind to it, in this case if you want to use the generic driver for
a userspace library you’ll have to manually unbind the hardware specific driver
and bind the generic driver, using the device specific GUID like this:

echo -n ed963694-e847-4b2a-85af-bc9cfc11d6f3 > /sys/bus/vmbus/drivers/hv_
↪→netvsc/unbind
echo -n ed963694-e847-4b2a-85af-bc9cfc11d6f3 > /sys/bus/vmbus/drivers/uio_
↪→hv_generic/bind

You can verify that the device has been bound to the driver by looking for it in
sysfs, for example like the following:

ls -l /sys/bus/vmbus/devices/ed963694-e847-4b2a-85af-bc9cfc11d6f3/driver

1502 Chapter 48. The Userspace I/O HOWTO

Linux Driver-api Documentation

Which if successful should print:

.../ed963694-e847-4b2a-85af-bc9cfc11d6f3/driver -> ../../../bus/vmbus/
↪→drivers/uio_hv_generic

48.6.2 Things to know about uio_hv_generic

On each interrupt, uio_hv_generic sets the Interrupt Disable bit. This prevents the
device from generating further interrupts until the bit is cleared. The userspace
driver should clear this bit before blocking and waiting for more interrupts.

When host rescinds a device, the interrupt file descriptor is marked down and any
reads of the interrupt file descriptor will return -EIO. Similar to a closed socket or
disconnected serial device.

The vmbus device regions are mapped into uio device resources:
0) Channel ring buffers: guest to host and host to guest

1) Guest to host interrupt signalling pages

2) Guest to host monitor page

3) Network receive buffer region

4) Network send buffer region

If a subchannel is created by a request to host, then the uio_hv_generic device
driver will create a sysfs binary file for the per-channel ring buffer. For example:

/sys/bus/vmbus/devices/3811fe4d-0fa0-4b62-981a-74fc1084c757/channels/21/
↪→ring

48.7 Further information

• OSADL homepage.

• Linutronix homepage.

48.7. Further information 1503

http://www.osadl.org
http://www.linutronix.de

Linux Driver-api Documentation

1504 Chapter 48. The Userspace I/O HOWTO

CHAPTER

FORTYNINE

LINUX FIRMWARE API

49.1 Introduction

The firmware API enables kernel code to request files required for functionality
from userspace, the uses vary:

• Microcode for CPU errata

• Device driver firmware, required to be loaded onto device microcontrollers

• Device driver information data (calibration data, EEPROM overrides), some
of which can be completely optional.

49.1.1 Types of firmware requests

There are two types of calls:

• Synchronous

• Asynchronous

Which one you use vary depending on your requirements, the rule of thumb how-
ever is you should strive to use the asynchronous APIs unless you also are already
using asynchronous initialization mechanisms which will not stall or delay boot.
Even if loading firmware does not take a lot of time processing firmware might,
and this can still delay boot or initialization, as such mechanisms such as asyn-
chronous probe can help supplement drivers.

49.2 Firmware API core features

The firmware API has a rich set of core features available. This section documents
these features.

1505

Linux Driver-api Documentation

49.2.1 Firmware search paths

The following search paths are used to look for firmware on your root filesystem.

• fw_path_para - module parameter - default is empty so this is ignored

• /lib/firmware/updates/UTS_RELEASE/

• /lib/firmware/updates/

• /lib/firmware/UTS_RELEASE/

• /lib/firmware/

The module parameter ‘’path’’can be passed to the firmware_class module to
activate the first optional custom fw_path_para. The custom path can only be up
to 256 characters long. The kernel parameter passed would be:

•‘firmware_class.path=$CUSTOMIZED_PATH’
There is an alternative to customize the path at run time after bootup, you can use
the file:

• /sys/module/firmware_class/parameters/path

You would echo into it your custom path and firmware requested will be searched
for there first.

49.2.2 Built-in firmware

Firmware can be built-in to the kernel, this means building the firmware into vm-
linux directly, to enable avoiding having to look for firmware from the filesystem.
Instead, firmware can be looked for inside the kernel directly. You can enable
built-in firmware using the kernel configuration options:

• CONFIG_EXTRA_FIRMWARE

• CONFIG_EXTRA_FIRMWARE_DIR

There are a few reasons why you might want to consider building your firmware
into the kernel with CONFIG_EXTRA_FIRMWARE:

• Speed

• Firmware is needed for accessing the boot device, and the user doesn’t want
to stuff the firmware into the boot initramfs.

Even if you have these needs there are a few reasons why you may not be able to
make use of built-in firmware:

• Legalese - firmware is non-GPL compatible

• Some firmware may be optional

• Firmware upgrades are possible, therefore a new firmware would implicate
a complete kernel rebuild.

• Some firmware files may be really large in size. The remote-proc subsystem
is an example subsystem which deals with these sorts of firmware

1506 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

• The firmware may need to be scraped out from some device specific location
dynamically, an example is calibration data for for some WiFi chipsets. This
calibration data can be unique per sold device.

49.2.3 Firmware cache

When Linux resumes from suspend some device drivers require firmware lookups
to re-initialize devices. During resume there may be a period of time during which
firmware lookups are not possible, during this short period of time firmware re-
quests will fail. Time is of essence though, and delaying drivers to wait for the root
filesystem for firmware delays user experience with device functionality. In order
to support these requirements the firmware infrastructure implements a firmware
cache for device drivers for most API calls, automatically behind the scenes.

The firmware cache makes using certain firmware API calls safe during a device
driver’s suspend and resume callback. Users of these API calls needn’t cache
the firmware by themselves for dealing with firmware loss during system resume.

The firmware cacheworks by requesting for firmware prior to suspend and caching
it in memory. Upon resume device drivers using the firmware API will have ac-
cess to the firmware immediately, without having to wait for the root filesystem
to mount or dealing with possible race issues with lookups as the root filesystem
mounts.

Some implementation details about the firmware cache setup:

• The firmware cache is setup by adding a devres entry for each device that
uses all synchronous call except request_firmware_into_buf().

• If an asynchronous call is used the firmware cache is only set up for a device
if if the second argument (uevent) to request_firmware_nowait() is true.
When uevent is true it requests that a kobject uevent be sent to userspace for
the firmware request through the sysfs fallback mechanism if the firmware
file is not found.

• If the firmware cache is determined to be needed as per the above two criteria
the firmware cache is setup by adding a devres entry for the device making
the firmware request.

• The firmware devres entry is maintained throughout the lifetime of the device.
This means that even if you release_firmware() the firmware cache will still
be used on resume from suspend.

• The timeout for the fallback mechanism is temporarily reduced to 10 seconds
as the firmware cache is set up during suspend, the timeout is set back to the
old value you had configured after the cache is set up.

• Upon suspend any pending non-uevent firmware requests are killed to avoid
stalling the kernel, this is done with kill_requests_without_uevent(). Ker-
nel calls requiring the non-uevent therefore need to implement their own
firmware cache mechanism but must not use the firmware API on suspend.

49.2. Firmware API core features 1507

Linux Driver-api Documentation

49.2.4 Direct filesystem lookup

Direct filesystem lookup is the most common form of firmware lookup performed
by the kernel. The kernel looks for the firmware directly on the root filesystem
in the paths documented in the section ‘Firmware search paths’. The filesys-
tem lookup is implemented in fw_get_filesystem_firmware(), it uses common core
kernel file loader facility kernel_read_file_from_path(). The max path allowed is
PATH_MAX – currently this is 4096 characters.

It is recommended you keep /lib/firmware paths on your root filesystem, avoid
having a separate partition for them in order to avoid possible races with lookups
and avoid uses of the custom fallback mechanisms documented below.

Firmware and initramfs

Drivers which are built-in to the kernel should have the firmware integrated also as
part of the initramfs used to boot the kernel given that otherwise a race is possible
with loading the driver and the real rootfs not yet being available. Stuffing the
firmware into initramfs resolves this race issue, however note that using initrd
does not suffice to address the same race.

There are circumstances that justify not wanting to include firmware into
initramfs, such as dealing with large firmware firmware files for the remote-proc
subsystem. For such cases using a userspace fallback mechanism is currently the
only viable solution as only userspace can know for sure when the real rootfs is
ready and mounted.

49.2.5 Fallback mechanisms

A fallback mechanism is supported to allow to overcome failures to do a direct
filesystem lookup on the root filesystem or when the firmware simply cannot be
installed for practical reasons on the root filesystem. The kernel configuration
options related to supporting the firmware fallback mechanism are:

• CONFIG_FW_LOADER_USER_HELPER: enables building the firmware fall-
back mechanism. Most distributions enable this option today. If enabled but
CONFIG_FW_LOADER_USER_HELPER_FALLBACK is disabled, only the cus-
tom fallbackmechanism is available and for the request_firmware_nowait()
call.

• CONFIG_FW_LOADER_USER_HELPER_FALLBACK: force enables each re-
quest to enable the kobject uevent fallback mechanism on all firmware API
calls except request_firmware_direct(). Most distributions disable this op-
tion today. The call request_firmware_nowait() allows for one alternative
fallback mechanism: if this kconfig option is enabled and your second argu-
ment to request_firmware_nowait(), uevent, is set to false you are inform-
ing the kernel that you have a custom fallback mechanism and it will manually
load the firmware. Read below for more details.

Note that this means when having this configuration:

CONFIG_FW_LOADER_USER_HELPER=yCONFIG_FW_LOADER_USER_HELPER_FALLBACK=n

1508 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

the kobject uevent fallback mechanism will never take effect even for
request_firmware_nowait() when uevent is set to true.

Justifying the firmware fallback mechanism

Direct filesystem lookups may fail for a variety of reasons. Known reasons for
this are worth itemizing and documenting as it justifies the need for the fallback
mechanism:

• Race against access with the root filesystem upon bootup.

• Races upon resume from suspend. This is resolved by the firmware cache, but
the firmware cache is only supported if you use uevents, and its not supported
for request_firmware_into_buf().

• Firmware is not accessible through typical means:
– It cannot be installed into the root filesystem
– The firmware provides very unique device specific data tailored for
the unit gathered with local information. An example is calibration
data for WiFi chipsets for mobile devices. This calibration data is
not common to all units, but tailored per unit. Such information may
be installed on a separate flash partition other than where the root
filesystem is provided.

Types of fallback mechanisms

There are really two fallback mechanisms available using one shared sysfs inter-
face as a loading facility:

• Kobject uevent fallback mechanism

• Custom fallback mechanism

First lets document the shared sysfs loading facility.

Firmware sysfs loading facility

In order to help device drivers upload firmware using a fallback mechanism
the firmware infrastructure creates a sysfs interface to enable userspace to
load and indicate when firmware is ready. The sysfs directory is created via
fw_create_instance(). This call creates a new struct device named after the
firmware requested, and establishes it in the device hierarchy by associating the
device used tomake the request as the device’s parent. The sysfs directory’s file at-
tributes are defined and controlled through the new device’s class (firmware_class)
and group (fw_dev_attr_groups). This is actually where the original firmware_class
module name came from, given that originally the only firmware loading mecha-
nism available was the mechanism we now use as a fallback mechanism, which
registers a struct class firmware_class. Because the attributes exposed are part
of the module name, the module name firmware_class cannot be renamed in the
future, to ensure backward compatibility with old userspace.

49.2. Firmware API core features 1509

Linux Driver-api Documentation

To load firmware using the sysfs interface we expose a loading indicator, and a file
upload firmware into:

• /sys/$DEVPATH/loading

• /sys/$DEVPATH/data

To upload firmware you will echo 1 onto the loading file to indicate you are loading
firmware. You then write the firmware into the data file, and you notify the kernel
the firmware is ready by echo’ing 0 onto the loading file.
The firmware device used to help load firmware using sysfs is only created if direct
firmware loading fails and if the fallback mechanism is enabled for your firmware
request, this is set up with firmware_fallback_sysfs(). It is important to re-
iterate that no device is created if a direct filesystem lookup succeeded.

Using:

echo 1 > /sys/$DEVPATH/loading

Will clean any previous partial load at once and make the firmware API return an
error. When loading firmware the firmware_class grows a buffer for the firmware
in PAGE_SIZE increments to hold the image as it comes in.

firmware_data_read() and firmware_loading_show() are just provided for the
test_firmware driver for testing, they are not called in normal use or expected
to be used regularly by userspace.

firmware_fallback_sysfs

int firmware_fallback_sysfs(struct firmware * fw, const char * name,
struct device * device, u32 opt_flags, int ret)

use the fallback mechanism to find firmware

Parameters
struct firmware * fw pointer to firmware image

const char * name name of firmware file to look for

struct device * device device for which firmware is being loaded

u32 opt_flags options to control firmware loading behaviour

int ret return value from direct lookup which triggered the fallback mechanism

Description
This function is called if direct lookup for the firmware failed, it enables a fallback
mechanism through userspace by exposing a sysfs loading interface. Userspace is
in charge of loading the firmware through the sysfs loading interface. This sysfs
fallback mechanism may be disabled completely on a system by setting the proc
sysctl value ignore_sysfs_fallback to true. If this is false we check if the internal
API caller set the FW_OPT_NOFALLBACK_SYSFS flag, if so it would also dis-
able the fallback mechanism. A system may want to enforce the sysfs fallback
mechanism at all times, it can do this by setting ignore_sysfs_fallback to false and
force_sysfs_fallback to true. Enabling force_sysfs_fallback is functionally equiva-
lent to build a kernel with CONFIG_FW_LOADER_USER_HELPER_FALLBACK.

1510 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

Firmware kobject uevent fallback mechanism

Since a device is created for the sysfs interface to help load firmware as a fall-
back mechanism userspace can be informed of the addition of the device by re-
lying on kobject uevents. The addition of the device into the device hierarchy
means the fallback mechanism for firmware loading has been initiated. For de-
tails of implementation refer to fw_load_sysfs_fallback(), in particular on the use
of dev_set_uevent_suppress() and kobject_uevent().

The kernel’s kobject uevent mechanism is implemented in lib/kobject_uevent.c,
it issues uevents to userspace. As a supplement to kobject uevents Linux distri-
butions could also enable CONFIG_UEVENT_HELPER_PATH, which makes use of
core kernel’s usermode helper (UMH) functionality to call out to a userspace
helper for kobject uevents. In practice though no standard distribution has ever
used the CONFIG_UEVENT_HELPER_PATH. If CONFIG_UEVENT_HELPER_PATH
is enabled this binary would be called each time kobject_uevent_env() gets called
in the kernel for each kobject uevent triggered.

Different implementations have been supported in userspace to take advantage
of this fallback mechanism. When firmware loading was only possible using the
sysfs mechanism the userspace component “hotplug”provided the functionality
of monitoring for kobject events. Historically this was superseded be systemd’
s udev, however firmware loading support was removed from udev as of systemd
commit be2ea723b1d0 (“udev: remove userspace firmware loading support”) as of
v217 on August, 2014. This means most Linux distributions today are not using or
taking advantage of the firmware fallbackmechanism provided by kobject uevents.
This is specially exacerbated due to the fact that most distributions today disable
CONFIG_FW_LOADER_USER_HELPER_FALLBACK.

Refer to do_firmware_uevent() for details of the kobject event variables setup. The
variables currently passed to userspace with a “kobject add”event are:
• FIRMWARE=firmware name

• TIMEOUT=timeout value

• ASYNC=whether or not the API request was asynchronous

By default DEVPATH is set by the internal kernel kobject infrastructure. Below is
an example simple kobject uevent script:

Both $DEVPATH and $FIRMWARE are already provided in the environment.
MY_FW_DIR=/lib/firmware/
echo 1 > /sys/$DEVPATH/loading
cat $MY_FW_DIR/$FIRMWARE > /sys/$DEVPATH/data
echo 0 > /sys/$DEVPATH/loading

49.2. Firmware API core features 1511

Linux Driver-api Documentation

Firmware custom fallback mechanism

Users of the request_firmware_nowait() call have yet another option available
at their disposal: rely on the sysfs fallback mechanism but request that no kobject
uevents be issued to userspace. The original logic behind this was that utilities
other than udev might be required to lookup firmware in non-traditional paths –
paths outside of the listing documented in the section ‘Direct filesystem lookup’
. This option is not available to any of the other API calls as uevents are always
forced for them.

Since uevents are only meaningful if the fallback mechanism is enabled in your
kernel it would seem odd to enable uevents with kernels that do not have the
fallback mechanism enabled in their kernels. Unfortunately we also rely on the
uevent flag which can be disabled by request_firmware_nowait() to also setup
the firmware cache for firmware requests. As documented above, the firmware
cache is only set up if uevent is enabled for an API call. Although this can disable
the firmware cache for request_firmware_nowait() calls, users of this API should
not use it for the purposes of disabling the cache as that was not the original
purpose of the flag. Not setting the uevent flag means you want to opt-in for the
firmware fallback mechanism but you want to suppress kobject uevents, as you
have a custom solution which will monitor for your device addition into the device
hierarchy somehow and load firmware for you through a custom path.

Firmware fallback timeout

The firmware fallback mechanism has a timeout. If firmware is not loaded
onto the sysfs interface by the timeout value an error is sent to the driver.
By default the timeout is set to 60 seconds if uevents are desirable, otherwise
MAX_JIFFY_OFFSET is used (max timeout possible). The logic behind using
MAX_JIFFY_OFFSET for non-uevents is that a custom solution will have as much
time as it needs to load firmware.

You can customize the firmware timeout by echo’ing your desired timeout into
the following file:

• /sys/class/firmware/timeout

If you echo 0 into it means MAX_JIFFY_OFFSET will be used. The data type for
the timeout is an int.

EFI embedded firmware fallback mechanism

On some devices the system’s EFI code / ROM may contain an embedded copy of
firmware for some of the system’s integrated peripheral devices and the peripheral’
s Linux device-driver needs to access this firmware.

Device drivers which need such firmware can use the
firmware_request_platform() function for this, note that this is a separate
fallback mechanism from the other fallback mechanisms and this does not use the
sysfs interface.

A device driver which needs this can describe the firmware it needs using an
efi_embedded_fw_desc struct:

1512 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

struct efi_embedded_fw_desc
This struct is used by the EFI embedded-fw code to search for embedded
firmwares.

Definition

struct efi_embedded_fw_desc {
const char *name;
u8 prefix[EFI_EMBEDDED_FW_PREFIX_LEN];
u32 length;
u8 sha256[32];

};

Members
name Name to register the firmware with if found

prefix First 8 bytes of the firmware

length Length of the firmware in bytes including prefix

sha256 SHA256 of the firmware

The EFI embedded-fw code works by scanning all EFI_BOOT_SERVICES_CODE
memory segments for an eight byte sequence matching prefix; if the prefix is found
it then does a sha256 over length bytes and if that matches makes a copy of length
bytes and adds that to its list with found firmwares.

To avoid doing this somewhat expensive scan on all systems, dmi matching is
used. Drivers are expected to export a dmi_system_id array, with each entries’
driver_data pointing to an efi_embedded_fw_desc.

To register this array with the efi-embedded-fw code, a driver needs to:

1. Always be builtin to the kernel or store the dmi_system_id array in a separate
object file which always gets builtin.

2. Add an extern declaration for the dmi_system_id array to in-
clude/linux/efi_embedded_fw.h.

3. Add the dmi_system_id array to the embedded_fw_table in
drivers/firmware/efi/embedded-firmware.c wrapped in a #ifdef testing
that the driver is being builtin.

4. Add“select EFI_EMBEDDED_FIRMWARE if EFI_STUB”to its Kconfig entry.
The firmware_request_platform() function will always first try to load firmware
with the specified name directly from the disk, so the EFI embedded-fw can always
be overridden by placing a file under /lib/firmware.

Note that:

1. The code scanning for EFI embedded-firmware runs near the end of
start_kernel(), just before calling rest_init(). For normal drivers and subsys-
tems using subsys_initcall() to register themselves this does not matter. This
means that code running earlier cannot use EFI embedded-firmware.

2. At the moment the EFI embedded-fw code assumes that firmwares always
start at an offset which is a multiple of 8 bytes, if this is not true for your case
send in a patch to fix this.

49.2. Firmware API core features 1513

Linux Driver-api Documentation

3. At the moment the EFI embedded-fw code only works on x86 because other
archs free EFI_BOOT_SERVICES_CODE before the EFI embedded-fw code
gets a chance to scan it.

4. The current brute-force scanning of EFI_BOOT_SERVICES_CODE is an ad-
hoc brute-force solution. There has been discussion to use the UEFI Platform
Initialization (PI) spec’s Firmware Volume protocol. This has been rejected
because the FV Protocol relies on internal interfaces of the PI spec, and: 1.
The PI spec does not define peripheral firmware at all 2. The internal in-
terfaces of the PI spec do not guarantee any backward compatibility. Any
implementation details in FV may be subject to change, and may vary system
to system. Supporting the FV Protocol would be difficult as it is purposely
ambiguous.

Example how to check for and extract embedded firmware

To check for, for example Silead touchscreen controller embedded firmware, do
the following:

1. Boot the system with efi=debug on the kernel commandline

2. cp /sys/kernel/debug/efi/boot_services_code? to your home dir

3. Open the boot_services_code? files in a hex-editor, search for the magic prefix
for Silead firmware: F0 00 00 00 02 00 00 00, this gives you the beginning
address of the firmware inside the boot_services_code? file.

4. The firmware has a specific pattern, it starts with a 8 byte page-address,
typically F0 00 00 00 02 00 00 00 for the first page followed by 32-bit word-
address + 32-bit value pairs. With the word-address incrementing 4 bytes (1
word) for each pair until a page is complete. A complete page is followed by
a new page-address, followed by more word + value pairs. This leads to a
very distinct pattern. Scroll down until this pattern stops, this gives you the
end of the firmware inside the boot_services_code? file.

5.“dd if=boot_services_code? of=firmware bs=1 skip=<begin-addr>
count=<len>”will extract the firmware for you. Inspect the firmware
file in a hexeditor to make sure you got the dd parameters correct.

6. Copy it to /lib/firmware under the expected name to test it.

7. If the extracted firmware works, you can use the found info to fill an
efi_embedded_fw_desc struct to describe it, run “sha256sum firmware”to
get the sha256sum to put in the sha256 field.

1514 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

49.2.6 Firmware lookup order

Different functionality is available to enable firmware to be found. Below is chrono-
logical order of how firmware will be looked for once a driver issues a firmware
API call.

• The‘’Built-in firmware’’is checked first, if the firmware is present we return
it immediately

• The‘’Firmware cache’’is looked at next. If the firmware is found we return
it immediately

• The ‘’Direct filesystem lookup’’is performed next, if found we return it
immediately

• The ‘’Platform firmware fallback’’is performed next, but only when
firmware_request_platform() is used, if found we return it immediately

• If no firmware has been found and the fallback mechanism was enabled the
sysfs interface is created. After this either a kobject uevent is issued or the
custom firmware loading is relied upon for firmware loading up to the timeout
value.

49.3 UEFI Support

49.3.1 UEFI stub library functions

efi_status_t efi_get_memory_map(struct efi_boot_memmap * map)
get memory map

Parameters
struct efi_boot_memmap * map on return pointer to memory map

Description
Retrieve the UEFI memory map. The allocated memory leaves room for up to
EFI_MMAP_NR_SLACK_SLOTS additional memory map entries.

Return
status code

efi_status_t efi_allocate_pages(unsigned long size, unsigned long * addr,
unsigned long max)

Allocate memory pages

Parameters
unsigned long size minimum number of bytes to allocate

unsigned long * addr On return the address of the first allocated page. The first
allocated page has alignment EFI_ALLOC_ALIGN which is an architecture
dependent multiple of the page size.

unsigned long max the address that the last allocated memory page shall not
exceed

49.3. UEFI Support 1515

Linux Driver-api Documentation

Description
Allocate pages as EFI_LOADER_DATA. The allocated pages are aligned according
to EFI_ALLOC_ALIGN. The last allocated page will not exceed the address given
by max.
Return
status code

void efi_free(unsigned long size, unsigned long addr)
free memory pages

Parameters
unsigned long size size of the memory area to free in bytes

unsigned long addr start of the memory area to free (must be EFI_PAGE_SIZE
aligned)

Description
size is rounded up to a multiple of EFI_ALLOC_ALIGN which is an architecture
specific multiple of EFI_PAGE_SIZE. So this function should only be used to return
pages allocated with efi_allocate_pages() or efi_low_alloc_above().

49.4 request_firmware API

You would typically load firmware and then load it into your device somehow. The
typical firmware work flow is reflected below:

if(request_firmware(&fw_entry, $FIRMWARE, device) == 0)
copy_fw_to_device(fw_entry->data, fw_entry->size);

release_firmware(fw_entry);

49.4.1 Synchronous firmware requests

Synchronous firmware requests will wait until the firmware is found or until an
error is returned.

request_firmware

int request_firmware(const struct firmware ** firmware_p, const char
* name, struct device * device)

send firmware request and wait for it

Parameters
const struct firmware ** firmware_p pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded

firmware_p will be used to return a firmware image by the name of name
for device device.

1516 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

Should be called from user context where sleeping is allowed.

name will be used as $FIRMWARE in the uevent environment and should be
distinctive enough not to be confused with any other firmware image for this
or any other device.

Caller must hold the reference count of device.
The function can be called safely inside device’s suspend and resume callback.

firmware_request_nowarn

int firmware_request_nowarn(const struct firmware ** firmware, const char
* name, struct device * device)

request for an optional fw module

Parameters
const struct firmware ** firmware pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded

Description
This function is similar in behaviour to request_firmware(), except it doesn’t
produce warning messages when the file is not found. The sysfs fallback mecha-
nism is enabled if direct filesystem lookup fails, however, however failures to find
the firmware file with it are still suppressed. It is therefore up to the driver to
check for the return value of this call and to decide when to inform the users of
errors.

firmware_request_platform

int firmware_request_platform(const struct firmware ** firmware, const
char * name, struct device * device)

request firmware with platform-fw fallback

Parameters
const struct firmware ** firmware pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded

Description
This function is similar in behaviour to request_firmware, except that if direct
filesystem lookup fails, it will fallback to looking for a copy of the requested
firmware embedded in the platform’s main (e.g. UEFI) firmware.

49.4. request_firmware API 1517

Linux Driver-api Documentation

request_firmware_direct

int request_firmware_direct(const struct firmware ** firmware_p, const
char * name, struct device * device)

load firmware directly without usermode helper

Parameters
const struct firmware ** firmware_p pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded

Description
This function works pretty much like request_firmware(), but this doesn’t fall
back to usermode helper even if the firmware couldn’t be loaded directly from fs.
Hence it’s useful for loading optional firmwares, which aren’t always present,
without extra long timeouts of udev.

request_firmware_into_buf

int request_firmware_into_buf(const struct firmware ** firmware_p, const
char * name, struct device * device, void
* buf, size_t size)

load firmware into a previously allocated buffer

Parameters
const struct firmware ** firmware_p pointer to firmware image

const char * name name of firmware file

struct device * device device for which firmware is being loaded and DMA
region allocated

void * buf address of buffer to load firmware into

size_t size size of buffer

Description
This function works pretty much like request_firmware(), but it doesn’t allocate
a buffer to hold the firmware data. Instead, the firmware is loaded directly into
the buffer pointed to by buf and the firmware_p data member is pointed at buf.
This function doesn’t cache firmware either.

1518 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

49.4.2 Asynchronous firmware requests

Asynchronous firmware requests allow driver code to not have to wait until the
firmware or an error is returned. Function callbacks are provided so that when
the firmware or an error is found the driver is informed through the callback.
request_firmware_nowait() cannot be called in atomic contexts.

request_firmware_nowait

int request_firmware_nowait(struct module * module, bool uevent,
const char * name, struct device * device,
gfp_t gfp, void * context, void (*cont)(const
struct firmware *fw, void *context))

asynchronous version of request_firmware

Parameters
struct module * module module requesting the firmware

bool uevent sends uevent to copy the firmware image if this flag is non-zero else
the firmware copy must be done manually.

const char * name name of firmware file

struct device * device device for which firmware is being loaded

gfp_t gfp allocation flags

void * context will be passed over to cont, and fw may be NULL if firmware
request fails.

void (*)(const struct firmware *fw, void *context) cont function will be
called asynchronously when the firmware request is over.

Caller must hold the reference count of device.
Asynchronous variant of request_firmware() for user contexts:

• sleep for as small periods as possible since it may increase kernel boot
time of built-in device drivers requesting firmware in their ->probe()
methods, if gfp is GFP_KERNEL.

• can’t sleep at all if gfp is GFP_ATOMIC.

49.4.3 Special optimizations on reboot

Some devices have an optimization in place to enable the firmware to be retained
during system reboot. When such optimizations are used the driver author must
ensure the firmware is still available on resume from suspend, this can be done
with firmware_request_cache() instead of requesting for the firmware to be
loaded.

49.4. request_firmware API 1519

Linux Driver-api Documentation

firmware_request_cache()

int firmware_request_cache(struct device * device, const char * name)
cache firmware for suspend so resume can use it

Parameters
struct device * device device for which firmware should be cached for

const char * name name of firmware file

Description
There are some devices with an optimization that enables the device to not re-
quire loading firmware on system reboot. This optimization may still require
the firmware present on resume from suspend. This routine can be used to en-
sure the firmware is present on resume from suspend in these situations. This
helper is not compatible with drivers which use request_firmware_into_buf()
or request_firmware_nowait() with no uevent set.

49.4.4 request firmware API expected driver use

Once an API call returns you process the firmware and then release the firmware.
For example if you used request_firmware() and it returns, the driver has
the firmware image accessible in fw_entry->{data,size}. If something went
wrong request_firmware() returns non-zero and fw_entry is set to NULL.
Once your driver is done with processing the firmware it can call call re-
lease_firmware(fw_entry) to release the firmware image and any related resource.

49.5 Other Firmware Interfaces

49.5.1 DMI Interfaces

int dmi_check_system(const struct dmi_system_id * list)
check system DMI data

Parameters
const struct dmi_system_id * list array of dmi_system_id structures to

match against All non-null elements of the list must match their slot’s (field
index’s) data (i.e., each list string must be a substring of the specified DMI
slot’s string data) to be considered a successful match.

Walk the blacklist table running matching functions until someone
returns non zero or we hit the end. Callback function is called for
each successful match. Returns the number of matches.

dmi_setup must be called before this function is called.

const struct dmi_system_id * dmi_first_match(const struct dmi_system_id
* list)

find dmi_system_id structure matching system DMI data

Parameters

1520 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

const struct dmi_system_id * list array of dmi_system_id structures to
match against All non-null elements of the list must match their slot’s (field
index’s) data (i.e., each list string must be a substring of the specified DMI
slot’s string data) to be considered a successful match.

Walk the blacklist table until the first match is found. Return the
pointer to the matching entry or NULL if there’s no match.
dmi_setup must be called before this function is called.

const char * dmi_get_system_info(int field)
return DMI data value

Parameters
int field data index (see enum dmi_field)

Returns one DMI data value, can be used to perform complex DMI data
checks.

int dmi_name_in_vendors(const char * str)
Check if string is in the DMI system or board vendor name

Parameters
const char * str Case sensitive Name

const struct dmi_device * dmi_find_device(int type, const char * name,
const struct dmi_device * from)

find onboard device by type/name

Parameters
int type device type or DMI_DEV_TYPE_ANY to match all device types

const char * name device name string or NULL to match all

const struct dmi_device * from previous device found in search, or NULL for
new search.

Iterates through the list of known onboard devices. If a device is found with
a matching type and name, a pointer to its device structure is returned.
Otherwise, NULL is returned. A new search is initiated by passing NULL as the
from argument. If from is not NULL, searches continue from next device.

bool dmi_get_date(int field, int * yearp, int * monthp, int * dayp)
parse a DMI date

Parameters
int field data index (see enum dmi_field)

int * yearp optional out parameter for the year

int * monthp optional out parameter for the month

int * dayp optional out parameter for the day

The date field is assumed to be in the form resembling [mm[/dd]]/yy[yy] and
the result is stored in the out parameters any or all of which can be omitted.

If the field doesn’t exist, all out parameters are set to zero and false is re-
turned. Otherwise, true is returned with any invalid part of date set to zero.

49.5. Other Firmware Interfaces 1521

Linux Driver-api Documentation

On return, year, month and day are guaranteed to be in the range of [0,9999],
[0,12] and [0,31] respectively.

int dmi_get_bios_year(void)
get a year out of DMI_BIOS_DATE field

Parameters
void no arguments

Description
Returns year on success, -ENXIO if DMI is not selected, or a different
negative error code if DMI field is not present or not parseable.

int dmi_walk(void (*decode)(const struct dmi_header *, void *), void
* private_data)

Walk the DMI table and get called back for every record

Parameters
void (*)(const struct dmi_header *, void *) decode Callback function

void * private_data Private data to be passed to the callback function

Returns 0 on success, -ENXIO if DMI is not selected or not present, or a
different negative error code if DMI walking fails.

bool dmi_match(enum dmi_field f, const char * str)
compare a string to the dmi field (if exists)

Parameters
enum dmi_field f DMI field identifier

const char * str string to compare the DMI field to

Description
Returns true if the requested field equals to the str (including NULL).

u8 dmi_memdev_type(u16 handle)
get the memory type

Parameters
u16 handle DMI structure handle

Description
Return the DMI memory type of the module in the slot associated with the given
DMI handle, or 0x0 if no such DMI handle exists.

u16 dmi_memdev_handle(int slot)
get the DMI handle of a memory slot

Parameters
int slot slot number

Return the DMI handle associated with a given memory slot, or 0xFFFF if
there is no such slot.

1522 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

49.5.2 EDD Interfaces

ssize_t edd_show_raw_data(struct edd_device * edev, char * buf)
copies raw data to buffer for userspace to parse

Parameters
struct edd_device * edev target edd_device

char * buf output buffer

Return
number of bytes written, or -EINVAL on failure

void edd_release(struct kobject * kobj)
free edd structure

Parameters
struct kobject * kobj kobject of edd structure

This is called when the refcount of the edd structure reaches 0. This should
happen right after we unregister, but just in case, we use the release callback
anyway.

int edd_dev_is_type(struct edd_device * edev, const char * type)
is this EDD device a ‘type’device?

Parameters
struct edd_device * edev target edd_device

const char * type a host bus or interface identifier string per the EDD spec

Description
Returns 1 (TRUE) if it is a ‘type’device, 0 otherwise.
struct pci_dev * edd_get_pci_dev(struct edd_device * edev)

finds pci_dev that matches edev

Parameters
struct edd_device * edev edd_device

Description
Returns pci_dev if found, or NULL

int edd_init(void)
creates sysfs tree of EDD data

Parameters
void no arguments

49.5. Other Firmware Interfaces 1523

Linux Driver-api Documentation

49.5.3 Intel Stratix10 SoC Service Layer

Some features of the Intel Stratix10 SoC require a level of privilege higher than
the kernel is granted. Such secure features include FPGA programming. In terms
of the ARMv8 architecture, the kernel runs at Exception Level 1 (EL1), access to
the features requires Exception Level 3 (EL3).

The Intel Stratix10 SoC service layer provides an in kernel API for drivers to re-
quest access to the secure features. The requests are queued and processed one
by one. ARM’s SMCCC is used to pass the execution of the requests on to a secure
monitor (EL3).

enum stratix10_svc_command_code
supported service commands

Constants
COMMAND_NOOP do ‘dummy’request for integration/debug/trouble-shooting
COMMAND_RECONFIG ask for FPGA configuration preparation, return status is

SVC_STATUS_OK

COMMAND_RECONFIG_DATA_SUBMIT submit buffer(s) of bit-stream data for the
FPGA configuration, return status is SVC_STATUS_SUBMITTED or
SVC_STATUS_ERROR

COMMAND_RECONFIG_DATA_CLAIM check the status of the configuration, re-
turn status is SVC_STATUS_COMPLETED, or SVC_STATUS_BUSY, or
SVC_STATUS_ERROR

COMMAND_RECONFIG_STATUS check the status of the configuration, re-
turn status is SVC_STATUS_COMPLETED, or SVC_STATUS_BUSY, or
SVC_STATUS_ERROR

COMMAND_RSU_STATUS request remote system update boot log, return status is log
data or SVC_STATUS_RSU_ERROR

COMMAND_RSU_UPDATE set the offset of the bitstream to boot after reboot, return
status is SVC_STATUS_OK or SVC_STATUS_ERROR

COMMAND_RSU_NOTIFY report the status of hard processor system software to
firmware, return status is SVC_STATUS_OK or SVC_STATUS_ERROR

COMMAND_RSU_RETRY query firmware for the current image’s retry counter, return
status is SVC_STATUS_OK or SVC_STATUS_ERROR

struct stratix10_svc_client_msg
message sent by client to service

Definition

struct stratix10_svc_client_msg {
void *payload;
size_t payload_length;
enum stratix10_svc_command_code command;
u64 arg[3];

};

Members

1524 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

payload starting address of data need be processed

payload_length data size in bytes

command service command

arg args to be passed via registers and not physically mapped buffers

struct stratix10_svc_command_config_type
config type

Definition

struct stratix10_svc_command_config_type {
u32 flags;

};

Members
flags flag bit for the type of FPGA configuration

struct stratix10_svc_cb_data
callback data structure from service layer

Definition

struct stratix10_svc_cb_data {
u32 status;
void *kaddr1;
void *kaddr2;
void *kaddr3;

};

Members
status the status of sent command

kaddr1 address of 1st completed data block

kaddr2 address of 2nd completed data block

kaddr3 address of 3rd completed data block

struct stratix10_svc_client
service client structure

Definition

struct stratix10_svc_client {
struct device *dev;
void (*receive_cb)(struct stratix10_svc_client *client, struct stratix10_

↪→svc_cb_data *cb_data);
void *priv;

};

Members
dev the client device

receive_cb callback to provide service client the received data

priv client private data

49.5. Other Firmware Interfaces 1525

Linux Driver-api Documentation

struct stratix10_svc_chan * stratix10_svc_request_channel_byname(struct
stratix10_svc_client
* client,
const
char
* name)

request a service channel

Parameters
struct stratix10_svc_client * client pointer to service client

const char * name service client name

Description
This function is used by service client to request a service channel.

Return
a pointer to channel assigned to the client on success, or ERR_PTR() on error.

void stratix10_svc_free_channel(struct stratix10_svc_chan * chan)
free service channel

Parameters
struct stratix10_svc_chan * chan service channel to be freed

Description
This function is used by service client to free a service channel.

int stratix10_svc_send(struct stratix10_svc_chan * chan, void * msg)
send a message data to the remote

Parameters
struct stratix10_svc_chan * chan service channel assigned to the client

void * msg message data to be sent, in the format of “struct
stratix10_svc_client_msg”

Description
This function is used by service client to add a message to the service layer driver’
s queue for being sent to the secure world.

Return
0 for success, -ENOMEM or -ENOBUFS on error.

void stratix10_svc_done(struct stratix10_svc_chan * chan)
complete service request transactions

Parameters
struct stratix10_svc_chan * chan service channel assigned to the client

Description
This function should be called when client has finished its request or there is an
error in the request process. It allows the service layer to stop the running thread
to have maximize savings in kernel resources.

1526 Chapter 49. Linux Firmware API

Linux Driver-api Documentation

void * stratix10_svc_allocate_memory(struct stratix10_svc_chan * chan,
size_t size)

allocate memory

Parameters
struct stratix10_svc_chan * chan service channel assigned to the client

size_t size memory size requested by a specific service client

Description
Service layer allocates the requested number of bytes buffer from the memory
pool, service client uses this function to get allocated buffers.

Return
address of allocated memory on success, or ERR_PTR() on error.

void stratix10_svc_free_memory(struct stratix10_svc_chan * chan, void
* kaddr)

free allocated memory

Parameters
struct stratix10_svc_chan * chan service channel assigned to the client

void * kaddr memory to be freed

Description
This function is used by service client to free allocated buffers.

49.5. Other Firmware Interfaces 1527

Linux Driver-api Documentation

1528 Chapter 49. Linux Firmware API

CHAPTER

FIFTY

PINCTRL (PIN CONTROL) SUBSYSTEM

This document outlines the pin control subsystem in Linux

This subsystem deals with:

• Enumerating and naming controllable pins

• Multiplexing of pins, pads, fingers (etc) see below for details

• Configuration of pins, pads, fingers (etc), such as software-controlled bias-
ing and driving mode specific pins, such as pull-up/down, open drain, load
capacitance etc.

50.1 Top-level interface

Definition of PIN CONTROLLER:

• A pin controller is a piece of hardware, usually a set of registers, that can
control PINs. It may be able to multiplex, bias, set load capacitance, set
drive strength, etc. for individual pins or groups of pins.

Definition of PIN:

• PINS are equal to pads, fingers, balls or whatever packaging input or output
line you want to control and these are denoted by unsigned integers in the
range 0..maxpin. This numberspace is local to each PIN CONTROLLER, so
there may be several such number spaces in a system. This pin space may
be sparse - i.e. there may be gaps in the space with numbers where no pin
exists.

When a PIN CONTROLLER is instantiated, it will register a descriptor to the pin
control framework, and this descriptor contains an array of pin descriptors de-
scribing the pins handled by this specific pin controller.

Here is an example of a PGA (Pin Grid Array) chip seen from underneath:

A B C D E F G H

8 o o o o o o o o

7 o o o o o o o o

6 o o o o o o o o

(continues on next page)

1529

Linux Driver-api Documentation

(continued from previous page)
5 o o o o o o o o

4 o o o o o o o o

3 o o o o o o o o

2 o o o o o o o o

1 o o o o o o o o

To register a pin controller and name all the pins on this package we can do this
in our driver:

#include <linux/pinctrl/pinctrl.h>

const struct pinctrl_pin_desc foo_pins[] = {
PINCTRL_PIN(0, "A8"),
PINCTRL_PIN(1, "B8"),
PINCTRL_PIN(2, "C8"),
...
PINCTRL_PIN(61, "F1"),
PINCTRL_PIN(62, "G1"),
PINCTRL_PIN(63, "H1"),

};

static struct pinctrl_desc foo_desc = {
.name = "foo",
.pins = foo_pins,
.npins = ARRAY_SIZE(foo_pins),
.owner = THIS_MODULE,

};

int __init foo_probe(void)
{

int error;

struct pinctrl_dev *pctl;

error = pinctrl_register_and_init(&foo_desc, <PARENT>,
NULL, &pctl);

if (error)
return error;

return pinctrl_enable(pctl);
}

To enable the pinctrl subsystem and the subgroups for PINMUX and PINCONF
and selected drivers, you need to select them from your machine’s Kconfig entry,
since these are so tightly integrated with the machines they are used on. See for
example arch/arm/mach-u300/Kconfig for an example.

Pins usually have fancier names than this. You can find these in the datasheet for
your chip. Notice that the core pinctrl.h file provides a fancy macro called PINC-
TRL_PIN() to create the struct entries. As you can see I enumerated the pins from
0 in the upper left corner to 63 in the lower right corner. This enumeration was
arbitrarily chosen, in practice you need to think through your numbering system

1530 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

so that it matches the layout of registers and such things in your driver, or the
code may become complicated. You must also consider matching of offsets to the
GPIO ranges that may be handled by the pin controller.

For a padring with 467 pads, as opposed to actual pins, I used an enumeration like
this, walking around the edge of the chip, which seems to be industry standard
too (all these pads had names, too):

0 104
466 105

. .

. .
358 224
357 225

50.2 Pin groups

Many controllers need to deal with groups of pins, so the pin controller subsys-
tem has a mechanism for enumerating groups of pins and retrieving the actual
enumerated pins that are part of a certain group.

For example, say that we have a group of pins dealing with an SPI interface on {
0, 8, 16, 24 }, and a group of pins dealing with an I2C interface on pins on { 24,
25 }.

These two groups are presented to the pin control subsystem by implementing
some generic pinctrl_ops like this:

#include <linux/pinctrl/pinctrl.h>

struct foo_group {
const char *name;
const unsigned int *pins;
const unsigned num_pins;

};

static const unsigned int spi0_pins[] = { 0, 8, 16, 24 };
static const unsigned int i2c0_pins[] = { 24, 25 };

static const struct foo_group foo_groups[] = {
{

.name = "spi0_grp",

.pins = spi0_pins,

.num_pins = ARRAY_SIZE(spi0_pins),
},
{

.name = "i2c0_grp",

.pins = i2c0_pins,

.num_pins = ARRAY_SIZE(i2c0_pins),
},

};

static int foo_get_groups_count(struct pinctrl_dev *pctldev)
(continues on next page)

50.2. Pin groups 1531

Linux Driver-api Documentation

(continued from previous page)
{

return ARRAY_SIZE(foo_groups);
}

static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
unsigned selector)

{
return foo_groups[selector].name;

}

static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned␣
↪→selector,

const unsigned **pins,
unsigned *num_pins)

{
*pins = (unsigned *) foo_groups[selector].pins;
*num_pins = foo_groups[selector].num_pins;
return 0;

}

static struct pinctrl_ops foo_pctrl_ops = {
.get_groups_count = foo_get_groups_count,
.get_group_name = foo_get_group_name,
.get_group_pins = foo_get_group_pins,

};

static struct pinctrl_desc foo_desc = {
...
.pctlops = &foo_pctrl_ops,
};

The pin control subsystem will call the .get_groups_count() function to determine
the total number of legal selectors, then it will call the other functions to retrieve
the name and pins of the group. Maintaining the data structure of the groups is up
to the driver, this is just a simple example - in practice you may need more entries
in your group structure, for example specific register ranges associated with each
group and so on.

50.3 Pin configuration

Pins can sometimes be software-configured in various ways, mostly related to their
electronic properties when used as inputs or outputs. For example you may be
able to make an output pin high impedance, or“tristate”meaning it is effectively
disconnected. You may be able to connect an input pin to VDD or GND using a
certain resistor value - pull up and pull down - so that the pin has a stable value
when nothing is driving the rail it is connected to, or when it’s unconnected.
Pin configuration can be programmed by adding configuration entries into the
mapping table; see section “Board/machine configuration”below.
The format and meaning of the configuration parameter, PLATFORM_X_PULL_UP
above, is entirely defined by the pin controller driver.

1532 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

The pin configuration driver implements callbacks for changing pin configuration
in the pin controller ops like this:

#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinconf.h>
#include "platform_x_pindefs.h"

static int foo_pin_config_get(struct pinctrl_dev *pctldev,
unsigned offset,
unsigned long *config)

{
struct my_conftype conf;

... Find setting for pin @ offset ...

*config = (unsigned long) conf;
}

static int foo_pin_config_set(struct pinctrl_dev *pctldev,
unsigned offset,
unsigned long config)

{
struct my_conftype *conf = (struct my_conftype *) config;

switch (conf) {
case PLATFORM_X_PULL_UP:
...
}

}
}

static int foo_pin_config_group_get (struct pinctrl_dev *pctldev,
unsigned selector,
unsigned long *config)

{
...

}

static int foo_pin_config_group_set (struct pinctrl_dev *pctldev,
unsigned selector,
unsigned long config)

{
...

}

static struct pinconf_ops foo_pconf_ops = {
.pin_config_get = foo_pin_config_get,
.pin_config_set = foo_pin_config_set,
.pin_config_group_get = foo_pin_config_group_get,
.pin_config_group_set = foo_pin_config_group_set,

};

/* Pin config operations are handled by some pin controller */
static struct pinctrl_desc foo_desc = {

...

.confops = &foo_pconf_ops,
};

50.3. Pin configuration 1533

Linux Driver-api Documentation

50.4 Interaction with the GPIO subsystem

The GPIO drivers may want to perform operations of various types on the same
physical pins that are also registered as pin controller pins.

First and foremost, the two subsystems can be used as completely orthogonal, see
the section named“pin control requests from drivers”and“drivers needing both
pin control and GPIOs”below for details. But in some situations a cross-subsystem
mapping between pins and GPIOs is needed.

Since the pin controller subsystem has its pinspace local to the pin controller we
need a mapping so that the pin control subsystem can figure out which pin con-
troller handles control of a certain GPIO pin. Since a single pin controller may be
muxing several GPIO ranges (typically SoCs that have one set of pins, but inter-
nally several GPIO silicon blocks, each modelled as a struct gpio_chip) any number
of GPIO ranges can be added to a pin controller instance like this:

struct gpio_chip chip_a;
struct gpio_chip chip_b;

static struct pinctrl_gpio_range gpio_range_a = {
.name = "chip a",
.id = 0,
.base = 32,
.pin_base = 32,
.npins = 16,
.gc = &chip_a;

};

static struct pinctrl_gpio_range gpio_range_b = {
.name = "chip b",
.id = 0,
.base = 48,
.pin_base = 64,
.npins = 8,
.gc = &chip_b;

};

{
struct pinctrl_dev *pctl;
...
pinctrl_add_gpio_range(pctl, &gpio_range_a);
pinctrl_add_gpio_range(pctl, &gpio_range_b);

}

So this complex system has one pin controller handling two different GPIO chips.
“chip a”has 16 pins and “chip b”has 8 pins. The “chip a”and “chip b”have
different .pin_base, which means a start pin number of the GPIO range.

The GPIO range of“chip a”starts from the GPIO base of 32 and actual pin range
also starts from 32. However “chip b”has different starting offset for the GPIO
range and pin range. The GPIO range of “chip b”starts from GPIO number 48,
while the pin range of “chip b”starts from 64.

We can convert a gpio number to actual pin number using this“pin_base”. They
are mapped in the global GPIO pin space at:

1534 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

chip a:
• GPIO range : [32 .. 47]

• pin range : [32 .. 47]

chip b:
• GPIO range : [48 .. 55]

• pin range : [64 .. 71]

The above examples assume the mapping between the GPIOs and pins is linear.
If the mapping is sparse or haphazard, an array of arbitrary pin numbers can be
encoded in the range like this:

static const unsigned range_pins[] = { 14, 1, 22, 17, 10, 8, 6, 2 };

static struct pinctrl_gpio_range gpio_range = {
.name = "chip",
.id = 0,
.base = 32,
.pins = &range_pins,
.npins = ARRAY_SIZE(range_pins),
.gc = &chip;

};

In this case the pin_base property will be ignored. If the name of a pin group is
known, the pins and npins elements of the above structure can be initialised using
the function pinctrl_get_group_pins(), e.g. for pin group “foo”:
pinctrl_get_group_pins(pctl, "foo", &gpio_range.pins,

&gpio_range.npins);

When GPIO-specific functions in the pin control subsystem are called, these ranges
will be used to look up the appropriate pin controller by inspecting and matching
the pin to the pin ranges across all controllers. When a pin controller handling the
matching range is found, GPIO-specific functions will be called on that specific pin
controller.

For all functionalities dealing with pin biasing, pin muxing etc, the pin controller
subsystem will look up the corresponding pin number from the passed in gpio
number, and use the range’s internals to retrieve a pin number. After that, the
subsystem passes it on to the pin control driver, so the driver will get a pin number
into its handled number range. Further it is also passed the range ID value, so that
the pin controller knows which range it should deal with.

Calling pinctrl_add_gpio_range from pinctrl driver is DEPRECATED. Please see
section 2.1 of Documentation/devicetree/bindings/gpio/gpio.txt on how to bind
pinctrl and gpio drivers.

50.4. Interaction with the GPIO subsystem 1535

Linux Driver-api Documentation

50.5 PINMUX interfaces

These calls use the pinmux_* naming prefix. No other calls should use that prefix.

50.6 What is pinmuxing?

PINMUX, also known as padmux, ballmux, alternate functions or mission modes
is a way for chip vendors producing some kind of electrical packages to use a cer-
tain physical pin (ball, pad, finger, etc) for multiple mutually exclusive functions,
depending on the application. By “application”in this context we usually mean
a way of soldering or wiring the package into an electronic system, even though
the framework makes it possible to also change the function at runtime.

Here is an example of a PGA (Pin Grid Array) chip seen from underneath:

A B C D E F G H
+---+

8 | o | o o o o o o o
| |

7 | o | o o o o o o o
| |

6 | o | o o o o o o o
+---+---+

5 | o | o | o o o o o o
+---+---+ +---+

4 o o o o o o | o | o
| |

3 o o o o o o | o | o
| |

2 o o o o o o | o | o
+-------+-------+-------+---+---+

1 | o o | o o | o o | o | o |
+-------+-------+-------+---+---+

This is not tetris. The game to think of is chess. Not all PGA/BGA packages are
chessboard-like, big ones have“holes”in some arrangement according to different
design patterns, but we’re using this as a simple example. Of the pins you see
some will be taken by things like a few VCC and GND to feed power to the chip,
and quite a few will be taken by large ports like an external memory interface. The
remaining pins will often be subject to pin multiplexing.

The example 8x8 PGA package above will have pin numbers 0 through 63 assigned
to its physical pins. It will name the pins { A1, A2, A3 ⋯H6, H7, H8 } using
pinctrl_register_pins() and a suitable data set as shown earlier.

In this 8x8 BGA package the pins { A8, A7, A6, A5 } can be used as an SPI port
(these are four pins: CLK, RXD, TXD, FRM). In that case, pin B5 can be used as
some general-purpose GPIO pin. However, in another setting, pins { A5, B5 } can
be used as an I2C port (these are just two pins: SCL, SDA). Needless to say, we
cannot use the SPI port and I2C port at the same time. However in the inside of
the package the silicon performing the SPI logic can alternatively be routed out
on pins { G4, G3, G2, G1 }.

1536 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

On the bottom row at { A1, B1, C1, D1, E1, F1, G1, H1 } we have something special
- it’s an external MMC bus that can be 2, 4 or 8 bits wide, and it will consume 2,
4 or 8 pins respectively, so either { A1, B1 } are taken or { A1, B1, C1, D1 } or all
of them. If we use all 8 bits, we cannot use the SPI port on pins { G4, G3, G2, G1
} of course.

This way the silicon blocks present inside the chip can be multiplexed“muxed”out
on different pin ranges. Often contemporary SoC (systems on chip) will contain
several I2C, SPI, SDIO/MMC, etc silicon blocks that can be routed to different pins
by pinmux settings.

Since general-purpose I/O pins (GPIO) are typically always in shortage, it is com-
mon to be able to use almost any pin as a GPIO pin if it is not currently in use by
some other I/O port.

50.7 Pinmux conventions

The purpose of the pinmux functionality in the pin controller subsystem is to ab-
stract and provide pinmux settings to the devices you choose to instantiate in your
machine configuration. It is inspired by the clk, GPIO and regulator subsystems,
so devices will request their mux setting, but it’s also possible to request a single
pin for e.g. GPIO.

Definitions:

• FUNCTIONS can be switched in and out by a driver residing with the pin
control subsystem in the drivers/pinctrl/* directory of the kernel. The pin
control driver knows the possible functions. In the example above you can
identify three pinmux functions, one for spi, one for i2c and one for mmc.

• FUNCTIONS are assumed to be enumerable from zero in a one-dimensional
array. In this case the array could be something like: { spi0, i2c0, mmc0 }
for the three available functions.

• FUNCTIONS have PIN GROUPS as defined on the generic level - so a certain
function is always associated with a certain set of pin groups, could be just a
single one, but could also be many. In the example above the function i2c is
associated with the pins { A5, B5 }, enumerated as { 24, 25 } in the controller
pin space.

The Function spi is associated with pin groups { A8, A7, A6, A5 } and { G4,
G3, G2, G1 }, which are enumerated as { 0, 8, 16, 24 } and { 38, 46, 54, 62
} respectively.

Group names must be unique per pin controller, no two groups on the same
controller may have the same name.

• The combination of a FUNCTION and a PIN GROUP determine a certain func-
tion for a certain set of pins. The knowledge of the functions and pin groups
and their machine-specific particulars are kept inside the pinmux driver, from
the outside only the enumerators are known, and the driver core can request:

– The name of a function with a certain selector (>= 0)
– A list of groups associated with a certain function

50.7. Pinmux conventions 1537

Linux Driver-api Documentation

– That a certain group in that list to be activated for a certain function
As already described above, pin groups are in turn self-descriptive, so the
core will retrieve the actual pin range in a certain group from the driver.

• FUNCTIONS and GROUPS on a certain PIN CONTROLLER are MAPPED to
a certain device by the board file, device tree or similar machine setup con-
figuration mechanism, similar to how regulators are connected to devices,
usually by name. Defining a pin controller, function and group thus uniquely
identify the set of pins to be used by a certain device. (If only one possible
group of pins is available for the function, no group name need to be supplied
- the core will simply select the first and only group available.)

In the example case we can define that this particular machine shall use de-
vice spi0 with pinmux function fspi0 group gspi0 and i2c0 on function fi2c0
group gi2c0, on the primary pin controller, we get mappings like these:

{
{"map-spi0", spi0, pinctrl0, fspi0, gspi0},
{"map-i2c0", i2c0, pinctrl0, fi2c0, gi2c0}

}

Every mapmust be assigned a state name, pin controller, device and function.
The group is not compulsory - if it is omitted the first group presented by the
driver as applicable for the function will be selected, which is useful for simple
cases.

It is possible to map several groups to the same combination of device, pin
controller and function. This is for cases where a certain function on a certain
pin controller may use different sets of pins in different configurations.

• PINS for a certain FUNCTION using a certain PIN GROUP on a certain PIN
CONTROLLER are provided on a first-come first-serve basis, so if some other
device mux setting or GPIO pin request has already taken your physical pin,
you will be denied the use of it. To get (activate) a new setting, the old one
has to be put (deactivated) first.

Sometimes the documentation and hardware registers will be oriented around
pads (or“fingers”) rather than pins - these are the soldering surfaces on the sili-
con inside the package, and may or may not match the actual number of pins/balls
underneath the capsule. Pick some enumeration that makes sense to you. Define
enumerators only for the pins you can control if that makes sense.

Assumptions:

We assume that the number of possible function maps to pin groups is limited by
the hardware. I.e. we assume that there is no system where any function can
be mapped to any pin, like in a phone exchange. So the available pin groups for a
certain function will be limited to a few choices (say up to eight or so), not hundreds
or any amount of choices. This is the characteristic we have found by inspecting
available pinmux hardware, and a necessary assumption since we expect pinmux
drivers to present all possible function vs pin group mappings to the subsystem.

1538 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

50.8 Pinmux drivers

The pinmux core takes care of preventing conflicts on pins and calling the pin
controller driver to execute different settings.

It is the responsibility of the pinmux driver to impose further restrictions (say for
example infer electronic limitations due to load, etc.) to determine whether or
not the requested function can actually be allowed, and in case it is possible to
perform the requested mux setting, poke the hardware so that this happens.

Pinmux drivers are required to supply a few callback functions, some are optional.
Usually the set_mux() function is implemented, writing values into some certain
registers to activate a certain mux setting for a certain pin.

A simple driver for the above example will work by setting bits 0, 1, 2, 3 or 4 into
some register named MUX to select a certain function with a certain group of pins
would work something like this:

#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinmux.h>

struct foo_group {
const char *name;
const unsigned int *pins;
const unsigned num_pins;

};

static const unsigned spi0_0_pins[] = { 0, 8, 16, 24 };
static const unsigned spi0_1_pins[] = { 38, 46, 54, 62 };
static const unsigned i2c0_pins[] = { 24, 25 };
static const unsigned mmc0_1_pins[] = { 56, 57 };
static const unsigned mmc0_2_pins[] = { 58, 59 };
static const unsigned mmc0_3_pins[] = { 60, 61, 62, 63 };

static const struct foo_group foo_groups[] = {
{

.name = "spi0_0_grp",

.pins = spi0_0_pins,

.num_pins = ARRAY_SIZE(spi0_0_pins),
},
{

.name = "spi0_1_grp",

.pins = spi0_1_pins,

.num_pins = ARRAY_SIZE(spi0_1_pins),
},
{

.name = "i2c0_grp",

.pins = i2c0_pins,

.num_pins = ARRAY_SIZE(i2c0_pins),
},
{

.name = "mmc0_1_grp",

.pins = mmc0_1_pins,

.num_pins = ARRAY_SIZE(mmc0_1_pins),
},
{

(continues on next page)

50.8. Pinmux drivers 1539

Linux Driver-api Documentation

(continued from previous page)
.name = "mmc0_2_grp",
.pins = mmc0_2_pins,
.num_pins = ARRAY_SIZE(mmc0_2_pins),

},
{

.name = "mmc0_3_grp",

.pins = mmc0_3_pins,

.num_pins = ARRAY_SIZE(mmc0_3_pins),
},

};

static int foo_get_groups_count(struct pinctrl_dev *pctldev)
{

return ARRAY_SIZE(foo_groups);
}

static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
unsigned selector)

{
return foo_groups[selector].name;

}

static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned␣
↪→selector,

const unsigned ** pins,
unsigned * num_pins)

{
*pins = (unsigned *) foo_groups[selector].pins;
*num_pins = foo_groups[selector].num_pins;
return 0;

}

static struct pinctrl_ops foo_pctrl_ops = {
.get_groups_count = foo_get_groups_count,
.get_group_name = foo_get_group_name,
.get_group_pins = foo_get_group_pins,

};

struct foo_pmx_func {
const char *name;
const char * const *groups;
const unsigned num_groups;

};

static const char * const spi0_groups[] = { "spi0_0_grp", "spi0_1_grp" };
static const char * const i2c0_groups[] = { "i2c0_grp" };
static const char * const mmc0_groups[] = { "mmc0_1_grp", "mmc0_2_grp",

"mmc0_3_grp" };

static const struct foo_pmx_func foo_functions[] = {
{

.name = "spi0",

.groups = spi0_groups,

.num_groups = ARRAY_SIZE(spi0_groups),
},

(continues on next page)

1540 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

(continued from previous page)
{

.name = "i2c0",

.groups = i2c0_groups,

.num_groups = ARRAY_SIZE(i2c0_groups),
},
{

.name = "mmc0",

.groups = mmc0_groups,

.num_groups = ARRAY_SIZE(mmc0_groups),
},

};

static int foo_get_functions_count(struct pinctrl_dev *pctldev)
{

return ARRAY_SIZE(foo_functions);
}

static const char *foo_get_fname(struct pinctrl_dev *pctldev, unsigned␣
↪→selector)
{

return foo_functions[selector].name;
}

static int foo_get_groups(struct pinctrl_dev *pctldev, unsigned selector,
const char * const **groups,
unsigned * const num_groups)

{
*groups = foo_functions[selector].groups;
*num_groups = foo_functions[selector].num_groups;
return 0;

}

static int foo_set_mux(struct pinctrl_dev *pctldev, unsigned selector,
unsigned group)

{
u8 regbit = (1 << selector + group);

writeb((readb(MUX)|regbit), MUX);
return 0;

}

static struct pinmux_ops foo_pmxops = {
.get_functions_count = foo_get_functions_count,
.get_function_name = foo_get_fname,
.get_function_groups = foo_get_groups,
.set_mux = foo_set_mux,
.strict = true,

};

/* Pinmux operations are handled by some pin controller */
static struct pinctrl_desc foo_desc = {

...

.pctlops = &foo_pctrl_ops,

.pmxops = &foo_pmxops,
};

50.8. Pinmux drivers 1541

Linux Driver-api Documentation

In the example activating muxing 0 and 1 at the same time setting bits 0 and 1,
uses one pin in common so they would collide.

The beauty of the pinmux subsystem is that since it keeps track of all pins and who
is using them, it will already have denied an impossible request like that, so the
driver does not need to worry about such things - when it gets a selector passed in,
the pinmux subsystem makes sure no other device or GPIO assignment is already
using the selected pins. Thus bits 0 and 1 in the control register will never be set
at the same time.

All the above functions are mandatory to implement for a pinmux driver.

50.9 Pin control interaction with the GPIO subsystem

Note that the following implies that the use case is to use a certain pin from the
Linux kernel using the API in <linux/gpio.h> with gpio_request() and similar func-
tions. There are cases where you may be using something that your datasheet
calls “GPIO mode”, but actually is just an electrical configuration for a certain
device. See the section below named “GPIO mode pitfalls”for more details on
this scenario.

The public pinmux API contains two functions named pinctrl_gpio_request() and
pinctrl_gpio_free(). These two functions shall ONLY be called from gpiolib-based
drivers as part of their gpio_request() and gpio_free() semantics. Likewise the
pinctrl_gpio_direction_[input|output] shall only be called from within respective
gpio_direction_[input|output] gpiolib implementation.

NOTE that platforms and individual drivers shall NOT request GPIO pins to be
controlled e.g. muxed in. Instead, implement a proper gpiolib driver and have
that driver request proper muxing and other control for its pins.

The function list could become long, especially if you can convert every individual
pin into a GPIO pin independent of any other pins, and then try the approach to
define every pin as a function.

In this case, the function array would become 64 entries for each GPIO setting and
then the device functions.

For this reason there are two functions a pin control driver can imple-
ment to enable only GPIO on an individual pin: .gpio_request_enable() and
.gpio_disable_free().

This function will pass in the affected GPIO range identified by the pin controller
core, so you know which GPIO pins are being affected by the request operation.

If your driver needs to have an indication from the framework of whether the GPIO
pin shall be used for input or output you can implement the .gpio_set_direction()
function. As described this shall be called from the gpiolib driver and the affected
GPIO range, pin offset and desired direction will be passed along to this function.

Alternatively to using these special functions, it is fully allowed to use named func-
tions for each GPIO pin, the pinctrl_gpio_request() will attempt to obtain the func-
tion“gpioN”where“N”is the global GPIO pin number if no special GPIO-handler
is registered.

1542 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

50.10 GPIO mode pitfalls

Due to the naming conventions used by hardware engineers, where“GPIO”is taken
to mean different things than what the kernel does, the developer may be confused
by a datasheet talking about a pin being possible to set into “GPIO mode”. It
appears that what hardware engineers mean with“GPIO mode”is not necessarily
the use case that is implied in the kernel interface <linux/gpio.h>: a pin that
you grab from kernel code and then either listen for input or drive high/low to
assert/deassert some external line.

Rather hardware engineers think that“GPIO mode”means that you can software-
control a few electrical properties of the pin that you would not be able to control
if the pin was in some other mode, such as muxed in for a device.

The GPIO portions of a pin and its relation to a certain pin controller configuration
and muxing logic can be constructed in several ways. Here are two examples:

(A)
pin config
logic regs
| +- SPI

Physical pins --- pad --- pinmux -+- I2C
| +- mmc
| +- GPIO
pin
multiplex
logic regs

Here some electrical properties of the pin can be configured no matter whether
the pin is used for GPIO or not. If you multiplex a GPIO onto a pin, you can also
drive it high/low from “GPIO”registers. Alternatively, the pin can be controlled
by a certain peripheral, while still applying desired pin config properties. GPIO
functionality is thus orthogonal to any other device using the pin.

In this arrangement the registers for the GPIO portions of the pin controller, or the
registers for the GPIO hardware module are likely to reside in a separate memory
range only intended for GPIO driving, and the register range dealing with pin con-
fig and pin multiplexing get placed into a different memory range and a separate
section of the data sheet.

A flag “strict”in struct pinmux_ops is available to check and deny simultaneous
access to the same pin from GPIO and pin multiplexing consumers on hardware of
this type. The pinctrl driver should set this flag accordingly.

(B)

pin config
logic regs
| +- SPI

Physical pins --- pad --- pinmux -+- I2C
| | +- mmc
| |
GPIO pin

multiplex
logic regs

50.10. GPIO mode pitfalls 1543

Linux Driver-api Documentation

In this arrangement, the GPIO functionality can always be enabled, such that e.g.
a GPIO input can be used to “spy”on the SPI/I2C/MMC signal while it is pulsed
out. It is likely possible to disrupt the traffic on the pin by doing wrong things on
the GPIO block, as it is never really disconnected. It is possible that the GPIO, pin
config and pin multiplex registers are placed into the same memory range and the
same section of the data sheet, although that need not be the case.

In some pin controllers, although the physical pins are designed in the same way
as (B), the GPIO function still can’t be enabled at the same time as the peripheral
functions. So again the“strict”flag should be set, denying simultaneous activation
by GPIO and other muxed in devices.

From a kernel point of view, however, these are different aspects of the hardware
and shall be put into different subsystems:

• Registers (or fields within registers) that control electrical properties of the
pin such as biasing and drive strength should be exposed through the pinctrl
subsystem, as “pin configuration”settings.

• Registers (or fields within registers) that control muxing of signals from var-
ious other HW blocks (e.g. I2C, MMC, or GPIO) onto pins should be exposed
through the pinctrl subsystem, as mux functions.

• Registers (or fields within registers) that control GPIO functionality such as
setting a GPIO’s output value, reading a GPIO’s input value, or setting GPIO
pin direction should be exposed through the GPIO subsystem, and if they also
support interrupt capabilities, through the irqchip abstraction.

Depending on the exact HW register design, some functions exposed by the GPIO
subsystem may call into the pinctrl subsystem in order to co-ordinate register set-
tings across HW modules. In particular, this may be needed for HW with separate
GPIO and pin controller HW modules, where e.g. GPIO direction is determined by
a register in the pin controller HW module rather than the GPIO HW module.

Electrical properties of the pin such as biasing and drive strength may be placed
at some pin-specific register in all cases or as part of the GPIO register in case (B)
especially. This doesn’t mean that such properties necessarily pertain to what the
Linux kernel calls “GPIO”.
Example: a pin is usually muxed in to be used as a UART TX line. But during
system sleep, we need to put this pin into “GPIO mode”and ground it.
If you make a 1-to-1 map to the GPIO subsystem for this pin, you may start to think
that you need to come up with something really complex, that the pin shall be used
for UART TX and GPIO at the same time, that you will grab a pin control handle and
set it to a certain state to enable UART TX to bemuxed in, then twist it over to GPIO
mode and use gpio_direction_output() to drive it low during sleep, then mux it over
to UART TX again when you wake up and maybe even gpio_request/gpio_free as
part of this cycle. This all gets very complicated.

The solution is to not think that what the datasheet calls “GPIO mode”has to be
handled by the <linux/gpio.h> interface. Instead view this as a certain pin config
setting. Look in e.g. <linux/pinctrl/pinconf-generic.h> and you find this in the
documentation:

PIN_CONFIG_OUTPUT: this will configure the pin in output, use argu-
ment 1 to indicate high level, argument 0 to indicate low level.

1544 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

So it is perfectly possible to push a pin into “GPIO mode”and drive the line low
as part of the usual pin control map. So for example your UART driver may look
like this:

#include <linux/pinctrl/consumer.h>

struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_sleep;

pins_default = pinctrl_lookup_state(uap->pinctrl, PINCTRL_STATE_DEFAULT);
pins_sleep = pinctrl_lookup_state(uap->pinctrl, PINCTRL_STATE_SLEEP);

/* Normal mode */
retval = pinctrl_select_state(pinctrl, pins_default);
/* Sleep mode */
retval = pinctrl_select_state(pinctrl, pins_sleep);

50.10.1 And your machine configuration may look like this:

static unsigned long uart_default_mode[] = {
PIN_CONF_PACKED(PIN_CONFIG_DRIVE_PUSH_PULL, 0),

};

static unsigned long uart_sleep_mode[] = {
PIN_CONF_PACKED(PIN_CONFIG_OUTPUT, 0),

};

static struct pinctrl_map pinmap[] __initdata = {
PIN_MAP_MUX_GROUP("uart", PINCTRL_STATE_DEFAULT, "pinctrl-foo",

"u0_group", "u0"),
PIN_MAP_CONFIGS_PIN("uart", PINCTRL_STATE_DEFAULT, "pinctrl-foo",

"UART_TX_PIN", uart_default_mode),
PIN_MAP_MUX_GROUP("uart", PINCTRL_STATE_SLEEP, "pinctrl-foo",

"u0_group", "gpio-mode"),
PIN_MAP_CONFIGS_PIN("uart", PINCTRL_STATE_SLEEP, "pinctrl-foo",

"UART_TX_PIN", uart_sleep_mode),
};

foo_init(void) {
pinctrl_register_mappings(pinmap, ARRAY_SIZE(pinmap));

}

Here the pins we want to control are in the“u0_group”and there is some function
called“u0”that can be enabled on this group of pins, and then everything is UART
business as usual. But there is also some function named “gpio-mode”that can
be mapped onto the same pins to move them into GPIO mode.

This will give the desired effect without any bogus interaction with the GPIO sub-
system. It is just an electrical configuration used by that device when going to
sleep, it might imply that the pin is set into something the datasheet calls “GPIO
mode”, but that is not the point: it is still used by that UART device to control the
pins that pertain to that very UART driver, putting them into modes needed by the
UART. GPIO in the Linux kernel sense are just some 1-bit line, and is a different
use case.

50.10. GPIO mode pitfalls 1545

Linux Driver-api Documentation

How the registers are poked to attain the push or pull, and output low configura-
tion and the muxing of the“u0”or“gpio-mode”group onto these pins is a question
for the driver.

Some datasheets will be more helpful and refer to the“GPIO mode”as“low power
mode”rather than anything to do with GPIO. This often means the same thing elec-
trically speaking, but in this latter case the software engineers will usually quickly
identify that this is some specific muxing or configuration rather than anything
related to the GPIO API.

50.11 Board/machine configuration

Boards and machines define how a certain complete running system is put to-
gether, including how GPIOs and devices are muxed, how regulators are con-
strained and how the clock tree looks. Of course pinmux settings are also part
of this.

A pin controller configuration for a machine looks pretty much like a simple regu-
lator configuration, so for the example array above we want to enable i2c and spi
on the second function mapping:

#include <linux/pinctrl/machine.h>

static const struct pinctrl_map mapping[] __initconst = {
{

.dev_name = "foo-spi.0",

.name = PINCTRL_STATE_DEFAULT,

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.data.mux.function = "spi0",
},
{

.dev_name = "foo-i2c.0",

.name = PINCTRL_STATE_DEFAULT,

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.data.mux.function = "i2c0",
},
{

.dev_name = "foo-mmc.0",

.name = PINCTRL_STATE_DEFAULT,

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.data.mux.function = "mmc0",
},

};

The dev_name here matches to the unique device name that can be used to look up
the device struct (just like with clockdev or regulators). The function name must
match a function provided by the pinmux driver handling this pin range.

As you can see we may have several pin controllers on the system and thus we
need to specify which one of them contains the functions we wish to map.

You register this pinmux mapping to the pinmux subsystem by simply:

1546 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

ret = pinctrl_register_mappings(mapping, ARRAY_SIZE(mapping));

Since the above construct is pretty common there is a helper macro to make it
even more compact which assumes you want to use pinctrl-foo and position 0 for
mapping, for example:

static struct pinctrl_map mapping[] __initdata = {
PIN_MAP_MUX_GROUP("foo-i2c.o", PINCTRL_STATE_DEFAULT,

"pinctrl-foo", NULL, "i2c0"),
};

The mapping table may also contain pin configuration entries. It’s common for
each pin/group to have a number of configuration entries that affect it, so the table
entries for configuration reference an array of config parameters and values. An
example using the convenience macros is shown below:

static unsigned long i2c_grp_configs[] = {
FOO_PIN_DRIVEN,
FOO_PIN_PULLUP,

};

static unsigned long i2c_pin_configs[] = {
FOO_OPEN_COLLECTOR,
FOO_SLEW_RATE_SLOW,

};

static struct pinctrl_map mapping[] __initdata = {
PIN_MAP_MUX_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT,

"pinctrl-foo", "i2c0", "i2c0"),
PIN_MAP_CONFIGS_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT,

"pinctrl-foo", "i2c0", i2c_grp_configs),
PIN_MAP_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT,

"pinctrl-foo", "i2c0scl", i2c_pin_configs),
PIN_MAP_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT,

"pinctrl-foo", "i2c0sda", i2c_pin_configs),
};

Finally, some devices expect the mapping table to contain certain specific named
states. When running on hardware that doesn’t need any pin controller con-
figuration, the mapping table must still contain those named states, in order to
explicitly indicate that the states were provided and intended to be empty. Table
entry macro PIN_MAP_DUMMY_STATE serves the purpose of defining a named
state without causing any pin controller to be programmed:

static struct pinctrl_map mapping[] __initdata = {
PIN_MAP_DUMMY_STATE("foo-i2c.0", PINCTRL_STATE_DEFAULT),

};

50.11. Board/machine configuration 1547

Linux Driver-api Documentation

50.12 Complex mappings

As it is possible to map a function to different groups of pins an optional .group
can be specified like this:

...
{

.dev_name = "foo-spi.0",

.name = "spi0-pos-A",

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "spi0",

.group = "spi0_0_grp",
},
{

.dev_name = "foo-spi.0",

.name = "spi0-pos-B",

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "spi0",

.group = "spi0_1_grp",
},
...

This example mapping is used to switch between two positions for spi0 at runtime,
as described further below under the heading “Runtime pinmuxing”.
Further it is possible for one named state to affect the muxing of several groups
of pins, say for example in the mmc0 example above, where you can additively
expand the mmc0 bus from 2 to 4 to 8 pins. If we want to use all three groups
for a total of 2+2+4 = 8 pins (for an 8-bit MMC bus as is the case), we define a
mapping like this:

...
{

.dev_name = "foo-mmc.0",

.name = "2bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_1_grp",
},
{

.dev_name = "foo-mmc.0",

.name = "4bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_1_grp",
},
{

.dev_name = "foo-mmc.0",

.name = "4bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",
(continues on next page)

1548 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

(continued from previous page)
.group = "mmc0_2_grp",

},
{

.dev_name = "foo-mmc.0",

.name = "8bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_1_grp",
},
{

.dev_name = "foo-mmc.0",

.name = "8bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_2_grp",
},
{

.dev_name = "foo-mmc.0",

.name = "8bit"

.type = PIN_MAP_TYPE_MUX_GROUP,

.ctrl_dev_name = "pinctrl-foo",

.function = "mmc0",

.group = "mmc0_3_grp",
},
...

The result of grabbing this mapping from the device with something like this (see
next paragraph):

p = devm_pinctrl_get(dev);
s = pinctrl_lookup_state(p, "8bit");
ret = pinctrl_select_state(p, s);

or more simply:

p = devm_pinctrl_get_select(dev, "8bit");

Will be that you activate all the three bottom records in the mapping at once. Since
they share the same name, pin controller device, function and device, and since
we allow multiple groups to match to a single device, they all get selected, and
they all get enabled and disable simultaneously by the pinmux core.

50.13 Pin control requests from drivers

When a device driver is about to probe the device core will automatically attempt
to issue pinctrl_get_select_default() on these devices. This way driver writers do
not need to add any of the boilerplate code of the type found below. However when
doing fine-grained state selection and not using the“default”state, you may have
to do some device driver handling of the pinctrl handles and states.

So if you just want to put the pins for a certain device into the default state and be

50.13. Pin control requests from drivers 1549

Linux Driver-api Documentation

done with it, there is nothing you need to do besides providing the proper mapping
table. The device core will take care of the rest.

Generally it is discouraged to let individual drivers get and enable pin control. So
if possible, handle the pin control in platform code or some other place where you
have access to all the affected struct device * pointers. In some cases where a
driver needs to e.g. switch between different mux mappings at runtime this is not
possible.

A typical case is if a driver needs to switch bias of pins from normal opera-
tion and going to sleep, moving from the PINCTRL_STATE_DEFAULT to PINC-
TRL_STATE_SLEEP at runtime, re-biasing or even re-muxing pins to save current
in sleep mode.

A driver may request a certain control state to be activated, usually just the default
state like this:

#include <linux/pinctrl/consumer.h>

struct foo_state {
struct pinctrl *p;
struct pinctrl_state *s;
...
};

foo_probe()
{

/* Allocate a state holder named "foo" etc */
struct foo_state *foo = ...;

foo->p = devm_pinctrl_get(&device);
if (IS_ERR(foo->p)) {

/* FIXME: clean up "foo" here */
return PTR_ERR(foo->p);

}

foo->s = pinctrl_lookup_state(foo->p, PINCTRL_STATE_DEFAULT);
if (IS_ERR(foo->s)) {

/* FIXME: clean up "foo" here */
return PTR_ERR(s);

}

ret = pinctrl_select_state(foo->s);
if (ret < 0) {

/* FIXME: clean up "foo" here */
return ret;

}
}

This get/lookup/select/put sequence can just as well be handled by bus drivers if
you don’t want each and every driver to handle it and you know the arrangement
on your bus.

The semantics of the pinctrl APIs are:

• pinctrl_get() is called in process context to obtain a handle to all pinctrl in-
formation for a given client device. It will allocate a struct from the kernel

1550 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

memory to hold the pinmux state. All mapping table parsing or similar slow
operations take place within this API.

• devm_pinctrl_get() is a variant of pinctrl_get() that causes pinctrl_put() to be
called automatically on the retrieved pointer when the associated device is
removed. It is recommended to use this function over plain pinctrl_get().

• pinctrl_lookup_state() is called in process context to obtain a handle to a spe-
cific state for a client device. This operation may be slow, too.

• pinctrl_select_state() programs pin controller hardware according to the defi-
nition of the state as given by the mapping table. In theory, this is a fast-path
operation, since it only involved blasting some register settings into hard-
ware. However, note that some pin controllers may have their registers on a
slow/IRQ-based bus, so client devices should not assume they can call pinc-
trl_select_state() from non-blocking contexts.

• pinctrl_put() frees all information associated with a pinctrl handle.

• devm_pinctrl_put() is a variant of pinctrl_put() that may be used to explic-
itly destroy a pinctrl object returned by devm_pinctrl_get(). However, use of
this function will be rare, due to the automatic cleanup that will occur even
without calling it.

pinctrl_get() must be paired with a plain pinctrl_put(). pinctrl_get() may
not be paired with devm_pinctrl_put(). devm_pinctrl_get() can optionally be
paired with devm_pinctrl_put(). devm_pinctrl_get() may not be paired with
plain pinctrl_put().

Usually the pin control core handled the get/put pair and call out to the device
drivers bookkeeping operations, like checking available functions and the associ-
ated pins, whereas select_state pass on to the pin controller driver which takes
care of activating and/or deactivating the mux setting by quickly poking some reg-
isters.

The pins are allocated for your device when you issue the devm_pinctrl_get() call,
after this you should be able to see this in the debugfs listing of all pins.

NOTE: the pinctrl system will return -EPROBE_DEFER if it cannot find the re-
quested pinctrl handles, for example if the pinctrl driver has not yet registered.
Thus make sure that the error path in your driver gracefully cleans up and is ready
to retry the probing later in the startup process.

50.14 Drivers needing both pin control and GPIOs

Again, it is discouraged to let drivers lookup and select pin control states them-
selves, but again sometimes this is unavoidable.

So say that your driver is fetching its resources like this:

#include <linux/pinctrl/consumer.h>
#include <linux/gpio.h>

struct pinctrl *pinctrl;
int gpio;

(continues on next page)

50.14. Drivers needing both pin control and GPIOs 1551

Linux Driver-api Documentation

(continued from previous page)

pinctrl = devm_pinctrl_get_select_default(&dev);
gpio = devm_gpio_request(&dev, 14, "foo");

Here we first request a certain pin state and then request GPIO 14 to be used. If
you’re using the subsystems orthogonally like this, you should nominally always
get your pinctrl handle and select the desired pinctrl state BEFORE requesting
the GPIO. This is a semantic convention to avoid situations that can be electrically
unpleasant, you will certainly want to mux in and bias pins in a certain way before
the GPIO subsystems starts to deal with them.

The above can be hidden: using the device core, the pinctrl core may be setting up
the config and muxing for the pins right before the device is probing, nevertheless
orthogonal to the GPIO subsystem.

But there are also situations where it makes sense for the GPIO subsystem to com-
municate directly with the pinctrl subsystem, using the latter as a back-end. This is
when the GPIO driver may call out to the functions described in the section “Pin
control interaction with the GPIO subsystem”above. This only involves per-pin
multiplexing, and will be completely hidden behind the gpio_*() function names-
pace. In this case, the driver need not interact with the pin control subsystem at
all.

If a pin control driver and a GPIO driver is dealing with the same pins and the use
cases involve multiplexing, you MUST implement the pin controller as a back-end
for the GPIO driver like this, unless your hardware design is such that the GPIO
controller can override the pin controller’s multiplexing state through hardware
without the need to interact with the pin control system.

50.15 System pin control hogging

Pin control map entries can be hogged by the core when the pin controller is reg-
istered. This means that the core will attempt to call pinctrl_get(), lookup_state()
and select_state() on it immediately after the pin control device has been regis-
tered.

This occurs for mapping table entries where the client device name is equal to the
pin controller device name, and the state name is PINCTRL_STATE_DEFAULT:

{
.dev_name = "pinctrl-foo",
.name = PINCTRL_STATE_DEFAULT,
.type = PIN_MAP_TYPE_MUX_GROUP,
.ctrl_dev_name = "pinctrl-foo",
.function = "power_func",

},

Since it may be common to request the core to hog a few always-applicable mux
settings on the primary pin controller, there is a convenience macro for this:

PIN_MAP_MUX_GROUP_HOG_DEFAULT("pinctrl-foo", NULL /* group */,
"power_func")

1552 Chapter 50. PINCTRL (PIN CONTROL) subsystem

Linux Driver-api Documentation

This gives the exact same result as the above construction.

50.16 Runtime pinmuxing

It is possible to mux a certain function in and out at runtime, say to move an SPI
port from one set of pins to another set of pins. Say for example for spi0 in the
example above, we expose two different groups of pins for the same function, but
with different named in the mapping as described under “Advanced mapping”
above. So that for an SPI device, we have two states named“pos-A”and“pos-B”
.

This snippet first initializes a state object for both groups (in foo_probe()), then
muxes the function in the pins defined by group A, and finally muxes it in on the
pins defined by group B:

#include <linux/pinctrl/consumer.h>

struct pinctrl *p;
struct pinctrl_state *s1, *s2;

foo_probe()
{

/* Setup */
p = devm_pinctrl_get(&device);
if (IS_ERR(p))

...

s1 = pinctrl_lookup_state(foo->p, "pos-A");
if (IS_ERR(s1))

...

s2 = pinctrl_lookup_state(foo->p, "pos-B");
if (IS_ERR(s2))

...
}

foo_switch()
{

/* Enable on position A */
ret = pinctrl_select_state(s1);
if (ret < 0)
...

...

/* Enable on position B */
ret = pinctrl_select_state(s2);
if (ret < 0)
...

...
}

The above has to be done from process context. The reservation of the pins will
be done when the state is activated, so in effect one specific pin can be used by

50.16. Runtime pinmuxing 1553

Linux Driver-api Documentation

different functions at different times on a running system.

1554 Chapter 50. PINCTRL (PIN CONTROL) subsystem

CHAPTER

FIFTYONE

GENERAL PURPOSE INPUT/OUTPUT (GPIO)

Contents:

51.1 Introduction

51.1.1 GPIO Interfaces

The documents in this directory give detailed instructions on how to access GPIOs
in drivers, and how to write a driver for a device that provides GPIOs itself.

Due to the history of GPIO interfaces in the kernel, there are two different ways
to obtain and use GPIOs:

• The descriptor-based interface is the preferred way to manipulate GPIOs, and
is described by all the files in this directory excepted gpio-legacy.txt.

• The legacy integer-based interface which is considered deprecated (but still
usable for compatibility reasons) is documented in gpio-legacy.txt.

The remainder of this document applies to the new descriptor-based interface.
gpio-legacy.txt contains the same information applied to the legacy integer-based
interface.

51.1.2 What is a GPIO?

A“General Purpose Input/Output”(GPIO) is a flexible software-controlled digital
signal. They are provided frommany kinds of chip, and are familiar to Linux devel-
opers working with embedded and custom hardware. Each GPIO represents a bit
connected to a particular pin, or“ball”on Ball Grid Array (BGA) packages. Board
schematics show which external hardware connects to which GPIOs. Drivers can
be written generically, so that board setup code passes such pin configuration data
to drivers.

System-on-Chip (SOC) processors heavily rely on GPIOs. In some cases, every non-
dedicated pin can be configured as a GPIO; and most chips have at least several
dozen of them. Programmable logic devices (like FPGAs) can easily provide GPIOs;
multifunction chips like power managers, and audio codecs often have a few such
pins to help with pin scarcity on SOCs; and there are also“GPIO Expander”chips
that connect using the I2C or SPI serial buses. Most PC southbridges have a few
dozen GPIO-capable pins (with only the BIOS firmware knowing how they’re used).

1555

Linux Driver-api Documentation

The exact capabilities of GPIOs vary between systems. Common options:

• Output values are writable (high=1, low=0). Some chips also have options
about how that value is driven, so that for example only one value might be
driven, supporting“wire-OR”and similar schemes for the other value (notably,
“open drain”signaling).
• Input values are likewise readable (1, 0). Some chips support readback of
pins configured as “output”, which is very useful in such “wire-OR”cases
(to support bidirectional signaling). GPIO controllers may have input de-
glitch/debounce logic, sometimes with software controls.

• Inputs can often be used as IRQ signals, often edge triggered but sometimes
level triggered. Such IRQs may be configurable as system wakeup events, to
wake the system from a low power state.

• Usually a GPIO will be configurable as either input or output, as needed by
different product boards; single direction ones exist too.

• Most GPIOs can be accessed while holding spinlocks, but those accessed
through a serial bus normally can’t. Some systems support both types.

On a given board each GPIO is used for one specific purpose like monitoring
MMC/SD card insertion/removal, detecting card write-protect status, driving a
LED, configuring a transceiver, bit-banging a serial bus, poking a hardware watch-
dog, sensing a switch, and so on.

51.1.3 Common GPIO Properties

These properties are met through all the other documents of the GPIO interface
and it is useful to understand them, especially if you need to define GPIOmappings.

Active-High and Active-Low

It is natural to assume that a GPIO is“active”when its output signal is 1 (“high”),
and inactive when it is 0 (“low”). However in practice the signal of a GPIO may be
inverted before is reaches its destination, or a device could decide to have different
conventions about what“active”means. Such decisions should be transparent to
device drivers, therefore it is possible to define a GPIO as being either active-high
(“1”means “active”, the default) or active-low (“0”means “active”) so that
drivers only need to worry about the logical signal and not about what happens at
the line level.

Open Drain and Open Source

Sometimes shared signals need to use “open drain”(where only the low signal
level is actually driven), or “open source”(where only the high signal level is
driven) signaling. That term applies to CMOS transistors; “open collector”is
used for TTL. A pullup or pulldown resistor causes the high or low signal level.
This is sometimes called a “wire-AND”; or more practically, from the negative
logic (low=true) perspective this is a “wire-OR”.

1556 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

One common example of an open drain signal is a shared active-low IRQ line. Also,
bidirectional data bus signals sometimes use open drain signals.

Some GPIO controllers directly support open drain and open source outputs; many
don’t. When you need open drain signaling but your hardware doesn’t directly
support it, there’s a common idiom you can use to emulate it with any GPIO pin
that can be used as either an input or an output:

LOW: gpiod_direction_output(gpio, 0) ⋯this drives the signal and overrides
the pullup.

HIGH: gpiod_direction_input(gpio) ⋯this turns off the output, so the pullup
(or some other device) controls the signal.

The same logic can be applied to emulate open source signaling, by driving the
high signal and configuring the GPIO as input for low. This open drain/open source
emulation can be handled transparently by the GPIO framework.

If you are“driving”the signal high but gpiod_get_value(gpio) reports a low value
(after the appropriate rise time passes), you know some other component is driving
the shared signal low. That’s not necessarily an error. As one common example,
that’s how I2C clocks are stretched: a slave that needs a slower clock delays the
rising edge of SCK, and the I2C master adjusts its signaling rate accordingly.

51.2 Using GPIO Lines in Linux

The Linux kernel exists to abstract and present hardware to users. GPIO lines
as such are normally not user facing abstractions. The most obvious, natural and
preferred way to use GPIO lines is to let kernel hardware drivers deal with them.

For examples of already existing generic drivers that will also be good examples
for any other kernel drivers you want to author, refer to Subsystem drivers using
GPIO

For any kind of mass produced system you want to support, such as servers, lap-
tops, phones, tablets, routers, and any consumer or office or business goods using
appropriate kernel drivers is paramount. Submit your code for inclusion in the
upstream Linux kernel when you feel it is mature enough and you will get help to
refine it, see ../../process/submitting-patches.

In Linux GPIO lines also have a userspace ABI.

The userspace ABI is intended for one-off deployments. Examples are prototypes,
factory lines, maker community projects, workshop specimen, production tools,
industrial automation, PLC-type use cases, door controllers, in short a piece of
specialized equipment that is not produced by the numbers, requiring operators to
have a deep knowledge of the equipment and knows about the software-hardware
interface to be set up. They should not have a natural fit to any existing kernel
subsystem and not be a good fit for an operating system, because of not being
reusable or abstract enough, or involving a lot of non computer hardware related
policy.

Applications that have a good reason to use the industrial I/O (IIO) subsystem from
userspace will likely be a good fit for using GPIO lines from userspace as well.

51.2. Using GPIO Lines in Linux 1557

Linux Driver-api Documentation

Do not under any circumstances abuse the GPIO userspace ABI to cut corners
in any product development projects. If you use it for prototyping, then do not
productify the prototype: rewrite it using proper kernel drivers. Do not under any
circumstances deploy any uniform products using GPIO from userspace.

The userspace ABI is a character device for each GPIO hardware unit (GPIO chip).
These devices will appear on the system as /dev/gpiochip0 thru /dev/gpiochipN.
Examples of how to directly use the userspace ABI can be found in the kernel tree
tools/gpio subdirectory.

For structured and managed applications, we recommend that you make use of
the libgpiod library. This provides helper abstractions, command line utlities and
arbitration for multiple simultaneous consumers on the same GPIO chip.

51.3 GPIO Driver Interface

This document serves as a guide for writers of GPIO chip drivers.

Each GPIO controller driver needs to include the following header, which defines
the structures used to define a GPIO driver:

#include <linux/gpio/driver.h>

51.3.1 Internal Representation of GPIOs

A GPIO chip handles one or more GPIO lines. To be considered a GPIO chip, the
lines must conform to the definition: General Purpose Input/Output. If the line is
not general purpose, it is not GPIO and should not be handled by a GPIO chip. The
use case is the indicative: certain lines in a system may be called GPIO but serve
a very particular purpose thus not meeting the criteria of a general purpose I/O.
On the other hand a LED driver line may be used as a GPIO and should therefore
still be handled by a GPIO chip driver.

Inside a GPIO driver, individual GPIO lines are identified by their hardware num-
ber, sometime also referred to as offset, which is a unique number between 0
and n-1, n being the number of GPIOs managed by the chip.

The hardware GPIO number should be something intuitive to the hardware, for
example if a system uses a memory-mapped set of I/O-registers where 32 GPIO
lines are handled by one bit per line in a 32-bit register, it makes sense to use
hardware offsets 0..31 for these, corresponding to bits 0..31 in the register.

This number is purely internal: the hardware number of a particular GPIO line is
never made visible outside of the driver.

On top of this internal number, each GPIO line also needs to have a global num-
ber in the integer GPIO namespace so that it can be used with the legacy GPIO
interface. Each chip must thus have a“base”number (which can be automatically
assigned), and for each GPIO line the global number will be (base + hardware
number). Although the integer representation is considered deprecated, it still
has many users and thus needs to be maintained.

1558 Chapter 51. General Purpose Input/Output (GPIO)

https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/

Linux Driver-api Documentation

So for example one platform could use global numbers 32-159 for GPIOs, with a
controller defining 128 GPIOs at a “base”of 32 ; while another platform uses
global numbers 0..63 with one set of GPIO controllers, 64-79 with another type
of GPIO controller, and on one particular board 80-95 with an FPGA. The legacy
numbers need not be contiguous; either of those platforms could also use numbers
2000-2063 to identify GPIO lines in a bank of I2C GPIO expanders.

51.3.2 Controller Drivers: gpio_chip

In the gpiolib framework each GPIO controller is packaged as a“struct gpio_chip”
(see <linux/gpio/driver.h> for its complete definition) with members common to
each controller of that type, these should be assigned by the driver code:

• methods to establish GPIO line direction

• methods used to access GPIO line values

• method to set electrical configuration for a given GPIO line

• method to return the IRQ number associated to a given GPIO line

• flag saying whether calls to its methods may sleep

• optional line names array to identify lines

• optional debugfs dump method (showing extra state information)

• optional base number (will be automatically assigned if omitted)

• optional label for diagnostics and GPIO chip mapping using platform data

The code implementing a gpio_chip should support multiple instances of the con-
troller, preferably using the driver model. That code will configure each gpio_chip
and issue gpiochip_add(), gpiochip_add_data(), or devm_gpiochip_add_data().
Removing a GPIO controller should be rare; use gpiochip_remove() when it is
unavoidable.

Often a gpio_chip is part of an instance-specific structure with states not exposed
by the GPIO interfaces, such as addressing, power management, and more. Chips
such as audio codecs will have complex non-GPIO states.

Any debugfs dump method should normally ignore lines which haven’t been re-
quested. They can use gpiochip_is_requested(), which returns either NULL or
the label associated with that GPIO line when it was requested.

Realtime considerations: the GPIO driver should not use spinlock_t or any sleep-
able APIs (like PM runtime) in its gpio_chip implementation (.get/.set and direction
control callbacks) if it is expected to call GPIO APIs from atomic context on real-
time kernels (inside hard IRQ handlers and similar contexts). Normally this should
not be required.

51.3. GPIO Driver Interface 1559

Linux Driver-api Documentation

GPIO electrical configuration

GPIO lines can be configured for several electrical modes of operation by using
the .set_config() callback. Currently this API supports setting:

• Debouncing

• Single-ended modes (open drain/open source)

• Pull up and pull down resistor enablement

These settings are described below.

The .set_config() callback uses the same enumerators and configuration semantics
as the generic pin control drivers. This is not a coincidence: it is possible to assign
the .set_config() to the function gpiochip_generic_config() which will result in
pinctrl_gpio_set_config() being called and eventually ending up in the pin control
back-end“behind”the GPIO controller, usually closer to the actual pins. This way
the pin controller can manage the below listed GPIO configurations.

If a pin controller back-end is used, the GPIO controller or hardware description
needs to provide“GPIO ranges”mapping the GPIO line offsets to pin numbers on
the pin controller so they can properly cross-reference each other.

GPIO lines with debounce support

Debouncing is a configuration set to a pin indicating that it is connected to a me-
chanical switch or button, or similar that may bounce. Bouncing means the line
is pulled high/low quickly at very short intervals for mechanical reasons. This
can result in the value being unstable or irqs fireing repeatedly unless the line is
debounced.

Debouncing in practice involves setting up a timer when something happens on
the line, wait a little while and then sample the line again, so see if it still has the
same value (low or high). This could also be repeated by a clever state machine,
waiting for a line to become stable. In either case, it sets a certain number of
milliseconds for debouncing, or just “on/off”if that time is not configurable.

GPIO lines with open drain/source support

Open drain (CMOS) or open collector (TTL) means the line is not actively driven
high: instead you provide the drain/collector as output, so when the transistor is
not open, it will present a high-impedance (tristate) to the external rail:

CMOS CONFIGURATION TTL CONFIGURATION

||--- out +--- out
in ----|| |/

||--+ in ----|
| |\

GND GND

This configuration is normally used as a way to achieve one of two things:

1560 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

• Level-shifting: to reach a logical level higher than that of the silicon where
the output resides.

• Inverse wire-OR on an I/O line, for example a GPIO line, making it possible
for any driving stage on the line to drive it low even if any other output to the
same line is simultaneously driving it high. A special case of this is driving
the SCL and SDA lines of an I2C bus, which is by definition a wire-OR bus.

Both use cases require that the line be equipped with a pull-up resistor. This
resistor will make the line tend to high level unless one of the transistors on the
rail actively pulls it down.

The level on the line will go as high as the VDD on the pull-up resistor, which may
be higher than the level supported by the transistor, achieving a level-shift to the
higher VDD.

Integrated electronics often have an output driver stage in the form of a CMOS
“totem-pole”with one N-MOS and one P-MOS transistor where one of them drives
the line high and one of them drives the line low. This is called a push-pull output.
The “totem-pole”looks like so:

VDD
|

OD ||--+
+--/ ---o|| P-MOS-FET
| ||--+

IN --+ +----- out
| ||--+
+--/ ----|| N-MOS-FET

OS ||--+
|

GND

The desired output signal (e.g. coming directly from some GPIO output register)
arrives at IN. The switches named“OD”and“OS”are normally closed, creating
a push-pull circuit.

Consider the little “switches”named “OD”and “OS”that enable/disable the
P-MOS or N-MOS transistor right after the split of the input. As you can see,
either transistor will go totally numb if this switch is open. The totem-pole is then
halved and give high impedance instead of actively driving the line high or low
respectively. That is usually how software-controlled open drain/source works.

Some GPIO hardware come in open drain / open source configuration. Some are
hard-wired lines that will only support open drain or open source no matter what:
there is only one transistor there. Some are software-configurable: by flipping a
bit in a register the output can be configured as open drain or open source, in
practice by flicking open the switches labeled “OD”and “OS”in the drawing
above.

By disabling the P-MOS transistor, the output can be driven between GND and
high impedance (open drain), and by disabling the N-MOS transistor, the output
can be driven between VDD and high impedance (open source). In the first case,
a pull-up resistor is needed on the outgoing rail to complete the circuit, and in the
second case, a pull-down resistor is needed on the rail.

Hardware that supports open drain or open source or both, can implement a spe-

51.3. GPIO Driver Interface 1561

Linux Driver-api Documentation

cial callback in the gpio_chip: .set_config() that takes a generic pinconf packed
value telling whether to configure the line as open drain, open source or push-pull.
This will happen in response to the GPIO_OPEN_DRAIN or GPIO_OPEN_SOURCE
flag set in the machine file, or coming from other hardware descriptions.

If this state can not be configured in hardware, i.e. if the GPIO hardware does not
support open drain/open source in hardware, the GPIO library will instead use a
trick: when a line is set as output, if the line is flagged as open drain, and the IN
output value is low, it will be driven low as usual. But if the IN output value is set
to high, it will instead NOT be driven high, instead it will be switched to input,
as input mode is high impedance, thus achieveing an “open drain emulation”of
sorts: electrically the behaviour will be identical, with the exception of possible
hardware glitches when switching the mode of the line.

For open source configuration the same principle is used, just that instead of ac-
tively driving the line low, it is set to input.

GPIO lines with pull up/down resistor support

A GPIO line can support pull-up/down using the .set_config() callback. This means
that a pull up or pull-down resistor is available on the output of the GPIO line, and
this resistor is software controlled.

In discrete designs, a pull-up or pull-down resistor is simply soldered on the circuit
board. This is not something we deal with or model in software. The most you will
think about these lines is that they will very likely be configured as open drain or
open source (see the section above).

The .set_config() callback can only turn pull up or down on and off, and will no
have any semantic knowledge about the resistance used. It will only say switch a
bit in a register enabling or disabling pull-up or pull-down.

If the GPIO line supports shunting in different resistance values for the pull-up
or pull-down resistor, the GPIO chip callback .set_config() will not suffice. For
these complex use cases, a combined GPIO chip and pin controller need to be
implemented, as the pin config interface of a pin controller supports more versatile
control over electrical properties and can handle different pull-up or pull-down
resistance values.

51.3.3 GPIO drivers providing IRQs

It is custom that GPIO drivers (GPIO chips) are also providing interrupts, most
often cascaded off a parent interrupt controller, and in some special cases the
GPIO logic is melded with a SoC’s primary interrupt controller.
The IRQ portions of the GPIO block are implemented using an irq_chip, using the
header <linux/irq.h>. So this combined driver is utilizing two sub- systems simul-
taneously: gpio and irq.

It is legal for any IRQ consumer to request an IRQ from any irqchip even if it is a
combined GPIO+IRQ driver. The basic premise is that gpio_chip and irq_chip are
orthogonal, and offering their services independent of each other.

1562 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

gpiod_to_irq() is just a convenience function to figure out the IRQ for a certain
GPIO line and should not be relied upon to have been called before the IRQ is used.

Always prepare the hardware and make it ready for action in respective callbacks
from the GPIO and irq_chip APIs. Do not rely on gpiod_to_irq() having been
called first.

We can divide GPIO irqchips in two broad categories:

• CASCADED INTERRUPT CHIPS: this means that the GPIO chip has one com-
mon interrupt output line, which is triggered by any enabled GPIO line on
that chip. The interrupt output line will then be routed to an parent interrupt
controller one level up, in the most simple case the systems primary inter-
rupt controller. This is modeled by an irqchip that will inspect bits inside the
GPIO controller to figure out which line fired it. The irqchip part of the driver
needs to inspect registers to figure this out and it will likely also need to ac-
knowledge that it is handling the interrupt by clearing some bit (sometime
implicitly, by just reading a status register) and it will often need to set up
the configuration such as edge sensitivity (rising or falling edge, or high/low
level interrupt for example).

• HIERARCHICAL INTERRUPT CHIPS: this means that each GPIO line has a
dedicated irq line to a parent interrupt controller one level up. There is no
need to inquire the GPIO hardware to figure out which line has fired, but it
may still be necessary to acknowledge the interrupt and set up configuration
such as edge sensitivity.

Realtime considerations: a realtime compliant GPIO driver should not use spin-
lock_t or any sleepable APIs (like PM runtime) as part of its irqchip implementa-
tion.

• spinlock_t should be replaced with raw_spinlock_t.[1]

• If sleepable APIs have to be used, these can be done from the .irq_bus_lock()
and .irq_bus_unlock() callbacks, as these are the only slowpath callbacks on
an irqchip. Create the callbacks if needed.[2]

Cascaded GPIO irqchips

Cascaded GPIO irqchips usually fall in one of three categories:

• CHAINED CASCADED GPIO IRQCHIPS: these are usually the type that is em-
bedded on an SoC. This means that there is a fast IRQ flow handler for the
GPIOs that gets called in a chain from the parent IRQ handler, most typically
the system interrupt controller. This means that the GPIO irqchip handler
will be called immediately from the parent irqchip, while holding the IRQs
disabled. The GPIO irqchip will then end up calling something like this se-
quence in its interrupt handler:

static irqreturn_t foo_gpio_irq(int irq, void *data)
chained_irq_enter(...);
generic_handle_irq(...);
chained_irq_exit(...);

51.3. GPIO Driver Interface 1563

Linux Driver-api Documentation

Chained GPIO irqchips typically can NOT set the .can_sleep flag on struct
gpio_chip, as everything happens directly in the callbacks: no slow bus traffic
like I2C can be used.

Realtime considerations: Note that chained IRQ handlers will not be forced
threaded on -RT. As a result, spinlock_t or any sleepable APIs (like PM run-
time) can’t be used in a chained IRQ handler.
If required (and if it can’t be converted to the nested threaded GPIO irqchip,
see below) a chained IRQ handler can be converted to generic irq handler
and this way it will become a threaded IRQ handler on -RT and a hard IRQ
handler on non-RT (for example, see [3]).

The generic_handle_irq() is expected to be called with IRQ disabled, so the
IRQ core will complain if it is called from an IRQ handler which is forced to a
thread. The “fake?”raw lock can be used to work around this problem:
raw_spinlock_t wa_lock;
static irqreturn_t omap_gpio_irq_handler(int irq, void *gpiobank)

unsigned long wa_lock_flags;
raw_spin_lock_irqsave(&bank->wa_lock, wa_lock_flags);
generic_handle_irq(irq_find_mapping(bank->chip.irq.domain,␣

↪→bit));
raw_spin_unlock_irqrestore(&bank->wa_lock, wa_lock_flags);

• GENERIC CHAINEDGPIO IRQCHIPS: these are the same as“CHAINEDGPIO
irqchips”, but chained IRQ handlers are not used. Instead GPIO IRQs dis-
patching is performed by generic IRQ handler which is configured using re-
quest_irq(). The GPIO irqchip will then end up calling something like this
sequence in its interrupt handler:

static irqreturn_t gpio_rcar_irq_handler(int irq, void *dev_id)
for each detected GPIO IRQ

generic_handle_irq(...);

Realtime considerations: this kind of handlers will be forced threaded on -RT,
and as result the IRQ core will complain that generic_handle_irq() is called
with IRQ enabled and the same work-around as for“CHAINED GPIO irqchips”
can be applied.

• NESTED THREADED GPIO IRQCHIPS: these are off-chip GPIO expanders
and any other GPIO irqchip residing on the other side of a sleeping bus such
as I2C or SPI.

Of course such drivers that need slow bus traffic to read out IRQ status and
similar, traffic which may in turn incur other IRQs to happen, cannot be han-
dled in a quick IRQ handler with IRQs disabled. Instead they need to spawn a
thread and then mask the parent IRQ line until the interrupt is handled by the
driver. The hallmark of this driver is to call something like this in its interrupt
handler:

static irqreturn_t foo_gpio_irq(int irq, void *data)
...
handle_nested_irq(irq);

The hallmark of threaded GPIO irqchips is that they set the .can_sleep flag on

1564 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

struct gpio_chip to true, indicating that this chip may sleep when accessing
the GPIOs.

These kinds of irqchips are inherently realtime tolerant as they are already
set up to handle sleeping contexts.

Infrastructure helpers for GPIO irqchips

To help out in handling the set-up and management of GPIO irqchips and
the associated irqdomain and resource allocation callbacks. These are ac-
tivated by selecting the Kconfig symbol GPIOLIB_IRQCHIP. If the symbol
IRQ_DOMAIN_HIERARCHY is also selected, hierarchical helpers will also be pro-
vided. A big portion of overhead code will be managed by gpiolib, under the as-
sumption that your interrupts are 1-to-1-mapped to the GPIO line index:

GPIO line offset Hardware IRQ
0 0
1 1
2 2
⋯ ⋯
ngpio-1 ngpio-1

If some GPIO lines do not have corresponding IRQs, the bitmask valid_mask and
the flag need_valid_mask in gpio_irq_chip can be used to mask off some lines as
invalid for associating with IRQs.

The preferred way to set up the helpers is to fill in the struct gpio_irq_chip inside
struct gpio_chip before adding the gpio_chip. If you do this, the additional irq_chip
will be set up by gpiolib at the same time as setting up the rest of the GPIO func-
tionality. The following is a typical example of a cascaded interrupt handler using
gpio_irq_chip:

/* Typical state container with dynamic irqchip */
struct my_gpio {

struct gpio_chip gc;
struct irq_chip irq;

};

int irq; /* from platform etc */
struct my_gpio *g;
struct gpio_irq_chip *girq;

/* Set up the irqchip dynamically */
g->irq.name = "my_gpio_irq";
g->irq.irq_ack = my_gpio_ack_irq;
g->irq.irq_mask = my_gpio_mask_irq;
g->irq.irq_unmask = my_gpio_unmask_irq;
g->irq.irq_set_type = my_gpio_set_irq_type;

/* Get a pointer to the gpio_irq_chip */
girq = &g->gc.irq;
girq->chip = &g->irq;
girq->parent_handler = ftgpio_gpio_irq_handler;

(continues on next page)

51.3. GPIO Driver Interface 1565

Linux Driver-api Documentation

(continued from previous page)
girq->num_parents = 1;
girq->parents = devm_kcalloc(dev, 1, sizeof(*girq->parents),

GFP_KERNEL);
if (!girq->parents)

return -ENOMEM;
girq->default_type = IRQ_TYPE_NONE;
girq->handler = handle_bad_irq;
girq->parents[0] = irq;

return devm_gpiochip_add_data(dev, &g->gc, g);

The helper support using hierarchical interrupt controllers as well. In this case
the typical set-up will look like this:

/* Typical state container with dynamic irqchip */
struct my_gpio {

struct gpio_chip gc;
struct irq_chip irq;
struct fwnode_handle *fwnode;

};

int irq; /* from platform etc */
struct my_gpio *g;
struct gpio_irq_chip *girq;

/* Set up the irqchip dynamically */
g->irq.name = "my_gpio_irq";
g->irq.irq_ack = my_gpio_ack_irq;
g->irq.irq_mask = my_gpio_mask_irq;
g->irq.irq_unmask = my_gpio_unmask_irq;
g->irq.irq_set_type = my_gpio_set_irq_type;

/* Get a pointer to the gpio_irq_chip */
girq = &g->gc.irq;
girq->chip = &g->irq;
girq->default_type = IRQ_TYPE_NONE;
girq->handler = handle_bad_irq;
girq->fwnode = g->fwnode;
girq->parent_domain = parent;
girq->child_to_parent_hwirq = my_gpio_child_to_parent_hwirq;

return devm_gpiochip_add_data(dev, &g->gc, g);

As you can see pretty similar, but you do not supply a parent handler for the
IRQ, instead a parent irqdomain, an fwnode for the hardware and a funcion
.child_to_parent_hwirq() that has the purpose of looking up the parent hardware
irq from a child (i.e. this gpio chip) hardware irq. As always it is good to look at
examples in the kernel tree for advice on how to find the required pieces.

The old way of adding irqchips to gpiochips after registration is also still available
but we try to move away from this:

• DEPRECATED: gpiochip_irqchip_add(): adds a chained cascaded irqchip to a
gpiochip. It will pass the struct gpio_chip* for the chip to all IRQ callbacks, so
the callbacks need to embed the gpio_chip in its state container and obtain a
pointer to the container using container_of(). (See Documentation/driver-

1566 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

api/driver-model/design-patterns.rst)

• gpiochip_irqchip_add_nested(): adds a nested cascaded irqchip to a gpiochip,
as discussed above regarding different types of cascaded irqchips. The cas-
caded irq has to be handled by a threaded interrupt handler. Apart from that
it works exactly like the chained irqchip.

• gpiochip_set_nested_irqchip(): sets up a nested cascaded irq handler for
a gpio_chip from a parent IRQ. As the parent IRQ has usually been explicitly
requested by the driver, this does very little more than mark all the child IRQs
as having the other IRQ as parent.

If there is a need to exclude certain GPIO lines from the IRQ domain han-
dled by these helpers, we can set .irq.need_valid_mask of the gpiochip before
devm_gpiochip_add_data() or gpiochip_add_data() is called. This allocates
an .irq.valid_mask with as many bits set as there are GPIO lines in the chip,
each bit representing line 0..n-1. Drivers can exclude GPIO lines by clearing bits
from this mask. The mask must be filled in before gpiochip_irqchip_add() or gpi-
ochip_irqchip_add_nested() is called.

To use the helpers please keep the following in mind:

• Make sure to assign all relevant members of the struct gpio_chip so that the
irqchip can initialize. E.g. .dev and .can_sleep shall be set up properly.

• Nominally set all handlers to handle_bad_irq() in the setup call and pass han-
dle_bad_irq() as flow handler parameter in gpiochip_irqchip_add() if it is ex-
pected for GPIO driver that irqchip .set_type() callback will be called before
using/enabling each GPIO IRQ. Then set the handler to handle_level_irq()
and/or handle_edge_irq() in the irqchip .set_type() callback depending on
what your controller supports and what is requested by the consumer.

Locking IRQ usage

Since GPIO and irq_chip are orthogonal, we can get conflicts between different
use cases. For example a GPIO line used for IRQs should be an input line, it does
not make sense to fire interrupts on an output GPIO.

If there is competition inside the subsystem which side is using the resource (a
certain GPIO line and register for example) it needs to deny certain operations
and keep track of usage inside of the gpiolib subsystem.

Input GPIOs can be used as IRQ signals. When this happens, a driver is requested
to mark the GPIO as being used as an IRQ:

int gpiochip_lock_as_irq(struct gpio_chip *chip, unsigned int offset)

This will prevent the use of non-irq related GPIO APIs until the GPIO IRQ lock is
released:

void gpiochip_unlock_as_irq(struct gpio_chip *chip, unsigned int offset)

When implementing an irqchip inside a GPIO driver, these two functions should
typically be called in the .startup() and .shutdown() callbacks from the irqchip.

51.3. GPIO Driver Interface 1567

Linux Driver-api Documentation

When using the gpiolib irqchip helpers, these callbacks are automatically as-
signed.

Disabling and enabling IRQs

In some (fringe) use cases, a driver may be using a GPIO line as input for IRQs, but
occasionally switch that line over to drive output and then back to being an input
with interrupts again. This happens on things like CEC (Consumer Electronics
Control).

When a GPIO is used as an IRQ signal, then gpiolib also needs to know if the IRQ
is enabled or disabled. In order to inform gpiolib about this, the irqchip driver
should call:

void gpiochip_disable_irq(struct gpio_chip *chip, unsigned int offset)

This allows drivers to drive the GPIO as an output while the IRQ is disabled. When
the IRQ is enabled again, a driver should call:

void gpiochip_enable_irq(struct gpio_chip *chip, unsigned int offset)

When implementing an irqchip inside a GPIO driver, these two functions should
typically be called in the .irq_disable() and .irq_enable() callbacks from the irqchip.

When using the gpiolib irqchip helpers, these callbacks are automatically as-
signed.

Real-Time compliance for GPIO IRQ chips

Any provider of irqchips needs to be carefully tailored to support Real-Time pre-
emption. It is desirable that all irqchips in the GPIO subsystem keep this in mind
and do the proper testing to assure they are real time-enabled.

So, pay attention on above realtime considerations in the documentation.

The following is a checklist to follow when preparing a driver for real-time com-
pliance:

• ensure spinlock_t is not used as part irq_chip implementation

• ensure that sleepable APIs are not used as part irq_chip implementation If
sleepable APIs have to be used, these can be done from the .irq_bus_lock()
and .irq_bus_unlock() callbacks

• Chained GPIO irqchips: ensure spinlock_t or any sleepable APIs are not used
from the chained IRQ handler

• Generic chained GPIO irqchips: take care about generic_handle_irq() calls
and apply corresponding work-around

• Chained GPIO irqchips: get rid of the chained IRQ handler and use generic
irq handler if possible

• regmap_mmio: it is possible to disable internal locking in regmap by setting
.disable_locking and handling the locking in the GPIO driver

1568 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

• Test your driver with the appropriate in-kernel real-time test cases for both
level and edge IRQs

• [1] http://www.spinics.net/lists/linux-omap/msg120425.html

• [2] https://lkml.org/lkml/2015/9/25/494

• [3] https://lkml.org/lkml/2015/9/25/495

51.3.4 Requesting self-owned GPIO pins

Sometimes it is useful to allow a GPIO chip driver to request its own GPIO de-
scriptors through the gpiolib API. A GPIO driver can use the following functions
to request and free descriptors:

struct gpio_desc *gpiochip_request_own_desc(struct gpio_desc *desc,
u16 hwnum,
const char *label,
enum gpiod_flags flags)

void gpiochip_free_own_desc(struct gpio_desc *desc)

Descriptors requested with gpiochip_request_own_desc()must be released with
gpiochip_free_own_desc().

These functions must be used with care since they do not affect module use count.
Do not use the functions to request gpio descriptors not owned by the calling
driver.

51.4 GPIO Descriptor Consumer Interface

This document describes the consumer interface of the GPIO framework. Note
that it describes the new descriptor-based interface. For a description of the dep-
recated integer-based GPIO interface please refer to gpio-legacy.txt.

51.4.1 Guidelines for GPIOs consumers

Drivers that can’t work without standard GPIO calls should have Kconfig entries
that depend on GPIOLIB or select GPIOLIB. The functions that allow a driver to
obtain and use GPIOs are available by including the following file:

#include <linux/gpio/consumer.h>

There are static inline stubs for all functions in the header file in the case where
GPIOLIB is disabled. When these stubs are called they will emit warnings. These
stubs are used for two use cases:

• Simple compile coverage with e.g. COMPILE_TEST - it does not matter that
the current platform does not enable or select GPIOLIB because we are not
going to execute the system anyway.

• Truly optional GPIOLIB support - where the driver does not really make use
of the GPIOs on certain compile-time configurations for certain systems, but

51.4. GPIO Descriptor Consumer Interface 1569

http://www.spinics.net/lists/linux-omap/msg120425.html
https://lkml.org/lkml/2015/9/25/494
https://lkml.org/lkml/2015/9/25/495

Linux Driver-api Documentation

will use it under other compile-time configurations. In this case the consumer
must make sure not to call into these functions, or the user will be met with
console warnings that may be perceived as intimidating.

All the functions that work with the descriptor-based GPIO interface are prefixed
with gpiod_. The gpio_ prefix is used for the legacy interface. No other function
in the kernel should use these prefixes. The use of the legacy functions is strongly
discouraged, new code should use <linux/gpio/consumer.h> and descriptors ex-
clusively.

51.4.2 Obtaining and Disposing GPIOs

With the descriptor-based interface, GPIOs are identified with an opaque, non-
forgeable handler that must be obtained through a call to one of the gpiod_get()
functions. Like many other kernel subsystems, gpiod_get() takes the device that
will use the GPIO and the function the requested GPIO is supposed to fulfill:

struct gpio_desc *gpiod_get(struct device *dev, const char *con_id,
enum gpiod_flags flags)

If a function is implemented by using several GPIOs together (e.g. a simple LED
device that displays digits), an additional index argument can be specified:

struct gpio_desc *gpiod_get_index(struct device *dev,
const char *con_id, unsigned int idx,
enum gpiod_flags flags)

For a more detailed description of the con_id parameter in the DeviceTree case
see Documentation/driver-api/gpio/board.rst

The flags parameter is used to optionally specify a direction and initial value for
the GPIO. Values can be:

• GPIOD_ASIS or 0 to not initialize the GPIO at all. The direction must be set
later with one of the dedicated functions.

• GPIOD_IN to initialize the GPIO as input.

• GPIOD_OUT_LOW to initialize the GPIO as output with a value of 0.

• GPIOD_OUT_HIGH to initialize the GPIO as output with a value of 1.

• GPIOD_OUT_LOW_OPEN_DRAIN same as GPIOD_OUT_LOW but also en-
force the line to be electrically used with open drain.

• GPIOD_OUT_HIGH_OPEN_DRAIN same as GPIOD_OUT_HIGH but also en-
force the line to be electrically used with open drain.

The two last flags are used for use cases where open drain is mandatory, such
as I2C: if the line is not already configured as open drain in the mappings (see
board.txt), then open drain will be enforced anyway and a warning will be printed
that the board configuration needs to be updated to match the use case.

Both functions return either a valid GPIO descriptor, or an error code check-
able with IS_ERR() (they will never return a NULL pointer). -ENOENT will be
returned if and only if no GPIO has been assigned to the device/function/index
triplet, other error codes are used for cases where a GPIO has been assigned but

1570 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

an error occurred while trying to acquire it. This is useful to discriminate be-
tween mere errors and an absence of GPIO for optional GPIO parameters. For
the common pattern where a GPIO is optional, the gpiod_get_optional() and
gpiod_get_index_optional() functions can be used. These functions return
NULL instead of -ENOENT if no GPIO has been assigned to the requested function:

struct gpio_desc *gpiod_get_optional(struct device *dev,
const char *con_id,
enum gpiod_flags flags)

struct gpio_desc *gpiod_get_index_optional(struct device *dev,
const char *con_id,
unsigned int index,
enum gpiod_flags flags)

Note that gpio_get*_optional() functions (and their managed variants), unlike the
rest of gpiolib API, also return NULL when gpiolib support is disabled. This is
helpful to driver authors, since they do not need to special case -ENOSYS return
codes. System integrators should however be careful to enable gpiolib on systems
that need it.

For a function using multiple GPIOs all of those can be obtained with one call:

struct gpio_descs *gpiod_get_array(struct device *dev,
const char *con_id,
enum gpiod_flags flags)

This function returns a struct gpio_descs which contains an array of descriptors.
It also contains a pointer to a gpiolib private structure which, if passed back to
get/set array functions, may speed up I/O proocessing:

struct gpio_descs {
struct gpio_array *info;
unsigned int ndescs;
struct gpio_desc *desc[];

}

The following function returns NULL instead of -ENOENT if no GPIOs have been
assigned to the requested function:

struct gpio_descs *gpiod_get_array_optional(struct device *dev,
const char *con_id,
enum gpiod_flags flags)

Device-managed variants of these functions are also defined:

struct gpio_desc *devm_gpiod_get(struct device *dev, const char *con_id,
enum gpiod_flags flags)

struct gpio_desc *devm_gpiod_get_index(struct device *dev,
const char *con_id,
unsigned int idx,
enum gpiod_flags flags)

struct gpio_desc *devm_gpiod_get_optional(struct device *dev,
const char *con_id,

(continues on next page)

51.4. GPIO Descriptor Consumer Interface 1571

Linux Driver-api Documentation

(continued from previous page)
enum gpiod_flags flags)

struct gpio_desc *devm_gpiod_get_index_optional(struct device *dev,
const char *con_id,
unsigned int index,
enum gpiod_flags flags)

struct gpio_descs *devm_gpiod_get_array(struct device *dev,
const char *con_id,
enum gpiod_flags flags)

struct gpio_descs *devm_gpiod_get_array_optional(struct device *dev,
const char *con_id,
enum gpiod_flags flags)

A GPIO descriptor can be disposed of using the gpiod_put() function:

void gpiod_put(struct gpio_desc *desc)

For an array of GPIOs this function can be used:

void gpiod_put_array(struct gpio_descs *descs)

It is strictly forbidden to use a descriptor after calling these functions. It is also
not allowed to individually release descriptors (using gpiod_put()) from an array
acquired with gpiod_get_array().

The device-managed variants are, unsurprisingly:

void devm_gpiod_put(struct device *dev, struct gpio_desc *desc)

void devm_gpiod_put_array(struct device *dev, struct gpio_descs *descs)

51.4.3 Using GPIOs

Setting Direction

The first thing a driver must do with a GPIO is setting its direction. If no direction-
setting flags have been given to gpiod_get*(), this is done by invoking one of the
gpiod_direction_*() functions:

int gpiod_direction_input(struct gpio_desc *desc)
int gpiod_direction_output(struct gpio_desc *desc, int value)

The return value is zero for success, else a negative errno. It should be checked,
since the get/set calls don’t return errors and since misconfiguration is possible.
You should normally issue these calls from a task context. However, for spinlock-
safe GPIOs it is OK to use them before tasking is enabled, as part of early board
setup.

For output GPIOs, the value provided becomes the initial output value. This helps
avoid signal glitching during system startup.

A driver can also query the current direction of a GPIO:

1572 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

int gpiod_get_direction(const struct gpio_desc *desc)

This function returns 0 for output, 1 for input, or an error code in case of error.

Be aware that there is no default direction for GPIOs. Therefore, using a GPIO
without setting its direction first is illegal and will result in undefined be-
havior!

Spinlock-Safe GPIO Access

Most GPIO controllers can be accessed with memory read/write instructions.
Those don’t need to sleep, and can safely be done from inside hard (non-threaded)
IRQ handlers and similar contexts.

Use the following calls to access GPIOs from an atomic context:

int gpiod_get_value(const struct gpio_desc *desc);
void gpiod_set_value(struct gpio_desc *desc, int value);

The values are boolean, zero for low, nonzero for high. When reading the value of
an output pin, the value returned should be what’s seen on the pin. That won’t
always match the specified output value, because of issues including open-drain
signaling and output latencies.

The get/set calls do not return errors because “invalid GPIO”should have been
reported earlier from gpiod_direction_*(). However, note that not all platforms can
read the value of output pins; those that can’t should always return zero. Also,
using these calls for GPIOs that can’t safely be accessed without sleeping (see
below) is an error.

GPIO Access That May Sleep

Some GPIO controllers must be accessed using message based buses like I2C or
SPI. Commands to read or write those GPIO values require waiting to get to the
head of a queue to transmit a command and get its response. This requires sleep-
ing, which can’t be done from inside IRQ handlers.

Platforms that support this type of GPIO distinguish them from other GPIOs by
returning nonzero from this call:

int gpiod_cansleep(const struct gpio_desc *desc)

To access such GPIOs, a different set of accessors is defined:

int gpiod_get_value_cansleep(const struct gpio_desc *desc)
void gpiod_set_value_cansleep(struct gpio_desc *desc, int value)

Accessing such GPIOs requires a context which may sleep, for example a threaded
IRQ handler, and those accessors must be used instead of spinlock-safe accessors
without the cansleep() name suffix.

Other than the fact that these accessors might sleep, and will work on GPIOs that
can’t be accessed from hardIRQ handlers, these calls act the same as the spinlock-
safe calls.

51.4. GPIO Descriptor Consumer Interface 1573

Linux Driver-api Documentation

The active low and open drain semantics

As a consumer should not have to care about the physical line level, all of the
gpiod_set_value_xxx() or gpiod_set_array_value_xxx() functions operate with the
logical value. With this they take the active low property into account. This means
that they check whether the GPIO is configured to be active low, and if so, they
manipulate the passed value before the physical line level is driven.

The same is applicable for open drain or open source output lines: those do not
actively drive their output high (open drain) or low (open source), they just switch
their output to a high impedance value. The consumer should not need to care.
(For details read about open drain in driver.txt.)

With this, all the gpiod_set_(array)_value_xxx() functions interpret the parameter
“value”as“asserted”(“1”) or“de-asserted”(“0”). The physical line level will
be driven accordingly.

As an example, if the active low property for a dedicated GPIO is set, and the
gpiod_set_(array)_value_xxx() passes“asserted”(“1”), the physical line level will
be driven low.

To summarize:

Function (example) line property physical line
gpiod_set_raw_value(desc, 0); don't care low
gpiod_set_raw_value(desc, 1); don't care high
gpiod_set_value(desc, 0); default (active high) low
gpiod_set_value(desc, 1); default (active high) high
gpiod_set_value(desc, 0); active low high
gpiod_set_value(desc, 1); active low low
gpiod_set_value(desc, 0); open drain low
gpiod_set_value(desc, 1); open drain high impedance
gpiod_set_value(desc, 0); open source high impedance
gpiod_set_value(desc, 1); open source high

It is possible to override these semantics using the set_raw/get_raw functions but
it should be avoided as much as possible, especially by system-agnostic drivers
which should not need to care about the actual physical line level and worry about
the logical value instead.

Accessing raw GPIO values

Consumers exist that need to manage the logical state of a GPIO line, i.e. the value
their device will actually receive, no matter what lies between it and the GPIO line.

The following set of calls ignore the active-low or open drain property of a GPIO
and work on the raw line value:

int gpiod_get_raw_value(const struct gpio_desc *desc)
void gpiod_set_raw_value(struct gpio_desc *desc, int value)
int gpiod_get_raw_value_cansleep(const struct gpio_desc *desc)
void gpiod_set_raw_value_cansleep(struct gpio_desc *desc, int value)
int gpiod_direction_output_raw(struct gpio_desc *desc, int value)

The active low state of a GPIO can also be queried using the following call:

1574 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

int gpiod_is_active_low(const struct gpio_desc *desc)

Note that these functions should only be used with great moderation; a driver
should not have to care about the physical line level or open drain semantics.

Access multiple GPIOs with a single function call

The following functions get or set the values of an array of GPIOs:

int gpiod_get_array_value(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap);

int gpiod_get_raw_array_value(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap);

int gpiod_get_array_value_cansleep(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap);

int gpiod_get_raw_array_value_cansleep(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap);

int gpiod_set_array_value(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)

int gpiod_set_raw_array_value(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)

int gpiod_set_array_value_cansleep(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)

int gpiod_set_raw_array_value_cansleep(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)

The array can be an arbitrary set of GPIOs. The functions will try to access GPIOs
belonging to the same bank or chip simultaneously if supported by the correspond-
ing chip driver. In that case a significantly improved performance can be expected.
If simultaneous access is not possible the GPIOs will be accessed sequentially.

The functions take three arguments:
• array_size - the number of array elements

• desc_array - an array of GPIO descriptors

• array_info - optional information obtained from gpiod_get_array()

51.4. GPIO Descriptor Consumer Interface 1575

Linux Driver-api Documentation

• value_bitmap - a bitmap to store the GPIOs’values (get) or a
bitmap of values to assign to the GPIOs (set)

The descriptor array can be obtained using the gpiod_get_array() function or
one of its variants. If the group of descriptors returned by that function matches
the desired group of GPIOs, those GPIOs can be accessed by simply using the
struct gpio_descs returned by gpiod_get_array():

struct gpio_descs *my_gpio_descs = gpiod_get_array(...);
gpiod_set_array_value(my_gpio_descs->ndescs, my_gpio_descs->desc,

my_gpio_descs->info, my_gpio_value_bitmap);

It is also possible to access a completely arbitrary array of descriptors.
The descriptors may be obtained using any combination of gpiod_get() and
gpiod_get_array(). Afterwards the array of descriptors has to be setup man-
ually before it can be passed to one of the above functions. In that case, array_info
should be set to NULL.

Note that for optimal performance GPIOs belonging to the same chip should be
contiguous within the array of descriptors.

Still better performance may be achieved if array indexes of the descriptors match
hardware pin numbers of a single chip. If an array passed to a get/set array func-
tion matches the one obtained from gpiod_get_array() and array_info associated
with the array is also passed, the function may take a fast bitmap processing path,
passing the value_bitmap argument directly to the respective .get/set_multiple()
callback of the chip. That allows for utilization of GPIO banks as data I/O ports
without much loss of performance.

The return value of gpiod_get_array_value() and its variants is 0 on success or
negative on error. Note the difference to gpiod_get_value(), which returns 0 or
1 on success to convey the GPIO value. With the array functions, the GPIO values
are stored in value_array rather than passed back as return value.

GPIOs mapped to IRQs

GPIO lines can quite often be used as IRQs. You can get the IRQ number corre-
sponding to a given GPIO using the following call:

int gpiod_to_irq(const struct gpio_desc *desc)

It will return an IRQ number, or a negative errno code if the mapping can’t
be done (most likely because that particular GPIO cannot be used as IRQ). It
is an unchecked error to use a GPIO that wasn’t set up as an input using
gpiod_direction_input(), or to use an IRQ number that didn’t originally come
from gpiod_to_irq(). gpiod_to_irq() is not allowed to sleep.

Non-error values returned from gpiod_to_irq() can be passed to request_irq()
or free_irq(). They will often be stored into IRQ resources for platform devices, by
the board-specific initialization code. Note that IRQ trigger options are part of the
IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are system wakeup capabilities.

1576 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

51.4.4 GPIOs and ACPI

On ACPI systems, GPIOs are described by GpioIo()/GpioInt() resources listed by
the _CRS configuration objects of devices. Those resources do not provide con-
nection IDs (names) for GPIOs, so it is necessary to use an additional mechanism
for this purpose.

Systems compliant with ACPI 5.1 or newer may provide a _DSD configuration ob-
ject which, among other things, may be used to provide connection IDs for specific
GPIOs described by the GpioIo()/GpioInt() resources in _CRS. If that is the case, it
will be handled by the GPIO subsystem automatically. However, if the _DSD is not
present, the mappings between GpioIo()/GpioInt() resources and GPIO connection
IDs need to be provided by device drivers.

For details refer to Documentation/firmware-guide/acpi/gpio-properties.rst

51.4.5 Interacting With the Legacy GPIO Subsystem

Many kernel subsystems still handle GPIOs using the legacy integer-based inter-
face. Although it is strongly encouraged to upgrade them to the safer descriptor-
based API, the following two functions allow you to convert a GPIO descriptor into
the GPIO integer namespace and vice-versa:

int desc_to_gpio(const struct gpio_desc *desc)
struct gpio_desc *gpio_to_desc(unsigned gpio)

The GPIO number returned by desc_to_gpio() can be safely used as long as the
GPIO descriptor has not been freed. All the same, a GPIO number passed to
gpio_to_desc() must have been properly acquired, and usage of the returned
GPIO descriptor is only possible after the GPIO number has been released.

Freeing a GPIO obtained by one API with the other API is forbidden and an
unchecked error.

51.5 GPIO Mappings

This document explains how GPIOs can be assigned to given devices and functions.

Note that it only applies to the new descriptor-based interface. For a description
of the deprecated integer-based GPIO interface please refer to gpio-legacy.txt (ac-
tually, there is no real mapping possible with the old interface; you just fetch an
integer from somewhere and request the corresponding GPIO).

All platforms can enable the GPIO library, but if the platform strictly requires GPIO
functionality to be present, it needs to select GPIOLIB from its Kconfig. Then, how
GPIOs are mapped depends on what the platform uses to describe its hardware
layout. Currently, mappings can be defined through device tree, ACPI, and plat-
form data.

51.5. GPIO Mappings 1577

Linux Driver-api Documentation

51.5.1 Device Tree

GPIOs can easily be mapped to devices and functions in the device tree. The exact
way to do it depends on the GPIO controller providing the GPIOs, see the device
tree bindings for your controller.

GPIOs mappings are defined in the consumer device’s node, in a property
named <function>-gpios, where <function> is the function the driver will request
through gpiod_get(). For example:

foo_device {
compatible = "acme,foo";
...
led-gpios = <&gpio 15 GPIO_ACTIVE_HIGH>, /* red */

<&gpio 16 GPIO_ACTIVE_HIGH>, /* green */
<&gpio 17 GPIO_ACTIVE_HIGH>; /* blue */

power-gpios = <&gpio 1 GPIO_ACTIVE_LOW>;
};

Properties named <function>-gpio are also considered valid and old bindings use
it but are only supported for compatibility reasons and should not be used for
newer bindings since it has been deprecated.

This property will make GPIOs 15, 16 and 17 available to the driver under the“led”
function, and GPIO 1 as the “power”GPIO:
struct gpio_desc *red, *green, *blue, *power;

red = gpiod_get_index(dev, "led", 0, GPIOD_OUT_HIGH);
green = gpiod_get_index(dev, "led", 1, GPIOD_OUT_HIGH);
blue = gpiod_get_index(dev, "led", 2, GPIOD_OUT_HIGH);

power = gpiod_get(dev, "power", GPIOD_OUT_HIGH);

The led GPIOs will be active high, while the power GPIO will be active low (i.e.
gpiod_is_active_low(power) will be true).

The second parameter of the gpiod_get() functions, the con_id string, has to be
the <function>-prefix of the GPIO suffixes (“gpios”or“gpio”, automatically looked
up by the gpiod functions internally) used in the device tree. With above“led-gpios”
example, use the prefix without the “-”as con_id parameter: “led”.
Internally, the GPIO subsystem prefixes the GPIO suffix (“gpios”or“gpio”) with
the string passed in con_id to get the resulting string (snprintf(... "%s-%s",
con_id, gpio_suffixes[]).

1578 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

51.5.2 ACPI

ACPI also supports function names for GPIOs in a similar fashion to DT. The above
DT example can be converted to an equivalent ACPI description with the help of
_DSD (Device Specific Data), introduced in ACPI 5.1:

Device (FOO) {
Name (_CRS, ResourceTemplate () {

GpioIo (Exclusive, ..., IoRestrictionOutputOnly,
"_SB.GPI0") {15} // red

GpioIo (Exclusive, ..., IoRestrictionOutputOnly,
"_SB.GPI0") {16} // green

GpioIo (Exclusive, ..., IoRestrictionOutputOnly,
"_SB.GPI0") {17} // blue

GpioIo (Exclusive, ..., IoRestrictionOutputOnly,
"_SB.GPI0") {1} // power

})

Name (_DSD, Package () {
ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
Package () {

Package () {
"led-gpios",
Package () {

^FOO, 0, 0, 1,
^FOO, 1, 0, 1,
^FOO, 2, 0, 1,

}
},
Package () {

"power-gpios",
Package () {^FOO, 3, 0, 0},

},
}

})
}

For more information about the ACPI GPIO bindings see Documentation/firmware-
guide/acpi/gpio-properties.rst.

51.5.3 Platform Data

Finally, GPIOs can be bound to devices and functions using platform data. Board
files that desire to do so need to include the following header:

#include <linux/gpio/machine.h>

GPIOs are mapped by the means of tables of lookups, containing instances of the
gpiod_lookup structure. Two macros are defined to help declaring such mappings:

GPIO_LOOKUP(key, chip_hwnum, con_id, flags)
GPIO_LOOKUP_IDX(key, chip_hwnum, con_id, idx, flags)

where

51.5. GPIO Mappings 1579

Linux Driver-api Documentation

• key is either the label of the gpiod_chip instance providing the GPIO, or the
GPIO line name

• chip_hwnum is the hardware number of the GPIO within the chip, or
U16_MAX to indicate that key is a GPIO line name

• con_id is the name of the GPIO function from the device point of view. It
can be NULL, in which case it will match any function.

• idx is the index of the GPIO within the function.

• flags is defined to specify the following properties:
– GPIO_ACTIVE_HIGH - GPIO line is active high
– GPIO_ACTIVE_LOW - GPIO line is active low

– GPIO_OPEN_DRAIN - GPIO line is set up as open drain
– GPIO_OPEN_SOURCE - GPIO line is set up as open source
– GPIO_PERSISTENT - GPIO line is persistent during

suspend/resume and maintains its value

– GPIO_TRANSITORY - GPIO line is transitory and may loose its
electrical state during suspend/resume

In the future, these flags might be extended to support more properties.

Note that:
1. GPIO line names are not guaranteed to be globally unique, so the first
match found will be used.

2. GPIO_LOOKUP() is just a shortcut to GPIO_LOOKUP_IDX() where idx =
0.

A lookup table can then be defined as follows, with an empty entry defining its
end. The ‘dev_id’field of the table is the identifier of the device that will make
use of these GPIOs. It can be NULL, in which case it will be matched for calls to
gpiod_get() with a NULL device.

struct gpiod_lookup_table gpios_table = {
.dev_id = "foo.0",
.table = {

GPIO_LOOKUP_IDX("gpio.0", 15, "led", 0, GPIO_ACTIVE_HIGH),
GPIO_LOOKUP_IDX("gpio.0", 16, "led", 1, GPIO_ACTIVE_HIGH),
GPIO_LOOKUP_IDX("gpio.0", 17, "led", 2, GPIO_ACTIVE_HIGH),
GPIO_LOOKUP("gpio.0", 1, "power", GPIO_ACTIVE_LOW),
{ },

},
};

And the table can be added by the board code as follows:

gpiod_add_lookup_table(&gpios_table);

The driver controlling “foo.0”will then be able to obtain its GPIOs as follows:

1580 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

struct gpio_desc *red, *green, *blue, *power;

red = gpiod_get_index(dev, "led", 0, GPIOD_OUT_HIGH);
green = gpiod_get_index(dev, "led", 1, GPIOD_OUT_HIGH);
blue = gpiod_get_index(dev, "led", 2, GPIOD_OUT_HIGH);

power = gpiod_get(dev, "power", GPIOD_OUT_HIGH);

Since the “led”GPIOs are mapped as active-high, this example will switch their
signals to 1, i.e. enabling the LEDs. And for the“power”GPIO, which is mapped
as active-low, its actual signal will be 0 after this code. Contrary to the legacy
integer GPIO interface, the active-low property is handled during mapping and is
thus transparent to GPIO consumers.

A set of functions such as gpiod_set_value() is available to work with the new
descriptor-oriented interface.

Boards using platform data can also hog GPIO lines by defining GPIO hog tables.

struct gpiod_hog gpio_hog_table[] = {
GPIO_HOG("gpio.0", 10, "foo", GPIO_ACTIVE_LOW, GPIOD_OUT_HIGH),
{ }

};

And the table can be added to the board code as follows:

gpiod_add_hogs(gpio_hog_table);

The line will be hogged as soon as the gpiochip is created or - in case the chip was
created earlier - when the hog table is registered.

51.5.4 Arrays of pins

In addition to requesting pins belonging to a function one by one, a device may
also request an array of pins assigned to the function. The way those pins are
mapped to the device determines if the array qualifies for fast bitmap processing.
If yes, a bitmap is passed over get/set array functions directly between a caller
and a respective .get/set_multiple() callback of a GPIO chip.

In order to qualify for fast bitmap processing, the array must meet the following
requirements:

• pin hardware number of array member 0 must also be 0,

• pin hardware numbers of consecutive array members which belong to the
same chip as member 0 does must also match their array indexes.

Otherwise fast bitmap processing path is not used in order to avoid consecutive
pins which belong to the same chip but are not in hardware order being processed
separately.

If the array applies for fast bitmap processing path, pins which belong to differ-
ent chips than member 0 does, as well as those with indexes different from their
hardware pin numbers, are excluded from the fast path, both input and output.
Moreover, open drain and open source pins are excluded from fast bitmap output
processing.

51.5. GPIO Mappings 1581

Linux Driver-api Documentation

51.6 Subsystem drivers using GPIO

Note that standard kernel drivers exist for common GPIO tasks and will provide
the right in-kernel and userspace APIs/ABIs for the job, and that these drivers can
quite easily interconnect with other kernel subsystems using hardware descrip-
tions such as device tree or ACPI:

• leds-gpio: drivers/leds/leds-gpio.c will handle LEDs connected to GPIO lines,
giving you the LED sysfs interface

• ledtrig-gpio: drivers/leds/trigger/ledtrig-gpio.c will provide a LED trigger, i.e.
a LED will turn on/off in response to a GPIO line going high or low (and that
LED may in turn use the leds-gpio as per above).

• gpio-keys: drivers/input/keyboard/gpio_keys.c is used when your GPIO line
can generate interrupts in response to a key press. Also supports debounce.

• gpio-keys-polled: drivers/input/keyboard/gpio_keys_polled.c is used when
your GPIO line cannot generate interrupts, so it needs to be periodically
polled by a timer.

• gpio_mouse: drivers/input/mouse/gpio_mouse.c is used to provide a mouse
with up to three buttons by simply using GPIOs and no mouse port. You can
cut the mouse cable and connect the wires to GPIO lines or solder a mouse
connector to the lines for a more permanent solution of this type.

• gpio-beeper: drivers/input/misc/gpio-beeper.c is used to provide a beep from
an external speaker connected to a GPIO line.

• extcon-gpio: drivers/extcon/extcon-gpio.c is used when you need to read an
external connector status, such as a headset line for an audio driver or an
HDMI connector. It will provide a better userspace sysfs interface than GPIO.

• restart-gpio: drivers/power/reset/gpio-restart.c is used to restart/reboot the
system by pulling a GPIO line and will register a restart handler so userspace
can issue the right system call to restart the system.

• poweroff-gpio: drivers/power/reset/gpio-poweroff.c is used to power the sys-
tem down by pulling a GPIO line and will register a pm_power_off() callback
so that userspace can issue the right system call to power down the system.

• gpio-gate-clock: drivers/clk/clk-gpio.c is used to control a gated clock (off/on)
that uses a GPIO, and integrated with the clock subsystem.

• i2c-gpio: drivers/i2c/busses/i2c-gpio.c is used to drive an I2C bus (two wires,
SDA and SCL lines) by hammering (bitbang) two GPIO lines. It will appear
as any other I2C bus to the system and makes it possible to connect drivers
for the I2C devices on the bus like any other I2C bus driver.

• spi_gpio: drivers/spi/spi-gpio.c is used to drive an SPI bus (variable number
of wires, at least SCK and optionally MISO, MOSI and chip select lines) using
GPIO hammering (bitbang). It will appear as any other SPI bus on the system
and makes it possible to connect drivers for SPI devices on the bus like any
other SPI bus driver. For example any MMC/SD card can then be connected
to this SPI by using the mmc_spi host from the MMC/SD card subsystem.

1582 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

• w1-gpio: drivers/w1/masters/w1-gpio.c is used to drive a one-wire bus using
a GPIO line, integrating with the W1 subsystem and handling devices on the
bus like any other W1 device.

• gpio-fan: drivers/hwmon/gpio-fan.c is used to control a fan for cooling the sys-
tem, connected to a GPIO line (and optionally a GPIO alarm line), presenting
all the right in-kernel and sysfs interfaces to make your system not overheat.

• gpio-regulator: drivers/regulator/gpio-regulator.c is used to control a regu-
lator providing a certain voltage by pulling a GPIO line, integrating with the
regulator subsystem and giving you all the right interfaces.

• gpio-wdt: drivers/watchdog/gpio_wdt.c is used to provide a watchdog timer
that will periodically“ping”a hardware connected to a GPIO line by toggling
it from 1-to-0-to-1. If that hardware does not receive its“ping”periodically,
it will reset the system.

• gpio-nand: drivers/mtd/nand/raw/gpio.c is used to connect a NAND flash chip
to a set of simple GPIO lines: RDY, NCE, ALE, CLE, NWP. It interacts with the
NAND flash MTD subsystem and provides chip access and partition parsing
like any other NAND driving hardware.

• ps2-gpio: drivers/input/serio/ps2-gpio.c is used to drive a PS/2 (IBM) serio
bus, data and clock line, by bit banging two GPIO lines. It will appear as any
other serio bus to the system and makes it possible to connect drivers for e.g.
keyboards and other PS/2 protocol based devices.

• cec-gpio: drivers/media/platform/cec-gpio/ is used to interact with a CEC
Consumer Electronics Control bus using only GPIO. It is used to communi-
cate with devices on the HDMI bus.

Apart from this there are special GPIO drivers in subsystems like MMC/SD to read
card detect and write protect GPIO lines, and in the TTY serial subsystem to emu-
late MCTRL (modem control) signals CTS/RTS by using two GPIO lines. The MTD
NOR flash has add-ons for extra GPIO lines too, though the address bus is usually
connected directly to the flash.

Use those instead of talking directly to the GPIOs from userspace; they integrate
with kernel frameworks better than your userspace code could. Needless to say,
just using the appropriate kernel drivers will simplify and speed up your embedded
hacking in particular by providing ready-made components.

51.7 Legacy GPIO Interfaces

This provides an overview of GPIO access conventions on Linux.

These calls use the gpio_* naming prefix. No other calls should use that prefix, or
the related __gpio_* prefix.

51.7. Legacy GPIO Interfaces 1583

Linux Driver-api Documentation

51.7.1 What is a GPIO?

A“General Purpose Input/Output”(GPIO) is a flexible software-controlled digital
signal. They are provided frommany kinds of chip, and are familiar to Linux devel-
opers working with embedded and custom hardware. Each GPIO represents a bit
connected to a particular pin, or“ball”on Ball Grid Array (BGA) packages. Board
schematics show which external hardware connects to which GPIOs. Drivers can
be written generically, so that board setup code passes such pin configuration data
to drivers.

System-on-Chip (SOC) processors heavily rely on GPIOs. In some cases, every non-
dedicated pin can be configured as a GPIO; and most chips have at least several
dozen of them. Programmable logic devices (like FPGAs) can easily provide GPIOs;
multifunction chips like power managers, and audio codecs often have a few such
pins to help with pin scarcity on SOCs; and there are also“GPIO Expander”chips
that connect using the I2C or SPI serial busses. Most PC southbridges have a
few dozen GPIO-capable pins (with only the BIOS firmware knowing how they’re
used).

The exact capabilities of GPIOs vary between systems. Common options:

• Output values are writable (high=1, low=0). Some chips also have options
about how that value is driven, so that for example only one value might
be driven ⋯supporting “wire-OR”and similar schemes for the other value
(notably, “open drain”signaling).

• Input values are likewise readable (1, 0). Some chips support readback of
pins configured as “output”, which is very useful in such “wire-OR”cases
(to support bidirectional signaling). GPIO controllers may have input de-
glitch/debounce logic, sometimes with software controls.

• Inputs can often be used as IRQ signals, often edge triggered but sometimes
level triggered. Such IRQs may be configurable as system wakeup events, to
wake the system from a low power state.

• Usually a GPIO will be configurable as either input or output, as needed by
different product boards; single direction ones exist too.

• Most GPIOs can be accessed while holding spinlocks, but those accessed
through a serial bus normally can’t. Some systems support both types.

On a given board each GPIO is used for one specific purpose like monitoring
MMC/SD card insertion/removal, detecting card writeprotect status, driving a
LED, configuring a transceiver, bitbanging a serial bus, poking a hardware watch-
dog, sensing a switch, and so on.

1584 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

51.7.2 GPIO conventions

Note that this is called a“convention”because you don’t need to do it this way,
and it’s no crime if you don’t. There are cases where portability is not the main
issue; GPIOs are often used for the kind of board-specific glue logic that may even
change between board revisions, and can’t ever be used on a board that’s wired
differently. Only least-common-denominator functionality can be very portable.
Other features are platform-specific, and that can be critical for glue logic.

Plus, this doesn’t require any implementation framework, just an interface. One
platform might implement it as simple inline functions accessing chip registers;
another might implement it by delegating through abstractions used for several
very different kinds of GPIO controller. (There is some optional code supporting
such an implementation strategy, described later in this document, but drivers
acting as clients to the GPIO interface must not care how it’s implemented.)
That said, if the convention is supported on their platform, drivers should use
it when possible. Platforms must select GPIOLIB if GPIO functionality is strictly
required. Drivers that can’t work without standard GPIO calls should have Kconfig
entries which depend on GPIOLIB. The GPIO calls are available, either as “real
code”or as optimized-away stubs, when drivers use the include file:

#include <linux/gpio.h>

If you stick to this convention then it’ll be easier for other developers to see what
your code is doing, and help maintain it.

Note that these operations include I/O barriers on platforms which need to use
them; drivers don’t need to add them explicitly.

Identifying GPIOs

GPIOs are identified by unsigned integers in the range 0..MAX_INT. That reserves
“negative”numbers for other purposes like marking signals as “not available on
this board”, or indicating faults. Code that doesn’t touch the underlying hardware
treats these integers as opaque cookies.

Platforms define how they use those integers, and usually #define symbols for the
GPIO lines so that board-specific setup code directly corresponds to the relevant
schematics. In contrast, drivers should only use GPIO numbers passed to them
from that setup code, using platform_data to hold board-specific pin configura-
tion data (along with other board specific data they need). That avoids portability
problems.

So for example one platform uses numbers 32-159 for GPIOs; while another uses
numbers 0..63 with one set of GPIO controllers, 64-79 with another type of GPIO
controller, and on one particular board 80-95 with an FPGA. The numbers need
not be contiguous; either of those platforms could also use numbers 2000-2063 to
identify GPIOs in a bank of I2C GPIO expanders.

If you want to initialize a structure with an invalid GPIO number, use some negative
number (perhaps “-EINVAL”); that will never be valid. To test if such number
from such a structure could reference a GPIO, you may use this predicate:

int gpio_is_valid(int number);

51.7. Legacy GPIO Interfaces 1585

Linux Driver-api Documentation

A number that’s not valid will be rejected by calls which may request or free GPIOs
(see below). Other numbers may also be rejected; for example, a number might
be valid but temporarily unused on a given board.

Whether a platform supports multiple GPIO controllers is a platform-specific im-
plementation issue, as are whether that support can leave “holes”in the space
of GPIO numbers, and whether new controllers can be added at runtime. Such
issues can affect things including whether adjacent GPIO numbers are both valid.

Using GPIOs

The first thing a system should do with a GPIO is allocate it, using the
gpio_request() call; see later.

One of the next things to do with a GPIO, often in board setup code when setting
up a platform_device using the GPIO, is mark its direction:

/* set as input or output, returning 0 or negative errno */
int gpio_direction_input(unsigned gpio);
int gpio_direction_output(unsigned gpio, int value);

The return value is zero for success, else a negative errno. It should be checked,
since the get/set calls don’t have error returns and since misconfiguration is pos-
sible. You should normally issue these calls from a task context. However, for
spinlock-safe GPIOs it’s OK to use them before tasking is enabled, as part of early
board setup.

For output GPIOs, the value provided becomes the initial output value. This helps
avoid signal glitching during system startup.

For compatibility with legacy interfaces to GPIOs, setting the direction of a GPIO
implicitly requests that GPIO (see below) if it has not been requested already. That
compatibility is being removed from the optional gpiolib framework.

Setting the direction can fail if the GPIO number is invalid, or when that particular
GPIO can’t be used in that mode. It’s generally a bad idea to rely on boot firmware
to have set the direction correctly, since it probably wasn’t validated to do more
than boot Linux. (Similarly, that board setup code probably needs to multiplex that
pin as a GPIO, and configure pullups/pulldowns appropriately.)

Spinlock-Safe GPIO access

Most GPIO controllers can be accessed with memory read/write instructions.
Those don’t need to sleep, and can safely be done from inside hard (nonthreaded)
IRQ handlers and similar contexts.

Use the following calls to access such GPIOs, for which gpio_cansleep() will always
return false (see below):

/* GPIO INPUT: return zero or nonzero */
int gpio_get_value(unsigned gpio);

/* GPIO OUTPUT */
void gpio_set_value(unsigned gpio, int value);

1586 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

The values are boolean, zero for low, nonzero for high. When reading the value of
an output pin, the value returned should be what’s seen on the pin ⋯that won’
t always match the specified output value, because of issues including open-drain
signaling and output latencies.

The get/set calls have no error returns because“invalid GPIO”should have been
reported earlier from gpio_direction_*(). However, note that not all platforms can
read the value of output pins; those that can’t should always return zero. Also,
using these calls for GPIOs that can’t safely be accessed without sleeping (see
below) is an error.

Platform-specific implementations are encouraged to optimize the two calls to ac-
cess the GPIO value in cases where the GPIO number (and for output, value) are
constant. It’s normal for them to need only a couple of instructions in such cases
(reading or writing a hardware register), and not to need spinlocks. Such opti-
mized calls can make bitbanging applications a lot more efficient (in both space
and time) than spending dozens of instructions on subroutine calls.

GPIO access that may sleep

Some GPIO controllers must be accessed using message based busses like I2C
or SPI. Commands to read or write those GPIO values require waiting to get to
the head of a queue to transmit a command and get its response. This requires
sleeping, which can’t be done from inside IRQ handlers.

Platforms that support this type of GPIO distinguish them from other GPIOs by re-
turning nonzero from this call (which requires a valid GPIO number, which should
have been previously allocated with gpio_request):

int gpio_cansleep(unsigned gpio);

To access such GPIOs, a different set of accessors is defined:

/* GPIO INPUT: return zero or nonzero, might sleep */
int gpio_get_value_cansleep(unsigned gpio);

/* GPIO OUTPUT, might sleep */
void gpio_set_value_cansleep(unsigned gpio, int value);

Accessing such GPIOs requires a context which may sleep, for example a threaded
IRQ handler, and those accessors must be used instead of spinlock-safe accessors
without the cansleep() name suffix.

Other than the fact that these accessors might sleep, and will work on GPIOs that
can’t be accessed from hardIRQ handlers, these calls act the same as the spinlock-
safe calls.

IN ADDITION calls to setup and configure such GPIOs must be made from con-
texts which may sleep, since they may need to access the GPIO controller chip too
(These setup calls are usually made from board setup or driver probe/teardown
code, so this is an easy constraint.):

gpio_direction_input()
gpio_direction_output()

(continues on next page)

51.7. Legacy GPIO Interfaces 1587

Linux Driver-api Documentation

(continued from previous page)
gpio_request()

gpio_request_one()
gpio_request_array()
gpio_free_array()

gpio_free()
gpio_set_debounce()

Claiming and Releasing GPIOs

To help catch system configuration errors, two calls are defined:

/* request GPIO, returning 0 or negative errno.
* non-null labels may be useful for diagnostics.
*/

int gpio_request(unsigned gpio, const char *label);

/* release previously-claimed GPIO */
void gpio_free(unsigned gpio);

Passing invalid GPIO numbers to gpio_request() will fail, as will requesting GPIOs
that have already been claimed with that call. The return value of gpio_request()
must be checked. You should normally issue these calls from a task context. How-
ever, for spinlock-safe GPIOs it’s OK to request GPIOs before tasking is enabled,
as part of early board setup.

These calls serve two basic purposes. One is marking the signals which are ac-
tually in use as GPIOs, for better diagnostics; systems may have several hundred
potential GPIOs, but often only a dozen are used on any given board. Another is to
catch conflicts, identifying errors when (a) two or more drivers wrongly think they
have exclusive use of that signal, or (b) something wrongly believes it’s safe to
remove drivers needed to manage a signal that’s in active use. That is, requesting
a GPIO can serve as a kind of lock.

Some platforms may also use knowledge about what GPIOs are active for power
management, such as by powering down unused chip sectors and, more easily,
gating off unused clocks.

For GPIOs that use pins known to the pinctrl subsystem, that subsystem should
be informed of their use; a gpiolib driver’s .request() operation may call
pinctrl_gpio_request(), and a gpiolib driver’s .free() operation may call pinc-
trl_gpio_free(). The pinctrl subsystem allows a pinctrl_gpio_request() to succeed
concurrently with a pin or pingroup being“owned”by a device for pin multiplexing.
Any programming of pin multiplexing hardware that is needed to route the GPIO
signal to the appropriate pin should occur within a GPIO driver’s .direction_input()
or .direction_output() operations, and occur after any setup of an output GPIO’s
value. This allows a glitch-free migration from a pin’s special function to GPIO.
This is sometimes required when using a GPIO to implement a workaround on
signals typically driven by a non-GPIO HW block.

Some platforms allow some or all GPIO signals to be routed to different pins.

1588 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

Similarly, other aspects of the GPIO or pin may need to be configured, such as
pullup/pulldown. Platform software should arrange that any such details are con-
figured prior to gpio_request() being called for those GPIOs, e.g. using the pinctrl
subsystem’s mapping table, so that GPIO users need not be aware of these details.
Also note that it’s your responsibility to have stopped using a GPIO before you
free it.

Considering in most cases GPIOs are actually configured right after they are
claimed, three additional calls are defined:

/* request a single GPIO, with initial configuration specified by
* 'flags', identical to gpio_request() wrt other arguments and
* return value
*/

int gpio_request_one(unsigned gpio, unsigned long flags, const char␣
↪→*label);

/* request multiple GPIOs in a single call
*/

int gpio_request_array(struct gpio *array, size_t num);

/* release multiple GPIOs in a single call
*/

void gpio_free_array(struct gpio *array, size_t num);

where ‘flags’is currently defined to specify the following properties:
• GPIOF_DIR_IN - to configure direction as input

• GPIOF_DIR_OUT - to configure direction as output

• GPIOF_INIT_LOW - as output, set initial level to LOW

• GPIOF_INIT_HIGH - as output, set initial level to HIGH

• GPIOF_OPEN_DRAIN - gpio pin is open drain type.

• GPIOF_OPEN_SOURCE - gpio pin is open source type.

• GPIOF_EXPORT_DIR_FIXED - export gpio to sysfs, keep direction

• GPIOF_EXPORT_DIR_CHANGEABLE - also export, allow changing direction

since GPIOF_INIT_* are only valid when configured as output, so group valid com-
binations as:

• GPIOF_IN - configure as input

• GPIOF_OUT_INIT_LOW - configured as output, initial level LOW

• GPIOF_OUT_INIT_HIGH - configured as output, initial level HIGH

When setting the flag as GPIOF_OPEN_DRAIN then it will assume that pins is open
drain type. Such pins will not be driven to 1 in output mode. It is require to connect
pull-up on such pins. By enabling this flag, gpio lib will make the direction to input
when it is asked to set value of 1 in output mode to make the pin HIGH. The pin is
make to LOW by driving value 0 in output mode.

When setting the flag as GPIOF_OPEN_SOURCE then it will assume that pins is
open source type. Such pins will not be driven to 0 in output mode. It is require

51.7. Legacy GPIO Interfaces 1589

Linux Driver-api Documentation

to connect pull-down on such pin. By enabling this flag, gpio lib will make the
direction to input when it is asked to set value of 0 in output mode to make the pin
LOW. The pin is make to HIGH by driving value 1 in output mode.

In the future, these flags can be extended to support more properties.

Further more, to ease the claim/release of multiple GPIOs,‘struct gpio’is intro-
duced to encapsulate all three fields as:

struct gpio {
unsigned gpio;
unsigned long flags;
const char *label;

};

A typical example of usage:

static struct gpio leds_gpios[] = {
{ 32, GPIOF_OUT_INIT_HIGH, "Power LED" }, /* default to ON */
{ 33, GPIOF_OUT_INIT_LOW, "Green LED" }, /* default to OFF */
{ 34, GPIOF_OUT_INIT_LOW, "Red LED" }, /* default to OFF */
{ 35, GPIOF_OUT_INIT_LOW, "Blue LED" }, /* default to OFF */
{ ... },

};

err = gpio_request_one(31, GPIOF_IN, "Reset Button");
if (err)

...

err = gpio_request_array(leds_gpios, ARRAY_SIZE(leds_gpios));
if (err)

...

gpio_free_array(leds_gpios, ARRAY_SIZE(leds_gpios));

GPIOs mapped to IRQs

GPIO numbers are unsigned integers; so are IRQ numbers. These make up two
logically distinct namespaces (GPIO 0 need not use IRQ 0). You can map between
them using calls like:

/* map GPIO numbers to IRQ numbers */
int gpio_to_irq(unsigned gpio);

/* map IRQ numbers to GPIO numbers (avoid using this) */
int irq_to_gpio(unsigned irq);

Those return either the corresponding number in the other namespace, or else a
negative errno code if the mapping can’t be done. (For example, some GPIOs can’
t be used as IRQs.) It is an unchecked error to use a GPIO number that wasn’t set
up as an input using gpio_direction_input(), or to use an IRQ number that didn’t
originally come from gpio_to_irq().

These two mapping calls are expected to cost on the order of a single addition or
subtraction. They’re not allowed to sleep.

1590 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

Non-error values returned from gpio_to_irq() can be passed to request_irq() or
free_irq(). They will often be stored into IRQ resources for platform devices, by
the board-specific initialization code. Note that IRQ trigger options are part of the
IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are system wakeup capabilities.

Non-error values returned from irq_to_gpio() would most commonly be used with
gpio_get_value(), for example to initialize or update driver state when the IRQ is
edge-triggered. Note that some platforms don’t support this reverse mapping, so
you should avoid using it.

Emulating Open Drain Signals

Sometimes shared signals need to use“open drain”signaling, where only the low
signal level is actually driven. (That term applies to CMOS transistors; “open
collector”is used for TTL.) A pullup resistor causes the high signal level. This
is sometimes called a “wire-AND”; or more practically, from the negative logic
(low=true) perspective this is a “wire-OR”.
One common example of an open drain signal is a shared active-low IRQ line. Also,
bidirectional data bus signals sometimes use open drain signals.

Some GPIO controllers directly support open drain outputs; many don’t. When
you need open drain signaling but your hardware doesn’t directly support it, there’
s a common idiom you can use to emulate it with any GPIO pin that can be used
as either an input or an output:

LOW: gpio_direction_output(gpio, 0) ⋯this drives the signal and
overrides the pullup.

HIGH: gpio_direction_input(gpio) ⋯this turns off the output, so
the pullup (or some other device) controls the signal.

If you are “driving”the signal high but gpio_get_value(gpio) reports a low value
(after the appropriate rise time passes), you know some other component is driving
the shared signal low. That’s not necessarily an error. As one common example,
that’s how I2C clocks are stretched: a slave that needs a slower clock delays the
rising edge of SCK, and the I2C master adjusts its signaling rate accordingly.

GPIO controllers and the pinctrl subsystem

A GPIO controller on a SOC might be tightly coupled with the pinctrl subsystem,
in the sense that the pins can be used by other functions together with an optional
gpio feature. We have already covered the case where e.g. a GPIO controller need
to reserve a pin or set the direction of a pin by calling any of:

pinctrl_gpio_request()
pinctrl_gpio_free()
pinctrl_gpio_direction_input()
pinctrl_gpio_direction_output()

But how does the pin control subsystem cross-correlate the GPIO numbers (which
are a global business) to a certain pin on a certain pin controller?

51.7. Legacy GPIO Interfaces 1591

Linux Driver-api Documentation

This is done by registering“ranges”of pins, which are essentially cross-reference
tables. These are described in Documentation/driver-api/pinctl.rst

While the pin allocation is totally managed by the pinctrl subsystem, gpio (under
gpiolib) is still maintained by gpio drivers. It may happen that different pin ranges
in a SoC is managed by different gpio drivers.

This makes it logical to let gpio drivers announce their pin ranges to the pin ctrl
subsystem before it will call‘pinctrl_gpio_request’in order to request the corre-
sponding pin to be prepared by the pinctrl subsystem before any gpio usage.

For this, the gpio controller can register its pin range with pinctrl subsystem.
There are two ways of doing it currently: with or without DT.

For with DT support refer to Documentation/devicetree/bindings/gpio/gpio.txt.

For non-DT support, user can call gpiochip_add_pin_range() with appropriate
parameters to register a range of gpio pins with a pinctrl driver. For this exact
name string of pinctrl device has to be passed as one of the argument to this
routine.

51.7.3 What do these conventions omit?

One of the biggest things these conventions omit is pin multiplexing, since this is
highly chip-specific and nonportable. One platform might not need explicit mul-
tiplexing; another might have just two options for use of any given pin; another
might have eight options per pin; another might be able to route a given GPIO to
any one of several pins. (Yes, those examples all come from systems that run Linux
today.)

Related to multiplexing is configuration and enabling of the pullups or pulldowns
integrated on some platforms. Not all platforms support them, or support them
in the same way; and any given board might use external pullups (or pulldowns)
so that the on-chip ones should not be used. (When a circuit needs 5 kOhm, on-
chip 100 kOhm resistors won’t do.) Likewise drive strength (2 mA vs 20 mA) and
voltage (1.8V vs 3.3V) is a platform-specific issue, as are models like (not) having
a one-to-one correspondence between configurable pins and GPIOs.

There are other system-specific mechanisms that are not specified here, like the
aforementioned options for input de-glitching and wire-OR output. Hardware may
support reading or writing GPIOs in gangs, but that’s usually configuration depen-
dent: for GPIOs sharing the same bank. (GPIOs are commonly grouped in banks of
16 or 32, with a given SOC having several such banks.) Some systems can trigger
IRQs from output GPIOs, or read values from pins not managed as GPIOs. Code
relying on such mechanisms will necessarily be nonportable.

Dynamic definition of GPIOs is not currently standard; for example, as a side effect
of configuring an add-on board with some GPIO expanders.

1592 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

51.7.4 GPIO implementor’s framework (OPTIONAL)

As noted earlier, there is an optional implementation framework making it easier
for platforms to support different kinds of GPIO controller using the same pro-
gramming interface. This framework is called “gpiolib”.
As a debugging aid, if debugfs is available a /sys/kernel/debug/gpio file will be
found there. That will list all the controllers registered through this framework,
and the state of the GPIOs currently in use.

Controller Drivers: gpio_chip

In this framework each GPIO controller is packaged as a“struct gpio_chip”with
information common to each controller of that type:

• methods to establish GPIO direction

• methods used to access GPIO values

• flag saying whether calls to its methods may sleep

• optional debugfs dump method (showing extra state like pullup config)

• label for diagnostics

There is also per-instance data, which may come from device.platform_data: the
number of its first GPIO, and how many GPIOs it exposes.

The code implementing a gpio_chip should support multiple instances of the con-
troller, possibly using the driver model. That code will configure each gpio_chip
and issue gpiochip_add(). Removing a GPIO controller should be rare; use
gpiochip_remove() when it is unavoidable.

Most often a gpio_chip is part of an instance-specific structure with state not ex-
posed by the GPIO interfaces, such as addressing, power management, and more.
Chips such as codecs will have complex non-GPIO state.

Any debugfs dump method should normally ignore signals which haven’t been re-
quested as GPIOs. They can use gpiochip_is_requested(), which returns either
NULL or the label associated with that GPIO when it was requested.

Platform Support

To force-enable this framework, a platform’s Kconfig will“select”GPIOLIB, else
it is up to the user to configure support for GPIO.

It may also provide a custom value for ARCH_NR_GPIOS, so that it better reflects
the number of GPIOs in actual use on that platform, without wasting static table
space. (It should count both built-in/SoC GPIOs and also ones on GPIO expanders.

If neither of these options are selected, the platform does not support GPIOs
through GPIO-lib and the code cannot be enabled by the user.

Trivial implementations of those functions can directly use framework code, which
always dispatches through the gpio_chip:

51.7. Legacy GPIO Interfaces 1593

Linux Driver-api Documentation

#define gpio_get_value __gpio_get_value
#define gpio_set_value __gpio_set_value
#define gpio_cansleep __gpio_cansleep

Fancier implementations could instead define those as inline functions with logic
optimizing access to specific SOC-based GPIOs. For example, if the referenced
GPIO is the constant “12”, getting or setting its value could cost as little as two
or three instructions, never sleeping. When such an optimization is not possible
those calls must delegate to the framework code, costing at least a few dozen
instructions. For bitbanged I/O, such instruction savings can be significant.

For SOCs, platform-specific code defines and registers gpio_chip instances for
each bank of on-chip GPIOs. Those GPIOs should be numbered/labeled to match
chip vendor documentation, and directly match board schematics. They may well
start at zero and go up to a platform-specific limit. Such GPIOs are normally
integrated into platform initialization to make them always be available, from
arch_initcall() or earlier; they can often serve as IRQs.

Board Support

For external GPIO controllers – such as I2C or SPI expanders, ASICs, multi function
devices, FPGAs or CPLDs – most often board-specific code handles registering
controller devices and ensures that their drivers know what GPIO numbers to use
with gpiochip_add(). Their numbers often start right after platform-specific GPIOs.

For example, board setup code could create structures identifying the range of
GPIOs that chip will expose, and passes them to each GPIO expander chip using
platform_data. Then the chip driver’s probe() routine could pass that data to
gpiochip_add().

Initialization order can be important. For example, when a device relies on an
I2C-based GPIO, its probe() routine should only be called after that GPIO becomes
available. That may mean the device should not be registered until calls for that
GPIO can work. One way to address such dependencies is for such gpio_chip con-
trollers to provide setup() and teardown() callbacks to board specific code; those
board specific callbacks would register devices once all the necessary resources
are available, and remove them later when the GPIO controller device becomes
unavailable.

51.7.5 Sysfs Interface for Userspace (OPTIONAL)

Platforms which use the“gpiolib”implementors framework may choose to config-
ure a sysfs user interface to GPIOs. This is different from the debugfs interface,
since it provides control over GPIO direction and value instead of just showing
a gpio state summary. Plus, it could be present on production systems without
debugging support.

Given appropriate hardware documentation for the system, userspace could know
for example that GPIO #23 controls the write protect line used to protect boot
loader segments in flash memory. System upgrade procedures may need to tem-
porarily remove that protection, first importing a GPIO, then changing its output
state, then updating the code before re-enabling the write protection. In normal

1594 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

use, GPIO #23 would never be touched, and the kernel would have no need to
know about it.

Again depending on appropriate hardware documentation, on some systems
userspace GPIO can be used to determine system configuration data that standard
kernels won’t know about. And for some tasks, simple userspace GPIO drivers
could be all that the system really needs.

Note that standard kernel drivers exist for common“LEDs and Buttons”GPIO tasks:
“leds-gpio”and “gpio_keys”, respectively. Use those instead of talking directly
to the GPIOs; they integrate with kernel frameworks better than your userspace
code could.

Paths in Sysfs

There are three kinds of entry in /sys/class/gpio:

• Control interfaces used to get userspace control over GPIOs;

• GPIOs themselves; and

• GPIO controllers (“gpio_chip”instances).
That’s in addition to standard files including the “device”symlink.
The control interfaces are write-only:

/sys/class/gpio/

“export”⋯Userspace may ask the kernel to export control of
a GPIO to userspace by writing its number to this file.

Example: “echo 19 > export”will create a“gpio19”node
for GPIO #19, if that’s not requested by kernel code.

“unexport”⋯Reverses the effect of exporting to userspace.
Example:“echo 19 > unexport”will remove a“gpio19”
node exported using the “export”file.

GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42) and have the
following read/write attributes:

/sys/class/gpio/gpioN/

“direction”⋯reads as either “in”or “out”. This value may
normally be written. Writing as“out”defaults to initializing
the value as low. To ensure glitch free operation, values
“low”and “high”may be written to configure the GPIO as
an output with that initial value.

Note that this attribute will not exist if the kernel doesn’t
support changing the direction of a GPIO, or it was exported
by kernel code that didn’t explicitly allow userspace to re-
configure this GPIO’s direction.

“value”⋯reads as either 0 (low) or 1 (high). If the GPIO
is configured as an output, this value may be written; any
nonzero value is treated as high.

51.7. Legacy GPIO Interfaces 1595

Linux Driver-api Documentation

If the pin can be configured as interrupt-generating inter-
rupt and if it has been configured to generate interrupts (see
the description of“edge”), you can poll(2) on that file and
poll(2) will return whenever the interrupt was triggered. If
you use poll(2), set the events POLLPRI. If you use select(2),
set the file descriptor in exceptfds. After poll(2) returns, ei-
ther lseek(2) to the beginning of the sysfs file and read the
new value or close the file and re-open it to read the value.

“edge”⋯reads as either “none”, “rising”, “falling”, or
“both”. Write these strings to select the signal edge(s) that
will make poll(2) on the “value”file return.
This file exists only if the pin can be configured as an inter-
rupt generating input pin.

“active_low”⋯reads as either 0 (false) or 1 (true). Write
any nonzero value to invert the value attribute both for
reading and writing. Existing and subsequent poll(2) sup-
port configuration via the edge attribute for “rising”and
“falling”edges will follow this setting.

GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the controller im-
plementing GPIOs starting at #42) and have the following read-only attributes:

/sys/class/gpio/gpiochipN/

“base”⋯same as N, the first GPIO managed by this chip
“label”⋯provided for diagnostics (not always unique)
“ngpio”⋯how many GPIOs this manges (N to N + ngpio - 1)

Board documentation should in most cases cover what GPIOs are used for what
purposes. However, those numbers are not always stable; GPIOs on a daughter-
card might be different depending on the base board being used, or other cards
in the stack. In such cases, you may need to use the gpiochip nodes (possibly in
conjunction with schematics) to determine the correct GPIO number to use for a
given signal.

Exporting from Kernel code

Kernel code can explicitly manage exports of GPIOs which have already been re-
quested using gpio_request():

/* export the GPIO to userspace */
int gpio_export(unsigned gpio, bool direction_may_change);

/* reverse gpio_export() */
void gpio_unexport();

/* create a sysfs link to an exported GPIO node */
int gpio_export_link(struct device *dev, const char *name,

unsigned gpio)

1596 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

After a kernel driver requests a GPIO, it may only be made available in the sysfs
interface by gpio_export(). The driver can control whether the signal directionmay
change. This helps drivers prevent userspace code from accidentally clobbering
important system state.

This explicit exporting can help with debugging (by making some kinds of experi-
ments easier), or can provide an always-there interface that’s suitable for docu-
menting as part of a board support package.

After the GPIO has been exported, gpio_export_link() allows creating symlinks
from elsewhere in sysfs to the GPIO sysfs node. Drivers can use this to provide
the interface under their own device in sysfs with a descriptive name.

51.7.6 API Reference

The functions listed in this section are deprecated. The GPIO descriptor based API
should be used in new code.

int gpio_request_one(unsigned gpio, unsigned long flags, const char
* label)

request a single GPIO with initial configuration

Parameters
unsigned gpio the GPIO number

unsigned long flags GPIO configuration as specified by GPIOF_*

const char * label a literal description string of this GPIO

int gpio_request_array(const struct gpio * array, size_t num)
request multiple GPIOs in a single call

Parameters
const struct gpio * array array of the ‘struct gpio’
size_t num how many GPIOs in the array

void gpio_free_array(const struct gpio * array, size_t num)
release multiple GPIOs in a single call

Parameters
const struct gpio * array array of the ‘struct gpio’
size_t num how many GPIOs in the array

51.8 A driver for a selfmade cheap BT8xx based PCI
GPIO-card (bt8xxgpio)

For advanced documentation, see https://bues.ch/cms/unmaintained/btgpio.html

A generic digital 24-port PCI GPIO card can be built out of an ordinary Brooktree
bt848, bt849, bt878 or bt879 based analog TV tuner card. The Brooktree chip is
used in old analog Hauppauge WinTV PCI cards. You can easily find them used for
low prices on the net.

51.8. A driver for a selfmade cheap BT8xx based PCI GPIO-card
(bt8xxgpio)

1597

https://bues.ch/cms/unmaintained/btgpio.html

Linux Driver-api Documentation

The bt8xx chip does have 24 digital GPIO ports. These ports are accessible via 24
pins on the SMD chip package.

51.8.1 How to physically access the GPIO pins

The are several ways to access these pins. One might unsolder the whole chip and
put it on a custom PCI board, or one might only unsolder each individual GPIO
pin and solder that to some tiny wire. As the chip package really is tiny there are
some advanced soldering skills needed in any case.

The physical pinouts are drawn in the following ASCII art. The GPIO pins are
marked with G00-G23:

G G G G G G G G G G G G G G G G G G
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

| |␣
↪→| |

↪→--
--| ^ ^ ␣
↪→ |--
--| pin 86 pin 67 ␣
↪→ |--
--| ␣
↪→ |--
--| pin 61 >␣
↪→ |-- G18
--| ␣
↪→ |-- G19
--| ␣
↪→ |-- G20
--| ␣
↪→ |-- G21
--| ␣
↪→ |-- G22
--| pin 56 >␣
↪→ |-- G23
--| ␣
↪→ |--
--| Brooktree 878/879 ␣
↪→ |--
--| ␣
↪→ |--
--| ␣
↪→ |--
--| ␣
↪→ |--
--| ␣
↪→ |--
--| ␣
↪→ |--
--| ␣
↪→ |--
--| ␣
↪→ |--

(continues on next page)

1598 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

(continued from previous page)
--| ␣
↪→ |--
--| ␣
↪→ |--
--| ␣
↪→ |--
--| ␣
↪→ |--
--| ␣
↪→ |--
--| ␣
↪→ |--
--| O ␣
↪→ |--
--| ␣
↪→ |--

↪→--
| |␣

↪→| |
^
This is pin 1

51.9 Core

struct gpio_irq_chip
GPIO interrupt controller

Definition

struct gpio_irq_chip {
struct irq_chip *chip;
struct irq_domain *domain;
const struct irq_domain_ops *domain_ops;

#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY;
struct fwnode_handle *fwnode;
struct irq_domain *parent_domain;
int (*child_to_parent_hwirq)(struct gpio_chip *gc,unsigned int child_

↪→hwirq,unsigned int child_type,unsigned int *parent_hwirq, unsigned int␣
↪→*parent_type);
void *(*populate_parent_alloc_arg)(struct gpio_chip *gc,unsigned int␣

↪→parent_hwirq, unsigned int parent_type);
unsigned int (*child_offset_to_irq)(struct gpio_chip *gc, unsigned int␣

↪→pin);
struct irq_domain_ops child_irq_domain_ops;

#endif;
irq_flow_handler_t handler;
unsigned int default_type;
struct lock_class_key *lock_key;
struct lock_class_key *request_key;
irq_flow_handler_t parent_handler;
void *parent_handler_data;
unsigned int num_parents;

(continues on next page)

51.9. Core 1599

Linux Driver-api Documentation

(continued from previous page)
unsigned int *parents;
unsigned int *map;
bool threaded;
int (*init_hw)(struct gpio_chip *gc);
void (*init_valid_mask)(struct gpio_chip *gc,unsigned long *valid_mask,␣

↪→unsigned int ngpios);
unsigned long *valid_mask;
unsigned int first;
void (*irq_enable)(struct irq_data *data);
void (*irq_disable)(struct irq_data *data);
void (*irq_unmask)(struct irq_data *data);
void (*irq_mask)(struct irq_data *data);

};

Members
chip GPIO IRQ chip implementation, provided by GPIO driver.

domain Interrupt translation domain; responsible for mapping between GPIO
hwirq number and Linux IRQ number.

domain_ops Table of interrupt domain operations for this IRQ chip.

fwnode Firmware node corresponding to this gpiochip/irqchip, necessary for hi-
erarchical irqdomain support.

parent_domain If non-NULL, will be set as the parent of this GPIO interrupt con-
troller’s IRQ domain to establish a hierarchical interrupt domain. The pres-
ence of this will activate the hierarchical interrupt support.

child_to_parent_hwirq This callback translates a child hardware IRQ offset to a
parent hardware IRQ offset on a hierarchical interrupt chip. The child hard-
ware IRQs correspond to the GPIO index 0..ngpio-1 (see the ngpio field of
struct gpio_chip) and the corresponding parent hardware IRQ and type (such
as IRQ_TYPE_*) shall be returned by the driver. The driver can calculate this
from an offset or using a lookup table or whatever method is best for this
chip. Return 0 on successful translation in the driver.

