
Linux Rcu Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

USING RCU TO PROTECT READ-MOSTLY ARRAYS

Although RCU is more commonly used to protect linked lists, it can also be used
to protect arrays. Three situations are as follows:

1. Hash Tables

2. Static Arrays

3. Resizable Arrays

Each of these three situations involves an RCU-protected pointer to an array that
is separately indexed. It might be tempting to consider use of RCU to instead pro-
tect the index into an array, however, this use case is not supported. The problem
with RCU-protected indexes into arrays is that compilers can play way too many
optimization games with integers, which means that the rules governing handling
of these indexes are far more trouble than they are worth. If RCU-protected in-
dexes into arrays prove to be particularly valuable (which they have not thus far),
explicit cooperation from the compiler will be required to permit them to be safely
used.

That aside, each of the three RCU-protected pointer situations are described in
the following sections.

1.1 Situation 1: Hash Tables

Hash tables are often implemented as an array, where each array entry has a
linked-list hash chain. Each hash chain can be protected by RCU as described in
the listRCU.txt document. This approach also applies to other array-of-list situa-
tions, such as radix trees.

1.2 Situation 2: Static Arrays

Static arrays, where the data (rather than a pointer to the data) is located in each
array element, and where the array is never resized, have not been used with RCU.
Rik van Riel recommends using seqlock in this situation, which would also have
minimal read-side overhead as long as updates are rare.

Quick Quiz: Why is it so important that updates be rare when using seqlock?
Answer to Quick Quiz

1

Linux Rcu Documentation

1.3 Situation 3: Resizable Arrays

Use of RCU for resizable arrays is demonstrated by the grow_ary() function for-
merly used by the System V IPC code. The array is used to map from semaphore,
message-queue, and shared-memory IDs to the data structure that represents the
corresponding IPC construct. The grow_ary() function does not acquire any locks;
instead its caller must hold the ids->sem semaphore.

The grow_ary() function, shown below, does some limit checks, allocates a new
ipc_id_ary, copies the old to the new portion of the new, initializes the remainder
of the new, updates the ids->entries pointer to point to the new array, and invokes
ipc_rcu_putref() to free up the old array. Note that rcu_assign_pointer() is used to
update the ids->entries pointer, which includes any memory barriers required on
whatever architecture you are running on:

static int grow_ary(struct ipc_ids* ids, int newsize)
{

struct ipc_id_ary* new;
struct ipc_id_ary* old;
int i;
int size = ids->entries->size;

if(newsize > IPCMNI)
newsize = IPCMNI;

if(newsize <= size)
return newsize;

new = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*newsize +
sizeof(struct ipc_id_ary));

if(new == NULL)
return size;

new->size = newsize;
memcpy(new->p, ids->entries->p,

sizeof(struct kern_ipc_perm *)*size +
sizeof(struct ipc_id_ary));

for(i=size;i<newsize;i++) {
new->p[i] = NULL;

}
old = ids->entries;

/*
* Use rcu_assign_pointer() to make sure the memcpyed
* contents of the new array are visible before the new
* array becomes visible.
*/

rcu_assign_pointer(ids->entries, new);

ipc_rcu_putref(old);
return newsize;

}

The ipc_rcu_putref() function decrements the array’s reference count and then,
if the reference count has dropped to zero, uses call_rcu() to free the array after
a grace period has elapsed.

The array is traversed by the ipc_lock() function. This function indexes into the

2 Chapter 1. Using RCU to Protect Read-Mostly Arrays

Linux Rcu Documentation

array under the protection of rcu_read_lock(), using rcu_dereference() to pick up
the pointer to the array so that it may later safely be dereferenced – memory bar-
riers are required on the Alpha CPU. Since the size of the array is stored with the
array itself, there can be no array-size mismatches, so a simple check suffices.
The pointer to the structure corresponding to the desired IPC object is placed in
“out”, with NULL indicating a non-existent entry. After acquiring “out->lock”,
the“out->deleted”flag indicates whether the IPC object is in the process of being
deleted, and, if not, the pointer is returned:

struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id)
{

struct kern_ipc_perm* out;
int lid = id % SEQ_MULTIPLIER;
struct ipc_id_ary* entries;

rcu_read_lock();
entries = rcu_dereference(ids->entries);
if(lid >= entries->size) {

rcu_read_unlock();
return NULL;

}
out = entries->p[lid];
if(out == NULL) {

rcu_read_unlock();
return NULL;

}
spin_lock(&out->lock);

/* ipc_rmid() may have already freed the ID while ipc_lock
* was spinning: here verify that the structure is still valid
*/

if (out->deleted) {
spin_unlock(&out->lock);
rcu_read_unlock();
return NULL;

}
return out;

}

Answer to Quick Quiz: Why is it so important that updates be rare when using
seqlock?

The reason that it is important that updates be rare when using seqlock is
that frequent updates can livelock readers. One way to avoid this problem is
to assign a seqlock for each array entry rather than to the entire array.

1.3. Situation 3: Resizable Arrays 3

Linux Rcu Documentation

4 Chapter 1. Using RCU to Protect Read-Mostly Arrays

CHAPTER

TWO

RCU AND UNLOADABLE MODULES

[Originally published in LWN Jan. 14, 2007: http://lwn.net/Articles/217484/]

RCU (read-copy update) is a synchronization mechanism that can be thought of
as a replacement for read-writer locking (among other things), but with very low-
overhead readers that are immune to deadlock, priority inversion, and unbounded
latency. RCU read-side critical sections are delimited by rcu_read_lock() and
rcu_read_unlock(), which, in non-CONFIG_PREEMPT kernels, generate no code
whatsoever.

This means that RCU writers are unaware of the presence of concurrent readers,
so that RCU updates to shared data must be undertaken quite carefully, leaving
an old version of the data structure in place until all pre-existing readers have fin-
ished. These old versions are needed because such readers might hold a reference
to them. RCU updates can therefore be rather expensive, and RCU is thus best
suited for read-mostly situations.

How can an RCU writer possibly determine when all readers are finished, given
that readers might well leave absolutely no trace of their presence? There is a syn-
chronize_rcu() primitive that blocks until all pre-existing readers have completed.
An updater wishing to delete an element p from a linked list might do the following,
while holding an appropriate lock, of course:

list_del_rcu(p);
synchronize_rcu();
kfree(p);

But the above code cannot be used in IRQ context – the call_rcu() primitive must
be used instead. This primitive takes a pointer to an rcu_head struct placed within
the RCU-protected data structure and another pointer to a function that may be
invoked later to free that structure. Code to delete an element p from the linked
list from IRQ context might then be as follows:

list_del_rcu(p);
call_rcu(&p->rcu, p_callback);

Since call_rcu() never blocks, this code can safely be used fromwithin IRQ context.
The function p_callback() might be defined as follows:

static void p_callback(struct rcu_head *rp)
{

struct pstruct *p = container_of(rp, struct pstruct, rcu);

(continues on next page)

5

http://lwn.net/Articles/217484/

Linux Rcu Documentation

(continued from previous page)
kfree(p);

}

2.1 Unloading Modules That Use call_rcu()

But what if p_callback is defined in an unloadable module?

If we unload the module while some RCU callbacks are pending, the CPUs exe-
cuting these callbacks are going to be severely disappointed when they are later
invoked, as fancifully depicted at http://lwn.net/images/ns/kernel/rcu-drop.jpg.

We could try placing a synchronize_rcu() in the module-exit code path, but this is
not sufficient. Although synchronize_rcu() does wait for a grace period to elapse,
it does not wait for the callbacks to complete.

One might be tempted to try several back-to-back synchronize_rcu() calls, but this
is still not guaranteed to work. If there is a very heavy RCU-callback load, then
some of the callbacks might be deferred in order to allow other processing to
proceed. Such deferral is required in realtime kernels in order to avoid excessive
scheduling latencies.

2.2 rcu_barrier()

We instead need the rcu_barrier() primitive. Rather than waiting for a grace pe-
riod to elapse, rcu_barrier() waits for all outstanding RCU callbacks to complete.
Please note that rcu_barrier() does not imply synchronize_rcu(), in particular, if
there are no RCU callbacks queued anywhere, rcu_barrier() is within its rights to
return immediately, without waiting for a grace period to elapse.

Pseudo-code using rcu_barrier() is as follows:

1. Prevent any new RCU callbacks from being posted.

2. Execute rcu_barrier().

3. Allow the module to be unloaded.

There is also an srcu_barrier() function for SRCU, and you of coursemustmatch the
flavor of rcu_barrier() with that of call_rcu(). If your module uses multiple flavors
of call_rcu(), then it must also use multiple flavors of rcu_barrier() when unloading
that module. For example, if it uses call_rcu(), call_srcu() on srcu_struct_1, and
call_srcu() on srcu_struct_2, then the following three lines of code will be required
when unloading:

1 rcu_barrier();
2 srcu_barrier(&srcu_struct_1);
3 srcu_barrier(&srcu_struct_2);

The rcutorture module makes use of rcu_barrier() in its exit function as follows:

6 Chapter 2. RCU and Unloadable Modules

http://lwn.net/images/ns/kernel/rcu-drop.jpg

Linux Rcu Documentation

1 static void
2 rcu_torture_cleanup(void)
3 {
4 int i;
5
6 fullstop = 1;
7 if (shuffler_task != NULL) {
8 VERBOSE_PRINTK_STRING("Stopping rcu_torture_shuffle task");
9 kthread_stop(shuffler_task);
10 }
11 shuffler_task = NULL;
12
13 if (writer_task != NULL) {
14 VERBOSE_PRINTK_STRING("Stopping rcu_torture_writer task");
15 kthread_stop(writer_task);
16 }
17 writer_task = NULL;
18
19 if (reader_tasks != NULL) {
20 for (i = 0; i < nrealreaders; i++) {
21 if (reader_tasks[i] != NULL) {
22 VERBOSE_PRINTK_STRING(
23 "Stopping rcu_torture_reader task");
24 kthread_stop(reader_tasks[i]);
25 }
26 reader_tasks[i] = NULL;
27 }
28 kfree(reader_tasks);
29 reader_tasks = NULL;
30 }
31 rcu_torture_current = NULL;
32
33 if (fakewriter_tasks != NULL) {
34 for (i = 0; i < nfakewriters; i++) {
35 if (fakewriter_tasks[i] != NULL) {
36 VERBOSE_PRINTK_STRING(
37 "Stopping rcu_torture_fakewriter task");
38 kthread_stop(fakewriter_tasks[i]);
39 }
40 fakewriter_tasks[i] = NULL;
41 }
42 kfree(fakewriter_tasks);
43 fakewriter_tasks = NULL;
44 }
45
46 if (stats_task != NULL) {
47 VERBOSE_PRINTK_STRING("Stopping rcu_torture_stats task");
48 kthread_stop(stats_task);
49 }
50 stats_task = NULL;
51
52 /* Wait for all RCU callbacks to fire. */
53 rcu_barrier();
54
55 rcu_torture_stats_print(); /* -After- the stats thread is stopped! */
56

(continues on next page)

2.2. rcu_barrier() 7

Linux Rcu Documentation

(continued from previous page)
57 if (cur_ops->cleanup != NULL)
58 cur_ops->cleanup();
59 if (atomic_read(&n_rcu_torture_error))
60 rcu_torture_print_module_parms("End of test: FAILURE");
61 else
62 rcu_torture_print_module_parms("End of test: SUCCESS");
63 }

Line 6 sets a global variable that prevents any RCU callbacks from re-posting them-
selves. This will not be necessary in most cases, since RCU callbacks rarely include
calls to call_rcu(). However, the rcutorture module is an exception to this rule, and
therefore needs to set this global variable.