If some ranges of hardware IRQs do not have a corresponding parent
HWIRQ, return -EINVAL, but also make sure to fill in valid_mask and
need_valid_mask to make these GPIO lines unavailable for translation.

populate_parent_alloc_arg This optional callback allocates and populates the
specific struct for the parent’s IRQ domain. If this is not specified, then
gpiochip_populate_parent_fwspec_twocell will be used. A four-cell vari-
ant named gpiochip_populate_parent_fwspec_fourcell is also available.

child_offset_to_irq This optional callback is used to translate the child’s GPIO
line offset on the GPIO chip to an IRQ number for the GPIO to_irq() callback.
If this is not specified, then a default callback will be provided that returns
the line offset.

child_irq_domain_ops The IRQ domain operations that will be used for this GPIO
IRQ chip. If no operations are provided, then default callbacks will be pop-
ulated to setup the IRQ hierarchy. Some drivers need to supply their own
translate function.

1600 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

handler The IRQ handler to use (often a predefined IRQ core function) for GPIO
IRQs, provided by GPIO driver.

default_type Default IRQ triggering type applied during GPIO driver initializa-
tion, provided by GPIO driver.

lock_key Per GPIO IRQ chip lockdep class for IRQ lock.

request_key Per GPIO IRQ chip lockdep class for IRQ request.

parent_handler The interrupt handler for the GPIO chip’s parent interrupts, may
be NULL if the parent interrupts are nested rather than cascaded.

parent_handler_data Data associated, and passed to, the handler for the parent
interrupt.

num_parents The number of interrupt parents of a GPIO chip.

parents A list of interrupt parents of a GPIO chip. This is owned by the driver, so
the core will only reference this list, not modify it.

map A list of interrupt parents for each line of a GPIO chip.

threaded True if set the interrupt handling uses nested threads.

init_hw optional routine to initialize hardware before an IRQ chip will be added.
This is quite useful when a particular driver wants to clear IRQ related reg-
isters in order to avoid undesired events.

init_valid_mask optional routine to initialize valid_mask, to be used if not all
GPIO lines are valid interrupts. Sometimes some lines just cannot fire inter-
rupts, and this routine, when defined, is passed a bitmap in“valid_mask”and
it will have ngpios bits from 0..(ngpios-1) set to“1”as in valid. The callback
can then directly set some bits to “0”if they cannot be used for interrupts.

valid_mask If not NULL holds bitmask of GPIOs which are valid to be included in
IRQ domain of the chip.

first Required for static IRQ allocation. If set, irq_domain_add_simple() will al-
locate and map all IRQs during initialization.

irq_enable Store old irq_chip irq_enable callback

irq_disable Store old irq_chip irq_disable callback

irq_unmask Store old irq_chip irq_unmask callback

irq_mask Store old irq_chip irq_mask callback

struct gpio_chip
abstract a GPIO controller

Definition

struct gpio_chip {
const char *label;
struct gpio_device *gpiodev;
struct device *parent;
struct module *owner;
int (*request)(struct gpio_chip *gc, unsigned int offset);
void (*free)(struct gpio_chip *gc, unsigned int offset);

(continues on next page)

51.9. Core 1601

Linux Driver-api Documentation

(continued from previous page)
int (*get_direction)(struct gpio_chip *gc, unsigned int offset);
int (*direction_input)(struct gpio_chip *gc, unsigned int offset);
int (*direction_output)(struct gpio_chip *gc, unsigned int offset, int␣

↪→value);
int (*get)(struct gpio_chip *gc, unsigned int offset);
int (*get_multiple)(struct gpio_chip *gc,unsigned long *mask, unsigned␣

↪→long *bits);
void (*set)(struct gpio_chip *gc, unsigned int offset, int value);
void (*set_multiple)(struct gpio_chip *gc,unsigned long *mask, unsigned␣

↪→long *bits);
int (*set_config)(struct gpio_chip *gc,unsigned int offset, unsigned␣

↪→long config);
int (*to_irq)(struct gpio_chip *gc, unsigned int offset);
void (*dbg_show)(struct seq_file *s, struct gpio_chip *gc);
int (*init_valid_mask)(struct gpio_chip *gc,unsigned long *valid_mask,␣

↪→unsigned int ngpios);
int (*add_pin_ranges)(struct gpio_chip *gc);
int base;
u16 ngpio;
const char *const *names;
bool can_sleep;

#if IS_ENABLED(CONFIG_GPIO_GENERIC);
unsigned long (*read_reg)(void __iomem *reg);
void (*write_reg)(void __iomem *reg, unsigned long data);
bool be_bits;
void __iomem *reg_dat;
void __iomem *reg_set;
void __iomem *reg_clr;
void __iomem *reg_dir_out;
void __iomem *reg_dir_in;
bool bgpio_dir_unreadable;
int bgpio_bits;
spinlock_t bgpio_lock;
unsigned long bgpio_data;
unsigned long bgpio_dir;

#endif ;
#ifdef CONFIG_GPIOLIB_IRQCHIP;

struct gpio_irq_chip irq;
#endif ;

unsigned long *valid_mask;
#if defined(CONFIG_OF_GPIO);

struct device_node *of_node;
unsigned int of_gpio_n_cells;
int (*of_xlate)(struct gpio_chip *gc, const struct of_phandle_args␣

↪→*gpiospec, u32 *flags);
#endif ;
};

Members
label a functional name for the GPIO device, such as a part number or the name

of the SoC IP-block implementing it.

gpiodev the internal state holder, opaque struct

parent optional parent device providing the GPIOs

1602 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

owner helps prevent removal of modules exporting active GPIOs

request optional hook for chip-specific activation, such as enabling module power
and clock; may sleep

free optional hook for chip-specific deactivation, such as disabling module power
and clock; may sleep

get_direction returns direction for signal “offset”, 0=out, 1=in, (same as
GPIO_LINE_DIRECTION_OUT / GPIO_LINE_DIRECTION_IN), or negative er-
ror. It is recommended to always implement this function, even on input-only
or output-only gpio chips.

direction_input configures signal“offset”as input, or returns error This can be
omitted on input-only or output-only gpio chips.

direction_output configures signal“offset”as output, or returns error This can
be omitted on input-only or output-only gpio chips.

get returns value for signal “offset”, 0=low, 1=high, or negative error
get_multiple reads values for multiple signals defined by“mask”and stores them

in “bits”, returns 0 on success or negative error
set assigns output value for signal “offset”
set_multiple assigns output values for multiple signals defined by “mask”
set_config optional hook for all kinds of settings. Uses the same packed config

format as generic pinconf.

to_irq optional hook supporting non-static gpio_to_irq() mappings; implementa-
tion may not sleep

dbg_show optional routine to show contents in debugfs; default code will be
used when this is omitted, but custom code can show extra state (such as
pullup/pulldown configuration).

init_valid_mask optional routine to initialize valid_mask, to be used if not all
GPIOs are valid.

add_pin_ranges optional routine to initialize pin ranges, to be used when requires
special mapping of the pins that provides GPIO functionality. It is called after
adding GPIO chip and before adding IRQ chip.

base identifies the first GPIO number handled by this chip; or, if negative during
registration, requests dynamic ID allocation. DEPRECATION: providing any-
thing non-negative and nailing the base offset of GPIO chips is deprecated.
Please pass -1 as base to let gpiolib select the chip base in all possible cases.
We want to get rid of the static GPIO number space in the long run.

ngpio the number of GPIOs handled by this controller; the last GPIO handled is
(base + ngpio - 1).

names if set, must be an array of strings to use as alternative names for the GPIOs
in this chip. Any entry in the array may be NULL if there is no alias for the
GPIO, however the array must be ngpio entries long. A name can include
a single printk format specifier for an unsigned int. It is substituted by the
actual number of the gpio.

51.9. Core 1603

Linux Driver-api Documentation

can_sleep flag must be set iff get()/set() methods sleep, as they must while ac-
cessing GPIO expander chips over I2C or SPI. This implies that if the chip
supports IRQs, these IRQs need to be threaded as the chip access may sleep
when e.g. reading out the IRQ status registers.

read_reg reader function for generic GPIO

write_reg writer function for generic GPIO

be_bits if the generic GPIO has big endian bit order (bit 31 is representing line
0, bit 30 is line 1⋯bit 0 is line 31) this is set to true by the generic GPIO core.
It is for internal housekeeping only.

reg_dat data (in) register for generic GPIO

reg_set output set register (out=high) for generic GPIO

reg_clr output clear register (out=low) for generic GPIO

reg_dir_out direction out setting register for generic GPIO

reg_dir_in direction in setting register for generic GPIO

bgpio_dir_unreadable indicates that the direction register(s) cannot be read and
we need to rely on out internal state tracking.

bgpio_bits number of register bits used for a generic GPIO i.e. <register width>
* 8

bgpio_lock used to lock chip->bgpio_data. Also, this is needed to keep shadowed
and real data registers writes together.

bgpio_data shadowed data register for generic GPIO to clear/set bits safely.

bgpio_dir shadowed direction register for generic GPIO to clear/set direction
safely. A “1”in this word means the line is set as output.

irq Integrates interrupt chip functionality with the GPIO chip. Can be used to
handle IRQs for most practical cases.

valid_mask If not NULL holds bitmask of GPIOs which are valid to be used from
the chip.

of_node Pointer to a device tree node representing this GPIO controller.

of_gpio_n_cells Number of cells used to form the GPIO specifier.

of_xlate Callback to translate a device tree GPIO specifier into a chip- relative
GPIO number and flags.

Description
A gpio_chip can help platforms abstract various sources of GPIOs so they can all
be accessed through a common programing interface. Example sources would be
SOC controllers, FPGAs, multifunction chips, dedicated GPIO expanders, and so
on.

Each chip controls a number of signals, identified in method calls by“offset”values
in the range 0..(ngpio - 1). When those signals are referenced through calls like
gpio_get_value(gpio), the offset is calculated by subtracting base from the gpio
number.

1604 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

gpiochip_add_data(gc, data)
register a gpio_chip

Parameters
gc undescribed

data driver-private data associated with this chip

Context
potentially before irqs will work

Description
When gpiochip_add_data() is called very early during boot, so that GPIOs can
be freely used, the chip->parent device must be registered before the gpio frame-
work’s arch_initcall(). Otherwise sysfs initialization for GPIOs will fail rudely.
gpiochip_add_data() must only be called after gpiolib initialization, ie after
core_initcall().

If chip->base is negative, this requests dynamic assignment of a range of valid
GPIOs.

Return
A negative errno if the chip can’t be registered, such as because the chip->base
is invalid or already associated with a different chip. Otherwise it returns zero as
a success code.

struct gpio_pin_range
pin range controlled by a gpio chip

Definition

struct gpio_pin_range {
struct list_head node;
struct pinctrl_dev *pctldev;
struct pinctrl_gpio_range range;

};

Members
node list for maintaining set of pin ranges, used internally

pctldev pinctrl device which handles corresponding pins

range actual range of pins controlled by a gpio controller

struct gpio_desc * gpio_to_desc(unsigned gpio)
Convert a GPIO number to its descriptor

Parameters
unsigned gpio global GPIO number

Return
The GPIO descriptor associated with the given GPIO, or NULL if no GPIO with the
given number exists in the system.

51.9. Core 1605

Linux Driver-api Documentation

struct gpio_desc * gpiochip_get_desc(struct gpio_chip * gc, unsigned
int hwnum)

get the GPIO descriptor corresponding to the given hardware number for this
chip

Parameters
struct gpio_chip * gc GPIO chip

unsigned int hwnum hardware number of the GPIO for this chip

Return
A pointer to the GPIO descriptor or ERR_PTR(-EINVAL) if no GPIO exists in the
given chip for the specified hardware number.

int desc_to_gpio(const struct gpio_desc * desc)
convert a GPIO descriptor to the integer namespace

Parameters
const struct gpio_desc * desc GPIO descriptor

Description
This should disappear in the future but is needed since we still use GPIO numbers
for error messages and sysfs nodes.

Return
The global GPIO number for the GPIO specified by its descriptor.

struct gpio_chip * gpiod_to_chip(const struct gpio_desc * desc)
Return the GPIO chip to which a GPIO descriptor belongs

Parameters
const struct gpio_desc * desc descriptor to return the chip of

int gpiod_get_direction(struct gpio_desc * desc)
return the current direction of a GPIO

Parameters
struct gpio_desc * desc GPIO to get the direction of

Description
Returns 0 for output, 1 for input, or an error code in case of error.

This function may sleep if gpiod_cansleep() is true.

void * gpiochip_get_data(struct gpio_chip * gc)
get per-subdriver data for the chip

Parameters
struct gpio_chip * gc GPIO chip

Return
The per-subdriver data for the chip.

void gpiochip_remove(struct gpio_chip * gc)
unregister a gpio_chip

1606 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

Parameters
struct gpio_chip * gc the chip to unregister

Description
A gpio_chip with any GPIOs still requested may not be removed.

struct gpio_chip * gpiochip_find(void * data, int (*match)(struct gpio_chip
*gc, void *data))

iterator for locating a specific gpio_chip

Parameters
void * data data to pass to match function

int (*)(struct gpio_chip *gc, void *data) match Callback function to
check gpio_chip

Description
Similar to bus_find_device. It returns a reference to a gpio_chip as determined by
a user suppliedmatch callback. The callback should return 0 if the device doesn’
t match and non-zero if it does. If the callback is non-zero, this function will return
to the caller and not iterate over any more gpio_chips.

void gpiochip_set_nested_irqchip(struct gpio_chip * gc, struct irq_chip
* irqchip, unsigned int parent_irq)

connects a nested irqchip to a gpiochip

Parameters
struct gpio_chip * gc the gpiochip to set the irqchip nested handler to

struct irq_chip * irqchip the irqchip to nest to the gpiochip

unsigned int parent_irq the irq number corresponding to the parent IRQ for
this nested irqchip

int gpiochip_irq_map(struct irq_domain * d, unsigned int irq,
irq_hw_number_t hwirq)

maps an IRQ into a GPIO irqchip

Parameters
struct irq_domain * d the irqdomain used by this irqchip

unsigned int irq the global irq number used by this GPIO irqchip irq

irq_hw_number_t hwirq the local IRQ/GPIO line offset on this gpiochip

Description
This function will set up the mapping for a certain IRQ line on a gpiochip by as-
signing the gpiochip as chip data, and using the irqchip stored inside the gpiochip.

int gpiochip_irq_domain_activate(struct irq_domain * domain, struct
irq_data * data, bool reserve)

Lock a GPIO to be used as an IRQ

Parameters
struct irq_domain * domain The IRQ domain used by this IRQ chip

51.9. Core 1607

Linux Driver-api Documentation

struct irq_data * data Outermost irq_data associated with the IRQ

bool reserve If set, only reserve an interrupt vector instead of assigning one

Description
This function is a wrapper that calls gpiochip_lock_as_irq() and is to be used as
the activate function for the struct irq_domain_ops. The host_data for the IRQ
domain must be the struct gpio_chip.

void gpiochip_irq_domain_deactivate(struct irq_domain * domain, struct
irq_data * data)

Unlock a GPIO used as an IRQ

Parameters
struct irq_domain * domain The IRQ domain used by this IRQ chip

struct irq_data * data Outermost irq_data associated with the IRQ

Description
This function is a wrapper that will call gpiochip_unlock_as_irq() and is to be
used as the deactivate function for the struct irq_domain_ops. The host_data
for the IRQ domain must be the struct gpio_chip.

int gpiochip_irqchip_add_key(struct gpio_chip * gc, struct irq_chip
* irqchip, unsigned int first_irq,
irq_flow_handler_t handler, un-
signed int type, bool threaded, struct
lock_class_key * lock_key, struct
lock_class_key * request_key)

adds an irqchip to a gpiochip

Parameters
struct gpio_chip * gc the gpiochip to add the irqchip to

struct irq_chip * irqchip the irqchip to add to the gpiochip

unsigned int first_irq if not dynamically assigned, the base (first) IRQ to al-
locate gpiochip irqs from

irq_flow_handler_t handler the irq handler to use (often a predefined irq core
function)

unsigned int type the default type for IRQs on this irqchip, pass
IRQ_TYPE_NONE to have the core avoid setting up any default type in
the hardware.

bool threaded whether this irqchip uses a nested thread handler

struct lock_class_key * lock_key lockdep class for IRQ lock

struct lock_class_key * request_key lockdep class for IRQ request

Description
This function closely associates a certain irqchip with a certain gpiochip, providing
an irq domain to translate the local IRQs to global irqs in the gpiolib core, and
making sure that the gpiochip is passed as chip data to all related functions. Driver
callbacks need to use gpiochip_get_data() to get their local state containers

1608 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

back from the gpiochip passed as chip data. An irqdomain will be stored in the
gpiochip that shall be used by the driver to handle IRQ number translation. The
gpiochip will need to be initialized and registered before calling this function.

This function will handle two cell:ed simple IRQs and assumes all the pins on the
gpiochip can generate a unique IRQ. Everything else need to be open coded.

int gpiochip_irqchip_add_domain(struct gpio_chip * gc, struct irq_domain
* domain)

adds an irqdomain to a gpiochip

Parameters
struct gpio_chip * gc the gpiochip to add the irqchip to

struct irq_domain * domain the irqdomain to add to the gpiochip

Description
This function adds an IRQ domain to the gpiochip.

int gpiochip_generic_request(struct gpio_chip * gc, unsigned offset)
request the gpio function for a pin

Parameters
struct gpio_chip * gc the gpiochip owning the GPIO

unsigned offset the offset of the GPIO to request for GPIO function

void gpiochip_generic_free(struct gpio_chip * gc, unsigned offset)
free the gpio function from a pin

Parameters
struct gpio_chip * gc the gpiochip to request the gpio function for

unsigned offset the offset of the GPIO to free from GPIO function

int gpiochip_generic_config(struct gpio_chip * gc, unsigned offset, un-
signed long config)

apply configuration for a pin

Parameters
struct gpio_chip * gc the gpiochip owning the GPIO

unsigned offset the offset of the GPIO to apply the configuration

unsigned long config the configuration to be applied

int gpiochip_add_pingroup_range(struct gpio_chip * gc, struct pinctrl_dev
* pctldev, unsigned int gpio_offset,
const char * pin_group)

add a range for GPIO <-> pin mapping

Parameters
struct gpio_chip * gc the gpiochip to add the range for

struct pinctrl_dev * pctldev the pin controller to map to

unsigned int gpio_offset the start offset in the current gpio_chip number
space

51.9. Core 1609

Linux Driver-api Documentation

const char * pin_group name of the pin group inside the pin controller

Description
Calling this function directly from a DeviceTree-supported pinc-
trl driver is DEPRECATED. Please see Section 2.1 of Documenta-
tion/devicetree/bindings/gpio/gpio.txt on how to bind pinctrl and gpio drivers via
the “gpio-ranges”property.
int gpiochip_add_pin_range(struct gpio_chip * gc, const char

* pinctl_name, unsigned int gpio_offset,
unsigned int pin_offset, unsigned int npins)

add a range for GPIO <-> pin mapping

Parameters
struct gpio_chip * gc the gpiochip to add the range for

const char * pinctl_name the dev_name() of the pin controller to map to

unsigned int gpio_offset the start offset in the current gpio_chip number
space

unsigned int pin_offset the start offset in the pin controller number space

unsigned int npins the number of pins from the offset of each pin space (GPIO
and pin controller) to accumulate in this range

Return
0 on success, or a negative error-code on failure.

Description
Calling this function directly from a DeviceTree-supported pinc-
trl driver is DEPRECATED. Please see Section 2.1 of Documenta-
tion/devicetree/bindings/gpio/gpio.txt on how to bind pinctrl and gpio drivers via
the “gpio-ranges”property.
void gpiochip_remove_pin_ranges(struct gpio_chip * gc)

remove all the GPIO <-> pin mappings

Parameters
struct gpio_chip * gc the chip to remove all the mappings for

const char * gpiochip_is_requested(struct gpio_chip * gc, un-
signed offset)

return string iff signal was requested

Parameters
struct gpio_chip * gc controller managing the signal

unsigned offset of signal within controller’s 0..(ngpio - 1) range
Description
Returns NULL if the GPIO is not currently requested, else a string. The string
returned is the label passed to gpio_request(); if none has been passed it is a
meaningless, non-NULL constant.

1610 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

This function is for use by GPIO controller drivers. The label can help with diag-
nostics, and knowing that the signal is used as a GPIO can help avoid accidentally
multiplexing it to another controller.

struct gpio_desc * gpiochip_request_own_desc(struct gpio_chip * gc,
unsigned int hwnum,
const char * label, enum
gpio_lookup_flags lflags,
enum gpiod_flags dflags)

Allow GPIO chip to request its own descriptor

Parameters
struct gpio_chip * gc GPIO chip

unsigned int hwnum hardware number of the GPIO for which to request the de-
scriptor

const char * label label for the GPIO

enum gpio_lookup_flags lflags lookup flags for this GPIO or 0 if default, this
can be used to specify things like line inversion semantics with the machine
flags such as GPIO_OUT_LOW

enum gpiod_flags dflags descriptor request flags for this GPIO or 0 if default,
this can be used to specify consumer semantics such as open drain

Description
Function allows GPIO chip drivers to request and use their own GPIO descriptors
via gpiolib API. Difference to gpiod_request() is that this function will not increase
reference count of the GPIO chip module. This allows the GPIO chip module to
be unloaded as needed (we assume that the GPIO chip driver handles freeing the
GPIOs it has requested).

Return
A pointer to the GPIO descriptor, or an ERR_PTR()-encoded negative error code
on failure.

void gpiochip_free_own_desc(struct gpio_desc * desc)
Free GPIO requested by the chip driver

Parameters
struct gpio_desc * desc GPIO descriptor to free

Description
Function frees the given GPIO requested previously with
gpiochip_request_own_desc().

int gpiod_direction_input(struct gpio_desc * desc)
set the GPIO direction to input

Parameters
struct gpio_desc * desc GPIO to set to input

Description

51.9. Core 1611

Linux Driver-api Documentation

Set the direction of the passed GPIO to input, such as gpiod_get_value() can be
called safely on it.

Return 0 in case of success, else an error code.

int gpiod_direction_output_raw(struct gpio_desc * desc, int value)
set the GPIO direction to output

Parameters
struct gpio_desc * desc GPIO to set to output

int value initial output value of the GPIO

Description
Set the direction of the passed GPIO to output, such as gpiod_set_value() can
be called safely on it. The initial value of the output must be specified as raw value
on the physical line without regard for the ACTIVE_LOW status.

Return 0 in case of success, else an error code.

int gpiod_direction_output(struct gpio_desc * desc, int value)
set the GPIO direction to output

Parameters
struct gpio_desc * desc GPIO to set to output

int value initial output value of the GPIO

Description
Set the direction of the passed GPIO to output, such as gpiod_set_value() can be
called safely on it. The initial value of the output must be specified as the logical
value of the GPIO, i.e. taking its ACTIVE_LOW status into account.

Return 0 in case of success, else an error code.

int gpiod_set_config(struct gpio_desc * desc, unsigned long config)
sets config for a GPIO

Parameters
struct gpio_desc * desc descriptor of the GPIO for which to set the configura-

tion

unsigned long config Same packed config format as generic pinconf

Return
0 on success, -ENOTSUPP if the controller doesn’t support setting the configuration.

int gpiod_set_debounce(struct gpio_desc * desc, unsigned debounce)
sets debounce time for a GPIO

Parameters
struct gpio_desc * desc descriptor of the GPIO for which to set debounce time

unsigned debounce debounce time in microseconds

1612 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

Return
0 on success, -ENOTSUPP if the controller doesn’t support setting the debounce
time.

int gpiod_set_transitory(struct gpio_desc * desc, bool transitory)
Lose or retain GPIO state on suspend or reset

Parameters
struct gpio_desc * desc descriptor of the GPIO for which to configure persis-

tence

bool transitory True to lose state on suspend or reset, false for persistence

Return
0 on success, otherwise a negative error code.

int gpiod_is_active_low(const struct gpio_desc * desc)
test whether a GPIO is active-low or not

Parameters
const struct gpio_desc * desc the gpio descriptor to test

Description
Returns 1 if the GPIO is active-low, 0 otherwise.

void gpiod_toggle_active_low(struct gpio_desc * desc)
toggle whether a GPIO is active-low or not

Parameters
struct gpio_desc * desc the gpio descriptor to change

int gpiod_get_raw_value(const struct gpio_desc * desc)
return a gpio’s raw value

Parameters
const struct gpio_desc * desc gpio whose value will be returned

Description
Return the GPIO’s raw value, i.e. the value of the physical line disregarding its
ACTIVE_LOW status, or negative errno on failure.

This function can be called from contexts where we cannot sleep, and will complain
if the GPIO chip functions potentially sleep.

int gpiod_get_value(const struct gpio_desc * desc)
return a gpio’s value

Parameters
const struct gpio_desc * desc gpio whose value will be returned

Description
Return the GPIO’s logical value, i.e. taking the ACTIVE_LOW status into account,
or negative errno on failure.

51.9. Core 1613

Linux Driver-api Documentation

This function can be called from contexts where we cannot sleep, and will complain
if the GPIO chip functions potentially sleep.

int gpiod_get_raw_array_value(unsigned int array_size, struct
gpio_desc ** desc_array, struct
gpio_array * array_info, unsigned long
* value_bitmap)

read raw values from an array of GPIOs

Parameters
unsigned int array_size number of elements in the descriptor array / value

bitmap

struct gpio_desc ** desc_array array of GPIO descriptors whose values will
be read

struct gpio_array * array_info information on applicability of fast bitmap
processing path

unsigned long * value_bitmap bitmap to store the read values

Description
Read the raw values of the GPIOs, i.e. the values of the physical lines without
regard for their ACTIVE_LOW status. Return 0 in case of success, else an error
code.

This function can be called from contexts where we cannot sleep, and it will com-
plain if the GPIO chip functions potentially sleep.

int gpiod_get_array_value(unsigned int array_size, struct gpio_desc
** desc_array, struct gpio_array * array_info,
unsigned long * value_bitmap)

read values from an array of GPIOs

Parameters
unsigned int array_size number of elements in the descriptor array / value

bitmap

struct gpio_desc ** desc_array array of GPIO descriptors whose values will
be read

struct gpio_array * array_info information on applicability of fast bitmap
processing path

unsigned long * value_bitmap bitmap to store the read values

Description
Read the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status into
account. Return 0 in case of success, else an error code.

This function can be called from contexts where we cannot sleep, and it will com-
plain if the GPIO chip functions potentially sleep.

void gpiod_set_raw_value(struct gpio_desc * desc, int value)
assign a gpio’s raw value

Parameters

1614 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

struct gpio_desc * desc gpio whose value will be assigned

int value value to assign

Description
Set the raw value of the GPIO, i.e. the value of its physical line without regard for
its ACTIVE_LOW status.

This function can be called from contexts where we cannot sleep, and will complain
if the GPIO chip functions potentially sleep.

void gpiod_set_value(struct gpio_desc * desc, int value)
assign a gpio’s value

Parameters
struct gpio_desc * desc gpio whose value will be assigned

int value value to assign

Description
Set the logical value of the GPIO, i.e. taking its ACTIVE_LOW, OPEN_DRAIN and
OPEN_SOURCE flags into account.

This function can be called from contexts where we cannot sleep, and will complain
if the GPIO chip functions potentially sleep.

int gpiod_set_raw_array_value(unsigned int array_size, struct
gpio_desc ** desc_array, struct
gpio_array * array_info, unsigned long
* value_bitmap)

assign values to an array of GPIOs

Parameters
unsigned int array_size number of elements in the descriptor array / value

bitmap

struct gpio_desc ** desc_array array of GPIO descriptors whose values will
be assigned

struct gpio_array * array_info information on applicability of fast bitmap
processing path

unsigned long * value_bitmap bitmap of values to assign

Description
Set the raw values of the GPIOs, i.e. the values of the physical lines without regard
for their ACTIVE_LOW status.

This function can be called from contexts where we cannot sleep, and will complain
if the GPIO chip functions potentially sleep.

int gpiod_set_array_value(unsigned int array_size, struct gpio_desc
** desc_array, struct gpio_array * array_info,
unsigned long * value_bitmap)

assign values to an array of GPIOs

Parameters

51.9. Core 1615

Linux Driver-api Documentation

unsigned int array_size number of elements in the descriptor array / value
bitmap

struct gpio_desc ** desc_array array of GPIO descriptors whose values will
be assigned

struct gpio_array * array_info information on applicability of fast bitmap
processing path

unsigned long * value_bitmap bitmap of values to assign

Description
Set the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status into
account.

This function can be called from contexts where we cannot sleep, and will complain
if the GPIO chip functions potentially sleep.

int gpiod_cansleep(const struct gpio_desc * desc)
report whether gpio value access may sleep

Parameters
const struct gpio_desc * desc gpio to check

int gpiod_set_consumer_name(struct gpio_desc * desc, const char * name)
set the consumer name for the descriptor

Parameters
struct gpio_desc * desc gpio to set the consumer name on

const char * name the new consumer name

int gpiod_to_irq(const struct gpio_desc * desc)
return the IRQ corresponding to a GPIO

Parameters
const struct gpio_desc * desc gpio whose IRQ will be returned (already re-

quested)

Description
Return the IRQ corresponding to the passed GPIO, or an error code in case of
error.

int gpiochip_lock_as_irq(struct gpio_chip * gc, unsigned int offset)
lock a GPIO to be used as IRQ

Parameters
struct gpio_chip * gc the chip the GPIO to lock belongs to

unsigned int offset the offset of the GPIO to lock as IRQ

Description
This is used directly by GPIO drivers that want to lock down a certain GPIO line
to be used for IRQs.

void gpiochip_unlock_as_irq(struct gpio_chip * gc, unsigned int offset)
unlock a GPIO used as IRQ

1616 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

Parameters
struct gpio_chip * gc the chip the GPIO to lock belongs to

unsigned int offset the offset of the GPIO to lock as IRQ

Description
This is used directly by GPIO drivers that want to indicate that a certain GPIO is
no longer used exclusively for IRQ.

int gpiod_get_raw_value_cansleep(const struct gpio_desc * desc)
return a gpio’s raw value

Parameters
const struct gpio_desc * desc gpio whose value will be returned

Description
Return the GPIO’s raw value, i.e. the value of the physical line disregarding its
ACTIVE_LOW status, or negative errno on failure.

This function is to be called from contexts that can sleep.

int gpiod_get_value_cansleep(const struct gpio_desc * desc)
return a gpio’s value

Parameters
const struct gpio_desc * desc gpio whose value will be returned

Description
Return the GPIO’s logical value, i.e. taking the ACTIVE_LOW status into account,
or negative errno on failure.

This function is to be called from contexts that can sleep.

int gpiod_get_raw_array_value_cansleep(unsigned int array_size, struct
gpio_desc ** desc_array, struct
gpio_array * array_info, un-
signed long * value_bitmap)

read raw values from an array of GPIOs

Parameters
unsigned int array_size number of elements in the descriptor array / value

bitmap

struct gpio_desc ** desc_array array of GPIO descriptors whose values will
be read

struct gpio_array * array_info information on applicability of fast bitmap
processing path

unsigned long * value_bitmap bitmap to store the read values

Description
Read the raw values of the GPIOs, i.e. the values of the physical lines without
regard for their ACTIVE_LOW status. Return 0 in case of success, else an error
code.

51.9. Core 1617

Linux Driver-api Documentation

This function is to be called from contexts that can sleep.

int gpiod_get_array_value_cansleep(unsigned int array_size, struct
gpio_desc ** desc_array, struct
gpio_array * array_info, unsigned
long * value_bitmap)

read values from an array of GPIOs

Parameters
unsigned int array_size number of elements in the descriptor array / value

bitmap

struct gpio_desc ** desc_array array of GPIO descriptors whose values will
be read

struct gpio_array * array_info information on applicability of fast bitmap
processing path

unsigned long * value_bitmap bitmap to store the read values

Description
Read the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status into
account. Return 0 in case of success, else an error code.

This function is to be called from contexts that can sleep.

void gpiod_set_raw_value_cansleep(struct gpio_desc * desc, int value)
assign a gpio’s raw value

Parameters
struct gpio_desc * desc gpio whose value will be assigned

int value value to assign

Description
Set the raw value of the GPIO, i.e. the value of its physical line without regard for
its ACTIVE_LOW status.

This function is to be called from contexts that can sleep.

void gpiod_set_value_cansleep(struct gpio_desc * desc, int value)
assign a gpio’s value

Parameters
struct gpio_desc * desc gpio whose value will be assigned

int value value to assign

Description
Set the logical value of the GPIO, i.e. taking its ACTIVE_LOW status into account

This function is to be called from contexts that can sleep.

int gpiod_set_raw_array_value_cansleep(unsigned int array_size, struct
gpio_desc ** desc_array, struct
gpio_array * array_info, un-
signed long * value_bitmap)

1618 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

assign values to an array of GPIOs

Parameters
unsigned int array_size number of elements in the descriptor array / value

bitmap

struct gpio_desc ** desc_array array of GPIO descriptors whose values will
be assigned

struct gpio_array * array_info information on applicability of fast bitmap
processing path

unsigned long * value_bitmap bitmap of values to assign

Description
Set the raw values of the GPIOs, i.e. the values of the physical lines without regard
for their ACTIVE_LOW status.

This function is to be called from contexts that can sleep.

int gpiod_set_array_value_cansleep(unsigned int array_size, struct
gpio_desc ** desc_array, struct
gpio_array * array_info, unsigned
long * value_bitmap)

assign values to an array of GPIOs

Parameters
unsigned int array_size number of elements in the descriptor array / value

bitmap

struct gpio_desc ** desc_array array of GPIO descriptors whose values will
be assigned

struct gpio_array * array_info information on applicability of fast bitmap
processing path

unsigned long * value_bitmap bitmap of values to assign

Description
Set the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status into
account.

This function is to be called from contexts that can sleep.

void gpiod_add_lookup_table(struct gpiod_lookup_table * table)
register GPIO device consumers

Parameters
struct gpiod_lookup_table * table table of consumers to register

void gpiod_remove_lookup_table(struct gpiod_lookup_table * table)
unregister GPIO device consumers

Parameters
struct gpiod_lookup_table * table table of consumers to unregister

51.9. Core 1619

Linux Driver-api Documentation

void gpiod_add_hogs(struct gpiod_hog * hogs)
register a set of GPIO hogs from machine code

Parameters
struct gpiod_hog * hogs table of gpio hog entries with a zeroed sentinel at the

end

struct gpio_desc * fwnode_gpiod_get_index(struct fwnode_handle
* fwnode, const char
* con_id, int index, enum
gpiod_flags flags, const char
* label)

obtain a GPIO from firmware node

Parameters
struct fwnode_handle * fwnode handle of the firmware node

const char * con_id function within the GPIO consumer

int index index of the GPIO to obtain for the consumer

enum gpiod_flags flags GPIO initialization flags

const char * label label to attach to the requested GPIO

Description
This function can be used for drivers that get their configuration from opaque
firmware.

The function properly finds the corresponding GPIO using whatever is the underly-
ing firmware interface and then makes sure that the GPIO descriptor is requested
before it is returned to the caller.

In case of error an ERR_PTR() is returned.

Return
On successful request the GPIO pin is configured in accordance with provided
flags.
int gpiod_count(struct device * dev, const char * con_id)

return the number of GPIOs associated with a device / function or -ENOENT
if no GPIO has been assigned to the requested function

Parameters
struct device * dev GPIO consumer, can be NULL for system-global GPIOs

const char * con_id function within the GPIO consumer

struct gpio_desc * gpiod_get(struct device * dev, const char * con_id, enum
gpiod_flags flags)

obtain a GPIO for a given GPIO function

Parameters
struct device * dev GPIO consumer, can be NULL for system-global GPIOs

const char * con_id function within the GPIO consumer

enum gpiod_flags flags optional GPIO initialization flags

1620 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

Description
Return the GPIO descriptor corresponding to the function con_id of device dev,
-ENOENT if no GPIO has been assigned to the requested function, or another
IS_ERR() code if an error occurred while trying to acquire the GPIO.

struct gpio_desc * gpiod_get_optional(struct device * dev, const char
* con_id, enum gpiod_flags flags)

obtain an optional GPIO for a given GPIO function

Parameters
struct device * dev GPIO consumer, can be NULL for system-global GPIOs

const char * con_id function within the GPIO consumer

enum gpiod_flags flags optional GPIO initialization flags

Description
This is equivalent to gpiod_get(), except that when no GPIO was assigned to the
requested function it will return NULL. This is convenient for drivers that need to
handle optional GPIOs.

struct gpio_desc * gpiod_get_index(struct device * dev, const char
* con_id, unsigned int idx, enum
gpiod_flags flags)

obtain a GPIO from a multi-index GPIO function

Parameters
struct device * dev GPIO consumer, can be NULL for system-global GPIOs

const char * con_id function within the GPIO consumer

unsigned int idx index of the GPIO to obtain in the consumer

enum gpiod_flags flags optional GPIO initialization flags

Description
This variant of gpiod_get() allows to access GPIOs other than the first defined
one for functions that define several GPIOs.

Return a valid GPIO descriptor, -ENOENT if no GPIO has been assigned to the
requested function and/or index, or another IS_ERR() code if an error occurred
while trying to acquire the GPIO.

struct gpio_desc * fwnode_get_named_gpiod(struct fwnode_handle
* fwnode, const char
* propname, int index, enum
gpiod_flags dflags, const char
* label)

obtain a GPIO from firmware node

Parameters
struct fwnode_handle * fwnode handle of the firmware node

const char * propname name of the firmware property representing the GPIO

int index index of the GPIO to obtain for the consumer

51.9. Core 1621

Linux Driver-api Documentation

enum gpiod_flags dflags GPIO initialization flags

const char * label label to attach to the requested GPIO

Description
This function can be used for drivers that get their configuration from opaque
firmware.

The function properly finds the corresponding GPIO using whatever is the underly-
ing firmware interface and then makes sure that the GPIO descriptor is requested
before it is returned to the caller.

In case of error an ERR_PTR() is returned.

Return
On successful request the GPIO pin is configured in accordance with provided
dflags.
struct gpio_desc * gpiod_get_index_optional(struct device * dev,

const char * con_id, un-
signed int index, enum
gpiod_flags flags)

obtain an optional GPIO from a multi-index GPIO function

Parameters
struct device * dev GPIO consumer, can be NULL for system-global GPIOs

const char * con_id function within the GPIO consumer

unsigned int index index of the GPIO to obtain in the consumer

enum gpiod_flags flags optional GPIO initialization flags

Description
This is equivalent to gpiod_get_index(), except that when no GPIO with the spec-
ified index was assigned to the requested function it will return NULL. This is
convenient for drivers that need to handle optional GPIOs.

struct gpio_descs * gpiod_get_array(struct device * dev, const char
* con_id, enum gpiod_flags flags)

obtain multiple GPIOs from a multi-index GPIO function

Parameters
struct device * dev GPIO consumer, can be NULL for system-global GPIOs

const char * con_id function within the GPIO consumer

enum gpiod_flags flags optional GPIO initialization flags

Description
This function acquires all the GPIOs defined under a given function.

Return a struct gpio_descs containing an array of descriptors, -ENOENT if no GPIO
has been assigned to the requested function, or another IS_ERR() code if an error
occurred while trying to acquire the GPIOs.

1622 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

struct gpio_descs * gpiod_get_array_optional(struct device * dev, const
char * con_id, enum
gpiod_flags flags)

obtain multiple GPIOs from a multi-index GPIO function

Parameters
struct device * dev GPIO consumer, can be NULL for system-global GPIOs

const char * con_id function within the GPIO consumer

enum gpiod_flags flags optional GPIO initialization flags

Description
This is equivalent to gpiod_get_array(), except that when no GPIO was assigned
to the requested function it will return NULL.

void gpiod_put(struct gpio_desc * desc)
dispose of a GPIO descriptor

Parameters
struct gpio_desc * desc GPIO descriptor to dispose of

Description
No descriptor can be used after gpiod_put() has been called on it.

void gpiod_put_array(struct gpio_descs * descs)
dispose of multiple GPIO descriptors

Parameters
struct gpio_descs * descs struct gpio_descs containing an array of descrip-

tors

51.10 ACPI support

void acpi_gpiochip_request_interrupts(struct gpio_chip * chip)
Register isr for gpio chip ACPI events

Parameters
struct gpio_chip * chip GPIO chip

Description
ACPI5 platforms can use GPIO signaled ACPI events. These GPIO interrupts are
handled by ACPI event methods which need to be called from the GPIO chip’s
interrupt handler. acpi_gpiochip_request_interrupts() finds out which GPIO
pins have ACPI event methods and assigns interrupt handlers that calls the ACPI
event methods for those pins.

void acpi_gpiochip_free_interrupts(struct gpio_chip * chip)
Free GPIO ACPI event interrupts.

Parameters
struct gpio_chip * chip GPIO chip

51.10. ACPI support 1623

Linux Driver-api Documentation

Description
Free interrupts associated with GPIO ACPI event method for the given GPIO chip.

int acpi_dev_gpio_irq_get(struct acpi_device * adev, int index)
Find GpioInt and translate it to Linux IRQ number

Parameters
struct acpi_device * adev pointer to a ACPI device to get IRQ from

int index index of GpioInt resource (starting from 0)

Description
If the device has one or more GpioInt resources, this function can be used to trans-
late from the GPIO offset in the resource to the Linux IRQ number.

The function is idempotent, though each time it runs it will configure GPIO pin
direction according to the flags in GpioInt resource.

Return
Linux IRQ number (> 0) on success, negative errno on failure.

51.11 Device tree support

struct gpio_desc * gpiod_get_from_of_node(struct device_node
* node, const char
* propname, int index, enum
gpiod_flags dflags, const char
* label)

obtain a GPIO from an OF node

Parameters
struct device_node * node handle of the OF node

const char * propname name of the DT property representing the GPIO

int index index of the GPIO to obtain for the consumer

enum gpiod_flags dflags GPIO initialization flags

const char * label label to attach to the requested GPIO

Return
On successful request the GPIO pin is configured in accordance with provided
dflags.
Description
In case of error an ERR_PTR() is returned.

int of_mm_gpiochip_add_data(struct device_node * np, struct
of_mm_gpio_chip * mm_gc, void * data)

Add memory mapped GPIO chip (bank)

Parameters

1624 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

struct device_node * np device node of the GPIO chip

struct of_mm_gpio_chip * mm_gc pointer to the of_mm_gpio_chip allocated
structure

void * data driver data to store in the struct gpio_chip

Description
To use this function you should allocate and fill mm_gc with:

1) In the gpio_chip structure: - all the callbacks - of_gpio_n_cells - of_xlate call-
back (optional)

3) In the of_mm_gpio_chip structure: - save_regs callback (optional)

If succeeded, this function will map bank’s memory and will do all necessary work
for you. Then you’ll able to use .regs to manage GPIOs from the callbacks.

void of_mm_gpiochip_remove(struct of_mm_gpio_chip * mm_gc)
Remove memory mapped GPIO chip (bank)

Parameters
struct of_mm_gpio_chip * mm_gc pointer to the of_mm_gpio_chip allocated

structure

51.12 Device-managed API

struct gpio_desc * devm_gpiod_get(struct device * dev, const char * con_id,
enum gpiod_flags flags)

Resource-managed gpiod_get()

Parameters
struct device * dev GPIO consumer

const char * con_id function within the GPIO consumer

enum gpiod_flags flags optional GPIO initialization flags

Description
Managed gpiod_get(). GPIO descriptors returned from this function are auto-
matically disposed on driver detach. See gpiod_get() for detailed information
about behavior and return values.

struct gpio_desc * devm_gpiod_get_optional(struct device * dev, const
char * con_id, enum
gpiod_flags flags)

Resource-managed gpiod_get_optional()

Parameters
struct device * dev GPIO consumer

const char * con_id function within the GPIO consumer

enum gpiod_flags flags optional GPIO initialization flags

51.12. Device-managed API 1625

Linux Driver-api Documentation

Description
Managed gpiod_get_optional(). GPIO descriptors returned from this function
are automatically disposed on driver detach. See gpiod_get_optional() for de-
tailed information about behavior and return values.

struct gpio_desc * devm_gpiod_get_index(struct device * dev, const char
* con_id, unsigned int idx, enum
gpiod_flags flags)

Resource-managed gpiod_get_index()

Parameters
struct device * dev GPIO consumer

const char * con_id function within the GPIO consumer

unsigned int idx index of the GPIO to obtain in the consumer

enum gpiod_flags flags optional GPIO initialization flags

Description
Managed gpiod_get_index(). GPIO descriptors returned from this function are
automatically disposed on driver detach. See gpiod_get_index() for detailed in-
formation about behavior and return values.

struct gpio_desc * devm_gpiod_get_from_of_node(struct device * dev,
struct device_node
* node, const char
* propname, int index,
enum gpiod_flags dflags,
const char * label)

obtain a GPIO from an OF node

Parameters
struct device * dev device for lifecycle management

struct device_node * node handle of the OF node

const char * propname name of the DT property representing the GPIO

int index index of the GPIO to obtain for the consumer

enum gpiod_flags dflags GPIO initialization flags

const char * label label to attach to the requested GPIO

Return
On successful request the GPIO pin is configured in accordance with provided
dflags.
Description
In case of error an ERR_PTR() is returned.

1626 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

struct gpio_desc * devm_fwnode_gpiod_get_index(struct device * dev,
struct fwnode_handle
* fwnode, const char
* con_id, int index, enum
gpiod_flags flags, const
char * label)

get a GPIO descriptor from a given node

Parameters
struct device * dev GPIO consumer

struct fwnode_handle * fwnode firmware node containing GPIO reference

const char * con_id function within the GPIO consumer

int index index of the GPIO to obtain in the consumer

enum gpiod_flags flags GPIO initialization flags

const char * label label to attach to the requested GPIO

Description
GPIO descriptors returned from this function are automatically disposed on driver
detach.

On successful request the GPIO pin is configured in accordance with provided
flags.
struct gpio_desc * devm_gpiod_get_index_optional(struct device

* dev, const char
* con_id, unsigned
int index, enum
gpiod_flags flags)

Resource-managed gpiod_get_index_optional()

Parameters
struct device * dev GPIO consumer

const char * con_id function within the GPIO consumer

unsigned int index index of the GPIO to obtain in the consumer

enum gpiod_flags flags optional GPIO initialization flags

Description
Managed gpiod_get_index_optional(). GPIO descriptors returned
from this function are automatically disposed on driver detach. See
gpiod_get_index_optional() for detailed information about behavior and
return values.

struct gpio_descs * devm_gpiod_get_array(struct device * dev, const
char * con_id, enum
gpiod_flags flags)

Resource-managed gpiod_get_array()

Parameters
struct device * dev GPIO consumer

51.12. Device-managed API 1627

Linux Driver-api Documentation

const char * con_id function within the GPIO consumer

enum gpiod_flags flags optional GPIO initialization flags

Description
Managed gpiod_get_array(). GPIO descriptors returned from this function are
automatically disposed on driver detach. See gpiod_get_array() for detailed in-
formation about behavior and return values.

struct gpio_descs * devm_gpiod_get_array_optional(struct device
* dev, const char
* con_id, enum
gpiod_flags flags)

Resource-managed gpiod_get_array_optional()

Parameters
struct device * dev GPIO consumer

const char * con_id function within the GPIO consumer

enum gpiod_flags flags optional GPIO initialization flags

Description
Managed gpiod_get_array_optional(). GPIO descriptors returned
from this function are automatically disposed on driver detach. See
gpiod_get_array_optional() for detailed information about behavior and
return values.

void devm_gpiod_put(struct device * dev, struct gpio_desc * desc)
Resource-managed gpiod_put()

Parameters
struct device * dev GPIO consumer

struct gpio_desc * desc GPIO descriptor to dispose of

Description
Dispose of a GPIO descriptor obtained with devm_gpiod_get() or
devm_gpiod_get_index(). Normally this function will not be called as the
GPIO will be disposed of by the resource management code.

void devm_gpiod_unhinge(struct device * dev, struct gpio_desc * desc)
Remove resource management from a gpio descriptor

Parameters
struct device * dev GPIO consumer

struct gpio_desc * desc GPIO descriptor to remove resource management
from

Description
Remove resource management from a GPIO descriptor. This is needed when you
want to hand over lifecycle management of a descriptor to another mechanism.

void devm_gpiod_put_array(struct device * dev, struct gpio_descs * descs)
Resource-managed gpiod_put_array()

1628 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

Parameters
struct device * dev GPIO consumer

struct gpio_descs * descs GPIO descriptor array to dispose of

Description
Dispose of an array of GPIO descriptors obtained with devm_gpiod_get_array().
Normally this function will not be called as the GPIOs will be disposed of by the
resource management code.

int devm_gpio_request(struct device * dev, unsigned gpio, const char
* label)

request a GPIO for a managed device

Parameters
struct device * dev device to request the GPIO for

unsigned gpio GPIO to allocate

const char * label the name of the requested GPIO

Except for the extra dev argument, this function takes the same arguments
and performs the same function as gpio_request(). GPIOs requested with this
function will be automatically freed on driver detach.

If an GPIO allocated with this function needs to be freed separately,
devm_gpio_free() must be used.

int devm_gpio_request_one(struct device * dev, unsigned gpio, unsigned
long flags, const char * label)

request a single GPIO with initial setup

Parameters
struct device * dev device to request for

unsigned gpio the GPIO number

unsigned long flags GPIO configuration as specified by GPIOF_*

const char * label a literal description string of this GPIO

void devm_gpio_free(struct device * dev, unsigned int gpio)
free a GPIO

Parameters
struct device * dev device to free GPIO for

unsigned int gpio GPIO to free

Except for the extra dev argument, this function takes the same argu-
ments and performs the same function as gpio_free(). This function in-
stead of gpio_free() should be used to manually free GPIOs allocated with
devm_gpio_request().

int devm_gpiochip_add_data(struct device * dev, struct gpio_chip * gc, void
* data)

Resource managed gpiochip_add_data()

Parameters

51.12. Device-managed API 1629

Linux Driver-api Documentation

struct device * dev pointer to the device that gpio_chip belongs to.

struct gpio_chip * gc the GPIO chip to register

void * data driver-private data associated with this chip

Context
potentially before irqs will work

Description
The gpio chip automatically be released when the device is unbound.

Return
A negative errno if the chip can’t be registered, such as because the gc->base is
invalid or already associated with a different chip. Otherwise it returns zero as a
success code.

51.13 sysfs helpers

int gpiod_export(struct gpio_desc * desc, bool direction_may_change)
export a GPIO through sysfs

Parameters
struct gpio_desc * desc GPIO to make available, already requested

bool direction_may_change true if userspace may change GPIO direction

Context
arch_initcall or later

Description
When drivers want to make a GPIO accessible to userspace after they have re-
quested it – perhaps while debugging, or as part of their public interface – they
may use this routine. If the GPIO can change direction (some can’t) and the
caller allows it, userspace will see“direction”sysfs attribute which may be used
to change the gpio’s direction. A “value”attribute will always be provided.
Returns zero on success, else an error.

int gpiod_export_link(struct device * dev, const char * name, struct
gpio_desc * desc)

create a sysfs link to an exported GPIO node

Parameters
struct device * dev device under which to create symlink

const char * name name of the symlink

struct gpio_desc * desc GPIO to create symlink to, already exported

Description
Set up a symlink from /sys/⋯/dev/name to /sys/class/gpio/gpioN node. Caller is
responsible for unlinking.

1630 Chapter 51. General Purpose Input/Output (GPIO)

Linux Driver-api Documentation

Returns zero on success, else an error.

void gpiod_unexport(struct gpio_desc * desc)
reverse effect of gpiod_export()

Parameters
struct gpio_desc * desc GPIO to make unavailable

Description
This is implicit on gpiod_free().

51.13. sysfs helpers 1631

Linux Driver-api Documentation

1632 Chapter 51. General Purpose Input/Output (GPIO)

CHAPTER

FIFTYTWO

RAID

52.1 MD Cluster

The cluster MD is a shared-device RAID for a cluster, it supports two levels: raid1
and raid10 (limited support).

52.1.1 1. On-disk format

Separate write-intent-bitmaps are used for each cluster node. The bitmaps record
all writes that may have been started on that node, and may not yet have finished.
The on-disk layout is:

0 4k 8k 12k

idle	md super	bm super [0] + bits
bm bits[0, contd]	bm super[1] + bits	bm bits[1, contd]
bm super[2] + bits	bm bits [2, contd]	bm super[3] + bits
bm bits [3, contd]		

During“normal”functioning we assume the filesystem ensures that only one node
writes to any given block at a time, so a write request will

• set the appropriate bit (if not already set)

• commit the write to all mirrors

• schedule the bit to be cleared after a timeout.

Reads are just handled normally. It is up to the filesystem to ensure one node
doesn’t read from a location where another node (or the same node) is writing.

52.1.2 2. DLM Locks for management

There are three groups of locks for managing the device:

1633

Linux Driver-api Documentation

2.1 Bitmap lock resource (bm_lockres)

The bm_lockres protects individual node bitmaps. They are named in
the form bitmap000 for node 1, bitmap001 for node 2 and so on. When
a node joins the cluster, it acquires the lock in PW mode and it stays
so during the lifetime the node is part of the cluster. The lock resource
number is based on the slot number returned by the DLM subsystem.
Since DLM starts node count from one and bitmap slots start from zero,
one is subtracted from the DLM slot number to arrive at the bitmap slot
number.

The LVB of the bitmap lock for a particular node records the range of
sectors that are being re-synced by that node. No other node may write
to those sectors. This is used when a new nodes joins the cluster.

2.2 Message passing locks

Each node has to communicate with other nodes when starting or ending
resync, and for metadata superblock updates. This communication is
managed through three locks:“token”,“message”, and“ack”, together
with the Lock Value Block (LVB) of one of the “message”lock.

2.3 new-device management

A single lock: “no-new-dev”is used to co-ordinate the addition of new
devices - this must be synchronized across the array. Normally all nodes
hold a concurrent-read lock on this device.

52.1.3 3. Communication

Messages can be broadcast to all nodes, and the sender waits for all
other nodes to acknowledge the message before proceeding. Only one
message can be processed at a time.

3.1 Message Types

There are six types of messages which are passed:

3.1.1 METADATA_UPDATED

informs other nodes that the metadata has been updated, and the node
must re-read the md superblock. This is performed synchronously. It is
primarily used to signal device failure.

1634 Chapter 52. RAID

Linux Driver-api Documentation

3.1.2 RESYNCING

informs other nodes that a resync is initiated or ended so that each node
may suspend or resume the region. Each RESYNCING message identi-
fies a range of the devices that the sending node is about to resync. This
overrides any previous notification from that node: only one ranged can
be resynced at a time per-node.

3.1.3 NEWDISK

informs other nodes that a device is being added to the array. Message
contains an identifier for that device. See below for further details.

3.1.4 REMOVE

A failed or spare device is being removed from the array. The
slot-number of the device is included in the message.

3.1.5 RE_ADD:

A failed device is being re-activated - the assumption is that it
has been determined to be working again.

3.1.6 BITMAP_NEEDS_SYNC:

If a node is stopped locally but the bitmap isn’t clean, then
another node is informed to take the ownership of resync.

3.2 Communication mechanism

The DLM LVB is used to communicate within nodes of the cluster. There
are three resources used for the purpose:

3.2.1 token

The resourcewhich protects the entire communication system. The node
having the token resource is allowed to communicate.

3.2.2 message

The lock resource which carries the data to communicate.

52.1. MD Cluster 1635

Linux Driver-api Documentation

3.2.3 ack

The resource, acquiring which means the message has been acknowl-
edged by all nodes in the cluster. The BAST of the resource is used to
inform the receiving node that a node wants to communicate.

The algorithm is:

1. receive status - all nodes have concurrent-reader lock on “ack”:
sender receiver receiver
"ack":CR "ack":CR "ack":CR

2. sender get EX on “token”, sender get EX on “message”:
sender receiver receiver
"token":EX "ack":CR "ack":CR
"message":EX
"ack":CR

Sender checks that it still needs to send a message. Messages received or
other events that happened while waiting for the“token”may have made this
message inappropriate or redundant.

3. sender writes LVB

sender down-convert “message”from EX to CW

sender try to get EX of “ack”
[wait until all receivers have *processed* the "message"]

[triggered by bast of "ack"]
receiver get CR on "message"
receiver read LVB
receiver processes the message
[wait finish]
receiver releases "ack"
receiver tries to get PR on "message

↪→"

sender receiver receiver
"token":EX "message":CR "message":CR
"message":CW
"ack":EX

4. triggered by grant of EX on “ack”(indicating all receivers have processed
message)

sender down-converts “ack”from EX to CR

sender releases “message”
sender releases “token”

receiver upconvert to PR on "message"
receiver get CR of "ack"
receiver release "message"

(continues on next page)

1636 Chapter 52. RAID

Linux Driver-api Documentation

(continued from previous page)

sender receiver receiver
"ack":CR "ack":CR "ack":CR

52.1.4 4. Handling Failures

4.1 Node Failure

When a node fails, the DLM informs the cluster with the slot number.
The node starts a cluster recovery thread. The cluster recovery thread:

• acquires the bitmap<number> lock of the failed node

• opens the bitmap

• reads the bitmap of the failed node

• copies the set bitmap to local node

• cleans the bitmap of the failed node

• releases bitmap<number> lock of the failed node

• initiates resync of the bitmap on the current node
md_check_recovery is invoked within recover_bitmaps, then
md_check_recovery -> metadata_update_start/finish, it will lock
the communication by lock_comm. Which means when one node is
resyncing it blocks all other nodes from writing anywhere on the
array.

The resync process is the regular md resync. However, in a clustered
environment when a resync is performed, it needs to tell other nodes of
the areas which are suspended. Before a resync starts, the node send
out RESYNCING with the (lo,hi) range of the area which needs to be
suspended. Each node maintains a suspend_list, which contains the list
of ranges which are currently suspended. On receiving RESYNCING,
the node adds the range to the suspend_list. Similarly, when the node
performing resync finishes, it sends RESYNCING with an empty range
to other nodes and other nodes remove the corresponding entry from
the suspend_list.

A helper function, ->area_resyncing() can be used to check if a particular
I/O range should be suspended or not.

52.1. MD Cluster 1637

Linux Driver-api Documentation

52.1.5 4.2 Device Failure

Device failures are handled and communicated with the metadata up-
date routine. When a node detects a device failure it does not allow any
further writes to that device until the failure has been acknowledged by
all other nodes.

5. Adding a new Device

For adding a new device, it is necessary that all nodes “see”the new
device to be added. For this, the following algorithm is used:

1. Node 1 issues mdadm –manage /dev/mdX –add /dev/sdYY
which issues ioctl(ADD_NEW_DISK with disc.state set to
MD_DISK_CLUSTER_ADD)

2. Node 1 sends a NEWDISK message with uuid and slot number

3. Other nodes issue kobject_uevent_env with uuid and slot number
(Steps 4,5 could be a udev rule)

4. In userspace, the node searches for the disk, perhaps using blkid -t
SUB_UUID=””

5. Other nodes issue either of the following depending on whether
the disk was found: ioctl(ADD_NEW_DISK with disc.state set
to MD_DISK_CANDIDATE and disc.number set to slot number)
ioctl(CLUSTERED_DISK_NACK)

6. Other nodes drop lock on “no-new-devs”(CR) if device is found
7. Node 1 attempts EX lock on “no-new-dev”
8. If node 1 gets the lock, it sendsMETADATA_UPDATED after unmark-
ing the disk as SpareLocal

9. If not (get“no-new-dev”lock), it fails the operation and sends META-
DATA_UPDATED.

10. Other nodes get the information whether a disk is added or not by
the following METADATA_UPDATED.

52.1.6 6. Module interface

There are 17 call-backs which the md core can make to the cluster mod-
ule. Understanding these can give a good overview of the whole process.

1638 Chapter 52. RAID

Linux Driver-api Documentation

6.1 join(nodes) and leave()

These are called when an array is started with a clustered bitmap, and
when the array is stopped. join() ensures the cluster is available and
initializes the various resources. Only the first ‘nodes’nodes in the
cluster can use the array.

6.2 slot_number()

Reports the slot number advised by the cluster infrastructure. Range is
from 0 to nodes-1.

6.3 resync_info_update()

This updates the resync range that is stored in the bitmap lock. The
starting point is updated as the resync progresses. The end point is
always the end of the array. It does not send a RESYNCING message.

6.4 resync_start(), resync_finish()

These are called when resync/recovery/reshape starts or stops. They
update the resyncing range in the bitmap lock and also send a RESYNC-
ING message. resync_start reports the whole array as resyncing,
resync_finish reports none of it.

resync_finish() also sends a BITMAP_NEEDS_SYNC message which al-
lows some other node to take over.

6.5 metadata_update_start(), metadata_update_finish(), meta-
data_update_cancel()

metadata_update_start is used to get exclusive access to the meta-
data. If a change is still needed once that access is gained, meta-
data_update_finish() will send a METADATA_UPDATE message to all
other nodes, otherwise metadata_update_cancel() can be used to release
the lock.

6.6 area_resyncing()

This combines two elements of functionality.

Firstly, it will check if any node is currently resyncing anything in a given
range of sectors. If any resync is found, then the caller will avoid writing
or read-balancing in that range.

Secondly, while node recovery is happening it reports that all areas are
resyncing for READ requests. This avoids races between the cluster-
filesystem and the cluster-RAID handling a node failure.

52.1. MD Cluster 1639

Linux Driver-api Documentation

6.7 add_new_disk_start(), add_new_disk_finish(), new_disk_ack()

These are used to manage the new-disk protocol described above. When
a new device is added, add_new_disk_start() is called before it is bound
to the array and, if that succeeds, add_new_disk_finish() is called the
device is fully added.

When a device is added in acknowledgement to a previous request, or
when the device is declared “unavailable”, new_disk_ack() is called.

6.8 remove_disk()

This is called when a spare or failed device is removed from the array.
It causes a REMOVE message to be send to other nodes.

6.9 gather_bitmaps()

This sends a RE_ADD message to all other nodes and then gathers
bitmap information from all bitmaps. This combined bitmap is then used
to recovery the re-added device.

6.10 lock_all_bitmaps() and unlock_all_bitmaps()

These are called when change bitmap to none. If a node plans to clear
the cluster raid’s bitmap, it need to make sure no other nodes are using
the raid which is achieved by lock all bitmap locks within the cluster, and
also those locks are unlocked accordingly.

52.1.7 7. Unsupported features

There are somethings which are not supported by cluster MD yet.

• change array_sectors.

52.2 RAID 4/5/6 cache

Raid 4/5/6 could include an extra disk for data cache besides normal RAID disks.
The role of RAID disks isn’t changed with the cache disk. The cache disk caches
data to the RAID disks. The cache can be in write-through (supported since 4.4) or
write-back mode (supported since 4.10). mdadm (supported since 3.4) has a new
option‘–write-journal’to create array with cache. Please refer to mdadm manual
for details. By default (RAID array starts), the cache is in write-through mode. A
user can switch it to write-back mode by:

echo "write-back" > /sys/block/md0/md/journal_mode

And switch it back to write-through mode by:

1640 Chapter 52. RAID

Linux Driver-api Documentation

echo "write-through" > /sys/block/md0/md/journal_mode

In both modes, all writes to the array will hit cache disk first. This means the cache
disk must be fast and sustainable.

52.2.1 write-through mode

This mode mainly fixes the ‘write hole’issue. For RAID 4/5/6 array, an unclean
shutdown can cause data in some stripes to not be in consistent state, eg, data
and parity don’t match. The reason is that a stripe write involves several RAID
disks and it’s possible the writes don’t hit all RAID disks yet before the unclean
shutdown. We call an array degraded if it has inconsistent data. MD tries to resync
the array to bring it back to normal state. But before the resync completes, any
system crash will expose the chance of real data corruption in the RAID array. This
problem is called ‘write hole’.
The write-through cache will cache all data on cache disk first. After the data is
safe on the cache disk, the data will be flushed onto RAID disks. The two-step
write will guarantee MD can recover correct data after unclean shutdown even
the array is degraded. Thus the cache can close the ‘write hole’.
In write-through mode, MD reports IO completion to upper layer (usually filesys-
tems) after the data is safe on RAID disks, so cache disk failure doesn’t cause
data loss. Of course cache disk failure means the array is exposed to‘write hole’
again.

In write-through mode, the cache disk isn’t required to be big. Several hundreds
megabytes are enough.

52.2.2 write-back mode

write-back mode fixes the ‘write hole’issue too, since all write data is cached
on cache disk. But the main goal of ‘write-back’cache is to speed up write. If
a write crosses all RAID disks of a stripe, we call it full-stripe write. For non-
full-stripe writes, MD must read old data before the new parity can be calculated.
These synchronous reads hurt write throughput. Somewrites which are sequential
but not dispatched in the same time will suffer from this overhead too. Write-
back cache will aggregate the data and flush the data to RAID disks only after the
data becomes a full stripe write. This will completely avoid the overhead, so it’s
very helpful for some workloads. A typical workload which does sequential write
followed by fsync is an example.

In write-back mode, MD reports IO completion to upper layer (usually filesystems)
right after the data hits cache disk. The data is flushed to raid disks later after
specific conditions met. So cache disk failure will cause data loss.

In write-back mode, MD also caches data in memory. The memory cache includes
the same data stored on cache disk, so a power loss doesn’t cause data loss. The
memory cache size has performance impact for the array. It’s recommended the
size is big. A user can configure the size by:

52.2. RAID 4/5/6 cache 1641

Linux Driver-api Documentation

echo "2048" > /sys/block/md0/md/stripe_cache_size

Too small cache disk will make the write aggregation less efficient in this mode
depending on the workloads. It’s recommended to use a cache disk with at least
several gigabytes size in write-back mode.

52.2.3 The implementation

The write-through and write-back cache use the same disk format. The cache disk
is organized as a simple write log. The log consists of‘meta data’and‘data’pairs.
The meta data describes the data. It also includes checksum and sequence ID for
recovery identification. Data can be IO data and parity data. Data is checksumed
too. The checksum is stored in the meta data ahead of the data. The checksum is
an optimization because MD can write meta and data freely without worry about
the order. MD superblock has a field pointed to the valid meta data of log head.

The log implementation is pretty straightforward. The difficult part is the order in
which MD writes data to cache disk and RAID disks. Specifically, in write-through
mode, MD calculates parity for IO data, writes both IO data and parity to the log,
writes the data and parity to RAID disks after the data and parity is settled down
in log and finally the IO is finished. Read just reads from raid disks as usual.

In write-back mode, MD writes IO data to the log and reports IO completion. The
data is also fully cached in memory at that time, which means read must query
memory cache. If some conditions are met, MD will flush the data to RAID disks.
MD will calculate parity for the data and write parity into the log. After this is
finished, MD will write both data and parity into RAID disks, then MD can release
the memory cache. The flush conditions could be stripe becomes a full stripe write,
free cache disk space is low or free in-kernel memory cache space is low.

After an unclean shutdown, MD does recovery. MD reads all meta data and data
from the log. The sequence ID and checksum will help us detect corrupted meta
data and data. If MD finds a stripe with data and valid parities (1 parity for raid4/5
and 2 for raid6), MD will write the data and parities to RAID disks. If parities are
incompleted, they are discarded. If part of data is corrupted, they are discarded
too. MD then loads valid data and writes them to RAID disks in normal way.

52.3 Partial Parity Log

Partial Parity Log (PPL) is a feature available for RAID5 arrays. The issue ad-
dressed by PPL is that after a dirty shutdown, parity of a particular stripe may
become inconsistent with data on other member disks. If the array is also in de-
graded state, there is no way to recalculate parity, because one of the disks is
missing. This can lead to silent data corruption when rebuilding the array or us-
ing it is as degraded - data calculated from parity for array blocks that have not
been touched by a write request during the unclean shutdown can be incorrect.
Such condition is known as the RAID5 Write Hole. Because of this, md by default
does not allow starting a dirty degraded array.

Partial parity for a write operation is the XOR of stripe data chunks not modified by
this write. It is just enough data needed for recovering from thewrite hole. XORing

1642 Chapter 52. RAID

Linux Driver-api Documentation

partial parity with the modified chunks produces parity for the stripe, consistent
with its state before the write operation, regardless of which chunk writes have
completed. If one of the not modified data disks of this stripe is missing, this up-
dated parity can be used to recover its contents. PPL recovery is also performed
when starting an array after an unclean shutdown and all disks are available, elim-
inating the need to resync the array. Because of this, using write-intent bitmap
and PPL together is not supported.

When handling a write request PPLwrites partial parity before new data and parity
are dispatched to disks. PPL is a distributed log - it is stored on array member
drives in the metadata area, on the parity drive of a particular stripe. It does not
require a dedicated journaling drive. Write performance is reduced by up to 30%-
40% but it scales with the number of drives in the array and the journaling drive
does not become a bottleneck or a single point of failure.

Unlike raid5-cache, the other solution in md for closing the write hole, PPL is not
a true journal. It does not protect from losing in-flight data, only from silent data
corruption. If a dirty disk of a stripe is lost, no PPL recovery is performed for this
stripe (parity is not updated). So it is possible to have arbitrary data in the written
part of a stripe if that disk is lost. In such case the behavior is the same as in plain
raid5.

PPL is available for md version-1 metadata and external (specifically IMSM) meta-
data arrays. It can be enabled using mdadm option –consistency-policy=ppl.

There is a limitation of maximum 64 disks in the array for PPL. It allows to keep
data structures and implementation simple. RAID5 arrays with so many disks are
not likely due to high risk of multiple disks failure. Such restriction should not be
a real life limitation.

52.3. Partial Parity Log 1643

Linux Driver-api Documentation

1644 Chapter 52. RAID

CHAPTER

FIFTYTHREE

MEDIA SUBSYSTEM KERNEL INTERNAL API

This section contains usage information about media subsystem and its supported
drivers.

Please see:

• /admin-guide/media/index for usage information about media subsystem
and supported drivers;

• /userspace-api/media/index for the userspace APIs used on media devices.

53.1 Video4Linux devices

53.1.1 Introduction

The V4L2 drivers tend to be very complex due to the complexity of the hardware:
most devices have multiple ICs, export multiple device nodes in /dev, and create
also non-V4L2 devices such as DVB, ALSA, FB, I2C and input (IR) devices.

Especially the fact that V4L2 drivers have to setup supporting ICs to do audio/video
muxing/encoding/decoding makes it more complex than most. Usually these ICs
are connected to the main bridge driver through one or more I2C buses, but other
buses can also be used. Such devices are called ‘sub-devices’.
For a long time the framework was limited to the video_device struct for creat-
ing V4L device nodes and video_buf for handling the video buffers (note that this
document does not discuss the video_buf framework).

This meant that all drivers had to do the setup of device instances and connecting
to sub-devices themselves. Some of this is quite complicated to do right and many
drivers never did do it correctly.

There is also a lot of common code that could never be refactored due to the lack
of a framework.

So this framework sets up the basic building blocks that all drivers need and this
same framework should make it much easier to refactor common code into utility
functions shared by all drivers.

A good example to look at as a reference is the v4l2-pci-skeleton.c source that
is available in samples/v4l/. It is a skeleton driver for a PCI capture card, and
demonstrates how to use the V4L2 driver framework. It can be used as a template
for real PCI video capture driver.

1645

Linux Driver-api Documentation

53.1.2 Structure of a V4L driver

All drivers have the following structure:

1) A struct for each device instance containing the device state.

2) A way of initializing and commanding sub-devices (if any).

3) Creating V4L2 device nodes (/dev/videoX, /dev/vbiX and /dev/radioX) and
keeping track of device-node specific data.

4) Filehandle-specific structs containing per-filehandle data;

5) video buffer handling.

This is a rough schematic of how it all relates:

device instances
|
+-sub-device instances
|
\-V4L2 device nodes

|
\-filehandle instances

53.1.3 Structure of the V4L2 framework

The framework closely resembles the driver structure: it has a v4l2_device struct
for the device instance data, a v4l2_subdev struct to refer to sub-device instances,
the video_device struct stores V4L2 device node data and the v4l2_fh struct keeps
track of filehandle instances.

The V4L2 framework also optionally integrates with the media framework. If a
driver sets the struct v4l2_device mdev field, sub-devices and video nodes will
automatically appear in the media framework as entities.

53.1.4 Video device’s internal representation

The actual device nodes in the /dev directory are created using the video_device
struct (v4l2-dev.h). This struct can either be allocated dynamically or embedded
in a larger struct.

To allocate it dynamically use video_device_alloc():

struct video_device *vdev = video_device_alloc();

if (vdev == NULL)
return -ENOMEM;

vdev->release = video_device_release;

If you embed it in a larger struct, then you must set the release() callback to your
own function:

1646 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct video_device *vdev = &my_vdev->vdev;

vdev->release = my_vdev_release;

The release() callback must be set and it is called when the last user of the video
device exits.

The default video_device_release() callback currently just calls kfree to free
the allocated memory.

There is also a video_device_release_empty() function that does nothing (is
empty) and should be used if the struct is embedded and there is nothing to do
when it is released.

You should also set these fields of video_device:

• video_device->v4l2_dev: must be set to the v4l2_device parent device.

• video_device->name: set to something descriptive and unique.

• video_device->vfl_dir: set this to VFL_DIR_RX for capture devices
(VFL_DIR_RX has value 0, so this is normally already the default), set to
VFL_DIR_TX for output devices and VFL_DIR_M2M for mem2mem (codec) de-
vices.

• video_device->fops: set to the v4l2_file_operations struct.

• video_device->ioctl_ops: if you use the v4l2_ioctl_ops to simplify ioctl
maintenance (highly recommended to use this and it might become com-
pulsory in the future!), then set this to your v4l2_ioctl_ops struct. The
video_device->vfl_type and video_device->vfl_dir fields are used to disable
ops that do not match the type/dir combination. E.g. VBI ops are disabled for
non-VBI nodes, and output ops are disabled for a capture device. This makes
it possible to provide just one v4l2_ioctl_ops struct for both vbi and video
nodes.

• video_device->lock: leave to NULL if you want to do all the locking in the
driver. Otherwise you give it a pointer to a struct mutex_lock and before the
video_device->unlocked_ioctl file operation is called this lock will be taken
by the core and released afterwards. See the next section for more details.

• video_device->queue: a pointer to the struct vb2_queue associated with this
device node. If queue is not NULL, and queue->lock is not NULL, then queue-
>lock is used for the queuing ioctls (VIDIOC_REQBUFS, CREATE_BUFS, QBUF,
DQBUF, QUERYBUF, PREPARE_BUF, STREAMON and STREAMOFF) instead of the lock
above. That way the vb2 queuing framework does not have to wait for other
ioctls. This queue pointer is also used by the vb2 helper functions to check
for queuing ownership (i.e. is the filehandle calling it allowed to do the oper-
ation).

• video_device->prio: keeps track of the priorities. Used to implement
VIDIOC_G_PRIORITY and VIDIOC_S_PRIORITY. If left to NULL, then it will use
the struct v4l2_prio_state in v4l2_device. If you want to have a separate
priority state per (group of) device node(s), then you can point it to your own
struct v4l2_prio_state.

53.1. Video4Linux devices 1647

Linux Driver-api Documentation

• video_device->dev_parent: you only set this if v4l2_device was registered
with NULL as the parent device struct. This only happens in cases where
one hardware device has multiple PCI devices that all share the same
v4l2_device core.

The cx88 driver is an example of this: one core v4l2_device struct, but it
is used by both a raw video PCI device (cx8800) and a MPEG PCI device
(cx8802). Since the v4l2_device cannot be associated with two PCI devices
at the same time it is setup without a parent device. But when the struct
video_device is initialized you do know which parent PCI device to use and
so you set dev_device to the correct PCI device.

If you use v4l2_ioctl_ops, then you should set video_device->unlocked_ioctl to
video_ioctl2() in your v4l2_file_operations struct.

In some cases you want to tell the core that a function you had specified in your
v4l2_ioctl_ops should be ignored. You can mark such ioctls by calling this func-
tion before video_register_device() is called:

v4l2_disable_ioctl (vdev, cmd).

This tends to be needed if based on external factors (e.g. which card is being used)
you want to turns off certain features in v4l2_ioctl_ops without having to make
a new struct.

The v4l2_file_operations struct is a subset of file_operations. The main differ-
ence is that the inode argument is omitted since it is never used.

If integration with the media framework is needed, you must initialize the
media_entity struct embedded in the video_device struct (entity field) by calling
media_entity_pads_init():

struct media_pad *pad = &my_vdev->pad;
int err;

err = media_entity_pads_init(&vdev->entity, 1, pad);

The pads array must have been previously initialized. There is no need to manually
set the struct media_entity type and name fields.

A reference to the entity will be automatically acquired/released when the video
device is opened/closed.

ioctls and locking

The V4L core provides optional locking services. The main service is the lock field
in struct video_device, which is a pointer to a mutex. If you set this pointer, then
that will be used by unlocked_ioctl to serialize all ioctls.

If you are using the videobuf2 framework, then there is a second lock that you
can set: video_device->queue->lock. If set, then this lock will be used instead
of video_device->lock to serialize all queuing ioctls (see the previous section for
the full list of those ioctls).

The advantage of using a different lock for the queuing ioctls is that for some
drivers (particularly USB drivers) certain commands such as setting controls can

1648 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

take a long time, so you want to use a separate lock for the buffer queuing ioctls.
That way your VIDIOC_DQBUF doesn’t stall because the driver is busy changing
the e.g. exposure of the webcam.

Of course, you can always do all the locking yourself by leaving both lock pointers
at NULL.

If you use the old videobuf framework then you must pass the video_device->lock
to the videobuf queue initialize function: if videobuf has to wait for a frame to
arrive, then it will temporarily unlock the lock and relock it afterwards. If your
driver also waits in the code, then you should do the same to allow other processes
to access the device node while the first process is waiting for something.

In the case of videobuf2 you will need to implement the wait_prepare() and
wait_finish() callbacks to unlock/lock if applicable. If you use the queue->lock
pointer, then you can use the helper functions vb2_ops_wait_prepare() and
vb2_ops_wait_finish().

The implementation of a hotplug disconnect should also take the lock from
video_device before calling v4l2_device_disconnect. If you are also using
video_device->queue->lock, then you have to first lock video_device->queue-
>lock followed by video_device->lock. That way you can be sure no ioctl is run-
ning when you call v4l2_device_disconnect().

Video device registration

Next you register the video device with video_register_device(). This will cre-
ate the character device for you.

err = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (err) {

video_device_release(vdev); /* or kfree(my_vdev); */
return err;

}

If the v4l2_device parent device has a not NULLmdev field, the video device entity
will be automatically registered with the media device.

Which device is registered depends on the type argument. The following types
exist:

vfl_devnode_typeDevice name Usage
VFL_TYPE_VIDEO /dev/videoX for video input/output devices
VFL_TYPE_VBI /dev/vbiX for vertical blank data (i.e. closed captions,

teletext)
VFL_TYPE_RADIO /dev/radioX for radio tuners
VFL_TYPE_SUBDEV/dev/

v4l-subdevX
for V4L2 subdevices

VFL_TYPE_SDR /dev/swradioX for Software Defined Radio (SDR) tuners
VFL_TYPE_TOUCH /dev/

v4l-touchX
for touch sensors

The last argument gives you a certain amount of control over the device device
node number used (i.e. the X in videoX). Normally you will pass -1 to let the

53.1. Video4Linux devices 1649

Linux Driver-api Documentation

v4l2 framework pick the first free number. But sometimes users want to select a
specific node number. It is common that drivers allow the user to select a specific
device node number through a driver module option. That number is then passed
to this function and video_register_device will attempt to select that device node
number. If that number was already in use, then the next free device node number
will be selected and it will send a warning to the kernel log.

Another use-case is if a driver creates many devices. In that case it can be useful
to place different video devices in separate ranges. For example, video capture
devices start at 0, video output devices start at 16. So you can use the last argu-
ment to specify a minimum device node number and the v4l2 framework will try
to pick the first free number that is equal or higher to what you passed. If that
fails, then it will just pick the first free number.

Since in this case you do not care about a warning about not being
able to select the specified device node number, you can call the function
video_register_device_no_warn() instead.

Whenever a device node is created some attributes are also created for you. If you
look in /sys/class/video4linux you see the devices. Go into e.g. video0 and you
will see‘name’,‘dev_debug’and‘index’attributes. The‘name’attribute is the
‘name’field of the video_device struct. The ‘dev_debug’attribute can be used
to enable core debugging. See the next section for more detailed information on
this.

The ‘index’attribute is the index of the device node: for each call to
video_register_device() the index is just increased by 1. The first video de-
vice node you register always starts with index 0.

Users can setup udev rules that utilize the index attribute to make fancy device
names (e.g. ‘mpegX’for MPEG video capture device nodes).
After the device was successfully registered, then you can use these fields:

• video_device->vfl_type: the device type passed to
video_register_device().

• video_device->minor: the assigned device minor number.

• video_device->num: the device node number (i.e. the X in videoX).

• video_device->index: the device index number.

If the registration failed, then you need to call video_device_release() to free
the allocated video_device struct, or free your own struct if the video_device
was embedded in it. The vdev->release() callback will never be called if the
registration failed, nor should you ever attempt to unregister the device if the
registration failed.

1650 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

video device debugging

The ‘dev_debug’attribute that is created for each video, vbi, radio or swradio
device in /sys/class/video4linux/<devX>/ allows you to enable logging of file
operations.

It is a bitmask and the following bits can be set:

Mask Description
0x01 Log the ioctl name and error code. VIDIOC_(D)QBUF ioctls are only

logged if bit 0x08 is also set.
0x02 Log the ioctl name arguments and error code. VIDIOC_(D)QBUF ioctls

are only logged if bit 0x08 is also set.
0x04 Log the file operations open, release, read, write, mmap and

get_unmapped_area. The read and write operations are only logged if bit
0x08 is also set.

0x08 Log the read and write file operations and the VIDIOC_QBUF and
VIDIOC_DQBUF ioctls.

0x10 Log the poll file operation.
0x20 Log error and messages in the control operations.

Video device cleanup

When the video device nodes have to be removed, either during the unload of the
driver or because the USB device was disconnected, then you should unregister
them with:

video_unregister_device() (vdev);

This will remove the device nodes from sysfs (causing udev to remove them from
/dev).

After video_unregister_device() returns no new opens can be done. However,
in the case of USB devices some application might still have one of these device
nodes open. So after the unregister all file operations (except release, of course)
will return an error as well.

When the last user of the video device node exits, then the vdev->release() call-
back is called and you can do the final cleanup there.

Don’t forget to cleanup the media entity associated with the video device if it has
been initialized:

media_entity_cleanup (&vdev->entity);

This can be done from the release callback.

53.1. Video4Linux devices 1651

Linux Driver-api Documentation

helper functions

There are a few useful helper functions:

• file and video_device private data

You can set/get driver private data in the video_device struct using:

video_get_drvdata (vdev);

video_set_drvdata (vdev);

Note that you can safely call video_set_drvdata() before calling
video_register_device().

And this function:

video_devdata (struct file *file);

returns the video_device belonging to the file struct.

The video_devdata() function combines video_get_drvdata() with
video_devdata():

video_drvdata (struct file *file);

You can go from a video_device struct to the v4l2_device struct using:

struct v4l2_device *v4l2_dev = vdev->v4l2_dev;

• Device node name

The video_device node kernel name can be retrieved using:

video_device_node_name (vdev);

The name is used as a hint by userspace tools such as udev. The function
should be used where possible instead of accessing the video_device::num and
video_device::minor fields.

video_device functions and data structures

enum vfl_devnode_type
type of V4L2 device node

Constants
VFL_TYPE_VIDEO for video input/output devices

VFL_TYPE_VBI for vertical blank data (i.e. closed captions, teletext)

VFL_TYPE_RADIO for radio tuners

VFL_TYPE_SUBDEV for V4L2 subdevices

VFL_TYPE_SDR for Software Defined Radio tuners

VFL_TYPE_TOUCH for touch sensors

VFL_TYPE_MAX number of VFL types, must always be last in the enum

1652 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

enum vfl_devnode_direction
Identifies if a struct video_device corresponds to a receiver, a transmitter
or a mem-to-mem device.

Constants
VFL_DIR_RX device is a receiver.

VFL_DIR_TX device is a transmitter.

VFL_DIR_M2M device is a memory to memory device.

Note
Ignored if enum vfl_devnode_type is VFL_TYPE_SUBDEV.

enum v4l2_video_device_flags
Flags used by struct video_device

Constants
V4L2_FL_REGISTERED indicates that a struct video_device is registered.

Drivers can clear this flag if they want to block all future device access. It is
cleared by video_unregister_device.

V4L2_FL_USES_V4L2_FH indicates that file->private_data points to struct
v4l2_fh. This flag is set by the core when v4l2_fh_init() is called. All new
drivers should use it.

V4L2_FL_QUIRK_INVERTED_CROP some old M2M drivers use g/s_crop/cropcap in-
correctly: crop and compose are swapped. If this flag is set, then the selection
targets are swapped in the g/s_crop/cropcap functions in v4l2-ioctl.c. This al-
lows those drivers to correctly implement the selection API, but the old crop
API will still work as expected in order to preserve backwards compatibility.
Never set this flag for new drivers.

V4L2_FL_SUBDEV_RO_DEVNODE indicates that the video device node is registered
in read-only mode. The flag only applies to device nodes registered for sub-
devices, it is set by the core when the sub-devices device nodes are regis-
tered with v4l2_device_register_ro_subdev_nodes() and used by the sub-
device ioctl handler to restrict access to some ioctl calls.

struct v4l2_prio_state
stores the priority states

Definition

struct v4l2_prio_state {
atomic_t prios[4];

};

Members
prios array with elements to store the array priorities

Description

Note: The size of prios array matches the number of priority types defined by

53.1. Video4Linux devices 1653

Linux Driver-api Documentation

enum v4l2_priority.

void v4l2_prio_init(struct v4l2_prio_state * global)
initializes a struct v4l2_prio_state

Parameters
struct v4l2_prio_state * global pointer to struct v4l2_prio_state

int v4l2_prio_change(struct v4l2_prio_state * global, enum v4l2_priority
* local, enum v4l2_priority new)

changes the v4l2 file handler priority

Parameters
struct v4l2_prio_state * global pointer to the struct v4l2_prio_state of

the device node.

enum v4l2_priority * local pointer to the desired priority, as defined by enum
v4l2_priority

enum v4l2_priority new Priority type requested, as defined by enum
v4l2_priority.

Description

Note: This function should be used only by the V4L2 core.

void v4l2_prio_open(struct v4l2_prio_state * global, enum v4l2_priority
* local)

Implements the priority logic for a file handler open

Parameters
struct v4l2_prio_state * global pointer to the struct v4l2_prio_state of

the device node.

enum v4l2_priority * local pointer to the desired priority, as defined by enum
v4l2_priority

Description

Note: This function should be used only by the V4L2 core.

void v4l2_prio_close(struct v4l2_prio_state * global, enum
v4l2_priority local)

Implements the priority logic for a file handler close

Parameters
struct v4l2_prio_state * global pointer to the struct v4l2_prio_state of

the device node.

enum v4l2_priority local priority to be released, as defined by enum
v4l2_priority

1654 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description

Note: This function should be used only by the V4L2 core.

enum v4l2_priority v4l2_prio_max(struct v4l2_prio_state * global)
Return the maximum priority, as stored at the global array.

Parameters
struct v4l2_prio_state * global pointer to the struct v4l2_prio_state of

the device node.

Description

Note: This function should be used only by the V4L2 core.

int v4l2_prio_check(struct v4l2_prio_state * global, enum
v4l2_priority local)

Implements the priority logic for a file handler close

Parameters
struct v4l2_prio_state * global pointer to the struct v4l2_prio_state of

the device node.

enum v4l2_priority local desired priority, as defined by enum v4l2_priority
local

Description

Note: This function should be used only by the V4L2 core.

struct v4l2_file_operations
fs operations used by a V4L2 device

Definition

struct v4l2_file_operations {
struct module *owner;
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
__poll_t (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);

#ifdef CONFIG_COMPAT;
long (*compat_ioctl32) (struct file *, unsigned int, unsigned long);

#endif;
unsigned long (*get_unmapped_area) (struct file *, unsigned long,␣

↪→unsigned long, unsigned long, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct file *);
int (*release) (struct file *);

};

Members

53.1. Video4Linux devices 1655

Linux Driver-api Documentation

owner pointer to struct module

read operations needed to implement the read() syscall

write operations needed to implement the write() syscall

poll operations needed to implement the poll() syscall

unlocked_ioctl operations needed to implement the ioctl() syscall

compat_ioctl32 operations needed to implement the ioctl() syscall for the special
case where the Kernel uses 64 bits instructions, but the userspace uses 32
bits.

get_unmapped_area called by the mmap() syscall, used when %!CONFIG_MMU

mmap operations needed to implement the mmap() syscall

open operations needed to implement the open() syscall

release operations needed to implement the release() syscall

Description

Note: Those operations are used to implemente the fs struct file_operations at
the V4L2 drivers. The V4L2 core overrides the fs ops with some extra logic needed
by the subsystem.

struct video_device
Structure used to create and manage the V4L2 device nodes.

Definition

struct video_device {
#if defined(CONFIG_MEDIA_CONTROLLER);

struct media_entity entity;
struct media_intf_devnode *intf_devnode;
struct media_pipeline pipe;

#endif;
const struct v4l2_file_operations *fops;
u32 device_caps;
struct device dev;
struct cdev *cdev;
struct v4l2_device *v4l2_dev;
struct device *dev_parent;
struct v4l2_ctrl_handler *ctrl_handler;
struct vb2_queue *queue;
struct v4l2_prio_state *prio;
char name[32];
enum vfl_devnode_type vfl_type;
enum vfl_devnode_direction vfl_dir;
int minor;
u16 num;
unsigned long flags;
int index;
spinlock_t fh_lock;
struct list_head fh_list;
int dev_debug;

(continues on next page)

1656 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
v4l2_std_id tvnorms;
void (*release)(struct video_device *vdev);
const struct v4l2_ioctl_ops *ioctl_ops;
unsigned long valid_ioctls[BITS_TO_LONGS(BASE_VIDIOC_PRIVATE)];
struct mutex *lock;

};

Members
entity struct media_entity

intf_devnode pointer to struct media_intf_devnode

pipe struct media_pipeline

fops pointer to struct v4l2_file_operations for the video device

device_caps device capabilities as used in v4l2_capabilities

dev struct device for the video device

cdev character device

v4l2_dev pointer to struct v4l2_device parent

dev_parent pointer to struct device parent

ctrl_handler Control handler associated with this device node. May be NULL.

queue struct vb2_queue associated with this device node. May be NULL.

prio pointer to struct v4l2_prio_state with device’s Priority state. If NULL,
then v4l2_dev->prio will be used.

name video device name

vfl_type V4L device type, as defined by enum vfl_devnode_type

vfl_dir V4L receiver, transmitter or m2m

minor device node ‘minor’. It is set to -1 if the registration failed
num number of the video device node

flags video device flags. Use bitops to set/clear/test flags. Contains a set of enum
v4l2_video_device_flags.

index attribute to differentiate multiple indices on one physical device

fh_lock Lock for all v4l2_fhs

fh_list List of struct v4l2_fh

dev_debug Internal device debug flags, not for use by drivers

tvnorms Supported tv norms

release video device release() callback

ioctl_ops pointer to struct v4l2_ioctl_ops with ioctl callbacks

valid_ioctls bitmap with the valid ioctls for this device

lock pointer to struct mutex serialization lock

53.1. Video4Linux devices 1657

Linux Driver-api Documentation

Description

Note: Only set dev_parent if that can’t be deduced from v4l2_dev.

media_entity_to_video_device(__entity)
Returns a struct video_device from the struct media_entity embedded
on it.

Parameters
__entity pointer to struct media_entity

to_video_device(cd)
Returns a struct video_device from the struct device embedded on it.

Parameters
cd pointer to struct device

int __video_register_device(struct video_device * vdev, enum
vfl_devnode_type type, int nr,
int warn_if_nr_in_use, struct module
* owner)

register video4linux devices

Parameters
struct video_device * vdev struct video_device to register

enum vfl_devnode_type type type of device to register, as defined by enum
vfl_devnode_type

int nr which device node number is desired: (0 == /dev/video0, 1 ==
/dev/video1, ⋯, -1 == first free)

int warn_if_nr_in_use warn if the desired device node number was already in
use and another number was chosen instead.

struct module * owner module that owns the video device node

Description
The registration code assigns minor numbers and device node numbers based on
the requested type and registers the new device node with the kernel.

This function assumes that struct video_device was zeroed when it was allocated
and does not contain any stale date.

An error is returned if no free minor or device node number could be found, or if
the registration of the device node failed.

Returns 0 on success.

Note: This function is meant to be used only inside the V4L2 core. Drivers should
use video_register_device() or video_register_device_no_warn().

1658 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

int video_register_device(struct video_device * vdev, enum
vfl_devnode_type type, int nr)

register video4linux devices

Parameters
struct video_device * vdev struct video_device to register

enum vfl_devnode_type type type of device to register, as defined by enum
vfl_devnode_type

int nr which device node number is desired: (0 == /dev/video0, 1 ==
/dev/video1, ⋯, -1 == first free)

Description
Internally, it calls __video_register_device(). Please see its documentation for
more details.

Note: if video_register_device fails, the release() callback of struct
video_device structure is not called, so the caller is responsible for freeing any
data. Usually that means that you video_device_release() should be called on
failure.

int video_register_device_no_warn(struct video_device * vdev, enum
vfl_devnode_type type, int nr)

register video4linux devices

Parameters
struct video_device * vdev struct video_device to register

enum vfl_devnode_type type type of device to register, as defined by enum
vfl_devnode_type

int nr which device node number is desired: (0 == /dev/video0, 1 ==
/dev/video1, ⋯, -1 == first free)

Description
This function is identical to video_register_device() except that no warning is
issued if the desired device node number was already in use.

Internally, it calls __video_register_device(). Please see its documentation for
more details.

Note: if video_register_device fails, the release() callback of struct
video_device structure is not called, so the caller is responsible for freeing any
data. Usually that means that you video_device_release() should be called on
failure.

void video_unregister_device(struct video_device * vdev)
Unregister video devices.

Parameters
struct video_device * vdev struct video_device to register

53.1. Video4Linux devices 1659

Linux Driver-api Documentation

Description
Does nothing if vdev == NULL or if video_is_registered() returns false.

struct video_device * video_device_alloc(void)
helper function to alloc struct video_device

Parameters
void no arguments

Description
Returns NULL if -ENOMEM or a struct video_device on success.

void video_device_release(struct video_device * vdev)
helper function to release struct video_device

Parameters
struct video_device * vdev pointer to struct video_device

Description
Can also be used for video_device->release().

void video_device_release_empty(struct video_device * vdev)
helper function to implement the video_device->release() callback.

Parameters
struct video_device * vdev pointer to struct video_device

Description
This release function does nothing.

It should be used when the video_device is a static global struct.

Note: Having a static video_device is a dubious construction at best.

void v4l2_disable_ioctl(struct video_device * vdev, unsigned int cmd)
mark that a given command isn’t implemented. shouldn’t use core locking

Parameters
struct video_device * vdev pointer to struct video_device

unsigned int cmd ioctl command

Description
This function allows drivers to provide just one v4l2_ioctl_ops struct, but disable
ioctls based on the specific card that is actually found.

Note: This must be called before video_register_device. See also the comments
for determine_valid_ioctls().

void * video_get_drvdata(struct video_device * vdev)
gets private data from struct video_device.

1660 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Parameters
struct video_device * vdev pointer to struct video_device

Description
returns a pointer to the private data

void video_set_drvdata(struct video_device * vdev, void * data)
sets private data from struct video_device.

Parameters
struct video_device * vdev pointer to struct video_device

void * data private data pointer

struct video_device * video_devdata(struct file * file)
gets struct video_device from struct file.

Parameters
struct file * file pointer to struct file

void * video_drvdata(struct file * file)
gets private data from struct video_device using the struct file.

Parameters
struct file * file pointer to struct file

Description
This is function combines both video_get_drvdata() and video_devdata() as
this is used very often.

const char * video_device_node_name(struct video_device * vdev)
returns the video device name

Parameters
struct video_device * vdev pointer to struct video_device

Description
Returns the device name string

int video_is_registered(struct video_device * vdev)
returns true if the struct video_device is registered.

Parameters
struct video_device * vdev pointer to struct video_device

Description

53.1. Video4Linux devices 1661

Linux Driver-api Documentation

53.1.5 V4L2 device instance

Each device instance is represented by a struct v4l2_device. Very simple devices
can just allocate this struct, but most of the time you would embed this struct
inside a larger struct.

You must register the device instance by calling:

v4l2_device_register (dev, v4l2_dev).

Registration will initialize the v4l2_device struct. If the dev->driver_data field is
NULL, it will be linked to v4l2_dev argument.

Drivers that want integration with the media device framework need to set dev-
>driver_data manually to point to the driver-specific device structure that em-
bed the struct v4l2_device instance. This is achieved by a dev_set_drvdata()
call before registering the V4L2 device instance. They must also set the
struct v4l2_device mdev field to point to a properly initialized and registered
media_device instance.

If v4l2_dev->name is empty then it will be set to a value derived from dev (driver
name followed by the bus_id, to be precise). If you set it up before calling
v4l2_device_register() then it will be untouched. If dev is NULL, then youmust
setup v4l2_dev->name before calling v4l2_device_register().

You can use v4l2_device_set_name() to set the name based on a driver name and
a driver-global atomic_t instance. This will generate names like ivtv0, ivtv1, etc.
If the name ends with a digit, then it will insert a dash: cx18-0, cx18-1, etc. This
function returns the instance number.

The first dev argument is normally the struct device pointer of a pci_dev,
usb_interface or platform_device. It is rare for dev to be NULL, but it happens
with ISA devices or when one device creates multiple PCI devices, thus making it
impossible to associate v4l2_dev with a particular parent.

You can also supply a notify() callback that can be called by sub-devices to no-
tify you of events. Whether you need to set this depends on the sub-device. Any
notifications a sub-device supports must be defined in a header in include/media/
subdevice.h.

V4L2 devices are unregistered by calling:

v4l2_device_unregister() (v4l2_dev).

If the dev->driver_data field points to v4l2_dev, it will be reset to NULL. Unregis-
tering will also automatically unregister all subdevs from the device.

If you have a hotpluggable device (e.g. a USB device), then when a disconnect
happens the parent device becomes invalid. Since v4l2_device has a pointer to
that parent device it has to be cleared as well to mark that the parent is gone. To
do this call:

v4l2_device_disconnect() (v4l2_dev).

This does not unregister the subdevs, so you still need to call the
v4l2_device_unregister() function for that. If your driver is not hotpluggable,
then there is no need to call v4l2_device_disconnect().

1662 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Sometimes you need to iterate over all devices registered by a specific driver. This
is usually the case if multiple device drivers use the same hardware. E.g. the ivtvfb
driver is a framebuffer driver that uses the ivtv hardware. The same is true for
alsa drivers for example.

You can iterate over all registered devices as follows:

static int callback(struct device *dev, void *p)
{

struct v4l2_device *v4l2_dev = dev_get_drvdata(dev);

/* test if this device was inited */
if (v4l2_dev == NULL)

return 0;
...
return 0;

}

int iterate(void *p)
{

struct device_driver *drv;
int err;

/* Find driver 'ivtv' on the PCI bus.
pci_bus_type is a global. For USB buses use usb_bus_type. */
drv = driver_find("ivtv", &pci_bus_type);
/* iterate over all ivtv device instances */
err = driver_for_each_device(drv, NULL, p, callback);
put_driver(drv);
return err;

}

Sometimes you need to keep a running counter of the device instance. This is
commonly used to map a device instance to an index of a module option array.

The recommended approach is as follows:

static atomic_t drv_instance = ATOMIC_INIT(0);

static int drv_probe(struct pci_dev *pdev, const struct pci_device_id *pci_
↪→id)
{

...
state->instance = atomic_inc_return(&drv_instance) - 1;

}

If you have multiple device nodes then it can be difficult to know when it
is safe to unregister v4l2_device for hotpluggable devices. For this purpose
v4l2_device has refcounting support. The refcount is increased whenever
video_register_device() is called and it is decreased whenever that device node
is released. When the refcount reaches zero, then the v4l2_device release() call-
back is called. You can do your final cleanup there.

If other device nodes (e.g. ALSA) are created, then you can increase and decrease
the refcount manually as well by calling:

v4l2_device_get() (v4l2_dev).

53.1. Video4Linux devices 1663

Linux Driver-api Documentation

or:

v4l2_device_put() (v4l2_dev).

Since the initial refcount is 1 you also need to call v4l2_device_put() in the
disconnect() callback (for USB devices) or in the remove() callback (for e.g. PCI
devices), otherwise the refcount will never reach 0.

v4l2_device functions and data structures

struct v4l2_device
main struct to for V4L2 device drivers

Definition

struct v4l2_device {
struct device *dev;
struct media_device *mdev;
struct list_head subdevs;
spinlock_t lock;
char name[V4L2_DEVICE_NAME_SIZE];
void (*notify)(struct v4l2_subdev *sd, unsigned int notification, void␣

↪→*arg);
struct v4l2_ctrl_handler *ctrl_handler;
struct v4l2_prio_state prio;
struct kref ref;
void (*release)(struct v4l2_device *v4l2_dev);

};

Members
dev pointer to struct device.

mdev pointer to struct media_device, may be NULL.

subdevs used to keep track of the registered subdevs

lock lock this struct; can be used by the driver as well if this struct is embedded
into a larger struct.

name unique device name, by default the driver name + bus ID

notify notify operation called by some sub-devices.

ctrl_handler The control handler. May be NULL.

prio Device’s priority state
ref Keep track of the references to this struct.

release Release function that is called when the ref count goes to 0.

Description
Each instance of a V4L2 device should create the v4l2_device struct, either stand-
alone or embedded in a larger struct.

It allows easy access to sub-devices (see v4l2-subdev.h) and provides basic V4L2
device-level support.

1664 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Note:
1) dev->driver_data points to this struct.
2) dev might be NULL if there is no parent device

void v4l2_device_get(struct v4l2_device * v4l2_dev)
gets a V4L2 device reference

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

Description
This is an ancillary routine meant to increment the usage for the struct
v4l2_device pointed by v4l2_dev.
int v4l2_device_put(struct v4l2_device * v4l2_dev)

puts a V4L2 device reference

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

Description
This is an ancillary routine meant to decrement the usage for the struct
v4l2_device pointed by v4l2_dev.
int v4l2_device_register(struct device * dev, struct v4l2_device

* v4l2_dev)
Initialize v4l2_dev and make dev->driver_data point to v4l2_dev.

Parameters
struct device * dev pointer to struct device

struct v4l2_device * v4l2_dev pointer to struct v4l2_device

Description

Note: dev may be NULL in rare cases (ISA devices). In such case the caller must
fill in the v4l2_dev->name field before calling this function.

int v4l2_device_set_name(struct v4l2_device * v4l2_dev, const char
* basename, atomic_t * instance)

Optional function to initialize the name field of struct v4l2_device

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

const char * basename base name for the device name

atomic_t * instance pointer to a static atomic_t var with the instance usage for
the device driver.

53.1. Video4Linux devices 1665

Linux Driver-api Documentation

Description
v4l2_device_set_name() initializes the name field of struct v4l2_device using
the driver name and a driver-global atomic_t instance.

This function will increment the instance counter and returns the instance value
used in the name.

The first time this is called the name field will be set to foo0 and this function
returns 0. If the name ends with a digit (e.g. cx18), then the name will be set to
cx18-0 since cx180 would look really odd.

Example
static atomic_t drv_instance = ATOMIC_INIT(0);

⋯
instance = v4l2_device_set_name(&v4l2_dev, “foo”, &drv_instance);

void v4l2_device_disconnect(struct v4l2_device * v4l2_dev)
Change V4L2 device state to disconnected.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

Description
Should be called when the USB parent disconnects. Since the parent disappears,
this ensures that v4l2_dev doesn’t have an invalid parent pointer.

Note: This function sets v4l2_dev->dev to NULL.

void v4l2_device_unregister(struct v4l2_device * v4l2_dev)
Unregister all sub-devices and any other resources related to v4l2_dev.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

int v4l2_device_register_subdev(struct v4l2_device * v4l2_dev, struct
v4l2_subdev * sd)

Registers a subdev with a v4l2 device.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

struct v4l2_subdev * sd pointer to struct v4l2_subdev

Description
While registered, the subdev module is marked as in-use.

An error is returned if the module is no longer loaded on any attempts to register
it.

void v4l2_device_unregister_subdev(struct v4l2_subdev * sd)
Unregisters a subdev with a v4l2 device.

Parameters

1666 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_subdev * sd pointer to struct v4l2_subdev

Description

Note: Can also be called if the subdev wasn’t registered. In such case, it will do
nothing.

int __v4l2_device_register_subdev_nodes(struct v4l2_device * v4l2_dev,
bool read_only)

Registers device nodes for all subdevs of the v4l2 device that are marked with
the V4L2_SUBDEV_FL_HAS_DEVNODE flag.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

bool read_only subdevices read-only flag. True to register the subdevices device
nodes in read-only mode, false to allow full access to the subdevice userspace
API.

int v4l2_device_register_subdev_nodes(struct v4l2_device * v4l2_dev)
Registers subdevices device nodes with unrestricted access to the subdevice
userspace operations

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

Description
Internally calls __v4l2_device_register_subdev_nodes(). See its documenta-
tion for more details.

int v4l2_device_register_ro_subdev_nodes(struct v4l2_device
* v4l2_dev)

Registers subdevices device nodes in read-only mode

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

Description
Internally calls __v4l2_device_register_subdev_nodes(). See its documenta-
tion for more details.

void v4l2_subdev_notify(struct v4l2_subdev * sd, unsigned int notification,
void * arg)

Sends a notification to v4l2_device.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

unsigned int notification type of notification. Please notice that the notifica-
tion type is driver-specific.

void * arg arguments for the notification. Those are specific to each notification
type.

53.1. Video4Linux devices 1667

Linux Driver-api Documentation

bool v4l2_device_supports_requests(struct v4l2_device * v4l2_dev)
Test if requests are supported.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

v4l2_device_for_each_subdev(sd, v4l2_dev)
Helper macro that interates over all sub-devices of a given v4l2_device.

Parameters
sd pointer that will be filled by the macro with all struct v4l2_subdev pointer

used as an iterator by the loop.

v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

Description
This macro iterates over all sub-devices owned by the v4l2_dev device. It acts as
a for loop iterator and executes the next statement with the sd variable pointing
to each sub-device in turn.

__v4l2_device_call_subdevs_p(v4l2_dev, sd, cond, o, f, args)
Calls the specified operation for all subdevs matching the condition.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

sd pointer that will be filled by the macro with all struct v4l2_subdev pointer
used as an iterator by the loop.

cond condition to be match

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of operations functions.

f operation function that will be called if cond matches. The operation
functions are defined in groups, according to each element at struct
v4l2_subdev_ops.

args arguments for f.
Description
Ignore any errors.

Note
subdevs cannot be added or deleted while walking the subdevs list.

__v4l2_device_call_subdevs(v4l2_dev, cond, o, f, args)
Calls the specified operation for all subdevs matching the condition.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

cond condition to be match

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of operations functions.

1668 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

f operation function that will be called if cond matches. The operation
functions are defined in groups, according to each element at struct
v4l2_subdev_ops.

args arguments for f.
Description
Ignore any errors.

Note
subdevs cannot be added or deleted while walking the subdevs list.

__v4l2_device_call_subdevs_until_err_p(v4l2_dev, sd, cond, o, f, args)
Calls the specified operation for all subdevs matching the condition.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

sd pointer that will be filled by the macro with all struct v4l2_subdev sub-
devices associated with v4l2_dev.

cond condition to be match

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of operations functions.

f operation function that will be called if cond matches. The operation
functions are defined in groups, according to each element at struct
v4l2_subdev_ops.

args arguments for f.
Return
Description
If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice,
then abort and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

__v4l2_device_call_subdevs_until_err(v4l2_dev, cond, o, f, args)
Calls the specified operation for all subdevs matching the condition.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

cond condition to be match

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of operations functions.

f operation function that will be called if cond matches. The operation
functions are defined in groups, according to each element at struct
v4l2_subdev_ops.

args arguments for f.

53.1. Video4Linux devices 1669

Linux Driver-api Documentation

Return
Description
If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice,
then abort and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

v4l2_device_call_all(v4l2_dev, grpid, o, f, args)
Calls the specified operation for all subdevs matching the v4l2_subdev.
grp_id, as assigned by the bridge driver.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpid struct v4l2_subdev->grp_id group ID to match. Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of operations functions.

f operation function that will be called if cond matches. The operation
functions are defined in groups, according to each element at struct
v4l2_subdev_ops.

args arguments for f.
Description
Ignore any errors.

Note
subdevs cannot be added or deleted while walking the subdevs list.

v4l2_device_call_until_err(v4l2_dev, grpid, o, f, args)
Calls the specified operation for all subdevs matching the v4l2_subdev.
grp_id, as assigned by the bridge driver, until an error occurs.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpid struct v4l2_subdev->grp_id group ID to match. Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of operations functions.

f operation function that will be called if cond matches. The operation
functions are defined in groups, according to each element at struct
v4l2_subdev_ops.

args arguments for f.
Return
Description
If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice,
then abort and return with that error code, zero otherwise.

1670 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Note
subdevs cannot be added or deleted while walking the subdevs list.

v4l2_device_mask_call_all(v4l2_dev, grpmsk, o, f, args)
Calls the specified operation for all subdevices where a group ID matches a
specified bitmask.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpmsk bitmask to be checked against struct v4l2_subdev->grp_id group ID to
be matched. Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of operations functions.

f operation function that will be called if cond matches. The operation
functions are defined in groups, according to each element at struct
v4l2_subdev_ops.

args arguments for f.
Description
Ignore any errors.

Note
subdevs cannot be added or deleted while walking the subdevs list.

v4l2_device_mask_call_until_err(v4l2_dev, grpmsk, o, f, args)
Calls the specified operation for all subdevices where a group ID matches a
specified bitmask.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpmsk bitmask to be checked against struct v4l2_subdev->grp_id group ID to
be matched. Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of operations functions.

f operation function that will be called if cond matches. The operation
functions are defined in groups, according to each element at struct
v4l2_subdev_ops.

args arguments for f.
Return
Description
If the operation returns an error other than 0 or -ENOIOCTLCMD for any subdevice,
then abort and return with that error code, zero otherwise.

Note
subdevs cannot be added or deleted while walking the subdevs list.

53.1. Video4Linux devices 1671

Linux Driver-api Documentation

v4l2_device_has_op(v4l2_dev, grpid, o, f)
checks if any subdev with matching grpid has a given ops.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpid struct v4l2_subdev->grp_id group ID to match. Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of operations functions.

f operation function that will be called if cond matches. The operation
functions are defined in groups, according to each element at struct
v4l2_subdev_ops.

v4l2_device_mask_has_op(v4l2_dev, grpmsk, o, f)
checks if any subdev with matching group mask has a given ops.

Parameters
v4l2_dev struct v4l2_device owning the sub-devices to iterate over.

grpmsk bitmask to be checked against struct v4l2_subdev->grp_id group ID to
be matched. Use 0 to match them all.

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of operations functions.

f operation function that will be called if cond matches. The operation
functions are defined in groups, according to each element at struct
v4l2_subdev_ops.

53.1.6 V4L2 File handlers

struct v4l2_fh provides a way to easily keep file handle specific data that is used
by the V4L2 framework.

Attention: New drivers must use struct v4l2_fh since it is also used to im-
plement priority handling (VIDIOC_G_PRIORITY).

The users of v4l2_fh (in the V4L2 framework, not the driver) know whether
a driver uses v4l2_fh as its file->private_data pointer by testing the
V4L2_FL_USES_V4L2_FH bit in video_device->flags. This bit is set whenever
v4l2_fh_init() is called.

struct v4l2_fh is allocated as a part of the driver’s own file handle structure and
file->private_data is set to it in the driver’s open() function by the driver.
In many cases the struct v4l2_fh will be embedded in a larger structure. In that
case you should call:

1) v4l2_fh_init() and v4l2_fh_add() in open()

2) v4l2_fh_del() and v4l2_fh_exit() in release()

1672 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Drivers can extract their own file handle structure by using the container_of macro.

Example:

struct my_fh {
int blah;
struct v4l2_fh fh;

};

...

int my_open(struct file *file)
{

struct my_fh *my_fh;
struct video_device *vfd;
int ret;

...

my_fh = kzalloc(sizeof(*my_fh), GFP_KERNEL);

...

v4l2_fh_init(&my_fh->fh, vfd);

...

file->private_data = &my_fh->fh;
v4l2_fh_add(&my_fh->fh);
return 0;

}

int my_release(struct file *file)
{

struct v4l2_fh *fh = file->private_data;
struct my_fh *my_fh = container_of(fh, struct my_fh, fh);

...
v4l2_fh_del(&my_fh->fh);
v4l2_fh_exit(&my_fh->fh);
kfree(my_fh);
return 0;

}

Below is a short description of the v4l2_fh functions used:

v4l2_fh_init (fh, vdev)

• Initialise the file handle. This MUST be performed in the driver’s
v4l2_file_operations->open() handler.

v4l2_fh_add (fh)

• Add a v4l2_fh to video_device file handle list. Must be called once the file
handle is completely initialized.

v4l2_fh_del (fh)

• Unassociate the file handle from video_device. The file handle exit function
may now be called.

53.1. Video4Linux devices 1673

Linux Driver-api Documentation

v4l2_fh_exit (fh)

• Uninitialise the file handle. After uninitialisation the v4l2_fhmemory can be
freed.

If struct v4l2_fh is not embedded, then you can use these helper functions:

v4l2_fh_open (struct file *filp)

• This allocates a struct v4l2_fh, initializes it and adds it to the struct
video_device associated with the file struct.

v4l2_fh_release (struct file *filp)

• This deletes it from the struct video_device associated with the file struct,
uninitialised the v4l2_fh and frees it.

These two functions can be plugged into the v4l2_file_operation’s open() and
release() ops.

Several drivers need to do something when the first file handle is opened and when
the last file handle closes. Two helper functions were added to check whether the
v4l2_fh struct is the only open filehandle of the associated device node:

v4l2_fh_is_singular (fh)

• Returns 1 if the file handle is the only open file handle, else 0.

v4l2_fh_is_singular_file (struct file *filp)

• Same, but it calls v4l2_fh_is_singular with filp->private_data.

V4L2 fh functions and data structures

struct v4l2_fh
Describes a V4L2 file handler

Definition

struct v4l2_fh {
struct list_head list;
struct video_device *vdev;
struct v4l2_ctrl_handler *ctrl_handler;
enum v4l2_priority prio;
wait_queue_head_t wait;
struct mutex subscribe_lock;
struct list_head subscribed;
struct list_head available;
unsigned int navailable;
u32 sequence;
struct v4l2_m2m_ctx *m2m_ctx;

};

Members
list list of file handlers

vdev pointer to struct video_device

ctrl_handler pointer to struct v4l2_ctrl_handler

1674 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

prio priority of the file handler, as defined by enum v4l2_priority

wait event’s wait queue
subscribe_lock serialise changes to the subscribed list; guarantee that the add

and del event callbacks are orderly called

subscribed list of subscribed events

available list of events waiting to be dequeued

navailable number of available events at available list
sequence event sequence number

m2m_ctx pointer to struct v4l2_m2m_ctx

void v4l2_fh_init(struct v4l2_fh * fh, struct video_device * vdev)
Initialise the file handle.

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

struct video_device * vdev pointer to struct video_device

Description
Parts of the V4L2 framework using the file handles should be initialised in this
function. Must be called from driver’s v4l2_file_operations->open() handler if the
driver uses struct v4l2_fh.

void v4l2_fh_add(struct v4l2_fh * fh)
Add the fh to the list of file handles on a video_device.

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

Description

Note: The fh file handle must be initialised first.

int v4l2_fh_open(struct file * filp)
Ancillary routine that can be used as the open() op of v4l2_file_operations.

Parameters
struct file * filp pointer to struct file

Description
It allocates a v4l2_fh and inits and adds it to the struct video_device associated
with the file pointer.

void v4l2_fh_del(struct v4l2_fh * fh)
Remove file handle from the list of file handles.

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

53.1. Video4Linux devices 1675

Linux Driver-api Documentation

Description
On error filp->private_data will be NULL, otherwise it will point to the struct
v4l2_fh.

Note: Must be called in v4l2_file_operations->release() handler if the driver uses
struct v4l2_fh.

void v4l2_fh_exit(struct v4l2_fh * fh)
Release resources related to a file handle.

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

Description
Parts of the V4L2 framework using the v4l2_fh must release their resources here,
too.

Note: Must be called in v4l2_file_operations->release() handler if the driver uses
struct v4l2_fh.

int v4l2_fh_release(struct file * filp)
Ancillary routine that can be used as the release() op of v4l2_file_operations.

Parameters
struct file * filp pointer to struct file

Description
It deletes and exits the v4l2_fh associated with the file pointer and frees it. It will
do nothing if filp->private_data (the pointer to the v4l2_fh struct) is NULL.

This function always returns 0.

int v4l2_fh_is_singular(struct v4l2_fh * fh)
Returns 1 if this filehandle is the only filehandle opened for the associated
video_device.

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

Description
If fh is NULL, then it returns 0.
int v4l2_fh_is_singular_file(struct file * filp)

Returns 1 if this filehandle is the only filehandle opened for the associated
video_device.

Parameters
struct file * filp pointer to struct file

Description

1676 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

This is a helper function variant of v4l2_fh_is_singular() with uses struct file
as argument.

If filp->private_data is NULL, then it will return 0.

53.1.7 V4L2 sub-devices

Many drivers need to communicate with sub-devices. These devices can do all sort
of tasks, but most commonly they handle audio and/or video muxing, encoding or
decoding. For webcams common sub-devices are sensors and camera controllers.

Usually these are I2C devices, but not necessarily. In order to provide the driver
with a consistent interface to these sub-devices the v4l2_subdev struct (v4l2-
subdev.h) was created.

Each sub-device driver must have a v4l2_subdev struct. This struct can be stand-
alone for simple sub-devices or it might be embedded in a larger struct if more
state information needs to be stored. Usually there is a low-level device struct
(e.g. i2c_client) that contains the device data as setup by the kernel. It is
recommended to store that pointer in the private data of v4l2_subdev using
v4l2_set_subdevdata(). That makes it easy to go from a v4l2_subdev to the
actual low-level bus-specific device data.

You also need a way to go from the low-level struct to v4l2_subdev. For the com-
mon i2c_client struct the i2c_set_clientdata() call is used to store a v4l2_subdev
pointer, for other buses you may have to use other methods.

Bridges might also need to store per-subdev private data, such as a
pointer to bridge-specific per-subdev private data. The v4l2_subdev struc-
ture provides host private data for that purpose that can be accessed with
v4l2_get_subdev_hostdata() and v4l2_set_subdev_hostdata().

From the bridge driver perspective, you load the sub-device module and some-
how obtain the v4l2_subdev pointer. For i2c devices this is easy: you call
i2c_get_clientdata(). For other buses something similar needs to be done.
Helper functions exists for sub-devices on an I2C bus that do most of this tricky
work for you.

Each v4l2_subdev contains function pointers that sub-device drivers can imple-
ment (or leave NULL if it is not applicable). Since sub-devices can do so many
different things and you do not want to end up with a huge ops struct of which
only a handful of ops are commonly implemented, the function pointers are sorted
according to category and each category has its own ops struct.

The top-level ops struct contains pointers to the category ops structs, which may
be NULL if the subdev driver does not support anything from that category.

It looks like this:

struct v4l2_subdev_core_ops {
int (*log_status)(struct v4l2_subdev *sd);
int (*init)(struct v4l2_subdev *sd, u32 val);
...

};

(continues on next page)

53.1. Video4Linux devices 1677

Linux Driver-api Documentation

(continued from previous page)
struct v4l2_subdev_tuner_ops {

...
};

struct v4l2_subdev_audio_ops {
...

};

struct v4l2_subdev_video_ops {
...

};

struct v4l2_subdev_pad_ops {
...

};

struct v4l2_subdev_ops {
const struct v4l2_subdev_core_ops *core;
const struct v4l2_subdev_tuner_ops *tuner;
const struct v4l2_subdev_audio_ops *audio;
const struct v4l2_subdev_video_ops *video;
const struct v4l2_subdev_pad_ops *video;

};

The core ops are common to all subdevs, the other categories are implemented
depending on the sub-device. E.g. a video device is unlikely to support the audio
ops and vice versa.

This setup limits the number of function pointers while still making it easy to add
new ops and categories.

A sub-device driver initializes the v4l2_subdev struct using:

v4l2_subdev_init (sd, &ops).

Afterwards you need to initialize sd->name with a unique name and set the module
owner. This is done for you if you use the i2c helper functions.

If integration with the media framework is needed, you must initialize the
media_entity struct embedded in the v4l2_subdev struct (entity field) by calling
media_entity_pads_init(), if the entity has pads:

struct media_pad *pads = &my_sd->pads;
int err;

err = media_entity_pads_init(&sd->entity, npads, pads);

The pads array must have been previously initialized. There is no need to manually
set the struct media_entity function and name fields, but the revision field must
be initialized if needed.

A reference to the entity will be automatically acquired/released when the subdev
device node (if any) is opened/closed.

Don’t forget to cleanup the media entity before the sub-device is destroyed:

1678 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

media_entity_cleanup(&sd->entity);

If the subdev driver intends to process video and integrate with the media frame-
work, it must implement format related functionality using v4l2_subdev_pad_ops
instead of v4l2_subdev_video_ops.

In that case, the subdev driver may set the link_validate field to provide its own
link validation function. The link validation function is called for every link in the
pipeline where both of the ends of the links are V4L2 sub-devices. The driver is
still responsible for validating the correctness of the format configuration between
sub-devices and video nodes.

If link_validate op is not set, the default function
v4l2_subdev_link_validate_default() is used instead. This function en-
sures that width, height and the media bus pixel code are equal on both source
and sink of the link. Subdev drivers are also free to use this function to perform
the checks mentioned above in addition to their own checks.

There are currently two ways to register subdevices with the V4L2 core. The first
(traditional) possibility is to have subdevices registered by bridge drivers. This can
be done when the bridge driver has the complete information about subdevices
connected to it and knows exactly when to register them. This is typically the case
for internal subdevices, like video data processing units within SoCs or complex
PCI(e) boards, camera sensors in USB cameras or connected to SoCs, which pass
information about them to bridge drivers, usually in their platform data.

There are however also situations where subdevices have to be registered asyn-
chronously to bridge devices. An example of such a configuration is a Device Tree
based system where information about subdevices is made available to the system
independently from the bridge devices, e.g. when subdevices are defined in DT as
I2C device nodes. The API used in this second case is described further below.

Using one or the other registration method only affects the probing process, the
run-time bridge-subdevice interaction is in both cases the same.

In the synchronous case a device (bridge) driver needs to register the v4l2_subdev
with the v4l2_device:

v4l2_device_register_subdev (v4l2_dev, sd).

This can fail if the subdev module disappeared before it could be registered.
After this function was called successfully the subdev->dev field points to the
v4l2_device.

If the v4l2_device parent device has a non-NULL mdev field, the sub-device entity
will be automatically registered with the media device.

You can unregister a sub-device using:

v4l2_device_unregister_subdev (sd).

Afterwards the subdev module can be unloaded and sd->dev == NULL.

You can call an ops function either directly:

err = sd->ops->core->g_std(sd, &norm);

but it is better and easier to use this macro:

53.1. Video4Linux devices 1679

Linux Driver-api Documentation

err = v4l2_subdev_call(sd, core, g_std, &norm);

The macro will to the right NULL pointer checks and returns -ENODEV if sd is NULL,
-ENOIOCTLCMD if either sd->core or sd->core->g_std is NULL, or the actual result
of the sd->ops->core->g_std ops.

It is also possible to call all or a subset of the sub-devices:

v4l2_device_call_all(v4l2_dev, 0, core, g_std, &norm);

Any subdev that does not support this ops is skipped and error results are ignored.
If you want to check for errors use this:

err = v4l2_device_call_until_err(v4l2_dev, 0, core, g_std, &norm);

Any error except -ENOIOCTLCMD will exit the loop with that error. If no errors
(except -ENOIOCTLCMD) occurred, then 0 is returned.

The second argument to both calls is a group ID. If 0, then all subdevs are called.
If non-zero, then only those whose group ID match that value will be called. Before
a bridge driver registers a subdev it can set sd->grp_id to whatever value it wants
(it’s 0 by default). This value is owned by the bridge driver and the sub-device
driver will never modify or use it.

The group ID gives the bridge driver more control how callbacks are called. For ex-
ample, there may be multiple audio chips on a board, each capable of changing the
volume. But usually only one will actually be used when the user want to change
the volume. You can set the group ID for that subdev to e.g. AUDIO_CONTROLLER
and specify that as the group ID value when calling v4l2_device_call_all().
That ensures that it will only go to the subdev that needs it.

If the sub-device needs to notify its v4l2_device parent of an event, then it can
call v4l2_subdev_notify(sd, notification, arg). This macro checks whether
there is a notify() callback defined and returns -ENODEV if not. Otherwise the
result of the notify() call is returned.

The advantage of using v4l2_subdev is that it is a generic struct and does not
contain any knowledge about the underlying hardware. So a driver might contain
several subdevs that use an I2C bus, but also a subdev that is controlled through
GPIO pins. This distinction is only relevant when setting up the device, but once
the subdev is registered it is completely transparent.

In the asynchronous case subdevice probing can be invoked independently of
the bridge driver availability. The subdevice driver then has to verify whether
all the requirements for a successful probing are satisfied. This can include a
check for a master clock availability. If any of the conditions aren’t satisfied
the driver might decide to return -EPROBE_DEFER to request further reprobing
attempts. Once all conditions are met the subdevice shall be registered using
the v4l2_async_register_subdev() function. Unregistration is performed using
the v4l2_async_unregister_subdev() call. Subdevices registered this way are
stored in a global list of subdevices, ready to be picked up by bridge drivers.

Bridge drivers in turn have to register a notifier object. This is performed using
the v4l2_async_notifier_register() call. To unregister the notifier the driver
has to call v4l2_async_notifier_unregister(). The former of the two functions

1680 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

takes two arguments: a pointer to struct v4l2_device and a pointer to struct
v4l2_async_notifier.

Before registering the notifier, bridge drivers must do two things: first, the noti-
fier must be initialized using the v4l2_async_notifier_init(). Second, bridge
drivers can then begin to form a list of subdevice descriptors that the bridge device
needs for its operation. Subdevice descriptors are added to the notifier using the
v4l2_async_notifier_add_subdev() call. This function takes two arguments: a
pointer to struct v4l2_async_notifier, and a pointer to the subdevice descripter,
which is of type struct v4l2_async_subdev.

The V4L2 core will then use these descriptors to match asynchronously registered
subdevices to them. If a match is detected the .bound() notifier callback is called.
After all subdevices have been located the .complete() callback is called. When a
subdevice is removed from the system the .unbind() method is called. All three
callbacks are optional.

53.1.8 V4L2 sub-device userspace API

Bridge drivers traditionally expose one or multiple video nodes to userspace, and
control subdevices through the v4l2_subdev_ops operations in response to video
node operations. This hides the complexity of the underlying hardware from ap-
plications. For complex devices, finer-grained control of the device than what the
video nodes offer may be required. In those cases, bridge drivers that implement
the media controller API may opt for making the subdevice operations directly
accessible from userpace.

Device nodes named v4l-subdevX can be created in /dev to access sub-devices
directly. If a sub-device supports direct userspace configuration it must set the
V4L2_SUBDEV_FL_HAS_DEVNODE flag before being registered.

After registering sub-devices, the v4l2_device driver can create device nodes for
all registered sub-devices marked with V4L2_SUBDEV_FL_HAS_DEVNODE by calling
v4l2_device_register_subdev_nodes(). Those device nodes will be automati-
cally removed when sub-devices are unregistered.

The device node handles a subset of the V4L2 API.

VIDIOC_QUERYCTRL, VIDIOC_QUERYMENU, VIDIOC_G_CTRL, VIDIOC_S_CTRL,
VIDIOC_G_EXT_CTRLS, VIDIOC_S_EXT_CTRLS and VIDIOC_TRY_EXT_CTRLS:

The controls ioctls are identical to the ones defined in V4L2. They be-
have identically, with the only exception that they deal only with controls
implemented in the sub-device. Depending on the driver, those controls
can be also be accessed through one (or several) V4L2 device nodes.

VIDIOC_DQEVENT, VIDIOC_SUBSCRIBE_EVENT and VIDIOC_UNSUBSCRIBE_EVENT

The events ioctls are identical to the ones defined in V4L2. They behave
identically, with the only exception that they deal only with events gen-
erated by the sub-device. Depending on the driver, those events can also
be reported by one (or several) V4L2 device nodes.

Sub-device drivers that want to use events need to set the
V4L2_SUBDEV_FL_HAS_EVENTS v4l2_subdev.flags before registering the

53.1. Video4Linux devices 1681

Linux Driver-api Documentation

sub-device. After registration events can be queued as usual on the
v4l2_subdev.devnode device node.

To properly support events, the poll() file operation is also imple-
mented.

Private ioctls

All ioctls not in the above list are passed directly to the sub-device driver
through the core::ioctl operation.

53.1.9 Read-only sub-device userspace API

Bridge drivers that control their connected subdevices through direct calls to the
kernel API realized by v4l2_subdev_ops structure do not usually want userspace
to be able to change the same parameters through the subdevice device node and
thus do not usually register any.

It is sometimes useful to report to userspace the current subdevice configuration
through a read-only API, that does not permit applications to change to the device
parameters but allows interfacing to the subdevice device node to inspect them.

For instance, to implement cameras based on computational photography,
userspace needs to know the detailed camera sensor configuration (in terms of
skipping, binning, cropping and scaling) for each supported output resolution. To
support such use cases, bridge drivers may expose the subdevice operations to
userspace through a read-only API.

To create a read-only device node for all the subdevices registered with
the V4L2_SUBDEV_FL_HAS_DEVNODE set, the v4l2_device driver should call
v4l2_device_register_ro_subdev_nodes().

Access to the following ioctls for userspace applications is restricted on sub-device
device nodes registered with v4l2_device_register_ro_subdev_nodes().

VIDIOC_SUBDEV_S_FMT, VIDIOC_SUBDEV_S_CROP, VIDIOC_SUBDEV_S_SELECTION:

These ioctls are only allowed on a read-only subdevice device node for
the V4L2_SUBDEV_FORMAT_TRY formats and selection rectangles.

VIDIOC_SUBDEV_S_FRAME_INTERVAL, VIDIOC_SUBDEV_S_DV_TIMINGS,
VIDIOC_SUBDEV_S_STD:

These ioctls are not allowed on a read-only subdevice node.

In case the ioctl is not allowed, or the format to modify is set to
V4L2_SUBDEV_FORMAT_ACTIVE, the core returns a negative error code and the er-
rno variable is set to -EPERM.

1682 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

53.1.10 I2C sub-device drivers

Since these drivers are so common, special helper functions are available to ease
the use of these drivers (v4l2-common.h).

The recommended method of adding v4l2_subdev support to an I2C driver is to
embed the v4l2_subdev struct into the state struct that is created for each I2C
device instance. Very simple devices have no state struct and in that case you can
just create a v4l2_subdev directly.

A typical state struct would look like this (where ‘chipname’is replaced by the
name of the chip):

struct chipname_state {
struct v4l2_subdev sd;
... /* additional state fields */

};

Initialize the v4l2_subdev struct as follows:

v4l2_i2c_subdev_init(&state->sd, client, subdev_ops);

This function will fill in all the fields of v4l2_subdev ensure that the v4l2_subdev
and i2c_client both point to one another.

You should also add a helper inline function to go from a v4l2_subdev pointer to
a chipname_state struct:

static inline struct chipname_state *to_state(struct v4l2_subdev *sd)
{

return container_of(sd, struct chipname_state, sd);
}

Use this to go from the v4l2_subdev struct to the i2c_client struct:

struct i2c_client *client = v4l2_get_subdevdata(sd);

And this to go from an i2c_client to a v4l2_subdev struct:

struct v4l2_subdev *sd = i2c_get_clientdata(client);

Make sure to call v4l2_device_unregister_subdev()(sd) when the remove()
callback is called. This will unregister the sub-device from the bridge driver. It is
safe to call this even if the sub-device was never registered.

You need to do this because when the bridge driver destroys the i2c adapter the
remove() callbacks are called of the i2c devices on that adapter. After that the
corresponding v4l2_subdev structures are invalid, so they have to be unregistered
first. Calling v4l2_device_unregister_subdev()(sd) from the remove() callback
ensures that this is always done correctly.

The bridge driver also has some helper functions it can use:

struct v4l2_subdev *sd = v4l2_i2c_new_subdev(v4l2_dev, adapter,
"module_foo", "chipid", 0x36, NULL);

53.1. Video4Linux devices 1683

Linux Driver-api Documentation

This loads the given module (can be NULL if no module needs to be loaded) and
calls i2c_new_client_device() with the given i2c_adapter and chip/address ar-
guments. If all goes well, then it registers the subdev with the v4l2_device.

You can also use the last argument of v4l2_i2c_new_subdev() to pass an array
of possible I2C addresses that it should probe. These probe addresses are only
used if the previous argument is 0. A non-zero argument means that you know the
exact i2c address so in that case no probing will take place.

Both functions return NULL if something went wrong.

Note that the chipid you pass to v4l2_i2c_new_subdev() is usually the same as the
module name. It allows you to specify a chip variant, e.g.“saa7114”or“saa7115”
. In general though the i2c driver autodetects this. The use of chipid is something
that needs to be looked at more closely at a later date. It differs between i2c
drivers and as such can be confusing. To see which chip variants are supported
you can look in the i2c driver code for the i2c_device_id table. This lists all the
possibilities.

There are one more helper function:

v4l2_i2c_new_subdev_board() uses an i2c_board_info struct which is passed
to the i2c driver and replaces the irq, platform_data and addr arguments.

If the subdev supports the s_config core ops, then that op is called with the irq and
platform_data arguments after the subdev was setup.

The v4l2_i2c_new_subdev() function will call v4l2_i2c_new_subdev_board(),
internally filling a i2c_board_info structure using the client_type and the addr
to fill it.

53.1.11 V4L2 sub-device functions and data structures

struct v4l2_decode_vbi_line
used to decode_vbi_line

Definition

struct v4l2_decode_vbi_line {
u32 is_second_field;
u8 *p;
u32 line;
u32 type;

};

Members
is_second_field Set to 0 for the first (odd) field; set to 1 for the second (even)

field.

p Pointer to the sliced VBI data from the decoder. On exit, points to the start of
the payload.

line Line number of the sliced VBI data (1-23)

type VBI service type (V4L2_SLICED_*). 0 if no service found

1684 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

enum v4l2_subdev_io_pin_bits
Subdevice external IO pin configuration bits

Constants
V4L2_SUBDEV_IO_PIN_DISABLE disables a pin config. ENABLE assumed.

V4L2_SUBDEV_IO_PIN_OUTPUT set it if pin is an output.

V4L2_SUBDEV_IO_PIN_INPUT set it if pin is an input.

V4L2_SUBDEV_IO_PIN_SET_VALUE to set the output value via struct
v4l2_subdev_io_pin_config->value.

V4L2_SUBDEV_IO_PIN_ACTIVE_LOW pin active is bit 0. Otherwise, ACTIVE HIGH is
assumed.

struct v4l2_subdev_io_pin_config
Subdevice external IO pin configuration

Definition

struct v4l2_subdev_io_pin_config {
u32 flags;
u8 pin;
u8 function;
u8 value;
u8 strength;

};

Members
flags bitmask with flags for this pin’s config, whose bits are defined by enum

v4l2_subdev_io_pin_bits.

pin Chip external IO pin to configure

function Internal signal pad/function to route to IO pin

value Initial value for pin - e.g. GPIO output value

strength Pin drive strength

struct v4l2_subdev_core_ops
Define core ops callbacks for subdevs

Definition

struct v4l2_subdev_core_ops {
int (*log_status)(struct v4l2_subdev *sd);
int (*s_io_pin_config)(struct v4l2_subdev *sd, size_t n, struct v4l2_

↪→subdev_io_pin_config *pincfg);
int (*init)(struct v4l2_subdev *sd, u32 val);
int (*load_fw)(struct v4l2_subdev *sd);
int (*reset)(struct v4l2_subdev *sd, u32 val);
int (*s_gpio)(struct v4l2_subdev *sd, u32 val);
long (*ioctl)(struct v4l2_subdev *sd, unsigned int cmd, void *arg);

#ifdef CONFIG_COMPAT;
long (*compat_ioctl32)(struct v4l2_subdev *sd, unsigned int cmd,␣

↪→unsigned long arg);
#endif;

(continues on next page)

53.1. Video4Linux devices 1685

Linux Driver-api Documentation

(continued from previous page)
#ifdef CONFIG_VIDEO_ADV_DEBUG;

int (*g_register)(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg);
int (*s_register)(struct v4l2_subdev *sd, const struct v4l2_dbg_register␣

↪→*reg);
#endif;

int (*s_power)(struct v4l2_subdev *sd, int on);
int (*interrupt_service_routine)(struct v4l2_subdev *sd, u32 status,␣

↪→bool *handled);
int (*subscribe_event)(struct v4l2_subdev *sd, struct v4l2_fh *fh,␣

↪→struct v4l2_event_subscription *sub);
int (*unsubscribe_event)(struct v4l2_subdev *sd, struct v4l2_fh *fh,␣

↪→struct v4l2_event_subscription *sub);
};

Members
log_status callback for VIDIOC_LOG_STATUS() ioctl handler code.

s_io_pin_config configure one or more chip I/O pins for chips that multiplex
different internal signal pads out to IO pins. This function takes a pointer to
an array of‘n’pin configuration entries, one for each pin being configured.
This function could be called at times other than just subdevice initialization.

init initialize the sensor registers to some sort of reasonable default values. Do
not use for new drivers and should be removed in existing drivers.

load_fw load firmware.

reset generic reset command. The argument selects which subsystems to reset.
Passing 0 will always reset the whole chip. Do not use for new drivers without
discussing this first on the linux-media mailinglist. There should be no reason
normally to reset a device.

s_gpio set GPIO pins. Very simple right now, might need to be extended with a
direction argument if needed.

ioctl called at the end of ioctl() syscall handler at the V4L2 core. used to provide
support for private ioctls used on the driver.

compat_ioctl32 called when a 32 bits application uses a 64 bits Kernel, in order
to fix data passed from/to userspace.

g_register callback for VIDIOC_DBG_G_REGISTER() ioctl handler code.

s_register callback for VIDIOC_DBG_S_REGISTER() ioctl handler code.

s_power puts subdevice in power saving mode (on == 0) or normal operation
mode (on == 1).

interrupt_service_routine Called by the bridge chip’s interrupt service han-
dler, when an interrupt status has be raised due to this subdev, so that this
subdev can handle the details. It may schedule work to be performed later.
It must not sleep. Called from an IRQ context.

subscribe_event used by the drivers to request the control framework that for it
to be warned when the value of a control changes.

unsubscribe_event remove event subscription from the control framework.

1686 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_subdev_tuner_ops
Callbacks used when v4l device was opened in radio mode.

Definition

struct v4l2_subdev_tuner_ops {
int (*standby)(struct v4l2_subdev *sd);
int (*s_radio)(struct v4l2_subdev *sd);
int (*s_frequency)(struct v4l2_subdev *sd, const struct v4l2_frequency␣

↪→*freq);
int (*g_frequency)(struct v4l2_subdev *sd, struct v4l2_frequency *freq);
int (*enum_freq_bands)(struct v4l2_subdev *sd, struct v4l2_frequency_

↪→band *band);
int (*g_tuner)(struct v4l2_subdev *sd, struct v4l2_tuner *vt);
int (*s_tuner)(struct v4l2_subdev *sd, const struct v4l2_tuner *vt);
int (*g_modulator)(struct v4l2_subdev *sd, struct v4l2_modulator *vm);
int (*s_modulator)(struct v4l2_subdev *sd, const struct v4l2_modulator␣

↪→*vm);
int (*s_type_addr)(struct v4l2_subdev *sd, struct tuner_setup *type);
int (*s_config)(struct v4l2_subdev *sd, const struct v4l2_priv_tun_

↪→config *config);
};

Members
standby puts the tuner in standby mode. It will be woken up automatically the

next time it is used.

s_radio callback that switches the tuner to radio mode. drivers should explicitly
call it when a tuner ops should operate on radio mode, before being able to
handle it. Used on devices that have both AM/FM radio receiver and TV.

s_frequency callback for VIDIOC_S_FREQUENCY() ioctl handler code.

g_frequency callback for VIDIOC_G_FREQUENCY() ioctl handler code. freq-
>type must be filled in. Normally done by video_ioctl2() or the bridge
driver.

enum_freq_bands callback for VIDIOC_ENUM_FREQ_BANDS() ioctl handler
code.

g_tuner callback for VIDIOC_G_TUNER() ioctl handler code.

s_tuner callback for VIDIOC_S_TUNER() ioctl handler code. vt->type must be
filled in. Normally done by video_ioctl2 or the bridge driver.

g_modulator callback for VIDIOC_G_MODULATOR() ioctl handler code.

s_modulator callback for VIDIOC_S_MODULATOR() ioctl handler code.

s_type_addr sets tuner type and its I2C addr.

s_config sets tda9887 specific stuff, like port1, port2 and qss

Description

Note: On devices that have both AM/FM and TV, it is up to the driver to explicitly
call s_radio when the tuner should be switched to radio mode, before handling

53.1. Video4Linux devices 1687

Linux Driver-api Documentation

other struct v4l2_subdev_tuner_ops that would require it. An example of such
usage is:

static void s_frequency(void *priv, const struct v4l2_frequency *f)
{

...
if (f.type == V4L2_TUNER_RADIO)

v4l2_device_call_all(v4l2_dev, 0, tuner, s_radio);
...
v4l2_device_call_all(v4l2_dev, 0, tuner, s_frequency);

}

struct v4l2_subdev_audio_ops
Callbacks used for audio-related settings

Definition

struct v4l2_subdev_audio_ops {
int (*s_clock_freq)(struct v4l2_subdev *sd, u32 freq);
int (*s_i2s_clock_freq)(struct v4l2_subdev *sd, u32 freq);
int (*s_routing)(struct v4l2_subdev *sd, u32 input, u32 output, u32␣

↪→config);
int (*s_stream)(struct v4l2_subdev *sd, int enable);

};

Members
s_clock_freq set the frequency (in Hz) of the audio clock output. Used to slave an

audio processor to the video decoder, ensuring that audio and video remain
synchronized. Usual values for the frequency are 48000, 44100 or 32000 Hz.
If the frequency is not supported, then -EINVAL is returned.

s_i2s_clock_freq sets I2S speed in bps. This is used to provide a standard way to
select I2S clock used by driving digital audio streams at some board designs.
Usual values for the frequency are 1024000 and 2048000. If the frequency
is not supported, then -EINVAL is returned.

s_routing used to define the input and/or output pins of an audio chip, and any
additional configuration data. Never attempt to use user-level input IDs (e.g.
Composite, S-Video, Tuner) at this level. An i2c device shouldn’t know about
whether an input pin is connected to a Composite connector, become on an-
other board or platform it might be connected to something else entirely. The
calling driver is responsible for mapping a user-level input to the right pins
on the i2c device.

s_stream used to notify the audio code that stream will start or has stopped.

enum v4l2_mbus_frame_desc_flags
media bus frame description flags

Constants
V4L2_MBUS_FRAME_DESC_FL_LEN_MAX Indicates that struct

v4l2_mbus_frame_desc_entry->length field specifies maximum data length.

V4L2_MBUS_FRAME_DESC_FL_BLOB Indicates that the format does not have line off-
sets, i.e. the receiver should use 1D DMA.

1688 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_mbus_frame_desc_entry
media bus frame description structure

Definition

struct v4l2_mbus_frame_desc_entry {
enum v4l2_mbus_frame_desc_flags flags;
u32 pixelcode;
u32 length;

};

Members
flags bitmask flags, as defined by enum v4l2_mbus_frame_desc_flags.

pixelcode media bus pixel code, valid if flags FRAME_DESC_FL_BLOB is not set.
length number of octets per frame, valid if flags

V4L2_MBUS_FRAME_DESC_FL_LEN_MAX is set.

struct v4l2_mbus_frame_desc
media bus data frame description

Definition

struct v4l2_mbus_frame_desc {
struct v4l2_mbus_frame_desc_entry entry[V4L2_FRAME_DESC_ENTRY_MAX];
unsigned short num_entries;

};

Members
entry frame descriptors array

num_entries number of entries in entry array
struct v4l2_subdev_video_ops

Callbacks used when v4l device was opened in video mode.

Definition

struct v4l2_subdev_video_ops {
int (*s_routing)(struct v4l2_subdev *sd, u32 input, u32 output, u32␣

↪→config);
int (*s_crystal_freq)(struct v4l2_subdev *sd, u32 freq, u32 flags);
int (*g_std)(struct v4l2_subdev *sd, v4l2_std_id *norm);
int (*s_std)(struct v4l2_subdev *sd, v4l2_std_id norm);
int (*s_std_output)(struct v4l2_subdev *sd, v4l2_std_id std);
int (*g_std_output)(struct v4l2_subdev *sd, v4l2_std_id *std);
int (*querystd)(struct v4l2_subdev *sd, v4l2_std_id *std);
int (*g_tvnorms)(struct v4l2_subdev *sd, v4l2_std_id *std);
int (*g_tvnorms_output)(struct v4l2_subdev *sd, v4l2_std_id *std);
int (*g_input_status)(struct v4l2_subdev *sd, u32 *status);
int (*s_stream)(struct v4l2_subdev *sd, int enable);
int (*g_pixelaspect)(struct v4l2_subdev *sd, struct v4l2_fract *aspect);
int (*g_frame_interval)(struct v4l2_subdev *sd, struct v4l2_subdev_frame_

↪→interval *interval);
int (*s_frame_interval)(struct v4l2_subdev *sd, struct v4l2_subdev_frame_

↪→interval *interval);
(continues on next page)

53.1. Video4Linux devices 1689

Linux Driver-api Documentation

(continued from previous page)
int (*s_dv_timings)(struct v4l2_subdev *sd, struct v4l2_dv_timings␣

↪→*timings);
int (*g_dv_timings)(struct v4l2_subdev *sd, struct v4l2_dv_timings␣

↪→*timings);
int (*query_dv_timings)(struct v4l2_subdev *sd, struct v4l2_dv_timings␣

↪→*timings);
int (*g_mbus_config)(struct v4l2_subdev *sd, struct v4l2_mbus_config␣

↪→*cfg);
int (*s_mbus_config)(struct v4l2_subdev *sd, const struct v4l2_mbus_

↪→config *cfg);
int (*s_rx_buffer)(struct v4l2_subdev *sd, void *buf, unsigned int␣

↪→*size);
};

Members
s_routing see s_routing in audio_ops, except this version is for video devices.

s_crystal_freq sets the frequency of the crystal used to generate the clocks in
Hz. An extra flags field allows device specific configuration regarding clock
frequency dividers, etc. If not used, then set flags to 0. If the frequency is
not supported, then -EINVAL is returned.

g_std callback for VIDIOC_G_STD() ioctl handler code.

s_std callback for VIDIOC_S_STD() ioctl handler code.

s_std_output set v4l2_std_id for video OUTPUT devices. This is ignored by video
input devices.

g_std_output get current standard for video OUTPUT devices. This is ignored by
video input devices.

querystd callback for VIDIOC_QUERYSTD() ioctl handler code.

g_tvnorms get v4l2_std_id with all standards supported by the video CAPTURE
device. This is ignored by video output devices.

g_tvnorms_output get v4l2_std_id with all standards supported by the video OUT-
PUT device. This is ignored by video capture devices.

g_input_status get input status. Same as the status field in the struct
v4l2_input

s_stream used to notify the driver that a video stream will start or has stopped.

g_pixelaspect callback to return the pixelaspect ratio.

g_frame_interval callback for VIDIOC_SUBDEV_G_FRAME_INTERVAL() ioctl
handler code.

s_frame_interval callback for VIDIOC_SUBDEV_S_FRAME_INTERVAL() ioctl
handler code.

s_dv_timings Set custom dv timings in the sub device. This is used when sub
device is capable of setting detailed timing information in the hardware to
generate/detect the video signal.

g_dv_timings Get custom dv timings in the sub device.

1690 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

query_dv_timings callback for VIDIOC_QUERY_DV_TIMINGS() ioctl handler
code.

g_mbus_config get supported mediabus configurations

s_mbus_config set a certain mediabus configuration. This operation is added for
compatibility with soc-camera drivers and should not be used by new soft-
ware.

s_rx_buffer set a host allocated memory buffer for the subdev. The subdev can
adjust size to a lower value andmust not writemore data to the buffer starting
at data than the original value of size.

struct v4l2_subdev_vbi_ops
Callbacks used when v4l device was opened in video mode via the vbi device
node.

Definition

struct v4l2_subdev_vbi_ops {
int (*decode_vbi_line)(struct v4l2_subdev *sd, struct v4l2_decode_vbi_

↪→line *vbi_line);
int (*s_vbi_data)(struct v4l2_subdev *sd, const struct v4l2_sliced_vbi_

↪→data *vbi_data);
int (*g_vbi_data)(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_data␣

↪→*vbi_data);
int (*g_sliced_vbi_cap)(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_

↪→cap *cap);
int (*s_raw_fmt)(struct v4l2_subdev *sd, struct v4l2_vbi_format *fmt);
int (*g_sliced_fmt)(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_

↪→format *fmt);
int (*s_sliced_fmt)(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_

↪→format *fmt);
};

Members
decode_vbi_line video decoders that support sliced VBI need to implement this

ioctl. Field p of the struct v4l2_decode_vbi_line is set to the start of the
VBI data that was generated by the decoder. The driver then parses the sliced
VBI data and sets the other fields in the struct accordingly. The pointer p is
updated to point to the start of the payload which can be copied verbatim into
the data field of the struct v4l2_sliced_vbi_data. If no valid VBI data was
found, then the type field is set to 0 on return.

s_vbi_data used to generate VBI signals on a video signal. struct
v4l2_sliced_vbi_data is filled with the data packets that should be output.
Note that if you set the line field to 0, then that VBI signal is disabled. If no
valid VBI data was found, then the type field is set to 0 on return.

g_vbi_data used to obtain the sliced VBI packet from a readback register. Not
all video decoders support this. If no data is available because the readback
register contains invalid or erroneous data -EIO is returned. Note that you
must fill in the‘id’member and the‘field’member (to determine whether
CC data from the first or second field should be obtained).

g_sliced_vbi_cap callback for VIDIOC_G_SLICED_VBI_CAP() ioctl handler code.

53.1. Video4Linux devices 1691

Linux Driver-api Documentation

s_raw_fmt setup the video encoder/decoder for raw VBI.

g_sliced_fmt retrieve the current sliced VBI settings.

s_sliced_fmt setup the sliced VBI settings.

struct v4l2_subdev_sensor_ops
v4l2-subdev sensor operations

Definition

struct v4l2_subdev_sensor_ops {
int (*g_skip_top_lines)(struct v4l2_subdev *sd, u32 *lines);
int (*g_skip_frames)(struct v4l2_subdev *sd, u32 *frames);

};

Members
g_skip_top_lines number of lines at the top of the image to be skipped. This is

needed for some sensors, which always corrupt several top lines of the output
image, or which send their metadata in them.

g_skip_frames number of frames to skip at stream start. This is needed for buggy
sensors that generate faulty frames when they are turned on.

enum v4l2_subdev_ir_mode
describes the type of IR supported

Constants
V4L2_SUBDEV_IR_MODE_PULSE_WIDTH IR uses struct ir_raw_event records

struct v4l2_subdev_ir_parameters
Parameters for IR TX or TX

Definition

struct v4l2_subdev_ir_parameters {
unsigned int bytes_per_data_element;
enum v4l2_subdev_ir_mode mode;
bool enable;
bool interrupt_enable;
bool shutdown;
bool modulation;
u32 max_pulse_width;
unsigned int carrier_freq;
unsigned int duty_cycle;
bool invert_level;
bool invert_carrier_sense;
u32 noise_filter_min_width;
unsigned int carrier_range_lower;
unsigned int carrier_range_upper;
u32 resolution;

};

Members
bytes_per_data_element bytes per data element of data in read or write call.

mode IR mode as defined by enum v4l2_subdev_ir_mode.

1692 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

enable device is active if true

interrupt_enable IR interrupts are enabled if true

shutdown if true: set hardware to low/no power, false: normal mode

modulation if true, it uses carrier, if false: baseband

max_pulse_width maximum pulse width in ns, valid only for baseband signal

carrier_freq carrier frequency in Hz, valid only for modulated signal

duty_cycle duty cycle percentage, valid only for modulated signal

invert_level invert signal level

invert_carrier_sense Send 0/space as a carrier burst. used only in TX.

noise_filter_min_width min time of a valid pulse, in ns. Used only for RX.

carrier_range_lower Lower carrier range, in Hz, valid only for modulated signal.
Used only for RX.

carrier_range_upper Upper carrier range, in Hz, valid only for modulated signal.
Used only for RX.

resolution The receive resolution, in ns . Used only for RX.

struct v4l2_subdev_ir_ops
operations for IR subdevices

Definition

struct v4l2_subdev_ir_ops {
int (*rx_read)(struct v4l2_subdev *sd, u8 *buf, size_t count, ssize_t␣

↪→*num);
int (*rx_g_parameters)(struct v4l2_subdev *sd, struct v4l2_subdev_ir_

↪→parameters *params);
int (*rx_s_parameters)(struct v4l2_subdev *sd, struct v4l2_subdev_ir_

↪→parameters *params);
int (*tx_write)(struct v4l2_subdev *sd, u8 *buf, size_t count, ssize_t␣

↪→*num);
int (*tx_g_parameters)(struct v4l2_subdev *sd, struct v4l2_subdev_ir_

↪→parameters *params);
int (*tx_s_parameters)(struct v4l2_subdev *sd, struct v4l2_subdev_ir_

↪→parameters *params);
};

Members
rx_read Reads received codes or pulse width data. The semantics are similar to

a non-blocking read() call.

rx_g_parameters Get the current operating parameters and state of the the IR
receiver.

rx_s_parameters Set the current operating parameters and state of the the IR
receiver. It is recommended to call [rt]x_g_parameters first to fill out the cur-
rent state, and only change the fields that need to be changed. Upon return,
the actual device operating parameters and state will be returned. Note that
hardware limitations may prevent the actual settings from matching the re-
quested settings - e.g. an actual carrier setting of 35,904 Hz when 36,000 Hz

53.1. Video4Linux devices 1693

Linux Driver-api Documentation

was requested. An exception is when the shutdown parameter is true. The
last used operational parameters will be returned, but the actual state of the
hardware be different to minimize power consumption and processing when
shutdown is true.

tx_write Writes codes or pulse width data for transmission. The semantics are
similar to a non-blocking write() call.

tx_g_parameters Get the current operating parameters and state of the the IR
transmitter.

tx_s_parameters Set the current operating parameters and state of the the IR
transmitter. It is recommended to call [rt]x_g_parameters first to fill out the
current state, and only change the fields that need to be changed. Upon re-
turn, the actual device operating parameters and state will be returned. Note
that hardware limitations may prevent the actual settings from matching the
requested settings - e.g. an actual carrier setting of 35,904 Hz when 36,000
Hz was requested. An exception is when the shutdown parameter is true.
The last used operational parameters will be returned, but the actual state
of the hardware be different to minimize power consumption and processing
when shutdown is true.

struct v4l2_subdev_pad_config
Used for storing subdev pad information.

Definition

struct v4l2_subdev_pad_config {
struct v4l2_mbus_framefmt try_fmt;
struct v4l2_rect try_crop;
struct v4l2_rect try_compose;

};

Members
try_fmt struct v4l2_mbus_framefmt

try_crop struct v4l2_rect to be used for crop

try_compose struct v4l2_rect to be used for compose

Description
This structure only needs to be passed to the pad op if the‘which’field of the main
argument is set to V4L2_SUBDEV_FORMAT_TRY. For V4L2_SUBDEV_FORMAT_ACTIVE it
is safe to pass NULL.

struct v4l2_subdev_pad_ops
v4l2-subdev pad level operations

Definition

struct v4l2_subdev_pad_ops {
int (*init_cfg)(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config␣

↪→*cfg);
int (*enum_mbus_code)(struct v4l2_subdev *sd,struct v4l2_subdev_pad_

↪→config *cfg, struct v4l2_subdev_mbus_code_enum *code);
int (*enum_frame_size)(struct v4l2_subdev *sd,struct v4l2_subdev_pad_

↪→config *cfg, struct v4l2_subdev_frame_size_enum *fse);
(continues on next page)

1694 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
int (*enum_frame_interval)(struct v4l2_subdev *sd,struct v4l2_subdev_pad_

↪→config *cfg, struct v4l2_subdev_frame_interval_enum *fie);
int (*get_fmt)(struct v4l2_subdev *sd,struct v4l2_subdev_pad_config *cfg,

↪→ struct v4l2_subdev_format *format);
int (*set_fmt)(struct v4l2_subdev *sd,struct v4l2_subdev_pad_config *cfg,

↪→ struct v4l2_subdev_format *format);
int (*get_selection)(struct v4l2_subdev *sd,struct v4l2_subdev_pad_

↪→config *cfg, struct v4l2_subdev_selection *sel);
int (*set_selection)(struct v4l2_subdev *sd,struct v4l2_subdev_pad_

↪→config *cfg, struct v4l2_subdev_selection *sel);
int (*get_edid)(struct v4l2_subdev *sd, struct v4l2_edid *edid);
int (*set_edid)(struct v4l2_subdev *sd, struct v4l2_edid *edid);
int (*dv_timings_cap)(struct v4l2_subdev *sd, struct v4l2_dv_timings_cap␣

↪→*cap);
int (*enum_dv_timings)(struct v4l2_subdev *sd, struct v4l2_enum_dv_

↪→timings *timings);
#ifdef CONFIG_MEDIA_CONTROLLER;

int (*link_validate)(struct v4l2_subdev *sd, struct media_link *link,
↪→struct v4l2_subdev_format *source_fmt, struct v4l2_subdev_format *sink_
↪→fmt);
#endif ;

int (*get_frame_desc)(struct v4l2_subdev *sd, unsigned int pad, struct␣
↪→v4l2_mbus_frame_desc *fd);
int (*set_frame_desc)(struct v4l2_subdev *sd, unsigned int pad, struct␣

↪→v4l2_mbus_frame_desc *fd);
};

Members
init_cfg initialize the pad config to default values

enum_mbus_code callback for VIDIOC_SUBDEV_ENUM_MBUS_CODE() ioctl han-
dler code.

enum_frame_size callback for VIDIOC_SUBDEV_ENUM_FRAME_SIZE() ioctl
handler code.

enum_frame_interval callback for VIDIOC_SUBDEV_ENUM_FRAME_INTERVAL()
ioctl handler code.

get_fmt callback for VIDIOC_SUBDEV_G_FMT() ioctl handler code.

set_fmt callback for VIDIOC_SUBDEV_S_FMT() ioctl handler code.

get_selection callback for VIDIOC_SUBDEV_G_SELECTION() ioctl handler
code.

set_selection callback for VIDIOC_SUBDEV_S_SELECTION() ioctl handler
code.

get_edid callback for VIDIOC_SUBDEV_G_EDID() ioctl handler code.

set_edid callback for VIDIOC_SUBDEV_S_EDID() ioctl handler code.

dv_timings_cap callback for VIDIOC_SUBDEV_DV_TIMINGS_CAP() ioctl handler
code.

enum_dv_timings callback for VIDIOC_SUBDEV_ENUM_DV_TIMINGS() ioctl
handler code.

53.1. Video4Linux devices 1695

Linux Driver-api Documentation

link_validate used by themedia controller code to check if the links that belongs
to a pipeline can be used for stream.

get_frame_desc get the current low level media bus frame parameters.

set_frame_desc set the low level media bus frame parameters, fd array may be
adjusted by the subdev driver to device capabilities.

struct v4l2_subdev_ops
Subdev operations

Definition

struct v4l2_subdev_ops {
const struct v4l2_subdev_core_ops *core;
const struct v4l2_subdev_tuner_ops *tuner;
const struct v4l2_subdev_audio_ops *audio;
const struct v4l2_subdev_video_ops *video;
const struct v4l2_subdev_vbi_ops *vbi;
const struct v4l2_subdev_ir_ops *ir;
const struct v4l2_subdev_sensor_ops *sensor;
const struct v4l2_subdev_pad_ops *pad;

};

Members
core pointer to struct v4l2_subdev_core_ops. Can be NULL

tuner pointer to struct v4l2_subdev_tuner_ops. Can be NULL

audio pointer to struct v4l2_subdev_audio_ops. Can be NULL

video pointer to struct v4l2_subdev_video_ops. Can be NULL

vbi pointer to struct v4l2_subdev_vbi_ops. Can be NULL

ir pointer to struct v4l2_subdev_ir_ops. Can be NULL

sensor pointer to struct v4l2_subdev_sensor_ops. Can be NULL

pad pointer to struct v4l2_subdev_pad_ops. Can be NULL

struct v4l2_subdev_internal_ops
V4L2 subdev internal ops

Definition

struct v4l2_subdev_internal_ops {
int (*registered)(struct v4l2_subdev *sd);
void (*unregistered)(struct v4l2_subdev *sd);
int (*open)(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh);
int (*close)(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh);
void (*release)(struct v4l2_subdev *sd);

};

Members
registered called when this subdev is registered. When called the v4l2_dev field

is set to the correct v4l2_device.

unregistered called when this subdev is unregistered. When called the v4l2_dev
field is still set to the correct v4l2_device.

1696 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

open called when the subdev device node is opened by an application.

close called when the subdev device node is closed. Please note that it is possible
for close to be called after unregistered!

release called when the last user of the subdev device is gone. This happens
after the unregistered callback and when the last open filehandle to the
v4l-subdevX device node was closed. If no device node was created for this
sub-device, then the release callback is called right after the unregistered
callback. The release callback is typically used to free thememory containing
the v4l2_subdev structure. It is almost certainly required for any sub-device
that sets the V4L2_SUBDEV_FL_HAS_DEVNODE flag.

Description

Note: Never call this from drivers, only the v4l2 framework can call these ops.

struct v4l2_subdev_platform_data
regulators config struct

Definition

struct v4l2_subdev_platform_data {
struct regulator_bulk_data *regulators;
int num_regulators;
void *host_priv;

};

Members
regulators Optional regulators used to power on/off the subdevice

num_regulators Number of regululators

host_priv Per-subdevice data, specific for a certain video host device

struct v4l2_subdev
describes a V4L2 sub-device

Definition

struct v4l2_subdev {
#if defined(CONFIG_MEDIA_CONTROLLER);

struct media_entity entity;
#endif;

struct list_head list;
struct module *owner;
bool owner_v4l2_dev;
u32 flags;
struct v4l2_device *v4l2_dev;
const struct v4l2_subdev_ops *ops;
const struct v4l2_subdev_internal_ops *internal_ops;
struct v4l2_ctrl_handler *ctrl_handler;
char name[V4L2_SUBDEV_NAME_SIZE];
u32 grp_id;
void *dev_priv;
void *host_priv;

(continues on next page)

53.1. Video4Linux devices 1697

Linux Driver-api Documentation

(continued from previous page)
struct video_device *devnode;
struct device *dev;
struct fwnode_handle *fwnode;
struct list_head async_list;
struct v4l2_async_subdev *asd;
struct v4l2_async_notifier *notifier;
struct v4l2_async_notifier *subdev_notifier;
struct v4l2_subdev_platform_data *pdata;

};

Members
entity pointer to struct media_entity

list List of sub-devices

owner The owner is the same as the driver’s struct device owner.

owner_v4l2_dev true if the sd->owner matches the owner of v4l2_dev->dev
owner. Initialized by v4l2_device_register_subdev().

flags subdev flags. Can be: V4L2_SUBDEV_FL_IS_I2C - Set this flag if this subdev
is a i2c device; V4L2_SUBDEV_FL_IS_SPI - Set this flag if this subdev is a spi
device; V4L2_SUBDEV_FL_HAS_DEVNODE - Set this flag if this subdev needs a
device node; V4L2_SUBDEV_FL_HAS_EVENTS - Set this flag if this subdev gen-
erates events.

v4l2_dev pointer to struct v4l2_device

ops pointer to struct v4l2_subdev_ops

internal_ops pointer to struct v4l2_subdev_internal_ops. Never call these in-
ternal ops from within a driver!

ctrl_handler The control handler of this subdev. May be NULL.

name Name of the sub-device. Please notice that the name must be unique.

grp_id can be used to group similar subdevs. Value is driver-specific

dev_priv pointer to private data

host_priv pointer to private data used by the device where the subdev is at-
tached.

devnode subdev device node

dev pointer to the physical device, if any

fwnode The fwnode_handle of the subdev, usually the same as either dev-
>of_node->fwnode or dev->fwnode (whichever is non-NULL).

async_list Links this subdev to a global subdev_list or notifier->done list.
asd Pointer to respective struct v4l2_async_subdev.

notifier Pointer to the managing notifier.

subdev_notifier A sub-device notifier implicitly registered for the sub- device
using v4l2_device_register_sensor_subdev().

1698 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

pdata common part of subdevice platform data

Description
Each instance of a subdev driver should create this struct, either stand-alone or
embedded in a larger struct.

This structure should be initialized by v4l2_subdev_init() or one of its variants:
v4l2_spi_subdev_init(), v4l2_i2c_subdev_init().

media_entity_to_v4l2_subdev(ent)
Returns a struct v4l2_subdev from the struct media_entity embedded in
it.

Parameters
ent pointer to struct media_entity.

vdev_to_v4l2_subdev(vdev)
Returns a struct v4l2_subdev from the struct video_device embedded
on it.

Parameters
vdev pointer to struct video_device

struct v4l2_subdev_fh
Used for storing subdev information per file handle

Definition

struct v4l2_subdev_fh {
struct v4l2_fh vfh;
struct module *owner;

#if defined(CONFIG_VIDEO_V4L2_SUBDEV_API);
struct v4l2_subdev_pad_config *pad;

#endif;
};

Members
vfh pointer to struct v4l2_fh

owner module pointer to the owner of this file handle

pad pointer to struct v4l2_subdev_pad_config

to_v4l2_subdev_fh(fh)
Returns a struct v4l2_subdev_fh from the struct v4l2_fh embedded on
it.

Parameters
fh pointer to struct v4l2_fh

struct v4l2_mbus_framefmt * v4l2_subdev_get_try_format(struct
v4l2_subdev
* sd, struct
v4l2_subdev_pad_config
* cfg, un-
signed
int pad)

53.1. Video4Linux devices 1699

Linux Driver-api Documentation

ancillary routine to call struct v4l2_subdev_pad_config->try_fmt

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_subdev_pad_config * cfg pointer to struct
v4l2_subdev_pad_config array.

unsigned int pad index of the pad in the cfg array.
struct v4l2_rect * v4l2_subdev_get_try_crop(struct v4l2_subdev

* sd, struct
v4l2_subdev_pad_config
* cfg, unsigned int pad)

ancillary routine to call struct v4l2_subdev_pad_config->try_crop

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_subdev_pad_config * cfg pointer to struct
v4l2_subdev_pad_config array.

unsigned int pad index of the pad in the cfg array.
struct v4l2_rect * v4l2_subdev_get_try_compose(struct v4l2_subdev

* sd, struct
v4l2_subdev_pad_config
* cfg, unsigned int pad)

ancillary routine to call struct v4l2_subdev_pad_config->try_compose

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_subdev_pad_config * cfg pointer to struct
v4l2_subdev_pad_config array.

unsigned int pad index of the pad in the cfg array.
void v4l2_set_subdevdata(struct v4l2_subdev * sd, void * p)

Sets V4L2 dev private device data

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

void * p pointer to the private device data to be stored.

void * v4l2_get_subdevdata(const struct v4l2_subdev * sd)
Gets V4L2 dev private device data

Parameters
const struct v4l2_subdev * sd pointer to struct v4l2_subdev

Description
Returns the pointer to the private device data to be stored.

void v4l2_set_subdev_hostdata(struct v4l2_subdev * sd, void * p)
Sets V4L2 dev private host data

1700 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

void * p pointer to the private data to be stored.

void * v4l2_get_subdev_hostdata(const struct v4l2_subdev * sd)
Gets V4L2 dev private data

Parameters
const struct v4l2_subdev * sd pointer to struct v4l2_subdev

Description
Returns the pointer to the private host data to be stored.

int v4l2_subdev_get_fwnode_pad_1_to_1(struct media_entity * entity,
struct fwnode_endpoint
* endpoint)

Get pad number from a subdev fwnode endpoint, assuming 1:1 port:pad

Parameters
struct media_entity * entity undescribed

struct fwnode_endpoint * endpoint undescribed

Description
entity - Pointer to the subdev entity endpoint - Pointer to a parsed fwnode end-
point

This function can be used as the .get_fwnode_pad operation for subdevices that
map port numbers and pad indexes 1:1. If the endpoint is owned by the subdevice,
the function returns the endpoint port number.

Returns the endpoint port number on success or a negative error code.

int v4l2_subdev_link_validate_default(struct v4l2_subdev * sd,
struct media_link * link,
struct v4l2_subdev_format
* source_fmt, struct
v4l2_subdev_format * sink_fmt)

validates a media link

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct media_link * link pointer to struct media_link

struct v4l2_subdev_format * source_fmt pointer to struct
v4l2_subdev_format

struct v4l2_subdev_format * sink_fmt pointer to struct
v4l2_subdev_format

Description
This function ensures that width, height and the media bus pixel code are equal
on both source and sink of the link.

53.1. Video4Linux devices 1701

Linux Driver-api Documentation

int v4l2_subdev_link_validate(struct media_link * link)
validates a media link

Parameters
struct media_link * link pointer to struct media_link

Description
This function calls the subdev’s link_validate ops to validate if a media link is valid
for streaming. It also internally calls v4l2_subdev_link_validate_default() to
ensure that width, height and the media bus pixel code are equal on both source
and sink of the link.

struct v4l2_subdev_pad_config * v4l2_subdev_alloc_pad_config(struct
v4l2_subdev
* sd)

Allocates memory for pad config

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

void v4l2_subdev_free_pad_config(struct v4l2_subdev_pad_config * cfg)
Frees memory allocated by v4l2_subdev_alloc_pad_config().

Parameters
struct v4l2_subdev_pad_config * cfg pointer to struct

v4l2_subdev_pad_config

void v4l2_subdev_init(struct v4l2_subdev * sd, const struct
v4l2_subdev_ops * ops)

initializes the sub-device struct

Parameters
struct v4l2_subdev * sd pointer to the struct v4l2_subdev to be initialized

const struct v4l2_subdev_ops * ops pointer to struct v4l2_subdev_ops.

v4l2_subdev_call(sd, o, f, args)
call an operation of a v4l2_subdev.

Parameters
sd pointer to the struct v4l2_subdev

o name of the element at struct v4l2_subdev_ops that contains f. Each element
there groups a set of callbacks functions.

f callback function to be called. The callback functions are defined in groups,
according to each element at struct v4l2_subdev_ops.

args arguments for f.
Example
err = v4l2_subdev_call(sd, video, s_std, norm);

v4l2_subdev_has_op(sd, o, f)
Checks if a subdev defines a certain operation.

Parameters

1702 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

sd pointer to the struct v4l2_subdev

o The group of callback functions in struct v4l2_subdev_ops which f is a part
of.

f callback function to be checked for its existence.

void v4l2_subdev_notify_event(struct v4l2_subdev * sd, const struct
v4l2_event * ev)

Delivers event notification for subdevice

Parameters
struct v4l2_subdev * sd The subdev for which to deliver the event

const struct v4l2_event * ev The event to deliver

Description
Will deliver the specified event to all userspace event listeners which are sub-
scribed to the v42l subdev event queue as well as to the bridge driver us-
ing the notify callback. The notification type for the notify callback will be
V4L2_DEVICE_NOTIFY_EVENT.

enum v4l2_async_match_type
type of asynchronous subdevice logic to be used in order to identify a match

Constants
V4L2_ASYNC_MATCH_CUSTOM Match will use the logic provided by struct

v4l2_async_subdev.match ops

V4L2_ASYNC_MATCH_DEVNAME Match will use the device name

V4L2_ASYNC_MATCH_I2C Match will check for I2C adapter ID and address

V4L2_ASYNC_MATCH_FWNODE Match will use firmware node

Description
This enum is used by the asyncrhronous sub-device logic to define the algorithm
that will be used to match an asynchronous device.

struct v4l2_async_subdev
sub-device descriptor, as known to a bridge

Definition

struct v4l2_async_subdev {
enum v4l2_async_match_type match_type;
union {

struct fwnode_handle *fwnode;
const char *device_name;
struct {
int adapter_id;
unsigned short address;

} i2c;
struct {

bool (*match)(struct device *dev, struct v4l2_async_subdev *sd);
void *priv;

} custom;
(continues on next page)

53.1. Video4Linux devices 1703

Linux Driver-api Documentation

(continued from previous page)
} match;
struct list_head list;
struct list_head asd_list;

};

Members
match_type type of match that will be used

match union of per-bus type matching data sets

match.fwnode pointer to struct fwnode_handle to be matched. Used if
match_type is V4L2_ASYNC_MATCH_FWNODE.

match.device_name string containing the device name to be matched. Used if
match_type is V4L2_ASYNC_MATCH_DEVNAME.

match.i2c embedded struct with I2C parameters to be matched. Both
match.i2c.adapter_id and match.i2c.address should be matched. Used
if match_type is V4L2_ASYNC_MATCH_I2C.

match.i2c.adapter_id I2C adapter ID to be matched. Used if match_type is
V4L2_ASYNC_MATCH_I2C.

match.i2c.address I2C address to be matched. Used if match_type is
V4L2_ASYNC_MATCH_I2C.

match.custom Driver-specific match criteria. Used if match_type is
V4L2_ASYNC_MATCH_CUSTOM.

match.custom.match Driver-specific match function to be used if
V4L2_ASYNC_MATCH_CUSTOM.

match.custom.priv Driver-specific private struct with match parameters to be
used if V4L2_ASYNC_MATCH_CUSTOM.

list used to link struct v4l2_async_subdev objects, waiting to be probed, to a
notifier->waiting list

asd_list used to add struct v4l2_async_subdev objects to the master notifier
asd_list

Description
When this struct is used as a member in a driver specific struct, the driver specific
struct shall contain the struct v4l2_async_subdev as its first member.

struct v4l2_async_notifier_operations
Asynchronous V4L2 notifier operations

Definition

struct v4l2_async_notifier_operations {
int (*bound)(struct v4l2_async_notifier *notifier,struct v4l2_subdev␣

↪→*subdev, struct v4l2_async_subdev *asd);
int (*complete)(struct v4l2_async_notifier *notifier);
void (*unbind)(struct v4l2_async_notifier *notifier,struct v4l2_subdev␣

↪→*subdev, struct v4l2_async_subdev *asd);
};

1704 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Members
bound a subdevice driver has successfully probed one of the subdevices

complete All subdevices have been probed successfully. The complete callback is
only executed for the root notifier.

unbind a subdevice is leaving

struct v4l2_async_notifier
v4l2_device notifier data

Definition

struct v4l2_async_notifier {
const struct v4l2_async_notifier_operations *ops;
struct v4l2_device *v4l2_dev;
struct v4l2_subdev *sd;
struct v4l2_async_notifier *parent;
struct list_head asd_list;
struct list_head waiting;
struct list_head done;
struct list_head list;

};

Members
ops notifier operations

v4l2_dev v4l2_device of the root notifier, NULL otherwise

sd sub-device that registered the notifier, NULL otherwise

parent parent notifier

asd_list master list of struct v4l2_async_subdev

waiting list of struct v4l2_async_subdev, waiting for their drivers

done list of struct v4l2_subdev, already probed

list member in a global list of notifiers

void v4l2_async_notifier_init(struct v4l2_async_notifier * notifier)
Initialize a notifier.

Parameters
struct v4l2_async_notifier * notifier pointer to struct

v4l2_async_notifier

Description
This function initializes the notifier asd_list. It must be called before the first call
to v4l2_async_notifier_add_subdev.
int v4l2_async_notifier_add_subdev(struct v4l2_async_notifier * notifier,

struct v4l2_async_subdev * asd)
Add an async subdev to the notifier’s master asd list.

Parameters

53.1. Video4Linux devices 1705

Linux Driver-api Documentation

struct v4l2_async_notifier * notifier pointer to struct
v4l2_async_notifier

struct v4l2_async_subdev * asd pointer to struct v4l2_async_subdev

Description
Call this function before registering a notifier to link the provided asd to the noti-
fiers master asd_list.
struct v4l2_async_subdev * v4l2_async_notifier_add_fwnode_subdev(struct

v4l2_async_notifier
* notifier,
struct
fwn-
ode_handle
* fwnode,
un-
signed
int asd_struct_size)

Allocate and add a fwnode async subdev to the notifier’s master asd_list.
Parameters
struct v4l2_async_notifier * notifier pointer to struct

v4l2_async_notifier

struct fwnode_handle * fwnode fwnode handle of the sub-device to be matched

unsigned int asd_struct_size size of the driver’s async sub-device struct, in-
cluding sizeof(struct v4l2_async_subdev). The struct v4l2_async_subdev
shall be the first member of the driver’s async sub-device struct, i.e. both
begin at the same memory address.

Description
Allocate a fwnode-matched asd of size asd_struct_size, and add it to the notifiers
asd_list. The function also gets a reference of the fwnode which is released later
at notifier cleanup time.

int v4l2_async_notifier_add_fwnode_remote_subdev(struct
v4l2_async_notifier
* notif, struct
fwnode_handle
* endpoint, struct
v4l2_async_subdev
* asd)

Allocate and add a fwnode remote async subdev to the notifier’s master
asd_list.

Parameters
struct v4l2_async_notifier * notif pointer to struct

v4l2_async_notifier

struct fwnode_handle * endpoint local endpoint pointing to the remote sub-
device to be matched

1706 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_async_subdev * asd Async sub-device struct allocated by the
caller. The struct v4l2_async_subdev shall be the first member of the
driver’s async sub-device struct, i.e. both begin at the same memory ad-
dress.

Description
Gets the remote endpoint of a given local endpoint, set it up for fwnode matching
and adds the async sub-device to the notifier’s asd_list. The function also gets a
reference of the fwnode which is released later at notifier cleanup time.

This is just like v4l2_async_notifier_add_fwnode_subdev, but with the exception
that the fwnode refers to a local endpoint, not the remote one, and the function
relies on the caller to allocate the async sub-device struct.

struct v4l2_async_subdev * v4l2_async_notifier_add_i2c_subdev(struct
v4l2_async_notifier
* notifier,
int adapter_id,
un-
signed
short address,
un-
signed
int asd_struct_size)

Allocate and add an i2c async subdev to the notifier’s master asd_list.
Parameters
struct v4l2_async_notifier * notifier pointer to struct

v4l2_async_notifier

int adapter_id I2C adapter ID to be matched

unsigned short address I2C address of sub-device to be matched

unsigned int asd_struct_size size of the driver’s async sub-device struct, in-
cluding sizeof(struct v4l2_async_subdev). The struct v4l2_async_subdev
shall be the first member of the driver’s async sub-device struct, i.e. both
begin at the same memory address.

Description
Same as above but for I2C matched sub-devices.

struct v4l2_async_subdev * v4l2_async_notifier_add_devname_subdev(struct
v4l2_async_notifier
* notifier,
const
char
* device_name,
un-
signed
int asd_struct_size)

Allocate and add a device-name async subdev to the notifier’s master asd_list.
Parameters

53.1. Video4Linux devices 1707

Linux Driver-api Documentation

struct v4l2_async_notifier * notifier pointer to struct
v4l2_async_notifier

const char * device_name device name string to be matched

unsigned int asd_struct_size size of the driver’s async sub-device struct, in-
cluding sizeof(struct v4l2_async_subdev). The struct v4l2_async_subdev
shall be the first member of the driver’s async sub-device struct, i.e. both
begin at the same memory address.

Description
Same as above but for device-name matched sub-devices.

int v4l2_async_notifier_register(struct v4l2_device * v4l2_dev, struct
v4l2_async_notifier * notifier)

registers a subdevice asynchronous notifier

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

struct v4l2_async_notifier * notifier pointer to struct
v4l2_async_notifier

int v4l2_async_subdev_notifier_register(struct v4l2_subdev * sd, struct
v4l2_async_notifier * notifier)

registers a subdevice asynchronous notifier for a sub-device

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_async_notifier * notifier pointer to struct
v4l2_async_notifier

void v4l2_async_notifier_unregister(struct v4l2_async_notifier
* notifier)

unregisters a subdevice asynchronous notifier

Parameters
struct v4l2_async_notifier * notifier pointer to struct

v4l2_async_notifier

void v4l2_async_notifier_cleanup(struct v4l2_async_notifier * notifier)
clean up notifier resources

Parameters
struct v4l2_async_notifier * notifier the notifier the resources of which

are to be cleaned up

Description
Release memory resources related to a notifier, including the async
sub-devices allocated for the purposes of the notifier but not the
notifier itself. The user is responsible for calling this function to
clean up the notifier after calling v4l2_async_notifier_add_subdev,
v4l2_async_notifier_parse_fwnode_endpoints or v4l2_fwnode_reference_parse_sensor_common.

1708 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

There is no harm from calling v4l2_async_notifier_cleanup in other cases as long
as its memory has been zeroed after it has been allocated.

int v4l2_async_register_subdev(struct v4l2_subdev * sd)
registers a sub-device to the asynchronous subdevice framework

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev * sd)
registers a sensor sub-device to the asynchronous sub-device framework and
parse set up common sensor related devices

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

Description
This function is just like v4l2_async_register_subdev() with the excep-
tion that calling it will also parse firmware interfaces for remote refer-
ences using v4l2_async_notifier_parse_fwnode_sensor_common() and regis-
ters the async sub-devices. The sub-device is similarly unregistered by calling
v4l2_async_unregister_subdev().

While registered, the subdev module is marked as in-use.

An error is returned if the module is no longer loaded on any attempts to register
it.

void v4l2_async_unregister_subdev(struct v4l2_subdev * sd)
unregisters a sub-device to the asynchronous subdevice framework

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

53.1.12 V4L2 events

The V4L2 events provide a generic way to pass events to user space. The driver
must use v4l2_fh to be able to support V4L2 events.

Events are subscribed per-filehandle. An event specification consists of a type and
is optionally associated with an object identified through the id field. If unused,
then the id is 0. So an event is uniquely identified by the (type, id) tuple.

The v4l2_fh struct has a list of subscribed events on its subscribed field.

When the user subscribes to an event, a v4l2_subscribed_event struct is added
to v4l2_fh.subscribed, one for every subscribed event.

Each v4l2_subscribed_event struct ends with a v4l2_kevent ringbuffer, with
the size given by the caller of v4l2_event_subscribe(). This ringbuffer is used
to store any events raised by the driver.

So every (type, ID) event tuple will have its own v4l2_kevent ringbuffer. This
guarantees that if a driver is generating lots of events of one type in a short time,
then that will not overwrite events of another type.

53.1. Video4Linux devices 1709

Linux Driver-api Documentation

But if you get more events of one type than the size of the v4l2_kevent ringbuffer,
then the oldest event will be dropped and the new one added.

The v4l2_kevent struct links into the available list of the v4l2_fh struct so VID-
IOC_DQEVENT will know which event to dequeue first.

Finally, if the event subscription is associated with a particular object such as
a V4L2 control, then that object needs to know about that as well so that an
event can be raised by that object. So the node field can be used to link the
v4l2_subscribed_event struct into a list of such objects.

So to summarize:

• struct v4l2_fh has two lists: one of the subscribed events, and one of the
available events.

• struct v4l2_subscribed_event has a ringbuffer of raised (pending) events of
that particular type.

• If struct v4l2_subscribed_event is associated with a specific object, then
that object will have an internal list of struct v4l2_subscribed_event so it
knows who subscribed an event to that object.

Furthermore, the internal struct v4l2_subscribed_event has merge() and
replace() callbacks which drivers can set. These callbacks are called when a
new event is raised and there is no more room.

The replace() callback allows you to replace the payload of the old event with
that of the new event, merging any relevant data from the old payload into the
new payload that replaces it. It is called when this event type has a ringbuffer
with size is one, i.e. only one event can be stored in the ringbuffer.

The merge() callback allows you to merge the oldest event payload into that of the
second-oldest event payload. It is called when the ringbuffer has size is greater
than one.

This way no status information is lost, just the intermediate steps leading up to
that state.

A good example of these replace/merge callbacks is in v4l2-event.c:
ctrls_replace() and ctrls_merge() callbacks for the control event.

Note: these callbacks can be called from interrupt context, so they must be fast.

In order to queue events to video device, drivers should call:

v4l2_event_queue (vdev, ev)

The driver’s only responsibility is to fill in the type and the data fields. The other
fields will be filled in by V4L2.

1710 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Event subscription

Subscribing to an event is via:

v4l2_event_subscribe (fh, sub , elems, ops)

This function is used to implement video_device-> ioctl_ops->
vidioc_subscribe_event, but the driver must check first if the driver
is able to produce events with specified event id, and then should call
v4l2_event_subscribe() to subscribe the event.

The elems argument is the size of the event queue for this event. If it is 0, then
the framework will fill in a default value (this depends on the event type).

The ops argument allows the driver to specify a number of callbacks:

Callback Description
add called when a new listener gets added (subscribing to the same event twice will

only cause this callback to get called once)
del called when a listener stops listening
replace replace event ‘old’with event ‘new’.
merge merge event ‘old’into event ‘new’.

All 4 callbacks are optional, if you don’t want to specify any callbacks the ops
argument itself maybe NULL.

Unsubscribing an event

Unsubscribing to an event is via:

v4l2_event_unsubscribe (fh, sub)

This function is used to implement video_device-> ioctl_ops->
vidioc_unsubscribe_event. A driver may call v4l2_event_unsubscribe()
directly unless it wants to be involved in unsubscription process.

The special type V4L2_EVENT_ALL may be used to unsubscribe all events. The
drivers may want to handle this in a special way.

Check if there’s a pending event

Checking if there’s a pending event is via:
v4l2_event_pending (fh)

This function returns the number of pending events. Useful when implementing
poll.

53.1. Video4Linux devices 1711

Linux Driver-api Documentation

How events work

Events are delivered to user space through the poll system call. The driver can
use v4l2_fh->wait (a wait_queue_head_t) as the argument for poll_wait().

There are standard and private events. New standard events must use the smallest
available event type. The drivers must allocate their events from their own class
starting from class base. Class base is V4L2_EVENT_PRIVATE_START + n * 1000
where n is the lowest available number. The first event type in the class is reserved
for future use, so the first available event type is ‘class base + 1’.
An example on how the V4L2 events may be used can be found in the OMAP 3 ISP
driver (drivers/media/platform/omap3isp).

A subdev can directly send an event to the v4l2_device notify function with
V4L2_DEVICE_NOTIFY_EVENT. This allows the bridge to map the subdev that sends
the event to the video node(s) associated with the subdev that need to be informed
about such an event.

V4L2 event functions and data structures

struct v4l2_kevent
Internal kernel event struct.

Definition

struct v4l2_kevent {
struct list_head list;
struct v4l2_subscribed_event *sev;
struct v4l2_event event;
u64 ts;

};

Members
list List node for the v4l2_fh->available list.

sev Pointer to parent v4l2_subscribed_event.

event The event itself.

ts The timestamp of the event.

struct v4l2_subscribed_event_ops
Subscribed event operations.

Definition

struct v4l2_subscribed_event_ops {
int (*add)(struct v4l2_subscribed_event *sev, unsigned int elems);
void (*del)(struct v4l2_subscribed_event *sev);
void (*replace)(struct v4l2_event *old, const struct v4l2_event *new);
void (*merge)(const struct v4l2_event *old, struct v4l2_event *new);

};

Members
add Optional callback, called when a new listener is added

1712 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

del Optional callback, called when a listener stops listening

replace Optional callback that can replace event ‘old’with event ‘new’.
merge Optional callback that can merge event ‘old’into event ‘new’.
struct v4l2_subscribed_event

Internal struct representing a subscribed event.

Definition

struct v4l2_subscribed_event {
struct list_head list;
u32 type;
u32 id;
u32 flags;
struct v4l2_fh *fh;
struct list_head node;
const struct v4l2_subscribed_event_ops *ops;
unsigned int elems;
unsigned int first;
unsigned int in_use;
struct v4l2_kevent events[];

};

Members
list List node for the v4l2_fh->subscribed list.

type Event type.

id Associated object ID (e.g. control ID). 0 if there isn’t any.
flags Copy of v4l2_event_subscription->flags.

fh Filehandle that subscribed to this event.

node List node that hooks into the object’s event list (if there is one).
ops v4l2_subscribed_event_ops

elems The number of elements in the events array.

first The index of the events containing the oldest available event.

in_use The number of queued events.

events An array of elems events.
int v4l2_event_dequeue(struct v4l2_fh * fh, struct v4l2_event * event,

int nonblocking)
Dequeue events from video device.

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_event * event pointer to struct v4l2_event

int nonblocking if not zero, waits for an event to arrive

void v4l2_event_queue(struct video_device * vdev, const struct v4l2_event
* ev)

Queue events to video device.

53.1. Video4Linux devices 1713

Linux Driver-api Documentation

Parameters
struct video_device * vdev pointer to struct video_device

const struct v4l2_event * ev pointer to struct v4l2_event

Description
The event will be queued for all struct v4l2_fh file handlers.

Note: The driver’s only responsibility is to fill in the type and the data fields.The
other fields will be filled in by V4L2.

void v4l2_event_queue_fh(struct v4l2_fh * fh, const struct v4l2_event * ev)
Queue events to video device.

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

const struct v4l2_event * ev pointer to struct v4l2_event

Description
The event will be queued only for the specified struct v4l2_fh file handler.

Note: The driver’s only responsibility is to fill in the type and the data fields.The
other fields will be filled in by V4L2.

int v4l2_event_pending(struct v4l2_fh * fh)
Check if an event is available

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

Description
Returns the number of pending events.

int v4l2_event_subscribe(struct v4l2_fh * fh, const struct
v4l2_event_subscription * sub, un-
signed int elems, const struct
v4l2_subscribed_event_ops * ops)

Subscribes to an event

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

const struct v4l2_event_subscription * sub pointer to struct
v4l2_event_subscription

unsigned int elems size of the events queue

const struct v4l2_subscribed_event_ops * ops pointer to
v4l2_subscribed_event_ops

1714 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description

Note: if elems is zero, the framework will fill in a default value, with is currently
1 element.

int v4l2_event_unsubscribe(struct v4l2_fh * fh, const struct
v4l2_event_subscription * sub)

Unsubscribes to an event

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

const struct v4l2_event_subscription * sub pointer to struct
v4l2_event_subscription

void v4l2_event_unsubscribe_all(struct v4l2_fh * fh)
Unsubscribes to all events

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

int v4l2_event_subdev_unsubscribe(struct v4l2_subdev * sd, struct v4l2_fh
* fh, struct v4l2_event_subscription
* sub)

Subdev variant of v4l2_event_unsubscribe()

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_event_subscription * sub pointer to struct
v4l2_event_subscription

Description

Note: This function should be used for the struct v4l2_subdev_core_ops
unsubscribe_event field.

int v4l2_src_change_event_subscribe(struct v4l2_fh * fh, const struct
v4l2_event_subscription * sub)

helper function that calls v4l2_event_subscribe() if the event is
V4L2_EVENT_SOURCE_CHANGE.

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

const struct v4l2_event_subscription * sub pointer to struct
v4l2_event_subscription

int v4l2_src_change_event_subdev_subscribe(struct v4l2_subdev * sd,
struct v4l2_fh * fh, struct
v4l2_event_subscription
* sub)

53.1. Video4Linux devices 1715

Linux Driver-api Documentation

Variant of v4l2_event_subscribe(), meant to subscribe only events of the
type V4L2_EVENT_SOURCE_CHANGE.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_event_subscription * sub pointer to struct
v4l2_event_subscription

53.1.13 V4L2 Controls

Introduction

The V4L2 control API seems simple enough, but quickly becomes very hard to
implement correctly in drivers. But much of the code needed to handle controls is
actually not driver specific and can be moved to the V4L core framework.

After all, the only part that a driver developer is interested in is:

1) How do I add a control?

2) How do I set the control’s value? (i.e. s_ctrl)
And occasionally:

3) How do I get the control’s value? (i.e. g_volatile_ctrl)
4) How do I validate the user’s proposed control value? (i.e. try_ctrl)

All the rest is something that can be done centrally.

The control framework was created in order to implement all the rules of the V4L2
specification with respect to controls in a central place. And to make life as easy
as possible for the driver developer.

Note that the control framework relies on the presence of a struct v4l2_device
for V4L2 drivers and struct v4l2_subdev for sub-device drivers.

Objects in the framework

There are two main objects:

The v4l2_ctrl object describes the control properties and keeps track of the con-
trol’s value (both the current value and the proposed new value).
v4l2_ctrl_handler is the object that keeps track of controls. It maintains a list
of v4l2_ctrl objects that it owns and another list of references to controls, possibly
to controls owned by other handlers.

1716 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Basic usage for V4L2 and sub-device drivers

1) Prepare the driver:

#include <media/v4l2-ctrls.h>

1.1) Add the handler to your driver’s top-level struct:
For V4L2 drivers:

struct foo_dev {
...
struct v4l2_device v4l2_dev;
...
struct v4l2_ctrl_handler ctrl_handler;
...

};

For sub-device drivers:

struct foo_dev {
...
struct v4l2_subdev sd;
...
struct v4l2_ctrl_handler ctrl_handler;
...

};

1.2) Initialize the handler:

v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);

The second argument is a hint telling the function how many controls this handler
is expected to handle. It will allocate a hashtable based on this information. It is
a hint only.

1.3) Hook the control handler into the driver:

For V4L2 drivers:

foo->v4l2_dev.ctrl_handler = &foo->ctrl_handler;

For sub-device drivers:

foo->sd.ctrl_handler = &foo->ctrl_handler;

1.4) Clean up the handler at the end:

v4l2_ctrl_handler_free(&foo->ctrl_handler);

2) Add controls:

You add non-menu controls by calling v4l2_ctrl_new_std():

struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 min, s32 max, u32 step, s32 def);

53.1. Video4Linux devices 1717

Linux Driver-api Documentation

Menu and integer menu controls are added by calling
v4l2_ctrl_new_std_menu():

struct v4l2_ctrl *v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 max, s32 skip_mask, s32 def);

Menu controls with a driver specific menu are added by calling
v4l2_ctrl_new_std_menu_items():

struct v4l2_ctrl *v4l2_ctrl_new_std_menu_items(
struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops, u32 id, s32 max,
s32 skip_mask, s32 def, const char * const *qmenu);

Standard compound controls can be added by calling
v4l2_ctrl_new_std_compound():

struct v4l2_ctrl *v4l2_ctrl_new_std_compound(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops, u32 id,
const union v4l2_ctrl_ptr p_def);

Integer menu controls with a driver specific menu can be added by calling
v4l2_ctrl_new_int_menu():

struct v4l2_ctrl *v4l2_ctrl_new_int_menu(struct v4l2_ctrl_handler *hdl,
const struct v4l2_ctrl_ops *ops,
u32 id, s32 max, s32 def, const s64 *qmenu_int);

These functions are typically called right after the v4l2_ctrl_handler_init():

static const s64 exp_bias_qmenu[] = {
-2, -1, 0, 1, 2

};
static const char * const test_pattern[] = {

"Disabled",
"Vertical Bars",
"Solid Black",
"Solid White",

};

v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,

V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,

V4L2_CID_CONTRAST, 0, 255, 1, 128);
v4l2_ctrl_new_std_menu(&foo->ctrl_handler, &foo_ctrl_ops,

V4L2_CID_POWER_LINE_FREQUENCY,
V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0,
V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);

v4l2_ctrl_new_int_menu(&foo->ctrl_handler, &foo_ctrl_ops,
V4L2_CID_EXPOSURE_BIAS,
ARRAY_SIZE(exp_bias_qmenu) - 1,
ARRAY_SIZE(exp_bias_qmenu) / 2 - 1,
exp_bias_qmenu);

v4l2_ctrl_new_std_menu_items(&foo->ctrl_handler, &foo_ctrl_ops,
(continues on next page)

1718 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
V4L2_CID_TEST_PATTERN, ARRAY_SIZE(test_pattern) - 1, 0,
0, test_pattern);

...
if (foo->ctrl_handler.error) {

int err = foo->ctrl_handler.error;

v4l2_ctrl_handler_free(&foo->ctrl_handler);
return err;

}

The v4l2_ctrl_new_std() function returns the v4l2_ctrl pointer to the new con-
trol, but if you do not need to access the pointer outside the control ops, then there
is no need to store it.

The v4l2_ctrl_new_std() function will fill in most fields based on the control
ID except for the min, max, step and default values. These are passed in the last
four arguments. These values are driver specific while control attributes like type,
name, flags are all global. The control’s current value will be set to the default
value.

The v4l2_ctrl_new_std_menu() function is very similar but it is used for menu
controls. There is no min argument since that is always 0 for menu controls, and
instead of a step there is a skip_mask argument: if bit X is 1, then menu item X is
skipped.

The v4l2_ctrl_new_int_menu() function creates a new standard integer
menu control with driver-specific items in the menu. It differs from
v4l2_ctrl_new_std_menu in that it doesn’t have the mask argument and takes
as the last argument an array of signed 64-bit integers that form an exact menu
item list.

The v4l2_ctrl_new_std_menu_items() function is very similar to
v4l2_ctrl_new_std_menu but takes an extra parameter qmenu, which is the
driver specific menu for an otherwise standard menu control. A good example
for this control is the test pattern control for capture/display/sensors devices that
have the capability to generate test patterns. These test patterns are hardware
specific, so the contents of the menu will vary from device to device.

Note that if something fails, the function will return NULL or an error and set
ctrl_handler->error to the error code. If ctrl_handler->error was already set, then
it will just return and do nothing. This is also true for v4l2_ctrl_handler_init if it
cannot allocate the internal data structure.

This makes it easy to init the handler and just add all controls and only check the
error code at the end. Saves a lot of repetitive error checking.

It is recommended to add controls in ascending control ID order: it will be a bit
faster that way.

3) Optionally force initial control setup:

v4l2_ctrl_handler_setup(&foo->ctrl_handler);

This will call s_ctrl for all controls unconditionally. Effectively this initializes the
hardware to the default control values. It is recommended that you do this as this

53.1. Video4Linux devices 1719

Linux Driver-api Documentation

ensures that both the internal data structures and the hardware are in sync.

4) Finally: implement the v4l2_ctrl_ops

static const struct v4l2_ctrl_ops foo_ctrl_ops = {
.s_ctrl = foo_s_ctrl,

};

Usually all you need is s_ctrl:

static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
{

struct foo *state = container_of(ctrl->handler, struct foo, ctrl_
↪→handler);

switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:

write_reg(0x123, ctrl->val);
break;

case V4L2_CID_CONTRAST:
write_reg(0x456, ctrl->val);
break;

}
return 0;

}

The control ops are called with the v4l2_ctrl pointer as argument. The new control
value has already been validated, so all you need to do is to actually update the
hardware registers.

You’re done! And this is sufficient for most of the drivers we have. No need to do
any validation of control values, or implement QUERYCTRL, QUERY_EXT_CTRL
and QUERYMENU. And G/S_CTRL as well as G/TRY/S_EXT_CTRLS are automati-
cally supported.

Note: The remainder sections deal with more advanced controls topics and sce-
narios. In practice the basic usage as described above is sufficient for most drivers.

Inheriting Sub-device Controls

When a sub-device is registered with a V4L2 driver by calling
v4l2_device_register_subdev() and the ctrl_handler fields of both v4l2_subdev
and v4l2_device are set, then the controls of the subdev will become automatically
available in the V4L2 driver as well. If the subdev driver contains controls that
already exist in the V4L2 driver, then those will be skipped (so a V4L2 driver can
always override a subdev control).

What happens here is that v4l2_device_register_subdev() calls
v4l2_ctrl_add_handler() adding the controls of the subdev to the controls
of v4l2_device.

1720 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Accessing Control Values

The following union is used inside the control framework to access control values:

union v4l2_ctrl_ptr {
s32 *p_s32;
s64 *p_s64;
char *p_char;
void *p;

};

The v4l2_ctrl struct contains these fields that can be used to access both current
and new values:

s32 val;
struct {

s32 val;
} cur;

union v4l2_ctrl_ptr p_new;
union v4l2_ctrl_ptr p_cur;

If the control has a simple s32 type type, then:

&ctrl->val == ctrl->p_new.p_s32
&ctrl->cur.val == ctrl->p_cur.p_s32

For all other types use ctrl->p_cur.p<something>. Basically the val and cur.val
fields can be considered an alias since these are used so often.

Within the control ops you can freely use these. The val and cur.val speak for them-
selves. The p_char pointers point to character buffers of length ctrl->maximum +
1, and are always 0-terminated.

Unless the control is marked volatile the p_cur field points to the the current
cached control value. When you create a new control this value is made identi-
cal to the default value. After calling v4l2_ctrl_handler_setup() this value is
passed to the hardware. It is generally a good idea to call this function.

Whenever a new value is set that new value is automatically cached. This means
that most drivers do not need to implement the g_volatile_ctrl() op. The exception
is for controls that return a volatile register such as a signal strength read-out that
changes continuously. In that case you will need to implement g_volatile_ctrl like
this:

static int foo_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{

switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:

ctrl->val = read_reg(0x123);
break;

}
}

Note that you use the‘new value’union as well in g_volatile_ctrl. In general con-
trols that need to implement g_volatile_ctrl are read-only controls. If they are not,

53.1. Video4Linux devices 1721

Linux Driver-api Documentation

a V4L2_EVENT_CTRL_CH_VALUEwill not be generated when the control changes.

To mark a control as volatile you have to set V4L2_CTRL_FLAG_VOLATILE:

ctrl = v4l2_ctrl_new_std(&sd->ctrl_handler, ...);
if (ctrl)

ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;

For try/s_ctrl the new values (i.e. as passed by the user) are filled in and you can
modify them in try_ctrl or set them in s_ctrl. The‘cur’union contains the current
value, which you can use (but not change!) as well.

If s_ctrl returns 0 (OK), then the control framework will copy the new final values
to the ‘cur’union.
While in g_volatile/s/try_ctrl you can access the value of all controls owned by the
same handler since the handler’s lock is held. If you need to access the value of
controls owned by other handlers, then you have to be very careful not to introduce
deadlocks.

Outside of the control ops you have to go through to helper functions to get or set
a single control value safely in your driver:

s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl *ctrl);
int v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val);

These functions go through the control framework just as VIDIOC_G/S_CTRL ioctls
do. Don’t use these inside the control ops g_volatile/s/try_ctrl, though, that will
result in a deadlock since these helpers lock the handler as well.

You can also take the handler lock yourself:

mutex_lock(&state->ctrl_handler.lock);
pr_info("String value is '%s'\n", ctrl1->p_cur.p_char);
pr_info("Integer value is '%s'\n", ctrl2->cur.val);
mutex_unlock(&state->ctrl_handler.lock);

Menu Controls

The v4l2_ctrl struct contains this union:

union {
u32 step;
u32 menu_skip_mask;

};

For menu controls menu_skip_mask is used. What it does is that it allows you to
easily exclude certain menu items. This is used in the VIDIOC_QUERYMENU im-
plementation where you can return -EINVAL if a certain menu item is not present.
Note that VIDIOC_QUERYCTRL always returns a step value of 1 for menu controls.

A good example is the MPEG Audio Layer II Bitrate menu control where the menu
is a list of standardized possible bitrates. But in practice hardware implementa-
tions will only support a subset of those. By setting the skip mask you can tell the
framework which menu items should be skipped. Setting it to 0 means that all
menu items are supported.

1722 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

You set this mask either through the v4l2_ctrl_config struct for a custom control,
or by calling v4l2_ctrl_new_std_menu().

Custom Controls

Driver specific controls can be created using v4l2_ctrl_new_custom():

static const struct v4l2_ctrl_config ctrl_filter = {
.ops = &ctrl_custom_ops,
.id = V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER,
.name = "Spatial Filter",
.type = V4L2_CTRL_TYPE_INTEGER,
.flags = V4L2_CTRL_FLAG_SLIDER,
.max = 15,
.step = 1,

};

ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_filter, NULL);

The last argument is the priv pointer which can be set to driver-specific private
data.

The v4l2_ctrl_config struct also has a field to set the is_private flag.

If the name field is not set, then the framework will assume this is a standard
control and will fill in the name, type and flags fields accordingly.

Active and Grabbed Controls

If you get more complex relationships between controls, then you may have to
activate and deactivate controls. For example, if the Chroma AGC control is on,
then the Chroma Gain control is inactive. That is, you may set it, but the value will
not be used by the hardware as long as the automatic gain control is on. Typically
user interfaces can disable such input fields.

You can set the‘active’status using v4l2_ctrl_activate(). By default all controls
are active. Note that the framework does not check for this flag. It is meant purely
for GUIs. The function is typically called from within s_ctrl.

The other flag is the ‘grabbed’flag. A grabbed control means that you cannot
change it because it is in use by some resource. Typical examples areMPEG bitrate
controls that cannot be changed while capturing is in progress.

If a control is set to‘grabbed’using v4l2_ctrl_grab(), then the framework will
return -EBUSY if an attempt is made to set this control. The v4l2_ctrl_grab()
function is typically called from the driver when it starts or stops streaming.

53.1. Video4Linux devices 1723

Linux Driver-api Documentation

Control Clusters

By default all controls are independent from the others. But in more complex
scenarios you can get dependencies from one control to another. In that case you
need to ‘cluster’them:
struct foo {

struct v4l2_ctrl_handler ctrl_handler;
#define AUDIO_CL_VOLUME (0)
#define AUDIO_CL_MUTE (1)

struct v4l2_ctrl *audio_cluster[2];
...

};

state->audio_cluster[AUDIO_CL_VOLUME] =
v4l2_ctrl_new_std(&state->ctrl_handler, ...);

state->audio_cluster[AUDIO_CL_MUTE] =
v4l2_ctrl_new_std(&state->ctrl_handler, ...);

v4l2_ctrl_cluster(ARRAY_SIZE(state->audio_cluster), state->audio_cluster);

From now on whenever one or more of the controls belonging to the same cluster
is set (or‘gotten’, or‘tried’), only the control ops of the first control (‘volume’
in this example) is called. You effectively create a new composite control. Similar
to how a ‘struct’works in C.
So when s_ctrl is called with V4L2_CID_AUDIO_VOLUME as argument, you should
set all two controls belonging to the audio_cluster:

static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
{

struct foo *state = container_of(ctrl->handler, struct foo, ctrl_
↪→handler);

switch (ctrl->id) {
case V4L2_CID_AUDIO_VOLUME: {

struct v4l2_ctrl *mute = ctrl->cluster[AUDIO_CL_MUTE];

write_reg(0x123, mute->val ? 0 : ctrl->val);
break;

}
case V4L2_CID_CONTRAST:

write_reg(0x456, ctrl->val);
break;

}
return 0;

}

In the example above the following are equivalent for the VOLUME case:

ctrl == ctrl->cluster[AUDIO_CL_VOLUME] == state->audio_cluster[AUDIO_CL_
↪→VOLUME]
ctrl->cluster[AUDIO_CL_MUTE] == state->audio_cluster[AUDIO_CL_MUTE]

In practice using cluster arrays like this becomes very tiresome. So instead the
following equivalent method is used:

1724 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct {
/* audio cluster */
struct v4l2_ctrl *volume;
struct v4l2_ctrl *mute;

};

The anonymous struct is used to clearly‘cluster’these two control pointers, but
it serves no other purpose. The effect is the same as creating an array with two
control pointers. So you can just do:

state->volume = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
state->mute = v4l2_ctrl_new_std(&state->ctrl_handler, ...);
v4l2_ctrl_cluster(2, &state->volume);

And in foo_s_ctrl you can use these pointers directly: state->mute->val.

Note that controls in a cluster may be NULL. For example, if for some reason mute
was never added (because the hardware doesn’t support that particular feature),
then mute will be NULL. So in that case we have a cluster of 2 controls, of which
only 1 is actually instantiated. The only restriction is that the first control of the
cluster must always be present, since that is the‘master’control of the cluster. The
master control is the one that identifies the cluster and that provides the pointer
to the v4l2_ctrl_ops struct that is used for that cluster.

Obviously, all controls in the cluster array must be initialized to either a valid
control or to NULL.

In rare cases you might want to know which controls of a cluster actually were set
explicitly by the user. For this you can check the‘is_new’flag of each control. For
example, in the case of a volume/mute cluster the‘is_new’flag of the mute control
would be set if the user called VIDIOC_S_CTRL for mute only. If the user would
call VIDIOC_S_EXT_CTRLS for both mute and volume controls, then the‘is_new’
flag would be 1 for both controls.

The ‘is_new’flag is always 1 when called from v4l2_ctrl_handler_setup().

Handling autogain/gain-type Controls with Auto Clusters

A common type of control cluster is one that handles ‘auto-foo/foo’-type con-
trols. Typical examples are autogain/gain, autoexposure/exposure, autowhitebal-
ance/red balance/blue balance. In all cases you have one control that determines
whether another control is handled automatically by the hardware, or whether it
is under manual control from the user.

If the cluster is in automatic mode, then the manual controls should be marked
inactive and volatile. When the volatile controls are read the g_volatile_ctrl oper-
ation should return the value that the hardware’s automatic mode set up auto-
matically.

If the cluster is put inmanual mode, then themanual controls should become active
again and the volatile flag is cleared (so g_volatile_ctrl is no longer called while
in manual mode). In addition just before switching to manual mode the current
values as determined by the auto mode are copied as the new manual values.

53.1. Video4Linux devices 1725

Linux Driver-api Documentation

Finally the V4L2_CTRL_FLAG_UPDATE should be set for the auto control since
changing that control affects the control flags of the manual controls.

In order to simplify this a special variation of v4l2_ctrl_cluster was introduced:

void v4l2_ctrl_auto_cluster(unsigned ncontrols, struct v4l2_ctrl␣
↪→**controls,

u8 manual_val, bool set_volatile);

The first two arguments are identical to v4l2_ctrl_cluster. The third argument tells
the framework which value switches the cluster into manual mode. The last argu-
ment will optionally set V4L2_CTRL_FLAG_VOLATILE for the non-auto controls. If
it is false, then the manual controls are never volatile. You would typically use that
if the hardware does not give you the option to read back to values as determined
by the auto mode (e.g. if autogain is on, the hardware doesn’t allow you to obtain
the current gain value).

The first control of the cluster is assumed to be the ‘auto’control.
Using this function will ensure that you don’t need to handle all the complex flag
and volatile handling.

VIDIOC_LOG_STATUS Support

This ioctl allow you to dump the current status of a driver to the kernel log. The
v4l2_ctrl_handler_log_status(ctrl_handler, prefix) can be used to dump the value
of the controls owned by the given handler to the log. You can supply a prefix as
well. If the prefix didn’t end with a space, then ‘: ‘will be added for you.

Different Handlers for Different Video Nodes

Usually the V4L2 driver has just one control handler that is global for all video
nodes. But you can also specify different control handlers for different video nodes.
You can do that by manually setting the ctrl_handler field of struct video_device.

That is no problem if there are no subdevs involved but if there are, then you need
to block the automatic merging of subdev controls to the global control handler.
You do that by simply setting the ctrl_handler field in struct v4l2_device to NULL.
Now v4l2_device_register_subdev() will no longer merge subdev controls.

After each subdev was added, you will then have to call v4l2_ctrl_add_handler
manually to add the subdev’s control handler (sd->ctrl_handler) to the desired
control handler. This control handler may be specific to the video_device or for a
subset of video_device’s. For example: the radio device nodes only have audio
controls, while the video and vbi device nodes share the same control handler for
the audio and video controls.

If you want to have one handler (e.g. for a radio device node) have a subset of an-
other handler (e.g. for a video device node), then you should first add the controls
to the first handler, add the other controls to the second handler and finally add
the first handler to the second. For example:

1726 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_VOLUME, .
↪→..);
v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...
↪→);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...
↪→);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);
v4l2_ctrl_add_handler(&video_ctrl_handler, &radio_ctrl_handler, NULL);

The last argument to v4l2_ctrl_add_handler() is a filter function that allows you
to filter which controls will be added. Set it to NULL if you want to add all controls.

Or you can add specific controls to a handler:

volume = v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_AUDIO_
↪→VOLUME, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_BRIGHTNESS, ...);
v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_CONTRAST, ...);

What you should not do is make two identical controls for two handlers. For ex-
ample:

v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...
↪→);
v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_AUDIO_MUTE, ...
↪→);

This would be bad since muting the radio would not change the video mute control.
The rule is to have one control for each hardware ‘knob’that you can twiddle.

Finding Controls

Normally you have created the controls yourself and you can store the struct
v4l2_ctrl pointer into your own struct.

But sometimes you need to find a control from another handler that you do not
own. For example, if you have to find a volume control from a subdev.

You can do that by calling v4l2_ctrl_find:

struct v4l2_ctrl *volume;

volume = v4l2_ctrl_find(sd->ctrl_handler, V4L2_CID_AUDIO_VOLUME);

Since v4l2_ctrl_find will lock the handler you have to be careful where you use it.
For example, this is not a good idea:

struct v4l2_ctrl_handler ctrl_handler;

v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);

⋯and in video_ops.s_ctrl:

53.1. Video4Linux devices 1727

Linux Driver-api Documentation

case V4L2_CID_BRIGHTNESS:
contrast = v4l2_find_ctrl(&ctrl_handler, V4L2_CID_CONTRAST);
...

When s_ctrl is called by the framework the ctrl_handler.lock is already taken, so
attempting to find another control from the same handler will deadlock.

It is recommended not to use this function from inside the control ops.

Preventing Controls inheritance

When one control handler is added to another using v4l2_ctrl_add_handler, then
by default all controls from one are merged to the other. But a subdev might
have low-level controls that make sense for some advanced embedded system, but
not when it is used in consumer-level hardware. In that case you want to keep
those low-level controls local to the subdev. You can do this by simply setting the
‘is_private’flag of the control to 1:
static const struct v4l2_ctrl_config ctrl_private = {

.ops = &ctrl_custom_ops,

.id = V4L2_CID_...,

.name = "Some Private Control",

.type = V4L2_CTRL_TYPE_INTEGER,

.max = 15,

.step = 1,

.is_private = 1,
};

ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_private, NULL);

These controls will now be skipped when v4l2_ctrl_add_handler is called.

V4L2_CTRL_TYPE_CTRL_CLASS Controls

Controls of this type can be used by GUIs to get the name of the control class. A
fully featured GUI can make a dialog with multiple tabs with each tab containing
the controls belonging to a particular control class. The name of each tab can be
found by querying a special control with ID <control class | 1>.

Drivers do not have to care about this. The framework will automatically add a
control of this type whenever the first control belonging to a new control class is
added.

1728 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Adding Notify Callbacks

Sometimes the platform or bridge driver needs to be notified when a control from
a sub-device driver changes. You can set a notify callback by calling this function:

void v4l2_ctrl_notify(struct v4l2_ctrl *ctrl,
void (*notify)(struct v4l2_ctrl *ctrl, void *priv), void *priv);

Whenever the give control changes value the notify callback will be called with a
pointer to the control and the priv pointer that was passed with v4l2_ctrl_notify.
Note that the control’s handler lock is held when the notify function is called.
There can be only one notify function per control handler. Any attempt to set
another notify function will cause a WARN_ON.

v4l2_ctrl functions and data structures

union v4l2_ctrl_ptr
A pointer to a control value.

Definition

union v4l2_ctrl_ptr {
s32 *p_s32;
s64 *p_s64;
u8 *p_u8;
u16 *p_u16;
u32 *p_u32;
char *p_char;
struct v4l2_ctrl_mpeg2_slice_params *p_mpeg2_slice_params;
struct v4l2_ctrl_mpeg2_quantization *p_mpeg2_quantization;
struct v4l2_ctrl_fwht_params *p_fwht_params;
struct v4l2_ctrl_h264_sps *p_h264_sps;
struct v4l2_ctrl_h264_pps *p_h264_pps;
struct v4l2_ctrl_h264_scaling_matrix *p_h264_scaling_matrix;
struct v4l2_ctrl_h264_slice_params *p_h264_slice_params;
struct v4l2_ctrl_h264_decode_params *p_h264_decode_params;
struct v4l2_ctrl_vp8_frame_header *p_vp8_frame_header;
struct v4l2_ctrl_hevc_sps *p_hevc_sps;
struct v4l2_ctrl_hevc_pps *p_hevc_pps;
struct v4l2_ctrl_hevc_slice_params *p_hevc_slice_params;
struct v4l2_area *p_area;
void *p;
const void *p_const;

};

Members
p_s32 Pointer to a 32-bit signed value.

p_s64 Pointer to a 64-bit signed value.

p_u8 Pointer to a 8-bit unsigned value.

p_u16 Pointer to a 16-bit unsigned value.

p_u32 Pointer to a 32-bit unsigned value.

53.1. Video4Linux devices 1729

Linux Driver-api Documentation

p_char Pointer to a string.

p_mpeg2_slice_params Pointer to a MPEG2 slice parameters structure.

p_mpeg2_quantization Pointer to a MPEG2 quantization data structure.

p_fwht_params Pointer to a FWHT stateless parameters structure.

p_h264_sps Pointer to a struct v4l2_ctrl_h264_sps.

p_h264_pps Pointer to a struct v4l2_ctrl_h264_pps.

p_h264_scaling_matrix Pointer to a struct v4l2_ctrl_h264_scaling_matrix.

p_h264_slice_params Pointer to a struct v4l2_ctrl_h264_slice_params.

p_h264_decode_params Pointer to a struct v4l2_ctrl_h264_decode_params.

p_vp8_frame_header Pointer to a VP8 frame header structure.

p_hevc_sps Pointer to an HEVC sequence parameter set structure.

p_hevc_pps Pointer to an HEVC picture parameter set structure.

p_hevc_slice_params Pointer to an HEVC slice parameters structure.

p_area Pointer to an area.

p Pointer to a compound value.

p_const Pointer to a constant compound value.

union v4l2_ctrl_ptr v4l2_ctrl_ptr_create(void * ptr)
Helper function to return a v4l2_ctrl_ptr from a void pointer

Parameters
void * ptr The void pointer

struct v4l2_ctrl_ops
The control operations that the driver has to provide.

Definition

struct v4l2_ctrl_ops {
int (*g_volatile_ctrl)(struct v4l2_ctrl *ctrl);
int (*try_ctrl)(struct v4l2_ctrl *ctrl);
int (*s_ctrl)(struct v4l2_ctrl *ctrl);

};

Members
g_volatile_ctrl Get a new value for this control. Generally only relevant for

volatile (and usually read-only) controls such as a control that returns the
current signal strength which changes continuously. If not set, then the cur-
rently cached value will be returned.

try_ctrl Test whether the control’s value is valid. Only relevant when the usual
min/max/step checks are not sufficient.

s_ctrl Actually set the new control value. s_ctrl is compulsory. The ctrl->handler-
>lock is held when these ops are called, so no one else can access controls
owned by that handler.

1730 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_ctrl_type_ops
The control type operations that the driver has to provide.

Definition

struct v4l2_ctrl_type_ops {
bool (*equal)(const struct v4l2_ctrl *ctrl, u32 idx,union v4l2_ctrl_ptr␣

↪→ptr1, union v4l2_ctrl_ptr ptr2);
void (*init)(const struct v4l2_ctrl *ctrl, u32 idx, union v4l2_ctrl_ptr␣

↪→ptr);
void (*log)(const struct v4l2_ctrl *ctrl);
int (*validate)(const struct v4l2_ctrl *ctrl, u32 idx, union v4l2_ctrl_

↪→ptr ptr);
};

Members
equal return true if both values are equal.

init initialize the value.

log log the value.

validate validate the value. Return 0 on success and a negative value otherwise.

v4l2_ctrl_notify_fnc
Typedef: typedef for a notify argument with a function that should be called
when a control value has changed.

Syntax
void v4l2_ctrl_notify_fnc (struct v4l2_ctrl * ctrl, void *
priv);

Parameters
struct v4l2_ctrl * ctrl pointer to struct v4l2_ctrl

void * priv control private data

Description
This typedef definition is used as an argument to v4l2_ctrl_notify() and as an
argument at struct v4l2_ctrl_handler.

struct v4l2_ctrl
The control structure.

Definition

struct v4l2_ctrl {
struct list_head node;
struct list_head ev_subs;
struct v4l2_ctrl_handler *handler;
struct v4l2_ctrl **cluster;
unsigned int ncontrols;
unsigned int done:1;
unsigned int is_new:1;
unsigned int has_changed:1;
unsigned int is_private:1;
unsigned int is_auto:1;

(continues on next page)

53.1. Video4Linux devices 1731

Linux Driver-api Documentation

(continued from previous page)
unsigned int is_int:1;
unsigned int is_string:1;
unsigned int is_ptr:1;
unsigned int is_array:1;
unsigned int has_volatiles:1;
unsigned int call_notify:1;
unsigned int manual_mode_value:8;
const struct v4l2_ctrl_ops *ops;
const struct v4l2_ctrl_type_ops *type_ops;
u32 id;
const char *name;
enum v4l2_ctrl_type type;
s64 minimum, maximum, default_value;
u32 elems;
u32 elem_size;
u32 dims[V4L2_CTRL_MAX_DIMS];
u32 nr_of_dims;
union {

u64 step;
u64 menu_skip_mask;

};
union {

const char * const *qmenu;
const s64 *qmenu_int;

};
unsigned long flags;
void *priv;
s32 val;
struct {

s32 val;
} cur;
union v4l2_ctrl_ptr p_def;
union v4l2_ctrl_ptr p_new;
union v4l2_ctrl_ptr p_cur;

};

Members
node The list node.

ev_subs The list of control event subscriptions.

handler The handler that owns the control.

cluster Point to start of cluster array.

ncontrols Number of controls in cluster array.

done Internal flag: set for each processed control.

is_new Set when the user specified a new value for this control. It is also set when
called from v4l2_ctrl_handler_setup(). Drivers should never set this flag.

has_changed Set when the current value differs from the new value. Drivers
should never use this flag.

is_private If set, then this control is private to its handler and it will not be added
to any other handlers. Drivers can set this flag.

1732 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

is_auto If set, then this control selects whether the other cluster members are
in‘automatic’mode or‘manual’mode. This is used for autogain/gain type
clusters. Drivers should never set this flag directly.

is_int If set, then this control has a simple integer value (i.e. it uses ctrl->val).

is_string If set, then this control has type V4L2_CTRL_TYPE_STRING.

is_ptr If set, then this control is an array and/or has type >=
V4L2_CTRL_COMPOUND_TYPES and/or has type V4L2_CTRL_TYPE_STRING.
In other words, struct v4l2_ext_control uses field p to point to the data.

is_array If set, then this control contains an N-dimensional array.

has_volatiles If set, then one or more members of the cluster are volatile.
Drivers should never touch this flag.

call_notify If set, then call the handler’s notify function whenever the control’
s value changes.

manual_mode_value If the is_auto flag is set, then this is the value of the auto
control that determines if that control is in manual mode. So if the value of
the auto control equals this value, then the whole cluster is in manual mode.
Drivers should never set this flag directly.

ops The control ops.

type_ops The control type ops.

id The control ID.

name The control name.

type The control type.

minimum The control’s minimum value.

maximum The control’s maximum value.

default_value The control’s default value.
elems The number of elements in the N-dimensional array.

elem_size The size in bytes of the control.

dims The size of each dimension.

nr_of_dims The number of dimensions in dims.
{unnamed_union} anonymous

step The control’s step value for non-menu controls.
menu_skip_mask The control’s skip mask for menu controls. This makes it easy

to skip menu items that are not valid. If bit X is set, then menu item X is
skipped. Of course, this only works for menus with <= 32 menu items. There
are no menus that come close to that number, so this is OK. Should we ever
need more, then this will have to be extended to a u64 or a bit array.

{unnamed_union} anonymous

qmenu A const char * array for all menu items. Array entries that are empty
strings (“”) correspond to non-existing menu items (this is in addition to

53.1. Video4Linux devices 1733

Linux Driver-api Documentation

the menu_skip_mask above). The last entry must be NULL. Used only if the
type is V4L2_CTRL_TYPE_MENU.

qmenu_int A 64-bit integer array for with integer menu items. The size of array
must be equal to the menu size, e. g.: ceil(maximum−minimum

step) + 1. Used only if
the type is V4L2_CTRL_TYPE_INTEGER_MENU.

flags The control’s flags.
priv The control’s private pointer. For use by the driver. It is untouched by the

control framework. Note that this pointer is not freed when the control is
deleted. Should this be needed then a new internal bitfield can be added to
tell the framework to free this pointer.

val The control’s new s32 value.
cur Structure to store the current value.

cur.val The control’s current value, if the type is represented via a u32 integer
(see enum v4l2_ctrl_type).

p_def The control’s default value represented via a union which provides a stan-
dard way of accessing control types through a pointer (for compound controls
only).

p_new The control’s new value represented via a union which provides a standard
way of accessing control types through a pointer.

p_cur The control’s current value represented via a union which provides a stan-
dard way of accessing control types through a pointer.

struct v4l2_ctrl_ref
The control reference.

Definition

struct v4l2_ctrl_ref {
struct list_head node;
struct v4l2_ctrl_ref *next;
struct v4l2_ctrl *ctrl;
struct v4l2_ctrl_helper *helper;
bool from_other_dev;
bool req_done;
struct v4l2_ctrl_ref *req;
union v4l2_ctrl_ptr p_req;

};

Members
node List node for the sorted list.

next Single-link list node for the hash.

ctrl The actual control information.

helper Pointer to helper struct. Used internally in prepare_ext_ctrls function
at v4l2-ctrl.c.

from_other_dev If true, then ctrl was defined in another device than the struct
v4l2_ctrl_handler.

1734 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

req_done Internal flag: if the control handler containing this control reference is
bound to a media request, then this is set when the control has been applied.
This prevents applying controls from a cluster with multiple controls twice
(when the first control of a cluster is applied, they all are).

req If set, this refers to another request that sets this control.

p_req If the control handler containing this control reference is bound to a media
request, then this points to the value of the control that should be applied
when the request is executed, or to the value of the control at the time that
the request was completed.

Description
Each control handler has a list of these refs. The list_head is used to keep a sorted-
by-control-ID list of all controls, while the next pointer is used to link the control
in the hash’s bucket.
struct v4l2_ctrl_handler

The control handler keeps track of all the controls: both the controls owned
by the handler and those inherited from other handlers.

Definition

struct v4l2_ctrl_handler {
struct mutex _lock;
struct mutex *lock;
struct list_head ctrls;
struct list_head ctrl_refs;
struct v4l2_ctrl_ref *cached;
struct v4l2_ctrl_ref **buckets;
v4l2_ctrl_notify_fnc notify;
void *notify_priv;
u16 nr_of_buckets;
int error;
bool request_is_queued;
struct list_head requests;
struct list_head requests_queued;
struct media_request_object req_obj;

};

Members
_lock Default for “lock”.
lock Lock to control access to this handler and its controls. May be replaced by

the user right after init.

ctrls The list of controls owned by this handler.

ctrl_refs The list of control references.

cached The last found control reference. It is common that the same control is
needed multiple times, so this is a simple optimization.

buckets Buckets for the hashing. Allows for quick control lookup.

notify A notify callback that is called whenever the control changes value. Note
that the handler’s lock is held when the notify function is called!

53.1. Video4Linux devices 1735

Linux Driver-api Documentation

notify_priv Passed as argument to the v4l2_ctrl notify callback.

nr_of_buckets Total number of buckets in the array.

error The error code of the first failed control addition.

request_is_queued True if the request was queued.

requests List to keep track of open control handler request objects. For the par-
ent control handler (req_obj.req == NULL) this is the list header. When the
parent control handler is removed, it has to unbind and put all these requests
since they refer to the parent.

requests_queued List of the queued requests. This determines the order in which
these controls are applied. Once the request is completed it is removed from
this list.

req_obj The struct media_request_object, used to link into a struct
media_request. This request object has a refcount.

struct v4l2_ctrl_config
Control configuration structure.

Definition

struct v4l2_ctrl_config {
const struct v4l2_ctrl_ops *ops;
const struct v4l2_ctrl_type_ops *type_ops;
u32 id;
const char *name;
enum v4l2_ctrl_type type;
s64 min;
s64 max;
u64 step;
s64 def;
union v4l2_ctrl_ptr p_def;
u32 dims[V4L2_CTRL_MAX_DIMS];
u32 elem_size;
u32 flags;
u64 menu_skip_mask;
const char * const *qmenu;
const s64 *qmenu_int;
unsigned int is_private:1;

};

Members
ops The control ops.

type_ops The control type ops. Only needed for compound controls.

id The control ID.

name The control name.

type The control type.

min The control’s minimum value.

max The control’s maximum value.

step The control’s step value for non-menu controls.

1736 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

def The control’s default value.
p_def The control’s default value for compound controls.
dims The size of each dimension.

elem_size The size in bytes of the control.

flags The control’s flags.
menu_skip_mask The control’s skip mask for menu controls. This makes it easy

to skip menu items that are not valid. If bit X is set, then menu item X is
skipped. Of course, this only works for menus with <= 64 menu items. There
are no menus that come close to that number, so this is OK. Should we ever
need more, then this will have to be extended to a bit array.

qmenu A const char * array for all menu items. Array entries that are empty
strings (“”) correspond to non-existing menu items (this is in addition to
the menu_skip_mask above). The last entry must be NULL.

qmenu_int A const s64 integer array for all menu items of the type
V4L2_CTRL_TYPE_INTEGER_MENU.

is_private If set, then this control is private to its handler and it will not be added
to any other handlers.

void v4l2_ctrl_fill(u32 id, const char ** name, enum v4l2_ctrl_type
* type, s64 * min, s64 * max, u64 * step, s64 * def, u32
* flags)

Fill in the control fields based on the control ID.

Parameters
u32 id ID of the control

const char ** name pointer to be filled with a string with the name of the control

enum v4l2_ctrl_type * type pointer for storing the type of the control

s64 * min pointer for storing the minimum value for the control

s64 * max pointer for storing the maximum value for the control

u64 * step pointer for storing the control step

s64 * def pointer for storing the default value for the control

u32 * flags pointer for storing the flags to be used on the control

Description
This works for all standard V4L2 controls. For non-standard controls it will only
fill in the given arguments and name content will be set to NULL.
This function will overwrite the contents of name, type and flags. The contents
of min, max, step and def may be modified depending on the type.

Note: Do not use in drivers! It is used internally for backwards compatibil-
ity control handling only. Once all drivers are converted to use the new control
framework this function will no longer be exported.

53.1. Video4Linux devices 1737

Linux Driver-api Documentation

int v4l2_ctrl_handler_init_class(struct v4l2_ctrl_handler * hdl, un-
signed int nr_of_controls_hint, struct
lock_class_key * key, const char
* name)

Initialize the control handler.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

unsigned int nr_of_controls_hint A hint of how many controls this handler
is expected to refer to. This is the total number, so including any inherited
controls. It doesn’t have to be precise, but if it is way off, then you either
waste memory (too many buckets are allocated) or the control lookup be-
comes slower (not enough buckets are allocated, so there are more slow list
lookups). It will always work, though.

struct lock_class_key * key Used by the lock validator if CONFIG_LOCKDEP
is set.

const char * name Used by the lock validator if CONFIG_LOCKDEP is set.

Description

Attention: Never use this call directly, always use the
v4l2_ctrl_handler_init() macro that hides the key and name arguments.

Return
returns an error if the buckets could not be allocated. This error will also be stored
in hdl->error.
v4l2_ctrl_handler_init(hdl, nr_of_controls_hint)

helper function to create a static struct lock_class_key and calls
v4l2_ctrl_handler_init_class()

Parameters
hdl The control handler.

nr_of_controls_hint A hint of how many controls this handler is expected to
refer to. This is the total number, so including any inherited controls. It
doesn’t have to be precise, but if it is way off, then you either waste memory
(too many buckets are allocated) or the control lookup becomes slower (not
enough buckets are allocated, so there are more slow list lookups). It will
always work, though.

Description
This helper function creates a static struct lock_class_key and calls
v4l2_ctrl_handler_init_class(), providing a proper name for the lock vali-
dador.

Use this helper function to initialize a control handler.

void v4l2_ctrl_handler_free(struct v4l2_ctrl_handler * hdl)
Free all controls owned by the handler and free the control list.

1738 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

Description
Does nothing if hdl == NULL.
void v4l2_ctrl_lock(struct v4l2_ctrl * ctrl)

Helper function to lock the handler associated with the control.

Parameters
struct v4l2_ctrl * ctrl The control to lock.

void v4l2_ctrl_unlock(struct v4l2_ctrl * ctrl)
Helper function to unlock the handler associated with the control.

Parameters
struct v4l2_ctrl * ctrl The control to unlock.

int __v4l2_ctrl_handler_setup(struct v4l2_ctrl_handler * hdl)
Call the s_ctrl op for all controls belonging to the handler to initialize the
hardware to the current control values. The caller is responsible for acquiring
the control handler mutex on behalf of __v4l2_ctrl_handler_setup().

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

Description
Button controls will be skipped, as are read-only controls.

If hdl == NULL, then this just returns 0.
int v4l2_ctrl_handler_setup(struct v4l2_ctrl_handler * hdl)

Call the s_ctrl op for all controls belonging to the handler to initialize the
hardware to the current control values.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

Description
Button controls will be skipped, as are read-only controls.

If hdl == NULL, then this just returns 0.
void v4l2_ctrl_handler_log_status(struct v4l2_ctrl_handler * hdl, const

char * prefix)
Log all controls owned by the handler.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

const char * prefix The prefix to use when logging the control values. If the
prefix does not end with a space, then “: ”will be added after the prefix. If
prefix == NULL, then no prefix will be used.

53.1. Video4Linux devices 1739

Linux Driver-api Documentation

Description
For use with VIDIOC_LOG_STATUS.

Does nothing if hdl == NULL.
struct v4l2_ctrl * v4l2_ctrl_new_custom(struct v4l2_ctrl_handler * hdl,

const struct v4l2_ctrl_config * cfg,
void * priv)

Allocate and initialize a new custom V4L2 control.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

const struct v4l2_ctrl_config * cfg The control’s configuration data.
void * priv The control’s driver-specific private data.
Description
If the v4l2_ctrl struct could not be allocated then NULL is returned and hdl-
>error is set to the error code (if it wasn’t set already).
struct v4l2_ctrl * v4l2_ctrl_new_std(struct v4l2_ctrl_handler * hdl, const

struct v4l2_ctrl_ops * ops, u32 id,
s64 min, s64 max, u64 step, s64 def)

Allocate and initialize a new standard V4L2 non-menu control.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

const struct v4l2_ctrl_ops * ops The control ops.

u32 id The control ID.

s64 min The control’s minimum value.

s64 max The control’s maximum value.

u64 step The control’s step value
s64 def The control’s default value.
Description
If the v4l2_ctrl struct could not be allocated, or the control ID is not known, then
NULL is returned and hdl->error is set to the appropriate error code (if it wasn’
t set already).

If id refers to a menu control, then this function will return NULL.
Use v4l2_ctrl_new_std_menu() when adding menu controls.

struct v4l2_ctrl * v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler * hdl,
const struct v4l2_ctrl_ops * ops,
u32 id, u8 max, u64 mask,
u8 def)

Allocate and initialize a new standard V4L2 menu control.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

1740 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

const struct v4l2_ctrl_ops * ops The control ops.

u32 id The control ID.

u8 max The control’s maximum value.

u64 mask The control’s skip mask for menu controls. This makes it easy to skip
menu items that are not valid. If bit X is set, then menu item X is skipped.
Of course, this only works for menus with <= 64 menu items. There are no
menus that come close to that number, so this is OK. Should we ever need
more, then this will have to be extended to a bit array.

u8 def The control’s default value.
Description
Same as v4l2_ctrl_new_std(), butmin is set to 0 and themask value determines
which menu items are to be skipped.

If id refers to a non-menu control, then this function will return NULL.
struct v4l2_ctrl * v4l2_ctrl_new_std_menu_items(struct v4l2_ctrl_handler

* hdl, const struct
v4l2_ctrl_ops * ops,
u32 id, u8 max,
u64 mask, u8 def, const
char *const * qmenu)

Create a new standard V4L2 menu control with driver specific menu.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

const struct v4l2_ctrl_ops * ops The control ops.

u32 id The control ID.

u8 max The control’s maximum value.

u64 mask The control’s skip mask for menu controls. This makes it easy to skip
menu items that are not valid. If bit X is set, then menu item X is skipped.
Of course, this only works for menus with <= 64 menu items. There are no
menus that come close to that number, so this is OK. Should we ever need
more, then this will have to be extended to a bit array.

u8 def The control’s default value.
const char *const * qmenu The new menu.

Description
Same as v4l2_ctrl_new_std_menu(), but qmenu will be the driver specific menu
of this control.

struct v4l2_ctrl * v4l2_ctrl_new_std_compound(struct v4l2_ctrl_handler
* hdl, const struct
v4l2_ctrl_ops * ops,
u32 id, const union
v4l2_ctrl_ptr p_def)

Allocate and initialize a new standard V4L2 compound control.

53.1. Video4Linux devices 1741

Linux Driver-api Documentation

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

const struct v4l2_ctrl_ops * ops The control ops.

u32 id The control ID.

const union v4l2_ctrl_ptr p_def The control’s default value.
Description
Sames as v4l2_ctrl_new_std(), but with support to compound controls, thanks to
the p_def field. Use v4l2_ctrl_ptr_create() to create p_def from a pointer. Use
v4l2_ctrl_ptr_create(NULL) if the default value of the compound control should be
all zeroes.

struct v4l2_ctrl * v4l2_ctrl_new_int_menu(struct v4l2_ctrl_handler * hdl,
const struct v4l2_ctrl_ops * ops,
u32 id, u8 max, u8 def, const
s64 * qmenu_int)

Create a new standard V4L2 integer menu control.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

const struct v4l2_ctrl_ops * ops The control ops.

u32 id The control ID.

u8 max The control’s maximum value.

u8 def The control’s default value.
const s64 * qmenu_int The control’s menu entries.
Description
Same as v4l2_ctrl_new_std_menu(), butmask is set to 0 and it additionally takes
as an argument an array of integers determining the menu items.

If id refers to a non-integer-menu control, then this function will return NULL.
v4l2_ctrl_filter

Typedef: Typedef to define the filter function to be used when adding a con-
trol handler.

Syntax
bool v4l2_ctrl_filter (const struct v4l2_ctrl * ctrl);

Parameters
const struct v4l2_ctrl * ctrl pointer to struct v4l2_ctrl.

int v4l2_ctrl_add_handler(struct v4l2_ctrl_handler * hdl, struct
v4l2_ctrl_handler * add, v4l2_ctrl_filter filter,
bool from_other_dev)

Add all controls from handler add to handler hdl.
Parameters
struct v4l2_ctrl_handler * hdl The control handler.

1742 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_ctrl_handler * add The control handler whose controls you want
to add to the hdl control handler.

v4l2_ctrl_filter filter This function will filter which controls should be
added.

bool from_other_dev If true, then the controls in add were defined in another
device than hdl.

Description
Does nothing if either of the two handlers is a NULL pointer. If filter is NULL,
then all controls are added. Otherwise only those controls for which filter returns
true will be added. In case of an error hdl->error will be set to the error code (if
it wasn’t set already).
bool v4l2_ctrl_radio_filter(const struct v4l2_ctrl * ctrl)

Standard filter for radio controls.

Parameters
const struct v4l2_ctrl * ctrl The control that is filtered.

Description
This will return true for any controls that are valid for radio device nodes. Those
are all of the V4L2_CID_AUDIO_* user controls and all FM transmitter class con-
trols.

This function is to be used with v4l2_ctrl_add_handler().

void v4l2_ctrl_cluster(unsigned int ncontrols, struct v4l2_ctrl
** controls)

Mark all controls in the cluster as belonging to that cluster.

Parameters
unsigned int ncontrols The number of controls in this cluster.

struct v4l2_ctrl ** controls The cluster control array of size ncontrols.
void v4l2_ctrl_auto_cluster(unsigned int ncontrols, struct

v4l2_ctrl ** controls, u8 manual_val,
bool set_volatile)

Mark all controls in the cluster as belonging to that cluster and set it up for
autofoo/foo-type handling.

Parameters
unsigned int ncontrols The number of controls in this cluster.

struct v4l2_ctrl ** controls The cluster control array of size ncontrols. The
first control must be the ‘auto’control (e.g. autogain, autoexposure, etc.)

u8 manual_val The value for the first control in the cluster that equals the manual
setting.

bool set_volatile If true, then all controls except the first auto control will be
volatile.

Description

53.1. Video4Linux devices 1743

Linux Driver-api Documentation

Use for control groups where one control selects some automatic feature and the
other controls are only active whenever the automatic feature is turned off (manual
mode). Typical examples: autogain vs gain, auto-whitebalance vs red and blue
balance, etc.

The behavior of such controls is as follows:

When the autofoo control is set to automatic, then any manual controls are set to
inactive and any reads will call g_volatile_ctrl (if the control was marked volatile).

When the autofoo control is set to manual, then anymanual controls will bemarked
active, and any reads will just return the current value without going through
g_volatile_ctrl.

In addition, this function will set the V4L2_CTRL_FLAG_UPDATE flag on the autofoo
control and V4L2_CTRL_FLAG_INACTIVE on the foo control(s) if autofoo is in auto
mode.

struct v4l2_ctrl * v4l2_ctrl_find(struct v4l2_ctrl_handler * hdl, u32 id)
Find a control with the given ID.

Parameters
struct v4l2_ctrl_handler * hdl The control handler.

u32 id The control ID to find.

Description
If hdl == NULL this will return NULL as well. Will lock the handler so do not use
from inside v4l2_ctrl_ops.

void v4l2_ctrl_activate(struct v4l2_ctrl * ctrl, bool active)
Make the control active or inactive.

Parameters
struct v4l2_ctrl * ctrl The control to (de)activate.

bool active True if the control should become active.

Description
This sets or clears the V4L2_CTRL_FLAG_INACTIVE flag atomically. Does noth-
ing if ctrl == NULL. This will usually be called from within the s_ctrl op. The
V4L2_EVENT_CTRL event will be generated afterwards.

This function assumes that the control handler is locked.

void __v4l2_ctrl_grab(struct v4l2_ctrl * ctrl, bool grabbed)
Unlocked variant of v4l2_ctrl_grab.

Parameters
struct v4l2_ctrl * ctrl The control to (de)activate.

bool grabbed True if the control should become grabbed.

Description
This sets or clears the V4L2_CTRL_FLAG_GRABBED flag atomically. Does nothing
if ctrl == NULL. The V4L2_EVENT_CTRL event will be generated afterwards.
This will usually be called when starting or stopping streaming in the driver.

1744 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

This function assumes that the control handler is locked by the caller.

void v4l2_ctrl_grab(struct v4l2_ctrl * ctrl, bool grabbed)
Mark the control as grabbed or not grabbed.

Parameters
struct v4l2_ctrl * ctrl The control to (de)activate.

bool grabbed True if the control should become grabbed.

Description
This sets or clears the V4L2_CTRL_FLAG_GRABBED flag atomically. Does nothing
if ctrl == NULL. The V4L2_EVENT_CTRL event will be generated afterwards.
This will usually be called when starting or stopping streaming in the driver.

This function assumes that the control handler is not locked and will take the lock
itself.

int __v4l2_ctrl_modify_range(struct v4l2_ctrl * ctrl, s64 min, s64 max,
u64 step, s64 def)

Unlocked variant of v4l2_ctrl_modify_range()

Parameters
struct v4l2_ctrl * ctrl The control to update.

s64 min The control’s minimum value.

s64 max The control’s maximum value.

u64 step The control’s step value
s64 def The control’s default value.
Description
Update the range of a control on the fly. This works for control types INTEGER,
BOOLEAN, MENU, INTEGER MENU and BITMASK. For menu controls the step
value is interpreted as a menu_skip_mask.

An error is returned if one of the range arguments is invalid for this control type.

The caller is responsible for acquiring the control handler mutex on behalf of
__v4l2_ctrl_modify_range().

int v4l2_ctrl_modify_range(struct v4l2_ctrl * ctrl, s64 min, s64 max,
u64 step, s64 def)

Update the range of a control.

Parameters
struct v4l2_ctrl * ctrl The control to update.

s64 min The control’s minimum value.

s64 max The control’s maximum value.

u64 step The control’s step value
s64 def The control’s default value.

53.1. Video4Linux devices 1745

Linux Driver-api Documentation

Description
Update the range of a control on the fly. This works for control types INTEGER,
BOOLEAN, MENU, INTEGER MENU and BITMASK. For menu controls the step
value is interpreted as a menu_skip_mask.

An error is returned if one of the range arguments is invalid for this control type.

This function assumes that the control handler is not locked and will take the lock
itself.

void v4l2_ctrl_notify(struct v4l2_ctrl * ctrl, v4l2_ctrl_notify_fnc notify,
void * priv)

Function to set a notify callback for a control.

Parameters
struct v4l2_ctrl * ctrl The control.

v4l2_ctrl_notify_fnc notify The callback function.

void * priv The callback private handle, passed as argument to the callback.

Description
This function sets a callback function for the control. If ctrl is NULL, then it will
do nothing. If notify is NULL, then the notify callback will be removed.
There can be only one notify. If another already exists, then a WARN_ON will be
issued and the function will do nothing.

const char * v4l2_ctrl_get_name(u32 id)
Get the name of the control

Parameters
u32 id The control ID.

Description
This function returns the name of the given control ID or NULL if it isn’t a known
control.

const char * const * v4l2_ctrl_get_menu(u32 id)
Get the menu string array of the control

Parameters
u32 id The control ID.

Description
This function returns the NULL-terminated menu string array name of the given
control ID or NULL if it isn’t a known menu control.
const s64 * v4l2_ctrl_get_int_menu(u32 id, u32 * len)

Get the integer menu array of the control

Parameters
u32 id The control ID.

u32 * len The size of the integer array.

1746 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description
This function returns the integer array of the given control ID or NULL if it if it
isn’t a known integer menu control.
s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl * ctrl)

Helper function to get the control’s value from within a driver.

Parameters
struct v4l2_ctrl * ctrl The control.

Description
This returns the control’s value safely by going through the control framework.
This function will lock the control’s handler, so it cannot be used from within the
v4l2_ctrl_ops functions.

This function is for integer type controls only.

int __v4l2_ctrl_s_ctrl(struct v4l2_ctrl * ctrl, s32 val)
Unlocked variant of v4l2_ctrl_s_ctrl().

Parameters
struct v4l2_ctrl * ctrl The control.

s32 val The new value.

Description
This sets the control’s new value safely by going through the control framework.
This function assumes the control’s handler is already locked, allowing it to be
used from within the v4l2_ctrl_ops functions.

This function is for integer type controls only.

int v4l2_ctrl_s_ctrl(struct v4l2_ctrl * ctrl, s32 val)
Helper function to set the control’s value from within a driver.

Parameters
struct v4l2_ctrl * ctrl The control.

s32 val The new value.

Description
This sets the control’s new value safely by going through the control framework.
This function will lock the control’s handler, so it cannot be used from within the
v4l2_ctrl_ops functions.

This function is for integer type controls only.

s64 v4l2_ctrl_g_ctrl_int64(struct v4l2_ctrl * ctrl)
Helper function to get a 64-bit control’s value from within a driver.

Parameters
struct v4l2_ctrl * ctrl The control.

Description

53.1. Video4Linux devices 1747

Linux Driver-api Documentation

This returns the control’s value safely by going through the control framework.
This function will lock the control’s handler, so it cannot be used from within the
v4l2_ctrl_ops functions.

This function is for 64-bit integer type controls only.

int __v4l2_ctrl_s_ctrl_int64(struct v4l2_ctrl * ctrl, s64 val)
Unlocked variant of v4l2_ctrl_s_ctrl_int64().

Parameters
struct v4l2_ctrl * ctrl The control.

s64 val The new value.

Description
This sets the control’s new value safely by going through the control framework.
This function assumes the control’s handler is already locked, allowing it to be
used from within the v4l2_ctrl_ops functions.

This function is for 64-bit integer type controls only.

int v4l2_ctrl_s_ctrl_int64(struct v4l2_ctrl * ctrl, s64 val)
Helper function to set a 64-bit control’s value from within a driver.

Parameters
struct v4l2_ctrl * ctrl The control.

s64 val The new value.

Description
This sets the control’s new value safely by going through the control framework.
This function will lock the control’s handler, so it cannot be used from within the
v4l2_ctrl_ops functions.

This function is for 64-bit integer type controls only.

int __v4l2_ctrl_s_ctrl_string(struct v4l2_ctrl * ctrl, const char * s)
Unlocked variant of v4l2_ctrl_s_ctrl_string().

Parameters
struct v4l2_ctrl * ctrl The control.

const char * s The new string.

Description
This sets the control’s new string safely by going through the control framework.
This function assumes the control’s handler is already locked, allowing it to be
used from within the v4l2_ctrl_ops functions.

This function is for string type controls only.

int v4l2_ctrl_s_ctrl_string(struct v4l2_ctrl * ctrl, const char * s)
Helper function to set a control’s string value from within a driver.

Parameters
struct v4l2_ctrl * ctrl The control.

1748 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

const char * s The new string.

Description
This sets the control’s new string safely by going through the control framework.
This function will lock the control’s handler, so it cannot be used from within the
v4l2_ctrl_ops functions.

This function is for string type controls only.

int __v4l2_ctrl_s_ctrl_compound(struct v4l2_ctrl * ctrl, enum
v4l2_ctrl_type type, const void * p)

Unlocked variant to set a compound control

Parameters
struct v4l2_ctrl * ctrl The control.

enum v4l2_ctrl_type type The type of the data.

const void * p The new compound payload.

Description
This sets the control’s new compound payload safely by going through the control
framework. This function assumes the control’s handler is already locked, allowing
it to be used from within the v4l2_ctrl_ops functions.

This function is for compound type controls only.

int v4l2_ctrl_s_ctrl_compound(struct v4l2_ctrl * ctrl, enum
v4l2_ctrl_type type, const void * p)

Helper function to set a compound control from within a driver.

Parameters
struct v4l2_ctrl * ctrl The control.

enum v4l2_ctrl_type type The type of the data.

const void * p The new compound payload.

Description
This sets the control’s new compound payload safely by going through the control
framework. This function will lock the control’s handler, so it cannot be used from
within the v4l2_ctrl_ops functions.

This function is for compound type controls only.

void v4l2_ctrl_replace(struct v4l2_event * old, const struct v4l2_event
* new)

Function to be used as a callback to struct v4l2_subscribed_event_ops
replace()

Parameters
struct v4l2_event * old pointer to struct v4l2_event with the reported event;

const struct v4l2_event * new pointer to struct v4l2_eventwith the modified
event;

53.1. Video4Linux devices 1749

Linux Driver-api Documentation

void v4l2_ctrl_merge(const struct v4l2_event * old, struct v4l2_event
* new)

Function to be used as a callback to struct v4l2_subscribed_event_ops
merge()

Parameters
const struct v4l2_event * old pointer to struct v4l2_eventwith the reported

event;

struct v4l2_event * new pointer to struct v4l2_event with the merged event;

int v4l2_ctrl_log_status(struct file * file, void * fh)
helper function to implement VIDIOC_LOG_STATUS ioctl

Parameters
struct file * file pointer to struct file

void * fh unused. Kept just to be compatible to the arguments expected by
struct v4l2_ioctl_ops.vidioc_log_status.

Description
Can be used as a vidioc_log_status function that just dumps all controls associated
with the filehandle.

int v4l2_ctrl_subscribe_event(struct v4l2_fh * fh, const struct
v4l2_event_subscription * sub)

Subscribes to an event

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

const struct v4l2_event_subscription * sub pointer to struct
v4l2_event_subscription

Description
Can be used as a vidioc_subscribe_event function that just subscribes control
events.

__poll_t v4l2_ctrl_poll(struct file * file, struct poll_table_struct * wait)
function to be used as a callback to the poll() That just polls for control events.

Parameters
struct file * file pointer to struct file

struct poll_table_struct * wait pointer to struct poll_table_struct

int v4l2_ctrl_request_setup(struct media_request * req, struct
v4l2_ctrl_handler * parent)

helper function to apply control values in a request

Parameters
struct media_request * req The request

struct v4l2_ctrl_handler * parent The parent control handler (‘priv’in
media_request_object_find())

1750 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description
This is a helper function to call the control handler’s s_ctrl callback with the
control values contained in the request. Do note that this approach of applying
control values in a request is only applicable to memory-to-memory devices.

void v4l2_ctrl_request_complete(struct media_request * req, struct
v4l2_ctrl_handler * parent)

Complete a control handler request object

Parameters
struct media_request * req The request

struct v4l2_ctrl_handler * parent The parent control handler (‘priv’in
media_request_object_find())

Description
This function is to be called on each control handler that may have had a request
object associated with it, i.e. control handlers of a driver that supports requests.

The function first obtains the values of any volatile controls in the control handler
and attach them to the request. Then, the function completes the request object.

struct v4l2_ctrl_handler * v4l2_ctrl_request_hdl_find(struct me-
dia_request
* req, struct
v4l2_ctrl_handler
* parent)

Find the control handler in the request

Parameters
struct media_request * req The request

struct v4l2_ctrl_handler * parent The parent control handler (‘priv’in
media_request_object_find())

Description
This function finds the control handler in the request. It may return NULL if not
found. When done, you must call v4l2_ctrl_request_put_hdl() with the returned
handler pointer.

If the request is not in state VALIDATING or QUEUED, then this function will al-
ways return NULL.

Note that in state VALIDATING the req_queue_mutex is held, so no objects can be
added or deleted from the request.

In state QUEUED it is the driver that will have to ensure this.

void v4l2_ctrl_request_hdl_put(struct v4l2_ctrl_handler * hdl)
Put the control handler

Parameters
struct v4l2_ctrl_handler * hdl Put this control handler

Description

53.1. Video4Linux devices 1751

Linux Driver-api Documentation

This function released the control handler previously obtained from’
v4l2_ctrl_request_hdl_find().

struct v4l2_ctrl * v4l2_ctrl_request_hdl_ctrl_find(struct
v4l2_ctrl_handler
* hdl, u32 id)

Find a control with the given ID.

Parameters
struct v4l2_ctrl_handler * hdl The control handler from the request.

u32 id The ID of the control to find.

Description
This function returns a pointer to the control if this control is part of the request
or NULL otherwise.

int v4l2_queryctrl(struct v4l2_ctrl_handler * hdl, struct v4l2_queryctrl
* qc)

Helper function to implement VIDIOC_QUERYCTRL ioctl

Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_queryctrl * qc pointer to struct v4l2_queryctrl

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_query_ext_ctrl(struct v4l2_ctrl_handler * hdl, struct
v4l2_query_ext_ctrl * qc)

Helper function to implement VIDIOC_QUERY_EXT_CTRL ioctl

Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_query_ext_ctrl * qc pointer to struct v4l2_query_ext_ctrl

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_querymenu(struct v4l2_ctrl_handler * hdl, struct v4l2_querymenu
* qm)

Helper function to implement VIDIOC_QUERYMENU ioctl

Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_querymenu * qm pointer to struct v4l2_querymenu

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_g_ctrl(struct v4l2_ctrl_handler * hdl, struct v4l2_control * ctrl)
Helper function to implement VIDIOC_G_CTRL ioctl

Parameters

1752 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_control * ctrl pointer to struct v4l2_control

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_s_ctrl(struct v4l2_fh * fh, struct v4l2_ctrl_handler * hdl, struct
v4l2_control * ctrl)

Helper function to implement VIDIOC_S_CTRL ioctl

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct v4l2_control * ctrl pointer to struct v4l2_control

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_g_ext_ctrls(struct v4l2_ctrl_handler * hdl, struct video_device
* vdev, struct media_device * mdev, struct
v4l2_ext_controls * c)

Helper function to implement VIDIOC_G_EXT_CTRLS ioctl

Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct video_device * vdev pointer to struct video_device

struct media_device * mdev pointer to struct media_device

struct v4l2_ext_controls * c pointer to struct v4l2_ext_controls

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_try_ext_ctrls(struct v4l2_ctrl_handler * hdl, struct video_device
* vdev, struct media_device * mdev, struct
v4l2_ext_controls * c)

Helper function to implement VIDIOC_TRY_EXT_CTRLS ioctl

Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct video_device * vdev pointer to struct video_device

struct media_device * mdev pointer to struct media_device

struct v4l2_ext_controls * c pointer to struct v4l2_ext_controls

Description
If hdl == NULL then they will all return -EINVAL.

53.1. Video4Linux devices 1753

Linux Driver-api Documentation

int v4l2_s_ext_ctrls(struct v4l2_fh * fh, struct v4l2_ctrl_handler * hdl,
struct video_device * vdev, struct media_device
* mdev, struct v4l2_ext_controls * c)

Helper function to implement VIDIOC_S_EXT_CTRLS ioctl

Parameters
struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler

struct video_device * vdev pointer to struct video_device

struct media_device * mdev pointer to struct media_device

struct v4l2_ext_controls * c pointer to struct v4l2_ext_controls

Description
If hdl == NULL then they will all return -EINVAL.

int v4l2_ctrl_subdev_subscribe_event(struct v4l2_subdev * sd,
struct v4l2_fh * fh, struct
v4l2_event_subscription * sub)

Helper function to implement as a struct v4l2_subdev_core_ops sub-
scribe_event function that just subscribes control events.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_fh * fh pointer to struct v4l2_fh

struct v4l2_event_subscription * sub pointer to struct
v4l2_event_subscription

int v4l2_ctrl_subdev_log_status(struct v4l2_subdev * sd)
Log all controls owned by subdev’s control handler.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

int v4l2_ctrl_new_fwnode_properties(struct v4l2_ctrl_handler * hdl,
const struct v4l2_ctrl_ops
* ctrl_ops, const struct
v4l2_fwnode_device_properties
* p)

Register controls for the device properties

Parameters
struct v4l2_ctrl_handler * hdl pointer to struct v4l2_ctrl_handler to

register controls on

const struct v4l2_ctrl_ops * ctrl_ops pointer to struct v4l2_ctrl_ops to
register controls with

const struct v4l2_fwnode_device_properties * p pointer to struct
v4l2_fwnode_device_properties

Description

1754 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

This function registers controls associated to device properties, using the property
values contained in p parameter, if the property has been set to a value.
Currently the following v4l2 controls are parsed and registered: -
V4L2_CID_CAMERA_ORIENTATION - V4L2_CID_CAMERA_SENSOR_ROTATION;

Controls already registered by the caller with the hdl control handler are not over-
written. Callers should register the controls they want to handle themselves before
calling this function.

Return
0 on success, a negative error code on failure.

53.1.14 Videobuf Framework

Author: Jonathan Corbet <corbet@lwn.net>

Current as of 2.6.33

Note: The videobuf framework was deprecated in favor of videobuf2. Shouldn’t
be used on new drivers.

Introduction

The videobuf layer functions as a sort of glue layer between a V4L2 driver and
user space. It handles the allocation and management of buffers for the storage of
video frames. There is a set of functions which can be used to implement many of
the standard POSIX I/O system calls, including read(), poll(), and, happily, mmap().
Another set of functions can be used to implement the bulk of the V4L2 ioctl() calls
related to streaming I/O, including buffer allocation, queueing and dequeueing,
and streaming control. Using videobuf imposes a few design decisions on the
driver author, but the payback comes in the form of reduced code in the driver
and a consistent implementation of the V4L2 user-space API.

Buffer types

Not all video devices use the same kind of buffers. In fact, there are (at least)
three common variations:

• Buffers which are scattered in both the physical and (kernel) virtual address
spaces. (Almost) all user-space buffers are like this, but it makes great sense
to allocate kernel-space buffers this way as well when it is possible. Unfor-
tunately, it is not always possible; working with this kind of buffer normally
requires hardware which can do scatter/gather DMA operations.

• Buffers which are physically scattered, but which are virtually contiguous;
buffers allocated with vmalloc(), in other words. These buffers are just as
hard to use for DMA operations, but they can be useful in situations where
DMA is not available but virtually-contiguous buffers are convenient.

53.1. Video4Linux devices 1755

mailto:corbet@lwn.net

Linux Driver-api Documentation

• Buffers which are physically contiguous. Allocation of this kind of buffer can
be unreliable on fragmented systems, but simpler DMA controllers cannot
deal with anything else.

Videobuf can work with all three types of buffers, but the driver author must pick
one at the outset and design the driver around that decision.

[It’s worth noting that there’s a fourth kind of buffer:“overlay”buffers which are
located within the system’s video memory. The overlay functionality is considered
to be deprecated for most use, but it still shows up occasionally in system-on-chip
drivers where the performance benefits merit the use of this technique. Overlay
buffers can be handled as a form of scattered buffer, but there are very few imple-
mentations in the kernel and a description of this technique is currently beyond
the scope of this document.]

Data structures, callbacks, and initialization

Depending on which type of buffers are being used, the driver should include one
of the following files:

<media/videobuf-dma-sg.h> /* Physically scattered */
<media/videobuf-vmalloc.h> /* vmalloc() buffers */
<media/videobuf-dma-contig.h> /* Physically contiguous */

The driver’s data structure describing a V4L2 device should include a struct
videobuf_queue instance for the management of the buffer queue, along with a
list_head for the queue of available buffers. There will also need to be an interrupt-
safe spinlock which is used to protect (at least) the queue.

The next step is to write four simple callbacks to help videobuf deal with the man-
agement of buffers:

struct videobuf_queue_ops {
int (*buf_setup)(struct videobuf_queue *q,

unsigned int *count, unsigned int *size);
int (*buf_prepare)(struct videobuf_queue *q,

struct videobuf_buffer *vb,
enum v4l2_field field);

void (*buf_queue)(struct videobuf_queue *q,
struct videobuf_buffer *vb);

void (*buf_release)(struct videobuf_queue *q,
struct videobuf_buffer *vb);

};

buf_setup() is called early in the I/O process, when streaming is being initiated;
its purpose is to tell videobuf about the I/O stream. The count parameter will be a
suggested number of buffers to use; the driver should check it for rationality and
adjust it if need be. As a practical rule, a minimum of two buffers are needed for
proper streaming, and there is usually a maximum (which cannot exceed 32) which
makes sense for each device. The size parameter should be set to the expected
(maximum) size for each frame of data.

Each buffer (in the form of a struct videobuf_buffer pointer) will be passed to
buf_prepare(), which should set the buffer’s size, width, height, and field fields

1756 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

properly. If the buffer’s state field is VIDEOBUF_NEEDS_INIT, the driver should
pass it to:

int videobuf_iolock(struct videobuf_queue* q, struct videobuf_buffer *vb,
struct v4l2_framebuffer *fbuf);

Among other things, this call will usually allocate memory for the buffer. Finally,
the buf_prepare() function should set the buffer’s state to VIDEOBUF_PREPARED.
When a buffer is queued for I/O, it is passed to buf_queue(), which should put it onto
the driver’s list of available buffers and set its state to VIDEOBUF_QUEUED. Note
that this function is called with the queue spinlock held; if it tries to acquire it as
well things will come to a screeching halt. Yes, this is the voice of experience. Note
also that videobuf may wait on the first buffer in the queue; placing other buffers in
front of it could again gum up the works. So use list_add_tail() to enqueue buffers.

Finally, buf_release() is called when a buffer is no longer intended to be used. The
driver should ensure that there is no I/O active on the buffer, then pass it to the
appropriate free routine(s):

/* Scatter/gather drivers */
int videobuf_dma_unmap(struct videobuf_queue *q,

struct videobuf_dmabuf *dma);
int videobuf_dma_free(struct videobuf_dmabuf *dma);

/* vmalloc drivers */
void videobuf_vmalloc_free (struct videobuf_buffer *buf);

/* Contiguous drivers */
void videobuf_dma_contig_free(struct videobuf_queue *q,

struct videobuf_buffer *buf);

One way to ensure that a buffer is no longer under I/O is to pass it to:

int videobuf_waiton(struct videobuf_buffer *vb, int non_blocking, int␣
↪→intr);

Here, vb is the buffer, non_blocking indicates whether non-blocking I/O should be
used (it should be zero in the buf_release() case), and intr controls whether an
interruptible wait is used.

File operations

At this point, much of the work is done; much of the rest is slipping videobuf calls
into the implementation of the other driver callbacks. The first step is in the open()
function, which must initialize the videobuf queue. The function to use depends
on the type of buffer used:

void videobuf_queue_sg_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,

(continues on next page)

53.1. Video4Linux devices 1757

Linux Driver-api Documentation

(continued from previous page)
unsigned int msize,
void *priv);

void videobuf_queue_vmalloc_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);

void videobuf_queue_dma_contig_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);

In each case, the parameters are the same: q is the queue structure for the de-
vice, ops is the set of callbacks as described above, dev is the device structure
for this video device, irqlock is an interrupt-safe spinlock to protect access to
the data structures, type is the buffer type used by the device (cameras will use
V4L2_BUF_TYPE_VIDEO_CAPTURE, for example), field describes which field is
being captured (often V4L2_FIELD_NONE for progressive devices), msize is the
size of any containing structure used around struct videobuf_buffer, and priv is a
private data pointer which shows up in the priv_data field of struct videobuf_queue.
Note that these are void functions which, evidently, are immune to failure.

V4L2 capture drivers can be written to support either of two APIs: the read()
system call and the rather more complicated streaming mechanism. As a general
rule, it is necessary to support both to ensure that all applications have a chance
of working with the device. Videobuf makes it easy to do that with the same code.
To implement read(), the driver need only make a call to one of:

ssize_t videobuf_read_one(struct videobuf_queue *q,
char __user *data, size_t count,
loff_t *ppos, int nonblocking);

ssize_t videobuf_read_stream(struct videobuf_queue *q,
char __user *data, size_t count,
loff_t *ppos, int vbihack, int nonblocking);

Either one of these functions will read frame data into data, returning the amount
actually read; the difference is that videobuf_read_one() will only read a single
frame, while videobuf_read_stream() will read multiple frames if they are needed
to satisfy the count requested by the application. A typical driver read() imple-
mentation will start the capture engine, call one of the above functions, then stop
the engine before returning (though a smarter implementation might leave the
engine running for a little while in anticipation of another read() call happening in
the near future).

1758 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

The poll() function can usually be implemented with a direct call to:

unsigned int videobuf_poll_stream(struct file *file,
struct videobuf_queue *q,
poll_table *wait);

Note that the actual wait queue eventually used will be the one associated with
the first available buffer.

When streaming I/O is done to kernel-space buffers, the driver must support the
mmap() system call to enable user space to access the data. In many V4L2 drivers,
the often-complex mmap() implementation simplifies to a single call to:

int videobuf_mmap_mapper(struct videobuf_queue *q,
struct vm_area_struct *vma);

Everything else is handled by the videobuf code.

The release() function requires two separate videobuf calls:

void videobuf_stop(struct videobuf_queue *q);
int videobuf_mmap_free(struct videobuf_queue *q);

The call to videobuf_stop() terminates any I/O in progress - though it is still up
to the driver to stop the capture engine. The call to videobuf_mmap_free() will
ensure that all buffers have been unmapped; if so, they will all be passed to the
buf_release() callback. If buffers remain mapped, videobuf_mmap_free() returns
an error code instead. The purpose is clearly to cause the closing of the file de-
scriptor to fail if buffers are still mapped, but every driver in the 2.6.32 kernel
cheerfully ignores its return value.

ioctl() operations

The V4L2 API includes a very long list of driver callbacks to respond to the many
ioctl() commands made available to user space. A number of these - those asso-
ciated with streaming I/O - turn almost directly into videobuf calls. The relevant
helper functions are:

int videobuf_reqbufs(struct videobuf_queue *q,
struct v4l2_requestbuffers *req);

int videobuf_querybuf(struct videobuf_queue *q, struct v4l2_buffer *b);
int videobuf_qbuf(struct videobuf_queue *q, struct v4l2_buffer *b);
int videobuf_dqbuf(struct videobuf_queue *q, struct v4l2_buffer *b,

int nonblocking);
int videobuf_streamon(struct videobuf_queue *q);
int videobuf_streamoff(struct videobuf_queue *q);

So, for example, a VIDIOC_REQBUFS call turns into a call to the driver’s vid-
ioc_reqbufs() callback which, in turn, usually only needs to locate the proper struct
videobuf_queue pointer and pass it to videobuf_reqbufs(). These support functions
can replace a great deal of buffer management boilerplate in a lot of V4L2 drivers.

The vidioc_streamon() and vidioc_streamoff() functions will be a bit more complex,
of course, since they will also need to deal with starting and stopping the capture
engine.

53.1. Video4Linux devices 1759

Linux Driver-api Documentation

Buffer allocation

Thus far, we have talked about buffers, but have not looked at how they are allo-
cated. The scatter/gather case is the most complex on this front. For allocation,
the driver can leave buffer allocation entirely up to the videobuf layer; in this case,
buffers will be allocated as anonymous user-space pages and will be very scattered
indeed. If the application is using user-space buffers, no allocation is needed; the
videobuf layer will take care of calling get_user_pages() and filling in the scatterlist
array.

If the driver needs to do its own memory allocation, it should be done in the vid-
ioc_reqbufs() function, after calling videobuf_reqbufs(). The first step is a call to:

struct videobuf_dmabuf *videobuf_to_dma(struct videobuf_buffer *buf);

The returned videobuf_dmabuf structure (defined in <media/videobuf-dma-sg.h>)
includes a couple of relevant fields:

struct scatterlist *sglist;
int sglen;

The driver must allocate an appropriately-sized scatterlist array and populate it
with pointers to the pieces of the allocated buffer; sglen should be set to the length
of the array.

Drivers using the vmalloc() method need not (and cannot) concern themselves
with buffer allocation at all; videobuf will handle those details. The same is nor-
mally true of contiguous-DMA drivers as well; videobuf will allocate the buffers
(with dma_alloc_coherent()) when it sees fit. That means that these drivers may
be trying to do high-order allocations at any time, an operation which is not always
guaranteed to work. Some drivers play tricks by allocating DMA space at system
boot time; videobuf does not currently play well with those drivers.

As of 2.6.31, contiguous-DMA drivers can work with a user-supplied buffer, as long
as that buffer is physically contiguous. Normal user-space allocations will not meet
that criterion, but buffers obtained from other kernel drivers, or those contained
within huge pages, will work with these drivers.

Filling the buffers

The final part of a videobuf implementation has no direct callback - it’s the portion
of the code which actually puts frame data into the buffers, usually in response to
interrupts from the device. For all types of drivers, this process works approxi-
mately as follows:

• Obtain the next available buffer and make sure that somebody is actually
waiting for it.

• Get a pointer to the memory and put video data there.

• Mark the buffer as done and wake up the process waiting for it.

Step (1) above is done by looking at the driver-managed list_head structure - the
one which is filled in the buf_queue() callback. Because starting the engine and
enqueueing buffers are done in separate steps, it’s possible for the engine to

1760 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

be running without any buffers available - in the vmalloc() case especially. So the
driver should be prepared for the list to be empty. It is equally possible that nobody
is yet interested in the buffer; the driver should not remove it from the list or fill
it until a process is waiting on it. That test can be done by examining the buffer’
s done field (a wait_queue_head_t structure) with waitqueue_active().

A buffer’s state should be set to VIDEOBUF_ACTIVE before being mapped for
DMA; that ensures that the videobuf layer will not try to do anything with it while
the device is transferring data.

For scatter/gather drivers, the needed memory pointers will be found in the scat-
terlist structure described above. Drivers using the vmalloc() method can get a
memory pointer with:

void *videobuf_to_vmalloc(struct videobuf_buffer *buf);

For contiguous DMA drivers, the function to use is:

dma_addr_t videobuf_to_dma_contig(struct videobuf_buffer *buf);

The contiguous DMA API goes out of its way to hide the kernel-space address of
the DMA buffer from drivers.

The final step is to set the size field of the relevant videobuf_buffer structure to
the actual size of the captured image, set state to VIDEOBUF_DONE, then call
wake_up() on the done queue. At this point, the buffer is owned by the videobuf
layer and the driver should not touch it again.

Developers who are interested in more information can go into the relevant header
files; there are a few low-level functions declared there which have not been talked
about here. Note also that all of these calls are exported GPL-only, so they will not
be available to non-GPL kernel modules.

53.1.15 V4L2 videobuf2 functions and data structures

enum vb2_memory
type of memory model used to make the buffers visible on userspace.

Constants
VB2_MEMORY_UNKNOWN Buffer status is unknown or it is not used yet on userspace.

VB2_MEMORY_MMAP The buffers are allocated by the Kernel and it is memory
mapped via mmap() ioctl. This model is also used when the user is using
the buffers via read() or write() system calls.

VB2_MEMORY_USERPTR The buffers was allocated in userspace and it is memory
mapped via mmap() ioctl.

VB2_MEMORY_DMABUF The buffers are passed to userspace via DMA buffer.

struct vb2_mem_ops
memory handling/memory allocator operations.

Definition

53.1. Video4Linux devices 1761

Linux Driver-api Documentation

struct vb2_mem_ops {
void *(*alloc)(struct device *dev, unsigned long attrs,unsigned long␣

↪→size,enum dma_data_direction dma_dir, gfp_t gfp_flags);
void (*put)(void *buf_priv);
struct dma_buf *(*get_dmabuf)(void *buf_priv, unsigned long flags);
void *(*get_userptr)(struct device *dev, unsigned long vaddr,unsigned␣

↪→long size, enum dma_data_direction dma_dir);
void (*put_userptr)(void *buf_priv);
void (*prepare)(void *buf_priv);
void (*finish)(void *buf_priv);
void *(*attach_dmabuf)(struct device *dev,struct dma_buf *dbuf,unsigned␣

↪→long size, enum dma_data_direction dma_dir);
void (*detach_dmabuf)(void *buf_priv);
int (*map_dmabuf)(void *buf_priv);
void (*unmap_dmabuf)(void *buf_priv);
void *(*vaddr)(void *buf_priv);
void *(*cookie)(void *buf_priv);
unsigned int (*num_users)(void *buf_priv);
int (*mmap)(void *buf_priv, struct vm_area_struct *vma);

};

Members
alloc allocate video memory and, optionally, allocator private data, return

ERR_PTR() on failure or a pointer to allocator private, per-buffer data on suc-
cess; the returned private structure will then be passed as buf_priv argument
to other ops in this structure. Additional gfp_flags to use when allocating the
are also passed to this operation. These flags are from the gfp_flags field of
vb2_queue. The size argument to this function shall be page aligned.

put inform the allocator that the buffer will no longer be used; usually will result
in the allocator freeing the buffer (if no other users of this buffer are present);
the buf_priv argument is the allocator private per-buffer structure previously
returned from the alloc callback.

get_dmabuf acquire userspace memory for a hardware operation; used for
DMABUF memory types.

get_userptr acquire userspace memory for a hardware operation; used for
USERPTR memory types; vaddr is the address passed to the videobuf layer
when queuing a video buffer of USERPTR type; should return an allocator pri-
vate per-buffer structure associated with the buffer on success, ERR_PTR()
on failure; the returned private structure will then be passed as buf_priv
argument to other ops in this structure.

put_userptr inform the allocator that a USERPTR buffer will no longer be used.

prepare called every time the buffer is passed from userspace to the driver, useful
for cache synchronisation, optional.

finish called every time the buffer is passed back from the driver to the
userspace, also optional.

attach_dmabuf attach a shared struct dma_buf for a hardware operation; used
for DMABUF memory types; dev is the alloc device dbuf is the shared
dma_buf; returns ERR_PTR() on failure; allocator private per-buffer structure
on success; this needs to be used for further accesses to the buffer.

1762 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

detach_dmabuf inform the exporter of the buffer that the current DMABUF buffer
is no longer used; the buf_priv argument is the allocator private per-buffer
structure previously returned from the attach_dmabuf callback.

map_dmabuf request for access to the dmabuf from allocator; the allocator of
dmabuf is informed that this driver is going to use the dmabuf.

unmap_dmabuf releases access control to the dmabuf - allocator is notified that this
driver is done using the dmabuf for now.

vaddr return a kernel virtual address to a given memory buffer associated with
the passed private structure or NULL if no such mapping exists.

cookie return allocator specific cookie for a given memory buffer associated with
the passed private structure or NULL if not available.

num_users return the current number of users of a memory buffer; return 1 if the
videobuf layer (or actually the driver using it) is the only user.

mmap setup a userspace mapping for a given memory buffer under the provided
virtual memory region.

Description
Those operations are used by the videobuf2 core to implement the memory han-
dling/memory allocators for each type of supported streaming I/O method.

Note:
1) Required ops for USERPTR types: get_userptr, put_userptr.

2) Required ops for MMAP types: alloc, put, num_users, mmap.

3) Required ops for read/write access types: alloc, put, num_users, vaddr.

4) Required ops for DMABUF types: attach_dmabuf, detach_dmabuf,
map_dmabuf, unmap_dmabuf.

struct vb2_plane
plane information.

Definition

struct vb2_plane {
void *mem_priv;
struct dma_buf *dbuf;
unsigned int dbuf_mapped;
unsigned int bytesused;
unsigned int length;
unsigned int min_length;
union {

unsigned int offset;
unsigned long userptr;
int fd;

} m;
unsigned int data_offset;

};

Members

53.1. Video4Linux devices 1763

Linux Driver-api Documentation

mem_priv private data with this plane.

dbuf dma_buf - shared buffer object.

dbuf_mapped flag to show whether dbuf is mapped or not

bytesused number of bytes occupied by data in the plane (payload).

length size of this plane (NOT the payload) in bytes.

min_length minimum required size of this plane (NOT the payload) in bytes.
length is always greater or equal to min_length.

m Union with memtype-specific data.

m.offset when memory in the associated struct vb2_buffer is VB2_MEMORY_MMAP,
equals the offset from the start of the device memory for this plane (or is a
“cookie”that should be passed to mmap() called on the video node).

m.userptr when memory is VB2_MEMORY_USERPTR, a userspace pointer pointing to
this plane.

m.fd when memory is VB2_MEMORY_DMABUF, a userspace file descriptor associated
with this plane.

data_offset offset in the plane to the start of data; usually 0, unless there is a
header in front of the data.

Description
Should contain enough information to be able to cover all the fields of struct
v4l2_plane at videodev2.h.

enum vb2_io_modes
queue access methods.

Constants
VB2_MMAP driver supports MMAP with streaming API.

VB2_USERPTR driver supports USERPTR with streaming API.

VB2_READ driver supports read() style access.

VB2_WRITE driver supports write() style access.

VB2_DMABUF driver supports DMABUF with streaming API.

enum vb2_buffer_state
current video buffer state.

Constants
VB2_BUF_STATE_DEQUEUED buffer under userspace control.

VB2_BUF_STATE_IN_REQUEST buffer is queued in media request.

VB2_BUF_STATE_PREPARING buffer is being prepared in videobuf.

VB2_BUF_STATE_QUEUED buffer queued in videobuf, but not in driver.

VB2_BUF_STATE_ACTIVE buffer queued in driver and possibly used in a hardware
operation.

1764 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

VB2_BUF_STATE_DONE buffer returned from driver to videobuf, but not yet de-
queued to userspace.

VB2_BUF_STATE_ERROR same as above, but the operation on the buffer has ended
with an error, which will be reported to the userspace when it is dequeued.

struct vb2_buffer
represents a video buffer.

Definition

struct vb2_buffer {
struct vb2_queue *vb2_queue;
unsigned int index;
unsigned int type;
unsigned int memory;
unsigned int num_planes;
u64 timestamp;
struct media_request *request;
struct media_request_object req_obj;

};

Members
vb2_queue pointer to struct vb2_queue with the queue to which this driver be-

longs.

index id number of the buffer.

type buffer type.

memory the method, in which the actual data is passed.

num_planes number of planes in the buffer on an internal driver queue.

timestamp frame timestamp in ns.

request the request this buffer is associated with.

req_obj used to bind this buffer to a request. This request object has a refcount.

struct vb2_ops
driver-specific callbacks.

Definition

struct vb2_ops {
int (*queue_setup)(struct vb2_queue *q,unsigned int *num_buffers,␣

↪→unsigned int *num_planes, unsigned int sizes[], struct device *alloc_
↪→devs[]);
void (*wait_prepare)(struct vb2_queue *q);
void (*wait_finish)(struct vb2_queue *q);
int (*buf_out_validate)(struct vb2_buffer *vb);
int (*buf_init)(struct vb2_buffer *vb);
int (*buf_prepare)(struct vb2_buffer *vb);
void (*buf_finish)(struct vb2_buffer *vb);
void (*buf_cleanup)(struct vb2_buffer *vb);
int (*start_streaming)(struct vb2_queue *q, unsigned int count);
void (*stop_streaming)(struct vb2_queue *q);
void (*buf_queue)(struct vb2_buffer *vb);

(continues on next page)

53.1. Video4Linux devices 1765

Linux Driver-api Documentation

(continued from previous page)
void (*buf_request_complete)(struct vb2_buffer *vb);

};

Members
queue_setup called from VIDIOC_REQBUFS() and VIDIOC_CREATE_BUFS() han-

dlers before memory allocation. It can be called twice: if the original number
of requested buffers could not be allocated, then it will be called a second time
with the actually allocated number of buffers to verify if that is OK. The driver
should return the required number of buffers in *num_buffers, the required
number of planes per buffer in *num_planes, the size of each plane should
be set in the sizes[] array and optional per-plane allocator specific device in
the alloc_devs[] array. When called from VIDIOC_REQBUFS(), *num_planes
== 0, the driver has to use the currently configured format to determine
the plane sizes and *num_buffers is the total number of buffers that are be-
ing allocated. When called from VIDIOC_CREATE_BUFS(), *num_planes !=
0 and it describes the requested number of planes and sizes[] contains the
requested plane sizes. In this case *num_buffers are being allocated addi-
tionally to q->num_buffers. If either *num_planes or the requested sizes are
invalid callback must return -EINVAL.

wait_prepare release any locks taken while calling vb2 functions; it is called be-
fore an ioctl needs to wait for a new buffer to arrive; required to avoid a
deadlock in blocking access type.

wait_finish reacquire all locks released in the previous callback; required to
continue operation after sleeping while waiting for a new buffer to arrive.

buf_out_validate called when the output buffer is prepared or queued to a re-
quest; drivers can use this to validate userspace-provided information; this is
required only for OUTPUT queues.

buf_init called once after allocating a buffer (in MMAP case) or after acquiring
a new USERPTR buffer; drivers may perform additional buffer-related ini-
tialization; initialization failure (return != 0) will prevent queue setup from
completing successfully; optional.

buf_prepare called every time the buffer is queued from userspace and from
the VIDIOC_PREPARE_BUF() ioctl; drivers may perform any initialization
required before each hardware operation in this callback; drivers can ac-
cess/modify the buffer here as it is still synced for the CPU; drivers that sup-
port VIDIOC_CREATE_BUFS() must also validate the buffer size; if an error
is returned, the buffer will not be queued in driver; optional.

buf_finish called before every dequeue of the buffer back to userspace; the
buffer is synced for the CPU, so drivers can access/modify the buffer contents;
drivers may perform any operations required before userspace accesses the
buffer; optional. The buffer state can be one of the following: DONE and ERROR
occur while streaming is in progress, and the PREPARED state occurs when
the queue has been canceled and all pending buffers are being returned to
their default DEQUEUED state. Typically you only have to do something if the
state is VB2_BUF_STATE_DONE, since in all other cases the buffer contents will
be ignored anyway.

1766 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

buf_cleanup called once before the buffer is freed; drivers may perform any ad-
ditional cleanup; optional.

start_streaming called once to enter ‘streaming’state; the driver may re-
ceive buffers with buf_queue callback before start_streaming is called;
the driver gets the number of already queued buffers in count parameter;
driver can return an error if hardware fails, in that case all buffers that
have been already given by the buf_queue callback are to be returned by
the driver by calling vb2_buffer_done() with VB2_BUF_STATE_QUEUED. If you
need a minimum number of buffers before you can start streaming, then set
vb2_queue->min_buffers_needed. If that is non-zero then start_streaming
won’t be called until at least that many buffers have been queued up by
userspace.

stop_streaming called when ‘streaming’state must be disabled; driver should
stop any DMA transactions or wait until they finish and give back all
buffers it got from buf_queue callback by calling vb2_buffer_done()
with either VB2_BUF_STATE_DONE or VB2_BUF_STATE_ERROR; may use
vb2_wait_for_all_buffers() function

buf_queue passes buffer vb to the driver; driver may start hardware operation on
this buffer; driver should give the buffer back by calling vb2_buffer_done()
function; it is always called after calling VIDIOC_STREAMON() ioctl; might
be called before start_streaming callback if user pre-queued buffers before
calling VIDIOC_STREAMON().

buf_request_complete a buffer that was never queued to the driver but is as-
sociated with a queued request was canceled. The driver will have to mark
associated objects in the request as completed; required if requests are sup-
ported.

Description
These operations are not called from interrupt context except where mentioned
specifically.

struct vb2_buf_ops
driver-specific callbacks.

Definition

struct vb2_buf_ops {
int (*verify_planes_array)(struct vb2_buffer *vb, const void *pb);
void (*init_buffer)(struct vb2_buffer *vb);
void (*fill_user_buffer)(struct vb2_buffer *vb, void *pb);
int (*fill_vb2_buffer)(struct vb2_buffer *vb, struct vb2_plane *planes);
void (*copy_timestamp)(struct vb2_buffer *vb, const void *pb);

};

Members
verify_planes_array Verify that a given user space structure contains enough

planes for the buffer. This is called for each dequeued buffer.

init_buffer given a vb2_buffer initialize the extra data after struct vb2_buffer.
For V4L2 this is a struct vb2_v4l2_buffer.

53.1. Video4Linux devices 1767

Linux Driver-api Documentation

fill_user_buffer given a vb2_buffer fill in the userspace structure. For V4L2
this is a struct v4l2_buffer.

fill_vb2_buffer given a userspace structure, fill in the vb2_buffer. If the
userspace structure is invalid, then this op will return an error.

copy_timestamp copy the timestamp from a userspace structure to the struct
vb2_buffer.

struct vb2_queue
a videobuf queue.

Definition

struct vb2_queue {
unsigned int type;
unsigned int io_modes;
struct device *dev;
unsigned long dma_attrs;
unsigned bidirectional:1;
unsigned fileio_read_once:1;
unsigned fileio_write_immediately:1;
unsigned allow_zero_bytesused:1;
unsigned quirk_poll_must_check_waiting_for_buffers:1;
unsigned supports_requests:1;
unsigned requires_requests:1;
unsigned uses_qbuf:1;
unsigned uses_requests:1;
struct mutex *lock;
void *owner;
const struct vb2_ops *ops;
const struct vb2_mem_ops *mem_ops;
const struct vb2_buf_ops *buf_ops;
void *drv_priv;
u32 subsystem_flags;
unsigned int buf_struct_size;
u32 timestamp_flags;
gfp_t gfp_flags;
u32 min_buffers_needed;
struct device *alloc_devs[VB2_MAX_PLANES];

};

Members
type private buffer type whose content is defined by the vb2-core caller. For ex-

ample, for V4L2, it should match the types defined on enum v4l2_buf_type.

io_modes supported io methods (see enum vb2_io_modes).

dev device to use for the default allocation context if the driver doesn’t fill in the
alloc_devs array.

dma_attrs DMA attributes to use for the DMA.

bidirectional when this flag is set the DMA direction for the buffers of this
queue will be overridden with DMA_BIDIRECTIONAL direction. This is useful
in cases where the hardware (firmware) writes to a buffer which is mapped
as read (DMA_TO_DEVICE), or reads from buffer which is mapped for write
(DMA_FROM_DEVICE) in order to satisfy some internal hardware restrictions

1768 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

or adds a padding needed by the processing algorithm. In case the DMA
mapping is not bidirectional but the hardware (firmware) trying to access
the buffer (in the opposite direction) this could lead to an IOMMU protection
faults.

fileio_read_once report EOF after reading the first buffer

fileio_write_immediately queue buffer after each write() call

allow_zero_bytesused allow bytesused == 0 to be passed to the driver

quirk_poll_must_check_waiting_for_buffers Return EPOLLERR at poll when
QBUF has not been called. This is a vb1 idiom that has been adopted also
by vb2.

supports_requests this queue supports the Request API.

requires_requests this queue requires the Request API. If this is set to 1, then
supports_requests must be set to 1 as well.

uses_qbuf qbuf was used directly for this queue. Set to 1 the first time this is
called. Set to 0 when the queue is canceled. If this is 1, then you cannot
queue buffers from a request.

uses_requests requests are used for this queue. Set to 1 the first time a request
is queued. Set to 0 when the queue is canceled. If this is 1, then you cannot
queue buffers directly.

lock pointer to a mutex that protects the struct vb2_queue. The driver can set
this to a mutex to let the v4l2 core serialize the queuing ioctls. If the driver
wants to handle locking itself, then this should be set to NULL. This lock is
not used by the videobuf2 core API.

owner The filehandle that‘owns’the buffers, i.e. the filehandle that called reqbufs,
create_buffers or started fileio. This field is not used by the videobuf2 core
API, but it allows drivers to easily associate an owner filehandle with the
queue.

ops driver-specific callbacks

mem_ops memory allocator specific callbacks

buf_ops callbacks to deliver buffer information. between user-space and kernel-
space.

drv_priv driver private data.

subsystem_flags Flags specific to the subsystem (V4L2/DVB/etc.). Not used by
the vb2 core.

buf_struct_size size of the driver-specific buffer structure; “0”indicates the
driver doesn’t want to use a custom buffer structure type. In that
case a subsystem-specific struct will be used (in the case of V4L2 that is
sizeof(struct vb2_v4l2_buffer)). The first field of the driver-specific
buffer structure must be the subsystem-specific struct (vb2_v4l2_buffer in
the case of V4L2).

timestamp_flags Timestamp flags; V4L2_BUF_FLAG_TIMESTAMP_* and
V4L2_BUF_FLAG_TSTAMP_SRC_*

53.1. Video4Linux devices 1769

Linux Driver-api Documentation

gfp_flags additional gfp flags used when allocating the buffers. Typically this is
0, but it may be e.g. GFP_DMA or __GFP_DMA32 to force the buffer allocation to
a specific memory zone.

min_buffers_needed the minimum number of buffers needed before
start_streaming can be called. Used when a DMA engine cannot be
started unless at least this number of buffers have been queued into the
driver.

alloc_devs struct device memory type/allocator-specific per-plane device

void * vb2_plane_vaddr(struct vb2_buffer * vb, unsigned int plane_no)
Return a kernel virtual address of a given plane.

Parameters
struct vb2_buffer * vb pointer to struct vb2_buffer to which the plane in

question belongs to.

unsigned int plane_no plane number for which the address is to be returned.

Description
This function returns a kernel virtual address of a given plane if such a mapping
exist, NULL otherwise.

void * vb2_plane_cookie(struct vb2_buffer * vb, unsigned int plane_no)
Return allocator specific cookie for the given plane.

Parameters
struct vb2_buffer * vb pointer to struct vb2_buffer to which the plane in

question belongs to.

unsigned int plane_no plane number for which the cookie is to be returned.

Description
This function returns an allocator specific cookie for a given plane if available,
NULL otherwise. The allocator should provide some simple static inline function,
which would convert this cookie to the allocator specific type that can be used di-
rectly by the driver to access the buffer. This can be for example physical address,
pointer to scatter list or IOMMU mapping.

void vb2_buffer_done(struct vb2_buffer * vb, enum vb2_buffer_state state)
inform videobuf that an operation on a buffer is finished.

Parameters
struct vb2_buffer * vb pointer to struct vb2_buffer to be used.

enum vb2_buffer_state state state of the buffer, as defined by enum
vb2_buffer_state. Either VB2_BUF_STATE_DONE if the operation finished
successfully, VB2_BUF_STATE_ERROR if the operation finished with an error or
VB2_BUF_STATE_QUEUED.

Description
This function should be called by the driver after a hardware operation on a buffer
is finished and the buffer may be returned to userspace. The driver cannot use
this buffer anymore until it is queued back to it by videobuf by the means of

1770 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

vb2_ops->buf_queue callback. Only buffers previously queued to the driver by
vb2_ops->buf_queue can be passed to this function.

While streaming a buffer can only be returned in state DONE or ERROR. The
vb2_ops->start_streaming op can also return them in case the DMA engine can-
not be started for some reason. In that case the buffers should be returned with
state QUEUED to put them back into the queue.

void vb2_discard_done(struct vb2_queue * q)
discard all buffers marked as DONE.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

Description
This function is intended to be used with suspend/resume operations. It discards
all ‘done’buffers as they would be too old to be requested after resume.
Drivers must stop the hardware and synchronize with interrupt handlers and/or
delayed works before calling this function to make sure no buffer will be touched
by the driver and/or hardware.

int vb2_wait_for_all_buffers(struct vb2_queue * q)
wait until all buffers are given back to vb2.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

Description
This function will wait until all buffers that have been given to the driver by
vb2_ops->buf_queue are given back to vb2 with vb2_buffer_done(). It doesn’
t call vb2_ops->wait_prepare/vb2_ops->wait_finish pair. It is intended to be
called with all locks taken, for example from vb2_ops->stop_streaming callback.

void vb2_core_querybuf(struct vb2_queue * q, unsigned int index, void
* pb)

query video buffer information.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

unsigned int index id number of the buffer.

void * pb buffer struct passed from userspace.

Description
Videobuf2 core helper to implement VIDIOC_QUERYBUF() operation. It is called
internally by VB2 by an API-specific handler, like videobuf2-v4l2.h.

The passed buffer should have been verified.

This function fills the relevant information for the userspace.

Return
returns zero on success; an error code otherwise.

53.1. Video4Linux devices 1771

Linux Driver-api Documentation

int vb2_core_reqbufs(struct vb2_queue * q, enum vb2_memory memory,
unsigned int * count)

Initiate streaming.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

enum vb2_memory memory memory type, as defined by enum vb2_memory.

unsigned int * count requested buffer count.

Description
Videobuf2 core helper to implement VIDIOC_REQBUF() operation. It is called
internally by VB2 by an API-specific handler, like videobuf2-v4l2.h.

This function:

1) verifies streaming parameters passed from the userspace;

2) sets up the queue;

3) negotiates number of buffers and planes per buffer with the driver to be used
during streaming;

4) allocates internal buffer structures (struct vb2_buffer), according to the
agreed parameters;

5) for MMAP memory type, allocates actual video memory, using the memory
handling/allocation routines provided during queue initialization.

If req->count is 0, all the memory will be freed instead.

If the queue has been allocated previously by a previous vb2_core_reqbufs() call
and the queue is not busy, memory will be reallocated.

Return
returns zero on success; an error code otherwise.

int vb2_core_create_bufs(struct vb2_queue * q, enum
vb2_memory memory, unsigned int * count,
unsigned int requested_planes, const unsigned
int requested_sizes)

Allocate buffers and any required auxiliary structs

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

enum vb2_memory memory memory type, as defined by enum vb2_memory.

unsigned int * count requested buffer count.

unsigned int requested_planes number of planes requested.

const unsigned int requested_sizes array with the size of the planes.

Description
Videobuf2 core helper to implement VIDIOC_CREATE_BUFS() operation. It is
called internally by VB2 by an API-specific handler, like videobuf2-v4l2.h.

1772 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

This function:

1) verifies parameter sanity;

2) calls the vb2_ops->queue_setup queue operation;

3) performs any necessary memory allocations.

Return
returns zero on success; an error code otherwise.

int vb2_core_prepare_buf(struct vb2_queue * q, unsigned int index, void
* pb)

Pass ownership of a buffer from userspace to the kernel.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

unsigned int index id number of the buffer.

void * pb buffer structure passed from userspace to
v4l2_ioctl_ops->vidioc_prepare_buf handler in driver.

Description
Videobuf2 core helper to implement VIDIOC_PREPARE_BUF() operation. It is
called internally by VB2 by an API-specific handler, like videobuf2-v4l2.h.

The passed buffer should have been verified.

This function calls vb2_ops->buf_prepare callback in the driver (if provided), in
which driver-specific buffer initialization can be performed.

Return
returns zero on success; an error code otherwise.

int vb2_core_qbuf(struct vb2_queue * q, unsigned int index, void * pb, struct
media_request * req)

Queue a buffer from userspace

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

unsigned int index id number of the buffer

void * pb buffer structure passed from userspace to v4l2_ioctl_ops->vidioc_qbuf
handler in driver

struct media_request * req pointer to struct media_request, may be NULL.

Description
Videobuf2 core helper to implement VIDIOC_QBUF() operation. It is called inter-
nally by VB2 by an API-specific handler, like videobuf2-v4l2.h.

This function:

1) If req is non-NULL, then the buffer will be bound to this media request and
it returns. The buffer will be prepared and queued to the driver (i.e. the next
two steps) when the request itself is queued.

53.1. Video4Linux devices 1773

Linux Driver-api Documentation

2) if necessary, calls vb2_ops->buf_prepare callback in the driver (if provided),
in which driver-specific buffer initialization can be performed;

3) if streaming is on, queues the buffer in driver by the means of
vb2_ops->buf_queue callback for processing.

Return
returns zero on success; an error code otherwise.

int vb2_core_dqbuf(struct vb2_queue * q, unsigned int * pindex, void * pb,
bool nonblocking)

Dequeue a buffer to the userspace

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue

unsigned int * pindex pointer to the buffer index. May be NULL

void * pb buffer structure passed from userspace to v4l2_ioctl_ops-
>vidioc_dqbuf handler in driver.

bool nonblocking if true, this call will not sleep waiting for a buffer if no buffers
ready for dequeuing are present. Normally the driver would be passing (file-
>f_flags & O_NONBLOCK) here.

Description
Videobuf2 core helper to implement VIDIOC_DQBUF() operation. It is called in-
ternally by VB2 by an API-specific handler, like videobuf2-v4l2.h.

This function:

1) calls buf_finish callback in the driver (if provided), in which driver can per-
form any additional operations that may be required before returning the
buffer to userspace, such as cache sync,

2) the buffer struct members are filled with relevant information for the
userspace.

Return
returns zero on success; an error code otherwise.

int vb2_core_streamon(struct vb2_queue * q, unsigned int type)
Implements VB2 stream ON logic

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue

unsigned int type type of the queue to be started. For V4L2, this is defined by
enum v4l2_buf_type type.

Description
Videobuf2 core helper to implement VIDIOC_STREAMON() operation. It is called
internally by VB2 by an API-specific handler, like videobuf2-v4l2.h.

Return
returns zero on success; an error code otherwise.

1774 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

int vb2_core_streamoff(struct vb2_queue * q, unsigned int type)
Implements VB2 stream OFF logic

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue

unsigned int type type of the queue to be started. For V4L2, this is defined by
enum v4l2_buf_type type.

Description
Videobuf2 core helper to implement VIDIOC_STREAMOFF() operation. It is called
internally by VB2 by an API-specific handler, like videobuf2-v4l2.h.

Return
returns zero on success; an error code otherwise.

int vb2_core_expbuf(struct vb2_queue * q, int * fd, unsigned int type,
unsigned int index, unsigned int plane, unsigned
int flags)

Export a buffer as a file descriptor.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

int * fd pointer to the file descriptor associated with DMABUF (set by driver).

unsigned int type buffer type.

unsigned int index id number of the buffer.

unsigned int plane index of the plane to be exported, 0 for single plane queues

unsigned int flags file flags for newly created file, as defined at
include/uapi/asm-generic/fcntl.h. Currently, the only used flag is O_CLOEXEC.
is supported, refer to manual of open syscall for more details.

Description
Videobuf2 core helper to implement VIDIOC_EXPBUF() operation. It is called in-
ternally by VB2 by an API-specific handler, like videobuf2-v4l2.h.

Return
returns zero on success; an error code otherwise.

int vb2_core_queue_init(struct vb2_queue * q)
initialize a videobuf2 queue

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue. This

structure should be allocated in driver

Description
The vb2_queue structure should be allocated by the driver. The driver is respon-
sible of clearing it’s content and setting initial values for some required entries
before calling this function.

53.1. Video4Linux devices 1775

Linux Driver-api Documentation

Note: The following fields at q should be set before calling this function:
vb2_queue->ops, vb2_queue->mem_ops, vb2_queue->type.

void vb2_core_queue_release(struct vb2_queue * q)
stop streaming, release the queue and free memory

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

Description
This function stops streaming and performs necessary clean ups, including freeing
video buffer memory. The driver is responsible for freeing the struct vb2_queue
itself.

void vb2_queue_error(struct vb2_queue * q)
signal a fatal error on the queue

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

Description
Flag that a fatal unrecoverable error has occurred and wake up all processes
waiting on the queue. Polling will now set EPOLLERR and queuing and dequeu-
ing buffers will return -EIO.

The error flag will be cleared when canceling the queue, either from
vb2_streamoff() or vb2_queue_release(). Drivers should thus not call this func-
tion before starting the stream, otherwise the error flag will remain set until the
queue is released when closing the device node.

int vb2_mmap(struct vb2_queue * q, struct vm_area_struct * vma)
map video buffers into application address space.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

struct vm_area_struct * vma pointer to struct vm_area_struct with the vma
passed to the mmap file operation handler in the driver.

Description
Should be called from mmap file operation handler of a driver. This function maps
one plane of one of the available video buffers to userspace. To map whole video
memory allocated on reqbufs, this function has to be called once per each plane
per each buffer previously allocated.

When the userspace application calls mmap, it passes to it an offset returned to it
earlier by the means of v4l2_ioctl_ops->vidioc_querybuf handler. That offset
acts as a “cookie”, which is then used to identify the plane to be mapped.
This function finds a plane with a matching offset and a mapping is performed by
the means of a provided memory operation.

1776 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

The return values from this function are intended to be directly returned from the
mmap handler in driver.

unsigned long vb2_get_unmapped_area(struct vb2_queue * q, unsigned
long addr, unsigned long len,
unsigned long pgoff, unsigned
long flags)

map video buffers into application address space.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

unsigned long addr memory address.

unsigned long len buffer size.

unsigned long pgoff page offset.

unsigned long flags memory flags.

Description
This function is used in noMMU platforms to propose address mapping
for a given buffer. It’s intended to be used as a handler for the
file_operations->get_unmapped_area operation.

This is called by the mmap() syscall routines will call this to get a proposed address
for the mapping, when !CONFIG_MMU.

__poll_t vb2_core_poll(struct vb2_queue * q, struct file * file, poll_table
* wait)

implements poll syscall() logic.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

struct file * file struct file argument passed to the poll file operation han-
dler.

poll_table * wait poll_table wait argument passed to the poll file operation
handler.

Description
This function implements poll file operation handler for a driver. For CAPTURE
queues, if a buffer is ready to be dequeued, the userspace will be informed that
the file descriptor of a video device is available for reading. For OUTPUT queues,
if a buffer is ready to be dequeued, the file descriptor will be reported as available
for writing.

The return values from this function are intended to be directly returned from poll
handler in driver.

size_t vb2_read(struct vb2_queue * q, char __user * data, size_t count, loff_t
* ppos, int nonblock)

implements read() syscall logic.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

53.1. Video4Linux devices 1777

Linux Driver-api Documentation

char __user * data pointed to target userspace buffer

size_t count number of bytes to read

loff_t * ppos file handle position tracking pointer

int nonblock mode selector (1 means blocking calls, 0 means nonblocking)

size_t vb2_write(struct vb2_queue * q, const char __user * data,
size_t count, loff_t * ppos, int nonblock)

implements write() syscall logic.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

const char __user * data pointed to target userspace buffer

size_t count number of bytes to write

loff_t * ppos file handle position tracking pointer

int nonblock mode selector (1 means blocking calls, 0 means nonblocking)

vb2_thread_fnc
Typedef: callback function for use with vb2_thread.

Syntax
int vb2_thread_fnc (struct vb2_buffer * vb, void * priv);

Parameters
struct vb2_buffer * vb pointer to struct vb2_buffer.

void * priv pointer to a private data.

Description
This is called whenever a buffer is dequeued in the thread.

int vb2_thread_start(struct vb2_queue * q, vb2_thread_fnc fnc, void * priv,
const char * thread_name)

start a thread for the given queue.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

vb2_thread_fnc fnc vb2_thread_fnc callback function.

void * priv priv pointer passed to the callback function.

const char * thread_name the name of the thread. This will be prefixed with
“vb2-“.

Description
This starts a thread that will queue and dequeue until an error occurs or
vb2_thread_stop() is called.

1778 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Attention: This function should not be used for anything else but the
videobuf2-dvb support. If you think you have another good use-case for this,
then please contact the linux-media mailing list first.

int vb2_thread_stop(struct vb2_queue * q)
stop the thread for the given queue.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

bool vb2_is_streaming(struct vb2_queue * q)
return streaming status of the queue.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

bool vb2_fileio_is_active(struct vb2_queue * q)
return true if fileio is active.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

Description
This returns true if read() or write() is used to stream the data as opposed to stream
I/O. This is almost never an important distinction, except in rare cases. One such
case is that using read() or write() to stream a format using V4L2_FIELD_ALTERNATE
is not allowed since there is noway you can pass the field information of each buffer
to/from userspace. A driver that supports this field format should check for this in
the vb2_ops->queue_setup op and reject it if this function returns true.

bool vb2_is_busy(struct vb2_queue * q)
return busy status of the queue.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

Description
This function checks if queue has any buffers allocated.

void * vb2_get_drv_priv(struct vb2_queue * q)
return driver private data associated with the queue.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

void vb2_set_plane_payload(struct vb2_buffer * vb, unsigned int plane_no,
unsigned long size)

set bytesused for the plane plane_no.
Parameters
struct vb2_buffer * vb pointer to struct vb2_buffer to which the plane in

question belongs to.

53.1. Video4Linux devices 1779

Linux Driver-api Documentation

unsigned int plane_no plane number for which payload should be set.

unsigned long size payload in bytes.

unsigned long vb2_get_plane_payload(struct vb2_buffer * vb, unsigned
int plane_no)

get bytesused for the plane plane_no

Parameters
struct vb2_buffer * vb pointer to struct vb2_buffer to which the plane in

question belongs to.

unsigned int plane_no plane number for which payload should be set.

unsigned long vb2_plane_size(struct vb2_buffer * vb, unsigned
int plane_no)

return plane size in bytes.

Parameters
struct vb2_buffer * vb pointer to struct vb2_buffer to which the plane in

question belongs to.

unsigned int plane_no plane number for which size should be returned.

bool vb2_start_streaming_called(struct vb2_queue * q)
return streaming status of driver.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

void vb2_clear_last_buffer_dequeued(struct vb2_queue * q)
clear last buffer dequeued flag of queue.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

struct vb2_buffer * vb2_get_buffer(struct vb2_queue * q, unsigned
int index)

get a buffer from a queue

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

unsigned int index buffer index

Description
This function obtains a buffer from a queue, by its index. Keep in mind that there
is no refcounting involved in this operation, so the buffer lifetime should be taken
into consideration.

bool vb2_buffer_in_use(struct vb2_queue * q, struct vb2_buffer * vb)
return true if the buffer is in use and the queue cannot be freed (by the means
of VIDIOC_REQBUFS(0)) call.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

1780 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct vb2_buffer * vb buffer for which plane size should be returned.

int vb2_verify_memory_type(struct vb2_queue * q, enum
vb2_memory memory, unsigned int type)

Check whether the memory type and buffer type passed to a buffer operation
are compatible with the queue.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

enum vb2_memory memory memory model, as defined by enum vb2_memory.

unsigned int type private buffer type whose content is defined by the vb2-core
caller. For example, for V4L2, it should match the types defined on enum
v4l2_buf_type.

bool vb2_request_object_is_buffer(struct media_request_object * obj)
return true if the object is a buffer

Parameters
struct media_request_object * obj the request object.

unsigned int vb2_request_buffer_cnt(struct media_request * req)
return the number of buffers in the request

Parameters
struct media_request * req the request.

struct vb2_v4l2_buffer
video buffer information for v4l2.

Definition

struct vb2_v4l2_buffer {
struct vb2_buffer vb2_buf;
__u32 flags;
__u32 field;
struct v4l2_timecode timecode;
__u32 sequence;
__s32 request_fd;
bool is_held;
struct vb2_plane planes[VB2_MAX_PLANES];

};

Members
vb2_buf embedded struct vb2_buffer.

flags buffer informational flags.

field field order of the image in the buffer, as defined by enum v4l2_field.

timecode frame timecode.

sequence sequence count of this frame.

request_fd the request_fd associated with this buffer

is_held if true, then this capture buffer was held

53.1. Video4Linux devices 1781

Linux Driver-api Documentation

planes plane information (userptr/fd, length, bytesused, data_offset).

Description
Should contain enough information to be able to cover all the fields of struct
v4l2_buffer at videodev2.h.

int vb2_find_timestamp(const struct vb2_queue * q, u64 timestamp, un-
signed int start_idx)

Find buffer with given timestamp in the queue

Parameters
const struct vb2_queue * q pointer to struct vb2_queue with videobuf2

queue.

u64 timestamp the timestamp to find.

unsigned int start_idx the start index (usually 0) in the buffer array to start
searching from. Note that there may be multiple buffers with the same times-
tamp value, so you can restart the search by setting start_idx to the previ-
ously found index + 1.

Description
Returns the buffer index of the buffer with the given timestamp, or -1 if no buffer
with timestamp was found.
int vb2_reqbufs(struct vb2_queue * q, struct v4l2_requestbuffers * req)

Wrapper for vb2_core_reqbufs() that also verifies the memory and type val-
ues.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

struct v4l2_requestbuffers * req struct v4l2_requestbuffers passed
from userspace to v4l2_ioctl_ops->vidioc_reqbufs handler in driver.

int vb2_create_bufs(struct vb2_queue * q, struct v4l2_create_buffers
* create)

Wrapper for vb2_core_create_bufs() that also verifies the memory and type
values.

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

struct v4l2_create_buffers * create creation parameters, passed from
userspace to v4l2_ioctl_ops->vidioc_create_bufs handler in driver

int vb2_prepare_buf(struct vb2_queue * q, struct media_device * mdev,
struct v4l2_buffer * b)

Pass ownership of a buffer from userspace to the kernel

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

struct media_device * mdev pointer to struct media_device, may be NULL.

struct v4l2_buffer * b buffer structure passed from userspace to
v4l2_ioctl_ops->vidioc_prepare_buf handler in driver

1782 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description
Should be called from v4l2_ioctl_ops->vidioc_prepare_buf ioctl handler of a
driver.

This function:

1) verifies the passed buffer,

2) calls vb2_ops->buf_prepare callback in the driver (if provided), in which
driver-specific buffer initialization can be performed.

3) if b->request_fd is non-zero andmdev->ops->req_queue is set, then bind
the prepared buffer to the request.

The return values from this function are intended to be directly returned from
v4l2_ioctl_ops->vidioc_prepare_buf handler in driver.

int vb2_qbuf(struct vb2_queue * q, struct media_device * mdev, struct
v4l2_buffer * b)

Queue a buffer from userspace

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

struct media_device * mdev pointer to struct media_device, may be NULL.

struct v4l2_buffer * b buffer structure passed from userspace to
v4l2_ioctl_ops->vidioc_qbuf handler in driver

Description
Should be called from v4l2_ioctl_ops->vidioc_qbuf handler of a driver.

This function:

1) verifies the passed buffer;

2) if b->request_fd is non-zero andmdev->ops->req_queue is set, then bind
the buffer to the request.

3) if necessary, calls vb2_ops->buf_prepare callback in the driver (if provided),
in which driver-specific buffer initialization can be performed;

4) if streaming is on, queues the buffer in driver by the means of
vb2_ops->buf_queue callback for processing.

The return values from this function are intended to be directly returned from
v4l2_ioctl_ops->vidioc_qbuf handler in driver.

int vb2_expbuf(struct vb2_queue * q, struct v4l2_exportbuffer * eb)
Export a buffer as a file descriptor

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

struct v4l2_exportbuffer * eb export buffer structure passed from userspace
to v4l2_ioctl_ops->vidioc_expbuf handler in driver

Description

53.1. Video4Linux devices 1783

Linux Driver-api Documentation

The return values from this function are intended to be directly returned from
v4l2_ioctl_ops->vidioc_expbuf handler in driver.

int vb2_dqbuf(struct vb2_queue * q, struct v4l2_buffer * b,
bool nonblocking)

Dequeue a buffer to the userspace

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

struct v4l2_buffer * b buffer structure passed from userspace to
v4l2_ioctl_ops->vidioc_dqbuf handler in driver

bool nonblocking if true, this call will not sleep waiting for a buffer if no buffers
ready for dequeuing are present. Normally the driver would be passing
(file->f_flags & O_NONBLOCK) here

Description
Should be called from v4l2_ioctl_ops->vidioc_dqbuf ioctl handler of a driver.

This function:

1) verifies the passed buffer;

2) calls vb2_ops->buf_finish callback in the driver (if provided), in which
driver can perform any additional operations that may be required before
returning the buffer to userspace, such as cache sync;

3) the buffer struct members are filled with relevant information for the
userspace.

The return values from this function are intended to be directly returned from
v4l2_ioctl_ops->vidioc_dqbuf handler in driver.

int vb2_streamon(struct vb2_queue * q, enum v4l2_buf_type type)
start streaming

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

enum v4l2_buf_type type type argument passed from userspace to vid-
ioc_streamon handler, as defined by enum v4l2_buf_type.

Description
Should be called from v4l2_ioctl_ops->vidioc_streamon handler of a driver.

This function:

1) verifies current state

2) passes any previously queued buffers to the driver and starts streaming

The return values from this function are intended to be directly returned from
v4l2_ioctl_ops->vidioc_streamon handler in the driver.

int vb2_streamoff(struct vb2_queue * q, enum v4l2_buf_type type)
stop streaming

Parameters

1784 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

enum v4l2_buf_type type type argument passed from userspace to vid-
ioc_streamoff handler

Description
Should be called from vidioc_streamoff handler of a driver.

This function:

1) verifies current state,

2) stop streaming and dequeues any queued buffers, including those previously
passed to the driver (after waiting for the driver to finish).

This call can be used for pausing playback. The return values from this function
are intended to be directly returned from vidioc_streamoff handler in the driver

int vb2_queue_init(struct vb2_queue * q)
initialize a videobuf2 queue

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

Description
The vb2_queue structure should be allocated by the driver. The driver is re-
sponsible of clearing it’s content and setting initial values for some required
entries before calling this function. q->ops, q->mem_ops, q->type and q-
>io_modes are mandatory. Please refer to the struct vb2_queue description in
include/media/videobuf2-core.h for more information.

void vb2_queue_release(struct vb2_queue * q)
stop streaming, release the queue and free memory

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

Description
This function stops streaming and performs necessary clean ups, including freeing
video buffer memory. The driver is responsible for freeing the vb2_queue structure
itself.

__poll_t vb2_poll(struct vb2_queue * q, struct file * file, poll_table * wait)
implements poll userspace operation

Parameters
struct vb2_queue * q pointer to struct vb2_queue with videobuf2 queue.

struct file * file file argument passed to the poll file operation handler

poll_table * wait wait argument passed to the poll file operation handler

Description
This function implements poll file operation handler for a driver. For CAPTURE
queues, if a buffer is ready to be dequeued, the userspace will be informed that
the file descriptor of a video device is available for reading. For OUTPUT queues,

53.1. Video4Linux devices 1785

Linux Driver-api Documentation

if a buffer is ready to be dequeued, the file descriptor will be reported as available
for writing.

If the driver uses struct v4l2_fh, then vb2_poll() will also check for any pending
events.

The return values from this function are intended to be directly returned from poll
handler in driver.

void vb2_ops_wait_prepare(struct vb2_queue * vq)
helper function to lock a struct vb2_queue

Parameters
struct vb2_queue * vq pointer to struct vb2_queue

Description
..note:: only use if vq->lock is non-NULL.

void vb2_ops_wait_finish(struct vb2_queue * vq)
helper function to unlock a struct vb2_queue

Parameters
struct vb2_queue * vq pointer to struct vb2_queue

Description
..note:: only use if vq->lock is non-NULL.

struct vb2_vmarea_handler
common vma refcount tracking handler.

Definition

struct vb2_vmarea_handler {
refcount_t *refcount;
void (*put)(void *arg);
void *arg;

};

Members
refcount pointer to refcount_t entry in the buffer.

put callback to function that decreases buffer refcount.

arg argument for put callback.

53.1.16 V4L2 clocks

Attention: This is a temporary API and it shall be replaced by the generic
clock API, when the latter becomes widely available.

Many subdevices, like camera sensors, TV decoders and encoders, need a clock
signal to be supplied by the system. Often this clock is supplied by the respective
bridge device. The Linux kernel provides a Common Clock Framework for this

1786 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

purpose. However, it is not (yet) available on all architectures. Besides, the na-
ture of the multi-functional (clock, data + synchronisation, I2C control) connection
of subdevices to the system might impose special requirements on the clock API
usage. E.g. V4L2 has to support clock provider driver unregistration while a sub-
device driver is holding a reference to the clock. For these reasons a V4L2 clock
helper API has been developed and is provided to bridge and subdevice drivers.

The API consists of two parts: two functions to register and unregister a V4L2
clock source: v4l2_clk_register() and v4l2_clk_unregister() and calls to control
a clock object, similar to the respective generic clock API calls: v4l2_clk_get(),
v4l2_clk_put(), v4l2_clk_enable(), v4l2_clk_disable(), v4l2_clk_get_rate(), and
v4l2_clk_set_rate(). Clock suppliers have to provide clock operations that will be
called when clock users invoke respective API methods.

It is expected that once the CCF becomes available on all relevant architectures
this API will be removed.

53.1.17 V4L2 DV Timings functions

struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings
* t)

helper function to calculate timeperframe based v4l2_dv_timings fields.

Parameters
const struct v4l2_dv_timings * t Timings for the video mode.

Description
Calculates the expected timeperframe using the pixel clock value and horizon-
tal/vertical measures. This means that v4l2_dv_timings structure must be cor-
rectly and fully filled.

v4l2_check_dv_timings_fnc
Typedef: timings check callback

Syntax
bool v4l2_check_dv_timings_fnc (const struct v4l2_dv_timings
* t, void * handle);

Parameters
const struct v4l2_dv_timings * t the v4l2_dv_timings struct.

void * handle a handle from the driver.

Description
Returns true if the given timings are valid.

bool v4l2_valid_dv_timings(const struct v4l2_dv_timings * t, const
struct v4l2_dv_timings_cap * cap,
v4l2_check_dv_timings_fnc fnc, void
* fnc_handle)

are these timings valid?

Parameters

53.1. Video4Linux devices 1787

Linux Driver-api Documentation

const struct v4l2_dv_timings * t the v4l2_dv_timings struct.

const struct v4l2_dv_timings_cap * cap the v4l2_dv_timings_cap capabili-
ties.

v4l2_check_dv_timings_fnc fnc callback to check if this timing is OK. May be
NULL.

void * fnc_handle a handle that is passed on to fnc.
Description
Returns true if the given dv_timings struct is supported by the hardware capabili-
ties and the callback function (if non-NULL), returns false otherwise.

int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings * t, const
struct v4l2_dv_timings_cap * cap,
v4l2_check_dv_timings_fnc fnc, void
* fnc_handle)

Helper function to enumerate possible DV timings based on capabilities

Parameters
struct v4l2_enum_dv_timings * t the v4l2_enum_dv_timings struct.

const struct v4l2_dv_timings_cap * cap the v4l2_dv_timings_cap capabili-
ties.

v4l2_check_dv_timings_fnc fnc callback to check if this timing is OK. May be
NULL.

void * fnc_handle a handle that is passed on to fnc.
Description
This enumerates dv_timings using the full list of possible CEA-861 and DMT tim-
ings, filtering out any timings that are not supported based on the hardware ca-
pabilities and the callback function (if non-NULL).

If a valid timing for the given index is found, it will fill in t and return 0, otherwise
it returns -EINVAL.

bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings * t, const
struct v4l2_dv_timings_cap
* cap, unsigned pclock_delta,
v4l2_check_dv_timings_fnc fnc, void
* fnc_handle)

Find the closest timings struct

Parameters
struct v4l2_dv_timings * t the v4l2_enum_dv_timings struct.

const struct v4l2_dv_timings_cap * cap the v4l2_dv_timings_cap capabili-
ties.

unsigned pclock_delta maximum delta between t->pixelclock and the timing
struct under consideration.

v4l2_check_dv_timings_fnc fnc callback to check if a given timings struct is
OK. May be NULL.

1788 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

void * fnc_handle a handle that is passed on to fnc.
Description
This function tries to map the given timings to an entry in the full list of possible
CEA-861 and DMT timings, filtering out any timings that are not supported based
on the hardware capabilities and the callback function (if non-NULL).

On success it will fill in t with the found timings and it returns true. On failure it
will return false.

bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings * t, u8 vic)
find timings based on CEA-861 VIC

Parameters
struct v4l2_dv_timings * t the timings data.

u8 vic CEA-861 VIC code

Description
On success it will fill in t with the found timings and it returns true. On failure it
will return false.

bool v4l2_match_dv_timings(const struct v4l2_dv_timings * measured,
const struct v4l2_dv_timings
* standard, unsigned pclock_delta,
bool match_reduced_fps)

do two timings match?

Parameters
const struct v4l2_dv_timings * measured the measured timings data.

const struct v4l2_dv_timings * standard the timings according to the stan-
dard.

unsigned pclock_delta maximum delta in Hz between standard->pixelclock and
the measured timings.

bool match_reduced_fps if true, then fail if V4L2_DV_FL_REDUCED_FPS does
not match.

Description
Returns true if the two timings match, returns false otherwise.

void v4l2_print_dv_timings(const char * dev_prefix, const char
* prefix, const struct v4l2_dv_timings * t,
bool detailed)

log the contents of a dv_timings struct

Parameters
const char * dev_prefix device prefix for each log line.

const char * prefix additional prefix for each log line, may be NULL.

const struct v4l2_dv_timings * t the timings data.

bool detailed if true, give a detailed log.

53.1. Video4Linux devices 1789

Linux Driver-api Documentation

bool v4l2_detect_cvt(unsigned frame_height, unsigned hfreq, un-
signed vsync, unsigned active_width, u32 polarities,
bool interlaced, struct v4l2_dv_timings * fmt)

detect if the given timings follow the CVT standard

Parameters
unsigned frame_height the total height of the frame (including blanking) in

lines.

unsigned hfreq the horizontal frequency in Hz.

unsigned vsync the height of the vertical sync in lines.

unsigned active_width active width of image (does not include blanking). This
information is needed only in case of version 2 of reduced blanking. In other
cases, this parameter does not have any effect on timings.

u32 polarities the horizontal and vertical polarities (same as struct
v4l2_bt_timings polarities).

bool interlaced if this flag is true, it indicates interlaced format

struct v4l2_dv_timings * fmt the resulting timings.

Description
This function will attempt to detect if the given values correspond to a valid CVT
format. If so, then it will return true, and fmt will be filled in with the found CVT
timings.

bool v4l2_detect_gtf(unsigned frame_height, unsigned hfreq, un-
signed vsync, u32 polarities, bool interlaced, struct
v4l2_fract aspect, struct v4l2_dv_timings * fmt)

detect if the given timings follow the GTF standard

Parameters
unsigned frame_height the total height of the frame (including blanking) in

lines.

unsigned hfreq the horizontal frequency in Hz.

unsigned vsync the height of the vertical sync in lines.

u32 polarities the horizontal and vertical polarities (same as struct
v4l2_bt_timings polarities).

bool interlaced if this flag is true, it indicates interlaced format

struct v4l2_fract aspect preferred aspect ratio. GTF has no method of deter-
mining the aspect ratio in order to derive the image width from the image
height, so it has to be passed explicitly. Usually the native screen aspect
ratio is used for this. If it is not filled in correctly, then 16:9 will be assumed.

struct v4l2_dv_timings * fmt the resulting timings.

Description
This function will attempt to detect if the given values correspond to a valid GTF
format. If so, then it will return true, and fmt will be filled in with the found GTF
timings.

1790 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape,
u8 vert_portrait)

calculate the aspect ratio based on bytes 0x15 and 0x16 from the EDID.

Parameters
u8 hor_landscape byte 0x15 from the EDID.

u8 vert_portrait byte 0x16 from the EDID.

Description
Determines the aspect ratio from the EDID. See VESA Enhanced EDID standard,
release A, rev 2, section 3.6.2: “Horizontal and Vertical Screen Size or Aspect
Ratio”
struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct

v4l2_dv_timings * t)
calculate the aspect ratio based on the v4l2_dv_timings information.

Parameters
const struct v4l2_dv_timings * t the timings data.

bool can_reduce_fps(struct v4l2_bt_timings * bt)
check if conditions for reduced fps are true.

Parameters
struct v4l2_bt_timings * bt v4l2 timing structure

Description
For different timings reduced fps is allowed if the following conditions are met:

• For CVT timings: if reduced blanking v2 (vsync == 8) is true.

• For CEA861 timings: if V4L2_DV_FL_CAN_REDUCE_FPS flag is true.

struct v4l2_hdmi_colorimetry
describes the HDMI colorimetry information

Definition

struct v4l2_hdmi_colorimetry {
enum v4l2_colorspace colorspace;
enum v4l2_ycbcr_encoding ycbcr_enc;
enum v4l2_quantization quantization;
enum v4l2_xfer_func xfer_func;

};

Members
colorspace enum v4l2_colorspace, the colorspace

ycbcr_enc enum v4l2_ycbcr_encoding, Y’CbCr encoding
quantization enum v4l2_quantization, colorspace quantization

xfer_func enum v4l2_xfer_func, colorspace transfer function

53.1. Video4Linux devices 1791

Linux Driver-api Documentation

53.1.18 V4L2 flash functions and data structures

struct v4l2_flash_ctrl_data
flash control initialization data, filled basing on the features declared by the
LED flash class driver in the v4l2_flash_config

Definition

struct v4l2_flash_ctrl_data {
struct v4l2_ctrl_config config;
u32 cid;

};

Members
config initialization data for a control

cid contains v4l2 flash control id if the config field was initialized, 0 otherwise

struct v4l2_flash_ops
V4L2 flash operations

Definition

struct v4l2_flash_ops {
int (*external_strobe_set)(struct v4l2_flash *v4l2_flash, bool enable);
enum led_brightness (*intensity_to_led_brightness) (struct v4l2_flash␣

↪→*v4l2_flash, s32 intensity);
s32 (*led_brightness_to_intensity) (struct v4l2_flash *v4l2_flash, enum␣

↪→led_brightness);
};

Members
external_strobe_set Setup strobing the flash by hardware pin state assertion.

intensity_to_led_brightness Convert intensity to brightness in a device spe-
cific manner

led_brightness_to_intensity convert brightness to intensity in a device spe-
cific manner.

struct v4l2_flash_config
V4L2 Flash sub-device initialization data

Definition

struct v4l2_flash_config {
char dev_name[32];
struct led_flash_setting intensity;
u32 flash_faults;
unsigned int has_external_strobe:1;

};

Members
dev_name the name of the media entity, unique in the system

intensity non-flash strobe constraints for the LED

1792 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

flash_faults bitmask of flash faults that the LED flash class device can report;
corresponding LED_FAULT* bit definitions are available in the header file
<linux/led-class-flash.h>

has_external_strobe external strobe capability

struct v4l2_flash
Flash sub-device context

Definition

struct v4l2_flash {
struct led_classdev_flash *fled_cdev;
struct led_classdev *iled_cdev;
const struct v4l2_flash_ops *ops;
struct v4l2_subdev sd;
struct v4l2_ctrl_handler hdl;
struct v4l2_ctrl **ctrls;

};

Members
fled_cdev LED flash class device controlled by this sub-device

iled_cdev LED class device representing indicator LED associated with the LED
flash class device

ops V4L2 specific flash ops

sd V4L2 sub-device

hdl flash controls handler

ctrls array of pointers to controls, whose values define the sub-device state

struct v4l2_flash * v4l2_subdev_to_v4l2_flash(struct v4l2_subdev * sd)
Returns a struct v4l2_flash from the struct v4l2_subdev embedded on
it.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_flash * v4l2_ctrl_to_v4l2_flash(struct v4l2_ctrl * c)
Returns a struct v4l2_flash from the struct v4l2_ctrl embedded on it.

Parameters
struct v4l2_ctrl * c pointer to struct v4l2_ctrl

struct v4l2_flash * v4l2_flash_init(struct device * dev, struct
fwnode_handle * fwn, struct
led_classdev_flash * fled_cdev, const
struct v4l2_flash_ops * ops, struct
v4l2_flash_config * config)

initialize V4L2 flash led sub-device

Parameters
struct device * dev flash device, e.g. an I2C device

53.1. Video4Linux devices 1793

Linux Driver-api Documentation

struct fwnode_handle * fwn fwnode_handle of the LED, may be NULL if the
same as device’s

struct led_classdev_flash * fled_cdev LED flash class device to wrap

const struct v4l2_flash_ops * ops V4L2 Flash device ops

struct v4l2_flash_config * config initialization data for V4L2 Flash sub-
device

Description
Create V4L2 Flash sub-device wrapping given LED subsystem device. The ops
pointer is stored by the V4L2 flash framework. No references are held to config
nor its contents once this function has returned.

Return
A valid pointer, or, when an error occurs, the return value is encoded using
ERR_PTR(). Use IS_ERR() to check and PTR_ERR() to obtain the numeric return
value.

struct v4l2_flash * v4l2_flash_indicator_init(struct device * dev, struct
fwnode_handle * fwn,
struct led_classdev
* iled_cdev, struct
v4l2_flash_config * config)

initialize V4L2 indicator sub-device

Parameters
struct device * dev flash device, e.g. an I2C device

struct fwnode_handle * fwn fwnode_handle of the LED, may be NULL if the
same as device’s

struct led_classdev * iled_cdev LED flash class device representing the in-
dicator LED

struct v4l2_flash_config * config initialization data for V4L2 Flash sub-
device

Description
Create V4L2 Flash sub-device wrapping given LED subsystem device. The ops
pointer is stored by the V4L2 flash framework. No references are held to config
nor its contents once this function has returned.

Return
A valid pointer, or, when an error occurs, the return value is encoded using
ERR_PTR(). Use IS_ERR() to check and PTR_ERR() to obtain the numeric return
value.

void v4l2_flash_release(struct v4l2_flash * v4l2_flash)
release V4L2 Flash sub-device

Parameters
struct v4l2_flash * v4l2_flash the V4L2 Flash sub-device to release

1794 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description
Release V4L2 Flash sub-device.

53.1.19 V4L2 Media Controller functions and data structures

int v4l2_mc_create_media_graph(struct media_device * mdev)
create Media Controller links at the graph.

Parameters
struct media_device * mdev pointer to the media_device struct.

Description
Add links between the entities commonly found on PC customer’s hardware at
the V4L2 side: camera sensors, audio and video PLL-IF decoders, tuners, analog
TV decoder and I/O entities (video, VBI and Software Defined Radio).

Note: Webcams are modelled on a very simple way: the sensor is connected
directly to the I/O entity. All dirty details, like scaler and crop HW are hidden.
While such mapping is enough for v4l2 interface centric PC-consumer’s hardware,
V4L2 subdev centric camera hardware should not use this routine, as it will not
build the right graph.

int v4l_enable_media_source(struct video_device * vdev)
Hold media source for exclusive use if free

Parameters
struct video_device * vdev pointer to struct video_device

Description
This interface calls enable_source handler to determine if media source is free for
use. The enable_source handler is responsible for checking is the media source is
free and start a pipeline between the media source and the media entity associated
with the video device. This interface should be called from v4l2-core and dvb-core
interfaces that change the source configuration.

Return
returns zero on success or a negative error code.

void v4l_disable_media_source(struct video_device * vdev)
Release media source

Parameters
struct video_device * vdev pointer to struct video_device

Description
This interface calls disable_source handler to release the media source. The dis-
able_source handler stops the active media pipeline between the media source and
the media entity associated with the video device.

Return

53.1. Video4Linux devices 1795

Linux Driver-api Documentation

returns zero on success or a negative error code.

int v4l2_create_fwnode_links_to_pad(struct v4l2_subdev * src_sd, struct
media_pad * sink)

Create fwnode-based links from a source subdev to a sink subdev pad.

Parameters
struct v4l2_subdev * src_sd undescribed

struct media_pad * sink undescribed

Description
src_sd - pointer to a source subdev sink - pointer to a subdev sink pad
This function searches for fwnode endpoint connections from a source subdevice
to a single sink pad, and if suitable connections are found, translates them into
media links to that pad. The function can be called by the sink subdevice, in its
v4l2-async notifier subdev bound callback, to create links from a bound source
subdevice.

Note: Any sink subdevice that calls this function must implement the
.get_fwnode_pad media operation in order to verify endpoints passed to the sink
are owned by the sink.

Return 0 on success or a negative error code on failure.

int v4l2_create_fwnode_links(struct v4l2_subdev * src_sd, struct
v4l2_subdev * sink_sd)

Create fwnode-based links from a source subdev to a sink subdev.

Parameters
struct v4l2_subdev * src_sd undescribed

struct v4l2_subdev * sink_sd undescribed

Description
src_sd - pointer to a source subdevice sink_sd - pointer to a sink subdevice
This function searches for any and all fwnode endpoint connections between
source and sink subdevices, and translates them into media links. The function
can be called by the sink subdevice, in its v4l2-async notifier subdev bound call-
back, to create all links from a bound source subdevice.

Note: Any sink subdevice that calls this function must implement the
.get_fwnode_pad media operation in order to verify endpoints passed to the sink
are owned by the sink.

Return 0 on success or a negative error code on failure.

int v4l2_pipeline_pm_get(struct media_entity * entity)
Increase the use count of a pipeline

Parameters

1796 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct media_entity * entity The root entity of a pipeline

Description
Update the use count of all entities in the pipeline and power entities on.

This function is intended to be called in video node open. It uses struct me-
dia_entity.use_count to track the power status. The use of this function should
be paired with v4l2_pipeline_link_notify().

Return 0 on success or a negative error code on failure.

void v4l2_pipeline_pm_put(struct media_entity * entity)
Decrease the use count of a pipeline

Parameters
struct media_entity * entity The root entity of a pipeline

Description
Update the use count of all entities in the pipeline and power entities off.

This function is intended to be called in video node release. It uses struct me-
dia_entity.use_count to track the power status. The use of this function should be
paired with v4l2_pipeline_link_notify().

int v4l2_pipeline_link_notify(struct media_link * link, u32 flags, un-
signed int notification)

Link management notification callback

Parameters
struct media_link * link The link

u32 flags New link flags that will be applied

unsigned int notification The link’s state change notification type (ME-
DIA_DEV_NOTIFY_*)

Description
React to linkmanagement on powered pipelines by updating the use count of all en-
tities in the source and sink sides of the link. Entities are powered on or off accord-
ingly. The use of this function should be paired with v4l2_pipeline_pm_{get,put}().

Return 0 on success or a negative error code on failure. Powering entities off is
assumed to never fail. This function will not fail for disconnection events.

53.1.20 V4L2 Media Bus functions and data structures

enum v4l2_mbus_type
media bus type

Constants
V4L2_MBUS_UNKNOWN unknown bus type, no V4L2 mediabus configuration

V4L2_MBUS_PARALLEL parallel interface with hsync and vsync

V4L2_MBUS_BT656 parallel interface with embedded synchronisation, can also be
used for BT.1120

53.1. Video4Linux devices 1797

Linux Driver-api Documentation

V4L2_MBUS_CSI1 MIPI CSI-1 serial interface

V4L2_MBUS_CCP2 CCP2 (Compact Camera Port 2)

V4L2_MBUS_CSI2_DPHY MIPI CSI-2 serial interface, with D-PHY

V4L2_MBUS_CSI2_CPHY MIPI CSI-2 serial interface, with C-PHY

struct v4l2_mbus_config
media bus configuration

Definition

struct v4l2_mbus_config {
enum v4l2_mbus_type type;
unsigned int flags;

};

Members
type in: interface type

flags in / out: configuration flags, depending on type
void v4l2_fill_pix_format(struct v4l2_pix_format * pix_fmt, const struct

v4l2_mbus_framefmt * mbus_fmt)
Ancillary routine that fills a struct v4l2_pix_format fields from a struct
v4l2_mbus_framefmt.

Parameters
struct v4l2_pix_format * pix_fmt pointer to struct v4l2_pix_format to be

filled

const struct v4l2_mbus_framefmt * mbus_fmt pointer to struct
v4l2_mbus_framefmt to be used as model

void v4l2_fill_mbus_format(struct v4l2_mbus_framefmt * mbus_fmt, const
struct v4l2_pix_format * pix_fmt, u32 code)

Ancillary routine that fills a struct v4l2_mbus_framefmt from a struct
v4l2_pix_format and a data format code.

Parameters
struct v4l2_mbus_framefmt * mbus_fmt pointer to struct

v4l2_mbus_framefmt to be filled

const struct v4l2_pix_format * pix_fmt pointer to struct
v4l2_pix_format to be used as model

u32 code data format code (from enum v4l2_mbus_pixelcode)

void v4l2_fill_pix_format_mplane(struct v4l2_pix_format_mplane
* pix_mp_fmt, const struct
v4l2_mbus_framefmt * mbus_fmt)

Ancillary routine that fills a struct v4l2_pix_format_mplane fields from a
media bus structure.

Parameters
struct v4l2_pix_format_mplane * pix_mp_fmt pointer to struct

v4l2_pix_format_mplane to be filled

1798 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

const struct v4l2_mbus_framefmt * mbus_fmt pointer to struct
v4l2_mbus_framefmt to be used as model

void v4l2_fill_mbus_format_mplane(struct v4l2_mbus_framefmt
* mbus_fmt, const struct
v4l2_pix_format_mplane
* pix_mp_fmt)

Ancillary routine that fills a struct v4l2_mbus_framefmt from a struct
v4l2_pix_format_mplane.

Parameters
struct v4l2_mbus_framefmt * mbus_fmt pointer to struct

v4l2_mbus_framefmt to be filled

const struct v4l2_pix_format_mplane * pix_mp_fmt pointer to struct
v4l2_pix_format_mplane to be used as model

53.1.21 V4L2 Memory to Memory functions and data structures

struct v4l2_m2m_ops
mem-to-mem device driver callbacks

Definition

struct v4l2_m2m_ops {
void (*device_run)(void *priv);
int (*job_ready)(void *priv);
void (*job_abort)(void *priv);

};

Members
device_run required. Begin the actual job (transaction) inside this callback.

The job does NOT have to end before this callback returns (and it will
be the usual case). When the job finishes, v4l2_m2m_job_finish() or
v4l2_m2m_buf_done_and_job_finish() has to be called.

job_ready optional. Should return 0 if the driver does not have a job fully pre-
pared to run yet (i.e. it will not be able to finish a transaction without sleep-
ing). If not provided, it will be assumed that one source and one destination
buffer are all that is required for the driver to perform one full transaction.
This method may not sleep.

job_abort optional. Informs the driver that it has to abort the currently running
transaction as soon as possible (i.e. as soon as it can stop the device safely;
e.g. in the next interrupt handler), even if the transaction would not have
been finished by then. After the driver performs the necessary steps, it has
to call v4l2_m2m_job_finish() or v4l2_m2m_buf_done_and_job_finish()
as if the transaction ended normally. This function does not have to (and will
usually not) wait until the device enters a state when it can be stopped.

struct v4l2_m2m_queue_ctx
represents a queue for buffers ready to be processed

Definition

53.1. Video4Linux devices 1799

Linux Driver-api Documentation

struct v4l2_m2m_queue_ctx {
struct vb2_queue q;
struct list_head rdy_queue;
spinlock_t rdy_spinlock;
u8 num_rdy;
bool buffered;

};

Members
q pointer to struct vb2_queue

rdy_queue List of V4L2 mem-to-mem queues

rdy_spinlock spin lock to protect the struct usage

num_rdy number of buffers ready to be processed

buffered is the queue buffered?

Description
Queue for buffers ready to be processed as soon as this instance receives access
to the device.

struct v4l2_m2m_ctx
Memory to memory context structure

Definition

struct v4l2_m2m_ctx {
struct mutex *q_lock;
bool new_frame;
bool is_draining;
struct vb2_v4l2_buffer *last_src_buf;
bool next_buf_last;
bool has_stopped;
struct v4l2_m2m_dev *m2m_dev;
struct v4l2_m2m_queue_ctx cap_q_ctx;
struct v4l2_m2m_queue_ctx out_q_ctx;
struct list_head queue;
unsigned long job_flags;
wait_queue_head_t finished;
void *priv;

};

Members
q_lock struct mutex lock

new_frame valid in the device_run callback: if true, then this starts a new frame;
if false, then this is a new slice for an existing frame. This is always true un-
less V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF is set, which
indicates slicing support.

is_draining indicates device is in draining phase

last_src_buf indicate the last source buffer for draining

next_buf_last next capture queud buffer will be tagged as last

1800 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

has_stopped indicate the device has been stopped

m2m_dev opaque pointer to the internal data to handle M2M context

cap_q_ctx Capture (output to memory) queue context

out_q_ctx Output (input from memory) queue context

queue List of memory to memory contexts

job_flags Job queue flags, used internally by v4l2-mem2mem.c: TRANS_QUEUED,
TRANS_RUNNING and TRANS_ABORT.

finished Wait queue used to signalize when a job queue finished.

priv Instance private data

Description
The memory to memory context is specific to a file handle, NOT to e.g. a device.

struct v4l2_m2m_buffer
Memory to memory buffer

Definition

struct v4l2_m2m_buffer {
struct vb2_v4l2_buffer vb;
struct list_head list;

};

Members
vb pointer to struct vb2_v4l2_buffer

list list of m2m buffers

void * v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev * m2m_dev)
return driver private data for the currently running instance or NULL if no
instance is running

Parameters
struct v4l2_m2m_dev * m2m_dev opaque pointer to the internal data to handle

M2M context

struct vb2_queue * v4l2_m2m_get_vq(struct v4l2_m2m_ctx * m2m_ctx,
enum v4l2_buf_type type)

return vb2_queue for the given type

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

enum v4l2_buf_type type type of the V4L2 buffer, as defined by enum
v4l2_buf_type

void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx * m2m_ctx)
check whether an instance is ready to be added to the pending job queue and
add it if so.

Parameters

53.1. Video4Linux devices 1801

Linux Driver-api Documentation

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

Description
There are three basic requirements an instance has to meet to be able to run: 1)
at least one source buffer has to be queued, 2) at least one destination buffer has
to be queued, 3) streaming has to be on.

If a queue is buffered (for example a decoder hardware ringbuffer that has to be
drained before doing streamoff), allow scheduling without v4l2 buffers on that
queue.

There may also be additional, custom requirements. In such case the driver should
supply a custom callback (job_ready in v4l2_m2m_ops) that should return 1 if the
instance is ready. An example of the above could be an instance that requires more
than one src/dst buffer per transaction.

void v4l2_m2m_job_finish(struct v4l2_m2m_dev * m2m_dev, struct
v4l2_m2m_ctx * m2m_ctx)

inform the framework that a job has been finished and have it clean up

Parameters
struct v4l2_m2m_dev * m2m_dev opaque pointer to the internal data to handle

M2M context

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

Description
Called by a driver to yield back the device after it has finished with it. Should be
called as soon as possible after reaching a state which allows other instances to
take control of the device.

This function has to be called only after v4l2_m2m_ops->device_run callback has
been called on the driver. To prevent recursion, it should not be called directly
from the v4l2_m2m_ops->device_run callback though.

void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev
* m2m_dev, struct
v4l2_m2m_ctx * m2m_ctx, enum
vb2_buffer_state state)

return source/destination buffers with state and inform the framework that a
job has been finished and have it clean up

Parameters
struct v4l2_m2m_dev * m2m_dev opaque pointer to the internal data to handle

M2M context

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

enum vb2_buffer_state state vb2 buffer state passed to v4l2_m2m_buf_done().

Description

1802 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Drivers that set V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF must
use this function instead of job_finish() to take held buffers into account. It is
optional for other drivers.

This function removes the source buffer from the ready list and returns it with the
given state. The same is done for the destination buffer, unless it is marked‘held’
. In that case the buffer is kept on the ready list.

After that the job is finished (see job_finish()).

This allows for multiple output buffers to be used to fill in a single capture buffer.
This is typically used by stateless decoders where multiple e.g. H.264 slices con-
tribute to a single decoded frame.

void v4l2_m2m_clear_state(struct v4l2_m2m_ctx * m2m_ctx)
clear encoding/decoding state

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

void v4l2_m2m_mark_stopped(struct v4l2_m2m_ctx * m2m_ctx)
set current encoding/decoding state as stopped

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

bool v4l2_m2m_dst_buf_is_last(struct v4l2_m2m_ctx * m2m_ctx)
return the current encoding/decoding session draining management state of
next queued capture buffer

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

Description
This last capture buffer should be tagged with V4L2_BUF_FLAG_LAST to notify
the end of the capture session.

bool v4l2_m2m_has_stopped(struct v4l2_m2m_ctx * m2m_ctx)
return the current encoding/decoding session stopped state

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

bool v4l2_m2m_is_last_draining_src_buf(struct v4l2_m2m_ctx
* m2m_ctx, struct
vb2_v4l2_buffer * vbuf)

return the output buffer draining state in the current encoding/decoding ses-
sion

Parameters

53.1. Video4Linux devices 1803

Linux Driver-api Documentation

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct vb2_v4l2_buffer * vbuf pointer to struct v4l2_buffer

Description
This will identify the last output buffer queued before a session stop was re-
quired, leading to an actual encoding/decoding session stop state in the encod-
ing/decoding process after being processed.

void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx * m2m_ctx, struct
vb2_v4l2_buffer * vbuf)

marks the buffer with LAST flag and DONE

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_v4l2_buffer * vbuf pointer to struct v4l2_buffer

int v4l2_m2m_reqbufs(struct file * file, struct v4l2_m2m_ctx * m2m_ctx,
struct v4l2_requestbuffers * reqbufs)

multi-queue-aware REQBUFS multiplexer

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct v4l2_requestbuffers * reqbufs pointer to struct
v4l2_requestbuffers

int v4l2_m2m_querybuf(struct file * file, struct v4l2_m2m_ctx * m2m_ctx,
struct v4l2_buffer * buf)

multi-queue-aware QUERYBUF multiplexer

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct v4l2_buffer * buf pointer to struct v4l2_buffer

Description
See v4l2_m2m_mmap() documentation for details.

int v4l2_m2m_qbuf(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct
v4l2_buffer * buf)

enqueue a source or destination buffer, depending on the type

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

1804 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_buffer * buf pointer to struct v4l2_buffer

int v4l2_m2m_dqbuf(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct
v4l2_buffer * buf)

dequeue a source or destination buffer, depending on the type

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct v4l2_buffer * buf pointer to struct v4l2_buffer

int v4l2_m2m_prepare_buf(struct file * file, struct v4l2_m2m_ctx * m2m_ctx,
struct v4l2_buffer * buf)

prepare a source or destination buffer, depending on the type

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct v4l2_buffer * buf pointer to struct v4l2_buffer

int v4l2_m2m_create_bufs(struct file * file, struct v4l2_m2m_ctx * m2m_ctx,
struct v4l2_create_buffers * create)

create a source or destination buffer, depending on the type

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct v4l2_create_buffers * create pointer to struct v4l2_create_buffers

int v4l2_m2m_expbuf(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct
v4l2_exportbuffer * eb)

export a source or destination buffer, depending on the type

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct v4l2_exportbuffer * eb pointer to struct v4l2_exportbuffer

int v4l2_m2m_streamon(struct file * file, struct v4l2_m2m_ctx * m2m_ctx,
enum v4l2_buf_type type)

turn on streaming for a video queue

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

53.1. Video4Linux devices 1805

Linux Driver-api Documentation

enum v4l2_buf_type type type of the V4L2 buffer, as defined by enum
v4l2_buf_type

int v4l2_m2m_streamoff(struct file * file, struct v4l2_m2m_ctx * m2m_ctx,
enum v4l2_buf_type type)

turn off streaming for a video queue

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

enum v4l2_buf_type type type of the V4L2 buffer, as defined by enum
v4l2_buf_type

void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx
* m2m_ctx, struct
vb2_queue * q)

update the encoding/decoding session state when a start of streaming of a
video queue is requested

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_queue * q queue

void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx
* m2m_ctx, struct
vb2_queue * q)

update the encoding/decoding session state when a stop of streaming of a
video queue is requested

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_queue * q queue

int v4l2_m2m_encoder_cmd(struct file * file, struct v4l2_m2m_ctx * m2m_ctx,
struct v4l2_encoder_cmd * ec)

execute an encoder command

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct v4l2_encoder_cmd * ec pointer to the encoder command

int v4l2_m2m_decoder_cmd(struct file * file, struct v4l2_m2m_ctx * m2m_ctx,
struct v4l2_decoder_cmd * dc)

execute a decoder command

Parameters

1806 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct v4l2_decoder_cmd * dc pointer to the decoder command

__poll_t v4l2_m2m_poll(struct file * file, struct v4l2_m2m_ctx * m2m_ctx,
struct poll_table_struct * wait)

poll replacement, for destination buffers only

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct poll_table_struct * wait pointer to struct poll_table_struct

Description
Call from the driver’s poll() function. Will poll both queues. If a buffer is avail-
able to dequeue (with dqbuf) from the source queue, this will indicate that a non-
blocking write can be performed, while read will be returned in case of the desti-
nation queue.

int v4l2_m2m_mmap(struct file * file, struct v4l2_m2m_ctx * m2m_ctx, struct
vm_area_struct * vma)

source and destination queues-aware mmap multiplexer

Parameters
struct file * file pointer to struct file

struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by
struct v4l2_m2m_ctx

struct vm_area_struct * vma pointer to struct vm_area_struct

Description
Call from driver’smmap() function. Will handlemmap() for both queues seamlessly
for videobuffer, which will receive normal per-queue offsets and proper videobuf
queue pointers. The differentiation is made outside videobuf by adding a prede-
fined offset to buffers from one of the queues and subtracting it before passing it
back to videobuf. Only drivers (and thus applications) receive modified offsets.

struct v4l2_m2m_dev * v4l2_m2m_init(const struct v4l2_m2m_ops
* m2m_ops)

initialize per-driver m2m data

Parameters
const struct v4l2_m2m_ops * m2m_ops pointer to struct v4l2_m2m_ops

Description
Usually called from driver’s probe() function.
Return
returns an opaque pointer to the internal data to handle M2M context

53.1. Video4Linux devices 1807

Linux Driver-api Documentation

void v4l2_m2m_release(struct v4l2_m2m_dev * m2m_dev)
cleans up and frees a m2m_dev structure

Parameters
struct v4l2_m2m_dev * m2m_dev opaque pointer to the internal data to handle

M2M context

Description
Usually called from driver’s remove() function.
struct v4l2_m2m_ctx * v4l2_m2m_ctx_init(struct v4l2_m2m_dev

* m2m_dev, void * drv_priv,
int (*queue_init)(void *priv,
struct vb2_queue *src_vq, struct
vb2_queue *dst_vq))

allocate and initialize a m2m context

Parameters
struct v4l2_m2m_dev * m2m_dev opaque pointer to the internal data to handle

M2M context

void * drv_priv driver’s instance private data
int (*)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq) queue_init

a callback for queue type-specific initialization function to be used for initial-
izing videobuf_queues

Description
Usually called from driver’s open() function.
void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx * m2m_ctx)

release m2m context

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

Description
Usually called from driver’s release() function.
void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx * m2m_ctx, struct

vb2_v4l2_buffer * vbuf)
add a buffer to the proper ready buffers list.

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_v4l2_buffer * vbuf pointer to struct vb2_v4l2_buffer

Description
Call from videobuf_queue_ops->ops->buf_queue, videobuf_queue_ops callback.

1808 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

unsigned int v4l2_m2m_num_src_bufs_ready(struct v4l2_m2m_ctx
* m2m_ctx)

return the number of source buffers ready for use

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

unsigned int v4l2_m2m_num_dst_bufs_ready(struct v4l2_m2m_ctx
* m2m_ctx)

return the number of destination buffers ready for use

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_v4l2_buffer * v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx
* q_ctx)

return next buffer from the list of ready buffers

Parameters
struct v4l2_m2m_queue_ctx * q_ctx pointer to struct v4l2_m2m_queue_ctx
struct vb2_v4l2_buffer * v4l2_m2m_next_src_buf(struct v4l2_m2m_ctx

* m2m_ctx)
return next source buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_v4l2_buffer * v4l2_m2m_next_dst_buf(struct v4l2_m2m_ctx
* m2m_ctx)

return next destination buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_v4l2_buffer * v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx
* q_ctx)

return last buffer from the list of ready buffers

Parameters
struct v4l2_m2m_queue_ctx * q_ctx pointer to struct v4l2_m2m_queue_ctx
struct vb2_v4l2_buffer * v4l2_m2m_last_src_buf(struct v4l2_m2m_ctx

* m2m_ctx)
return last destination buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

53.1. Video4Linux devices 1809

Linux Driver-api Documentation

struct vb2_v4l2_buffer * v4l2_m2m_last_dst_buf(struct v4l2_m2m_ctx
* m2m_ctx)

return last destination buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

v4l2_m2m_for_each_dst_buf(m2m_ctx, b)
iterate over a list of destination ready buffers

Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx

b current buffer of type struct v4l2_m2m_buffer

v4l2_m2m_for_each_src_buf(m2m_ctx, b)
iterate over a list of source ready buffers

Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx

b current buffer of type struct v4l2_m2m_buffer

v4l2_m2m_for_each_dst_buf_safe(m2m_ctx, b, n)
iterate over a list of destination ready buffers safely

Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx

b current buffer of type struct v4l2_m2m_buffer

n used as temporary storage

v4l2_m2m_for_each_src_buf_safe(m2m_ctx, b, n)
iterate over a list of source ready buffers safely

Parameters
m2m_ctx m2m context assigned to the instance given by struct v4l2_m2m_ctx

b current buffer of type struct v4l2_m2m_buffer

n used as temporary storage

struct vb2_queue * v4l2_m2m_get_src_vq(struct v4l2_m2m_ctx * m2m_ctx)
return vb2_queue for source buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_queue * v4l2_m2m_get_dst_vq(struct v4l2_m2m_ctx * m2m_ctx)
return vb2_queue for destination buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

1810 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct vb2_v4l2_buffer * v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx
* q_ctx)

take off a buffer from the list of ready buffers and return it

Parameters
struct v4l2_m2m_queue_ctx * q_ctx pointer to struct v4l2_m2m_queue_ctx
struct vb2_v4l2_buffer * v4l2_m2m_src_buf_remove(struct v4l2_m2m_ctx

* m2m_ctx)
take off a source buffer from the list of ready buffers and return it

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_v4l2_buffer * v4l2_m2m_dst_buf_remove(struct v4l2_m2m_ctx
* m2m_ctx)

take off a destination buffer from the list of ready buffers and return it

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx * q_ctx,
struct vb2_v4l2_buffer * vbuf)

take off exact buffer from the list of ready buffers

Parameters
struct v4l2_m2m_queue_ctx * q_ctx pointer to struct v4l2_m2m_queue_ctx
struct vb2_v4l2_buffer * vbuf the buffer to be removed

void v4l2_m2m_src_buf_remove_by_buf(struct v4l2_m2m_ctx * m2m_ctx,
struct vb2_v4l2_buffer * vbuf)

take off exact source buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_v4l2_buffer * vbuf the buffer to be removed

void v4l2_m2m_dst_buf_remove_by_buf(struct v4l2_m2m_ctx * m2m_ctx,
struct vb2_v4l2_buffer * vbuf)

take off exact destination buffer from the list of ready buffers

Parameters
struct v4l2_m2m_ctx * m2m_ctx m2m context assigned to the instance given by

struct v4l2_m2m_ctx

struct vb2_v4l2_buffer * vbuf the buffer to be removed

void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer * out_vb,
struct vb2_v4l2_buffer * cap_vb,
bool copy_frame_flags)

copy buffer metadata from the output buffer to the capture buffer

53.1. Video4Linux devices 1811

Linux Driver-api Documentation

Parameters
const struct vb2_v4l2_buffer * out_vb the output buffer that is the source of

the metadata.

struct vb2_v4l2_buffer * cap_vb the capture buffer that will receive themeta-
data.

bool copy_frame_flags copy the KEY/B/PFRAME flags as well.

Description
This helper function copies the timestamp, timecode (if the TIMECODE buffer
flag was set), field and the TIMECODE, KEYFRAME, BFRAME, PFRAME and
TSTAMP_SRC_MASK flags from out_vb to cap_vb.
If copy_frame_flags is false, then the KEYFRAME, BFRAME and PFRAME flags
are not copied. This is typically needed for encoders that set this bits explicitly.

53.1.22 V4L2 async kAPI

enum v4l2_async_match_type
type of asynchronous subdevice logic to be used in order to identify a match

Constants
V4L2_ASYNC_MATCH_CUSTOM Match will use the logic provided by struct

v4l2_async_subdev.match ops

V4L2_ASYNC_MATCH_DEVNAME Match will use the device name

V4L2_ASYNC_MATCH_I2C Match will check for I2C adapter ID and address

V4L2_ASYNC_MATCH_FWNODE Match will use firmware node

Description
This enum is used by the asyncrhronous sub-device logic to define the algorithm
that will be used to match an asynchronous device.

struct v4l2_async_subdev
sub-device descriptor, as known to a bridge

Definition

struct v4l2_async_subdev {
enum v4l2_async_match_type match_type;
union {

struct fwnode_handle *fwnode;
const char *device_name;
struct {
int adapter_id;
unsigned short address;

} i2c;
struct {

bool (*match)(struct device *dev, struct v4l2_async_subdev *sd);
void *priv;

} custom;
} match;

(continues on next page)

1812 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
struct list_head list;
struct list_head asd_list;

};

Members
match_type type of match that will be used

match union of per-bus type matching data sets

match.fwnode pointer to struct fwnode_handle to be matched. Used if
match_type is V4L2_ASYNC_MATCH_FWNODE.

match.device_name string containing the device name to be matched. Used if
match_type is V4L2_ASYNC_MATCH_DEVNAME.

match.i2c embedded struct with I2C parameters to be matched. Both
match.i2c.adapter_id and match.i2c.address should be matched. Used
if match_type is V4L2_ASYNC_MATCH_I2C.

match.i2c.adapter_id I2C adapter ID to be matched. Used if match_type is
V4L2_ASYNC_MATCH_I2C.

match.i2c.address I2C address to be matched. Used if match_type is
V4L2_ASYNC_MATCH_I2C.

match.custom Driver-specific match criteria. Used if match_type is
V4L2_ASYNC_MATCH_CUSTOM.

match.custom.match Driver-specific match function to be used if
V4L2_ASYNC_MATCH_CUSTOM.

match.custom.priv Driver-specific private struct with match parameters to be
used if V4L2_ASYNC_MATCH_CUSTOM.

list used to link struct v4l2_async_subdev objects, waiting to be probed, to a
notifier->waiting list

asd_list used to add struct v4l2_async_subdev objects to the master notifier
asd_list

Description
When this struct is used as a member in a driver specific struct, the driver specific
struct shall contain the struct v4l2_async_subdev as its first member.

struct v4l2_async_notifier_operations
Asynchronous V4L2 notifier operations

Definition

struct v4l2_async_notifier_operations {
int (*bound)(struct v4l2_async_notifier *notifier,struct v4l2_subdev␣

↪→*subdev, struct v4l2_async_subdev *asd);
int (*complete)(struct v4l2_async_notifier *notifier);
void (*unbind)(struct v4l2_async_notifier *notifier,struct v4l2_subdev␣

↪→*subdev, struct v4l2_async_subdev *asd);
};

53.1. Video4Linux devices 1813

Linux Driver-api Documentation

Members
bound a subdevice driver has successfully probed one of the subdevices

complete All subdevices have been probed successfully. The complete callback is
only executed for the root notifier.

unbind a subdevice is leaving

struct v4l2_async_notifier
v4l2_device notifier data

Definition

struct v4l2_async_notifier {
const struct v4l2_async_notifier_operations *ops;
struct v4l2_device *v4l2_dev;
struct v4l2_subdev *sd;
struct v4l2_async_notifier *parent;
struct list_head asd_list;
struct list_head waiting;
struct list_head done;
struct list_head list;

};

Members
ops notifier operations

v4l2_dev v4l2_device of the root notifier, NULL otherwise

sd sub-device that registered the notifier, NULL otherwise

parent parent notifier

asd_list master list of struct v4l2_async_subdev

waiting list of struct v4l2_async_subdev, waiting for their drivers

done list of struct v4l2_subdev, already probed

list member in a global list of notifiers

void v4l2_async_notifier_init(struct v4l2_async_notifier * notifier)
Initialize a notifier.

Parameters
struct v4l2_async_notifier * notifier pointer to struct

v4l2_async_notifier

Description
This function initializes the notifier asd_list. It must be called before the first call
to v4l2_async_notifier_add_subdev.
int v4l2_async_notifier_add_subdev(struct v4l2_async_notifier * notifier,

struct v4l2_async_subdev * asd)
Add an async subdev to the notifier’s master asd list.