Lines 7-50 stop all the kernel tasks associated with the rcutorture module. There-
fore, once execution reaches line 53, no more rcutorture RCU callbacks will be
posted. The rcu_barrier() call on line 53 waits for any pre-existing callbacks to
complete.

Then lines 55-62 print status and do operation-specific cleanup, and then return,
permitting the module-unload operation to be completed.

Quick Quiz #1: Is there any other situation where rcu_barrier() might be re-
quired?

Answer to Quick Quiz #1

Your module might have additional complications. For example, if your module
invokes call_rcu() from timers, you will need to first cancel all the timers, and only
then invoke rcu_barrier() to wait for any remaining RCU callbacks to complete.

Of course, if you module uses call_rcu(), you will need to invoke rcu_barrier() be-
fore unloading. Similarly, if your module uses call_srcu(), you will need to invoke
srcu_barrier() before unloading, and on the same srcu_struct structure. If your
module uses call_rcu() and call_srcu(), then you will need to invoke rcu_barrier()
and srcu_barrier().

2.3 Implementing rcu_barrier()

Dipankar Sarma’s implementation of rcu_barrier() makes use of the fact that RCU
callbacks are never reordered once queued on one of the per-CPU queues. His
implementation queues an RCU callback on each of the per-CPU callback queues,
and then waits until they have all started executing, at which point, all earlier RCU
callbacks are guaranteed to have completed.

The original code for rcu_barrier() was as follows:

1 void rcu_barrier(void)
2 {
3 BUG_ON(in_interrupt());
4 /* Take cpucontrol mutex to protect against CPU hotplug */
5 mutex_lock(&rcu_barrier_mutex);
6 init_completion(&rcu_barrier_completion);
7 atomic_set(&rcu_barrier_cpu_count, 0);

(continues on next page)

8 Chapter 2. RCU and Unloadable Modules

Linux Rcu Documentation

(continued from previous page)
8 on_each_cpu(rcu_barrier_func, NULL, 0, 1);
9 wait_for_completion(&rcu_barrier_completion);
10 mutex_unlock(&rcu_barrier_mutex);
11 }

Line 3 verifies that the caller is in process context, and lines 5 and 10 use
rcu_barrier_mutex to ensure that only one rcu_barrier() is using the global com-
pletion and counters at a time, which are initialized on lines 6 and 7. Line 8 causes
each CPU to invoke rcu_barrier_func(), which is shown below. Note that the final
“1”in on_each_cpu()’s argument list ensures that all the calls to rcu_barrier_func()
will have completed before on_each_cpu() returns. Line 9 then waits for the com-
pletion.

This code was rewritten in 2008 and several times thereafter, but this still gives
the general idea.

The rcu_barrier_func() runs on each CPU, where it invokes call_rcu() to post an
RCU callback, as follows:

1 static void rcu_barrier_func(void *notused)
2 {
3 int cpu = smp_processor_id();
4 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
5 struct rcu_head *head;
6
7 head = &rdp->barrier;
8 atomic_inc(&rcu_barrier_cpu_count);
9 call_rcu(head, rcu_barrier_callback);
10 }

Lines 3 and 4 locate RCU’s internal per-CPU rcu_data structure, which contains
the struct rcu_head that needed for the later call to call_rcu(). Line 7 picks up
a pointer to this struct rcu_head, and line 8 increments a global counter. This
counter will later be decremented by the callback. Line 9 then registers the
rcu_barrier_callback() on the current CPU’s queue.
The rcu_barrier_callback() function simply atomically decrements the
rcu_barrier_cpu_count variable and finalizes the completion when it reaches
zero, as follows:

1 static void rcu_barrier_callback(struct rcu_head *notused)
2 {
3 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
4 complete(&rcu_barrier_completion);
5 }

Quick Quiz #2: What happens if CPU 0’s rcu_barrier_func() executes immedi-
ately (thus incrementing rcu_barrier_cpu_count to the value one), but the
other CPU’s rcu_barrier_func() invocations are delayed for a full grace pe-
riod? Couldn’t this result in rcu_barrier() returning prematurely?

Answer to Quick Quiz #2

The current rcu_barrier() implementation is more complex, due to the need to
avoid disturbing idle CPUs (especially on battery-powered systems) and the need

2.3. Implementing rcu_barrier() 9

Linux Rcu Documentation

to minimally disturb non-idle CPUs in real-time systems. However, the code above
illustrates the concepts.

2.4 rcu_barrier() Summary

The rcu_barrier() primitive has seen relatively little use, since most code using
RCU is in the core kernel rather than in modules. However, if you are using RCU
from an unloadable module, you need to use rcu_barrier() so that your module may
be safely unloaded.

2.5 Answers to Quick Quizzes

Quick Quiz #1: Is there any other situation where rcu_barrier() might be re-
quired?

Answer: Interestingly enough, rcu_barrier() was not originally
implemented for module unloading. Nikita Danilov was using RCU in a
filesystem, which resulted in a similar situation at filesystem-unmount time.
Dipankar Sarma coded up rcu_barrier() in response, so that Nikita could
invoke it during the filesystem-unmount process.

Much later, yours truly hit the RCUmodule-unload problem when implement-
ing rcutorture, and found that rcu_barrier() solves this problem as well.

Back to Quick Quiz #1

Quick Quiz #2: What happens if CPU 0’s rcu_barrier_func() executes immedi-
ately (thus incrementing rcu_barrier_cpu_count to the value one), but the
other CPU’s rcu_barrier_func() invocations are delayed for a full grace pe-
riod? Couldn’t this result in rcu_barrier() returning prematurely?

Answer: This cannot happen. The reason is that on_each_cpu() has its last
argument, the wait flag, set to “1”. This flag is passed through to
smp_call_function() and further to smp_call_function_on_cpu(), causing
this latter to spin until the cross-CPU invocation of rcu_barrier_func() has
completed. This by itself would prevent a grace period from completing on
non-CONFIG_PREEMPT kernels, since each CPU must undergo a context
switch (or other quiescent state) before the grace period can complete.
However, this is of no use in CONFIG_PREEMPT kernels.

Therefore, on_each_cpu() disables preemption across its call to
smp_call_function() and also across the local call to rcu_barrier_func().
This prevents the local CPU from context switching, again preventing
grace periods from completing. This means that all CPUs have executed
rcu_barrier_func() before the first rcu_barrier_callback() can possibly exe-
cute, in turn preventing rcu_barrier_cpu_count from prematurely reaching
zero.

Currently, -rt implementations of RCU keep but a single global queue for
RCU callbacks, and thus do not suffer from this problem. However, when
the -rt RCU eventually does have per-CPU callback queues, things will have
to change. One simple change is to add an rcu_read_lock() before line 8 of

10 Chapter 2. RCU and Unloadable Modules

Linux Rcu Documentation

rcu_barrier() and an rcu_read_unlock() after line 8 of this same function. If
you can think of a better change, please let me know!

Back to Quick Quiz #2

2.5. Answers to Quick Quizzes 11

Linux Rcu Documentation

12 Chapter 2. RCU and Unloadable Modules

CHAPTER

THREE

PROPER CARE AND FEEDING OF RETURN VALUES FROM
RCU_DEREFERENCE()

Most of the time, you can use values from rcu_dereference() or one of the similar
primitives without worries. Dereferencing (prefix “*”), field selection (“->”),
assignment (“=”), address-of (“&”), addition and subtraction of constants, and
casts all work quite naturally and safely.

It is nevertheless possible to get into trouble with other operations. Follow these
rules to keep your RCU code working properly:

• Youmust use one of the rcu_dereference() family of primitives to load an RCU-
protected pointer, otherwise CONFIG_PROVE_RCU will complain. Worse yet,
your code can see randommemory-corruption bugs due to games that compil-
ers and DEC Alpha can play. Without one of the rcu_dereference() primitives,
compilers can reload the value, and won’t your code have fun with two dif-
ferent values for a single pointer! Without rcu_dereference(), DEC Alpha can
load a pointer, dereference that pointer, and return data preceding initializa-
tion that preceded the store of the pointer.

In addition, the volatile cast in rcu_dereference() prevents the compiler from
deducing the resulting pointer value. Please see the section entitled“EXAM-
PLE WHERE THE COMPILER KNOWS TOO MUCH”for an example where
the compiler can in fact deduce the exact value of the pointer, and thus cause
misordering.

• You are only permitted to use rcu_dereference on pointer values. The com-
piler simply knows too much about integral values to trust it to carry depen-
dencies through integer operations. There are a very few exceptions, namely
that you can temporarily cast the pointer to uintptr_t in order to:

– Set bits and clear bits down in the must-be-zero low-order bits of that
pointer. This clearly means that the pointer must have alignment con-
straints, for example, this does -not- work in general for char* pointers.

– XOR bits to translate pointers, as is done in some classic buddy-allocator
algorithms.

It is important to cast the value back to pointer before doing much of anything
else with it.

• Avoid cancellation when using the“+”and“-”infix arithmetic operators. For
example, for a given variable “x”, avoid “(x-(uintptr_t)x)”for char* point-
ers. The compiler is within its rights to substitute zero for this sort of expres-

13

Linux Rcu Documentation

sion, so that subsequent accesses no longer depend on the rcu_dereference(),
again possibly resulting in bugs due to misordering.