Parameters

1814 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_async_notifier * notifier pointer to struct
v4l2_async_notifier

struct v4l2_async_subdev * asd pointer to struct v4l2_async_subdev

Description
Call this function before registering a notifier to link the provided asd to the noti-
fiers master asd_list.
struct v4l2_async_subdev * v4l2_async_notifier_add_fwnode_subdev(struct

v4l2_async_notifier
* notifier,
struct
fwn-
ode_handle
* fwnode,
un-
signed
int asd_struct_size)

Allocate and add a fwnode async subdev to the notifier’s master asd_list.
Parameters
struct v4l2_async_notifier * notifier pointer to struct

v4l2_async_notifier

struct fwnode_handle * fwnode fwnode handle of the sub-device to be matched

unsigned int asd_struct_size size of the driver’s async sub-device struct, in-
cluding sizeof(struct v4l2_async_subdev). The struct v4l2_async_subdev
shall be the first member of the driver’s async sub-device struct, i.e. both
begin at the same memory address.

Description
Allocate a fwnode-matched asd of size asd_struct_size, and add it to the notifiers
asd_list. The function also gets a reference of the fwnode which is released later
at notifier cleanup time.

int v4l2_async_notifier_add_fwnode_remote_subdev(struct
v4l2_async_notifier
* notif, struct
fwnode_handle
* endpoint, struct
v4l2_async_subdev
* asd)

Allocate and add a fwnode remote async subdev to the notifier’s master
asd_list.

Parameters
struct v4l2_async_notifier * notif pointer to struct

v4l2_async_notifier

struct fwnode_handle * endpoint local endpoint pointing to the remote sub-
device to be matched

53.1. Video4Linux devices 1815

Linux Driver-api Documentation

struct v4l2_async_subdev * asd Async sub-device struct allocated by the
caller. The struct v4l2_async_subdev shall be the first member of the
driver’s async sub-device struct, i.e. both begin at the same memory ad-
dress.

Description
Gets the remote endpoint of a given local endpoint, set it up for fwnode matching
and adds the async sub-device to the notifier’s asd_list. The function also gets a
reference of the fwnode which is released later at notifier cleanup time.

This is just like v4l2_async_notifier_add_fwnode_subdev, but with the exception
that the fwnode refers to a local endpoint, not the remote one, and the function
relies on the caller to allocate the async sub-device struct.

struct v4l2_async_subdev * v4l2_async_notifier_add_i2c_subdev(struct
v4l2_async_notifier
* notifier,
int adapter_id,
un-
signed
short address,
un-
signed
int asd_struct_size)

Allocate and add an i2c async subdev to the notifier’s master asd_list.
Parameters
struct v4l2_async_notifier * notifier pointer to struct

v4l2_async_notifier

int adapter_id I2C adapter ID to be matched

unsigned short address I2C address of sub-device to be matched

unsigned int asd_struct_size size of the driver’s async sub-device struct, in-
cluding sizeof(struct v4l2_async_subdev). The struct v4l2_async_subdev
shall be the first member of the driver’s async sub-device struct, i.e. both
begin at the same memory address.

Description
Same as above but for I2C matched sub-devices.

struct v4l2_async_subdev * v4l2_async_notifier_add_devname_subdev(struct
v4l2_async_notifier
* notifier,
const
char
* device_name,
un-
signed
int asd_struct_size)

Allocate and add a device-name async subdev to the notifier’s master asd_list.
Parameters

1816 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_async_notifier * notifier pointer to struct
v4l2_async_notifier

const char * device_name device name string to be matched

unsigned int asd_struct_size size of the driver’s async sub-device struct, in-
cluding sizeof(struct v4l2_async_subdev). The struct v4l2_async_subdev
shall be the first member of the driver’s async sub-device struct, i.e. both
begin at the same memory address.

Description
Same as above but for device-name matched sub-devices.

int v4l2_async_notifier_register(struct v4l2_device * v4l2_dev, struct
v4l2_async_notifier * notifier)

registers a subdevice asynchronous notifier

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

struct v4l2_async_notifier * notifier pointer to struct
v4l2_async_notifier

int v4l2_async_subdev_notifier_register(struct v4l2_subdev * sd, struct
v4l2_async_notifier * notifier)

registers a subdevice asynchronous notifier for a sub-device

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_async_notifier * notifier pointer to struct
v4l2_async_notifier

void v4l2_async_notifier_unregister(struct v4l2_async_notifier
* notifier)

unregisters a subdevice asynchronous notifier

Parameters
struct v4l2_async_notifier * notifier pointer to struct

v4l2_async_notifier

void v4l2_async_notifier_cleanup(struct v4l2_async_notifier * notifier)
clean up notifier resources

Parameters
struct v4l2_async_notifier * notifier the notifier the resources of which

are to be cleaned up

Description
Release memory resources related to a notifier, including the async
sub-devices allocated for the purposes of the notifier but not the
notifier itself. The user is responsible for calling this function to
clean up the notifier after calling v4l2_async_notifier_add_subdev,
v4l2_async_notifier_parse_fwnode_endpoints or v4l2_fwnode_reference_parse_sensor_common.

53.1. Video4Linux devices 1817

Linux Driver-api Documentation

There is no harm from calling v4l2_async_notifier_cleanup in other cases as long
as its memory has been zeroed after it has been allocated.

int v4l2_async_register_subdev(struct v4l2_subdev * sd)
registers a sub-device to the asynchronous subdevice framework

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev * sd)
registers a sensor sub-device to the asynchronous sub-device framework and
parse set up common sensor related devices

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

Description
This function is just like v4l2_async_register_subdev() with the excep-
tion that calling it will also parse firmware interfaces for remote refer-
ences using v4l2_async_notifier_parse_fwnode_sensor_common() and regis-
ters the async sub-devices. The sub-device is similarly unregistered by calling
v4l2_async_unregister_subdev().

While registered, the subdev module is marked as in-use.

An error is returned if the module is no longer loaded on any attempts to register
it.

void v4l2_async_unregister_subdev(struct v4l2_subdev * sd)
unregisters a sub-device to the asynchronous subdevice framework

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

53.1.23 V4L2 fwnode kAPI

struct v4l2_fwnode_bus_mipi_csi2
MIPI CSI-2 bus data structure

Definition

struct v4l2_fwnode_bus_mipi_csi2 {
unsigned int flags;
unsigned char data_lanes[V4L2_FWNODE_CSI2_MAX_DATA_LANES];
unsigned char clock_lane;
unsigned short num_data_lanes;
bool lane_polarities[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];

};

Members
flags media bus (V4L2_MBUS_*) flags

data_lanes an array of physical data lane indexes

clock_lane physical lane index of the clock lane

1818 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

num_data_lanes number of data lanes

lane_polarities polarity of the lanes. The order is the same of the physical lanes.

struct v4l2_fwnode_bus_parallel
parallel data bus data structure

Definition

struct v4l2_fwnode_bus_parallel {
unsigned int flags;
unsigned char bus_width;
unsigned char data_shift;

};

Members
flags media bus (V4L2_MBUS_*) flags

bus_width bus width in bits

data_shift data shift in bits

struct v4l2_fwnode_bus_mipi_csi1
CSI-1/CCP2 data bus structure

Definition

struct v4l2_fwnode_bus_mipi_csi1 {
unsigned char clock_inv:1;
unsigned char strobe:1;
bool lane_polarity[2];
unsigned char data_lane;
unsigned char clock_lane;

};

Members
clock_inv polarity of clock/strobe signal false - not inverted, true - inverted

strobe false - data/clock, true - data/strobe

lane_polarity the polarities of the clock (index 0) and data lanes index (1)

data_lane the number of the data lane

clock_lane the number of the clock lane

struct v4l2_fwnode_endpoint
the endpoint data structure

Definition

struct v4l2_fwnode_endpoint {
struct fwnode_endpoint base;
enum v4l2_mbus_type bus_type;
union {

struct v4l2_fwnode_bus_parallel parallel;
struct v4l2_fwnode_bus_mipi_csi1 mipi_csi1;
struct v4l2_fwnode_bus_mipi_csi2 mipi_csi2;

} bus;
(continues on next page)

53.1. Video4Linux devices 1819

Linux Driver-api Documentation

(continued from previous page)
u64 *link_frequencies;
unsigned int nr_of_link_frequencies;

};

Members
base fwnode endpoint of the v4l2_fwnode

bus_type bus type

bus union with bus configuration data structure

bus.parallel embedded struct v4l2_fwnode_bus_parallel. Used if the bus is
parallel.

bus.mipi_csi1 embedded struct v4l2_fwnode_bus_mipi_csi1. Used if the bus
is MIPI Alliance’s Camera Serial Interface version 1 (MIPI CSI1) or Standard
Mobile Imaging Architecture’s Compact Camera Port 2 (SMIA CCP2).

bus.mipi_csi2 embedded struct v4l2_fwnode_bus_mipi_csi2. Used if the bus
is MIPI Alliance’s Camera Serial Interface version 2 (MIPI CSI2).

link_frequencies array of supported link frequencies

nr_of_link_frequencies number of elements in link_frequenccies array

V4L2_FWNODE_PROPERTY_UNSET()
identify a non initialized property

Parameters
Description
All properties in struct v4l2_fwnode_device_properties are initialized to this
value.

enum v4l2_fwnode_orientation
possible device orientation

Constants
V4L2_FWNODE_ORIENTATION_FRONT device installed on the front side

V4L2_FWNODE_ORIENTATION_BACK device installed on the back side

V4L2_FWNODE_ORIENTATION_EXTERNAL device externally located

struct v4l2_fwnode_device_properties
fwnode device properties

Definition

struct v4l2_fwnode_device_properties {
enum v4l2_fwnode_orientation orientation;
unsigned int rotation;

};

Members
orientation device orientation. See enum v4l2_fwnode_orientation

1820 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

rotation device rotation

struct v4l2_fwnode_link
a link between two endpoints

Definition

struct v4l2_fwnode_link {
struct fwnode_handle *local_node;
unsigned int local_port;
unsigned int local_id;
struct fwnode_handle *remote_node;
unsigned int remote_port;
unsigned int remote_id;

};

Members
local_node pointer to device_node of this endpoint

local_port identifier of the port this endpoint belongs to

local_id identifier of the id this endpoint belongs to

remote_node pointer to device_node of the remote endpoint

remote_port identifier of the port the remote endpoint belongs to

remote_id identifier of the id the remote endpoint belongs to

enum v4l2_connector_type
connector type

Constants
V4L2_CONN_UNKNOWN unknown connector type, no V4L2 connector configuration

V4L2_CONN_COMPOSITE analog composite connector

V4L2_CONN_SVIDEO analog svideo connector

struct v4l2_connector_link
connector link data structure

Definition

struct v4l2_connector_link {
struct list_head head;
struct v4l2_fwnode_link fwnode_link;

};

Members
head structure to be used to add the link to the struct v4l2_fwnode_connector

fwnode_link struct v4l2_fwnode_link link between the connector and the de-
vice the connector belongs to.

struct v4l2_fwnode_connector_analog
analog connector data structure

Definition

53.1. Video4Linux devices 1821

Linux Driver-api Documentation

struct v4l2_fwnode_connector_analog {
v4l2_std_id sdtv_stds;

};

Members
sdtv_stds sdtv standards this connector supports, set to V4L2_STD_ALL if no

restrictions are specified.

struct v4l2_fwnode_connector
the connector data structure

Definition

struct v4l2_fwnode_connector {
const char *name;
const char *label;
enum v4l2_connector_type type;
struct list_head links;
unsigned int nr_of_links;
union {

struct v4l2_fwnode_connector_analog analog;
} connector;

};

Members
name the connector device name

label optional connector label

type connector type

links list of all connector struct v4l2_connector_link links

nr_of_links total number of links

connector connector configuration

connector.analog analog connector configuration struct
v4l2_fwnode_connector_analog

int v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode, struct
v4l2_fwnode_endpoint * vep)

parse all fwnode node properties

Parameters
struct fwnode_handle * fwnode pointer to the endpoint’s fwnode handle
struct v4l2_fwnode_endpoint * vep pointer to the V4L2 fwnode data structure

Description
This function parses the V4L2 fwnode endpoint specific parameters from the
firmware. The caller is responsible for assigning vep.bus_type to a valid media
bus type. The caller may also set the default configuration for the endpoint —a
configuration that shall be in line with the DT binding documentation. Should a
device support multiple bus types, the caller may call this function once the correct
type is found —with a default configuration valid for that type.

1822 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

As a compatibility means guessing the bus type is also supported by setting
vep.bus_type to V4L2_MBUS_UNKNOWN. The caller may not provide a default
configuration in this case as the defaults are specific to a given bus type. This
functionality is deprecated and should not be used in new drivers and it is only
supported for CSI-2 D-PHY, parallel and Bt.656 buses.

The function does not change the V4L2 fwnode endpoint state if it fails.

NOTE
This function does not parse properties the size of which is variable without a
low fixed limit. Please use v4l2_fwnode_endpoint_alloc_parse() in new drivers
instead.

Return
0 on success or a negative error code on failure: -ENOMEM on memory alloca-

tion failure -EINVAL on parsing failure -ENXIO on mismatching bus types

void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint * vep)
free the V4L2 fwnode acquired by v4l2_fwnode_endpoint_alloc_parse()

Parameters
struct v4l2_fwnode_endpoint * vep the V4L2 fwnode the resources of which

are to be released

Description
It is safe to call this function with NULL argument or on a V4L2 fwnode the parsing
of which failed.

int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle * fwnode,
struct v4l2_fwnode_endpoint
* vep)

parse all fwnode node properties

Parameters
struct fwnode_handle * fwnode pointer to the endpoint’s fwnode handle
struct v4l2_fwnode_endpoint * vep pointer to the V4L2 fwnode data structure

Description
This function parses the V4L2 fwnode endpoint specific parameters from the
firmware. The caller is responsible for assigning vep.bus_type to a valid media
bus type. The caller may also set the default configuration for the endpoint —a
configuration that shall be in line with the DT binding documentation. Should a
device support multiple bus types, the caller may call this function once the correct
type is found —with a default configuration valid for that type.
As a compatibility means guessing the bus type is also supported by setting
vep.bus_type to V4L2_MBUS_UNKNOWN. The caller may not provide a default
configuration in this case as the defaults are specific to a given bus type. This
functionality is deprecated and should not be used in new drivers and it is only
supported for CSI-2 D-PHY, parallel and Bt.656 buses.

The function does not change the V4L2 fwnode endpoint state if it fails.

53.1. Video4Linux devices 1823

Linux Driver-api Documentation

v4l2_fwnode_endpoint_alloc_parse() has two important differences to
v4l2_fwnode_endpoint_parse():

1. It also parses variable size data.

2. The memory it has allocated to store the variable size data must be freed
using v4l2_fwnode_endpoint_free() when no longer needed.

Return
0 on success or a negative error code on failure: -ENOMEM on memory alloca-

tion failure -EINVAL on parsing failure -ENXIO on mismatching bus types

int v4l2_fwnode_parse_link(struct fwnode_handle * fwnode, struct
v4l2_fwnode_link * link)

parse a link between two endpoints

Parameters
struct fwnode_handle * fwnode pointer to the endpoint’s fwnode at the local

end of the link

struct v4l2_fwnode_link * link pointer to the V4L2 fwnode link data struc-
ture

Description
Fill the link structure with the local and remote nodes and port numbers. The
local_node and remote_node fields are set to point to the local and remote port’s
parent nodes respectively (the port parent node being the parent node of the port
node if that node isn’t a‘ports’node, or the grand-parent node of the port node
otherwise).

A reference is taken to both the local and remote nodes, the caller must use
v4l2_fwnode_put_link() to drop the references when done with the link.

Return
0 on success, or -ENOLINK if the remote endpoint fwnode can’t be found.
void v4l2_fwnode_put_link(struct v4l2_fwnode_link * link)

drop references to nodes in a link

Parameters
struct v4l2_fwnode_link * link pointer to the V4L2 fwnode link data struc-

ture

Description
Drop references to the local and remote nodes in the link. This function must be
called on every link parsed with v4l2_fwnode_parse_link().

void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector
* connector)

free the V4L2 connector acquired memory

Parameters
struct v4l2_fwnode_connector * connector the V4L2 connector resources of

which are to be released

1824 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description
Free all allocated memory and put all links acquired by
v4l2_fwnode_connector_parse() and v4l2_fwnode_connector_add_link().

It is safe to call this function with NULL argument or on a V4L2 connector the
parsing of which failed.

int v4l2_fwnode_connector_parse(struct fwnode_handle * fwnode, struct
v4l2_fwnode_connector * connector)

initialize the ‘struct v4l2_fwnode_connector’
Parameters
struct fwnode_handle * fwnode pointer to the subdev endpoint’s fwnode han-

dle where the connector is connected to or to the connector endpoint fwnode
handle.

struct v4l2_fwnode_connector * connector pointer to the V4L2 fwnode con-
nector data structure

Description
Fill the struct v4l2_fwnode_connector with the connector type, label and all
enum v4l2_connector_type specific connector data. The label is optional so it is
set to NULL if no one was found. The function initialize the links to zero. Adding
links to the connector is done by calling v4l2_fwnode_connector_add_link().

The memory allocated for the label must be freed when no longer needed. Freeing
the memory is done by v4l2_fwnode_connector_free().

Return
• 0 on success or a negative error code on failure:

• -EINVAL if fwnode is invalid
• -ENOTCONN if connector type is unknown or connector device can’t be found

int v4l2_fwnode_connector_add_link(struct fwnode_handle * fwnode,
struct v4l2_fwnode_connector
* connector)

add a link between a connector node and a v4l2-subdev node.

Parameters
struct fwnode_handle * fwnode pointer to the subdev endpoint’s fwnode han-

dle where the connector is connected to

struct v4l2_fwnode_connector * connector pointer to the V4L2 fwnode con-
nector data structure

Description
Add a new struct v4l2_connector_link link to the struct
v4l2_fwnode_connector connector links list. The link local_node points to
the connector node, the remote_node to the host v4l2 (sub)dev.

The taken references to remote_node and local_node must be dropped and the
allocated memory must be freed when no longer needed. Both is done by calling
v4l2_fwnode_connector_free().

53.1. Video4Linux devices 1825

Linux Driver-api Documentation

Return
• 0 on success or a negative error code on failure:

• -EINVAL if fwnode or connector is invalid or connector type is unknown
• -ENOMEM on link memory allocation failure

• -ENOTCONN if remote connector device can’t be found
• -ENOLINK if link parsing between v4l2 (sub)dev and connector fails

int v4l2_fwnode_device_parse(struct device * dev, struct
v4l2_fwnode_device_properties * props)

parse fwnode device properties

Parameters
struct device * dev pointer to struct device

struct v4l2_fwnode_device_properties * props pointer to struct
v4l2_fwnode_device_properties where to store the parsed properties
values

Description
This function parses and validates the V4L2 fwnode device properties from the
firmware interface, and fills the struct v4l2_fwnode_device_properties provided
by the caller.

Return
% 0 on success -EINVAL if a parsed property value is not valid

parse_endpoint_func
Typedef: Driver’s callback function to be called on each V4L2 fwnode end-
point.

Syntax
int parse_endpoint_func (struct device * dev, struct
v4l2_fwnode_endpoint * vep, struct v4l2_async_subdev * asd);

Parameters
struct device * dev pointer to struct device

struct v4l2_fwnode_endpoint * vep pointer to struct
v4l2_fwnode_endpoint

struct v4l2_async_subdev * asd pointer to struct v4l2_async_subdev

Return
• 0 on success

• -ENOTCONN if the endpoint is to be skipped but this should not be considered
as an error

• -EINVAL if the endpoint configuration is invalid

1826 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

int v4l2_async_notifier_parse_fwnode_endpoints(struct device
* dev, struct
v4l2_async_notifier
* notifier,
size_t asd_struct_size,
parse_endpoint_func parse_endpoint)

Parse V4L2 fwnode endpoints in a device node

Parameters
struct device * dev the device the endpoints of which are to be parsed

struct v4l2_async_notifier * notifier notifier for dev
size_t asd_struct_size size of the driver’s async sub-device struct, including

sizeof(struct v4l2_async_subdev). The struct v4l2_async_subdev shall be
the first member of the driver’s async sub-device struct, i.e. both begin at
the same memory address.

parse_endpoint_func parse_endpoint Driver’s callback function called on each
V4L2 fwnode endpoint. Optional.

Description
Parse the fwnode endpoints of the dev device and populate the async sub- devices
list in the notifier. The parse_endpoint callback function is called for each end-
point with the corresponding async sub-device pointer to let the caller initialize
the driver-specific part of the async sub-device structure.

The notifier memory shall be zeroed before this function is called on the notifier.

This function may not be called on a registered notifier and may be called on a
notifier only once.

The struct v4l2_fwnode_endpoint passed to the callback function
parse_endpoint is released once the function is finished. If there is a need
to retain that configuration, the user needs to allocate memory for it.

Any notifier populated using this function must be released with a call to
v4l2_async_notifier_cleanup() after it has been unregistered and the async
sub-devices are no longer in use, even if the function returned an error.

Return
0 on success, including when no async sub-devices are found -ENOMEM if

memory allocation failed -EINVAL if graph or endpoint parsing failed Other
error codes as returned by parse_endpoint

int v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct de-
vice * dev,
struct
v4l2_async_notifier
* notifier,
size_t asd_struct_size,
unsigned
int port,
parse_endpoint_func parse_endpoint)

Parse V4L2 fwnode endpoints of a port in a device node

53.1. Video4Linux devices 1827

Linux Driver-api Documentation

Parameters
struct device * dev the device the endpoints of which are to be parsed

struct v4l2_async_notifier * notifier notifier for dev
size_t asd_struct_size size of the driver’s async sub-device struct, including

sizeof(struct v4l2_async_subdev). The struct v4l2_async_subdev shall be
the first member of the driver’s async sub-device struct, i.e. both begin at
the same memory address.

unsigned int port port number where endpoints are to be parsed

parse_endpoint_func parse_endpoint Driver’s callback function called on each
V4L2 fwnode endpoint. Optional.

Description
This function is just like v4l2_async_notifier_parse_fwnode_endpoints() with
the exception that it only parses endpoints in a given port. This is useful on devices
that have both sinks and sources: the async sub-devices connected to sources have
already been configured by another driver (on capture devices). In this case the
driver must know which ports to parse.

Parse the fwnode endpoints of the dev device on a given port and populate the
async sub-devices list of the notifier. The parse_endpoint callback function is
called for each endpoint with the corresponding async sub-device pointer to let
the caller initialize the driver-specific part of the async sub-device structure.

The notifier memory shall be zeroed before this function is called on the notifier
the first time.

This function may not be called on a registered notifier and may be called on a
notifier only once per port.

The struct v4l2_fwnode_endpoint passed to the callback function
parse_endpoint is released once the function is finished. If there is a need
to retain that configuration, the user needs to allocate memory for it.

Any notifier populated using this function must be released with a call to
v4l2_async_notifier_cleanup() after it has been unregistered and the async
sub-devices are no longer in use, even if the function returned an error.

Return
0 on success, including when no async sub-devices are found -ENOMEM if

memory allocation failed -EINVAL if graph or endpoint parsing failed Other
error codes as returned by parse_endpoint

int v4l2_async_notifier_parse_fwnode_sensor_common(struct device
* dev, struct
v4l2_async_notifier
* notifier)

parse common references on sensors for async sub-devices

Parameters
struct device * dev the device node the properties of which are parsed for ref-

erences

1828 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct v4l2_async_notifier * notifier the async notifier where the async
subdevs will be added

Description
Parse common sensor properties for remote devices related to the sensor and set
up async sub-devices for them.

Any notifier populated using this function must be released with a call to
v4l2_async_notifier_release() after it has been unregistered and the async sub-
devices are no longer in use, even in the case the function returned an error.

Return
0 on success -ENOMEM if memory allocation failed -EINVAL if property parsing

failed

53.1.24 V4L2 rect helper functions

void v4l2_rect_set_size_to(struct v4l2_rect * r, const struct v4l2_rect
* size)

copy the width/height values.

Parameters
struct v4l2_rect * r rect whose width and height fields will be set

const struct v4l2_rect * size rect containing the width and height fields you
need.

void v4l2_rect_set_min_size(struct v4l2_rect * r, const struct v4l2_rect
* min_size)

width and height of r should be >= min_size.

Parameters
struct v4l2_rect * r rect whose width and height will be modified

const struct v4l2_rect * min_size rect containing the minimal width and
height

void v4l2_rect_set_max_size(struct v4l2_rect * r, const struct v4l2_rect
* max_size)

width and height of r should be <= max_size

Parameters
struct v4l2_rect * r rect whose width and height will be modified

const struct v4l2_rect * max_size rect containing the maximum width and
height

void v4l2_rect_map_inside(struct v4l2_rect * r, const struct v4l2_rect
* boundary)

r should be inside boundary.

Parameters
struct v4l2_rect * r rect that will be modified

const struct v4l2_rect * boundary rect containing the boundary for r

53.1. Video4Linux devices 1829

Linux Driver-api Documentation

bool v4l2_rect_same_size(const struct v4l2_rect * r1, const struct
v4l2_rect * r2)

return true if r1 has the same size as r2

Parameters
const struct v4l2_rect * r1 rectangle.

const struct v4l2_rect * r2 rectangle.

Description
Return true if both rectangles have the same size.

bool v4l2_rect_same_position(const struct v4l2_rect * r1, const struct
v4l2_rect * r2)

return true if r1 has the same position as r2

Parameters
const struct v4l2_rect * r1 rectangle.

const struct v4l2_rect * r2 rectangle.

Description
Return true if both rectangles have the same position

bool v4l2_rect_equal(const struct v4l2_rect * r1, const struct v4l2_rect
* r2)

return true if r1 equals r2

Parameters
const struct v4l2_rect * r1 rectangle.

const struct v4l2_rect * r2 rectangle.

Description
Return true if both rectangles have the same size and position.

void v4l2_rect_intersect(struct v4l2_rect * r, const struct v4l2_rect * r1,
const struct v4l2_rect * r2)

calculate the intersection of two rects.

Parameters
struct v4l2_rect * r intersection of r1 and r2.
const struct v4l2_rect * r1 rectangle.

const struct v4l2_rect * r2 rectangle.

void v4l2_rect_scale(struct v4l2_rect * r, const struct v4l2_rect * from,
const struct v4l2_rect * to)

scale rect r by to/from

Parameters
struct v4l2_rect * r rect to be scaled.

const struct v4l2_rect * from from rectangle.

const struct v4l2_rect * to to rectangle.

1830 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description
This scales rectangle r horizontally by to->width / from->width and vertically
by to->height / from->height.
Typically r is a rectangle inside from and youwant the rectangle as it would appear
after scaling from to to. So the resulting r will be the scaled rectangle inside to.
bool v4l2_rect_overlap(const struct v4l2_rect * r1, const struct v4l2_rect

* r2)
do r1 and r2 overlap?

Parameters
const struct v4l2_rect * r1 rectangle.

const struct v4l2_rect * r2 rectangle.

Description
Returns true if r1 and r2 overlap.

53.1.25 Tuner functions and data structures

enum tuner_mode
Mode of the tuner

Constants
T_RADIO Tuner core will work in radio mode

T_ANALOG_TV Tuner core will work in analog TV mode

Description
Older boards only had a single tuner device, but some devices have a separate
tuner for radio. In any case, the tuner-core needs to know if the tuner chip(s)
will be used in radio mode or analog TV mode, as, on radio mode, frequencies are
specified on a different range than on TV mode. This enum is used by the tuner
core in order to work with the proper tuner range and eventually use a different
tuner chip while in radio mode.

struct tuner_setup
setup the tuner chipsets

Definition

struct tuner_setup {
unsigned short addr;
unsigned int type;
unsigned int mode_mask;
void *config;
int (*tuner_callback)(void *dev, int component, int cmd, int arg);

};

Members
addr I2C address used to control the tuner device/chipset

53.1. Video4Linux devices 1831

Linux Driver-api Documentation

type Type of the tuner, as defined at the TUNER_* macros. Each different tuner
model should have an unique identifier.

mode_mask Mask with the allowed tuner modes: V4L2_TUNER_RADIO,
V4L2_TUNER_ANALOG_TV and/or V4L2_TUNER_DIGITAL_TV, describ-
ing if the tuner should be used to support Radio, analog TV and/or digital
TV.

config Used to send tuner-specific configuration for complex tuners that require
extra parameters to be set. Only a very few tuners require it and its usage on
newer tuners should be avoided.

tuner_callback Some tuners require to call back the bridge driver, in order to
do some tasks like rising a GPIO at the bridge chipset, in order to do things
like resetting the device.

Description
Older boards only had a single tuner device. Nowadays multiple tuner devices
may be present on a single board. Using TUNER_SET_TYPE_ADDR to pass the
tuner_setup structure it is possible to setup each tuner device in turn.

Since multiple devices may be present it is no longer sufficient to send a command
to a single i2c device. Instead you should broadcast the command to all i2c devices.

By setting the mode_mask correctly you can select which commands are accepted
by a specific tuner device. For example, set mode_mask to T_RADIO if the device is
a radio-only tuner. That specific tuner will only accept commands when the tuner
is in radio mode and ignore them when the tuner is set to TV mode.

enum param_type
type of the tuner pameters

Constants
TUNER_PARAM_TYPE_RADIO Tuner params are for FM and/or AM radio

TUNER_PARAM_TYPE_PAL Tuner params are for PAL color TV standard

TUNER_PARAM_TYPE_SECAM Tuner params are for SECAM color TV standard

TUNER_PARAM_TYPE_NTSC Tuner params are for NTSC color TV standard

TUNER_PARAM_TYPE_DIGITAL Tuner params are for digital TV

struct tuner_range
define the frequencies supported by the tuner

Definition

struct tuner_range {
unsigned short limit;
unsigned char config;
unsigned char cb;

};

Members
limit Max frequency supported by that range, in 62.5 kHz (TV) or 62.5 Hz (Radio),

as defined by V4L2_TUNER_CAP_LOW.

1832 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

config Value of the band switch byte (BB) to setup this mode.

cb Value of the CB byte to setup this mode.

Description
Please notice that digital tuners like xc3028/xc4000/xc5000 don’t use those
ranges, as they’re defined inside the driver. This is used by analog tuners that
are compatible with the“Philips way”to setup the tuners. On those devices, the
tuner set is done via 4 bytes:

1) divider byte1 (DB1)

2) divider byte 2 (DB2)

3) Control byte (CB)

4) band switch byte (BB)

Some tuners also have an additional optional Auxiliary byte (AB).

struct tuner_params
Parameters to be used to setup the tuner. Those are used by
drivers/media/tuners/tuner-types.c in order to specify the tuner properties.
Most of the parameters are for tuners based on tda9887 IF-PLL multi-
standard analog TV/Radio demodulator, with is very common on legacy ana-
log tuners.

Definition

struct tuner_params {
enum param_type type;
unsigned int cb_first_if_lower_freq:1;
unsigned int has_tda9887:1;
unsigned int port1_fm_high_sensitivity:1;
unsigned int port2_fm_high_sensitivity:1;
unsigned int fm_gain_normal:1;
unsigned int intercarrier_mode:1;
unsigned int port1_active:1;
unsigned int port2_active:1;
unsigned int port1_invert_for_secam_lc:1;
unsigned int port2_invert_for_secam_lc:1;
unsigned int port1_set_for_fm_mono:1;
unsigned int default_pll_gating_18:1;
unsigned int radio_if:2;
signed int default_top_low:5;
signed int default_top_mid:5;
signed int default_top_high:5;
signed int default_top_secam_low:5;
signed int default_top_secam_mid:5;
signed int default_top_secam_high:5;
u16 iffreq;
unsigned int count;
struct tuner_range *ranges;

};

Members
type Type of the tuner parameters, as defined at enum param_type. If the tuner

53.1. Video4Linux devices 1833

Linux Driver-api Documentation

supports multiple standards, an array should be used, with one row per dif-
ferent standard.

cb_first_if_lower_freq Many Philips-based tuners have a comment in their
datasheet like“For channel selection involving band switching, and to ensure
smooth tuning to the desired channel without causing unnecessary charge
pump action, it is recommended to consider the difference between wanted
channel frequency and the current channel frequency. Unnecessary charge
pump action will result in very low tuning voltage which may drive the oscil-
lator to extreme conditions”. Set cb_first_if_lower_freq to 1, if this check is
required for this tuner. I tested this for PAL by first setting the TV frequency
to 203 MHz and then switching to 96.6 MHz FM radio. The result was static
unless the control byte was sent first.

has_tda9887 Set to 1 if this tuner uses a tda9887

port1_fm_high_sensitivity Many Philips tuners use tda9887 PORT1 to select
the FM radio sensitivity. If this setting is 1, then set PORT1 to 1 to get proper
FM reception.

port2_fm_high_sensitivity Some Philips tuners use tda9887 PORT2 to select
the FM radio sensitivity. If this setting is 1, then set PORT2 to 1 to get proper
FM reception.

fm_gain_normal Some Philips tuners use tda9887 cGainNormal to select the FM
radio sensitivity. If this setting is 1, e register will use cGainNormal instead
of cGainLow.

intercarrier_mode Most tuners with a tda9887 use QSS mode. Some (cheaper)
tuners use Intercarrier mode. If this setting is 1, then the tuner needs to be
set to intercarrier mode.

port1_active This setting sets the default value for PORT1. 0 means inactive, 1
means active. Note: the actual bit value written to the tda9887 is inverted.
So a 0 here means a 1 in the B6 bit.

port2_active This setting sets the default value for PORT2. 0 means inactive, 1
means active. Note: the actual bit value written to the tda9887 is inverted.
So a 0 here means a 1 in the B7 bit.

port1_invert_for_secam_lc Sometimes PORT1 is inverted when the SECAM-L’
standard is selected. Set this bit to 1 if this is needed.

port2_invert_for_secam_lc Sometimes PORT2 is inverted when the SECAM-L’
standard is selected. Set this bit to 1 if this is needed.

port1_set_for_fm_mono Some cards require PORT1 to be 1 for mono Radio FM
and 0 for stereo.

default_pll_gating_18 Select 18% (or according to datasheet 0%) L standard
PLL gating, vs the driver default of 36%.

radio_if IF to use in radio mode. Tuners with a separate radio IF filter seem to
use 10.7, while those without use 33.3 for PAL/SECAM tuners and 41.3 for
NTSC tuners. 0 = 10.7, 1 = 33.3, 2 = 41.3

default_top_low Default tda9887 TOP value in dB for the low band. Default is 0.
Range: -16:+15

1834 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

default_top_mid Default tda9887 TOP value in dB for the mid band. Default is
0. Range: -16:+15

default_top_high Default tda9887 TOP value in dB for the high band. Default is
0. Range: -16:+15

default_top_secam_low Default tda9887 TOP value in dB for SECAM-L/L’for the
low band. Default is 0. Several tuners require a different TOP value for the
SECAM-L/L’standards. Range: -16:+15

default_top_secam_mid Default tda9887 TOP value in dB for SECAM-L/L’for the
mid band. Default is 0. Several tuners require a different TOP value for the
SECAM-L/L’standards. Range: -16:+15

default_top_secam_high Default tda9887 TOP value in dB for SECAM-L/L’for
the high band. Default is 0. Several tuners require a different TOP value for
the SECAM-L/L’standards. Range: -16:+15

iffreq Intermediate frequency (IF) used by the tuner on digital mode.

count Size of the ranges array.

ranges Array with the frequency ranges supported by the tuner.

struct tunertype
describes the known tuners.

Definition

struct tunertype {
char *name;
unsigned int count;
struct tuner_params *params;
u16 min;
u16 max;
u32 stepsize;
u8 *initdata;
u8 *sleepdata;

};

Members
name string with the tuner’s name.
count size of struct tuner_params array.

params pointer to struct tuner_params array.

min minimal tuner frequency, in 62.5 kHz step. should be multiplied to 16 to con-
vert to MHz.

max minimal tuner frequency, in 62.5 kHz step. Should be multiplied to 16 to
convert to MHz.

stepsize frequency step, in Hz.

initdata optional byte sequence to initialize the tuner.

sleepdata optional byte sequence to power down the tuner.

53.1. Video4Linux devices 1835

Linux Driver-api Documentation

53.1.26 V4L2 common functions and data structures

int v4l2_ctrl_query_fill(struct v4l2_queryctrl * qctrl, s32 min, s32 max,
s32 step, s32 def)

Fill in a struct v4l2_queryctrl

Parameters
struct v4l2_queryctrl * qctrl pointer to the struct v4l2_queryctrl to be

filled

s32 min minimum value for the control

s32 max maximum value for the control

s32 step control step

s32 def default value for the control

Description
Fills the struct v4l2_queryctrl fields for the query control.

Note: This function assumes that the qctrl->id field is filled.

Returns -EINVAL if the control is not known by the V4L2 core, 0 on success.

enum v4l2_i2c_tuner_type
specifies the range of tuner address that should be used when seeking for I2C
devices.

Constants
ADDRS_RADIO Radio tuner addresses. Represent the following I2C addresses:

0x10 (if compiled with tea5761 support) and 0x60.

ADDRS_DEMOD Demod tuner addresses. Represent the following I2C addresses:
0x42, 0x43, 0x4a and 0x4b.

ADDRS_TV TV tuner addresses. Represent the following I2C addresses: 0x42,
0x43, 0x4a, 0x4b, 0x60, 0x61, 0x62, 0x63 and 0x64.

ADDRS_TV_WITH_DEMOD TV tuner addresses if demod is present, this excludes ad-
dresses used by the demodulator from the list of candidates. Represent the
following I2C addresses: 0x60, 0x61, 0x62, 0x63 and 0x64.

NOTE
All I2C addresses above use the 7-bit notation.

struct v4l2_subdev * v4l2_i2c_new_subdev(struct v4l2_device * v4l2_dev,
struct i2c_adapter * adapter,
const char * client_type,
u8 addr, const unsigned short
* probe_addrs)

Load an i2c module and return an initialized struct v4l2_subdev.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

1836 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct i2c_adapter * adapter pointer to struct i2c_adapter

const char * client_type name of the chip that’s on the adapter.
u8 addr I2C address. If zero, it will use probe_addrs
const unsigned short * probe_addrs array with a list of address. The last en-

try at such array should be I2C_CLIENT_END.

Description
returns a struct v4l2_subdev pointer.

struct v4l2_subdev * v4l2_i2c_new_subdev_board(struct v4l2_device
* v4l2_dev, struct
i2c_adapter * adapter,
struct i2c_board_info
* info, const unsigned
short * probe_addrs)

Load an i2c module and return an initialized struct v4l2_subdev.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device

struct i2c_adapter * adapter pointer to struct i2c_adapter

struct i2c_board_info * info pointer to struct i2c_board_info used to replace
the irq, platform_data and addr arguments.

const unsigned short * probe_addrs array with a list of address. The last en-
try at such array should be I2C_CLIENT_END.

Description
returns a struct v4l2_subdev pointer.

void v4l2_i2c_subdev_set_name(struct v4l2_subdev * sd, struct i2c_client
* client, const char * devname, const char
* postfix)

Set name for an I2C sub-device

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct i2c_client * client pointer to struct i2c_client

const char * devname the name of the device; if NULL, the I2C device’s name
will be used

const char * postfix sub-device specific string to put right after the I2C device
name; may be NULL

void v4l2_i2c_subdev_init(struct v4l2_subdev * sd, struct i2c_client
* client, const struct v4l2_subdev_ops * ops)

Initializes a struct v4l2_subdev with data from an i2c_client struct.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct i2c_client * client pointer to struct i2c_client

53.1. Video4Linux devices 1837

Linux Driver-api Documentation

const struct v4l2_subdev_ops * ops pointer to struct v4l2_subdev_ops

unsigned short v4l2_i2c_subdev_addr(struct v4l2_subdev * sd)
returns i2c client address of struct v4l2_subdev.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

Description
Returns the address of an I2C sub-device

const unsigned short * v4l2_i2c_tuner_addrs(enum
v4l2_i2c_tuner_type type)

Return a list of I2C tuner addresses to probe.

Parameters
enum v4l2_i2c_tuner_type type type of the tuner to seek, as defined by enum

v4l2_i2c_tuner_type.

NOTE
Use only if the tuner addresses are unknown.

void v4l2_i2c_subdev_unregister(struct v4l2_subdev * sd)
Unregister a v4l2_subdev

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct v4l2_subdev * v4l2_spi_new_subdev(struct v4l2_device * v4l2_dev,
struct spi_master * master,
struct spi_board_info * info)

Load an spi module and return an initialized struct v4l2_subdev.

Parameters
struct v4l2_device * v4l2_dev pointer to struct v4l2_device.

struct spi_master * master pointer to struct spi_master.

struct spi_board_info * info pointer to struct spi_board_info.

Description
returns a struct v4l2_subdev pointer.

void v4l2_spi_subdev_init(struct v4l2_subdev * sd, struct spi_device * spi,
const struct v4l2_subdev_ops * ops)

Initialize a v4l2_subdev with data from an spi_device struct.

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

struct spi_device * spi pointer to struct spi_device.

const struct v4l2_subdev_ops * ops pointer to struct v4l2_subdev_ops

void v4l2_spi_subdev_unregister(struct v4l2_subdev * sd)
Unregister a v4l2_subdev

1838 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Parameters
struct v4l2_subdev * sd pointer to struct v4l2_subdev

void v4l_bound_align_image(unsigned int * width, unsigned int wmin, un-
signed int wmax, unsigned int walign, un-
signed int * height, unsigned int hmin, un-
signed int hmax, unsigned int halign, un-
signed int salign)

adjust video dimensions according to a given constraints.

Parameters
unsigned int * width pointer to width that will be adjusted if needed.

unsigned int wmin minimum width.

unsigned int wmax maximum width.

unsigned int walign least significant bit on width.

unsigned int * height pointer to height that will be adjusted if needed.

unsigned int hmin minimum height.

unsigned int hmax maximum height.

unsigned int halign least significant bit on height.

unsigned int salign least significant bit for the image size (e. g. width ∗ height).

Description
Clip an image to havewidth betweenwmin andwmax, and height between hmin
and hmax, inclusive.
Additionally, the width will be a multiple of 2walign, the height will be a multiple
of 2halign, and the overall size width ∗ height will be a multiple of 2salign.

Note:
1. The clipping rectangle may be shrunk or enlarged to fit the alignment con-
straints.

2. wmax must not be smaller than wmin.
3. hmax must not be smaller than hmin.
4. The alignments must not be so high there are no possible image sizes within
the allowed bounds.

5. wmin and hmin must be at least 1 (don’t use 0).
6. For walign, halign and salign, if you don’t care about a certain alignment,
specify 0, as 20 = 1 and one byte alignment is equivalent to no alignment.

7. If you only want to adjust downward, specify a maximum that’s the same as
the initial value.

53.1. Video4Linux devices 1839

Linux Driver-api Documentation

v4l2_find_nearest_size(array, array_size, width_field, height_field, width,
height)

Find the nearest size among a discrete set of resolutions contained in an array
of a driver specific struct.

Parameters
array a driver specific array of image sizes

array_size the length of the driver specific array of image sizes

width_field the name of the width field in the driver specific struct

height_field the name of the height field in the driver specific struct

width desired width.

height desired height.

Description
Finds the closest resolution to minimize the width and height differences between
what requested and the supported resolutions. The size of the width and height
fields in the driver specific must equal to that of u32, i.e. four bytes.

Returns the best match or NULL if the length of the array is zero.

int v4l2_g_parm_cap(struct video_device * vdev, struct v4l2_subdev * sd,
struct v4l2_streamparm * a)

helper routine for vidioc_g_parm to fill this in by calling the
g_frame_interval op of the given subdev. It only works for
V4L2_BUF_TYPE_VIDEO_CAPTURE(_MPLANE), hence the _cap in the
function name.

Parameters
struct video_device * vdev the struct video_device pointer. Used to deter-

mine the device caps.

struct v4l2_subdev * sd the sub-device pointer.

struct v4l2_streamparm * a the VIDIOC_G_PARM argument.

int v4l2_s_parm_cap(struct video_device * vdev, struct v4l2_subdev * sd,
struct v4l2_streamparm * a)

helper routine for vidioc_s_parm to fill this in by calling the
s_frame_interval op of the given subdev. It only works for
V4L2_BUF_TYPE_VIDEO_CAPTURE(_MPLANE), hence the _cap in the
function name.

Parameters
struct video_device * vdev the struct video_device pointer. Used to deter-

mine the device caps.

struct v4l2_subdev * sd the sub-device pointer.

struct v4l2_streamparm * a the VIDIOC_S_PARM argument.

enum v4l2_pixel_encoding
specifies the pixel encoding value

Constants

1840 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

V4L2_PIXEL_ENC_UNKNOWN Pixel encoding is unknown/un-initialized

V4L2_PIXEL_ENC_YUV Pixel encoding is YUV

V4L2_PIXEL_ENC_RGB Pixel encoding is RGB

V4L2_PIXEL_ENC_BAYER Pixel encoding is Bayer

struct v4l2_format_info
information about a V4L2 format

Definition

struct v4l2_format_info {
u32 format;
u8 pixel_enc;
u8 mem_planes;
u8 comp_planes;
u8 bpp[4];
u8 hdiv;
u8 vdiv;
u8 block_w[4];
u8 block_h[4];

};

Members
format 4CC format identifier (V4L2_PIX_FMT_*)

pixel_enc Pixel encoding (see enum v4l2_pixel_encoding above)

mem_planes Number of memory planes, which includes the alpha plane (1 to 4).

comp_planes Number of component planes, which includes the alpha plane (1 to
4).

bpp Array of per-plane bytes per pixel

hdiv Horizontal chroma subsampling factor

vdiv Vertical chroma subsampling factor

block_w Per-plane macroblock pixel width (optional)

block_h Per-plane macroblock pixel height (optional)

struct v4l2_ioctl_ops
describe operations for each V4L2 ioctl

Definition

struct v4l2_ioctl_ops {
int (*vidioc_querycap)(struct file *file, void *fh, struct v4l2_

↪→capability *cap);
int (*vidioc_enum_fmt_vid_cap)(struct file *file, void *fh, struct v4l2_

↪→fmtdesc *f);
int (*vidioc_enum_fmt_vid_overlay)(struct file *file, void *fh, struct␣

↪→v4l2_fmtdesc *f);
int (*vidioc_enum_fmt_vid_out)(struct file *file, void *fh, struct v4l2_

↪→fmtdesc *f);
int (*vidioc_enum_fmt_sdr_cap)(struct file *file, void *fh, struct v4l2_

↪→fmtdesc *f);
(continues on next page)

53.1. Video4Linux devices 1841

Linux Driver-api Documentation

(continued from previous page)
int (*vidioc_enum_fmt_sdr_out)(struct file *file, void *fh, struct v4l2_

↪→fmtdesc *f);
int (*vidioc_enum_fmt_meta_cap)(struct file *file, void *fh, struct v4l2_

↪→fmtdesc *f);
int (*vidioc_enum_fmt_meta_out)(struct file *file, void *fh, struct v4l2_

↪→fmtdesc *f);
int (*vidioc_g_fmt_vid_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_g_fmt_vid_overlay)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_g_fmt_vid_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_g_fmt_vid_out_overlay)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_g_fmt_vbi_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_g_fmt_vbi_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_g_fmt_sliced_vbi_cap)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_g_fmt_sliced_vbi_out)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_g_fmt_vid_cap_mplane)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_g_fmt_vid_out_mplane)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_g_fmt_sdr_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_g_fmt_sdr_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_g_fmt_meta_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_g_fmt_meta_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_s_fmt_vid_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_s_fmt_vid_overlay)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_s_fmt_vid_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_s_fmt_vid_out_overlay)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_s_fmt_vbi_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_s_fmt_vbi_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_s_fmt_sliced_vbi_cap)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_s_fmt_sliced_vbi_out)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_s_fmt_vid_cap_mplane)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_s_fmt_vid_out_mplane)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_s_fmt_sdr_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
(continues on next page)

1842 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
int (*vidioc_s_fmt_sdr_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_s_fmt_meta_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_s_fmt_meta_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_try_fmt_vid_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_try_fmt_vid_overlay)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_try_fmt_vid_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_try_fmt_vid_out_overlay)(struct file *file, void *fh,␣

↪→struct v4l2_format *f);
int (*vidioc_try_fmt_vbi_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_try_fmt_vbi_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_try_fmt_sliced_vbi_cap)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_try_fmt_sliced_vbi_out)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_try_fmt_vid_cap_mplane)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_try_fmt_vid_out_mplane)(struct file *file, void *fh, struct␣

↪→v4l2_format *f);
int (*vidioc_try_fmt_sdr_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_try_fmt_sdr_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_try_fmt_meta_cap)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_try_fmt_meta_out)(struct file *file, void *fh, struct v4l2_

↪→format *f);
int (*vidioc_reqbufs)(struct file *file, void *fh, struct v4l2_

↪→requestbuffers *b);
int (*vidioc_querybuf)(struct file *file, void *fh, struct v4l2_buffer␣

↪→*b);
int (*vidioc_qbuf)(struct file *file, void *fh, struct v4l2_buffer *b);
int (*vidioc_expbuf)(struct file *file, void *fh, struct v4l2_

↪→exportbuffer *e);
int (*vidioc_dqbuf)(struct file *file, void *fh, struct v4l2_buffer *b);
int (*vidioc_create_bufs)(struct file *file, void *fh, struct v4l2_

↪→create_buffers *b);
int (*vidioc_prepare_buf)(struct file *file, void *fh, struct v4l2_

↪→buffer *b);
int (*vidioc_overlay)(struct file *file, void *fh, unsigned int i);
int (*vidioc_g_fbuf)(struct file *file, void *fh, struct v4l2_

↪→framebuffer *a);
int (*vidioc_s_fbuf)(struct file *file, void *fh, const struct v4l2_

↪→framebuffer *a);
int (*vidioc_streamon)(struct file *file, void *fh, enum v4l2_buf_type␣

↪→i);
int (*vidioc_streamoff)(struct file *file, void *fh, enum v4l2_buf_type␣

↪→i);
int (*vidioc_g_std)(struct file *file, void *fh, v4l2_std_id *norm);

(continues on next page)

53.1. Video4Linux devices 1843

Linux Driver-api Documentation

(continued from previous page)
int (*vidioc_s_std)(struct file *file, void *fh, v4l2_std_id norm);
int (*vidioc_querystd)(struct file *file, void *fh, v4l2_std_id *a);
int (*vidioc_enum_input)(struct file *file, void *fh, struct v4l2_input␣

↪→*inp);
int (*vidioc_g_input)(struct file *file, void *fh, unsigned int *i);
int (*vidioc_s_input)(struct file *file, void *fh, unsigned int i);
int (*vidioc_enum_output)(struct file *file, void *fh, struct v4l2_

↪→output *a);
int (*vidioc_g_output)(struct file *file, void *fh, unsigned int *i);
int (*vidioc_s_output)(struct file *file, void *fh, unsigned int i);
int (*vidioc_queryctrl)(struct file *file, void *fh, struct v4l2_

↪→queryctrl *a);
int (*vidioc_query_ext_ctrl)(struct file *file, void *fh, struct v4l2_

↪→query_ext_ctrl *a);
int (*vidioc_g_ctrl)(struct file *file, void *fh, struct v4l2_control␣

↪→*a);
int (*vidioc_s_ctrl)(struct file *file, void *fh, struct v4l2_control␣

↪→*a);
int (*vidioc_g_ext_ctrls)(struct file *file, void *fh, struct v4l2_ext_

↪→controls *a);
int (*vidioc_s_ext_ctrls)(struct file *file, void *fh, struct v4l2_ext_

↪→controls *a);
int (*vidioc_try_ext_ctrls)(struct file *file, void *fh, struct v4l2_ext_

↪→controls *a);
int (*vidioc_querymenu)(struct file *file, void *fh, struct v4l2_

↪→querymenu *a);
int (*vidioc_enumaudio)(struct file *file, void *fh, struct v4l2_audio␣

↪→*a);
int (*vidioc_g_audio)(struct file *file, void *fh, struct v4l2_audio *a);
int (*vidioc_s_audio)(struct file *file, void *fh, const struct v4l2_

↪→audio *a);
int (*vidioc_enumaudout)(struct file *file, void *fh, struct v4l2_

↪→audioout *a);
int (*vidioc_g_audout)(struct file *file, void *fh, struct v4l2_audioout␣

↪→*a);
int (*vidioc_s_audout)(struct file *file, void *fh, const struct v4l2_

↪→audioout *a);
int (*vidioc_g_modulator)(struct file *file, void *fh, struct v4l2_

↪→modulator *a);
int (*vidioc_s_modulator)(struct file *file, void *fh, const struct v4l2_

↪→modulator *a);
int (*vidioc_g_pixelaspect)(struct file *file, void *fh, int buf_type,␣

↪→struct v4l2_fract *aspect);
int (*vidioc_g_selection)(struct file *file, void *fh, struct v4l2_

↪→selection *s);
int (*vidioc_s_selection)(struct file *file, void *fh, struct v4l2_

↪→selection *s);
int (*vidioc_g_jpegcomp)(struct file *file, void *fh, struct v4l2_

↪→jpegcompression *a);
int (*vidioc_s_jpegcomp)(struct file *file, void *fh, const struct v4l2_

↪→jpegcompression *a);
int (*vidioc_g_enc_index)(struct file *file, void *fh, struct v4l2_enc_

↪→idx *a);
int (*vidioc_encoder_cmd)(struct file *file, void *fh, struct v4l2_

↪→encoder_cmd *a);
int (*vidioc_try_encoder_cmd)(struct file *file, void *fh, struct v4l2_

↪→encoder_cmd *a); (continues on next page)

1844 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
int (*vidioc_decoder_cmd)(struct file *file, void *fh, struct v4l2_

↪→decoder_cmd *a);
int (*vidioc_try_decoder_cmd)(struct file *file, void *fh, struct v4l2_

↪→decoder_cmd *a);
int (*vidioc_g_parm)(struct file *file, void *fh, struct v4l2_streamparm␣

↪→*a);
int (*vidioc_s_parm)(struct file *file, void *fh, struct v4l2_streamparm␣

↪→*a);
int (*vidioc_g_tuner)(struct file *file, void *fh, struct v4l2_tuner *a);
int (*vidioc_s_tuner)(struct file *file, void *fh, const struct v4l2_

↪→tuner *a);
int (*vidioc_g_frequency)(struct file *file, void *fh, struct v4l2_

↪→frequency *a);
int (*vidioc_s_frequency)(struct file *file, void *fh, const struct v4l2_

↪→frequency *a);
int (*vidioc_enum_freq_bands)(struct file *file, void *fh, struct v4l2_

↪→frequency_band *band);
int (*vidioc_g_sliced_vbi_cap)(struct file *file, void *fh, struct v4l2_

↪→sliced_vbi_cap *a);
int (*vidioc_log_status)(struct file *file, void *fh);
int (*vidioc_s_hw_freq_seek)(struct file *file, void *fh, const struct␣

↪→v4l2_hw_freq_seek *a);
#ifdef CONFIG_VIDEO_ADV_DEBUG;

int (*vidioc_g_register)(struct file *file, void *fh, struct v4l2_dbg_
↪→register *reg);
int (*vidioc_s_register)(struct file *file, void *fh, const struct v4l2_

↪→dbg_register *reg);
int (*vidioc_g_chip_info)(struct file *file, void *fh, struct v4l2_dbg_

↪→chip_info *chip);
#endif;

int (*vidioc_enum_framesizes)(struct file *file, void *fh, struct v4l2_
↪→frmsizeenum *fsize);
int (*vidioc_enum_frameintervals)(struct file *file, void *fh, struct␣

↪→v4l2_frmivalenum *fival);
int (*vidioc_s_dv_timings)(struct file *file, void *fh, struct v4l2_dv_

↪→timings *timings);
int (*vidioc_g_dv_timings)(struct file *file, void *fh, struct v4l2_dv_

↪→timings *timings);
int (*vidioc_query_dv_timings)(struct file *file, void *fh, struct v4l2_

↪→dv_timings *timings);
int (*vidioc_enum_dv_timings)(struct file *file, void *fh, struct v4l2_

↪→enum_dv_timings *timings);
int (*vidioc_dv_timings_cap)(struct file *file, void *fh, struct v4l2_dv_

↪→timings_cap *cap);
int (*vidioc_g_edid)(struct file *file, void *fh, struct v4l2_edid␣

↪→*edid);
int (*vidioc_s_edid)(struct file *file, void *fh, struct v4l2_edid␣

↪→*edid);
int (*vidioc_subscribe_event)(struct v4l2_fh *fh, const struct v4l2_

↪→event_subscription *sub);
int (*vidioc_unsubscribe_event)(struct v4l2_fh *fh, const struct v4l2_

↪→event_subscription *sub);
long (*vidioc_default)(struct file *file, void *fh, bool valid_prio,␣

↪→unsigned int cmd, void *arg);
};

53.1. Video4Linux devices 1845

Linux Driver-api Documentation

Members
vidioc_querycap pointer to the function that implements VIDIOC_QUERYCAP

ioctl

vidioc_enum_fmt_vid_cap pointer to the function that implements VID-
IOC_ENUM_FMT ioctl logic for video capture in single and multi plane
mode

vidioc_enum_fmt_vid_overlay pointer to the function that implements VID-
IOC_ENUM_FMT ioctl logic for video overlay

vidioc_enum_fmt_vid_out pointer to the function that implements VID-
IOC_ENUM_FMT ioctl logic for video output in single and multi plane
mode

vidioc_enum_fmt_sdr_cap pointer to the function that implements VID-
IOC_ENUM_FMT ioctl logic for Software Defined Radio capture

vidioc_enum_fmt_sdr_out pointer to the function that implements VID-
IOC_ENUM_FMT ioctl logic for Software Defined Radio output

vidioc_enum_fmt_meta_cap pointer to the function that implements VID-
IOC_ENUM_FMT ioctl logic for metadata capture

vidioc_enum_fmt_meta_out pointer to the function that implements VID-
IOC_ENUM_FMT ioctl logic for metadata output

vidioc_g_fmt_vid_cap pointer to the function that implements VIDIOC_G_FMT
ioctl logic for video capture in single plane mode

vidioc_g_fmt_vid_overlay pointer to the function that implements VID-
IOC_G_FMT ioctl logic for video overlay

vidioc_g_fmt_vid_out pointer to the function that implements VIDIOC_G_FMT
ioctl logic for video out in single plane mode

vidioc_g_fmt_vid_out_overlay pointer to the function that implements VID-
IOC_G_FMT ioctl logic for video overlay output

vidioc_g_fmt_vbi_cap pointer to the function that implements VIDIOC_G_FMT
ioctl logic for raw VBI capture

vidioc_g_fmt_vbi_out pointer to the function that implements VIDIOC_G_FMT
ioctl logic for raw VBI output

vidioc_g_fmt_sliced_vbi_cap pointer to the function that implements VID-
IOC_G_FMT ioctl logic for sliced VBI capture

vidioc_g_fmt_sliced_vbi_out pointer to the function that implements VID-
IOC_G_FMT ioctl logic for sliced VBI output

vidioc_g_fmt_vid_cap_mplane pointer to the function that implements VID-
IOC_G_FMT ioctl logic for video capture in multiple plane mode

vidioc_g_fmt_vid_out_mplane pointer to the function that implements VID-
IOC_G_FMT ioctl logic for video out in multiplane plane mode

vidioc_g_fmt_sdr_cap pointer to the function that implements VIDIOC_G_FMT
ioctl logic for Software Defined Radio capture

1846 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

vidioc_g_fmt_sdr_out pointer to the function that implements VIDIOC_G_FMT
ioctl logic for Software Defined Radio output

vidioc_g_fmt_meta_cap pointer to the function that implements VIDIOC_G_FMT
ioctl logic for metadata capture

vidioc_g_fmt_meta_out pointer to the function that implements VIDIOC_G_FMT
ioctl logic for metadata output

vidioc_s_fmt_vid_cap pointer to the function that implements VIDIOC_S_FMT
ioctl logic for video capture in single plane mode

vidioc_s_fmt_vid_overlay pointer to the function that implements VID-
IOC_S_FMT ioctl logic for video overlay

vidioc_s_fmt_vid_out pointer to the function that implements VIDIOC_S_FMT
ioctl logic for video out in single plane mode

vidioc_s_fmt_vid_out_overlay pointer to the function that implements VID-
IOC_S_FMT ioctl logic for video overlay output

vidioc_s_fmt_vbi_cap pointer to the function that implements VIDIOC_S_FMT
ioctl logic for raw VBI capture

vidioc_s_fmt_vbi_out pointer to the function that implements VIDIOC_S_FMT
ioctl logic for raw VBI output

vidioc_s_fmt_sliced_vbi_cap pointer to the function that implements VID-
IOC_S_FMT ioctl logic for sliced VBI capture

vidioc_s_fmt_sliced_vbi_out pointer to the function that implements VID-
IOC_S_FMT ioctl logic for sliced VBI output

vidioc_s_fmt_vid_cap_mplane pointer to the function that implements VID-
IOC_S_FMT ioctl logic for video capture in multiple plane mode

vidioc_s_fmt_vid_out_mplane pointer to the function that implements VID-
IOC_S_FMT ioctl logic for video out in multiplane plane mode

vidioc_s_fmt_sdr_cap pointer to the function that implements VIDIOC_S_FMT
ioctl logic for Software Defined Radio capture

vidioc_s_fmt_sdr_out pointer to the function that implements VIDIOC_S_FMT
ioctl logic for Software Defined Radio output

vidioc_s_fmt_meta_cap pointer to the function that implements VIDIOC_S_FMT
ioctl logic for metadata capture

vidioc_s_fmt_meta_out pointer to the function that implements VIDIOC_S_FMT
ioctl logic for metadata output

vidioc_try_fmt_vid_cap pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for video capture in single plane mode

vidioc_try_fmt_vid_overlay pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for video overlay

vidioc_try_fmt_vid_out pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for video out in single plane mode

53.1. Video4Linux devices 1847

Linux Driver-api Documentation

vidioc_try_fmt_vid_out_overlay pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for video overlay output

vidioc_try_fmt_vbi_cap pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for raw VBI capture

vidioc_try_fmt_vbi_out pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for raw VBI output

vidioc_try_fmt_sliced_vbi_cap pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for sliced VBI capture

vidioc_try_fmt_sliced_vbi_out pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for sliced VBI output

vidioc_try_fmt_vid_cap_mplane pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for video capture in multiple plane mode

vidioc_try_fmt_vid_out_mplane pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for video out in multiplane plane mode

vidioc_try_fmt_sdr_cap pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for Software Defined Radio capture

vidioc_try_fmt_sdr_out pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for Software Defined Radio output

vidioc_try_fmt_meta_cap pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for metadata capture

vidioc_try_fmt_meta_out pointer to the function that implements VID-
IOC_TRY_FMT ioctl logic for metadata output

vidioc_reqbufs pointer to the function that implements VIDIOC_REQBUFS ioctl

vidioc_querybuf pointer to the function that implements VIDIOC_QUERYBUF
ioctl

vidioc_qbuf pointer to the function that implements VIDIOC_QBUF ioctl

vidioc_expbuf pointer to the function that implements VIDIOC_EXPBUF ioctl

vidioc_dqbuf pointer to the function that implements VIDIOC_DQBUF ioctl

vidioc_create_bufs pointer to the function that implements VID-
IOC_CREATE_BUFS ioctl

vidioc_prepare_buf pointer to the function that implements VID-
IOC_PREPARE_BUF ioctl

vidioc_overlay pointer to the function that implements VIDIOC_OVERLAY ioctl

vidioc_g_fbuf pointer to the function that implements VIDIOC_G_FBUF ioctl

vidioc_s_fbuf pointer to the function that implements VIDIOC_S_FBUF ioctl

vidioc_streamon pointer to the function that implements VIDIOC_STREAMON
ioctl

vidioc_streamoff pointer to the function that implements VIDIOC_STREAMOFF
ioctl

vidioc_g_std pointer to the function that implements VIDIOC_G_STD ioctl

1848 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

vidioc_s_std pointer to the function that implements VIDIOC_S_STD ioctl

vidioc_querystd pointer to the function that implements VIDIOC_QUERYSTD
ioctl

vidioc_enum_input pointer to the function that implements VID-
IOC_ENUM_INPUT ioctl

vidioc_g_input pointer to the function that implements VIDIOC_G_INPUT ioctl

vidioc_s_input pointer to the function that implements VIDIOC_S_INPUT ioctl

vidioc_enum_output pointer to the function that implements VID-
IOC_ENUM_OUTPUT ioctl

vidioc_g_output pointer to the function that implements VIDIOC_G_OUTPUT
ioctl

vidioc_s_output pointer to the function that implements VIDIOC_S_OUTPUT
ioctl

vidioc_queryctrl pointer to the function that implements VIDIOC_QUERYCTRL
ioctl

vidioc_query_ext_ctrl pointer to the function that implements VID-
IOC_QUERY_EXT_CTRL ioctl

vidioc_g_ctrl pointer to the function that implements VIDIOC_G_CTRL ioctl

vidioc_s_ctrl pointer to the function that implements VIDIOC_S_CTRL ioctl

vidioc_g_ext_ctrls pointer to the function that implements VID-
IOC_G_EXT_CTRLS ioctl

vidioc_s_ext_ctrls pointer to the function that implements VID-
IOC_S_EXT_CTRLS ioctl

vidioc_try_ext_ctrls pointer to the function that implements VID-
IOC_TRY_EXT_CTRLS ioctl

vidioc_querymenu pointer to the function that implements VID-
IOC_QUERYMENU ioctl

vidioc_enumaudio pointer to the function that implements VIDIOC_ENUMAUDIO
ioctl

vidioc_g_audio pointer to the function that implements VIDIOC_G_AUDIO ioctl

vidioc_s_audio pointer to the function that implements VIDIOC_S_AUDIO ioctl

vidioc_enumaudout pointer to the function that implements VID-
IOC_ENUMAUDOUT ioctl

vidioc_g_audout pointer to the function that implements VIDIOC_G_AUDOUT
ioctl

vidioc_s_audout pointer to the function that implements VIDIOC_S_AUDOUT
ioctl

vidioc_g_modulator pointer to the function that implements VID-
IOC_G_MODULATOR ioctl

53.1. Video4Linux devices 1849

Linux Driver-api Documentation

vidioc_s_modulator pointer to the function that implements VID-
IOC_S_MODULATOR ioctl

vidioc_g_pixelaspect pointer to the function that implements the pixelaspect
part of the VIDIOC_CROPCAP ioctl

vidioc_g_selection pointer to the function that implements VID-
IOC_G_SELECTION ioctl

vidioc_s_selection pointer to the function that implements VID-
IOC_S_SELECTION ioctl

vidioc_g_jpegcomp pointer to the function that implements VID-
IOC_G_JPEGCOMP ioctl

vidioc_s_jpegcomp pointer to the function that implements VID-
IOC_S_JPEGCOMP ioctl

vidioc_g_enc_index pointer to the function that implements VID-
IOC_G_ENC_INDEX ioctl

vidioc_encoder_cmd pointer to the function that implements VID-
IOC_ENCODER_CMD ioctl

vidioc_try_encoder_cmd pointer to the function that implements VID-
IOC_TRY_ENCODER_CMD ioctl

vidioc_decoder_cmd pointer to the function that implements VID-
IOC_DECODER_CMD ioctl

vidioc_try_decoder_cmd pointer to the function that implements VID-
IOC_TRY_DECODER_CMD ioctl

vidioc_g_parm pointer to the function that implements VIDIOC_G_PARM ioctl

vidioc_s_parm pointer to the function that implements VIDIOC_S_PARM ioctl

vidioc_g_tuner pointer to the function that implements VIDIOC_G_TUNER ioctl

vidioc_s_tuner pointer to the function that implements VIDIOC_S_TUNER ioctl

vidioc_g_frequency pointer to the function that implements VID-
IOC_G_FREQUENCY ioctl

vidioc_s_frequency pointer to the function that implements VID-
IOC_S_FREQUENCY ioctl

vidioc_enum_freq_bands pointer to the function that implements VID-
IOC_ENUM_FREQ_BANDS ioctl

vidioc_g_sliced_vbi_cap pointer to the function that implements VID-
IOC_G_SLICED_VBI_CAP ioctl

vidioc_log_status pointer to the function that implements VID-
IOC_LOG_STATUS ioctl

vidioc_s_hw_freq_seek pointer to the function that implements VID-
IOC_S_HW_FREQ_SEEK ioctl

vidioc_g_register pointer to the function that implements VID-
IOC_DBG_G_REGISTER ioctl

1850 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

vidioc_s_register pointer to the function that implements VID-
IOC_DBG_S_REGISTER ioctl

vidioc_g_chip_info pointer to the function that implements VID-
IOC_DBG_G_CHIP_INFO ioctl

vidioc_enum_framesizes pointer to the function that implements VID-
IOC_ENUM_FRAMESIZES ioctl

vidioc_enum_frameintervals pointer to the function that implements VID-
IOC_ENUM_FRAMEINTERVALS ioctl

vidioc_s_dv_timings pointer to the function that implements VID-
IOC_S_DV_TIMINGS ioctl

vidioc_g_dv_timings pointer to the function that implements VID-
IOC_G_DV_TIMINGS ioctl

vidioc_query_dv_timings pointer to the function that implements VID-
IOC_QUERY_DV_TIMINGS ioctl

vidioc_enum_dv_timings pointer to the function that implements VID-
IOC_ENUM_DV_TIMINGS ioctl

vidioc_dv_timings_cap pointer to the function that implements VID-
IOC_DV_TIMINGS_CAP ioctl

vidioc_g_edid pointer to the function that implements VIDIOC_G_EDID ioctl

vidioc_s_edid pointer to the function that implements VIDIOC_S_EDID ioctl

vidioc_subscribe_event pointer to the function that implements VID-
IOC_SUBSCRIBE_EVENT ioctl

vidioc_unsubscribe_event pointer to the function that implements VID-
IOC_UNSUBSCRIBE_EVENT ioctl

vidioc_default pointed used to allow other ioctls

const char * v4l2_norm_to_name(v4l2_std_id id)
Ancillary routine to analog TV standard name from its ID.

Parameters
v4l2_std_id id analog TV standard ID.

Return
returns a string with the name of the analog TV standard. If the standard is not
found or if id points to multiple standard, it returns “Unknown”.
void v4l2_video_std_frame_period(int id, struct v4l2_fract * frameperiod)

Ancillary routine that fills a struct v4l2_fract pointer with the default fram-
erate fraction.

Parameters
int id analog TV standard ID.

struct v4l2_fract * frameperiod struct v4l2_fract pointer to be filled

53.1. Video4Linux devices 1851

Linux Driver-api Documentation

int v4l2_video_std_construct(struct v4l2_standard * vs, int id, const char
* name)

Ancillary routine that fills in the fields of a v4l2_standard structure accord-
ing to the id parameter.

Parameters
struct v4l2_standard * vs struct v4l2_standard pointer to be filled

int id analog TV standard ID.

const char * name name of the standard to be used

Description

Note: This ancillary routine is obsolete. Shouldn’t be used on newer drivers.

int v4l_video_std_enumstd(struct v4l2_standard * vs, v4l2_std_id id)
Ancillary routine that fills in the fields of a v4l2_standard structure accord-
ing to the id and vs->index parameters.

Parameters
struct v4l2_standard * vs struct v4l2_standard pointer to be filled.

v4l2_std_id id analog TV standard ID.

void v4l_printk_ioctl(const char * prefix, unsigned int cmd)
Ancillary routine that prints the ioctl in a human-readable format.

Parameters
const char * prefix prefix to be added at the ioctl prints.

unsigned int cmd ioctl name

Description

Note: If prefix != NULL, then it will issue a printk(KERN_DEBUG "``s:“, prefix)``
first.

long int v4l2_compat_ioctl32(struct file * file, unsigned int cmd, unsigned
long arg)

32 Bits compatibility layer for 64 bits processors

Parameters
struct file * file Pointer to struct file.

unsigned int cmd Ioctl name.

unsigned long arg Ioctl argument.

v4l2_kioctl
Typedef: Typedef used to pass an ioctl handler.

Syntax
long v4l2_kioctl (struct file * file, unsigned int cmd, void
* arg);

1852 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Parameters
struct file * file Pointer to struct file.

unsigned int cmd Ioctl name.

void * arg Ioctl argument.

long int video_usercopy(struct file * file, unsigned int cmd, unsigned long
int arg, v4l2_kioctl func)

copies data from/to userspace memory when an ioctl is issued.

Parameters
struct file * file Pointer to struct file.

unsigned int cmd Ioctl name.

unsigned long int arg Ioctl argument.

v4l2_kioctl func function that will handle the ioctl

Description

Note: This routine should be used only inside the V4L2 core.

long int video_ioctl2(struct file * file, unsigned int cmd, unsigned long
int arg)

Handles a V4L2 ioctl.

Parameters
struct file * file Pointer to struct file.

unsigned int cmd Ioctl name.

unsigned long int arg Ioctl argument.

Description
Method used to hancle an ioctl. Should be used to fill the v4l2_ioctl_ops.
unlocked_ioctl on all V4L2 drivers.

53.1.27 Hauppauge TV EEPROM functions and data structures

enum tveeprom_audio_processor
Specifies the type of audio processor used on a Hauppauge device.

Constants
TVEEPROM_AUDPROC_NONE No audio processor present

TVEEPROM_AUDPROC_INTERNAL The audio processor is internal to the video proces-
sor

TVEEPROM_AUDPROC_MSP The audio processor is a MSPXXXX device

TVEEPROM_AUDPROC_OTHER The audio processor is another device

struct tveeprom
Contains the fields parsed from Hauppauge eeproms

53.1. Video4Linux devices 1853

Linux Driver-api Documentation

Definition

struct tveeprom {
u32 has_radio;
u32 has_ir;
u32 has_MAC_address;
u32 tuner_type;
u32 tuner_formats;
u32 tuner_hauppauge_model;
u32 tuner2_type;
u32 tuner2_formats;
u32 tuner2_hauppauge_model;
u32 audio_processor;
u32 decoder_processor;
u32 model;
u32 revision;
u32 serial_number;
char rev_str[5];
u8 MAC_address[ETH_ALEN];

};

Members
has_radio 1 if the device has radio; 0 otherwise.

has_ir If has_ir == 0, then it is unknown what the IR capabilities are. Otherwise:
bit 0) 1 (= IR capabilities are known); bit 1) IR receiver present; bit 2) IR
transmitter (blaster) present.

has_MAC_address 0: no MAC, 1: MAC present, 2: unknown.

tuner_type type of the tuner (TUNER_*, as defined at include/media/tuner.h).

tuner_formats Supported analog TV standards (V4L2_STD_*).

tuner_hauppauge_model Hauppauge’s code for the device model number.
tuner2_type type of the second tuner (TUNER_*, as defined at in-

clude/media/tuner.h).

tuner2_formats Tuner 2 supported analog TV standards (V4L2_STD_*).

tuner2_hauppauge_model tuner 2 Hauppauge’s code for the device model num-
ber.

audio_processor analog audio decoder, as defined by enum tveep-
rom_audio_processor.

decoder_processor Hauppauge’s code for the decoder chipset. Unused by the
drivers, as they probe the decoder based on the PCI or USB ID.

model Hauppauge’s model number
revision Card revision number

serial_number Card’s serial number
rev_str Card revision converted to number

MAC_address MAC address for the network interface

1854 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

void tveeprom_hauppauge_analog(struct tveeprom * tvee, unsigned char
* eeprom_data)

Fill struct tveeprom using the contents of the eeprom previously filled at eep-
rom_data field.

Parameters
struct tveeprom * tvee Struct to where the eeprom parsed data will be filled;

unsigned char * eeprom_data Array with the contents of the eeprom_data. It
should contain 256 bytes filled with the contents of the eeprom read from the
Hauppauge device.

int tveeprom_read(struct i2c_client * c, unsigned char * eedata, int len)
Reads the contents of the eeprom found at the Hauppauge devices.

Parameters
struct i2c_client * c I2C client struct

unsigned char * eedata Array where the eeprom content will be stored.

int len Size of eedata array. If the eeprom content will be latter be parsed by
tveeprom_hauppauge_analog(), len should be, at least, 256.

53.2 Digital TV (DVB) devices

Digital TV devices are implemented by several different drivers:

• A bridge driver that is responsible to talk with the bus where the other devices
are connected (PCI, USB, SPI), bind to the other drivers and implement the
digital demux logic (either in software or in hardware);

• Frontend drivers that are usually implemented as two separate drivers:

– A tuner driver that implements the logic which commands the part of the
hardware responsible for tuning into a digital TV transponder or physical
channel. The output of a tuner is usually a baseband or Intermediate
Frequency (IF) signal;

– A demodulator driver (a.k.a“demod”) that implements the logic which
commands the digital TV decoding hardware. The output of a demod is
a digital stream, with multiple audio, video and data channels typically
multiplexed using MPEG Transport Stream1.

On most hardware, the frontend drivers talk with the bridge driver using an I2C
bus.

1 Some standards use TCP/IP for multiplexing data, like DVB-H (an abandoned standard, not used
anymore) and ATSC version 3.0 current proposals. Currently, the DVB subsystem doesn’t implement
those standards.

53.2. Digital TV (DVB) devices 1855

Linux Driver-api Documentation

53.2.1 Digital TV Common functions

Math functions

Provide some commonly-usedmath functions, usually required in order to estimate
signal strength and signal to noise measurements in dB.

unsigned int intlog2(u32 value)
computes log2 of a value; the result is shifted left by 24 bits

Parameters
u32 value The value (must be != 0)

Description
to use rational values you can use the following method:

intlog2(value) = intlog2(value * 2^x) - x * 2^24

Some usecase examples:

intlog2(8) will give 3 << 24 = 3 * 2^24

intlog2(9) will give 3 << 24 + ⋯= 3.16⋯* 2^24
intlog2(1.5) = intlog2(3) - 2^24 = 0.584⋯* 2^24

Return
log2(value) * 2^24

unsigned int intlog10(u32 value)
computes log10 of a value; the result is shifted left by 24 bits

Parameters
u32 value The value (must be != 0)

Description
to use rational values you can use the following method:

intlog10(value) = intlog10(value * 10^x) - x * 2^24

An usecase example:

intlog10(1000) will give 3 << 24 = 3 * 2^24

due to the implementation intlog10(1000) might be not exactly 3 * 2^24

look at intlog2 for similar examples

Return
log10(value) * 2^24

1856 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

DVB devices

Those functions are responsible for handling the DVB device nodes.

enum dvb_device_type
type of the Digital TV device

Constants
DVB_DEVICE_SEC Digital TV standalone Common Interface (CI)

DVB_DEVICE_FRONTEND Digital TV frontend.

DVB_DEVICE_DEMUX Digital TV demux.

DVB_DEVICE_DVR Digital TV digital video record (DVR).

DVB_DEVICE_CA Digital TV Conditional Access (CA).

DVB_DEVICE_NET Digital TV network.

DVB_DEVICE_VIDEO Digital TV video decoder. Deprecated. Used only on av7110-
av.

DVB_DEVICE_AUDIO Digital TV audio decoder. Deprecated. Used only on av7110-
av.

DVB_DEVICE_OSD Digital TV On Screen Display (OSD). Deprecated. Used only on
av7110.

struct dvb_adapter
represents a Digital TV adapter using Linux DVB API

Definition

struct dvb_adapter {
int num;
struct list_head list_head;
struct list_head device_list;
const char *name;
u8 proposed_mac [6];
void* priv;
struct device *device;
struct module *module;
int mfe_shared;
struct dvb_device *mfe_dvbdev;
struct mutex mfe_lock;

#if defined(CONFIG_MEDIA_CONTROLLER_DVB);
struct mutex mdev_lock;
struct media_device *mdev;
struct media_entity *conn;
struct media_pad *conn_pads;

#endif;
};

Members
num Number of the adapter

list_head List with the DVB adapters

device_list List with the DVB devices

53.2. Digital TV (DVB) devices 1857

Linux Driver-api Documentation

name Name of the adapter

proposed_mac proposed MAC address for the adapter

priv private data

device pointer to struct device

module pointer to struct module

mfe_shared indicates mutually exclusive frontends. Use of this flag is currently
deprecated.

mfe_dvbdev Frontend device in use, in the case of MFE

mfe_lock Lock to prevent using the other frontends when MFE is used.

mdev_lock Protect access to the mdev pointer.

mdev pointer to struct media_device, used when the media controller is used.

conn RF connector. Used only if the device has no separate tuner.

conn_pads pointer to struct media_pad associated with conn;
struct dvb_device

represents a DVB device node

Definition

struct dvb_device {
struct list_head list_head;
const struct file_operations *fops;
struct dvb_adapter *adapter;
enum dvb_device_type type;
int minor;
u32 id;
int readers;
int writers;
int users;
wait_queue_head_t wait_queue;
int (*kernel_ioctl)(struct file *file, unsigned int cmd, void *arg);

#if defined(CONFIG_MEDIA_CONTROLLER_DVB);
const char *name;
struct media_intf_devnode *intf_devnode;
unsigned tsout_num_entities;
struct media_entity *entity, *tsout_entity;
struct media_pad *pads, *tsout_pads;

#endif;
void *priv;

};

Members
list_head List head with all DVB devices

fops pointer to struct file_operations

adapter pointer to the adapter that holds this device node

type type of the device, as defined by enum dvb_device_type.

minor devnode minor number. Major number is always DVB_MAJOR.

1858 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

id device ID number, inside the adapter

readers Initialized by the caller. Each call to open() in Read Only mode decreases
this counter by one.

writers Initialized by the caller. Each call to open() in Read/Writemode decreases
this counter by one.

users Initialized by the caller. Each call to open() in any mode decreases this
counter by one.

wait_queue wait queue, used to wait for certain events inside one of the DVB API
callers

kernel_ioctl callback function used to handle ioctl calls from userspace.

name Name to be used for the device at the Media Controller

intf_devnode Pointer to media_intf_devnode. Used by the dvbdev core to store
the MC device node interface

tsout_num_entities Number of Transport Stream output entities

entity pointer to struct media_entity associated with the device node

tsout_entity array with MC entities associated to each TS output node

pads pointer to struct media_pad associated with entity;
tsout_pads array with the source pads for each tsout_entity
priv private data

Description
This structure is used by the DVB core (frontend, CA, net, demux) in order to create
the device nodes. Usually, driver should not initialize this struct diretly.

int dvb_register_adapter(struct dvb_adapter * adap, const char * name,
struct module * module, struct device * device,
short * adapter_nums)

Registers a new DVB adapter

Parameters
struct dvb_adapter * adap pointer to struct dvb_adapter

const char * name Adapter’s name
struct module * module initialized with THIS_MODULE at the caller

struct device * device pointer to struct device that corresponds to the device
driver

short * adapter_nums Array with a list of the numbers for
dvb_register_adapter; to select among them. Typically, initialized with:
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nums)

int dvb_unregister_adapter(struct dvb_adapter * adap)
Unregisters a DVB adapter

Parameters
struct dvb_adapter * adap pointer to struct dvb_adapter

53.2. Digital TV (DVB) devices 1859

Linux Driver-api Documentation

int dvb_register_device(struct dvb_adapter * adap, struct dvb_device
** pdvbdev, const struct dvb_device * template,
void * priv, enum dvb_device_type type,
int demux_sink_pads)

Registers a new DVB device

Parameters
struct dvb_adapter * adap pointer to struct dvb_adapter

struct dvb_device ** pdvbdev pointer to the place where the new struct
dvb_device will be stored

const struct dvb_device * template Template used to create pdvbdev;

void * priv private data

enum dvb_device_type type type of the device, as defined by enum
dvb_device_type.

int demux_sink_pads Number of demux outputs, to be used to create the TS out-
puts via the Media Controller.

void dvb_remove_device(struct dvb_device * dvbdev)
Remove a registered DVB device

Parameters
struct dvb_device * dvbdev pointer to struct dvb_device

Description
This does not free memory. To do that, call dvb_free_device().

void dvb_free_device(struct dvb_device * dvbdev)
Free memory occupied by a DVB device.

Parameters
struct dvb_device * dvbdev pointer to struct dvb_device

Description
Call dvb_unregister_device() before calling this function.

void dvb_unregister_device(struct dvb_device * dvbdev)
Unregisters a DVB device

Parameters
struct dvb_device * dvbdev pointer to struct dvb_device

Description
This is a combination of dvb_remove_device() and dvb_free_device(). Using
this function is usually a mistake, and is often an indicator for a use-after-free bug
(when a userspace process keeps a file handle to a detached device).

int dvb_create_media_graph(struct dvb_adapter * adap,
bool create_rf_connector)

Creates media graph for the Digital TV part of the device.

Parameters

1860 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct dvb_adapter * adap pointer to struct dvb_adapter

bool create_rf_connector if true, it creates the RF connector too

Description
This function checks all DVB-related functions at the media controller entities and
creates the needed links for themedia graph. It is capable of working withmultiple
tuners or multiple frontends, but it won’t create links if the device has multiple
tuners and multiple frontends or if the device has multiple muxes. In such case,
the caller driver should manually create the remaining links.

void dvb_register_media_controller(struct dvb_adapter * adap, struct
media_device * mdev)

registers a media controller at DVB adapter

Parameters
struct dvb_adapter * adap pointer to struct dvb_adapter

struct media_device * mdev pointer to struct media_device

struct media_device * dvb_get_media_controller(struct dvb_adapter
* adap)

gets the associated media controller

Parameters
struct dvb_adapter * adap pointer to struct dvb_adapter

int dvb_generic_open(struct inode * inode, struct file * file)
Digital TV open function, used by DVB devices

Parameters
struct inode * inode pointer to struct inode.

struct file * file pointer to struct file.

Description
Checks if a DVB devnode is still valid, and if the permissions are OK and increment
negative use count.

int dvb_generic_release(struct inode * inode, struct file * file)
Digital TV close function, used by DVB devices

Parameters
struct inode * inode pointer to struct inode.

struct file * file pointer to struct file.

Description
Checks if a DVB devnode is still valid, and if the permissions are OK and decrement
negative use count.

long dvb_generic_ioctl(struct file * file, unsigned int cmd, unsigned
long arg)

Digital TV close function, used by DVB devices

Parameters

53.2. Digital TV (DVB) devices 1861

Linux Driver-api Documentation

struct file * file pointer to struct file.

unsigned int cmd Ioctl name.

unsigned long arg Ioctl argument.

Description
Checks if a DVB devnode and struct dvbdev.kernel_ioctl is still valid. If so, calls
dvb_usercopy().

int dvb_usercopy(struct file * file, unsigned int cmd, unsigned long arg, int
(*func)(struct file *file, unsigned int cmd, void *arg))

copies data from/to userspace memory when an ioctl is issued.

Parameters
struct file * file Pointer to struct file.

unsigned int cmd Ioctl name.

unsigned long arg Ioctl argument.

int (*)(struct file *file, unsigned int cmd, void *arg) func function
that will actually handle the ioctl

Description
Ancillary function that uses ioctl direction and size to copy from userspace. Then,
it calls func, and, if needed, data is copied back to userspace.
struct i2c_client * dvb_module_probe(const char * module_name, const

char * name, struct i2c_adapter
* adap, unsigned char addr, void
* platform_data)

helper routine to probe an I2C module

Parameters
const char * module_name Name of the I2C module to be probed

const char * name Optional name for the I2C module. Used for debug purposes.
If NULL, defaults to module_name.

struct i2c_adapter * adap pointer to struct i2c_adapter that describes the
I2C adapter where the module will be bound.

unsigned char addr I2C address of the adapter, in 7-bit notation.

void * platform_data Platform data to be passed to the I2C module probed.

Description
This function binds an I2C device into the DVB core. Should be used by
all drivers that use I2C bus to control the hardware. A module bound with
dvb_module_probe() should use dvb_module_release() to unbind.

Note: In the past, DVB modules (mainly, frontends) were bound via
dvb_attach() macro, with does an ugly hack, using I2C low level functions. Such
usage is deprecated and will be removed soon. Instead, use this routine.

1862 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Return
On success, return an struct i2c_client, pointing the the bound I2C
device. NULL otherwise.

void dvb_module_release(struct i2c_client * client)
releases an I2C device allocated with dvb_module_probe().

Parameters
struct i2c_client * client pointer to struct i2c_client with the I2C client

to be released. can be NULL.

Description
This function should be used to free all resources reserved by
dvb_module_probe() and unbinding the I2C hardware.

dvb_attach(FUNCTION, ARGS)
attaches a DVB frontend into the DVB core.

Parameters
FUNCTION function on a frontend module to be called.

ARGS FUNCTION arguments.
Description
This ancillary function loads a frontend module in runtime and runs the FUNC-
TION function there, with ARGS. As it increments symbol usage cont, at unregis-
ter, dvb_detach() should be called.

Note: In the past, DVB modules (mainly, frontends) were bound via
dvb_attach() macro, with does an ugly hack, using I2C low level functions.
Such usage is deprecated and will be removed soon. Instead, you should use
dvb_module_probe().

dvb_detach(FUNC)
detaches a DVB frontend loaded via dvb_attach()

Parameters
FUNC attach function

Description
Decrements usage count for a function previously called via dvb_attach().

53.2. Digital TV (DVB) devices 1863

Linux Driver-api Documentation

Digital TV Ring buffer

Those routines implement ring buffers used to handle digital TV data and copy it
from/to userspace.

Note:
1) For performance reasons read and write routines don’t check buffer sizes
and/or number of bytes free/available. This has to be done before these rou-
tines are called. For example:

/* write @buflen: bytes */
free = dvb_ringbuffer_free(rbuf);
if (free >= buflen)

count = dvb_ringbuffer_write(rbuf, buffer, buflen);
else

/* do something */

/* read min. 1000, max. @bufsize: bytes */
avail = dvb_ringbuffer_avail(rbuf);
if (avail >= 1000)

count = dvb_ringbuffer_read(rbuf, buffer, min(avail,␣
↪→bufsize));
else

/* do something */

2) If there is exactly one reader and one writer, there is no need to lock read
or write operations. Two or more readers must be locked against each other.
Flushing the buffer counts as a read operation. Resetting the buffer counts
as a read and write operation. Two or more writers must be locked against
each other.

struct dvb_ringbuffer
Describes a ring buffer used at DVB framework

Definition

struct dvb_ringbuffer {
u8 *data;
ssize_t size;
ssize_t pread;
ssize_t pwrite;
int error;
wait_queue_head_t queue;
spinlock_t lock;

};

Members
data Area were the ringbuffer data is written

size size of the ringbuffer

pread next position to read

pwrite next position to write

1864 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

error used by ringbuffer clients to indicate that an error happened.

queue Wait queue used by ringbuffer clients to indicate when buffer was filled

lock Spinlock used to protect the ringbuffer

void dvb_ringbuffer_init(struct dvb_ringbuffer * rbuf, void * data,
size_t len)

initialize ring buffer, lock and queue

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

void * data pointer to the buffer where the data will be stored

size_t len bytes from ring buffer into buf
int dvb_ringbuffer_empty(struct dvb_ringbuffer * rbuf)

test whether buffer is empty

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

ssize_t dvb_ringbuffer_free(struct dvb_ringbuffer * rbuf)
returns the number of free bytes in the buffer

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

Return
number of free bytes in the buffer

ssize_t dvb_ringbuffer_avail(struct dvb_ringbuffer * rbuf)
returns the number of bytes waiting in the buffer

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

Return
number of bytes waiting in the buffer

void dvb_ringbuffer_reset(struct dvb_ringbuffer * rbuf)
resets the ringbuffer to initial state

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

Description
Resets the read and write pointers to zero and flush the buffer.

This counts as a read and write operation

void dvb_ringbuffer_flush(struct dvb_ringbuffer * rbuf)
flush buffer

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

53.2. Digital TV (DVB) devices 1865

Linux Driver-api Documentation

void dvb_ringbuffer_flush_spinlock_wakeup(struct dvb_ringbuffer
* rbuf)

flush buffer protected by spinlock and wake-up waiting task(s)

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

DVB_RINGBUFFER_PEEK(rbuf, offs)
peek at byte offs in the buffer

Parameters
rbuf pointer to struct dvb_ringbuffer

offs offset inside the ringbuffer

DVB_RINGBUFFER_SKIP(rbuf, num)
advance read ptr by num bytes

Parameters
rbuf pointer to struct dvb_ringbuffer

num number of bytes to advance

ssize_t dvb_ringbuffer_read_user(struct dvb_ringbuffer * rbuf, u8 __user
* buf, size_t len)

Reads a buffer into a user pointer

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

u8 __user * buf pointer to the buffer where the data will be stored

size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the userspace. So, it will
internally call copy_to_user().

Return
number of bytes transferred or -EFAULT

void dvb_ringbuffer_read(struct dvb_ringbuffer * rbuf, u8 * buf, size_t len)
Reads a buffer into a pointer

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

u8 * buf pointer to the buffer where the data will be stored

size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the Kernel space

Return
number of bytes transferred or -EFAULT

1866 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

DVB_RINGBUFFER_WRITE_BYTE(rbuf, byte)
write single byte to ring buffer

Parameters
rbuf pointer to struct dvb_ringbuffer

byte byte to write

ssize_t dvb_ringbuffer_write(struct dvb_ringbuffer * rbuf, const u8 * buf,
size_t len)

Writes a buffer into the ringbuffer

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

const u8 * buf pointer to the buffer where the data will be read

size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the Kernel space

Return
number of bytes transferred or -EFAULT

ssize_t dvb_ringbuffer_write_user(struct dvb_ringbuffer * rbuf, const u8
__user * buf, size_t len)

Writes a buffer received via a user pointer

Parameters
struct dvb_ringbuffer * rbuf pointer to struct dvb_ringbuffer

const u8 __user * buf pointer to the buffer where the data will be read

size_t len bytes from ring buffer into buf
Description
This variant assumes that the buffer is a memory at the userspace. So, it will
internally call copy_from_user().

Return
number of bytes transferred or -EFAULT

ssize_t dvb_ringbuffer_pkt_write(struct dvb_ringbuffer * rbuf, u8 * buf,
size_t len)

Write a packet into the ringbuffer.

Parameters
struct dvb_ringbuffer * rbuf Ringbuffer to write to.

u8 * buf Buffer to write.

size_t len Length of buffer (currently limited to 65535 bytes max).

Return
Number of bytes written, or -EFAULT, -ENOMEM, -EVINAL.

53.2. Digital TV (DVB) devices 1867

Linux Driver-api Documentation

ssize_t dvb_ringbuffer_pkt_read_user(struct dvb_ringbuffer * rbuf,
size_t idx, int offset, u8 __user
* buf, size_t len)

Read from a packet in the ringbuffer.

Parameters
struct dvb_ringbuffer * rbuf Ringbuffer concerned.

size_t idx Packet index as returned by dvb_ringbuffer_pkt_next().

int offset Offset into packet to read from.

u8 __user * buf Destination buffer for data.

size_t len Size of destination buffer.

Return
Number of bytes read, or -EFAULT.

Description

Note: unlike dvb_ringbuffer_read(), this does NOT update the read pointer in
the ringbuffer. You must use dvb_ringbuffer_pkt_dispose() to mark a packet
as no longer required.

ssize_t dvb_ringbuffer_pkt_read(struct dvb_ringbuffer * rbuf, size_t idx,
int offset, u8 * buf, size_t len)

Read from a packet in the ringbuffer.

Parameters
struct dvb_ringbuffer * rbuf Ringbuffer concerned.

size_t idx Packet index as returned by dvb_ringbuffer_pkt_next().

int offset Offset into packet to read from.

u8 * buf Destination buffer for data.

size_t len Size of destination buffer.

Note
unlike dvb_ringbuffer_read_user(), this DOES update the read pointer in the
ringbuffer.

Return
Number of bytes read, or -EFAULT.

void dvb_ringbuffer_pkt_dispose(struct dvb_ringbuffer * rbuf, size_t idx)
Dispose of a packet in the ring buffer.

Parameters
struct dvb_ringbuffer * rbuf Ring buffer concerned.

size_t idx Packet index as returned by dvb_ringbuffer_pkt_next().

1868 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

ssize_t dvb_ringbuffer_pkt_next(struct dvb_ringbuffer * rbuf, size_t idx,
size_t * pktlen)

Get the index of the next packet in a ringbuffer.

Parameters
struct dvb_ringbuffer * rbuf Ringbuffer concerned.

size_t idx Previous packet index, or -1 to return the first packet index.

size_t * pktlen On success, will be updated to contain the length of the packet
in bytes. returns Packet index (if >=0), or -1 if no packets available.

Digital TV VB2 handler

enum dvb_buf_type
types of Digital TV memory-mapped buffers

Constants
DVB_BUF_TYPE_CAPTURE buffer is filled by the Kernel, with a received Digital TV

stream

enum dvb_vb2_states
states to control VB2 state machine

Constants
DVB_VB2_STATE_NONE VB2 engine not initialized yet, init failed or VB2 was re-

leased.

DVB_VB2_STATE_INIT VB2 engine initialized.

DVB_VB2_STATE_REQBUFS Buffers were requested

DVB_VB2_STATE_STREAMON VB2 is streaming. Callers should not check it directly.
Instead, they should use dvb_vb2_is_streaming().

Note
Description
Callers should not touch at the state machine directly. This is handled inside
dvb_vb2.c.

struct dvb_buffer
video buffer information for v4l2.

Definition

struct dvb_buffer {
struct vb2_buffer vb;
struct list_head list;

};

Members
vb embedded struct vb2_buffer.

list list of struct dvb_buffer.

53.2. Digital TV (DVB) devices 1869

Linux Driver-api Documentation

struct dvb_vb2_ctx
control struct for VB2 handler

Definition

struct dvb_vb2_ctx {
struct vb2_queue vb_q;
struct mutex mutex;
spinlock_t slock;
struct list_head dvb_q;
struct dvb_buffer *buf;
int offset;
int remain;
int state;
int buf_siz;
int buf_cnt;
int nonblocking;
enum dmx_buffer_flags flags;
u32 count;
char name[DVB_VB2_NAME_MAX + 1];

};

Members
vb_q pointer to struct vb2_queue with videobuf2 queue.

mutex mutex to serialize vb2 operations. Used by vb2 core wait_prepare and
wait_finish operations.

slock spin lock used to protect buffer filling at dvb_vb2.c.

dvb_q List of buffers that are not filled yet.

buf Pointer to the buffer that are currently being filled.

offset index to the next position at the buf to be filled.
remain How many bytes are left to be filled at buf.
state bitmask of buffer states as defined by enum dvb_vb2_states.

buf_siz size of each VB2 buffer.

buf_cnt number of VB2 buffers.

nonblocking If different than zero, device is operating on non-blocking mode.

flags buffer flags as defined by enum dmx_buffer_flags. Filled only at
DMX_DQBUF. DMX_QBUF should zero this field.

count monotonic counter for filled buffers. Helps to identify data stream loses.
Filled only at DMX_DQBUF. DMX_QBUF should zero this field.

name name of the device type. Currently, it can either be“dvr”or“demux_filter”
.

int dvb_vb2_init(struct dvb_vb2_ctx * ctx, const char * name,
int non_blocking)

initializes VB2 handler

Parameters

1870 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct dvb_vb2_ctx * ctx control struct for VB2 handler

const char * name name for the VB2 handler

int non_blocking if not zero, it means that the device is at non-blocking mode

int dvb_vb2_release(struct dvb_vb2_ctx * ctx)
Releases the VB2 handler allocated resources and put ctx at
DVB_VB2_STATE_NONE state.

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

int dvb_vb2_is_streaming(struct dvb_vb2_ctx * ctx)
checks if the VB2 handler is streaming

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

Return
0 if not streaming, 1 otherwise.

int dvb_vb2_fill_buffer(struct dvb_vb2_ctx * ctx, const unsigned
char * src, int len, enum dmx_buffer_flags
* buffer_flags)

fills a VB2 buffer

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

const unsigned char * src place where the data is stored

int len number of bytes to be copied from src
enum dmx_buffer_flags * buffer_flags pointer to buffer flags as defined by

enum dmx_buffer_flags. can be NULL.

__poll_t dvb_vb2_poll(struct dvb_vb2_ctx * ctx, struct file * file, poll_table
* wait)

Wrapper to vb2_core_streamon() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

struct file * file struct file argument passed to the poll file operation han-
dler.

poll_table * wait poll_table wait argument passed to the poll file operation
handler.

Description
Implements poll syscall() logic.

int dvb_vb2_stream_on(struct dvb_vb2_ctx * ctx)
Wrapper to vb2_core_streamon() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

53.2. Digital TV (DVB) devices 1871

Linux Driver-api Documentation

Description
Starts dvb streaming

int dvb_vb2_stream_off(struct dvb_vb2_ctx * ctx)
Wrapper to vb2_core_streamoff() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

Description
Stops dvb streaming

int dvb_vb2_reqbufs(struct dvb_vb2_ctx * ctx, struct dmx_requestbuffers
* req)

Wrapper to vb2_core_reqbufs() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

struct dmx_requestbuffers * req struct dmx_requestbuffers passed from
userspace in order to handle DMX_REQBUFS.

Description
Initiate streaming by requesting a number of buffers. Also used to free previously
requested buffers, is req->count is zero.

int dvb_vb2_querybuf(struct dvb_vb2_ctx * ctx, struct dmx_buffer * b)
Wrapper to vb2_core_querybuf() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

struct dmx_buffer * b struct dmx_buffer passed from userspace in order to
handle DMX_QUERYBUF.

int dvb_vb2_expbuf(struct dvb_vb2_ctx * ctx, struct dmx_exportbuffer
* exp)

Wrapper to vb2_core_expbuf() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

struct dmx_exportbuffer * exp struct dmx_exportbuffer passed from
userspace in order to handle DMX_EXPBUF.

Description
Export a buffer as a file descriptor.

int dvb_vb2_qbuf(struct dvb_vb2_ctx * ctx, struct dmx_buffer * b)
Wrapper to vb2_core_qbuf() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

1872 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct dmx_buffer * b struct dmx_buffer passed from userspace in order to
handle DMX_QBUF.

Description
Queue a Digital TV buffer as requested by userspace

int dvb_vb2_dqbuf(struct dvb_vb2_ctx * ctx, struct dmx_buffer * b)
Wrapper to vb2_core_dqbuf() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

struct dmx_buffer * b struct dmx_buffer passed from userspace in order to
handle DMX_DQBUF.

Description
Dequeue a Digital TV buffer to the userspace

int dvb_vb2_mmap(struct dvb_vb2_ctx * ctx, struct vm_area_struct * vma)
Wrapper to vb2_mmap() for Digital TV buffer handling.

Parameters
struct dvb_vb2_ctx * ctx control struct for VB2 handler

struct vm_area_struct * vma pointer to struct vm_area_struct with the vma
passed to the mmap file operation handler in the driver.

Description
map Digital TV video buffers into application address space.

53.2.2 Digital TV Frontend kABI

Digital TV Frontend

The Digital TV Frontend kABI defines a driver-internal interface for registering
low-level, hardware specific driver to a hardware independent frontend layer. It
is only of interest for Digital TV device driver writers. The header file for this API
is named dvb_frontend.h and located in include/media/.

Demodulator driver

The demodulator driver is responsible for talking with the decoding part of the
hardware. Such driver should implement dvb_frontend_ops, which tells what
type of digital TV standards are supported, and points to a series of functions that
allow the DVB core to command the hardware via the code under include/media/
dvb_frontend.c.

A typical example of such struct in a driver foo is:

53.2. Digital TV (DVB) devices 1873

Linux Driver-api Documentation

static struct dvb_frontend_ops foo_ops = {
.delsys = { SYS_DVBT, SYS_DVBT2, SYS_DVBC_ANNEX_A },
.info = {

.name = "foo DVB-T/T2/C driver",

.caps = FE_CAN_FEC_1_2 |
FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 |
FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_QAM_16 |
FE_CAN_QAM_32 |
FE_CAN_QAM_64 |
FE_CAN_QAM_128 |
FE_CAN_QAM_256 |
FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO |
FE_CAN_MUTE_TS |
FE_CAN_2G_MODULATION,

.frequency_min = 42000000, /* Hz */

.frequency_max = 1002000000, /* Hz */

.symbol_rate_min = 870000,

.symbol_rate_max = 11700000
},
.init = foo_init,
.sleep = foo_sleep,
.release = foo_release,
.set_frontend = foo_set_frontend,
.get_frontend = foo_get_frontend,
.read_status = foo_get_status_and_stats,
.tune = foo_tune,
.i2c_gate_ctrl = foo_i2c_gate_ctrl,
.get_frontend_algo = foo_get_algo,

};

A typical example of such struct in a driver bar meant to be used on Satellite TV
reception is:

static const struct dvb_frontend_ops bar_ops = {
.delsys = { SYS_DVBS, SYS_DVBS2 },
.info = {

.name = "Bar DVB-S/S2 demodulator",

.frequency_min = 500000, /* KHz */

.frequency_max = 2500000, /* KHz */

.frequency_stepsize = 0,

.symbol_rate_min = 1000000,

.symbol_rate_max = 45000000,

.symbol_rate_tolerance = 500,

.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK,

},
.init = bar_init,

(continues on next page)

1874 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
.sleep = bar_sleep,
.release = bar_release,
.set_frontend = bar_set_frontend,
.get_frontend = bar_get_frontend,
.read_status = bar_get_status_and_stats,
.i2c_gate_ctrl = bar_i2c_gate_ctrl,
.get_frontend_algo = bar_get_algo,
.tune = bar_tune,

/* Satellite-specific */
.diseqc_send_master_cmd = bar_send_diseqc_msg,
.diseqc_send_burst = bar_send_burst,
.set_tone = bar_set_tone,
.set_voltage = bar_set_voltage,

};

Note:
1) For satellite digital TV standards (DVB-S, DVB-S2, ISDB-S), the frequencies
are specified in kHz, while, for terrestrial and cable standards, they’re spec-
ified in Hz. Due to that, if the same frontend supports both types, you’ll need
to have two separate dvb_frontend_ops structures, one for each standard.

2) The .i2c_gate_ctrl field is present only when the hardware has allows con-
trolling an I2C gate (either directly of via some GPIO pin), in order to remove
the tuner from the I2C bus after a channel is tuned.

3) All new drivers should implement the DVBv5 statistics via .read_status. Yet,
there are a number of callbacks meant to get statistics for signal strength,
S/N and UCB. Those are there to provide backward compatibility with legacy
applications that don’t support the DVBv5 API. Implementing those callbacks
are optional. Those callbacks may be removed in the future, after we have all
existing drivers supporting DVBv5 stats.

4) Other callbacks are required for satellite TV standards, in order to con-
trol LNBf and DiSEqC: .diseqc_send_master_cmd, .diseqc_send_burst, .
set_tone, .set_voltage.

The include/media/dvb_frontend.c has a kernel thread which is responsible for
tuning the device. It supports multiple algorithms to detect a channel, as defined
at enum dvbfe_algo().

The algorithm to be used is obtained via .get_frontend_algo. If the driver doesn’t
fill its field at struct dvb_frontend_ops, it will default to DVBFE_ALGO_SW, meaning
that the dvb-core will do a zigzag when tuning, e. g. it will try first to use the
specified center frequency f, then, it will do f + Δ, f - Δ, f + 2 x Δ, f - 2 x Δ and
so on.

If the hardware has internally a some sort of zigzag algorithm, you should define
a .get_frontend_algo function that would return DVBFE_ALGO_HW.

Note: The core frontend support also supports a third type (DVBFE_ALGO_CUSTOM),
in order to allow the driver to define its own hardware-assisted algorithm. Very few

53.2. Digital TV (DVB) devices 1875

Linux Driver-api Documentation

hardware need to use it nowadays. Using DVBFE_ALGO_CUSTOM require to provide
other function callbacks at struct dvb_frontend_ops.

Attaching frontend driver to the bridge driver

Before using the Digital TV frontend core, the bridge driver should attach the
frontend demod, tuner and SEC devices and call dvb_register_frontend(), in
order to register the new frontend at the subsystem. At device detach/removal,
the bridge driver should call dvb_unregister_frontend() to remove the frontend
from the core and then dvb_frontend_detach() to free the memory allocated by
the frontend drivers.

The drivers should also call dvb_frontend_suspend() as part of their handler for
the device_driver.suspend(), and dvb_frontend_resume() as part of their han-
dler for device_driver.resume().

A few other optional functions are provided to handle some special cases.

Digital TV Frontend statistics

Introduction

Digital TV frontends provide a range of statistics meant to help tuning the device
and measuring the quality of service.

For each statistics measurement, the driver should set the type of scale used, or
FE_SCALE_NOT_AVAILABLE if the statistics is not available on a given time. Drivers
should also provide the number of statistics for each type. that’s usually 1 for
most video standards1.

Drivers should initialize each statistic counters with length and scale at its init
code. For example, if the frontend provides signal strength, it should have, on its
init code:

struct dtv_frontend_properties *c = &state->fe.dtv_property_cache;

c->strength.len = 1;
c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;

And, when the statistics got updated, set the scale:

c->strength.stat[0].scale = FE_SCALE_DECIBEL;
c->strength.stat[0].uvalue = strength;

1 For ISDB-T, it may provide both a global statistics and a per-layer set of statistics. On such
cases, len should be equal to 4. The first value corresponds to the global stat; the other ones to each
layer, e. g.:

• c->cnr.stat[0] for global S/N carrier ratio,
• c->cnr.stat[1] for Layer A S/N carrier ratio,
• c->cnr.stat[2] for layer B S/N carrier ratio,
• c->cnr.stat[3] for layer C S/N carrier ratio.

1876 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Note: Please prefer to use FE_SCALE_DECIBEL instead of FE_SCALE_RELATIVE for
signal strength and CNR measurements.

Groups of statistics

There are several groups of statistics currently supported:

Signal strength (DTV-STAT-SIGNAL-STRENGTH)
• Measures the signal strength level at the analog part of the tuner or de-
mod.

• Typically obtained from the gain applied to the tuner and/or frontend in
order to detect the carrier. When no carrier is detected, the gain is at
the maximum value (so, strength is on its minimal).

• As the gain is visible through the set of registers that adjust the gain,
typically, this statistics is always available2.

• Drivers should try to make it available all the times, as these statistics
can be used when adjusting an antenna position and to check for troubles
at the cabling.

Carrier Signal to Noise ratio (DTV-STAT-CNR)
• Signal to Noise ratio for the main carrier.

• Signal to Noise measurement depends on the device. On some hardware,
it is available when themain carrier is detected. On those hardware, CNR
measurement usually comes from the tuner (e. g. after FE_HAS_CARRIER,
see fe_status).

On other devices, it requires inner FEC decoding, as the frontend mea-
sures it indirectly from other parameters (e. g. after FE_HAS_VITERBI,
see fe_status).

Having it available after inner FEC is more common.

Bit counts post-FEC (DTV-STAT-POST-ERROR-BIT-COUNT and DTV-STAT-POST-TOTAL-BIT-COUNT)

• Those counters measure the number of bits and bit errors errors after the
forward error correction (FEC) on the inner coding block (after Viterbi,
LDPC or other inner code).

• Due to its nature, those statistics depend on full coding lock (e. g. after
FE_HAS_SYNC or after FE_HAS_LOCK, see fe_status).

Bit counts pre-FEC (DTV-STAT-PRE-ERROR-BIT-COUNT and DTV-STAT-PRE-TOTAL-BIT-COUNT)

2 On a few devices, the gain keeps floating if there is no carrier. On such devices, strength report
should check first if carrier is detected at the tuner (FE_HAS_CARRIER, see fe_status), and otherwise
return the lowest possible value.

53.2. Digital TV (DVB) devices 1877

Linux Driver-api Documentation

• Those counters measure the number of bits and bit errors errors before
the forward error correction (FEC) on the inner coding block (before
Viterbi, LDPC or other inner code).

• Not all frontends provide this kind of statistics.

• Due to its nature, those statistics depend on inner coding lock (e. g. after
FE_HAS_VITERBI, see fe_status).

Block counts (DTV-STAT-ERROR-BLOCK-COUNT and DTV-STAT-TOTAL-BLOCK-COUNT)

• Those counters measure the number of blocks and block errors errors
after the forward error correction (FEC) on the inner coding block (before
Viterbi, LDPC or other inner code).

• Due to its nature, those statistics depend on full coding lock (e. g. after
FE_HAS_SYNC or after FE_HAS_LOCK, see fe_status).

Note: All counters should be monotonically increased as they’re collected from
the hardware.

A typical example of the logic that handle status and statistics is:

static int foo_get_status_and_stats(struct dvb_frontend *fe)
{

struct foo_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;

int rc;
enum fe_status *status;

/* Both status and strength are always available */
rc = foo_read_status(fe, &status);
if (rc < 0)

return rc;

rc = foo_read_strength(fe);
if (rc < 0)

return rc;

/* Check if CNR is available */
if (!(fe->status & FE_HAS_CARRIER))

return 0;

rc = foo_read_cnr(fe);
if (rc < 0)

return rc;

/* Check if pre-BER stats are available */
if (!(fe->status & FE_HAS_VITERBI))

return 0;

rc = foo_get_pre_ber(fe);
if (rc < 0)

return rc;
(continues on next page)

1878 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)

/* Check if post-BER stats are available */
if (!(fe->status & FE_HAS_SYNC))

return 0;

rc = foo_get_post_ber(fe);
if (rc < 0)

return rc;
}

static const struct dvb_frontend_ops ops = {
/* ... */
.read_status = foo_get_status_and_stats,

};

Statistics collection

On almost all frontend hardware, the bit and byte counts are stored by the hard-
ware after a certain amount of time or after the total bit/block counter reaches
a certain value (usually programmable), for example, on every 1000 ms or after
receiving 1,000,000 bits.

So, if you read the registers too soon, you’ll end by reading the same value as in
the previous reading, causing the monotonic value to be incremented too often.

Drivers should take the responsibility to avoid too often reads. That can be done
using two approaches:

if the driver have a bit that indicates when a collected data is ready

Driver should check such bit before making the statistics available.

An example of such behavior can be found at this code snippet (adapted from
mb86a20s driver’s logic):
static int foo_get_pre_ber(struct dvb_frontend *fe)
{

struct foo_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int rc, bit_error;

/* Check if the BER measures are already available */
rc = foo_read_u8(state, 0x54);
if (rc < 0)

return rc;

if (!rc)
return 0;

/* Read Bit Error Count */
bit_error = foo_read_u32(state, 0x55);
if (bit_error < 0)

(continues on next page)

53.2. Digital TV (DVB) devices 1879

Linux Driver-api Documentation

(continued from previous page)
return bit_error;

/* Read Total Bit Count */
rc = foo_read_u32(state, 0x51);
if (rc < 0)

return rc;

c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_error.stat[0].uvalue += bit_error;
c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_count.stat[0].uvalue += rc;

return 0;
}

If the driver doesn’t provide a statistics available check bit

A few devices, however, may not provide a way to check if the stats are available
(or the way to check it is unknown). They may not even provide a way to directly
read the total number of bits or blocks.

On those devices, the driver need to ensure that it won’t be reading from the
register too often and/or estimate the total number of bits/blocks.

On such drivers, a typical routine to get statistics would be like (adapted from
dib8000 driver’s logic):
struct foo_state {

/* ... */

unsigned long per_jiffies_stats;
}

static int foo_get_pre_ber(struct dvb_frontend *fe)
{

struct foo_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int rc, bit_error;
u64 bits;

/* Check if time for stats was elapsed */
if (!time_after(jiffies, state->per_jiffies_stats))

return 0;

/* Next stat should be collected in 1000 ms */
state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);

/* Read Bit Error Count */
bit_error = foo_read_u32(state, 0x55);
if (bit_error < 0)

return bit_error;

/*
* On this particular frontend, there's no register that

(continues on next page)

1880 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
* would provide the number of bits per 1000ms sample. So,
* some function would calculate it based on DTV properties
*/

bits = get_number_of_bits_per_1000ms(fe);

c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_error.stat[0].uvalue += bit_error;
c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_count.stat[0].uvalue += bits;

return 0;
}

Please notice that, on both cases, we’re getting the statistics using the
dvb_frontend_ops .read_status callback. The rationale is that the frontend core
will automatically call this function periodically (usually, 3 times per second, when
the frontend is locked).

That warrants that we won’t miss to collect a counter and increment themonotonic
stats at the right time.

Digital TV Frontend functions and types

struct dvb_frontend_tune_settings
parameters to adjust frontend tuning

Definition

struct dvb_frontend_tune_settings {
int min_delay_ms;
int step_size;
int max_drift;

};

Members
min_delay_ms minimum delay for tuning, in ms

step_size step size between two consecutive frequencies

max_drift maximum drift

NOTE
step_size is in Hz, for terrestrial/cable or kHz for satellite

struct dvb_tuner_info
Frontend name and min/max ranges/bandwidths

Definition

struct dvb_tuner_info {
char name[128];
u32 frequency_min_hz;
u32 frequency_max_hz;
u32 frequency_step_hz;

(continues on next page)

53.2. Digital TV (DVB) devices 1881

Linux Driver-api Documentation

(continued from previous page)
u32 bandwidth_min;
u32 bandwidth_max;
u32 bandwidth_step;

};

Members
name name of the Frontend

frequency_min_hz minimal frequency supported in Hz

frequency_max_hz maximum frequency supported in Hz

frequency_step_hz frequency step in Hz

bandwidth_min minimal frontend bandwidth supported

bandwidth_max maximum frontend bandwidth supported

bandwidth_step frontend bandwidth step

struct analog_parameters
Parameters to tune into an analog/radio channel

Definition

struct analog_parameters {
unsigned int frequency;
unsigned int mode;
unsigned int audmode;
u64 std;

};

Members
frequency Frequency used by analog TV tuner (either in 62.5 kHz step, for TV, or

62.5 Hz for radio)

mode Tuner mode, as defined on enum v4l2_tuner_type

audmode Audio mode as defined for the rxsubchans field at videodev2.h, e. g.
V4L2_TUNER_MODE_*

std TV standard bitmap as defined at videodev2.h, e. g. V4L2_STD_*

Description
Hybrid tuners should be supported by both V4L2 and DVB APIs. This struct con-
tains the data that are used by the V4L2 side. To avoid dependencies from V4L2
headers, all enums here are declared as integers.

enum dvbfe_algo
defines the algorithm used to tune into a channel

Constants
DVBFE_ALGO_HW Hardware Algorithm - Devices that support this algorithm do ev-

erything in hardware and no software support is needed to handle them. Re-
questing these devices to LOCK is the only thing required, device is supposed
to do everything in the hardware.

1882 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

DVBFE_ALGO_SW Software Algorithm - These are dumb devices, that require soft-
ware to do everything

DVBFE_ALGO_CUSTOM Customizable Agorithm - Devices having this algorithm can
be customized to have specific algorithms in the frontend driver, rather than
simply doing a software zig-zag. In this case the zigzag maybe hardware
assisted or it maybe completely done in hardware. In all cases, usage of this
algorithm, in conjunction with the search and track callbacks, utilizes the
driver specific algorithm.

DVBFE_ALGO_RECOVERY Recovery Algorithm - These devices have AUTO recovery
capabilities from LOCK failure

enum dvbfe_search
search callback possible return status

Constants
DVBFE_ALGO_SEARCH_SUCCESS The frontend search algorithm completed and re-

turned successfully

DVBFE_ALGO_SEARCH_ASLEEP The frontend search algorithm is sleeping

DVBFE_ALGO_SEARCH_FAILED The frontend search for a signal failed

DVBFE_ALGO_SEARCH_INVALID The frontend search algorithm was probably sup-
plied with invalid parameters and the search is an invalid one

DVBFE_ALGO_SEARCH_AGAIN The frontend search algorithm was requested to
search again

DVBFE_ALGO_SEARCH_ERROR The frontend search algorithm failed due to some er-
ror

struct dvb_tuner_ops
Tuner information and callbacks

Definition

struct dvb_tuner_ops {
struct dvb_tuner_info info;
void (*release)(struct dvb_frontend *fe);
int (*init)(struct dvb_frontend *fe);
int (*sleep)(struct dvb_frontend *fe);
int (*suspend)(struct dvb_frontend *fe);
int (*resume)(struct dvb_frontend *fe);
int (*set_params)(struct dvb_frontend *fe);
int (*set_analog_params)(struct dvb_frontend *fe, struct analog_

↪→parameters *p);
int (*set_config)(struct dvb_frontend *fe, void *priv_cfg);
int (*get_frequency)(struct dvb_frontend *fe, u32 *frequency);
int (*get_bandwidth)(struct dvb_frontend *fe, u32 *bandwidth);
int (*get_if_frequency)(struct dvb_frontend *fe, u32 *frequency);

#define TUNER_STATUS_LOCKED 1;
#define TUNER_STATUS_STEREO 2;

int (*get_status)(struct dvb_frontend *fe, u32 *status);
int (*get_rf_strength)(struct dvb_frontend *fe, u16 *strength);
int (*get_afc)(struct dvb_frontend *fe, s32 *afc);
int (*calc_regs)(struct dvb_frontend *fe, u8 *buf, int buf_len);

(continues on next page)

53.2. Digital TV (DVB) devices 1883

Linux Driver-api Documentation

(continued from previous page)
int (*set_frequency)(struct dvb_frontend *fe, u32 frequency);
int (*set_bandwidth)(struct dvb_frontend *fe, u32 bandwidth);

};

Members
info embedded struct dvb_tuner_info with tuner properties

release callback function called when frontend is detached. drivers should free
any allocated memory.

init callback function used to initialize the tuner device.

sleep callback function used to put the tuner to sleep.

suspend callback function used to inform that the Kernel will suspend.

resume callback function used to inform that the Kernel is resuming from suspend.

set_params callback function used to inform the tuner to tune into a dig-
ital TV channel. The properties to be used are stored at struct
dvb_frontend.dtv_property_cache. The tuner demod can change the param-
eters to reflect the changes needed for the channel to be tuned, and update
statistics. This is the recommended way to set the tuner parameters and
should be used on newer drivers.

set_analog_params callback function used to tune into an analog TV channel on
hybrid tuners. It passes analog_parameters to the driver.

set_config callback function used to send some tuner-specific parameters.

get_frequency get the actual tuned frequency

get_bandwidth get the bandwidth used by the low pass filters

get_if_frequency get the Intermediate Frequency, in Hz. For baseband, should
return 0.

get_status returns the frontend lock status

get_rf_strength returns the RF signal strength. Used mostly to support ana-
log TV and radio. Digital TV should report, instead, via DVBv5 API (struct
dvb_frontend.dtv_property_cache).

get_afc Used only by analog TV core. Reports the frequency drift due to AFC.

calc_regs callback function used to pass register data settings for simple tuners.
Shouldn’t be used on newer drivers.

set_frequency Set a new frequency. Shouldn’t be used on newer drivers.
set_bandwidth Set a new frequency. Shouldn’t be used on newer drivers.
NOTE
frequencies used on get_frequency and set_frequency are in Hz for terres-
trial/cable or kHz for satellite.

struct analog_demod_info
Information struct for analog TV part of the demod

1884 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Definition

struct analog_demod_info {
char *name;

};

Members
name Name of the analog TV demodulator

struct analog_demod_ops
Demodulation information and callbacks for analog TV and radio

Definition

struct analog_demod_ops {
struct analog_demod_info info;
void (*set_params)(struct dvb_frontend *fe, struct analog_parameters␣

↪→*params);
int (*has_signal)(struct dvb_frontend *fe, u16 *signal);
int (*get_afc)(struct dvb_frontend *fe, s32 *afc);
void (*tuner_status)(struct dvb_frontend *fe);
void (*standby)(struct dvb_frontend *fe);
void (*release)(struct dvb_frontend *fe);
int (*i2c_gate_ctrl)(struct dvb_frontend *fe, int enable);
int (*set_config)(struct dvb_frontend *fe, void *priv_cfg);

};

Members
info pointer to struct analog_demod_info

set_params callback function used to inform the demod to set the demodulator
parameters needed to decode an analog or radio channel. The properties are
passed via struct analog_params.

has_signal returns 0xffff if has signal, or 0 if it doesn’t.
get_afc Used only by analog TV core. Reports the frequency drift due to AFC.

tuner_status callback function that returns tuner status bits, e. g.
TUNER_STATUS_LOCKED and TUNER_STATUS_STEREO.

standby set the tuner to standby mode.

release callback function called when frontend is detached. drivers should free
any allocated memory.

i2c_gate_ctrl controls the I2C gate. Newer drivers should use I2C mux support
instead.

set_config callback function used to send some tuner-specific parameters.

struct dvb_frontend_internal_info
Frontend properties and capabilities

Definition

struct dvb_frontend_internal_info {
char name[128];

(continues on next page)

53.2. Digital TV (DVB) devices 1885

Linux Driver-api Documentation

(continued from previous page)
u32 frequency_min_hz;
u32 frequency_max_hz;
u32 frequency_stepsize_hz;
u32 frequency_tolerance_hz;
u32 symbol_rate_min;
u32 symbol_rate_max;
u32 symbol_rate_tolerance;
enum fe_caps caps;

};

Members
name Name of the frontend

frequency_min_hz Minimal frequency supported by the frontend.

frequency_max_hz Minimal frequency supported by the frontend.

frequency_stepsize_hz All frequencies are multiple of this value.

frequency_tolerance_hz Frequency tolerance.

symbol_rate_min Minimal symbol rate, in bauds (for Cable/Satellite systems).

symbol_rate_max Maximal symbol rate, in bauds (for Cable/Satellite systems).

symbol_rate_tolerance Maximal symbol rate tolerance, in ppm (for Ca-
ble/Satellite systems).

caps Capabilities supported by the frontend, as specified in enum fe_caps.

struct dvb_frontend_ops
Demodulation information and callbacks for ditialt TV

Definition

struct dvb_frontend_ops {
struct dvb_frontend_internal_info info;
u8 delsys[MAX_DELSYS];
void (*detach)(struct dvb_frontend *fe);
void (*release)(struct dvb_frontend* fe);
void (*release_sec)(struct dvb_frontend* fe);
int (*init)(struct dvb_frontend* fe);
int (*sleep)(struct dvb_frontend* fe);
int (*write)(struct dvb_frontend* fe, const u8 buf[], int len);
int (*tune)(struct dvb_frontend* fe,bool re_tune,unsigned int mode_flags,

↪→unsigned int *delay, enum fe_status *status);
enum dvbfe_algo (*get_frontend_algo)(struct dvb_frontend *fe);
int (*set_frontend)(struct dvb_frontend *fe);
int (*get_tune_settings)(struct dvb_frontend* fe, struct dvb_frontend_

↪→tune_settings* settings);
int (*get_frontend)(struct dvb_frontend *fe, struct dtv_frontend_

↪→properties *props);
int (*read_status)(struct dvb_frontend *fe, enum fe_status *status);
int (*read_ber)(struct dvb_frontend* fe, u32* ber);
int (*read_signal_strength)(struct dvb_frontend* fe, u16* strength);
int (*read_snr)(struct dvb_frontend* fe, u16* snr);
int (*read_ucblocks)(struct dvb_frontend* fe, u32* ucblocks);
int (*diseqc_reset_overload)(struct dvb_frontend* fe);

(continues on next page)

1886 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
int (*diseqc_send_master_cmd)(struct dvb_frontend* fe, struct dvb_diseqc_

↪→master_cmd* cmd);
int (*diseqc_recv_slave_reply)(struct dvb_frontend* fe, struct dvb_

↪→diseqc_slave_reply* reply);
int (*diseqc_send_burst)(struct dvb_frontend *fe, enum fe_sec_mini_cmd␣

↪→minicmd);
int (*set_tone)(struct dvb_frontend *fe, enum fe_sec_tone_mode tone);
int (*set_voltage)(struct dvb_frontend *fe, enum fe_sec_voltage voltage);
int (*enable_high_lnb_voltage)(struct dvb_frontend* fe, long arg);
int (*dishnetwork_send_legacy_command)(struct dvb_frontend* fe, unsigned␣

↪→long cmd);
int (*i2c_gate_ctrl)(struct dvb_frontend* fe, int enable);
int (*ts_bus_ctrl)(struct dvb_frontend* fe, int acquire);
int (*set_lna)(struct dvb_frontend *);
enum dvbfe_search (*search)(struct dvb_frontend *fe);
struct dvb_tuner_ops tuner_ops;
struct analog_demod_ops analog_ops;

};

Members
info embedded struct dvb_tuner_info with tuner properties

delsys Delivery systems supported by the frontend

detach callback function called when frontend is detached. drivers should clean
up, but not yet free the struct dvb_frontend allocation.

release callback function called when frontend is ready to be freed. drivers
should free any allocated memory.

release_sec callback function requesting that the Satellite Equipment Control
(SEC) driver to release and free any memory allocated by the driver.

init callback function used to initialize the tuner device.

sleep callback function used to put the tuner to sleep.

write callback function used by some demod legacy drivers to allow other drivers
to write data into their registers. Should not be used on new drivers.

tune callback function used by demod drivers that useDVBFE_ALGO_HW to tune
into a frequency.

get_frontend_algo returns the desired hardware algorithm.

set_frontend callback function used to inform the demod to set the parameters
for demodulating a digital TV channel. The properties to be used are stored
at struct dvb_frontend.dtv_property_cache. The demod can change the pa-
rameters to reflect the changes needed for the channel to be decoded, and
update statistics.

get_tune_settings callback function

get_frontend callback function used to inform the parameters ac-
tuall in use. The properties to be used are stored at struct
dvb_frontend.dtv_property_cache and update statistics. Please notice
that it should not return an error code if the statistics are not available
because the demog is not locked.

53.2. Digital TV (DVB) devices 1887

Linux Driver-api Documentation

read_status returns the locking status of the frontend.

read_ber legacy callback function to return the bit error rate. Newer drivers
should provide such info via DVBv5 API, e. g. set_frontend;/get_frontend,
implementing this callback only if DVBv3 API compatibility is wanted.

read_signal_strength legacy callback function to return the signal strength.
Newer drivers should provide such info via DVBv5 API, e. g.
set_frontend/get_frontend, implementing this callback only if DVBv3 API
compatibility is wanted.

read_snr legacy callback function to return the Signal/Noise rate. Newer drivers
should provide such info via DVBv5 API, e. g. set_frontend/get_frontend,
implementing this callback only if DVBv3 API compatibility is wanted.

read_ucblocks legacy callback function to return the Uncorrected Error
Blocks. Newer drivers should provide such info via DVBv5 API, e. g.
set_frontend/get_frontend, implementing this callback only if DVBv3 API
compatibility is wanted.

diseqc_reset_overload callback function to implement the
FE_DISEQC_RESET_OVERLOAD() ioctl (only Satellite)

diseqc_send_master_cmd callback function to implement the
FE_DISEQC_SEND_MASTER_CMD() ioctl (only Satellite).

diseqc_recv_slave_reply callback function to implement the
FE_DISEQC_RECV_SLAVE_REPLY() ioctl (only Satellite)

diseqc_send_burst callback function to implement the
FE_DISEQC_SEND_BURST() ioctl (only Satellite).

set_tone callback function to implement the FE_SET_TONE() ioctl (only Satel-
lite).

set_voltage callback function to implement the FE_SET_VOLTAGE() ioctl (only
Satellite).

enable_high_lnb_voltage callback function to implement the
FE_ENABLE_HIGH_LNB_VOLTAGE() ioctl (only Satellite).

dishnetwork_send_legacy_command callback function to implement the
FE_DISHNETWORK_SEND_LEGACY_CMD() ioctl (only Satellite). Drivers
should not use this, except when the DVB core emulation fails to provide
proper support (e.g. if set_voltage takes more than 8ms to work), and when
backward compatibility with this legacy API is required.

i2c_gate_ctrl controls the I2C gate. Newer drivers should use I2C mux support
instead.

ts_bus_ctrl callback function used to take control of the TS bus.

set_lna callback function to power on/off/auto the LNA.

search callback function used on some custom algo search algos.

tuner_ops pointer to struct dvb_tuner_ops

analog_ops pointer to struct analog_demod_ops

1888 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct dtv_frontend_properties
contains a list of properties that are specific to a digital TV standard.

Definition

struct dtv_frontend_properties {
u32 frequency;
enum fe_modulation modulation;
enum fe_sec_voltage voltage;
enum fe_sec_tone_mode sectone;
enum fe_spectral_inversion inversion;
enum fe_code_rate fec_inner;
enum fe_transmit_mode transmission_mode;
u32 bandwidth_hz;
enum fe_guard_interval guard_interval;
enum fe_hierarchy hierarchy;
u32 symbol_rate;
enum fe_code_rate code_rate_HP;
enum fe_code_rate code_rate_LP;
enum fe_pilot pilot;
enum fe_rolloff rolloff;
enum fe_delivery_system delivery_system;
enum fe_interleaving interleaving;
u8 isdbt_partial_reception;
u8 isdbt_sb_mode;
u8 isdbt_sb_subchannel;
u32 isdbt_sb_segment_idx;
u32 isdbt_sb_segment_count;
u8 isdbt_layer_enabled;
struct {

u8 segment_count;
enum fe_code_rate fec;
enum fe_modulation modulation;
u8 interleaving;

} layer[3];
u32 stream_id;
u32 scrambling_sequence_index;
u8 atscmh_fic_ver;
u8 atscmh_parade_id;
u8 atscmh_nog;
u8 atscmh_tnog;
u8 atscmh_sgn;
u8 atscmh_prc;
u8 atscmh_rs_frame_mode;
u8 atscmh_rs_frame_ensemble;
u8 atscmh_rs_code_mode_pri;
u8 atscmh_rs_code_mode_sec;
u8 atscmh_sccc_block_mode;
u8 atscmh_sccc_code_mode_a;
u8 atscmh_sccc_code_mode_b;
u8 atscmh_sccc_code_mode_c;
u8 atscmh_sccc_code_mode_d;
u32 lna;
struct dtv_fe_stats strength;
struct dtv_fe_stats cnr;
struct dtv_fe_stats pre_bit_error;
struct dtv_fe_stats pre_bit_count;

(continues on next page)

53.2. Digital TV (DVB) devices 1889

Linux Driver-api Documentation

(continued from previous page)
struct dtv_fe_stats post_bit_error;
struct dtv_fe_stats post_bit_count;
struct dtv_fe_stats block_error;
struct dtv_fe_stats block_count;

};

Members
frequency frequency in Hz for terrestrial/cable or in kHz for Satellite

modulation Frontend modulation type

voltage SEC voltage (only Satellite)

sectone SEC tone mode (only Satellite)

inversion Spectral inversion

fec_inner Forward error correction inner Code Rate

transmission_mode Transmission Mode

bandwidth_hz Bandwidth, in Hz. A zero value means that userspace wants to
autodetect.

guard_interval Guard Interval

hierarchy Hierarchy

symbol_rate Symbol Rate

code_rate_HP high priority stream code rate

code_rate_LP low priority stream code rate

pilot Enable/disable/autodetect pilot tones

rolloff Rolloff factor (alpha)

delivery_system FE delivery system (e. g. digital TV standard)

interleaving interleaving

isdbt_partial_reception ISDB-T partial reception (only ISDB standard)

isdbt_sb_mode ISDB-T Sound Broadcast (SB) mode (only ISDB standard)

isdbt_sb_subchannel ISDB-T SB subchannel (only ISDB standard)

isdbt_sb_segment_idx ISDB-T SB segment index (only ISDB standard)

isdbt_sb_segment_count ISDB-T SB segment count (only ISDB standard)

isdbt_layer_enabled ISDB Layer enabled (only ISDB standard)

layer ISDB per-layer data (only ISDB standard)

layer.segment_count Segment Count;

layer.fec per layer code rate;

layer.modulation per layer modulation;

layer.interleaving per layer interleaving.

1890 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

stream_id If different than zero, enable substream filtering, if hardware supports
(DVB-S2 and DVB-T2).

scrambling_sequence_index Carries the index of the DVB-S2 physical layer
scrambling sequence.

atscmh_fic_ver Version number of the FIC (Fast Information Channel) signaling
data (only ATSC-M/H)

atscmh_parade_id Parade identification number (only ATSC-M/H)

atscmh_nog Number of MH groups per MH subframe for a designated parade
(only ATSC-M/H)

atscmh_tnog Total number of MH groups including all MH groups belonging to
all MH parades in one MH subframe (only ATSC-M/H)

atscmh_sgn Start group number (only ATSC-M/H)

atscmh_prc Parade repetition cycle (only ATSC-M/H)

atscmh_rs_frame_mode Reed Solomon (RS) frame mode (only ATSC-M/H)

atscmh_rs_frame_ensemble RS frame ensemble (only ATSC-M/H)

atscmh_rs_code_mode_pri RS code mode pri (only ATSC-M/H)

atscmh_rs_code_mode_sec RS code mode sec (only ATSC-M/H)

atscmh_sccc_block_mode Series Concatenated Convolutional Code (SCCC) Block
Mode (only ATSC-M/H)

atscmh_sccc_code_mode_a SCCC code mode A (only ATSC-M/H)

atscmh_sccc_code_mode_b SCCC code mode B (only ATSC-M/H)

atscmh_sccc_code_mode_c SCCC code mode C (only ATSC-M/H)

atscmh_sccc_code_mode_d SCCC code mode D (only ATSC-M/H)

lna Power ON/OFF/AUTO the Linear Now-noise Amplifier (LNA)

strength DVBv5 API statistics: Signal Strength

cnr DVBv5 API statistics: Signal to Noise ratio of the (main) carrier

pre_bit_error DVBv5 API statistics: pre-Viterbi bit error count

pre_bit_count DVBv5 API statistics: pre-Viterbi bit count

post_bit_error DVBv5 API statistics: post-Viterbi bit error count

post_bit_count DVBv5 API statistics: post-Viterbi bit count

block_error DVBv5 API statistics: block error count

block_count DVBv5 API statistics: block count

NOTE
derivated statistics like Uncorrected Error blocks (UCE) are calculated on
userspace.

Description

53.2. Digital TV (DVB) devices 1891

Linux Driver-api Documentation

Only a subset of the properties are needed for a given delivery system. For more
info, consult the media_api.html with the documentation of the Userspace API.

struct dvb_frontend
Frontend structure to be used on drivers.

Definition

struct dvb_frontend {
struct kref refcount;
struct dvb_frontend_ops ops;
struct dvb_adapter *dvb;
void *demodulator_priv;
void *tuner_priv;
void *frontend_priv;
void *sec_priv;
void *analog_demod_priv;
struct dtv_frontend_properties dtv_property_cache;

#define DVB_FRONTEND_COMPONENT_TUNER 0;
#define DVB_FRONTEND_COMPONENT_DEMOD 1;

int (*callback)(void *adapter_priv, int component, int cmd, int arg);
int id;
unsigned int exit;

};

Members
refcount refcount to keep track of struct dvb_frontend references

ops embedded struct dvb_frontend_ops

dvb pointer to struct dvb_adapter

demodulator_priv demod private data

tuner_priv tuner private data

frontend_priv frontend private data

sec_priv SEC private data

analog_demod_priv Analog demod private data

dtv_property_cache embedded struct dtv_frontend_properties

callback callback function used on some drivers to call either the tuner or the
demodulator.

id Frontend ID

exit Used to inform the DVB core that the frontend thread should exit (usually,
means that the hardware got disconnected.

int dvb_register_frontend(struct dvb_adapter * dvb, struct dvb_frontend
* fe)

Registers a DVB frontend at the adapter

Parameters
struct dvb_adapter * dvb pointer to struct dvb_adapter

struct dvb_frontend * fe pointer to struct dvb_frontend

1892 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description
Allocate and initialize the private data needed by the frontend core to manage
the frontend and calls dvb_register_device() to register a new frontend. It also
cleans the property cache that stores the frontend parameters and selects the first
available delivery system.

int dvb_unregister_frontend(struct dvb_frontend * fe)
Unregisters a DVB frontend

Parameters
struct dvb_frontend * fe pointer to struct dvb_frontend

Description
Stops the frontend kthread, calls dvb_unregister_device() and frees the private
frontend data allocated by dvb_register_frontend().

NOTE
This function doesn’t frees the memory allocated by the demod, by the SEC driver
and by the tuner. In order to free it, an explicit call to dvb_frontend_detach() is
needed, after calling this function.

void dvb_frontend_detach(struct dvb_frontend * fe)
Detaches and frees frontend specific data

Parameters
struct dvb_frontend * fe pointer to struct dvb_frontend

Description
This function should be called after dvb_unregister_frontend(). It calls
the SEC, tuner and demod release functions: dvb_frontend_ops.release_sec,
dvb_frontend_ops.tuner_ops.release, dvb_frontend_ops.analog_ops.release
and dvb_frontend_ops.release.

If the driver is compiled with CONFIG_MEDIA_ATTACH, it also decreases the module
reference count, needed to allow userspace to remove the previously used DVB
frontend modules.

int dvb_frontend_suspend(struct dvb_frontend * fe)
Suspends a Digital TV frontend

Parameters
struct dvb_frontend * fe pointer to struct dvb_frontend

Description
This function prepares a Digital TV frontend to suspend.

In order to prepare the tuner to suspend, if dvb_frontend_ops.
tuner_ops.suspend() is available, it calls it. Otherwise, it will call
dvb_frontend_ops.tuner_ops.sleep(), if available.

It will also call dvb_frontend_ops.sleep() to put the demod to suspend.

The drivers should also call dvb_frontend_suspend() as part of their handler for
the device_driver.suspend().

53.2. Digital TV (DVB) devices 1893

Linux Driver-api Documentation

int dvb_frontend_resume(struct dvb_frontend * fe)
Resumes a Digital TV frontend

Parameters
struct dvb_frontend * fe pointer to struct dvb_frontend

Description
This function resumes the usual operation of the tuner after resume.

In order to resume the frontend, it calls the demod dvb_frontend_ops.init().

If dvb_frontend_ops.tuner_ops.resume() is available, It, it calls it. Otherwise,t
will call dvb_frontend_ops.tuner_ops.init(), if available.

Once tuner and demods are resumed, it will enforce that the SEC voltage and tone
are restored to their previous values and wake up the frontend’s kthread in order
to retune the frontend.

The drivers should also call dvb_frontend_resume() as part of their handler for
the device_driver.resume().

void dvb_frontend_reinitialise(struct dvb_frontend * fe)
forces a reinitialisation at the frontend

Parameters
struct dvb_frontend * fe pointer to struct dvb_frontend

Description
Calls dvb_frontend_ops.init() and dvb_frontend_ops.tuner_ops.init(), and re-
sets SEC tone and voltage (for Satellite systems).

NOTE
Currently, this function is used only by one driver (budget-av). It seems to be due
to address some special issue with that specific frontend.

void dvb_frontend_sleep_until(ktime_t * waketime, u32 add_usec)
Sleep for the amount of time given by add_usec parameter

Parameters
ktime_t * waketime pointer to struct ktime_t

u32 add_usec time to sleep, in microseconds

Description
This function is used to measure the time required for the
FE_DISHNETWORK_SEND_LEGACY_CMD() ioctl to work. It needs to be as
precise as possible, as it affects the detection of the dish tone command at the
satellite subsystem.

Its used internally by the DVB frontend core, in order to emulate
FE_DISHNETWORK_SEND_LEGACY_CMD() using the dvb_frontend_ops.
set_voltage() callback.

NOTE

1894 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

it should not be used at the drivers, as the emulation for the legacy callback is
provided by the Kernel. The only situation where this should be at the drivers is
when there are some bugs at the hardware that would prevent the core emula-
tion to work. On such cases, the driver would be writing a dvb_frontend_ops.
dishnetwork_send_legacy_command() and calling this function directly.

53.2.3 Digital TV Demux kABI

Digital TV Demux

The Kernel Digital TV Demux kABI defines a driver-internal interface for register-
ing low-level, hardware specific driver to a hardware independent demux layer. It
is only of interest for Digital TV device driver writers. The header file for this kABI
is named demux.h and located in include/media.

The demux kABI should be implemented for each demux in the system. It is used
to select the TS source of a demux and to manage the demux resources. When the
demux client allocates a resource via the demux kABI, it receives a pointer to the
kABI of that resource.

Each demux receives its TS input from a DVB front-end or from memory, as set via
this demux kABI. In a system with more than one front-end, the kABI can be used
to select one of the DVB front-ends as a TS source for a demux, unless this is fixed
in the HW platform.

The demux kABI only controls front-ends regarding to their connections with de-
muxes; the kABI used to set the other front-end parameters, such as tuning, are
devined via the Digital TV Frontend kABI.

The functions that implement the abstract interface demux should be defined static
or module private and registered to the Demux core for external access. It is not
necessary to implement every function in the struct dmx_demux. For example, a
demux interface might support Section filtering, but not PES filtering. The kABI
client is expected to check the value of any function pointer before calling the
function: the value of NULL means that the function is not available.

Whenever the functions of the demux API modify shared data, the possibilities of
lost update and race condition problems should be addressed, e.g. by protecting
parts of code with mutexes.

Note that functions called from a bottom half context must not sleep. Even a
simple memory allocation without using GFP_ATOMIC can result in a kernel thread
being put to sleep if swapping is needed. For example, the Linux Kernel calls
the functions of a network device interface from a bottom half context. Thus, if
a demux kABI function is called from network device code, the function must not
sleep.

53.2. Digital TV (DVB) devices 1895

Linux Driver-api Documentation

Demux Callback API

This kernel-space API comprises the callback functions that deliver filtered data
to the demux client. Unlike the other DVB kABIs, these functions are provided by
the client and called from the demux code.

The function pointers of this abstract interface are not packed into a structure
as in the other demux APIs, because the callback functions are registered and
used independent of each other. As an example, it is possible for the API client to
provide several callback functions for receiving TS packets and no callbacks for
PES packets or sections.

The functions that implement the callback API need not be re-entrant: when a de-
mux driver calls one of these functions, the driver is not allowed to call the function
again before the original call returns. If a callback is triggered by a hardware inter-
rupt, it is recommended to use the Linux bottom half mechanism or start a tasklet
instead of making the callback function call directly from a hardware interrupt.

This mechanism is implemented by dmx_ts_cb() and dmx_section_cb() call-
backs.

Digital TV Demux device registration functions and data structures

enum dmxdev_type
type of demux filter type.

Constants
DMXDEV_TYPE_NONE no filter set.

DMXDEV_TYPE_SEC section filter.

DMXDEV_TYPE_PES Program Elementary Stream (PES) filter.

enum dmxdev_state
state machine for the dmxdev.

Constants
DMXDEV_STATE_FREE indicates that the filter is freed.

DMXDEV_STATE_ALLOCATED indicates that the filter was allocated to be used.

DMXDEV_STATE_SET indicates that the filter parameters are set.

DMXDEV_STATE_GO indicates that the filter is running.

DMXDEV_STATE_DONE indicates that a packet was already filtered and the filter is
now disabled. Set only if DMX_ONESHOT. See dmx_sct_filter_params.

DMXDEV_STATE_TIMEDOUT Indicates a timeout condition.

struct dmxdev_feed
digital TV dmxdev feed

Definition

1896 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct dmxdev_feed {
u16 pid;
struct dmx_ts_feed *ts;
struct list_head next;

};

Members
pid Program ID to be filtered

ts pointer to struct dmx_ts_feed

next struct list_head pointing to the next feed.

struct dmxdev_filter
digital TV dmxdev filter

Definition

struct dmxdev_filter {
union {

struct dmx_section_filter *sec;
} filter;
union {

struct list_head ts;
struct dmx_section_feed *sec;

} feed;
union {

struct dmx_sct_filter_params sec;
struct dmx_pes_filter_params pes;

} params;
enum dmxdev_type type;
enum dmxdev_state state;
struct dmxdev *dev;
struct dvb_ringbuffer buffer;
struct dvb_vb2_ctx vb2_ctx;
struct mutex mutex;
struct timer_list timer;
int todo;
u8 secheader[3];

};

Members
filter a union describing a dmxdev filter. Currently used only for section filters.

filter.sec a struct dmx_section_filter pointer. For section filter only.

feed a union describing a dmxdev feed. Depending on the filter type, it can be
either feed.ts or feed.sec.

feed.ts a struct list_head list. For TS and PES feeds.

feed.sec a struct dmx_section_feed pointer. For section feed only.

params a union describing dmxdev filter parameters. Depending on the filter type,
it can be either params.sec or params.pes.

params.sec a struct dmx_sct_filter_params embedded struct. For section fil-
ter only.

53.2. Digital TV (DVB) devices 1897

Linux Driver-api Documentation

params.pes a struct dmx_pes_filter_params embedded struct. For PES filter
only.

type type of the dmxdev filter, as defined by enum dmxdev_type.

state state of the dmxdev filter, as defined by enum dmxdev_state.

dev pointer to struct dmxdev.

buffer an embedded struct dvb_ringbuffer buffer.

vb2_ctx control struct for VB2 handler

mutex protects the access to struct dmxdev_filter.

timer struct timer_list embedded timer, used to check for feed timeouts. Only
for section filter.

todo index for the secheader. Only for section filter.
secheader buffer cache to parse the section header. Only for section filter.

struct dmxdev
Describes a digital TV demux device.

Definition

struct dmxdev {
struct dvb_device *dvbdev;
struct dvb_device *dvr_dvbdev;
struct dmxdev_filter *filter;
struct dmx_demux *demux;
int filternum;
int capabilities;
unsigned int may_do_mmap:1;
unsigned int exit:1;

#define DMXDEV_CAP_DUPLEX 1;
struct dmx_frontend *dvr_orig_fe;
struct dvb_ringbuffer dvr_buffer;

#define DVR_BUFFER_SIZE (10*188*1024);
struct dvb_vb2_ctx dvr_vb2_ctx;
struct mutex mutex;
spinlock_t lock;

};

Members
dvbdev pointer to struct dvb_device associated with the demux device node.

dvr_dvbdev pointer to struct dvb_device associated with the dvr device node.

filter pointer to struct dmxdev_filter.

demux pointer to struct dmx_demux.

filternum number of filters.

capabilities demux capabilities as defined by enum dmx_demux_caps.

may_do_mmap flag used to indicate if the device may do mmap.

exit flag to indicate that the demux is being released.

1898 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

dvr_orig_fe pointer to struct dmx_frontend.

dvr_buffer embedded struct dvb_ringbuffer for DVB output.

dvr_vb2_ctx control struct for VB2 handler

mutex protects the usage of this structure.

lock protects access to dmxdev->filter->data.

int dvb_dmxdev_init(struct dmxdev * dmxdev, struct dvb_adapter * adap)
initializes a digital TV demux and registers both demux and DVR devices.

Parameters
struct dmxdev * dmxdev pointer to struct dmxdev.

struct dvb_adapter * adap pointer to struct dvb_adapter.

void dvb_dmxdev_release(struct dmxdev * dmxdev)
releases a digital TV demux and unregisters it.

Parameters
struct dmxdev * dmxdev pointer to struct dmxdev.

High-level Digital TV demux interface

enum dvb_dmx_filter_type
type of demux feed.

Constants
DMX_TYPE_TS feed is in TS mode.

DMX_TYPE_SEC feed is in Section mode.

enum dvb_dmx_state
state machine for a demux filter.

Constants
DMX_STATE_FREE indicates that the filter is freed.

DMX_STATE_ALLOCATED indicates that the filter was allocated to be used.

DMX_STATE_READY indicates that the filter is ready to be used.

DMX_STATE_GO indicates that the filter is running.

struct dvb_demux_filter
Describes a DVB demux section filter.

Definition

struct dvb_demux_filter {
struct dmx_section_filter filter;
u8 maskandmode[DMX_MAX_FILTER_SIZE];
u8 maskandnotmode[DMX_MAX_FILTER_SIZE];
bool doneq;
struct dvb_demux_filter *next;
struct dvb_demux_feed *feed;

(continues on next page)

53.2. Digital TV (DVB) devices 1899

Linux Driver-api Documentation

(continued from previous page)
int index;
enum dvb_dmx_state state;
enum dvb_dmx_filter_type type;

};

Members
filter Section filter as defined by struct dmx_section_filter.

maskandmode logical and bit mask.

maskandnotmode logical and not bit mask.

doneq flag that indicates when a filter is ready.

next pointer to the next section filter.

feed struct dvb_demux_feed pointer.

index index of the used demux filter.

state state of the filter as described by enum dvb_dmx_state.

type type of the filter as described by enum dvb_dmx_filter_type.

struct dvb_demux_feed
describes a DVB field

Definition

struct dvb_demux_feed {
union {

struct dmx_ts_feed ts;
struct dmx_section_feed sec;

} feed;
union {

dmx_ts_cb ts;
dmx_section_cb sec;

} cb;
struct dvb_demux *demux;
void *priv;
enum dvb_dmx_filter_type type;
enum dvb_dmx_state state;
u16 pid;
ktime_t timeout;
struct dvb_demux_filter *filter;
u32 buffer_flags;
enum ts_filter_type ts_type;
enum dmx_ts_pes pes_type;
int cc;
bool pusi_seen;
u16 peslen;
struct list_head list_head;
unsigned int index;

};

Members
feed a union describing a digital TV feed. Depending on the feed type, it can be

either feed.ts or feed.sec.

1900 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

feed.ts a struct dmx_ts_feed pointer. For TS feed only.

feed.sec a struct dmx_section_feed pointer. For section feed only.

cb a union describing digital TV callbacks. Depending on the feed type, it can be
either cb.ts or cb.sec.

cb.ts a dmx_ts_cb() calback function pointer. For TS feed only.

cb.sec a dmx_section_cb() callback function pointer. For section feed only.

demux pointer to struct dvb_demux.

priv private data that can optionally be used by a DVB driver.

type type of the filter, as defined by enum dvb_dmx_filter_type.

state state of the filter as defined by enum dvb_dmx_state.

pid PID to be filtered.

timeout feed timeout.

filter pointer to struct dvb_demux_filter.

buffer_flags Buffer flags used to report discontinuity users via DVB memory
mapped API, as defined by enum dmx_buffer_flags.

ts_type type of TS, as defined by enum ts_filter_type.

pes_type type of PES, as defined by enum dmx_ts_pes.

cc MPEG-TS packet continuity counter

pusi_seen if true, indicates that a discontinuity was detected. it is used to prevent
feeding of garbage from previous section.

peslen length of the PES (Packet Elementary Stream).

list_head head for the list of digital TV demux feeds.

index a unique index for each feed. Can be used as hardware pid filter index.

struct dvb_demux
represents a digital TV demux

Definition

struct dvb_demux {
struct dmx_demux dmx;
void *priv;
int filternum;
int feednum;
int (*start_feed)(struct dvb_demux_feed *feed);
int (*stop_feed)(struct dvb_demux_feed *feed);
int (*write_to_decoder)(struct dvb_demux_feed *feed, const u8 *buf, size_

↪→t len);
u32 (*check_crc32)(struct dvb_demux_feed *feed, const u8 *buf, size_t␣

↪→len);
void (*memcopy)(struct dvb_demux_feed *feed, u8 *dst, const u8 *src,␣

↪→size_t len);
int users;

#define MAX_DVB_DEMUX_USERS 10;
(continues on next page)

53.2. Digital TV (DVB) devices 1901

Linux Driver-api Documentation

(continued from previous page)
struct dvb_demux_filter *filter;
struct dvb_demux_feed *feed;
struct list_head frontend_list;
struct dvb_demux_feed *pesfilter[DMX_PES_OTHER];
u16 pids[DMX_PES_OTHER];

#define DMX_MAX_PID 0x2000;
struct list_head feed_list;
u8 tsbuf[204];
int tsbufp;
struct mutex mutex;
spinlock_t lock;
uint8_t *cnt_storage;
ktime_t speed_last_time;
uint32_t speed_pkts_cnt;

};

Members
dmx embedded struct dmx_demux with demux capabilities and callbacks.

priv private data that can optionally be used by a DVB driver.

filternum maximum amount of DVB filters.

feednum maximum amount of DVB feeds.

start_feed callback routine to be called in order to start a DVB feed.

stop_feed callback routine to be called in order to stop a DVB feed.

write_to_decoder callback routine to be called if the feed is TS and it is routed to
an A/V decoder, when a new TS packet is received. Used only on av7110-av.c.

check_crc32 callback routine to check CRC. If not initialized, dvb_demux will use
an internal one.

memcopy callback routine to memcopy received data. If not initialized, dvb_demux
will default to memcpy().

users counter for the number of demux opened file descriptors. Currently, it is
limited to 10 users.

filter pointer to struct dvb_demux_filter.

feed pointer to struct dvb_demux_feed.

frontend_list struct list_head with frontends used by the demux.

pesfilter array of struct dvb_demux_feed with the PES types that will be fil-
tered.

pids list of filtered program IDs.

feed_list struct list_head with feeds.

tsbuf temporary buffer used internally to store TS packets.

tsbufp temporary buffer index used internally.

mutex pointer to struct mutex used to protect feed set logic.

lock pointer to spinlock_t, used to protect buffer handling.

1902 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

cnt_storage buffer used for TS/TEI continuity check.

speed_last_time ktime_t used for TS speed check.

speed_pkts_cnt packets count used for TS speed check.

int dvb_dmx_init(struct dvb_demux * demux)
initialize a digital TV demux struct.

Parameters
struct dvb_demux * demux struct dvb_demux to be initialized.

Description
Before being able to register a digital TV demux struct, drivers should call this
routine. On its typical usage, some fields should be initialized at the driver before
calling it.

A typical usecase is:

dvb->demux.dmx.capabilities =
DMX_TS_FILTERING | DMX_SECTION_FILTERING |
DMX_MEMORY_BASED_FILTERING;

dvb->demux.priv = dvb;
dvb->demux.filternum = 256;
dvb->demux.feednum = 256;
dvb->demux.start_feed = driver_start_feed;
dvb->demux.stop_feed = driver_stop_feed;
ret = dvb_dmx_init(&dvb->demux);
if (ret < 0)

return ret;

void dvb_dmx_release(struct dvb_demux * demux)
releases a digital TV demux internal buffers.

Parameters
struct dvb_demux * demux struct dvb_demux to be released.

Description
The DVB core internally allocates data at demux. This routine releases those data.
Please notice that the struct itelf is not released, as it can be embedded on other
structs.

void dvb_dmx_swfilter_packets(struct dvb_demux * demux, const u8 * buf,
size_t count)

use dvb software filter for a buffer with multiple MPEG-TS packets with 188
bytes each.

Parameters
struct dvb_demux * demux pointer to struct dvb_demux

const u8 * buf buffer with data to be filtered

size_t count number of MPEG-TS packets with size of 188.

Description
The routine will discard a DVB packet that don’t start with 0x47.

53.2. Digital TV (DVB) devices 1903

Linux Driver-api Documentation

Use this routine if the DVB demux fills MPEG-TS buffers that are already aligned.

NOTE
The buf size should have size equal to count * 188.

void dvb_dmx_swfilter(struct dvb_demux * demux, const u8 * buf,
size_t count)

use dvb software filter for a buffer with multiple MPEG-TS packets with 188
bytes each.

Parameters
struct dvb_demux * demux pointer to struct dvb_demux

const u8 * buf buffer with data to be filtered

size_t count number of MPEG-TS packets with size of 188.

Description
If a DVB packet doesn’t start with 0x47, it will seek for the first byte that starts
with 0x47.

Use this routine if the DVB demux fill buffers that may not start with a packet start
mark (0x47).

NOTE
The buf size should have size equal to count * 188.

void dvb_dmx_swfilter_204(struct dvb_demux * demux, const u8 * buf,
size_t count)

use dvb software filter for a buffer with multiple MPEG-TS packets with 204
bytes each.

Parameters
struct dvb_demux * demux pointer to struct dvb_demux

const u8 * buf buffer with data to be filtered

size_t count number of MPEG-TS packets with size of 204.

Description
If a DVB packet doesn’t start with 0x47, it will seek for the first byte that starts
with 0x47.

Use this routine if the DVB demux fill buffers that may not start with a packet start
mark (0x47).

NOTE
The buf size should have size equal to count * 204.

void dvb_dmx_swfilter_raw(struct dvb_demux * demux, const u8 * buf,
size_t count)

make the raw data available to userspace without filtering

Parameters
struct dvb_demux * demux pointer to struct dvb_demux

const u8 * buf buffer with data

1904 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

size_t count number of packets to be passed. The actual size of each packet
depends on the dvb_demux->feed->cb.ts logic.

Description
Use it if the driver needs to deliver the raw payload to userspace without passing
through the kernel demux. That is meant to support some delivery systems that
aren’t based on MPEG-TS.
This function relies on dvb_demux->feed->cb.ts to actually handle the buffer.

Driver-internal low-level hardware specific driver demux interface

enum ts_filter_type
filter type bitmap for dmx_ts_feed.set()

Constants
TS_PACKET Send TS packets (188 bytes) to callback (default).

TS_PAYLOAD_ONLY In case TS_PACKET is set, only send the TS payload (<=184
bytes per packet) to callback

TS_DECODER Send stream to built-in decoder (if present).

TS_DEMUX In case TS_PACKET is set, send the TS to the demux device, not to the
dvr device

struct dmx_ts_feed
Structure that contains a TS feed filter

Definition

struct dmx_ts_feed {
int is_filtering;
struct dmx_demux *parent;
void *priv;
int (*set)(struct dmx_ts_feed *feed,u16 pid,int type,enum dmx_ts_pes pes_

↪→type, ktime_t timeout);
int (*start_filtering)(struct dmx_ts_feed *feed);
int (*stop_filtering)(struct dmx_ts_feed *feed);

};

Members
is_filtering Set to non-zero when filtering in progress

parent pointer to struct dmx_demux

priv pointer to private data of the API client

set sets the TS filter

start_filtering starts TS filtering

stop_filtering stops TS filtering

Description

53.2. Digital TV (DVB) devices 1905

Linux Driver-api Documentation

A TS feed is typically mapped to a hardware PID filter on the demux chip. Using
this API, the client can set the filtering properties to start/stop filtering TS packets
on a particular TS feed.

struct dmx_section_filter
Structure that describes a section filter

Definition

struct dmx_section_filter {
u8 filter_value[DMX_MAX_FILTER_SIZE];
u8 filter_mask[DMX_MAX_FILTER_SIZE];
u8 filter_mode[DMX_MAX_FILTER_SIZE];
struct dmx_section_feed *parent;
void *priv;

};

Members
filter_value Contains up to 16 bytes (128 bits) of the TS section header that will

be matched by the section filter

filter_mask Contains a 16 bytes (128 bits) filter mask with the bits specified by
filter_value that will be used on the filter match logic.

filter_mode Contains a 16 bytes (128 bits) filter mode.

parent Back-pointer to struct dmx_section_feed.

priv Pointer to private data of the API client.

Description
The filter_mask controls which bits of filter_value are compared with the section
headers/payload. On a binary value of 1 in filter_mask, the corresponding bits are
compared. The filter only accepts sections that are equal to filter_value in all the
tested bit positions.

struct dmx_section_feed
Structure that contains a section feed filter

Definition

struct dmx_section_feed {
int is_filtering;
struct dmx_demux *parent;
void *priv;
int check_crc;
int (*set)(struct dmx_section_feed *feed,u16 pid, int check_crc);
int (*allocate_filter)(struct dmx_section_feed *feed, struct dmx_section_

↪→filter **filter);
int (*release_filter)(struct dmx_section_feed *feed, struct dmx_section_

↪→filter *filter);
int (*start_filtering)(struct dmx_section_feed *feed);
int (*stop_filtering)(struct dmx_section_feed *feed);

};

Members
is_filtering Set to non-zero when filtering in progress

1906 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

parent pointer to struct dmx_demux

priv pointer to private data of the API client

check_crc If non-zero, check the CRC values of filtered sections.

set sets the section filter

allocate_filter This function is used to allocate a section filter on the demux.
It should only be called when no filtering is in progress on this section feed.
If a filter cannot be allocated, the function fails with -ENOSPC.

release_filter This function releases all the resources of a previously allocated
section filter. The function should not be called while filtering is in progress
on this section feed. After calling this function, the caller should not try to
dereference the filter pointer.

start_filtering starts section filtering

stop_filtering stops section filtering

Description
A TS feed is typically mapped to a hardware PID filter on the demux chip. Using
this API, the client can set the filtering properties to start/stop filtering TS packets
on a particular TS feed.

dmx_ts_cb
Typedef: DVB demux TS filter callback function prototype

Syntax
int dmx_ts_cb (const u8 * buffer1, size_t buffer1_length,
const u8 * buffer2, size_t buffer2_length, struct
dmx_ts_feed * source, u32 * buffer_flags);

Parameters
const u8 * buffer1 Pointer to the start of the filtered TS packets.

size_t buffer1_length Length of the TS data in buffer1.

const u8 * buffer2 Pointer to the tail of the filtered TS packets, or NULL.

size_t buffer2_length Length of the TS data in buffer2.

struct dmx_ts_feed * source Indicates which TS feed is the source of the call-
back.

u32 * buffer_flags Address where buffer flags are stored. Those are used to
report discontinuity users via DVB memory mapped API, as defined by enum
dmx_buffer_flags.

Description
This function callback prototype, provided by the client of the demux API, is called
from the demux code. The function is only called when filtering on a TS feed
has been enabled using the start_filtering() function at the dmx_demux. Any TS
packets that match the filter settings are copied to a circular buffer. The filtered
TS packets are delivered to the client using this callback function. It is expected
that the buffer1 and buffer2 callback parameters point to addresses within the
circular buffer, but other implementations are also possible. Note that the called

53.2. Digital TV (DVB) devices 1907

Linux Driver-api Documentation

party should not try to free the memory the buffer1 and buffer2 parameters point
to.

When this function is called, the buffer1 parameter typically points to the start
of the first undelivered TS packet within a circular buffer. The buffer2 buffer pa-
rameter is normally NULL, except when the received TS packets have crossed the
last address of the circular buffer and“wrapped”to the beginning of the buffer. In
the latter case the buffer1 parameter would contain an address within the circular
buffer, while the buffer2 parameter would contain the first address of the circular
buffer. The number of bytes delivered with this function (i.e. buffer1_length +
buffer2_length) is usually equal to the value of callback_length parameter given
in the set() function, with one exception: if a timeout occurs before receiving call-
back_length bytes of TS data, any undelivered packets are immediately delivered
to the client by calling this function. The timeout duration is controlled by the set()
function in the TS Feed API.

If a TS packet is received with errors that could not be fixed by the TS-level forward
error correction (FEC), the Transport_error_indicator flag of the TS packet header
should be set. The TS packet should not be discarded, as the error can possibly be
corrected by a higher layer protocol. If the called party is slow in processing the
callback, it is possible that the circular buffer eventually fills up. If this happens,
the demux driver should discard any TS packets received while the buffer is full
and return -EOVERFLOW.

The type of data returned to the callback can be selected by the
dmx_ts_feed.**set** function. The type parameter decides if the raw TS packet
(TS_PACKET) or just the payload (TS_PACKET|TS_PAYLOAD_ONLY) should be
returned. If additionally the TS_DECODER bit is set the stream will also be sent
to the hardware MPEG decoder.

• 0, on success;

• -EOVERFLOW, on buffer overflow.

Return
dmx_section_cb

Typedef: DVB demux TS filter callback function prototype
Syntax

int dmx_section_cb (const u8 * buffer1, size_t
buffer1_len, const u8 * buffer2, size_t buffer2_len, struct
dmx_section_filter * source, u32 * buffer_flags);

Parameters
const u8 * buffer1 Pointer to the start of the filtered section, e.g. within the

circular buffer of the demux driver.

size_t buffer1_len Length of the filtered section data in buffer1, including
headers and CRC.

const u8 * buffer2 Pointer to the tail of the filtered section data, or NULL. Use-
ful to handle the wrapping of a circular buffer.

size_t buffer2_len Length of the filtered section data in buffer2, including
headers and CRC.

1908 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct dmx_section_filter * source Indicates which section feed is the
source of the callback.

u32 * buffer_flags Address where buffer flags are stored. Those are used to
report discontinuity users via DVB memory mapped API, as defined by enum
dmx_buffer_flags.

Description
This function callback prototype, provided by the client of the demux API, is called
from the demux code. The function is only called when filtering of sections has
been enabled using the function dmx_ts_feed.**start_filtering**. When the demux
driver has received a complete section that matches at least one section filter, the
client is notified via this callback function. Normally this function is called for each
received section; however, it is also possible to deliver multiple sections with one
callback, for example when the system load is high. If an error occurs while re-
ceiving a section, this function should be called with the corresponding error type
set in the success field, whether or not there is data to deliver. The Section Feed
implementation should maintain a circular buffer for received sections. However,
this is not necessary if the Section Feed API is implemented as a client of the TS
Feed API, because the TS Feed implementation then buffers the received data.
The size of the circular buffer can be configured using the dmx_ts_feed.**set**
function in the Section Feed API. If there is no room in the circular buffer when a
new section is received, the section must be discarded. If this happens, the value
of the success parameter should be DMX_OVERRUN_ERROR on the next callback.

enum dmx_frontend_source
Used to identify the type of frontend

Constants
DMX_MEMORY_FE The source of the demux is memory. It means that the MPEG-TS

to be filtered comes from userspace, via write() syscall.

DMX_FRONTEND_0 The source of the demux is a frontend connected to the demux.

struct dmx_frontend
Structure that lists the frontends associated with a demux

Definition

struct dmx_frontend {
struct list_head connectivity_list;
enum dmx_frontend_source source;

};

Members
connectivity_list List of front-ends that can be connected to a particular de-

mux;

source Type of the frontend.

Description
FIXME: this structure should likely be replaced soon by some media-

controller based logic.

53.2. Digital TV (DVB) devices 1909

Linux Driver-api Documentation

enum dmx_demux_caps
MPEG-2 TS Demux capabilities bitmap

Constants
DMX_TS_FILTERING set if TS filtering is supported;

DMX_SECTION_FILTERING set if section filtering is supported;

DMX_MEMORY_BASED_FILTERING set if write() available.

Description
Those flags are OR’ed in the dmx_demux.capabilities field
DMX_FE_ENTRY(list)

Casts elements in the list of registered front-ends from the generic type struct
list_head to the type * struct dmx_frontend

Parameters
list list of struct dmx_frontend

struct dmx_demux
Structure that contains the demux capabilities and callbacks.

Definition

struct dmx_demux {
enum dmx_demux_caps capabilities;
struct dmx_frontend *frontend;
void *priv;
int (*open)(struct dmx_demux *demux);
int (*close)(struct dmx_demux *demux);
int (*write)(struct dmx_demux *demux, const char __user *buf, size_t␣

↪→count);
int (*allocate_ts_feed)(struct dmx_demux *demux,struct dmx_ts_feed␣

↪→**feed, dmx_ts_cb callback);
int (*release_ts_feed)(struct dmx_demux *demux, struct dmx_ts_feed␣

↪→*feed);
int (*allocate_section_feed)(struct dmx_demux *demux,struct dmx_section_

↪→feed **feed, dmx_section_cb callback);
int (*release_section_feed)(struct dmx_demux *demux, struct dmx_section_

↪→feed *feed);
int (*add_frontend)(struct dmx_demux *demux, struct dmx_frontend␣

↪→*frontend);
int (*remove_frontend)(struct dmx_demux *demux, struct dmx_frontend␣

↪→*frontend);
struct list_head *(*get_frontends)(struct dmx_demux *demux);
int (*connect_frontend)(struct dmx_demux *demux, struct dmx_frontend␣

↪→*frontend);
int (*disconnect_frontend)(struct dmx_demux *demux);
int (*get_pes_pids)(struct dmx_demux *demux, u16 *pids);

};

Members
capabilities Bitfield of capability flags.

frontend Front-end connected to the demux

priv Pointer to private data of the API client

1910 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

open This function reserves the demux for use by the caller and, if necessary,
initializes the demux. When the demux is no longer needed, the function
close should be called. It should be possible for multiple clients to access the
demux at the same time. Thus, the function implementation should increment
the demux usage count when open is called and decrement it when close is
called. The demux function parameter contains a pointer to the demux API
and instance data. It returns: 0 on success; -EUSERS, if maximum usage
count was reached; -EINVAL, on bad parameter.

close This function reserves the demux for use by the caller and, if necessary,
initializes the demux. When the demux is no longer needed, the function
close should be called. It should be possible for multiple clients to access the
demux at the same time. Thus, the function implementation should increment
the demux usage count when open is called and decrement it when close is
called. The demux function parameter contains a pointer to the demux API
and instance data. It returns: 0 on success; -ENODEV, if demux was not in
use (e. g. no users); -EINVAL, on bad parameter.

write This function provides the demux driver with a memory buffer containing
TS packets. Instead of receiving TS packets from the DVB front-end, the
demux driver software will read packets from memory. Any clients of this
demux with active TS, PES or Section filters will receive filtered data via the
Demux callback API (see 0). The function returns when all the data in the
buffer has been consumed by the demux. Demux hardware typically cannot
read TS from memory. If this is the case, memory-based filtering has to be
implemented entirely in software. The demux function parameter contains
a pointer to the demux API and instance data. The buf function parameter
contains a pointer to the TS data in kernel-space memory. The count function
parameter contains the length of the TS data. It returns: 0 on success; -
ERESTARTSYS, if mutex lock was interrupted; -EINTR, if a signal handling is
pending; -ENODEV, if demux was removed; -EINVAL, on bad parameter.

allocate_ts_feed Allocates a new TS feed, which is used to filter the TS packets
carrying a certain PID. The TS feed normally corresponds to a hardware PID
filter on the demux chip. The demux function parameter contains a pointer
to the demux API and instance data. The feed function parameter contains
a pointer to the TS feed API and instance data. The callback function pa-
rameter contains a pointer to the callback function for passing received TS
packet. It returns: 0 on success; -ERESTARTSYS, if mutex lock was inter-
rupted; -EBUSY, if no more TS feeds is available; -EINVAL, on bad parameter.

release_ts_feed Releases the resources allocated with allocate_ts_feed. Any
filtering in progress on the TS feed should be stopped before calling this func-
tion. The demux function parameter contains a pointer to the demux API and
instance data. The feed function parameter contains a pointer to the TS feed
API and instance data. It returns: 0 on success; -EINVAL on bad parameter.

allocate_section_feed Allocates a new section feed, i.e. a demux resource for
filtering and receiving sections. On platforms with hardware support for sec-
tion filtering, a section feed is directly mapped to the demux HW. On other
platforms, TS packets are first PID filtered in hardware and a hardware sec-
tion filter then emulated in software. The caller obtains an API pointer of
type dmx_section_feed_t as an out parameter. Using this API the caller can
set filtering parameters and start receiving sections. The demux function

53.2. Digital TV (DVB) devices 1911

Linux Driver-api Documentation

parameter contains a pointer to the demux API and instance data. The feed
function parameter contains a pointer to the TS feed API and instance data.
The callback function parameter contains a pointer to the callback function
for passing received TS packet. It returns: 0 on success; -EBUSY, if no more
TS feeds is available; -EINVAL, on bad parameter.

release_section_feed Releases the resources allocated with allo-
cate_section_feed, including allocated filters. Any filtering in progress
on the section feed should be stopped before calling this function. The
demux function parameter contains a pointer to the demux API and instance
data. The feed function parameter contains a pointer to the TS feed API and
instance data. It returns: 0 on success; -EINVAL, on bad parameter.

add_frontend Registers a connectivity between a demux and a front-end, i.e., in-
dicates that the demux can be connected via a call to connect_frontend to
use the given front-end as a TS source. The client of this function has to
allocate dynamic or static memory for the frontend structure and initialize
its fields before calling this function. This function is normally called during
the driver initialization. The caller must not free the memory of the frontend
struct before successfully calling remove_frontend. The demux function
parameter contains a pointer to the demux API and instance data. The fron-
tend function parameter contains a pointer to the front-end instance data. It
returns: 0 on success; -EINVAL, on bad parameter.

remove_frontend Indicates that the given front-end, registered by a call to
add_frontend, can no longer be connected as a TS source by this demux.
The function should be called when a front-end driver or a demux driver is
removed from the system. If the front-end is in use, the function fails with
the return value of -EBUSY. After successfully calling this function, the caller
can free the memory of the frontend struct if it was dynamically allocated be-
fore the add_frontend operation. The demux function parameter contains a
pointer to the demux API and instance data. The frontend function parame-
ter contains a pointer to the front-end instance data. It returns: 0 on success;
-ENODEV, if the front-end was not found, -EINVAL, on bad parameter.

get_frontends Provides the APIs of the front-ends that have been registered for
this demux. Any of the front-ends obtained with this call can be used as
a parameter for connect_frontend. The include file demux.h contains the
macro DMX_FE_ENTRY() for converting an element of the generic type struct
list_head * to the type struct dmx_frontend . The caller must not free the
memory of any of the elements obtained via this function call. The **demux*
function parameter contains a pointer to the demux API and instance data. It
returns a struct list_head pointer to the list of front-end interfaces, or NULL
in the case of an empty list.

connect_frontend Connects the TS output of the front-end to the input of the
demux. A demux can only be connected to a front-end registered to the demux
with the function add_frontend. It may or may not be possible to connect
multiple demuxes to the same front-end, depending on the capabilities of the
HW platform. When not used, the front-end should be released by calling
disconnect_frontend. The demux function parameter contains a pointer to
the demux API and instance data. The frontend function parameter contains
a pointer to the front-end instance data. It returns: 0 on success; -EINVAL,
on bad parameter.

1912 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

disconnect_frontend Disconnects the demux and a front-end previously con-
nected by a connect_frontend call. The demux function parameter con-
tains a pointer to the demux API and instance data. It returns: 0 on success;
-EINVAL on bad parameter.

get_pes_pids Get the PIDs for DMX_PES_AUDIO0, DMX_PES_VIDEO0,
DMX_PES_TELETEXT0, DMX_PES_SUBTITLE0 and DMX_PES_PCR0. The
demux function parameter contains a pointer to the demux API and instance
data. The pids function parameter contains an array with five u16 elements
where the PIDs will be stored. It returns: 0 on success; -EINVAL on bad
parameter.

53.2.4 Digital TV Conditional Access kABI

struct dvb_ca_en50221
Structure describing a CA interface

Definition

struct dvb_ca_en50221 {
struct module *owner;
int (*read_attribute_mem)(struct dvb_ca_en50221 *ca, int slot, int␣

↪→address);
int (*write_attribute_mem)(struct dvb_ca_en50221 *ca, int slot, int␣

↪→address, u8 value);
int (*read_cam_control)(struct dvb_ca_en50221 *ca, int slot, u8 address);
int (*write_cam_control)(struct dvb_ca_en50221 *ca, int slot, u8 address,

↪→ u8 value);
int (*read_data)(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int␣

↪→ecount);
int (*write_data)(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int␣

↪→ecount);
int (*slot_reset)(struct dvb_ca_en50221 *ca, int slot);
int (*slot_shutdown)(struct dvb_ca_en50221 *ca, int slot);
int (*slot_ts_enable)(struct dvb_ca_en50221 *ca, int slot);
int (*poll_slot_status)(struct dvb_ca_en50221 *ca, int slot, int open);
void *data;
void *private;

};

Members
owner the module owning this structure

read_attribute_mem function for reading attribute memory on the CAM

write_attribute_mem function for writing attribute memory on the CAM

read_cam_control function for reading the control interface on the CAM

write_cam_control function for reading the control interface on the CAM

read_data function for reading data (block mode)

write_data function for writing data (block mode)

slot_reset function to reset the CAM slot

slot_shutdown function to shutdown a CAM slot

53.2. Digital TV (DVB) devices 1913

Linux Driver-api Documentation

slot_ts_enable function to enable the Transport Stream on a CAM slot

poll_slot_status function to poll slot status. Only necessary if
DVB_CA_FLAG_EN50221_IRQ_CAMCHANGE is not set.

data private data, used by caller.

private Opaque data used by the dvb_ca core. Do not modify!

NOTE
the read_*, write_* and poll_slot_status functions will be called for different slots
concurrently and need to use locks where and if appropriate. There will be no
concurrent access to one slot.

void dvb_ca_en50221_camchange_irq(struct dvb_ca_en50221 * pubca,
int slot, int change_type)

A CAMCHANGE IRQ has occurred.

Parameters
struct dvb_ca_en50221 * pubca CA instance.

int slot Slot concerned.

int change_type One of the DVB_CA_CAMCHANGE_* values

void dvb_ca_en50221_camready_irq(struct dvb_ca_en50221 * pubca,
int slot)

A CAMREADY IRQ has occurred.

Parameters
struct dvb_ca_en50221 * pubca CA instance.

int slot Slot concerned.

void dvb_ca_en50221_frda_irq(struct dvb_ca_en50221 * ca, int slot)
An FR or a DA IRQ has occurred.

Parameters
struct dvb_ca_en50221 * ca CA instance.

int slot Slot concerned.

int dvb_ca_en50221_init(struct dvb_adapter * dvb_adapter, struct
dvb_ca_en50221 * ca, int flags, int slot_count)

Initialise a new DVB CA device.

Parameters
struct dvb_adapter * dvb_adapter DVB adapter to attach the new CA device

to.

struct dvb_ca_en50221 * ca The dvb_ca instance.

int flags Flags describing the CA device (DVB_CA_EN50221_FLAG_*).

int slot_count Number of slots supported.

Description
return 0 on success, nonzero on failure

1914 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

void dvb_ca_en50221_release(struct dvb_ca_en50221 * ca)
Release a DVB CA device.

Parameters
struct dvb_ca_en50221 * ca The associated dvb_ca instance.

53.2.5 Digital TV Network kABI

struct dvb_net
describes a DVB network interface

Definition

struct dvb_net {
struct dvb_device *dvbdev;
struct net_device *device[DVB_NET_DEVICES_MAX];
int state[DVB_NET_DEVICES_MAX];
unsigned int exit:1;
struct dmx_demux *demux;
struct mutex ioctl_mutex;

};

Members
dvbdev pointer to struct dvb_device.

device array of pointers to struct net_device.

state array of integers to each net device. A value different than zero means that
the interface is in usage.

exit flag to indicate when the device is being removed.

demux pointer to struct dmx_demux.

ioctl_mutex protect access to this struct.

Description
Currently, the core supports up to DVB_NET_DEVICES_MAX (10) network devices.

int dvb_net_init(struct dvb_adapter * adap, struct dvb_net * dvbnet, struct
dmx_demux * dmxdemux)

nitializes a digital TV network device and registers it.

Parameters
struct dvb_adapter * adap pointer to struct dvb_adapter.

struct dvb_net * dvbnet pointer to struct dvb_net.

struct dmx_demux * dmxdemux pointer to struct dmx_demux.

void dvb_net_release(struct dvb_net * dvbnet)
releases a digital TV network device and unregisters it.

Parameters
struct dvb_net * dvbnet pointer to struct dvb_net.

53.2. Digital TV (DVB) devices 1915

Linux Driver-api Documentation

53.3 Remote Controller devices

53.3.1 Remote Controller core

The remote controller core implements infrastructure to receive and send remote
controller keyboard keystrokes and mouse events.

Every time a key is pressed on a remote controller, a scan code is produced. Also,
on most hardware, keeping a key pressed for more than a few dozens of millisec-
onds produce a repeat key event. That’s somewhat similar to what a normal
keyboard or mouse is handled internally on Linux1. So, the remote controller core
is implemented on the top of the linux input/evdev interface.

However, most of the remote controllers use infrared (IR) to transmit signals. As
there are several protocols used to modulate infrared signals, one important part
of the core is dedicated to adjust the driver and the core system to support the
infrared protocol used by the emitter.

The infrared transmission is done by blinking a infrared emitter using a carrier.
The carrier can be switched on or off by the IR transmitter hardware. When the
carrier is switched on, it is called PULSE. When the carrier is switched off, it is
called SPACE.

In other words, a typical IR transmission can be viewed as a sequence of PULSE
and SPACE events, each with a given duration.

The carrier parameters (frequency, duty cycle) and the intervals for PULSE and
SPACE events depend on the protocol. For example, the NEC protocol uses a
carrier of 38kHz, and transmissions start with a 9ms PULSE and a 4.5ms SPACE.
It then transmits 16 bits of scan code, being 8 bits for address (usually it is a
fixed number for a given remote controller), followed by 8 bits of code. A bit“1”is
modulated with 560µs PULSE followed by 1690µs SPACE and a bit“0”is modulated
with 560µs PULSE followed by 560µs SPACE.

At receiver, a simple low-pass filter can be used to convert the received signal in a
sequence of PULSE/SPACE events, filtering out the carrier frequency. Due to that,
the receiver doesn’t care about the carrier’s actual frequency parameters: all it has
to do is to measure the amount of time it receives PULSE/SPACE events. So, a sim-
ple IR receiver hardware will just provide a sequence of timings for those events to
the Kernel. The drivers for hardware with such kind of receivers are identified by
RC_DRIVER_IR_RAW, as defined by rc_driver_type2. Other hardware come with
a microcontroller that decode the PULSE/SPACE sequence and return scan codes
to the Kernel. Such kind of receivers are identified by RC_DRIVER_SCANCODE.

When the RC core receives events produced by RC_DRIVER_IR_RAW IR receivers, it
needs to decode the IR protocol, in order to obtain the corresponding scan code.
The protocols supported by the RC core are defined at enum rc_proto.

1 The main difference is that, on keyboard events, the keyboard controller produces one event for
a key press and another one for key release. On infrared-based remote controllers, there’s no key
release event. Instead, an extra code is produced to indicate key repeats.

2 The RC core also supports devices that have just IR emitters, without any receivers. Right
now, all such devices work only in raw TX mode. Such kind of hardware is identified as
RC_DRIVER_IR_RAW_TX.

1916 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

When the RC code receives a scan code (either directly, by a driver of the type
RC_DRIVER_SCANCODE, or via its IR decoders), it needs to convert into a Linux input
event code. This is done via a mapping table.

The Kernel has support for mapping tables available on most media devices. It also
supports loading a table in runtime, via some sysfs nodes. See the RC userspace
API for more details.

Remote controller data structures and functions

enum rc_driver_type
type of the RC driver.

Constants
RC_DRIVER_SCANCODE Driver or hardware generates a scancode.

RC_DRIVER_IR_RAW Driver or hardware generates pulse/space sequences. It
needs a Infra-Red pulse/space decoder

RC_DRIVER_IR_RAW_TX Device transmitter only, driver requires pulse/space data
sequence.

struct rc_scancode_filter
Filter scan codes.

Definition

struct rc_scancode_filter {
u32 data;
u32 mask;

};

Members
data Scancode data to match.

mask Mask of bits of scancode to compare.

enum rc_filter_type
Filter type constants.

Constants
RC_FILTER_NORMAL Filter for normal operation.

RC_FILTER_WAKEUP Filter for waking from suspend.

RC_FILTER_MAX Number of filter types.

struct lirc_fh
represents an open lirc file

Definition

struct lirc_fh {
struct list_head list;
struct rc_dev *rc;
int carrier_low;

(continues on next page)

53.3. Remote Controller devices 1917

Linux Driver-api Documentation

(continued from previous page)
bool send_timeout_reports;
unsigned int *rawir;
struct lirc_scancode *scancodes;
wait_queue_head_t wait_poll;
u8 send_mode;
u8 rec_mode;

};

Members
list list of open file handles

rc rcdev for this lirc chardev

carrier_low when setting the carrier range, first the low end must be set with an
ioctl and then the high end with another ioctl

send_timeout_reports report timeouts in lirc raw IR.

rawir queue for incoming raw IR

scancodes queue for incoming decoded scancodes

wait_poll poll struct for lirc device

send_mode lirc mode for sending, either LIRC_MODE_SCANCODE or
LIRC_MODE_PULSE

rec_mode lirc mode for receiving, either LIRC_MODE_SCANCODE or
LIRC_MODE_MODE2

struct rc_dev
represents a remote control device

Definition

struct rc_dev {
struct device dev;
bool managed_alloc;
const struct attribute_group *sysfs_groups[5];
const char *device_name;
const char *input_phys;
struct input_id input_id;
const char *driver_name;
const char *map_name;
struct rc_map rc_map;
struct mutex lock;
unsigned int minor;
struct ir_raw_event_ctrl *raw;
struct input_dev *input_dev;
enum rc_driver_type driver_type;
bool idle;
bool encode_wakeup;
u64 allowed_protocols;
u64 enabled_protocols;
u64 allowed_wakeup_protocols;
enum rc_proto wakeup_protocol;
struct rc_scancode_filter scancode_filter;

(continues on next page)

1918 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
struct rc_scancode_filter scancode_wakeup_filter;
u32 scancode_mask;
u32 users;
void *priv;
spinlock_t keylock;
bool keypressed;
unsigned long keyup_jiffies;
struct timer_list timer_keyup;
struct timer_list timer_repeat;
u32 last_keycode;
enum rc_proto last_protocol;
u64 last_scancode;
u8 last_toggle;
u32 timeout;
u32 min_timeout;
u32 max_timeout;
u32 rx_resolution;
u32 tx_resolution;

#ifdef CONFIG_LIRC;
struct device lirc_dev;
struct cdev lirc_cdev;
ktime_t gap_start;
u64 gap_duration;
bool gap;
spinlock_t lirc_fh_lock;
struct list_head lirc_fh;

#endif;
bool registered;
int (*change_protocol)(struct rc_dev *dev, u64 *rc_proto);
int (*open)(struct rc_dev *dev);
void (*close)(struct rc_dev *dev);
int (*s_tx_mask)(struct rc_dev *dev, u32 mask);
int (*s_tx_carrier)(struct rc_dev *dev, u32 carrier);
int (*s_tx_duty_cycle)(struct rc_dev *dev, u32 duty_cycle);
int (*s_rx_carrier_range)(struct rc_dev *dev, u32 min, u32 max);
int (*tx_ir)(struct rc_dev *dev, unsigned *txbuf, unsigned n);
void (*s_idle)(struct rc_dev *dev, bool enable);
int (*s_learning_mode)(struct rc_dev *dev, int enable);
int (*s_carrier_report) (struct rc_dev *dev, int enable);
int (*s_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
int (*s_wakeup_filter)(struct rc_dev *dev, struct rc_scancode_filter␣

↪→*filter);
int (*s_timeout)(struct rc_dev *dev, unsigned int timeout);

};

Members
dev driver model’s view of this device
managed_alloc devm_rc_allocate_device was used to create rc_dev

sysfs_groups sysfs attribute groups

device_name name of the rc child device

input_phys physical path to the input child device

input_id id of the input child device (struct input_id)

53.3. Remote Controller devices 1919

Linux Driver-api Documentation

driver_name name of the hardware driver which registered this device

map_name name of the default keymap

rc_map current scan/key table

lock used to ensure we’ve filled in all protocol details before anyone can call
show_protocols or store_protocols

minor unique minor remote control device number

raw additional data for raw pulse/space devices

input_dev the input child device used to communicate events to userspace

driver_type specifies if protocol decoding is done in hardware or software

idle used to keep track of RX state

encode_wakeup wakeup filtering uses IR encode API, therefore the allowed
wakeup protocols is the set of all raw encoders

allowed_protocols bitmask with the supported RC_PROTO_BIT_* protocols

enabled_protocols bitmask with the enabled RC_PROTO_BIT_* protocols

allowed_wakeup_protocols bitmask with the supported RC_PROTO_BIT_*
wakeup protocols

wakeup_protocol the enabled RC_PROTO_* wakeup protocol or
RC_PROTO_UNKNOWN if disabled.

scancode_filter scancode filter

scancode_wakeup_filter scancode wakeup filters

scancode_mask some hardware decoders are not capable of providing the full
scancode to the application. As this is a hardware limit, we can’t do any-
thing with it. Yet, as the same keycode table can be used with other devices,
a mask is provided to allow its usage. Drivers should generally leave this field
in blank

users number of current users of the device

priv driver-specific data

keylock protects the remaining members of the struct

keypressed whether a key is currently pressed

keyup_jiffies time (in jiffies) when the current keypress should be released

timer_keyup timer for releasing a keypress

timer_repeat timer for autorepeat events. This is needed for CEC, which has
non-standard repeats.

last_keycode keycode of last keypress

last_protocol protocol of last keypress

last_scancode scancode of last keypress

last_toggle toggle value of last command

1920 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

timeout optional time after which device stops sending data

min_timeout minimum timeout supported by device

max_timeout maximum timeout supported by device

rx_resolution resolution (in ns) of input sampler

tx_resolution resolution (in ns) of output sampler

lirc_dev lirc device

lirc_cdev lirc char cdev

gap_start time when gap starts

gap_duration duration of initial gap

gap true if we’re in a gap
lirc_fh_lock protects lirc_fh list

lirc_fh list of open files

registered set to true by rc_register_device(), false by rc_unregister_device

change_protocol allow changing the protocol used on hardware decoders

open callback to allow drivers to enable polling/irq when IR input device is opened.

close callback to allow drivers to disable polling/irq when IR input device is
opened.

s_tx_mask set transmitter mask (for devices with multiple tx outputs)

s_tx_carrier set transmit carrier frequency

s_tx_duty_cycle set transmit duty cycle (0% - 100%)

s_rx_carrier_range inform driver about carrier it is expected to handle

tx_ir transmit IR

s_idle enable/disable hardware idle mode, upon which, device doesn’t interrupt
host until it sees IR pulses

s_learning_mode enable wide band receiver used for learning

s_carrier_report enable carrier reports

s_filter set the scancode filter

s_wakeup_filter set the wakeup scancode filter. If the mask is zero then wakeup
should be disabled. wakeup_protocol will be set to a valid protocol if mask is
nonzero.

s_timeout set hardware timeout in ns

struct rc_dev * rc_allocate_device(enum rc_driver_type)
Allocates a RC device

Parameters
enum rc_driver_type specifies the type of the RC output to be allocated returns

a pointer to struct rc_dev.

53.3. Remote Controller devices 1921

Linux Driver-api Documentation

struct rc_dev * devm_rc_allocate_device(struct device * dev,
enum rc_driver_type)

Managed RC device allocation

Parameters
struct device * dev pointer to struct device

enum rc_driver_type specifies the type of the RC output to be allocated returns
a pointer to struct rc_dev.

void rc_free_device(struct rc_dev * dev)
Frees a RC device

Parameters
struct rc_dev * dev pointer to struct rc_dev.

int rc_register_device(struct rc_dev * dev)
Registers a RC device

Parameters
struct rc_dev * dev pointer to struct rc_dev.

int devm_rc_register_device(struct device * parent, struct rc_dev * dev)
Manageded registering of a RC device

Parameters
struct device * parent pointer to struct device.

struct rc_dev * dev pointer to struct rc_dev.

void rc_unregister_device(struct rc_dev * dev)
Unregisters a RC device

Parameters
struct rc_dev * dev pointer to struct rc_dev.

struct rc_map_table
represents a scancode/keycode pair

Definition

struct rc_map_table {
u64 scancode;
u32 keycode;

};

Members
scancode scan code (u64)

keycode Linux input keycode

struct rc_map
represents a keycode map table

Definition

1922 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct rc_map {
struct rc_map_table *scan;
unsigned int size;
unsigned int len;
unsigned int alloc;
enum rc_proto rc_proto;
const char *name;
spinlock_t lock;

};

Members
scan pointer to struct rc_map_table

size Max number of entries

len Number of entries that are in use

alloc size of *scan, in bytes

rc_proto type of the remote controller protocol, as defined at enum rc_proto

name name of the key map table

lock lock to protect access to this structure

struct rc_map_list
list of the registered rc_map maps

Definition

struct rc_map_list {
struct list_head list;
struct rc_map map;

};

Members
list pointer to struct list_head

map pointer to struct rc_map

int rc_map_register(struct rc_map_list * map)
Registers a Remote Controller scancode map

Parameters
struct rc_map_list * map pointer to struct rc_map_list

void rc_map_unregister(struct rc_map_list * map)
Unregisters a Remote Controller scancode map

Parameters
struct rc_map_list * map pointer to struct rc_map_list

struct rc_map * rc_map_get(const char * name)
gets an RC map from its name

Parameters
const char * name name of the RC scancode map

53.3. Remote Controller devices 1923

Linux Driver-api Documentation

53.4 Media Controller devices

53.4.1 Media Controller

The media controller userspace API is documented in the Media Controller uAPI
book. This document focus on the kernel-side implementation of the media frame-
work.

Abstract media device model

Discovering a device internal topology, and configuring it at runtime, is one of the
goals of the media framework. To achieve this, hardware devices are modelled as
an oriented graph of building blocks called entities connected through pads.

An entity is a basic media hardware building block. It can correspond to a large
variety of logical blocks such as physical hardware devices (CMOS sensor for in-
stance), logical hardware devices (a building block in a System-on-Chip image
processing pipeline), DMA channels or physical connectors.

A pad is a connection endpoint through which an entity can interact with other
entities. Data (not restricted to video) produced by an entity flows from the entity’
s output to one or more entity inputs. Pads should not be confused with physical
pins at chip boundaries.

A link is a point-to-point oriented connection between two pads, either on the same
entity or on different entities. Data flows from a source pad to a sink pad.

Media device

A media device is represented by a struct media_device instance, defined in
include/media/media-device.h. Allocation of the structure is handled by the
media device driver, usually by embedding the media_device instance in a larger
driver-specific structure.

Drivers register media device instances by calling __media_device_register()
via the macro media_device_register() and unregistered by calling
media_device_unregister().

Entities

Entities are represented by a struct media_entity instance, defined in include/
media/media-entity.h. The structure is usually embedded into a higher-level
structure, such as v4l2_subdev or video_device instances, although drivers can
allocate entities directly.

Drivers initialize entity pads by calling media_entity_pads_init().

Drivers register entities with a media device by calling
media_device_register_entity() and unregistered by calling
media_device_unregister_entity().

1924 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Interfaces

Interfaces are represented by a struct media_interface instance, defined in
include/media/media-entity.h. Currently, only one type of interface is defined:
a device node. Such interfaces are represented by a struct media_intf_devnode.

Drivers initialize and create device node interfaces by call-
ing media_devnode_create() and remove them by calling:
media_devnode_remove().

Pads

Pads are represented by a struct media_pad instance, defined in include/media/
media-entity.h. Each entity stores its pads in a pads array managed by the entity
driver. Drivers usually embed the array in a driver-specific structure.

Pads are identified by their entity and their 0-based index in the pads array.

Both information are stored in the struct media_pad, making the struct media_pad
pointer the canonical way to store and pass link references.

Pads have flags that describe the pad capabilities and state.

MEDIA_PAD_FL_SINK indicates that the pad supports sinking data.
MEDIA_PAD_FL_SOURCE indicates that the pad supports sourcing data.

Note: One and only one of MEDIA_PAD_FL_SINK or MEDIA_PAD_FL_SOURCE must
be set for each pad.

Links

Links are represented by a struct media_link instance, defined in include/media/
media-entity.h. There are two types of links:

1. pad to pad links:
Associate two entities via their PADs. Each entity has a list that points to all links
originating at or targeting any of its pads. A given link is thus stored twice, once
in the source entity and once in the target entity.

Drivers create pad to pad links by calling: media_create_pad_link() and remove
with media_entity_remove_links().

2. interface to entity links:
Associate one interface to a Link.

Drivers create interface to entity links by calling: media_create_intf_link() and
remove with media_remove_intf_links().

Note: Links can only be created after having both ends already created.

53.4. Media Controller devices 1925

Linux Driver-api Documentation

Links have flags that describe the link capabilities and state. The valid values are
described at media_create_pad_link() and media_create_intf_link().

Graph traversal

The media framework provides APIs to iterate over entities in a graph.

To iterate over all entities belonging to a media device, drivers can use the me-
dia_device_for_each_entity macro, defined in include/media/media-device.h.

struct media_entity *entity;

media_device_for_each_entity(entity, mdev) {
// entity will point to each entity in turn
...
}

Drivers might also need to iterate over all entities in a graph that can be reached
only through enabled links starting at a given entity. The media framework pro-
vides a depth-first graph traversal API for that purpose.

Note: Graphs with cycles (whether directed or undirected) areNOT supported by
the graph traversal API. To prevent infinite loops, the graph traversal code limits
the maximum depth to MEDIA_ENTITY_ENUM_MAX_DEPTH, currently defined as 16.

Drivers initiate a graph traversal by calling media_graph_walk_start()

The graph structure, provided by the caller, is initialized to start graph traversal
at the given entity.

Drivers can then retrieve the next entity by calling media_graph_walk_next()

When the graph traversal is complete the function will return NULL.

Graph traversal can be interrupted at any moment. No cleanup function call is
required and the graph structure can be freed normally.

Helper functions can be used to find a link between two given pads, or a pad
connected to another pad through an enabled link media_entity_find_link()
and media_entity_remote_pad().

Use count and power handling

Due to the wide differences between drivers regarding power management needs,
the media controller does not implement power management. However, the struct
media_entity includes a use_count field that media drivers can use to track the
number of users of every entity for power management needs.

The media_entity.use_count field is owned by media drivers and must not
be touched by entity drivers. Access to the field must be protected by the
media_device.graph_mutex lock.

1926 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Links setup

Link properties can be modified at runtime by calling
media_entity_setup_link().

Pipelines and media streams

When starting streaming, drivers must notify all entities in the pipeline
to prevent link states from being modified during streaming by calling
media_pipeline_start().

The function will mark all entities connected to the given entity through enabled
links, either directly or indirectly, as streaming.

The struct media_pipeline instance pointed to by the pipe argument will be stored
in every entity in the pipeline. Drivers should embed the struct media_pipeline
in higher-level pipeline structures and can then access the pipeline through the
struct media_entity pipe field.

Calls to media_pipeline_start() can be nested. The pipeline pointer must be
identical for all nested calls to the function.

media_pipeline_start() may return an error. In that case, it will clean up any
of the changes it did by itself.

When stopping the stream, drivers must notify the entities with
media_pipeline_stop().

If multiple calls to media_pipeline_start() have been made the same num-
ber of media_pipeline_stop() calls are required to stop streaming. The
media_entity.pipe field is reset to NULL on the last nested stop call.

Link configuration will fail with -EBUSY by default if either end of the link is a
streaming entity. Links that can be modified while streaming must be marked
with the MEDIA_LNK_FL_DYNAMIC flag.

If other operations need to be disallowed on streaming entities (such as changing
entities configuration parameters) drivers can explicitly check the media_entity
stream_count field to find out if an entity is streaming. This operation must be
done with the media_device graph_mutex held.

Link validation

Link validation is performed by media_pipeline_start() for any entity which has
sink pads in the pipeline. The media_entity.link_validate() callback is used for
that purpose. In link_validate() callback, entity driver should check that the
properties of the source pad of the connected entity and its own sink pad match.
It is up to the type of the entity (and in the end, the properties of the hardware)
what matching actually means.

Subsystems should facilitate link validation by providing subsystem specific helper
functions to provide easy access for commonly needed information, and in the end
provide a way to use driver-specific callbacks.

53.4. Media Controller devices 1927

Linux Driver-api Documentation

Media Controller Device Allocator API

When the media device belongs to more than one driver, the shared media device
is allocated with the shared struct device as the key for look ups.

The shared media device should stay in registered state until the last driver unreg-
isters it. In addition, the media device should be released when all the references
are released. Each driver gets a reference to the media device during probe, when
it allocates the media device. If media device is already allocated, the allocate API
bumps up the refcount and returns the existing media device. The driver puts the
reference back in its disconnect routine when it calls media_device_delete().

The media device is unregistered and cleaned up from the kref put handler to en-
sure that the media device stays in registered state until the last driver unregisters
the media device.

Driver Usage
Drivers should use the appropriate media-core routines to manage the shared me-
dia device life-time handling the two states: 1. allocate -> register -> delete 2.
get reference to already registered device -> delete

call media_device_delete() routine to make sure the shared media device delete
is handled correctly.

driver probe: Call media_device_usb_allocate() to allocate or get a reference
Call media_device_register(), if media devnode isn’t registered
driver disconnect: Call media_device_delete() to free the media_device. Free-
ing is handled by the kref put handler.

API Definitions

struct media_entity_notify
Media Entity Notify

Definition

struct media_entity_notify {
struct list_head list;
void *notify_data;
void (*notify)(struct media_entity *entity, void *notify_data);

};

Members
list List head

notify_data Input data to invoke the callback

notify Callback function pointer

Description
Drivers may register a callback to take action when new entities get registered
with the media device. This handler is intended for creating links between existing
entities and should not create entities and register them.

1928 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct media_device_ops
Media device operations

Definition

struct media_device_ops {
int (*link_notify)(struct media_link *link, u32 flags, unsigned int␣

↪→notification);
struct media_request *(*req_alloc)(struct media_device *mdev);
void (*req_free)(struct media_request *req);
int (*req_validate)(struct media_request *req);
void (*req_queue)(struct media_request *req);

};

Members
link_notify Link state change notification callback. This callback is called with

the graph_mutex held.

req_alloc Allocate a request. Set this if you need to allocate a struct larger then
struct media_request. req_alloc and req_free must either both be set or
both be NULL.

req_free Free a request. Set this if req_alloc was set as well, leave to NULL
otherwise.

req_validate Validate a request, but do not queue yet. The req_queue_mutex
lock is held when this op is called.

req_queue Queue a validated request, cannot fail. If something goes wrong
when queueing this request then it should be marked as such internally in
the driver and any related buffers must eventually return to vb2 with state
VB2_BUF_STATE_ERROR. The req_queue_mutex lock is held when this op is
called. It is important that vb2 buffer objects are queued last after all other
object types are queued: queueing a buffer kickstarts the request processing,
so all other objects related to the request (and thus the buffer) must be avail-
able to the driver. And once a buffer is queued, then the driver can complete
or delete objects from the request before req_queue exits.

struct media_device
Media device

Definition

struct media_device {
struct device *dev;
struct media_devnode *devnode;
char model[32];
char driver_name[32];
char serial[40];
char bus_info[32];
u32 hw_revision;
u64 topology_version;
u32 id;
struct ida entity_internal_idx;
int entity_internal_idx_max;
struct list_head entities;

(continues on next page)

53.4. Media Controller devices 1929

Linux Driver-api Documentation

(continued from previous page)
struct list_head interfaces;
struct list_head pads;
struct list_head links;
struct list_head entity_notify;
struct mutex graph_mutex;
struct media_graph pm_count_walk;
void *source_priv;
int (*enable_source)(struct media_entity *entity, struct media_pipeline␣

↪→*pipe);
void (*disable_source)(struct media_entity *entity);
const struct media_device_ops *ops;
struct mutex req_queue_mutex;
atomic_t request_id;

};

Members
dev Parent device

devnode Media device node

model Device model name

driver_name Optional device driver name. If not set, calls to
MEDIA_IOC_DEVICE_INFO will return dev->driver->name. This is needed for
USB drivers for example, as otherwise they’ll all appear as if the driver
name was “usb”.

serial Device serial number (optional)

bus_info Unique and stable device location identifier

hw_revision Hardware device revision

topology_version Monotonic counter for storing the version of the graph topol-
ogy. Should be incremented each time the topology changes.

id Unique ID used on the last registered graph object

entity_internal_idx Unique internal entity ID used by the graph traversal algo-
rithms

entity_internal_idx_max Allocated internal entity indices

entities List of registered entities

interfaces List of registered interfaces

pads List of registered pads

links List of registered links

entity_notify List of registered entity_notify callbacks

graph_mutex Protects access to struct media_device data

pm_count_walk Graph walk for power state walk. Access serialised using
graph_mutex.

source_priv Driver Private data for enable/disable source handlers

enable_source Enable Source Handler function pointer

1930 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

disable_source Disable Source Handler function pointer

ops Operation handler callbacks

req_queue_mutex Serialise the MEDIA_REQUEST_IOC_QUEUE ioctl w.r.t. other
operations that stop or start streaming.

request_id Used to generate unique request IDs

Description
This structure represents an abstract high-level media device. It allows easy ac-
cess to entities and provides basic media device-level support. The structure can
be allocated directly or embedded in a larger structure.

The parent dev is a physical device. It must be set before registering the media
device.

model is a descriptive model name exported through sysfs. It doesn’t have to be
unique.

enable_source is a handler to find source entity for the sink entity and activate
the link between them if source entity is free. Drivers should call this handler
before accessing the source.

disable_source is a handler to find source entity for the sink entity and deactivate
the link between them. Drivers should call this handler to release the source.

Use-case: find tuner entity connected to the decoder entity and check if it is avail-
able, and activate the the link between them from enable_source and deactivate
from disable_source.

Note: Bridge driver is expected to implement and set the handler when
media_device is registered or when bridge driver finds the media_device dur-
ing probe. Bridge driver sets source_priv with information necessary to run en-
able_source and disable_source handlers. Callers should hold graph_mutex to
access and call enable_source and disable_source handlers.

int media_entity_enum_init(struct media_entity_enum * ent_enum, struct
media_device * mdev)

Initialise an entity enumeration

Parameters
struct media_entity_enum * ent_enum Entity enumeration to be initialised

struct media_device * mdev The related media device

Return
zero on success or a negative error code.

void media_device_init(struct media_device * mdev)
Initializes a media device element

Parameters
struct media_device * mdev pointer to struct media_device

53.4. Media Controller devices 1931

Linux Driver-api Documentation

Description
This function initializes themedia device prior to its registration. Themedia device
initialization and registration is split in two functions to avoid race conditions and
make the media device available to user-space before the media graph has been
completed.

So drivers need to first initialize the media device, register any entity within the
media device, create pad to pad links and then finally register the media device
by calling media_device_register() as a final step.

void media_device_cleanup(struct media_device * mdev)
Cleanups a media device element

Parameters
struct media_device * mdev pointer to struct media_device

Description
This function that will destroy the graph_mutex that is initialized in
media_device_init().

int __media_device_register(struct media_device * mdev, struct module
* owner)

Registers a media device element

Parameters
struct media_device * mdev pointer to struct media_device

struct module * owner should be filled with THIS_MODULE

Description
Users, should, instead, call the media_device_register() macro.

The caller is responsible for initializing the media_device structure before regis-
tration. The following fields of media_device must be set:

• media_entity.dev must point to the parent device (usually a pci_dev,
usb_interface or platform_device instance).

• media_entity.model must be filled with the device model name as a NUL-
terminated UTF-8 string. The device/model revision must not be stored in
this field.

The following fields are optional:

• media_entity.serial is a unique serial number stored as a NUL-terminated
ASCII string. The field is big enough to store a GUID in text form. If the
hardware doesn’t provide a unique serial number this field must be left empty.

• media_entity.bus_info represents the location of the device in the system
as a NUL-terminated ASCII string. For PCI/PCIe devices media_entity.
bus_infomust be set to“PCI:”(or“PCIe:”) followed by the value of pci_name().
For USB devices,the usb_make_path() function must be used. This field is
used by applications to distinguish between otherwise identical devices that
don’t provide a serial number.

1932 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

• media_entity.hw_revision is the hardware device revision in a driver-
specific format. When possible the revision should be formatted with the
KERNEL_VERSION() macro.

Note:
1) Upon successful registration a character device named media[0-9]+ is cre-
ated. The device major and minor numbers are dynamic. The model name is
exported as a sysfs attribute.

2) Unregistering a media device that hasn’t been registered is NOT safe.

Return
returns zero on success or a negative error code.

media_device_register(mdev)
Registers a media device element

Parameters
mdev pointer to struct media_device

Description
This macro calls __media_device_register() passing THIS_MODULE as the
__media_device_register() second argument (owner).
void media_device_unregister(struct media_device * mdev)

Unregisters a media device element

Parameters
struct media_device * mdev pointer to struct media_device

Description
It is safe to call this function on an unregistered (but initialised) media device.

int media_device_register_entity(struct media_device * mdev, struct me-
dia_entity * entity)

registers a media entity inside a previously registered media device.

Parameters
struct media_device * mdev pointer to struct media_device

struct media_entity * entity pointer to struct media_entity to be registered

Description
Entities are identified by a unique positive integer ID. The media controller frame-
work will such ID automatically. IDs are not guaranteed to be contiguous, and
the ID number can change on newer Kernel versions. So, neither the driver nor
userspace should hardcode ID numbers to refer to the entities, but, instead, use
the framework to find the ID, when needed.

The media_entity name, type and flags fields should be initialized before calling
media_device_register_entity(). Entities embedded in higher-level standard
structures can have some of those fields set by the higher-level framework.

53.4. Media Controller devices 1933

Linux Driver-api Documentation

If the device has pads, media_entity_pads_init() should be called before this
function. Otherwise, the media_entity.pad and media_entity.num_pads should
be zeroed before calling this function.

Entities have flags that describe the entity capabilities and state:

MEDIA_ENT_FL_DEFAULT indicates the default entity for a given type. This can be
used to report the default audio and video devices or the default camera sen-
sor.

Note: Drivers should set the entity function before calling this func-
tion. Please notice that the values MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN and
MEDIA_ENT_F_UNKNOWN should not be used by the drivers.

void media_device_unregister_entity(struct media_entity * entity)
unregisters a media entity.

Parameters
struct media_entity * entity pointer to struct media_entity to be unregis-

tered

Description
All links associated with the entity and all PADs are automatically unregistered
from the media_device when this function is called.

Unregistering an entity will not change the IDs of the other entities and the pre-
vioully used ID will never be reused for a newly registered entities.

When a media device is unregistered, all its entities are unregistered automati-
cally. No manual entities unregistration is then required.

Note: The media_entity instance itself must be freed explicitly by the driver if
required.

int media_device_register_entity_notify(struct media_device * mdev,
struct media_entity_notify
* nptr)

Registers a media entity_notify callback

Parameters
struct media_device * mdev The media device

struct media_entity_notify * nptr The media_entity_notify

Description

Note: When a new entity is registered, all the registered media_entity_notify
callbacks are invoked.

1934 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

void media_device_unregister_entity_notify(struct media_device
* mdev, struct me-
dia_entity_notify * nptr)

Unregister a media entity notify callback

Parameters
struct media_device * mdev The media device

struct media_entity_notify * nptr The media_entity_notify

void media_device_pci_init(struct media_device * mdev, struct pci_dev
* pci_dev, const char * name)

create and initialize a struct media_device from a PCI device.

Parameters
struct media_device * mdev pointer to struct media_device

struct pci_dev * pci_dev pointer to struct pci_dev

const char * name media device name. If NULL, the routine will use the default
name for the pci device, given by pci_name() macro.

void __media_device_usb_init(struct media_device * mdev, struct
usb_device * udev, const char
* board_name, const char * driver_name)

create and initialize a struct media_device from a PCI device.

Parameters
struct media_device * mdev pointer to struct media_device

struct usb_device * udev pointer to struct usb_device

const char * board_name media device name. If NULL, the routine will use the
usb product name, if available.

const char * driver_name name of the driver. if NULL, the routine will use the
name given by udev->dev->driver->name, with is usually the wrong thing to
do.

Description

Note: It is better to call media_device_usb_init() instead, as such macro fills
driver_name with KBUILD_MODNAME.

media_device_usb_init(mdev, udev, name)
create and initialize a struct media_device from a PCI device.

Parameters
mdev pointer to struct media_device

udev pointer to struct usb_device

name media device name. If NULL, the routine will use the usb product name, if
available.

Description

53.4. Media Controller devices 1935

Linux Driver-api Documentation

This macro calls media_device_usb_init() passing the
media_device_usb_init() driver_name parameter filled with KBUILD_MODNAME.
struct media_file_operations

Media device file operations

Definition

struct media_file_operations {
struct module *owner;
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
__poll_t (*poll) (struct file *, struct poll_table_struct *);
long (*ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*open) (struct file *);
int (*release) (struct file *);

};

Members
owner should be filled with THIS_MODULE

read pointer to the function that implements read() syscall

write pointer to the function that implements write() syscall

poll pointer to the function that implements poll() syscall

ioctl pointer to the function that implements ioctl() syscall

compat_ioctl pointer to the function that will handle 32 bits userspace calls to
the the ioctl() syscall on a Kernel compiled with 64 bits.

open pointer to the function that implements open() syscall

release pointer to the function that will release the resources allocated by the
open function.

struct media_devnode
Media device node

Definition

struct media_devnode {
struct media_device *media_dev;
const struct media_file_operations *fops;
struct device dev;
struct cdev cdev;
struct device *parent;
int minor;
unsigned long flags;
void (*release)(struct media_devnode *devnode);

};

Members
media_dev pointer to struct media_device

fops pointer to struct media_file_operations with media device ops

dev pointer to struct device containing the media controller device

1936 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

cdev struct cdev pointer character device

parent parent device

minor device node minor number

flags flags, combination of the MEDIA_FLAG_* constants

release release callback called at the end of media_devnode_release() routine
at media-device.c.

Description
This structure represents a media-related device node.

The parent is a physical device. It must be set by core or device drivers before
registering the node.

int media_devnode_register(struct media_device * mdev, struct me-
dia_devnode * devnode, struct module
* owner)

register a media device node

Parameters
struct media_device * mdev struct media_device we want to register a device

node

struct media_devnode * devnode media device node structure we want to reg-
ister

struct module * owner should be filled with THIS_MODULE

Description
The registration code assigns minor numbers and registers the new device node
with the kernel. An error is returned if no free minor number can be found, or if
the registration of the device node fails.

Zero is returned on success.

Note that if the media_devnode_register call fails, the release() callback of the
media_devnode structure is not called, so the caller is responsible for freeing any
data.

void media_devnode_unregister_prepare(struct media_devnode
* devnode)

clear the media device node register bit

Parameters
struct media_devnode * devnode the device node to prepare for unregister

Description
This clears the passed device register bit. Future open calls will be met with
errors. Should be called before media_devnode_unregister() to avoid races with
unregister and device file open calls.

This function can safely be called if the device node has never been registered or
has already been unregistered.

53.4. Media Controller devices 1937

Linux Driver-api Documentation

void media_devnode_unregister(struct media_devnode * devnode)
unregister a media device node

Parameters
struct media_devnode * devnode the device node to unregister

Description
This unregisters the passed device. Future open calls will be met with errors.

Should be called after media_devnode_unregister_prepare()

struct media_devnode * media_devnode_data(struct file * filp)
returns a pointer to the media_devnode

Parameters
struct file * filp pointer to struct file

int media_devnode_is_registered(struct media_devnode * devnode)
returns true if media_devnode is registered; false otherwise.

Parameters
struct media_devnode * devnode pointer to struct media_devnode.

Note
If mdev is NULL, it also returns false.

enum media_gobj_type
type of a graph object

Constants
MEDIA_GRAPH_ENTITY Identify a media entity

MEDIA_GRAPH_PAD Identify a media pad

MEDIA_GRAPH_LINK Identify a media link

MEDIA_GRAPH_INTF_DEVNODE Identify a media Kernel API interface via a device
node

struct media_gobj
Define a graph object.

Definition

struct media_gobj {
struct media_device *mdev;
u32 id;
struct list_head list;

};

Members
mdev Pointer to the struct media_device that owns the object

id Non-zero object ID identifier. The ID should be unique inside a me-
dia_device, as it is composed by MEDIA_BITS_PER_TYPE to store the type plus
MEDIA_BITS_PER_ID to store the ID

1938 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

list List entry stored in one of the per-type mdev object lists

Description
All objects on the media graph should have this struct embedded

struct media_entity_enum
An enumeration of media entities.

Definition

struct media_entity_enum {
unsigned long *bmap;
int idx_max;

};

Members
bmap Bit map in which each bit represents one entity at struct media_entity-

>internal_idx.

idx_max Number of bits in bmap

struct media_graph
Media graph traversal state

Definition

struct media_graph {
struct {

struct media_entity *entity;
struct list_head *link;

} stack[MEDIA_ENTITY_ENUM_MAX_DEPTH];
struct media_entity_enum ent_enum;
int top;

};

Members
stack Graph traversal stack; the stack contains information on the path the media

entities to be walked and the links through which they were reached.

stack.entity pointer to struct media_entity at the graph.

stack.link pointer to struct list_head.

ent_enum Visited entities

top The top of the stack

struct media_pipeline
Media pipeline related information

Definition

struct media_pipeline {
int streaming_count;
struct media_graph graph;

};

Members

53.4. Media Controller devices 1939

Linux Driver-api Documentation

streaming_count Streaming start count - streaming stop count

graph Media graph walk during pipeline start / stop

struct media_link
A link object part of a media graph.

Definition

struct media_link {
struct media_gobj graph_obj;
struct list_head list;
union {

struct media_gobj *gobj0;
struct media_pad *source;
struct media_interface *intf;

};
union {

struct media_gobj *gobj1;
struct media_pad *sink;
struct media_entity *entity;

};
struct media_link *reverse;
unsigned long flags;
bool is_backlink;

};

Members
graph_obj Embedded structure containing the media object common data

list Linked list associated with an entity or an interface that owns the link.

{unnamed_union} anonymous

gobj0 Part of a union. Used to get the pointer for the first graph_object of the
link.

source Part of a union. Used only if the first object (gobj0) is a pad. In that case,
it represents the source pad.

intf Part of a union. Used only if the first object (gobj0) is an interface.

{unnamed_union} anonymous

gobj1 Part of a union. Used to get the pointer for the second graph_object of the
link.

sink Part of a union. Used only if the second object (gobj1) is a pad. In that case,
it represents the sink pad.

entity Part of a union. Used only if the second object (gobj1) is an entity.

reverse Pointer to the link for the reverse direction of a pad to pad link.

flags Link flags, as defined in uapi/media.h (MEDIA_LNK_FL_*)

is_backlink Indicate if the link is a backlink.

enum media_pad_signal_type
type of the signal inside a media pad

1940 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Constants
PAD_SIGNAL_DEFAULT Default signal. Use this when all inputs or all outputs are

uniquely identified by the pad number.

PAD_SIGNAL_ANALOG The pad contains an analog signal. It can be Radio Fre-
quency, Intermediate Frequency, a baseband signal or sub-cariers. Tuner
inputs, IF-PLL demodulators, composite and s-video signals should use it.

PAD_SIGNAL_DV Contains a digital video signal, with can be a bitstream of samples
taken from an analog TV video source. On such case, it usually contains the
VBI data on it.

PAD_SIGNAL_AUDIO Contains an Intermediate Frequency analog signal from an au-
dio sub-carrier or an audio bitstream. IF signals are provided by tuners and
consumed by audio AM/FM decoders. Bitstream audio is provided by an audio
decoder.

struct media_pad
A media pad graph object.

Definition

struct media_pad {
struct media_gobj graph_obj;
struct media_entity *entity;
u16 index;
enum media_pad_signal_type sig_type;
unsigned long flags;

};

Members
graph_obj Embedded structure containing the media object common data

entity Entity this pad belongs to

index Pad index in the entity pads array, numbered from 0 to n

sig_type Type of the signal inside a media pad

flags Pad flags, as defined in include/uapi/linux/media.h (seek for
MEDIA_PAD_FL_*)

struct media_entity_operations
Media entity operations

Definition

struct media_entity_operations {
int (*get_fwnode_pad)(struct media_entity *entity, struct fwnode_

↪→endpoint *endpoint);
int (*link_setup)(struct media_entity *entity,const struct media_pad␣

↪→*local, const struct media_pad *remote, u32 flags);
int (*link_validate)(struct media_link *link);

};

Members

53.4. Media Controller devices 1941

Linux Driver-api Documentation

get_fwnode_pad Return the pad number based on a fwnode endpoint or a negative
value on error. This operation can be used to map a fwnode to a media pad
number. Optional.

link_setup Notify the entity of link changes. The operation can return an error,
in which case link setup will be cancelled. Optional.

link_validate Return whether a link is valid from the entity point of view. The
media_pipeline_start() function validates all links by calling this opera-
tion. Optional.

Description

Note: Those these callbacks are called with struct media_device.graph_mutex
mutex held.

enum media_entity_type
Media entity type

Constants
MEDIA_ENTITY_TYPE_BASE The entity isn’t embedded in another subsystem struc-

ture.

MEDIA_ENTITY_TYPE_VIDEO_DEVICE The entity is embedded in a struct
video_device instance.

MEDIA_ENTITY_TYPE_V4L2_SUBDEV The entity is embedded in a struct v4l2_subdev
instance.

Description
Media entity objects are often not instantiated directly, but the media entity struc-
ture is inherited by (through embedding) other subsystem-specific structures. The
media entity type identifies the type of the subclass structure that implements a
media entity instance.

This allows runtime type identification of media entities and safe casting
to the correct object type. For instance, a media entity structure in-
stance embedded in a v4l2_subdev structure instance will have the type
MEDIA_ENTITY_TYPE_V4L2_SUBDEV and can safely be cast to a v4l2_subdev struc-
ture using the container_of() macro.

struct media_entity
A media entity graph object.

Definition

struct media_entity {
struct media_gobj graph_obj;
const char *name;
enum media_entity_type obj_type;
u32 function;
unsigned long flags;
u16 num_pads;
u16 num_links;
u16 num_backlinks;

(continues on next page)

1942 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
int internal_idx;
struct media_pad *pads;
struct list_head links;
const struct media_entity_operations *ops;
int stream_count;
int use_count;
struct media_pipeline *pipe;
union {

struct {
u32 major;
u32 minor;

} dev;
} info;

};

Members
graph_obj Embedded structure containing the media object common data.

name Entity name.

obj_type Type of the object that implements the media_entity.

function Entity main function, as defined in include/uapi/linux/media.h (seek for
MEDIA_ENT_F_*)

flags Entity flags, as defined in include/uapi/linux/media.h (seek for
MEDIA_ENT_FL_*)

num_pads Number of sink and source pads.

num_links Total number of links, forward and back, enabled and disabled.

num_backlinks Number of backlinks

internal_idx An unique internal entity specific number. The numbers are re-
used if entities are unregistered or registered again.

pads Pads array with the size defined by num_pads.
links List of data links.

ops Entity operations.

stream_count Stream count for the entity.

use_count Use count for the entity.

pipe Pipeline this entity belongs to.

info Union with devnode information. Kept just for backward compatibility.

info.dev Contains device major and minor info.

info.dev.major device node major, if the device is a devnode.

info.dev.minor device node minor, if the device is a devnode.

Description

53.4. Media Controller devices 1943

Linux Driver-api Documentation

Note: stream_count and use_count reference counts must never be negative,
but are signed integers on purpose: a simple WARN_ON(<0) check can be used to
detect reference count bugs that would make them negative.

struct media_interface
A media interface graph object.

Definition

struct media_interface {
struct media_gobj graph_obj;
struct list_head links;
u32 type;
u32 flags;

};

Members
graph_obj embedded graph object

links List of links pointing to graph entities

type Type of the interface as defined in include/uapi/linux/media.h (seek for
MEDIA_INTF_T_*)

flags Interface flags as defined in include/uapi/linux/media.h (seek for
MEDIA_INTF_FL_*)

Description

Note: Currently, no flags for media_interface is defined.

struct media_intf_devnode
A media interface via a device node.

Definition

struct media_intf_devnode {
struct media_interface intf;
u32 major;
u32 minor;

};

Members
intf embedded interface object

major Major number of a device node

minor Minor number of a device node

u32 media_entity_id(struct media_entity * entity)
return the media entity graph object id

Parameters
struct media_entity * entity pointer to media_entity

1944 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

enum media_gobj_type media_type(struct media_gobj * gobj)
return the media object type

Parameters
struct media_gobj * gobj Pointer to the struct media_gobj graph object

u32 media_id(struct media_gobj * gobj)
return the media object ID

Parameters
struct media_gobj * gobj Pointer to the struct media_gobj graph object

u32 media_gobj_gen_id(enum media_gobj_type type, u64 local_id)
encapsulates type and ID on at the object ID

Parameters
enum media_gobj_type type object type as define at enum media_gobj_type.

u64 local_id next ID, from struct media_device.id.

bool is_media_entity_v4l2_video_device(struct media_entity * entity)
Check if the entity is a video_device

Parameters
struct media_entity * entity pointer to entity

Return
true if the entity is an instance of a video_device object and can safely be cast to
a struct video_device using the container_of() macro, or false otherwise.

bool is_media_entity_v4l2_subdev(struct media_entity * entity)
Check if the entity is a v4l2_subdev

Parameters
struct media_entity * entity pointer to entity

Return
true if the entity is an instance of a v4l2_subdev object and can safely be cast to
a struct v4l2_subdev using the container_of() macro, or false otherwise.

int __media_entity_enum_init(struct media_entity_enum * ent_enum,
int idx_max)

Initialise an entity enumeration

Parameters
struct media_entity_enum * ent_enum Entity enumeration to be initialised

int idx_max Maximum number of entities in the enumeration

Return
Returns zero on success or a negative error code.

void media_entity_enum_cleanup(struct media_entity_enum * ent_enum)
Release resources of an entity enumeration

Parameters

53.4. Media Controller devices 1945

Linux Driver-api Documentation

struct media_entity_enum * ent_enum Entity enumeration to be released

void media_entity_enum_zero(struct media_entity_enum * ent_enum)
Clear the entire enum

Parameters
struct media_entity_enum * ent_enum Entity enumeration to be cleared

void media_entity_enum_set(struct media_entity_enum * ent_enum, struct
media_entity * entity)

Mark a single entity in the enum

Parameters
struct media_entity_enum * ent_enum Entity enumeration

struct media_entity * entity Entity to be marked

void media_entity_enum_clear(struct media_entity_enum * ent_enum,
struct media_entity * entity)

Unmark a single entity in the enum

Parameters
struct media_entity_enum * ent_enum Entity enumeration

struct media_entity * entity Entity to be unmarked

bool media_entity_enum_test(struct media_entity_enum * ent_enum,
struct media_entity * entity)

Test whether the entity is marked

Parameters
struct media_entity_enum * ent_enum Entity enumeration

struct media_entity * entity Entity to be tested

Description
Returns true if the entity was marked.

bool media_entity_enum_test_and_set(struct media_entity_enum
* ent_enum, struct media_entity
* entity)

Test whether the entity is marked, and mark it

Parameters
struct media_entity_enum * ent_enum Entity enumeration

struct media_entity * entity Entity to be tested

Description
Returns true if the entity was marked, and mark it before doing so.

bool media_entity_enum_empty(struct media_entity_enum * ent_enum)
Test whether the entire enum is empty

Parameters
struct media_entity_enum * ent_enum Entity enumeration

1946 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Return
true if the entity was empty.

bool media_entity_enum_intersects(struct media_entity_enum
* ent_enum1, struct me-
dia_entity_enum * ent_enum2)

Test whether two enums intersect

Parameters
struct media_entity_enum * ent_enum1 First entity enumeration

struct media_entity_enum * ent_enum2 Second entity enumeration

Return
true if entity enumerations ent_enum1 and ent_enum2 intersect, otherwise
false.

gobj_to_entity(gobj)
returns the struct media_entity pointer from the gobj contained on it.

Parameters
gobj Pointer to the struct media_gobj graph object

gobj_to_pad(gobj)
returns the struct media_pad pointer from the gobj contained on it.

Parameters
gobj Pointer to the struct media_gobj graph object

gobj_to_link(gobj)
returns the struct media_link pointer from the gobj contained on it.

Parameters
gobj Pointer to the struct media_gobj graph object

gobj_to_intf(gobj)
returns the struct media_interface pointer from the gobj contained on it.

Parameters
gobj Pointer to the struct media_gobj graph object

intf_to_devnode(intf)
returns the struct media_intf_devnode pointer from the intf contained on it.

Parameters
intf Pointer to struct media_intf_devnode

void media_gobj_create(struct media_device * mdev, enum me-
dia_gobj_type type, struct media_gobj * gobj)

Initialize a graph object

Parameters
struct media_device * mdev Pointer to the media_device that contains the ob-

ject

53.4. Media Controller devices 1947

Linux Driver-api Documentation

enum media_gobj_type type Type of the object

struct media_gobj * gobj Pointer to the struct media_gobj graph object

Description
This routine initializes the embedded struct media_gobj inside a media graph ob-
ject. It is called automatically if media_*_create function calls are used. However,
if the object (entity, link, pad, interface) is embedded on some other object, this
function should be called before registering the object at the media controller.

void media_gobj_destroy(struct media_gobj * gobj)
Stop using a graph object on a media device

Parameters
struct media_gobj * gobj Pointer to the struct media_gobj graph object

Description
This should be called by all routines like media_device_unregister() that re-
move/destroy media graph objects.

int media_entity_pads_init(struct media_entity * entity, u16 num_pads,
struct media_pad * pads)

Initialize the entity pads

Parameters
struct media_entity * entity entity where the pads belong

u16 num_pads total number of sink and source pads

struct media_pad * pads Array of num_pads pads.
Description
The pads array is managed by the entity driver and passed to
media_entity_pads_init() where its pointer will be stored in the media_entity
structure.

If no pads are needed, drivers could either directly fill media_entity->num_pads
with 0 and media_entity->pads with NULL or call this function that will do the
same.

As the number of pads is known in advance, the pads array is not allocated dynam-
ically but is managed by the entity driver. Most drivers will embed the pads array
in a driver-specific structure, avoiding dynamic allocation.

Drivers must set the direction of every pad in the pads array before calling
media_entity_pads_init(). The function will initialize the other pads fields.

void media_entity_cleanup(struct media_entity * entity)
free resources associated with an entity

Parameters
struct media_entity * entity entity where the pads belong

Description
This function must be called during the cleanup phase after unregistering the en-
tity (currently, it does nothing).

1948 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

int media_get_pad_index(struct media_entity * entity, bool is_sink, enum
media_pad_signal_type sig_type)

retrieves a pad index from an entity

Parameters
struct media_entity * entity entity where the pads belong

bool is_sink true if the pad is a sink, false if it is a source

enum media_pad_signal_type sig_type type of signal of the pad to be search

Description
This helper function finds the first pad index inside an entity that satisfies both
is_sink and sig_type conditions.
On success, return the pad number. If the pad was not found or the media entity
is a NULL pointer, return -EINVAL.

Return
int media_create_pad_link(struct media_entity * source, u16 source_pad,

struct media_entity * sink, u16 sink_pad,
u32 flags)

creates a link between two entities.

Parameters
struct media_entity * source pointer to media_entity of the source pad.

u16 source_pad number of the source pad in the pads array

struct media_entity * sink pointer to media_entity of the sink pad.

u16 sink_pad number of the sink pad in the pads array.

u32 flags Link flags, as defined in include/uapi/linux/media.h (seek for
MEDIA_LNK_FL_*)

Description
Valid values for flags:

MEDIA_LNK_FL_ENABLED Indicates that the link is enabled and can be used to trans-
fer media data. When two or more links target a sink pad, only one of them
can be enabled at a time.

MEDIA_LNK_FL_IMMUTABLE Indicates that the link enabled state can’t be modified
at runtime. If MEDIA_LNK_FL_IMMUTABLE is set, then MEDIA_LNK_FL_ENABLED
must also be set, since an immutable link is always enabled.

Note: Before calling this function, media_entity_pads_init() and
media_device_register_entity() should be called previously for both ends.

53.4. Media Controller devices 1949

Linux Driver-api Documentation

int media_create_pad_links(const struct media_device * mdev, const
u32 source_function, struct media_entity
* source, const u16 source_pad, const
u32 sink_function, struct media_entity
* sink, const u16 sink_pad, u32 flags, const
bool allow_both_undefined)

creates a link between two entities.

Parameters
const struct media_device * mdev Pointer to the media_device that contains

the object

const u32 source_function Function of the source entities. Used only if source
is NULL.

struct media_entity * source pointer to media_entity of the source pad. If
NULL, it will use all entities that matches the sink_function.

const u16 source_pad number of the source pad in the pads array

const u32 sink_function Function of the sink entities. Used only if sink is
NULL.

struct media_entity * sink pointer to media_entity of the sink pad. If NULL,
it will use all entities that matches the sink_function.

const u16 sink_pad number of the sink pad in the pads array.

u32 flags Link flags, as defined in include/uapi/linux/media.h.

const bool allow_both_undefined if true, then both source and sink can be
NULL. In such case, it will create a crossbar between all entities that matches
source_function to all entities that matches sink_function. If false, it will
return 0 and won’t create any link if both source and sink are NULL.

Description
Valid values for flags:

A MEDIA_LNK_FL_ENABLED flag indicates that the link is enabled and can be
used to transfer media data. If multiple links are created and this flag is
passed as an argument, only the first created link will have this flag.

A MEDIA_LNK_FL_IMMUTABLE flag indicates that the link enabled state can’t
be modified at runtime. If MEDIA_LNK_FL_IMMUTABLE is set, then
MEDIA_LNK_FL_ENABLED must also be set since an immutable link is al-
ways enabled.

It is common for some devices to have multiple source and/or sink entities of the
same type that should be linked. While media_create_pad_link() creates link by
link, this function is meant to allow 1:n, n:1 and even cross-bar (n:n) links.

Note: Before calling this function, media_entity_pads_init() and
media_device_register_entity() should be called previously for the enti-
ties to be linked.

1950 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

void media_entity_remove_links(struct media_entity * entity)
remove all links associated with an entity

Parameters
struct media_entity * entity pointer to media_entity

Description

Note: This is called automatically when an entity is unregistered via
media_device_register_entity().

int __media_entity_setup_link(struct media_link * link, u32 flags)
Configure a media link without locking

Parameters
struct media_link * link The link being configured

u32 flags Link configuration flags

Description
The bulk of link setup is handled by the two entities connected through the link.
This function notifies both entities of the link configuration change.

If the link is immutable or if the current and new configuration are identical, return
immediately.

The user is expected to hold link->source->parent->mutex. If not,
media_entity_setup_link() should be used instead.

int media_entity_setup_link(struct media_link * link, u32 flags)
changes the link flags properties in runtime

Parameters
struct media_link * link pointer to media_link

u32 flags the requested new link flags

Description
The only configurable property is the MEDIA_LNK_FL_ENABLED link flag flag to en-
able/disable a link. Links marked with the MEDIA_LNK_FL_IMMUTABLE link flag can
not be enabled or disabled.

When a link is enabled or disabled, the media framework calls the link_setup op-
eration for the two entities at the source and sink of the link, in that order. If the
second link_setup call fails, another link_setup call is made on the first entity to
restore the original link flags.

Media device drivers can be notified of link setup operations by setting the
media_device.link_notify pointer to a callback function. If provided, the no-
tification callback will be called before enabling and after disabling links.

Entity drivers must implement the link_setup operation if any of their links is non-
immutable. The operation must either configure the hardware or store the config-
uration information to be applied later.

53.4. Media Controller devices 1951

Linux Driver-api Documentation

Link configuration must not have any side effect on other links. If an enabled
link at a sink pad prevents another link at the same pad from being enabled, the
link_setup operation must return -EBUSY and can’t implicitly disable the first en-
abled link.

Note: The valid values of the flags for the link is the same as described on
media_create_pad_link(), for pad to pad links or the same as described on
media_create_intf_link(), for interface to entity links.

struct media_link * media_entity_find_link(struct media_pad * source,
struct media_pad * sink)

Find a link between two pads

Parameters
struct media_pad * source Source pad

struct media_pad * sink Sink pad

Return
returns a pointer to the link between the two entities. If no such link exists, return
NULL.

struct media_pad * media_entity_remote_pad(const struct media_pad
* pad)

Find the pad at the remote end of a link

Parameters
const struct media_pad * pad Pad at the local end of the link

Description
Search for a remote pad connected to the given pad by iterating over all links
originating or terminating at that pad until an enabled link is found.

Return
returns a pointer to the pad at the remote end of the first found enabled link, or
NULL if no enabled link has been found.

int media_entity_get_fwnode_pad(struct media_entity * entity, struct
fwnode_handle * fwnode, unsigned
long direction_flags)

Get pad number from fwnode

Parameters
struct media_entity * entity The entity

struct fwnode_handle * fwnode Pointer to the fwnode_handle which should be
used to find the pad

unsigned long direction_flags Expected direction of the pad, as defined in in-
clude/uapi/linux/media.h (seek for MEDIA_PAD_FL_*)

Description

1952 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

This function can be used to resolve the media pad number from a fwnode. This
is useful for devices which use more complex mappings of media pads.

If the entity does not implement the get_fwnode_pad() operation then this function
searches the entity for the first pad that matches the direction_flags.
Return
returns the pad number on success or a negative error code.

int media_graph_walk_init(struct media_graph * graph, struct me-
dia_device * mdev)

Allocate resources used by graph walk.

Parameters
struct media_graph * graph Media graph structure that will be used to walk

the graph

struct media_device * mdev Pointer to the media_device that contains the ob-
ject

void media_graph_walk_cleanup(struct media_graph * graph)
Release resources used by graph walk.

Parameters
struct media_graph * graph Media graph structure that will be used to walk

the graph

void media_graph_walk_start(struct media_graph * graph, struct me-
dia_entity * entity)

Start walking the media graph at a given entity

Parameters
struct media_graph * graph Media graph structure that will be used to walk

the graph

struct media_entity * entity Starting entity

Description
Before using this function, media_graph_walk_init() must be used to allocate
resources used for walking the graph. This function initializes the graph traversal
structure to walk the entities graph starting at the given entity. The traversal
structure must not be modified by the caller during graph traversal. After the
graph walk, the resources must be released using media_graph_walk_cleanup().

struct media_entity * media_graph_walk_next(struct media_graph * graph)
Get the next entity in the graph

Parameters
struct media_graph * graph Media graph structure

Description
Perform a depth-first traversal of the given media entities graph.

53.4. Media Controller devices 1953

Linux Driver-api Documentation

The graph structure must have been previously initialized with a call to
media_graph_walk_start().

Return
returns the next entity in the graph or NULL if the whole graph have been traversed.

int media_pipeline_start(struct media_entity * entity, struct me-
dia_pipeline * pipe)

Mark a pipeline as streaming

Parameters
struct media_entity * entity Starting entity

struct media_pipeline * pipe Media pipeline to be assigned to all entities in
the pipeline.

Description
Mark all entities connected to a given entity through enabled links, either directly
or indirectly, as streaming. The given pipeline object is assigned to every entity in
the pipeline and stored in the media_entity pipe field.

Calls to this function can be nested, in which case the same number of
media_pipeline_stop() calls will be required to stop streaming. The pipeline
pointer must be identical for all nested calls to media_pipeline_start().

int __media_pipeline_start(struct media_entity * entity, struct me-
dia_pipeline * pipe)

Mark a pipeline as streaming

Parameters
struct media_entity * entity Starting entity

struct media_pipeline * pipe Media pipeline to be assigned to all entities in
the pipeline.

Description
..note:: This is the non-locking version of media_pipeline_start()

void media_pipeline_stop(struct media_entity * entity)
Mark a pipeline as not streaming

Parameters
struct media_entity * entity Starting entity

Description
Mark all entities connected to a given entity through enabled links, either directly
or indirectly, as not streaming. The media_entity pipe field is reset to NULL.

If multiple calls to media_pipeline_start() have been made, the same number
of calls to this function are required to mark the pipeline as not streaming.

void __media_pipeline_stop(struct media_entity * entity)
Mark a pipeline as not streaming

Parameters

1954 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct media_entity * entity Starting entity

Description

Note: This is the non-locking version of media_pipeline_stop()

struct media_intf_devnode * media_devnode_create(struct media_device
* mdev, u32 type,
u32 flags, u32 major,
u32 minor)

creates and initializes a device node interface

Parameters
struct media_device * mdev pointer to struct media_device

u32 type type of the interface, as given by include/uapi/linux/media.h (seek for
MEDIA_INTF_T_*) macros.

u32 flags Interface flags, as defined in include/uapi/linux/media.h (seek for
MEDIA_INTF_FL_*)

u32 major Device node major number.

u32 minor Device node minor number.

Return
if succeeded, returns a pointer to the newly allocated media_intf_devnode

pointer.

Description

Note: Currently, no flags for media_interface is defined.

void media_devnode_remove(struct media_intf_devnode * devnode)
removes a device node interface

Parameters
struct media_intf_devnode * devnode pointer to media_intf_devnode to be

freed.

Description
When a device node interface is removed, all links to it are automatically removed.

media_create_intf_link(struct media_entity * entity, struct me-
dia_interface * intf, u32 flags)

creates a link between an entity and an interface

Parameters
struct media_entity * entity pointer to media_entity

struct media_interface * intf pointer to media_interface

53.4. Media Controller devices 1955

Linux Driver-api Documentation

u32 flags Link flags, as defined in include/uapi/linux/media.h (seek for
MEDIA_LNK_FL_*)

Description
Valid values for flags:

MEDIA_LNK_FL_ENABLED Indicates that the interface is connected to the entity
hardware. That’s the default value for interfaces. An interface may be dis-
abled if the hardware is busy due to the usage of some other interface that it
is currently controlling the hardware.

A typical example is an hybrid TV device that handle only one type of stream
on a given time. So, when the digital TV is streaming, the V4L2 interfaces
won’t be enabled, as such device is not able to also stream analog TV or
radio.

Note: Before calling this function, media_devnode_create() should be called
for the interface and media_device_register_entity() should be called for the
interface that will be part of the link.

void __media_remove_intf_link(struct media_link * link)
remove a single interface link

Parameters
struct media_link * link pointer to media_link.

Description

Note: This is an unlocked version of media_remove_intf_link()

void media_remove_intf_link(struct media_link * link)
remove a single interface link

Parameters
struct media_link * link pointer to media_link.

Description

Note: Prefer to use this one, instead of __media_remove_intf_link()

void __media_remove_intf_links(struct media_interface * intf)
remove all links associated with an interface

Parameters
struct media_interface * intf pointer to media_interface

Description

Note: This is an unlocked version of media_remove_intf_links().

1956 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

void media_remove_intf_links(struct media_interface * intf)
remove all links associated with an interface

Parameters
struct media_interface * intf pointer to media_interface

Description

Note:
1) This is called automatically when an entity is unregistered via

media_device_register_entity() and by media_devnode_remove().

2) Prefer to use this one, instead of __media_remove_intf_links().

media_entity_call(entity, operation, args)
Calls a struct media_entity_operations operation on an entity

Parameters
entity entity where the operation will be called
operation type of the operation. Should be the name of a member of struct

media_entity_operations.

args variable arguments

Description
This helper function will check if operation is not NULL. On such case, it will issue
a call to operation(entity, args).
enum media_request_state

media request state

Constants
MEDIA_REQUEST_STATE_IDLE Idle

MEDIA_REQUEST_STATE_VALIDATING Validating the request, no state changes al-
lowed

MEDIA_REQUEST_STATE_QUEUED Queued

MEDIA_REQUEST_STATE_COMPLETE Completed, the request is done

MEDIA_REQUEST_STATE_CLEANING Cleaning, the request is being re-inited

MEDIA_REQUEST_STATE_UPDATING The request is being updated, i.e. request ob-
jects are being added, modified or removed

NR_OF_MEDIA_REQUEST_STATE The number of media request states, used inter-
nally for sanity check purposes

struct media_request
Media device request

Definition

53.4. Media Controller devices 1957

Linux Driver-api Documentation

struct media_request {
struct media_device *mdev;
struct kref kref;
char debug_str[TASK_COMM_LEN + 11];
enum media_request_state state;
unsigned int updating_count;
unsigned int access_count;
struct list_head objects;
unsigned int num_incomplete_objects;
wait_queue_head_t poll_wait;
spinlock_t lock;

};

Members
mdev Media device this request belongs to

kref Reference count

debug_str Prefix for debug messages (process name:fd)

state The state of the request

updating_count count the number of request updates that are in progress

access_count count the number of request accesses that are in progress

objects List of struct media_request_object request objects
num_incomplete_objects The number of incomplete objects in the request

poll_wait Wait queue for poll

lock Serializes access to this struct

int media_request_lock_for_access(struct media_request * req)
Lock the request to access its objects

Parameters
struct media_request * req The media request

Description
Use before accessing a completed request. A reference to the request must be held
during the access. This usually takes place automatically through a file handle.
Use media_request_unlock_for_access when done.
void media_request_unlock_for_access(struct media_request * req)

Unlock a request previously locked for access

Parameters
struct media_request * req The media request

Description
Unlock a request that has previously been locked using me-
dia_request_lock_for_access.
int media_request_lock_for_update(struct media_request * req)

Lock the request for updating its objects

1958 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Parameters
struct media_request * req The media request

Description
Use before updating a request, i.e. adding, modifying or removing a re-
quest object in it. A reference to the request must be held during the up-
date. This usually takes place automatically through a file handle. Use me-
dia_request_unlock_for_update when done.
void media_request_unlock_for_update(struct media_request * req)

Unlock a request previously locked for update

Parameters
struct media_request * req The media request

Description
Unlock a request that has previously been locked using me-
dia_request_lock_for_update.
void media_request_get(struct media_request * req)

Get the media request

Parameters
struct media_request * req The media request

Description
Get the media request.

void media_request_put(struct media_request * req)
Put the media request

Parameters
struct media_request * req The media request

Description
Put the media request. The media request will be released when the refcount
reaches 0.

struct media_request * media_request_get_by_fd(struct media_device
* mdev, int request_fd)

Get a media request by fd

Parameters
struct media_device * mdev Media device this request belongs to

int request_fd The file descriptor of the request

Description
Get the request represented by request_fd that is owned by the media device.
Return a -EBADR error pointer if requests are not supported by this driver. Return
-EINVAL if the request was not found. Return the pointer to the request if found:
the caller will have to callmedia_request_put when it finished using the request.

53.4. Media Controller devices 1959

Linux Driver-api Documentation

int media_request_alloc(struct media_device * mdev, int * alloc_fd)
Allocate the media request

Parameters
struct media_device * mdev Media device this request belongs to

int * alloc_fd Store the request’s file descriptor in this int
Description
Allocated the media request and put the fd in alloc_fd.
struct media_request_object_ops

Media request object operations

Definition

struct media_request_object_ops {
int (*prepare)(struct media_request_object *object);
void (*unprepare)(struct media_request_object *object);
void (*queue)(struct media_request_object *object);
void (*unbind)(struct media_request_object *object);
void (*release)(struct media_request_object *object);

};

Members
prepare Validate and prepare the request object, optional.

unprepare Unprepare the request object, optional.

queue Queue the request object, optional.

unbind Unbind the request object, optional.

release Release the request object, required.

struct media_request_object
An opaque object that belongs to a media request

Definition

struct media_request_object {
const struct media_request_object_ops *ops;
void *priv;
struct media_request *req;
struct list_head list;
struct kref kref;
bool completed;

};

Members
ops object’s operations
priv object’s priv pointer
req the request this object belongs to (can be NULL)

list List entry of the object for struct media_request
kref Reference count of the object, acquire before releasing req->lock

1960 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

completed If true, then this object was completed.

Description
An object related to the request. This struct is always embedded in another struct
that contains the actual data for this request object.

void media_request_object_get(struct media_request_object * obj)
Get a media request object

Parameters
struct media_request_object * obj The object

Description
Get a media request object.

void media_request_object_put(struct media_request_object * obj)
Put a media request object

Parameters
struct media_request_object * obj The object

Description
Put a media request object. Once all references are gone, the object’s memory is
released.

struct media_request_object * media_request_object_find(struct me-
dia_request
* req, const
struct me-
dia_request_object_ops
* ops, void
* priv)

Find an object in a request

Parameters
struct media_request * req The media request

const struct media_request_object_ops * ops Find an object with this ops
value

void * priv Find an object with this priv value

Description
Both ops and priv must be non-NULL.
Returns the object pointer or NULL if not found. The caller must call
media_request_object_put() once it finished using the object.

Since this function needs to walk the list of objects it takes the req->lock spin
lock to make this safe.

void media_request_object_init(struct media_request_object * obj)
Initialise a media request object

Parameters

53.4. Media Controller devices 1961

Linux Driver-api Documentation

struct media_request_object * obj The object

Description
Initialise a media request object. The object will be released using the release
callback of the ops once it has no references (this function initialises references
to one).

int media_request_object_bind(struct media_request * req, const
struct media_request_object_ops * ops,
void * priv, bool is_buffer, struct me-
dia_request_object * obj)

Bind a media request object to a request

Parameters
struct media_request * req The media request

const struct media_request_object_ops * ops The object ops for this object

void * priv A driver-specific priv pointer associated with this object

bool is_buffer Set to true if the object a buffer object.

struct media_request_object * obj The object

Description
Bind this object to the request and set the ops and priv values of the object so it
can be found later with media_request_object_find().

Every bound object must be unbound or completed by the kernel at some point in
time, otherwise the request will never complete. When the request is released all
completed objects will be unbound by the request core code.

Buffer objects will be added to the end of the request’s object list, non-buffer
objects will be added to the front of the list. This ensures that all buffer objects
are at the end of the list and that all non-buffer objects that they depend on are
processed first.

void media_request_object_unbind(struct media_request_object * obj)
Unbind a media request object

Parameters
struct media_request_object * obj The object

Description
Unbind the media request object from the request.

void media_request_object_complete(struct media_request_object * obj)
Mark the media request object as complete

Parameters
struct media_request_object * obj The object

Description
Mark the media request object as complete. Only bound objects can be completed.

1962 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct media_device * media_device_usb_allocate(struct usb_device
* udev, const char
* module_name, struct
module * owner)

Allocate and return struct media device

Parameters
struct usb_device * udev struct usb_device pointer

const char * module_name should be filled with KBUILD_MODNAME

struct module * owner struct module pointer THIS_MODULE for the driver.
THIS_MODULE is null for a built-in driver. It is safe even when THIS_MODULE is
null.

Description
This interface should be called to allocate a Media Device when multiple drivers
share usb_device and the media device. This interface allocates media_device
structure and calls media_device_usb_init() to initialize it.

void media_device_delete(struct media_device * mdev, const char
* module_name, struct module * owner)

Release media device. Calls kref_put().

Parameters
struct media_device * mdev struct media_device pointer

const char * module_name should be filled with KBUILD_MODNAME

struct module * owner struct module pointer THIS_MODULE for the driver.
THIS_MODULE is null for a built-in driver. It is safe even when THIS_MODULE is
null.

Description
This interface should be called to put Media Device Instance kref.

53.5 CEC Kernel Support

The CEC framework provides a unified kernel interface for use with HDMI CEC
hardware. It is designed to handle a multiple types of hardware (receivers, trans-
mitters, USB dongles). The framework also gives the option to decide what to do
in the kernel driver and what should be handled by userspace applications. In
addition it integrates the remote control passthrough feature into the kernel’s
remote control framework.

53.5. CEC Kernel Support 1963

Linux Driver-api Documentation

53.5.1 The CEC Protocol

The CEC protocol enables consumer electronic devices to communicate with each
other through the HDMI connection. The protocol uses logical addresses in the
communication. The logical address is strictly connected with the functionality
provided by the device. The TV acting as the communication hub is always as-
signed address 0. The physical address is determined by the physical connection
between devices.

The CEC framework described here is up to date with the CEC 2.0 specification. It
is documented in the HDMI 1.4 specification with the new 2.0 bits documented in
the HDMI 2.0 specification. But for most of the features the freely available HDMI
1.3a specification is sufficient:

http://www.microprocessor.org/HDMISpecification13a.pdf

53.5.2 CEC Adapter Interface

The struct cec_adapter represents the CEC adapter hardware. It is created by
calling cec_allocate_adapter() and deleted by calling cec_delete_adapter():

struct cec_adapter *cec_allocate_adapter(const struct cec_adap_ops *ops, void *priv,
const char *name, u32 caps, u8 available_las);

void cec_delete_adapter(struct cec_adapter *adap);

To create an adapter you need to pass the following information:

ops: adapter operations which are called by the CEC framework and that you have
to implement.

priv: will be stored in adap->priv and can be used by the adapter ops. Use
cec_get_drvdata(adap) to get the priv pointer.

name: the name of the CEC adapter. Note: this name will be copied.
caps: capabilities of the CEC adapter. These capabilities determine the capabil-

ities of the hardware and which parts are to be handled by userspace and
which parts are handled by kernelspace. The capabilities are returned by
CEC_ADAP_G_CAPS.

available_las: the number of simultaneous logical addresses that this adapter can
handle. Must be 1 <= available_las <= CEC_MAX_LOG_ADDRS.

To obtain the priv pointer use this helper function:

void *cec_get_drvdata(const struct cec_adapter *adap);

To register the /dev/cecX device node and the remote control device (if
CEC_CAP_RC is set) you call:

int cec_register_adapter(struct cec_adapter *adap, struct device *parent);

where parent is the parent device.

To unregister the devices call:

void cec_unregister_adapter(struct cec_adapter *adap);

1964 Chapter 53. Media subsystem kernel internal API

http://www.microprocessor.org/HDMISpecification13a.pdf

Linux Driver-api Documentation

Note: if cec_register_adapter() fails, then call cec_delete_adapter() to clean up.
But if cec_register_adapter() succeeded, then only call cec_unregister_adapter()
to clean up, never cec_delete_adapter(). The unregister function will delete the
adapter automatically once the last user of that /dev/cecX device has closed its file
handle.

53.5.3 Implementing the Low-Level CEC Adapter

The following low-level adapter operations have to be implemented in your driver:

struct cec_adap_ops

struct cec_adap_ops
{

/* Low-level callbacks */
int (*adap_enable)(struct cec_adapter *adap, bool enable);
int (*adap_monitor_all_enable)(struct cec_adapter *adap, bool␣

↪→enable);
int (*adap_monitor_pin_enable)(struct cec_adapter *adap, bool␣

↪→enable);
int (*adap_log_addr)(struct cec_adapter *adap, u8 logical_addr);
int (*adap_transmit)(struct cec_adapter *adap, u8 attempts,

u32 signal_free_time, struct cec_msg *msg);
void (*adap_status)(struct cec_adapter *adap, struct seq_file␣

↪→*file);
void (*adap_free)(struct cec_adapter *adap);

/* Error injection callbacks */
...

/* High-level callbacks */
...

};

The seven low-level ops deal with various aspects of controlling the CEC adapter
hardware:

To enable/disable the hardware:

int (*adap_enable)(struct cec_adapter *adap, bool enable);

This callback enables or disables the CEC hardware. Enabling the CEC hardware
means powering it up in a state where no logical addresses are claimed. This op
assumes that the physical address (adap->phys_addr) is valid when enable is true
and will not change while the CEC adapter remains enabled. The initial state of
the CEC adapter after calling cec_allocate_adapter() is disabled.

Note that adap_enable must return 0 if enable is false.

To enable/disable the ‘monitor all’mode:
int (*adap_monitor_all_enable)(struct cec_adapter *adap, bool enable);

If enabled, then the adapter should be put in a mode to also monitor messages
that not for us. Not all hardware supports this and this function is only called

53.5. CEC Kernel Support 1965

Linux Driver-api Documentation

if the CEC_CAP_MONITOR_ALL capability is set. This callback is optional (some
hardware may always be in ‘monitor all’mode).
Note that adap_monitor_all_enable must return 0 if enable is false.

To enable/disable the ‘monitor pin’mode:
int (*adap_monitor_pin_enable)(struct cec_adapter *adap, bool enable);

If enabled, then the adapter should be put in a mode to also monitor CEC pin
changes. Not all hardware supports this and this function is only called if the
CEC_CAP_MONITOR_PIN capability is set. This callback is optional (some hard-
ware may always be in ‘monitor pin’mode).
Note that adap_monitor_pin_enable must return 0 if enable is false.

To program a new logical address:

int (*adap_log_addr)(struct cec_adapter *adap, u8 logical_addr);

If logical_addr == CEC_LOG_ADDR_INVALID then all programmed logical ad-
dresses are to be erased. Otherwise the given logical address should be pro-
grammed. If the maximum number of available logical addresses is exceeded, then
it should return -ENXIO. Once a logical address is programmed the CEC hardware
can receive directed messages to that address.

Note that adap_log_addr must return 0 if logical_addr is
CEC_LOG_ADDR_INVALID.

To transmit a new message:

int (*adap_transmit)(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg);

This transmits a new message. The attempts argument is the suggested number
of attempts for the transmit.

The signal_free_time is the number of data bit periods that the adapter should wait
when the line is free before attempting to send a message. This value depends on
whether this transmit is a retry, a message from a new initiator or a new message
for the same initiator. Most hardware will handle this automatically, but in some
cases this information is needed.

The CEC_FREE_TIME_TO_USEC macro can be used to convert signal_free_time
to microseconds (one data bit period is 2.4 ms).

To log the current CEC hardware status:

void (*adap_status)(struct cec_adapter *adap, struct seq_file *file);

This optional callback can be used to show the status of the CEC hardware. The
status is available through debugfs: cat /sys/kernel/debug/cec/cecX/status

To free any resources when the adapter is deleted:

void (*adap_free)(struct cec_adapter *adap);

This optional callback can be used to free any resources that might have been
allocated by the driver. It’s called from cec_delete_adapter.

Your adapter driver will also have to react to events (typically interrupt driven) by
calling into the framework in the following situations:

1966 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

When a transmit finished (successfully or otherwise):

void cec_transmit_done(struct cec_adapter *adap, u8 status, u8 arb_lost_cnt,
u8 nack_cnt, u8 low_drive_cnt, u8 error_cnt);

or:

void cec_transmit_attempt_done(struct cec_adapter *adap, u8 status);

The status can be one of:

CEC_TX_STATUS_OK: the transmit was successful.
CEC_TX_STATUS_ARB_LOST: arbitration was lost: another CEC initiator took

control of the CEC line and you lost the arbitration.

CEC_TX_STATUS_NACK: the message was nacked (for a directed message) or
acked (for a broadcast message). A retransmission is needed.

CEC_TX_STATUS_LOW_DRIVE: low drive was detected on the CEC bus. This
indicates that a follower detected an error on the bus and requested a re-
transmission.

CEC_TX_STATUS_ERROR: some unspecified error occurred: this can be one of
ARB_LOST or LOW_DRIVE if the hardware cannot differentiate or something
else entirely. Some hardware only supports OK and FAIL as the result of
a transmit, i.e. there is no way to differentiate between the different pos-
sible errors. In that case map FAIL to CEC_TX_STATUS_NACK and not to
CEC_TX_STATUS_ERROR.

CEC_TX_STATUS_MAX_RETRIES: could not transmit the message after trying
multiple times. Should only be set by the driver if it has hardware support
for retrying messages. If set, then the framework assumes that it doesn’t
have to make another attempt to transmit the message since the hardware
did that already.

The hardware must be able to differentiate between OK, NACK and ‘something
else’.
The *_cnt arguments are the number of error conditions that were seen. This may
be 0 if no information is available. Drivers that do not support hardware retry
can just set the counter corresponding to the transmit error to 1, if the hardware
does support retry then either set these counters to 0 if the hardware provides
no feedback of which errors occurred and how many times, or fill in the correct
values as reported by the hardware.

Be aware that calling these functions can immediately start a new transmit if there
is one pending in the queue. So make sure that the hardware is in a state where
new transmits can be started before calling these functions.

The cec_transmit_attempt_done() function is a helper for cases where the hard-
ware never retries, so the transmit is always for just a single attempt. It will call
cec_transmit_done() in turn, filling in 1 for the count argument corresponding to
the status. Or all 0 if the status was OK.

When a CEC message was received:

void cec_received_msg(struct cec_adapter *adap, struct cec_msg *msg);

Speaks for itself.

53.5. CEC Kernel Support 1967

Linux Driver-api Documentation

53.5.4 Implementing the interrupt handler

Typically the CEC hardware provides interrupts that signal when a transmit fin-
ished and whether it was successful or not, and it provides and interrupt when a
CEC message was received.

The CEC driver should always process the transmit interrupts first before handling
the receive interrupt. The framework expects to see the cec_transmit_done call
before the cec_received_msg call, otherwise it can get confused if the received
message was in reply to the transmitted message.

53.5.5 Optional: Implementing Error Injection Support

If the CEC adapter supports Error Injection functionality, then that can be exposed
through the Error Injection callbacks:

struct cec_adap_ops {
/* Low-level callbacks */
...

/* Error injection callbacks */
int (*error_inj_show)(struct cec_adapter *adap, struct seq_file␣

↪→*sf);
bool (*error_inj_parse_line)(struct cec_adapter *adap, char *line);

/* High-level CEC message callback */
...

};

If both callbacks are set, then an error-inj file will appear in debugfs. The basic
syntax is as follows:

Leading spaces/tabs are ignored. If the next character is a # or the end of the line
was reached, then the whole line is ignored. Otherwise a command is expected.

This basic parsing is done in the CEC Framework. It is up to the driver to decide
what commands to implement. The only requirement is that the command clear
without any arguments must be implemented and that it will remove all current
error injection commands.

This ensures that you can always do echo clear >error-inj to clear any error
injections without having to know the details of the driver-specific commands.

Note that the output of error-inj shall be valid as input to error-inj. So this
must work:

$ cat error-inj >einj.txt
$ cat einj.txt >error-inj

The first callback is called when this file is read and it should show the the current
error injection state:

int (*error_inj_show)(struct cec_adapter *adap, struct seq_file *sf);

It is recommended that it starts with a comment block with basic usage informa-
tion. It returns 0 for success and an error otherwise.

1968 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

The second callback will parse commands written to the error-inj file:

bool (*error_inj_parse_line)(struct cec_adapter *adap, char *line);

The line argument points to the start of the command. Any leading spaces or
tabs have already been skipped. It is a single line only (so there are no embedded
newlines) and it is 0-terminated. The callback is free to modify the contents of the
buffer. It is only called for lines containing a command, so this callback is never
called for empty lines or comment lines.

Return true if the command was valid or false if there were syntax errors.

53.5.6 Implementing the High-Level CEC Adapter

The low-level operations drive the hardware, the high-level operations are CEC
protocol driven. The following high-level callbacks are available:

struct cec_adap_ops {
/* Low-level callbacks */
...

/* Error injection callbacks */
...

/* High-level CEC message callback */
int (*received)(struct cec_adapter *adap, struct cec_msg *msg);

};

The received() callback allows the driver to optionally handle a newly received
CEC message

int (*received)(struct cec_adapter *adap, struct cec_msg *msg);

If the driver wants to process a CEC message, then it can implement this callback.
If it doesn’t want to handle this message, then it should return -ENOMSG, oth-
erwise the CEC framework assumes it processed this message and it will not do
anything with it.

53.5.7 CEC framework functions

CEC Adapter drivers can call the following CEC framework functions:

int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
bool block);

Transmit a CEC message. If block is true, then wait until the message has been
transmitted, otherwise just queue it and return.

void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr,
bool block);

Change the physical address. This function will set adap->phys_addr and send
an event if it has changed. If cec_s_log_addrs() has been called and the physical
address has become valid, then the CEC framework will start claiming the logical
addresses. If block is true, then this function won’t return until this process has
finished.

53.5. CEC Kernel Support 1969

Linux Driver-api Documentation

When the physical address is set to a valid value the CEC adapter will be en-
abled (see the adap_enable op). When it is set to CEC_PHYS_ADDR_INVALID,
then the CEC adapter will be disabled. If you change a valid physical address
to another valid physical address, then this function will first set the address to
CEC_PHYS_ADDR_INVALID before enabling the new physical address.

void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
const struct edid *edid);

A helper function that extracts the physical address from the edid struct and calls
cec_s_phys_addr() with that address, or CEC_PHYS_ADDR_INVALID if the EDID
did not contain a physical address or edid was a NULL pointer.

int cec_s_log_addrs(struct cec_adapter *adap,
struct cec_log_addrs *log_addrs, bool block);

Claim the CEC logical addresses. Should never be called if CEC_CAP_LOG_ADDRS
is set. If block is true, then wait until the logical addresses have been claimed,
otherwise just queue it and return. To unconfigure all logical addresses call this
function with log_addrs set to NULL or with log_addrs->num_log_addrs set to 0.
The block argument is ignored when unconfiguring. This function will just return
if the physical address is invalid. Once the physical address becomes valid, then
the framework will attempt to claim these logical addresses.

53.5.8 CEC Pin framework

Most CEC hardware operates on full CEC messages where the software provides
the message and the hardware handles the low-level CEC protocol. But some
hardware only drives the CEC pin and software has to handle the low-level CEC
protocol. The CEC pin framework was created to handle such devices.

Note that due to the close-to-realtime requirements it can never be guaranteed
to work 100%. This framework uses highres timers internally, but if a timer goes
off too late by more than 300 microseconds wrong results can occur. In reality it
appears to be fairly reliable.

One advantage of this low-level implementation is that it can be used as a cheap
CEC analyser, especially if interrupts can be used to detect CEC pin transitions
from low to high or vice versa.

struct cec_pin_ops
low-level CEC pin operations

Definition

struct cec_pin_ops {
int (*read)(struct cec_adapter *adap);
void (*low)(struct cec_adapter *adap);
void (*high)(struct cec_adapter *adap);
bool (*enable_irq)(struct cec_adapter *adap);
void (*disable_irq)(struct cec_adapter *adap);
void (*free)(struct cec_adapter *adap);
void (*status)(struct cec_adapter *adap, struct seq_file *file);
int (*read_hpd)(struct cec_adapter *adap);
int (*read_5v)(struct cec_adapter *adap);

(continues on next page)

1970 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
int (*received)(struct cec_adapter *adap, struct cec_msg *msg);

};

Members
read read the CEC pin. Returns > 0 if high, 0 if low, or an error if negative.

low drive the CEC pin low.

high stop driving the CEC pin. The pull-up will drive the pin high, unless someone
else is driving the pin low.

enable_irq optional, enable the interrupt to detect pin voltage changes.

disable_irq optional, disable the interrupt.

free optional. Free any allocated resources. Called when the adapter is deleted.

status optional, log status information.

read_hpd optional. Read the HPD pin. Returns > 0 if high, 0 if low or an error if
negative.

read_5v optional. Read the 5V pin. Returns > 0 if high, 0 if low or an error if
negative.

received optional. High-level CECmessage callback. Allows the driver to process
CEC messages.

Description
These operations (except for the received op) are used by the cec pin framework
to manipulate the CEC pin.

void cec_pin_changed(struct cec_adapter * adap, bool value)
update pin state from interrupt

Parameters
struct cec_adapter * adap pointer to the cec adapter

bool value when true the pin is high, otherwise it is low

Description
If changes of the CEC voltage are detected via an interrupt, then cec_pin_changed
is called from the interrupt with the new value.

struct cec_adapter * cec_pin_allocate_adapter(const struct cec_pin_ops
* pin_ops, void * priv,
const char * name,
u32 caps)

allocate a pin-based cec adapter

Parameters
const struct cec_pin_ops * pin_ops low-level pin operations

void * priv will be stored in adap->priv and can be used by the adapter ops.
Use cec_get_drvdata(adap) to get the priv pointer.

const char * name the name of the CEC adapter. Note: this name will be copied.

53.5. CEC Kernel Support 1971

Linux Driver-api Documentation

u32 caps capabilities of the CEC adapter. This will be ORed with
CEC_CAP_MONITOR_ALL and CEC_CAP_MONITOR_PIN.

Description
Allocate a cec adapter using the cec pin framework.

Return
a pointer to the cec adapter or an error pointer

53.5.9 CEC Notifier framework

Most drm HDMI implementations have an integrated CEC implementation and no
notifier support is needed. But some have independent CEC implementations that
have their own driver. This could be an IP block for an SoC or a completely sepa-
rate chip that deals with the CEC pin. For those cases a drm driver can install a
notifier and use the notifier to inform the CEC driver about changes in the physical
address.

struct cec_notifier * cec_notifier_conn_register(struct device
* hdmi_dev, const
char * port_name,
const struct
cec_connector_info
* conn_info)

find or create a new cec_notifier for the given HDMI device and connector
tuple.

Parameters
struct device * hdmi_dev HDMI device that sends the events.

const char * port_name the connector name from which the event occurs. May
be NULL if there is always only one HDMI connector created by the HDMI
device.

const struct cec_connector_info * conn_info the connector info fromwhich
the event occurs (may be NULL)

Description
If a notifier for device dev and connector port_name already exists, then increase
the refcount and return that notifier.

If it doesn’t exist, then allocate a new notifier struct and return a pointer to that
new struct.

Return NULL if the memory could not be allocated.

void cec_notifier_conn_unregister(struct cec_notifier * n)
decrease refcount and delete when the refcount reaches 0.

Parameters
struct cec_notifier * n notifier. If NULL, then this function does nothing.

1972 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct cec_notifier * cec_notifier_cec_adap_register(struct device
* hdmi_dev, const
char * port_name,
struct cec_adapter
* adap)

find or create a new cec_notifier for the given device.

Parameters
struct device * hdmi_dev HDMI device that sends the events.

const char * port_name the connector name from which the event occurs. May
be NULL if there is always only one HDMI connector created by the HDMI
device.

struct cec_adapter * adap the cec adapter that registered this notifier.

Description
If a notifier for device dev and connector port_name already exists, then increase
the refcount and return that notifier.

If it doesn’t exist, then allocate a new notifier struct and return a pointer to that
new struct.

Return NULL if the memory could not be allocated.

void cec_notifier_cec_adap_unregister(struct cec_notifier * n, struct
cec_adapter * adap)

decrease refcount and delete when the refcount reaches 0.

Parameters
struct cec_notifier * n notifier. If NULL, then this function does nothing.

struct cec_adapter * adap the cec adapter that registered this notifier.

void cec_notifier_set_phys_addr(struct cec_notifier * n, u16 pa)
set a new physical address.

Parameters
struct cec_notifier * n the CEC notifier

u16 pa the CEC physical address

Description
Set a new CEC physical address. Does nothing if n == NULL.
void cec_notifier_set_phys_addr_from_edid(struct cec_notifier * n, const

struct edid * edid)
set parse the PA from the EDID.

Parameters
struct cec_notifier * n the CEC notifier

const struct edid * edid the struct edid pointer

Description
Parses the EDID to obtain the new CEC physical address and set it. Does nothing
if n == NULL.

53.5. CEC Kernel Support 1973

Linux Driver-api Documentation

struct device * cec_notifier_parse_hdmi_phandle(struct device * dev)
find the hdmi device from “hdmi-phandle”

Parameters
struct device * dev the device with the “hdmi-phandle”device tree property
Description
Returns the device pointer referenced by the“hdmi-phandle”property. Note that
the refcount of the returned device is not incremented. This device pointer is only
used as a key value in the notifier list, but it is never accessed by the CEC driver.

void cec_notifier_phys_addr_invalidate(struct cec_notifier * n)
set the physical address to INVALID

Parameters
struct cec_notifier * n the CEC notifier

Description
This is a simple helper function to invalidate the physical address. Does nothing
if n == NULL.

53.6 MIPI CSI-2

CSI-2 is a data bus intended for transferring images from cameras to the host SoC.
It is defined by the MIPI alliance.

53.6.1 Media bus formats

See v4l2-mbus-pixelcode for details on which media bus formats should be used
for CSI-2 interfaces.

53.6.2 Transmitter drivers

CSI-2 transmitter, such as a sensor or a TV tuner, drivers need to provide
the CSI-2 receiver with information on the CSI-2 bus configuration. These
include the V4L2_CID_LINK_FREQ and V4L2_CID_PIXEL_RATE controls and
(v4l2_subdev_video_ops->s_stream() callback). These interface elements must
be present on the sub-device represents the CSI-2 transmitter.

The V4L2_CID_LINK_FREQ control is used to tell the receiver driver the fre-
quency (and not the symbol rate) of the link. The V4L2_CID_PIXEL_RATE is
may be used by the receiver to obtain the pixel rate the transmitter uses. The
v4l2_subdev_video_ops->s_stream() callback provides an ability to start and stop
the stream.

The value of the V4L2_CID_PIXEL_RATE is calculated as follows:

pixel_rate = link_freq * 2 * nr_of_lanes / bits_per_sample

1974 Chapter 53. Media subsystem kernel internal API

http://www.mipi.org/

Linux Driver-api Documentation

where

Table 1: variables in pixel rate calculation
variable or
constant

description

link_freq The value of the V4L2_CID_LINK_FREQ integer64 menu item.
nr_of_lanes Number of data lanes used on the CSI-2 link. This can be obtained

from the OF endpoint configuration.
2 Two bits are transferred per clock cycle per lane.
bits_per_sampleNumber of bits per sample.

The transmitter drivers must, if possible, configure the CSI-2 transmitter to LP-11
mode whenever the transmitter is powered on but not active, and maintain LP-11
mode until stream on. Only at stream on should the transmitter activate the clock
on the clock lane and transition to HS mode.

Some transmitters do this automatically but some have to be explicitly pro-
grammed to do so, and some are unable to do so altogether due to hardware
constraints.

Stopping the transmitter

A transmitter stops sending the stream of images as a result of calling the .
s_stream() callback. Some transmitters may stop the stream at a frame boundary
whereas others stop immediately, effectively leaving the current frame unfinished.
The receiver driver should not make assumptions either way, but function properly
in both cases.

53.6.3 Receiver drivers

Before the receiver driver may enable the CSI-2 transmitter by using the
v4l2_subdev_video_ops->s_stream(), it must have powered the transmitter up
by using the v4l2_subdev_core_ops->s_power() callback. This may take place
either indirectly by using v4l2_pipeline_pm_get() or directly.

53.6.4 Formats

The media bus pixel codes document parallel formats. Should the pixel data be
transported over a serial bus, the media bus pixel code that describes a parallel
format that transfers a sample on a single clock cycle is used.

53.6. MIPI CSI-2 1975

Linux Driver-api Documentation

53.7 Media driver-specific documentation

53.7.1 Video4Linux (V4L) drivers

The bttv driver

bttv and sound mini howto

There are a lot of different bt848/849/878/879 based boards available. Making
video work often is not a big deal, because this is handled completely by the bt8xx
chip, which is common on all boards. But sound is handled in slightly different
ways on each board.

To handle the grabber boards correctly, there is a array tvcards[] in bttv-cards.c,
which holds the information required for each board. Sound will work only, if the
correct entry is used (for video it often makes no difference). The bttv driver prints
a line to the kernel log, telling which card type is used. Like this one:

bttv0: model: BT848(Hauppauge old) [autodetected]

You should verify this is correct. If it isn’t, you have to pass the correct board
type as insmod argument, insmod bttv card=2 for example. The file /admin-
guide/media/bttv-cardlist has a list of valid arguments for card.

If your card isn’t listed there, you might check the source code for new entries
which are not listed yet. If there isn’t one for your card, you can check if one of
the existing entries does work for you (just trial and error⋯).
Some boards have an extra processor for sound to do stereo decoding and other
nice features. The msp34xx chips are used by Hauppauge for example. If your
board has one, you might have to load a helper module like msp3400 to make sound
work. If there isn’t one for the chip used on your board: Bad luck. Start writing
a new one. Well, you might want to check the video4linux mailing list archive first
⋯
Of course you need a correctly installed soundcard unless you have the speakers
connected directly to the grabber board. Hint: check the mixer settings too. ALSA
for example has everything muted by default.

How sound works in detail

Still doesn’t work? Looks like some driver hacking is required. Below is a do-it-
yourself description for you.

The bt8xx chips have 32 general purpose pins, and registers to control these
pins. One register is the output enable register (BT848_GPIO_OUT_EN), it says
which pins are actively driven by the bt848 chip. Another one is the data reg-
ister (BT848_GPIO_DATA), where you can get/set the status if these pins. They can
be used for input and output.

Most grabber board vendors use these pins to control an external chip which does
the sound routing. But every board is a little different. These pins are also used

1976 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

by some companies to drive remote control receiver chips. Some boards use the
i2c bus instead of the gpio pins to connect the mux chip.

As mentioned above, there is a array which holds the required information for
each known board. You basically have to create a new line for your board. The
important fields are these two:

struct tvcard
{

[...]
u32 gpiomask;
u32 audiomux[6]; /* Tuner, Radio, external, internal, mute, stereo */

};

gpiomask specifies which pins are used to control the audio mux chip. The cor-
responding bits in the output enable register (BT848_GPIO_OUT_EN) will be set as
these pins must be driven by the bt848 chip.

The audiomux[] array holds the data values for the different inputs (i.e. which
pins must be high/low for tuner/mute/⋯). This will be written to the data register
(BT848_GPIO_DATA) to switch the audio mux.

What you have to do is figure out the correct values for gpiomask and the audiomux
array. If you have Windows and the drivers four your card installed, you might to
check out if you can read these registers values used by the windows driver. A tool
to do this is available from http://btwincap.sourceforge.net/download.html.

You might also dig around in the *.ini files of the Windows applications. You can
have a look at the board to see which of the gpio pins are connected at all and then
start trial-and-error ⋯
Starting with release 0.7.41 bttv has a number of insmod options to make the gpio
debugging easier:

bttv_gpio=0/1enable/disable gpio debug messages
gpi-
omask=n

set the gpiomask value

au-
diomux=i,j,
⋯

set the values of the audiomux array

au-
dioall=a

set the values of the audiomux array (one value for all ar-
ray elements, useful to check out which effect the particular
value has).

The messages printed with bttv_gpio=1 look like this:

bttv0: gpio: en=00000027, out=00000024 in=00ffffd8 [audio: off]

en = output _en_able register (BT848_GPIO_OUT_EN)
out = _out_put bits of the data register (BT848_GPIO_DATA),

i.e. BT848_GPIO_DATA & BT848_GPIO_OUT_EN
in = _in_put bits of the data register,

i.e. BT848_GPIO_DATA & ~BT848_GPIO_OUT_EN

53.7. Media driver-specific documentation 1977

http://btwincap.sourceforge.net/download.html

Linux Driver-api Documentation

The cpia2 driver

Authors: Peter Pregler <Peter_Pregler@email.com>, Scott J. Bertin
<scottbertin@yahoo.com>, and Jarl Totland <Jarl.Totland@bdc.no> for the
original cpia driver, which this one was modelled from.

Notes to developers

• This is a driver version stripped of the 2.4 back compatibility and old MJPEG
ioctl API. See cpia2.sf.net for 2.4 support.

Programmer’s overview of cpia2 driver

Cpia2 is the second generation video coprocessor from VLSI Vision Ltd (now a
division of ST Microelectronics). There are two versions. The first is the STV0672,
which is capable of up to 30 frames per second (fps) in frame sizes up to CIF, and
15 fps for VGA frames. The STV0676 is an improved version, which can handle
up to 30 fps VGA. Both coprocessors can be attached to two CMOS sensors - the
vvl6410 CIF sensor and the vvl6500 VGA sensor. These will be referred to as the
410 and the 500 sensors, or the CIF and VGA sensors.

The two chipsets operate almost identically. The core is an 8051 processor, run-
ning two different versions of firmware. The 672 runs the VP4 video processor
code, the 676 runs VP5. There are a few differences in register mappings for the
two chips. In these cases, the symbols defined in the header files are marked with
VP4 or VP5 as part of the symbol name.

The cameras appear externally as three sets of registers. Setting register values
is the only way to control the camera. Some settings are interdependant, such as
the sequence required to power up the camera. I will try to make note of all of
these cases.

The register sets are called blocks. Block 0 is the system block. This section is
always powered on when the camera is plugged in. It contains registers that con-
trol housekeeping functions such as powering up the video processor. The video
processor is the VP block. These registers control how the video from the sen-
sor is processed. Examples are timing registers, user mode (vga, qvga), scaling,
cropping, framerates, and so on. The last block is the video compressor (VC). The
video stream sent from the camera is compressed as Motion JPEG (JPEGA). The VC
controls all of the compression parameters. Looking at the file cpia2_registers.h,
you can get a full view of these registers and the possible values for most of them.

One or more registers can be set or read by sending a usb control message to
the camera. There are three modes for this. Block mode requests a number of
contiguous registers. Random mode reads or writes random registers with a tuple
structure containing address/value pairs. The repeat mode is only used by VP4 to
load a firmware patch. It contains a starting address and a sequence of bytes to
be written into a gpio port.

1978 Chapter 53. Media subsystem kernel internal API

mailto:Peter_Pregler@email.com
mailto:scottbertin@yahoo.com
mailto:Jarl.Totland@bdc.no

Linux Driver-api Documentation

The cx2341x driver

Memory at cx2341x chips

This section describes the cx2341x memory map and documents some of the reg-
ister space.

Note: the memory long words are little-endian (‘intel format’).

Warning: This information was figured out from searching through the mem-
ory and registers, this information may not be correct and is certainly not com-
plete, and was not derived from anything more than searching through the
memory space with commands like:
ivtvctl -O min=0x02000000,max=0x020000ff

So take this as is, I’m always searching for more stuff, it’s a large register
space :-).

Memory Map

The cx2341x exposes its entire 64M memory space to the PCI host via the PCI
BAR0 (Base Address Register 0). The addresses here are offsets relative to the
address held in BAR0.

0x00000000-0x00ffffff Encoder memory space
0x00000000-0x0003ffff Encode.rom
???-??? MPEG buffer(s)
???-??? Raw video capture buffer(s)
???-??? Raw audio capture buffer(s)
???-??? Display buffers (6 or 9)

0x01000000-0x01ffffff Decoder memory space
0x01000000-0x0103ffff Decode.rom
???-??? MPEG buffers(s)
0x0114b000-0x0115afff Audio.rom (deprecated?)

0x02000000-0x0200ffff Register Space

Registers

The registers occupy the 64k space starting at the 0x02000000 offset from BAR0.
All of these registers are 32 bits wide.

DMA Registers 0x000-0xff:

0x00 - Control:
0=reset/cancel, 1=read, 2=write, 4=stop

(continues on next page)

53.7. Media driver-specific documentation 1979

Linux Driver-api Documentation

(continued from previous page)
0x04 - DMA status:

1=read busy, 2=write busy, 4=read error, 8=write error, 16=link␣
↪→list error
0x08 - pci DMA pointer for read link list
0x0c - pci DMA pointer for write link list
0x10 - read/write DMA enable:

1=read enable, 2=write enable
0x14 - always 0xffffffff, if set any lower instability occurs, 0x00 crashes
0x18 - ??
0x1c - always 0x20 or 32, smaller values slow down DMA transactions
0x20 - always value of 0x780a010a
0x24-0x3c - usually just random values???
0x40 - Interrupt status
0x44 - Write a bit here and shows up in Interrupt status 0x40
0x48 - Interrupt Mask
0x4C - always value of 0xfffdffff,

if changed to 0xffffffff DMA write interrupts break.
0x50 - always 0xffffffff
0x54 - always 0xffffffff (0x4c, 0x50, 0x54 seem like interrupt masks, are

3 processors on chip, Java ones, VPU, SPU, APU, maybe these are the
interrupt masks???).

0x60-0x7C - random values
0x80 - first write linked list reg, for Encoder Memory addr
0x84 - first write linked list reg, for pci memory addr
0x88 - first write linked list reg, for length of buffer in memory addr

(|0x80000000 or this for last link)
0x8c-0xdc - rest of write linked list reg, 8 sets of 3 total, DMA goes here

from linked list addr in reg 0x0c, firmware must push through or
something.

0xe0 - first (and only) read linked list reg, for pci memory addr
0xe4 - first (and only) read linked list reg, for Decoder memory addr
0xe8 - first (and only) read linked list reg, for length of buffer
0xec-0xff - Nothing seems to be in these registers, 0xec-f4 are 0x00000000.

Memory locations for Encoder Buffers 0x700-0x7ff:

These registers show offsets of memory locations pertaining to each buffer area
used for encoding, have to shift them by <<1 first.

• 0x07F8: Encoder SDRAM refresh

• 0x07FC: Encoder SDRAM pre-charge

Memory locations for Decoder Buffers 0x800-0x8ff:

These registers show offsets of memory locations pertaining to each buffer area
used for decoding, have to shift them by <<1 first.

• 0x08F8: Decoder SDRAM refresh

• 0x08FC: Decoder SDRAM pre-charge

Other memory locations:

• 0x2800: Video Display Module control

• 0x2D00: AO (audio output?) control

• 0x2D24: Bytes Flushed

1980 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

• 0x7000: LSB I2C write clock bit (inverted)

• 0x7004: LSB I2C write data bit (inverted)

• 0x7008: LSB I2C read clock bit

• 0x700c: LSB I2C read data bit

• 0x9008: GPIO get input state

• 0x900c: GPIO set output state

• 0x9020: GPIO direction (Bit7 (GPIO 0..7) - 0:input, 1:output)

• 0x9050: SPU control

• 0x9054: Reset HW blocks

• 0x9058: VPU control

• 0xA018: Bit6: interrupt pending?

• 0xA064: APU command

Interrupt Status Register

The definition of the bits in the interrupt status register 0x0040, and the interrupt
mask 0x0048. If a bit is cleared in the mask, then we want our ISR to execute.

• bit 31 Encoder Start Capture

• bit 30 Encoder EOS

• bit 29 Encoder VBI capture

• bit 28 Encoder Video Input Module reset event

• bit 27 Encoder DMA complete

• bit 24 Decoder audio mode change detection event (through event notifica-
tion)

• bit 22 Decoder data request

• bit 20 Decoder DMA complete

• bit 19 Decoder VBI re-insertion

• bit 18 Decoder DMA err (linked-list bad)

Missing documentation

• Encoder API post(?)

• Decoder API post(?)

• Decoder VTRACE event

53.7. Media driver-specific documentation 1981

Linux Driver-api Documentation

The cx2341x firmware upload

This document describes how to upload the cx2341x firmware to the card.

How to find

See the web pages of the various projects that uses this chip for information on
how to obtain the firmware.

The firmware stored in a Windows driver can be detected as follows:

• Each firmware image is 256k bytes.

• The 1st 32-bit word of the Encoder image is 0x0000da7

• The 1st 32-bit word of the Decoder image is 0x00003a7

• The 2nd 32-bit word of both images is 0xaa55bb66

How to load

• Issue the FWapi command to stop the encoder if it is running. Wait for the
command to complete.

• Issue the FWapi command to stop the decoder if it is running. Wait for the
command to complete.

• Issue the I2C command to the digitizer to stop emitting VSYNC events.

• Issue the FWapi command to halt the encoder’s firmware.
• Sleep for 10ms.

• Issue the FWapi command to halt the decoder’s firmware.
• Sleep for 10ms.

• Write 0x00000000 to register 0x2800 to stop the Video Display Module.

• Write 0x00000005 to register 0x2D00 to stop the AO (audio output?).

• Write 0x00000000 to register 0xA064 to ping? the APU.

• Write 0xFFFFFFFE to register 0x9058 to stop the VPU.

• Write 0xFFFFFFFF to register 0x9054 to reset the HW blocks.

• Write 0x00000001 to register 0x9050 to stop the SPU.

• Sleep for 10ms.

• Write 0x0000001A to register 0x07FC to init the Encoder SDRAM’s pre-
charge.

• Write 0x80000640 to register 0x07F8 to init the Encoder SDRAM’s refresh
to 1us.

• Write 0x0000001A to register 0x08FC to init the Decoder SDRAM’s pre-
charge.

1982 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

• Write 0x80000640 to register 0x08F8 to init the Decoder SDRAM’s refresh
to 1us.

• Sleep for 512ms. (600ms is recommended)

• Transfer the encoder’s firmware image to offset 0 in Encoder memory space.
• Transfer the decoder’s firmware image to offset 0 in Decoder memory space.
• Use a read-modify-write operation to Clear bit 0 of register 0x9050 to re-
enable the SPU.

• Sleep for 1 second.

• Use a read-modify-write operation to Clear bits 3 and 0 of register 0x9058 to
re-enable the VPU.

• Sleep for 1 second.

• Issue status API commands to both firmware images to verify.

How to call the firmware API

The preferred calling convention is known as the firmware mailbox. The mailboxes
are basically a fixed length array that serves as the call-stack.

Firmwaremailboxes can be located by searching the encoder and decoder memory
for a 16 byte signature. That signature will be located on a 256-byte boundary.

Signature:

0x78, 0x56, 0x34, 0x12, 0x12, 0x78, 0x56, 0x34,
0x34, 0x12, 0x78, 0x56, 0x56, 0x34, 0x12, 0x78

The firmware implements 20 mailboxes of 20 32-bit words. The first 10 are re-
served for API calls. The second 10 are used by the firmware for event notification.

Index Name
0 Flags
1 Command
2 Return value
3 Timeout
4-19 Parameter/Result

The flags are defined in the following table. The direction is from the perspective
of the firmware.

Bit Direction Purpose
2 O Firmware has processed the command.
1 I Driver has finished setting the parameters.
0 I Driver is using this mailbox.

The command is a 32-bit enumerator. The API specifics may be found in this chap-
ter.

53.7. Media driver-specific documentation 1983

Linux Driver-api Documentation

The return value is a 32-bit enumerator. Only two values are currently defined:

• 0=success

• -1=command undefined.

There are 16 parameters/results 32-bit fields. The driver populates these fields
with values for all the parameters required by the call. The driver overwrites
these fields with result values returned by the call.

The timeout value protects the card from a hung driver thread. If the driver doesn’
t handle the completed call within the timeout specified, the firmware will reset
that mailbox.

To make an API call, the driver iterates over each mailbox looking for the first one
available (bit 0 has been cleared). The driver sets that bit, fills in the command
enumerator, the timeout value and any required parameters. The driver then sets
the parameter ready bit (bit 1). The firmware scans the mailboxes for pending
commands, processes them, sets the result code, populates the result value array
with that call’s return values and sets the call complete bit (bit 2). Once bit 2 is
set, the driver should retrieve the results and clear all the flags. If the driver does
not perform this task within the time set in the timeout register, the firmware will
reset that mailbox.

Event notifications are sent from the firmware to the host. The host tells the
firmware which events it is interested in via an API call. That call tells the firmware
which notification mailbox to use. The firmware signals the host via an interrupt.
Only the 16 Results fields are used, the Flags, Command, Return value and Time-
out words are not used.

OSD firmware API description

Note: this API is part of the decoder firmware, so it’s cx23415 only.

CX2341X_OSD_GET_FRAMEBUFFER

Enum: 65/0x41

Description

Return base and length of contiguous OSD memory.

1984 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Result[0]

OSD base address

Result[1]

OSD length

CX2341X_OSD_GET_PIXEL_FORMAT

Enum: 66/0x42

Description

Query OSD format

Result[0]

0=8bit index 1=16bit RGB 5:6:5 2=16bit ARGB 1:5:5:5 3=16bit ARGB 1:4:4:4
4=32bit ARGB 8:8:8:8

CX2341X_OSD_SET_PIXEL_FORMAT

Enum: 67/0x43

Description

Assign pixel format

Param[0]

• 0=8bit index

• 1=16bit RGB 5:6:5

• 2=16bit ARGB 1:5:5:5

• 3=16bit ARGB 1:4:4:4

• 4=32bit ARGB 8:8:8:8

53.7. Media driver-specific documentation 1985

Linux Driver-api Documentation

CX2341X_OSD_GET_STATE

Enum: 68/0x44

Description

Query OSD state

Result[0]

• Bit 0 0=off, 1=on

• Bits 1:2 alpha control

• Bits 3:5 pixel format

CX2341X_OSD_SET_STATE

Enum: 69/0x45

Description

OSD switch

Param[0]

0=off, 1=on

CX2341X_OSD_GET_OSD_COORDS

Enum: 70/0x46

Description

Retrieve coordinates of OSD area blended with video

1986 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Result[0]

OSD buffer address

Result[1]

Stride in pixels

Result[2]

Lines in OSD buffer

Result[3]

Horizontal offset in buffer

Result[4]

Vertical offset in buffer

CX2341X_OSD_SET_OSD_COORDS

Enum: 71/0x47

Description

Assign the coordinates of the OSD area to blend with video

Param[0]

buffer address

Param[1]

buffer stride in pixels

53.7. Media driver-specific documentation 1987

Linux Driver-api Documentation

Param[2]

lines in buffer

Param[3]

horizontal offset

Param[4]

vertical offset

CX2341X_OSD_GET_SCREEN_COORDS

Enum: 72/0x48

Description

Retrieve OSD screen area coordinates

Result[0]

top left horizontal offset

Result[1]

top left vertical offset

Result[2]

bottom right horizontal offset

Result[3]

bottom right vertical offset

1988 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

CX2341X_OSD_SET_SCREEN_COORDS

Enum: 73/0x49

Description

Assign the coordinates of the screen area to blend with video

Param[0]

top left horizontal offset

Param[1]

top left vertical offset

Param[2]

bottom left horizontal offset

Param[3]

bottom left vertical offset

CX2341X_OSD_GET_GLOBAL_ALPHA

Enum: 74/0x4A

Description

Retrieve OSD global alpha

Result[0]

global alpha: 0=off, 1=on

53.7. Media driver-specific documentation 1989

Linux Driver-api Documentation

Result[1]

bits 0:7 global alpha

CX2341X_OSD_SET_GLOBAL_ALPHA

Enum: 75/0x4B

Description

Update global alpha

Param[0]

global alpha: 0=off, 1=on

Param[1]

global alpha (8 bits)

Param[2]

local alpha: 0=on, 1=off

CX2341X_OSD_SET_BLEND_COORDS

Enum: 78/0x4C

Description

Move start of blending area within display buffer

Param[0]

horizontal offset in buffer

1990 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[1]

vertical offset in buffer

CX2341X_OSD_GET_FLICKER_STATE

Enum: 79/0x4F

Description

Retrieve flicker reduction module state

Result[0]

flicker state: 0=off, 1=on

CX2341X_OSD_SET_FLICKER_STATE

Enum: 80/0x50

Description

Set flicker reduction module state

Param[0]

State: 0=off, 1=on

CX2341X_OSD_BLT_COPY

Enum: 82/0x52

Description

BLT copy

53.7. Media driver-specific documentation 1991

Linux Driver-api Documentation

Param[0]

'0000' zero
'0001' ~destination AND ~source
'0010' ~destination AND source
'0011' ~destination
'0100' destination AND ~source
'0101' ~source
'0110' destination XOR source
'0111' ~destination OR ~source
'1000' ~destination AND ~source
'1001' destination XNOR source
'1010' source
'1011' ~destination OR source
'1100' destination
'1101' destination OR ~source
'1110' destination OR source
'1111' one

Param[1]

Resulting alpha blending

•‘01’source_alpha
•‘10’destination_alpha
•‘11’source_alpha*destination_alpha+1 (zero if both source and destination
alpha are zero)

Param[2]

'00' output_pixel = source_pixel

'01' if source_alpha=0:
output_pixel = destination_pixel

if 256 > source_alpha > 1:
output_pixel = ((source_alpha + 1)*source_pixel +

(255 - source_alpha)*destination_pixel)/256

'10' if destination_alpha=0:
output_pixel = source_pixel

if 255 > destination_alpha > 0:
output_pixel = ((255 - destination_alpha)*source_pixel +

(destination_alpha + 1)*destination_pixel)/256

'11' if source_alpha=0:
source_temp = 0

if source_alpha=255:
source_temp = source_pixel*256

if 255 > source_alpha > 0:
source_temp = source_pixel*(source_alpha + 1)

if destination_alpha=0:
(continues on next page)

1992 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
destination_temp = 0

if destination_alpha=255:
destination_temp = destination_pixel*256

if 255 > destination_alpha > 0:
destination_temp = destination_pixel*(destination_alpha + 1)

output_pixel = (source_temp + destination_temp)/256

Param[3]

width

Param[4]

height

Param[5]

destination pixel mask

Param[6]

destination rectangle start address

Param[7]

destination stride in dwords

Param[8]

source stride in dwords

Param[9]

source rectangle start address

53.7. Media driver-specific documentation 1993

Linux Driver-api Documentation

CX2341X_OSD_BLT_FILL

Enum: 83/0x53

Description

BLT fill color

Param[0]

Same as Param[0] on API 0x52

Param[1]

Same as Param[1] on API 0x52

Param[2]

Same as Param[2] on API 0x52

Param[3]

width

Param[4]

height

Param[5]

destination pixel mask

Param[6]

destination rectangle start address

1994 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[7]

destination stride in dwords

Param[8]

color fill value

CX2341X_OSD_BLT_TEXT

Enum: 84/0x54

Description

BLT for 8 bit alpha text source

Param[0]

Same as Param[0] on API 0x52

Param[1]

Same as Param[1] on API 0x52

Param[2]

Same as Param[2] on API 0x52

Param[3]

width

Param[4]

height

53.7. Media driver-specific documentation 1995

Linux Driver-api Documentation

Param[5]

destination pixel mask

Param[6]

destination rectangle start address

Param[7]

destination stride in dwords

Param[8]

source stride in dwords

Param[9]

source rectangle start address

Param[10]

color fill value

CX2341X_OSD_SET_FRAMEBUFFER_WINDOW

Enum: 86/0x56

Description

Positions the main output window on the screen. The coordinates must be such
that the entire window fits on the screen.

Param[0]

window width

1996 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[1]

window height

Param[2]

top left window corner horizontal offset

Param[3]

top left window corner vertical offset

CX2341X_OSD_SET_CHROMA_KEY

Enum: 96/0x60

Description

Chroma key switch and color

Param[0]

state: 0=off, 1=on

Param[1]

color

CX2341X_OSD_GET_ALPHA_CONTENT_INDEX

Enum: 97/0x61

Description

Retrieve alpha content index

53.7. Media driver-specific documentation 1997

Linux Driver-api Documentation

Result[0]

alpha content index, Range 0:15

CX2341X_OSD_SET_ALPHA_CONTENT_INDEX

Enum: 98/0x62

Description

Assign alpha content index

Param[0]

alpha content index, range 0:15

Encoder firmware API description

CX2341X_ENC_PING_FW

Enum: 128/0x80

Description

Does nothing. Can be used to check if the firmware is responding.

CX2341X_ENC_START_CAPTURE

Enum: 129/0x81

Description

Commences the capture of video, audio and/or VBI data. All encoding parameters
must be initialized prior to this API call. Captures frames continuously or until a
predefined number of frames have been captured.

1998 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[0]

Capture stream type:

• 0=MPEG

• 1=Raw

• 2=Raw passthrough

• 3=VBI

Param[1]

Bitmask:

• Bit 0 when set, captures YUV

• Bit 1 when set, captures PCM audio

• Bit 2 when set, captures VBI (same as param[0]=3)

• Bit 3 when set, the capture destination is the decoder (same as param[0]=2)

• Bit 4 when set, the capture destination is the host

Note: this parameter is only meaningful for RAW capture type.

CX2341X_ENC_STOP_CAPTURE

Enum: 130/0x82

Description

Ends a capture in progress

Param[0]

• 0=stop at end of GOP (generates IRQ)

• 1=stop immediate (no IRQ)

53.7. Media driver-specific documentation 1999

Linux Driver-api Documentation

Param[1]

Stream type to stop, see param[0] of API 0x81

Param[2]

Subtype, see param[1] of API 0x81

CX2341X_ENC_SET_AUDIO_ID

Enum: 137/0x89

Description

Assigns the transport stream ID of the encoded audio stream

Param[0]

Audio Stream ID

CX2341X_ENC_SET_VIDEO_ID

Enum: 139/0x8B

Description

Set video transport stream ID

Param[0]

Video stream ID

CX2341X_ENC_SET_PCR_ID

Enum: 141/0x8D

2000 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description

Assigns the transport stream ID for PCR packets

Param[0]

PCR Stream ID

CX2341X_ENC_SET_FRAME_RATE

Enum: 143/0x8F

Description

Set video frames per second. Change occurs at start of new GOP.

Param[0]

• 0=30fps

• 1=25fps

CX2341X_ENC_SET_FRAME_SIZE

Enum: 145/0x91

Description

Select video stream encoding resolution.

Param[0]

Height in lines. Default 480

Param[1]

Width in pixels. Default 720

53.7. Media driver-specific documentation 2001

Linux Driver-api Documentation

CX2341X_ENC_SET_BIT_RATE

Enum: 149/0x95

Description

Assign average video stream bitrate.

Param[0]

0=variable bitrate, 1=constant bitrate

Param[1]

bitrate in bits per second

Param[2]

peak bitrate in bits per second, divided by 400

Param[3]

Mux bitrate in bits per second, divided by 400. May be 0 (default).

Param[4]

Rate Control VBR Padding

Param[5]

VBV Buffer used by encoder

Note:
1) Param[3] and Param[4] seem to be always 0

2) Param[5] doesn’t seem to be used.

2002 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

CX2341X_ENC_SET_GOP_PROPERTIES

Enum: 151/0x97

Description

Setup the GOP structure

Param[0]

GOP size (maximum is 34)

Param[1]

Number of B frames between the I and P frame, plus 1. For example:
IBBPBBPBBPBB –> GOP size: 12, number of B frames: 2+1 = 3

Note: GOP size must be a multiple of (B-frames + 1).

CX2341X_ENC_SET_ASPECT_RATIO

Enum: 153/0x99

Description

Sets the encoding aspect ratio. Changes in the aspect ratio take effect at the start
of the next GOP.

Param[0]

•‘0000’forbidden
•‘0001’1:1 square
•‘0010’4:3
•‘0011’16:9
•‘0100’2.21:1
•‘0101’to ‘1111’reserved

53.7. Media driver-specific documentation 2003

Linux Driver-api Documentation

CX2341X_ENC_SET_DNR_FILTER_MODE

Enum: 155/0x9B

Description

Assign Dynamic Noise Reduction operating mode

Param[0]

Bit0: Spatial filter, set=auto, clear=manual Bit1: Temporal filter, set=auto,
clear=manual

Param[1]

Median filter:

• 0=Disabled

• 1=Horizontal

• 2=Vertical

• 3=Horiz/Vert

• 4=Diagonal

CX2341X_ENC_SET_DNR_FILTER_PROPS

Enum: 157/0x9D

Description

These Dynamic Noise Reduction filter values are only meaningful when the respec-
tive filter is set to “manual”(See API 0x9B)

Param[0]

Spatial filter: default 0, range 0:15

2004 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[1]

Temporal filter: default 0, range 0:31

CX2341X_ENC_SET_CORING_LEVELS

Enum: 159/0x9F

Description

Assign Dynamic Noise Reduction median filter properties.

Param[0]

Threshold above which the luminance median filter is enabled. Default: 0, range
0:255

Param[1]

Threshold belowwhich the luminancemedian filter is enabled. Default: 255, range
0:255

Param[2]

Threshold above which the chrominance median filter is enabled. Default: 0,
range 0:255

Param[3]

Threshold below which the chrominance median filter is enabled. Default: 255,
range 0:255

CX2341X_ENC_SET_SPATIAL_FILTER_TYPE

Enum: 161/0xA1

53.7. Media driver-specific documentation 2005

Linux Driver-api Documentation

Description

Assign spatial prefilter parameters

Param[0]

Luminance filter

• 0=Off

• 1=1D Horizontal

• 2=1D Vertical

• 3=2D H/V Separable (default)

• 4=2D Symmetric non-separable

Param[1]

Chrominance filter

• 0=Off

• 1=1D Horizontal (default)

CX2341X_ENC_SET_VBI_LINE

Enum: 183/0xB7

Description

Selects VBI line number.

Param[0]

• Bits 0:4 line number

• Bit 31 0=top_field, 1=bottom_field

• Bits 0:31 all set specifies “all lines”

2006 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[1]

VBI line information features: 0=disabled, 1=enabled

Param[2]

Slicing: 0=None, 1=Closed Caption Almost certainly not implemented. Set to 0.

Param[3]

Luminance samples in this line. Almost certainly not implemented. Set to 0.

Param[4]

Chrominance samples in this line Almost certainly not implemented. Set to 0.

CX2341X_ENC_SET_STREAM_TYPE

Enum: 185/0xB9

Description

Assign stream type

Note: Transport stream is not working in recent firmwares. And in older
firmwares the timestamps in the TS seem to be unreliable.

Param[0]

• 0=Program stream

• 1=Transport stream

• 2=MPEG1 stream

• 3=PES A/V stream

• 5=PES Video stream

• 7=PES Audio stream

• 10=DVD stream

• 11=VCD stream

• 12=SVCD stream

• 13=DVD_S1 stream

53.7. Media driver-specific documentation 2007

Linux Driver-api Documentation

• 14=DVD_S2 stream

CX2341X_ENC_SET_OUTPUT_PORT

Enum: 187/0xBB

Description

Assign stream output port. Normally 0 when the data is copied through the PCI
bus (DMA), and 1 when the data is streamed to another chip (pvrusb and cx88-
blackbird).

Param[0]

• 0=Memory (default)

• 1=Streaming

• 2=Serial

Param[1]

Unknown, but leaving this to 0 seems to work best. Indications are that this might
have to do with USB support, although passing anything but 0 only breaks things.

CX2341X_ENC_SET_AUDIO_PROPERTIES

Enum: 189/0xBD

Description

Set audio stream properties, may be called while encoding is in progress.

Note: All bitfields are consistent with ISO11172 documentation except bits 2:3
which ISO docs define as:

•‘11’Layer I
•‘10’Layer II
•‘01’Layer III
•‘00’Undefined

This discrepancy may indicate a possible error in the documentation. Testing indi-
cated that only Layer II is actually working, and that the minimum bitrate should
be 192 kbps.

2008 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[0]

Bitmask:

0:1 '00' 44.1Khz
'01' 48Khz
'10' 32Khz
'11' reserved

2:3 '01'=Layer I
'10'=Layer II

4:7 Bitrate:
Index | Layer I | Layer II
------+-------------+------------

'0000' | free format | free format
'0001' | 32 kbit/s | 32 kbit/s
'0010' | 64 kbit/s | 48 kbit/s
'0011' | 96 kbit/s | 56 kbit/s
'0100' | 128 kbit/s | 64 kbit/s
'0101' | 160 kbit/s | 80 kbit/s
'0110' | 192 kbit/s | 96 kbit/s
'0111' | 224 kbit/s | 112 kbit/s
'1000' | 256 kbit/s | 128 kbit/s
'1001' | 288 kbit/s | 160 kbit/s
'1010' | 320 kbit/s | 192 kbit/s
'1011' | 352 kbit/s | 224 kbit/s
'1100' | 384 kbit/s | 256 kbit/s
'1101' | 416 kbit/s | 320 kbit/s
'1110' | 448 kbit/s | 384 kbit/s

.. note::

For Layer II, not all combinations of total bitrate
and mode are allowed. See ISO11172-3 3-Annex B,
Table 3-B.2

8:9 '00'=Stereo
'01'=JointStereo
'10'=Dual
'11'=Mono

.. note::

The cx23415 cannot decode Joint Stereo properly.

10:11 Mode Extension used in joint_stereo mode.
In Layer I and II they indicate which subbands are in
intensity_stereo. All other subbands are coded in stereo.

'00' subbands 4-31 in intensity_stereo, bound==4
'01' subbands 8-31 in intensity_stereo, bound==8
'10' subbands 12-31 in intensity_stereo, bound==12
'11' subbands 16-31 in intensity_stereo, bound==16

12:13 Emphasis:
'00' None
'01' 50/15uS

(continues on next page)

53.7. Media driver-specific documentation 2009

Linux Driver-api Documentation

(continued from previous page)
'10' reserved
'11' CCITT J.17

14 CRC:
'0' off
'1' on

15 Copyright:
'0' off
'1' on

16 Generation:
'0' copy
'1' original

CX2341X_ENC_HALT_FW

Enum: 195/0xC3

Description

The firmware is halted and no further API calls are serviced until the firmware is
uploaded again.

CX2341X_ENC_GET_VERSION

Enum: 196/0xC4

Description

Returns the version of the encoder firmware.

Result[0]

Version bitmask: - Bits 0:15 build - Bits 16:23 minor - Bits 24:31 major

CX2341X_ENC_SET_GOP_CLOSURE

Enum: 197/0xC5

2010 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description

Assigns the GOP open/close property.

Param[0]

• 0=Open

• 1=Closed

CX2341X_ENC_GET_SEQ_END

Enum: 198/0xC6

Description

Obtains the sequence end code of the encoder’s buffer. When a capture is started
a number of interrupts are still generated, the last of which will have Result[0] set
to 1 and Result[1] will contain the size of the buffer.

Result[0]

State of the transfer (1 if last buffer)

Result[1]

If Result[0] is 1, this contains the size of the last buffer, undefined otherwise.

CX2341X_ENC_SET_PGM_INDEX_INFO

Enum: 199/0xC7

Description

Sets the Program Index Information. The information is stored as follows:

struct info {
u32 length; // Length of this frame
u32 offset_low; // Offset in the file of the
u32 offset_high; // start of this frame
u32 mask1; // Bits 0-2 are the type mask:

// 1=I, 2=P, 4=B
// 0=End of Program Index, other fields
// are invalid.

u32 pts; // The PTS of the frame
(continues on next page)

53.7. Media driver-specific documentation 2011

Linux Driver-api Documentation

(continued from previous page)
u32 mask2; // Bit 0 is bit 32 of the pts.

};
u32 table_ptr;
struct info index[400];

The table_ptr is the encoder memory address in the table were new entries will be
written.

Note: This is a ringbuffer, so the table_ptr will wraparound.

Param[0]

Picture Mask: - 0=No index capture - 1=I frames - 3=I,P frames - 7=I,P,B frames

(Seems to be ignored, it always indexes I, P and B frames)

Param[1]

Elements requested (up to 400)

Result[0]

Offset in the encoder memory of the start of the table.

Result[1]

Number of allocated elements up to a maximum of Param[1]

CX2341X_ENC_SET_VBI_CONFIG

Enum: 200/0xC8

Description

Configure VBI settings

2012 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[0]

Bitmap:

0 Mode '0' Sliced, '1' Raw
1:3 Insertion:

'000' insert in extension & user data
'001' insert in private packets
'010' separate stream and user data
'111' separate stream and private data

8:15 Stream ID (normally 0xBD)

Param[1]

Frames per interrupt (max 8). Only valid in raw mode.

Param[2]

Total raw VBI frames. Only valid in raw mode.

Param[3]

Start codes

Param[4]

Stop codes

Param[5]

Lines per frame

Param[6]

Byte per line

Result[0]

Observed frames per interrupt in raw mode only. Rage 1 to Param[1]

53.7. Media driver-specific documentation 2013

Linux Driver-api Documentation

Result[1]

Observed number of frames in raw mode. Range 1 to Param[2]

Result[2]

Memory offset to start or raw VBI data

CX2341X_ENC_SET_DMA_BLOCK_SIZE

Enum: 201/0xC9

Description

Set DMA transfer block size

Param[0]

DMA transfer block size in bytes or frames. When unit is bytes, supported block
sizes are 2^7, 2^8 and 2^9 bytes.

Param[1]

Unit: 0=bytes, 1=frames

CX2341X_ENC_GET_PREV_DMA_INFO_MB_10

Enum: 202/0xCA

Description

Returns information on the previous DMA transfer in conjunction with bit 27 of
the interrupt mask. Uses mailbox 10.

Result[0]

Type of stream

2014 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Result[1]

Address Offset

Result[2]

Maximum size of transfer

CX2341X_ENC_GET_PREV_DMA_INFO_MB_9

Enum: 203/0xCB

Description

Returns information on the previous DMA transfer in conjunction with bit 27 or
18 of the interrupt mask. Uses mailbox 9.

Result[0]

Status bits: - 0 read completed - 1 write completed - 2 DMA read error - 3 DMA
write error - 4 Scatter-Gather array error

Result[1]

DMA type

Result[2]

Presentation Time Stamp bits 0..31

Result[3]

Presentation Time Stamp bit 32

CX2341X_ENC_SCHED_DMA_TO_HOST

Enum: 204/0xCC

53.7. Media driver-specific documentation 2015

Linux Driver-api Documentation

Description

Setup DMA to host operation

Param[0]

Memory address of link list

Param[1]

Length of link list (wtf: what units ???)

Param[2]

DMA type (0=MPEG)

CX2341X_ENC_INITIALIZE_INPUT

Enum: 205/0xCD

Description

Initializes the video input

CX2341X_ENC_SET_FRAME_DROP_RATE

Enum: 208/0xD0

Description

For each frame captured, skip specified number of frames.

Param[0]

Number of frames to skip

2016 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

CX2341X_ENC_PAUSE_ENCODER

Enum: 210/0xD2

Description

During a pause condition, all frames are dropped instead of being encoded.

Param[0]

• 0=Pause encoding

• 1=Continue encoding

CX2341X_ENC_REFRESH_INPUT

Enum: 211/0xD3

Description

Refreshes the video input

CX2341X_ENC_SET_COPYRIGHT

Enum: 212/0xD4

Description

Sets stream copyright property

Param[0]

• 0=Stream is not copyrighted

• 1=Stream is copyrighted

53.7. Media driver-specific documentation 2017

Linux Driver-api Documentation

CX2341X_ENC_SET_EVENT_NOTIFICATION

Enum: 213/0xD5

Description

Setup firmware to notify the host about a particular event. Host must unmask the
interrupt bit.

Param[0]

Event (0=refresh encoder input)

Param[1]

Notification 0=disabled 1=enabled

Param[2]

Interrupt bit

Param[3]

Mailbox slot, -1 if no mailbox required.

CX2341X_ENC_SET_NUM_VSYNC_LINES

Enum: 214/0xD6

Description

Depending on the analog video decoder used, this assigns the number of lines for
field 1 and 2.

Param[0]

Field 1 number of lines: - 0x00EF for SAA7114 - 0x00F0 for SAA7115 - 0x0105 for
Micronas

2018 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[1]

Field 2 number of lines: - 0x00EF for SAA7114 - 0x00F0 for SAA7115 - 0x0106 for
Micronas

CX2341X_ENC_SET_PLACEHOLDER

Enum: 215/0xD7

Description

Provides a mechanism of inserting custom user data in the MPEG stream.

Param[0]

• 0=extension & user data

• 1=private packet with stream ID 0xBD

Param[1]

Rate at which to insert data, in units of frames (for private packet) or GOPs (for
ext. & user data)

Param[2]

Number of data DWORDs (below) to insert

Param[3]

Custom data 0

Param[4]

Custom data 1

53.7. Media driver-specific documentation 2019

Linux Driver-api Documentation

Param[5]

Custom data 2

Param[6]

Custom data 3

Param[7]

Custom data 4

Param[8]

Custom data 5

Param[9]

Custom data 6

Param[10]

Custom data 7

Param[11]

Custom data 8

CX2341X_ENC_MUTE_VIDEO

Enum: 217/0xD9

Description

Video muting

2020 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[0]

Bit usage:

0 '0'=video not muted
'1'=video muted, creates frames with the YUV color defined below

1:7 Unused
8:15 V chrominance information

16:23 U chrominance information
24:31 Y luminance information

CX2341X_ENC_MUTE_AUDIO

Enum: 218/0xDA

Description

Audio muting

Param[0]

• 0=audio not muted

• 1=audio muted (produces silent mpeg audio stream)

CX2341X_ENC_SET_VERT_CROP_LINE

Enum: 219/0xDB

Description

Something to do with ‘Vertical Crop Line’

Param[0]

If saa7114 and raw VBI capture and 60 Hz, then set to 10001. Else 0.

53.7. Media driver-specific documentation 2021

Linux Driver-api Documentation

CX2341X_ENC_MISC

Enum: 220/0xDC

Description

Miscellaneous actions. Not known for 100% what it does. It’s really a sort of ioctl
call. The first parameter is a command number, the second the value.

Param[0]

Command number:

1=set initial SCR value when starting encoding (works).
2=set quality mode (apparently some test setting).
3=setup advanced VIM protection handling.

Always 1 for the cx23416 and 0 for cx23415.
4=generate DVD compatible PTS timestamps
5=USB flush mode
6=something to do with the quantization matrix
7=set navigation pack insertion for DVD: adds 0xbf (private stream 2)

packets to the MPEG. The size of these packets is 2048 bytes (including
the header of 6 bytes: 0x000001bf + length). The payload is zeroed and
it is up to the application to fill them in. These packets are␣

↪→apparently
inserted every four frames.

8=enable scene change detection (seems to be a failure)
9=set history parameters of the video input module

10=set input field order of VIM
11=set quantization matrix
12=reset audio interface after channel change or input switch (has no␣
↪→argument).

Needed for the cx2584x, not needed for the mspx4xx, but it doesn't seem␣
↪→to

do any harm calling it regardless.
13=set audio volume delay
14=set audio delay

2022 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[1]

Command value.

Decoder firmware API description

Note: this API is part of the decoder firmware, so it’s cx23415 only.

CX2341X_DEC_PING_FW

Enum: 0/0x00

Description

This API call does nothing. It may be used to check if the firmware is responding.

CX2341X_DEC_START_PLAYBACK

Enum: 1/0x01

Description

Begin or resume playback.

Param[0]

0 based frame number in GOP to begin playback from.

Param[1]

Specifies the number of muted audio frames to play before normal audio resumes.
(This is not implemented in the firmware, leave at 0)

53.7. Media driver-specific documentation 2023

Linux Driver-api Documentation

CX2341X_DEC_STOP_PLAYBACK

Enum: 2/0x02

Description

Ends playback and clears all decoder buffers. If PTS is not zero, playback stops at
specified PTS.

Param[0]

Display 0=last frame, 1=black

Note: this takes effect immediately, so if you want to wait for a PTS, then use‘0’
, otherwise the screen goes to black at once. You can call this later (even if there
is no playback) with a 1 value to set the screen to black.

Param[1]

PTS low

Param[2]

PTS high

CX2341X_DEC_SET_PLAYBACK_SPEED

Enum: 3/0x03

Description

Playback stream at speed other than normal. There are two modes of operation:

• Smooth: host transfers entire stream and firmware drops unused frames.

• Coarse: host drops frames based on indexing as required to achieve desired
speed.

2024 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Param[0]

Bitmap:
0:7 0 normal

1 fast only "1.5 times"
n nX fast, 1/nX slow

30 Framedrop:
'0' during 1.5 times play, every other B frame is dropped
'1' during 1.5 times play, stream is unchanged (bitrate

must not exceed 8mbps)
31 Speed:

'0' slow
'1' fast

Note: n is limited to 2. Anything higher does not result in faster playback. Instead
the host should start dropping frames.

Param[1]

Direction: 0=forward, 1=reverse

Note: to make reverse playback work you have to write full GOPs in reverse
order.

Param[2]

Picture mask:
1=I frames
3=I, P frames
7=I, P, B frames

Param[3]

B frames per GOP (for reverse play only)

Note: for reverse playback the Picture Mask should be set to I or I, P. Adding
B frames to the mask will result in corrupt video. This field has to be set to the
correct value in order to keep the timing correct.

53.7. Media driver-specific documentation 2025

Linux Driver-api Documentation

Param[4]

Mute audio: 0=disable, 1=enable

Param[5]

Display 0=frame, 1=field

Param[6]

Specifies the number of muted audio frames to play before normal audio resumes.
(Not implemented in the firmware, leave at 0)

CX2341X_DEC_STEP_VIDEO

Enum: 5/0x05

Description

Each call to this API steps the playback to the next unit defined below in the current
playback direction.

Param[0]

0=frame, 1=top field, 2=bottom field

CX2341X_DEC_SET_DMA_BLOCK_SIZE

Enum: 8/0x08

Description

Set DMA transfer block size. Counterpart to API 0xC9

Param[0]

DMA transfer block size in bytes. A different size may be specified when issuing
the DMA transfer command.

2026 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

CX2341X_DEC_GET_XFER_INFO

Enum: 9/0x09

Description

This API call may be used to detect an end of stream condition.

Result[0]

Stream type

Result[1]

Address offset

Result[2]

Maximum bytes to transfer

Result[3]

Buffer fullness

CX2341X_DEC_GET_DMA_STATUS

Enum: 10/0x0A

Description

Status of the last DMA transfer

Result[0]

Bit 1 set means transfer complete Bit 2 set means DMA error Bit 3 set means linked
list error

53.7. Media driver-specific documentation 2027

Linux Driver-api Documentation

Result[1]

DMA type: 0=MPEG, 1=OSD, 2=YUV

CX2341X_DEC_SCHED_DMA_FROM_HOST

Enum: 11/0x0B

Description

Setup DMA from host operation. Counterpart to API 0xCC

Param[0]

Memory address of link list

Param[1]

Total # of bytes to transfer

Param[2]

DMA type (0=MPEG, 1=OSD, 2=YUV)

CX2341X_DEC_PAUSE_PLAYBACK

Enum: 13/0x0D

Description

Freeze playback immediately. In this mode, when internal buffers are full, no more
data will be accepted and data request IRQs will be masked.

Param[0]

Display: 0=last frame, 1=black

2028 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

CX2341X_DEC_HALT_FW

Enum: 14/0x0E

Description

The firmware is halted and no further API calls are serviced until the firmware is
uploaded again.

CX2341X_DEC_SET_STANDARD

Enum: 16/0x10

Description

Selects display standard

Param[0]

0=NTSC, 1=PAL

CX2341X_DEC_GET_VERSION

Enum: 17/0x11

Description

Returns decoder firmware version information

Result[0]

Version bitmask:
• Bits 0:15 build

• Bits 16:23 minor

• Bits 24:31 major

53.7. Media driver-specific documentation 2029

Linux Driver-api Documentation

CX2341X_DEC_SET_STREAM_INPUT

Enum: 20/0x14

Description

Select decoder stream input port

Param[0]

0=memory (default), 1=streaming

CX2341X_DEC_GET_TIMING_INFO

Enum: 21/0x15

Description

Returns timing information from start of playback

Result[0]

Frame count by decode order

Result[1]

Video PTS bits 0:31 by display order

Result[2]

Video PTS bit 32 by display order

Result[3]

SCR bits 0:31 by display order

2030 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Result[4]

SCR bit 32 by display order

CX2341X_DEC_SET_AUDIO_MODE

Enum: 22/0x16

Description

Select audio mode

Param[0]

Dual mono mode action 0=Stereo, 1=Left, 2=Right, 3=Mono, 4=Swap, -
1=Unchanged

Param[1]

Stereo mode action: 0=Stereo, 1=Left, 2=Right, 3=Mono, 4=Swap, -
1=Unchanged

CX2341X_DEC_SET_EVENT_NOTIFICATION

Enum: 23/0x17

Description

Setup firmware to notify the host about a particular event. Counterpart to API
0xD5

Param[0]

Event:
• 0=Audio mode change between mono, (joint) stereo and dual channel.

• 3=Decoder started

• 4=Unknown: goes off 10-15 times per second while decoding.

• 5=Some sync event: goes off once per frame.

53.7. Media driver-specific documentation 2031

Linux Driver-api Documentation

Param[1]

Notification 0=disabled, 1=enabled

Param[2]

Interrupt bit

Param[3]

Mailbox slot, -1 if no mailbox required.

CX2341X_DEC_SET_DISPLAY_BUFFERS

Enum: 24/0x18

Description

Number of display buffers. To decode all frames in reverse playback you must use
nine buffers.

Param[0]

0=six buffers, 1=nine buffers

CX2341X_DEC_EXTRACT_VBI

Enum: 25/0x19

Description

Extracts VBI data

Param[0]

0=extract from extension & user data, 1=extract from private packets

2032 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Result[0]

VBI table location

Result[1]

VBI table size

CX2341X_DEC_SET_DECODER_SOURCE

Enum: 26/0x1A

Description

Selects decoder source. Ensure that the parameters passed to this API match the
encoder settings.

Param[0]

Mode: 0=MPEG from host, 1=YUV from encoder, 2=YUV from host

Param[1]

YUV picture width

Param[2]

YUV picture height

Param[3]

Bitmap: see Param[0] of API 0xBD

CX2341X_DEC_SET_PREBUFFERING

Enum: 30/0x1E

53.7. Media driver-specific documentation 2033

Linux Driver-api Documentation

Description

Decoder prebuffering, when enabled up to 128KB are buffered for streams
<8mpbs or 640KB for streams >8mbps

Param[0]

0=off, 1=on

PVR350 Video decoder registers 0x02002800 -> 0x02002B00

Author: Ian Armstrong <ian@iarmst.demon.co.uk>

Version: v0.4

Date: 12 March 2007

This list has been worked out through trial and error. There will be mistakes and
omissions. Some registers have no obvious effect so it’s hard to say what they do,
while others interact with each other, or require a certain load sequence. Horizon-
tal filter setup is one example, with six registers working in unison and requiring a
certain load sequence to correctly configure. The indexed colour palette is much
easier to set at just two registers, but again it requires a certain load sequence.

Some registers are fussy about what they are set to. Load in a bad value & the
decoder will fail. A firmware reload will often recover, but sometimes a reset is
required. For registers containing size information, setting them to 0 is generally
a bad idea. For other control registers i.e. 2878, you’ll only find out what values
are bad when it hangs.

↪→-----
2800
bit 0

Decoder enable
0 = disable
1 = enable

↪→-----
2804
bits 0:31

Decoder horizontal Y alias register 1

2808
bits 0:31

Decoder horizontal Y alias register 2

280C
bits 0:31

Decoder horizontal Y alias register 3

2810
bits 0:31

(continues on next page)

2034 Chapter 53. Media subsystem kernel internal API

mailto:ian@iarmst.demon.co.uk

Linux Driver-api Documentation

(continued from previous page)
Decoder horizontal Y alias register 4

2814
bits 0:31

Decoder horizontal Y alias register 5

2818
bits 0:31

Decoder horizontal Y alias trigger

These six registers control the horizontal aliasing filter for the Y plane.
The first five registers must all be loaded before accessing the trigger
(2818), as this register actually clocks the data through for the first
five.

To correctly program set the filter, this whole procedure must be done 16
times. The actual register contents are copied from a lookup-table in the
firmware which contains 4 different filter settings.

↪→-----
281C
bits 0:31

Decoder horizontal UV alias register 1

2820
bits 0:31

Decoder horizontal UV alias register 2

2824
bits 0:31

Decoder horizontal UV alias register 3

2828
bits 0:31

Decoder horizontal UV alias register 4

282C
bits 0:31

Decoder horizontal UV alias register 5

2830
bits 0:31

Decoder horizontal UV alias trigger

These six registers control the horizontal aliasing for the UV plane.
Operation is the same as the Y filter, with 2830 being the trigger
register.

↪→-----
2834
bits 0:15

Decoder Y source width in pixels

bits 16:31
(continues on next page)

53.7. Media driver-specific documentation 2035

Linux Driver-api Documentation

(continued from previous page)
Decoder Y destination width in pixels

2838
bits 0:15

Decoder UV source width in pixels

bits 16:31
Decoder UV destination width in pixels

NOTE: For both registers, the resulting image must be fully visible on
screen. If the image exceeds the right edge both the source and destination
size must be adjusted to reflect the visible portion. For the source width,
you must take into account the scaling when calculating the new value.

↪→-----

283C
bits 0:31

Decoder Y horizontal scaling
Normally = Reg 2854 >> 2

2840
bits 0:31

Decoder ?? unknown - horizontal scaling
Usually 0x00080514

2844
bits 0:31

Decoder UV horizontal scaling
Normally = Reg 2854 >> 2

2848
bits 0:31

Decoder ?? unknown - horizontal scaling
Usually 0x00100514

284C
bits 0:31

Decoder ?? unknown - Y plane
Usually 0x00200020

2850
bits 0:31

Decoder ?? unknown - UV plane
Usually 0x00200020

2854
bits 0:31

Decoder 'master' value for horizontal scaling

2858
bits 0:31

Decoder ?? unknown
Usually 0

285C

(continues on next page)

2036 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
bits 0:31

Decoder ?? unknown
Normally = Reg 2854 >> 1

2860
bits 0:31

Decoder ?? unknown
Usually 0

2864
bits 0:31

Decoder ?? unknown
Normally = Reg 2854 >> 1

2868
bits 0:31

Decoder ?? unknown
Usually 0

Most of these registers either control horizontal scaling, or appear linked
to it in some way. Register 2854 contains the 'master' value & the other
registers can be calculated from that one. You must also remember to
correctly set the divider in Reg 2874.

To enlarge:
Reg 2854 = (source_width * 0x00200000) / destination_width
Reg 2874 = No divide

To reduce from full size down to half size:
Reg 2854 = (source_width/2 * 0x00200000) / destination width
Reg 2874 = Divide by 2

To reduce from half size down to quarter size:
Reg 2854 = (source_width/4 * 0x00200000) / destination width
Reg 2874 = Divide by 4

The result is always rounded up.

↪→-----
286C
bits 0:15

Decoder horizontal Y buffer offset

bits 15:31
Decoder horizontal UV buffer offset

Offset into the video image buffer. If the offset is gradually incremented,
the on screen image will move left & wrap around higher up on the right.

↪→-----
2870
bits 0:15

Decoder horizontal Y output offset

(continues on next page)

53.7. Media driver-specific documentation 2037

Linux Driver-api Documentation

(continued from previous page)
bits 16:31

Decoder horizontal UV output offset

Offsets the actual video output. Controls output alignment of the Y & UV
planes. The higher the value, the greater the shift to the left. Use
reg 2890 to move the image right.

↪→-----
2874
bits 0:1

Decoder horizontal Y output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 3

bits 4:5
Decoder horizontal UV output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 3

bit 8
Decoder ?? unknown
0 = Normal
1 = Affects video output levels

bit 16
Decoder ?? unknown
0 = Normal
1 = Disable horizontal filter

↪→-----
2878
bit 0

?? unknown

bit 1
osd on/off
0 = osd off
1 = osd on

bit 2
Decoder + osd video timing
0 = NTSC
1 = PAL

bits 3:4
?? unknown

bit 5
Decoder + osd
Swaps upper & lower fields

↪→----- (continues on next page)

2038 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
287C
bits 0:10

Decoder & osd ?? unknown
Moves entire screen horizontally. Starts at 0x005 with the screen
shifted heavily to the right. Incrementing in steps of 0x004 will
gradually shift the screen to the left.

bits 11:31
?? unknown

Normally contents are 0x00101111 (NTSC) or 0x1010111d (PAL)

↪→-----
2880 -------- ?? unknown
2884 -------- ?? unknown

↪→-----
2888
bit 0

Decoder + osd ?? unknown
0 = Normal
1 = Misaligned fields (Correctable through 289C & 28A4)

bit 4
?? unknown

bit 8
?? unknown

Warning: Bad values will require a firmware reload to recover.
Known to be bad are 0x000,0x011,0x100,0x111

↪→-----
288C
bits 0:15

osd ?? unknown
Appears to affect the osd position stability. The higher the value␣

↪→the
more unstable it becomes. Decoder output remains stable.

bits 16:31
osd ?? unknown
Same as bits 0:15

↪→-----
2890
bits 0:11

Decoder output horizontal offset.

Horizontal offset moves the video image right. A small left shift is
possible, but it's better to use reg 2870 for that due to its greater
range.

NOTE: Video corruption will occur if video window is shifted off the right
(continues on next page)

53.7. Media driver-specific documentation 2039

Linux Driver-api Documentation

(continued from previous page)
edge. To avoid this read the notes for 2834 & 2838.

↪→-----
2894
bits 0:23

Decoder output video surround colour.

Contains the colour (in yuv) used to fill the screen when the video is
running in a window.

↪→-----
2898
bits 0:23

Decoder video window colour
Contains the colour (in yuv) used to fill the video window when the
video is turned off.

bit 24
Decoder video output
0 = Video on
1 = Video off

bit 28
Decoder plane order
0 = Y,UV
1 = UV,Y

bit 29
Decoder second plane byte order
0 = Normal (UV)
1 = Swapped (VU)

In normal usage, the first plane is Y & the second plane is UV. Though the
order of the planes can be swapped, only the byte order of the second plane
can be swapped. This isn't much use for the Y plane, but can be useful for
the UV plane.

↪→-----
289C
bits 0:15

Decoder vertical field offset 1

bits 16:31
Decoder vertical field offset 2

Controls field output vertical alignment. The higher the number, the lower
the image on screen. Known starting values are 0x011E0017 (NTSC) &
0x01500017 (PAL)

↪→-----
28A0
bits 0:15

Decoder & osd width in pixels

bits 16:31
(continues on next page)

2040 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
Decoder & osd height in pixels

All output from the decoder & osd are disabled beyond this area. Decoder
output will simply go black outside of this region. If the osd tries to
exceed this area it will become corrupt.

↪→-----
28A4
bits 0:11

osd left shift.

Has a range of 0x770->0x7FF. With the exception of 0, any value outside of
this range corrupts the osd.

↪→-----
28A8
bits 0:15

osd vertical field offset 1

bits 16:31
osd vertical field offset 2

Controls field output vertical alignment. The higher the number, the lower
the image on screen. Known starting values are 0x011E0017 (NTSC) &
0x01500017 (PAL)

↪→-----
28AC -------- ?? unknown
|
V
28BC -------- ?? unknown

↪→-----
28C0
bit 0

Current output field
0 = first field
1 = second field

bits 16:31
Current scanline
The scanline counts from the top line of the first field
through to the last line of the second field.

↪→-----
28C4 -------- ?? unknown
|
V
28F8 -------- ?? unknown

↪→-----
28FC
bit 0

?? unknown
0 = Normal
1 = Breaks decoder & osd output

(continues on next page)

53.7. Media driver-specific documentation 2041

Linux Driver-api Documentation

(continued from previous page)

↪→-----
2900
bits 0:31

Decoder vertical Y alias register 1

2904
bits 0:31

Decoder vertical Y alias register 2

2908
bits 0:31

Decoder vertical Y alias trigger

These three registers control the vertical aliasing filter for the Y plane.
Operation is similar to the horizontal Y filter (2804). The only real
difference is that there are only two registers to set before accessing
the trigger register (2908). As for the horizontal filter, the values are
taken from a lookup table in the firmware, and the procedure must be
repeated 16 times to fully program the filter.

↪→-----
290C
bits 0:31

Decoder vertical UV alias register 1

2910
bits 0:31

Decoder vertical UV alias register 2

2914
bits 0:31

Decoder vertical UV alias trigger

These three registers control the vertical aliasing filter for the UV
plane. Operation is the same as the Y filter, with 2914 being the trigger.

↪→-----
2918
bits 0:15

Decoder Y source height in pixels

bits 16:31
Decoder Y destination height in pixels

291C
bits 0:15

Decoder UV source height in pixels divided by 2

bits 16:31
Decoder UV destination height in pixels

NOTE: For both registers, the resulting image must be fully visible on
screen. If the image exceeds the bottom edge both the source and
destination size must be adjusted to reflect the visible portion. For the
source height, you must take into account the scaling when calculating the

(continues on next page)

2042 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
new value.

↪→-----
2920
bits 0:31

Decoder Y vertical scaling
Normally = Reg 2930 >> 2

2924
bits 0:31

Decoder Y vertical scaling
Normally = Reg 2920 + 0x514

2928
bits 0:31

Decoder UV vertical scaling
When enlarging = Reg 2930 >> 2
When reducing = Reg 2930 >> 3

292C
bits 0:31

Decoder UV vertical scaling
Normally = Reg 2928 + 0x514

2930
bits 0:31

Decoder 'master' value for vertical scaling

2934
bits 0:31

Decoder ?? unknown - Y vertical scaling

2938
bits 0:31

Decoder Y vertical scaling
Normally = Reg 2930

293C
bits 0:31

Decoder ?? unknown - Y vertical scaling

2940
bits 0:31

Decoder UV vertical scaling
When enlarging = Reg 2930 >> 1
When reducing = Reg 2930

2944
bits 0:31

Decoder ?? unknown - UV vertical scaling

2948
bits 0:31

Decoder UV vertical scaling
Normally = Reg 2940

(continues on next page)

53.7. Media driver-specific documentation 2043

Linux Driver-api Documentation

(continued from previous page)
294C
bits 0:31

Decoder ?? unknown - UV vertical scaling

Most of these registers either control vertical scaling, or appear linked
to it in some way. Register 2930 contains the 'master' value & all other
registers can be calculated from that one. You must also remember to
correctly set the divider in Reg 296C

To enlarge:
Reg 2930 = (source_height * 0x00200000) / destination_height
Reg 296C = No divide

To reduce from full size down to half size:
Reg 2930 = (source_height/2 * 0x00200000) / destination height
Reg 296C = Divide by 2

To reduce from half down to quarter.
Reg 2930 = (source_height/4 * 0x00200000) / destination height
Reg 296C = Divide by 4

↪→-----
2950
bits 0:15

Decoder Y line index into display buffer, first field

bits 16:31
Decoder Y vertical line skip, first field

↪→-----
2954
bits 0:15

Decoder Y line index into display buffer, second field

bits 16:31
Decoder Y vertical line skip, second field

↪→-----
2958
bits 0:15

Decoder UV line index into display buffer, first field

bits 16:31
Decoder UV vertical line skip, first field

↪→-----
295C
bits 0:15

Decoder UV line index into display buffer, second field

bits 16:31
Decoder UV vertical line skip, second field

↪→-----
2960

(continues on next page)

2044 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
bits 0:15

Decoder destination height minus 1

bits 16:31
Decoder destination height divided by 2

↪→-----
2964
bits 0:15

Decoder Y vertical offset, second field

bits 16:31
Decoder Y vertical offset, first field

These two registers shift the Y plane up. The higher the number, the
greater the shift.

↪→-----
2968
bits 0:15

Decoder UV vertical offset, second field

bits 16:31
Decoder UV vertical offset, first field

These two registers shift the UV plane up. The higher the number, the
greater the shift.

↪→-----
296C
bits 0:1

Decoder vertical Y output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 4

bits 8:9
Decoder vertical UV output size divider
00 = No divide
01 = Divide by 2
10 = Divide by 4

↪→-----
2970
bit 0

Decoder ?? unknown
0 = Normal
1 = Affect video output levels

bit 16
Decoder ?? unknown
0 = Normal
1 = Disable vertical filter

↪→-----

(continues on next page)

53.7. Media driver-specific documentation 2045

Linux Driver-api Documentation

(continued from previous page)
2974 -------- ?? unknown
|
V
29EF -------- ?? unknown

↪→-----
2A00
bits 0:2

osd colour mode
000 = 8 bit indexed
001 = 16 bit (565)
010 = 15 bit (555)
011 = 12 bit (444)
100 = 32 bit (8888)

bits 4:5
osd display bpp
01 = 8 bit
10 = 16 bit
11 = 32 bit

bit 8
osd global alpha
0 = Off
1 = On

bit 9
osd local alpha
0 = Off
1 = On

bit 10
osd colour key
0 = Off
1 = On

bit 11
osd ?? unknown
Must be 1

bit 13
osd colour space
0 = ARGB
1 = AYVU

bits 16:31
osd ?? unknown
Must be 0x001B (some kind of buffer pointer ?)

When the bits-per-pixel is set to 8, the colour mode is ignored and
assumed to be 8 bit indexed. For 16 & 32 bits-per-pixel the colour depth
is honoured, and when using a colour depth that requires fewer bytes than
allocated the extra bytes are used as padding. So for a 32 bpp with 8 bit
index colour, there are 3 padding bytes per pixel. It's also possible to
select 16bpp with a 32 bit colour mode. This results in the pixel width
being doubled, but the color key will not work as expected in this mode.

(continues on next page)

2046 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)

Colour key is as it suggests. You designate a colour which will become
completely transparent. When using 565, 555 or 444 colour modes, the
colour key is always 16 bits wide. The colour to key on is set in Reg 2A18.

Local alpha works differently depending on the colour mode. For 32bpp & 8
bit indexed, local alpha is a per-pixel 256 step transparency, with 0 being
transparent and 255 being solid. For the 16bpp modes 555 & 444, the unused
bit(s) act as a simple transparency switch, with 0 being solid & 1 being
fully transparent. There is no local alpha support for 16bit 565.

Global alpha is a 256 step transparency that applies to the entire osd,
with 0 being transparent & 255 being solid.

It's possible to combine colour key, local alpha & global alpha.

↪→-----
2A04
bits 0:15

osd x coord for left edge

bits 16:31
osd y coord for top edge

2A08
bits 0:15

osd x coord for right edge

bits 16:31
osd y coord for bottom edge

For both registers, (0,0) = top left corner of the display area. These
registers do not control the osd size, only where it's positioned & how
much is visible. The visible osd area cannot exceed the right edge of the
display, otherwise the osd will become corrupt. See reg 2A10 for
setting osd width.

↪→-----
2A0C
bits 0:31

osd buffer index

An index into the osd buffer. Slowly incrementing this moves the osd left,
wrapping around onto the right edge

↪→-----
2A10
bits 0:11

osd buffer 32 bit word width

Contains the width of the osd measured in 32 bit words. This means that all
colour modes are restricted to a byte width which is divisible by 4.

↪→-----
2A14
bits 0:15

(continues on next page)

53.7. Media driver-specific documentation 2047

Linux Driver-api Documentation

(continued from previous page)
osd height in pixels

bits 16:32
osd line index into buffer
osd will start displaying from this line.

↪→-----
2A18
bits 0:31

osd colour key

Contains the colour value which will be transparent.

↪→-----
2A1C
bits 0:7

osd global alpha

Contains the global alpha value (equiv ivtvfbctl --alpha XX)

↪→-----
2A20 -------- ?? unknown
|
V
2A2C -------- ?? unknown

↪→-----
2A30
bits 0:7

osd colour to change in indexed palette

2A34
bits 0:31

osd colour for indexed palette

To set the new palette, first load the index of the colour to change into
2A30, then load the new colour into 2A34. The full palette is 256 colours,
so the index range is 0x00-0xFF

↪→-----
2A38 -------- ?? unknown
2A3C -------- ?? unknown

↪→-----
2A40
bits 0:31

osd ?? unknown

Affects overall brightness, wrapping around to black

↪→-----
2A44
bits 0:31

osd ?? unknown

Green tint
(continues on next page)

2048 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)

↪→-----
2A48
bits 0:31

osd ?? unknown

Red tint

↪→-----
2A4C
bits 0:31

osd ?? unknown

Affects overall brightness, wrapping around to black

↪→-----
2A50
bits 0:31

osd ?? unknown

Colour shift

↪→-----
2A54
bits 0:31

osd ?? unknown

Colour shift

↪→-----
2A58 -------- ?? unknown
|
V
2AFC -------- ?? unknown

↪→-----
2B00
bit 0

osd filter control
0 = filter off
1 = filter on

bits 1:4
osd ?? unknown

↪→-----

53.7. Media driver-specific documentation 2049

Linux Driver-api Documentation

The cx231xx DMA engine

This page describes the structures and procedures used by the cx2341x DMA en-
gine.

Introduction

The cx2341x PCI interface is busmaster capable. This means it has a DMA engine
to efficiently transfer large volumes of data between the card and main memory
without requiring help from a CPU. Like most hardware, it must operate on con-
tiguous physical memory. This is difficult to come by in large quantities on virtual
memory machines.

Therefore, it also supports a technique called“scatter-gather”. The card can trans-
fer multiple buffers in one operation. Instead of allocating one large contiguous
buffer, the driver can allocate several smaller buffers.

In practice, I’ve seen the average transfer to be roughly 80K, but transfers above
128K were not uncommon, particularly at startup. The 128K figure is important,
because that is the largest block that the kernel can normally allocate. Even still,
128K blocks are hard to come by, so the driver writer is urged to choose a smaller
block size and learn the scatter-gather technique.

Mailbox #10 is reserved for DMA transfer information.

Note: the hardware expects little-endian data (‘intel format’).

Flow

This section describes, in general, the order of events when handling DMA trans-
fers. Detailed information follows this section.

• The card raises the Encoder interrupt.

• The driver reads the transfer type, offset and size from Mailbox #10.

• The driver constructs the scatter-gather array from enough free dma buffers
to cover the size.

• The driver schedules the DMA transfer via the ScheduleDMAtoHost API call.

• The card raises the DMA Complete interrupt.

• The driver checks the DMA status register for any errors.

• The driver post-processes the newly transferred buffers.

NOTE! It is possible that the Encoder and DMA Complete interrupts get raised
simultaneously. (End of the last, start of the next, etc.)

2050 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Mailbox #10

The Flags, Command, Return Value and Timeout fields are ignored.

• Name: Mailbox #10

• Results[0]: Type: 0: MPEG.

• Results[1]: Offset: The position relative to the card’s memory space.
• Results[2]: Size: The exact number of bytes to transfer.

My speculation is that since the StartCapture API has a capture type of “RAW”
available, that the type field will have other values that correspond to YUV and
PCM data.

Scatter-Gather Array

The scatter-gather array is a contiguously allocated block of memory that tells the
card the source and destination of each data-block to transfer. Card“addresses”are
derived from the offset supplied by Mailbox #10. Host addresses are the physical
memory location of the target DMA buffer.

Each S-G array element is a struct of three 32-bit words. The first word is the
source address, the second is the destination address. Both take up the entire 32
bits. The lowest 18 bits of the third word is the transfer byte count. The high-bit of
the third word is the“last”flag. The last-flag tells the card to raise the DMA_DONE
interrupt. From hard personal experience, if you forget to set this bit, the card will
still “work”but the stream will most likely get corrupted.

The transfer count must be a multiple of 256. Therefore, the driver will need to
track how much data in the target buffer is valid and deal with it accordingly.

Array Element:

• 32-bit Source Address

• 32-bit Destination Address

• 14-bit reserved (high bit is the last flag)

• 18-bit byte count

DMA Transfer Status

Register 0x0004 holds the DMA Transfer Status:

• bit 0: read completed

• bit 1: write completed

• bit 2: DMA read error

• bit 3: DMA write error

• bit 4: Scatter-Gather array error

53.7. Media driver-specific documentation 2051

Linux Driver-api Documentation

The cx88 driver

Author: Gerd Hoffmann

Documentation missing at the cx88 datasheet

MO_OUTPUT_FORMAT (0x310164)

Previous default from DScaler: 0x1c1f0008
Digit 8: 31-28
28: PREVREMOD = 1

Digit 7: 27-24 (0xc = 12 = b1100)
27: COMBALT = 1
26: PAL_INV_PHASE

(DScaler apparently set this to 1, resulted in sucky picture)

Digits 6,5: 23-16
25-16: COMB_RANGE = 0x1f [default] (9 bits -> max 512)

Digit 4: 15-12
15: DISIFX = 0
14: INVCBF = 0
13: DISADAPT = 0
12: NARROWADAPT = 0

Digit 3: 11-8
11: FORCE2H
10: FORCEREMD
9: NCHROMAEN
8: NREMODEN

Digit 2: 7-4
7-6: YCORE
5-4: CCORE

Digit 1: 3-0
3: RANGE = 1
2: HACTEXT
1: HSFMT

0x47 is the sync byte for MPEG-2 transport stream packets. Datasheet incorrectly
states to use 47 decimal. 188 is the length. All DVB compliant frontends output
packets with this start code.

2052 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Hauppauge WinTV cx88 IR information

The controls for the mux are GPIO [0,1] for source, and GPIO 2 for muting.

GPIO0 GPIO1
0 0 TV Audio
1 0 FM radio
0 1 Line-In
1 1 Mono tuner bypass or CD passthru (tuner specific)

GPIO 16(I believe) is tied to the IR port (if present).

From the data sheet:

• Register 24’h20004 PCI Interrupt Status
• bit [18] IR_SMP_INT Set when 32 input samples have been collected over

• gpio[16] pin into GP_SAMPLE register.

What’s missing from the data sheet:

• Setup 4KHz sampling rate (roughly 2x oversampled; good enough for our RC5
compat remote)

• set register 0x35C050 to 0xa80a80

• enable sampling

• set register 0x35C054 to 0x5

• enable the IRQ bit 18 in the interrupt mask register (and provide for a han-
dler)

GP_SAMPLE register is at 0x35C058

Bits are then right shifted into the GP_SAMPLE register at the specified rate; you
get an interrupt when a full DWORD is received. You need to recover the ac-
tual RC5 bits out of the (oversampled) IR sensor bits. (Hint: look for the 0/1and
1/0 crossings of the RC5 bi-phase data) An actual raw RC5 code will span 2-3
DWORDS, depending on the actual alignment.

I’m pretty sure when no IR signal is present the receiver is always in a marking
state(1); but stray light, etc can cause intermittent noise values as well. Remem-
ber, this is a free running sample of the IR receiver state over time, so don’t
assume any sample starts at any particular place.

53.7. Media driver-specific documentation 2053

Linux Driver-api Documentation

Additional info

This data sheet (google search) seems to have a lovely description of the RC5
basics: http://www.atmel.com/dyn/resources/prod_documents/doc2817.pdf

This document has more data: http://www.nenya.be/beor/electronics/rc5.htm

This document has a how to decode a bi-phase data stream: http://www.ee.
washington.edu/circuit_archive/text/ir_decode.txt

This document has still more info: http://www.xs4all.nl/~sbp/knowledge/ir/rc5.
htm

The VPBE V4L2 driver design

File partitioning

V4L2 display device driver drivers/media/platform/davinci/vpbe_display.c
drivers/media/platform/davinci/vpbe_display.h

VPBE display controller drivers/media/platform/davinci/vpbe.c
drivers/media/platform/davinci/vpbe.h

VPBE venc sub device driver drivers/media/platform/davinci/vpbe_venc.c
drivers/media/platform/davinci/vpbe_venc.h
drivers/media/platform/davinci/vpbe_venc_regs.h

VPBE osd driver drivers/media/platform/davinci/vpbe_osd.c
drivers/media/platform/davinci/vpbe_osd.h
drivers/media/platform/davinci/vpbe_osd_regs.h

To be done

vpbe display controller
• Add support for external encoders.

• add support for selecting external encoder as default at probe time.

vpbe venc sub device
• add timings for supporting ths8200

• add support for LogicPD LCD.

FB drivers
• Add support for fbdev drivers.- Ready and part of subsequent patches.

2054 Chapter 53. Media subsystem kernel internal API

http://www.atmel.com/dyn/resources/prod_documents/doc2817.pdf
http://www.nenya.be/beor/electronics/rc5.htm
http://www.ee.washington.edu/circuit_archive/text/ir_decode.txt
http://www.ee.washington.edu/circuit_archive/text/ir_decode.txt
http://www.xs4all.nl/~sbp/knowledge/ir/rc5.htm
http://www.xs4all.nl/~sbp/knowledge/ir/rc5.htm

Linux Driver-api Documentation

The Samsung S5P/EXYNOS4 FIMC driver

Copyright © 2012 - 2013 Samsung Electronics Co., Ltd.

Files partitioning

• media device driver

drivers/media/platform/exynos4-is/media-dev.[ch]

• camera capture video device driver

drivers/media/platform/exynos4-is/fimc-capture.c

• MIPI-CSI2 receiver subdev

drivers/media/platform/exynos4-is/mipi-csis.[ch]

• video post-processor (mem-to-mem)

drivers/media/platform/exynos4-is/fimc-core.c

• common files

drivers/media/platform/exynos4-is/fimc-core.h drivers/media/platform/exynos4-
is/fimc-reg.h drivers/media/platform/exynos4-is/regs-fimc.h

The pvrusb2 driver

Author: Mike Isely <isely@pobox.com>

Background

This driver is intended for the“Hauppauge WinTV PVR USB 2.0”, which is a USB
2.0 hosted TV Tuner. This driver is a work in progress. Its history started with the
reverse-engineering effort by Björn Danielsson <pvrusb2@dax.nu> whose web
page can be found here: http://pvrusb2.dax.nu/

From there Aurelien Alleaume <slts@free.fr> began an effort to create a
video4linux compatible driver. I began with Aurelien’s last known snapshot and
evolved the driver to the state it is in here.

More information on this driver can be found at: http://www.isely.net/pvrusb2.
html

This driver has a strong separation of layers. They are very roughly:

1. Low level wire-protocol implementation with the device.

2. I2C adaptor implementation and corresponding I2C client drivers imple-
mented elsewhere in V4L.

3. High level hardware driver implementation which coordinates all activities
that ensure correct operation of the device.

53.7. Media driver-specific documentation 2055

mailto:isely@pobox.com
mailto:pvrusb2@dax.nu
http://pvrusb2.dax.nu/
mailto:slts@free.fr
http://www.isely.net/pvrusb2.html
http://www.isely.net/pvrusb2.html

Linux Driver-api Documentation

4. A“context”layer which manages instancing of driver, setup, tear-down, ar-
bitration, and interaction with high level interfaces appropriately as devices
are hotplugged in the system.

5. High level interfaces which glue the driver to various published Linux APIs
(V4L, sysfs, maybe DVB in the future).

The most important shearing layer is between the top 2 layers. A lot of work went
into the driver to ensure that any kind of conceivable API can be laid on top of the
core driver. (Yes, the driver internally leverages V4L to do its work but that really
has nothing to do with the API published by the driver to the outside world.) The
architecture allows for different APIs to simultaneously access the driver. I have a
strong sense of fairness about APIs and also feel that it is a good design principle
to keep implementation and interface isolated from each other. Thus while right
now the V4L high level interface is themost complete, the sysfs high level interface
will work equally well for similar functions, and there’s no reason I see right now
why it shouldn’t be possible to produce a DVB high level interface that can sit
right alongside V4L.

Building

To build these modules essentially amounts to just running“Make”, but you need
the kernel source tree nearby and you will likely also want to set a few controlling
environment variables first in order to link things up with that source tree. Please
see the Makefile here for comments that explain how to do that.

Source file list / functional overview

(Note: The term“module”used below generally refers to loosely defined functional
units within the pvrusb2 driver and bears no relation to the Linux kernel’s concept
of a loadable module.)

pvrusb2-audio.[ch] - This is glue logic that resides between this driver
and the msp3400.ko I2C client driver (which is found elsewhere in V4L).

pvrusb2-context.[ch] - This module implements the context for an
instance of the driver. Everything else eventually ties back to or is oth-
erwise instanced within the data structures implemented here. Hotplugging
is ultimately coordinated here. All high level interfaces tie into the driver
through this module. This module helps arbitrate each interface’s access to
the actual driver core, and is designed to allow concurrent access through
multiple instances of multiple interfaces (thus you can for example change
the tuner’s frequency through sysfs while simultaneously streaming video
through V4L out to an instance of mplayer).

pvrusb2-debug.h - This header defines a printk() wrapper and a mask of
debugging bit definitions for the various kinds of debug messages that can
be enabled within the driver.

pvrusb2-debugifc.[ch] - This module implements a crude command line
oriented debug interface into the driver. Aside from being part of the
process for implementing manual firmware extraction (see the pvrusb2 web

2056 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

site mentioned earlier), probably I’m the only one who has ever used this.
It is mainly a debugging aid.

pvrusb2-eeprom.[ch] - This is glue logic that resides between this driver
the tveeprom.ko module, which is itself implemented elsewhere in V4L.

pvrusb2-encoder.[ch] - This module implements all protocol needed to
interact with the Conexant mpeg2 encoder chip within the pvrusb2 device.
It is a crude echo of corresponding logic in ivtv, however the design goals
(strict isolation) and physical layer (proxy through USB instead of PCI) are
enough different that this implementation had to be completely different.

pvrusb2-hdw-internal.h - This header defines the core data structure in
the driver used to track ALL internal state related to control of the hard-
ware. Nobody outside of the core hardware-handling modules should have
any business using this header. All external access to the driver should be
through one of the high level interfaces (e.g. V4L, sysfs, etc), and in fact even
those high level interfaces are restricted to the API defined in pvrusb2-hdw.h
and NOT this header.

pvrusb2-hdw.h - This header defines the full internal API for controlling
the hardware. High level interfaces (e.g. V4L, sysfs) will work through here.

pvrusb2-hdw.c - This module implements all the various bits of logic that
handle overall control of a specific pvrusb2 device. (Policy, instantiation, and
arbitration of pvrusb2 devices fall within the jurisdiction of pvrusb-context
not here).

pvrusb2-i2c-chips-*.c - These modules implement the glue logic to tie to-
gether and configure various I2Cmodules as they attach to the I2C bus. There
are two versions of this file. The“v4l2”version is intended to be used in-tree
alongside V4L, where we implement just the logic that makes sense for a pure
V4L environment. The“all”version is intended for use outside of V4L, where
we might encounter other possibly“challenging”modules from ivtv or older
kernel snapshots (or even the support modules in the standalone snapshot).

pvrusb2-i2c-cmd-v4l1.[ch] - This module implements generic V4L1
compatible commands to the I2C modules. It is here where state changes
inside the pvrusb2 driver are translated into V4L1 commands that are in
turn send to the various I2C modules.

pvrusb2-i2c-cmd-v4l2.[ch] - This module implements generic V4L2
compatible commands to the I2C modules. It is here where state changes
inside the pvrusb2 driver are translated into V4L2 commands that are in
turn send to the various I2C modules.

pvrusb2-i2c-core.[ch] - This module provides an implementation of a
kernel-friendly I2C adaptor driver, through which other external I2C client
drivers (e.g. msp3400, tuner, lirc) may connect and operate corresponding
chips within the pvrusb2 device. It is through here that other V4L modules
can reach into this driver to operate specific pieces (and those modules are
in turn driven by glue logic which is coordinated by pvrusb2-hdw, doled out
by pvrusb2-context, and then ultimately made available to users through one
of the high level interfaces).

pvrusb2-io.[ch] - This module implements a very low level ring of transfer

53.7. Media driver-specific documentation 2057

Linux Driver-api Documentation

buffers, required in order to stream data from the device. This module is
very low level. It only operates the buffers and makes no attempt to define
any policy or mechanism for how such buffers might be used.

pvrusb2-ioread.[ch] - This module layers on top of pvrusb2-io.[ch] to pro-
vide a streaming API usable by a read() system call style of I/O. Right now
this is the only layer on top of pvrusb2-io.[ch], however the underlying archi-
tecture here was intended to allow for other styles of I/O to be implemented
with additional modules, like mmap()’ed buffers or something even more
exotic.

pvrusb2-main.c - This is the top level of the driver. Module level and USB
core entry points are here. This is our “main”.

pvrusb2-sysfs.[ch] - This is the high level interface which ties the pvrusb2
driver into sysfs. Through this interface you can do everything with the
driver except actually stream data.

pvrusb2-tuner.[ch] - This is glue logic that resides between this driver and
the tuner.ko I2C client driver (which is found elsewhere in V4L).

pvrusb2-util.h - This header defines some common macros used
throughout the driver. These macros are not really specific to the driver, but
they had to go somewhere.

pvrusb2-v4l2.[ch] - This is the high level interface which ties the pvrusb2
driver into video4linux. It is through here that V4L applications can open and
operate the driver in the usual V4L ways. Note that ALL V4L functionality is
published only through here and nowhere else.

pvrusb2-video-*.[ch] - This is glue logic that resides between this driver
and the saa711x.ko I2C client driver (which is found elsewhere in V4L).
Note that saa711x.ko used to be known as saa7115.ko in ivtv. There are two
versions of this; one is selected depending on the particular saa711[5x].ko
that is found.

pvrusb2.h - This header contains compile time tunable parameters (and
at the moment the driver has very little that needs to be tuned).

PXA-Camera Host Driver

Author: Robert Jarzmik <robert.jarzmik@free.fr>

Constraints

a) Image size for YUV422P format All YUV422P images are enforced to have
width x height % 16 = 0. This is due to DMA constraints, which transfers
only planes of 8 byte multiples.

2058 Chapter 53. Media subsystem kernel internal API

mailto:robert.jarzmik@free.fr

Linux Driver-api Documentation

Global video workflow

a) QCI stopped Initially, the QCI interface is stopped. When a buffer is queued
(pxa_videobuf_ops->buf_queue), the QCI starts.

b) QCI started More buffers can be queued while the QCI is started without
halting the capture. The new buffers are“appended”at the tail of the DMA
chain, and smoothly captured one frame after the other.

Once a buffer is filled in the QCI interface, it is marked as “DONE”and
removed from the active buffers list. It can be then requeud or dequeued by
userland application.

Once the last buffer is filled in, the QCI interface stops.

c) Capture global finite state machine schema

+----+ +---+ +----+
| DQ | | Q | | DQ |
| v | v | v
+-----------+ +------------------------+
| STOP | | Wait for capture start |
+-----------+ Q +------------------------+
+-> | QCI: stop | ------------------> | QCI: run | <---------
↪→---+
| | DMA: stop | | DMA: stop | ␣
↪→ |
| +-----------+ +-----> +------------------------+ ␣
↪→ |
| / | ␣
↪→ |
| / +---+ +----+ | ␣
↪→ |
|capture list empty / | Q | | DQ | | QCI Irq EOF ␣
↪→ |
| / | v | v v ␣
↪→ |
| +--------------------+ +----------------------+ ␣
↪→ |
| | DMA hotlink missed | | Capture running | ␣
↪→ |
| +--------------------+ +----------------------+ ␣
↪→ |
| | QCI: run | +-----> | QCI: run | <-+ ␣
↪→ |
| | DMA: stop | / | DMA: run | | ␣
↪→ |
| +--------------------+ / +----------------------+ | Other ␣
↪→ |
| ^ /DMA still | |␣
↪→channels |
| | capture list / running | DMA Irq End | not ␣
↪→ |
| | not empty / | |␣
↪→finished |
| | / v | yet ␣
↪→ |

(continues on next page)

53.7. Media driver-specific documentation 2059

Linux Driver-api Documentation

(continued from previous page)
| +----------------------+ +----------------------+ | ␣
↪→ |
| | Videobuf released | | Channel completed | | ␣
↪→ |
| +----------------------+ +----------------------+ | ␣
↪→ |
+-- | QCI: run | | QCI: run | --+ ␣
↪→ |
| DMA: run | | DMA: run | |
+----------------------+ +----------------------+ |

^ / | |
| no overrun / | overrun |
| / v |

+--------------------+ / +----------------------+ |
| Frame completed | / | Frame overran | |
+--------------------+ <-----+ +----------------------+ restart frame |
| QCI: run | | QCI: stop | --------------+
| DMA: run | | DMA: stop |
+--------------------+ +----------------------+

Legend: - each box is a FSM state
- each arrow is the condition to transition to another state
- an arrow with a comment is a mandatory transition (no condition)
- arrow "Q" means : a buffer was enqueued
- arrow "DQ" means : a buffer was dequeued
- "QCI: stop" means the QCI interface is not enabled
- "DMA: stop" means all 3 DMA channels are stopped
- "DMA: run" means at least 1 DMA channel is still running

DMA usage

a) DMA flow
• first buffer queued for capture Once a first buffer is queued for cap-
ture, the QCI is started, but data transfer is not started. On“End Of
Frame”interrupt, the irq handler starts the DMA chain.