Of course, if “p”is a pointer from rcu_dereference(), and “a”and “b”are
integers that happen to be equal, the expression “p+a-b”is safe because
its value still necessarily depends on the rcu_dereference(), thus maintaining
proper ordering.

• If you are using RCU to protect JITed functions, so that the “()”function-
invocation operator is applied to a value obtained (directly or indirectly) from
rcu_dereference(), you may need to interact directly with the hardware to
flush instruction caches. This issue arises on some systems when a newly
JITed function is using the same memory that was used by an earlier JITed
function.

• Do not use the results from relational operators (“==”,“!=”,“>”,“>=”
, “<”, or “<=”) when dereferencing. For example, the following (quite
strange) code is buggy:

int *p;
int *q;

...

p = rcu_dereference(gp)
q = &global_q;
q += p > &oom_p;
r1 = *q; /* BUGGY!!! */

As before, the reason this is buggy is that relational operators are often com-
piled using branches. And as before, although weak-memory machines such
as ARM or PowerPC do order stores after such branches, but can speculate
loads, which can again result in misordering bugs.

• Be very careful about comparing pointers obtained from rcu_dereference()
against non-NULL values. As Linus Torvalds explained, if the two pointers are
equal, the compiler could substitute the pointer you are comparing against
for the pointer obtained from rcu_dereference(). For example:

p = rcu_dereference(gp);
if (p == &default_struct)

do_default(p->a);

Because the compiler now knows that the value of“p”is exactly the address
of the variable “default_struct”, it is free to transform this code into the
following:

p = rcu_dereference(gp);
if (p == &default_struct)

do_default(default_struct.a);

On ARM and Power hardware, the load from “default_struct.a”can now be
speculated, such that it might happen before the rcu_dereference(). This
could result in bugs due to misordering.

However, comparisons are OK in the following cases:

14 Chapter 3. PROPER CARE AND FEEDING OF RETURN VALUES FROM
rcu_dereference()

Linux Rcu Documentation

– The comparison was against the NULL pointer. If the compiler knows
that the pointer is NULL, you had better not be dereferencing it anyway.
If the comparison is non-equal, the compiler is none the wiser. There-
fore, it is safe to compare pointers from rcu_dereference() against NULL
pointers.

– The pointer is never dereferenced after being compared. Since there are
no subsequent dereferences, the compiler cannot use anything it learned
from the comparison to reorder the non-existent subsequent derefer-
ences. This sort of comparison occurs frequently when scanning RCU-
protected circular linked lists.

Note that if checks for being within an RCU read-side critical section are
not required and the pointer is never dereferenced, rcu_access_pointer()
should be used in place of rcu_dereference().

– The comparison is against a pointer that references memory that was
initialized “a long time ago.”The reason this is safe is that even if mis-
ordering occurs, the misordering will not affect the accesses that follow
the comparison. So exactly how long ago is “a long time ago”? Here
are some possibilities:

∗ Compile time.

∗ Boot time.

∗ Module-init time for module code.

∗ Prior to kthread creation for kthread code.

∗ During some prior acquisition of the lock that we now hold.

∗ Before mod_timer() time for a timer handler.

There aremany other possibilities involving the Linux kernel’s wide array
of primitives that cause code to be invoked at a later time.

– The pointer being compared against also came from rcu_dereference().
In this case, both pointers depend on one rcu_dereference() or another,
so you get proper ordering either way.

That said, this situation can make certain RCU usage bugs more likely
to happen. Which can be a good thing, at least if they happen during
testing. An example of such an RCU usage bug is shown in the section
titled “EXAMPLE OF AMPLIFIED RCU-USAGE BUG”.

– All of the accesses following the comparison are stores, so that a control
dependency preserves the needed ordering. That said, it is easy to get
control dependencies wrong. Please see the “CONTROL DEPENDEN-
CIES”section of Documentation/memory-barriers.txt for more details.

– The pointers are not equal -and- the compiler does not have enough infor-
mation to deduce the value of the pointer. Note that the volatile cast in
rcu_dereference() will normally prevent the compiler from knowing too
much.

However, please note that if the compiler knows that the pointer takes on
only one of two values, a not-equal comparison will provide exactly the
information that the compiler needs to deduce the value of the pointer.

15

Linux Rcu Documentation

• Disable any value-speculation optimizations that your compiler might pro-
vide, especially if you are making use of feedback-based optimizations that
take data collected from prior runs. Such value-speculation optimizations
reorder operations by design.

There is one exception to this rule: Value-speculation optimizations that lever-
age the branch-prediction hardware are safe on strongly ordered systems
(such as x86), but not on weakly ordered systems (such as ARM or Power).
Choose your compiler command-line options wisely!

3.1 EXAMPLE OF AMPLIFIED RCU-USAGE BUG

Because updaters can run concurrently with RCU readers, RCU readers can see
stale and/or inconsistent values. If RCU readers need fresh or consistent values,
which they sometimes do, they need to take proper precautions. To see this, con-
sider the following code fragment:

struct foo {
int a;
int b;
int c;

};
struct foo *gp1;
struct foo *gp2;

void updater(void)
{

struct foo *p;

p = kmalloc(...);
if (p == NULL)

deal_with_it();
p->a = 42; /* Each field in its own cache line. */
p->b = 43;
p->c = 44;
rcu_assign_pointer(gp1, p);
p->b = 143;
p->c = 144;
rcu_assign_pointer(gp2, p);

}

void reader(void)
{

struct foo *p;
struct foo *q;
int r1, r2;

p = rcu_dereference(gp2);
if (p == NULL)

return;
r1 = p->b; /* Guaranteed to get 143. */
q = rcu_dereference(gp1); /* Guaranteed non-NULL. */
if (p == q) {

/* The compiler decides that q->c is same as p->c. */
(continues on next page)

16 Chapter 3. PROPER CARE AND FEEDING OF RETURN VALUES FROM
rcu_dereference()

Linux Rcu Documentation

(continued from previous page)
r2 = p->c; /* Could get 44 on weakly order system. */

}
do_something_with(r1, r2);

}

You might be surprised that the outcome (r1 == 143 && r2 == 44) is possible,
but you should not be. After all, the updater might have been invoked a second
time between the time reader() loaded into “r1”and the time that it loaded into
“r2”. The fact that this same result can occur due to some reordering from the
compiler and CPUs is beside the point.

But suppose that the reader needs a consistent view?

Then one approach is to use locking, for example, as follows:

struct foo {
int a;
int b;
int c;
spinlock_t lock;

};
struct foo *gp1;
struct foo *gp2;

void updater(void)
{

struct foo *p;

p = kmalloc(...);
if (p == NULL)

deal_with_it();
spin_lock(&p->lock);
p->a = 42; /* Each field in its own cache line. */
p->b = 43;
p->c = 44;
spin_unlock(&p->lock);
rcu_assign_pointer(gp1, p);
spin_lock(&p->lock);
p->b = 143;
p->c = 144;
spin_unlock(&p->lock);
rcu_assign_pointer(gp2, p);

}

void reader(void)
{

struct foo *p;
struct foo *q;
int r1, r2;

p = rcu_dereference(gp2);
if (p == NULL)

return;
spin_lock(&p->lock);
r1 = p->b; /* Guaranteed to get 143. */
q = rcu_dereference(gp1); /* Guaranteed non-NULL. */

(continues on next page)

3.1. EXAMPLE OF AMPLIFIED RCU-USAGE BUG 17

Linux Rcu Documentation

(continued from previous page)
if (p == q) {

/* The compiler decides that q->c is same as p->c. */
r2 = p->c; /* Locking guarantees r2 == 144. */

}
spin_unlock(&p->lock);
do_something_with(r1, r2);

}

As always, use the right tool for the job!

3.2 EXAMPLE WHERE THE COMPILER KNOWS TOO MUCH

If a pointer obtained from rcu_dereference() compares not-equal to some other
pointer, the compiler normally has no clue what the value of the first pointer might
be. This lack of knowledge prevents the compiler from carrying out optimizations
that otherwise might destroy the ordering guarantees that RCU depends on. And
the volatile cast in rcu_dereference() should prevent the compiler from guessing
the value.

But without rcu_dereference(), the compiler knows more than you might expect.
Consider the following code fragment:

struct foo {
int a;
int b;

};
static struct foo variable1;
static struct foo variable2;
static struct foo *gp = &variable1;

void updater(void)
{

initialize_foo(&variable2);
rcu_assign_pointer(gp, &variable2);
/*
* The above is the only store to gp in this translation unit,
* and the address of gp is not exported in any way.
*/

}

int reader(void)
{

struct foo *p;

p = gp;
barrier();
if (p == &variable1)

return p->a; /* Must be variable1.a. */
else

return p->b; /* Must be variable2.b. */
}

Because the compiler can see all stores to “gp”, it knows that the only possible
values of“gp”are“variable1”on the one hand and“variable2”on the other. The

18 Chapter 3. PROPER CARE AND FEEDING OF RETURN VALUES FROM
rcu_dereference()

Linux Rcu Documentation

comparison in reader() therefore tells the compiler the exact value of“p”even in the
not-equals case. This allows the compiler to make the return values independent
of the load from“gp”, in turn destroying the ordering between this load and the
loads of the return values. This can result in “p->b”returning pre-initialization
garbage values.

In short, rcu_dereference() is -not- optional when you are going to dereference the
resulting pointer.

3.3 WHICH MEMBER OF THE rcu_dereference() FAMILY
SHOULD YOU USE?

First, please avoid using rcu_dereference_raw() and also please avoid using
rcu_dereference_check() and rcu_dereference_protected() with a second argu-
ment with a constant value of 1 (or true, for that matter). With that caution out of
the way, here is some guidance for which member of the rcu_dereference() to use
in various situations:

1. If the access needs to be within an RCU read-side critical section, use
rcu_dereference(). With the new consolidated RCU flavors, an RCU read-
side critical section is entered using rcu_read_lock(), anything that disables
bottom halves, anything that disables interrupts, or anything that disables
preemption.

2. If the access might be within an RCU read-side critical section on
the one hand, or protected by (say) my_lock on the other, use
rcu_dereference_check(), for example:

p1 = rcu_dereference_check(p->rcu_protected_pointer,
lockdep_is_held(&my_lock));

3. If the access might be within an RCU read-side critical section on the one
hand, or protected by either my_lock or your_lock on the other, again use
rcu_dereference_check(), for example:

p1 = rcu_dereference_check(p->rcu_protected_pointer,
lockdep_is_held(&my_lock) ||
lockdep_is_held(&your_lock));

4. If the access is on the update side, so that it is always protected by my_lock,
use rcu_dereference_protected():

p1 = rcu_dereference_protected(p->rcu_protected_pointer,
lockdep_is_held(&my_lock));

This can be extended to handle multiple locks as in #3 above, and both can
be extended to check other conditions as well.

5. If the protection is supplied by the caller, and is thus unknown to this code,
that is the rare case when rcu_dereference_raw() is appropriate. In addi-
tion, rcu_dereference_raw() might be appropriate when the lockdep expres-
sion would be excessively complex, except that a better approach in that case
might be to take a long hard look at your synchronization design. Still, there

3.3. WHICH MEMBER OF THE rcu_dereference() FAMILY SHOULD YOU
USE?

19

Linux Rcu Documentation

are data-locking cases where any one of a very large number of locks or refer-
ence counters suffices to protect the pointer, so rcu_dereference_raw() does
have its place.

However, its place is probably quite a bit smaller than one might
expect given the number of uses in the current kernel. Ditto for
its synonym, rcu_dereference_check(⋯, 1), and its close relative,
rcu_dereference_protected(⋯, 1).

3.4 SPARSE CHECKING OF RCU-PROTECTED POINTERS

The sparse static-analysis tool checks for direct access to RCU-protected pointers,
which can result in “interesting”bugs due to compiler optimizations involving
invented loads and perhaps also load tearing. For example, suppose someone
mistakenly does something like this:

p = q->rcu_protected_pointer;
do_something_with(p->a);
do_something_else_with(p->b);

If register pressure is high, the compiler might optimize “p”out of existence,
transforming the code to something like this:

do_something_with(q->rcu_protected_pointer->a);
do_something_else_with(q->rcu_protected_pointer->b);

This could fatally disappoint your code if q->rcu_protected_pointer changed in the
meantime. Nor is this a theoretical problem: Exactly this sort of bug cost Paul E.
McKenney (and several of his innocent colleagues) a three-day weekend back in
the early 1990s.

Load tearing could of course result in dereferencing a mashup of a pair of pointers,
which also might fatally disappoint your code.

These problems could have been avoided simply by making the code instead read
as follows:

p = rcu_dereference(q->rcu_protected_pointer);
do_something_with(p->a);
do_something_else_with(p->b);

Unfortunately, these sorts of bugs can be extremely hard to spot during review.
This is where the sparse tool comes into play, along with the “__rcu”marker. If
you mark a pointer declaration, whether in a structure or as a formal parameter,
with“__rcu”, which tells sparse to complain if this pointer is accessed directly. It
will also cause sparse to complain if a pointer not marked with“__rcu”is accessed
using rcu_dereference() and friends. For example, ->rcu_protected_pointer might
be declared as follows:

struct foo __rcu *rcu_protected_pointer;

Use of “__rcu”is opt-in. If you choose not to use it, then you should ignore the
sparse warnings.

20 Chapter 3. PROPER CARE AND FEEDING OF RETURN VALUES FROM
rcu_dereference()

CHAPTER

FOUR

WHAT IS RCU? – “READ, COPY, UPDATE”

Please note that the “What is RCU?”LWN series is an excellent place to start
learning about RCU:

1. What is RCU, Fundamentally? http://lwn.net/Articles/262464/
2. What is RCU? Part 2: Usage http://lwn.net/Articles/263130/
3. RCU part 3: the RCU API http://lwn.net/Articles/264090/
4. The RCU API, 2010 Edition http://lwn.net/Articles/418853/

2010 Big API Table http://lwn.net/Articles/419086/
5. The RCU API, 2014 Edition http://lwn.net/Articles/609904/

2014 Big API Table http://lwn.net/Articles/609973/

What is RCU?

RCU is a synchronization mechanism that was added to the Linux kernel during
the 2.5 development effort that is optimized for read-mostly situations. Although
RCU is actually quite simple once you understand it, getting there can sometimes
be a challenge. Part of the problem is that most of the past descriptions of RCU
have been written with the mistaken assumption that there is “one true way”to
describe RCU. Instead, the experience has been that different people must take
different paths to arrive at an understanding of RCU. This document provides sev-
eral different paths, as follows:

1. RCU OVERVIEW

2. WHAT IS RCU’S CORE API?
3. WHAT ARE SOME EXAMPLE USES OF CORE RCU API?

4. WHAT IF MY UPDATING THREAD CANNOT BLOCK?

5. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?

6. ANALOGY WITH READER-WRITER LOCKING

7. FULL LIST OF RCU APIs

8. ANSWERS TO QUICK QUIZZES

People who prefer starting with a conceptual overview should focus on Section 1,
though most readers will profit by reading this section at some point. People who
prefer to start with an API that they can then experiment with should focus on

21

http://lwn.net/Articles/262464/
http://lwn.net/Articles/263130/
http://lwn.net/Articles/264090/
http://lwn.net/Articles/418853/
http://lwn.net/Articles/419086/
http://lwn.net/Articles/609904/
http://lwn.net/Articles/609973/

Linux Rcu Documentation

Section 2. People who prefer to start with example uses should focus on Sections
3 and 4. People who need to understand the RCU implementation should focus
on Section 5, then dive into the kernel source code. People who reason best by
analogy should focus on Section 6. Section 7 serves as an index to the docbook
API documentation, and Section 8 is the traditional answer key.

So, start with the section that makes the most sense to you and your preferred
method of learning. If you need to know everything about everything, feel free to
read the whole thing – but if you are really that type of person, you have perused
the source code and will therefore never need this document anyway. ;-)

4.1 1. RCU OVERVIEW

The basic idea behind RCU is to split updates into“removal”and“reclamation”
phases. The removal phase removes references to data items within a data struc-
ture (possibly by replacing them with references to new versions of these data
items), and can run concurrently with readers. The reason that it is safe to run
the removal phase concurrently with readers is the semantics of modern CPUs
guarantee that readers will see either the old or the new version of the data struc-
ture rather than a partially updated reference. The reclamation phase does the
work of reclaiming (e.g., freeing) the data items removed from the data structure
during the removal phase. Because reclaiming data items can disrupt any readers
concurrently referencing those data items, the reclamation phase must not start
until readers no longer hold references to those data items.

Splitting the update into removal and reclamation phases permits the updater to
perform the removal phase immediately, and to defer the reclamation phase until
all readers active during the removal phase have completed, either by blocking
until they finish or by registering a callback that is invoked after they finish. Only
readers that are active during the removal phase need be considered, because any
reader starting after the removal phase will be unable to gain a reference to the
removed data items, and therefore cannot be disrupted by the reclamation phase.

So the typical RCU update sequence goes something like the following:

a. Remove pointers to a data structure, so that subsequent readers cannot gain
a reference to it.

b. Wait for all previous readers to complete their RCU read-side critical sections.

c. At this point, there cannot be any readers who hold references to the data
structure, so it now may safely be reclaimed (e.g., kfree()d).

Step (b) above is the key idea underlying RCU’s deferred destruction. The ability
to wait until all readers are done allows RCU readers to use much lighter-weight
synchronization, in some cases, absolutely no synchronization at all. In contrast, in
more conventional lock-based schemes, readers must use heavy-weight synchro-
nization in order to prevent an updater from deleting the data structure out from
under them. This is because lock-based updaters typically update data items in
place, and must therefore exclude readers. In contrast, RCU-based updaters typi-
cally take advantage of the fact that writes to single aligned pointers are atomic on
modern CPUs, allowing atomic insertion, removal, and replacement of data items
in a linked structure without disrupting readers. Concurrent RCU readers can

22 Chapter 4. What is RCU? – “Read, Copy, Update”

Linux Rcu Documentation

then continue accessing the old versions, and can dispense with the atomic oper-
ations, memory barriers, and communications cache misses that are so expensive
on present-day SMP computer systems, even in absence of lock contention.

In the three-step procedure shown above, the updater is performing both the re-
moval and the reclamation step, but it is often helpful for an entirely different
thread to do the reclamation, as is in fact the case in the Linux kernel’s directory-
entry cache (dcache). Even if the same thread performs both the update step (step
(a) above) and the reclamation step (step (c) above), it is often helpful to think of
them separately. For example, RCU readers and updaters need not communicate
at all, but RCU provides implicit low-overhead communication between readers
and reclaimers, namely, in step (b) above.

So how the heck can a reclaimer tell when a reader is done, given that readers are
not doing any sort of synchronization operations??? Read on to learn about how
RCU’s API makes this easy.

4.2 2. WHAT IS RCU’S CORE API?

The core RCU API is quite small:

a. rcu_read_lock()

b. rcu_read_unlock()

c. synchronize_rcu() / call_rcu()

d. rcu_assign_pointer()

e. rcu_dereference()

There are many other members of the RCU API, but the rest can be expressed
in terms of these five, though most implementations instead express synchro-
nize_rcu() in terms of the call_rcu() callback API.

The five core RCU APIs are described below, the other 18 will be enumerated
later. See the kernel docbook documentation for more info, or look directly at the
function header comments.

4.2.1 rcu_read_lock()

void rcu_read_lock(void);

Used by a reader to inform the reclaimer that the reader is entering an
RCU read-side critical section. It is illegal to block while in an RCU read-
side critical section, though kernels built with CONFIG_PREEMPT_RCU
can preempt RCU read-side critical sections. Any RCU-protected data
structure accessed during an RCU read-side critical section is guaran-
teed to remain unreclaimed for the full duration of that critical section.
Reference counts may be used in conjunction with RCU to maintain
longer-term references to data structures.

4.2. 2. WHAT IS RCU’S CORE API? 23

Linux Rcu Documentation

4.2.2 rcu_read_unlock()

void rcu_read_unlock(void);

Used by a reader to inform the reclaimer that the reader is exiting an
RCU read-side critical section. Note that RCU read-side critical sections
may be nested and/or overlapping.

4.2.3 synchronize_rcu()

void synchronize_rcu(void);

Marks the end of updater code and the beginning of reclaimer code. It
does this by blocking until all pre-existing RCU read-side critical sec-
tions on all CPUs have completed. Note that synchronize_rcu() will not
necessarily wait for any subsequent RCU read-side critical sections to
complete. For example, consider the following sequence of events:

CPU 0 CPU 1 CPU 2
----------------- ------------------------- ---------------

1. rcu_read_lock()
2. enters synchronize_rcu()
3. rcu_read_lock()
4. rcu_read_unlock()
5. exits synchronize_rcu()
6. rcu_read_unlock()

To reiterate, synchronize_rcu() waits only for ongoing RCU read-side
critical sections to complete, not necessarily for any that begin after
synchronize_rcu() is invoked.