• capture of one videobuffer The DMA chain starts transferring data
into videobuffer RAM pages. When all pages are transferred, the
DMA irq is raised on “ENDINTR”status

• finishing one videobuffer The DMA irq handler marks the videobuffer
as“done”, and removes it from the active running queue Meanwhile,
the next videobuffer (if there is one), is transferred by DMA

• finishing the last videobuffer On the DMA irq of the last videobuffer,
the QCI is stopped.

b) DMA prepared buffer will have this structure

+------------+-----+---------------+-----------------+
| desc-sg[0] | ... | desc-sg[last] | finisher/linker |
+------------+-----+---------------+-----------------+

This structure is pointed by dma->sg_cpu. The descriptors are used as follows:

2060 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

• desc-sg[i]: i-th descriptor, transferring the i-th sg element to the video buffer
scatter gather

• finisher: has ddadr=DADDR_STOP, dcmd=ENDIRQEN

• linker: has ddadr= desc-sg[0] of next video buffer, dcmd=0

For the next schema, let’s assume d0=desc-sg[0] .. dN=desc-sg[N], “f”stands
for finisher and “l”for linker. A typical running chain is :

Videobuffer 1 Videobuffer 2
+---------+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+---+

| |
+----+

After the chaining is finished, the chain looks like :

Videobuffer 1 Videobuffer 2 Videobuffer 3
+---------+----+---+ +----+----+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+

| | | |
+----+ +----+

new_link

c) DMA hot chaining timeslice issue

As DMA chaining is done while DMA _is_ running, the linking may be done while
the DMA jumps from one Videobuffer to another. On the schema, that would be a
problem if the following sequence is encountered :

• DMA chain is Videobuffer1 + Videobuffer2

• pxa_videobuf_queue() is called to queue Videobuffer3

• DMA controller finishes Videobuffer2, and DMA stops

=>
Videobuffer 1 Videobuffer 2

+---------+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-^-+

| | |
+----+ +-- DMA DDADR loads DDADR_STOP

• pxa_dma_add_tail_buf() is called, the Videobuffer2 “finisher”is replaced by
a “linker”to Videobuffer3 (creation of new_link)

• pxa_videobuf_queue() finishes

• the DMA irq handler is called, which terminates Videobuffer2

• Videobuffer3 capture is not scheduled on DMA chain (as it stopped !!!)

Videobuffer 1 Videobuffer 2 Videobuffer 3
+---------+----+---+ +----+----+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |

(continues on next page)

53.7. Media driver-specific documentation 2061

Linux Driver-api Documentation

(continued from previous page)
+---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+

| | | |
+----+ +----+

new_link
DMA DDADR still is DDADR_STOP

• pxa_camera_check_link_miss() is called This checks if the DMA is finished and
a buffer is still on the pcdev->capture list. If that’s the case, the capture will
be restarted, and Videobuffer3 is scheduled on DMA chain.

• the DMA irq handler finishes

Note: If DMA stops just after pxa_camera_check_link_miss() reads DDADR()
value, we have the guarantee that the DMA irq handler will be called back when
the DMA will finish the buffer, and pxa_camera_check_link_miss() will be called
again, to reschedule Videobuffer3.

The Radiotrack radio driver

Author: Stephen M. Benoit <benoits@servicepro.com>

Date: Dec 14, 1996

ACKNOWLEDGMENTS

This document was made based on ‘C’code for Linux from Gideon le Grange
(legrang@active.co.za or legrang@cs.sun.ac.za) in 1994, and elaborations from
Frans Brinkman (brinkman@esd.nl) in 1996. The results reported here are from
experiments that the author performed on his own setup, so your mileage may vary
⋯I make no guarantees, claims or warranties to the suitability or validity of this
information. No other documentation on the AIMS Lab (http://www.aimslab.com/)
RadioTrack card was made available to the author. This document is offered in
the hopes that it might help users who want to use the RadioTrack card in an
environment other than MS Windows.

WHY THIS DOCUMENT?

I have a RadioTrack card from back when I ran an MS-Windows platform. After
converting to Linux, I found Gideon le Grange’s command-line software for running
the card, and found that it was good! Frans Brinkman made a comfortable X-
windows interface, and added a scanning feature. For hack value, I wanted to see
if the tuner could be tuned beyond the usual FM radio broadcast band, so I could
pick up the audio carriers from North American broadcast TV channels, situated
just below and above the 87.0-109.0 MHz range. I did not get much success, but I
learned about programming ioports under Linux and gained some insights about
the hardware design used for the card.

So, without further delay, here are the details.

2062 Chapter 53. Media subsystem kernel internal API

mailto:benoits@servicepro.com
mailto:legrang@active.co.za
mailto:legrang@cs.sun.ac.za
mailto:brinkman@esd.nl
http://www.aimslab.com/

Linux Driver-api Documentation

PHYSICAL DESCRIPTION

The RadioTrack card is an ISA 8-bit FM radio card. The radio frequency (RF) input
is simply an antenna lead, and the output is a power audio signal available through
a miniature phone plug. Its RF frequencies of operation are more or less limited
from 87.0 to 109.0 MHz (the commercial FM broadcast band). Although the regis-
ters can be programmed to request frequencies beyond these limits, experiments
did not give promising results. The variable frequency oscillator (VFO) that de-
modulates the intermediate frequency (IF) signal probably has a small range of
useful frequencies, and wraps around or gets clipped beyond the limits mentioned
above.

CONTROLLING THE CARD WITH IOPORT

The RadioTrack (base) ioport is configurable for 0x30c or 0x20c. Only one ioport
seems to be involved. The ioport decoding circuitry must be pretty simple, as
individual ioport bits are directly matched to specific functions (or blocks) of the
radio card. This way, many functions can be changed in parallel with one write
to the ioport. The only feedback available through the ioports appears to be the
“Stereo Detect”bit.
The bits of the ioport are arranged as follows:

MSb LSb
+------+------+------+--------+--------+-------+---------+--------+
VolA	VolB	????	Stereo	Radio	TuneA	TuneB	Tune
(+)	(-)		Detect	Audio	(bit)	(latch)	Update
			Enable	Enable			Enable
+------+------+------+--------+--------+-------+---------+--------+

VolA VolB Description
0 0 audio mute
0 1 volume + (some delay required)
1 0 volume - (some delay required)
1 1 stay at present volume

Stereo Detect Enable Description
0 No Detect
1 Detect

Results available by reading ioport >60 msec after last port write.

0xff ==> no stereo detected, 0xfd ==> stereo detected.

Radio to Audio (path) Enable Description
0 Disable path (silence)
1 Enable path (audio produced)

53.7. Media driver-specific documentation 2063

Linux Driver-api Documentation

TuneA TuneB Description
0 0 “zero”bit phase 1
0 1 “zero”bit phase 2
1 0 “one”bit phase 1
1 1 “one”bit phase 2

24-bit code, where bits = (freq*40) + 10486188. The Most Significant 11 bits must
be 1010 xxxx 0x0 to be valid. The bits are shifted in LSb first.

Tune Update Enable Description
0 Tuner held constant
1 Tuner updating in progress

PROGRAMMING EXAMPLES

Default: BASE <-- 0xc8 (current volume, no stereo detect,
radio enable, tuner adjust disable)

Card Off: BASE <-- 0x00 (audio mute, no stereo detect,
radio disable, tuner adjust disable)

Card On: BASE <-- 0x00 (see "Card Off", clears any unfinished␣
↪→business)

BASE <-- 0xc8 (see "Default")

Volume Down: BASE <-- 0x48 (volume down, no stereo detect,
radio enable, tuner adjust disable)

wait 10 msec
BASE <-- 0xc8 (see "Default")

Volume Up: BASE <-- 0x88 (volume up, no stereo detect,
radio enable, tuner adjust disable)

wait 10 msec
BASE <-- 0xc8 (see "Default")

Check Stereo: BASE <-- 0xd8 (current volume, stereo detect,
radio enable, tuner adjust disable)

wait 100 msec
x <-- BASE (read ioport)
BASE <-- 0xc8 (see "Default")

x=0xff ==> "not stereo", x=0xfd ==> "stereo detected"

Set Frequency: code = (freq*40) + 10486188
foreach of the 24 bits in code,
(from Least to Most Significant):
to write a "zero" bit,
BASE <-- 0x01 (audio mute, no stereo detect, radio

disable, "zero" bit phase 1, tuner adjust)
BASE <-- 0x03 (audio mute, no stereo detect, radio

disable, "zero" bit phase 2, tuner adjust)
to write a "one" bit,

(continues on next page)

2064 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
BASE <-- 0x05 (audio mute, no stereo detect, radio

disable, "one" bit phase 1, tuner adjust)
BASE <-- 0x07 (audio mute, no stereo detect, radio

disable, "one" bit phase 2, tuner adjust)

The saa7134 driver

Author Gerd Hoffmann

Card Variations:

Cards can use either of these two crystals (xtal):

• 32.11 MHz -> .audio_clock=0x187de7

• 24.576MHz -> .audio_clock=0x200000 (xtal * .audio_clock = 51539600)

Some details about 30/34/35:

• saa7130 - low-price chip, doesn’t havemute, that is why all those cards should
have .mute field defined in their tuner structure.

• saa7134 - usual chip

• saa7133/35 - saa7135 is probably a marketing decision, since all those chips
identifies itself as 33 on pci.

LifeView GPIOs

This section was authored by: Peter Missel <peter.missel@onlinehome.de>

• LifeView FlyTV Platinum FM (LR214WF)

– GP27 MDT2005 PB4 pin 10
– GP26 MDT2005 PB3 pin 9
– GP25 MDT2005 PB2 pin 8
– GP23 MDT2005 PB1 pin 7
– GP22 MDT2005 PB0 pin 6
– GP21 MDT2005 PB5 pin 11
– GP20 MDT2005 PB6 pin 12
– GP19 MDT2005 PB7 pin 13
– nc MDT2005 PA3 pin 2
– Remote MDT2005 PA2 pin 1
– GP18 MDT2005 PA1 pin 18
– nc MDT2005 PA0 pin 17 strap low

53.7. Media driver-specific documentation 2065

mailto:peter.missel@onlinehome.de

Linux Driver-api Documentation

– GP17 Strap “GP7”=High
– GP16 Strap “GP6”=High

∗ 0=Radio 1=TV

∗ Drives SA630D ENCH1 and HEF4052 A1 pinsto do FM radio through
SIF input

– GP15 nc
– GP14 nc
– GP13 nc
– GP12 Strap “GP5”= High
– GP11 Strap “GP4”= High
– GP10 Strap “GP3”= High
– GP09 Strap “GP2”= Low
– GP08 Strap “GP1”= Low
– GP07.00 nc

Credits

andrew.stevens@philips.com + werner.leeb@philips.com for providing saa7134
hardware specs and sample board.

Cropping and Scaling algorithm, used in the sh_mobile_ceu_camera driver

Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>

Terminology

sensor scales: horizontal and vertical scales, configured by the sensor driver host
scales: -“- host driver combined scales: sensor_scale * host_scale

Generic scaling / cropping scheme

-1--
|
-2-- -\
| --\
| --\
+-5-- . -- -3-- -\
| `... -\
| `... -4-- . - -7..
| `.
| `. .6--
|

(continues on next page)

2066 Chapter 53. Media subsystem kernel internal API

mailto:andrew.stevens@philips.com
mailto:werner.leeb@philips.com
mailto:g.liakhovetski@gmx.de

Linux Driver-api Documentation

(continued from previous page)
| . .6'-
| .´
| ... -4'- .´
| ...´ - -7'.
+-5'- .´ -/
| -- -3'- -/
| --/
| --/
-2'- -/
|
|
-1'-

In the above chart minuses and slashes represent “real”data amounts, points
and accents represent “useful”data, basically, CEU scaled and cropped output,
mapped back onto the client’s source plane.
Such a configuration can be produced by user requests:

S_CROP(left / top = (5) - (1), width / height = (5’) - (5)) S_FMT(width / height =
(6’) - (6))
Here:

(1) to (1’) - whole max width or height (1) to (2) - sensor cropped left or top (2)
to (2’) - sensor cropped width or height (3) to (3’) - sensor scale (3) to (4) - CEU
cropped left or top (4) to (4’) - CEU cropped width or height (5) to (5’) - reverse
sensor scale applied to CEU cropped width or height (2) to (5) - reverse sensor
scale applied to CEU cropped left or top (6) to (6’) - CEU scale - user window

S_FMT

Do not touch input rectangle - it is already optimal.

1. Calculate current sensor scales:

scale_s = ((2’) - (2)) / ((3’) - (3))
2. Calculate“effective”input crop (sensor subwindow) - CEU crop scaled back at
current sensor scales onto input window - this is user S_CROP:

width_u = (5’) - (5) = ((4’) - (4)) * scale_s
3. Calculate new combined scales from “effective”input window to requested
user window:

scale_comb = width_u / ((6’) - (6))
4. Calculate sensor output window by applying combined scales to real input win-
dow:

width_s_out = ((7’) - (7)) = ((2’) - (2)) / scale_comb
5. Apply iterative sensor S_FMT for sensor output window.

subdev->video_ops->s_fmt(.width = width_s_out)

6. Retrieve sensor output window (g_fmt)

53.7. Media driver-specific documentation 2067

Linux Driver-api Documentation

7. Calculate new sensor scales:

scale_s_new = ((3’)_new - (3)_new) / ((2’) - (2))
8. Calculate newCEU crop - apply sensor scales to previously calculated“effective”
crop:

width_ceu = (4’)_new - (4)_new = width_u / scale_s_new left_ceu =
(4)_new - (3)_new = ((5) - (2)) / scale_s_new

9. Use CEU cropping to crop to the new window:

ceu_crop(.width = width_ceu, .left = left_ceu)

10. Use CEU scaling to scale to the requested user window:

scale_ceu = width_ceu / width

S_CROP

The V4L2 crop API says:

“⋯specification does not define an origin or units. However by convention drivers
should horizontally count unscaled samples relative to 0H.”
We choose to follow the advise and interpret cropping units as client input pixels.

Cropping is performed in the following 6 steps:

1. Request exactly user rectangle from the sensor.

2. If smaller - iterate until a larger one is obtained. Result: sensor cropped to 2
: 2’, target crop 5 : 5’, current output format 6’- 6.

3. In the previous step the sensor has tried to preserve its output frame as good
as possible, but it could have changed. Retrieve it again.

4. Sensor scaled to 3 : 3’. Sensor’s scale is (2’- 2) / (3’- 3). Calculate
intermediate window: 4’- 4 = (5’- 5) * (3’- 3) / (2’- 2)

5. Calculate and apply host scale = (6’- 6) / (4’- 4)
6. Calculate and apply host crop: 6 - 7 = (5 - 2) * (6’- 6) / (5’- 5)

Tuner drivers

Simple tuner Programming

There are some flavors of Tuner programming APIs. These differ mainly by the
bandswitch byte.

• L= LG_API (VHF_LO=0x01, VHF_HI=0x02, UHF=0x08, radio=0x04)

• P= PHILIPS_API (VHF_LO=0xA0, VHF_HI=0x90, UHF=0x30, radio=0x04)

• T= TEMIC_API (VHF_LO=0x02, VHF_HI=0x04, UHF=0x01)

• A= ALPS_API (VHF_LO=0x14, VHF_HI=0x12, UHF=0x11)

• M= PHILIPS_MK3 (VHF_LO=0x01, VHF_HI=0x02, UHF=0x04, radio=0x19)

2068 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Tuner Manufacturers

• SAMSUNG Tuner identification: (e.g. TCPM9091PD27)

TCP [ABCJLMNQ] 90[89][125] [DP] [ACD] 27 [ABCD]
[ABCJLMNQ]:

A= BG+DK
B= BG
C= I+DK
J= NTSC-Japan
L= Secam LL
M= BG+I+DK
N= NTSC
Q= BG+I+DK+LL

[89]: ?
[125]:

2: No FM
5: With FM

[DP]:
D= NTSC
P= PAL

[ACD]:
A= F-connector
C= Phono connector
D= Din Jack

[ABCD]:
3-wire/I2C tuning, 2-band/3-band

These Tuners are PHILIPS_API compatible.

Philips Tuner identification: (e.g. FM1216MF)

F[IRMQ]12[1345]6{MF|ME|MP}
F[IRMQ]:
FI12x6: Tuner Series
FR12x6: Tuner + Radio IF
FM12x6: Tuner + FM
FQ12x6: special
FMR12x6: special
TD15xx: Digital Tuner ATSC

12[1345]6:
1216: PAL BG
1236: NTSC
1246: PAL I
1256: Pal DK

{MF|ME|MP}
MF: BG LL w/ Secam (Multi France)
ME: BG DK I LL (Multi Europe)
MP: BG DK I (Multi PAL)
MR: BG DK M (?)
MG: BG DKI M (?)

MK2 series PHILIPS_API, most tuners are compatible to this one !
MK3 series introduced in 2002 w/ PHILIPS_MK3_API

Temic Tuner identification: (.e.g 4006FH5)

53.7. Media driver-specific documentation 2069

Linux Driver-api Documentation

4[01][0136][269]F[HYNR]5
40x2: Tuner (5V/33V), TEMIC_API.
40x6: Tuner 5V
41xx: Tuner compact
40x9: Tuner+FM compact

[0136]
xx0x: PAL BG
xx1x: Pal DK, Secam LL
xx3x: NTSC
xx6x: PAL I

F[HYNR]5
FH5: Pal BG
FY5: others
FN5: multistandard
FR5: w/ FM radio

3X xxxx: order number with specific connector
Note: Only 40x2 series has TEMIC_API, all newer tuners have PHILIPS_API.

LG Innotek Tuner:

• TPI8NSR11 : NTSC J/M (TPI8NSR01 w/FM) (P,210/497)

• TPI8PSB11 : PAL B/G (TPI8PSB01 w/FM) (P,170/450)

• TAPC-I701 : PAL I (TAPC-I001 w/FM) (P,170/450)

• TPI8PSB12 : PAL D/K+B/G (TPI8PSB02 w/FM) (P,170/450)

• TAPC-H701P: NTSC_JP (TAPC-H001P w/FM) (L,170/450)

• TAPC-G701P: PAL B/G (TAPC-G001P w/FM) (L,170/450)

• TAPC-W701P: PAL I (TAPC-W001P w/FM) (L,170/450)

• TAPC-Q703P: PAL D/K (TAPC-Q001P w/FM) (L,170/450)

• TAPC-Q704P: PAL D/K+I (L,170/450)

• TAPC-G702P: PAL D/K+B/G (L,170/450)

• TADC-H002F: NTSC (L,175/410?; 2-B, C-W+11, W+12-69)

• TADC-M201D: PAL D/K+B/G+I (L,143/425) (sound control at I2C address
0xc8)

• TADC-T003F: NTSC Taiwan (L,175/410?; 2-B, C-W+11, W+12-69)

Suffix:
• P= Standard phono female socket

• D= IEC female socket

• F= F-connector

Other Tuners:

• TCL2002MB-1 : PAL BG + DK =TUNER_LG_PAL_NEW_TAPC

• TCL2002MB-1F: PAL BG + DK w/FM =PHILIPS_PAL

• TCL2002MI-2 : PAL I = ??

ALPS Tuners:

2070 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

• Most are LG_API compatible

• TSCH6 has ALPS_API (TSCH5 ?)

• TSBE1 has extra API 05,02,08 Control_byte=0xCB Source:1

The Virtual Media Controller Driver (vimc)

Source code documentation

vimc-streamer

struct vimc_stream
struct that represents a stream in the pipeline

Definition

struct vimc_stream {
struct media_pipeline pipe;
struct vimc_ent_device *ved_pipeline[VIMC_STREAMER_PIPELINE_MAX_SIZE];
unsigned int pipe_size;
struct task_struct *kthread;

};

Members
pipe the media pipeline object associated with this stream

ved_pipeline array containing all the entities participating in the stream. The
order is from a video device (usually a capture device) where stream_on was
called, to the entity generating the first base image to be processed in the
pipeline.

pipe_size size of ved_pipeline
kthread thread that generates the frames of the stream.

Description
When the user call stream_on in a video device, struct vimc_stream is used to
keep track of all entities and subdevices that generates and process frames for
the stream.

struct media_entity * vimc_get_source_entity(struct media_entity * ent)
get the entity connected with the first sink pad

Parameters
struct media_entity * ent reference media_entity

Description
Helper function that returns the media entity containing the source pad linked
with the first sink pad from the given media entity pad list.

Return
The source pad or NULL, if it wasn’t found.

1 conexant100029b-PCI-Decoder-ApplicationNote.pdf

53.7. Media driver-specific documentation 2071

Linux Driver-api Documentation

void vimc_streamer_pipeline_terminate(struct vimc_stream * stream)
Disable stream in all ved in stream

Parameters
struct vimc_stream * stream the pointer to the stream structure with the

pipeline to be disabled.

Description
Calls s_stream to disable the stream in each entity of the pipeline

int vimc_streamer_pipeline_init(struct vimc_stream * stream, struct
vimc_ent_device * ved)

Initializes the stream structure

Parameters
struct vimc_stream * stream the pointer to the stream structure to be initial-

ized

struct vimc_ent_device * ved the pointer to the vimc entity initializing the
stream

Description
Initializes the stream structure. Walks through the entity graph to construct the
pipeline used later on the streamer thread. Calls vimc_streamer_s_stream() to
enable stream in all entities of the pipeline.

Return
0 if success, error code otherwise.

int vimc_streamer_thread(void * data)
Process frames through the pipeline

Parameters
void * data vimc_stream struct of the current stream

Description
From the source to the sink, gets a frame from each subdevice and send to the
next one of the pipeline at a fixed framerate.

Return
Always zero (created as int instead of void to comply with kthread API).

int vimc_streamer_s_stream(struct vimc_stream * stream, struct
vimc_ent_device * ved, int enable)

Start/stop the streaming on the media pipeline

Parameters
struct vimc_stream * stream the pointer to the stream structure of the current

stream

struct vimc_ent_device * ved pointer to the vimc entity of the entity of the
stream

int enable flag to determine if stream should start/stop

2072 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Description
When starting, check if there is no stream->kthread allocated. This should in-
dicate that a stream is already running. Then, it initializes the pipeline, creates
and runs a kthread to consume buffers through the pipeline. When stopping, anal-
ogously check if there is a stream running, stop the thread and terminates the
pipeline.

Return
0 if success, error code otherwise.

53.7.2 Digital TV drivers

Idea behind the dvb-usb-framework

Note:
1) This documentation is outdated. Please check at the DVB wiki at https://
linuxtv.org/wiki for more updated info.

2) deprecated: Newer DVB USB drivers should use the dvb-usb-v2 framework.

In March 2005 I got the new Twinhan USB2.0 DVB-T device. They provided specs
and a firmware.

Quite keen I wanted to put the driver (with some quirks of course) into dibusb. Af-
ter reading some specs and doing some USB snooping, it realized, that the dibusb-
driver would be a complete mess afterwards. So I decided to do it in a different
way: With the help of a dvb-usb-framework.

The framework provides generic functions (mostly kernel API calls), such as:

• Transport Stream URB handling in conjunction with dvb-demux-feed-control
(bulk and isoc are supported)

• registering the device for the DVB-API

• registering an I2C-adapter if applicable

• remote-control/input-device handling

• firmware requesting and loading (currently just for the Cypress USB con-
trollers)

• other functions/methods which can be shared by several drivers (such as func-
tions for bulk-control-commands)

• TODO: a I2C-chunker. It creates device-specific chunks of register-accesses
depending on length of a register and the number of values that can be multi-
written and multi-read.

The source code of the particular DVB USB devices does just the communication
with the device via the bus. The connection between the DVB-API-functionality is
done via callbacks, assigned in a static device-description (struct dvb_usb_device)
each device-driver has to have.

53.7. Media driver-specific documentation 2073

https://linuxtv.org/wiki
https://linuxtv.org/wiki

Linux Driver-api Documentation

For an example have a look in drivers/media/usb/dvb-usb/vp7045*.

Objective is to migrate all the usb-devices (dibusb, cinergyT2, maybe the ttusb;
flexcop-usb already benefits from the generic flexcop-device) to use the dvb-usb-
lib.

TODO: dynamic enabling and disabling of the pid-filter in regard to number of
feeds requested.

Supported devices

See the LinuxTV DVB Wiki at https://linuxtv.org for a complete list of
cards/drivers/firmwares: https://linuxtv.org/wiki/index.php/DVB_USB

0. History & News:

2005-06-30

• added support for WideView WT-220U (Thanks to Steve Chang)

2005-05-30

• added basic isochronous support to the dvb-usb-framework

• added support for Conexant Hybrid reference design and Nebula
DigiTV USB

2005-04-17

• all dibusb devices ported to make use of the dvb-usb-framework

2005-04-02

• re-enabled and improved remote control code.

2005-03-31

• ported the Yakumo/Hama/Typhoon DVB-T USB2.0 device to dvb-
usb.

2005-03-30

• first commit of the dvb-usb-module based on the dibusb-source.
First device is a new driver for the TwinhanDTV Alpha / MagicBox
II USB2.0-only DVB-T device.

• (change from dvb-dibusb to dvb-usb)

2005-03-28

• added support for the AVerMedia AverTV DVB-T USB2.0 device
(Thanks to Glen Harris and Jiun-Kuei Jung, AVerMedia)

2005-03-14

• added support for the Typhoon/Yakumo/HAMA DVB-T mobile
USB2.0

2005-02-11

• added support for the KWorld/ADSTech Instant DVB-T USB2.0.
Thanks a lot to Joachim von Caron

2074 Chapter 53. Media subsystem kernel internal API

https://linuxtv.org
https://linuxtv.org/wiki/index.php/DVB_USB

Linux Driver-api Documentation

2005-02-02 - added support for the Hauppauge Win-TV Nova-T USB2

2005-01-31 - distorted streaming is gone for USB1.1 devices

2005-01-13

• moved the mirrored pid_filter_table back to dvb-dibusb first al-
most working version for HanfTek UMT-010 found out, that
Yakumo/HAMA/Typhoon are predecessors of the HanfTek UMT-010

2005-01-10

• refactoring completed, now everything is very delightful

• tuner quirks for some weird devices (Artec T1 AN2235 device has
sometimes a Panasonic Tuner assembled). Tunerprobing imple-
mented. Thanks a lot to Gunnar Wittich.

2004-12-29

• after several days of struggling around bug of no returning URBs
fixed.

2004-12-26

• refactored the dibusb-driver, split into separate files

• i2c-probing enabled

2004-12-06

• possibility for demod i2c-address probing

• new usb IDs (Compro, Artec)

2004-11-23

• merged changes from DiB3000MC_ver2.1

• revised the debugging

• possibility to deliver the complete TS for USB2.0

2004-11-21

• first working version of the dib3000mc/p frontend driver.

2004-11-12

• added additional remote control keys. Thanks to Uwe Hanke.

2004-11-07

• added remote control support. Thanks to David Matthews.

2004-11-05

• added support for a new devices (Grandtec/Avermedia/Artec)

• merged my changes (for dib3000mb/dibusb) to the
FE_REFACTORING, because it became HEAD

• moved transfer control (pid filter, fifo control) from usb driver to
frontend, it seems better settled there (added xfer_ops-struct)

• created a common files for frontends (mc/p/mb)

53.7. Media driver-specific documentation 2075

Linux Driver-api Documentation

2004-09-28

• added support for a new device (Unknown, vendor ID is Hyper-
Paltek)

2004-09-20

• added support for a new device (Compro DVB-U2000), thanks to
Amaury Demol for reporting

• changed usb TS transfer method (several urbs, stopping transfer
before setting a new pid)

2004-09-13

• added support for a new device (Artec T1 USB TVBOX), thanks to
Christian Motschke for reporting

2004-09-05

• released the dibusb device and dib3000mb-frontend driver (old
news for vp7041.c)

2004-07-15

• found out, by accident, that the device has a TUA6010XS for PLL

2004-07-12

• figured out, that the driver should also work with the CTS Portable
(Chinese Television System)

2004-07-08

• firmware-extraction-2.422-problem solved, driver is now working
properly with firmware extracted from 2.422

• #if for 2.6.4 (dvb), compile issue

• changed firmware handling, see vp7041.txt sec 1.1

2004-07-02

• some tuner modifications, v0.1, cleanups, first public

2004-06-28

• now using the dvb_dmx_swfilter_packets, everything runs fine now

2004-06-27

• able to watch and switching channels (pre-alpha)

• no section filtering yet

2004-06-06

• first TS received, but kernel oops :/

2004-05-14

• firmware loader is working

2004-05-11

• start writing the driver

2076 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

How to use?

Firmware

Most of the USB drivers need to download a firmware to the device before start
working.

Have a look at the Wikipage for the DVB-USB-drivers to find out, which firmware
you need for your device:

https://linuxtv.org/wiki/index.php/DVB_USB

Compiling

Since the driver is in the linux kernel, activating the driver in your favorite config-
environment should sufficient. I recommend to compile the driver as module. Hot-
plug does the rest.

If you use dvb-kernel enter the build-2.6 directory run ‘make’and ‘insmod.sh
load’afterwards.

Loading the drivers

Hotplug is able to load the driver, when it is needed (because you plugged in the
device).

If you want to enable debug output, you have to load the driver manually and from
within the dvb-kernel cvs repository.

first have a look, which debug level are available:

modinfo dvb-usb
modinfo dvb-usb-vp7045

etc.

modprobe dvb-usb debug=<level>
modprobe dvb-usb-vp7045 debug=<level>
etc.

should do the trick.

When the driver is loaded successfully, the firmware file was in the right place and
the device is connected, the “Power”-LED should be turned on.
At this point you should be able to start a dvb-capable application. I’muse (t|s)zap,
mplayer and dvbscan to test the basics. VDR-xine provides the long-term test
scenario.

53.7. Media driver-specific documentation 2077

https://linuxtv.org/wiki/index.php/DVB_USB

Linux Driver-api Documentation

Known problems and bugs

• Don’t remove the USB device while running an DVB application, your system
will go crazy or die most likely.

Adding support for devices

TODO

USB1.1 Bandwidth limitation

A lot of the currently supported devices are USB1.1 and thus they have a maxi-
mum bandwidth of about 5-6 MBit/s when connected to a USB2.0 hub. This is not
enough for receiving the complete transport stream of a DVB-T channel (which is
about 16 MBit/s). Normally this is not a problem, if you only want to watch TV
(this does not apply for HDTV), but watching a channel while recording another
channel on the same frequency simply does not work very well. This applies to all
USB1.1 DVB-T devices, not just the dvb-usb-devices)

The bug, where the TS is distorted by a heavy usage of the device is gone definitely.
All dvb-usb-devices I was using (Twinhan, Kworld, DiBcom) are working like charm
now with VDR. Sometimes I even was able to record a channel and watch another
one.

Comments

Patches, comments and suggestions are very very welcome.

3. Acknowledgements

Amaury Demol (Amaury.Demol@parrot.com) and Francois Kanounnikoff
from DiBcom for providing specs, code and help, on which the dvb-
dibusb, dib3000mb and dib3000mc are based.

David Matthews for identifying a new device type (Artec T1 with
AN2235) and for extending dibusb with remote control event handling.
Thank you.

Alex Woods for frequently answering question about usb and dvb stuff,
a big thank you.

Bernd Wagner for helping with huge bug reports and discussions.

Gunnar Wittich and Joachim von Caron for their trust for providing root-
shells on their machines to implement support for new devices.

Allan Third and Michael Hutchinson for their help to write the Nebula
digitv-driver.

2078 Chapter 53. Media subsystem kernel internal API

mailto:Amaury.Demol@parrot.com

Linux Driver-api Documentation

Glen Harris for bringing up, that there is a new dibusb-device and Jiun-
Kuei Jung from AVerMedia who kindly provided a special firmware to get
the device up and running in Linux.

Jennifer Chen, Jeff and Jack from Twinhan for kindly supporting by writ-
ing the vp7045-driver.

Steve Chang from WideView for providing information for new devices
and firmware files.

Michael Paxton for submitting remote control keymaps.

Some guys on the linux-dvb mailing list for encouraging me.

Peter Schildmann >peter.schildmann-nospam-at-web.de< for his user-
level firmware loader, which saves a lot of time (when writing the vp7041
driver)

Ulf Hermenau for helping me out with traditional chinese.

André Smoktun and Christian Frömmel for supportingmewith hardware
and listening to my problems very patiently.

Frontend drivers

Frontend attach headers

struct a8293_platform_data
Platform data for the a8293 driver

Definition

struct a8293_platform_data {
struct dvb_frontend *dvb_frontend;

};

Members
dvb_frontend DVB frontend.

struct af9013_platform_data
Platform data for the af9013 driver

Definition

struct af9013_platform_data {
u32 clk;

#define AF9013_TUNER_MXL5003D 3 ;
#define AF9013_TUNER_MXL5005D 13 ;
#define AF9013_TUNER_MXL5005R 30 ;
#define AF9013_TUNER_ENV77H11D5 129 ;
#define AF9013_TUNER_MT2060 130 ;
#define AF9013_TUNER_MC44S803 133 ;
#define AF9013_TUNER_QT1010 134 ;
#define AF9013_TUNER_UNKNOWN 140 ;
#define AF9013_TUNER_MT2060_2 147 ;
#define AF9013_TUNER_TDA18271 156 ;

(continues on next page)

53.7. Media driver-specific documentation 2079

Linux Driver-api Documentation

(continued from previous page)
#define AF9013_TUNER_QT1010A 162 ;
#define AF9013_TUNER_MXL5007T 177 ;
#define AF9013_TUNER_TDA18218 179 ;

u8 tuner;
u32 if_frequency;

#define AF9013_TS_MODE_USB 0;
#define AF9013_TS_MODE_PARALLEL 1;
#define AF9013_TS_MODE_SERIAL 2;

u8 ts_mode;
u8 ts_output_pin;
bool spec_inv;
u8 api_version[4];

#define AF9013_GPIO_ON (1 << 0);
#define AF9013_GPIO_EN (1 << 1);
#define AF9013_GPIO_O (1 << 2);
#define AF9013_GPIO_I (1 << 3);
#define AF9013_GPIO_LO (AF9013_GPIO_ON|AF9013_GPIO_EN);
#define AF9013_GPIO_HI (AF9013_GPIO_ON|AF9013_GPIO_EN|AF9013_GPIO_O);
#define AF9013_GPIO_TUNER_ON (AF9013_GPIO_ON|AF9013_GPIO_EN);
#define AF9013_GPIO_TUNER_OFF (AF9013_GPIO_ON|AF9013_GPIO_EN|AF9013_GPIO_
↪→O);
u8 gpio[4];
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);
struct i2c_adapter* (*get_i2c_adapter)(struct i2c_client *);
int (*pid_filter_ctrl)(struct dvb_frontend *, int);
int (*pid_filter)(struct dvb_frontend *, u8, u16, int);

};

Members
clk Clock frequency.

tuner Used tuner model.

if_frequency IF frequency.

ts_mode TS mode.

ts_output_pin TS output pin.

spec_inv Input spectrum inverted.

api_version Firmware API version.

gpio GPIOs.

get_dvb_frontend Get DVB frontend callback.

get_i2c_adapter Get I2C adapter.

pid_filter_ctrl Control PID filter.

pid_filter Set PID to PID filter.

struct ascot2e_config
the configuration of Ascot2E tuner driver

Definition

2080 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct ascot2e_config {
u8 i2c_address;
u8 xtal_freq_mhz;
void *set_tuner_priv;
int (*set_tuner_callback)(void *, int);

};

Members
i2c_address I2C address of the tuner

xtal_freq_mhz Oscillator frequency, MHz

set_tuner_priv Callback function private context

set_tuner_callback Callback function that notifies the parent driver which tuner
is active now

struct dvb_frontend * ascot2e_attach(struct dvb_frontend * fe, const
struct ascot2e_config * config, struct
i2c_adapter * i2c)

Parameters
struct dvb_frontend * fe frontend to be attached

const struct ascot2e_config * config pointer to struct ascot2e_config
with tuner configuration.

struct i2c_adapter * i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct cxd2820r_platform_data
Platform data for the cxd2820r driver

Definition

struct cxd2820r_platform_data {
u8 ts_mode;
bool ts_clk_inv;
bool if_agc_polarity;
bool spec_inv;
int **gpio_chip_base;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);

};

Members
ts_mode TS mode.

ts_clk_inv TS clock inverted.

if_agc_polarity IF AGC polarity.

spec_inv Input spectrum inverted.

gpio_chip_base GPIO.

get_dvb_frontend Get DVB frontend.

53.7. Media driver-specific documentation 2081

Linux Driver-api Documentation

struct cxd2820r_config
configuration for cxd2020r demod

Definition

struct cxd2820r_config {
u8 i2c_address;
u8 ts_mode;
bool ts_clock_inv;
bool if_agc_polarity;
bool spec_inv;

};

Members
i2c_address Demodulator I2C address. Driver determines DVB-C slave I2C ad-

dress automatically from master address. Default: none, must set. Values:
0x6c, 0x6d.

ts_mode TS output mode. Default: none, must set. Values: FIXME?

ts_clock_inv TS clock inverted. Default: 0. Values: 0, 1.

if_agc_polarity Default: 0. Values: 0, 1

spec_inv Spectrum inversion. Default: 0. Values: 0, 1.

struct dvb_frontend * cxd2820r_attach(const struct cxd2820r_config
* config, struct i2c_adapter * i2c,
int * gpio_chip_base)

Parameters
const struct cxd2820r_config * config pointer to struct cxd2820r_config

with demod configuration.

struct i2c_adapter * i2c i2c adapter to use.

int * gpio_chip_base if zero, disables GPIO setting. Otherwise, if CON-
FIG_GPIOLIB is set dynamically allocate gpio base; if is not set, use its value
to setup the GPIO pins.

Return
FE pointer on success, NULL on failure.

struct drxk_config
Configure the initial parameters for DRX-K

Definition

struct drxk_config {
u8 adr;
bool single_master;
bool no_i2c_bridge;
bool parallel_ts;
bool dynamic_clk;
bool enable_merr_cfg;
bool antenna_dvbt;
u16 antenna_gpio;

(continues on next page)

2082 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
u8 mpeg_out_clk_strength;
int chunk_size;
const char *microcode_name;
int qam_demod_parameter_count;

};

Members
adr I2C address of the DRX-K

single_master Device is on the single master mode

no_i2c_bridge Don’t switch the I2C bridge to talk with tuner
parallel_ts True means that the device uses parallel TS, Serial otherwise.

dynamic_clk True means that the clock will be dynamically adjusted. Static clock
otherwise.

enable_merr_cfg Enable SIO_PDR_PERR_CFG/SIO_PDR_MVAL_CFG.

antenna_dvbt GPIO bit for changing antenna to DVB-C. A value of 1 means that
1=DVBC, 0 = DVBT. Zero means the opposite.

antenna_gpio GPIO bit used to control the antenna

mpeg_out_clk_strength DRXK Mpeg output clock drive strength.

chunk_size maximum size for I2C messages

microcode_name Name of the firmware file with the microcode

qam_demod_parameter_count The number of parameters used for the command
to set the demodulator parameters. All firmwares are using the 2-parameter
command. An exception is the drxk_a3.mc firmware, which uses the 4-
parameter command. A value of 0 (default) or lower indicates that the correct
number of parameters will be automatically detected.

Description
On the *_gpio vars, bit 0 is UIO-1, bit 1 is UIO-2 and bit 2 is UIO-3.

struct dvb_frontend * drxk_attach(const struct drxk_config * config, struct
i2c_adapter * i2c)

Parameters
const struct drxk_config * config pointer to struct drxk_config with de-

mod configuration.

struct i2c_adapter * i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct dvb_frontend * dvb_pll_attach(struct dvb_frontend * fe, int pll_addr,
struct i2c_adapter * i2c, unsigned
int pll_desc_id)

pll to the supplied frontend structure.

Parameters

53.7. Media driver-specific documentation 2083

Linux Driver-api Documentation

struct dvb_frontend * fe Frontend to attach to.

int pll_addr i2c address of the PLL (if used).

struct i2c_adapter * i2c i2c adapter to use (set to NULL if not used).

unsigned int pll_desc_id dvb_pll_desc to use.

Return
Frontend pointer on success, NULL on failure

struct helene_config
the configuration of ‘Helene’tuner driver

Definition

struct helene_config {
u8 i2c_address;
u8 xtal_freq_mhz;
void *set_tuner_priv;
int (*set_tuner_callback)(void *, int);
enum helene_xtal xtal;
struct dvb_frontend *fe;

};

Members
i2c_address I2C address of the tuner

xtal_freq_mhz Oscillator frequency, MHz

set_tuner_priv Callback function private context

set_tuner_callback Callback function that notifies the parent driver which tuner
is active now

xtal Cristal frequency as described by enum helene_xtal

fe Frontend for which connects this tuner

struct dvb_frontend * helene_attach(struct dvb_frontend * fe, const
struct helene_config * config, struct
i2c_adapter * i2c)

Parameters
struct dvb_frontend * fe frontend to be attached

const struct helene_config * config pointer to struct helene_config with
tuner configuration.

struct i2c_adapter * i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct dvb_frontend * helene_attach_s(struct dvb_frontend * fe, const
struct helene_config * config, struct
i2c_adapter * i2c)

Parameters

2084 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct dvb_frontend * fe frontend to be attached

const struct helene_config * config pointer to struct helene_config with
tuner configuration.

struct i2c_adapter * i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct horus3a_config
the configuration of Horus3A tuner driver

Definition

struct horus3a_config {
u8 i2c_address;
u8 xtal_freq_mhz;
void *set_tuner_priv;
int (*set_tuner_callback)(void *, int);

};

Members
i2c_address I2C address of the tuner

xtal_freq_mhz Oscillator frequency, MHz

set_tuner_priv Callback function private context

set_tuner_callback Callback function that notifies the parent driver which tuner
is active now

struct dvb_frontend * horus3a_attach(struct dvb_frontend * fe, const struct
horus3a_config * config, struct
i2c_adapter * i2c)

Parameters
struct dvb_frontend * fe frontend to be attached

const struct horus3a_config * config pointer to struct helene_config
with tuner configuration.

struct i2c_adapter * i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

DVB_IX2505V_H()
S silicon tuner

Parameters
Description
Copyright (C) 2010 Malcolm Priestley

struct ix2505v_config
ix2505 attachment configuration

Definition

53.7. Media driver-specific documentation 2085

Linux Driver-api Documentation

struct ix2505v_config {
u8 tuner_address;
u8 tuner_gain;
u8 tuner_chargepump;
int min_delay_ms;
u8 tuner_write_only;

};

Members
tuner_address tuner address

tuner_gain Baseband AMP gain control 0/1=0dB(default) 2=-2bB 3=-4dB

tuner_chargepump Charge pump output +/- 0=120 1=260 2=555 3=1200(de-
fault)

min_delay_ms delay after tune

tuner_write_only disables reads

struct dvb_frontend * ix2505v_attach(struct dvb_frontend * fe, const
struct ix2505v_config * config, struct
i2c_adapter * i2c)

Parameters
struct dvb_frontend * fe Frontend to attach to.

const struct ix2505v_config * config pointer to struct ix2505v_config

struct i2c_adapter * i2c pointer to struct i2c_adapter.

Return
FE pointer on success, NULL on failure.

enum m88ds3103_ts_mode
TS connection mode

Constants
M88DS3103_TS_SERIAL TS output pin D0, normal

M88DS3103_TS_SERIAL_D7 TS output pin D7

M88DS3103_TS_PARALLEL TS Parallel mode

M88DS3103_TS_CI TS CI Mode

enum m88ds3103_clock_out

Constants
M88DS3103_CLOCK_OUT_DISABLED Clock output is disabled

M88DS3103_CLOCK_OUT_ENABLED Clock output is enabled with crystal clock.

M88DS3103_CLOCK_OUT_ENABLED_DIV2 Clock output is enabled with half crystal
clock.

struct m88ds3103_platform_data
Platform data for the m88ds3103 driver

2086 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Definition

struct m88ds3103_platform_data {
u32 clk;
u16 i2c_wr_max;
enum m88ds3103_ts_mode ts_mode;
u32 ts_clk;
enum m88ds3103_clock_out clk_out;
u8 ts_clk_pol:1;
u8 spec_inv:1;
u8 agc;
u8 agc_inv:1;
u8 envelope_mode:1;
u8 lnb_hv_pol:1;
u8 lnb_en_pol:1;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);
struct i2c_adapter* (*get_i2c_adapter)(struct i2c_client *);

};

Members
clk Clock frequency.

i2c_wr_max Max bytes I2C adapter can write at once.

ts_mode TS mode.

ts_clk TS clock (KHz).

clk_out Clock output.

ts_clk_pol TS clk polarity. 1-active at falling edge; 0-active at rising edge.

spec_inv Input spectrum inversion.

agc AGC configuration.

agc_inv AGC polarity.

envelope_mode DiSEqC envelope mode.

lnb_hv_pol LNB H/V pin polarity. 0: pin high set to VOLTAGE_18, pin low to set
VOLTAGE_13. 1: pin high set to VOLTAGE_13, pin low to set VOLTAGE_18.

lnb_en_pol LNB enable pin polarity. 0: pin high to disable, pin low to enable. 1:
pin high to enable, pin low to disable.

get_dvb_frontend Get DVB frontend.

get_i2c_adapter Get I2C adapter.

struct m88ds3103_config
m88ds3102 configuration

Definition

struct m88ds3103_config {
u8 i2c_addr;
u32 clock;
u16 i2c_wr_max;
u8 ts_mode;

(continues on next page)

53.7. Media driver-specific documentation 2087

Linux Driver-api Documentation

(continued from previous page)
u32 ts_clk;
u8 ts_clk_pol:1;
u8 spec_inv:1;
u8 agc_inv:1;
u8 clock_out;
u8 envelope_mode:1;
u8 agc;
u8 lnb_hv_pol:1;
u8 lnb_en_pol:1;

};

Members
i2c_addr I2C address. Default: none, must set. Example: 0x68, ⋯
clock Device’s clock. Default: none, must set. Example: 27000000
i2c_wr_max Max bytes I2C provider is asked to write at once. Default: none, must

set. Example: 33, 65, ⋯
ts_mode TS output mode, as defined by enum m88ds3103_ts_mode. Default:

M88DS3103_TS_SERIAL.

ts_clk TS clk in KHz. Default: 0.

ts_clk_pol TS clk polarity.Default: 0. 1-active at falling edge; 0-active at rising
edge.

spec_inv Spectrum inversion. Default: 0.

agc_inv AGC polarity. Default: 0.

clock_out Clock output, as defined by enum m88ds3103_clock_out. Default:
M88DS3103_CLOCK_OUT_DISABLED.

envelope_mode DiSEqC envelope mode. Default: 0.

agc AGC configuration. Default: none, must set.

lnb_hv_pol LNB H/V pin polarity. Default: 0. Values: 1: pin high set to VOLT-
AGE_13, pin low to set VOLTAGE_18; 0: pin high set to VOLTAGE_18, pin low
to set VOLTAGE_13.

lnb_en_pol LNB enable pin polarity. Default: 0. Values: 1: pin high to enable,
pin low to disable; 0: pin high to disable, pin low to enable.

struct dvb_frontend * m88ds3103_attach(const struct m88ds3103_config
* config, struct i2c_adapter * i2c,
struct i2c_adapter ** tuner_i2c)

Parameters
const struct m88ds3103_config * config pointer to struct

m88ds3103_config with demod configuration.

struct i2c_adapter * i2c i2c adapter to use.

struct i2c_adapter ** tuner_i2c on success, returns the I2C adapter associ-
ated with m88ds3103 tuner.

2088 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

Return
FE pointer on success, NULL on failure.

Note
Do not add new m88ds3103_attach() users! Use I2C bindings instead.

struct mb86a20s_config
Define the per-device attributes of the frontend

Definition

struct mb86a20s_config {
u32 fclk;
u8 demod_address;
bool is_serial;

};

Members
fclk Clock frequency. If zero, assumes the default (32.57142 Mhz)

demod_address the demodulator’s i2c address
is_serial if true, TS is serial. Otherwise, TS is parallel

struct dvb_frontend * mb86a20s_attach(const struct mb86a20s_config
* config, struct i2c_adapter * i2c)

Parameters
const struct mb86a20s_config * config pointer to struct mb86a20s_config

with demod configuration.

struct i2c_adapter * i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct mn88472_config
Platform data for the mn88472 driver

Definition

struct mn88472_config {
unsigned int xtal;

#define MN88472_TS_MODE_SERIAL 0;
#define MN88472_TS_MODE_PARALLEL 1;

int ts_mode;
#define MN88472_TS_CLK_FIXED 0;
#define MN88472_TS_CLK_VARIABLE 1;

int ts_clock;
u16 i2c_wr_max;
struct dvb_frontend **fe;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);

};

Members
xtal Clock frequency.

53.7. Media driver-specific documentation 2089

Linux Driver-api Documentation

ts_mode TS mode.

ts_clock TS clock config.

i2c_wr_max Max number of bytes driver writes to I2C at once.

fe pointer to a frontend pointer

get_dvb_frontend Get DVB frontend callback.

struct rtl2830_platform_data
Platform data for the rtl2830 driver

Definition

struct rtl2830_platform_data {
u32 clk;
bool spec_inv;
u8 vtop;
u8 krf;
u8 agc_targ_val;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);
struct i2c_adapter* (*get_i2c_adapter)(struct i2c_client *);
int (*pid_filter)(struct dvb_frontend *, u8, u16, int);
int (*pid_filter_ctrl)(struct dvb_frontend *, int);

};

Members
clk Clock frequency (4000000, 16000000, 25000000, 28800000).

spec_inv Spectrum inversion.

vtop AGC take-over point.

krf AGC ratio.

agc_targ_val AGC.

get_dvb_frontend Get DVB frontend.

get_i2c_adapter Get I2C adapter.

pid_filter Set PID to PID filter.

pid_filter_ctrl Control PID filter.

struct rtl2832_platform_data
Platform data for the rtl2832 driver

Definition

struct rtl2832_platform_data {
u32 clk;

#define RTL2832_TUNER_FC2580 0x21;
#define RTL2832_TUNER_TUA9001 0x24;
#define RTL2832_TUNER_FC0012 0x26;
#define RTL2832_TUNER_E4000 0x27;
#define RTL2832_TUNER_FC0013 0x29;
#define RTL2832_TUNER_R820T 0x2a;
#define RTL2832_TUNER_R828D 0x2b;
#define RTL2832_TUNER_SI2157 0x2c;

(continues on next page)

2090 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

(continued from previous page)
u8 tuner;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);
struct i2c_adapter* (*get_i2c_adapter)(struct i2c_client *);
int (*slave_ts_ctrl)(struct i2c_client *, bool);
int (*pid_filter)(struct dvb_frontend *, u8, u16, int);
int (*pid_filter_ctrl)(struct dvb_frontend *, int);

};

Members
clk Clock frequency (4000000, 16000000, 25000000, 28800000).

tuner Used tuner model.

get_dvb_frontend Get DVB frontend.

get_i2c_adapter Get I2C adapter.

slave_ts_ctrl Control slave TS interface.

pid_filter Set PID to PID filter.

pid_filter_ctrl Control PID filter.

struct rtl2832_sdr_platform_data
Platform data for the rtl2832_sdr driver

Definition

struct rtl2832_sdr_platform_data {
u32 clk;

#define RTL2832_SDR_TUNER_FC2580 0x21;
#define RTL2832_SDR_TUNER_TUA9001 0x24;
#define RTL2832_SDR_TUNER_FC0012 0x26;
#define RTL2832_SDR_TUNER_E4000 0x27;
#define RTL2832_SDR_TUNER_FC0013 0x29;
#define RTL2832_SDR_TUNER_R820T 0x2a;
#define RTL2832_SDR_TUNER_R828D 0x2b;

u8 tuner;
struct regmap *regmap;
struct dvb_frontend *dvb_frontend;
struct v4l2_subdev *v4l2_subdev;
struct dvb_usb_device *dvb_usb_device;

};

Members
clk Clock frequency (4000000, 16000000, 25000000, 28800000).

tuner Used tuner model.

regmap pointer to struct regmap.

dvb_frontend rtl2832 DVB frontend.

v4l2_subdev Tuner v4l2 controls.

dvb_usb_device DVB USB interface for USB streaming.

struct dvb_frontend * stb6000_attach(struct dvb_frontend * fe, int addr,
struct i2c_adapter * i2c)

53.7. Media driver-specific documentation 2091

Linux Driver-api Documentation

Parameters
struct dvb_frontend * fe Frontend to attach to.

int addr i2c address of the tuner.

struct i2c_adapter * i2c i2c adapter to use.

Return
FE pointer on success, NULL on failure.

struct tda10071_platform_data
Platform data for the tda10071 driver

Definition

struct tda10071_platform_data {
u32 clk;
u16 i2c_wr_max;

#define TDA10071_TS_SERIAL 0;
#define TDA10071_TS_PARALLEL 1;

u8 ts_mode;
bool spec_inv;
u8 pll_multiplier;
u8 tuner_i2c_addr;
struct dvb_frontend* (*get_dvb_frontend)(struct i2c_client *);

};

Members
clk Clock frequency.

i2c_wr_max Max bytes I2C adapter can write at once.

ts_mode TS mode.

spec_inv Input spectrum inversion.

pll_multiplier PLL multiplier.

tuner_i2c_addr CX24118A tuner I2C address (0x14, 0x54, ⋯).
get_dvb_frontend Get DVB frontend.

struct dvb_frontend* tda826x_attach(struct dvb_frontend * fe,
int addr, struct i2c_adapter * i2c,
int has_loopthrough)

Parameters
struct dvb_frontend * fe Frontend to attach to.

int addr i2c address of the tuner.

struct i2c_adapter * i2c i2c adapter to use.

int has_loopthrough Set to 1 if the card has a loopthrough RF connector.

Return
FE pointer on success, NULL on failure.

2092 Chapter 53. Media subsystem kernel internal API

Linux Driver-api Documentation

struct zd1301_demod_platform_data
Platform data for the zd1301_demod driver

Definition

struct zd1301_demod_platform_data {
void *reg_priv;
int (*reg_read)(void *, u16, u8 *);
int (*reg_write)(void *, u16, u8);

};

Members
reg_priv First argument of reg_read and reg_write callbacks.

reg_read Register read callback.

reg_write Register write callback.

struct dvb_frontend * zd1301_demod_get_dvb_frontend(struct plat-
form_device
* pdev)

Get pointer to DVB frontend

Parameters
struct platform_device * pdev Pointer to platform device

Return
Pointer to DVB frontend which given platform device owns.

struct i2c_adapter * zd1301_demod_get_i2c_adapter(struct plat-
form_device * pdev)

Get pointer to I2C adapter

Parameters
struct platform_device * pdev Pointer to platform device

Return
Pointer to I2C adapter which given platform device owns.

struct dvb_frontend * zd1301_demod_get_dvb_frontend(struct plat-
form_device * dev)

Attach a zd1301 frontend

Parameters
struct platform_device * dev Pointer to platform device

Return
Pointer to struct dvb_frontend or NULL if attach fails.

DVB_ZL10036_H()
S silicon tuner

Parameters
Description

53.7. Media driver-specific documentation 2093

Linux Driver-api Documentation

Copyright (C) 2006 Tino Reichardt Copyright (C) 2007-2009 Matthias Schwarzott
<zzam**gentoo.de**>

struct dvb_frontend * zl10036_attach(struct dvb_frontend * fe, const struct
zl10036_config * config, struct
i2c_adapter * i2c)

Parameters
struct dvb_frontend * fe Frontend to attach to.

const struct zl10036_config * config zl10036_config structure.

struct i2c_adapter * i2c pointer to struct i2c_adapter.

Return
FE pointer on success, NULL on failure.

Contributors

Note: This documentation is outdated. There are several other DVB contributors
that aren’t listed below.

Thanks go to the following people for patches and contributions:

• Michael Hunold <m.hunold@gmx.de>

– for the initial saa7146 driver and its recent overhaul
• Christian Theiss

– for his work on the initial Linux DVB driver
• Marcus Metzler <mocm@metzlerbros.de> and Ralph Metzler
<rjkm@metzlerbros.de>

– for their continuing work on the DVB driver
• Michael Holzt <kju@debian.org>

– for his contributions to the dvb-net driver
• Diego Picciani <d.picciani@novacomp.it>

– for CyberLogin for Linux which allows logging onto EON (in case you are
wondering where CyberLogin is, EON changed its login procedure and
CyberLogin is no longer used.)

• Martin Schaller <martin@smurf.franken.de>

– for patching the cable card decoder driver
• Klaus Schmidinger <Klaus.Schmidinger@cadsoft.de>

– for various fixes regarding tuning, OSD and CI stuff and his work on VDR
• Steve Brown <sbrown@cortland.com>

– for his AFC kernel thread

2094 Chapter 53. Media subsystem kernel internal API

mailto:m.hunold@gmx.de
mailto:mocm@metzlerbros.de
mailto:rjkm@metzlerbros.de
mailto:kju@debian.org
mailto:d.picciani@novacomp.it
mailto:martin@smurf.franken.de
mailto:Klaus.Schmidinger@cadsoft.de
mailto:sbrown@cortland.com

Linux Driver-api Documentation

• Christoph Martin <martin@uni-mainz.de>

– for his LIRC infrared handler
• Andreas Oberritter <obi@linuxtv.org>, Dennis Noermann
<dennis.noermann@noernet.de>, Felix Domke <tmbinc@elitedvb.net>,
Florian Schirmer <jolt@tuxbox.org>, Ronny Strutz <3des@elitedvb.de>,
Wolfram Joost <dbox2@frokaschwei.de> and all the other dbox2 people

– for many bugfixes in the generic DVB Core, frontend drivers and their
work on the dbox2 port of the DVB driver

• Oliver Endriss <o.endriss@gmx.de>

– for many bugfixes
• Andrew de Quincey <adq_dvb@lidskialf.net>

– for the tda1004x frontend driver, and various bugfixes
• Peter Schildmann <peter.schildmann@web.de>

– for the driver for the Technisat SkyStar2 PCI DVB card
• VadimCatana <skystar@moldova.cc>, Roberto Ragusa <r.ragusa@libero.it>
and Augusto Cardoso <augusto@carhil.net>

– for all the work for the FlexCopII chipset by B2C2,Inc.
• Davor Emard <emard@softhome.net>

– for his work on the budget drivers, the demux code, themodule unloading
problems, ⋯

• Hans-Frieder Vogt <hfvogt@arcor.de>

– for his work on calculating and checking the crc’s for the Tech-
noTrend/Hauppauge DEC driver firmware

• Michael Dreher <michael@5dot1.de> and Andreas ‘randy’Weinberger
– for the support of the Fujitsu-Siemens Activy budget DVB-S

• Kenneth Aafløy <ke-aa@frisurf.no>

– for adding support for Typhoon DVB-S budget card
• Ernst Peinlich <e.peinlich@inode.at>

– for tuning/DiSEqC support for the DEC 3000-s
• Peter Beutner <p.beutner@gmx.net>

– for the IR code for the ttusb-dec driver
• Wilson Michaels <wilsonmichaels@earthlink.net>

– for the lgdt330x frontend driver, and various bugfixes
• Michael Krufky <mkrufky@linuxtv.org>

– for maintaining v4l/dvb inter-tree dependencies
• Taylor Jacob <rtjacob@earthlink.net>

– for the nxt2002 frontend driver

53.7. Media driver-specific documentation 2095

mailto:martin@uni-mainz.de
mailto:obi@linuxtv.org
mailto:dennis.noermann@noernet.de
mailto:tmbinc@elitedvb.net
mailto:jolt@tuxbox.org
mailto:3des@elitedvb.de
mailto:dbox2@frokaschwei.de
mailto:o.endriss@gmx.de
mailto:adq_dvb@lidskialf.net
mailto:peter.schildmann@web.de
mailto:skystar@moldova.cc
mailto:r.ragusa@libero.it
mailto:augusto@carhil.net
mailto:emard@softhome.net
mailto:hfvogt@arcor.de
mailto:michael@5dot1.de
mailto:ke-aa@frisurf.no
mailto:e.peinlich@inode.at
mailto:p.beutner@gmx.net
mailto:wilsonmichaels@earthlink.net
mailto:mkrufky@linuxtv.org
mailto:rtjacob@earthlink.net

Linux Driver-api Documentation

• Jean-Francois Thibert <jeanfrancois@sagetv.com>

– for the nxt2004 frontend driver
• Kirk Lapray <kirk.lapray@gmail.com>

– for the or51211 and or51132 frontend drivers, and for merging the
nxt2002 and nxt2004 modules into a single nxt200x frontend driver.

(If you think you should be in this list, but you are not, drop a line to the DVB
mailing list)

Copyright © 2009-2020 : LinuxTV Developers

This documentation is free software; you can redistribute it and/or modify␣
↪→it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)␣
↪→any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

For more details see the file COPYING in the source distribution of Linux.

2096 Chapter 53. Media subsystem kernel internal API

mailto:jeanfrancois@sagetv.com
mailto:kirk.lapray@gmail.com

CHAPTER

FIFTYFOUR

MISCELLANEOUS DEVICES

int misc_register(struct miscdevice * misc)
register a miscellaneous device

Parameters
struct miscdevice * misc device structure

Register a miscellaneous device with the kernel. If the minor number is set
to MISC_DYNAMIC_MINOR a minor number is assigned and placed in the minor
field of the structure. For other cases the minor number requested is used.

The structure passed is linked into the kernel and may not be destroyed until
it has been unregistered. By default, an open() syscall to the device sets file-
>private_data to point to the structure. Drivers don’t need open in fops for
this.

A zero is returned on success and a negative errno code for failure.

void misc_deregister(struct miscdevice * misc)
unregister a miscellaneous device

Parameters
struct miscdevice * misc device to unregister

Unregister amiscellaneous device that was previously successfully registered
with misc_register().

2097

Linux Driver-api Documentation

2098 Chapter 54. Miscellaneous Devices

CHAPTER

FIFTYFIVE

NEAR FIELD COMMUNICATION

55.1 HCI backend for NFC Core

• Author: Eric Lapuyade, Samuel Ortiz

• Contact: eric.lapuyade@intel.com, samuel.ortiz@intel.com

55.1.1 General

The HCI layer implements much of the ETSI TS 102 622 V10.2.0 specification. It
enables easy writing of HCI-based NFC drivers. The HCI layer runs as an NFC
Core backend, implementing an abstract nfc device and translating NFC Core API
to HCI commands and events.

55.1.2 HCI

HCI registers as an nfc device with NFC Core. Requests coming from userspace
are routed through netlink sockets to NFC Core and then to HCI. From this point,
they are translated in a sequence of HCI commands sent to the HCI layer in the
host controller (the chip). Commands can be executed synchronously (the sending
context blocks waiting for response) or asynchronously (the response is returned
from HCI Rx context). HCI events can also be received from the host controller.
They will be handled and a translation will be forwarded to NFC Core as needed.
There are hooks to let the HCI driver handle proprietary events or override stan-
dard behavior. HCI uses 2 execution contexts:

• one for executing commands : nfc_hci_msg_tx_work(). Only one command
can be executing at any given moment.

• one for dispatching received events and commands : nfc_hci_msg_rx_work().

2099

mailto:eric.lapuyade@intel.com
mailto:samuel.ortiz@intel.com

Linux Driver-api Documentation

55.1.3 HCI Session initialization

The Session initialization is an HCI standard which must unfortunately support
proprietary gates. This is the reason why the driver will pass a list of proprietary
gates that must be part of the session. HCI will ensure all those gates have pipes
connected when the hci device is set up. In case the chip supports pre-opened
gates and pseudo-static pipes, the driver can pass that information to HCI core.

55.1.4 HCI Gates and Pipes

A gate defines the ‘port’where some service can be found. In order to access a
service, one must create a pipe to that gate and open it. In this implementation,
pipes are totally hidden. The public API only knows gates. This is consistent with
the driver need to send commands to proprietary gates without knowing the pipe
connected to it.

55.1.5 Driver interface

A driver is generally written in two parts : the physical link management and the
HCI management. This makes it easier to maintain a driver for a chip that can be
connected using various phy (i2c, spi, ⋯)

55.1.6 HCI Management

A driver would normally register itself with HCI and provide the following entry
points:

struct nfc_hci_ops {
int (*open)(struct nfc_hci_dev *hdev);
void (*close)(struct nfc_hci_dev *hdev);
int (*hci_ready) (struct nfc_hci_dev *hdev);
int (*xmit) (struct nfc_hci_dev *hdev, struct sk_buff *skb);
int (*start_poll) (struct nfc_hci_dev *hdev,

u32 im_protocols, u32 tm_protocols);
int (*dep_link_up)(struct nfc_hci_dev *hdev, struct nfc_target␣

↪→*target,
u8 comm_mode, u8 *gb, size_t gb_len);

int (*dep_link_down)(struct nfc_hci_dev *hdev);
int (*target_from_gate) (struct nfc_hci_dev *hdev, u8 gate,

struct nfc_target *target);
int (*complete_target_discovered) (struct nfc_hci_dev *hdev, u8 gate,

struct nfc_target *target);
int (*im_transceive) (struct nfc_hci_dev *hdev,

struct nfc_target *target, struct sk_buff *skb,
data_exchange_cb_t cb, void *cb_context);

int (*tm_send)(struct nfc_hci_dev *hdev, struct sk_buff *skb);
int (*check_presence)(struct nfc_hci_dev *hdev,

struct nfc_target *target);
int (*event_received)(struct nfc_hci_dev *hdev, u8 gate, u8 event,

struct sk_buff *skb);
};

2100 Chapter 55. Near Field Communication

Linux Driver-api Documentation

• open() and close() shall turn the hardware on and off.

• hci_ready() is an optional entry point that is called right after the hci session
has been set up. The driver can use it to do additional initialization that must
be performed using HCI commands.

• xmit() shall simply write a frame to the physical link.

• start_poll() is an optional entrypoint that shall set the hardware in polling
mode. This must be implemented only if the hardware uses proprietary gates
or a mechanism slightly different from the HCI standard.

• dep_link_up() is called after a p2p target has been detected, to finish the p2p
connection setup with hardware parameters that need to be passed back to
nfc core.

• dep_link_down() is called to bring the p2p link down.

• target_from_gate() is an optional entrypoint to return the nfc protocols cor-
responding to a proprietary gate.

• complete_target_discovered() is an optional entry point to let the driver per-
form additional proprietary processing necessary to auto activate the discov-
ered target.

• im_transceive() must be implemented by the driver if proprietary HCI com-
mands are required to send data to the tag. Some tag types will require cus-
tom commands, others can be written to using the standard HCI commands.
The driver can check the tag type and either do proprietary processing, or
return 1 to ask for standard processing. The data exchange command itself
must be sent asynchronously.

• tm_send() is called to send data in the case of a p2p connection

• check_presence() is an optional entry point that will be called regularly by
the core to check that an activated tag is still in the field. If this is not imple-
mented, the core will not be able to push tag_lost events to the user space

• event_received() is called to handle an event coming from the chip. Driver
can handle the event or return 1 to let HCI attempt standard processing.

On the rx path, the driver is responsible to push incoming HCP frames to HCI using
nfc_hci_recv_frame(). HCI will take care of re-aggregation and handling This must
be done from a context that can sleep.

55.1.7 PHY Management

The physical link (i2c, ⋯) management is defined by the following structure:
struct nfc_phy_ops {

int (*write)(void *dev_id, struct sk_buff *skb);
int (*enable)(void *dev_id);
void (*disable)(void *dev_id);

};

enable(): turn the phy on (power on), make it ready to transfer data
disable(): turn the phy off

55.1. HCI backend for NFC Core 2101

Linux Driver-api Documentation

write(): Send a data frame to the chip. Note that to enable higher layers such
as an llc to store the frame for re-emission, this function must not alter the
skb. It must also not return a positive result (return 0 for success, negative
for failure).

Data coming from the chip shall be sent directly to nfc_hci_recv_frame().

55.1.8 LLC

Communication between the CPU and the chip often requires some link layer pro-
tocol. Those are isolated as modules managed by the HCI layer. There are cur-
rently two modules : nop (raw transfert) and shdlc. A new llc must implement the
following functions:

struct nfc_llc_ops {
void *(*init) (struct nfc_hci_dev *hdev, xmit_to_drv_t xmit_to_drv,

rcv_to_hci_t rcv_to_hci, int tx_headroom,
int tx_tailroom, int *rx_headroom, int *rx_tailroom,
llc_failure_t llc_failure);

void (*deinit) (struct nfc_llc *llc);
int (*start) (struct nfc_llc *llc);
int (*stop) (struct nfc_llc *llc);
void (*rcv_from_drv) (struct nfc_llc *llc, struct sk_buff *skb);
int (*xmit_from_hci) (struct nfc_llc *llc, struct sk_buff *skb);

};

init(): allocate and init your private storage
deinit(): cleanup
start(): establish the logical connection
stop (): terminate the logical connection
rcv_from_drv(): handle data coming from the chip, going to HCI

xmit_from_hci(): handle data sent by HCI, going to the chip
The llc must be registered with nfc before it can be used. Do that by calling:

nfc_llc_register(const char *name, struct nfc_llc_ops *ops);

Again, note that the llc does not handle the physical link. It is thus very easy to
mix any physical link with any llc for a given chip driver.

55.1.9 Included Drivers

An HCI based driver for an NXP PN544, connected through I2C bus, and using
shdlc is included.

2102 Chapter 55. Near Field Communication

Linux Driver-api Documentation

55.1.10 Execution Contexts

The execution contexts are the following: - IRQ handler (IRQH): fast, cannot sleep.
sends incoming frames to HCI where they are passed to the current llc. In case of
shdlc, the frame is queued in shdlc rx queue.

• SHDLC State Machine worker (SMW)

Only when llc_shdlc is used: handles shdlc rx & tx queues.

Dispatches HCI cmd responses.

• HCI Tx Cmd worker (MSGTXWQ)

Serializes execution of HCI commands.

Completes execution in case of response timeout.

• HCI Rx worker (MSGRXWQ)

Dispatches incoming HCI commands or events.

• Syscall context from a userspace call (SYSCALL)

Any entrypoint in HCI called from NFC Core

55.1.11 Workflow executing an HCI command (using shdlc)

Executing an HCI command can easily be performed synchronously using the fol-
lowing API:

int nfc_hci_send_cmd (struct nfc_hci_dev *hdev, u8 gate, u8 cmd,
const u8 *param, size_t param_len, struct sk_buff␣

↪→**skb)

The API must be invoked from a context that can sleep. Most of the time, this will
be the syscall context. skb will return the result that was received in the response.

Internally, execution is asynchronous. So all this API does is to enqueue the HCI
command, setup a local wait queue on stack, and wait_event() for completion.
The wait is not interruptible because it is guaranteed that the command will com-
plete after some short timeout anyway.

MSGTXWQ context will then be scheduled and invoke nfc_hci_msg_tx_work(). This
function will dequeue the next pending command and send its HCP fragments to
the lower layer which happens to be shdlc. It will then start a timer to be able to
complete the command with a timeout error if no response arrive.

SMW context gets scheduled and invokes nfc_shdlc_sm_work(). This function han-
dles shdlc framing in and out. It uses the driver xmit to send frames and receives
incoming frames in an skb queue filled from the driver IRQ handler. SHDLC
I(nformation) frames payload are HCP fragments. They are aggregated to form
complete HCI frames, which can be a response, command, or event.

HCI Responses are dispatched immediately from this context to unblock waiting
command execution. Response processing involves invoking the completion call-
back that was provided by nfc_hci_msg_tx_work() when it sent the command. The
completion callback will then wake the syscall context.

55.1. HCI backend for NFC Core 2103

Linux Driver-api Documentation

It is also possible to execute the command asynchronously using this API:

static int nfc_hci_execute_cmd_async(struct nfc_hci_dev *hdev, u8 pipe, u8␣
↪→cmd,

const u8 *param, size_t param_len,
data_exchange_cb_t cb, void *cb_

↪→context)

The workflow is the same, except that the API call returns immediately, and the
callback will be called with the result from the SMW context.

55.1.12 Workflow receiving an HCI event or command

HCI commands or events are not dispatched from SMW context. In-
stead, they are queued to HCI rx_queue and will be dispatched from HCI
rx worker context (MSGRXWQ). This is done this way to allow a cmd or
event handler to also execute other commands (for example, handling the
NFC_HCI_EVT_TARGET_DISCOVERED event from PN544 requires to issue an
ANY_GET_PARAMETER to the reader A gate to get information on the target that
was discovered).

Typically, such an event will be propagated to NFC Core from MSGRXWQ context.

55.1.13 Error management

Errors that occur synchronously with the execution of an NFC Core request are
simply returned as the execution result of the request. These are easy.

Errors that occur asynchronously (e.g. in a background protocol handling thread)
must be reported such that upper layers don’t stay ignorant that something went
wrong below and know that expected events will probably never happen. Handling
of these errors is done as follows:

• driver (pn544) fails to deliver an incoming frame: it stores the error such that
any subsequent call to the driver will result in this error. Then it calls the
standard nfc_shdlc_recv_frame() with a NULL argument to report the prob-
lem above. shdlc stores a EREMOTEIO sticky status, which will trigger SMW
to report above in turn.

• SMW is basically a background thread to handle incoming and outgoing shdlc
frames. This thread will also check the shdlc sticky status and report to HCI
when it discovers it is not able to run anymore because of an unrecoverable
error that happened within shdlc or below. If the problem occurs during shdlc
connection, the error is reported through the connect completion.

• HCI: if an internal HCI error happens (frame is lost), or HCI is reported an
error from a lower layer, HCI will either complete the currently executing
command with that error, or notify NFC Core directly if no command is exe-
cuting.

• NFC Core: when NFC Core is notified of an error from below and polling is
active, it will send a tag discovered event with an empty tag list to the user
space to let it know that the poll operation will never be able to detect a tag.

2104 Chapter 55. Near Field Communication

Linux Driver-api Documentation

If polling is not active and the error was sticky, lower levels will return it at
next invocation.

55.2 Kernel driver for the NXP Semiconductors PN544
Near Field Communication chip

55.2.1 General

The PN544 is an integrated transmission module for contactless communication.
The driver goes under drives/nfc/ and is compiled as a module named “pn544”.
Host Interfaces: I2C, SPI and HSU, this driver supports currently only I2C.

55.2.2 Protocols

In the normal (HCI) mode and in the firmware update mode read and write func-
tions behave a bit differently because the message formats or the protocols are
different.

In the normal (HCI) mode the protocol used is derived from the ETSI HCI specifi-
cation. The firmware is updated using a specific protocol, which is different from
HCI.

HCI messages consist of an eight bit header and the message body. The header
contains the message length. Maximum size for an HCI message is 33. In HCI
mode sent messages are tested for a correct checksum. Firmware update mes-
sages have the length in the second (MSB) and third (LSB) bytes of the message.
The maximum FW message length is 1024 bytes.

For the ETSI HCI specification see http://www.etsi.org/WebSite/Technologies/
ProtocolSpecification.aspx

55.2. Kernel driver for the NXP Semiconductors PN544 Near Field
Communication chip

2105

http://www.etsi.org/WebSite/Technologies/ProtocolSpecification.aspx
http://www.etsi.org/WebSite/Technologies/ProtocolSpecification.aspx

Linux Driver-api Documentation

2106 Chapter 55. Near Field Communication

CHAPTER

FIFTYSIX

DMAENGINE DOCUMENTATION

DMAEngine documentation provides documents for various aspects of
DMAEngine framework.

56.1 DMAEngine development documentation

This book helps with DMAengine internal APIs and guide for DMAEngine device
driver writers.

56.1.1 DMAengine controller documentation

Hardware Introduction

Most of the Slave DMA controllers have the same general principles of operations.

They have a given number of channels to use for the DMA transfers, and a given
number of requests lines.

Requests and channels are pretty much orthogonal. Channels can be used to serve
several to any requests. To simplify, channels are the entities that will be doing
the copy, and requests what endpoints are involved.

The request lines actually correspond to physical lines going from the DMA-eligible
devices to the controller itself. Whenever the device will want to start a transfer,
it will assert a DMA request (DRQ) by asserting that request line.

A very simple DMA controller would only take into account a single parameter:
the transfer size. At each clock cycle, it would transfer a byte of data from one
buffer to another, until the transfer size has been reached.

That wouldn’t work well in the real world, since slave devices might require a
specific number of bits to be transferred in a single cycle. For example, we may
want to transfer as much data as the physical bus allows tomaximize performances
when doing a simple memory copy operation, but our audio device could have a
narrower FIFO that requires data to be written exactly 16 or 24 bits at a time. This
is why most if not all of the DMA controllers can adjust this, using a parameter
called the transfer width.

Moreover, some DMA controllers, whenever the RAM is used as a source or desti-
nation, can group the reads or writes in memory into a buffer, so instead of having
a lot of small memory accesses, which is not really efficient, you’ll get several

2107

Linux Driver-api Documentation

bigger transfers. This is done using a parameter called the burst size, that defines
how many single reads/writes it’s allowed to do without the controller splitting
the transfer into smaller sub-transfers.

Our theoretical DMA controller would then only be able to do transfers that involve
a single contiguous block of data. However, some of the transfers we usually have
are not, and want to copy data from non-contiguous buffers to a contiguous buffer,
which is called scatter-gather.

DMAEngine, at least for mem2dev transfers, require support for scatter-gather.
So we’re left with two cases here: either we have a quite simple DMA controller
that doesn’t support it, and we’ll have to implement it in software, or we have a
more advanced DMA controller, that implements in hardware scatter-gather.

The latter are usually programmed using a collection of chunks to transfer, and
whenever the transfer is started, the controller will go over that collection, doing
whatever we programmed there.

This collection is usually either a table or a linked list. You will then push either
the address of the table and its number of elements, or the first item of the list to
one channel of the DMA controller, and whenever a DRQ will be asserted, it will
go through the collection to know where to fetch the data from.

Either way, the format of this collection is completely dependent on your hardware.
Each DMA controller will require a different structure, but all of them will require,
for every chunk, at least the source and destination addresses, whether it should
increment these addresses or not and the three parameters we saw earlier: the
burst size, the transfer width and the transfer size.

The one last thing is that usually, slave devices won’t issue DRQ by default, and
you have to enable this in your slave device driver first whenever you’re willing
to use DMA.

These were just the general memory-to-memory (also called mem2mem) or
memory-to-device (mem2dev) kind of transfers. Most devices often support other
kind of transfers or memory operations that dmaengine support and will be de-
tailed later in this document.

DMA Support in Linux

Historically, DMA controller drivers have been implemented using the async TX
API, to offload operations such as memory copy, XOR, cryptography, etc., basically
any memory to memory operation.

Over time, the need for memory to device transfers arose, and dmaengine was
extended. Nowadays, the async TX API is written as a layer on top of dmaengine,
and acts as a client. Still, dmaengine accommodates that API in some cases, and
made some design choices to ensure that it stayed compatible.

For more information on the Async TX API, please look the relevant documentation
file in Documentation/crypto/async-tx-api.txt.

2108 Chapter 56. DMAEngine documentation

Linux Driver-api Documentation

DMAEngine APIs

struct dma_device Initialization

Just like any other kernel framework, the whole DMAEngine registration relies on
the driver filling a structure and registering against the framework. In our case,
that structure is dma_device.

The first thing you need to do in your driver is to allocate this structure. Any of
the usual memory allocators will do, but you’ll also need to initialize a few fields
in there:

• channels: should be initialized as a list using the INIT_LIST_HEAD macro for
example

• src_addr_widths: should contain a bitmask of the supported source transfer
width

• dst_addr_widths: should contain a bitmask of the supported destination
transfer width

• directions: should contain a bitmask of the supported slave directions (i.e.
excluding mem2mem transfers)

• residue_granularity: granularity of the transfer residue reported to
dma_set_residue. This can be either:

– Descriptor: your device doesn’t support any kind of residue reporting.
The framework will only know that a particular transaction descriptor is
done.

– Segment: your device is able to report which chunks have been trans-
ferred

– Burst: your device is able to report which burst have been transferred
• dev: should hold the pointer to the struct device associated to your current
driver instance.

Supported transaction types

The next thing you need is to set which transaction types your device (and driver)
supports.

Our dma_device structure has a field called cap_mask that holds the various
types of transaction supported, and you need to modify this mask using the
dma_cap_set function, with various flags depending on transaction types you sup-
port as an argument.

All those capabilities are defined in the dma_transaction_type enum, in include/
linux/dmaengine.h

Currently, the types available are:

• DMA_MEMCPY

– The device is able to do memory to memory copies

56.1. DMAEngine development documentation 2109

Linux Driver-api Documentation

• DMA_XOR

– The device is able to perform XOR operations on memory areas

– Used to accelerate XOR intensive tasks, such as RAID5
• DMA_XOR_VAL

– The device is able to perform parity check using the XOR algorithm
against a memory buffer.

• DMA_PQ

– The device is able to perform RAID6 P+Q computations, P being a simple
XOR, and Q being a Reed-Solomon algorithm.

• DMA_PQ_VAL

– The device is able to perform parity check using RAID6 P+Q algorithm
against a memory buffer.

• DMA_INTERRUPT

– The device is able to trigger a dummy transfer that will generate periodic
interrupts

– Used by the client drivers to register a callback that will be called on a
regular basis through the DMA controller interrupt

• DMA_PRIVATE

– The devices only supports slave transfers, and as such isn’t available for
async transfers.

• DMA_ASYNC_TX

– Must not be set by the device, and will be set by the framework if needed
– TODO: What is it about?

• DMA_SLAVE

– The device can handle device to memory transfers, including scatter-
gather transfers.

– While in the mem2mem case we were having two distinct types to deal
with a single chunk to copy or a collection of them, here, we just have a
single transaction type that is supposed to handle both.

– If you want to transfer a single contiguous memory buffer, simply build a
scatter list with only one item.

• DMA_CYCLIC

– The device can handle cyclic transfers.
– A cyclic transfer is a transfer where the chunk collection will loop over
itself, with the last item pointing to the first.

– It’s usually used for audio transfers, where you want to operate on a
single ring buffer that you will fill with your audio data.

• DMA_INTERLEAVE

2110 Chapter 56. DMAEngine documentation

Linux Driver-api Documentation

– The device supports interleaved transfer.
– These transfers can transfer data from a non-contiguous buffer to a non-
contiguous buffer, opposed to DMA_SLAVE that can transfer data from a
non-contiguous data set to a continuous destination buffer.

– It’s usually used for 2d content transfers, in which case you want to
transfer a portion of uncompressed data directly to the display to print it

These various types will also affect how the source and destination addresses
change over time.

Addresses pointing to RAM are typically incremented (or decremented) after each
transfer. In case of a ring buffer, theymay loop (DMA_CYCLIC). Addresses pointing
to a device’s register (e.g. a FIFO) are typically fixed.

Per descriptor metadata support

Some data movement architecture (DMA controller and peripherals) uses meta-
data associated with a transaction. The DMA controller role is to transfer the
payload and the metadata alongside. The metadata itself is not used by the DMA
engine itself, but it contains parameters, keys, vectors, etc for peripheral or from
the peripheral.

The DMAengine framework provides a generic ways to facilitate the metadata for
descriptors. Depending on the architecture the DMA driver can implement either
or both of the methods and it is up to the client driver to choose which one to use.

• DESC_METADATA_CLIENT

The metadata buffer is allocated/provided by the client driver and it is at-
tached (via the dmaengine_desc_attach_metadata() helper to the descriptor.

From the DMA driver the following is expected for this mode:

– DMA_MEM_TO_DEV / DEV_MEM_TO_MEM
The data from the provided metadata buffer should be prepared for the
DMA controller to be sent alongside of the payload data. Either by copy-
ing to a hardware descriptor, or highly coupled packet.

– DMA_DEV_TO_MEM
On transfer completion the DMA driver must copy the metadata to the
client providedmetadata buffer before notifying the client about the com-
pletion. After the transfer completion, DMA drivers must not touch the
metadata buffer provided by the client.

• DESC_METADATA_ENGINE

The metadata buffer is allocated/managed by the DMA driver.
The client driver can ask for the pointer, maximum size and
the currently used size of the metadata and can directly up-
date or read it. dmaengine_desc_get_metadata_ptr() and
dmaengine_desc_set_metadata_len() is provided as helper functions.

From the DMA driver the following is expected for this mode:

56.1. DMAEngine development documentation 2111

Linux Driver-api Documentation

– get_metadata_ptr()
Should return a pointer for the metadata buffer, the maximum size of the
metadata buffer and the currently used / valid (if any) bytes in the buffer.

– set_metadata_len()
It is called by the clients after it have placed the metadata to the buffer
to let the DMA driver know the number of valid bytes provided.

Note: since the client will ask for the metadata pointer in the completion
callback (in DMA_DEV_TO_MEM case) the DMA driver must ensure that the
descriptor is not freed up prior the callback is called.

Device operations

Our dma_device structure also requires a few function pointers in order to imple-
ment the actual logic, now that we described what operations we were able to
perform.

The functions that we have to fill in there, and hence have to implement, obviously
depend on the transaction types you reported as supported.

• device_alloc_chan_resources

• device_free_chan_resources

– These functions will be called whenever a driver will call
dma_request_channel or dma_release_channel for the first/last time
on the channel associated to that driver.

– They are in charge of allocating/freeing all the needed resources in order
for that channel to be useful for your driver.

– These functions can sleep.
• device_prep_dma_*

– These functions are matching the capabilities you registered previously.
– These functions all take the buffer or the scatterlist relevant for the trans-
fer being prepared, and should create a hardware descriptor or a list of
hardware descriptors from it

– These functions can be called from an interrupt context

– Any allocation you might do should be using the GFP_NOWAIT flag, in
order not to potentially sleep, but without depleting the emergency pool
either.

– Drivers should try to pre-allocate any memory they might need during
the transfer setup at probe time to avoid putting to much pressure on
the nowait allocator.

– It should return a unique instance of the dma_async_tx_descriptor
structure, that further represents this particular transfer.

– This structure can be initialized using the function
dma_async_tx_descriptor_init.

2112 Chapter 56. DMAEngine documentation

Linux Driver-api Documentation

– You’ll also need to set two fields in this structure:
∗ flags: TODO: Can it be modified by the driver itself, or should it be
always the flags passed in the arguments

∗ tx_submit: A pointer to a function you have to implement, that is sup-
posed to push the current transaction descriptor to a pending queue,
waiting for issue_pending to be called.

– In this structure the function pointer callback_result can be initialized in
order for the submitter to be notified that a transaction has completed.
In the earlier code the function pointer callback has been used. However
it does not provide any status to the transaction and will be deprecated.
The result structure defined as dmaengine_result that is passed in to
callback_result has two fields:

∗ result: This provides the transfer result defined by
dmaengine_tx_result. Either success or some error condition.

∗ residue: Provides the residue bytes of the transfer for those that sup-
port residue.

• device_issue_pending

– Takes the first transaction descriptor in the pending queue, and starts
the transfer. Whenever that transfer is done, it should move to the next
transaction in the list.

– This function can be called in an interrupt context
• device_tx_status

– Should report the bytes left to go over on the given channel
– Should only care about the transaction descriptor passed as argument,
not the currently active one on a given channel

– The tx_state argument might be NULL
– Should use dma_set_residue to report it
– In the case of a cyclic transfer, it should only take into account the current
period.

– This function can be called in an interrupt context.
• device_config

– Reconfigures the channel with the configuration given as argument
– This command should NOT perform synchronously, or on any currently
queued transfers, but only on subsequent ones

– In this case, the function will receive a dma_slave_config structure
pointer as an argument, that will detail which configuration to use.

– Even though that structure contains a direction field, this field is depre-
cated in favor of the direction argument given to the prep_* functions

– This call is mandatory for slave operations only. This should NOT be set
or expected to be set for memcpy operations. If a driver support both, it
should use this call for slave operations only and not for memcpy ones.

56.1. DMAEngine development documentation 2113

Linux Driver-api Documentation

• device_pause

– Pauses a transfer on the channel
– This command should operate synchronously on the channel, pausing
right away the work of the given channel

• device_resume

– Resumes a transfer on the channel
– This command should operate synchronously on the channel, resuming
right away the work of the given channel

• device_terminate_all

– Aborts all the pending and ongoing transfers on the channel
– For aborted transfers the complete callback should not be called
– Can be called from atomic context or from within a complete callback of a
descriptor. Must not sleep. Drivers must be able to handle this correctly.

– Termination may be asynchronous. The driver does not have to wait
until the currently active transfer has completely stopped. See de-
vice_synchronize.

• device_synchronize

– Must synchronize the termination of a channel to the current context.
– Must make sure that memory for previously submitted descriptors is no
longer accessed by the DMA controller.

– Must make sure that all complete callbacks for previously submitted de-
scriptors have finished running and none are scheduled to run.

– May sleep.

Misc notes

(stuff that should be documented, but don’t really know where to put them)
dma_run_dependencies

• Should be called at the end of an async TX transfer, and can be ignored in the
slave transfers case.

• Makes sure that dependent operations are run before marking it as complete.

dma_cookie_t

• it’s a DMA transaction ID that will increment over time.
• Not really relevant anymore since the introduction of virt-dma that abstracts
it away.

DMA_CTRL_ACK

• If clear, the descriptor cannot be reused by provider until the client acknowl-
edges receipt, i.e. has has a chance to establish any dependency chains

• This can be acked by invoking async_tx_ack()

2114 Chapter 56. DMAEngine documentation

Linux Driver-api Documentation

• If set, does not mean descriptor can be reused

DMA_CTRL_REUSE

• If set, the descriptor can be reused after being completed. It should not be
freed by provider if this flag is set.

• The descriptor should be prepared for reuse by invoking
dmaengine_desc_set_reuse() which will set DMA_CTRL_REUSE.

• dmaengine_desc_set_reuse() will succeed only when channel support
reusable descriptor as exhibited by capabilities

• As a consequence, if a device driver wants to skip the dma_map_sg() and
dma_unmap_sg() in between 2 transfers, because the DMA’d data wasn’t
used, it can resubmit the transfer right after its completion.

• Descriptor can be freed in few ways

– Clearing DMA_CTRL_REUSE by invoking dmaengine_desc_clear_reuse()
and submitting for last txn

– Explicitly invoking dmaengine_desc_free(), this can succeed only when
DMA_CTRL_REUSE is already set

– Terminating the channel
• DMA_PREP_CMD

– If set, the client driver tells DMA controller that passed data in DMA API
is command data.

– Interpretation of command data is DMA controller specific. It can be
used for issuing commands to other peripherals/register reads/register
writes for which the descriptor should be in different format from normal
data descriptors.

General Design Notes

Most of the DMAEngine drivers you’ll see are based on a similar design that
handles the end of transfer interrupts in the handler, but defer most work to a
tasklet, including the start of a new transfer whenever the previous transfer ended.

This is a rather inefficient design though, because the inter-transfer latency will be
not only the interrupt latency, but also the scheduling latency of the tasklet, which
will leave the channel idle in between, which will slow down the global transfer
rate.

You should avoid this kind of practice, and instead of electing a new transfer in
your tasklet, move that part to the interrupt handler in order to have a shorter idle
window (that we can’t really avoid anyway).

56.1. DMAEngine development documentation 2115

Linux Driver-api Documentation

Glossary

• Burst: A number of consecutive read or write operations that can be queued
to buffers before being flushed to memory.

• Chunk: A contiguous collection of bursts

• Transfer: A collection of chunks (be it contiguous or not)

56.2 DMAEngine client documentation

This book is a guide to device driver writers on how to use the Slave-DMA API of
the DMAEngine. This is applicable only for slave DMA usage only.

56.2.1 DMA Engine API Guide

Vinod Koul <vinod dot koul at intel.com>

Note: For DMA Engine usage in async_tx please see: Documentation/crypto/
async-tx-api.txt

Below is a guide to device driver writers on how to use the Slave-DMA API of the
DMA Engine. This is applicable only for slave DMA usage only.

DMA usage

The slave DMA usage consists of following steps:

• Allocate a DMA slave channel

• Set slave and controller specific parameters

• Get a descriptor for transaction

• Submit the transaction

• Issue pending requests and wait for callback notification

The details of these operations are:

1. Allocate a DMA slave channel

Channel allocation is slightly different in the slave DMA context, client
drivers typically need a channel from a particular DMA controller only and
even in some cases a specific channel is desired. To request a channel
dma_request_chan() API is used.

Interface:

struct dma_chan *dma_request_chan(struct device *dev, const char␣
↪→*name);

2116 Chapter 56. DMAEngine documentation

Linux Driver-api Documentation

Which will find and return the nameDMA channel associated with the‘dev’de-
vice. The association is done via DT, ACPI or board file based dma_slave_map
matching table.

A channel allocated via this interface is exclusive to the caller, until
dma_release_channel() is called.

2. Set slave and controller specific parameters

Next step is always to pass some specific information to the DMA driver.
Most of the generic information which a slave DMA can use is in struct
dma_slave_config. This allows the clients to specify DMA direction, DMA ad-
dresses, bus widths, DMA burst lengths etc for the peripheral.

If some DMA controllers have more parameters to be sent then they should
try to embed struct dma_slave_config in their controller specific structure.
That gives flexibility to client to pass more parameters, if required.

Interface:

int dmaengine_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)

Please see the dma_slave_config structure definition in dmaengine.h for a
detailed explanation of the struct members. Please note that the ‘direction’
member will be going away as it duplicates the direction given in the prepare
call.

3. Get a descriptor for transaction

For slave usage the various modes of slave transfers supported by the
DMA-engine are:

• slave_sg: DMA a list of scatter gather buffers from/to a peripheral

• dma_cyclic: Perform a cyclic DMA operation from/to a peripheral
till the operation is explicitly stopped.

• interleaved_dma: This is common to Slave as well as M2M clients.
For slave address of devices’fifo could be already known to the
driver. Various types of operations could be expressed by setting
appropriate values to the ‘dma_interleaved_template’members.

A non-NULL return of this transfer API represents a“descriptor”for the
given transaction.

Interface:

struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_data_direction direction,
unsigned long flags);

struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_

↪→len,
size_t period_len, enum dma_data_direction direction);

(continues on next page)

56.2. DMAEngine client documentation 2117

Linux Driver-api Documentation

(continued from previous page)
struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(

struct dma_chan *chan, struct dma_interleaved_template␣
↪→*xt,

unsigned long flags);

The peripheral driver is expected to have mapped the scatterlist for the
DMA operation prior to calling dmaengine_prep_slave_sg(), and must
keep the scatterlist mapped until the DMA operation has completed. The
scatterlist must be mapped using the DMA struct device. If a mapping
needs to be synchronized later, dma_sync_*_for_*() must be called using
the DMA struct device, too. So, normal setup should look like this:

nr_sg = dma_map_sg(chan->device->dev, sgl, sg_len);
if (nr_sg == 0)

/* error */

desc = dmaengine_prep_slave_sg(chan, sgl, nr_sg, direction,␣
↪→flags);

Once a descriptor has been obtained, the callback information can be
added and the descriptor must then be submitted. Some DMA engine
drivers may hold a spinlock between a successful preparation and sub-
mission so it is important that these two operations are closely paired.

Note: Although the async_tx API specifies that completion callback
routines cannot submit any new operations, this is not the case for
slave/cyclic DMA.

For slave DMA, the subsequent transaction may not be available for sub-
mission prior to callback function being invoked, so slave DMA callbacks
are permitted to prepare and submit a new transaction.

For cyclic DMA, a callback function may wish to terminate the DMA via
dmaengine_terminate_async().

Therefore, it is important that DMA engine drivers drop any locks before
calling the callback function which may cause a deadlock.

Note that callbacks will always be invoked from the DMA engines tasklet,
never from interrupt context.

Optional: per descriptor metadata
DMAengine provides two ways for metadata support.

DESC_METADATA_CLIENT

The metadata buffer is allocated/provided by the client driver
and it is attached to the descriptor.

int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor␣
↪→*desc,

void *data, size_t len);

DESC_METADATA_ENGINE

2118 Chapter 56. DMAEngine documentation

Linux Driver-api Documentation

The metadata buffer is allocated/managed by the DMA driver.
The client driver can ask for the pointer, maximum size and the
currently used size of the metadata and can directly update or
read it.

Becasue the DMA driver manages the memory area containing
the metadata, clients must make sure that they do not try to
access or get the pointer after their transfer completion call-
back has run for the descriptor. If no completion callback has
been defined for the transfer, then the metadata must not be
accessed after issue_pending. In other words: if the aim is to
read back metadata after the transfer is completed, then the
client must use completion callback.

void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_
↪→descriptor *desc,

size_t *payload_len, size_t *max_len);

int dmaengine_desc_set_metadata_len(struct dma_async_tx_
↪→descriptor *desc,

size_t payload_len);

Client drivers can query if a given mode is supported with:

bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
enum dma_desc_metadata_mode mode);

Depending on the used mode client drivers must follow different flow.

DESC_METADATA_CLIENT

• DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:

1. prepare the descriptor (dmaengine_prep_*) construct the meta-
data in the client’s buffer

2. use dmaengine_desc_attach_metadata() to attach the buffer to
the descriptor

3. submit the transfer

• DMA_DEV_TO_MEM:

1. prepare the descriptor (dmaengine_prep_*)

2. use dmaengine_desc_attach_metadata() to attach the buffer to
the descriptor

3. submit the transfer

4. when the transfer is completed, the metadata should be avail-
able in the attached buffer

DESC_METADATA_ENGINE

• DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:

1. prepare the descriptor (dmaengine_prep_*)

56.2. DMAEngine client documentation 2119

Linux Driver-api Documentation

2. use dmaengine_desc_get_metadata_ptr() to get the pointer to
the engine’s metadata area

3. update the metadata at the pointer

4. use dmaengine_desc_set_metadata_len() to tell the DMA engine
the amount of data the client has placed into the metadata buffer

5. submit the transfer

• DMA_DEV_TO_MEM:

1. prepare the descriptor (dmaengine_prep_*)

2. submit the transfer

3. on transfer completion, use dmaengine_desc_get_metadata_ptr()
to get the pointer to the engine’s metadata area

4. read out the metadata from the pointer

Note: When DESC_METADATA_ENGINE mode is used the metadata
area for the descriptor is no longer valid after the transfer has been
completed (valid up to the point when the completion callback returns if
used).

Mixed use of DESC_METADATA_CLIENT / DESC_METADATA_ENGINE
is not allowed, client drivers must use either of the modes per descriptor.

4. Submit the transaction

Once the descriptor has been prepared and the callback information added,
it must be placed on the DMA engine drivers pending queue.

Interface:

dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)

This returns a cookie can be used to check the progress of DMA engine ac-
tivity via other DMA engine calls not covered in this document.

dmaengine_submit() will not start the DMA operation, it merely adds it to the
pending queue. For this, see step 5, dma_async_issue_pending.

Note: After calling dmaengine_submit() the submitted transfer descrip-
tor (struct dma_async_tx_descriptor) belongs to the DMA engine. Conse-
quently, the client must consider invalid the pointer to that descriptor.

5. Issue pending DMA requests and wait for callback notification

The transactions in the pending queue can be activated by calling the is-
sue_pending API. If channel is idle then the first transaction in queue is
started and subsequent ones queued up.

On completion of each DMA operation, the next in queue is started and a
tasklet triggered. The tasklet will then call the client driver completion call-
back routine for notification, if set.

2120 Chapter 56. DMAEngine documentation

Linux Driver-api Documentation

Interface:

void dma_async_issue_pending(struct dma_chan *chan);

Further APIs

1. Terminate APIs

int dmaengine_terminate_sync(struct dma_chan *chan)
int dmaengine_terminate_async(struct dma_chan *chan)
int dmaengine_terminate_all(struct dma_chan *chan) /* DEPRECATED */

This causes all activity for the DMA channel to be stopped, and may discard
data in the DMA FIFO which hasn’t been fully transferred. No callback
functions will be called for any incomplete transfers.

Two variants of this function are available.

dmaengine_terminate_async() might not wait until the DMA has been fully
stopped or until any running complete callbacks have finished. But it is pos-
sible to call dmaengine_terminate_async() from atomic context or from within
a complete callback. dmaengine_synchronize() must be called before it is safe
to free the memory accessed by the DMA transfer or free resources accessed
from within the complete callback.

dmaengine_terminate_sync() will wait for the transfer and any running com-
plete callbacks to finish before it returns. But the function must not be called
from atomic context or from within a complete callback.

dmaengine_terminate_all() is deprecated and should not be used in new code.

2. Pause API

int dmaengine_pause(struct dma_chan *chan)

This pauses activity on the DMA channel without data loss.

3. Resume API

int dmaengine_resume(struct dma_chan *chan)

Resume a previously paused DMA channel. It is invalid to resume a channel
which is not currently paused.

4. Check Txn complete

enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)

This can be used to check the status of the channel. Please see the documen-
tation in include/linux/dmaengine.h for a more complete description of this
API.

This can be used in conjunction with dma_async_is_complete() and the cookie
returned from dmaengine_submit() to check for completion of a specific DMA
transaction.

56.2. DMAEngine client documentation 2121

Linux Driver-api Documentation

Note: Not all DMA engine drivers can return reliable information for a run-
ning DMA channel. It is recommended that DMA engine users pause or stop
(via dmaengine_terminate_all()) the channel before using this API.

5. Synchronize termination API

void dmaengine_synchronize(struct dma_chan *chan)

Synchronize the termination of the DMA channel to the current context.

This function should be used after dmaengine_terminate_async() to synchro-
nize the termination of the DMA channel to the current context. The function
will wait for the transfer and any running complete callbacks to finish before
it returns.

If dmaengine_terminate_async() is used to stop the DMA channel this func-
tion must be called before it is safe to free memory accessed by previously
submitted descriptors or to free any resources accessed within the complete
callback of previously submitted descriptors.

The behavior of this function is undefined if dma_async_issue_pending() has
been called between dmaengine_terminate_async() and this function.

56.3 DMA Test documentation

This book introduces how to test DMA drivers using dmatest module.

56.3.1 DMA Test Guide

Andy Shevchenko <andriy.shevchenko@linux.intel.com>

This small document introduces how to test DMA drivers using dmatest module.

Note: The test suite works only on the channels that have at least one capability
of the following: DMA_MEMCPY (memory-to-memory), DMA_MEMSET (const-to-
memory or memory-to-memory, when emulated), DMA_XOR, DMA_PQ.

Note: In case of any related questions use the official mailing list
dmaengine@vger.kernel.org.

2122 Chapter 56. DMAEngine documentation

mailto:andriy.shevchenko@linux.intel.com
mailto:dmaengine@vger.kernel.org

Linux Driver-api Documentation

Part 1 - How to build the test module

The menuconfig contains an option that could be found by following path:

Device Drivers -> DMA Engine support -> DMA Test client

In the configuration file the option called CONFIG_DMATEST. The dmatest could
be built as module or inside kernel. Let’s consider those cases.

Part 2 - When dmatest is built as a module

Example of usage:

% modprobe dmatest timeout=2000 iterations=1 channel=dma0chan0 run=1

⋯or:
% modprobe dmatest
% echo 2000 > /sys/module/dmatest/parameters/timeout
% echo 1 > /sys/module/dmatest/parameters/iterations
% echo dma0chan0 > /sys/module/dmatest/parameters/channel
% echo 1 > /sys/module/dmatest/parameters/run

⋯or on the kernel command line:
dmatest.timeout=2000 dmatest.iterations=1 dmatest.channel=dma0chan0␣
↪→dmatest.run=1

Example of multi-channel test usage (new in the 5.0 kernel):

% modprobe dmatest
% echo 2000 > /sys/module/dmatest/parameters/timeout
% echo 1 > /sys/module/dmatest/parameters/iterations
% echo dma0chan0 > /sys/module/dmatest/parameters/channel
% echo dma0chan1 > /sys/module/dmatest/parameters/channel
% echo dma0chan2 > /sys/module/dmatest/parameters/channel
% echo 1 > /sys/module/dmatest/parameters/run

Note: For all tests, starting in the 5.0 kernel, either single- or multi-channel,
the channel parameter(s) must be set after all other parameters. It is at that time
that the existing parameter values are acquired for use by the thread(s). All other
parameters are shared. Therefore, if changes are made to any of the other pa-
rameters, and an additional channel specified, the (shared) parameters used for
all threads will use the new values. After the channels are specified, each thread
is set as pending. All threads begin execution when the run parameter is set to 1.

Hint: A list of available channels can be found by running the following command:

% ls -1 /sys/class/dma/

56.3. DMA Test documentation 2123

Linux Driver-api Documentation

Once started a message like ”dmatest: Added 1 threads using dma0chan0”is
emitted. A thread for that specific channel is created and is now pending, the
pending thread is started once run is to 1.

Note that running a new test will not stop any in progress test.

The following command returns the state of the test.

% cat /sys/module/dmatest/parameters/run

To wait for test completion userpace can poll ‘run’until it is false, or use
the wait parameter. Specifying ‘wait=1’when loading the module causes
module initialization to pause until a test run has completed, while reading
/sys/module/dmatest/parameters/wait waits for any running test to complete be-
fore returning. For example, the following scripts wait for 42 tests to complete
before exiting. Note that if‘iterations’is set to‘infinite’then waiting is disabled.
Example:

% modprobe dmatest run=1 iterations=42 wait=1
% modprobe -r dmatest

⋯or:
% modprobe dmatest run=1 iterations=42
% cat /sys/module/dmatest/parameters/wait
% modprobe -r dmatest

Part 3 - When built-in in the kernel

The module parameters that is supplied to the kernel command line will be used
for the first performed test. After user gets a control, the test could be re-run with
the same or different parameters. For the details see the above section Part 2 -
When dmatest is built as a module.

In both cases the module parameters are used as the actual values for the test
case. You always could check them at run-time by running

% grep -H . /sys/module/dmatest/parameters/*

Part 4 - Gathering the test results

Test results are printed to the kernel log buffer with the format:

"dmatest: result <channel>: <test id>: '<error msg>' with src_off=<val>␣
↪→dst_off=<val> len=<val> (<err code>)"

Example of output:

% dmesg | tail -n 1
dmatest: result dma0chan0-copy0: #1: No errors with src_off=0x7bf dst_
↪→off=0x8ad len=0x3fea (0)

2124 Chapter 56. DMAEngine documentation

Linux Driver-api Documentation

The message format is unified across the different types of errors. A number in the
parentheses represents additional information, e.g. error code, error counter, or
status. A test thread also emits a summary line at completion listing the number
of tests executed, number that failed, and a result code.

Example:

% dmesg | tail -n 1
dmatest: dma0chan0-copy0: summary 1 test, 0 failures 1000 iops 100000 KB/s␣
↪→(0)

The details of a data miscompare error are also emitted, but do not follow the
above format.

Part 5 - Handling channel allocation

Allocating Channels

Channels are required to be configured prior to starting the test run. Attempting
to run the test without configuring the channels will fail.

Example:

% echo 1 > /sys/module/dmatest/parameters/run
dmatest: Could not start test, no channels configured

Channels are registered using the“channel”parameter. Channels can be requested
by their name, once requested, the channel is registered and a pending thread is
added to the test list.

Example:

% echo dma0chan2 > /sys/module/dmatest/parameters/channel
dmatest: Added 1 threads using dma0chan2

More channels can be added by repeating the example above. Reading back the
channel parameter will return the name of last channel that was added success-
fully.

Example:

% echo dma0chan1 > /sys/module/dmatest/parameters/channel
dmatest: Added 1 threads using dma0chan1
% echo dma0chan2 > /sys/module/dmatest/parameters/channel
dmatest: Added 1 threads using dma0chan2
% cat /sys/module/dmatest/parameters/channel
dma0chan2

Another method of requesting channels is to request a channel with an empty
string, Doing so will request all channels available to be tested:

Example:

% echo "" > /sys/module/dmatest/parameters/channel
dmatest: Added 1 threads using dma0chan0

(continues on next page)

56.3. DMA Test documentation 2125

Linux Driver-api Documentation

(continued from previous page)
dmatest: Added 1 threads using dma0chan3
dmatest: Added 1 threads using dma0chan4
dmatest: Added 1 threads using dma0chan5
dmatest: Added 1 threads using dma0chan6
dmatest: Added 1 threads using dma0chan7
dmatest: Added 1 threads using dma0chan8

At any point during the test configuration, reading the “test_list”parameter will
print the list of currently pending tests.

Example:

% cat /sys/module/dmatest/parameters/test_list
dmatest: 1 threads using dma0chan0
dmatest: 1 threads using dma0chan3
dmatest: 1 threads using dma0chan4
dmatest: 1 threads using dma0chan5
dmatest: 1 threads using dma0chan6
dmatest: 1 threads using dma0chan7
dmatest: 1 threads using dma0chan8

Note: Channels will have to be configured for each test run as channel configura-
tions do not carry across to the next test run.

Releasing Channels

Channels can be freed by setting run to 0.

Example:

% echo dma0chan1 > /sys/module/dmatest/parameters/channel
dmatest: Added 1 threads using dma0chan1
% cat /sys/class/dma/dma0chan1/in_use
1
% echo 0 > /sys/module/dmatest/parameters/run
% cat /sys/class/dma/dma0chan1/in_use
0

Channels allocated by previous test runs are automatically freed when a new chan-
nel is requested after completing a successful test run.

56.4 PXA DMA documentation

This book adds some notes about PXA DMA

2126 Chapter 56. DMAEngine documentation

Linux Driver-api Documentation

56.4.1 PXA/MMP - DMA Slave controller

Constraints

a) Transfers hot queuing A driver submitting a transfer and issuing it should be
granted the transfer is queued even on a running DMA channel. This implies that
the queuing doesn’t wait for the previous transfer end, and that the descriptor
chaining is not only done in the irq/tasklet code triggered by the end of the transfer.
A transfer which is submitted and issued on a phy doesn’t wait for a phy to stop
and restart, but is submitted on a“running channel”. The other drivers, especially
mmp_pdma waited for the phy to stop before relaunching a new transfer.

b) All transfers having asked for confirmation should be signaled Any issued trans-
fer with DMA_PREP_INTERRUPT should trigger a callback call. This implies that
even if an irq/tasklet is triggered by end of tx1, but at the time of irq/dma tx2 is
already finished, tx1->complete() and tx2->complete() should be called.

c) Channel running state A driver should be able to query if a channel is running
or not. For the multimedia case, such as video capture, if a transfer is submitted
and then a check of the DMA channel reports a “stopped channel”, the transfer
should not be issued until the next“start of frame interrupt”, hence the need to
know if a channel is in running or stopped state.

d) Bandwidth guarantee The PXA architecture has 4 levels of DMAs priorities :
high, normal, low. The high priorities get twice as much bandwidth as the normal,
which get twice as much as the low priorities. A driver should be able to request a
priority, especially the real-time ones such as pxa_camera with (big) throughputs.

Design

a) Virtual channels Same concept as in sa11x0 driver, ie. a driver was assigned
a“virtual channel”linked to the requestor line, and the physical DMA channel is
assigned on the fly when the transfer is issued.

b) Transfer anatomy for a scatter-gather transfer

+------------+-----+---------------+----------------+-----------------+
| desc-sg[0] | ... | desc-sg[last] | status updater | finisher/linker |
+------------+-----+---------------+----------------+-----------------+

This structure is pointed by dma->sg_cpu. The descriptors are used as follows :

• desc-sg[i]: i-th descriptor, transferring the i-th sg element to the video buffer
scatter gather

• status updater Transfers a single u32 to a well known dma coherent memory
to leave a trace that this transfer is done. The “well known”is unique per
physical channel, meaning that a read of this value will tell which is the last
finished transfer at that point in time.

• finisher: has ddadr=DADDR_STOP, dcmd=ENDIRQEN

• linker: has ddadr= desc-sg[0] of next transfer, dcmd=0

c) Transfers hot-chaining Suppose the running chain is:

56.4. PXA DMA documentation 2127

Linux Driver-api Documentation

Buffer 1 Buffer 2
+---------+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+---+

| |
+----+

After a call to dmaengine_submit(b3), the chain will look like:

Buffer 1 Buffer 2 Buffer 3
+---------+----+---+ +----+----+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+

| | | |
+----+ +----+

new_link

If while new_link was created the DMA channel stopped, it is _not_ restarted. Hot-
chaining doesn’t break the assumption that dma_async_issue_pending() is to be
used to ensure the transfer is actually started.

One exception to this rule :

• if Buffer1 and Buffer2 had all their addresses 8 bytes aligned

• and if Buffer3 has at least one address not 4 bytes aligned

• then hot-chaining cannot happen, as the channel must be stopped, the“align
bit”must be set, and the channel restarted As a consequence, such a transfer
tx_submit() will be queued on the submitted queue, and this specific case if
the DMA is already running in aligned mode.

d) Transfers completion updater Each time a transfer is completed on a channel,
an interrupt might be generated or not, up to the client’s request. But in each
case, the last descriptor of a transfer, the “status updater”, will write the latest
transfer being completed into the physical channel’s completion mark.
This will speed up residue calculation, for large transfers such as video buffers
which hold around 6k descriptors or more. This also allows without any lock to
find out what is the latest completed transfer in a running DMA chain.

e) Transfers completion, irq and tasklet When a transfer flagged as
“DMA_PREP_INTERRUPT”is finished, the dma irq is raised. Upon this interrupt,
a tasklet is scheduled for the physical channel.

The tasklet is responsible for :

• reading the physical channel last updater mark

• calling all the transfer callbacks of finished transfers, based on that mark,
and each transfer flags.

If a transfer is completed while this handling is done, a dma irq will be raised, and
the tasklet will be scheduled once again, having a new updater mark.

f) Residue Residue granularity will be descriptor based. The issued but not com-
pleted transfers will be scanned for all of their descriptors against the currently
running descriptor.

2128 Chapter 56. DMAEngine documentation

Linux Driver-api Documentation

g) Most complicated case of driver’s tx queues The most tricky situation is when
:

• there are not “acked”transfers (tx0)
• a driver submitted an aligned tx1, not chained

• a driver submitted an aligned tx2 => tx2 is cold chained to tx1

• a driver issued tx1+tx2 => channel is running in aligned mode

• a driver submitted an aligned tx3 => tx3 is hot-chained

• a driver submitted an unaligned tx4 => tx4 is put in submitted
queue, not chained

• a driver issued tx4 => tx4 is put in issued queue, not chained

• a driver submitted an aligned tx5 => tx5 is put in submitted queue,
not chained

• a driver submitted an aligned tx6 => tx6 is put in submitted queue,
cold chained to tx5

This translates into (after tx4 is issued) :

• issued queue

+-----+ +-----+ +-----+ +-----+
| tx1 | | tx2 | | tx3 | | tx4 |
+---|-+ ^---|-+ ^-----+ +-----+

| | | |
+---+ +---+

- submitted queue
+-----+ +-----+
| tx5 | | tx6 |
+---|-+ ^-----+

| |
+---+

• completed queue : empty

• allocated queue : tx0

It should be noted that after tx3 is completed, the channel is stopped, and restarted
in “unaligned mode”to handle tx4.
Author: Robert Jarzmik <robert.jarzmik@free.fr>

56.4. PXA DMA documentation 2129

mailto:robert.jarzmik@free.fr

Linux Driver-api Documentation

2130 Chapter 56. DMAEngine documentation

CHAPTER

FIFTYSEVEN

LINUX KERNEL SLIMBUS SUPPORT

57.1 Overview

57.1.1 What is SLIMbus?

SLIMbus (Serial Low Power Interchip Media Bus) is a specification developed by
MIPI (Mobile Industry Processor Interface) alliance. The bus uses master/slave
configuration, and is a 2-wire multi-drop implementation (clock, and data).

Currently, SLIMbus is used to interface between application processors of SoCs
(System-on-Chip) and peripheral components (typically codec). SLIMbus uses
Time-Division-Multiplexing to accommodate multiple data channels, and a control
channel.

The control channel is used for various control functions such as bus manage-
ment, configuration and status updates. Thesemessages can be unicast (e.g. read-
ing/writing device specific values), or multicast (e.g. data channel reconfiguration
sequence is a broadcast message announced to all devices)

A data channel is used for data-transfer between 2 SLIMbus devices. Data channel
uses dedicated ports on the device.

57.1.2 Hardware description:

SLIMbus specification has different types of device classifications based on their
capabilities. A manager device is responsible for enumeration, configuration, and
dynamic channel allocation. Every bus has 1 active manager.

A generic device is a device providing application functionality (e.g. codec).

Framer device is responsible for clocking the bus, and transmitting frame-sync
and framing information on the bus.

Each SLIMbus component has an interface device for monitoring physical layer.

Typically each SoC contains SLIMbus component having 1 manager, 1 framer de-
vice, 1 generic device (for data channel support), and 1 interface device. External
peripheral SLIMbus component usually has 1 generic device (for functionality/data
channel support), and an associated interface device. The generic device’s reg-
isters are mapped as ‘value elements’so that they can be written/read using
SLIMbus control channel exchanging control/status type of information. In case

2131

Linux Driver-api Documentation

there are multiple framer devices on the same bus, manager device is responsible
to select the active-framer for clocking the bus.

Per specification, SLIMbus uses “clock gears”to do power management based
on current frequency and bandwidth requirements. There are 10 clock gears and
each gear changes the SLIMbus frequency to be twice its previous gear.

Each device has a 6-byte enumeration-address and the manager assigns every
device with a 1-byte logical address after the devices report presence on the bus.

57.1.3 Software description:

There are 2 types of SLIMbus drivers:

slim_controller represents a ‘controller’for SLIMbus. This driver should imple-
ment duties needed by the SoC (manager device, associated interface device for
monitoring the layers and reporting errors, default framer device).

slim_device represents the ‘generic device/component’for SLIMbus, and a
slim_driver should implement driver for that slim_device.

57.1.4 Device notifications to the driver:

Since SLIMbus devices have mechanisms for reporting their presence, the frame-
work allows drivers to bind when corresponding devices report their presence on
the bus. However, it is possible that the driver needs to be probed first so that it
can enable corresponding SLIMbus device (e.g. power it up and/or take it out of
reset). To support that behavior, the framework allows drivers to probe first as
well (e.g. using standard DeviceTree compatibility field). This creates the neces-
sity for the driver to know when the device is functional (i.e. reported present).
device_up callback is used for that reason when the device reports present and is
assigned a logical address by the controller.

Similarly, SLIMbus devices‘report absent’when they go down. A‘device_down’
callback notifies the driver when the device reports absent and its logical address
assignment is invalidated by the controller.

Another notification“boot_device”is used to notify the slim_driver when controller
resets the bus. This notification allows the driver to take necessary steps to boot
the device so that it’s functional after the bus has been reset.

57.1.5 Driver and Controller APIs:

struct slim_eaddr
Enumeration address for a SLIMbus device

Definition

struct slim_eaddr {
u8 instance;
u8 dev_index;
u16 prod_code;

(continues on next page)

2132 Chapter 57. Linux kernel SLIMbus support

Linux Driver-api Documentation

(continued from previous page)
u16 manf_id;

};

Members
instance Instance value

dev_index Device index

prod_code Product code

manf_id Manufacturer Id for the device

enum slim_device_status
slim device status

Constants
SLIM_DEVICE_STATUS_DOWN Slim device is absent or not reported yet.

SLIM_DEVICE_STATUS_UP Slim device is announced on the bus.

SLIM_DEVICE_STATUS_RESERVED Reserved for future use.

struct slim_device
Slim device handle.

Definition

struct slim_device {
struct device dev;
struct slim_eaddr e_addr;
struct slim_controller *ctrl;
enum slim_device_status status;
u8 laddr;
bool is_laddr_valid;
struct list_head stream_list;
spinlock_t stream_list_lock;

};

Members
dev Driver model representation of the device.

e_addr Enumeration address of this device.

ctrl slim controller instance.

status slim device status

laddr 1-byte Logical address of this device.

is_laddr_valid indicates if the laddr is valid or not

stream_list List of streams on this device

stream_list_lock lock to protect the stream list

Description
This is the client/device handle returned when a SLIMbus device is registered with
a controller. Pointer to this structure is used by client-driver as a handle.

57.1. Overview 2133

Linux Driver-api Documentation

struct slim_driver
SLIMbus‘generic device’(slave) device driver (similar to‘spi_device’on
SPI)

Definition

struct slim_driver {
int (*probe)(struct slim_device *sl);
void (*remove)(struct slim_device *sl);
void (*shutdown)(struct slim_device *sl);
int (*device_status)(struct slim_device *sl, enum slim_device_status s);
struct device_driver driver;
const struct slim_device_id *id_table;

};

Members
probe Binds this driver to a SLIMbus device.

remove Unbinds this driver from the SLIMbus device.

shutdown Standard shutdown callback used during powerdown/halt.

device_status This callback is called when - The device reports present and gets
a laddr assigned - The device reports absent, or the bus goes down.

driver SLIMbus device drivers should initialize name and owner field of this
structure

id_table List of SLIMbus devices supported by this driver

struct slim_val_inf
Slimbus value or information element

Definition

struct slim_val_inf {
u16 start_offset;
u8 num_bytes;
u8 *rbuf;
const u8 *wbuf;
struct completion *comp;

};

Members
start_offset Specifies starting offset in information/value element map

num_bytes upto 16. This ensures that the message will fit the slicesize per SLIM-
bus spec

rbuf buffer to read the values

wbuf buffer to write

comp completion for asynchronous operations, valid only if TID is required for
transaction, like REQUEST operations. Rest of the transactions are syn-
chronous anyway.

struct slim_stream_config
SLIMbus stream configuration Configuring a stream is done at hw_params or

2134 Chapter 57. Linux kernel SLIMbus support

Linux Driver-api Documentation

prepare call from audio drivers where they have all the required information
regarding rate, number of channels and so on. There is a 1:1 mapping of
channel and ports.

Definition

struct slim_stream_config {
unsigned int rate;
unsigned int bps;
unsigned int ch_count;
unsigned int *chs;
unsigned long port_mask;
int direction;

};

Members
rate data rate

bps bits per data sample

ch_count number of channels

chs pointer to list of channel numbers

port_mask port mask of ports to use for this stream

direction direction of the stream, SNDRV_PCM_STREAM_PLAYBACK or
SNDRV_PCM_STREAM_CAPTURE.

module_slim_driver(__slim_driver)
Helper macro for registering a SLIMbus driver

Parameters
__slim_driver slimbus_driver struct

Description
Helper macro for SLIMbus drivers which do not do anything special in module
init/exit. This eliminates a lot of boilerplate. Each module may only use this macro
once, and calling it replaces module_init() and module_exit()

struct slim_framer
Represents SLIMbus framer. Every controller may have multiple framers.
There is 1 active framer device responsible for clocking the bus. Manager is
responsible for framer hand-over.

Definition

struct slim_framer {
struct device dev;
struct slim_eaddr e_addr;
int rootfreq;
int superfreq;

};

Members
dev Driver model representation of the device.

57.1. Overview 2135

Linux Driver-api Documentation

e_addr Enumeration address of the framer.

rootfreq Root Frequency at which the framer can run. This is maximum fre-
quency (‘clock gear 10’) at which the bus can operate.

superfreq Superframes per root frequency. Every frame is 6144 bits.

struct slim_msg_txn
Message to be sent by the controller. This structure has packet header, pay-
load and buffer to be filled (if any)

Definition

struct slim_msg_txn {
u8 rl;
u8 mt;
u8 mc;
u8 dt;
u16 ec;
u8 tid;
u8 la;
struct slim_val_inf *msg;
struct completion *comp;

};

Members
rl Header field. remaining length.

mt Header field. Message type.

mc Header field. LSB is message code for type mt.

dt Header field. Destination type.

ec Element code. Used for elemental access APIs.

tid Transaction ID. Used for messages expecting response. (relevant for
message-codes involving read operation)

la Logical address of the device this message is going to. (Not used when desti-
nation type is broadcast.)

msg Elemental access message to be read/written

comp completion if read/write is synchronous, used internally for tid based trans-
actions.

enum slim_clk_state

Constants
SLIM_CLK_ACTIVE SLIMbus clock is active

SLIM_CLK_ENTERING_PAUSE SLIMbus clock pause sequence is being sent on the
bus. If this succeeds, state changes to SLIM_CLK_PAUSED. If the transition
fails, state changes back to SLIM_CLK_ACTIVE

SLIM_CLK_PAUSED SLIMbus controller clock has paused.

Description
maintaining current clock state.

2136 Chapter 57. Linux kernel SLIMbus support

Linux Driver-api Documentation

struct slim_sched

Definition

struct slim_sched {
enum slim_clk_state clk_state;
struct completion pause_comp;
struct mutex m_reconf;

};

Members
clk_state Controller’s clock state from enum slim_clk_state

pause_comp Signals completion of clock pause sequence. This is useful when
client tries to call SLIMbus transaction when controller is entering clock
pause.

m_reconf This mutex is held until current reconfiguration (data channel schedul-
ing, message bandwidth reservation) is done. Message APIs can use the bus
concurrently when this mutex is held since elemental access messages can
be sent on the bus when reconfiguration is in progress.

enum slim_port_direction

Constants
SLIM_PORT_SINK SLIMbus port is a sink

SLIM_PORT_SOURCE SLIMbus port is a source

enum slim_port_state

Constants
SLIM_PORT_DISCONNECTED SLIMbus port is disconnected entered from Unconfig-

ure/configured state after DISCONNECT_PORT or REMOVE_CHANNEL core
command

SLIM_PORT_UNCONFIGURED SLIMbus port is in unconfigured state. entered from
disconnect state after CONNECT_SOURCE/SINK core command

SLIM_PORT_CONFIGURED SLIMbus port is in configured state. entered from un-
configured state after DEFINE_CHANNEL, DEFINE_CONTENT and ACTI-
VATE_CHANNEL core commands. Ready for data transmission.

Description
according to SLIMbus Spec 2.0

enum slim_channel_state

Constants
SLIM_CH_STATE_DISCONNECTED SLIMbus channel is disconnected

SLIM_CH_STATE_ALLOCATED SLIMbus channel is allocated

SLIM_CH_STATE_ASSOCIATED SLIMbus channel is associated with port

SLIM_CH_STATE_DEFINED SLIMbus channel parameters are defined

SLIM_CH_STATE_CONTENT_DEFINED SLIMbus channel content is defined

57.1. Overview 2137

Linux Driver-api Documentation

SLIM_CH_STATE_ACTIVE SLIMbus channel is active and ready for data

SLIM_CH_STATE_REMOVED SLIMbus channel is inactive and removed

enum slim_ch_data_fmt

Constants
SLIM_CH_DATA_FMT_NOT_DEFINED Undefined

SLIM_CH_DATA_FMT_LPCM_AUDIO LPCM audio

SLIM_CH_DATA_FMT_IEC61937_COMP_AUDIO IEC61937 Compressed audio

SLIM_CH_DATA_FMT_PACKED_PDM_AUDIO Packed PDM audio

Description
Table 60 of SLIMbus Spec 1.01.01

enum slim_ch_aux_bit_fmt

Constants
SLIM_CH_AUX_FMT_NOT_APPLICABLE Undefined

SLIM_CH_AUX_FMT_ZCUV_TUNNEL_IEC60958 ZCUV for tunneling IEC60958

SLIM_CH_AUX_FMT_USER_DEFINED User defined

Description
Table 63 of SLIMbus Spec 2.0

struct slim_channel
SLIMbus channel, used for state machine

Definition

struct slim_channel {
int id;
int prrate;
int seg_dist;
enum slim_ch_data_fmt data_fmt;
enum slim_ch_aux_bit_fmt aux_fmt;
enum slim_channel_state state;

};

Members
id ID of channel

prrate Presense rate of channel from Table 66 of SLIMbus 2.0 Specs

seg_dist segment distribution code from Table 20 of SLIMbus 2.0 Specs

data_fmt Data format of channel.

aux_fmt Aux format for this channel.

state channel state machine

struct slim_port
SLIMbus port

2138 Chapter 57. Linux kernel SLIMbus support

Linux Driver-api Documentation

Definition

struct slim_port {
int id;
enum slim_port_direction direction;
enum slim_port_state state;
struct slim_channel ch;

};

Members
id Port id

direction Port direction, Source or Sink.

state state machine of port.

ch channel associated with this port.

enum slim_transport_protocol

Constants
SLIM_PROTO_ISO Isochronous Protocol, no flow control as data rate match channel

rate flow control embedded in the data.

SLIM_PROTO_PUSH Pushed Protocol, includes flow control, Used to carry data
whose rate is equal to, or lower than the channel rate.

SLIM_PROTO_PULL Pulled Protocol, similar usage as pushed protocol but pull is a
unicast.

SLIM_PROTO_LOCKED Locked Protocol

SLIM_PROTO_ASYNC_SMPLX Asynchronous Protocol-Simplex

SLIM_PROTO_ASYNC_HALF_DUP Asynchronous Protocol-Half-duplex

SLIM_PROTO_EXT_SMPLX Extended Asynchronous Protocol-Simplex

SLIM_PROTO_EXT_HALF_DUP Extended Asynchronous Protocol-Half-duplex

Description
Table 47 of SLIMbus 2.0 specs.

struct slim_stream_runtime
SLIMbus stream runtime instance

Definition

struct slim_stream_runtime {
const char *name;
struct slim_device *dev;
int direction;
enum slim_transport_protocol prot;
unsigned int rate;
unsigned int bps;
unsigned int ratem;
int num_ports;
struct slim_port *ports;

(continues on next page)

57.1. Overview 2139

Linux Driver-api Documentation

(continued from previous page)
struct list_head node;

};

Members
name Name of the stream

dev SLIM Device instance associated with this stream

direction direction of stream

prot Transport protocol used in this stream

rate Data rate of samples *

bps bits per sample

ratem rate multipler which is super frame rate/data rate

num_ports number of ports

ports pointer to instance of ports

node list head for stream associated with slim device.

struct slim_controller
Controls every instance of SLIMbus (similar to ‘master’on SPI)

Definition

struct slim_controller {
struct device *dev;
unsigned int id;
char name[SLIMBUS_NAME_SIZE];
int min_cg;
int max_cg;
int clkgear;
struct ida laddr_ida;
struct slim_framer *a_framer;
struct mutex lock;
struct list_head devices;
struct idr tid_idr;
spinlock_t txn_lock;
struct slim_sched sched;
int (*xfer_msg)(struct slim_controller *ctrl, struct slim_msg_txn *tx);
int (*set_laddr)(struct slim_controller *ctrl, struct slim_eaddr *ea, u8␣

↪→laddr);
int (*get_laddr)(struct slim_controller *ctrl, struct slim_eaddr *ea, u8␣

↪→*laddr);
int (*enable_stream)(struct slim_stream_runtime *rt);
int (*disable_stream)(struct slim_stream_runtime *rt);
int (*wakeup)(struct slim_controller *ctrl);

};

Members
dev Device interface to this driver

id Board-specific number identifier for this controller/bus

name Name for this controller

2140 Chapter 57. Linux kernel SLIMbus support

Linux Driver-api Documentation

min_cg Minimum clock gear supported by this controller (default value: 1)

max_cg Maximum clock gear supported by this controller (default value: 10)

clkgear Current clock gear in which this bus is running

laddr_ida logical address id allocator

a_framer Active framer which is clocking the bus managed by this controller

lock Mutex protecting controller data structures

devices Slim device list

tid_idr tid id allocator

txn_lock Lock to protect table of transactions

sched scheduler structure used by the controller

xfer_msg Transfer a message on this controller (this can be a broadcast con-
trol/status message like data channel setup, or a unicast message like value
element read/write.

set_laddr Setup logical address at laddr for the slave with elemental address
e_addr. Drivers implementing controller will be expected to send unicast
message to this device with its logical address.

get_laddr It is possible that controller needs to set fixed logical address table and
get_laddr can be used in that case so that controller can do this assignment.
Use case is when themaster is on the remote processor side, who is resposible
for allocating laddr.

enable_stream This function pointer implements controller-specific procedure to
enable a stream.

disable_stream This function pointer implements controller-specific procedure
to disable stream.

‘Manager device’is responsible for device management, bandwidth alloca-
tion, channel setup, and port associations per channel. Device management
means Logical address assignment/removal based on enumeration (report-
present, report-absent) of a device. Bandwidth allocation is done dynamically
by the manager based on active channels on the bus, message-bandwidth re-
quests made by SLIMbus devices. Based on current bandwidth usage, man-
ager chooses a frequency to run the bus at (in steps of ‘clock-gear’, 1
through 10, each clock gear representing twice the frequency than the previ-
ous gear). Manager is also responsible for entering (and exiting) low-power-
mode (known as‘clock pause’). Manager can do handover of framer if there
are multiple framers on the bus and a certain usecase warrants using certain
framer to avoid keeping previous framer being powered-on.

Controller here performs duties of the manager device, and ‘interface de-
vice’. Interface device is responsible for monitoring the bus and reporting
information such as loss-of-synchronization, data slot-collision.

wakeup This function pointer implements controller-specific procedure to wake it
up from clock-pause. Framework will call this to bring the controller out of
clock pause.

57.1. Overview 2141

Linux Driver-api Documentation

int slim_unregister_controller(struct slim_controller * ctrl)
Controller tear-down.

Parameters
struct slim_controller * ctrl Controller to tear-down.

void slim_report_absent(struct slim_device * sbdev)
Controller calls this function when a device reports absent, OR when the de-
vice cannot be communicated with

Parameters
struct slim_device * sbdev Device that cannot be reached, or sent report ab-

sent

struct slim_device * slim_get_device(struct slim_controller * ctrl, struct
slim_eaddr * e_addr)

get handle to a device.

Parameters
struct slim_controller * ctrl Controller on which this device will be

added/queried

struct slim_eaddr * e_addr Enumeration address of the device to be queried

Return
pointer to a device if it has already reported. Creates a new device and returns
pointer to it if the device has not yet enumerated.

struct slim_device * of_slim_get_device(struct slim_controller * ctrl,
struct device_node * np)

get handle to a device using dt node.

Parameters
struct slim_controller * ctrl Controller on which this device will be

added/queried

struct device_node * np node pointer to device

Return
pointer to a device if it has already reported. Creates a new device and returns
pointer to it if the device has not yet enumerated.

int slim_device_report_present(struct slim_controller * ctrl, struct
slim_eaddr * e_addr, u8 * laddr)

Report enumerated device.

Parameters
struct slim_controller * ctrl Controller with which device is enumerated.

struct slim_eaddr * e_addr Enumeration address of the device.

u8 * laddr Return logical address (if valid flag is false)

Description

2142 Chapter 57. Linux kernel SLIMbus support

Linux Driver-api Documentation

Called by controller in response to REPORT_PRESENT. Framework will assign a
logical address to this enumeration address. Function returns -EXFULL to indicate
that all logical addresses are already taken.

int slim_get_logical_addr(struct slim_device * sbdev)
get/allocate logical address of a SLIMbus device.

Parameters
struct slim_device * sbdev client handle requesting the address.

Return
zero if a logical address is valid or a new logical address has been assigned. error
code in case of error.

57.1.6 Clock-pause:

SLIMbus mandates that a reconfiguration sequence (known as clock-pause) be
broadcast to all active devices on the bus before the bus can enter low-power
mode. Controller uses this sequence when it decides to enter low-power mode
so that corresponding clocks and/or power-rails can be turned off to save power.
Clock-pause is exited by waking up framer device (if controller driver initiates
exiting low power mode), or by toggling the data line (if a slave device wants to
initiate it).

Clock-pause APIs:

int slim_ctrl_clk_pause(struct slim_controller * ctrl, bool wakeup,
u8 restart)

Called by slimbus controller to enter/exit ‘clock pause’
Parameters
struct slim_controller * ctrl controller requesting bus to be paused or wo-

ken up

bool wakeup Wakeup this controller from clock pause.

u8 restart Restart time value per spec used for clock pause. This value isn’t
used when controller is to be woken up.

Description
Slimbus specification needs this sequence to turn-off clocks for the bus. The se-
quence involves sending 3 broadcast messages (reconfiguration sequence) to in-
form all devices on the bus. To exit clock-pause, controller typically wakes up
active framer device. This API executes clock pause reconfiguration sequence if
wakeup is false. If wakeup is true, controller’s wakeup is called. For entering
clock-pause, -EBUSY is returned if a message txn in pending.

57.1. Overview 2143

Linux Driver-api Documentation

57.1.7 Messaging:

The framework supports regmap and read/write apis to exchange control-
information with a SLIMbus device. APIs can be synchronous or asynchronous.
The header file <linux/slimbus.h> has more documentation about messaging APIs.

Messaging APIs:

void slim_msg_response(struct slim_controller * ctrl, u8 * reply, u8 tid,
u8 len)

Deliver Message response received from a device to the framework.

Parameters
struct slim_controller * ctrl Controller handle

u8 * reply Reply received from the device

u8 tid Transaction ID received with which framework can associate reply.

u8 len Length of the reply

Description
Called by controller to inform framework about the response received. This helps
in making the API asynchronous, and controller-driver doesn’t need to manage 1
more table other than the one managed by framework mapping TID with buffers

int slim_alloc_txn_tid(struct slim_controller * ctrl, struct slim_msg_txn
* txn)

Allocate a tid to txn

Parameters
struct slim_controller * ctrl Controller handle

struct slim_msg_txn * txn transaction to be allocated with tid.

Return
zero on success with valid txn->tid and error code on failures.

void slim_free_txn_tid(struct slim_controller * ctrl, struct slim_msg_txn
* txn)

Freee tid of txn

Parameters
struct slim_controller * ctrl Controller handle

struct slim_msg_txn * txn transaction whose tid should be freed

int slim_do_transfer(struct slim_controller * ctrl, struct slim_msg_txn
* txn)

Process a SLIMbus-messaging transaction

Parameters
struct slim_controller * ctrl Controller handle

struct slim_msg_txn * txn Transaction to be sent over SLIMbus

2144 Chapter 57. Linux kernel SLIMbus support

Linux Driver-api Documentation

Description
Called by controller to transmit messaging transactions not dealing with Inter-
face/Value elements. (e.g. transmittting a message to assign logical address to a
slave device

Return
-ETIMEDOUT: If transmission of this message timed out (e.g. due to bus

lines not being clocked or driven by controller)

int slim_xfer_msg(struct slim_device * sbdev, struct slim_val_inf * msg,
u8 mc)

Transfer a value info message on slim device

Parameters
struct slim_device * sbdev slim device to which this msg has to be transfered

struct slim_val_inf * msg value info message pointer

u8 mc message code of the message

Description
Called by drivers which want to transfer a vlaue or info elements.

Return
-ETIMEDOUT: If transmission of this message timed out

int slim_read(struct slim_device * sdev, u32 addr, size_t count, u8 * val)
Read SLIMbus value element

Parameters
struct slim_device * sdev client handle.

u32 addr address of value element to read.

size_t count number of bytes to read. Maximum bytes allowed are 16.

u8 * val will return what the value element value was

Return
-EINVAL for Invalid parameters, -ETIMEDOUT If transmission of this message
timed out (e.g. due to bus lines not being clocked or driven by controller)

int slim_readb(struct slim_device * sdev, u32 addr)
Read byte from SLIMbus value element

Parameters
struct slim_device * sdev client handle.

u32 addr address in the value element to read.

Return
byte value of value element.

int slim_write(struct slim_device * sdev, u32 addr, size_t count, u8 * val)
Write SLIMbus value element

57.1. Overview 2145

Linux Driver-api Documentation

Parameters
struct slim_device * sdev client handle.

u32 addr address in the value element to write.

size_t count number of bytes to write. Maximum bytes allowed are 16.

u8 * val value to write to value element

Return
-EINVAL for Invalid parameters, -ETIMEDOUT If transmission of this message
timed out (e.g. due to bus lines not being clocked or driven by controller)

int slim_writeb(struct slim_device * sdev, u32 addr, u8 value)
Write byte to SLIMbus value element

Parameters
struct slim_device * sdev client handle.

u32 addr address of value element to write.

u8 value value to write to value element

Return
-EINVAL for Invalid parameters, -ETIMEDOUT If transmission of this message
timed out (e.g. due to bus lines not being clocked or driven by controller)

Streaming APIs:

struct slim_stream_runtime * slim_stream_allocate(struct slim_device
* dev, const char
* name)

Allocate a new SLIMbus Stream

Parameters
struct slim_device * dev Slim device to be associated with

const char * name name of the stream

Description
This is very first call for SLIMbus streaming, this API will allocate a new SLIMbus
stream and return a valid stream runtime pointer for client to use it in subsequent
stream apis. state of stream is set to ALLOCATED

Return
valid pointer on success and error code on failure. From ASoC DPCM framework,
this state is linked to startup() operation.

int slim_stream_prepare(struct slim_stream_runtime * rt, struct
slim_stream_config * cfg)

Prepare a SLIMbus Stream

Parameters
struct slim_stream_runtime * rt instance of slim stream runtime to configure

2146 Chapter 57. Linux kernel SLIMbus support

Linux Driver-api Documentation

struct slim_stream_config * cfg new configuration for the stream

Description
This API will configure SLIMbus stream with config parameters from cfg. return
zero on success and error code on failure. From ASoC DPCM framework, this state
is linked to hw_params() operation.

int slim_stream_enable(struct slim_stream_runtime * stream)
Enable a prepared SLIMbus Stream

Parameters
struct slim_stream_runtime * stream instance of slim stream runtime to en-

able

Description
This API will enable all the ports and channels associated with SLIMbus stream

Return
zero on success and error code on failure. From ASoC DPCM framework, this state
is linked to trigger() start operation.

int slim_stream_disable(struct slim_stream_runtime * stream)
Disable a SLIMbus Stream

Parameters
struct slim_stream_runtime * stream instance of slim stream runtime to dis-

able

Description
This API will disable all the ports and channels associated with SLIMbus stream

Return
zero on success and error code on failure. From ASoC DPCM framework, this state
is linked to trigger() pause operation.

int slim_stream_unprepare(struct slim_stream_runtime * stream)
Un-prepare a SLIMbus Stream

Parameters
struct slim_stream_runtime * stream instance of slim stream runtime to un-

prepare

Description
This API will un allocate all the ports and channels associatedwith SLIMbus stream

Return
zero on success and error code on failure. From ASoC DPCM framework, this state
is linked to trigger() stop operation.

int slim_stream_free(struct slim_stream_runtime * stream)
Free a SLIMbus Stream

Parameters

57.1. Overview 2147

Linux Driver-api Documentation

struct slim_stream_runtime * stream instance of slim stream runtime to free

Description
This API will un allocate all the memory associated with slim stream runtime, user
is not allowed to make an dereference to stream after this call.

Return
zero on success and error code on failure. From ASoC DPCM framework, this state
is linked to shutdown() operation.

2148 Chapter 57. Linux kernel SLIMbus support

CHAPTER

FIFTYEIGHT

SOUNDWIRE DOCUMENTATION

58.1 SoundWire Subsystem Summary

SoundWire is a new interface ratified in 2015 by the MIPI Alliance. SoundWire is
used for transporting data typically related to audio functions. SoundWire inter-
face is optimized to integrate audio devices in mobile or mobile inspired systems.

SoundWire is a 2-pin multi-drop interface with data and clock line. It facilitates
development of low cost, efficient, high performance systems. Broad level key
features of SoundWire interface include:

(1) Transporting all of payload data channels, control information, and setup
commands over a single two-pin interface.

(2) Lower clock frequency, and hence lower power consumption, by use of DDR
(Dual Data Rate) data transmission.

(3) Clock scaling and optional multiple data lanes to give wide flexibility in data
rate to match system requirements.

(4) Device status monitoring, including interrupt-style alerts to the Master.

The SoundWire protocol supports up to eleven Slave interfaces. All the interfaces
share the common Bus containing data and clock line. Each of the Slaves can sup-
port up to 14 Data Ports. 13 Data Ports are dedicated to audio transport. Data
Port0 is dedicated to transport of Bulk control information, each of the audio Data
Ports (1..14) can support up to 8 Channels in transmit or receiving mode (typ-
ically fixed direction but configurable direction is enabled by the specification).
Bandwidth restrictions to ~19.2..24.576Mbits/s don’t however allow for 11*13*8
channels to be transmitted simultaneously.

Below figure shows an example of connectivity between a SoundWire Master and
two Slave devices.

+---------------+ +---------------+
	Clock Signal		
Master	-------+-------------------------------	Slave	
Interface		Data Signal	Interface 1
	-------	-------+-----------------------	
+---------------+ | | +---------------+

| |
| |
| |

+--+-------+--+
(continues on next page)

2149

Linux Driver-api Documentation

(continued from previous page)
| |
| Slave |
| Interface 2 |
| |
+-------------+

58.1.1 Terminology

The MIPI SoundWire specification uses the term‘device’to refer to a Master or
Slave interface, which of course can be confusing. In this summary and code we
use the term interface only to refer to the hardware. We follow the Linux device
model by mapping each Slave interface connected on the bus as a device man-
aged by a specific driver. The Linux SoundWire subsystem provides a framework
to implement a SoundWire Slave driver with an API allowing 3rd-party vendors
to enable implementation-defined functionality while common setup/configuration
tasks are handled by the bus.

Bus: Implements SoundWire Linux Bus which handles the SoundWire protocol.
Programs all the MIPI-defined Slave registers. Represents a SoundWire Master.
Multiple instances of Bus may be present in a system.

Slave: Registers as SoundWire Slave device (Linux Device). Multiple Slave devices
can register to a Bus instance.

Slave driver: Driver controlling the Slave device. MIPI-specified registers are con-
trolled directly by the Bus (and transmitted through the Master driver/interface).
Any implementation-defined Slave register is controlled by Slave driver. In prac-
tice, it is expected that the Slave driver relies on regmap and does not request
direct register access.

58.1.2 Programming interfaces (SoundWire Master interface
Driver)

SoundWire Bus supports programming interfaces for the SoundWire Master im-
plementation and SoundWire Slave devices. All the code uses the “sdw”prefix
commonly used by SoC designers and 3rd party vendors.

Each of the SoundWire Master interfaces needs to be registered to the Bus. Bus
implements API to read standard Master MIPI properties and also provides call-
back in Master ops for Master driver to implement its own functions that provides
capabilities information. DT support is not implemented at this time but should be
trivial to add since capabilities are enabled with the device_property_ API.

The Master interface along with the Master interface capabilities are registered
based on board file, DT or ACPI.

Following is the Bus API to register the SoundWire Bus:

int sdw_bus_master_add(struct sdw_bus *bus,
struct device *parent,
struct fwnode_handle)

(continues on next page)

2150 Chapter 58. SoundWire Documentation

Linux Driver-api Documentation

(continued from previous page)
{

sdw_master_device_add(bus, parent, fwnode);

mutex_init(&bus->lock);
INIT_LIST_HEAD(&bus->slaves);

/* Check ACPI for Slave devices */
sdw_acpi_find_slaves(bus);

/* Check DT for Slave devices */
sdw_of_find_slaves(bus);

return 0;
}

This will initialize sdw_bus object for Master device. “sdw_master_ops”and
“sdw_master_port_ops”callback functions are provided to the Bus.
“sdw_master_ops”is used by Bus to control the Bus in the hardware specific way.
It includes Bus control functions such as sending the SoundWire read/write mes-
sages on Bus, setting up clock frequency & Stream Synchronization Point (SSP).
The“sdw_master_ops”structure abstracts the hardware details of theMaster from
the Bus.

“sdw_master_port_ops”is used by Bus to setup the Port parameters of the Master
interface Port. Master interface Port register map is not defined by MIPI specifica-
tion, so Bus calls the“sdw_master_port_ops”callback function to do Port operations
like “Port Prepare”, “Port Transport params set”, “Port enable and disable”
. The implementation of the Master driver can then perform hardware-specific
configurations.

58.1.3 Programming interfaces (SoundWire Slave Driver)

The MIPI specification requires each Slave interface to expose a unique 48-bit
identifier, stored in 6 read-only dev_id registers. This dev_id identifier contains
vendor and part information, as well as a field enabling to differentiate between
identical components. An additional class field is currently unused. Slave driver is
written for a specific vendor and part identifier, Bus enumerates the Slave device
based on these two ids. Slave device and driver match is done based on these two
ids . Probe of the Slave driver is called by Bus on successful match between device
and driver id. A parent/child relationship is enforced between Master and Slave
devices (the logical representation is aligned with the physical connectivity).

The information on Master/Slave dependencies is stored in platform data, board-
file, ACPI or DT. The MIPI Software specification defines additional link_id param-
eters for controllers that have multiple Master interfaces. The dev_id registers
are only unique in the scope of a link, and the link_id unique in the scope of a
controller. Both dev_id and link_id are not necessarily unique at the system level
but the parent/child information is used to avoid ambiguity.

static const struct sdw_device_id slave_id[] = {
SDW_SLAVE_ENTRY(0x025d, 0x700, 0),

(continues on next page)

58.1. SoundWire Subsystem Summary 2151

Linux Driver-api Documentation

(continued from previous page)
{},

};
MODULE_DEVICE_TABLE(sdw, slave_id);

static struct sdw_driver slave_sdw_driver = {
.driver = {

.name = "slave_xxx",

.pm = &slave_runtime_pm,
},

.probe = slave_sdw_probe,

.remove = slave_sdw_remove,

.ops = &slave_slave_ops,

.id_table = slave_id,
};

For capabilities, Bus implements API to read standard Slave MIPI properties and
also provides callback in Slave ops for Slave driver to implement own function that
provides capabilities information. Bus needs to know a set of Slave capabilities to
program Slave registers and to control the Bus reconfigurations.

58.1.4 Future enhancements to be done

(1) Bulk Register Access (BRA) transfers.

(2) Multiple data lane support.

58.1.5 Links

SoundWire MIPI specification 1.1 is available at: https://members.mipi.org/wg/
All-Members/document/70290

SoundWire MIPI DisCo (Discovery and Configuration) specification is available at:
https://www.mipi.org/specifications/mipi-disco-soundwire

(publicly accessible with registration or directly accessible to MIPI members)

MIPI Alliance Manufacturer ID Page: mid.mipi.org

58.2 Audio Stream in SoundWire

An audio stream is a logical or virtual connection created between

(1) System memory buffer(s) and Codec(s)

(2) DSP memory buffer(s) and Codec(s)

(3) FIFO(s) and Codec(s)

(4) Codec(s) and Codec(s)

which is typically driven by a DMA(s) channel through the data link. An audio
stream contains one or more channels of data. All channels within stream must
have same sample rate and same sample size.

2152 Chapter 58. SoundWire Documentation

https://members.mipi.org/wg/All-Members/document/70290
https://members.mipi.org/wg/All-Members/document/70290
https://www.mipi.org/specifications/mipi-disco-soundwire

Linux Driver-api Documentation

Assume a stream with two channels (Left & Right) is opened using SoundWire
interface. Below are some ways a stream can be represented in SoundWire.

Stream Sample in memory (System memory, DSP memory or FIFOs)

| L | R | L | R | L | R |

Example 1: Stereo Streamwith L and R channels is rendered fromMaster to Slave.
Both Master and Slave is using single port.

+---------------+ Clock Signal +---------------+
| Master +----------------------------------+ Slave |
Interface		Interface
		1
	Data Signal	
L + R +----------------------------------+ L + R		
(Data)	Data Direction	(Data)
+---------------+ +-----------------------> +---------------+

Example 2: Stereo Stream with L and R channels is captured from Slave to Master.
Both Master and Slave is using single port.

+---------------+ Clock Signal +---------------+
| Master +----------------------------------+ Slave |
Interface		Interface
		1
	Data Signal	
L + R +----------------------------------+ L + R		
(Data)	Data Direction	(Data)
+---------------+ <-----------------------+ +---------------+

Example 3: Stereo Stream with L and R channels is rendered by Master. Each of
the L and R channel is received by two different Slaves. Master and both Slaves
are using single port.

+---------------+ Clock Signal +---------------+
| Master +---------+------------------------+ Slave |
Interface			Interface
			1
		Data Signal	
L + R +---+------------------------------+ L			
(Data)			Data Direction
+---------------+ | | +-------------> +---------------+

| |
| |
| | +---------------+
+---------------------->	Slave
	Interface
	2
+----------------------------> | R |

| (Data) |
+---------------+

Example 4: Stereo Stream with L and R channels is rendered by Master. Both

58.2. Audio Stream in SoundWire 2153

Linux Driver-api Documentation

of the L and R channels are received by two different Slaves. Master and both
Slaves are using single port handling L+R. Each Slave device processes the L +
R data locally, typically based on static configuration or dynamic orientation, and
may drive one or more speakers.

+---------------+ Clock Signal +---------------+
| Master +---------+------------------------+ Slave |
Interface			Interface
			1
		Data Signal	
L + R +---+------------------------------+ L + R			
(Data)			Data Direction
+---------------+ | | +-------------> +---------------+

| |
| |
| | +---------------+
+---------------------->	Slave
	Interface
	2
+----------------------------> | L + R |

| (Data) |
+---------------+

Example 5: Stereo Stream with L and R channel is rendered by two different Ports
of the Master and is received by only single Port of the Slave interface.

+--------------------+
| |
| +--------------+ +----------------+
	Data Port		L Channel				
	1	------------+					
	L Channel			+-----+----+			
	(Data)			L + R Channel		Data	
Master +----------+	+---+--------->		Port				
Interface				1			
+--------------+							
				+----------+			
	Data Port	------------+					
	2		R Channel	Slave			
	R Channel			Interface			
	(Data)			1			
+--------------+ Clock Signal	L + R						
+--------------------------->	(Data)						
+--------------------+ | |

+----------------+

Example 6: Stereo Stream with L and R channel is rendered by 2 Masters, each
rendering one channel, and is received by two different Slaves, each receiving one
channel. Both Masters and both Slaves are using single port.

+---------------+ Clock Signal +---------------+
| Master +----------------------------------+ Slave |
| Interface | | Interface |
| 1 | | 1 |

(continues on next page)

2154 Chapter 58. SoundWire Documentation

Linux Driver-api Documentation

(continued from previous page)
| | Data Signal | |
| L +----------------------------------+ L |
| (Data) | Data Direction | (Data) |
+---------------+ +-----------------------> +---------------+

+---------------+ Clock Signal +---------------+
| Master +----------------------------------+ Slave |
Interface		Interface
2		2
	Data Signal	
R +----------------------------------+ R		
(Data)	Data Direction	(Data)
+---------------+ +-----------------------> +---------------+

Example 7: Stereo Stream with L and R channel is rendered by 2 Masters, each
rendering both channels. Each Slave receives L + R. This is the same application
as Example 4 but with Slaves placed on separate links.

+---------------+ Clock Signal +---------------+
| Master +----------------------------------+ Slave |
Interface		Interface
1		1
	Data Signal	
L + R +----------------------------------+ L + R		
(Data)	Data Direction	(Data)
+---------------+ +-----------------------> +---------------+

+---------------+ Clock Signal +---------------+
| Master +----------------------------------+ Slave |
Interface		Interface
2		2
	Data Signal	
L + R +----------------------------------+ L + R		
(Data)	Data Direction	(Data)
+---------------+ +-----------------------> +---------------+

Example 8: 4-channel Stream is rendered by 2 Masters, each rendering a 2 chan-
nels. Each Slave receives 2 channels.

+---------------+ Clock Signal +---------------+
| Master +----------------------------------+ Slave |
Interface		Interface
1		1
	Data Signal	
L1 + R1 +----------------------------------+ L1 + R1		
(Data)	Data Direction	(Data)
+---------------+ +-----------------------> +---------------+

+---------------+ Clock Signal +---------------+
| Master +----------------------------------+ Slave |
Interface		Interface
2		2
	Data Signal	
L2 + R2 +----------------------------------+ L2 + R2		
(Data)	Data Direction	(Data)
+---------------+ +-----------------------> +---------------+

58.2. Audio Stream in SoundWire 2155

Linux Driver-api Documentation

Note1: In multi-link cases like above, to lock, one would acquire a global lock and
then go on locking bus instances. But, in this case the caller framework(ASoC
DPCM) guarantees that stream operations on a card are always serialized. So,
there is no race condition and hence no need for global lock.

Note2: A Slave device may be configured to receive all channels transmitted on a
link for a given Stream (Example 4) or just a subset of the data (Example 3). The
configuration of the Slave device is not handled by a SoundWire subsystem API,
but instead by the snd_soc_dai_set_tdm_slot() API. The platform or machine driver
will typically configure which of the slots are used. For Example 4, the same slots
would be used by all Devices, while for Example 3 the Slave Device1 would use
e.g. Slot 0 and Slave device2 slot 1.

Note3: Multiple Sink ports can extract the same information for the same bitSlots
in the SoundWire frame, however multiple Source ports shall be configured with
different bitSlot configurations. This is the same limitation as with I2S/PCM TDM
usages.

58.2.1 SoundWire Stream Management flow

Stream definitions

(1) Current stream: This is classified as the stream on which operation has to be
performed like prepare, enable, disable, de-prepare etc.

(2) Active stream: This is classified as the stream which is already active on Bus
other than current stream. There can be multiple active streams on the Bus.

SoundWire Bus manages stream operations for each stream getting ren-
dered/captured on the SoundWire Bus. This section explains Bus operations done
for each of the stream allocated/released on Bus. Following are the stream states
maintained by the Bus for each of the audio stream.

SoundWire stream states

Below shows the SoundWire stream states and state transition diagram.

+-----------+ +------------+ +----------+ +----------+
| ALLOCATED +---->| CONFIGURED +---->| PREPARED +---->| ENABLED |
| STATE | | STATE | | STATE | | STATE |
+-----------+ +------------+ +---+--+---+ +----+-----+

^ ^ ^
| | |

__| |___________ |
| | |
v | v

+----------+ +-----+------+ +-+--+-----+
| RELEASED |<----------+ DEPREPARED |<-------+ DISABLED |
| STATE | | STATE | | STATE |
+----------+ +------------+ +----------+

NOTE: State transitions between SDW_STREAM_ENABLED and SDW_STREAM_DISABLED
are only relevant when then INFO_PAUSE flag is supported at the

2156 Chapter 58. SoundWire Documentation

Linux Driver-api Documentation

ALSA/ASoC level. Likewise the transition between SDW_DISABLED_STATE and
SDW_PREPARED_STATE depends on the INFO_RESUME flag.

NOTE2: The framework implements basic state transition checks, but does not e.g.
check if a transition from DISABLED to ENABLED is valid on a specific platform.
Such tests need to be added at the ALSA/ASoC level.

Stream State Operations

Below section explains the operations done by the Bus on Master(s) and Slave(s)
as part of stream state transitions.

SDW_STREAM_ALLOCATED

Allocation state for stream. This is the entry state of the stream. Operations per-
formed before entering in this state:

(1) A stream runtime is allocated for the stream. This stream runtime is used as
a reference for all the operations performed on the stream.

(2) The resources required for holding stream runtime information are allocated
and initialized. This holds all stream related information such as stream type
(PCM/PDM) and parameters, Master and Slave interface associated with the
stream, stream state etc.

After all above operations are successful, stream state is set to
SDW_STREAM_ALLOCATED.

Bus implements below API for allocate a stream which needs to be called once per
stream. From ASoC DPCM framework, this stream state maybe linked to .startup()
operation.

int sdw_alloc_stream(char * stream_name);

SDW_STREAM_CONFIGURED

Configuration state of stream. Operations performed before entering in this state:

(1) The resources allocated for stream information in
SDW_STREAM_ALLOCATED state are updated here. This includes stream
parameters, Master(s) and Slave(s) runtime information associated with
current stream.

(2) All theMaster(s) and Slave(s) associated with current stream provide the port
information to Bus which includes port numbers allocated by Master(s) and
Slave(s) for current stream and their channel mask.

After all above operations are successful, stream state is set to
SDW_STREAM_CONFIGURED.

Bus implements below APIs for CONFIG state which needs to be called by the
respective Master(s) and Slave(s) associated with stream. These APIs can only be

58.2. Audio Stream in SoundWire 2157

Linux Driver-api Documentation

invoked once by respective Master(s) and Slave(s). From ASoC DPCM framework,
this stream state is linked to .hw_params() operation.

int sdw_stream_add_master(struct sdw_bus * bus,
struct sdw_stream_config * stream_config,
struct sdw_ports_config * ports_config,
struct sdw_stream_runtime * stream);

int sdw_stream_add_slave(struct sdw_slave * slave,
struct sdw_stream_config * stream_config,
struct sdw_ports_config * ports_config,
struct sdw_stream_runtime * stream);

SDW_STREAM_PREPARED

Prepare state of stream. Operations performed before entering in this state:

(0) Steps 1 and 2 are omitted in the case of a resume operation, where the bus
bandwidth is known.

(1) Bus parameters such as bandwidth, frame shape, clock frequency, are com-
puted based on current stream as well as already active stream(s) on Bus.
Re-computation is required to accommodate current stream on the Bus.

(2) Transport and port parameters of all Master(s) and Slave(s) port(s) are com-
puted for the current as well as already active stream based on frame shape
and clock frequency computed in step 1.

(3) Computed Bus and transport parameters are programmed in Master(s) and
Slave(s) registers. The banked registers programming is done on the alter-
nate bank (bank currently unused). Port(s) are enabled for the already active
stream(s) on the alternate bank (bank currently unused). This is done in order
to not disrupt already active stream(s).

(4) Once all the values are programmed, Bus initiates switch to alternate bank
where all new values programmed gets into effect.

(5) Ports of Master(s) and Slave(s) for current stream are prepared by program-
ming PrepareCtrl register.

After all above operations are successful, stream state is set to
SDW_STREAM_PREPARED.

Bus implements below API for PREPARE state which needs to be called once per
stream. From ASoC DPCM framework, this stream state is linked to .prepare()
operation. Since the .trigger() operations may not follow the .prepare(), a direct
transition from SDW_STREAM_PREPARED to SDW_STREAM_DEPREPARED is allowed.

int sdw_prepare_stream(struct sdw_stream_runtime * stream);

2158 Chapter 58. SoundWire Documentation

Linux Driver-api Documentation

SDW_STREAM_ENABLED

Enable state of stream. The data port(s) are enabled upon entering this state.
Operations performed before entering in this state:

(1) All the values computed in SDW_STREAM_PREPARED state are programmed
in alternate bank (bank currently unused). It includes programming of al-
ready active stream(s) as well.

(2) All the Master(s) and Slave(s) port(s) for the current stream are enabled on
alternate bank (bank currently unused) by programming ChannelEn register.

(3) Once all the values are programmed, Bus initiates switch to alternate bank
where all new values programmed gets into effect and port(s) associated with
current stream are enabled.

After all above operations are successful, stream state is set to
SDW_STREAM_ENABLED.

Bus implements below API for ENABLE state which needs to be called once per
stream. From ASoC DPCM framework, this stream state is linked to .trigger() start
operation.

int sdw_enable_stream(struct sdw_stream_runtime * stream);

SDW_STREAM_DISABLED

Disable state of stream. The data port(s) are disabled upon exiting this state.
Operations performed before entering in this state:

(1) All the Master(s) and Slave(s) port(s) for the current stream are disabled on
alternate bank (bank currently unused) by programming ChannelEn register.

(2) All the current configuration of Bus and active stream(s) are programmed
into alternate bank (bank currently unused).

(3) Once all the values are programmed, Bus initiates switch to alternate bank
where all new values programmed gets into effect and port(s) associated with
current stream are disabled.

After all above operations are successful, stream state is set to
SDW_STREAM_DISABLED.

Bus implements below API for DISABLED state which needs to be called once per
stream. From ASoC DPCM framework, this stream state is linked to .trigger() stop
operation.

When the INFO_PAUSE flag is supported, a direct transition to
SDW_STREAM_ENABLED is allowed.

For resume operations where ASoCwill use the .prepare() callback, the stream can
transition from SDW_STREAM_DISABLED to SDW_STREAM_PREPARED, with all required
settings restored but without updating the bandwidth and bit allocation.

int sdw_disable_stream(struct sdw_stream_runtime * stream);

58.2. Audio Stream in SoundWire 2159

Linux Driver-api Documentation

SDW_STREAM_DEPREPARED

De-prepare state of stream. Operations performed before entering in this state:

(1) All the port(s) of Master(s) and Slave(s) for current stream are de-prepared
by programming PrepareCtrl register.

(2) The payload bandwidth of current stream is reduced from the total bandwidth
requirement of bus and new parameters calculated and applied by performing
bank switch etc.

After all above operations are successful, stream state is set to
SDW_STREAM_DEPREPARED.

Bus implements below API for DEPREPARED state which needs to be called once
per stream. ALSA/ASoC do not have a concept of‘deprepare’, and the mapping
from this stream state to ALSA/ASoC operation may be implementation specific.

When the INFO_PAUSE flag is supported, the stream state is linked to the
.hw_free() operation - the stream is not deprepared on a TRIGGER_STOP.

Other implementations may transition to the SDW_STREAM_DEPREPARED
state on TRIGGER_STOP, should they require a transition through the
SDW_STREAM_PREPARED state.

int sdw_deprepare_stream(struct sdw_stream_runtime * stream);

SDW_STREAM_RELEASED

Release state of stream. Operations performed before entering in this state:

(1) Release port resources for all Master(s) and Slave(s) port(s) associated with
current stream.

(2) Release Master(s) and Slave(s) runtime resources associated with current
stream.

(3) Release stream runtime resources associated with current stream.

After all above operations are successful, stream state is set to
SDW_STREAM_RELEASED.

Bus implements below APIs for RELEASE state which needs to be called by all the
Master(s) and Slave(s) associated with stream. From ASoC DPCM framework, this
stream state is linked to .hw_free() operation.

int sdw_stream_remove_master(struct sdw_bus * bus,
struct sdw_stream_runtime * stream);

int sdw_stream_remove_slave(struct sdw_slave * slave,
struct sdw_stream_runtime * stream);

The .shutdown() ASoC DPCM operation calls below Bus API to release stream as-
signed as part of ALLOCATED state.

In .shutdown() the data structure maintaining stream state are freed up.

2160 Chapter 58. SoundWire Documentation

Linux Driver-api Documentation

void sdw_release_stream(struct sdw_stream_runtime * stream);

58.2.2 Not Supported

1. A single port with multiple channels supported cannot be used between two
streams or across stream. For example a port with 4 channels cannot be used
to handle 2 independent stereo streams even though it’s possible in theory in
SoundWire.

58.3 SoundWire Error Handling

The SoundWire PHY was designed with care and errors on the bus are going to be
very unlikely, and if they happen it should be limited to single bit errors. Examples
of this design can be found in the synchronization mechanism (sync loss after two
errors) and short CRCs used for the Bulk Register Access.

The errors can be detected with multiple mechanisms:

1. Bus clash or parity errors: This mechanism relies on low-level detectors that
are independent of the payload and usages, and they cover both control and
audio data. The current implementation only logs such errors. Improvements
could be invalidating an entire programming sequence and restarting from
a known position. In the case of such errors outside of a control/command
sequence, there is no concealment or recovery for audio data enabled by the
SoundWire protocol, the location of the error will also impact its audibility
(most-significant bits will be more impacted in PCM), and after a number of
such errors are detected the bus might be reset. Note that bus clashes due to
programming errors (two streams using the same bit slots) or electrical issues
during the transmit/receive transition cannot be distinguished, although a
recurring bus clash when audio is enabled is a indication of a bus allocation
issue. The interrupt mechanism can also help identify Slaves which detected
a Bus Clash or a Parity Error, but they may not be responsible for the errors
so resetting them individually is not a viable recovery strategy.

2. Command status: Each command is associated with a status, which only cov-
ers transmission of the data between devices. The ACK status indicates that
the command was received and will be executed by the end of the current
frame. A NAK indicates that the command was in error and will not be ap-
plied. In case of a bad programming (command sent to non-existent Slave
or to a non-implemented register) or electrical issue, no response signals the
command was ignored. Some Master implementations allow for a command
to be retransmitted several times. If the retransmission fails, backtracking
and restarting the entire programming sequence might be a solution. Al-
ternatively some implementations might directly issue a bus reset and re-
enumerate all devices.

3. Timeouts: In a number of cases such as ChannelPrepare or ClockStopPre-
pare, the bus driver is supposed to poll a register field until it transitions to
a NotFinished value of zero. The MIPI SoundWire spec 1.1 does not define
timeouts but the MIPI SoundWire DisCo document adds recommendation on

58.3. SoundWire Error Handling 2161

Linux Driver-api Documentation

timeouts. If such configurations do not complete, the driver will return a
-ETIMEOUT. Such timeouts are symptoms of a faulty Slave device and are
likely impossible to recover from.

Errors during global reconfiguration sequences are extremely difficult to handle:

1. BankSwitch: An error during the last command issuing a BankSwitch is dif-
ficult to backtrack from. Retransmitting the Bank Switch command may be
possible in a single segment setup, but this can lead to synchronization prob-
lems when enabling multiple bus segments (a command with side effects such
as frame reconfiguration would be handled at different times). A global hard-
reset might be the best solution.

Note that SoundWire does not provide a mechanism to detect illegal values writ-
ten in valid registers. In a number of cases the standard even mentions that the
Slavemight behave in implementation-definedways. The bus implementation does
not provide a recovery mechanism for such errors, Slave or Master driver imple-
menters are responsible for writing valid values in valid registers and implement
additional range checking if needed.

58.4 SoundWire Locking

This document explains lockingmechanism of the SoundWire Bus. Bus uses follow-
ing locks in order to avoid race conditions in Bus operations on shared resources.

• Bus lock

• Message lock

58.4.1 Bus lock

SoundWire Bus lock is a mutex and is part of Bus data structure (sdw_bus) which
is used for every Bus instance. This lock is used to serialize each of the following
operations(s) within SoundWire Bus instance.

• Addition and removal of Slave(s), changing Slave status.

• Prepare, Enable, Disable and De-prepare stream operations.

• Access of Stream data structure.

58.4.2 Message lock

SoundWire message transfer lock. This mutex is part of Bus data structure
(sdw_bus). This lock is used to serialize the message transfers (read/write) within
a SoundWire Bus instance.

Below examples show how locks are acquired.

2162 Chapter 58. SoundWire Documentation

Linux Driver-api Documentation

Example 1

Message transfer.

1. For every message transfer

a. Acquire Message lock.

b. Transfer message (Read/Write) to Slave1 or broadcast message on Bus
in case of bank switch.

c. Release Message lock

+----------+ +---------+
Bus		Master
		Driver
+----+-----+ +----+----+

| |
| bus->ops->xfer_msg() |
<-------------------------------+ a. Acquire Message lock
| | b. Transfer message
| |
+-------------------------------> c. Release Message lock
| return success/error | d. Return success/error
| |
+ +

Example 2

Prepare operation.

1. Acquire lock for Bus instance associated with Master 1.

2. For every message transfer in Prepare operation

a. Acquire Message lock.

b. Transfer message (Read/Write) to Slave1 or broadcast message on Bus
in case of bank switch.

c. Release Message lock.

3. Release lock for Bus instance associated with Master 1

+----------+ +---------+
Bus		Master
		Driver
+----+-----+ +----+----+

| |
| sdw_prepare_stream() |
<-------------------------------+ 1. Acquire bus lock
| | 2. Perform stream prepare
| |
| |

(continues on next page)

58.4. SoundWire Locking 2163

Linux Driver-api Documentation

(continued from previous page)
| bus->ops->xfer_msg() |
<-------------------------------+ a. Acquire Message lock
| | b. Transfer message
| |
+-------------------------------> c. Release Message lock
| return success/error | d. Return success/error
| |
| |
| return success/error | 3. Release bus lock
+-------------------------------> 4. Return success/error
| |
+ +

2164 Chapter 58. SoundWire Documentation

CHAPTER

FIFTYNINE

THERMAL

59.1 CPU cooling APIs How To

Written by Amit Daniel Kachhap <amit.kachhap@linaro.org>

Updated: 6 Jan 2015

Copyright (c) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)

59.1.1 0. Introduction

The generic cpu cooling(freq clipping) provides registration/unregistration APIs
to the caller. The binding of the cooling devices to the trip point is left for the user.
The registration APIs returns the cooling device pointer.

59.1.2 1. cpu cooling APIs

1.1 cpufreq registration/unregistration APIs

struct thermal_cooling_device
*cpufreq_cooling_register(struct cpumask *clip_cpus)

This interface function registers the cpufreq cooling device with
the name“thermal-cpufreq-%x”. This api can support multiple
instances of cpufreq cooling devices.

clip_cpus:
cpumask of cpus where the frequency constraints will hap-
pen.

struct thermal_cooling_device
*of_cpufreq_cooling_register(struct cpufreq_policy *policy)

This interface function registers the cpufreq cooling device with the
name“thermal-cpufreq-%x”linking it with a device tree node, in or-
der to bind it via the thermal DT code. This api can support multiple
instances of cpufreq cooling devices.

policy: CPUFreq policy.

2165

mailto:amit.kachhap@linaro.org
http://www.samsung.com

Linux Driver-api Documentation

void cpufreq_cooling_unregister(struct thermal_cooling_device␣
↪→*cdev)

This interface function unregisters the“thermal-cpufreq-%x”cooling
device.

cdev: Cooling device pointer which has to be unregistered.

59.1.3 2. Power models

The power API registration functions provide a simple power model for CPUs.
The current power is calculated as dynamic power (static power isn’t supported
currently). This power model requires that the operating-points of the CPUs are
registered using the kernel’s opp library and the cpufreq_frequency_table is as-
signed to the struct device of the cpu. If you are using CONFIG_CPUFREQ_DT
then the cpufreq_frequency_table should already be assigned to the cpu device.

The dynamic power consumption of a processor depends on many factors. For a
given processor implementation the primary factors are:

• The time the processor spends running, consuming dynamic power, as com-
pared to the time in idle states where dynamic consumption is negligible.
Herein we refer to this as ‘utilisation’.

• The voltage and frequency levels as a result of DVFS. The DVFS level is a
dominant factor governing power consumption.

• In running time the‘execution’behaviour (instruction types, memory access
patterns and so forth) causes, in most cases, a second order variation. In
pathological cases this variation can be significant, but typically it is of a
much lesser impact than the factors above.

A high level dynamic power consumption model may then be represented as:

Pdyn = f(run) * Voltage^2 * Frequency * Utilisation

f(run) here represents the described execution behaviour and its result has a units
of Watts/Hz/Volt^2 (this often expressed in mW/MHz/uVolt^2)

The detailed behaviour for f(run) could be modelled on-line. However, in practice,
such an on-line model has dependencies on a number of implementation specific
processor support and characterisation factors. Therefore, in initial implementa-
tion that contribution is represented as a constant coefficient. This is a simplifica-
tion consistent with the relative contribution to overall power variation.

In this simplified representation our model becomes:

Pdyn = Capacitance * Voltage^2 * Frequency * Utilisation

Where capacitance is a constant that represents an indicative running time dy-
namic power coefficient in fundamental units of mW/MHz/uVolt^2. Typical values
for mobile CPUs might lie in range from 100 to 500. For reference, the approx-
imate values for the SoC in ARM’s Juno Development Platform are 530 for the
Cortex-A57 cluster and 140 for the Cortex-A53 cluster.

2166 Chapter 59. Thermal

Linux Driver-api Documentation

59.2 CPU Idle Cooling

59.2.1 Situation:

Under certain circumstances a SoC can reach a critical temperature limit and is
unable to stabilize the temperature around a temperature control. When the SoC
has to stabilize the temperature, the kernel can act on a cooling device to mitigate
the dissipated power. When the critical temperature is reached, a decision must
be taken to reduce the temperature, that, in turn impacts performance.

Another situation is when the silicon temperature continues to increase even after
the dynamic leakage is reduced to its minimum by clock gating the component.
This runaway phenomenon can continue due to the static leakage. The only so-
lution is to power down the component, thus dropping the dynamic and static
leakage that will allow the component to cool down.

Last but not least, the system can ask for a specific power budget but because
of the OPP density, we can only choose an OPP with a power budget lower than
the requested one and under-utilize the CPU, thus losing performance. In other
words, one OPP under-utilizes the CPUwith a power less than the requested power
budget and the next OPP exceeds the power budget. An intermediate OPP could
have been used if it were present.

59.2.2 Solutions:

If we can remove the static and the dynamic leakage for a specific duration in
a controlled period, the SoC temperature will decrease. Acting on the idle state
duration or the idle cycle injection period, we can mitigate the temperature by
modulating the power budget.

The Operating Performance Point (OPP) density has a great influence on the con-
trol precision of cpufreq, however different vendors have a plethora of OPP den-
sity, and some have large power gap between OPPs, that will result in loss of
performance during thermal control and loss of power in other scenarios.

At a specific OPP, we can assume that injecting idle cycle on all CPUs belong to the
same cluster, with a duration greater than the cluster idle state target residency,
we lead to dropping the static and the dynamic leakage for this period (modulo
the energy needed to enter this state). So the sustainable power with idle cycles
has a linear relation with the OPP’s sustainable power and can be computed with
a coefficient similar to:

Power(IdleCycle) = Coef x Power(OPP)

59.2. CPU Idle Cooling 2167

Linux Driver-api Documentation

59.2.3 Idle Injection:

The base concept of the idle injection is to force the CPU to go to an idle state for
a specified time each control cycle, it provides another way to control CPU power
and heat in addition to cpufreq. Ideally, if all CPUs belonging to the same cluster,
inject their idle cycles synchronously, the cluster can reach its power down state
with a minimum power consumption and reduce the static leakage to almost zero.
However, these idle cycles injection will add extra latencies as the CPUs will have
to wakeup from a deep sleep state.

We use a fixed duration of idle injection that gives an acceptable performance
penalty and a fixed latency. Mitigation can be increased or decreased by modulat-
ing the duty cycle of the idle injection.

^
|
|
|------- -------
|_______|_______________________|_______|___________

<------>
idle <---------------------->

running

<----------------------------->
duty cycle 25%

The implementation of the cooling device bases the number of states on the duty
cycle percentage. When no mitigation is happening the cooling device state is
zero, meaning the duty cycle is 0%.

When the mitigation begins, depending on the governor’s policy, a starting state
is selected. With a fixed idle duration and the duty cycle (aka the cooling device
state), the running duration can be computed.

The governor will change the cooling device state thus the duty cycle and this
variation will modulate the cooling effect.

^
|
|
|------- -------
|_______|_______________|_______|___________

<------>
idle <-------------->

running

<--------------------->
duty cycle 33%

^
|
|
|------- -------

(continues on next page)

2168 Chapter 59. Thermal

Linux Driver-api Documentation

(continued from previous page)
|_______|_______|_______|___________

<------>
idle <------>

running

<------------->
duty cycle 50%

The idle injection duration value must comply with the constraints:

• It is less than or equal to the latency we tolerate when the mitigation begins.
It is platform dependent and will depend on the user experience, reactivity
vs performance trade off we want. This value should be specified.

• It is greater than the idle state’s target residency we want to go for thermal
mitigation, otherwise we end up consuming more energy.

59.2.4 Power considerations

When we reach the thermal trip point, we have to sustain a specified power for a
specific temperature but at this time we consume:

Power = Capacitance x Voltage^2 x Frequency x Utilisation

⋯which is more than the sustainable power (or there is something wrong in the
system setup). The‘Capacitance’and‘Utilisation’are a fixed value,‘Voltage’
and the ‘Frequency’are fixed artificially because we don’t want to change the
OPP. We can group the ‘Capacitance’and the ‘Utilisation’into a single term
which is the‘Dynamic Power Coefficient (Cdyn)’Simplifying the above, we have:

Pdyn = Cdyn x Voltage^2 x Frequency

The power allocator governor will ask us somehow to reduce our power in order to
target the sustainable power defined in the device tree. So with the idle injection
mechanism, we want an average power (Ptarget) resulting in an amount of time
running at full power on a specific OPP and idle another amount of time. That
could be put in a equation:

P(opp)target = ((Trunning x (P(opp)running) + (Tidle x P(opp)idle)) /

(Trunning + Tidle)

⋯
Tidle = Trunning x ((P(opp)running / P(opp)target) - 1)

At this point if we know the running period for the CPU, that gives us the idle
injection we need. Alternatively if we have the idle injection duration, we can
compute the running duration with:

Trunning = Tidle / ((P(opp)running / P(opp)target) - 1)

Practically, if the running power is less than the targeted power, we end up with a
negative time value, so obviously the equation usage is bound to a power reduction,

59.2. CPU Idle Cooling 2169

Linux Driver-api Documentation

hence a higher OPP is needed to have the running power greater than the targeted
power.

However, in this demonstration we ignore three aspects:

• The static leakage is not defined here, we can introduce it in the equation
but assuming it will be zero most of the time as it is difficult to get the values
from the SoC vendors

• The idle state wake up latency (or entry + exit latency) is not taken into ac-
count, it must be added in the equation in order to rigorously compute the
idle injection

• The injected idle duration must be greater than the idle state target resi-
dency, otherwise we end up consuming more energy and potentially invert
the mitigation effect

So the final equation is:

Trunning = (Tidle - Twakeup) x (((P(opp)dyn + P(opp)static) -
P(opp)target) / P(opp)target)

59.3 Generic Thermal Sysfs driver How To

Written by Sujith Thomas <sujith.thomas@intel.com>, Zhang Rui
<rui.zhang@intel.com>

Updated: 2 January 2008

Copyright (c) 2008 Intel Corporation

59.3.1 0. Introduction

The generic thermal sysfs provides a set of interfaces for thermal zone devices
(sensors) and thermal cooling devices (fan, processor⋯) to register with the ther-
mal management solution and to be a part of it.

This how-to focuses on enabling new thermal zone and cooling devices to partici-
pate in thermal management. This solution is platform independent and any type
of thermal zone devices and cooling devices should be able to make use of the
infrastructure.

The main task of the thermal sysfs driver is to expose thermal zone attributes as
well as cooling device attributes to the user space. An intelligent thermal manage-
ment application can make decisions based on inputs from thermal zone attributes
(the current temperature and trip point temperature) and throttle appropriate de-
vices.

• [0-*] denotes any positive number starting from 0

• [1-*] denotes any positive number starting from 1

2170 Chapter 59. Thermal

mailto:sujith.thomas@intel.com
mailto:rui.zhang@intel.com

Linux Driver-api Documentation

59.3.2 1. thermal sysfs driver interface functions

1.1 thermal zone device interface

struct thermal_zone_device
*thermal_zone_device_register(char *type,

int trips, int mask, void *devdata,
struct thermal_zone_device_ops *ops,
const struct thermal_zone_params␣

↪→*tzp,
int passive_delay, int polling_

↪→delay))

This interface function adds a new thermal zone device (sensor) to
/sys/class/thermal folder as thermal_zone[0-*]. It tries to bind all the
thermal cooling devices registered at the same time.

type: the thermal zone type.
trips: the total number of trip points this thermal zone supports.
mask: Bit string: If ‘n’th bit is set, then trip point ‘n’is writeable.
devdata: device private data
ops: thermal zone device call-backs.

.bind: bind the thermal zone device with a thermal cooling device.

.unbind: unbind the thermal zone device with a thermal cooling
device.

.get_temp: get the current temperature of the thermal zone.

.set_trips: set the trip points window. Whenever the current tem-
perature is updated, the trip points immediately below and
above the current temperature are found.

.get_mode: get the current mode (enabled/disabled) of the thermal
zone.

•“enabled”means the kernel thermal management is enabled.
•“disabled”will prevent kernel thermal driver action upon trip
points so that user applications can take charge of thermal
management.

.set_mode: set the mode (enabled/disabled) of the thermal zone.

.get_trip_type: get the type of certain trip point.

.get_trip_temp: get the temperature above which the certain trip
point will be fired.

.set_emul_temp: set the emulation temperature which helps in de-
bugging different threshold temperature points.

tzp: thermal zone platform parameters.

passive_delay: number of milliseconds to wait between polls when per-
forming passive cooling.

59.3. Generic Thermal Sysfs driver How To 2171

Linux Driver-api Documentation

polling_delay: number of milliseconds to wait between polls when
checking whether trip points have been crossed (0 for interrupt
driven systems).

void thermal_zone_device_unregister(struct thermal_zone_device␣
↪→*tz)

This interface function removes the thermal zone device. It deletes the
corresponding entry from /sys/class/thermal folder and unbinds all the
thermal cooling devices it uses.

struct thermal_zone_device
*thermal_zone_of_sensor_register(struct device *dev, int␣
↪→sensor_id,

void *data,
const struct thermal_zone_of_device_

↪→ops *ops)

This interface adds a new sensor to a DT thermal zone. This
function will search the list of thermal zones described in device
tree and look for the zone that refer to the sensor device pointed
by dev->of_node as temperature providers. For the zone point-
ing to the sensor node, the sensor will be added to the DT ther-
mal zone device.

The parameters for this interface are:

dev: Device node of sensor containing valid node pointer in
dev->of_node.

sensor_id: a sensor identifier, in case the sensor IP has more
than one sensors

data: a private pointer (owned by the caller) that will be passed
back, when a temperature reading is needed.

ops: struct thermal_zone_of_device_ops *.

get_tempa pointer to a function that reads the sensor tem-
perature. This is mandatory callback provided by
sensor driver.

set_tripsa pointer to a function that sets a tempera-
ture window. When this window is left the
driver must inform the thermal core via ther-
mal_zone_device_update.

get_trenda pointer to a function that reads the sensor tem-
perature trend.

set_emul_tempa pointer to a function that sets sensor emulated
temperature.

The thermal zone temperature is provided by the get_temp()
function pointer of thermal_zone_of_device_ops. When called,
it will have the private pointer @data back.

It returns error pointer if fails otherwise valid thermal zone

2172 Chapter 59. Thermal

Linux Driver-api Documentation

device handle. Caller should check the return handle with
IS_ERR() for finding whether success or not.

void thermal_zone_of_sensor_unregister(struct device *dev,
struct thermal_

↪→zone_device *tzd)

This interface unregisters a sensor from a DT thermal
zone which was successfully added by interface ther-
mal_zone_of_sensor_register(). This function removes the
sensor callbacks and private data from the thermal zone device
registered with thermal_zone_of_sensor_register() interface.
It will also silent the zone by remove the .get_temp() and
get_trend() thermal zone device callbacks.

struct thermal_zone_device
*devm_thermal_zone_of_sensor_register(struct device *dev,

int sensor_id,
void *data,
const struct thermal_zone_of_device_

↪→ops *ops)

This interface is resource managed version of ther-
mal_zone_of_sensor_register().

All details of thermal_zone_of_sensor_register() described in
section 1.1.3 is applicable here.

The benefit of using this interface to register sen-
sor is that it is not require to explicitly call ther-
mal_zone_of_sensor_unregister() in error path or during
driver unbinding as this is done by driver resource manager.

void devm_thermal_zone_of_sensor_unregister(struct device␣
↪→*dev,

struct thermal_zone_
↪→device *tzd)

This interface is resource managed version of ther-
mal_zone_of_sensor_unregister(). All details of ther-
mal_zone_of_sensor_unregister() described in section 1.1.4
is applicable here. Normally this function will not need to be
called and the resource management code will ensure that the
resource is freed.

int thermal_zone_get_slope(struct thermal_zone_device *tz)

This interface is used to read the slope attribute value for the
thermal zone device, which might be useful for platform drivers
for temperature calculations.

int thermal_zone_get_offset(struct thermal_zone_device␣
↪→*tz)

This interface is used to read the offset attribute value for the

59.3. Generic Thermal Sysfs driver How To 2173

Linux Driver-api Documentation

thermal zone device, which might be useful for platform drivers
for temperature calculations.

1.2 thermal cooling device interface

struct thermal_cooling_device
*thermal_cooling_device_register(char *name,

void *devdata, struct thermal_cooling_device_ops␣
↪→*)

This interface function adds a new thermal cooling device
(fan/processor/⋯) to /sys/class/thermal/ folder as cooling_device[0-
*]. It tries to bind itself to all the thermal zone devices registered at the
same time.

name: the cooling device name.
devdata: device private data.
ops: thermal cooling devices call-backs.

.get_max_state: get the Maximum throttle state of the cooling de-
vice.

.get_cur_state: get the Currently requested throttle state of the
cooling device.

.set_cur_state: set the Current throttle state of the cooling device.

void thermal_cooling_device_unregister(struct thermal_cooling_
↪→device *cdev)

This interface function removes the thermal cooling device. It deletes
the corresponding entry from /sys/class/thermal folder and unbinds itself
from all the thermal zone devices using it.

1.3 interface for binding a thermal zone device with a thermal cooling
device

int thermal_zone_bind_cooling_device(struct thermal_zone_device␣
↪→*tz,

int trip, struct thermal_cooling_device *cdev,
unsigned long upper, unsigned long lower, unsigned int␣

↪→weight);

This interface function binds a thermal cooling device to a particular trip
point of a thermal zone device.

This function is usually called in the thermal zone device .bind callback.

tz: the thermal zone device
cdev: thermal cooling device
trip: indicates which trip point in this thermal zone the cooling device

is associated with.

2174 Chapter 59. Thermal

Linux Driver-api Documentation

upper: the Maximum cooling state for this trip point. THER-
MAL_NO_LIMIT means no upper limit, and the cooling device can
be in max_state.

lower: the Minimum cooling state can be used for this trip point. THER-
MAL_NO_LIMIT means no lower limit, and the cooling device can be
in cooling state 0.

weight: the influence of this cooling device in this thermal zone. See
1.4.1 below for more information.

int thermal_zone_unbind_cooling_device(struct thermal_zone_device␣
↪→*tz,

int trip, struct thermal_cooling_device␣
↪→*cdev);

This interface function unbinds a thermal cooling device from a particu-
lar trip point of a thermal zone device. This function is usually called in
the thermal zone device .unbind callback.

tz: the thermal zone device
cdev: thermal cooling device
trip: indicates which trip point in this thermal zone the cooling device

is associated with.

1.4 Thermal Zone Parameters

struct thermal_bind_params

This structure defines the following parameters that are used to bind a
zone with a cooling device for a particular trip point.

.cdev: The cooling device pointer

.weight: The ‘influence’of a particular cooling device on this zone.
This is relative to the rest of the cooling devices. For example, if
all cooling devices have a weight of 1, then they all contribute the
same. You can use percentages if you want, but it’s not mandatory.
A weight of 0 means that this cooling device doesn’t contribute to
the cooling of this zone unless all cooling devices have a weight of
0. If all weights are 0, then they all contribute the same.

.trip_mask: This is a bit mask that gives the binding relation between
this thermal zone and cdev, for a particular trip point. If nth bit is
set, then the cdev and thermal zone are bound for trip point n.

.binding_limits: This is an array of cooling state limits. Must have ex-
actly 2 * thermal_zone.number_of_trip_points. It is an array con-
sisting of tuples <lower-state upper-state> of state limits. Each trip
will be associated with one state limit tuple when binding. A NULL
pointer means <THERMAL_NO_LIMITS THERMAL_NO_LIMITS>
on all trips. These limits are used when binding a cdev to a trip
point.

59.3. Generic Thermal Sysfs driver How To 2175

Linux Driver-api Documentation

.match: This call back returns success(0) if the ‘tz and cdev’need to
be bound, as per platform data.

struct thermal_zone_params

This structure defines the platform level parameters for a thermal zone.
This data, for each thermal zone should come from the platform layer.
This is an optional feature where some platforms can choose not to pro-
vide this data.

.governor_name: Name of the thermal governor used for this zone

.no_hwmon: a boolean to indicate if the thermal to hwmon sysfs inter-
face is required. when no_hwmon == false, a hwmon sysfs interface
will be created. when no_hwmon == true, nothing will be done. In
case the thermal_zone_params is NULL, the hwmon interface will
be created (for backward compatibility).

.num_tbps: Number of thermal_bind_params entries for this zone

.tbp: thermal_bind_params entries

59.3.3 2. sysfs attributes structure

RO read only value
WO write only value
RW read/write value

Thermal sysfs attributes will be represented under /sys/class/thermal. Hwmon
sysfs I/F extension is also available under /sys/class/hwmon if hwmon is compiled
in or built as a module.

Thermal zone device sys I/F, created once it’s registered:
/sys/class/thermal/thermal_zone[0-*]:

|---type: Type of the thermal zone
|---temp: Current temperature
|---mode: Working mode of the thermal zone
|---policy: Thermal governor used for this zone
|---available_policies: Available thermal governors for this zone
|---trip_point_[0-*]_temp: Trip point temperature
|---trip_point_[0-*]_type: Trip point type
|---trip_point_[0-*]_hyst: Hysteresis value for this trip point
|---emul_temp: Emulated temperature set node
|---sustainable_power: Sustainable dissipatable power
|---k_po: Proportional term during temperature␣

↪→overshoot
|---k_pu: Proportional term during temperature␣

↪→undershoot
|---k_i: PID's integral term in the power allocator␣

↪→gov
|---k_d: PID's derivative term in the power allocator
|---integral_cutoff: Offset above which errors are accumulated

(continues on next page)

2176 Chapter 59. Thermal

Linux Driver-api Documentation

(continued from previous page)
|---slope: Slope constant applied as linear␣

↪→extrapolation
|---offset: Offset constant applied as linear␣

↪→extrapolation

Thermal cooling device sys I/F, created once it’s registered:
/sys/class/thermal/cooling_device[0-*]:

|---type: Type of the cooling device(processor/fan/...)
|---max_state: Maximum cooling state of the cooling device
|---cur_state: Current cooling state of the cooling device
|---stats: Directory containing cooling device's␣

↪→statistics
|---stats/reset: Writing any value resets the statistics
|---stats/time_in_state_ms: Time (msec) spent in various cooling states
|---stats/total_trans: Total number of times cooling state is␣

↪→changed
|---stats/trans_table: Cooing state transition table

Then next two dynamic attributes are created/removed in pairs. They rep-
resent the relationship between a thermal zone and its associated cooling
device. They are created/removed for each successful execution of ther-
mal_zone_bind_cooling_device/thermal_zone_unbind_cooling_device.

/sys/class/thermal/thermal_zone[0-*]:
|---cdev[0-*]: [0-*]th cooling device in current thermal␣

↪→zone
|---cdev[0-*]_trip_point: Trip point that cdev[0-*] is associated with
|---cdev[0-*]_weight: Influence of the cooling device in

this thermal zone

Besides the thermal zone device sysfs I/F and cooling device sysfs I/F, the generic
thermal driver also creates a hwmon sysfs I/F for each _type_ of thermal zone
device. E.g. the generic thermal driver registers one hwmon class device and
build the associated hwmon sysfs I/F for all the registered ACPI thermal zones.

/sys/class/hwmon/hwmon[0-*]:
|---name: The type of the thermal zone devices
|---temp[1-*]_input: The current temperature of thermal zone [1-*]
|---temp[1-*]_critical: The critical trip point of thermal zone [1-*]

Please read Documentation/hwmon/sysfs-interface.rst for additional information.

Thermal zone attributes

type Strings which represent the thermal zone type. This is given by thermal zone
driver as part of registration. E.g: “acpitz”indicates it’s an ACPI thermal
device. In order to keep it consistent with hwmon sys attribute; this should
be a short, lowercase string, not containing spaces nor dashes. RO, Required

temp Current temperature as reported by thermal zone (sensor). Unit: millide-
gree Celsius RO, Required

59.3. Generic Thermal Sysfs driver How To 2177

Linux Driver-api Documentation

mode One of the predefined values in [enabled, disabled]. This file gives informa-
tion about the algorithm that is currently managing the thermal zone. It can
be either default kernel based algorithm or user space application.

enabled enable Kernel Thermal management.
disabled Preventing kernel thermal zone driver actions upon trip points so

that user application can take full charge of the thermal management.

RW, Optional

policy One of the various thermal governors used for a particular zone.
RW, Required

available_policies Available thermal governors which can be used for a particu-
lar zone.

RO, Required

trip_point_[0-*]_temp The temperature above which trip point will be fired.
Unit: millidegree Celsius

RO, Optional

trip_point_[0-*]_type Strings which indicate the type of the trip point.
E.g. it can be one of critical, hot, passive, active[0-*] for ACPI thermal zone.

RO, Optional

trip_point_[0-*]_hyst The hysteresis value for a trip point, represented as an in-
teger Unit: Celsius RW, Optional

cdev[0-*] Sysfs link to the thermal cooling device node where the sys I/F for cool-
ing device throttling control represents.

RO, Optional

cdev[0-*]_trip_point The trip point in this thermal zone which cdev[0-*] is asso-
ciated with; -1 means the cooling device is not associated with any trip point.

RO, Optional

cdev[0-*]_weight The influence of cdev[0-*] in this thermal zone. This value is
relative to the rest of cooling devices in the thermal zone. For example, if a
cooling device has a weight double than that of other, it’s twice as effective
in cooling the thermal zone.

RW, Optional

passive Attribute is only present for zones in which the passive cooling policy
is not supported by native thermal driver. Default is zero and can be set to
a temperature (in millidegrees) to enable a passive trip point for the zone.
Activation is done by polling with an interval of 1 second.

Unit: millidegrees Celsius

Valid values: 0 (disabled) or greater than 1000

RW, Optional

2178 Chapter 59. Thermal

Linux Driver-api Documentation

emul_temp Interface to set the emulated temperature method in thermal zone
(sensor). After setting this temperature, the thermal zone may pass this
temperature to platform emulation function if registered or cache it locally.
This is useful in debugging different temperature threshold and its associ-
ated cooling action. This is write only node and writing 0 on this node should
disable emulation. Unit: millidegree Celsius

WO, Optional

WARNING: Be careful while enabling this option on production sys-
tems, because userland can easily disable the thermal policy by
simply flooding this sysfs node with low temperature values.

sustainable_power An estimate of the sustained power that can be dissipated by
the thermal zone. Used by the power allocator governor. For more informa-
tion see Documentation/driver-api/thermal/power_allocator.rst

Unit: milliwatts

RW, Optional

k_po The proportional term of the power allocator governor’s PID controller dur-
ing temperature overshoot. Temperature overshoot is when the current tem-
perature is above the“desired temperature”trip point. For more information
see Documentation/driver-api/thermal/power_allocator.rst

RW, Optional

k_pu The proportional term of the power allocator governor’s PID controller dur-
ing temperature undershoot. Temperature undershoot is when the current
temperature is below the “desired temperature”trip point. For more infor-
mation see Documentation/driver-api/thermal/power_allocator.rst

RW, Optional

k_i The integral term of the power allocator governor’s PID controller. This term
allows the PID controller to compensate for long term drift. For more infor-
mation see Documentation/driver-api/thermal/power_allocator.rst

RW, Optional

k_d The derivative term of the power allocator governor’s PID controller. For
more information see Documentation/driver-api/thermal/power_allocator.rst

RW, Optional

integral_cutoff Temperature offset from the desired temperature trip point
above which the integral term of the power allocator governor’s PID
controller starts accumulating errors. For example, if integral_cutoff is
0, then the integral term only accumulates error when temperature is
above the desired temperature trip point. For more information see
Documentation/driver-api/thermal/power_allocator.rst

Unit: millidegree Celsius

RW, Optional

slope The slope constant used in a linear extrapolation model to determine a
hotspot temperature based off the sensor’s raw readings. It is up to the
device driver to determine the usage of these values.

59.3. Generic Thermal Sysfs driver How To 2179

Linux Driver-api Documentation

RW, Optional

offset The offset constant used in a linear extrapolation model to determine a
hotspot temperature based off the sensor’s raw readings. It is up to the
device driver to determine the usage of these values.

RW, Optional

Cooling device attributes

type String which represents the type of device, e.g:
• for generic ACPI: should be “Fan”, “Processor”or “LCD”
• for memory controller device on intel_menlow platform: should be“Mem-
ory controller”.

RO, Required

max_state The maximum permissible cooling state of this cooling device.

RO, Required

cur_state The current cooling state of this cooling device. The value can any
integer numbers between 0 and max_state:

• cur_state == 0 means no cooling

• cur_state == max_state means the maximum cooling.

RW, Required

stats/reset Writing any value resets the cooling device’s statistics. WO, Required
stats/time_in_state_ms: The amount of time spent by the cooling device in vari-

ous cooling states. The output will have“<state> <time>”pair in each line,
which will mean this cooling device spent <time> msec of time at <state>.
Output will have one line for each of the supported states. usertime units
here is 10mS (similar to other time exported in /proc). RO, Required

stats/total_trans: A single positive value showing the total number of times the
state of a cooling device is changed.

RO, Required

stats/trans_table: This gives fine grained information about all the cooling state
transitions. The cat output here is a two dimensional matrix, where an entry
<i,j> (row i, column j) represents the number of transitions from State_i to
State_j. If the transition table is bigger than PAGE_SIZE, reading this will
return an -EFBIG error. RO, Required

2180 Chapter 59. Thermal

Linux Driver-api Documentation

59.3.4 3. A simple implementation

ACPI thermal zone may support multiple trip points like critical, hot, passive, ac-
tive. If an ACPI thermal zone supports critical, passive, active[0] and active[1]
at the same time, it may register itself as a thermal_zone_device (thermal_zone1)
with 4 trip points in all. It has one processor and one fan, which are both registered
as thermal_cooling_device. Both are considered to have the same effectiveness in
cooling the thermal zone.

If the processor is listed in _PSL method, and the fan is listed in _AL0 method, the
sys I/F structure will be built like this:

/sys/class/thermal:
|thermal_zone1:

|---type: acpitz
|---temp: 37000
|---mode: enabled
|---policy: step_wise
|---available_policies: step_wise fair_share
|---trip_point_0_temp: 100000
|---trip_point_0_type: critical
|---trip_point_1_temp: 80000
|---trip_point_1_type: passive
|---trip_point_2_temp: 70000
|---trip_point_2_type: active0
|---trip_point_3_temp: 60000
|---trip_point_3_type: active1
|---cdev0: --->/sys/class/thermal/cooling_device0
|---cdev0_trip_point: 1 /* cdev0 can be used for passive */
|---cdev0_weight: 1024
|---cdev1: --->/sys/class/thermal/cooling_device3
|---cdev1_trip_point: 2 /* cdev1 can be used for active[0]*/
|---cdev1_weight: 1024

|cooling_device0:
|---type: Processor
|---max_state: 8
|---cur_state: 0

|cooling_device3:
|---type: Fan
|---max_state: 2
|---cur_state: 0

/sys/class/hwmon:
|hwmon0:

|---name: acpitz
|---temp1_input: 37000
|---temp1_crit: 100000

59.3. Generic Thermal Sysfs driver How To 2181

Linux Driver-api Documentation

59.3.5 4. Export Symbol APIs

4.1. get_tz_trend

This function returns the trend of a thermal zone, i.e the rate of change of tem-
perature of the thermal zone. Ideally, the thermal sensor drivers are supposed to
implement the callback. If they don’t, the thermal framework calculated the trend
by comparing the previous and the current temperature values.

4.2. get_thermal_instance

This function returns the thermal_instance corresponding to a given {ther-
mal_zone, cooling_device, trip_point} combination. Returns NULL if such an in-
stance does not exist.

4.3. thermal_notify_framework

This function handles the trip events from sensor drivers. It starts throttling the
cooling devices according to the policy configured. For CRITICAL and HOT trip
points, this notifies the respective drivers, and does actual throttling for other trip
points i.e ACTIVE and PASSIVE. The throttling policy is based on the configured
platform data; if no platform data is provided, this uses the step_wise throttling
policy.

4.4. thermal_cdev_update

This function serves as an arbitrator to set the state of a cooling device. It sets the
cooling device to the deepest cooling state if possible.

59.3.6 5. thermal_emergency_poweroff

On an event of critical trip temperature crossing. Thermal framework allows the
system to shutdown gracefully by calling orderly_poweroff(). In the event of a fail-
ure of orderly_poweroff() to shut down the system we are in danger of keeping the
system alive at undesirably high temperatures. To mitigate this high risk scenario
we program a work queue to fire after a pre-determined number of seconds to
start an emergency shutdown of the device using the kernel_power_off() function.
In case kernel_power_off() fails then finally emergency_restart() is called in the
worst case.

The delay should be carefully profiled so as to give adequate time for or-
derly_poweroff(). In case of failure of an orderly_poweroff() the emergency
poweroff kicks in after the delay has elapsed and shuts down the system.

If set to 0 emergency poweroff will not be supported. So a carefully profiled non-
zero positive value is a must for emergerncy poweroff to be triggered.

2182 Chapter 59. Thermal

Linux Driver-api Documentation

59.4 Power allocator governor tunables

59.4.1 Trip points

The governor works optimally with the following two passive trip points:

1.“switch on”trip point: temperature above which the governor control loop
starts operating. This is the first passive trip point of the thermal zone.

2.“desired temperature”trip point: it should be higher than the “switch on”
trip point. This the target temperature the governor is controlling for. This
is the last passive trip point of the thermal zone.

59.4.2 PID Controller

The power allocator governor implements a Proportional-Integral-Derivative con-
troller (PID controller) with temperature as the control input and power as the
controlled output:

P_max = k_p * e + k_i * err_integral + k_d * diff_err + sustainable_power

where
• e = desired_temperature - current_temperature

• err_integral is the sum of previous errors

• diff_err = e - previous_error

It is similar to the one depicted below:

k_d
|

current_temp |
| v
| +----------+ +---+
| +----->| diff_err |-->| X |------+
| | +----------+ +---+ |
| | | tdp actor
| | k_i | | get_requested_

↪→power()
| | | | | | |
| | | | | | | ...
v | v v v v v

+---+ | +-------+ +---+ +---+ +---+ +----------+
| S |-----+----->| sum e |----->| X |--->| S |-->| S |-->|power |
+---+ | +-------+ +---+ +---+ +---+ |allocation|

^ | ^ +----------+
| | | | |
| | +---+ | | |
| +------->| X |-------------------+ v v
| +---+ granted␣

↪→performance
desired_temperature ^

|
|

k_po/k_pu

59.4. Power allocator governor tunables 2183

Linux Driver-api Documentation

59.4.3 Sustainable power

An estimate of the sustainable dissipatable power (in mW) should be provided
while registering the thermal zone. This estimates the sustained power that can
be dissipated at the desired control temperature. This is the maximum sustained
power for allocation at the desired maximum temperature. The actual sustained
power can vary for a number of reasons. The closed loop controller will take care
of variations such as environmental conditions, and some factors related to the
speed-grade of the silicon. sustainable_power is therefore simply an estimate, and
may be tuned to affect the aggressiveness of the thermal ramp. For reference, the
sustainable power of a 4”phone is typically 2000mW, while on a 10”tablet is around
4500mW (may vary depending on screen size).

If you are using device tree, do add it as a property of the thermal-zone. For
example:

thermal-zones {
soc_thermal {

polling-delay = <1000>;
polling-delay-passive = <100>;
sustainable-power = <2500>;
...

Instead, if the thermal zone is registered from the platform code, pass a ther-
mal_zone_params that has a sustainable_power. If no thermal_zone_params were
being passed, then something like below will suffice:

static const struct thermal_zone_params tz_params = {
.sustainable_power = 3500,

};

and then pass tz_params as the 5th parameter to thermal_zone_device_register()

59.4.4 k_po and k_pu

The implementation of the PID controller in the power allocator thermal gover-
nor allows the configuration of two proportional term constants: k_po and k_pu.
k_po is the proportional term constant during temperature overshoot periods (cur-
rent temperature is above“desired temperature”trip point). Conversely, k_pu is
the proportional term constant during temperature undershoot periods (current
temperature below “desired temperature”trip point).
These controls are intended as the primary mechanism for configuring the permit-
ted thermal “ramp”of the system. For instance, a lower k_pu value will provide
a slower ramp, at the cost of capping available capacity at a low temperature. On
the other hand, a high value of k_pu will result in the governor granting very high
power while temperature is low, and may lead to temperature overshooting.

The default value for k_pu is:

2 * sustainable_power / (desired_temperature - switch_on_temp)

This means that at switch_on_temp the output of the controller’s proportional
term will be 2 * sustainable_power. The default value for k_po is:

2184 Chapter 59. Thermal

Linux Driver-api Documentation

sustainable_power / (desired_temperature - switch_on_temp)

Focusing on the proportional and feed forward values of the PID controller equa-
tion we have:

P_max = k_p * e + sustainable_power

The proportional term is proportional to the difference between the desired tem-
perature and the current one. When the current temperature is the desired one,
then the proportional component is zero and P_max = sustainable_power. That is,
the system should operate in thermal equilibrium under constant load. sustain-
able_power is only an estimate, which is the reason for closed-loop control such
as this.

Expanding k_pu we get:

P_max = 2 * sustainable_power * (T_set - T) / (T_set - T_on) +
sustainable_power

where:

• T_set is the desired temperature

• T is the current temperature

• T_on is the switch on temperature

When the current temperature is the switch_on temperature, the above formula
becomes:

P_max = 2 * sustainable_power * (T_set - T_on) / (T_set - T_on) +
sustainable_power = 2 * sustainable_power + sustainable_power =
3 * sustainable_power

Therefore, the proportional term alone linearly decreases power from 3 * sus-
tainable_power to sustainable_power as the temperature rises from the switch on
temperature to the desired temperature.

59.4.5 k_i and integral_cutoff

k_i configures the PID loop’s integral term constant. This term allows the PID
controller to compensate for long term drift and for the quantized nature of the
output control: cooling devices can’t set the exact power that the governor re-
quests. When the temperature error is below integral_cutoff, errors are accumu-
lated in the integral term. This term is then multiplied by k_i and the result added
to the output of the controller. Typically k_i is set low (1 or 2) and integral_cutoff
is 0.

59.4. Power allocator governor tunables 2185

Linux Driver-api Documentation

59.4.6 k_d

k_d configures the PID loop’s derivative term constant. It’s recommended to
leave it as the default: 0.

Cooling device power API

Cooling devices controlled by this governor must supply the additional “power”
API in their cooling_device_ops. It consists on three ops:

1. int get_requested_power(struct thermal_cooling_device *cdev,
struct thermal_zone_device *tz, u32 *power);

@cdev: The struct thermal_cooling_device pointer
@tz: thermal zone in which we are currently operating
@power: pointer in which to store the calculated power
get_requested_power() calculates the power requested by the device in milliwatts
and stores it in @power . It should return 0 on success, -E* on failure. This is
currently used by the power allocator governor to calculate how much power to
give to each cooling device.

2. int state2power(struct thermal_cooling_device *cdev, struct
thermal_zone_device *tz, unsigned long state,
u32 *power);

@cdev: The struct thermal_cooling_device pointer
@tz: thermal zone in which we are currently operating
@state: A cooling device state
@power: pointer in which to store the equivalent power
Convert cooling device state @state into power consumption in milliwatts and
store it in @power. It should return 0 on success, -E* on failure. This is cur-
rently used by thermal core to calculate the maximum power that an actor can
consume.

3. int power2state(struct thermal_cooling_device *cdev, u32 power,
unsigned long *state);

@cdev: The struct thermal_cooling_device pointer
@power: power in milliwatts
@state: pointer in which to store the resulting state
Calculate a cooling device state that would make the device consume at most
@power mW and store it in @state. It should return 0 on success, -E* on fail-
ure. This is currently used by the thermal core to convert a given power set by the
power allocator governor to a state that the cooling device can set. It is a function
because this conversion may depend on external factors that may change so this
function should the best conversion given “current circumstances”.

2186 Chapter 59. Thermal

Linux Driver-api Documentation

59.4.7 Cooling device weights

Weights are a mechanism to bias the allocation among cooling devices. They ex-
press the relative power efficiency of different cooling devices. Higher weight can
be used to express higher power efficiency. Weighting is relative such that if each
cooling device has a weight of one they are considered equal. This is particu-
larly useful in heterogeneous systems where two cooling devices may perform the
same kind of compute, but with different efficiency. For example, a system with
two different types of processors.

If the thermal zone is registered using thermal_zone_device_register() (i.e., plat-
form code), then weights are passed as part of the thermal zone’s ther-
mal_bind_parameters. If the platform is registered using device tree, then they
are passed as the contribution property of each map in the cooling-maps node.

Limitations of the power allocator governor

The power allocator governor’s PID controller works best if there is a periodic tick.
If you have a driver that calls thermal_zone_device_update() (or anything that ends
up calling the governor’s throttle() function) repetitively, the governor response
won’t be very good. Note that this is not particular to this governor, step-wise will
also misbehave if you call its throttle() faster than the normal thermal framework
tick (due to interrupts for example) as it will overreact.

59.5 Kernel driver exynos_tmu

Supported chips:

• ARM Samsung Exynos4, Exynos5 series of SoC

Datasheet: Not publicly available

Authors: Donggeun Kim <dg77.kim@samsung.com> Authors: Amit Daniel
<amit.daniel@samsung.com>

59.5.1 TMU controller Description:

This driver allows to read temperature inside Samsung Exynos4/5 series of SoC.

The chip only exposes the measured 8-bit temperature code value through a reg-
ister. Temperature can be taken from the temperature code. There are three
equations converting from temperature to temperature code.

The three equations are:
1. Two point trimming:

Tc = (T - 25) * (TI2 - TI1) / (85 - 25) + TI1

2. One point trimming:

59.5. Kernel driver exynos_tmu 2187

mailto:dg77.kim@samsung.com
mailto:amit.daniel@samsung.com

Linux Driver-api Documentation

Tc = T + TI1 - 25

3. No trimming:

Tc = T + 50

Tc: Temperature code, T: Temperature,
TI1: Trimming info for 25 degree Celsius (stored at TRIMINFO register) Tem-

perature code measured at 25 degree Celsius which is unchanged

TI2: Trimming info for 85 degree Celsius (stored at TRIMINFO register) Tem-
perature code measured at 85 degree Celsius which is unchanged

TMU(Thermal Management Unit) in Exynos4/5 generates interrupt when temper-
ature exceeds pre-defined levels. The maximum number of configurable threshold
is five. The threshold levels are defined as follows:

Level_0: current temperature > trigger_level_0 + threshold
Level_1: current temperature > trigger_level_1 + threshold
Level_2: current temperature > trigger_level_2 + threshold
Level_3: current temperature > trigger_level_3 + threshold

The threshold and each trigger_level are set through the corresponding registers.

When an interrupt occurs, this driver notify kernel thermal framework with the
function exynos_report_trigger. Although an interrupt condition for level_0 can be
set, it can be used to synchronize the cooling action.

59.5.2 TMU driver description:

The exynos thermal driver is structured as:

Kernel Core thermal framework
(thermal_core.c, step_wise.c, cpufreq_

↪→cooling.c)
^
|
|

TMU configuration data -----> TMU Driver <----> Exynos Core thermal␣
↪→wrapper
(exynos_tmu_data.c) (exynos_tmu.c) (exynos_thermal_common.c)
(exynos_tmu_data.h) (exynos_tmu.h) (exynos_thermal_common.h)

a) TMU configuration data: This consist of TMU register offsets/bitfields de-
scribed through structure exynos_tmu_registers. Also several other plat-
form data (struct exynos_tmu_platform_data) members are used to con-
figure the TMU.

b) TMU driver: This component initialises the TMU controller and sets differ-
ent thresholds. It invokes core thermal implementation with the call
exynos_report_trigger.

c) Exynos Core thermal wrapper: This provides 3 wrapper func-
tion to use the Kernel core thermal framework. They

2188 Chapter 59. Thermal

Linux Driver-api Documentation

are exynos_unregister_thermal, exynos_register_thermal and
exynos_report_trigger.

59.6 Exynos Emulation Mode

Copyright (C) 2012 Samsung Electronics

Written by Jonghwa Lee <jonghwa3.lee@samsung.com>

59.6.1 Description

Exynos 4x12 (4212, 4412) and 5 series provide emulation mode for thermal man-
agement unit. Thermal emulation mode supports software debug for TMU’s oper-
ation. User can set temperature manually with software code and TMU will read
current temperature from user value not from sensor’s value.
Enabling CONFIG_THERMAL_EMULATION option will make this sup-
port available. When it’s enabled, sysfs node will be created as
/sys/devices/virtual/thermal/thermal_zone’zone id’/emul_temp.
The sysfs node,‘emul_node’, will contain value 0 for the initial state. When you
input any temperature you want to update to sysfs node, it automatically enable
emulation mode and current temperature will be changed into it.

(Exynos also supports user changeable delay time which would be used to delay of
changing temperature. However, this node only uses same delay of real sensing
time, 938us.)

Exynos emulation mode requires synchronous of value changing and enabling. It
means when you want to update the any value of delay or next temperature, then
you have to enable emulation mode at the same time. (Or you have to keep the
mode enabling.) If you don’t, it fails to change the value to updated one and just
use last succeessful value repeatedly. That’s why this node gives users the right
to change termerpature only. Just one interface makes it more simply to use.

Disabling emulation mode only requires writing value 0 to sysfs node.

TEMP 120 |
|

100 |
|

80 |
| +-----------

60 | | |
| +-------------| |

40 | | | |
| | | |

20 | | | +----------
| | | | |

0 |______________|_____________|__________|__________|_________
A A A A TIME
|<----->| |<----->| |<----->| |
| 938us | | | | | |

(continues on next page)

59.6. Exynos Emulation Mode 2189

mailto:jonghwa3.lee@samsung.com

Linux Driver-api Documentation

(continued from previous page)
emulation : 0 50 | 70 | 20 | 0
current temp: sensor 50 70 20 sensor

59.7 Intel Powerclamp Driver

By:
• Arjan van de Ven <arjan@linux.intel.com>

• Jacob Pan <jacob.jun.pan@linux.intel.com>

59.7.1 INTRODUCTION

Consider the situation where a system’s power consumption must be reduced
at runtime, due to power budget, thermal constraint, or noise level, and where
active cooling is not preferred. Software managed passive power reduction must
be performed to prevent the hardware actions that are designed for catastrophic
scenarios.

Currently, P-states, T-states (clockmodulation), and CPU offlining are used for CPU
throttling.

On Intel CPUs, C-states provide effective power reduction, but so far they’re
only used opportunistically, based on workload. With the development of in-
tel_powerclamp driver, the method of synchronizing idle injection across all on-
line CPU threads was introduced. The goal is to achieve forced and controllable
C-state residency.

Test/Analysis has been made in the areas of power, performance, scalability, and
user experience. In many cases, clear advantage is shown over taking the CPU
offline or modulating the CPU clock.

59.7.2 THEORY OF OPERATION

Idle Injection

On modern Intel processors (Nehalem or later), package level C-state residency is
available in MSRs, thus also available to the kernel.

These MSRs are:

#define MSR_PKG_C2_RESIDENCY 0x60D
#define MSR_PKG_C3_RESIDENCY 0x3F8
#define MSR_PKG_C6_RESIDENCY 0x3F9
#define MSR_PKG_C7_RESIDENCY 0x3FA

If the kernel can also inject idle time to the system, then a closed-loop control sys-
tem can be established that manages package level C-state. The intel_powerclamp
driver is conceived as such a control system, where the target set point is a user-
selected idle ratio (based on power reduction), and the error is the difference
between the actual package level C-state residency ratio and the target idle ratio.

2190 Chapter 59. Thermal

mailto:arjan@linux.intel.com
mailto:jacob.jun.pan@linux.intel.com

Linux Driver-api Documentation

Injection is controlled by high priority kernel threads, spawned for each online
CPU.

These kernel threads, with SCHED_FIFO class, are created to perform clamping
actions of controlled duty ratio and duration. Each per-CPU thread synchronizes
its idle time and duration, based on the rounding of jiffies, so accumulated errors
can be prevented to avoid a jittery effect. Threads are also bound to the CPU such
that they cannot be migrated, unless the CPU is taken offline. In this case, threads
belong to the offlined CPUs will be terminated immediately.

Running as SCHED_FIFO and relatively high priority, also allows such scheme
to work for both preemptable and non-preemptable kernels. Alignment of idle
time around jiffies ensures scalability for HZ values. This effect can be better
visualized using a Perf timechart. The following diagram shows the behavior of
kernel thread kidle_inject/cpu. During idle injection, it runs monitor/mwait idle
for a given “duration”, then relinquishes the CPU to other tasks, until the next
time interval.

The NOHZ schedule tick is disabled during idle time, but interrupts are not
masked. Tests show that the extra wakeups from scheduler tick have a dramatic
impact on the effectiveness of the powerclamp driver on large scale systems (West-
mere system with 80 processors).

CPU0
____________ ____________

kidle_inject/0 | sleep | mwait | sleep |
_________| |________| |_______

duration
CPU1

____________ ____________
kidle_inject/1 | sleep | mwait | sleep |

_________| |________| |_______
^
|
|
roundup(jiffies, interval)

Only one CPU is allowed to collect statistics and update global control parameters.
This CPU is referred to as the controlling CPU in this document. The controlling
CPU is elected at runtime, with a policy that favors BSP, taking into account the
possibility of a CPU hot-plug.

In terms of dynamics of the idle control system, package level idle time is consid-
ered largely as a non-causal system where its behavior cannot be based on the
past or current input. Therefore, the intel_powerclamp driver attempts to enforce
the desired idle time instantly as given input (target idle ratio). After injection,
powerclamp monitors the actual idle for a given time window and adjust the next
injection accordingly to avoid over/under correction.

When used in a causal control system, such as a temperature control, it is up to
the user of this driver to implement algorithms where past samples and outputs
are included in the feedback. For example, a PID-based thermal controller can
use the powerclamp driver to maintain a desired target temperature, based on
integral and derivative gains of the past samples.

59.7. Intel Powerclamp Driver 2191

Linux Driver-api Documentation

Calibration

During scalability testing, it is observed that synchronized actions among CPUs
become challenging as the number of cores grows. This is also true for the ability
of a system to enter package level C-states.

To make sure the intel_powerclamp driver scales well, online calibration is imple-
mented. The goals for doing such a calibration are:

a) determine the effective range of idle injection ratio

b) determine the amount of compensation needed at each target ratio

Compensation to each target ratio consists of two parts:

a) steady state error compensation This is to offset the error occurring
when the system can enter idle without extra wakeups (such as external
interrupts).

b) dynamic error compensation When an excessive amount of wakeups
occurs during idle, an additional idle ratio can be added to quiet inter-
rupts, by slowing down CPU activities.

A debugfs file is provided for the user to examine compensation progress and re-
sults, such as on a Westmere system:

[jacob@nex01 ~]$ cat
/sys/kernel/debug/intel_powerclamp/powerclamp_calib
controlling cpu: 0
pct confidence steady dynamic (compensation)
0 0 0 0
1 1 0 0
2 1 1 0
3 3 1 0
4 3 1 0
5 3 1 0
6 3 1 0
7 3 1 0
8 3 1 0
...
30 3 2 0
31 3 2 0
32 3 1 0
33 3 2 0
34 3 1 0
35 3 2 0
36 3 1 0
37 3 2 0
38 3 1 0
39 3 2 0
40 3 3 0
41 3 1 0
42 3 2 0
43 3 1 0
44 3 1 0
45 3 2 0
46 3 3 0
47 3 0 0

(continues on next page)

2192 Chapter 59. Thermal

Linux Driver-api Documentation

(continued from previous page)
48 3 2 0
49 3 3 0

Calibration occurs during runtime. No offline method is available. Steady state
compensation is used only when confidence levels of all adjacent ratios have
reached satisfactory level. A confidence level is accumulated based on clean data
collected at runtime. Data collected during a period without extra interrupts is
considered clean.

To compensate for excessive amounts of wakeup during idle, additional idle time is
injected when such a condition is detected. Currently, we have a simple algorithm
to double the injection ratio. A possible enhancement might be to throttle the
offending IRQ, such as delaying EOI for level triggered interrupts. But it is a
challenge to be non-intrusive to the scheduler or the IRQ core code.

CPU Online/Offline

Per-CPU kernel threads are started/stopped upon receiving notifications of CPU
hotplug activities. The intel_powerclamp driver keeps track of clamping kernel
threads, even after they are migrated to other CPUs, after a CPU offline event.

59.7.3 Performance Analysis

This section describes the general performance data collected onmultiple systems,
including Westmere (80P) and Ivy Bridge (4P, 8P).

Effectiveness and Limitations

The maximum range that idle injection is allowed is capped at 50 percent. As
mentioned earlier, since interrupts are allowed during forced idle time, excessive
interrupts could result in less effectiveness. The extreme case would be doing a
ping -f to generated flooded network interrupts without much CPU acknowledge-
ment. In this case, little can be done from the idle injection threads. In most
normal cases, such as scp a large file, applications can be throttled by the pow-
erclamp driver, since slowing down the CPU also slows down network protocol
processing, which in turn reduces interrupts.

When control parameters change at runtime by the controlling CPU, it may take
an additional period for the rest of the CPUs to catch up with the changes. During
this time, idle injection is out of sync, thus not able to enter package C- states at
the expected ratio. But this effect is minor, in that in most cases change to the
target ratio is updated much less frequently than the idle injection frequency.

59.7. Intel Powerclamp Driver 2193

Linux Driver-api Documentation

Scalability

Tests also show a minor, but measurable, difference between the 4P/8P Ivy Bridge
system and the 80P Westmere server under 50% idle ratio. More compensation is
needed on Westmere for the same amount of target idle ratio. The compensation
also increases as the idle ratio gets larger. The above reason constitutes the need
for the calibration code.

On the IVB 8P system, compared to an offline CPU, powerclamp can achieve up to
40% better performance per watt. (measured by a spin counter summed over per
CPU counting threads spawned for all running CPUs).

59.7.4 Usage and Interfaces

The powerclamp driver is registered to the generic thermal layer as a cooling
device. Currently, it’s not bound to any thermal zones:
jacob@chromoly:/sys/class/thermal/cooling_device14$ grep . *
cur_state:0
max_state:50
type:intel_powerclamp

cur_state allows user to set the desired idle percentage. Writing 0 to cur_state
will stop idle injection. Writing a value between 1 and max_state will start the
idle injection. Reading cur_state returns the actual and current idle percentage.
This may not be the same value set by the user in that current idle percentage
depends on workload and includes natural idle. When idle injection is disabled,
reading cur_state returns value -1 instead of 0 which is to avoid confusing 100%
busy state with the disabled state.

Example usage: - To inject 25% idle time:

$ sudo sh -c "echo 25 > /sys/class/thermal/cooling_device80/cur_state

If the system is not busy and has more than 25% idle time already, then the pow-
erclamp driver will not start idle injection. Using Top will not show idle injection
kernel threads.

If the system is busy (spin test below) and has less than 25% natural idle time,
powerclamp kernel threads will do idle injection. Forced idle time is accounted as
normal idle in that common code path is taken as the idle task.

In this example, 24.1% idle is shown. This helps the system admin or user deter-
mine the cause of slowdown, when a powerclamp driver is in action:

Tasks: 197 total, 1 running, 196 sleeping, 0 stopped, 0 zombie
Cpu(s): 71.2%us, 4.7%sy, 0.0%ni, 24.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
↪→%st
Mem: 3943228k total, 1689632k used, 2253596k free, 74960k buffers
Swap: 4087804k total, 0k used, 4087804k free, 945336k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3352 jacob 20 0 262m 644 428 S 286 0.0 0:17.16 spin
3341 root -51 0 0 0 0 D 25 0.0 0:01.62 kidle_inject/0

(continues on next page)

2194 Chapter 59. Thermal

Linux Driver-api Documentation

(continued from previous page)
3344 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/3
3342 root -51 0 0 0 0 D 25 0.0 0:01.61 kidle_inject/1
3343 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/2
2935 jacob 20 0 696m 125m 35m S 5 3.3 0:31.11 firefox
1546 root 20 0 158m 20m 6640 S 3 0.5 0:26.97 Xorg
2100 jacob 20 0 1223m 88m 30m S 3 2.3 0:23.68 compiz

Tests have shown that by using the powerclamp driver as a cooling device, a PID
based userspace thermal controller can manage to control CPU temperature effec-
tively, when no other thermal influence is added. For example, a UltraBook user
can compile the kernel under certain temperature (below most active trip points).

59.8 Kernel driver nouveau

Supported chips:

• NV43+

Authors: Martin Peres (mupuf) <martin.peres@free.fr>

59.8.1 Description

This driver allows to read the GPU core temperature, drive the GPU fan and set
temperature alarms.

Currently, due to the absence of in-kernel API to access HWMON drivers, Nouveau
cannot access any of the i2c external monitoring chips it may find. If you have
one of those, temperature and/or fan management through Nouveau’s HWMON
interface is likely not to work. This document may then not cover your situation
entirely.

59.8.2 Temperature management

Temperature is exposed under as a read-only HWMON attribute temp1_input.

In order to protect the GPU from overheating, Nouveau supports 4 configurable
temperature thresholds:

• Fan_boost: Fan speed is set to 100% when reaching this temperature;

• Downclock: The GPU will be downclocked to reduce its power dissipation;
• Critical: The GPU is put on hold to further lower power dissipation;
• Shutdown: Shut the computer down to protect your GPU.

WARNING: Some of these thresholds may not be used by Nouveau depending on
your chipset.

The default value for these thresholds comes from the GPU’s vbios. These thresh-
olds can be configured thanks to the following HWMON attributes:

• Fan_boost: temp1_auto_point1_temp and temp1_auto_point1_temp_hyst;

59.8. Kernel driver nouveau 2195

mailto:martin.peres@free.fr

Linux Driver-api Documentation

• Downclock: temp1_max and temp1_max_hyst;

• Critical: temp1_crit and temp1_crit_hyst;

• Shutdown: temp1_emergency and temp1_emergency_hyst.

NOTE: Remember that the values are stored as milli degrees Celsius. Don’t forget
to multiply!

59.8.3 Fan management

Not all cards have a drivable fan. If you do, then the following HWMON attributes
should be available:

• pwm1_enable: Current fan management mode (NONE, MANUAL or AUTO);
• pwm1: Current PWM value (power percentage);

• pwm1_min: The minimum PWM speed allowed;

• pwm1_max: The maximum PWM speed allowed (bypassed when hitting
Fan_boost);

You may also have the following attribute:

• fan1_input: Speed in RPM of your fan.

Your fan can be driven in different modes:

• 0: The fan is left untouched;

• 1: The fan can be driven in manual (use pwm1 to change the speed);

• 2; The fan is driven automatically depending on the temperature.

NOTE: Be sure to use themanual mode if you want to drive the fan speedmanually
NOTE2: When operating in manual mode outside the vbios-defined [PWM_min,

PWM_max] range, the reported fan speed (RPM) may not be accurate de-
pending on your hardware.

59.8.4 Bug reports

Thermal management on Nouveau is new and may not work on all cards. If you
have inquiries, please ping mupuf on IRC (#nouveau, freenode).

Bug reports should be filled on Freedesktop’s bug tracker. Please follow http:
//nouveau.freedesktop.org/wiki/Bugs

2196 Chapter 59. Thermal

http://nouveau.freedesktop.org/wiki/Bugs
http://nouveau.freedesktop.org/wiki/Bugs

Linux Driver-api Documentation

59.9 Kernel driver: x86_pkg_temp_thermal

Supported chips:

• x86: with package level thermal management

(Verify using: CPUID.06H:EAX[bit 6] =1)

Authors: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>

59.9.1 Reference

Intel® 64 and IA-32 Architectures Software Developer’s Manual (Jan, 2013):
Chapter 14.6: PACKAGE LEVEL THERMAL MANAGEMENT

59.9.2 Description

This driver register CPU digital temperature package level sensor as a thermal
zone with maximum two user mode configurable trip points. Number of trip points
depends on the capability of the package. Once the trip point is violated, user
mode can receive notification via thermal notification mechanism and can take
any action to control temperature.

59.9.3 Threshold management

Each package will register as a thermal zone under /sys/class/thermal.

Example:

/sys/class/thermal/thermal_zone1

This contains two trip points:

• trip_point_0_temp

• trip_point_1_temp

User can set any temperature between 0 to TJ-Max temperature. Temper-
ature units are in milli-degree Celsius. Refer to “Documentation/driver-
api/thermal/sysfs-api.rst”for thermal sys-fs details.
Any value other than 0 in these trip points, can trigger thermal notifications. Set-
ting 0, stops sending thermal notifications.

Thermal notifications: To get kobject-uevent notifications, set the thermal zone
policy to “user_space”.
For example:

echo -n "user_space" > policy

59.9. Kernel driver: x86_pkg_temp_thermal 2197

mailto:srinivas.pandruvada@linux.intel.com

Linux Driver-api Documentation

2198 Chapter 59. Thermal

CHAPTER

SIXTY

FPGA SUBSYSTEM

Author Alan Tull

60.1 Introduction

The FPGA subsystem supports reprogramming FPGAs dynamically under Linux.
Some of the core intentions of the FPGA subsystems are:

• The FPGA subsystem is vendor agnostic.

• The FPGA subsystem separates upper layers (userspace interfaces and enu-
meration) from lower layers that know how to program a specific FPGA.

• Code should not be shared between upper and lower layers. This should
go without saying. If that seems necessary, there’s probably framework
functionality that can be added that will benefit other users. Write the linux-
fpga mailing list and maintainers and seek out a solution that expands the
framework for broad reuse.

• Generally, when adding code, think of the future. Plan for reuse.

The framework in the kernel is divided into:

60.1.1 FPGA Manager

If you are adding a new FPGA or a new method of programming an FPGA, this is
the subsystem for you. Low level FPGA manager drivers contain the knowledge
of how to program a specific device. This subsystem includes the framework in
fpga-mgr.c and the low level drivers that are registered with it.

60.1.2 FPGA Bridge

FPGA Bridges prevent spurious signals from going out of an FPGA or a region of
an FPGA during programming. They are disabled before programming begins and
re-enabled afterwards. An FPGA bridge may be actual hard hardware that gates
a bus to a CPU or a soft (“freeze”) bridge in FPGA fabric that surrounds a partial
reconfiguration region of an FPGA. This subsystem includes fpga-bridge.c and the
low level drivers that are registered with it.

2199

Linux Driver-api Documentation

60.1.3 FPGA Region

If you are adding a new interface to the FPGA framework, add it on top of an FPGA
region.

The FPGA Region framework (fpga-region.c) associates managers and bridges as
reconfigurable regions. A region may refer to the whole FPGA in full reconfigura-
tion or to a partial reconfiguration region.

The Device Tree FPGA Region support (of-fpga-region.c) handles reprogramming
FPGAs when device tree overlays are applied.

60.2 FPGA Manager

60.2.1 Overview

The FPGA manager core exports a set of functions for programming an FPGA with
an image. The API is manufacturer agnostic. All manufacturer specifics are hidden
away in a low level driver which registers a set of ops with the core. The FPGA
image data itself is very manufacturer specific, but for our purposes it’s just binary
data. The FPGA manager core won’t parse it.
The FPGA image to be programmed can be in a scatter gather list, a single con-
tiguous buffer, or a firmware file. Because allocating contiguous kernel memory
for the buffer should be avoided, users are encouraged to use a scatter gather list
instead if possible.

The particulars for programming the image are presented in a structure (struct
fpga_image_info). This struct contains parameters such as pointers to the FPGA
image as well as image-specific particulars such as whether the image was built
for full or partial reconfiguration.

60.2.2 How to support a new FPGA device

To add another FPGA manager, write a driver that implements a set of ops. The
probe function calls fpga_mgr_register(), such as:

static const struct fpga_manager_ops socfpga_fpga_ops = {
.write_init = socfpga_fpga_ops_configure_init,
.write = socfpga_fpga_ops_configure_write,
.write_complete = socfpga_fpga_ops_configure_complete,
.state = socfpga_fpga_ops_state,

};

static int socfpga_fpga_probe(struct platform_device *pdev)
{

struct device *dev = &pdev->dev;
struct socfpga_fpga_priv *priv;
struct fpga_manager *mgr;
int ret;

priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
(continues on next page)

2200 Chapter 60. FPGA Subsystem

Linux Driver-api Documentation

(continued from previous page)
if (!priv)

return -ENOMEM;

/*
* do ioremaps, get interrupts, etc. and save
* them in priv
*/

mgr = devm_fpga_mgr_create(dev, "Altera SOCFPGA FPGA Manager",
&socfpga_fpga_ops, priv);

if (!mgr)
return -ENOMEM;

platform_set_drvdata(pdev, mgr);

return fpga_mgr_register(mgr);
}

static int socfpga_fpga_remove(struct platform_device *pdev)
{

struct fpga_manager *mgr = platform_get_drvdata(pdev);

fpga_mgr_unregister(mgr);

return 0;
}

The ops will implement whatever device specific register writes are needed to
do the programming sequence for this particular FPGA. These ops return 0 for
success or negative error codes otherwise.

The programming sequence is::
1. .write_init

2. .write or .write_sg (may be called once or multiple times)

3. .write_complete

The .write_init function will prepare the FPGA to receive the image data. The
buffer passed into .write_init will be at most .initial_header_size bytes long; if the
whole bitstream is not immediately available then the core code will buffer up at
least this much before starting.

The .write function writes a buffer to the FPGA. The buffer may be contain the
whole FPGA image or may be a smaller chunk of an FPGA image. In the latter
case, this function is called multiple times for successive chunks. This interface is
suitable for drivers which use PIO.

The .write_sg version behaves the same as .write except the input is a sg_table
scatter list. This interface is suitable for drivers which use DMA.

The .write_complete function is called after all the image has been written to put
the FPGA into operating mode.

The ops include a .state function which will determine the state the FPGA is in and
return a code of type enum fpga_mgr_states. It doesn’t result in a change in state.

60.2. FPGA Manager 2201

Linux Driver-api Documentation

60.2.3 API for implementing a new FPGA Manager driver

• fpga_mgr_states —Values for fpga_manager->state.
• struct fpga_manager —the FPGA manager struct
• struct fpga_manager_ops —Low level FPGA manager driver ops
• devm_fpga_mgr_create() —Allocate and init a manager struct
• fpga_mgr_register() —Register an FPGA manager
• fpga_mgr_unregister() —Unregister an FPGA manager

enum fpga_mgr_states
fpga framework states

Constants
FPGA_MGR_STATE_UNKNOWN can’t determine state
FPGA_MGR_STATE_POWER_OFF FPGA power is off

FPGA_MGR_STATE_POWER_UP FPGA reports power is up

FPGA_MGR_STATE_RESET FPGA in reset state

FPGA_MGR_STATE_FIRMWARE_REQ firmware request in progress

FPGA_MGR_STATE_FIRMWARE_REQ_ERR firmware request failed

FPGA_MGR_STATE_WRITE_INIT preparing FPGA for programming

FPGA_MGR_STATE_WRITE_INIT_ERR Error during WRITE_INIT stage

FPGA_MGR_STATE_WRITE writing image to FPGA

FPGA_MGR_STATE_WRITE_ERR Error while writing FPGA

FPGA_MGR_STATE_WRITE_COMPLETE Doing post programming steps

FPGA_MGR_STATE_WRITE_COMPLETE_ERR Error during WRITE_COMPLETE

FPGA_MGR_STATE_OPERATING FPGA is programmed and operating

struct fpga_manager
fpga manager structure

Definition

struct fpga_manager {
const char *name;
struct device dev;
struct mutex ref_mutex;
enum fpga_mgr_states state;
struct fpga_compat_id *compat_id;
const struct fpga_manager_ops *mops;
void *priv;

};

Members
name name of low level fpga manager

2202 Chapter 60. FPGA Subsystem

Linux Driver-api Documentation

dev fpga manager device

ref_mutex only allows one reference to fpga manager

state state of fpga manager

compat_id FPGA manager id for compatibility check.

mops pointer to struct of fpga manager ops

priv low level driver private date

struct fpga_manager_ops
ops for low level fpga manager drivers

Definition

struct fpga_manager_ops {
size_t initial_header_size;
enum fpga_mgr_states (*state)(struct fpga_manager *mgr);
u64 (*status)(struct fpga_manager *mgr);
int (*write_init)(struct fpga_manager *mgr,struct fpga_image_info *info,␣

↪→const char *buf, size_t count);
int (*write)(struct fpga_manager *mgr, const char *buf, size_t count);
int (*write_sg)(struct fpga_manager *mgr, struct sg_table *sgt);
int (*write_complete)(struct fpga_manager *mgr, struct fpga_image_info␣

↪→*info);
void (*fpga_remove)(struct fpga_manager *mgr);
const struct attribute_group **groups;

};

Members
initial_header_size Maximum number of bytes that should be passed into

write_init

state returns an enum value of the FPGA’s state
status returns status of the FPGA, including reconfiguration error code

write_init prepare the FPGA to receive confuration data

write write count bytes of configuration data to the FPGA

write_sg write the scatter list of configuration data to the FPGA

write_complete set FPGA to operating state after writing is done

fpga_remove optional: Set FPGA into a specific state during driver remove

groups optional attribute groups.

Description
fpga_manager_ops are the low level functions implemented by a specific fpga man-
ager driver. The optional ones are tested for NULL before being called, so leaving
them out is fine.

struct fpga_manager * devm_fpga_mgr_create(struct device * dev, const
char * name, const struct
fpga_manager_ops * mops,
void * priv)

create and initialize a managed FPGA manager struct

60.2. FPGA Manager 2203

Linux Driver-api Documentation

Parameters
struct device * dev fpga manager device from pdev

const char * name fpga manager name

const struct fpga_manager_ops * mops pointer to structure of fpga manager
ops

void * priv fpga manager private data

Description
This function is intended for use in a FPGA manager driver’s probe function. After
the manager driver creates the manager struct with devm_fpga_mgr_create(),
it should register it with fpga_mgr_register(). The manager driver’s remove
function should call fpga_mgr_unregister(). The manager struct allocated with
this function will be freed automatically on driver detach. This includes the case of
a probe function returning error before calling fpga_mgr_register(), the struct
will still get cleaned up.

Return
pointer to struct fpga_manager or NULL

int fpga_mgr_register(struct fpga_manager * mgr)
register a FPGA manager

Parameters
struct fpga_manager * mgr fpga manager struct

Return
0 on success, negative error code otherwise.

void fpga_mgr_unregister(struct fpga_manager * mgr)
unregister a FPGA manager

Parameters
struct fpga_manager * mgr fpga manager struct

Description
This function is intended for use in a FPGA manager driver’s remove function.

60.3 FPGA Bridge

60.3.1 API to implement a new FPGA bridge

• struct fpga_bridge —The FPGA Bridge structure
• struct fpga_bridge_ops —Low level Bridge driver ops
• devm_fpga_bridge_create() —Allocate and init a bridge struct
• fpga_bridge_register() —Register a bridge
• fpga_bridge_unregister() —Unregister a bridge

2204 Chapter 60. FPGA Subsystem

Linux Driver-api Documentation

struct fpga_bridge
FPGA bridge structure

Definition

struct fpga_bridge {
const char *name;
struct device dev;
struct mutex mutex;
const struct fpga_bridge_ops *br_ops;
struct fpga_image_info *info;
struct list_head node;
void *priv;

};

Members
name name of low level FPGA bridge

dev FPGA bridge device

mutex enforces exclusive reference to bridge

br_ops pointer to struct of FPGA bridge ops

info fpga image specific information

node FPGA bridge list node

priv low level driver private date

struct fpga_bridge_ops
ops for low level FPGA bridge drivers

Definition

struct fpga_bridge_ops {
int (*enable_show)(struct fpga_bridge *bridge);
int (*enable_set)(struct fpga_bridge *bridge, bool enable);
void (*fpga_bridge_remove)(struct fpga_bridge *bridge);
const struct attribute_group **groups;

};

Members
enable_show returns the FPGA bridge’s status
enable_set set a FPGA bridge as enabled or disabled

fpga_bridge_remove set FPGA into a specific state during driver remove

groups optional attribute groups.

struct fpga_bridge * devm_fpga_bridge_create(struct device * dev, const
char * name, const struct
fpga_bridge_ops * br_ops,
void * priv)

create and init a managed struct fpga_bridge

Parameters
struct device * dev FPGA bridge device from pdev

60.3. FPGA Bridge 2205

Linux Driver-api Documentation

const char * name FPGA bridge name

const struct fpga_bridge_ops * br_ops pointer to structure of fpga bridge
ops

void * priv FPGA bridge private data

Description
This function is intended for use in a FPGA bridge driver’s probe function. After
the bridge driver creates the struct with devm_fpga_bridge_create(), it should
register the bridge with fpga_bridge_register(). The bridge driver’s remove
function should call fpga_bridge_unregister(). The bridge struct allocated with
this function will be freed automatically on driver detach. This includes the case
of a probe function returning error before calling fpga_bridge_register(), the
struct will still get cleaned up.

Return
struct fpga_bridge or NULL

int fpga_bridge_register(struct fpga_bridge * bridge)
register a FPGA bridge

Parameters
struct fpga_bridge * bridge FPGA bridge struct

Return
0 for success, error code otherwise.

void fpga_bridge_unregister(struct fpga_bridge * bridge)
unregister a FPGA bridge

Parameters
struct fpga_bridge * bridge FPGA bridge struct

Description
This function is intended for use in a FPGA bridge driver’s remove function.

60.4 FPGA Region

60.4.1 Overview

This document is meant to be a brief overview of the FPGA region API usage. A
more conceptual look at regions can be found in the Device Tree binding docu-
ment1.

For the purposes of this API document, let’s just say that a region associates
an FPGA Manager and a bridge (or bridges) with a reprogrammable region of
an FPGA or the whole FPGA. The API provides a way to register a region and to
program a region.

1 ../devicetree/bindings/fpga/fpga-region.txt

2206 Chapter 60. FPGA Subsystem

Linux Driver-api Documentation

Currently the only layer above fpga-region.c in the kernel is the Device Tree sup-
port (of-fpga-region.c) described in1. The DT support layer uses regions to pro-
gram the FPGA and then DT to handle enumeration. The common region code
is intended to be used by other schemes that have other ways of accomplishing
enumeration after programming.

An fpga-region can be set up to know the following things:

• which FPGA manager to use to do the programming

• which bridges to disable before programming and enable afterwards.

Additional info needed to program the FPGA image is passed in the struct
fpga_image_info including:

• pointers to the image as either a scatter-gather buffer, a contiguous buffer,
or the name of firmware file

• flags indicating specifics such as whether the image is for partial reconfigu-
ration.

60.4.2 How to add a new FPGA region

An example of usage can be seen in the probe function of2.

60.4.3 API to add a new FPGA region

• struct fpga_region —The FPGA region struct
• devm_fpga_region_create() —Allocate and init a region struct
• fpga_region_register() —Register an FPGA region
• fpga_region_unregister() —Unregister an FPGA region

The FPGA region’s probe function will need to get a reference to the FPGA Man-
ager it will be using to do the programming. This usually would happen during
the region’s probe function.
• fpga_mgr_get() —Get a reference to an FPGA manager, raise ref count
• of_fpga_mgr_get() —Get a reference to an FPGA manager, raise ref count,
given a device node.

• fpga_mgr_put() —Put an FPGA manager
The FPGA region will need to specify which bridges to control while program-
ming the FPGA. The region driver can build a list of bridges during probe time
(fpga_region->bridge_list) or it can have a function that creates the list of
bridges to program just before programming (fpga_region->get_bridges). The
FPGA bridge framework supplies the following APIs to handle building or tearing
down that list.

• fpga_bridge_get_to_list() —Get a ref of an FPGA bridge, add it to a list
2 ../../drivers/fpga/of-fpga-region.c

60.4. FPGA Region 2207

Linux Driver-api Documentation

• of_fpga_bridge_get_to_list() —Get a ref of an FPGA bridge, add it to a
list, given a device node

• fpga_bridges_put() —Given a list of bridges, put them
struct fpga_region

FPGA Region structure

Definition

struct fpga_region {
struct device dev;
struct mutex mutex;
struct list_head bridge_list;
struct fpga_manager *mgr;
struct fpga_image_info *info;
struct fpga_compat_id *compat_id;
void *priv;
int (*get_bridges)(struct fpga_region *region);

};

Members
dev FPGA Region device

mutex enforces exclusive reference to region

bridge_list list of FPGA bridges specified in region

mgr FPGA manager

info FPGA image info

compat_id FPGA region id for compatibility check.

priv private data

get_bridges optional function to get bridges to a list

struct fpga_region * devm_fpga_region_create(struct device * dev, struct
fpga_manager * mgr,
int (*get_bridges)(struct
fpga_region *))

create and initialize a managed FPGA region struct

Parameters
struct device * dev device parent

struct fpga_manager * mgr manager that programs this region

int (*)(struct fpga_region *) get_bridges optional function to get bridges
to a list

Description
This function is intended for use in a FPGA region driver’s probe function. After
the region driver creates the region struct with devm_fpga_region_create(), it
should register it with fpga_region_register(). The region driver’s remove
function should call fpga_region_unregister(). The region struct allocated with
this function will be freed automatically on driver detach. This includes the case

2208 Chapter 60. FPGA Subsystem

Linux Driver-api Documentation

of a probe function returning error before calling fpga_region_register(), the
struct will still get cleaned up.

Return
struct fpga_region or NULL

int fpga_region_register(struct fpga_region * region)
register a FPGA region

Parameters
struct fpga_region * region FPGA region

Return
0 or -errno

void fpga_region_unregister(struct fpga_region * region)
unregister a FPGA region

Parameters
struct fpga_region * region FPGA region

Description
This function is intended for use in a FPGA region driver’s remove function.
struct fpga_manager * fpga_mgr_get(struct device * dev)

Given a device, get a reference to a fpga mgr.

Parameters
struct device * dev parent device that fpga mgr was registered with

Return
fpga manager struct or IS_ERR() condition containing error code.

struct fpga_manager * of_fpga_mgr_get(struct device_node * node)
Given a device node, get a reference to a fpga mgr.

Parameters
struct device_node * node device node

Return
fpga manager struct or IS_ERR() condition containing error code.

void fpga_mgr_put(struct fpga_manager * mgr)
release a reference to a fpga manager

Parameters
struct fpga_manager * mgr fpga manager structure

int fpga_bridge_get_to_list(struct device * dev, struct fpga_image_info
* info, struct list_head * bridge_list)

given device, get a bridge, add it to a list

Parameters
struct device * dev FPGA bridge device

60.4. FPGA Region 2209

Linux Driver-api Documentation

struct fpga_image_info * info fpga image specific information

struct list_head * bridge_list list of FPGA bridges

Description
Get an exclusive reference to the bridge and and it to the list.

Return 0 for success, error code from fpga_bridge_get() othewise.

int of_fpga_bridge_get_to_list(struct device_node * np, struct
fpga_image_info * info, struct list_head
* bridge_list)

get a bridge, add it to a list

Parameters
struct device_node * np node pointer of a FPGA bridge

struct fpga_image_info * info fpga image specific information

struct list_head * bridge_list list of FPGA bridges

Description
Get an exclusive reference to the bridge and and it to the list.

Return 0 for success, error code from of_fpga_bridge_get() othewise.

void fpga_bridges_put(struct list_head * bridge_list)
put bridges

Parameters
struct list_head * bridge_list list of FPGA bridges

Description
For each bridge in the list, put the bridge and remove it from the list. If list is
empty, do nothing.

60.5 In-kernel API for FPGA Programming

60.5.1 Overview

The in-kernel API for FPGA programming is a combination of APIs from FPGAman-
ager, bridge, and regions. The actual function used to trigger FPGA programming
is fpga_region_program_fpga().

fpga_region_program_fpga() uses functionality supplied by the FPGA manager
and bridges. It will:

• lock the region’s mutex
• lock the mutex of the region’s FPGA manager
• build a list of FPGA bridges if a method has been specified to do so

• disable the bridges

• program the FPGA using info passed in fpga_region->info.

2210 Chapter 60. FPGA Subsystem

Linux Driver-api Documentation

• re-enable the bridges

• release the locks

The struct fpga_image_info specifies what FPGA image to program.
It is allocated/freed by fpga_image_info_alloc() and freed with
fpga_image_info_free()

60.5.2 How to program an FPGA using a region

When the FPGA region driver probed, it was given a pointer to an FPGA manager
driver so it knowswhichmanager to use. The region also either has a list of bridges
to control during programming or it has a pointer to a function that will generate
that list. Here’s some sample code of what to do next:
#include <linux/fpga/fpga-mgr.h>
#include <linux/fpga/fpga-region.h>

struct fpga_image_info *info;
int ret;

/*
* First, alloc the struct with information about the FPGA image to
* program.
*/

info = fpga_image_info_alloc(dev);
if (!info)

return -ENOMEM;

/* Set flags as needed, such as: */
info->flags = FPGA_MGR_PARTIAL_RECONFIG;

/*
* Indicate where the FPGA image is. This is pseudo-code; you're
* going to use one of these three.
*/

if (image is in a scatter gather table) {

info->sgt = [your scatter gather table]

} else if (image is in a buffer) {

info->buf = [your image buffer]
info->count = [image buffer size]

} else if (image is in a firmware file) {

info->firmware_name = devm_kstrdup(dev, firmware_name,
GFP_KERNEL);

}

/* Add info to region and do the programming */
region->info = info;
ret = fpga_region_program_fpga(region);

(continues on next page)

60.5. In-kernel API for FPGA Programming 2211

Linux Driver-api Documentation

(continued from previous page)
/* Deallocate the image info if you're done with it */
region->info = NULL;
fpga_image_info_free(info);

if (ret)
return ret;

/* Now enumerate whatever hardware has appeared in the FPGA. */

60.5.3 API for programming an FPGA

• fpga_region_program_fpga() —Program an FPGA

• fpga_image_info —Specifies what FPGA image to program
• fpga_image_info_alloc() —Allocate an FPGA image info struct
• fpga_image_info_free() —Free an FPGA image info struct

int fpga_region_program_fpga(struct fpga_region * region)
program FPGA

Parameters
struct fpga_region * region FPGA region

Description
Program an FPGA using fpga image info (region->info). If the region has a
get_bridges function, the exclusive reference for the bridges will be held if
programming succeeds. This is intended to prevent reprogramming the re-
gion until the caller considers it safe to do so. The caller will need to call
fpga_bridges_put() before attempting to reprogram the region.

Return 0 for success or negative error code.

FPGA Manager flags

Flags used in the fpga_image_info->flags field

FPGA_MGR_PARTIAL_RECONFIG: do partial reconfiguration if supported

FPGA_MGR_EXTERNAL_CONFIG: FPGA has been configured prior to Linux booting

FPGA_MGR_ENCRYPTED_BITSTREAM: indicates bitstream is encrypted

FPGA_MGR_BITSTREAM_LSB_FIRST: SPI bitstream bit order is LSB first

FPGA_MGR_COMPRESSED_BITSTREAM: FPGA bitstream is compressed

struct fpga_image_info
information specific to a FPGA image

Definition

struct fpga_image_info {
u32 flags;
u32 enable_timeout_us;
u32 disable_timeout_us;

(continues on next page)

2212 Chapter 60. FPGA Subsystem

Linux Driver-api Documentation

(continued from previous page)
u32 config_complete_timeout_us;
char *firmware_name;
struct sg_table *sgt;
const char *buf;
size_t count;
int region_id;
struct device *dev;

#ifdef CONFIG_OF;
struct device_node *overlay;

#endif;
};

Members
flags boolean flags as defined above

enable_timeout_us maximum time to enable traffic through bridge (uSec)

disable_timeout_us maximum time to disable traffic through bridge (uSec)

config_complete_timeout_us maximum time for FPGA to switch to operating
status in the write_complete op.

firmware_name name of FPGA image firmware file

sgt scatter/gather table containing FPGA image

buf contiguous buffer containing FPGA image

count size of buf

region_id id of target region

dev device that owns this

overlay Device Tree overlay

struct fpga_image_info * fpga_image_info_alloc(struct device * dev)
Allocate a FPGA image info struct

Parameters
struct device * dev owning device

Return
struct fpga_image_info or NULL

void fpga_image_info_free(struct fpga_image_info * info)
Free a FPGA image info struct

Parameters
struct fpga_image_info * info FPGA image info struct to free

60.5. In-kernel API for FPGA Programming 2213

Linux Driver-api Documentation

2214 Chapter 60. FPGA Subsystem

CHAPTER

SIXTYONE

ACPI SUPPORT

61.1 Linuxized ACPICA - Introduction to ACPICA Release
Automation

Copyright © 2013-2016, Intel Corporation

Author Lv Zheng <lv.zheng@intel.com>

61.1.1 Abstract

This document describes the ACPICA project and the relationship between ACPICA
and Linux. It also describes how ACPICA code in drivers/acpi/acpica, include/acpi
and tools/power/acpi is automatically updated to follow the upstream.

61.1.2 ACPICA Project

The ACPI Component Architecture (ACPICA) project provides an operating system
(OS)-independent reference implementation of the Advanced Configuration and
Power Interface Specification (ACPI). It has been adapted by various host OSes.
By directly integrating ACPICA, Linux can also benefit from the application expe-
riences of ACPICA from other host OSes.

The homepage of ACPICA project is: www.acpica.org, it is maintained and sup-
ported by Intel Corporation.

The following figure depicts the Linux ACPI subsystem where the ACPICA adapta-
tion is included:

+---+
| |
| +---+ |
	+------------------+			
		Table Management		
	+------------------+			
	+----------------------+			
		Namespace Management		
	+----------------------+			
	+------------------+ ACPICA Components			
		Event Management		
	+------------------+			

(continues on next page)

2215

mailto:lv.zheng@intel.com

Linux Driver-api Documentation

(continued from previous page)
	+---------------------+					
		Resource Management				
	+---------------------+					
	+---------------------+					
		Hardware Management				
	+---------------------+					
+---+						
		+------------------+				
			OS Service Layer			
		+------------------+				
	+---	-+				
	+--------------------+					
		Device Enumeration				
	+--------------------+					
	+------------------+					
		Power Management				
	+------------------+ Linux/ACPI Components					
	+--------------------+					
		Thermal Management				
	+--------------------+					
	+--------------------------+					
		Drivers for ACPI Devices				
	+--------------------------+					
	+--------+					
					
	+--------+					
+---+						
+---+

Figure 1. Linux ACPI Software Components

Note:
A. OS Service Layer - Provided by Linux to offer OS dependent implementation
of the predefined ACPICA interfaces (acpi_os_*).

include/acpi/acpiosxf.h
drivers/acpi/osl.c
include/acpi/platform
include/asm/acenv.h

B. ACPICA Functionality - Released from ACPICA code base to offer OS inde-
pendent implementation of the ACPICA interfaces (acpi_*).

drivers/acpi/acpica
include/acpi/ac*.h
tools/power/acpi

C. Linux/ACPI Functionality - Providing Linux specific ACPI functionality to the
other Linux kernel subsystems and user space programs.

drivers/acpi
include/linux/acpi.h

(continues on next page)

2216 Chapter 61. ACPI Support

Linux Driver-api Documentation

(continued from previous page)
include/linux/acpi*.h
include/acpi
tools/power/acpi

D. Architecture Specific ACPICA/ACPI Functionalities - Provided by the ACPI
subsystem to offer architecture specific implementation of the ACPI inter-
faces. They are Linux specific components and are out of the scope of this
document.

include/asm/acpi.h
include/asm/acpi*.h
arch/*/acpi

61.1.3 ACPICA Release

The ACPICA project maintains its code base at the following repository URL: https:
//github.com/acpica/acpica.git. As a rule, a release is made every month.

As the coding style adopted by the ACPICA project is not acceptable by Linux, there
is a release process to convert the ACPICA git commits into Linux patches. The
patches generated by this process are referred to as“linuxized ACPICA patches”
. The release process is carried out on a local copy the ACPICA git repository.
Each commit in the monthly release is converted into a linuxized ACPICA patch.
Together, they form the monthly ACPICA release patchset for the Linux ACPI com-
munity. This process is illustrated in the following figure:

+-----------------------------+
| acpica / master (-) commits |
+-----------------------------+

/|\ |
| \|/
| /---------------------\ +----------------------+
| < Linuxize repo Utility >-->| old linuxized acpica |--+
| \---------------------/ +----------------------+ |
| |

/---------\ |
< git reset > \
\---------/ \

/|\ /+-+
| / |

+-----------------------------+ | |
| acpica / master (+) commits | | |
+-----------------------------+ | |

| | |
\|/ | |

/-----------------------\ +----------------------+ | |
< Linuxize repo Utilities >-->| new linuxized acpica |--+ |
\-----------------------/ +----------------------+ |

\|/
+--------------------------+ /----------------------\
| Linuxized ACPICA Patches |<----------------< Linuxize patch Utility >
+--------------------------+ \----------------------/

(continues on next page)

61.1. Linuxized ACPICA - Introduction to ACPICA Release Automation2217

https://github.com/acpica/acpica.git
https://github.com/acpica/acpica.git

Linux Driver-api Documentation

(continued from previous page)
|

\|/
/---------------------------\

< Linux ACPI Community Review >
\---------------------------/

|
\|/

+-----------------------+ /------------------\ +----------------+
| linux-pm / linux-next |-->< Linux Merge Window >-->| linux / master |
+-----------------------+ \------------------/ +----------------+

Figure 2. ACPICA -> Linux Upstream Process

Note:
A. Linuxize Utilities - Provided by the ACPICA repository, including a utility lo-
cated in source/tools/acpisrc folder and a number of scripts located in gener-
ate/linux folder.

B. acpica / master - “master”branch of the git repository at <https://github.
com/acpica/acpica.git>.

C. linux-pm / linux-next - “linux-next”branch of the git repository at <https:
//git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm.git>.

D. linux / master - “master”branch of the git repository at <https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git>.

Before the linuxized ACPICA patches are sent to the Linux ACPI community for
review, there is a quality assurance build test process to reduce porting issues.
Currently this build process only takes care of the following kernel configuration
options: CONFIG_ACPI/CONFIG_ACPI_DEBUG/CONFIG_ACPI_DEBUGGER

61.1.4 ACPICA Divergences

Ideally, all of the ACPICA commits should be converted into Linux patches auto-
matically without manual modifications, the“linux / master”tree should contain
the ACPICA code that exactly corresponds to the ACPICA code contained in“new
linuxized acpica”tree and it should be possible to run the release process fully
automatically.

As a matter of fact, however, there are source code differences between the
ACPICA code in Linux and the upstream ACPICA code, referred to as “ACPICA
Divergences”.
The various sources of ACPICA divergences include:

1. Legacy divergences - Before the current ACPICA release process was
established, there already had been divergences between Linux and
ACPICA. Over the past several years those divergences have been greatly
reduced, but there still are several ones and it takes time to figure out
the underlying reasons for their existence.

2218 Chapter 61. ACPI Support

https://github.com/acpica/acpica.git
https://github.com/acpica/acpica.git
https://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm.git
https://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

Linux Driver-api Documentation

2. Manual modifications - Any manual modification (eg. coding style fixes)
made directly in the Linux sources obviously hurts the ACPICA release
automation. Thus it is recommended to fix such issues in the ACPICA
upstream source code and generate the linuxized fix using the ACPICA
release utilities (please refer to Section 4 below for the details).

3. Linux specific features - Sometimes it’s impossible to use the current
ACPICA APIs to implement features required by the Linux kernel, so
Linux developers occasionally have to change ACPICA code directly.
Those changes may not be acceptable by ACPICA upstream and in such
cases they are left as committed ACPICA divergences unless the ACPICA
side can implement new mechanisms as replacements for them.

4. ACPICA release fixups - ACPICA only tests commits using a set of the user
space simulation utilities, thus the linuxized ACPICA patches may break
the Linux kernel, leaving us build/boot failures. In order to avoid break-
ing Linux bisection, fixes are applied directly to the linuxized ACPICA
patches during the release process. When the release fixups are back-
ported to the upstream ACPICA sources, they must follow the upstream
ACPICA rules and so further modifications may appear. That may result
in the appearance of new divergences.

5. Fast tracking of ACPICA commits - Some ACPICA commits are regression
fixes or stable-candidate material, so they are applied in advance with
respect to the ACPICA release process. If such commits are reverted
or rebased on the ACPICA side in order to offer better solutions, new
ACPICA divergences are generated.

61.1.5 ACPICA Development

This paragraph guides Linux developers to use the ACPICA upstream release util-
ities to obtain Linux patches corresponding to upstream ACPICA commits before
they become available from the ACPICA release process.

1. Cherry-pick an ACPICA commit

First you need to git clone the ACPICA repository and the ACPICA
change you want to cherry pick must be committed into the local repos-
itory.

Then the gen-patch.sh command can help to cherry-pick an ACPICA com-
mit from the ACPICA local repository:

$ git clone https://github.com/acpica/acpica
$ cd acpica
$ generate/linux/gen-patch.sh -u [commit ID]

Here the commit ID is the ACPICA local repository commit ID you want
to cherry pick. It can be omitted if the commit is “HEAD”.
2. Cherry-pick recent ACPICA commits

Sometimes you need to rebase your code on top of the most recent
ACPICA changes that haven’t been applied to Linux yet.

61.1. Linuxized ACPICA - Introduction to ACPICA Release Automation2219

Linux Driver-api Documentation

You can generate the ACPICA release series yourself and rebase your
code on top of the generated ACPICA release patches:

$ git clone https://github.com/acpica/acpica
$ cd acpica
$ generate/linux/make-patches.sh -u [commit ID]

The commit ID should be the last ACPICA commit accepted by Linux.
Usually, it is the commit modifying ACPI_CA_VERSION. It can be found
by executing “git blame source/include/acpixf.h”and referencing the
line that contains “ACPI_CA_VERSION”.
3. Inspect the current divergences

If you have local copies of both Linux and upstream ACPICA, you can
generate a diff file indicating the state of the current divergences:

git clone https://github.com/acpica/acpica
git clone https://git.kernel.org/pub/scm/linux/kernel/git/
↪→torvalds/linux.git
cd acpica
generate/linux/divergences.sh -s ../linux

61.2 ACPI Scan Handlers

Copyright © 2012, Intel Corporation

Author Rafael J. Wysocki <rafael.j.wysocki@intel.com>
During system initialization and ACPI-based device hot-add, the ACPI namespace
is scanned in search of device objects that generally represent various pieces of
hardware. This causes a struct acpi_device object to be created and registered
with the driver core for every device object in the ACPI namespace and the hierar-
chy of those struct acpi_device objects reflects the namespace layout (i.e. parent
device objects in the namespace are represented by parent struct acpi_device ob-
jects and analogously for their children). Those struct acpi_device objects are
referred to as “device nodes”in what follows, but they should not be confused
with struct device_node objects used by the Device Trees parsing code (although
their role is analogous to the role of those objects).

During ACPI-based device hot-remove device nodes representing pieces of hard-
ware being removed are unregistered and deleted.

The core ACPI namespace scanning code in drivers/acpi/scan.c carries out basic
initialization of device nodes, such as retrieving common configuration information
from the device objects represented by them and populating themwith appropriate
data, but some of them require additional handling after they have been registered.
For example, if the given device node represents a PCI host bridge, its registration
should cause the PCI bus under that bridge to be enumerated and PCI devices
on that bus to be registered with the driver core. Similarly, if the device node
represents a PCI interrupt link, it is necessary to configure that link so that the
kernel can use it.

2220 Chapter 61. ACPI Support

mailto:rafael.j.wysocki@intel.com

Linux Driver-api Documentation

Those additional configuration tasks usually depend on the type of the hardware
component represented by the given device node which can be determined on the
basis of the device node’s hardware ID (HID). They are performed by objects
called ACPI scan handlers represented by the following structure:

struct acpi_scan_handler {
const struct acpi_device_id *ids;
struct list_head list_node;
int (*attach)(struct acpi_device *dev, const struct acpi_device_id␣

↪→*id);
void (*detach)(struct acpi_device *dev);

};

where ids is the list of IDs of device nodes the given handler is supposed to take
care of, list_node is the hook to the global list of ACPI scan handlers maintained by
the ACPI core and the .attach() and .detach() callbacks are executed, respectively,
after registration of new device nodes and before unregistration of device nodes
the handler attached to previously.

The namespace scanning function, acpi_bus_scan(), first registers all of the device
nodes in the given namespace scope with the driver core. Then, it tries to match a
scan handler against each of them using the ids arrays of the available scan han-
dlers. If a matching scan handler is found, its .attach() callback is executed for
the given device node. If that callback returns 1, that means that the handler has
claimed the device node and is now responsible for carrying out any additional
configuration tasks related to it. It also will be responsible for preparing the de-
vice node for unregistration in that case. The device node’s handler field is then
populated with the address of the scan handler that has claimed it.

If the .attach() callback returns 0, it means that the device node is not interesting
to the given scan handler and may be matched against the next scan handler in
the list. If it returns a (negative) error code, that means that the namespace scan
should be terminated due to a serious error. The error code returned should then
reflect the type of the error.

The namespace trimming function, acpi_bus_trim(), first executes .detach() call-
backs from the scan handlers of all device nodes in the given namespace scope
(if they have scan handlers). Next, it unregisters all of the device nodes in that
scope.

ACPI scan handlers can be added to the list maintained by the ACPI core with
the help of the acpi_scan_add_handler() function taking a pointer to the new scan
handler as an argument. The order in which scan handlers are added to the list
is the order in which they are matched against device nodes during namespace
scans.

All scan handles must be added to the list before acpi_bus_scan() is run for the
first time and they cannot be removed from it.

61.2. ACPI Scan Handlers 2221

Linux Driver-api Documentation

2222 Chapter 61. ACPI Support

CHAPTER

SIXTYTWO

KERNEL DRIVER LP855X

Backlight driver for LP855x ICs

Supported chips:

Texas Instruments LP8550, LP8551, LP8552, LP8553, LP8555, LP8556
and LP8557

Author: Milo(Woogyom) Kim <milo.kim@ti.com>

62.1 Description

• Brightness control

Brightness can be controlled by the pwm input or the i2c command. The
lp855x driver supports both cases.

• Device attributes

1) bl_ctl_mode

Backlight control mode.

Value: pwm based or register based

2) chip_id

The lp855x chip id.

Value: lp8550/lp8551/lp8552/lp8553/lp8555/lp8556/lp8557

62.2 Platform data for lp855x

For supporting platform specific data, the lp855x platform data can be used.

• name: Backlight driver name. If it is not defined, default name is set.
• device_control: Value of DEVICE CONTROL register.
• initial_brightness: Initial value of backlight brightness.
• period_ns: Platform specific PWM period value. unit is nano. Only valid

when brightness is pwm input mode.

• size_program: Total size of lp855x_rom_data.

2223

mailto:milo.kim@ti.com

Linux Driver-api Documentation

• rom_data: List of new eeprom/eprom registers.

62.2.1 Examples

1) lp8552 platform data: i2c register mode with new eeprom data:

#define EEPROM_A5_ADDR 0xA5
#define EEPROM_A5_VAL 0x4f /* EN_VSYNC=0 */

static struct lp855x_rom_data lp8552_eeprom_arr[] = {
{EEPROM_A5_ADDR, EEPROM_A5_VAL},

};

static struct lp855x_platform_data lp8552_pdata = {
.name = "lcd-bl",
.device_control = I2C_CONFIG(LP8552),
.initial_brightness = INITIAL_BRT,
.size_program = ARRAY_SIZE(lp8552_eeprom_arr),
.rom_data = lp8552_eeprom_arr,

};

2) lp8556 platform data: pwm input mode with default rom data:

static struct lp855x_platform_data lp8556_pdata = {
.device_control = PWM_CONFIG(LP8556),
.initial_brightness = INITIAL_BRT,
.period_ns = 1000000,

};

2224 Chapter 62. Kernel driver lp855x

CHAPTER

SIXTYTHREE

KERNEL CONNECTOR

Kernel connector - new netlink based userspace <-> kernel space easy to use
communication module.

The Connector driver makes it easy to connect various agents using a netlink based
network. One must register a callback and an identifier. When the driver receives
a special netlink message with the appropriate identifier, the appropriate callback
will be called.

From the userspace point of view it’s quite straightforward:
• socket();

• bind();

• send();

• recv();

But if kernelspace wants to use the full power of such connections, the driver
writer must create special sockets, must know about struct sk_buff handling, etc
⋯The Connector driver allows any kernelspace agents to use netlink based net-
working for inter-process communication in a significantly easier way:

int cn_add_callback(struct cb_id *id, char *name, void (*callback) (struct␣
↪→cn_msg *, struct netlink_skb_parms *));
void cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __
↪→group, int gfp_mask);
void cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __group, int gfp_
↪→mask);

struct cb_id
{

__u32 idx;
__u32 val;

};

idx and val are unique identifiers which must be registered in the connector.h
header for in-kernel usage. void (*callback) (void *) is a callback function which
will be called when a message with above idx.val is received by the connector core.
The argument for that function must be dereferenced to struct cn_msg *:

struct cn_msg
{

struct cb_id id;
(continues on next page)

2225

Linux Driver-api Documentation

(continued from previous page)

__u32 seq;
__u32 ack;

__u32 len; /* Length of the following data */
__u8 data[0];

};

63.1 Connector interfaces

int cn_add_callback(struct cb_id * id, const char * name,
void (*callback)(struct cn_msg *, struct
netlink_skb_parms *))

Registers new callback with connector core.

Parameters
struct cb_id * id unique connector’s user identifier. It must be reg-

istered in connector.h for legal in-kernel users.

const char * name connector’s callback symbolic name.
void (*)(struct cn_msg *, struct netlink_skb_parms *) callback

connector’s callback. parameters are cn_msg and the sender’s
credentials

void cn_del_callback(struct cb_id * id)
Unregisters new callback with connector core.

Parameters
struct cb_id * id unique connector’s user identifier.
int cn_netlink_send_mult(struct cn_msg * msg, u16 len,

u32 portid, u32 group,
gfp_t gfp_mask)

Sends message to the specified groups.

Parameters
struct cn_msg * msg message header(with attached data).

u16 len Number of msg to be sent.
u32 portid destination port. If non-zero the message will be sent to the

given port, which should be set to the original sender.

u32 group destination group. If portid and group is zero, then ap-
propriate group will be searched through all registered connector
users, and message will be delivered to the group which was cre-
ated for user with the same ID as inmsg. If group is not zero, then
message will be delivered to the specified group.

gfp_t gfp_mask GFP mask.

Description

2226 Chapter 63. Kernel Connector

Linux Driver-api Documentation

It can be safely called from softirq context, but may silently fail under
strong memory pressure.

If there are no listeners for given group -ESRCH can be returned.

int cn_netlink_send(struct cn_msg * msg, u32 portid, u32 group,
gfp_t gfp_mask)

Sends message to the specified groups.

Parameters
struct cn_msg * msg message header(with attached data).

u32 portid destination port. If non-zero the message will be sent to the
given port, which should be set to the original sender.

u32 group destination group. If portid and group is zero, then ap-
propriate group will be searched through all registered connector
users, and message will be delivered to the group which was cre-
ated for user with the same ID as inmsg. If group is not zero, then
message will be delivered to the specified group.

gfp_t gfp_mask GFP mask.

Description
It can be safely called from softirq context, but may silently fail under
strong memory pressure.

If there are no listeners for given group -ESRCH can be returned.

Note: When registering new callback user, connector core assigns
netlink group to the user which is equal to its id.idx.

63.2 Protocol description

The current framework offers a transport layer with fixed headers. The recom-
mended protocol which uses such a header is as following:

msg->seq and msg->ack are used to determine message genealogy. When some-
one sends a message, they use a locally unique sequence and random acknowledge
number. The sequence number may be copied into nlmsghdr->nlmsg_seq too.

The sequence number is incremented with each message sent.

If you expect a reply to the message, then the sequence number in the received
message MUST be the same as in the original message, and the acknowledge
number MUST be the same + 1.

If we receive a message and its sequence number is not equal to one we are expect-
ing, then it is a new message. If we receive a message and its sequence number is
the same as one we are expecting, but its acknowledge is not equal to the sequence
number in the original message + 1, then it is a new message.

Obviously, the protocol header contains the above id.

The connector allows event notification in the following form: kernel driver or
userspace process can ask connector to notify it when selected ids will be turned

63.2. Protocol description 2227

Linux Driver-api Documentation

on or off (registered or unregistered its callback). It is done by sending a special
command to the connector driver (it also registers itself with id={-1, -1}).

As example of this usage can be found in the cn_test.c module which uses the
connector to request notification and to send messages.

63.3 Reliability

Netlink itself is not a reliable protocol. That means that messages can be lost due
to memory pressure or process’receiving queue overflowed, so caller is warned
that it must be prepared. That is why the struct cn_msg [main connector’s message
header] contains u32 seq and u32 ack fields.

63.4 Userspace usage

2.6.14 has a new netlink socket implementation, which by default does not allow
people to send data to netlink groups other than 1. So, if you wish to use a netlink
socket (for example using connector) with a different group number, the userspace
application must subscribe to that group first. It can be achieved by the following
pseudocode:

s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);

l_local.nl_family = AF_NETLINK;
l_local.nl_groups = 12345;
l_local.nl_pid = 0;

if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -
↪→1) {

perror("bind");
close(s);
return -1;

}

{
int on = l_local.nl_groups;
setsockopt(s, 270, 1, &on, sizeof(on));

}

Where 270 above is SOL_NETLINK, and 1 is a NETLINK_ADD_MEMBERSHIP
socket option. To drop a multicast subscription, one should call the above socket
option with the NETLINK_DROP_MEMBERSHIP parameter which is defined as 0.

2.6.14 netlink code only allows to select a group which is less or equal to the
maximum group number, which is used at netlink_kernel_create() time. In case of
connector it is CN_NETLINK_USERS + 0xf, so if you want to use group number
12345, you must increment CN_NETLINK_USERS to that number. Additional 0xf
numbers are allocated to be used by non-in-kernel users.

Due to this limitation, group 0xffffffff does not work now, so one can not use
add/remove connector’s group notifications, but as far as I know, only cn_test.c
test module used it.

2228 Chapter 63. Kernel Connector

Linux Driver-api Documentation

Some work in netlink area is still being done, so things can be changed in 2.6.15
timeframe, if it will happen, documentation will be updated for that kernel.

63.5 Code samples

Sample code for a connector test module and user space can be found in sam-
ples/connector/. To build this code, enable CONFIG_CONNECTOR and CON-
FIG_SAMPLES.

63.5. Code samples 2229

Linux Driver-api Documentation

2230 Chapter 63. Kernel Connector

CHAPTER

SIXTYFOUR

CONSOLE DRIVERS

The Linux kernel has 2 general types of console drivers. The first type is assigned
by the kernel to all the virtual consoles during the boot process. This type will be
called‘system driver’, and only one system driver is allowed to exist. The system
driver is persistent and it can never be unloaded, though it may become inactive.

The second type has to be explicitly loaded and unloaded. This will be called‘mod-
ular driver’by this document. Multiple modular drivers can coexist at any time
with each driver sharing the console with other drivers including the system driver.
However, modular drivers cannot take over the console that is currently occupied
by another modular driver. (Exception: Drivers that call do_take_over_console()
will succeed in the takeover regardless of the type of driver occupying the con-
soles.) They can only take over the console that is occupied by the system driver.
In the same token, if the modular driver is released by the console, the system
driver will take over.

Modular drivers, from the programmer’s point of view, have to call:
do_take_over_console() - load and bind driver to console layer
give_up_console() - unload driver; it will only work if driver

is fully unbound

In newer kernels, the following are also available:

do_register_con_driver()
do_unregister_con_driver()

If sysfs is enabled, the contents of /sys/class/vtconsole can be examined. This
shows the console backends currently registered by the system which are named
vtcon<n> where <n> is an integer from 0 to 15. Thus:

ls /sys/class/vtconsole
. .. vtcon0 vtcon1

Each directory in /sys/class/vtconsole has 3 files:

ls /sys/class/vtconsole/vtcon0
. .. bind name uevent

What do these files signify?

1. bind - this is a read/write file. It shows the status of the driver if read, or
acts to bind or unbind the driver to the virtual consoles when written to. The
possible values are:

2231

Linux Driver-api Documentation

0
• means the driver is not bound and if echo’ed, commands the driver
to unbind

1
• means the driver is bound and if echo’ed, commands the driver to
bind

2. name - read-only file. Shows the name of the driver in this format:

cat /sys/class/vtconsole/vtcon0/name
(S) VGA+

'(S)' stands for a (S)ystem driver, i.e., it cannot be directly
commanded to bind or unbind

'VGA+' is the name of the driver

cat /sys/class/vtconsole/vtcon1/name
(M) frame buffer device

In this case, '(M)' stands for a (M)odular driver, one that can be
directly commanded to bind or unbind.

3. uevent - ignore this file

When unbinding, the modular driver is detached first, and then the system driver
takes over the consoles vacated by the driver. Binding, on the other hand, will
bind the driver to the consoles that are currently occupied by a system driver.

NOTE1: Binding and unbinding must be selected in Kconfig. It’s under:
Device Drivers ->

Character devices ->
Support for binding and unbinding console drivers

NOTE2: If any of the virtual consoles are in KD_GRAPHICS mode, then binding
or unbinding will not succeed. An example of an application that sets the
console to KD_GRAPHICS is X.

How useful is this feature? This is very useful for console driver developers. By
unbinding the driver from the console layer, one can unload the driver, make
changes, recompile, reload and rebind the driver without any need for rebooting
the kernel. For regular users who may want to switch from framebuffer console to
VGA console and vice versa, this feature also makes this possible. (NOTE NOTE
NOTE: Please read fbcon.txt under Documentation/fb for more details.)

2232 Chapter 64. Console Drivers

Linux Driver-api Documentation

64.1 Notes for developers

do_take_over_console() is now broken up into:

do_register_con_driver()
do_bind_con_driver() - private function

give_up_console() is a wrapper to do_unregister_con_driver(), and a driver must
be fully unbound for this call to succeed. con_is_bound() will check if the driver is
bound or not.

64.2 Guidelines for console driver writers

In order for binding to and unbinding from the console to properly work, console
drivers must follow these guidelines:

1. All drivers, except system drivers, must call either do_register_con_driver()
or do_take_over_console(). do_register_con_driver() will just add the
driver to the console’s internal list. It won’t take over the console.
do_take_over_console(), as it name implies, will also take over (or bind to)
the console.

2. All resources allocated during con->con_init() must be released in con-
>con_deinit().

3. All resources allocated in con->con_startup() must be released when the
driver, which was previously bound, becomes unbound. The console layer
does not have a complementary call to con->con_startup() so it’s up to
the driver to check when it’s legal to release these resources. Calling
con_is_bound() in con->con_deinit() will help. If the call returned false(), then
it’s safe to release the resources. This balance has to be ensured because
con->con_startup() can be called again when a request to rebind the driver
to the console arrives.

4. Upon exit of the driver, ensure that the driver is totally unbound. If the
condition is satisfied, then the driver must call do_unregister_con_driver()
or give_up_console().

5. do_unregister_con_driver() can also be called on conditions which make it
impossible for the driver to service console requests. This can happen with
the framebuffer console that suddenly lost all of its drivers.

The current crop of console drivers should still work correctly, but binding and
unbinding them may cause problems. With minimal fixes, these drivers can be
made to work correctly.

Antonino Daplas <adaplas@pol.net>

64.1. Notes for developers 2233

mailto:adaplas@pol.net

Linux Driver-api Documentation

2234 Chapter 64. Console Drivers

CHAPTER

SIXTYFIVE

DELL SYSTEMS MANAGEMENT BASE DRIVER

65.1 Overview

The Dell Systems Management Base Driver provides a sysfs interface for systems
management software such as Dell OpenManage to perform system management
interrupts and host control actions (system power cycle or power off after OS shut-
down) on certain Dell systems.

Dell OpenManage requires this driver on the following Dell PowerEdge systems:
300, 1300, 1400, 400SC, 500SC, 1500SC, 1550, 600SC, 1600SC, 650, 1655MC,
700, and 750. Other Dell software such as the open source libsmbios project is
expected to make use of this driver, and it may include the use of this driver on
other Dell systems.

The Dell libsmbios project aims towards providing access to as much BIOS infor-
mation as possible. See http://linux.dell.com/libsmbios/main/ for more information
about the libsmbios project.

65.2 System Management Interrupt

On some Dell systems, systems management software must access certain man-
agement information via a system management interrupt (SMI). The SMI data
buffer must reside in 32-bit address space, and the physical address of the buffer
is required for the SMI. The driver maintains the memory required for the SMI
and provides a way for the application to generate the SMI. The driver creates the
following sysfs entries for systems management software to perform these system
management interrupts:

/sys/devices/platform/dcdbas/smi_data
/sys/devices/platform/dcdbas/smi_data_buf_phys_addr
/sys/devices/platform/dcdbas/smi_data_buf_size
/sys/devices/platform/dcdbas/smi_request

Systems management software must perform the following steps to execute a SMI
using this driver:

1) Lock smi_data.

2) Write system management command to smi_data.

2235

http://linux.dell.com/libsmbios/main/

Linux Driver-api Documentation

3) Write“1”to smi_request to generate a calling interface SMI or“2”to generate
a raw SMI.

4) Read system management command response from smi_data.

5) Unlock smi_data.

65.3 Host Control Action

Dell OpenManage supports a host control feature that allows the administrator
to perform a power cycle or power off of the system after the OS has finished
shutting down. On some Dell systems, this host control feature requires that a
driver perform a SMI after the OS has finished shutting down.

The driver creates the following sysfs entries for systems management software
to schedule the driver to perform a power cycle or power off host control action
after the system has finished shutting down:

/sys/devices/platform/dcdbas/host_control_action /sys/devices/platform/dcdbas/host_control_smi_type
/sys/devices/platform/dcdbas/host_control_on_shutdown

Dell OpenManage performs the following steps to execute a power cycle or power
off host control action using this driver:

1) Write host control action to be performed to host_control_action.

2) Write type of SMI that driver needs to perform to host_control_smi_type.

3) Write “1”to host_control_on_shutdown to enable host control action.
4) Initiate OS shutdown. (Driver will perform host control SMI when it is notified
that the OS has finished shutting down.)

65.4 Host Control SMI Type

The following table shows the value to write to host_control_smi_type to perform
a power cycle or power off host control action:

PowerEdge System Host Control SMI Type
300 HC_SMITYPE_TYPE1
1300 HC_SMITYPE_TYPE1
1400 HC_SMITYPE_TYPE2
500SC HC_SMITYPE_TYPE2
1500SC HC_SMITYPE_TYPE2
1550 HC_SMITYPE_TYPE2
600SC HC_SMITYPE_TYPE2
1600SC HC_SMITYPE_TYPE2
650 HC_SMITYPE_TYPE2
1655MC HC_SMITYPE_TYPE2
700 HC_SMITYPE_TYPE3
750 HC_SMITYPE_TYPE3

2236 Chapter 65. Dell Systems Management Base Driver

CHAPTER

SIXTYSIX

EISA BUS SUPPORT

Author Marc Zyngier <maz@wild-wind.fr.eu.org>
This document groups random notes about porting EISA drivers to the new
EISA/sysfs API.

Starting from version 2.5.59, the EISA bus is almost given the same status as other
muchmoremainstream busses such as PCI or USB. This has been possible through
sysfs, which defines a nice enough set of abstractions to manage busses, devices
and drivers.

Although the new API is quite simple to use, converting existing drivers to the new
infrastructure is not an easy task (mostly because detection code is generally also
used to probe ISA cards). Moreover, most EISA drivers are among the oldest Linux
drivers so, as you can imagine, some dust has settled here over the years.

The EISA infrastructure is made up of three parts:

• The bus code implements most of the generic code. It is shared among all
the architectures that the EISA code runs on. It implements bus probing
(detecting EISA cards available on the bus), allocates I/O resources, allows
fancy naming through sysfs, and offers interfaces for driver to register.

• The bus root driver implements the glue between the bus hardware and the
generic bus code. It is responsible for discovering the device implementing
the bus, and setting it up to be latter probed by the bus code. This can go
from something as simple as reserving an I/O region on x86, to the rather
more complex, like the hppa EISA code. This is the part to implement in
order to have EISA running on an “new”platform.

• The driver offers the bus a list of devices that it manages, and implements
the necessary callbacks to probe and release devices whenever told to.

Every function/structure below lives in <linux/eisa.h>, which depends heavily on
<linux/device.h>.

2237

mailto:maz@wild-wind.fr.eu.org

Linux Driver-api Documentation

66.1 Bus root driver

int eisa_root_register (struct eisa_root_device *root);

The eisa_root_register function is used to declare a device as the root of an EISA
bus. The eisa_root_device structure holds a reference to this device, as well as
some parameters for probing purposes:

struct eisa_root_device {
struct device *dev; /* Pointer to bridge device */
struct resource *res;
unsigned long bus_base_addr;
int slots; /* Max slot number */
int force_probe; /* Probe even when no slot 0 */
u64 dma_mask; /* from bridge device */
int bus_nr; /* Set by eisa_root_register */
struct resource eisa_root_res; /* ditto */

};

node used for eisa_root_register internal purpose
dev pointer to the root device
res root device I/O resource
bus_base_addr slot 0 address on this bus
slots max slot number to probe
force_probe Probe even when slot 0 is empty (no EISA mainboard)
dma_mask Default DMA mask. Usually the bridge device dma_mask.
bus_nr unique bus id, set by eisa_root_register

66.2 Driver

int eisa_driver_register (struct eisa_driver *edrv);
void eisa_driver_unregister (struct eisa_driver *edrv);

Clear enough ?

struct eisa_device_id {
char sig[EISA_SIG_LEN];
unsigned long driver_data;

};

struct eisa_driver {
const struct eisa_device_id *id_table;
struct device_driver driver;

};

2238 Chapter 66. EISA bus support

Linux Driver-api Documentation

id_tablean array of NULL terminated EISA id strings, followed by an empty
string. Each string can optionally be paired with a driver-dependent value
(driver_data).

drivera generic driver, such as described in Documentation/driver-api/driver-
model/driver.rst. Only .name, .probe and .remove members are manda-
tory.

An example is the 3c59x driver:

static struct eisa_device_id vortex_eisa_ids[] = {
{ "TCM5920", EISA_3C592_OFFSET },
{ "TCM5970", EISA_3C597_OFFSET },
{ "" }

};

static struct eisa_driver vortex_eisa_driver = {
.id_table = vortex_eisa_ids,
.driver = {

.name = "3c59x",

.probe = vortex_eisa_probe,

.remove = vortex_eisa_remove
}

};

66.3 Device

The sysfs framework calls .probe and .remove functions upon device discovery
and removal (note that the .remove function is only called when driver is built as
a module).

Both functions are passed a pointer to a ‘struct device’, which is encapsulated
in a ‘struct eisa_device’described as follows:
struct eisa_device {

struct eisa_device_id id;
int slot;
int state;
unsigned long base_addr;
struct resource res[EISA_MAX_RESOURCES];
u64 dma_mask;
struct device dev; /* generic device */

};

id EISA id, as read from device. id.driver_data is set from the matching
driver EISA id.

slot slot number which the device was detected on
state set of flags indicating the state of the device. Current flags are

EISA_CONFIG_ENABLED and EISA_CONFIG_FORCED.
res set of four 256 bytes I/O regions allocated to this device
dma_maskDMA mask set from the parent device.
dev generic device (see Documentation/driver-api/driver-model/device.rst)

66.3. Device 2239

Linux Driver-api Documentation

You can get the‘struct eisa_device’from‘struct device’using the‘to_eisa_device’
macro.

66.4 Misc stuff

void eisa_set_drvdata (struct eisa_device *edev, void *data);

Stores data into the device’s driver_data area.
void *eisa_get_drvdata (struct eisa_device *edev):

Gets the pointer previously stored into the device’s driver_data area.
int eisa_get_region_index (void *addr);

Returns the region number (0 <= x<EISA_MAX_RESOURCES) of a given address.

66.5 Kernel parameters

eisa_bus.enable_dev A comma-separated list of slots to be enabled, even if the
firmware set the card as disabled. The driver must be able to properly initial-
ize the device in such conditions.

eisa_bus.disable_dev A comma-separated list of slots to be enabled, even if the
firmware set the card as enabled. The driver won’t be called to handle this
device.

virtual_root.force_probe Force the probing code to probe EISA slots even when
it cannot find an EISA compliant mainboard (nothing appears on slot 0). De-
faults to 0 (don’t force), and set to 1 (force probing) when either CON-
FIG_ALPHA_JENSEN or CONFIG_EISA_VLB_PRIMING are set.

66.6 Random notes

Converting an EISA driver to the new API mostly involves deleting code (since
probing is now in the core EISA code). Unfortunately, most drivers share their
probing routine between ISA, and EISA. Special care must be taken when ripping
out the EISA code, so other busses won’t suffer from these surgical strikes⋯
You must not expect any EISA device to be detected when returning from
eisa_driver_register, since the chances are that the bus has not yet been probed.
In fact, that’s what happens most of the time (the bus root driver usually kicks in
rather late in the boot process). Unfortunately, most drivers are doing the prob-
ing by themselves, and expect to have explored the whole machine when they exit
their probe routine.

For example, switching your favorite EISA SCSI card to the “hotplug”model is
“the right thing”(tm).

2240 Chapter 66. EISA bus support

Linux Driver-api Documentation

66.7 Thanks

I’d like to thank the following people for their help:
• Xavier Benigni for lending me a wonderful Alpha Jensen,

• James Bottomley, Jeff Garzik for getting this stuff into the kernel,

• Andries Brouwer for contributing numerous EISA ids,

• Catrin Jones for coping with far too many machines at home.

66.7. Thanks 2241

Linux Driver-api Documentation

2242 Chapter 66. EISA bus support

CHAPTER

SIXTYSEVEN

ISA DRIVERS

The following text is adapted from the commit message of the initial commit of the
ISA bus driver authored by Rene Herman.

During the recent “isa drivers using platform devices”discussion it was pointed
out that (ALSA) ISA drivers ran into the problem of not having the option to fail
driver load (device registration rather) upon not finding their hardware due to a
probe() error not being passed up through the driver model. In the course of that,
I suggested a separate ISA bus might be best; Russell King agreed and suggested
this bus could use the .match() method for the actual device discovery.

The attached does this. For this old non (generically) discoverable ISA hardware
only the driver itself can do discovery so as a difference with the platform_bus,
this isa_bus also distributes match() up to the driver.

As another difference: these devices only exist in the driver model due to the
driver creating them because it might want to drive them, meaning that all device
creation has been made internal as well.

The usage model this provides is nice, and has been acked from the ALSA side
by Takashi Iwai and Jaroslav Kysela. The ALSA driver module_init’s now (for
oldisa-only drivers) become:

static int __init alsa_card_foo_init(void)
{

return isa_register_driver(&snd_foo_isa_driver, SNDRV_CARDS);
}

static void __exit alsa_card_foo_exit(void)
{

isa_unregister_driver(&snd_foo_isa_driver);
}

Quite like the other bus models therefore. This removes a lot of duplicated init
code from the ALSA ISA drivers.

The passed in isa_driver struct is the regular driver struct embedding a struct
device_driver, the normal probe/remove/shutdown/suspend/resume callbacks, and
as indicated that .match callback.

The“SNDRV_CARDS”you see being passed in is a“unsigned int ndev”parameter,
indicating how many devices to create and call our methods with.

The platform_driver callbacks are called with a platform_device param; the
isa_driver callbacks are being called with a struct device *dev, unsigned int

2243

Linux Driver-api Documentation

id pair directly – with the device creation completely internal to the bus it’s much
cleaner to not leak isa_dev’s by passing them in at all. The id is the only thing we
ever want other then the struct device anyways, and it makes for nicer code in the
callbacks as well.

With this additional .match() callback ISA drivers have all options. If ALSA would
want to keep the old non-load behaviour, it could stick all of the old .probe in
.match, which would only keep them registered after everything was found to be
present and accounted for. If it wanted the behaviour of always loading as it in-
advertently did for a bit after the changeover to platform devices, it could just not
provide a .match() and do everything in .probe() as before.

If it, as Takashi Iwai already suggested earlier as a way of following the model
from saner buses more closely, wants to load when a later bind could conceivably
succeed, it could use .match() for the prerequisites (such as checking the user
wants the card enabled and that port/irq/dma values have been passed in) and
.probe() for everything else. This is the nicest model.

To the code⋯
This exports only two functions; isa_{,un}register_driver().

isa_register_driver() register’s the struct device_driver, and then loops over the
passed in ndev creating devices and registering them. This causes the bus match
method to be called for them, which is:

int isa_bus_match(struct device *dev, struct device_driver *driver)
{

struct isa_driver *isa_driver = to_isa_driver(driver);

if (dev->platform_data == isa_driver) {
if (!isa_driver->match ||

isa_driver->match(dev, to_isa_dev(dev)->id))
return 1;

dev->platform_data = NULL;
}
return 0;

}

The first thing this does is check if this device is in fact one of this driver’s devices
by seeing if the device’s platform_data pointer is set to this driver. Platform devices
compare strings, but we don’t need to do that with everything being internal, so
isa_register_driver() abuses dev->platform_data as a isa_driver pointer which we
can then check here. I believe platform_data is available for this, but if rather not,
moving the isa_driver pointer to the private struct isa_dev is ofcourse fine as well.

Then, if the the driver did not provide a .match, it matches. If it did, the driver
match() method is called to determine a match.

If it did not match, dev->platform_data is reset to indicate this to
isa_register_driver which can then unregister the device again.

If during all this, there’s any error, or no devices matched at all everything is
backed out again and the error, or -ENODEV, is returned.

isa_unregister_driver() just unregisters the matched devices and the driver itself.

2244 Chapter 67. ISA Drivers

Linux Driver-api Documentation

module_isa_driver is a helper macro for ISA drivers which do not do anything spe-
cial in module init/exit. This eliminates a lot of boilerplate code. Each module may
only use this macro once, and calling it replaces module_init and module_exit.

max_num_isa_dev is a macro to determine the maximum possible number of ISA
devices which may be registered in the I/O port address space given the address
extent of the ISA devices.

2245

Linux Driver-api Documentation

2246 Chapter 67. ISA Drivers

CHAPTER

SIXTYEIGHT

ISA PLUG & PLAY SUPPORT BY JAROSLAV KYSELA
<PEREX@SUSE.CZ>

68.1 Interface /proc/isapnp

The interface has been removed. See pnp.txt for more details.

68.2 Interface /proc/bus/isapnp

This directory allows access to ISA PnP cards and logical devices. The regular files
contain the contents of ISA PnP registers for a logical device.

2247

Linux Driver-api Documentation

2248Chapter 68. ISA Plug & Play support by Jaroslav Kysela <perex@suse.cz>

CHAPTER

SIXTYNINE

THE IO_MAPPING FUNCTIONS

69.1 API

The io_mapping functions in linux/io-mapping.h provide an abstraction for effi-
ciently mapping small regions of an I/O device to the CPU. The initial usage is to
support the large graphics aperture on 32-bit processors where ioremap_wc can-
not be used to statically map the entire aperture to the CPU as it would consume
too much of the kernel address space.

A mapping object is created during driver initialization using:

struct io_mapping *io_mapping_create_wc(unsigned long base,
unsigned long size)

‘base’is the bus address of the region to be made mappable, while‘size’indicates
how large a mapping region to enable. Both are in bytes.

This _wc variant provides a mapping which may only be used with the
io_mapping_map_atomic_wc or io_mapping_map_wc.

With this mapping object, individual pages can be mapped either atomically or not,
depending on the necessary scheduling environment. Of course, atomic maps are
more efficient:

void *io_mapping_map_atomic_wc(struct io_mapping *mapping,
unsigned long offset)

‘offset’is the offset within the definedmapping region. Accessing addresses beyond
the region specified in the creation function yields undefined results. Using an
offset which is not page aligned yields an undefined result. The return value points
to a single page in CPU address space.

This _wc variant returns a write-combining map to the page and may only be used
with mappings created by io_mapping_create_wc

Note that the task may not sleep while holding this page mapped.

void io_mapping_unmap_atomic(void *vaddr)

‘vaddr’must be the value returned by the last io_mapping_map_atomic_wc call.
This unmaps the specified page and allows the task to sleep once again.

If you need to sleep while holding the lock, you can use the non-atomic variant,
although they may be significantly slower.

2249

Linux Driver-api Documentation

void *io_mapping_map_wc(struct io_mapping *mapping,
unsigned long offset)

This works like io_mapping_map_atomic_wc except it allows the task to sleep while
holding the page mapped.

void io_mapping_unmap(void *vaddr)

This works like io_mapping_unmap_atomic, except it is used for pages mapped
with io_mapping_map_wc.

At driver close time, the io_mapping object must be freed:

void io_mapping_free(struct io_mapping *mapping)

69.2 Current Implementation

The initial implementation of these functions uses existing mapping mechanisms
and so provides only an abstraction layer and no new functionality.

On 64-bit processors, io_mapping_create_wc calls ioremap_wc for the whole
range, creating a permanent kernel-visible mapping to the resource. The
map_atomic and map functions add the requested offset to the base of the virtual
address returned by ioremap_wc.

On 32-bit processors with HIGHMEM defined, io_mapping_map_atomic_wc
uses kmap_atomic_pfn to map the specified page in an atomic fashion;
kmap_atomic_pfn isn’t really supposed to be used with device pages, but it pro-
vides an efficient mapping for this usage.

On 32-bit processors without HIGHMEM defined, io_mapping_map_atomic_wc
and io_mapping_map_wc both use ioremap_wc, a terribly inefficient function
which performs an IPI to inform all processors about the new mapping. This re-
sults in a significant performance penalty.

2250 Chapter 69. The io_mapping functions

CHAPTER

SEVENTY

ORDERING I/O WRITES TO MEMORY-MAPPED
ADDRESSES

On some platforms, so-called memory-mapped I/O is weakly ordered. On such
platforms, driver writers are responsible for ensuring that I/O writes to memory-
mapped addresses on their device arrive in the order intended. This is typically
done by reading a ‘safe’device or bridge register, causing the I/O chipset to
flush pending writes to the device before any reads are posted. A driver would
usually use this technique immediately prior to the exit of a critical section of
code protected by spinlocks. This would ensure that subsequent writes to I/O
space arrived only after all prior writes (much like a memory barrier op, mb(),
only with respect to I/O).

A more concrete example from a hypothetical device driver:

...
CPU A: spin_lock_irqsave(&dev_lock, flags)
CPU A: val = readl(my_status);
CPU A: ...
CPU A: writel(newval, ring_ptr);
CPU A: spin_unlock_irqrestore(&dev_lock, flags)

...
CPU B: spin_lock_irqsave(&dev_lock, flags)
CPU B: val = readl(my_status);
CPU B: ...
CPU B: writel(newval2, ring_ptr);
CPU B: spin_unlock_irqrestore(&dev_lock, flags)

...

In the case above, the device may receive newval2 before it receives newval, which
could cause problems. Fixing it is easy enough though:

...
CPU A: spin_lock_irqsave(&dev_lock, flags)
CPU A: val = readl(my_status);
CPU A: ...
CPU A: writel(newval, ring_ptr);
CPU A: (void)readl(safe_register); /* maybe a config register? */
CPU A: spin_unlock_irqrestore(&dev_lock, flags)

...
CPU B: spin_lock_irqsave(&dev_lock, flags)
CPU B: val = readl(my_status);
CPU B: ...
CPU B: writel(newval2, ring_ptr);

(continues on next page)

2251

Linux Driver-api Documentation

(continued from previous page)
CPU B: (void)readl(safe_register); /* maybe a config register? */
CPU B: spin_unlock_irqrestore(&dev_lock, flags)

Here, the reads from safe_register will cause the I/O chipset to flush any pending
writes before actually posting the read to the chipset, preventing possible data
corruption.

2252 Chapter 70. Ordering I/O writes to memory-mapped addresses

CHAPTER

SEVENTYONE

GENERIC COUNTER INTERFACE

71.1 Introduction

Counter devices are prevalent among a diverse spectrum of industries. The ubiq-
uitous presence of these devices necessitates a common interface and standard of
interaction and exposure. This driver API attempts to resolve the issue of dupli-
cate code found among existing counter device drivers by introducing a generic
counter interface for consumption. The Generic Counter interface enables drivers
to support and expose a common set of components and functionality present in
counter devices.

71.2 Theory

Counter devices can vary greatly in design, but regardless of whether some devices
are quadrature encoder counters or tally counters, all counter devices consist of
a core set of components. This core set of components, shared by all counter
devices, is what forms the essence of the Generic Counter interface.

There are three core components to a counter:

• Signal: Stream of data to be evaluated by the counter.

• Synapse: Association of a Signal, and evaluation trigger, with a Count.

• Count: Accumulation of the effects of connected Synapses.

71.2.1 SIGNAL

A Signal represents a stream of data. This is the input data that is evaluated by
the counter to determine the count data; e.g. a quadrature signal output line of a
rotary encoder. Not all counter devices provide user access to the Signal data, so
exposure is optional for drivers.

When the Signal data is available for user access, the Generic Counter interface
provides the following available signal values:

• SIGNAL_LOW: Signal line is in a low state.

• SIGNAL_HIGH: Signal line is in a high state.

A Signal may be associated with one or more Counts.

2253

Linux Driver-api Documentation

71.2.2 SYNAPSE

A Synapse represents the association of a Signal with a Count. Signal data affects
respective Count data, and the Synapse represents this relationship.

The Synapse action mode specifies the Signal data condition that triggers the re-
spective Count’s count function evaluation to update the count data. The Generic
Counter interface provides the following available action modes:

• None: Signal does not trigger the count function. In Pulse-Direction count
function mode, this Signal is evaluated as Direction.

• Rising Edge: Low state transitions to high state.

• Falling Edge: High state transitions to low state.

• Both Edges: Any state transition.

A counter is defined as a set of input signals associated with count data that are
generated by the evaluation of the state of the associated input signals as defined
by the respective count functions. Within the context of the Generic Counter in-
terface, a counter consists of Counts each associated with a set of Signals, whose
respective Synapse instances represent the count function update conditions for
the associated Counts.

A Synapse associates one Signal with one Count.

71.2.3 COUNT

A Count represents the accumulation of the effects of connected Synapses; i.e.
the count data for a set of Signals. The Generic Counter interface represents the
count data as a natural number.

A Count has a count function mode which represents the update behavior for the
count data. The Generic Counter interface provides the following available count
function modes:

• Increase: Accumulated count is incremented.

• Decrease: Accumulated count is decremented.

• Pulse-Direction: Rising edges on signal A updates the respective count. The
input level of signal B determines direction.

• Quadrature: A pair of quadrature encoding signals are evaluated to deter-
mine position and direction. The following Quadrature modes are available:

– x1 A: If direction is forward, rising edges on quadrature pair signal A
updates the respective count; if the direction is backward, falling edges
on quadrature pair signal A updates the respective count. Quadrature
encoding determines the direction.

– x1 B: If direction is forward, rising edges on quadrature pair signal B
updates the respective count; if the direction is backward, falling edges
on quadrature pair signal B updates the respective count. Quadrature
encoding determines the direction.

2254 Chapter 71. Generic Counter Interface

Linux Driver-api Documentation

– x2 A: Any state transition on quadrature pair signal A updates the respec-
tive count. Quadrature encoding determines the direction.

– x2 B: Any state transition on quadrature pair signal B updates the respec-
tive count. Quadrature encoding determines the direction.

– x4: Any state transition on either quadrature pair signals updates the
respective count. Quadrature encoding determines the direction.

A Count has a set of one or more associated Synapses.

71.3 Paradigm

The most basic counter device may be expressed as a single Count associated with
a single Signal via a single Synapse. Take for example a counter device which
simply accumulates a count of rising edges on a source input line:

Count Synapse Signal
----- ------- ------

+---------------------+
| Data: Count | Rising Edge ________
| Function: Increase | <------------- / Source \
| | ____________
+---------------------+

In this example, the Signal is a source input line with a pulsing voltage, while the
Count is a persistent count value which is repeatedly incremented. The Signal is
associated with the respective Count via a Synapse. The increase function is trig-
gered by the Signal data condition specified by the Synapse – in this case a rising
edge condition on the voltage input line. In summary, the counter device existence
and behavior is aptly represented by respective Count, Signal, and Synapse com-
ponents: a rising edge condition triggers an increase function on an accumulating
count datum.

A counter device is not limited to a single Signal; in fact, in theory many Signals
may be associated with even a single Count. For example, a quadrature encoder
counter device can keep track of position based on the states of two input lines:

Count Synapse Signal
----- ------- ------

+-------------------------+
| Data: Position | Both Edges ___
| Function: Quadrature x4 | <------------ / A \
| | _______
| |
| | Both Edges ___
| | <------------ / B \
| | _______
+-------------------------+

In this example, two Signals (quadrature encoder lines A and B) are associated
with a single Count: a rising or falling edge on either A or B triggers the“Quadra-
ture x4”function which determines the direction of movement and updates the
respective position data. The “Quadrature x4”function is likely implemented in

71.3. Paradigm 2255

Linux Driver-api Documentation

the hardware of the quadrature encoder counter device; the Count, Signals, and
Synapses simply represent this hardware behavior and functionality.

Signals associated with the same Count can have differing Synapse action mode
conditions. For example, a quadrature encoder counter device operating in a non-
quadrature Pulse-Direction mode could have one input line dedicated for move-
ment and a second input line dedicated for direction:

Count Synapse Signal
----- ------- ------

+---------------------------+
| Data: Position | Rising Edge ___
| Function: Pulse-Direction | <------------- / A \ (Movement)
| | _______
| |
| | None ___
| | <------------- / B \ (Direction)
| | _______
+---------------------------+

Only Signal A triggers the“Pulse-Direction”update function, but the instantaneous
state of Signal B is still required in order to know the direction so that the position
data may be properly updated. Ultimately, both Signals are associated with the
same Count via two respective Synapses, but only one Synapse has an active action
mode condition which triggers the respective count function while the other is left
with a“None”condition action mode to indicate its respective Signal’s availability
for state evaluation despite its non-triggering mode.

Keep in mind that the Signal, Synapse, and Count are abstract representations
which do not need to be closely married to their respective physical sources. This
allows the user of a counter to divorce themselves from the nuances of physical
components (such as whether an input line is differential or single-ended) and
instead focus on the core idea of what the data and process represent (e.g. position
as interpreted from quadrature encoding data).

71.4 Userspace Interface

Several sysfs attributes are generated by the Generic Counter interface, and reside
under the /sys/bus/counter/devices/counterX directory, where counterX refers to
the respective counter device. Please see Documentation/ABI/testing/sysfs-bus-
counter for detailed information on each Generic Counter interface sysfs attribute.

Through these sysfs attributes, programs and scriptsmay interact with the Generic
Counter paradigm Counts, Signals, and Synapses of respective counter devices.

2256 Chapter 71. Generic Counter Interface

Linux Driver-api Documentation

71.5 Driver API

Driver authors may utilize the Generic Counter interface in their code by including
the include/linux/counter.h header file. This header file provides several core data
structures, function prototypes, and macros for defining a counter device.

struct counter_signal_ext
Counter Signal extensions

Definition

struct counter_signal_ext {
const char *name;
ssize_t (*read)(struct counter_device *counter, struct counter_signal␣

↪→*signal, void *priv, char *buf);
ssize_t (*write)(struct counter_device *counter,struct counter_signal␣

↪→*signal, void *priv, const char *buf, size_t len);
void *priv;

};

Members
name attribute name

read read callback for this attribute; may be NULL

write write callback for this attribute; may be NULL

priv data private to the driver

struct counter_signal
Counter Signal node

Definition

struct counter_signal {
int id;
const char *name;
const struct counter_signal_ext *ext;
size_t num_ext;
void *priv;

};

Members
id unique ID used to identify signal

name device-specific Signal name; ideally, this shouldmatch the name as it appears
in the datasheet documentation

ext optional array of Counter Signal extensions

num_ext number of Counter Signal extensions specified in ext
priv optional private data supplied by driver

struct counter_signal_enum_ext
Signal enum extension attribute

Definition

71.5. Driver API 2257

Linux Driver-api Documentation

struct counter_signal_enum_ext {
const char * const *items;
size_t num_items;
int (*get)(struct counter_device *counter, struct counter_signal *signal,

↪→ size_t *item);
int (*set)(struct counter_device *counter, struct counter_signal *signal,

↪→ size_t item);
};

Members
items Array of strings

num_items Number of items specified in items
get Get callback function; may be NULL

set Set callback function; may be NULL

Description
The counter_signal_enum_ext structure can be used to implement enum style Sig-
nal extension attributes. Enum style attributes are those which have a set of
strings that map to unsigned integer values. The Generic Counter Signal enum
extension helper code takes care of mapping between value and string, as well as
generating a“_available”file which contains a list of all available items. The get
callback is used to query the currently active item; the index of the item within the
respective items array is returned via the ‘item’parameter. The set callback is
called when the attribute is updated; the‘item’parameter contains the index of
the newly activated item within the respective items array.

COUNTER_SIGNAL_ENUM(_name, _e)
Initialize Signal enum extension

Parameters
_name Attribute name

_e Pointer to a counter_signal_enum_ext structure

Description
This should usually be used together with COUNTER_SIGNAL_ENUM_AVAILABLE()

COUNTER_SIGNAL_ENUM_AVAILABLE(_name, _e)
Initialize Signal enum available extension

Parameters
_name Attribute name (“_available”will be appended to the name)
_e Pointer to a counter_signal_enum_ext structure

Description
Creates a read only attribute that lists all the available enum items in a newline
separated list. This should usually be used together with COUNTER_SIGNAL_ENUM()

struct counter_synapse
Counter Synapse node

2258 Chapter 71. Generic Counter Interface

Linux Driver-api Documentation

Definition

struct counter_synapse {
size_t action;
const enum counter_synapse_action *actions_list;
size_t num_actions;
struct counter_signal *signal;

};

Members
action index of current action mode

actions_list array of available action modes

num_actions number of action modes specified in actions_list
signal pointer to associated signal

struct counter_count_ext
Counter Count extension

Definition

struct counter_count_ext {
const char *name;
ssize_t (*read)(struct counter_device *counter, struct counter_count␣

↪→*count, void *priv, char *buf);
ssize_t (*write)(struct counter_device *counter,struct counter_count␣

↪→*count, void *priv, const char *buf, size_t len);
void *priv;

};

Members
name attribute name

read read callback for this attribute; may be NULL

write write callback for this attribute; may be NULL

priv data private to the driver

struct counter_count
Counter Count node

Definition

struct counter_count {
int id;
const char *name;
size_t function;
const enum counter_count_function *functions_list;
size_t num_functions;
struct counter_synapse *synapses;
size_t num_synapses;
const struct counter_count_ext *ext;
size_t num_ext;
void *priv;

};

71.5. Driver API 2259

Linux Driver-api Documentation

Members
id unique ID used to identify Count

name device-specific Count name; ideally, this should match the name as it appears
in the datasheet documentation

function index of current function mode

functions_list array available function modes

num_functions number of function modes specified in functions_list
synapses array of synapses for initialization

num_synapses number of synapses specified in synapses
ext optional array of Counter Count extensions

num_ext number of Counter Count extensions specified in ext
priv optional private data supplied by driver

struct counter_count_enum_ext
Count enum extension attribute

Definition

struct counter_count_enum_ext {
const char * const *items;
size_t num_items;
int (*get)(struct counter_device *counter, struct counter_count *count,␣

↪→size_t *item);
int (*set)(struct counter_device *counter, struct counter_count *count,␣

↪→size_t item);
};

Members
items Array of strings

num_items Number of items specified in items
get Get callback function; may be NULL

set Set callback function; may be NULL

Description
The counter_count_enum_ext structure can be used to implement enum style
Count extension attributes. Enum style attributes are those which have a set of
strings that map to unsigned integer values. The Generic Counter Count enum
extension helper code takes care of mapping between value and string, as well as
generating a“_available”file which contains a list of all available items. The get
callback is used to query the currently active item; the index of the item within the
respective items array is returned via the ‘item’parameter. The set callback is
called when the attribute is updated; the‘item’parameter contains the index of
the newly activated item within the respective items array.

COUNTER_COUNT_ENUM(_name, _e)
Initialize Count enum extension

2260 Chapter 71. Generic Counter Interface

Linux Driver-api Documentation

Parameters
_name Attribute name

_e Pointer to a counter_count_enum_ext structure

Description
This should usually be used together with COUNTER_COUNT_ENUM_AVAILABLE()

COUNTER_COUNT_ENUM_AVAILABLE(_name, _e)
Initialize Count enum available extension

Parameters
_name Attribute name (“_available”will be appended to the name)
_e Pointer to a counter_count_enum_ext structure

Description
Creates a read only attribute that lists all the available enum items in a newline
separated list. This should usually be used together with COUNTER_COUNT_ENUM()

struct counter_device_attr_group
internal container for attribute group

Definition

struct counter_device_attr_group {
struct attribute_group attr_group;
struct list_head attr_list;
size_t num_attr;

};

Members
attr_group Counter sysfs attributes group

attr_list list to keep track of created Counter sysfs attributes

num_attr number of Counter sysfs attributes

struct counter_device_state
internal state container for a Counter device

Definition

struct counter_device_state {
int id;
struct device dev;
struct counter_device_attr_group *groups_list;
size_t num_groups;
const struct attribute_group **groups;

};

Members
id unique ID used to identify the Counter

dev internal device structure

groups_list attribute groups list (for Signals, Counts, and ext)

71.5. Driver API 2261

Linux Driver-api Documentation

num_groups number of attribute groups containers

groups Counter sysfs attribute groups (to populate dev.groups)
struct counter_ops

Callbacks from driver

Definition

struct counter_ops {
int (*signal_read)(struct counter_device *counter,struct counter_signal␣

↪→*signal, enum counter_signal_value *val);
int (*count_read)(struct counter_device *counter, struct counter_count␣

↪→*count, unsigned long *val);
int (*count_write)(struct counter_device *counter, struct counter_count␣

↪→*count, unsigned long val);
int (*function_get)(struct counter_device *counter, struct counter_count␣

↪→*count, size_t *function);
int (*function_set)(struct counter_device *counter, struct counter_count␣

↪→*count, size_t function);
int (*action_get)(struct counter_device *counter,struct counter_count␣

↪→*count, struct counter_synapse *synapse, size_t *action);
int (*action_set)(struct counter_device *counter,struct counter_count␣

↪→*count, struct counter_synapse *synapse, size_t action);
};

Members
signal_read optional read callback for Signal attribute. The read value of the

respective Signal should be passed back via the val parameter.

count_read optional read callback for Count attribute. The read value of the re-
spective Count should be passed back via the val parameter.

count_write optional write callback for Count attribute. The write value for the
respective Count is passed in via the val parameter.

function_get function to get the current count function mode. Returns 0 on suc-
cess and negative error code on error. The index of the respective Count’s
returned function mode should be passed back via the function parameter.

function_set function to set the count function mode. function is the index of the
requested function mode from the respective Count’s functions_list array.

action_get function to get the current action mode. Returns 0 on success and
negative error code on error. The index of the respective Synapse’s returned
action mode should be passed back via the action parameter.

action_set function to set the action mode. action is the index of the requested
action mode from the respective Synapse’s actions_list array.

struct counter_device_ext
Counter device extension

Definition

struct counter_device_ext {
const char *name;
ssize_t (*read)(struct counter_device *counter, void *priv, char *buf);

(continues on next page)

2262 Chapter 71. Generic Counter Interface

Linux Driver-api Documentation

(continued from previous page)
ssize_t (*write)(struct counter_device *counter, void *priv, const char␣

↪→*buf, size_t len);
void *priv;

};

Members
name attribute name

read read callback for this attribute; may be NULL

write write callback for this attribute; may be NULL

priv data private to the driver

struct counter_device_enum_ext
Counter enum extension attribute

Definition

struct counter_device_enum_ext {
const char * const *items;
size_t num_items;
int (*get)(struct counter_device *counter, size_t *item);
int (*set)(struct counter_device *counter, size_t item);

};

Members
items Array of strings

num_items Number of items specified in items
get Get callback function; may be NULL

set Set callback function; may be NULL

Description
The counter_device_enum_ext structure can be used to implement enum style
Counter extension attributes. Enum style attributes are those which have a set
of strings that map to unsigned integer values. The Generic Counter enum ex-
tension helper code takes care of mapping between value and string, as well as
generating a“_available”file which contains a list of all available items. The get
callback is used to query the currently active item; the index of the item within the
respective items array is returned via the ‘item’parameter. The set callback is
called when the attribute is updated; the‘item’parameter contains the index of
the newly activated item within the respective items array.

COUNTER_DEVICE_ENUM(_name, _e)
Initialize Counter enum extension

Parameters
_name Attribute name

_e Pointer to a counter_device_enum_ext structure

Description

71.5. Driver API 2263

Linux Driver-api Documentation

This should usually be used together with COUNTER_DEVICE_ENUM_AVAILABLE()

COUNTER_DEVICE_ENUM_AVAILABLE(_name, _e)
Initialize Counter enum available extension

Parameters
_name Attribute name (“_available”will be appended to the name)
_e Pointer to a counter_device_enum_ext structure

Description
Creates a read only attribute that lists all the available enum items in a newline
separated list. This should usually be used together with COUNTER_DEVICE_ENUM()

struct counter_device
Counter data structure

Definition

struct counter_device {
const char *name;
struct device *parent;
struct counter_device_state *device_state;
const struct counter_ops *ops;
struct counter_signal *signals;
size_t num_signals;
struct counter_count *counts;
size_t num_counts;
const struct counter_device_ext *ext;
size_t num_ext;
void *priv;

};

Members
name name of the device as it appears in the datasheet

parent optional parent device providing the counters

device_state internal device state container

ops callbacks from driver

signals array of Signals

num_signals number of Signals specified in signals
counts array of Counts

num_counts number of Counts specified in counts
ext optional array of Counter device extensions

num_ext number of Counter device extensions specified in ext
priv optional private data supplied by driver

int counter_register(struct counter_device *const counter)
register Counter to the system

2264 Chapter 71. Generic Counter Interface

Linux Driver-api Documentation

Parameters
struct counter_device *const counter pointer to Counter to register

Description
This function registers a Counter to the system. A sysfs“counter”directory will be
created and populated with sysfs attributes correlating with the Counter Signals,
Synapses, and Counts respectively.

void counter_unregister(struct counter_device *const counter)
unregister Counter from the system

Parameters
struct counter_device *const counter pointer to Counter to unregister

Description
The Counter is unregistered from the system; all allocated memory is freed.

int devm_counter_register(struct device * dev, struct counter_device
*const counter)

Resource-managed counter_register

Parameters
struct device * dev device to allocate counter_device for

struct counter_device *const counter pointer to Counter to register

Description
Managed counter_register. The Counter registered with this function is automati-
cally unregistered on driver detach. This function calls counter_register internally.
Refer to that function for more information.

If an Counter registered with this function needs to be unregistered separately,
devm_counter_unregister must be used.

Return
0 on success, negative error number on failure.

void devm_counter_unregister(struct device * dev, struct counter_device
*const counter)

Resource-managed counter_unregister

Parameters
struct device * dev device this counter_device belongs to

struct counter_device *const counter pointer to Counter associated with the
device

Description
Unregister Counter registered with devm_counter_register.

71.5. Driver API 2265

Linux Driver-api Documentation

71.6 Implementation

To support a counter device, a driver must first allocate the available Counter Sig-
nals via counter_signal structures. These Signals should be stored as an array and
set to the signals array member of an allocated counter_device structure before
the Counter is registered to the system.

Counter Counts may be allocated via counter_count structures, and respective
Counter Signal associations (Synapses) made via counter_synapse structures.
Associated counter_synapse structures are stored as an array and set to the
the synapses array member of the respective counter_count structure. These
counter_count structures are set to the counts array member of an allocated
counter_device structure before the Counter is registered to the system.

Driver callbacks should be provided to the counter_device structure via a constant
counter_ops structure in order to communicate with the device: to read and write
various Signals and Counts, and to set and get the“action mode”and“function
mode”for various Synapses and Counts respectively.
A defined counter_device structure may be registered to the system by pass-
ing it to the counter_register function, and unregistered by passing it to
the counter_unregister function. Similarly, the devm_counter_register and
devm_counter_unregister functions may be used if device memory-managed reg-
istration is desired.

Extension sysfs attributes can be created for auxiliary functionality and data by
passing in defined counter_device_ext, counter_count_ext, and counter_signal_ext
structures. In these cases, the counter_device_ext structure is used for
global/miscellaneous exposure and configuration of the respective Counter device,
while the counter_count_ext and counter_signal_ext structures allow for auxiliary
exposure and configuration of a specific Count or Signal respectively.

Determining the type of extension to create is a matter of scope.

• Signal extensions are attributes that expose information/control specific to a
Signal. These types of attributes will exist under a Signal’s directory in sysfs.
For example, if you have an invert feature for a Signal, you can
have a Signal extension called “invert”that toggles that feature:
/sys/bus/counter/devices/counterX/signalY/invert

• Count extensions are attributes that expose information/control specific to a
Count. These type of attributes will exist under a Count’s directory in sysfs.
For example, if you want to pause/unpause a Count from updating,
you can have a Count extension called “enable”that toggles such:
/sys/bus/counter/devices/counterX/countY/enable

• Device extensions are attributes that expose information/control non-specific
to a particular Count or Signal. This is where you would put your global
features or other miscellanous functionality.

For example, if your device has an overtemp sensor, you can report
the chip overheated via a device extension called “error_overtemp”:
/sys/bus/counter/devices/counterX/error_overtemp

2266 Chapter 71. Generic Counter Interface

Linux Driver-api Documentation

71.7 Architecture

When the Generic Counter interface counter module is loaded, the counter_init
function is called which registers a bus_type named“counter”to the system. Sub-
sequently, when the module is unloaded, the counter_exit function is called which
unregisters the bus_type named “counter”from the system.

Counter devices are registered to the system via the counter_register function,
and later removed via the counter_unregister function. The counter_register func-
tion establishes a unique ID for the Counter device and creates a respective sysfs
directory, where X is the mentioned unique ID:

/sys/bus/counter/devices/counterX

Sysfs attributes are created within the counterX directory to expose functional-
ity, configurations, and data relating to the Counts, Signals, and Synapses of the
Counter device, as well as options and information for the Counter device itself.

Each Signal has a directory created to house its relevant sysfs attributes, where Y
is the unique ID of the respective Signal:

/sys/bus/counter/devices/counterX/signalY

Similarly, each Count has a directory created to house its relevant sysfs attributes,
where Y is the unique ID of the respective Count:

/sys/bus/counter/devices/counterX/countY

For a more detailed breakdown of the available Generic Counter interface sysfs
attributes, please refer to the Documentation/ABI/testing/sysfs-bus-counter file.

The Signals and Counts associated with the Counter device are registered to the
system as well by the counter_register function. The signal_read/signal_write
driver callbacks are associated with their respective Signal attributes, while the
count_read/count_write and function_get/function_set driver callbacks are asso-
ciated with their respective Count attributes; similarly, the same is true for the
action_get/action_set driver callbacks and their respective Synapse attributes. If
a driver callback is left undefined, then the respective read/write permission is left
disabled for the relevant attributes.

Similarly, extension sysfs attributes are created for the defined
counter_device_ext, counter_count_ext, and counter_signal_ext structures that
are passed in.

71.7. Architecture 2267

Linux Driver-api Documentation

2268 Chapter 71. Generic Counter Interface

CHAPTER

SEVENTYTWO

PBLK: PHYSICAL BLOCK DEVICE TARGET

pblk implements a fully associative, host-based FTL that exposes a traditional
block I/O interface. Its primary responsibilities are:

• Map logical addresses onto physical addresses (4KB granularity) in a logical-
to-physical (L2P) table.

• Maintain the integrity and consistency of the L2P table as well as its recovery
from normal tear down and power outage.

• Deal with controller- and media-specific constrains.

• Handle I/O errors.

• Implement garbage collection.

• Maintain consistency across the I/O stack during synchronization points.

For more information please refer to:

http://lightnvm.io

which maintains updated FAQs, manual pages, technical documentation, tools,
contacts, etc.

2269

http://lightnvm.io

Linux Driver-api Documentation

2270 Chapter 72. pblk: Physical Block Device Target

CHAPTER

SEVENTYTHREE

MEMORY CONTROLLER DRIVERS

73.1 TI EMIF SDRAM Controller Driver

73.1.1 Author

Aneesh V <aneesh@ti.com>

73.1.2 Location

driver/memory/emif.c

73.1.3 Supported SoCs:

TI OMAP44xx TI OMAP54xx

73.1.4 Menuconfig option:

Device Drivers
Memory devices Texas Instruments EMIF driver

73.1.5 Description

This driver is for the EMIF module available in Texas Instruments SoCs. EMIF is
an SDRAM controller that, based on its revision, supports one or more of DDR2,
DDR3, and LPDDR2 SDRAM protocols. This driver takes care of only LPDDR2
memories presently. The functions of the driver includes re-configuring AC timing
parameters and other settings during frequency, voltage and temperature changes

2271

mailto:aneesh@ti.com

Linux Driver-api Documentation

73.1.6 Platform Data (see include/linux/platform_data/emif_plat.h)

DDR device details and other board dependent and SoC dependent information
can be passed through platform data (struct emif_platform_data)

• DDR device details: ‘struct ddr_device_info’
• Device AC timings: ‘struct lpddr2_timings’and ‘struct lpddr2_min_tck’
• Custom configurations: customizable policy options through ‘struct
emif_custom_configs’

• IP revision

• PHY type

73.1.7 Interface to the external world

EMIF driver registers notifiers for voltage and frequency changes affecting EMIF
and takes appropriate actions when these are invoked.

• freq_pre_notify_handling()

• freq_post_notify_handling()

• volt_notify_handling()

73.1.8 Debugfs

The driver creates two debugfs entries per device.

• regcache_dump : dump of register values calculated and saved for all fre-
quencies used so far.

• mr4 : last polled value of MR4 register in the LPDDR2 device. MR4 indicates
the current temperature level of the device.

73.2 GPMC (General Purpose Memory Controller)

GPMC is an unified memory controller dedicated to interfacing external memory
devices like

• Asynchronous SRAM likememories and application specific integrated circuit
devices.

• Asynchronous, synchronous, and page mode burst NOR flash devices NAND
flash

• Pseudo-SRAM devices

GPMC is found on Texas Instruments SoC’s (OMAP based) IP details: http://www.
ti.com/lit/pdf/spruh73 section 7.1

2272 Chapter 73. Memory Controller drivers

http://www.ti.com/lit/pdf/spruh73
http://www.ti.com/lit/pdf/spruh73

Linux Driver-api Documentation

73.2.1 GPMC generic timing calculation:

GPMC has certain timings that has to be programmed for proper functioning of
the peripheral, while peripheral has another set of timings. To have peripheral
work with gpmc, peripheral timings has to be translated to the form gpmc can
understand. The way it has to be translated depends on the connected peripheral.
Also there is a dependency for certain gpmc timings on gpmc clock frequency.
Hence a generic timing routine was developed to achieve above requirements.

Generic routine provides a generic method to calculate gpmc timings from gpmc
peripheral timings. struct gpmc_device_timings fields has to be updated with tim-
ings from the datasheet of the peripheral that is connected to gpmc. A few of the
peripheral timings can be fed either in time or in cycles, provision to handle this
scenario has been provided (refer struct gpmc_device_timings definition). It may
so happen that timing as specified by peripheral datasheet is not present in timing
structure, in this scenario, try to correlate peripheral timing to the one available.
If that doesn’t work, try to add a new field as required by peripheral, educate
generic timing routine to handle it, make sure that it does not break any of the
existing. Then there may be cases where peripheral datasheet doesn’t mention
certain fields of struct gpmc_device_timings, zero those entries.

Generic timing routine has been verified to work properly on multiple onenand’s
and tusb6010 peripherals.

A word of caution: generic timing routine has been developed based on under-
standing of gpmc timings, peripheral timings, available custom timing routines,
a kind of reverse engineering without most of the datasheets & hardware (to be
exact none of those supported in mainline having custom timing routine) and by
simulation.

gpmc timing dependency on peripheral timings:

[<gpmc_timing>: <peripheral timing1>, <peripheral timing2> ⋯]
1. common

cs_on: t_ceasu
adv_on: t_avdasu, t_ceavd
2. sync common

sync_clk: clk
page_burst_access: t_bacc
clk_activation: t_ces, t_avds
3. read async muxed

adv_rd_off: t_avdp_r
oe_on: t_oeasu, t_aavdh
access: t_iaa, t_oe, t_ce, t_aa
rd_cycle: t_rd_cycle, t_cez_r, t_oez
4. read async non-muxed

adv_rd_off: t_avdp_r

73.2. GPMC (General Purpose Memory Controller) 2273

Linux Driver-api Documentation

oe_on: t_oeasu
access: t_iaa, t_oe, t_ce, t_aa
rd_cycle: t_rd_cycle, t_cez_r, t_oez
5. read sync muxed

adv_rd_off: t_avdp_r, t_avdh
oe_on: t_oeasu, t_ach, cyc_aavdh_oe
access: t_iaa, cyc_iaa, cyc_oe
rd_cycle: t_cez_r, t_oez, t_ce_rdyz
6. read sync non-muxed

adv_rd_off: t_avdp_r
oe_on: t_oeasu
access: t_iaa, cyc_iaa, cyc_oe
rd_cycle: t_cez_r, t_oez, t_ce_rdyz
7. write async muxed

adv_wr_off: t_avdp_w
we_on, wr_data_mux_bus: t_weasu, t_aavdh, cyc_aavhd_we
we_off: t_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_wr_cycle
8. write async non-muxed

adv_wr_off: t_avdp_w
we_on, wr_data_mux_bus: t_weasu
we_off: t_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_wr_cycle
9. write sync muxed

adv_wr_off: t_avdp_w, t_avdh
we_on, wr_data_mux_bus: t_weasu, t_rdyo, t_aavdh, cyc_aavhd_we
we_off: t_wpl, cyc_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_ce_rdyz
10. write sync non-muxed

adv_wr_off: t_avdp_w
we_on, wr_data_mux_bus: t_weasu, t_rdyo

2274 Chapter 73. Memory Controller drivers

Linux Driver-api Documentation

we_off: t_wpl, cyc_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_ce_rdyz
Note: Many of gpmc timings are dependent on other gpmc timings (a few gpmc

timings purely dependent on other gpmc timings, a reason that some of the
gpmc timings are missing above), and it will result in indirect dependency of
peripheral timings to gpmc timings other than mentioned above, refer timing
routine for more details. To know what these peripheral timings correspond
to, please see explanations in struct gpmc_device_timings definition. And for
gpmc timings refer IP details (link above).

73.2. GPMC (General Purpose Memory Controller) 2275

Linux Driver-api Documentation

2276 Chapter 73. Memory Controller drivers

CHAPTER

SEVENTYFOUR

MEN CHAMELEON BUS

74.1 Introduction

This document describes the architecture and implementation of the MEN
Chameleon Bus (called MCB throughout this document).

74.1.1 Scope of this Document

This document is intended to be a short overview of the current implementation
and does by no means describe the complete possibilities of MCB based devices.

74.1.2 Limitations of the current implementation

The current implementation is limited to PCI and PCIe based carrier devices that
only use a single memory resource and share the PCI legacy IRQ. Not implemented
are:

• Multi-resource MCB devices like the VME Controller or M-Module carrier.

• MCB devices that need another MCB device, like SRAM for a DMA Controller’
s buffer descriptors or a video controller’s video memory.

• A per-carrier IRQ domain for carrier devices that have one (or more) IRQs
per MCB device like PCIe based carriers with MSI or MSI-X support.

74.2 Architecture

MCB is divided into 3 functional blocks:

• The MEN Chameleon Bus itself,

• drivers for MCB Carrier Devices and

• the parser for the Chameleon table.

2277

Linux Driver-api Documentation

74.2.1 MEN Chameleon Bus

The MEN Chameleon Bus is an artificial bus system that attaches to a so called
Chameleon FPGA device found on some hardware produced my MEN Mikro Elek-
tronik GmbH. These devices are multi-function devices implemented in a single
FPGA and usually attached via some sort of PCI or PCIe link. Each FPGA con-
tains a header section describing the content of the FPGA. The header lists the
device id, PCI BAR, offset from the beginning of the PCI BAR, size in the FPGA,
interrupt number and some other properties currently not handled by the MCB
implementation.

74.2.2 Carrier Devices

A carrier device is just an abstraction for the real world physical bus the
Chameleon FPGA is attached to. Some IP Core drivers may need to interact with
properties of the carrier device (like querying the IRQ number of a PCI device). To
provide abstraction from the real hardware bus, an MCB carrier device provides
callback methods to translate the driver’s MCB function calls to hardware related
function calls. For example a carrier device may implement the get_irq() method
which can be translated into a hardware bus query for the IRQ number the device
should use.

74.2.3 Parser

The parser reads the first 512 bytes of a Chameleon device and parses the
Chameleon table. Currently the parser only supports the Chameleon v2 variant
of the Chameleon table but can easily be adopted to support an older or possi-
ble future variant. While parsing the table’s entries new MCB devices are allo-
cated and their resources are assigned according to the resource assignment in
the Chameleon table. After resource assignment is finished, the MCB devices are
registered at the MCB and thus at the driver core of the Linux kernel.

74.3 Resource handling

The current implementation assigns exactly one memory and one IRQ resource
per MCB device. But this is likely going to change in the future.

74.3.1 Memory Resources

Each MCB device has exactly one memory resource, which can be requested from
the MCB bus. This memory resource is the physical address of the MCB device
inside the carrier and is intended to be passed to ioremap() and friends. It is
already requested from the kernel by calling request_mem_region().

2278 Chapter 74. MEN Chameleon Bus

Linux Driver-api Documentation

74.3.2 IRQs

Each MCB device has exactly one IRQ resource, which can be requested from the
MCB bus. If a carrier device driver implements the ->get_irq() callback method,
the IRQ number assigned by the carrier device will be returned, otherwise the IRQ
number inside the Chameleon table will be returned. This number is suitable to
be passed to request_irq().

74.4 Writing an MCB driver

74.4.1 The driver structure

Each MCB driver has a structure to identify the device driver as well as device ids
which identify the IP Core inside the FPGA. The driver structure also contains call-
back methods which get executed on driver probe and removal from the system:

static const struct mcb_device_id foo_ids[] = {
{ .device = 0x123 },
{ }

};
MODULE_DEVICE_TABLE(mcb, foo_ids);

static struct mcb_driver foo_driver = {
driver = {

.name = "foo-bar",

.owner = THIS_MODULE,
},

.probe = foo_probe,

.remove = foo_remove,

.id_table = foo_ids,
};

74.4.2 Probing and attaching

When a driver is loaded and the MCB devices it services are found, the MCB core
will call the driver’s probe callback method. When the driver is removed from the
system, the MCB core will call the driver’s remove callback method:
static init foo_probe(struct mcb_device *mdev, const struct mcb_device_id␣
↪→*id);
static void foo_remove(struct mcb_device *mdev);

74.4. Writing an MCB driver 2279

Linux Driver-api Documentation

74.4.3 Initializing the driver

When the kernel is booted or your foo driver module is inserted, you have to per-
form driver initialization. Usually it is enough to register your driver module at
the MCB core:

static int __init foo_init(void)
{

return mcb_register_driver(&foo_driver);
}
module_init(foo_init);

static void __exit foo_exit(void)
{

mcb_unregister_driver(&foo_driver);
}
module_exit(foo_exit);

The module_mcb_driver() macro can be used to reduce the above code:

module_mcb_driver(foo_driver);

2280 Chapter 74. MEN Chameleon Bus

CHAPTER

SEVENTYFIVE

NTB DRIVERS

NTB (Non-Transparent Bridge) is a type of PCI-Express bridge chip that connects
the separate memory systems of two or more computers to the same PCI-Express
fabric. Existing NTB hardware supports a common feature set: doorbell registers
and memory translation windows, as well as non common features like scratchpad
and message registers. Scratchpad registers are read-and-writable registers that
are accessible from either side of the device, so that peers can exchange a small
amount of information at a fixed address. Message registers can be utilized for the
same purpose. Additionally they are provided with with special status bits to make
sure the information isn’t rewritten by another peer. Doorbell registers provide
a way for peers to send interrupt events. Memory windows allow translated read
and write access to the peer memory.

75.1 NTB Core Driver (ntb)

The NTB core driver defines an api wrapping the common feature set, and allows
clients interested in NTB features to discover NTB the devices supported by hard-
ware drivers. The term “client”is used here to mean an upper layer component
making use of the NTB api. The term“driver,”or“hardware driver,”is used here
to mean a driver for a specific vendor and model of NTB hardware.

2281

Linux Driver-api Documentation

75.2 NTB Client Drivers

NTB client drivers should register with the NTB core driver. After registering, the
client probe and remove functions will be called appropriately as ntb hardware,
or hardware drivers, are inserted and removed. The registration uses the Linux
Device framework, so it should feel familiar to anyone who has written a pci driver.

75.2.1 NTB Typical client driver implementation

Primary purpose of NTB is to share some peace of memory between at least two
systems. So theNTB device features like Scratchpad/Message registers aremainly
used to perform the proper memory window initialization. Typically there are two
types of memory window interfaces supported by the NTB API: inbound translation
configured on the local ntb port and outbound translation configured by the peer,
on the peer ntb port. The first type is depicted on the next figure:

Inbound translation:

Memory: Local NTB Port: Peer NTB Port: Peer MMIO:

| dma-mapped |-ntb_mw_set_trans(addr) |
| memory | _v____________ | ______________
| (addr) |<======| MW xlat addr |<====| MW base addr |<== memory-
↪→mapped IO
|------------| |--------------| | |--------------|

So typical scenario of the first type memory window initialization looks: 1) allocate
a memory region, 2) put translated address to NTB config, 3) somehow notify a
peer device of performed initialization, 4) peer device maps corresponding out-
bound memory window so to have access to the shared memory region.

The second type of interface, that implies the shared windows being initialized by
a peer device, is depicted on the figure:

Outbound translation:

Memory: Local NTB Port: Peer NTB Port: Peer MMIO:
____________ ______________

| dma-mapped | | | MW base addr |<== memory-mapped IO
| memory | | |--------------|
| (addr) |<===================| MW xlat addr |<-ntb_peer_mw_set_
↪→trans(addr)
|------------| | |--------------|

Typical scenario of the second type interface initialization would be: 1) allocate a
memory region, 2) somehow deliver a translated address to a peer device, 3) peer
puts the translated address to NTB config, 4) peer device maps outbound memory
window so to have access to the shared memory region.

As one can see the described scenarios can be combined in one portable algorithm.

Local device:
1) Allocate memory for a shared window

2282 Chapter 75. NTB Drivers

Linux Driver-api Documentation

2) Initialize memory window by translated address of the allocated
region (it may fail if local memory window initialization is unsup-
ported)

3) Send the translated address andmemory window index to a peer
device

Peer device:
1) Initializememorywindowwith retrieved address of the allocated
by another device memory region (it may fail if peer memory
window initialization is unsupported)

2) Map outbound memory window

In accordance with this scenario, the NTB Memory Window API can be used as
follows:

Local device:
1) ntb_mw_count(pidx) - retrieve number of memory ranges, which
can be allocated for memory windows between local device and
peer device of port with specified index.

2) ntb_get_align(pidx, midx) - retrieve parameters restricting the
shared memory region alignment and size. Then memory can
be properly allocated.

3) Allocate physically contiguous memory region in compliance
with restrictions retrieved in 2).

4) ntb_mw_set_trans(pidx, midx) - try to set translation address of
the memory window with specified index for the defined peer
device (it may fail if local translated address setting is not sup-
ported)

5) Send translated base address (usually together with memory
window number) to the peer device using, for instance, scratch-
pad or message registers.

Peer device:
1) ntb_peer_mw_set_trans(pidx, midx) - try to set received from
other device (related to pidx) translated address for specified
memory window. It may fail if retrieved address, for instance,
exceeds maximum possible address or isn’t properly aligned.

2) ntb_peer_mw_get_addr(widx) - retrieve MMIO address to map
the memory window so to have an access to the shared memory.

Also it is worth to note, that method ntb_mw_count(pidx) should return the same
value as ntb_peer_mw_count() on the peer with port index - pidx.

75.2. NTB Client Drivers 2283

Linux Driver-api Documentation

75.2.2 NTB Transport Client (ntb_transport) and NTB Netdev
(ntb_netdev)

The primary client for NTB is the Transport client, used in tandem with NTB Net-
dev. These drivers function together to create a logical link to the peer, across the
ntb, to exchange packets of network data. The Transport client establishes a logi-
cal link to the peer, and creates queue pairs to exchange messages and data. The
NTB Netdev then creates an ethernet device using a Transport queue pair. Net-
work data is copied between socket buffers and the Transport queue pair buffer.
The Transport client may be used for other things besides Netdev, however no
other applications have yet been written.

75.2.3 NTB Ping Pong Test Client (ntb_pingpong)

The Ping Pong test client serves as a demonstration to exercise the doorbell and
scratchpad registers of NTB hardware, and as an example simple NTB client. Ping
Pong enables the link when started, waits for the NTB link to come up, and then
proceeds to read and write the doorbell scratchpad registers of the NTB. The peers
interrupt each other using a bit mask of doorbell bits, which is shifted by one in
each round, to test the behavior of multiple doorbell bits and interrupt vectors.
The Ping Pong driver also reads the first local scratchpad, and writes the value
plus one to the first peer scratchpad, each round before writing the peer doorbell
register.

Module Parameters:

• unsafe - Some hardware has known issues with scratchpad and doorbell
registers. By default, Ping Pong will not attempt to exercise such hard-
ware. You may override this behavior at your own risk by setting
unsafe=1.

• delay_ms - Specify the delay between receiving a doorbell interrupt
event and setting the peer doorbell register for the next round.

• init_db - Specify the doorbell bits to start new series of rounds. A new
series begins once all the doorbell bits have been shifted out of range.

• dyndbg - It is suggested to specify dyndbg=+p when loading this module, and
then to observe debugging output on the console.

75.2.4 NTB Tool Test Client (ntb_tool)

The Tool test client serves for debugging, primarily, ntb hardware and drivers. The
Tool provides access through debugfs for reading, setting, and clearing the NTB
doorbell, and reading and writing scratchpads.

The Tool does not currently have any module parameters.

Debugfs Files:

• debugfs/ntb_tool/hw/ A directory in debugfs will be created for each NTB
device probed by the tool. This directory is shortened to hw below.

2284 Chapter 75. NTB Drivers

Linux Driver-api Documentation

• hw/db This file is used to read, set, and clear the local doorbell. Not all
operations may be supported by all hardware. To read the doorbell, read
the file. To set the doorbell, write s followed by the bits to set (eg: echo
‘s 0x0101’> db). To clear the doorbell, write c followed by the bits to
clear.

• hw/mask This file is used to read, set, and clear the local doorbell mask. See
db for details.

• hw/peer_db This file is used to read, set, and clear the peer doorbell. See
db for details.

• hw/peer_mask This file is used to read, set, and clear the peer doorbell
mask. See db for details.

• hw/spad This file is used to read and write local scratchpads. To read the
values of all scratchpads, read the file. To write values, write a series of
pairs of scratchpad number and value (eg: echo ‘4 0x123 7 0xabc’>
spad # to set scratchpads 4 and 7 to 0x123 and 0xabc, respectively).

• hw/peer_spad This file is used to read and write peer scratchpads. See spad
for details.

75.2.5 NTB MSI Test Client (ntb_msi_test)

The MSI test client serves to test and debug the MSI library which allows for
passing MSI interrupts across NTB memory windows. The test client is interacted
with through the debugfs filesystem:

• debugfs/ntb_tool/hw/ A directory in debugfs will be created for each NTB
device probed by the tool. This directory is shortened to hw below.

• hw/port This file describes the local port number
• hw/irq*_occurrences One occurrences file exists for each interrupt and,

when read, returns the number of times the interrupt has been triggered.

• hw/peer*/port This file describes the port number for each peer
• hw/peer*/count This file describes the number of interrupts that can be trig-

gered on each peer

• hw/peer*/trigger Writing an interrupt number (any number less than the
value specified in count) will trigger the interrupt on the specified peer.
That peer’s interrupt’s occurrence file should be incremented.

75.2. NTB Client Drivers 2285

Linux Driver-api Documentation

75.3 NTB Hardware Drivers

NTB hardware drivers should register devices with the NTB core driver. After
registering, clients probe and remove functions will be called.

75.3.1 NTB Intel Hardware Driver (ntb_hw_intel)

The Intel hardware driver supports NTB on Xeon and Atom CPUs.

Module Parameters:

• b2b_mw_idx If the peer ntb is to be accessed via a memory window, then use
this memory window to access the peer ntb. A value of zero or positive
starts from the first mw idx, and a negative value starts from the last mw
idx. Both sides MUST set the same value here! The default value is -1.

• b2b_mw_share If the peer ntb is to be accessed via a memory window, and
if the memory window is large enough, still allow the client to use the
second half of the memory window for address translation to the peer.

• xeon_b2b_usd_bar2_addr64 If using B2B topology on Xeon hardware, use
this 64 bit address on the bus between the NTB devices for the window
at BAR2, on the upstream side of the link.

• xeon_b2b_usd_bar4_addr64 - See xeon_b2b_bar2_addr64.

• xeon_b2b_usd_bar4_addr32 - See xeon_b2b_bar2_addr64.

• xeon_b2b_usd_bar5_addr32 - See xeon_b2b_bar2_addr64.

• xeon_b2b_dsd_bar2_addr64 - See xeon_b2b_bar2_addr64.

• xeon_b2b_dsd_bar4_addr64 - See xeon_b2b_bar2_addr64.

• xeon_b2b_dsd_bar4_addr32 - See xeon_b2b_bar2_addr64.

• xeon_b2b_dsd_bar5_addr32 - See xeon_b2b_bar2_addr64.

2286 Chapter 75. NTB Drivers

CHAPTER

SEVENTYSIX

NVMEM SUBSYSTEM

Srinivas Kandagatla <srinivas.kandagatla@linaro.org>

This document explains the NVMEM Framework along with the APIs provided,
and how to use it.

76.1 1. Introduction

NVMEM is the abbreviation for Non Volatile Memory layer. It is used to retrieve
configuration of SOC or Device specific data from non volatile memories like eep-
rom, efuses and so on.

Before this framework existed, NVMEM drivers like eeprom were stored in
drivers/misc, where they all had to duplicate pretty much the same code to regis-
ter a sysfs file, allow in-kernel users to access the content of the devices they were
driving, etc.

This was also a problem as far as other in-kernel users were involved, since the
solutions used were pretty much different from one driver to another, there was a
rather big abstraction leak.

This framework aims at solve these problems. It also introduces DT represen-
tation for consumer devices to go get the data they require (MAC Addresses,
SoC/Revision ID, part numbers, and so on) from the NVMEMs. This framework
is based on regmap, so that most of the abstraction available in regmap can be
reused, across multiple types of buses.

76.1.1 NVMEM Providers

NVMEM provider refers to an entity that implements methods to initialize, read
and write the non-volatile memory.

2287

mailto:srinivas.kandagatla@linaro.org

Linux Driver-api Documentation

76.2 2. Registering/Unregistering the NVMEM provider

A NVMEM provider can register with NVMEM core by supplying relevant
nvmem configuration to nvmem_register(), on success core would return a valid
nvmem_device pointer.

nvmem_unregister(nvmem) is used to unregister a previously registered provider.

For example, a simple qfprom case:

static struct nvmem_config econfig = {
.name = "qfprom",
.owner = THIS_MODULE,

};

static int qfprom_probe(struct platform_device *pdev)
{

...
econfig.dev = &pdev->dev;
nvmem = nvmem_register(&econfig);
...

}

It is mandatory that the NVMEM provider has a regmap associated with its struct
device. Failure to do would return error code from nvmem_register().

Users of board files can define and register nvmem cells using the
nvmem_cell_table struct:

static struct nvmem_cell_info foo_nvmem_cells[] = {
{

.name = "macaddr",

.offset = 0x7f00,

.bytes = ETH_ALEN,
}

};

static struct nvmem_cell_table foo_nvmem_cell_table = {
.nvmem_name = "i2c-eeprom",
.cells = foo_nvmem_cells,
.ncells = ARRAY_SIZE(foo_nvmem_cells),

};

nvmem_add_cell_table(&foo_nvmem_cell_table);

Additionally it is possible to create nvmem cell lookup entries and register them
with the nvmem framework from machine code as shown in the example below:

static struct nvmem_cell_lookup foo_nvmem_lookup = {
.nvmem_name = "i2c-eeprom",
.cell_name = "macaddr",
.dev_id = "foo_mac.0",
.con_id = "mac-address",

};

nvmem_add_cell_lookups(&foo_nvmem_lookup, 1);

2288 Chapter 76. NVMEM Subsystem

Linux Driver-api Documentation

76.2.1 NVMEM Consumers

NVMEM consumers are the entities which make use of the NVMEM provider to
read from and to NVMEM.

76.3 3. NVMEM cell based consumer APIs

NVMEM cells are the data entries/fields in the NVMEM. The NVMEM framework
provides 3 APIs to read/write NVMEM cells:

struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *name);
struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char␣
↪→*name);

void nvmem_cell_put(struct nvmem_cell *cell);
void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);

void *nvmem_cell_read(struct nvmem_cell *cell, ssize_t *len);
int nvmem_cell_write(struct nvmem_cell *cell, void *buf, ssize_t len);

*nvmem_cell_get() apis will get a reference to nvmem cell for a given id, and
nvmem_cell_read/write() can then read or write to the cell. Once the usage of
the cell is finished the consumer should call *nvmem_cell_put() to free all the allo-
cation memory for the cell.

76.4 4. Direct NVMEM device based consumer APIs

In some instances it is necessary to directly read/write the NVMEM. To facilitate
such consumers NVMEM framework provides below apis:

struct nvmem_device *nvmem_device_get(struct device *dev, const char␣
↪→*name);
struct nvmem_device *devm_nvmem_device_get(struct device *dev,

const char *name);
struct nvmem_device *nvmem_device_find(void *data,

int (*match)(struct device *dev, const void *data));
void nvmem_device_put(struct nvmem_device *nvmem);
int nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset,

size_t bytes, void *buf);
int nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset,

size_t bytes, void *buf);
int nvmem_device_cell_read(struct nvmem_device *nvmem,

struct nvmem_cell_info *info, void *buf);
int nvmem_device_cell_write(struct nvmem_device *nvmem,

struct nvmem_cell_info *info, void *buf);

Before the consumers can read/write NVMEM directly, it should get hold of
nvmem_controller from one of the *nvmem_device_get() api.

The difference between these apis and cell based apis is that these apis always
take nvmem_device as parameter.

76.3. 3. NVMEM cell based consumer APIs 2289

Linux Driver-api Documentation

76.5 5. Releasing a reference to the NVMEM

When a consumer no longer needs the NVMEM, it has to release the reference to
the NVMEM it has obtained using the APIs mentioned in the above section. The
NVMEM framework provides 2 APIs to release a reference to the NVMEM:

void nvmem_cell_put(struct nvmem_cell *cell);
void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
void nvmem_device_put(struct nvmem_device *nvmem);
void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem);

Both these APIs are used to release a reference to the NVMEM and
devm_nvmem_cell_put and devm_nvmem_device_put destroys the devres associ-
ated with this NVMEM.

76.5.1 Userspace

76.6 6. Userspace binary interface

Userspace can read/write the raw NVMEM file located at:

/sys/bus/nvmem/devices/*/nvmem

ex:

hexdump /sys/bus/nvmem/devices/qfprom0/nvmem

0000000 0000 0000 0000 0000 0000 0000 0000 0000
*
00000a0 db10 2240 0000 e000 0c00 0c00 0000 0c00
0000000 0000 0000 0000 0000 0000 0000 0000 0000
...
*
0001000

76.7 7. DeviceTree Binding

See Documentation/devicetree/bindings/nvmem/nvmem.txt

2290 Chapter 76. NVMEM Subsystem

CHAPTER

SEVENTYSEVEN

PARPORT INTERFACE DOCUMENTATION

Time-stamp <2000-02-24 13:30:20 twaugh>
Described here are the following functions:

Global functions:: parport_register_driver parport_unregister_driver par-
port_enumerate parport_register_device parport_unregister_device par-
port_claim parport_claim_or_block parport_release parport_yield par-
port_yield_blocking parport_wait_peripheral parport_poll_peripheral par-
port_wait_event parport_negotiate parport_read parport_write parport_open
parport_close parport_device_id parport_device_coords parport_find_class
parport_find_device parport_set_timeout

Port functions (can be overridden by low-level drivers):

SPP:: port->ops->read_data port->ops->write_data port->ops-
>read_status port->ops->read_control port->ops->write_control
port->ops->frob_control port->ops->enable_irq port->ops-
>disable_irq port->ops->data_forward port->ops->data_reverse

EPP:: port->ops->epp_write_data port->ops->epp_read_data port-
>ops->epp_write_addr port->ops->epp_read_addr

ECP:: port->ops->ecp_write_data port->ops->ecp_read_data port-
>ops->ecp_write_addr

Other:: port->ops->nibble_read_data port->ops->byte_read_data port-
>ops->compat_write_data

The parport subsystem comprises parport (the core port-sharing code), and a
variety of low-level drivers that actually do the port accesses. Each low-level driver
handles a particular style of port (PC, Amiga, and so on).

The parport interface to the device driver author can be broken down into global
functions and port functions.

The global functions are mostly for communicating between the device driver and
the parport subsystem: acquiring a list of available ports, claiming a port for ex-
clusive use, and so on. They also include generic functions for doing standard
things that will work on any IEEE 1284-capable architecture.

The port functions are provided by the low-level drivers, although the core parport
module provides generic defaults for some routines. The port functions can be
split into three groups: SPP, EPP, and ECP.

2291

Linux Driver-api Documentation

SPP (Standard Parallel Port) functions modify so-called SPP registers: data, status,
and control. The hardware may not actually have registers exactly like that, but
the PC does and this interface is modelled after common PC implementations.
Other low-level drivers may be able to emulate most of the functionality.

EPP (Enhanced Parallel Port) functions are provided for reading and writing in
IEEE 1284 EPP mode, and ECP (Extended Capabilities Port) functions are used
for IEEE 1284 ECP mode. (What about BECP? Does anyone care?)

Hardware assistance for EPP and/or ECP transfers may or may not be available,
and if it is available it may or may not be used. If hardware is not used, the transfer
will be software-driven. In order to cope with peripherals that only tenuously
support IEEE 1284, a low-level driver specific function is provided, for altering
‘fudge factors’.

77.1 Global functions

77.1.1 parport_register_driver - register a device driver with par-
port

SYNOPSIS

#include <linux/parport.h>

struct parport_driver {
const char *name;
void (*attach) (struct parport *);
void (*detach) (struct parport *);
struct parport_driver *next;

};
int parport_register_driver (struct parport_driver *driver);

DESCRIPTION

In order to be notified about parallel ports when they are detected, par-
port_register_driver should be called. Your driver will immediately be notified of
all ports that have already been detected, and of each new port as low-level drivers
are loaded.

A struct parport_driver contains the textual name of your driver, a pointer to
a function to handle new ports, and a pointer to a function to handle ports going
away due to a low-level driver unloading. Ports will only be detached if they are
not being used (i.e. there are no devices registered on them).

The visible parts of the struct parport * argument given to attach/detach are:

struct parport
{

struct parport *next; /* next parport in list */
const char *name; /* port's name */
unsigned int modes; /* bitfield of hardware modes */

(continues on next page)

2292 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

(continued from previous page)
struct parport_device_info probe_info;

/* IEEE1284 info */
int number; /* parport index */
struct parport_operations *ops;
...

};

There are other members of the structure, but they should not be touched.

The modes member summarises the capabilities of the underlying hardware. It
consists of flags which may be bitwise-ored together:

PAR-
PORT_MODE_PCSPP

IBM PC registers are available, i.e. functions that act on
data, control and status registers are probably writing di-
rectly to the hardware.

PAR-
PORT_MODE_TRISTATE

The data drivers may be turned off. This allows the data
lines to be used for reverse (peripheral to host) transfers.

PAR-
PORT_MODE_COMPAT

The hardware can assist with compatibility-mode (printer)
transfers, i.e. compat_write_block.

PAR-
PORT_MODE_EPP

The hardware can assist with EPP transfers.

PAR-
PORT_MODE_ECP

The hardware can assist with ECP transfers.

PAR-
PORT_MODE_DMA

The hardware can use DMA, so you might want to pass
ISA DMA-able memory (i.e. memory allocated using the
GFP_DMA flag with kmalloc) to the low-level driver in or-
der to take advantage of it.

There may be other flags in modes as well.

The contents of modes is advisory only. For example, if the hardware is capable of
DMA, and PARPORT_MODE_DMA is in modes, it doesn’t necessarily mean that
DMA will always be used when possible. Similarly, hardware that is capable of
assisting ECP transfers won’t necessarily be used.

RETURN VALUE

Zero on success, otherwise an error code.

ERRORS

None. (Can it fail? Why return int?)

77.1. Global functions 2293

Linux Driver-api Documentation

EXAMPLE

static void lp_attach (struct parport *port)
{

...
private = kmalloc (...);
dev[count++] = parport_register_device (...);
...

}

static void lp_detach (struct parport *port)
{

...
}

static struct parport_driver lp_driver = {
"lp",
lp_attach,
lp_detach,
NULL /* always put NULL here */

};

int lp_init (void)
{

...
if (parport_register_driver (&lp_driver)) {

/* Failed; nothing we can do. */
return -EIO;

}
...

}

SEE ALSO

parport_unregister_driver, parport_register_device, parport_enumerate

77.1.2 parport_unregister_driver - tell parport to forget about this
driver

SYNOPSIS

#include <linux/parport.h>

struct parport_driver {
const char *name;
void (*attach) (struct parport *);
void (*detach) (struct parport *);
struct parport_driver *next;

};
void parport_unregister_driver (struct parport_driver *driver);

2294 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

DESCRIPTION

This tells parport not to notify the device driver of new ports or of ports going
away. Registered devices belonging to that driver are NOT unregistered: par-
port_unregister_device must be used for each one.

EXAMPLE

void cleanup_module (void)
{

...
/* Stop notifications. */
parport_unregister_driver (&lp_driver);

/* Unregister devices. */
for (i = 0; i < NUM_DEVS; i++)

parport_unregister_device (dev[i]);
...

}

SEE ALSO

parport_register_driver, parport_enumerate

77.1.3 parport_enumerate - retrieve a list of parallel ports (DEPRE-
CATED)

SYNOPSIS

#include <linux/parport.h>

struct parport *parport_enumerate (void);

DESCRIPTION

Retrieve the first of a list of valid parallel ports for this machine. Successive par-
allel ports can be found using the struct parport *next element of the struct
parport * that is returned. If next is NULL, there are no more parallel ports in
the list. The number of ports in the list will not exceed PARPORT_MAX.

77.1. Global functions 2295

Linux Driver-api Documentation

RETURN VALUE

A struct parport * describing a valid parallel port for the machine, or NULL if
there are none.

ERRORS

This function can return NULL to indicate that there are no parallel ports to use.

EXAMPLE

int detect_device (void)
{

struct parport *port;

for (port = parport_enumerate ();
port != NULL;
port = port->next) {

/* Try to detect a device on the port... */
...

}
}

...
}

NOTES

parport_enumerate is deprecated; parport_register_driver should be used instead.