Of course, synchronize_rcu() does not necessarily return immediately
after the last pre-existing RCU read-side critical section completes. For
one thing, there might well be scheduling delays. For another thing,
many RCU implementations process requests in batches in order to im-
prove efficiencies, which can further delay synchronize_rcu().

Since synchronize_rcu() is the API that must figure out when readers are
done, its implementation is key to RCU. For RCU to be useful in all but
the most read-intensive situations, synchronize_rcu()’s overhead must
also be quite small.

The call_rcu() API is a callback form of synchronize_rcu(), and is de-
scribed in more detail in a later section. Instead of blocking, it registers
a function and argument which are invoked after all ongoing RCU read-
side critical sections have completed. This callback variant is particu-
larly useful in situations where it is illegal to block or where update-side
performance is critically important.

However, the call_rcu() API should not be used lightly, as use of the
synchronize_rcu() API generally results in simpler code. In addition, the
synchronize_rcu() API has the nice property of automatically limiting up-
date rate should grace periods be delayed. This property results in sys-
tem resilience in face of denial-of-service attacks. Code using call_rcu()

24 Chapter 4. What is RCU? – “Read, Copy, Update”

Linux Rcu Documentation

should limit update rate in order to gain this same sort of resilience. See
checklist.txt for some approaches to limiting the update rate.

4.2.4 rcu_assign_pointer()

void rcu_assign_pointer(p, typeof(p) v);

Yes, rcu_assign_pointer() is implemented as a macro, though it would be
cool to be able to declare a function in this manner. (Compiler experts
will no doubt disagree.)

The updater uses this function to assign a new value to an RCU-protected
pointer, in order to safely communicate the change in value from the
updater to the reader. This macro does not evaluate to an rvalue, but it
does execute any memory-barrier instructions required for a given CPU
architecture.

Perhaps just as important, it serves to document (1) which pointers are
protected by RCU and (2) the point at which a given structure becomes
accessible to other CPUs. That said, rcu_assign_pointer() is most fre-
quently used indirectly, via the _rcu list-manipulation primitives such as
list_add_rcu().

4.2.5 rcu_dereference()

typeof(p) rcu_dereference(p);

Like rcu_assign_pointer(), rcu_dereference() must be implemented as a
macro.

The reader uses rcu_dereference() to fetch an RCU-protected pointer,
which returns a value that may then be safely dereferenced. Note that
rcu_dereference() does not actually dereference the pointer, instead, it
protects the pointer for later dereferencing. It also executes any needed
memory-barrier instructions for a given CPU architecture. Currently,
only Alpha needs memory barriers within rcu_dereference() – on other
CPUs, it compiles to nothing, not even a compiler directive.

Common coding practice uses rcu_dereference() to copy an RCU-
protected pointer to a local variable, then dereferences this local vari-
able, for example as follows:

p = rcu_dereference(head.next);
return p->data;

However, in this case, one could just as easily combine these into one
statement:

return rcu_dereference(head.next)->data;

If you are going to be fetching multiple fields from the RCU-protected
structure, using the local variable is of course preferred. Repeated
rcu_dereference() calls look ugly, do not guarantee that the same pointer

4.2. 2. WHAT IS RCU’S CORE API? 25

Linux Rcu Documentation

will be returned if an update happened while in the critical section, and
incur unnecessary overhead on Alpha CPUs.

Note that the value returned by rcu_dereference() is valid only within the
enclosing RCU read-side critical section1. For example, the following is
not legal:

rcu_read_lock();
p = rcu_dereference(head.next);
rcu_read_unlock();
x = p->address; /* BUG!!! */
rcu_read_lock();
y = p->data; /* BUG!!! */
rcu_read_unlock();

Holding a reference from one RCU read-side critical section to another is
just as illegal as holding a reference from one lock-based critical section
to another! Similarly, using a reference outside of the critical section in
which it was acquired is just as illegal as doing so with normal locking.

As with rcu_assign_pointer(), an important function of rcu_dereference()
is to document which pointers are protected by RCU, in particu-
lar, flagging a pointer that is subject to changing at any time, in-
cluding immediately after the rcu_dereference(). And, again like
rcu_assign_pointer(), rcu_dereference() is typically used indirectly, via
the _rcu list-manipulation primitives, such as list_for_each_entry_rcu()2.

The following diagram shows how each API communicates among the reader, up-
dater, and reclaimer.

rcu_assign_pointer()
+--------+

+---------------------->| reader |---------+
| +--------+ |
| | |
| | | Protect:
| | | rcu_read_lock()
| | | rcu_read_unlock()
| rcu_dereference() | |
+---------+ | |
| updater |<----------------+ |
+---------+ V
| +-----------+

(continues on next page)

1 The variant rcu_dereference_protected() can be used outside of an RCU read-side critical sec-
tion as long as the usage is protected by locks acquired by the update-side code. This variant
avoids the lockdep warning that would happen when using (for example) rcu_dereference() without
rcu_read_lock() protection. Using rcu_dereference_protected() also has the advantage of permit-
ting compiler optimizations that rcu_dereference() must prohibit. The rcu_dereference_protected()
variant takes a lockdep expression to indicate which locks must be acquired by the caller.
If the indicated protection is not provided, a lockdep splat is emitted. See Documenta-
tion/RCU/Design/Requirements/Requirements.rst and the API’s code comments for more details
and example usage.

2 If the list_for_each_entry_rcu() instance might be used by update-side code as well as by RCU
readers, then an additional lockdep expression can be added to its list of arguments. For example,
given an additional“lock_is_held(&mylock)”argument, the RCU lockdep code would complain only
if this instance was invoked outside of an RCU read-side critical section and without the protection
of mylock.

26 Chapter 4. What is RCU? – “Read, Copy, Update”

Linux Rcu Documentation

(continued from previous page)
+----------------------------------->| reclaimer |

+-----------+
Defer:
synchronize_rcu() & call_rcu()

The RCU infrastructure observes the time sequence of rcu_read_lock(),
rcu_read_unlock(), synchronize_rcu(), and call_rcu() invocations in order to de-
termine when (1) synchronize_rcu() invocations may return to their callers and
(2) call_rcu() callbacks may be invoked. Efficient implementations of the RCU in-
frastructure make heavy use of batching in order to amortize their overhead over
many uses of the corresponding APIs.

There are at least three flavors of RCU usage in the Linux kernel. The diagram
above shows the most common one. On the updater side, the rcu_assign_pointer(),
sychronize_rcu() and call_rcu() primitives used are the same for all three flavors.
However for protection (on the reader side), the primitives used vary depending
on the flavor:

a. rcu_read_lock() / rcu_read_unlock() rcu_dereference()

b. rcu_read_lock_bh() / rcu_read_unlock_bh() local_bh_disable() / lo-
cal_bh_enable() rcu_dereference_bh()

c. rcu_read_lock_sched() / rcu_read_unlock_sched() preempt_disable() / pre-
empt_enable() local_irq_save() / local_irq_restore() hardirq enter / hardirq
exit NMI enter / NMI exit rcu_dereference_sched()

These three flavors are used as follows:

a. RCU applied to normal data structures.

b. RCU applied to networking data structures that may be subjected to remote
denial-of-service attacks.

c. RCU applied to scheduler and interrupt/NMI-handler tasks.

Again, most uses will be of (a). The (b) and (c) cases are important for specialized
uses, but are relatively uncommon.

4.3 3. WHAT ARE SOME EXAMPLE USES OF CORE RCU
API?

This section shows a simple use of the core RCU API to protect a global pointer
to a dynamically allocated structure. More-typical uses of RCU may be found in
listRCU.rst, arrayRCU.rst, and NMI-RCU.rst.

struct foo {
int a;
char b;
long c;

};
DEFINE_SPINLOCK(foo_mutex);

(continues on next page)

4.3. 3. WHAT ARE SOME EXAMPLE USES OF CORE RCU API? 27

Linux Rcu Documentation

(continued from previous page)
struct foo __rcu *gbl_foo;

/*
* Create a new struct foo that is the same as the one currently
* pointed to by gbl_foo, except that field "a" is replaced
* with "new_a". Points gbl_foo to the new structure, and
* frees up the old structure after a grace period.
*
* Uses rcu_assign_pointer() to ensure that concurrent readers
* see the initialized version of the new structure.
*
* Uses synchronize_rcu() to ensure that any readers that might
* have references to the old structure complete before freeing
* the old structure.
*/

void foo_update_a(int new_a)
{

struct foo *new_fp;
struct foo *old_fp;

new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
spin_lock(&foo_mutex);
old_fp = rcu_dereference_protected(gbl_foo, lockdep_is_held(&foo_

↪→mutex));
*new_fp = *old_fp;
new_fp->a = new_a;
rcu_assign_pointer(gbl_foo, new_fp);
spin_unlock(&foo_mutex);
synchronize_rcu();
kfree(old_fp);

}

/*
* Return the value of field "a" of the current gbl_foo
* structure. Use rcu_read_lock() and rcu_read_unlock()
* to ensure that the structure does not get deleted out
* from under us, and use rcu_dereference() to ensure that
* we see the initialized version of the structure (important
* for DEC Alpha and for people reading the code).
*/

int foo_get_a(void)
{

int retval;

rcu_read_lock();
retval = rcu_dereference(gbl_foo)->a;
rcu_read_unlock();
return retval;

}

So, to sum up:

• Use rcu_read_lock() and rcu_read_unlock() to guard RCU read-side critical
sections.

• Within an RCU read-side critical section, use rcu_dereference() to derefer-
ence RCU-protected pointers.

28 Chapter 4. What is RCU? – “Read, Copy, Update”

Linux Rcu Documentation

• Use some solid scheme (such as locks or semaphores) to keep concurrent
updates from interfering with each other.

• Use rcu_assign_pointer() to update an RCU-protected pointer. This primitive
protects concurrent readers from the updater, not concurrent updates from
each other! You therefore still need to use locking (or something similar) to
keep concurrent rcu_assign_pointer() primitives from interfering with each
other.

• Use synchronize_rcu() after removing a data element from an RCU-protected
data structure, but before reclaiming/freeing the data element, in order to
wait for the completion of all RCU read-side critical sections that might be
referencing that data item.

See checklist.txt for additional rules to follow when using RCU. And again, more-
typical uses of RCU may be found in listRCU.rst, arrayRCU.rst, and NMI-RCU.rst.

4.4 4. WHAT IF MY UPDATING THREAD CANNOT BLOCK?