SEE ALSO

parport_register_driver, parport_unregister_driver

77.1.4 parport_register_device - register to use a port

SYNOPSIS

#include <linux/parport.h>

typedef int (*preempt_func) (void *handle);
typedef void (*wakeup_func) (void *handle);
typedef int (*irq_func) (int irq, void *handle, struct pt_regs *);

struct pardevice *parport_register_device(struct parport *port,
const char *name,
preempt_func preempt,
wakeup_func wakeup,
irq_func irq,

(continues on next page)

2296 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

(continued from previous page)
int flags,
void *handle);

DESCRIPTION

Use this function to register your device driver on a parallel port (port). Once you
have done that, you will be able to use parport_claim and parport_release in order
to use the port.

The (name) argument is the name of the device that appears in /proc filesys-
tem. The string must be valid for the whole lifetime of the device (until par-
port_unregister_device is called).

This function will register three callbacks into your driver: preempt, wakeup and
irq. Each of these may be NULL in order to indicate that you do not want a
callback.

When the preempt function is called, it is because another driver wishes to use
the parallel port. The preempt function should return non-zero if the parallel port
cannot be released yet – if zero is returned, the port is lost to another driver and
the port must be re-claimed before use.

The wakeup function is called once another driver has released the port and no
other driver has yet claimed it. You can claim the parallel port from within the
wakeup function (in which case the claim is guaranteed to succeed), or choose not
to if you don’t need it now.
If an interrupt occurs on the parallel port your driver has claimed, the irq function
will be called. (Write something about shared interrupts here.)

The handle is a pointer to driver-specific data, and is passed to the callback func-
tions.

flags may be a bitwise combination of the following flags:

Flag Meaning
PAR-
PORT_DEV_EXCL

The device cannot share the parallel port at all. Use
this only when absolutely necessary.

The typedefs are not actually defined – they are only shown in order to make the
function prototype more readable.

The visible parts of the returned struct pardevice are:

struct pardevice {
struct parport *port; /* Associated port */
void *private; /* Device driver's 'handle' */
...

};

77.1. Global functions 2297

Linux Driver-api Documentation

RETURN VALUE

A struct pardevice *: a handle to the registered parallel port device that can
be used for parport_claim, parport_release, etc.

ERRORS

A return value of NULL indicates that there was a problem registering a device on
that port.

EXAMPLE

static int preempt (void *handle)
{

if (busy_right_now)
return 1;

must_reclaim_port = 1;
return 0;

}

static void wakeup (void *handle)
{

struct toaster *private = handle;
struct pardevice *dev = private->dev;
if (!dev) return; /* avoid races */

if (want_port)
parport_claim (dev);

}

static int toaster_detect (struct toaster *private, struct parport *port)
{

private->dev = parport_register_device (port, "toaster", preempt,
wakeup, NULL, 0,
private);

if (!private->dev)
/* Couldn't register with parport. */
return -EIO;

must_reclaim_port = 0;
busy_right_now = 1;
parport_claim_or_block (private->dev);
...
/* Don't need the port while the toaster warms up. */
busy_right_now = 0;
...
busy_right_now = 1;
if (must_reclaim_port) {

parport_claim_or_block (private->dev);
must_reclaim_port = 0;

}
...

}

2298 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

SEE ALSO

parport_unregister_device, parport_claim

77.1.5 parport_unregister_device - finish using a port

SYNPOPSIS

#include <linux/parport.h>

void parport_unregister_device (struct pardevice *dev);

DESCRIPTION

This function is the opposite of parport_register_device. After using par-
port_unregister_device, dev is no longer a valid device handle.

You should not unregister a device that is currently claimed, although if you do it
will be released automatically.

EXAMPLE

...
kfree (dev->private); /* before we lose the pointer */
parport_unregister_device (dev);
...

SEE ALSO

parport_unregister_driver

77.1.6 parport_claim, parport_claim_or_block - claim the parallel
port for a device

SYNOPSIS

#include <linux/parport.h>

int parport_claim (struct pardevice *dev);
int parport_claim_or_block (struct pardevice *dev);

77.1. Global functions 2299

Linux Driver-api Documentation

DESCRIPTION

These functions attempt to gain control of the parallel port on which dev is regis-
tered. parport_claim does not block, but parport_claim_or_blockmay do. (Put
something here about blocking interruptibly or non-interruptibly.)

You should not try to claim a port that you have already claimed.

RETURN VALUE

A return value of zero indicates that the port was successfully claimed, and the
caller now has possession of the parallel port.

If parport_claim_or_block blocks before returning successfully, the return value
is positive.

ERRORS

-
EAGAIN

The port is unavailable at the moment, but another attempt to claim it
may succeed.

SEE ALSO

parport_release

77.1.7 parport_release - release the parallel port

SYNOPSIS

#include <linux/parport.h>

void parport_release (struct pardevice *dev);

DESCRIPTION

Once a parallel port device has been claimed, it can be released using
parport_release. It cannot fail, but you should not release a device that you
do not have possession of.

2300 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

EXAMPLE

static size_t write (struct pardevice *dev, const void *buf,
size_t len)

{
...
written = dev->port->ops->write_ecp_data (dev->port, buf,

len);
parport_release (dev);
...

}

SEE ALSO

change_mode, parport_claim, parport_claim_or_block, parport_yield

77.1.8 parport_yield, parport_yield_blocking - temporarily release
a parallel port

SYNOPSIS

#include <linux/parport.h>

int parport_yield (struct pardevice *dev)
int parport_yield_blocking (struct pardevice *dev);

DESCRIPTION

When a driver has control of a parallel port, it may allow another driver to tem-
porarily borrow it. parport_yield does not block; parport_yield_blocking may
do.

RETURN VALUE

A return value of zero indicates that the caller still owns the port and the call did
not block.

A positive return value from parport_yield_blocking indicates that the caller
still owns the port and the call blocked.

A return value of -EAGAIN indicates that the caller no longer owns the port, and
it must be re-claimed before use.

77.1. Global functions 2301

Linux Driver-api Documentation

ERRORS

-EAGAIN Ownership of the parallel port was given away.

SEE ALSO

parport_release

77.1.9 parport_wait_peripheral - wait for status lines, up to 35ms

SYNOPSIS

#include <linux/parport.h>

int parport_wait_peripheral (struct parport *port,
unsigned char mask,
unsigned char val);

DESCRIPTION

Wait for the status lines in mask to match the values in val.

RETURN VALUE

-EINTR a signal is pending
0 the status lines in mask have values in val
1 timed out while waiting (35ms elapsed)

SEE ALSO

parport_poll_peripheral

77.1.10 parport_poll_peripheral - wait for status lines, in usec

SYNOPSIS

#include <linux/parport.h>

int parport_poll_peripheral (struct parport *port,
unsigned char mask,
unsigned char val,
int usec);

2302 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

DESCRIPTION

Wait for the status lines in mask to match the values in val.

RETURN VALUE

-EINTR a signal is pending
0 the status lines in mask have values in val
1 timed out while waiting (usec microseconds have elapsed)

SEE ALSO

parport_wait_peripheral

77.1.11 parport_wait_event - wait for an event on a port

SYNOPSIS

#include <linux/parport.h>

int parport_wait_event (struct parport *port, signed long timeout)

DESCRIPTION

Wait for an event (e.g. interrupt) on a port. The timeout is in jiffies.

RETURN VALUE

0 success
<0 error (exit as soon as possible)
>0 timed out

77.1.12 parport_negotiate - perform IEEE 1284 negotiation

SYNOPSIS

#include <linux/parport.h>

int parport_negotiate (struct parport *, int mode);

77.1. Global functions 2303

Linux Driver-api Documentation

DESCRIPTION

Perform IEEE 1284 negotiation.

RETURN VALUE

0 handshake OK; IEEE 1284 peripheral and mode available
-1 handshake failed; peripheral not compliant (or none present)
1 handshake OK; IEEE 1284 peripheral present but mode not available

SEE ALSO

parport_read, parport_write

77.1.13 parport_read - read data from device

SYNOPSIS

#include <linux/parport.h>

ssize_t parport_read (struct parport *, void *buf, size_t len);

DESCRIPTION

Read data from device in current IEEE 1284 transfer mode. This only works for
modes that support reverse data transfer.

RETURN VALUE

If negative, an error code; otherwise the number of bytes transferred.

SEE ALSO

parport_write, parport_negotiate

77.1.14 parport_write - write data to device

SYNOPSIS

#include <linux/parport.h>

ssize_t parport_write (struct parport *, const void *buf, size_t len);

2304 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

DESCRIPTION

Write data to device in current IEEE 1284 transfer mode. This only works for
modes that support forward data transfer.

RETURN VALUE

If negative, an error code; otherwise the number of bytes transferred.

SEE ALSO

parport_read, parport_negotiate

77.1.15 parport_open - register device for particular device number

SYNOPSIS

#include <linux/parport.h>

struct pardevice *parport_open (int devnum, const char *name,
int (*pf) (void *),
void (*kf) (void *),
void (*irqf) (int, void *,

struct pt_regs *),
int flags, void *handle);

DESCRIPTION

This is like parport_register_device but takes a device number instead of a pointer
to a struct parport.

RETURN VALUE

See parport_register_device. If no device is associated with devnum, NULL is
returned.

SEE ALSO

parport_register_device

77.1. Global functions 2305

Linux Driver-api Documentation

77.1.16 parport_close - unregister device for particular device num-
ber

SYNOPSIS

#include <linux/parport.h>

void parport_close (struct pardevice *dev);

DESCRIPTION

This is the equivalent of parport_unregister_device for parport_open.

SEE ALSO

parport_unregister_device, parport_open

77.1.17 parport_device_id - obtain IEEE 1284 Device ID

SYNOPSIS

#include <linux/parport.h>

ssize_t parport_device_id (int devnum, char *buffer, size_t len);

DESCRIPTION

Obtains the IEEE 1284 Device ID associated with a given device.

RETURN VALUE

If negative, an error code; otherwise, the number of bytes of buffer that contain
the device ID. The format of the device ID is as follows:

[length][ID]

The first two bytes indicate the inclusive length of the entire Device ID, and are in
big-endian order. The ID is a sequence of pairs of the form:

key:value;

2306 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

NOTES

Many devices have ill-formed IEEE 1284 Device IDs.

SEE ALSO

parport_find_class, parport_find_device

77.1.18 parport_device_coords - convert device number to device
coordinates

SYNOPSIS

#include <linux/parport.h>

int parport_device_coords (int devnum, int *parport, int *mux,
int *daisy);

DESCRIPTION

Convert between device number (zero-based) and device coordinates (port, multi-
plexor, daisy chain address).

RETURN VALUE

Zero on success, in which case the coordinates are (*parport, *mux, *daisy).

SEE ALSO

parport_open, parport_device_id

77.1.19 parport_find_class - find a device by its class

SYNOPSIS

#include <linux/parport.h>

typedef enum {
PARPORT_CLASS_LEGACY = 0, /* Non-IEEE1284 device */
PARPORT_CLASS_PRINTER,
PARPORT_CLASS_MODEM,
PARPORT_CLASS_NET,
PARPORT_CLASS_HDC, /* Hard disk controller */
PARPORT_CLASS_PCMCIA,
PARPORT_CLASS_MEDIA, /* Multimedia device */
PARPORT_CLASS_FDC, /* Floppy disk controller */
PARPORT_CLASS_PORTS,

(continues on next page)

77.1. Global functions 2307

Linux Driver-api Documentation

(continued from previous page)
PARPORT_CLASS_SCANNER,
PARPORT_CLASS_DIGCAM,
PARPORT_CLASS_OTHER, /* Anything else */
PARPORT_CLASS_UNSPEC, /* No CLS field in ID */
PARPORT_CLASS_SCSIADAPTER

} parport_device_class;

int parport_find_class (parport_device_class cls, int from);

DESCRIPTION

Find a device by class. The search starts from device number from+1.

RETURN VALUE

The device number of the next device in that class, or -1 if no such device exists.

NOTES

Example usage:

int devnum = -1;
while ((devnum = parport_find_class (PARPORT_CLASS_DIGCAM, devnum)) != -1)
↪→{

struct pardevice *dev = parport_open (devnum, ...);
...

}

SEE ALSO

parport_find_device, parport_open, parport_device_id

77.1.20 parport_find_device - find a device by its class

SYNOPSIS

#include <linux/parport.h>

int parport_find_device (const char *mfg, const char *mdl, int from);

2308 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

DESCRIPTION

Find a device by vendor andmodel. The search starts from device number from+1.

RETURN VALUE

The device number of the next device matching the specifications, or -1 if no such
device exists.

NOTES

Example usage:

int devnum = -1;
while ((devnum = parport_find_device ("IOMEGA", "ZIP+", devnum)) != -1) {

struct pardevice *dev = parport_open (devnum, ...);
...

}

SEE ALSO

parport_find_class, parport_open, parport_device_id

77.1.21 parport_set_timeout - set the inactivity timeout

SYNOPSIS

#include <linux/parport.h>

long parport_set_timeout (struct pardevice *dev, long inactivity);

DESCRIPTION

Set the inactivity timeout, in jiffies, for a registered device. The previous timeout
is returned.

RETURN VALUE

The previous timeout, in jiffies.

77.1. Global functions 2309

Linux Driver-api Documentation

NOTES

Some of the port->ops functions for a parport may take time, owing to delays at
the peripheral. After the peripheral has not responded for inactivity jiffies, a
timeout will occur and the blocking function will return.

A timeout of 0 jiffies is a special case: the function must do as much as it can
without blocking or leaving the hardware in an unknown state. If port operations
are performed from within an interrupt handler, for instance, a timeout of 0 jiffies
should be used.

Once set for a registered device, the timeout will remain at the set value until set
again.

SEE ALSO

port->ops->xxx_read/write_yyy

77.2 PORT FUNCTIONS

The functions in the port->ops structure (struct parport_operations) are provided
by the low-level driver responsible for that port.

77.2.1 port->ops->read_data - read the data register

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
unsigned char (*read_data) (struct parport *port);
...

};

DESCRIPTION

If port->modes contains the PARPORT_MODE_TRISTATE flag and the PAR-
PORT_CONTROL_DIRECTION bit in the control register is set, this returns the
value on the data pins. If port->modes contains the PARPORT_MODE_TRISTATE
flag and the PARPORT_CONTROL_DIRECTION bit is not set, the return value
may be the last value written to the data register. Otherwise the return value is
undefined.

2310 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

SEE ALSO

write_data, read_status, write_control

77.2.2 port->ops->write_data - write the data register

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
void (*write_data) (struct parport *port, unsigned char d);
...

};

DESCRIPTION

Writes to the data register. May have side-effects (a STROBE pulse, for instance).

SEE ALSO

read_data, read_status, write_control

77.2.3 port->ops->read_status - read the status register

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
unsigned char (*read_status) (struct parport *port);
...

};

DESCRIPTION

Reads from the status register. This is a bitmask:

• PARPORT_STATUS_ERROR (printer fault, “nFault”)
• PARPORT_STATUS_SELECT (on-line, “Select”)
• PARPORT_STATUS_PAPEROUT (no paper, “PError”)
• PARPORT_STATUS_ACK (handshake, “nAck”)
• PARPORT_STATUS_BUSY (busy, “Busy”)

There may be other bits set.

77.2. PORT FUNCTIONS 2311

Linux Driver-api Documentation

SEE ALSO

read_data, write_data, write_control

77.2.4 port->ops->read_control - read the control register

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
unsigned char (*read_control) (struct parport *port);
...

};

DESCRIPTION

Returns the last value written to the control register (either from write_control or
frob_control). No port access is performed.

SEE ALSO

read_data, write_data, read_status, write_control

77.2.5 port->ops->write_control - write the control register

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
void (*write_control) (struct parport *port, unsigned char s);
...

};

DESCRIPTION

Writes to the control register. This is a bitmask:

- PARPORT_CONTROL_STROBE (nStrobe)

- PARPORT_CONTROL_AUTOFD (nAutoFd)

- PARPORT_CONTROL_INIT (nInit)

- PARPORT_CONTROL_SELECT (nSelectIn)

2312 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

SEE ALSO

read_data, write_data, read_status, frob_control

77.2.6 port->ops->frob_control - write control register bits

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
unsigned char (*frob_control) (struct parport *port,

unsigned char mask,
unsigned char val);

...
};

DESCRIPTION

This is equivalent to reading from the control register, masking out the bits in
mask, exclusive-or’ing with the bits in val, and writing the result to the control
register.

As some ports don’t allow reads from the control port, a software copy of its
contents is maintained, so frob_control is in fact only one port access.

SEE ALSO

read_data, write_data, read_status, write_control

77.2.7 port->ops->enable_irq - enable interrupt generation

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
void (*enable_irq) (struct parport *port);
...

};

77.2. PORT FUNCTIONS 2313

Linux Driver-api Documentation

DESCRIPTION

The parallel port hardware is instructed to generate interrupts at appropriate mo-
ments, although thosemoments are architecture-specific. For the PC architecture,
interrupts are commonly generated on the rising edge of nAck.

SEE ALSO

disable_irq

77.2.8 port->ops->disable_irq - disable interrupt generation

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
void (*disable_irq) (struct parport *port);
...

};

DESCRIPTION

The parallel port hardware is instructed not to generate interrupts. The interrupt
itself is not masked.

SEE ALSO

enable_irq

77.2.9 port->ops->data_forward - enable data drivers

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
void (*data_forward) (struct parport *port);
...

};

2314 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

DESCRIPTION

Enables the data line drivers, for 8-bit host-to-peripheral communications.

SEE ALSO

data_reverse

77.2.10 port->ops->data_reverse - tristate the buffer

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
void (*data_reverse) (struct parport *port);
...

};

DESCRIPTION

Places the data bus in a high impedance state, if port->modes has the PAR-
PORT_MODE_TRISTATE bit set.

SEE ALSO

data_forward

77.2.11 port->ops->epp_write_data - write EPP data

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
size_t (*epp_write_data) (struct parport *port, const void *buf,

size_t len, int flags);
...

};

77.2. PORT FUNCTIONS 2315

Linux Driver-api Documentation

DESCRIPTION

Writes data in EPP mode, and returns the number of bytes written.

The flags parameter may be one or more of the following, bitwise-or’ed together:

PAR-
PORT_EPP_FAST

Use fast transfers. Some chips provide 16-bit and 32-bit registers.
However, if a transfer times out, the return valuemay be unreliable.

SEE ALSO

epp_read_data, epp_write_addr, epp_read_addr

77.2.12 port->ops->epp_read_data - read EPP data

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
size_t (*epp_read_data) (struct parport *port, void *buf,

size_t len, int flags);
...

};

DESCRIPTION

Reads data in EPP mode, and returns the number of bytes read.

The flags parameter may be one or more of the following, bitwise-or’ed together:

PAR-
PORT_EPP_FAST

Use fast transfers. Some chips provide 16-bit and 32-bit registers.
However, if a transfer times out, the return valuemay be unreliable.

SEE ALSO

epp_write_data, epp_write_addr, epp_read_addr

2316 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

77.2.13 port->ops->epp_write_addr - write EPP address

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
size_t (*epp_write_addr) (struct parport *port,

const void *buf, size_t len, int flags);
...

};

DESCRIPTION

Writes EPP addresses (8 bits each), and returns the number written.

The flags parameter may be one or more of the following, bitwise-or’ed together:

PAR-
PORT_EPP_FAST

Use fast transfers. Some chips provide 16-bit and 32-bit registers.
However, if a transfer times out, the return valuemay be unreliable.

(Does PARPORT_EPP_FAST make sense for this function?)

SEE ALSO

epp_write_data, epp_read_data, epp_read_addr

77.2.14 port->ops->epp_read_addr - read EPP address

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
size_t (*epp_read_addr) (struct parport *port, void *buf,

size_t len, int flags);
...

};

77.2. PORT FUNCTIONS 2317

Linux Driver-api Documentation

DESCRIPTION

Reads EPP addresses (8 bits each), and returns the number read.

The flags parameter may be one or more of the following, bitwise-or’ed together:

PAR-
PORT_EPP_FAST

Use fast transfers. Some chips provide 16-bit and 32-bit registers.
However, if a transfer times out, the return valuemay be unreliable.

(Does PARPORT_EPP_FAST make sense for this function?)

SEE ALSO

epp_write_data, epp_read_data, epp_write_addr

77.2.15 port->ops->ecp_write_data - write a block of ECP data

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
size_t (*ecp_write_data) (struct parport *port,

const void *buf, size_t len, int flags);
...

};

DESCRIPTION

Writes a block of ECP data. The flags parameter is ignored.

RETURN VALUE

The number of bytes written.

SEE ALSO

ecp_read_data, ecp_write_addr

2318 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

77.2.16 port->ops->ecp_read_data - read a block of ECP data

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
size_t (*ecp_read_data) (struct parport *port,

void *buf, size_t len, int flags);
...

};

DESCRIPTION

Reads a block of ECP data. The flags parameter is ignored.

RETURN VALUE

The number of bytes read. NB. There may be more unread data in a FIFO. Is there
a way of stunning the FIFO to prevent this?

SEE ALSO

ecp_write_block, ecp_write_addr

77.2.17 port->ops->ecp_write_addr - write a block of ECP ad-
dresses

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
size_t (*ecp_write_addr) (struct parport *port,

const void *buf, size_t len, int flags);
...

};

77.2. PORT FUNCTIONS 2319

Linux Driver-api Documentation

DESCRIPTION

Writes a block of ECP addresses. The flags parameter is ignored.

RETURN VALUE

The number of bytes written.

NOTES

This may use a FIFO, and if so shall not return until the FIFO is empty.

SEE ALSO

ecp_read_data, ecp_write_data

77.2.18 port->ops->nibble_read_data - read a block of data in nib-
ble mode

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
size_t (*nibble_read_data) (struct parport *port,

void *buf, size_t len, int flags);
...

};

DESCRIPTION

Reads a block of data in nibble mode. The flags parameter is ignored.

RETURN VALUE

The number of whole bytes read.

2320 Chapter 77. PARPORT interface documentation

Linux Driver-api Documentation

SEE ALSO

byte_read_data, compat_write_data

77.2.19 port->ops->byte_read_data - read a block of data in byte
mode

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
size_t (*byte_read_data) (struct parport *port,

void *buf, size_t len, int flags);
...

};

DESCRIPTION

Reads a block of data in byte mode. The flags parameter is ignored.

RETURN VALUE

The number of bytes read.

SEE ALSO

nibble_read_data, compat_write_data

77.2.20 port->ops->compat_write_data - write a block of data in
compatibility mode

SYNOPSIS

#include <linux/parport.h>

struct parport_operations {
...
size_t (*compat_write_data) (struct parport *port,

const void *buf, size_t len, int flags);
...

};

77.2. PORT FUNCTIONS 2321

Linux Driver-api Documentation

DESCRIPTION

Writes a block of data in compatibility mode. The flags parameter is ignored.

RETURN VALUE

The number of bytes written.

SEE ALSO

nibble_read_data, byte_read_data

2322 Chapter 77. PARPORT interface documentation

CHAPTER

SEVENTYEIGHT

PPS - PULSE PER SECOND

Copyright (C) 2007 Rodolfo Giometti <giometti@enneenne.com>

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foun-
dation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

78.1 Overview

LinuxPPS provides a programming interface (API) to define in the system several
PPS sources.

PPS means“pulse per second”and a PPS source is just a device which provides a
high precision signal each second so that an application can use it to adjust system
clock time.

A PPS source can be connected to a serial port (usually to the Data Carrier Detect
pin) or to a parallel port (ACK-pin) or to a special CPU’s GPIOs (this is the common
case in embedded systems) but in each case when a new pulse arrives the system
must apply to it a timestamp and record it for userland.

Common use is the combination of the NTPD as userland program, with a GPS
receiver as PPS source, to obtain a wallclock-time with sub-millisecond synchro-
nisation to UTC.

78.2 RFC considerations

While implementing a PPS API as RFC 2783 defines and using an embedded CPU
GPIO-Pin as physical link to the signal, I encountered a deeper problem:

At startup it needs a file descriptor as argument for the function
time_pps_create().

This implies that the source has a /dev/⋯entry. This assumption is OK for the se-
rial and parallel port, where you can do something useful besides(!) the gathering
of timestamps as it is the central task for a PPS API. But this assumption does not

2323

mailto:giometti@enneenne.com

Linux Driver-api Documentation

work for a single purpose GPIO line. In this case even basic file-related functional-
ity (like read() and write()) makes no sense at all and should not be a precondition
for the use of a PPS API.

The problem can be simply solved if you consider that a PPS source is not always
connected with a GPS data source.

So your programs should check if the GPS data source (the serial port for instance)
is a PPS source too, and if not they should provide the possibility to open another
device as PPS source.

In LinuxPPS the PPS sources are simply char devices usually mapped into files
/dev/pps0, /dev/pps1, etc.

78.3 PPS with USB to serial devices

It is possible to grab the PPS from an USB to serial device. However, you should
take into account the latencies and jitter introduced by the USB stack. Users
have reported clock instability around +-1mswhen synchronized with PPS through
USB. With USB 2.0, jitter may decrease down to the order of 125 microseconds.

This may be suitable for time server synchronization with NTP because of its un-
dersampling and algorithms.

If your device doesn’t report PPS, you can check that the feature is sup-
ported by its driver. Most of the time, you only need to add a call to
usb_serial_handle_dcd_change after checking the DCD status (see ch341 and
pl2303 examples).

78.4 Coding example

To register a PPS source into the kernel you should define a struct pps_source_info
as follows:

static struct pps_source_info pps_ktimer_info = {
.name = "ktimer",
.path = "",
.mode = PPS_CAPTUREASSERT | PPS_OFFSETASSERT |

PPS_ECHOASSERT |
PPS_CANWAIT | PPS_TSFMT_TSPEC,

.echo = pps_ktimer_echo,

.owner = THIS_MODULE,
};

and then calling the function pps_register_source() in your initialization routine as
follows:

source = pps_register_source(&pps_ktimer_info,
PPS_CAPTUREASSERT | PPS_OFFSETASSERT);

The pps_register_source() prototype is:

2324 Chapter 78. PPS - Pulse Per Second

Linux Driver-api Documentation

int pps_register_source(struct pps_source_info *info, int default_params)

where “info”is a pointer to a structure that describes a particular PPS source,
“default_params”tells the system what the initial default parameters for the device
should be (it is obvious that these parameters must be a subset of ones defined in
the struct pps_source_info which describe the capabilities of the driver).

Once you have registered a new PPS source into the system you can signal an
assert event (for example in the interrupt handler routine) just using:

pps_event(source, &ts, PPS_CAPTUREASSERT, ptr)

where “ts”is the event’s timestamp.
The same function may also run the defined echo function (pps_ktimer_echo(),
passing to it the “ptr”pointer) if the user asked for that⋯etc..
Please see the file drivers/pps/clients/pps-ktimer.c for example code.

78.5 SYSFS support

If the SYSFS filesystem is enabled in the kernel it provides a new class:

$ ls /sys/class/pps/
pps0/ pps1/ pps2/

Every directory is the ID of a PPS sources defined in the system and inside you
find several files:

$ ls -F /sys/class/pps/pps0/
assert dev mode path subsystem@
clear echo name power/ uevent

Inside each“assert”and“clear”file you can find the timestamp and a sequence
number:

$ cat /sys/class/pps/pps0/assert
1170026870.983207967#8

Where before the“#”is the timestamp in seconds; after it is the sequence number.
Other files are:

• echo: reports if the PPS source has an echo function or not;

• mode: reports available PPS functioning modes;

• name: reports the PPS source’s name;
• path: reports the PPS source’s device path, that is the device the PPS source
is connected to (if it exists).

78.5. SYSFS support 2325

Linux Driver-api Documentation

78.6 Testing the PPS support

In order to test the PPS support even without specific hardware you can use the
pps-ktimer driver (see the client subsection in the PPS configurationmenu) and the
userland tools available in your distribution’s pps-tools package, http://linuxpps.
org , or https://github.com/redlab-i/pps-tools.

Once you have enabled the compilation of pps-ktimer just modprobe it (if not stat-
ically compiled):

modprobe pps-ktimer

and the run ppstest as follow:

$./ppstest /dev/pps1
trying PPS source "/dev/pps1"
found PPS source "/dev/pps1"
ok, found 1 source(s), now start fetching data...
source 0 - assert 1186592699.388832443, sequence: 364 - clear 0.000000000,
↪→ sequence: 0
source 0 - assert 1186592700.388931295, sequence: 365 - clear 0.000000000,
↪→ sequence: 0
source 0 - assert 1186592701.389032765, sequence: 366 - clear 0.000000000,
↪→ sequence: 0

Please note that to compile userland programs, you need the file timepps.h. This
is available in the pps-tools repository mentioned above.

78.7 Generators

Sometimes one needs to be able not only to catch PPS signals but to produce them
also. For example, running a distributed simulation, which requires computers’
clock to be synchronized very tightly. One way to do this is to invent some com-
plicated hardware solutions but it may be neither necessary nor affordable. The
cheap way is to load a PPS generator on one of the computers (master) and PPS
clients on others (slaves), and use very simple cables to deliver signals using par-
allel ports, for example.

Parallel port cable pinout:

pin name master slave
1 STROBE *------ *
2 D0 * | *
3 D1 * | *
4 D2 * | *
5 D3 * | *
6 D4 * | *
7 D5 * | *
8 D6 * | *
9 D7 * | *
10 ACK * ------*
11 BUSY * *
12 PE * *

(continues on next page)

2326 Chapter 78. PPS - Pulse Per Second

http://linuxpps.org
http://linuxpps.org
https://github.com/redlab-i/pps-tools

Linux Driver-api Documentation

(continued from previous page)
13 SEL * *
14 AUTOFD * *
15 ERROR * *
16 INIT * *
17 SELIN * *
18-25 GND *-----------*

Please note that parallel port interrupt occurs only on high->low transition, so it
is used for PPS assert edge. PPS clear edge can be determined only using polling
in the interrupt handler which actually can be done way more precisely because
interrupt handling delays can be quite big and random. So current parport PPS
generator implementation (pps_gen_parport module) is geared towards using the
clear edge for time synchronization.

Clear edge polling is done with disabled interrupts so it’s better to select delay
between assert and clear edge as small as possible to reduce system latencies. But
if it is too small slave won’t be able to capture clear edge transition. The default
of 30us should be good enough in most situations. The delay can be selected using
‘delay’pps_gen_parport module parameter.

78.7. Generators 2327

Linux Driver-api Documentation

2328 Chapter 78. PPS - Pulse Per Second

CHAPTER

SEVENTYNINE

PTP HARDWARE CLOCK INFRASTRUCTURE FOR LINUX

This patch set introduces support for IEEE 1588 PTP clocks in Linux.
Together with the SO_TIMESTAMPING socket options, this presents a
standardized method for developing PTP user space programs, synchro-
nizing Linux with external clocks, and using the ancillary features of PTP
hardware clocks.

A new class driver exports a kernel interface for specific clock drivers
and a user space interface. The infrastructure supports a complete set
of PTP hardware clock functionality.

• Basic clock operations - Set time - Get time - Shift the clock by a
given offset atomically - Adjust clock frequency

• Ancillary clock features - Time stamp external events - Period output
signals configurable from user space - Synchronization of the Linux
system time via the PPS subsystem

79.1 PTP hardware clock kernel API

A PTP clock driver registers itself with the class driver. The class driver
handles all of the dealings with user space. The author of a clock driver
need only implement the details of programming the clock hardware.
The clock driver notifies the class driver of asynchronous events (alarms
and external time stamps) via a simple message passing interface.

The class driver supports multiple PTP clock drivers. In normal use
cases, only one PTP clock is needed. However, for testing and devel-
opment, it can be useful to have more than one clock in a single system,
in order to allow performance comparisons.

2329

Linux Driver-api Documentation

79.2 PTP hardware clock user space API

The class driver also creates a character device for each registered
clock. User space can use an open file descriptor from the character
device as a POSIX clock id and may call clock_gettime, clock_settime,
and clock_adjtime. These calls implement the basic clock operations.

User space programs may control the clock using standardized ioctls. A
program may query, enable, configure, and disable the ancillary clock
features. User space can receive time stamped events via blocking
read() and poll().

79.3 Writing clock drivers

Clock drivers include include/linux/ptp_clock_kernel.h and register
themselves by presenting a ‘struct ptp_clock_info’to the registration
method. Clock drivers must implement all of the functions in the inter-
face. If a clock does not offer a particular ancillary feature, then the
driver should just return -EOPNOTSUPP from those functions.

Drivers must ensure that all of the methods in interface are reen-
trant. Since most hardware implementations treat the time value as
a 64 bit integer accessed as two 32 bit registers, drivers should use
spin_lock_irqsave/spin_unlock_irqrestore to protect against concurrent
access. This locking cannot be accomplished in class driver, since the
lock may also be needed by the clock driver’s interrupt service routine.

79.4 Supported hardware

• Freescale eTSEC gianfar

– 2 Time stamp external triggers, programmable polarity (opt. interrupt)
– 2 Alarm registers (optional interrupt)

– 3 Periodic signals (optional interrupt)
• National DP83640

– 6 GPIOs programmable as inputs or outputs
– 6 GPIOs with dedicated functions (LED/JTAG/clock) can also be used as
general inputs or outputs

– GPIO inputs can time stamp external triggers
– GPIO outputs can produce periodic signals
– 1 interrupt pin

• Intel IXP465

– Auxiliary Slave/Master Mode Snapshot (optional interrupt)
– Target Time (optional interrupt)

2330 Chapter 79. PTP hardware clock infrastructure for Linux

CHAPTER

EIGHTY

GENERIC PHY FRAMEWORK

80.1 PHY subsystem

Author Kishon Vijay Abraham I <kishon@ti.com>

This document explains the Generic PHY Framework along with the APIs provided,
and how-to-use.

80.1.1 Introduction

PHY is the abbreviation for physical layer. It is used to connect a device to the
physical medium e.g., the USB controller has a PHY to provide functions such as
serialization, de-serialization, encoding, decoding and is responsible for obtaining
the required data transmission rate. Note that some USB controllers have PHY
functionality embedded into it and others use an external PHY. Other peripherals
that use PHY include Wireless LAN, Ethernet, SATA etc.

The intention of creating this framework is to bring the PHY drivers spread all
over the Linux kernel to drivers/phy to increase code re-use and for better code
maintainability.

This framework will be of use only to devices that use external PHY (PHY function-
ality is not embedded within the controller).

80.1.2 Registering/Unregistering the PHY provider

PHY provider refers to an entity that implements one or more PHY instances.
For the simple case where the PHY provider implements only a single in-
stance of the PHY, the framework provides its own implementation of of_xlate in
of_phy_simple_xlate. If the PHY provider implements multiple instances, it should
provide its own implementation of of_xlate. of_xlate is used only for dt boot case.

#define of_phy_provider_register(dev, xlate) \
__of_phy_provider_register((dev), NULL, THIS_MODULE, (xlate))

#define devm_of_phy_provider_register(dev, xlate) \
__devm_of_phy_provider_register((dev), NULL, THIS_MODULE,

(xlate))

of_phy_provider_register and devm_of_phy_provider_register macros can be used
to register the phy_provider and it takes device and of_xlate as arguments. For the

2331

mailto:kishon@ti.com

Linux Driver-api Documentation

dt boot case, all PHY providers should use one of the above 2 macros to register
the PHY provider.

Often the device tree nodes associated with a PHY provider will contain a set
of children that each represent a single PHY. Some bindings may nest the child
nodes within extra levels for context and extensibility, in which case the low level
of_phy_provider_register_full() and devm_of_phy_provider_register_full() macros
can be used to override the node containing the children.

#define of_phy_provider_register_full(dev, children, xlate) \
__of_phy_provider_register(dev, children, THIS_MODULE, xlate)

#define devm_of_phy_provider_register_full(dev, children, xlate) \
__devm_of_phy_provider_register_full(dev, children,

THIS_MODULE, xlate)

void devm_of_phy_provider_unregister(struct device *dev,
struct phy_provider *phy_provider);

void of_phy_provider_unregister(struct phy_provider *phy_provider);

devm_of_phy_provider_unregister and of_phy_provider_unregister can be used to
unregister the PHY.

80.1.3 Creating the PHY

The PHY driver should create the PHY in order for other peripheral controllers to
make use of it. The PHY framework provides 2 APIs to create the PHY.

struct phy *phy_create(struct device *dev, struct device_node *node,
const struct phy_ops *ops);

struct phy *devm_phy_create(struct device *dev,
struct device_node *node,
const struct phy_ops *ops);

The PHY drivers can use one of the above 2 APIs to create the PHY by passing the
device pointer and phy ops. phy_ops is a set of function pointers for performing
PHY operations such as init, exit, power_on and power_off.

Inorder to dereference the private data (in phy_ops), the phy provider driver can
use phy_set_drvdata() after creating the PHY and use phy_get_drvdata() in phy_ops
to get back the private data.

4. Getting a reference to the PHY

Before the controller can make use of the PHY, it has to get a reference to it. This
framework provides the following APIs to get a reference to the PHY.

struct phy *phy_get(struct device *dev, const char *string);
struct phy *phy_optional_get(struct device *dev, const char *string);
struct phy *devm_phy_get(struct device *dev, const char *string);
struct phy *devm_phy_optional_get(struct device *dev,

const char *string);
struct phy *devm_of_phy_get_by_index(struct device *dev,

struct device_node *np,
int index);

2332 Chapter 80. Generic PHY Framework

Linux Driver-api Documentation

phy_get, phy_optional_get, devm_phy_get and devm_phy_optional_get can be used
to get the PHY. In the case of dt boot, the string arguments should contain the phy
name as given in the dt data and in the case of non-dt boot, it should contain the
label of the PHY. The two devm_phy_get associates the device with the PHY using
devres on successful PHY get. On driver detach, release function is invoked on the
devres data and devres data is freed. phy_optional_get and devm_phy_optional_get
should be used when the phy is optional. These two functions will never return
-ENODEV, but instead returns NULL when the phy cannot be found.Some generic
drivers, such as ehci, may usemultiple phys and for such drivers referencing phy(s)
by name(s) does not make sense. In this case, devm_of_phy_get_by_index can be
used to get a phy reference based on the index.

It should be noted that NULL is a valid phy reference. All phy consumer calls on
the NULL phy become NOPs. That is the release calls, the phy_init() and phy_exit()
calls, and phy_power_on() and phy_power_off() calls are all NOP when applied to
a NULL phy. The NULL phy is useful in devices for handling optional phy devices.

80.1.4 Releasing a reference to the PHY

When the controller no longer needs the PHY, it has to release the reference to
the PHY it has obtained using the APIs mentioned in the above section. The PHY
framework provides 2 APIs to release a reference to the PHY.

void phy_put(struct phy *phy);
void devm_phy_put(struct device *dev, struct phy *phy);

Both these APIs are used to release a reference to the PHY and devm_phy_put
destroys the devres associated with this PHY.

80.1.5 Destroying the PHY

When the driver that created the PHY is unloaded, it should destroy the PHY it
created using one of the following 2 APIs:

void phy_destroy(struct phy *phy);
void devm_phy_destroy(struct device *dev, struct phy *phy);

Both these APIs destroy the PHY and devm_phy_destroy destroys the devres asso-
ciated with this PHY.

80.1.6 PM Runtime

This subsystem is pm runtime enabled. So while creating the PHY,
pm_runtime_enable of the phy device created by this subsystem is called and while
destroying the PHY, pm_runtime_disable is called. Note that the phy device cre-
ated by this subsystem will be a child of the device that calls phy_create (PHY
provider device).

So pm_runtime_get_sync of the phy_device created by this subsystem will
invoke pm_runtime_get_sync of PHY provider device because of parent-child
relationship. It should also be noted that phy_power_on and phy_power_off

80.1. PHY subsystem 2333

Linux Driver-api Documentation

performs phy_pm_runtime_get_sync and phy_pm_runtime_put respectively.
There are exported APIs like phy_pm_runtime_get, phy_pm_runtime_get_sync,
phy_pm_runtime_put, phy_pm_runtime_put_sync, phy_pm_runtime_allow and
phy_pm_runtime_forbid for performing PM operations.

80.1.7 PHY Mappings

In order to get reference to a PHY without help from DeviceTree, the framework
offers lookups which can be compared to clkdev that allow clk structures to be
bound to devices. A lookup can be made during runtime when a handle to the
struct phy already exists.

The framework offers the following API for registering and unregistering the
lookups:

int phy_create_lookup(struct phy *phy, const char *con_id,
const char *dev_id);

void phy_remove_lookup(struct phy *phy, const char *con_id,
const char *dev_id);

80.1.8 DeviceTree Binding

The documentation for PHY dt binding can be found @
Documentation/devicetree/bindings/phy/phy-bindings.txt

80.2 Samsung USB 2.0 PHY adaptation layer

80.2.1 1. Description

The architecture of the USB 2.0 PHY module in Samsung SoCs is similar among
many SoCs. In spite of the similarities it proved difficult to create a one driver
that would fit all these PHY controllers. Often the differences were minor and
were found in particular bits of the registers of the PHY. In some rare cases the
order of register writes or the PHY powering up process had to be altered. This
adaptation layer is a compromise between having separate drivers and having a
single driver with added support for many special cases.

80.2.2 2. Files description

• phy-samsung-usb2.c This is the main file of the adaptation layer. This file
contains the probe function and provides two callbacks to the Generic
PHY Framework. This two callbacks are used to power on and power
off the phy. They carry out the common work that has to be done on all
version of the PHY module. Depending on which SoC was chosen they
execute SoC specific callbacks. The specific SoC version is selected by
choosing the appropriate compatible string. In addition, this file contains
struct of_device_id definitions for particular SoCs.

2334 Chapter 80. Generic PHY Framework

Linux Driver-api Documentation

• phy-samsung-usb2.h This is the include file. It declares the structures used
by this driver. In addition it should contain extern declarations for struc-
tures that describe particular SoCs.

80.2.3 3. Supporting SoCs

To support a new SoC a new file should be added to the drivers/phy direc-
tory. Each SoC’s configuration is stored in an instance of the struct sam-
sung_usb2_phy_config:

struct samsung_usb2_phy_config {
const struct samsung_usb2_common_phy *phys;
int (*rate_to_clk)(unsigned long, u32 *);
unsigned int num_phys;
bool has_mode_switch;

};

The num_phys is the number of phys handled by the driver. *phys is an array
that contains the configuration for each phy. The has_mode_switch property is a
boolean flag that determines whether the SoC has USB host and device on a single
pair of pins. If so, a special register has to be modified to change the internal
routing of these pins between a USB device or host module.

For example the configuration for Exynos 4210 is following:

const struct samsung_usb2_phy_config exynos4210_usb2_phy_config = {
.has_mode_switch = 0,
.num_phys = EXYNOS4210_NUM_PHYS,
.phys = exynos4210_phys,
.rate_to_clk = exynos4210_rate_to_clk,

}

• int (*rate_to_clk)(unsigned long, u32 *)

The rate_to_clk callback is to convert the rate of the clock used as
the reference clock for the PHY module to the value that should be
written in the hardware register.

The exynos4210_phys configuration array is as follows:

static const struct samsung_usb2_common_phy exynos4210_phys[] = {
{

.label = "device",

.id = EXYNOS4210_DEVICE,

.power_on = exynos4210_power_on,

.power_off = exynos4210_power_off,
},
{

.label = "host",

.id = EXYNOS4210_HOST,

.power_on = exynos4210_power_on,

.power_off = exynos4210_power_off,
},
{

.label = "hsic0",
(continues on next page)

80.2. Samsung USB 2.0 PHY adaptation layer 2335

Linux Driver-api Documentation

(continued from previous page)
.id = EXYNOS4210_HSIC0,
.power_on = exynos4210_power_on,
.power_off = exynos4210_power_off,

},
{

.label = "hsic1",

.id = EXYNOS4210_HSIC1,

.power_on = exynos4210_power_on,

.power_off = exynos4210_power_off,
},
{},

};

• int (*power_on)(struct samsung_usb2_phy_instance *); int (*power_off)(struct
samsung_usb2_phy_instance *);

These two callbacks are used to power on and power off the phy by
modifying appropriate registers.

Final change to the driver is adding appropriate compatible value to the phy-
samsung-usb2.c file. In case of Exynos 4210 the following lines were added to
the struct of_device_id samsung_usb2_phy_of_match[] array:

#ifdef CONFIG_PHY_EXYNOS4210_USB2
{

.compatible = "samsung,exynos4210-usb2-phy",

.data = &exynos4210_usb2_phy_config,
},

#endif

To add further flexibility to the driver the Kconfig file enables to include support
for selected SoCs in the compiled driver. The Kconfig entry for Exynos 4210 is
following:

config PHY_EXYNOS4210_USB2
bool "Support for Exynos 4210"
depends on PHY_SAMSUNG_USB2
depends on CPU_EXYNOS4210
help

Enable USB PHY support for Exynos 4210. This option requires that
Samsung USB 2.0 PHY driver is enabled and means that support for␣

↪→this
particular SoC is compiled in the driver. In case of Exynos 4210␣

↪→four
phys are available - device, host, HSCI0 and HSCI1.

The newly created file that supports the new SoC has to be also added to the
Makefile. In case of Exynos 4210 the added line is following:

obj-$(CONFIG_PHY_EXYNOS4210_USB2) += phy-exynos4210-usb2.o

After completing these steps the support for the new SoC should be ready.

2336 Chapter 80. Generic PHY Framework

CHAPTER

EIGHTYONE

INTEL MID PTI

The Intel MID PTI project is HW implemented in Intel Atom system-on-a-chip de-
signs based on the Parallel Trace Interface for MIPI P1149.7 cJTAG standard. The
kernel solution for this platform involves the following files:

./include/linux/pti.h

./drivers/.../n_tracesink.h

./drivers/.../n_tracerouter.c

./drivers/.../n_tracesink.c

./drivers/.../pti.c

pti.c is the driver that enables various debugging features popular on platforms
from certain mobile manufacturers. n_tracerouter.c and n_tracesink.c allow extra
system information to be collected and routed to the pti driver, such as trace de-
bugging data from a modem. Although n_tracerouter and n_tracesink are a part
of the complete PTI solution, these two line disciplines can work separately from
pti.c and route any data stream from one /dev/tty node to another /dev/tty node via
kernel-space. This provides a stable, reliable connection that will not break unless
the user-space application shuts down (plus avoids kernel->user->kernel context
switch overheads of routing data).

An example debugging usage for this driver system:

• Hook /dev/ttyPTI0 to syslogd. Opening this port will also start a console de-
vice to further capture debugging messages to PTI.

• Hook /dev/ttyPTI1 to modem debugging data to write to PTI HW. This is where
n_tracerouter and n_tracesink are used.

• Hook /dev/pti to a user-level debugging application for writing to PTI HW.

• Use mipi_ Kernel Driver API in other device drivers for debugging to PTI by
first requesting a PTI write address via mipi_request_masterchannel(1).

Below is example pseudo-code on how a ‘privileged’application can hook up
n_tracerouter and n_tracesink to any tty on a system. ‘Privileged’means the
application has enough privileges to successfully manipulate the ldisc drivers but
is not just blindly executing as‘root’. Keep in mind the use of ioctl(,TIOCSETD,)
is not specific to the n_tracerouter and n_tracesink line discpline drivers but is a
generic operation for a program to use a line discpline driver on a tty port other
than the default n_tty:

/////////// To hook up n_tracerouter and n_tracesink /////////

(continues on next page)

2337

Linux Driver-api Documentation

(continued from previous page)
// Note that n_tracerouter depends on n_tracesink.
#include <errno.h>
#define ONE_TTY "/dev/ttyOne"
#define TWO_TTY "/dev/ttyTwo"

// needed global to hand onto ldisc connection
static int g_fd_source = -1;
static int g_fd_sink = -1;

// these two vars used to grab LDISC values from loaded ldisc drivers
// in OS. Look at /proc/tty/ldiscs to get the right numbers from
// the ldiscs loaded in the system.
int source_ldisc_num, sink_ldisc_num = -1;
int retval;

g_fd_source = open(ONE_TTY, O_RDWR); // must be R/W
g_fd_sink = open(TWO_TTY, O_RDWR); // must be R/W

if (g_fd_source <= 0) || (g_fd_sink <= 0) {
// doubt you'll want to use these exact error lines of code
printf("Error on open(). errno: %d\n",errno);
return errno;

}

retval = ioctl(g_fd_sink, TIOCSETD, &sink_ldisc_num);
if (retval < 0) {

printf("Error on ioctl(). errno: %d\n", errno);
return errno;

}

retval = ioctl(g_fd_source, TIOCSETD, &source_ldisc_num);
if (retval < 0) {

printf("Error on ioctl(). errno: %d\n", errno);
return errno;

}

/////////// To disconnect n_tracerouter and n_tracesink ////////

// First make sure data through the ldiscs has stopped.

// Second, disconnect ldiscs. This provides a
// little cleaner shutdown on tty stack.
sink_ldisc_num = 0;
source_ldisc_num = 0;
ioctl(g_fd_uart, TIOCSETD, &sink_ldisc_num);
ioctl(g_fd_gadget, TIOCSETD, &source_ldisc_num);

// Three, program closes connection, and cleanup:
close(g_fd_uart);
close(g_fd_gadget);
g_fd_uart = g_fd_gadget = NULL;

2338 Chapter 81. Intel MID PTI

CHAPTER

EIGHTYTWO

PULSE WIDTH MODULATION (PWM) INTERFACE

This provides an overview about the Linux PWM interface

PWMs are commonly used for controlling LEDs, fans or vibrators in cell phones.
PWMs with a fixed purpose have no need implementing the Linux PWM API (al-
though they could). However, PWMs are often found as discrete devices on SoCs
which have no fixed purpose. It’s up to the board designer to connect them to
LEDs or fans. To provide this kind of flexibility the generic PWM API exists.

82.1 Identifying PWMs

Users of the legacy PWM API use unique IDs to refer to PWM devices.

Instead of referring to a PWM device via its unique ID, board setup code should
instead register a static mapping that can be used to match PWM consumers to
providers, as given in the following example:

static struct pwm_lookup board_pwm_lookup[] = {
PWM_LOOKUP("tegra-pwm", 0, "pwm-backlight", NULL,

50000, PWM_POLARITY_NORMAL),
};

static void __init board_init(void)
{

...
pwm_add_table(board_pwm_lookup, ARRAY_SIZE(board_pwm_lookup));
...

}

82.2 Using PWMs

Legacy users can request a PWM device using pwm_request() and free it after
usage with pwm_free().

New users should use the pwm_get() function and pass to it the consumer device or
a consumer name. pwm_put() is used to free the PWM device. Managed variants
of these functions, devm_pwm_get() and devm_pwm_put(), also exist.

After being requested, a PWM has to be configured using:

2339

Linux Driver-api Documentation

int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state);

This API controls both the PWM period/duty_cycle config and the enable/disable
state.

The pwm_config(), pwm_enable() and pwm_disable() functions are just wrap-
pers around pwm_apply_state() and should not be used if the user wants to
change several parameter at once. For example, if you see pwm_config() and
pwm_{enable,disable}() calls in the same function, this probablymeans you should
switch to pwm_apply_state().

The PWM user API also allows one to query the PWM state with pwm_get_state().

In addition to the PWM state, the PWM API also exposes PWM arguments, which
are the reference PWM config one should use on this PWM. PWM arguments are
usually platform-specific and allows the PWM user to only care about dutycycle
relatively to the full period (like, duty = 50% of the period). struct pwm_args
contains 2 fields (period and polarity) and should be used to set the initial PWM
config (usually done in the probe function of the PWM user). PWM arguments are
retrieved with pwm_get_args().

All consumers should really be reconfiguring the PWM upon resume as appropri-
ate. This is the only way to ensure that everything is resumed in the proper order.

82.3 Using PWMs with the sysfs interface

If CONFIG_SYSFS is enabled in your kernel configuration a simple sysfs interface
is provided to use the PWMs from userspace. It is exposed at /sys/class/pwm/.
Each probed PWM controller/chip will be exported as pwmchipN, where N is the
base of the PWM chip. Inside the directory you will find:

npwm The number of PWM channels this chip supports (read-only).

export Exports a PWM channel for use with sysfs (write-only).

unexport Unexports a PWM channel from sysfs (write-only).

The PWM channels are numbered using a per-chip index from 0 to npwm-1.

When a PWM channel is exported a pwmX directory will be created in the pwm-
chipN directory it is associated with, where X is the number of the channel that
was exported. The following properties will then be available:

period The total period of the PWM signal (read/write). Value is in
nanoseconds and is the sum of the active and inactive time of the
PWM.

duty_cycle The active time of the PWM signal (read/write). Value is in
nanoseconds and must be less than the period.

polarity Changes the polarity of the PWM signal (read/write). Writes
to this property only work if the PWM chip supports changing the
polarity. The polarity can only be changed if the PWM is not enabled.
Value is the string “normal”or “inversed”.

enable Enable/disable the PWM signal (read/write).

2340 Chapter 82. Pulse Width Modulation (PWM) interface

Linux Driver-api Documentation

• 0 - disabled

• 1 - enabled

82.4 Implementing a PWM driver

Currently there are two ways to implement pwm drivers. Traditionally there only
has been the barebone API meaning that each driver has to implement the pwm_*()
functions itself. This means that it’s impossible to have multiple PWM drivers in
the system. For this reason it’s mandatory for new drivers to use the generic
PWM framework.

A new PWM controller/chip can be added using pwmchip_add() and removed again
with pwmchip_remove(). pwmchip_add() takes a filled in struct pwm_chip as argu-
ment which provides a description of the PWM chip, the number of PWM devices
provided by the chip and the chip-specific implementation of the supported PWM
operations to the framework.

When implementing polarity support in a PWM driver, make sure to respect the
signal conventions in the PWM framework. By definition, normal polarity charac-
terizes a signal starts high for the duration of the duty cycle and goes low for the
remainder of the period. Conversely, a signal with inversed polarity starts low for
the duration of the duty cycle and goes high for the remainder of the period.

Drivers are encouraged to implement ->apply() instead of the legacy ->enable(),
->disable() and ->config() methods. Doing that should provide atomicity in the
PWM config workflow, which is required when the PWM controls a critical device
(like a regulator).

The implementation of ->get_state() (a method used to retrieve initial PWM state)
is also encouraged for the same reason: letting the PWM user know about the
current PWM state would allow him to avoid glitches.

Drivers should not implement any power management. In other words, consumers
should implement it as described in the “Using PWMs”section.

82.5 Locking

The PWM core list manipulations are protected by a mutex, so pwm_request() and
pwm_free() may not be called from an atomic context. Currently the PWM core
does not enforce any locking to pwm_enable(), pwm_disable() and pwm_config(),
so the calling context is currently driver specific. This is an issue derived from the
former barebone API and should be fixed soon.

82.4. Implementing a PWM driver 2341

Linux Driver-api Documentation

82.6 Helpers

Currently a PWM can only be configured with period_ns and duty_ns. For several
use cases freq_hz and duty_percent might be better. Instead of calculating this in
your driver please consider adding appropriate helpers to the framework.

2342 Chapter 82. Pulse Width Modulation (PWM) interface

CHAPTER

EIGHTYTHREE

RFKILL - RF KILL SWITCH SUPPORT

Contents

• rfkill - RF kill switch support

– Introduction
– Implementation details
– Kernel API
– Userspace support

83.1 Introduction

The rfkill subsystem provides a generic interface for disabling any radio transmit-
ter in the system. When a transmitter is blocked, it shall not radiate any power.

The subsystem also provides the ability to react on button presses and disable
all transmitters of a certain type (or all). This is intended for situations where
transmitters need to be turned off, for example on aircraft.

The rfkill subsystem has a concept of“hard”and“soft”block, which differ little
in their meaning (block == transmitters off) but rather in whether they can be
changed or not:

• hard block read-only radio block that cannot be overridden by software
• soft block writable radio block (need not be readable) that is set by the sys-

tem software.

The rfkill subsystem has two parameters, rfkill.default_state and
rfkill.master_switch_mode, which are documented in admin-guide/kernel-
parameters.rst.

2343

Linux Driver-api Documentation

83.2 Implementation details

The rfkill subsystem is composed of three main components:

• the rfkill core,

• the deprecated rfkill-input module (an input layer handler, being replaced by
userspace policy code) and

• the rfkill drivers.

The rfkill core provides API for kernel drivers to register their radio transmitter
with the kernel, methods for turning it on and off, and letting the system know
about hardware-disabled states that may be implemented on the device.

The rfkill core code also notifies userspace of state changes, and provides ways
for userspace to query the current states. See the “Userspace support”section
below.

When the device is hard-blocked (either by a call to rfkill_set_hw_state() or from
query_hw_block), set_block() will be invoked for additional software block, but
drivers can ignore the method call since they can use the return value of the func-
tion rfkill_set_hw_state() to sync the software state instead of keeping track of calls
to set_block(). In fact, drivers should use the return value of rfkill_set_hw_state()
unless the hardware actually keeps track of soft and hard block separately.

83.3 Kernel API

Drivers for radio transmitters normally implement an rfkill driver.

Platform drivers might implement input devices if the rfkill button is just that, a
button. If that button influences the hardware then you need to implement an rfkill
driver instead. This also applies if the platform provides a way to turn on/off the
transmitter(s).

For some platforms, it is possible that the hardware state changes during sus-
pend/hibernation, in which case it will be necessary to update the rfkill core with
the current state at resume time.

To create an rfkill driver, driver’s Kconfig needs to have:
depends on RFKILL || !RFKILL

to ensure the driver cannot be built-in when rfkill is modular. The !RFKILL case
allows the driver to be built when rfkill is not configured, in which case all rfkill
API can still be used but will be provided by static inlines which compile to almost
nothing.

Calling rfkill_set_hw_state() when a state change happens is required from rfkill
drivers that control devices that can be hard-blocked unless they also assign the
poll_hw_block() callback (then the rfkill core will poll the device). Don’t do this
unless you cannot get the event in any other way.

rfkill provides per-switch LED triggers, which can be used to drive LEDs according
to the switch state (LED_FULL when blocked, LED_OFF otherwise).

2344 Chapter 83. rfkill - RF kill switch support

Linux Driver-api Documentation

83.4 Userspace support

The recommended userspace interface to use is /dev/rfkill, which is a misc char-
acter device that allows userspace to obtain and set the state of rfkill devices and
sets of devices. It also notifies userspace about device addition and removal. The
API is a simple read/write API that is defined in linux/rfkill.h, with one ioctl that
allows turning off the deprecated input handler in the kernel for the transition
period.

Except for the one ioctl, communication with the kernel is done via read() and
write() of instances of ‘struct rfkill_event’. In this structure, the soft and hard
block are properly separated (unlike sysfs, see below) and userspace is able to
get a consistent snapshot of all rfkill devices in the system. Also, it is possible to
switch all rfkill drivers (or all drivers of a specified type) into a state which also
updates the default state for hotplugged devices.

After an application opens /dev/rfkill, it can read the current state of all devices.
Changes can be obtained by either polling the descriptor for hotplug or state
change events or by listening for uevents emitted by the rfkill core framework.

Additionally, each rfkill device is registered in sysfs and emits uevents.

rfkill devices issue uevents (with an action of“change”), with the following envi-
ronment variables set:

RFKILL_NAME
RFKILL_STATE
RFKILL_TYPE

The content of these variables corresponds to the “name”, “state”and “type”
sysfs files explained above.

For further details consult Documentation/ABI/stable/sysfs-class-rfkill.

83.4. Userspace support 2345

Linux Driver-api Documentation

2346 Chapter 83. rfkill - RF kill switch support

CHAPTER

EIGHTYFOUR

SUPPORT FOR SERIAL DEVICES

84.1 Low Level Serial API

This document is meant as a brief overview of some aspects of the new se-
rial driver. It is not complete, any questions you have should be directed to
<rmk@arm.linux.org.uk>

The reference implementation is contained within amba-pl011.c.

84.1.1 Low Level Serial Hardware Driver

The low level serial hardware driver is responsible for supplying port information
(defined by uart_port) and a set of control methods (defined by uart_ops) to the
core serial driver. The low level driver is also responsible for handling interrupts
for the port, and providing any console support.

84.1.2 Console Support

The serial core provides a few helper functions. This includes identifing the cor-
rect port structure (via uart_get_console) and decoding command line arguments
(uart_parse_options).

There is also a helper function (uart_console_write) which performs a character
by character write, translating newlines to CRLF sequences. Driver writers are
recommended to use this function rather than implementing their own version.

84.1.3 Locking

It is the responsibility of the low level hardware driver to perform the necessary
locking using port->lock. There are some exceptions (which are described in the
uart_ops listing below.)

There are two locks. A per-port spinlock, and an overall semaphore.

From the core driver perspective, the port->lock locks the following data:

port->mctrl
port->icount
port->state->xmit.head (circ_buf->head)
port->state->xmit.tail (circ_buf->tail)

2347

mailto:rmk@arm.linux.org.uk

Linux Driver-api Documentation

The low level driver is free to use this lock to provide any additional locking.

The port_sem semaphore is used to protect against ports being added/ removed
or reconfigured at inappropriate times. Since v2.6.27, this semaphore has been
the‘mutex’member of the tty_port struct, and commonly referred to as the port
mutex.

84.1.4 uart_ops

The uart_ops structure is the main interface between serial_core and the hardware
specific driver. It contains all the methods to control the hardware.

tx_empty(port) This function tests whether the transmitter fifo and
shifter for the port described by ‘port’is empty. If it is empty,
this function should return TIOCSER_TEMT, otherwise return 0. If
the port does not support this operation, then it should return TI-
OCSER_TEMT.

Locking: none.

Interrupts: caller dependent.

This call must not sleep

set_mctrl(port, mctrl) This function sets the modem control lines for
port described by‘port’to the state described by mctrl. The relevant
bits of mctrl are:

• TIOCM_RTS RTS signal.

• TIOCM_DTR DTR signal.

• TIOCM_OUT1 OUT1 signal.

• TIOCM_OUT2 OUT2 signal.

• TIOCM_LOOP Set the port into loopback mode.

If the appropriate bit is set, the signal should be driven active. If
the bit is clear, the signal should be driven inactive.

Locking: port->lock taken.

Interrupts: locally disabled.

This call must not sleep

get_mctrl(port) Returns the current state of modem control inputs.
The state of the outputs should not be returned, since the core keeps
track of their state. The state information should include:

• TIOCM_CAR state of DCD signal

• TIOCM_CTS state of CTS signal

• TIOCM_DSR state of DSR signal

• TIOCM_RI state of RI signal

The bit is set if the signal is currently driven active. If the port does
not support CTS, DCD or DSR, the driver should indicate that the

2348 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

signal is permanently active. If RI is not available, the signal should
not be indicated as active.

Locking: port->lock taken.

Interrupts: locally disabled.

This call must not sleep

stop_tx(port) Stop transmitting characters. This might be due to the
CTS line becoming inactive or the tty layer indicating we want to
stop transmission due to an XOFF character.

The driver should stop transmitting characters as soon as possible.

Locking: port->lock taken.

Interrupts: locally disabled.

This call must not sleep

start_tx(port) Start transmitting characters.
Locking: port->lock taken.

Interrupts: locally disabled.

This call must not sleep

throttle(port) Notify the serial driver that input buffers for the line dis-
cipline are close to full, and it should somehow signal that no more
characters should be sent to the serial port. This will be called only
if hardware assisted flow control is enabled.

Locking: serialized with .unthrottle() and termios modification by
the tty layer.

unthrottle(port) Notify the serial driver that characters can now be
sent to the serial port without fear of overrunning the input buffers
of the line disciplines.

This will be called only if hardware assisted flow control is enabled.

Locking: serialized with .throttle() and termios modification by the
tty layer.

send_xchar(port,ch) Transmit a high priority character, even if the
port is stopped. This is used to implement XON/XOFF flow control
and tcflow(). If the serial driver does not implement this function,
the tty core will append the character to the circular buffer and then
call start_tx() / stop_tx() to flush the data out.

Do not transmit if ch == ‘0’(__DISABLED_CHAR).
Locking: none.

Interrupts: caller dependent.

stop_rx(port) Stop receiving characters; the port is in the process of
being closed.

Locking: port->lock taken.

84.1. Low Level Serial API 2349

Linux Driver-api Documentation

Interrupts: locally disabled.

This call must not sleep

enable_ms(port) Enable the modem status interrupts.

This method may be called multiple times. Modem status interrupts
should be disabled when the shutdown method is called.

Locking: port->lock taken.

Interrupts: locally disabled.

This call must not sleep

break_ctl(port,ctl) Control the transmission of a break signal. If ctl is
nonzero, the break signal should be transmitted. The signal should
be terminated when another call is made with a zero ctl.

Locking: caller holds tty_port->mutex

startup(port) Grab any interrupt resources and initialise any low level
driver state. Enable the port for reception. It should not activate
RTS nor DTR; this will be done via a separate call to set_mctrl.

This method will only be called when the port is initially opened.

Locking: port_sem taken.

Interrupts: globally disabled.

shutdown(port) Disable the port, disable any break condition that may
be in effect, and free any interrupt resources. It should not disable
RTS nor DTR; this will have already been done via a separate call to
set_mctrl.

Drivers must not access port->state once this call has completed.

This method will only be called when there are no more users of this
port.

Locking: port_sem taken.

Interrupts: caller dependent.

flush_buffer(port) Flush any write buffers, reset any DMA state and
stop any ongoing DMA transfers.

This will be called whenever the port->state->xmit circular buffer
is cleared.

Locking: port->lock taken.

Interrupts: locally disabled.

This call must not sleep

set_termios(port,termios,oldtermios) Change the port parameters,
including word length, parity, stop bits. Update read_status_mask
and ignore_status_mask to indicate the types of events we are inter-
ested in receiving. Relevant termios->c_cflag bits are:

CSIZE

2350 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

• word size

CSTOPB
• 2 stop bits

PARENB
• parity enable

PARODD
• odd parity (when PARENB is in force)

CREAD
• enable reception of characters (if not set, still receive
characters from the port, but throw them away.

CRTSCTS
• if set, enable CTS status change reporting

CLOCAL
• if not set, enable modem status change reporting.

Relevant termios->c_iflag bits are:

INPCK
• enable frame and parity error events to be passed to
the TTY layer.

BRKINT / PARMRK
• both of these enable break events to be passed to the
TTY layer.

IGNPAR
• ignore parity and framing errors

IGNBRK
• ignore break errors, If IGNPAR is also set, ignore over-
run errors as well.

The interaction of the iflag bits is as follows (parity error given as
an example):

Parity er-
ror

IN-
PCK

IGN-
PAR

n/a 0 n/a character received, marked as
TTY_NORMAL

None 1 n/a character received, marked as
TTY_NORMAL

Yes 1 0 character received, marked as
TTY_PARITY

Yes 1 1 character discarded

84.1. Low Level Serial API 2351

Linux Driver-api Documentation

Other flags may be used (eg, xon/xoff characters) if your hardware
supports hardware “soft”flow control.
Locking: caller holds tty_port->mutex

Interrupts: caller dependent.

This call must not sleep

set_ldisc(port,termios) Notifier for discipline change. See
Documentation/driver-api/serial/tty.rst.

Locking: caller holds tty_port->mutex

pm(port,state,oldstate) Perform any power management related ac-
tivities on the specified port. State indicates the new state (defined
by enum uart_pm_state), oldstate indicates the previous state.

This function should not be used to grab any resources.

This will be called when the port is initially opened and finally closed,
except when the port is also the system console. This will occur even
if CONFIG_PM is not set.

Locking: none.

Interrupts: caller dependent.

type(port) Return a pointer to a string constant describing the speci-
fied port, or return NULL, in which case the string ‘unknown’is
substituted.

Locking: none.

Interrupts: caller dependent.

release_port(port) Release any memory and IO region resources cur-
rently in use by the port.

Locking: none.

Interrupts: caller dependent.

request_port(port) Request any memory and IO region resources re-
quired by the port. If any fail, no resources should be registered
when this function returns, and it should return -EBUSY on failure.

Locking: none.

Interrupts: caller dependent.

config_port(port,type) Perform any autoconfiguration steps required
for the port. type contains a bit mask of the required configura-
tion. UART_CONFIG_TYPE indicates that the port requires detec-
tion and identification. port->type should be set to the type found,
or PORT_UNKNOWN if no port was detected.

UART_CONFIG_IRQ indicates autoconfiguration of the interrupt
signal, which should be probed using standard kernel autoprobing
techniques. This is not necessary on platforms where ports have
interrupts internally hard wired (eg, system on a chip implementa-
tions).

2352 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

Locking: none.

Interrupts: caller dependent.

verify_port(port,serinfo) Verify the new serial port information con-
tained within serinfo is suitable for this port type.

Locking: none.

Interrupts: caller dependent.

ioctl(port,cmd,arg) Perform any port specific IOCTLs. IOCTL com-
mands must be defined using the standard numbering system found
in <asm/ioctl.h>

Locking: none.

Interrupts: caller dependent.

poll_init(port) Called by kgdb to perform the minimal hardware initial-
ization needed to support poll_put_char() and poll_get_char(). Un-
like ->startup() this should not request interrupts.

Locking: tty_mutex and tty_port->mutex taken.

Interrupts: n/a.

poll_put_char(port,ch) Called by kgdb to write a single character di-
rectly to the serial port. It can and should block until there is space
in the TX FIFO.

Locking: none.

Interrupts: caller dependent.

This call must not sleep

poll_get_char(port) Called by kgdb to read a single character directly
from the serial port. If data is available, it should be returned; oth-
erwise the function should return NO_POLL_CHAR immediately.

Locking: none.

Interrupts: caller dependent.

This call must not sleep

84.1.5 Other functions

uart_update_timeout(port,cflag,baud) Update the FIFO drain timeout, port-
>timeout, according to the number of bits, parity, stop bits and baud rate.

Locking: caller is expected to take port->lock

Interrupts: n/a

uart_get_baud_rate(port,termios,old,min,max) Return the numeric baud rate
for the specified termios, taking account of the special 38400 baud“kludge”
. The B0 baud rate is mapped to 9600 baud.

84.1. Low Level Serial API 2353

Linux Driver-api Documentation

If the baud rate is not within min..max, then if old is non-NULL, the original
baud rate will be tried. If that exceeds the min..max constraint, 9600 baud
will be returned. termios will be updated to the baud rate in use.

Note: min..max must always allow 9600 baud to be selected.

Locking: caller dependent.

Interrupts: n/a

uart_get_divisor(port,baud) Return the divisor (baud_base / baud) for the spec-
ified baud rate, appropriately rounded.

If 38400 baud and custom divisor is selected, return the custom divisor in-
stead.

Locking: caller dependent.

Interrupts: n/a

uart_match_port(port1,port2) This utility function can be used to determine
whether two uart_port structures describe the same port.

Locking: n/a

Interrupts: n/a

uart_write_wakeup(port) A driver is expected to call this function when the
number of characters in the transmit buffer have dropped below a thresh-
old.

Locking: port->lock should be held.

Interrupts: n/a

uart_register_driver(drv) Register a uart driver with the core driver. We in turn
register with the tty layer, and initialise the core driver per-port state.

drv->port should be NULL, and the per-port structures should be registered
using uart_add_one_port after this call has succeeded.

Locking: none

Interrupts: enabled

uart_unregister_driver() Remove all references to a driver from the core
driver. The low level driver must have removed all its ports via the
uart_remove_one_port() if it registered them with uart_add_one_port().

Locking: none

Interrupts: enabled

uart_suspend_port()
uart_resume_port()
uart_add_one_port()

uart_remove_one_port()

2354 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

84.1.6 Other notes

It is intended some day to drop the ‘unused’entries from uart_port, and allow
low level drivers to register their own individual uart_port’s with the core. This
will allow drivers to use uart_port as a pointer to a structure containing both the
uart_port entry with their own extensions, thus:

struct my_port {
struct uart_port port;
int my_stuff;

};

84.1.7 Modem control lines via GPIO

Some helpers are provided in order to set/get modem control lines via GPIO.

mctrl_gpio_init(port, idx): This will get the {cts,rts,⋯}-gpios from device tree
if they are present and request them, set direction etc, and return an al-
located structure. devm_* functions are used, so there’s no need to call
mctrl_gpio_free(). As this sets up the irq handling make sure to not handle
changes to the gpio input lines in your driver, too.

mctrl_gpio_free(dev, gpios): This will free the requested gpios in mc-
trl_gpio_init(). As devm_* functions are used, there’s generally no need to
call this function.

mctrl_gpio_to_gpiod(gpios, gidx) This returns the gpio_desc structure associ-
ated to the modem line index.

mctrl_gpio_set(gpios, mctrl): This will sets the gpios according to the mctrl
state.

mctrl_gpio_get(gpios, mctrl): This will update mctrl with the gpios values.
mctrl_gpio_enable_ms(gpios): Enables irqs and handling of changes to the ms

lines.

mctrl_gpio_disable_ms(gpios): Disables irqs and handling of changes to the ms
lines.

84.2 The Lockronomicon

Your guide to the ancient and twisted locking policies of the tty layer and the
warped logic behind them. Beware all ye who read on.

84.2. The Lockronomicon 2355

Linux Driver-api Documentation

84.2.1 Line Discipline

Line disciplines are registered with tty_register_ldisc() passing the discipline num-
ber and the ldisc structure. At the point of registration the discipline must be ready
to use and it is possible it will get used before the call returns success. If the call
returns an error then it won’t get called. Do not re-use ldisc numbers as they
are part of the userspace ABI and writing over an existing ldisc will cause demons
to eat your computer. After the return the ldisc data has been copied so you may
free your own copy of the structure. You must not re-register over the top of the
line discipline even with the same data or your computer again will be eaten by
demons.

In order to remove a line discipline call tty_unregister_ldisc(). In ancient times
this always worked. In modern times the function will return -EBUSY if the ldisc
is currently in use. Since the ldisc referencing code manages the module counts
this should not usually be a concern.

Heed this warning: the reference count field of the registered copies of the
tty_ldisc structure in the ldisc table counts the number of lines using this disci-
pline. The reference count of the tty_ldisc structure within a tty counts the number
of active users of the ldisc at this instant. In effect it counts the number of threads
of execution within an ldisc method (plus those about to enter and exit although
this detail matters not).

84.2.2 Line Discipline Methods

2356 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

TTY side interfaces

open()Called when the line discipline is attached to the terminal. No other call
into the line discipline for this tty will occur until it completes successfully.
Should initialize any state needed by the ldisc, and set receive_room in the
tty_struct to the maximum amount of data the line discipline is willing to
accept from the driver with a single call to receive_buf(). Returning an
error will prevent the ldisc from being attached. Can sleep.

close()This is called on a terminal when the line discipline is being unplugged. At
the point of execution no further users will enter the ldisc code for this tty.
Can sleep.

hangup()Called when the tty line is hung up. The line discipline should cease I/O to
the tty. No further calls into the ldisc code will occur. The return value is
ignored. Can sleep.

read()(optional) A process requests reading data from the line. Multiple read
calls may occur in parallel and the ldisc must deal with serialization issues.
If not defined, the process will receive an EIO error. May sleep.

write()(optional) A process requests writing data to the line. Multiple write calls
are serialized by the tty layer for the ldisc. If not defined, the process will
receive an EIO error. May sleep.

flush_buffer()(optional) May be called at any point between open and close, and instructs
the line discipline to empty its input buffer.

set_termios()(optional) Called on termios structure changes. The caller passes the old
termios data and the current data is in the tty. Called under the termios
semaphore so allowed to sleep. Serialized against itself only.

poll()(optional) Check the status for the poll/select calls. Multiple poll calls may
occur in parallel. May sleep.

ioctl()(optional) Called when an ioctl is handed to the tty layer that might be for
the ldisc. Multiple ioctl calls may occur in parallel. May sleep.

com-
pat_ioctl()

(optional) Called when a 32 bit ioctl is handed to the tty layer that might
be for the ldisc. Multiple ioctl calls may occur in parallel. May sleep.

84.2. The Lockronomicon 2357

Linux Driver-api Documentation

Driver Side Interfaces

re-
ceive_buf()

(optional) Called by the low-level driver to hand a buffer of received bytes to
the ldisc for processing. The number of bytes is guaranteed not to exceed
the current value of tty->receive_room. All bytes must be processed.

re-
ceive_buf2()

(optional) Called by the low-level driver to hand a buffer of received bytes
to the ldisc for processing. Returns the number of bytes processed.
If both receive_buf() and receive_buf2() are defined, receive_buf2() should
be preferred.

write_wakeup()May be called at any point between open and close. The
TTY_DO_WRITE_WAKEUP flag indicates if a call is needed but always
races versus calls. Thus the ldisc must be careful about setting order and
to handle unexpected calls. Must not sleep.
The driver is forbidden from calling this directly from the ->write call from
the ldisc as the ldisc is permitted to call the driver write method from this
function. In such a situation defer it.

dcd_change()Report to the tty line the current DCD pin status changes and the relative
timestamp. The timestamp cannot be NULL.

Driver Access

Line discipline methods can call the following methods of the underlying hardware
driver through the function pointers within the tty->driver structure:

2358 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

write()Write a block of characters to the tty device. Returns the number of char-
acters accepted. The character buffer passed to this method is already in
kernel space.

put_char()Queues a character for writing to the tty device. If there is no room in the
queue, the character is ignored.

flush_chars()(Optional) If defined, must be called after queueing characters with
put_char() in order to start transmission.

write_room()Returns the numbers of characters the tty driver will accept for queueing
to be written.

ioctl()Invoke device specific ioctl. Expects data pointers to refer to userspace.
Returns ENOIOCTLCMD for unrecognized ioctl numbers.

set_termios()Notify the tty driver that the device’s termios settings have changed. New
settings are in tty->termios. Previous settings should be passed in the“old”
argument.
The API is defined such that the driver should return the actual modes
selected. This means that the driver function is responsible for modifying
any bits in the request it cannot fulfill to indicate the actual modes being
used. A device with no hardware capability for change (e.g. a USB dongle
or virtual port) can provide NULL for this method.

throt-
tle()

Notify the tty driver that input buffers for the line discipline are close to
full, and it should somehow signal that no more characters should be sent
to the tty.

un-
throt-
tle()

Notify the tty driver that characters can now be sent to the tty without fear
of overrunning the input buffers of the line disciplines.

stop()Ask the tty driver to stop outputting characters to the tty device.
start()Ask the tty driver to resume sending characters to the tty device.
hangup()Ask the tty driver to hang up the tty device.
break_ctl()(Optional) Ask the tty driver to turn on or off BREAK status on the RS-232

port. If state is -1, then the BREAK status should be turned on; if state is 0,
then BREAK should be turned off. If this routine is not implemented, use
ioctls TIOCSBRK / TIOCCBRK instead.

wait_until_sent()Waits until the device has written out all of the characters in its transmitter
FIFO.

send_xchar()Send a high-priority XON/XOFF character to the device.

Flags

Line discipline methods have access to tty->flags field containing the following
interesting flags:

84.2. The Lockronomicon 2359

Linux Driver-api Documentation

TTY_THROTTLEDDriver input is throttled. The ldisc should call tty->driver-
>unthrottle() in order to resume reception when it is ready to
process more data.

TTY_DO_WRITE_WAKEUPIf set, causes the driver to call the ldisc’s write_wakeup() method
in order to resume transmission when it can accept more data to
transmit.

TTY_IO_ERRORIf set, causes all subsequent userspace read/write calls on the tty
to fail, returning -EIO.

TTY_OTHER_CLOSEDDevice is a pty and the other side has closed.
TTY_NO_WRITE_SPLITPrevent driver from splitting up writes into smaller chunks.

Locking

Callers to the line discipline functions from the tty layer are required to take line
discipline locks. The same is true of calls from the driver side but not yet enforced.

Three calls are now provided:

ldisc = tty_ldisc_ref(tty);

takes a handle to the line discipline in the tty and returns it. If no ldisc is currently
attached or the ldisc is being closed and re-opened at this point then NULL is
returned. While this handle is held the ldisc will not change or go away:

tty_ldisc_deref(ldisc)

Returns the ldisc reference and allows the ldisc to be closed. Returning the refer-
ence takes away your right to call the ldisc functions until you take a new refer-
ence:

ldisc = tty_ldisc_ref_wait(tty);

Performs the same function as tty_ldisc_ref except that it will wait for an ldisc
change to complete and then return a reference to the new ldisc.

While these functions are slightly slower than the old code they should have min-
imal impact as most receive logic uses the flip buffers and they only need to take
a reference when they push bits up through the driver.

A caution: The ldisc->open(), ldisc->close() and driver->set_ldisc functions are
called with the ldisc unavailable. Thus tty_ldisc_ref will fail in this situation if
used within these functions. Ldisc and driver code calling its own functions must
be careful in this case.

2360 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

84.2.3 Driver Interface

open() Called when a device is opened. May sleep
close() Called when a device is closed. At the point of return from this call the

driver must make no further ldisc calls of any kind. May sleep
write() Called to write bytes to the device. May not sleep. May occur in parallel

in special cases. Because this includes panic paths drivers generally
shouldn’t try and do clever locking here.

put_char()Stuff a single character onto the queue. The driver is guaranteed fol-
lowing up calls to flush_chars.

flush_chars()Ask the kernel to write put_char queue
write_room()Return the number of characters that can be stuffed into the port buffers

without overflow (or less). The ldisc is responsible for being intelligent
about multi-threading of write_room/write calls

ioctl() Called when an ioctl may be for the driver
set_termios()Called on termios change, serialized against itself by a semaphore. May

sleep.
set_ldisc()Notifier for discipline change. At the point this is done the discipline is

not yet usable. Can now sleep (I think)
throt-
tle()

Called by the ldisc to ask the driver to do flow control. Serialization
including with unthrottle is the job of the ldisc layer.

un-
throt-
tle()

Called by the ldisc to ask the driver to stop flow control.

stop() Ldisc notifier to the driver to stop output. As with throttle the serializa-
tions with start() are down to the ldisc layer.

start() Ldisc notifier to the driver to start output.
hangup()Ask the tty driver to cause a hangup initiated from the host side. [Can

sleep ??]
break_ctl()Send RS232 break. Can sleep. Can get called in parallel, driver must

serialize (for now), and with write calls.
wait_until_sent()Wait for characters to exit the hardware queue of the driver. Can sleep
send_xchar()Send XON/XOFF and if possible jump the queue with it in order to get

fast flow control responses. Cannot sleep ??

84.3 Serial drivers

84.3.1 Cyclades-Z notes

The Cyclades-Z must have firmware loaded onto the card before it will operate.
This operation should be performed during system startup,

The firmware, loader program and the latest device driver code are available from
Cyclades at

ftp://ftp.cyclades.com/pub/cyclades/cyclades-z/linux/

84.3. Serial drivers 2361

ftp://ftp.cyclades.com/pub/cyclades/cyclades-z/linux/

Linux Driver-api Documentation

84.3.2 MOXA Smartio/Industio Family Device Driver Installation
Guide

Note: This file is outdated. It needs some care in order to make it updated to
Kernel 5.0 and upper

Copyright (C) 2008, Moxa Inc.

Date: 01/21/2008

1. Introduction

The Smartio/Industio/UPCI family Linux driver supports following mul-
tiport boards.

• 2 ports multiport board CP-102U, CP-102UL, CP-102UF CP-
132U-I, CP-132UL, CP-132, CP-132I, CP132S, CP-132IS, CI-132,
CI-132I, CI-132IS, (C102H, C102HI, C102HIS, C102P, CP-102,
CP-102S)

• 4 ports multiport board CP-104EL, CP-104UL, CP-104JU, CP-
134U, CP-134U-I, C104H/PCI, C104HS/PCI, CP-114, CP-114I,
CP-114S, CP-114IS, CP-114UL, C104H, C104HS, CI-104J, CI-
104JS, CI-134, CI-134I, CI-134IS, (C114HI, CT-114I, C104P),
POS-104UL, CB-114, CB-134I

• 8 ports multiport board CP-118EL, CP-168EL, CP-118U, CP-
168U, C168H/PCI, C168H, C168HS, (C168P), CB-108

This driver and installation procedure have been developed upon Linux
Kernel 2.4.x and 2.6.x. This driver supports Intel x86 hardware plat-
form. In order to maintain compatibility, this version has also been
properly tested with RedHat, Mandrake, Fedora and S.u.S.E Linux.
However, if compatibility problem occurs, please contact Moxa at sup-
port@moxa.com.tw.

In addition to device driver, useful utilities are also provided in this ver-
sion. They are:

• msdiag Diagnostic program for displaying installed Moxa Smar-
tio/Industio boards.

• msmon Monitor program to observe data count and line status sig-
nals.

• msterm A simple terminal program which is useful in testing serial
ports.

• io-irq.exe Configuration program to setup ISA boards. Please note
that this program can only be executed under DOS.

All the drivers and utilities are published in form of source code under
GNUGeneral Public License in this version. Please refer to GNUGeneral
Public License announcement in each source code file for more detail.

2362 Chapter 84. Support for Serial devices

mailto:support@moxa.com.tw
mailto:support@moxa.com.tw

Linux Driver-api Documentation

In Moxa’s Web sites, you may always find latest driver at http://www.
moxa.com/.

This version of driver can be installed as Loadable Module (Module
driver) or built-in into kernel (Static driver). You may refer to follow-
ing installation procedure for suitable one. Before you install the driver,
please refer to hardware installation procedure in the User’s Manual.
We assume the user should be familiar with following documents.

• Serial-HOWTO

• Kernel-HOWTO

2. System Requirement

• Hardware platform: Intel x86 machine

• Kernel version: 2.4.x or 2.6.x

• gcc version 2.72 or later

• Maximum 4 boards can be installed in combination

3. Installation

3.1 Hardware installation

There are two types of buses, ISA and PCI, for Smartio/Industio family
multiport board.

ISA board

You’ll have to configure CAP address, I/O address, Interrupt Vector as
well as IRQ before installing this driver. Please refer to hardware instal-
lation procedure in User’s Manual before proceed any further. Please
make sure the JP1 is open after the ISA board is set properly.

PCI/UPCI board

You may need to adjust IRQ usage in BIOS to avoid from IRQ conflict
with other ISA devices. Please refer to hardware installation procedure
in User’s Manual in advance.

84.3. Serial drivers 2363

http://www.moxa.com/
http://www.moxa.com/

Linux Driver-api Documentation

PCI IRQ Sharing

Each port within the same multiport board shares the same IRQ. Up to
4 Moxa Smartio/Industio PCI Family multiport boards can be installed
together on one system and they can share the same IRQ.

3.2 Driver files

The driver file may be obtained from ftp, CD-ROM or floppy disk. The
first step, anyway, is to copy driver file“mxser.tgz”into specified direc-
tory. e.g. /moxa. The execute commands as below:

cd /
mkdir moxa
cd /moxa
tar xvf /dev/fd0

or:

cd /
mkdir moxa
cd /moxa
cp /mnt/cdrom/<driver directory>/mxser.tgz .
tar xvfz mxser.tgz

3.3 Device naming convention

You may find all the driver and utilities files in /moxa/mxser. Follow-
ing installation procedure depends on the model you’d like to run the
driver. If you prefer module driver, please refer to 3.4. If static driver is
required, please refer to 3.5.

Dialin and callout port

This driver remains traditional serial device properties. There are two
special file name for each serial port. One is dial-in port which is named
“ttyMxx”. For callout port, the naming convention is “cumxx”.

Device naming when more than 2 boards installed

Naming convention for each Smartio/Industio multiport board is pre-
defined as below.

Board Num. Dial-in Port Callout port
1st board ttyM0 - ttyM7 cum0 - cum7
2nd board ttyM8 - ttyM15 cum8 - cum15
3rd board ttyM16 - ttyM23 cum16 - cum23
4th board ttyM24 - ttym31 cum24 - cum31

2364 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

Note: Under Kernel 2.6 and upper, the cum Device is Obsolete. So use ttyM*
device instead.

Board sequence

This driver will activate ISA boards according to the parameter set in
the driver. After all specified ISA board activated, PCI board will be in-
stalled in the system automatically driven. Therefore the board number
is sorted by the CAP address of ISA boards. For PCI boards, their se-
quence will be after ISA boards and C168H/PCI has higher priority than
C104H/PCI boards.

3.4 Module driver configuration

Module driver is easiest way to install. If you prefer static driver instal-
lation, please skip this paragraph.

————- Prepare to use the MOXA driver ——————–

3.4.1 Create tty device with correct major number

Before using MOXA driver, your system must have the tty devices which
are created with driver’s major number. We offer one shell script“msm-
knod”to simplify the procedure. This step is only needed to be executed
once. But you still need to do this procedure when:

a. You change the driver’s major number. Please refer the“3.7”section.
b. Your total installed MOXA boards number is changed. Maybe you
add/delete one MOXA board.

c. You want to change the tty name. This needs to modify the shell
script “msmknod”

The procedure is:

cd /moxa/mxser/driver
./msmknod

This shell script will require the major number for dial-in device and
callout device to create tty device. You also need to specify the total
installed MOXA board number. Default major numbers for dial-in device
and callout device are 30, 35. If you need to change to other number,
please refer section “3.7”for more detailed procedure. Msmknod will
delete any special files occupying the same device naming.

84.3. Serial drivers 2365

Linux Driver-api Documentation

3.4.2 Build the MOXA driver and utilities

Before using the MOXA driver and utilities, you need compile the all the
source code. This step is only need to be executed once. But you still
re-compile the source code if you modify the source code. For example,
if you change the driver’s major number (see“3.7”section), then you
need to do this step again.

Find “Makefile”in /moxa/mxser, then run
make clean; make install

..note:

For Red Hat 9, Red Hat Enterprise Linux AS3/ES3/WS3 & Fedora␣
↪→Core1:
make clean; make installsp1

For Red Hat Enterprise Linux AS4/ES4/WS4:
make clean; make installsp2

The driver files “mxser.o”and utilities will be properly compiled and
copied to system directories respectively.

————- Load MOXA driver——————–

3.4.3 Load the MOXA driver

modprobe mxser <argument>

will activate the module driver. You may run“lsmod”to check if“mxser”
is activated. If theMOXA board is ISA board, the <argument> is needed.
Please refer to section “3.4.5”for more information.

————- Load MOXA driver on boot ——————–

3.4.4 Load the mxser driver

For the above description, you may manually execute“modprobe mxser”
to activate this driver and run “rmmod mxser”to remove it.
However, it’s better to have a boot time configuration to eliminate
manual operation. Boot time configuration can be achieved by rc
file. We offer one “rc.mxser”file to simplify the procedure under
“moxa/mxser/driver”.
But if you use ISA board, please modify the“modprobe⋯”command to
add the argument (see “3.4.5”section). After modifying the rc.mxser,
please try to execute“/moxa/mxser/driver/rc.mxser”manually to make
sure themodification is ok. If any error encountered, please try tomodify
again. If the modification is completed, follow the below step.

Run following command for setting rc files:

2366 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

cd /moxa/mxser/driver
cp ./rc.mxser /etc/rc.d
cd /etc/rc.d

Check“rc.serial”is existed or not. If“rc.serial”doesn’t exist, create
it by vi, run “chmod 755 rc.serial”to change the permission.
Add “/etc/rc.d/rc.mxser”in last line.
Reboot and check if moxa.o activated by “lsmod”command.

3.4.5. specify CAP address

If you’d like to drive Smartio/Industio ISA boards in the system, you’
ll have to add parameter to specify CAP address of given board while
activating “mxser.o”. The format for parameters are as follows.:
modprobe mxser ioaddr=0x???,0x???,0x???,0x???

| | | |
| | | +- 4th ISA board
| | +------ 3rd ISA board
| +------------ 2nd ISA board
+-------------------1st ISA board

3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x

Note: To use static driver, you must install the linux kernel source pack-
age.

3.5.1 Backup the built-in driver in the kernel

cd /usr/src/linux/drivers/char
mv mxser.c mxser.c.old

For Red Hat 7.x user, you need to create link:
cd /usr/src
ln -s linux-2.4 linux

3.5.2 Create link

cd /usr/src/linux/drivers/char
ln -s /moxa/mxser/driver/mxser.c mxser.c

84.3. Serial drivers 2367

Linux Driver-api Documentation

3.5.3 Add CAP address list for ISA boards.

For PCI boards user, please skip this step.

In module mode, the CAP address for ISA board is given by parameter.
In static driver configuration, you’ll have to assign it within driver’s
source code. If you will not install any ISA boards, you may skip to next
portion. The instructions to modify driver source code are as below.

a. run:

cd /moxa/mxser/driver
vi mxser.c

b. Find the array mxserBoardCAP[] as below:

static int mxserBoardCAP[] = {0x00, 0x00, 0x00, 0x00};

c. Change the address within this array using vi. For example, to driver
2 ISA boards with CAP address 0x280 and 0x180 as 1st and 2nd
board. Just to change the source code as follows:

static int mxserBoardCAP[] = {0x280, 0x180, 0x00, 0x00};

3.5.4 Setup kernel configuration

Configure the kernel:

cd /usr/src/linux
make menuconfig

You will go into a menu-driven system. Please select [Character de-
vices][Non-standard serial port support], enable the [Moxa SmartIO sup-
port] driver with“[*]”for built-in (not“[M]”), then select [Exit] to exit
this program.

3.5.5 Rebuild kernel

The following are for Linux kernel rebuilding, for your reference only.

For appropriate details, please refer to the Linux document:

a. Run the following commands:

cd /usr/src/linux
make clean # take a few minutes
make dep # take a few minutes
make bzImage # take probably 10-20 minutes
make install # copy boot image to correct␣
↪→position

f. Please make sure the boot kernel (vmlinuz) is in the correct
position.

2368 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

g. If you use‘lilo’utility, you should check /etc/lilo.conf‘image’
item specified the path which is the‘vmlinuz’path, or you
will load wrong (or old) boot kernel image (vmlinuz). After
checking /etc/lilo.conf, please run “lilo”.
Note that if the result of “make bzImage”is ERROR,
then you have to go back to Linux configuration Setup.
Type “make menuconfig”in directory /usr/src/linux.

3.5.6 Make tty device and special file

:: # cd /moxa/mxser/driver # ./msmknod

3.5.7 Make utility

cd /moxa/mxser/utility
make clean; make install

3.5.8 Reboot

3.6 Custom configuration

Although this driver already provides you default configuration, you still
can change the device name and major number. The instruction to
change these parameters are shown as below.

a. Change Device name

If you’d like to use other device names instead of default naming
convention, all you have to do is to modify the internal code within
the shell script“msmknod”. First, you have to open“msmknod”by
vi. Locate each line contains“ttyM”and“cum”and change them to
the device name you desired.“msmknod”creates the device names
you need next time executed.

b. Change Major number

If major number 30 and 35 had been occupied, youmay have to select
2 free major numbers for this driver. There are 3 steps to change
major numbers.

84.3. Serial drivers 2369

Linux Driver-api Documentation

3.6.1 Find free major numbers

In /proc/devices, you may find all the major numbers occupied in the
system. Please select 2 major numbers that are available. e.g. 40, 45.

3.6.2 Create special files

Run /moxa/mxser/driver/msmknod to create special files with specified
major numbers.

3.6.3 Modify driver with new major number

Run vi to open /moxa/mxser/driver/mxser.c. Locate the line contains
“MXSERMAJOR”. Change the content as below:

#define MXSERMAJOR 40
#define MXSERCUMAJOR 45

3.6.4 Run "make clean; make install" in /moxa/mxser/driver.

3.7 Verify driver installation

You may refer to /var/log/messages to check the latest status log re-
ported by this driver whenever it’s activated.

4. Utilities

There are 3 utilities contained in this driver. They are msdiag, msmon
and msterm. These 3 utilities are released in form of source code. They
should be compiled into executable file and copied into /usr/bin.

Before using these utilities, please load driver (refer 3.4 & 3.5) and make
sure you had run the “msmknod”utility.

msdiag - Diagnostic

This utility provides the function to display what Moxa Smartio/Industio
board found by driver in the system.

2370 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

msmon - Port Monitoring

This utility gives the user a quick view about all the MOXA ports’activi-
ties. One can easily learn each port’s total received/transmitted (Rx/Tx)
character count since the time when the monitoring is started.

Rx/Tx throughputs per second are also reported in interval basis (e.g.
the last 5 seconds) and in average basis (since the time the monitor-
ing is started). You can reset all ports’count by <HOME> key. <+>
<-> (plus/minus) keys to change the displaying time interval. Press
<ENTER> on the port, that cursor stay, to view the port’s commu-
nication parameters, signal status, and input/output queue.

msterm - Terminal Emulation

This utility provides data sending and receiving ability of all tty ports,
especially for MOXA ports. It is quite useful for testing simple applica-
tion, for example, sending AT command to a modem connected to the
port or used as a terminal for login purpose. Note that this is only a
dumb terminal emulation without handling full screen operation.

5. Setserial

Supported Setserial parameters are listed as below.

uart set UART type(16450–>disable FIFO, 16550A–>enable FIFO)
close_delayset the amount of time(in 1/100 of a second) that DTR should

be kept low while being closed.
clos-
ing_wait

set the amount of time(in 1/100 of a second) that the serial port
should wait for data to be drained while being closed, before
the receiver is disable.

spd_hi Use 57.6kb when the application requests 38.4kb.
spd_vhiUse 115.2kb when the application requests 38.4kb.
spd_shiUse 230.4kb when the application requests 38.4kb.
spd_warpUse 460.8kb when the application requests 38.4kb.
spd_normalUse 38.4kb when the application requests 38.4kb.
spd_custUse the custom divisor to set the speed when the application

requests 38.4kb.
divi-
sor

This option set the custom division.

baud_baseThis option set the base baud rate.

84.3. Serial drivers 2371

Linux Driver-api Documentation

6. Troubleshooting

The boot time errormessages and solutions are stated as clearly as possi-
ble. If all the possible solutions fail, please contact our technical support
team to get more help.

Error msg: More than 4 Moxa Smartio/Industio family boards found.
Fifth board and after are ignored.

Solution: To avoid this problem, please unplug fifth and after board,
because Moxa driver supports up to 4 boards.

Error msg: Request_irq fail, IRQ(?) may be conflict with another de-
vice.

Solution: Other PCI or ISA devices occupy the assigned IRQ. If you are
not sure which device causes the situation, please check /proc/interrupts
to find free IRQ and simply change another free IRQ for Moxa board.

Error msg: Board #: C1xx Series(CAP=xxx) interrupt number invalid.
Solution: Each port within the same multiport board shares the same
IRQ. Please set one IRQ (IRQ doesn’t equal to zero) for one Moxa board.
Error msg: No interrupt vector be set for Moxa ISA board(CAP=xxx).
Solution: Moxa ISA board needs an interrupt vector.Please refer to user’
s manual “Hardware Installation”chapter to set interrupt vector.
Error msg: Couldn’t install MOXA Smartio/Industio family driver!
Solution: Load Moxa driver fail, the major number may conflict with
other devices. Please refer to previous section 3.7 to change a free major
number for Moxa driver.

Error msg: Couldn’t install MOXA Smartio/Industio family callout
driver!

Solution: Load Moxa callout driver fail, the callout device major number
may conflict with other devices. Please refer to previous section 3.7 to
change a free callout device major number for Moxa driver.

84.3.3 GSM 0710 tty multiplexor HOWTO

This line discipline implements the GSM 07.10 multiplexing protocol detailed in
the following 3GPP document:

http://www.3gpp.org/ftp/Specs/archive/07_series/07.10/0710-720.zip

This document give some hints on how to use this driver with GPRS and 3G
modems connected to a physical serial port.

2372 Chapter 84. Support for Serial devices

http://www.3gpp.org/ftp/Specs/archive/07_series/07.10/0710-720.zip

Linux Driver-api Documentation

How to use it

1. initialize the modem in 0710 mux mode (usually AT+CMUX= command)
through its serial port. Depending on the modem used, you can pass more or
less parameters to this command,

2. switch the serial line to using the n_gsm line discipline by using TIOCSETD
ioctl,

3. configure the mux using GSMIOC_GETCONF / GSMIOC_SETCONF ioctl,

4. obtain base gsmtty number for the used serial port,

Major parts of the initialization program : (a good starting point is util-linux-ng/sys-
utils/ldattach.c):

#include <stdio.h>
#include <stdint.h>
#include <linux/gsmmux.h>
#include <linux/tty.h>
#define DEFAULT_SPEED B115200
#define SERIAL_PORT /dev/ttyS0

int ldisc = N_GSM0710;
struct gsm_config c;
struct termios configuration;
uint32_t first;

/* open the serial port connected to the modem */
fd = open(SERIAL_PORT, O_RDWR | O_NOCTTY | O_NDELAY);

/* configure the serial port : speed, flow control ... */

/* send the AT commands to switch the modem to CMUX mode
and check that it's successful (should return OK) */

write(fd, "AT+CMUX=0\r", 10);

/* experience showed that some modems need some time before
being able to answer to the first MUX packet so a delay
may be needed here in some case */

sleep(3);

/* use n_gsm line discipline */
ioctl(fd, TIOCSETD, &ldisc);

/* get n_gsm configuration */
ioctl(fd, GSMIOC_GETCONF, &c);
/* we are initiator and need encoding 0 (basic) */
c.initiator = 1;
c.encapsulation = 0;
/* our modem defaults to a maximum size of 127 bytes */
c.mru = 127;
c.mtu = 127;
/* set the new configuration */
ioctl(fd, GSMIOC_SETCONF, &c);
/* get first gsmtty device node */
ioctl(fd, GSMIOC_GETFIRST, &first);
printf("first muxed line: /dev/gsmtty%i\n", first);

(continues on next page)

84.3. Serial drivers 2373

Linux Driver-api Documentation

(continued from previous page)

/* and wait for ever to keep the line discipline enabled */
daemon(0,0);
pause();

5. use these devices as plain serial ports.

for example, it’s possible:
• and to use gnokii to send / receive SMS on ttygsm1

• to use ppp to establish a datalink on ttygsm2

6. first close all virtual ports before closing the physical port.

Note that after closing the physical port the modem is still in multiplexing
mode. This may prevent a successful re-opening of the port later. To avoid
this situation either reset the modem if your hardware allows that or send
a disconnect command frame manually before initializing the multiplexing
mode for the second time. The byte sequence for the disconnect command
frame is:

0xf9, 0x03, 0xef, 0x03, 0xc3, 0x16, 0xf9.

Additional Documentation

More practical details on the protocol and how it’s supported by industrial modems
can be found in the following documents :

• http://www.telit.com/module/infopool/download.php?id=616

• http://www.u-blox.com/images/downloads/Product_Docs/
LEON-G100-G200-MuxImplementation_ApplicationNote_%28GSM%
20G1-CS-10002%29.pdf

• http://www.sierrawireless.com/Support/Downloads/AirPrime/WMP_Series/
~/media/Support_Downloads/AirPrime/Application_notes/CMUX_Feature_
Application_Note-Rev004.ashx

• http://wm.sim.com/sim/News/photo/2010721161442.pdf

11-03-08 - Eric Bénard - <eric@eukrea.com>

84.3.4 Comtrol(tm) RocketPort(R)/RocketModem(TM) Series

Device Driver for the Linux Operating System

Product overview

This driver provides a loadable kernel driver for the Comtrol RocketPort and Rock-
etModem PCI boards. These boards provide, 2, 4, 8, 16, or 32 high-speed serial
ports or modems. This driver supports up to a combination of four RocketPort or
RocketModems boards in one machine simultaneously. This file assumes that you
are using the RocketPort driver which is integrated into the kernel sources.

2374 Chapter 84. Support for Serial devices

http://www.telit.com/module/infopool/download.php?id=616
http://www.u-blox.com/images/downloads/Product_Docs/LEON-G100-G200-MuxImplementation_ApplicationNote_%28GSM%20G1-CS-10002%29.pdf
http://www.u-blox.com/images/downloads/Product_Docs/LEON-G100-G200-MuxImplementation_ApplicationNote_%28GSM%20G1-CS-10002%29.pdf
http://www.u-blox.com/images/downloads/Product_Docs/LEON-G100-G200-MuxImplementation_ApplicationNote_%28GSM%20G1-CS-10002%29.pdf
http://www.sierrawireless.com/Support/Downloads/AirPrime/WMP_Series/~/media/Support_Downloads/AirPrime/Application_notes/CMUX_Feature_Application_Note-Rev004.ashx
http://www.sierrawireless.com/Support/Downloads/AirPrime/WMP_Series/~/media/Support_Downloads/AirPrime/Application_notes/CMUX_Feature_Application_Note-Rev004.ashx
http://www.sierrawireless.com/Support/Downloads/AirPrime/WMP_Series/~/media/Support_Downloads/AirPrime/Application_notes/CMUX_Feature_Application_Note-Rev004.ashx
http://wm.sim.com/sim/News/photo/2010721161442.pdf
mailto:eric@eukrea.com

Linux Driver-api Documentation

The driver can also be installed as an external module using the usual“make;make
install”routine. This external module driver, obtainable from the Comtrol website
listed below, is useful for updating the driver or installing it into kernels which do
not have the driver configured into them. Installations instructions for the external
module are in the included README and HW_INSTALL files.

RocketPort ISA and RocketModem II PCI boards currently are only supported by
this driver in module form.

The RocketPort ISA board requires I/O ports to be configured by the DIP switches
on the board. See the section“ISA Rocketport Boards”below for information on
how to set the DIP switches.

You pass the I/O port to the driver using the following module parameters:

board1: I/O port for the first ISA board
board2: I/O port for the second ISA board
board3: I/O port for the third ISA board
board4: I/O port for the fourth ISA board
There is a set of utilities and scripts provided with the external driver (download-
able from http://www.comtrol.com) that ease the configuration and setup of the
ISA cards.

The RocketModem II PCI boards require firmware to be loaded into the card before
it will function. The driver has only been tested as a module for this board.

Installation Procedures

RocketPort/RocketModem PCI cards require no driver configuration, they are au-
tomatically detected and configured.

The RocketPort driver can be installed as amodule (recommended) or built into the
kernel. This is selected, as for other drivers, through the make config command
from the root of the Linux source tree during the kernel build process.

The RocketPort/RocketModem serial ports installed by this driver are assigned
device major number 46, and will be named /dev/ttyRx, where x is the port number
starting at zero (ex. /dev/ttyR0, /devttyR1,⋯). If you have multiple cards installed
in the system, the mapping of port names to serial ports is displayed in the system
log at /var/log/messages.

If installed as a module, the module must be loaded. This can be done manually
by entering “modprobe rocket”. To have the module loaded automatically upon
system boot, edit a /etc/modprobe.d/*.conf file and add the line“alias char-major-
46 rocket”.
In order to use the ports, their device names (nodes) must be created with mknod.
This is only required once, the systemwill retain the names once created. To create
the RocketPort/RocketModem device names, use the command“mknod /dev/ttyRx
c 46 x”where x is the port number starting at zero.
For example:

84.3. Serial drivers 2375

http://www.comtrol.com

Linux Driver-api Documentation

> mknod /dev/ttyR0 c 46 0
> mknod /dev/ttyR1 c 46 1
> mknod /dev/ttyR2 c 46 2

The Linux script MAKEDEV will create the first 16 ttyRx device names (nodes) for
you:

>/dev/MAKEDEV ttyR

ISA Rocketport Boards

You must assign and configure the I/O addresses used by the ISA Rocketport card
before installing and using it. This is done by setting a set of DIP switches on the
Rocketport board.

Setting the I/O address

Before installing RocketPort(R) or RocketPort RA boards, you must find a range
of I/O addresses for it to use. The first RocketPort card requires a 68-byte con-
tiguous block of I/O addresses, starting at one of the following: 0x100h, 0x140h,
0x180h, 0x200h, 0x240h, 0x280h, 0x300h, 0x340h, 0x380h. This I/O address must
be reflected in the DIP switches of all of the Rocketport cards.

The second, third, and fourth RocketPort cards require a 64-byte contiguous block
of I/O addresses, starting at one of the following I/O addresses: 0x100h, 0x140h,
0x180h, 0x1C0h, 0x200h, 0x240h, 0x280h, 0x2C0h, 0x300h, 0x340h, 0x380h,
0x3C0h. The I/O address used by the second, third, and fourth Rocketport cards (if
present) are set via software control. The DIP switch settings for the I/O address
must be set to the value of the first Rocketport cards.

In order to distinguish each of the card from the others, each card must have a
unique board ID set on the dip switches. The first Rocketport board must be set
with the DIP switches corresponding to the first board, the second board must be
set with the DIP switches corresponding to the second board, etc. IMPORTANT:
The board ID is the only place where the DIP switch settings should differ between
the various Rocketport boards in a system.

The I/O address range used by any of the RocketPort cards must not conflict with
any other cards in the system, including other RocketPort cards. Below, you will
find a list of commonly used I/O address ranges which may be in use by other
devices in your system. On a Linux system,“cat /proc/ioports”will also be helpful
in identifying what I/O addresses are being used by devices on your system.

Remember, the FIRST RocketPort uses 68 I/O addresses. So, if you set it for 0x100,
it will occupy 0x100 to 0x143. This would mean that you CAN NOT set the second,
third or fourth board for address 0x140 since the first 4 bytes of that range are
used by the first board. You would need to set the second, third, or fourth board
to one of the next available blocks such as 0x180.

RocketPort and RocketPort RA SW1 Settings:

2376 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

+-------------------------------+
| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
+-------+-------+---------------+
| Unused| Card | I/O Port Block|
+-------------------------------+

DIP Switches DIP Switches
7 8 6 5
=================== ===================
On On UNUSED, MUST BE ON. On On First Card <====␣
↪→Default

On Off Second Card
Off On Third Card
Off Off Fourth Card

DIP Switches I/O Address Range
4 3 2 1 Used by the First Card
=====================================
On Off On Off 100-143
On Off Off On 140-183
On Off Off Off 180-1C3 <==== Default
Off On On Off 200-243
Off On Off On 240-283
Off On Off Off 280-2C3
Off Off On Off 300-343
Off Off Off On 340-383
Off Off Off Off 380-3C3

Reporting Bugs

For technical support, please provide the following information: Driver version,
kernel release, distribution of kernel, and type of board you are using. Error mes-
sages and log printouts port configuration details are especially helpful.

USA:
Phone
(612) 494-4100

FAX
(612) 494-4199

email support@comtrol.com
Comtrol Europe:

Phone +44 (0) 1 869 323-220
FAX +44 (0) 1 869 323-211

email support@comtrol.co.uk
Web: http://www.comtrol.com FTP: ftp.comtrol.com

84.3. Serial drivers 2377

mailto:support@comtrol.com
mailto:support@comtrol.co.uk
http://www.comtrol.com

Linux Driver-api Documentation

84.3.5 ISO7816 Serial Communications

1. Introduction

ISO/IEC7816 is a series of standards specifying integrated circuit cards
(ICC) also known as smart cards.

2. Hardware-related considerations

Some CPUs/UARTs (e.g., Microchip AT91) contain a built-in mode capa-
ble of handling communication with a smart card.

For these microcontrollers, the Linux driver should be made capable of
working in both modes, and proper ioctls (see later) should be made
available at user-level to allow switching from one mode to the other,
and vice versa.

3. Data Structures Already Available in the Kernel

The Linux kernel provides the serial_iso7816 structure (see [1]) to han-
dle ISO7816 communications. This data structure is used to set and
configure ISO7816 parameters in ioctls.

Any driver for devices capable of working both as RS232 and ISO7816
should implement the iso7816_config callback in the uart_port structure.
The serial_core calls iso7816_config to do the device specific part in re-
sponse to TIOCGISO7816 and TIOCSISO7816 ioctls (see below). The
iso7816_config callback receives a pointer to struct serial_iso7816.

4. Usage from user-level

From user-level, ISO7816 configuration can be get/set using the previ-
ous ioctls. For instance, to set ISO7816 you can use the following code:

#include <linux/serial.h>

/* Include definition for ISO7816 ioctls: TIOCSISO7816 and␣
↪→TIOCGISO7816 */
#include <sys/ioctl.h>

/* Open your specific device (e.g., /dev/mydevice): */
int fd = open ("/dev/mydevice", O_RDWR);
if (fd < 0) {

/* Error handling. See errno. */
}

struct serial_iso7816 iso7816conf;

/* Reserved fields as to be zeroed */
memset(&iso7816conf, 0, sizeof(iso7816conf));

/* Enable ISO7816 mode: */
(continues on next page)

2378 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

(continued from previous page)
iso7816conf.flags |= SER_ISO7816_ENABLED;

/* Select the protocol: */
/* T=0 */
iso7816conf.flags |= SER_ISO7816_T(0);
/* or T=1 */
iso7816conf.flags |= SER_ISO7816_T(1);

/* Set the guard time: */
iso7816conf.tg = 2;

/* Set the clock frequency*/
iso7816conf.clk = 3571200;

/* Set transmission factors: */
iso7816conf.sc_fi = 372;
iso7816conf.sc_di = 1;

if (ioctl(fd_usart, TIOCSISO7816, &iso7816conf) < 0) {
/* Error handling. See errno. */

}

/* Use read() and write() syscalls here... */

/* Close the device when finished: */
if (close (fd) < 0) {

/* Error handling. See errno. */
}

5. References

[1] include/uapi/linux/serial.h

84.3.6 RS485 Serial Communications

1. Introduction

EIA-485, also known as TIA/EIA-485 or RS-485, is a standard defining
the electrical characteristics of drivers and receivers for use in balanced
digital multipoint systems. This standard is widely used for communica-
tions in industrial automation because it can be used effectively over
long distances and in electrically noisy environments.

84.3. Serial drivers 2379

Linux Driver-api Documentation

2. Hardware-related Considerations

Some CPUs/UARTs (e.g., Atmel AT91 or 16C950 UART) contain a built-
in half-duplex mode capable of automatically controlling line direction
by toggling RTS or DTR signals. That can be used to control external
half-duplex hardware like an RS485 transceiver or any RS232-connected
half-duplex devices like some modems.

For these microcontrollers, the Linux driver should be made capable of
working in both modes, and proper ioctls (see later) should be made
available at user-level to allow switching from one mode to the other,
and vice versa.

3. Data Structures Already Available in the Kernel

The Linux kernel provides the serial_rs485 structure (see [1]) to handle
RS485 communications. This data structure is used to set and configure
RS485 parameters in the platform data and in ioctls.

The device tree can also provide RS485 boot time parameters (see [2]
for bindings). The driver is in charge of filling this data structure from
the values given by the device tree.

Any driver for devices capable of working both as RS232 and RS485
should implement the rs485_config callback in the uart_port structure.
The serial_core calls rs485_config to do the device specific part in
response to TIOCSRS485 and TIOCGRS485 ioctls (see below). The
rs485_config callback receives a pointer to struct serial_rs485.

4. Usage from user-level

From user-level, RS485 configuration can be get/set using the previous
ioctls. For instance, to set RS485 you can use the following code:

#include <linux/serial.h>

/* Include definition for RS485 ioctls: TIOCGRS485 and TIOCSRS485␣
↪→*/
#include <sys/ioctl.h>

/* Open your specific device (e.g., /dev/mydevice): */
int fd = open ("/dev/mydevice", O_RDWR);
if (fd < 0) {

/* Error handling. See errno. */
}

struct serial_rs485 rs485conf;

/* Enable RS485 mode: */
rs485conf.flags |= SER_RS485_ENABLED;

/* Set logical level for RTS pin equal to 1 when sending: */
rs485conf.flags |= SER_RS485_RTS_ON_SEND;

(continues on next page)

2380 Chapter 84. Support for Serial devices

Linux Driver-api Documentation

(continued from previous page)
/* or, set logical level for RTS pin equal to 0 when sending: */
rs485conf.flags &= ~(SER_RS485_RTS_ON_SEND);

/* Set logical level for RTS pin equal to 1 after sending: */
rs485conf.flags |= SER_RS485_RTS_AFTER_SEND;
/* or, set logical level for RTS pin equal to 0 after sending: */
rs485conf.flags &= ~(SER_RS485_RTS_AFTER_SEND);

/* Set rts delay before send, if needed: */
rs485conf.delay_rts_before_send = ...;

/* Set rts delay after send, if needed: */
rs485conf.delay_rts_after_send = ...;

/* Set this flag if you want to receive data even while sending␣
↪→data */
rs485conf.flags |= SER_RS485_RX_DURING_TX;

if (ioctl (fd, TIOCSRS485, &rs485conf) < 0) {
/* Error handling. See errno. */

}

/* Use read() and write() syscalls here... */

/* Close the device when finished: */
if (close (fd) < 0) {

/* Error handling. See errno. */
}

5. References

[1] include/uapi/linux/serial.h

[2] Documentation/devicetree/bindings/serial/rs485.txt

84.3. Serial drivers 2381

Linux Driver-api Documentation

2382 Chapter 84. Support for Serial devices

CHAPTER

EIGHTYFIVE

SM501 DRIVER

Copyright © 2006, 2007 Simtec Electronics

The Silicon Motion SM501 multimedia companion chip is a multifunction device
which may provide numerous interfaces including USB host controller USB gad-
get, asynchronous serial ports, audio functions, and a dual display video interface.
The device may be connected by PCI or local bus with varying functions enabled.

85.1 Core

The core driver in drivers/mfd provides common services for the drivers which
manage the specific hardware blocks. These services include locking for common
registers, clock control and resource management.

The core registers drivers for both PCI and generic bus based chips via the plat-
form device and driver system.

On detection of a device, the core initialises the chip (which may be specified by
the platform data) and then exports the selected peripheral set as platform devices
for the specific drivers.

The core re-uses the platform device system as the platform device system pro-
vides enough features to support the drivers without the need to create a new
bus-type and the associated code to go with it.

85.2 Resources

Each peripheral has a view of the device which is implicitly narrowed to the specific
set of resources that peripheral requires in order to function correctly.

The centralised memory allocation allows the driver to ensure that the maximum
possible resource allocation can be made to the video subsystem as this is by-far
the most resource-sensitive of the on-chip functions.

The primary issue with memory allocation is that of moving the video buffers once
a display mode is chosen. Indeed when a video mode change occurs the memory
footprint of the video subsystem changes.

Since video memory is difficult to move without changing the display (unless suf-
ficient contiguous memory can be provided for the old and new modes simultane-
ously) the video driver fully utilises the memory area given to it by aligning fb0 to

2383

Linux Driver-api Documentation

the start of the area and fb1 to the end of it. Any memory left over in the middle
is used for the acceleration functions, which are transient and thus their location
is less critical as it can be moved.

85.3 Configuration

The platform device driver uses a set of platform data to pass configurations
through to the core and the subsidiary drivers so that there can be support for
more than one system carrying an SM501 built into a single kernel image.

The PCI driver assumes that the PCI card behaves as per the Silicon Motion ref-
erence design.

There is an errata (AB-5) affecting the selection of the of the M1XCLK and M1CLK
frequencies. These two clocks must be sourced from the same PLL, although they
can then be divided down individually. If this is not set, then SM501 may lock
and hang the whole system. The driver will refuse to attach if the PLL selection is
different.

2384 Chapter 85. SM501 Driver

CHAPTER

EIGHTYSIX

MSC KEYBOARD SCAN EXPANSION/GPIO EXPANSION
DEVICE

86.1 What is smsc-ece1099?

The ECE1099 is a 40-Pin 3.3V Keyboard Scan Expansion or GPIO Expansion de-
vice. The device supports a keyboard scan matrix of 23x8. The device is connected
to a Master via the SMSC BC-Link interface or via the SMBus. Keypad scan In-
put(KSI) and Keypad Scan Output(KSO) signals are multiplexed with GPIOs.

86.2 Interrupt generation

Interrupts can be generated by an edge detection on a GPIO pin or an edge de-
tection on one of the bus interface pins. Interrupts can also be detected on the
keyboard scan interface. The bus interrupt pin (BC_INT# or SMBUS_INT#) is as-
serted if any bit in one of the Interrupt Status registers is 1 and the corresponding
Interrupt Mask bit is also 1.

In order for software to determine which device is the source of an interrupt, it
should first read the Group Interrupt Status Register to determine which Status
register group is a source for the interrupt. Software should read both the Sta-
tus register and the associated Mask register, then AND the two values together.
Bits that are 1 in the result of the AND are active interrupts. Software clears an
interrupt by writing a 1 to the corresponding bit in the Status register.

86.3 Communication Protocol

• SMbus slave Interface The host processor communicates with the
ECE1099 device through a series of read/write registers via the
SMBus interface. SMBus is a serial communication protocol between
a computer host and its peripheral devices. The SMBus data rate is
10KHz minimum to 400 KHz maximum

• Slave Bus Interface The ECE1099 device SMBus implementation is a sub-
set of the SMBus interface to the host. The device is a slave-only SMBus
device. The implementation in the device is a subset of SMBus since it
only supports four protocols.

2385

Linux Driver-api Documentation

The Write Byte, Read Byte, Send Byte, and Receive Byte protocols are
the only valid SMBus protocols for the device.

• BC-LinkTM Interface The BC-Link is a proprietary bus that allows commu-
nication between a Master device and a Companion device. The Master
device uses this serial bus to read and write registers located on the Com-
panion device. The bus comprises three signals, BC_CLK, BC_DAT and
BC_INT#. The Master device always provides the clock, BC_CLK, and
the Companion device is the source for an independent asynchronous in-
terrupt signal, BC_INT#. The ECE1099 supports BC-Link speeds up to
24MHz.

2386 Chapter 86. Msc Keyboard Scan Expansion/GPIO Expansion device

CHAPTER

EIGHTYSEVEN

LINUX SWITCHTEC SUPPORT

Microsemi’s “Switchtec”line of PCI switch devices is already supported by the
kernel with standard PCI switch drivers. However, the Switchtec device advertises
a special management endpoint which enables some additional functionality. This
includes:

• Packet and Byte Counters

• Firmware Upgrades

• Event and Error logs

• Querying port link status

• Custom user firmware commands

The switchtec kernel module implements this functionality.

87.1 Interface

The primary means of communicating with the Switchtec management firmware
is through the Memory-mapped Remote Procedure Call (MRPC) interface. Com-
mands are submitted to the interface with a 4-byte command identifier and up to
1KB of command specific data. The firmware will respond with a 4-byte return
code and up to 1KB of command-specific data. The interface only processes a
single command at a time.

87.2 Userspace Interface

The MRPC interface will be exposed to userspace through a simple char device:
/dev/switchtec#, one for each management endpoint in the system.

The char device has the following semantics:

• A write must consist of at least 4 bytes and no more than 1028 bytes. The
first 4 bytes will be interpreted as the Command ID and the remainder will
be used as the input data. A write will send the command to the firmware to
begin processing.

• Each write must be followed by exactly one read. Any double write will pro-
duce an error and any read that doesn’t follow a write will produce an error.

2387

Linux Driver-api Documentation

• A read will block until the firmware completes the command and return the
4-byte Command Return Value plus up to 1024 bytes of output data. (The
length will be specified by the size parameter of the read call – reading less
than 4 bytes will produce an error.)

• The poll call will also be supported for userspace applications that need to do
other things while waiting for the command to complete.

The following IOCTLs are also supported by the device:

• SWITCHTEC_IOCTL_FLASH_INFO - Retrieve firmware length and number of
partitions in the device.

• SWITCHTEC_IOCTL_FLASH_PART_INFO - Retrieve address and lengeth for
any specified partition in flash.

• SWITCHTEC_IOCTL_EVENT_SUMMARY - Read a structure of bitmaps indi-
cating all uncleared events.

• SWITCHTEC_IOCTL_EVENT_CTL - Get the current count, clear and set flags
for any event. This ioctl takes in a switchtec_ioctl_event_ctl struct with the
event_id, index and flags set (index being the partition or PFF number for
non-global events). It returns whether the event has occurred, the number
of times and any event specific data. The flags can be used to clear the count
or enable and disable actions to happen when the event occurs. By using the
SWITCHTEC_IOCTL_EVENT_FLAG_EN_POLL flag, you can set an event to
trigger a poll command to return with POLLPRI. In this way, userspace can
wait for events to occur.

• SWITCHTEC_IOCTL_PFF_TO_PORT and SWITCHTEC_IOCTL_PORT_TO_PFF
convert between PCI Function Framework number (used by the event sys-
tem) and Switchtec Logic Port ID and Partition number (which is more user
friendly).

87.3 Non-Transparent Bridge (NTB) Driver

An NTB hardware driver is provided for the Switchtec hardware in
ntb_hw_switchtec. Currently, it only supports switches configured with ex-
actly 2 NT partitions and zero or more non-NT partitions. It also requires the
following configuration settings:

• Both NT partitions must be able to access each other’s GAS spaces. Thus,
the bits in the GAS Access Vector under Management Settings must be set to
support this.

• Kernel configuration MUST include support for NTB (CONFIG_NTB needs to
be set)

NT EP BAR 2 will be dynamically configured as a Direct Window, and the config-
uration file does not need to configure it explicitly.

Please refer to Documentation/driver-api/ntb.rst in Linux source tree for an over-
all understanding of the Linux NTB stack. ntb_hw_switchtec works as an NTB
Hardware Driver in this stack.

2388 Chapter 87. Linux Switchtec Support

CHAPTER

EIGHTYEIGHT

SYNC FILE API GUIDE

Author Gustavo Padovan <gustavo at padovan dot org>
This document serves as a guide for device drivers writers on what the sync_file
API is, and how drivers can support it. Sync file is the carrier of the fences(struct
dma_fence) that are needed to synchronize between drivers or across process
boundaries.

The sync_file API is meant to be used to send and receive fence information to/from
userspace. It enables userspace to do explicit fencing, where instead of attaching
a fence to the buffer a producer driver (such as a GPU or V4L driver) sends the
fence related to the buffer to userspace via a sync_file.

The sync_file then can be sent to the consumer (DRM driver for example), that
will not use the buffer for anything before the fence(s) signals, i.e., the driver that
issued the fence is not using/processing the buffer anymore, so it signals that the
buffer is ready to use. And vice-versa for the consumer -> producer part of the
cycle.

Sync files allows userspace awareness on buffer sharing synchronization between
drivers.

Sync file was originally added in the Android kernel but current Linux Desktop can
benefit a lot from it.

88.1 in-fences and out-fences

Sync files can go either to or from userspace. When a sync_file is sent from the
driver to userspace we call the fences it contains‘out-fences’. They are related to
a buffer that the driver is processing or is going to process, so the driver creates an
out-fence to be able to notify, through dma_fence_signal(), when it has finished
using (or processing) that buffer. Out-fences are fences that the driver creates.

On the other hand if the driver receives fence(s) through a sync_file from userspace
we call these fence(s) ‘in-fences’. Receiving in-fences means that we need to
wait for the fence(s) to signal before using any buffer related to the in-fences.

2389

Linux Driver-api Documentation

88.2 Creating Sync Files

When a driver needs to send an out-fence userspace it creates a sync_file.

Interface:

struct sync_file *sync_file_create(struct dma_fence *fence);

The caller pass the out-fence and gets back the sync_file. That is just the first step,
next it needs to install an fd on sync_file->file. So it gets an fd:

fd = get_unused_fd_flags(O_CLOEXEC);

and installs it on sync_file->file:

fd_install(fd, sync_file->file);

The sync_file fd now can be sent to userspace.

If the creation process fail, or the sync_file needs to be released by any other
reason fput(sync_file->file) should be used.

88.3 Receiving Sync Files from Userspace

When userspace needs to send an in-fence to the driver it passes file descriptor of
the Sync File to the kernel. The kernel can then retrieve the fences from it.

Interface:

struct dma_fence *sync_file_get_fence(int fd);

The returned reference is owned by the caller and must be disposed of afterwards
using dma_fence_put(). In case of error, a NULL is returned instead.

References:

1. struct sync_file in include/linux/sync_file.h

2. All interfaces mentioned above defined in include/linux/sync_file.h

2390 Chapter 88. Sync File API Guide

CHAPTER

EIGHTYNINE

VFIO MEDIATED DEVICES

Copyright © 2016, NVIDIA CORPORATION. All rights reserved.

Author Neo Jia <cjia@nvidia.com>
Author Kirti Wankhede <kwankhede@nvidia.com>

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License version 2 as published by the Free Soft-
ware Foundation.

89.1 Virtual Function I/O (VFIO) Mediated devices[1]

The number of use cases for virtualizing DMA devices that do not have built-in
SR_IOV capability is increasing. Previously, to virtualize such devices, develop-
ers had to create their own management interfaces and APIs, and then integrate
them with user space software. To simplify integration with user space software,
we have identified common requirements and a unified management interface for
such devices.

The VFIO driver framework provides unified APIs for direct device access. It is
an IOMMU/device-agnostic framework for exposing direct device access to user
space in a secure, IOMMU-protected environment. This framework is used formul-
tiple devices, such as GPUs, network adapters, and compute accelerators. With
direct device access, virtual machines or user space applications have direct ac-
cess to the physical device. This framework is reused for mediated devices.

The mediated core driver provides a common interface for mediated device man-
agement that can be used by drivers of different devices. This module provides a
generic interface to perform these operations:

• Create and destroy a mediated device

• Add a mediated device to and remove it from a mediated bus driver

• Add a mediated device to and remove it from an IOMMU group

The mediated core driver also provides an interface to register a bus driver. For
example, the mediated VFIO mdev driver is designed for mediated devices and
supports VFIO APIs. The mediated bus driver adds a mediated device to and re-
moves it from a VFIO group.

2391

mailto:cjia@nvidia.com
mailto:kwankhede@nvidia.com

Linux Driver-api Documentation

The following high-level block diagram shows the main components and interfaces
in the VFIO mediated driver framework. The diagram shows NVIDIA, Intel, and
IBM devices as examples, as these devices are the first devices to use this module:

+---------------+
| |
| +-----------+ | mdev_register_driver() +--------------+
| | | +<------------------------+ |
| | mdev | | | |
| | bus | +------------------------>+ vfio_mdev.ko |<-> VFIO user
| | driver | | probe()/remove() | | APIs
| | | | +--------------+
| +-----------+ |
| |
| MDEV CORE |
| MODULE |
| mdev.ko |
| +-----------+ | mdev_register_device() +--------------+
| | | +<------------------------+ |
| | | | | nvidia.ko |<-> physical
| | | +------------------------>+ | device
| | | | callbacks +--------------+
| | Physical | |
| | device | | mdev_register_device() +--------------+
| | interface | |<------------------------+ |
| | | | | i915.ko |<-> physical
| | | +------------------------>+ | device
| | | | callbacks +--------------+
| | | |
| | | | mdev_register_device() +--------------+
| | | +<------------------------+ |
| | | | | ccw_device.ko|<-> physical
| | | +------------------------>+ | device
| | | | callbacks +--------------+
| +-----------+ |
+---------------+

89.2 Registration Interfaces

The mediated core driver provides the following types of registration interfaces:

• Registration interface for a mediated bus driver

• Physical device driver interface

2392 Chapter 89. VFIO Mediated devices

Linux Driver-api Documentation

89.2.1 Registration Interface for a Mediated Bus Driver

The registration interface for a mediated bus driver provides the following struc-
ture to represent a mediated device’s driver:
/*
* struct mdev_driver [2] - Mediated device's driver
* @name: driver name
* @probe: called when new device created
* @remove: called when device removed
* @driver: device driver structure
*/

struct mdev_driver {
const char *name;
int (*probe) (struct device *dev);
void (*remove) (struct device *dev);
struct device_driver driver;

};

A mediated bus driver for mdev should use this structure in the function calls to
register and unregister itself with the core driver:

• Register:

extern int mdev_register_driver(struct mdev_driver *drv,
struct module *owner);

• Unregister:

extern void mdev_unregister_driver(struct mdev_driver *drv);

The mediated bus driver is responsible for adding mediated devices to the VFIO
group when devices are bound to the driver and removing mediated devices from
the VFIO when devices are unbound from the driver.

89.2.2 Physical Device Driver Interface

The physical device driver interface provides the mdev_parent_ops[3] structure to
define the APIs to manage work in the mediated core driver that is related to the
physical device.

The structures in the mdev_parent_ops structure are as follows:

• dev_attr_groups: attributes of the parent device

• mdev_attr_groups: attributes of the mediated device

• supported_config: attributes to define supported configurations

The functions in the mdev_parent_ops structure are as follows:

• create: allocate basic resources in a driver for a mediated device

• remove: free resources in a driver when a mediated device is destroyed

(Note that mdev-core provides no implicit serialization of create/remove callbacks
per mdev parent device, per mdev type, or any other categorization. Vendor

89.2. Registration Interfaces 2393

Linux Driver-api Documentation

drivers are expected to be fully asynchronous in this respect or provide their own
internal resource protection.)

The callbacks in the mdev_parent_ops structure are as follows:

• open: open callback of mediated device

• close: close callback of mediated device

• ioctl: ioctl callback of mediated device

• read : read emulation callback

• write: write emulation callback

• mmap: mmap emulation callback

A driver should use the mdev_parent_ops structure in the function call to register
itself with the mdev core driver:

extern int mdev_register_device(struct device *dev,
const struct mdev_parent_ops *ops);

However, the mdev_parent_ops structure is not required in the function call that
a driver should use to unregister itself with the mdev core driver:

extern void mdev_unregister_device(struct device *dev);

89.3 Mediated Device Management Interface Through
sysfs

The management interface through sysfs enables user space software, such as
libvirt, to query and configure mediated devices in a hardware-agnostic fashion.
This management interface provides flexibility to the underlying physical device’
s driver to support features such as:

• Mediated device hot plug

• Multiple mediated devices in a single virtual machine

• Multiple mediated devices from different physical devices

89.3.1 Links in the mdev_bus Class Directory

The /sys/class/mdev_bus/ directory contains links to devices that are registered
with the mdev core driver.

2394 Chapter 89. VFIO Mediated devices

Linux Driver-api Documentation

89.3.2 Directories and files under the sysfs for Each Physical Device

|- [parent physical device]
|--- Vendor-specific-attributes [optional]
|--- [mdev_supported_types]
| |--- [<type-id>]
| | |--- create
| | |--- name
| | |--- available_instances
| | |--- device_api
| | |--- description
| | |--- [devices]
| |--- [<type-id>]
| | |--- create
| | |--- name
| | |--- available_instances
| | |--- device_api
| | |--- description
| | |--- [devices]
| |--- [<type-id>]
| |--- create
| |--- name
| |--- available_instances
| |--- device_api
| |--- description
| |--- [devices]

• [mdev_supported_types]

The list of currently supported mediated device types and their details.

[<type-id>], device_api, and available_instances are mandatory attributes
that should be provided by vendor driver.

• [<type-id>]

The [<type-id>] name is created by adding the device driver string as a prefix
to the string provided by the vendor driver. This format of this name is as
follows:

sprintf(buf, "%s-%s", dev_driver_string(parent->dev), group->name);

(or using mdev_parent_dev(mdev) to arrive at the parent device outside of
the core mdev code)

• device_api

This attribute should show which device API is being created, for example,
“vfio-pci”for a PCI device.
• available_instances

This attribute should show the number of devices of type <type-id> that can
be created.

• [device]

This directory contains links to the devices of type <type-id> that have been
created.

89.3. Mediated Device Management Interface Through sysfs 2395

Linux Driver-api Documentation

• name

This attribute should show human readable name. This is optional attribute.

• description

This attribute should show brief features/description of the type. This is op-
tional attribute.

89.3.3 Directories and Files Under the sysfs for Each mdev Device

|- [parent phy device]
|--- [$MDEV_UUID]

|--- remove
|--- mdev_type {link to its type}
|--- vendor-specific-attributes [optional]

• remove (write only)

Writing‘1’to the‘remove’file destroys the mdev device. The vendor driver can
fail the remove() callback if that device is active and the vendor driver doesn’t
support hot unplug.

Example:

echo 1 > /sys/bus/mdev/devices/$mdev_UUID/remove

89.3.4 Mediated device Hot plug

Mediated devices can be created and assigned at runtime. The procedure to hot
plug a mediated device is the same as the procedure to hot plug a PCI device.

89.4 Translation APIs for Mediated Devices

The following APIs are provided for translating user pfn to host pfn in a VFIO
driver:

extern int vfio_pin_pages(struct device *dev, unsigned long *user_pfn,
int npage, int prot, unsigned long *phys_pfn);

extern int vfio_unpin_pages(struct device *dev, unsigned long *user_pfn,
int npage);

These functions call back into the back-end IOMMUmodule by using the pin_pages
and unpin_pages callbacks of the struct vfio_iommu_driver_ops[4]. Currently
these callbacks are supported in the TYPE1 IOMMU module. To enable them for
other IOMMU backend modules, such as PPC64 sPAPR module, they need to pro-
vide these two callback functions.

2396 Chapter 89. VFIO Mediated devices

Linux Driver-api Documentation

89.5 Using the Sample Code

mtty.c in samples/vfio-mdev/ directory is a sample driver program to demonstrate
how to use the mediated device framework.

The sample driver creates an mdev device that simulates a serial port over a PCI
card.

1. Build and load the mtty.ko module.

This step creates a dummy device, /sys/devices/virtual/mtty/mtty/

Files in this device directory in sysfs are similar to the following:

tree /sys/devices/virtual/mtty/mtty/
/sys/devices/virtual/mtty/mtty/
|-- mdev_supported_types
| |-- mtty-1
| | |-- available_instances
| | |-- create
| | |-- device_api
| | |-- devices
| | `-- name
| `-- mtty-2
| |-- available_instances
| |-- create
| |-- device_api
| |-- devices
| `-- name
|-- mtty_dev
| `-- sample_mtty_dev
|-- power
| |-- autosuspend_delay_ms
| |-- control
| |-- runtime_active_time
| |-- runtime_status
| `-- runtime_suspended_time
|-- subsystem -> ../../../../class/mtty
`-- uevent

2. Create a mediated device by using the dummy device that you created in the
previous step:

echo "83b8f4f2-509f-382f-3c1e-e6bfe0fa1001" > \
/sys/devices/virtual/mtty/mtty/mdev_supported_types/mtty-2/

↪→create

3. Add parameters to qemu-kvm:

-device vfio-pci,\
sysfsdev=/sys/bus/mdev/devices/83b8f4f2-509f-382f-3c1e-e6bfe0fa1001

4. Boot the VM.

In the Linux guest VM, with no hardware on the host, the device appears as
follows:

89.5. Using the Sample Code 2397

Linux Driver-api Documentation

lspci -s 00:05.0 -xxvv
00:05.0 Serial controller: Device 4348:3253 (rev 10) (prog-if 02␣
↪→[16550])

Subsystem: Device 4348:3253
Physical Slot: 5
Control: I/O+ Mem- BusMaster- SpecCycle- MemWINV- VGASnoop-␣

↪→ParErr-
Stepping- SERR- FastB2B- DisINTx-

Status: Cap- 66MHz- UDF- FastB2B- ParErr- DEVSEL=medium >
↪→TAbort-
<TAbort- <MAbort- >SERR- <PERR- INTx-

Interrupt: pin A routed to IRQ 10
Region 0: I/O ports at c150 [size=8]
Region 1: I/O ports at c158 [size=8]
Kernel driver in use: serial

00: 48 43 53 32 01 00 00 02 10 02 00 07 00 00 00 00
10: 51 c1 00 00 59 c1 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 48 43 53 32
30: 00 00 00 00 00 00 00 00 00 00 00 00 0a 01 00 00

In the Linux guest VM, dmesg output for the device is as follows:

serial 0000:00:05.0: PCI INT A -> Link[LNKA] -> GSI 10 (level, high) -
↪→> IRQ 10
0000:00:05.0: ttyS1 at I/O 0xc150 (irq = 10) is a 16550A
0000:00:05.0: ttyS2 at I/O 0xc158 (irq = 10) is a 16550A

5. In the Linux guest VM, check the serial ports:

setserial -g /dev/ttyS*
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4
/dev/ttyS1, UART: 16550A, Port: 0xc150, IRQ: 10
/dev/ttyS2, UART: 16550A, Port: 0xc158, IRQ: 10

6. Using minicom or any terminal emulation program, open port /dev/ttyS1 or
/dev/ttyS2 with hardware flow control disabled.

7. Type data on the minicom terminal or send data to the terminal emulation
program and read the data.

Data is loop backed from hosts mtty driver.

8. Destroy the mediated device that you created:

echo 1 > /sys/bus/mdev/devices/83b8f4f2-509f-382f-3c1e-e6bfe0fa1001/
↪→remove

2398 Chapter 89. VFIO Mediated devices

Linux Driver-api Documentation

89.6 References

1. See Documentation/driver-api/vfio.rst for more information on VFIO.

2. struct mdev_driver in include/linux/mdev.h

3. struct mdev_parent_ops in include/linux/mdev.h

4. struct vfio_iommu_driver_ops in include/linux/vfio.h

89.6. References 2399

Linux Driver-api Documentation

2400 Chapter 89. VFIO Mediated devices

CHAPTER

NINETY

VFIO - “VIRTUAL FUNCTION I/O”1

Many modern system now provide DMA and interrupt remapping facilities to help
ensure I/O devices behave within the boundaries they’ve been allotted. This in-
cludes x86 hardware with AMD-Vi and Intel VT-d, POWER systems with Partition-
able Endpoints (PEs) and embedded PowerPC systems such as Freescale PAMU.
The VFIO driver is an IOMMU/device agnostic framework for exposing direct de-
vice access to userspace, in a secure, IOMMU protected environment. In other
words, this allows safe2, non-privileged, userspace drivers.

Why do we want that? Virtual machines often make use of direct device access (
“device assignment”) when configured for the highest possible I/O performance.
From a device and host perspective, this simply turns the VM into a userspace
driver, with the benefits of significantly reduced latency, higher bandwidth, and
direct use of bare-metal device drivers3.

Some applications, particularly in the high performance computing field, also ben-
efit from low-overhead, direct device access from userspace. Examples include
network adapters (often non-TCP/IP based) and compute accelerators. Prior to
VFIO, these drivers had to either go through the full development cycle to become
proper upstream driver, be maintained out of tree, or make use of the UIO frame-
work, which has no notion of IOMMU protection, limited interrupt support, and
requires root privileges to access things like PCI configuration space.

The VFIO driver framework intends to unify these, replacing both the KVM PCI
specific device assignment code as well as provide a more secure, more featureful
userspace driver environment than UIO.

1 VFIO was originally an acronym for“Virtual Function I/O”in its initial implementation by Tom
Lyon while as Cisco. We’ve since outgrown the acronym, but it’s catchy.

2 “safe”also depends upon a device being “well behaved”. It’s possible for multi-function
devices to have backdoors between functions and even for single function devices to have alternative
access to things like PCI config space through MMIO registers. To guard against the former we can
include additional precautions in the IOMMU driver to group multi-function PCI devices together
(iommu=group_mf). The latter we can’t prevent, but the IOMMU should still provide isolation. For
PCI, SR-IOV Virtual Functions are the best indicator of “well behaved”, as these are designed for
virtualization usage models.

3 As always there are trade-offs to virtual machine device assignment that are beyond the scope
of VFIO. It’s expected that future IOMMU technologies will reduce some, but maybe not all, of these
trade-offs.

2401

Linux Driver-api Documentation

90.1 Groups, Devices, and IOMMUs

Devices are the main target of any I/O driver. Devices typically create a program-
ming interface made up of I/O access, interrupts, and DMA. Without going into
the details of each of these, DMA is by far the most critical aspect for maintaining
a secure environment as allowing a device read-write access to system memory
imposes the greatest risk to the overall system integrity.

To help mitigate this risk, many modern IOMMUs now incorporate isolation prop-
erties into what was, in many cases, an interface only meant for translation (ie.
solving the addressing problems of devices with limited address spaces). With
this, devices can now be isolated from each other and from arbitrary memory ac-
cess, thus allowing things like secure direct assignment of devices into virtual
machines.

This isolation is not always at the granularity of a single device though. Even when
an IOMMU is capable of this, properties of devices, interconnects, and IOMMU
topologies can each reduce this isolation. For instance, an individual device may
be part of a larger multi- function enclosure. While the IOMMU may be able to
distinguish between devices within the enclosure, the enclosure may not require
transactions between devices to reach the IOMMU. Examples of this could be any-
thing from a multi-function PCI device with backdoors between functions to a non-
PCI-ACS (Access Control Services) capable bridge allowing redirection without
reaching the IOMMU. Topology can also play a factor in terms of hiding devices.
A PCIe-to-PCI bridge masks the devices behind it, making transaction appear as if
from the bridge itself. Obviously IOMMU design plays a major factor as well.

Therefore, while for the most part an IOMMU may have device level granularity,
any system is susceptible to reduced granularity. The IOMMU API therefore sup-
ports a notion of IOMMU groups. A group is a set of devices which is isolatable
from all other devices in the system. Groups are therefore the unit of ownership
used by VFIO.

While the group is the minimum granularity that must be used to ensure secure
user access, it’s not necessarily the preferred granularity. In IOMMUswhich make
use of page tables, it may be possible to share a set of page tables between differ-
ent groups, reducing the overhead both to the platform (reduced TLB thrashing,
reduced duplicate page tables), and to the user (programming only a single set of
translations). For this reason, VFIOmakes use of a container class, whichmay hold
one or more groups. A container is created by simply opening the /dev/vfio/vfio
character device.

On its own, the container provides little functionality, with all but a couple version
and extension query interfaces locked away. The user needs to add a group into
the container for the next level of functionality. To do this, the user first needs to
identify the group associated with the desired device. This can be done using the
sysfs links described in the example below. By unbinding the device from the host
driver and binding it to a VFIO driver, a new VFIO group will appear for the group
as /dev/vfio/$GROUP, where $GROUP is the IOMMU group number of which the
device is a member. If the IOMMU group contains multiple devices, each will need
to be bound to a VFIO driver before operations on the VFIO group are allowed (it’
s also sufficient to only unbind the device from host drivers if a VFIO driver is
unavailable; this will make the group available, but not that particular device).

2402 Chapter 90. VFIO - “Virtual Function I/O”1

Linux Driver-api Documentation

TBD - interface for disabling driver probing/locking a device.

Once the group is ready, it may be added to the container by open-
ing the VFIO group character device (/dev/vfio/$GROUP) and using the
VFIO_GROUP_SET_CONTAINER ioctl, passing the file descriptor of the previously
opened container file. If desired and if the IOMMU driver supports sharing the
IOMMU context between groups, multiple groups may be set to the same con-
tainer. If a group fails to set to a container with existing groups, a new empty
container will need to be used instead.

With a group (or groups) attached to a container, the remaining ioctls become
available, enabling access to the VFIO IOMMU interfaces. Additionally, it now
becomes possible to get file descriptors for each device within a group using an
ioctl on the VFIO group file descriptor.

The VFIO device API includes ioctls for describing the device, the I/O regions and
their read/write/mmap offsets on the device descriptor, as well as mechanisms for
describing and registering interrupt notifications.

90.2 VFIO Usage Example

Assume user wants to access PCI device 0000:06:0d.0:

$ readlink /sys/bus/pci/devices/0000:06:0d.0/iommu_group
../../../../kernel/iommu_groups/26

This device is therefore in IOMMU group 26. This device is on the pci bus, there-
fore the user will make use of vfio-pci to manage the group:

modprobe vfio-pci

Binding this device to the vfio-pci driver creates the VFIO group character devices
for this group:

$ lspci -n -s 0000:06:0d.0
06:0d.0 0401: 1102:0002 (rev 08)
echo 0000:06:0d.0 > /sys/bus/pci/devices/0000:06:0d.0/driver/unbind
echo 1102 0002 > /sys/bus/pci/drivers/vfio-pci/new_id

Now we need to look at what other devices are in the group to free it for use by
VFIO:

$ ls -l /sys/bus/pci/devices/0000:06:0d.0/iommu_group/devices
total 0
lrwxrwxrwx. 1 root root 0 Apr 23 16:13 0000:00:1e.0 ->

../../../../devices/pci0000:00/0000:00:1e.0
lrwxrwxrwx. 1 root root 0 Apr 23 16:13 0000:06:0d.0 ->

../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.0
lrwxrwxrwx. 1 root root 0 Apr 23 16:13 0000:06:0d.1 ->

../../../../devices/pci0000:00/0000:00:1e.0/0000:06:0d.1

This device is behind a PCIe-to-PCI bridge4, therefore we also need to add de-
4 In this case the device is below a PCI bridge, so transactions from either function of the device

are indistinguishable to the iommu:

90.2. VFIO Usage Example 2403

Linux Driver-api Documentation

vice 0000:06:0d.1 to the group following the same procedure as above. Device
0000:00:1e.0 is a bridge that does not currently have a host driver, therefore it’s
not required to bind this device to the vfio-pci driver (vfio-pci does not currently
support PCI bridges).

The final step is to provide the user with access to the group if unprivileged oper-
ation is desired (note that /dev/vfio/vfio provides no capabilities on its own and is
therefore expected to be set to mode 0666 by the system):

chown user:user /dev/vfio/26

The user now has full access to all the devices and the iommu for this group and
can access them as follows:

int container, group, device, i;
struct vfio_group_status group_status =

{ .argsz = sizeof(group_status) };
struct vfio_iommu_type1_info iommu_info = { .argsz = sizeof(iommu_info) };
struct vfio_iommu_type1_dma_map dma_map = { .argsz = sizeof(dma_map) };
struct vfio_device_info device_info = { .argsz = sizeof(device_info) };

/* Create a new container */
container = open("/dev/vfio/vfio", O_RDWR);

if (ioctl(container, VFIO_GET_API_VERSION) != VFIO_API_VERSION)
/* Unknown API version */

if (!ioctl(container, VFIO_CHECK_EXTENSION, VFIO_TYPE1_IOMMU))
/* Doesn't support the IOMMU driver we want. */

/* Open the group */
group = open("/dev/vfio/26", O_RDWR);

/* Test the group is viable and available */
ioctl(group, VFIO_GROUP_GET_STATUS, &group_status);

if (!(group_status.flags & VFIO_GROUP_FLAGS_VIABLE))
/* Group is not viable (ie, not all devices bound for vfio) */

/* Add the group to the container */
ioctl(group, VFIO_GROUP_SET_CONTAINER, &container);

/* Enable the IOMMU model we want */
ioctl(container, VFIO_SET_IOMMU, VFIO_TYPE1_IOMMU);

/* Get addition IOMMU info */
ioctl(container, VFIO_IOMMU_GET_INFO, &iommu_info);

/* Allocate some space and setup a DMA mapping */
dma_map.vaddr = mmap(0, 1024 * 1024, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
(continues on next page)

-[0000:00]-+-1e.0-[06]--+-0d.0
\-0d.1

00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 90)

2404 Chapter 90. VFIO - “Virtual Function I/O”1

Linux Driver-api Documentation

(continued from previous page)
dma_map.size = 1024 * 1024;
dma_map.iova = 0; /* 1MB starting at 0x0 from device view */
dma_map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;

ioctl(container, VFIO_IOMMU_MAP_DMA, &dma_map);

/* Get a file descriptor for the device */
device = ioctl(group, VFIO_GROUP_GET_DEVICE_FD, "0000:06:0d.0");

/* Test and setup the device */
ioctl(device, VFIO_DEVICE_GET_INFO, &device_info);

for (i = 0; i < device_info.num_regions; i++) {
struct vfio_region_info reg = { .argsz = sizeof(reg) };

reg.index = i;

ioctl(device, VFIO_DEVICE_GET_REGION_INFO, ®);

/* Setup mappings... read/write offsets, mmaps
* For PCI devices, config space is a region */

}

for (i = 0; i < device_info.num_irqs; i++) {
struct vfio_irq_info irq = { .argsz = sizeof(irq) };

irq.index = i;

ioctl(device, VFIO_DEVICE_GET_IRQ_INFO, &irq);

/* Setup IRQs... eventfds, VFIO_DEVICE_SET_IRQS */
}

/* Gratuitous device reset and go... */
ioctl(device, VFIO_DEVICE_RESET);

90.3 VFIO User API

Please see include/linux/vfio.h for complete API documentation.

90.4 VFIO bus driver API

VFIO bus drivers, such as vfio-pci make use of only a few interfaces into VFIO
core. When devices are bound and unbound to the driver, the driver should call
vfio_add_group_dev() and vfio_del_group_dev() respectively:

extern int vfio_add_group_dev(struct device *dev,
const struct vfio_device_ops *ops,
void *device_data);

extern void *vfio_del_group_dev(struct device *dev);

90.3. VFIO User API 2405

Linux Driver-api Documentation

vfio_add_group_dev() indicates to the core to begin tracking the iommu_group of
the specified dev and register the dev as owned by a VFIO bus driver. The driver
provides an ops structure for callbacks similar to a file operations structure:

struct vfio_device_ops {
int (*open)(void *device_data);
void (*release)(void *device_data);
ssize_t (*read)(void *device_data, char __user *buf,

size_t count, loff_t *ppos);
ssize_t (*write)(void *device_data, const char __user *buf,

size_t size, loff_t *ppos);
long (*ioctl)(void *device_data, unsigned int cmd,

unsigned long arg);
int (*mmap)(void *device_data, struct vm_area_struct *vma);

};

Each function is passed the device_data that was originally registered in the
vfio_add_group_dev() call above. This allows the bus driver an easy place to
store its opaque, private data. The open/release callbacks are issued when a
new file descriptor is created for a device (via VFIO_GROUP_GET_DEVICE_FD).
The ioctl interface provides a direct pass through for VFIO_DEVICE_* ioctls. The
read/write/mmap interfaces implement the device region access defined by the
device’s own VFIO_DEVICE_GET_REGION_INFO ioctl.

90.5 PPC64 sPAPR implementation note

This implementation has some specifics:

1) On older systems (POWER7 with P5IOC2/IODA1) only one IOMMU group per
container is supported as an IOMMU table is allocated at the boot time, one
table per a IOMMU group which is a Partitionable Endpoint (PE) (PE is often
a PCI domain but not always).

Newer systems (POWER8with IODA2) have improved hardware design which
allows to remove this limitation and have multiple IOMMU groups per a VFIO
container.

2) The hardware supports so called DMAwindows - the PCI address rangewithin
which DMA transfer is allowed, any attempt to access address space out of
the window leads to the whole PE isolation.

3) PPC64 guests are paravirtualized but not fully emulated. There is an API to
map/unmap pages for DMA, and it normally maps 1..32 pages per call and cur-
rently there is no way to reduce the number of calls. In order to make things
faster, the map/unmap handling has been implemented in real mode which
provides an excellent performance which has limitations such as inability to
do locked pages accounting in real time.

4) According to sPAPR specification, A Partitionable Endpoint (PE) is an I/O sub-
tree that can be treated as a unit for the purposes of partitioning and error
recovery. A PE may be a single or multi-function IOA (IO Adapter), a func-
tion of a multi-function IOA, or multiple IOAs (possibly including switch and
bridge structures above the multiple IOAs). PPC64 guests detect PCI errors

2406 Chapter 90. VFIO - “Virtual Function I/O”1

Linux Driver-api Documentation

and recover from them via EEH RTAS services, which works on the basis of
additional ioctl commands.

So 4 additional ioctls have been added:

VFIO_IOMMU_SPAPR_TCE_GET_INFO returns the size and the
start of the DMA window on the PCI bus.

VFIO_IOMMU_ENABLE enables the container. The locked pages
accounting is done at this point. This lets user first to know what
the DMA window is and adjust rlimit before doing any real job.

VFIO_IOMMU_DISABLE disables the container.

VFIO_EEH_PE_OP provides an API for EEH setup, error detection
and recovery.

The code flow from the example above should be slightly changed:

struct vfio_eeh_pe_op pe_op = { .argsz = sizeof(pe_op), .flags = 0 };

.....
/* Add the group to the container */
ioctl(group, VFIO_GROUP_SET_CONTAINER, &container);

/* Enable the IOMMU model we want */
ioctl(container, VFIO_SET_IOMMU, VFIO_SPAPR_TCE_IOMMU)

/* Get addition sPAPR IOMMU info */
vfio_iommu_spapr_tce_info spapr_iommu_info;
ioctl(container, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &spapr_iommu_info);

if (ioctl(container, VFIO_IOMMU_ENABLE))
/* Cannot enable container, may be low rlimit */

/* Allocate some space and setup a DMA mapping */
dma_map.vaddr = mmap(0, 1024 * 1024, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);

dma_map.size = 1024 * 1024;
dma_map.iova = 0; /* 1MB starting at 0x0 from device view */
dma_map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;

/* Check here is .iova/.size are within DMA window from spapr_iommu_
↪→info */
ioctl(container, VFIO_IOMMU_MAP_DMA, &dma_map);

/* Get a file descriptor for the device */
device = ioctl(group, VFIO_GROUP_GET_DEVICE_FD, "0000:06:0d.0");

....

/* Gratuitous device reset and go... */
ioctl(device, VFIO_DEVICE_RESET);

/* Make sure EEH is supported */
ioctl(container, VFIO_CHECK_EXTENSION, VFIO_EEH);

(continues on next page)

90.5. PPC64 sPAPR implementation note 2407

Linux Driver-api Documentation

(continued from previous page)
/* Enable the EEH functionality on the device */
pe_op.op = VFIO_EEH_PE_ENABLE;
ioctl(container, VFIO_EEH_PE_OP, &pe_op);

/* You're suggested to create additional data struct to represent
* PE, and put child devices belonging to same IOMMU group to the
* PE instance for later reference.
*/

/* Check the PE's state and make sure it's in functional state */
pe_op.op = VFIO_EEH_PE_GET_STATE;
ioctl(container, VFIO_EEH_PE_OP, &pe_op);

/* Save device state using pci_save_state().
* EEH should be enabled on the specified device.
*/

....

/* Inject EEH error, which is expected to be caused by 32-bits
* config load.
*/

pe_op.op = VFIO_EEH_PE_INJECT_ERR;
pe_op.err.type = EEH_ERR_TYPE_32;
pe_op.err.func = EEH_ERR_FUNC_LD_CFG_ADDR;
pe_op.err.addr = 0ul;
pe_op.err.mask = 0ul;
ioctl(container, VFIO_EEH_PE_OP, &pe_op);

....

/* When 0xFF's returned from reading PCI config space or IO BARs
* of the PCI device. Check the PE's state to see if that has been
* frozen.
*/

ioctl(container, VFIO_EEH_PE_OP, &pe_op);

/* Waiting for pending PCI transactions to be completed and don't
* produce any more PCI traffic from/to the affected PE until
* recovery is finished.
*/

/* Enable IO for the affected PE and collect logs. Usually, the
* standard part of PCI config space, AER registers are dumped
* as logs for further analysis.
*/

pe_op.op = VFIO_EEH_PE_UNFREEZE_IO;
ioctl(container, VFIO_EEH_PE_OP, &pe_op);

/*
* Issue PE reset: hot or fundamental reset. Usually, hot reset
* is enough. However, the firmware of some PCI adapters would
* require fundamental reset.
*/

pe_op.op = VFIO_EEH_PE_RESET_HOT;
ioctl(container, VFIO_EEH_PE_OP, &pe_op);

(continues on next page)

2408 Chapter 90. VFIO - “Virtual Function I/O”1

Linux Driver-api Documentation

(continued from previous page)
pe_op.op = VFIO_EEH_PE_RESET_DEACTIVATE;
ioctl(container, VFIO_EEH_PE_OP, &pe_op);

/* Configure the PCI bridges for the affected PE */
pe_op.op = VFIO_EEH_PE_CONFIGURE;
ioctl(container, VFIO_EEH_PE_OP, &pe_op);

/* Restored state we saved at initialization time. pci_restore_state()
* is good enough as an example.
*/

/* Hopefully, error is recovered successfully. Now, you can resume to
* start PCI traffic to/from the affected PE.
*/

....

5) There is v2 of SPAPR TCE IOMMU. It deprecates
VFIO_IOMMU_ENABLE/ VFIO_IOMMU_DISABLE and implements
2 new ioctls: VFIO_IOMMU_SPAPR_REGISTER_MEMORY and
VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY (which are unsupported
in v1 IOMMU).

PPC64 paravirtualized guests generate a lot of map/unmap requests, and
the handling of those includes pinning/unpinning pages and updating
mm::locked_vm counter to make sure we do not exceed the rlimit. The v2
IOMMU splits accounting and pinning into separate operations:

• VFIO_IOMMU_SPAPR_REGISTER_MEMORY/VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY
ioctls receive a user space address and size of the block to be pinned.
Bisecting is not supported and VFIO_IOMMU_UNREGISTER_MEMORY
is expected to be called with the exact address and size used for regis-
tering the memory block. The userspace is not expected to call these
often. The ranges are stored in a linked list in a VFIO container.

• VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA ioctls only up-
date the actual IOMMU table and do not do pinning; instead these check
that the userspace address is from pre-registered range.

This separation helps in optimizing DMA for guests.

6) sPAPR specification allows guests to have an additional DMA win-
dow(s) on a PCI bus with a variable page size. Two ioctls have
been added to support this: VFIO_IOMMU_SPAPR_TCE_CREATE and
VFIO_IOMMU_SPAPR_TCE_REMOVE. The platform has to support the func-
tionality or error will be returned to the userspace. The existing hardware
supports up to 2 DMA windows, one is 2GB long, uses 4K pages and called
“default 32bit window”; the other can be as big as entire RAM, use different
page size, it is optional - guests create those in run-time if the guest driver
supports 64bit DMA.

VFIO_IOMMU_SPAPR_TCE_CREATE receives a page shift, a DMA window
size and a number of TCE table levels (if a TCE table is going to be big enough
and the kernel may not be able to allocate enough of physically contiguous
memory). It creates a new window in the available slot and returns the bus

90.5. PPC64 sPAPR implementation note 2409

Linux Driver-api Documentation

address where the new window starts. Due to hardware limitation, the user
space cannot choose the location of DMA windows.

VFIO_IOMMU_SPAPR_TCE_REMOVE receives the bus start address of the
window and removes it.

2410 Chapter 90. VFIO - “Virtual Function I/O”1

CHAPTER

NINETYONE

XILINX FPGA

91.1 Xilinx Zynq MPSoC EEMI Documentation

91.1.1 Xilinx Zynq MPSoC Firmware Interface

The zynqmp-firmware node describes the interface to platform firmware. ZynqMP
has an interface to communicate with secure firmware. Firmware driver provides
an interface to firmware APIs. Interface APIs can be used by any driver to com-
municate with PMC(Platform Management Controller).

91.1.2 Embedded Energy Management Interface (EEMI)

The embedded energy management interface is used to allow software compo-
nents running across different processing clusters on a chip or device to commu-
nicate with a power management controller (PMC) on a device to issue or respond
to power management requests.

EEMI ops is a structure containing all eemi APIs supported by Zynq MPSoC. The
zynqmp-firmware driver maintain all EEMI APIs in zynqmp_eemi_ops structure.
Any driver who want to communicate with PMC using EEMI APIs can call zyn-
qmp_pm_get_eemi_ops().

Example of EEMI ops:

/* zynqmp-firmware driver maintain all EEMI APIs */
struct zynqmp_eemi_ops {

int (*get_api_version)(u32 *version);
int (*query_data)(struct zynqmp_pm_query_data qdata, u32 *out);

};

static const struct zynqmp_eemi_ops eemi_ops = {
.get_api_version = zynqmp_pm_get_api_version,
.query_data = zynqmp_pm_query_data,

};

Example of EEMI ops usage:

static const struct zynqmp_eemi_ops *eemi_ops;
u32 ret_payload[PAYLOAD_ARG_CNT];
int ret;

(continues on next page)

2411

Linux Driver-api Documentation

(continued from previous page)
eemi_ops = zynqmp_pm_get_eemi_ops();
if (IS_ERR(eemi_ops))

return PTR_ERR(eemi_ops);

ret = eemi_ops->query_data(qdata, ret_payload);

91.1.3 IOCTL

IOCTL API is for device control and configuration. It is not a system IOCTL but
it is an EEMI API. This API can be used by master to control any device specific
configuration. IOCTL definitions can be platform specific. This API also manage
shared device configuration.

The following IOCTL IDs are valid for device control: -
IOCTL_SET_PLL_FRAC_MODE 8 - IOCTL_GET_PLL_FRAC_MODE 9 -
IOCTL_SET_PLL_FRAC_DATA 10 - IOCTL_GET_PLL_FRAC_DATA 11

Refer EEMI API guide [0] for IOCTL specific parameters and other EEMI APIs.

91.1.4 References

[0] Embedded Energy Management Interface (EEMI) API guide: https:
//www.xilinx.com/support/documentation/user_guides/ug1200-eemi-api.pdf

2412 Chapter 91. Xilinx FPGA

https://www.xilinx.com/support/documentation/user_guides/ug1200-eemi-api.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1200-eemi-api.pdf

CHAPTER

NINETYTWO

XILLYBUS DRIVER FOR GENERIC FPGA INTERFACE

Author Eli Billauer, Xillybus Ltd. (http://xillybus.com)
Email eli.billauer@gmail.com or as advertised on Xillybus’site.

92.1 Introduction

92.1.1 Background

An FPGA (Field Programmable Gate Array) is a piece of logic hardware, which
can be programmed to become virtually anything that is usually found as a ded-
icated chipset: For instance, a display adapter, network interface card, or even
a processor with its peripherals. FPGAs are the LEGO of hardware: Based upon
certain building blocks, you make your own toys the way you like them. It’s usu-
ally pointless to reimplement something that is already available on the market as
a chipset, so FPGAs are mostly used when some special functionality is needed,
and the production volume is relatively low (hence not justifying the development
of an ASIC).

The challenge with FPGAs is that everything is implemented at a very low level,
even lower than assembly language. In order to allow FPGA designers to focus on
their specific project, and not reinvent the wheel over and over again, pre-designed
building blocks, IP cores, are often used. These are the FPGA parallels of library
functions. IP cores may implement certain mathematical functions, a functional
unit (e.g. a USB interface), an entire processor (e.g. ARM) or anything that might
come handy. Think of them as a building block, with electrical wires dangling on
the sides for connection to other blocks.

One of the daunting tasks in FPGA design is communicating with a fullblown oper-
ating system (actually, with the processor running it): Implementing the low-level
bus protocol and the somewhat higher-level interface with the host (registers, in-
terrupts, DMA etc.) is a project in itself. When the FPGA’s function is a well-known
one (e.g. a video adapter card, or a NIC), it can make sense to design the FPGA’
s interface logic specifically for the project. A special driver is then written to
present the FPGA as a well-known interface to the kernel and/or user space. In
that case, there is no reason to treat the FPGA differently than any device on the
bus.

It’s however common that the desired data communication doesn’t fit any well-
known peripheral function. Also, the effort of designing an elegant abstraction
for the data exchange is often considered too big. In those cases, a quicker and

2413

http://xillybus.com
mailto:eli.billauer@gmail.com

Linux Driver-api Documentation

possibly less elegant solution is sought: The driver is effectively written as a user
space program, leaving the kernel space part with just elementary data transport.
This still requires designing some interface logic for the FPGA, and write a simple
ad-hoc driver for the kernel.

92.1.2 Xillybus Overview

Xillybus is an IP core and a Linux driver. Together, they form a kit for elementary
data transport between an FPGA and the host, providing pipe-like data streams
with a straightforward user interface. It’s intended as a low- effort solution for
mixed FPGA-host projects, for which it makes sense to have the project-specific
part of the driver running in a user-space program.

Since the communication requirements may vary significantly from one FPGA
project to another (the number of data pipes needed in each direction and their at-
tributes), there isn’t one specific chunk of logic being the Xillybus IP core. Rather,
the IP core is configured and built based upon a specification given by its end user.

Xillybus presents independent data streams, which resemble pipes or TCP/IP com-
munication to the user. At the host side, a character device file is used just like any
pipe file. On the FPGA side, hardware FIFOs are used to stream the data. This
is contrary to a common method of communicating through fixed- sized buffers
(even though such buffers are used by Xillybus under the hood). There may be
more than a hundred of these streams on a single IP core, but also no more than
one, depending on the configuration.

In order to ease the deployment of the Xillybus IP core, it contains a simple data
structure which completely defines the core’s configuration. The Linux driver
fetches this data structure during its initialization process, and sets up the DMA
buffers and character devices accordingly. As a result, a single driver is used to
work out of the box with any Xillybus IP core.

The data structure just mentioned should not be confused with PCI’s configuration
space or the Flattened Device Tree.

92.2 Usage

92.2.1 User interface

On the host, all interface with Xillybus is done through /dev/xillybus_* device files,
which are generated automatically as the drivers loads. The names of these files
depend on the IP core that is loaded in the FPGA (see Probing below). To commu-
nicate with the FPGA, open the device file that corresponds to the hardware FIFO
you want to send data or receive data from, and use plain write() or read() calls,
just like with a regular pipe. In particular, it makes perfect sense to go:

$ cat mydata > /dev/xillybus_thisfifo

$ cat /dev/xillybus_thatfifo > hisdata

possibly pressing CTRL-C as some stage, even though the xillybus_* pipes have
the capability to send an EOF (but may not use it).

2414 Chapter 92. Xillybus driver for generic FPGA interface

Linux Driver-api Documentation

The driver and hardware are designed to behave sensibly as pipes, including:

• Supporting non-blocking I/O (by setting O_NONBLOCK on open()).

• Supporting poll() and select().

• Being bandwidth efficient under load (using DMA) but also handle small
pieces of data sent across (like TCP/IP) by autoflushing.

A device file can be read only, write only or bidirectional. Bidirectional device files
are treated like two independent pipes (except for sharing a“channel”structure
in the implementation code).

92.2.2 Synchronization

Xillybus pipes are configured (on the IP core) to be either synchronous or asyn-
chronous. For a synchronous pipe, write() returns successfully only after some
data has been submitted and acknowledged by the FPGA. This slows down bulk
data transfers, and is nearly impossible for use with streams that require data at
a constant rate: There is no data transmitted to the FPGA between write() calls,
in particular when the process loses the CPU.

When a pipe is configured asynchronous, write() returns if there was enough room
in the buffers to store any of the data in the buffers.

For FPGA to host pipes, asynchronous pipes allow data transfer from the FPGA as
soon as the respective device file is opened, regardless of if the data has been re-
quested by a read() call. On synchronous pipes, only the amount of data requested
by a read() call is transmitted.

In summary, for synchronous pipes, data between the host and FPGA is transmitted
only to satisfy the read() or write() call currently handled by the driver, and those
calls wait for the transmission to complete before returning.

Note that the synchronization attribute has nothing to do with the possibility that
read() or write() completes less bytes than requested. There is a separate config-
uration flag (“allowpartial”) that determines whether such a partial completion
is allowed.

92.2.3 Seekable pipes

A synchronous pipe can be configured to have the stream’s position exposed to
the user logic at the FPGA. Such a pipe is also seekable on the host API. With this
feature, a memory or register interface can be attached on the FPGA side to the
seekable stream. Reading or writing to a certain address in the attached memory
is done by seeking to the desired address, and calling read() or write() as required.

92.2. Usage 2415

Linux Driver-api Documentation

92.3 Internals

92.3.1 Source code organization

The Xillybus driver consists of a core module, xillybus_core.c, and modules that
depend on the specific bus interface (xillybus_of.c and xillybus_pcie.c).

The bus specific modules are those probed when a suitable device is found by
the kernel. Since the DMA mapping and synchronization functions, which are bus
dependent by their nature, are used by the coremodule, a xilly_endpoint_hardware
structure is passed to the core module on initialization. This structure is populated
with pointers to wrapper functions which execute the DMA-related operations on
the bus.

92.3.2 Pipe attributes

Each pipe has a number of attributes which are set when the FPGA component (IP
core) is built. They are fetched from the IDT (the data structure which defines the
core’s configuration, see Probing below) by xilly_setupchannels() in xillybus_core.c
as follows:

• is_writebuf: The pipe’s direction. A non-zero value means it’s an FPGA to
host pipe (the FPGA “writes”).

• channelnum: The pipe’s identification number in communication between
the host and FPGA.

• format: The underlying data width. See Data Granularity below.

• allowpartial: A non-zero value means that a read() or write() (whichever ap-
plies) may return with less than the requested number of bytes. The common
choice is a non-zero value, to match standard UNIX behavior.

• synchronous: A non-zero value means that the pipe is synchronous. See Syn-
chronization above.

• bufsize: Each DMA buffer’s size. Always a power of two.
• bufnum: The number of buffers allocated for this pipe. Always a power of
two.

• exclusive_open: A non-zero value forces exclusive opening of the associated
device file. If the device file is bidirectional, and already opened only in one
direction, the opposite direction may be opened once.

• seekable: A non-zero value indicates that the pipe is seekable. See Seekable
pipes above.

• supports_nonempty: A non-zero value (which is typical) indicates that the
hardware will send the messages that are necessary to support select() and
poll() for this pipe.

2416 Chapter 92. Xillybus driver for generic FPGA interface

Linux Driver-api Documentation

92.3.3 Host never reads from the FPGA

Even though PCI Express is hotpluggable in general, a typical motherboard doesn’
t expect a card to go away all of the sudden. But since the PCIe card is based
upon reprogrammable logic, a sudden disappearance from the bus is quite likely
as a result of an accidental reprogramming of the FPGA while the host is up. In
practice, nothing happens immediately in such a situation. But if the host attempts
to read from an address that is mapped to the PCI Express device, that leads to
an immediate freeze of the system on some motherboards, even though the PCIe
standard requires a graceful recovery.

In order to avoid these freezes, the Xillybus driver refrains completely from read-
ing from the device’s register space. All communication from the FPGA to the host
is done through DMA. In particular, the Interrupt Service Routine doesn’t follow
the common practice of checking a status register when it’s invoked. Rather, the
FPGA prepares a small buffer which contains short messages, which inform the
host what the interrupt was about.

This mechanism is used on non-PCIe buses as well for the sake of uniformity.

92.3.4 Channels, pipes, and the message channel

Each of the (possibly bidirectional) pipes presented to the user is allocated a data
channel between the FPGA and the host. The distinction between channels and
pipes is necessary only because of channel 0, which is used for interrupt- related
messages from the FPGA, and has no pipe attached to it.

92.3.5 Data streaming

Even though a non-segmented data stream is presented to the user at both sides,
the implementation relies on a set of DMA buffers which is allocated for each chan-
nel. For the sake of illustration, let’s take the FPGA to host direction: As data
streams into the respective channel’s interface in the FPGA, the Xillybus IP core
writes it to one of the DMA buffers. When the buffer is full, the FPGA informs the
host about that (appending a XILLYMSG_OPCODE_RELEASEBUF message chan-
nel 0 and sending an interrupt if necessary). The host responds by making the data
available for reading through the character device. When all data has been read,
the host writes on the the FPGA’s buffer control register, allowing the buffer’s
overwriting. Flow control mechanisms exist on both sides to prevent underflows
and overflows.

This is not good enough for creating a TCP/IP-like stream: If the data flow stops
momentarily before a DMA buffer is filled, the intuitive expectation is that the
partial data in buffer will arrive anyhow, despite the buffer not being completed.
This is implemented by adding a field in the XILLYMSG_OPCODE_RELEASEBUF
message, through which the FPGA informs not just which buffer is submitted, but
how much data it contains.

But the FPGA will submit a partially filled buffer only if directed to do so by
the host. This situation occurs when the read() method has been blocking for
XILLY_RX_TIMEOUT jiffies (currently 10 ms), after which the host commands the
FPGA to submit a DMA buffer as soon as it can. This timeout mechanism balances

92.3. Internals 2417

Linux Driver-api Documentation

between bus bandwidth efficiency (preventing a lot of partially filled buffers being
sent) and a latency held fairly low for tails of data.

A similar setting is used in the host to FPGA direction. The handling of partial
DMA buffers is somewhat different, though. The user can tell the driver to sub-
mit all data it has in the buffers to the FPGA, by issuing a write() with the byte
count set to zero. This is similar to a flush request, but it doesn’t block. There
is also an autoflushing mechanism, which triggers an equivalent flush roughly
XILLY_RX_TIMEOUT jiffies after the last write(). This allows the user to be obliv-
ious about the underlying buffering mechanism and yet enjoy a stream-like inter-
face.

Note that the issue of partial buffer flushing is irrelevant for pipes having the
“synchronous”attribute nonzero, since synchronous pipes don’t allow data to lay
around in the DMA buffers between read() and write() anyhow.

92.3.6 Data granularity

The data arrives or is sent at the FPGA as 8, 16 or 32 bit wide words, as configured
by the“format”attribute. Whenever possible, the driver attempts to hide this when
the pipe is accessed differently from its natural alignment. For example, reading
single bytes from a pipe with 32 bit granularity works with no issues. Writing
single bytes to pipes with 16 or 32 bit granularity will also work, but the driver
can’t send partially completed words to the FPGA, so the transmission of up to
one word may be held until it’s fully occupied with user data.
This somewhat complicates the handling of host to FPGA streams, because when
a buffer is flushed, it may contain up to 3 bytes don’t form a word in the FPGA,
and hence can’t be sent. To prevent loss of data, these leftover bytes need to be
moved to the next buffer. The parts in xillybus_core.c that mention“leftovers”in
some way are related to this complication.

92.3.7 Probing

As mentioned earlier, the number of pipes that are created when the driver loads
and their attributes depend on the Xillybus IP core in the FPGA. During the driver’s
initialization, a blob containing configuration info, the Interface Description Table
(IDT), is sent from the FPGA to the host. The bootstrap process is done in three
phases:

1. Acquire the length of the IDT, so a buffer can be allocated for it. This is done
by sending a quiesce command to the device, since the acknowledge for this
command contains the IDT’s buffer length.

2. Acquire the IDT itself.

3. Create the interfaces according to the IDT.

2418 Chapter 92. Xillybus driver for generic FPGA interface

Linux Driver-api Documentation

92.3.8 Buffer allocation

In order to simplify the logic that prevents illegal boundary crossings of PCIe pack-
ets, the following rule applies: If a buffer is smaller than 4kB, it must not cross
a 4kB boundary. Otherwise, it must be 4kB aligned. The xilly_setupchannels()
functions allocates these buffers by requesting whole pages from the kernel, and
diving them into DMA buffers as necessary. Since all buffers’sizes are powers of
two, it’s possible to pack any set of such buffers, with a maximal waste of one
page of memory.

All buffers are allocated when the driver is loaded. This is necessary, since large
continuous physical memory segments are sometimes requested, which are more
likely to be available when the system is freshly booted.

The allocation of buffer memory takes place in the same order they appear in the
IDT. The driver relies on a rule that the pipes are sorted with decreasing buffer
size in the IDT. If a requested buffer is larger or equal to a page, the necessary
number of pages is requested from the kernel, and these are used for this buffer.
If the requested buffer is smaller than a page, one single page is requested from
the kernel, and that page is partially used. Or, if there already is a partially used
page at hand, the buffer is packed into that page. It can be shown that all pages
requested from the kernel (except possibly for the last) are 100% utilized this way.

92.3.9 The “nonempty”message (supporting poll)

In order to support the“poll”method (and hence select()), there is a small catch
regarding the FPGA to host direction: The FPGA may have filled a DMA buffer
with some data, but not submitted that buffer. If the host waited for the buffer’s
submission by the FPGA, there would be a possibility that the FPGA side has sent
data, but a select() call would still block, because the host has not received any
notification about this. This is solved with XILLYMSG_OPCODE_NONEMPTY mes-
sages sent by the FPGA when a channel goes from completely empty to containing
some data.

These messages are used only to support poll() and select(). The IP core can be
configured not to send them for a slight reduction of bandwidth.

92.3. Internals 2419

Linux Driver-api Documentation

2420 Chapter 92. Xillybus driver for generic FPGA interface

CHAPTER

NINETYTHREE

WRITING DEVICE DRIVERS FOR ZORRO DEVICES

Author Written by Geert Uytterhoeven <geert@linux-m68k.org>
Last revised September 5, 2003

93.1 Introduction

The Zorro bus is the bus used in the Amiga family of computers. Thanks to Auto-
Config(tm), it’s 100% Plug-and-Play.

There are two types of Zorro buses, Zorro II and Zorro III:

• The Zorro II address space is 24-bit and lies within the first 16 MB of the
Amiga’s address map.

• Zorro III is a 32-bit extension of Zorro II, which is backwards compatible with
Zorro II. The Zorro III address space lies outside the first 16 MB.

93.2 Probing for Zorro Devices

Zorro devices are found by calling zorro_find_device(), which returns a pointer
to the next Zorro device with the specified Zorro ID. A probe loop for the board
with Zorro ID ZORRO_PROD_xxx looks like:

struct zorro_dev *z = NULL;

while ((z = zorro_find_device(ZORRO_PROD_xxx, z))) {
if (!zorro_request_region(z->resource.start+MY_START, MY_SIZE,

"My explanation"))
...

}

ZORRO_WILDCARD acts as a wildcard and finds any Zorro device. If your driver
supports different types of boards, you can use a construct like:

struct zorro_dev *z = NULL;

while ((z = zorro_find_device(ZORRO_WILDCARD, z))) {
if (z->id != ZORRO_PROD_xxx1 && z->id != ZORRO_PROD_xxx2 && ...)

continue;
if (!zorro_request_region(z->resource.start+MY_START, MY_SIZE,

(continues on next page)

2421

mailto:geert@linux-m68k.org

Linux Driver-api Documentation

(continued from previous page)
"My explanation"))

...
}

93.3 Zorro Resources

Before you can access a Zorro device’s registers, you have to make sure it’s
not yet in use. This is done using the I/O memory space resource management
functions:

request_mem_region()
release_mem_region()

Shortcuts to claim the whole device’s address space are provided as well:
zorro_request_device
zorro_release_device

93.4 Accessing the Zorro Address Space

The address regions in the Zorro device resources are Zorro bus address regions.
Due to the identity bus-physical address mapping on the Zorro bus, they are CPU
physical addresses as well.

The treatment of these regions depends on the type of Zorro space:

• Zorro II address space is always mapped and does not have to be mapped
explicitly using z_ioremap().

Conversion from bus/physical Zorro II addresses to kernel virtual addresses
and vice versa is done using:

virt_addr = ZTWO_VADDR(bus_addr);
bus_addr = ZTWO_PADDR(virt_addr);

• Zorro III address space must be mapped explicitly using z_ioremap() first
before it can be accessed:

virt_addr = z_ioremap(bus_addr, size);
...
z_iounmap(virt_addr);

2422 Chapter 93. Writing Device Drivers for Zorro Devices

Linux Driver-api Documentation

93.5 References

1. linux/include/linux/zorro.h

2. linux/include/uapi/linux/zorro.h

3. linux/include/uapi/linux/zorro_ids.h

4. linux/arch/m68k/include/asm/zorro.h

5. linux/drivers/zorro

6. /proc/bus/zorro

93.5. References 2423