In the example above, foo_update_a() blocks until a grace period elapses. This is
quite simple, but in some cases one cannot afford to wait so long – there might be
other high-priority work to be done.

In such cases, one uses call_rcu() rather than synchronize_rcu(). The call_rcu()
API is as follows:

void call_rcu(struct rcu_head * head,
void (*func)(struct rcu_head *head));

This function invokes func(head) after a grace period has elapsed. This invocation
might happen from either softirq or process context, so the function is not permit-
ted to block. The foo struct needs to have an rcu_head structure added, perhaps
as follows:

struct foo {
int a;
char b;
long c;
struct rcu_head rcu;

};

The foo_update_a() function might then be written as follows:

/*
* Create a new struct foo that is the same as the one currently
* pointed to by gbl_foo, except that field "a" is replaced
* with "new_a". Points gbl_foo to the new structure, and
* frees up the old structure after a grace period.
*
* Uses rcu_assign_pointer() to ensure that concurrent readers
* see the initialized version of the new structure.
*
* Uses call_rcu() to ensure that any readers that might have
* references to the old structure complete before freeing the

(continues on next page)

4.4. 4. WHAT IF MY UPDATING THREAD CANNOT BLOCK? 29

Linux Rcu Documentation

(continued from previous page)
* old structure.
*/

void foo_update_a(int new_a)
{

struct foo *new_fp;
struct foo *old_fp;

new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
spin_lock(&foo_mutex);
old_fp = rcu_dereference_protected(gbl_foo, lockdep_is_held(&foo_

↪→mutex));
*new_fp = *old_fp;
new_fp->a = new_a;
rcu_assign_pointer(gbl_foo, new_fp);
spin_unlock(&foo_mutex);
call_rcu(&old_fp->rcu, foo_reclaim);

}

The foo_reclaim() function might appear as follows:

void foo_reclaim(struct rcu_head *rp)
{

struct foo *fp = container_of(rp, struct foo, rcu);

foo_cleanup(fp->a);

kfree(fp);
}

The container_of() primitive is a macro that, given a pointer into a struct, the type
of the struct, and the pointed-to field within the struct, returns a pointer to the
beginning of the struct.

The use of call_rcu() permits the caller of foo_update_a() to immediately regain
control, without needing to worry further about the old version of the newly up-
dated element. It also clearly shows the RCU distinction between updater, namely
foo_update_a(), and reclaimer, namely foo_reclaim().

The summary of advice is the same as for the previous section, except that we are
now using call_rcu() rather than synchronize_rcu():

• Use call_rcu() after removing a data element from an RCU-protected data
structure in order to register a callback function that will be invoked after
the completion of all RCU read-side critical sections that might be referencing
that data item.

If the callback for call_rcu() is not doing anything more than calling kfree() on the
structure, you can use kfree_rcu() instead of call_rcu() to avoid having to write
your own callback:

kfree_rcu(old_fp, rcu);

Again, see checklist.txt for additional rules governing the use of RCU.

30 Chapter 4. What is RCU? – “Read, Copy, Update”

Linux Rcu Documentation

4.5 5. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF
RCU?

One of the nice things about RCU is that it has extremely simple“toy”implemen-
tations that are a good first step towards understanding the production-quality
implementations in the Linux kernel. This section presents two such “toy”im-
plementations of RCU, one that is implemented in terms of familiar locking prim-
itives, and another that more closely resembles “classic”RCU. Both are way too
simple for real-world use, lacking both functionality and performance. However,
they are useful in getting a feel for how RCU works. See kernel/rcu/update.c for
a production-quality implementation, and see:

http://www.rdrop.com/users/paulmck/RCU

for papers describing the Linux kernel RCU implementation. The OLS’01 and OLS’
02 papers are a good introduction, and the dissertation provides more details on
the current implementation as of early 2004.

4.5.1 5A. “TOY”IMPLEMENTATION #1: LOCKING

This section presents a“toy”RCU implementation that is based on familiar locking
primitives. Its overhead makes it a non-starter for real-life use, as does its lack of
scalability. It is also unsuitable for realtime use, since it allows scheduling latency
to“bleed”from one read-side critical section to another. It also assumes recursive
reader-writer locks: If you try this with non-recursive locks, and you allow nested
rcu_read_lock() calls, you can deadlock.

However, it is probably the easiest implementation to relate to, so is a good starting
point.

It is extremely simple:

static DEFINE_RWLOCK(rcu_gp_mutex);

void rcu_read_lock(void)
{

read_lock(&rcu_gp_mutex);
}

void rcu_read_unlock(void)
{

read_unlock(&rcu_gp_mutex);
}

void synchronize_rcu(void)
{

write_lock(&rcu_gp_mutex);
smp_mb__after_spinlock();
write_unlock(&rcu_gp_mutex);

}

[You can ignore rcu_assign_pointer() and rcu_dereference() without missing much.
But here are simplified versions anyway. And whatever you do, don’t forget about
them when submitting patches making use of RCU!]:

4.5. 5. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU? 31

http://www.rdrop.com/users/paulmck/RCU

Linux Rcu Documentation

#define rcu_assign_pointer(p, v) \
({ \

smp_store_release(&(p), (v)); \
})

#define rcu_dereference(p) \
({ \

typeof(p) _________p1 = READ_ONCE(p); \
(_________p1); \

})

The rcu_read_lock() and rcu_read_unlock() primitive read-acquire and release a
global reader-writer lock. The synchronize_rcu() primitive write-acquires this
same lock, then releases it. This means that once synchronize_rcu() exits, all
RCU read-side critical sections that were in progress before synchronize_rcu()
was called are guaranteed to have completed – there is no way that synchro-
nize_rcu() would have been able to write-acquire the lock otherwise. The
smp_mb__after_spinlock() promotes synchronize_rcu() to a full memory barrier in
compliance with the “Memory-Barrier Guarantees”listed in:

Documentation/RCU/Design/Requirements/Requirements.rst

It is possible to nest rcu_read_lock(), since reader-writer locks may be recursively
acquired. Note also that rcu_read_lock() is immune from deadlock (an impor-
tant property of RCU). The reason for this is that the only thing that can block
rcu_read_lock() is a synchronize_rcu(). But synchronize_rcu() does not acquire
any locks while holding rcu_gp_mutex, so there can be no deadlock cycle.

Quick Quiz #1: Why is this argument naive? How could a deadlock occur when
using this algorithm in a real-world Linux kernel? How could this deadlock
be avoided?

Answers to Quick Quiz

4.5.2 5B. “TOY”EXAMPLE #2: CLASSIC RCU

This section presents a“toy”RCU implementation that is based on“classic RCU”
. It is also short on performance (but only for updates) and on features such as
hotplug CPU and the ability to run in CONFIG_PREEMPT kernels. The definitions
of rcu_dereference() and rcu_assign_pointer() are the same as those shown in the
preceding section, so they are omitted.

void rcu_read_lock(void) { }

void rcu_read_unlock(void) { }

void synchronize_rcu(void)
{

int cpu;

for_each_possible_cpu(cpu)
run_on(cpu);

}

32 Chapter 4. What is RCU? – “Read, Copy, Update”

Linux Rcu Documentation

Note that rcu_read_lock() and rcu_read_unlock() do absolutely nothing. This is the
great strength of classic RCU in a non-preemptive kernel: read-side overhead is
precisely zero, at least on non-Alpha CPUs. And there is absolutely no way that
rcu_read_lock() can possibly participate in a deadlock cycle!

The implementation of synchronize_rcu() simply schedules itself on each CPU in
turn. The run_on() primitive can be implemented straightforwardly in terms of
the sched_setaffinity() primitive. Of course, a somewhat less “toy”implementa-
tion would restore the affinity upon completion rather than just leaving all tasks
running on the last CPU, but when I said “toy”, I meant toy!
So how the heck is this supposed to work???

Remember that it is illegal to block while in an RCU read-side critical section.
Therefore, if a given CPU executes a context switch, we know that it must have
completed all preceding RCU read-side critical sections. Once all CPUs have ex-
ecuted a context switch, then all preceding RCU read-side critical sections will
have completed.

So, suppose that we remove a data item from its structure and then invoke syn-
chronize_rcu(). Once synchronize_rcu() returns, we are guaranteed that there are
no RCU read-side critical sections holding a reference to that data item, so we can
safely reclaim it.

Quick Quiz #2: Give an example where Classic RCU’s read-side overhead is
negative.

Answers to Quick Quiz

Quick Quiz #3: If it is illegal to block in an RCU read-side critical section, what
the heck do you do in PREEMPT_RT, where normal spinlocks can block???

Answers to Quick Quiz

4.6 6. ANALOGY WITH READER-WRITER LOCKING

Although RCU can be used in many different ways, a very common use of RCU is
analogous to reader-writer locking. The following unified diff shows how closely
related RCU and reader-writer locking can be.

@@ -5,5 +5,5 @@ struct el {
int data;
/* Other data fields */

};
-rwlock_t listmutex;
+spinlock_t listmutex;
struct el head;

@@ -13,15 +14,15 @@
struct list_head *lp;
struct el *p;

- read_lock(&listmutex);
- list_for_each_entry(p, head, lp) {
+ rcu_read_lock();

(continues on next page)

4.6. 6. ANALOGY WITH READER-WRITER LOCKING 33

Linux Rcu Documentation

(continued from previous page)
+ list_for_each_entry_rcu(p, head, lp) {

if (p->key == key) {
*result = p->data;

- read_unlock(&listmutex);
+ rcu_read_unlock();

return 1;
}

}
- read_unlock(&listmutex);
+ rcu_read_unlock();

return 0;
}

@@ -29,15 +30,16 @@
{

struct el *p;

- write_lock(&listmutex);
+ spin_lock(&listmutex);

list_for_each_entry(p, head, lp) {
if (p->key == key) {

- list_del(&p->list);
- write_unlock(&listmutex);
+ list_del_rcu(&p->list);
+ spin_unlock(&listmutex);
+ synchronize_rcu();

kfree(p);
return 1;

}
}

- write_unlock(&listmutex);
+ spin_unlock(&listmutex);

return 0;
}

Or, for those who prefer a side-by-side listing:

1 struct el { 1 struct el {
2 struct list_head list; 2 struct list_head list;
3 long key; 3 long key;
4 spinlock_t mutex; 4 spinlock_t mutex;
5 int data; 5 int data;
6 /* Other data fields */ 6 /* Other data fields */
7 }; 7 };
8 rwlock_t listmutex; 8 spinlock_t listmutex;
9 struct el head; 9 struct el head;

1 int search(long key, int *result) 1 int search(long key, int *result)
2 { 2 {
3 struct list_head *lp; 3 struct list_head *lp;
4 struct el *p; 4 struct el *p;
5 5
6 read_lock(&listmutex); 6 rcu_read_lock();
7 list_for_each_entry(p, head, lp) { 7 list_for_each_entry_rcu(p,␣
↪→head, lp) {

(continues on next page)

34 Chapter 4. What is RCU? – “Read, Copy, Update”

Linux Rcu Documentation

(continued from previous page)
8 if (p->key == key) { 8 if (p->key == key) {
9 *result = p->data; 9 *result = p->data;
10 read_unlock(&listmutex); 10 rcu_read_unlock();
11 return 1; 11 return 1;
12 } 12 }
13 } 13 }
14 read_unlock(&listmutex); 14 rcu_read_unlock();
15 return 0; 15 return 0;
16 } 16 }

1 int delete(long key) 1 int delete(long key)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 write_lock(&listmutex); 5 spin_lock(&listmutex);
6 list_for_each_entry(p, head, lp) { 6 list_for_each_entry(p, head,␣
↪→lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 list_del(&p->list); 8 list_del_rcu(&p->list);
9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);

10 synchronize_rcu();
10 kfree(p); 11 kfree(p);
11 return 1; 12 return 1;
12 } 13 }
13 } 14 }
14 write_unlock(&listmutex); 15 spin_unlock(&listmutex);
15 return 0; 16 return 0;
16 } 17 }

Either way, the differences are quite small. Read-side locking moves to
rcu_read_lock() and rcu_read_unlock, update-side locking moves from a reader-
writer lock to a simple spinlock, and a synchronize_rcu() precedes the kfree().

However, there is one potential catch: the read-side and update-side critical sec-
tions can now run concurrently. In many cases, this will not be a problem, but it is
necessary to check carefully regardless. For example, if multiple independent list
updates must be seen as a single atomic update, converting to RCU will require
special care.

Also, the presence of synchronize_rcu() means that the RCU version of delete()
can now block. If this is a problem, there is a callback-based mechanism that
never blocks, namely call_rcu() or kfree_rcu(), that can be used in place of syn-
chronize_rcu().

4.6. 6. ANALOGY WITH READER-WRITER LOCKING 35

Linux Rcu Documentation

4.7 7. FULL LIST OF RCU APIs

The RCU APIs are documented in docbook-format header comments in the Linux-
kernel source code, but it helps to have a full list of the APIs, since there does not
appear to be a way to categorize them in docbook. Here is the list, by category.

RCU list traversal:

list_entry_rcu
list_entry_lockless
list_first_entry_rcu
list_next_rcu
list_for_each_entry_rcu
list_for_each_entry_continue_rcu
list_for_each_entry_from_rcu
list_first_or_null_rcu
list_next_or_null_rcu
hlist_first_rcu
hlist_next_rcu
hlist_pprev_rcu
hlist_for_each_entry_rcu
hlist_for_each_entry_rcu_bh
hlist_for_each_entry_from_rcu
hlist_for_each_entry_continue_rcu
hlist_for_each_entry_continue_rcu_bh
hlist_nulls_first_rcu
hlist_nulls_for_each_entry_rcu
hlist_bl_first_rcu
hlist_bl_for_each_entry_rcu

RCU pointer/list update:

rcu_assign_pointer
list_add_rcu
list_add_tail_rcu
list_del_rcu
list_replace_rcu
hlist_add_behind_rcu
hlist_add_before_rcu
hlist_add_head_rcu
hlist_add_tail_rcu
hlist_del_rcu
hlist_del_init_rcu
hlist_replace_rcu
list_splice_init_rcu
list_splice_tail_init_rcu
hlist_nulls_del_init_rcu
hlist_nulls_del_rcu
hlist_nulls_add_head_rcu
hlist_bl_add_head_rcu
hlist_bl_del_init_rcu
hlist_bl_del_rcu
hlist_bl_set_first_rcu

RCU:

36 Chapter 4. What is RCU? – “Read, Copy, Update”

Linux Rcu Documentation

Critical sections Grace period Barrier

rcu_read_lock synchronize_net rcu_barrier
rcu_read_unlock synchronize_rcu
rcu_dereference synchronize_rcu_expedited
rcu_read_lock_held call_rcu
rcu_dereference_check kfree_rcu
rcu_dereference_protected

bh:

Critical sections Grace period Barrier

rcu_read_lock_bh call_rcu rcu_barrier
rcu_read_unlock_bh synchronize_rcu
[local_bh_disable] synchronize_rcu_expedited
[and friends]
rcu_dereference_bh
rcu_dereference_bh_check
rcu_dereference_bh_protected
rcu_read_lock_bh_held

sched:

Critical sections Grace period Barrier

rcu_read_lock_sched call_rcu rcu_barrier
rcu_read_unlock_sched synchronize_rcu
[preempt_disable] synchronize_rcu_expedited
[and friends]
rcu_read_lock_sched_notrace
rcu_read_unlock_sched_notrace
rcu_dereference_sched
rcu_dereference_sched_check
rcu_dereference_sched_protected
rcu_read_lock_sched_held

SRCU:

Critical sections Grace period Barrier

srcu_read_lock call_srcu srcu_barrier
srcu_read_unlock synchronize_srcu
srcu_dereference synchronize_srcu_expedited
srcu_dereference_check
srcu_read_lock_held

SRCU: Initialization/cleanup:

DEFINE_SRCU
DEFINE_STATIC_SRCU
init_srcu_struct
cleanup_srcu_struct

All: lockdep-checked RCU-protected pointer access:

4.7. 7. FULL LIST OF RCU APIs 37

Linux Rcu Documentation

rcu_access_pointer
rcu_dereference_raw
RCU_LOCKDEP_WARN
rcu_sleep_check
RCU_NONIDLE

See the comment headers in the source code (or the docbook generated from them)
for more information.

However, given that there are no fewer than four families of RCU APIs in the Linux
kernel, how do you choose which one to use? The following list can be helpful:

a. Will readers need to block? If so, you need SRCU.

b. What about the -rt patchset? If readers would need to block in an non-rt
kernel, you need SRCU. If readers would block in a -rt kernel, but not in a
non-rt kernel, SRCU is not necessary. (The -rt patchset turns spinlocks into
sleeplocks, hence this distinction.)

c. Do you need to treat NMI handlers, hardirq handlers, and code segments
with preemption disabled (whether via preempt_disable(), local_irq_save(),
local_bh_disable(), or some other mechanism) as if they were explicit RCU
readers? If so, RCU-sched is the only choice that will work for you.

d. Do you need RCU grace periods to complete even in the face of softirq mo-
nopolization of one or more of the CPUs? For example, is your code subject
to network-based denial-of-service attacks? If so, you should disable softirq
across your readers, for example, by using rcu_read_lock_bh().

e. Is your workload too update-intensive for normal use of RCU,
but inappropriate for other synchronization mechanisms? If so,
consider SLAB_TYPESAFE_BY_RCU (which was originally named
SLAB_DESTROY_BY_RCU). But please be careful!

f. Do you need read-side critical sections that are respected even though they
are in the middle of the idle loop, during user-mode execution, or on an of-
flined CPU? If so, SRCU is the only choice that will work for you.

g. Otherwise, use RCU.

Of course, this all assumes that you have determined that RCU is in fact the right
tool for your job.

4.8 8. ANSWERS TO QUICK QUIZZES

Quick Quiz #1: Why is this argument naive? How could a deadlock occur when
using this algorithm in a real-world Linux kernel? [Referring to the lock-based
“toy”RCU algorithm.]

Answer: Consider the following sequence of events:
1. CPU 0 acquires some unrelated lock, call it“problematic_lock”, disabling
irq via spin_lock_irqsave().

2. CPU 1 enters synchronize_rcu(), write-acquiring rcu_gp_mutex.

38 Chapter 4. What is RCU? – “Read, Copy, Update”

Linux Rcu Documentation

3. CPU 0 enters rcu_read_lock(), but must wait because CPU 1 holds
rcu_gp_mutex.

4. CPU 1 is interrupted, and the irq handler attempts to acquire problem-
atic_lock.

The system is now deadlocked.

One way to avoid this deadlock is to use an approach like that of CON-
FIG_PREEMPT_RT, where all normal spinlocks become blocking locks, and
all irq handlers execute in the context of special tasks. In this case, in step 4
above, the irq handler would block, allowing CPU 1 to release rcu_gp_mutex,
avoiding the deadlock.

Even in the absence of deadlock, this RCU implementation allows la-
tency to “bleed”from readers to other readers through synchronize_rcu().
To see this, consider task A in an RCU read-side critical section (thus
read-holding rcu_gp_mutex), task B blocked attempting to write-acquire
rcu_gp_mutex, and task C blocked in rcu_read_lock() attempting to
read_acquire rcu_gp_mutex. Task A’s RCU read-side latency is holding up
task C, albeit indirectly via task B.

Realtime RCU implementations therefore use a counter-based approach
where tasks in RCU read-side critical sections cannot be blocked by tasks
executing synchronize_rcu().

Back to Quick Quiz #1

Quick Quiz #2: Give an example where Classic RCU’s read-side overhead is
negative.

Answer: Imagine a single-CPU system with a non-CONFIG_PREEMPT kernel
where a routing table is used by process-context code, but can be updated
by irq-context code (for example, by an “ICMP REDIRECT”packet). The
usual way of handling this would be to have the process-context code dis-
able interrupts while searching the routing table. Use of RCU allows such
interrupt-disabling to be dispensed with. Thus, without RCU, you pay the
cost of disabling interrupts, and with RCU you don’t.
One can argue that the overhead of RCU in this case is negative with respect
to the single-CPU interrupt-disabling approach. Others might argue that the
overhead of RCU is merely zero, and that replacing the positive overhead of
the interrupt-disabling scheme with the zero-overhead RCU scheme does not
constitute negative overhead.

In real life, of course, things are more complex. But even the theoretical
possibility of negative overhead for a synchronization primitive is a bit unex-
pected. ;-)

Back to Quick Quiz #2

Quick Quiz #3: If it is illegal to block in an RCU read-side critical section, what
the heck do you do in PREEMPT_RT, where normal spinlocks can block???

Answer: Just as PREEMPT_RT permits preemption of spinlock critical sections, it
permits preemption of RCU read-side critical sections. It also permits spin-
locks blocking while in RCU read-side critical sections.

4.8. 8. ANSWERS TO QUICK QUIZZES 39

Linux Rcu Documentation

Why the apparent inconsistency? Because it is possible to use priority boost-
ing to keep the RCU grace periods short if need be (for example, if running
short of memory). In contrast, if blocking waiting for (say) network reception,
there is no way to know what should be boosted. Especially given that the
process we need to boost might well be a human being who just went out for
a pizza or something. And although a computer-operated cattle prod might
arouse serious interest, it might also provoke serious objections. Besides,
how does the computer know what pizza parlor the human being went to???

Back to Quick Quiz #3

ACKNOWLEDGEMENTS

My thanks to the people who helped make this human-readable, including Jon
Walpole, Josh Triplett, Serge Hallyn, Suzanne Wood, and Alan Stern.

For more information, see http://www.rdrop.com/users/paulmck/RCU.

40 Chapter 4. What is RCU? – “Read, Copy, Update”

http://www.rdrop.com/users/paulmck/RCU

CHAPTER

FIVE

RCU CONCEPTS

The basic idea behind RCU (read-copy update) is to split destructive operations
into two parts, one that prevents anyone from seeing the data item being de-
stroyed, and one that actually carries out the destruction. A“grace period”must
elapse between the two parts, and this grace period must be long enough that any
readers accessing the item being deleted have since dropped their references. For
example, an RCU-protected deletion from a linked list would first remove the item
from the list, wait for a grace period to elapse, then free the element. See the
Documentation/RCU/listRCU.rst for more information on using RCU with linked
lists.

5.1 Frequently Asked Questions

• Why would anyone want to use RCU?

The advantage of RCU’s two-part approach is that RCU readers need not
acquire any locks, perform any atomic instructions, write to shared memory,
or (on CPUs other than Alpha) execute any memory barriers. The fact that
these operations are quite expensive on modern CPUs is what gives RCU its
performance advantages in read-mostly situations. The fact that RCU readers
need not acquire locks can also greatly simplify deadlock-avoidance code.

• How can the updater tell when a grace period has completed if the RCU read-
ers give no indication when they are done?

Just as with spinlocks, RCU readers are not permitted to block, switch to user-
mode execution, or enter the idle loop. Therefore, as soon as a CPU is seen
passing through any of these three states, we know that that CPU has exited
any previous RCU read-side critical sections. So, if we remove an item from
a linked list, and then wait until all CPUs have switched context, executed in
user mode, or executed in the idle loop, we can safely free up that item.

Preemptible variants of RCU (CONFIG_PREEMPT_RCU) get the same effect,
but require that the readers manipulate CPU-local counters. These counters
allow limited types of blocking within RCU read-side critical sections. SRCU
also uses CPU-local counters, and permits general blocking within RCU read-
side critical sections. These variants of RCU detect grace periods by sampling
these counters.

• If I am running on a uniprocessor kernel, which can only do one thing at a
time, why should I wait for a grace period?

41

Linux Rcu Documentation

See Documentation/RCU/UP.rst for more information.

• How can I see where RCU is currently used in the Linux kernel?

Search for“rcu_read_lock”,“rcu_read_unlock”,“call_rcu”,“rcu_read_lock_bh”
, “rcu_read_unlock_bh”, “srcu_read_lock”, “srcu_read_unlock”, “syn-
chronize_rcu”,“synchronize_net”,“synchronize_srcu”, and the other RCU
primitives. Or grab one of the cscope databases from:

(http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html).

• What guidelines should I follow when writing code that uses RCU?

See the checklist.txt file in this directory.

• Why the name “RCU”?
“RCU”stands for“read-copy update”. Documentation/RCU/listRCU.rst has
more information on where this name came from, search for“read-copy up-
date”to find it.

• I hear that RCU is patented? What is with that?

Yes, it is. There are several known patents related to RCU, search for the
string “Patent”in Documentation/RCU/RTFP.txt to find them. Of these, one
was allowed to lapse by the assignee, and the others have been contributed
to the Linux kernel under GPL. There are now also LGPL implementations of
user-level RCU available (https://liburcu.org/).

• I hear that RCU needs work in order to support realtime kernels?

Realtime-friendly RCU can be enabled via the CONFIG_PREEMPT_RCU ker-
nel configuration parameter.

• Where can I find more information on RCU?

See the Documentation/RCU/RTFP.txt file. Or point your browser at (http:
//www.rdrop.com/users/paulmck/RCU/).

42 Chapter 5. RCU Concepts

http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html
https://liburcu.org/
http://www.rdrop.com/users/paulmck/RCU/
http://www.rdrop.com/users/paulmck/RCU/

CHAPTER

SIX

USING RCU TO PROTECT READ-MOSTLY LINKED LISTS

One of the best applications of RCU is to protect read-mostly linked lists (struct
list_head in list.h). One big advantage of this approach is that all of the required
memory barriers are included for you in the list macros. This document describes
several applications of RCU, with the best fits first.

6.1 Example 1: Read-mostly list: Deferred Destruction

A widely used usecase for RCU lists in the kernel is lockless iteration over all
processes in the system. task_struct::tasks represents the list node that links
all the processes. The list can be traversed in parallel to any list additions or
removals.

The traversal of the list is done using for_each_process() which is defined by the
2 macros:

#define next_task(p) \
list_entry_rcu((p)->tasks.next, struct task_struct, tasks)

#define for_each_process(p) \
for (p = &init_task ; (p = next_task(p)) != &init_task ;)

The code traversing the list of all processes typically looks like:

rcu_read_lock();
for_each_process(p) {

/* Do something with p */
}
rcu_read_unlock();

The simplified code for removing a process from a task list is:

void release_task(struct task_struct *p)
{

write_lock(&tasklist_lock);
list_del_rcu(&p->tasks);
write_unlock(&tasklist_lock);
call_rcu(&p->rcu, delayed_put_task_struct);

}

When a process exits, release_task() calls list_del_rcu(&p->tasks) under
tasklist_lock writer lock protection, to remove the task from the list of all

43

Linux Rcu Documentation

tasks. The tasklist_lock prevents concurrent list additions/removals from cor-
rupting the list. Readers using for_each_process() are not protected with the
tasklist_lock. To prevent readers from noticing changes in the list pointers, the
task_struct object is freed only after one or more grace periods elapse (with the
help of call_rcu()). This deferring of destruction ensures that any readers travers-
ing the list will see valid p->tasks.next pointers and deletion/freeing can happen
in parallel with traversal of the list. This pattern is also called an existence lock,
since RCU pins the object in memory until all existing readers finish.

6.2 Example 2: Read-Side Action Taken Outside of Lock:
No In-Place Updates

The best applications are cases where, if reader-writer locking were used, the
read-side lock would be dropped before taking any action based on the results of
the search. The most celebrated example is the routing table. Because the routing
table is tracking the state of equipment outside of the computer, it will at times
contain stale data. Therefore, once the route has been computed, there is no need
to hold the routing table static during transmission of the packet. After all, you can
hold the routing table static all you want, but that won’t keep the external Internet
from changing, and it is the state of the external Internet that really matters. In
addition, routing entries are typically added or deleted, rather than being modified
in place.

A straightforward example of this use of RCU may be found in the system-
call auditing support. For example, a reader-writer locked implementation of
audit_filter_task() might be as follows:

static enum audit_state audit_filter_task(struct task_struct *tsk)
{

struct audit_entry *e;
enum audit_state state;

read_lock(&auditsc_lock);
/* Note: audit_filter_mutex held by caller. */
list_for_each_entry(e, &audit_tsklist, list) {

if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
read_unlock(&auditsc_lock);
return state;

}
}
read_unlock(&auditsc_lock);
return AUDIT_BUILD_CONTEXT;

}

Here the list is searched under the lock, but the lock is dropped before the cor-
responding value is returned. By the time that this value is acted on, the list may
well have been modified. This makes sense, since if you are turning auditing off,
it is OK to audit a few extra system calls.

This means that RCU can be easily applied to the read side, as follows:

44 Chapter 6. Using RCU to Protect Read-Mostly Linked Lists

Linux Rcu Documentation

static enum audit_state audit_filter_task(struct task_struct *tsk)
{

struct audit_entry *e;
enum audit_state state;

rcu_read_lock();
/* Note: audit_filter_mutex held by caller. */
list_for_each_entry_rcu(e, &audit_tsklist, list) {

if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
rcu_read_unlock();
return state;

}
}
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;

}

The read_lock() and read_unlock() calls have become rcu_read_lock() and
rcu_read_unlock(), respectively, and the list_for_each_entry() has become
list_for_each_entry_rcu(). The _rcu() list-traversal primitives insert the read-side
memory barriers that are required on DEC Alpha CPUs.

The changes to the update side are also straightforward. A reader-writer lock
might be used as follows for deletion and insertion:

static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)

{
struct audit_entry *e;

write_lock(&auditsc_lock);
list_for_each_entry(e, list, list) {

if (!audit_compare_rule(rule, &e->rule)) {
list_del(&e->list);
write_unlock(&auditsc_lock);
return 0;

}
}
write_unlock(&auditsc_lock);
return -EFAULT; /* No matching rule */

}

static inline int audit_add_rule(struct audit_entry *entry,
struct list_head *list)

{
write_lock(&auditsc_lock);
if (entry->rule.flags & AUDIT_PREPEND) {

entry->rule.flags &= ~AUDIT_PREPEND;
list_add(&entry->list, list);

} else {
list_add_tail(&entry->list, list);

}
write_unlock(&auditsc_lock);
return 0;

}

Following are the RCU equivalents for these two functions:

6.2. Example 2: Read-Side Action Taken Outside of Lock: No In-Place
Updates

45

Linux Rcu Documentation

static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)

{
struct audit_entry *e;

/* No need to use the _rcu iterator here, since this is the only
* deletion routine. */

list_for_each_entry(e, list, list) {
if (!audit_compare_rule(rule, &e->rule)) {

list_del_rcu(&e->list);
call_rcu(&e->rcu, audit_free_rule);
return 0;

}
}
return -EFAULT; /* No matching rule */

}

static inline int audit_add_rule(struct audit_entry *entry,
struct list_head *list)

{
if (entry->rule.flags & AUDIT_PREPEND) {

entry->rule.flags &= ~AUDIT_PREPEND;
list_add_rcu(&entry->list, list);

} else {
list_add_tail_rcu(&entry->list, list);

}
return 0;

}

Normally, the write_lock() and write_unlock() would be replaced by
a spin_lock() and a spin_unlock(). But in this case, all callers hold
audit_filter_mutex, so no additional locking is required. The auditsc_lock can
therefore be eliminated, since use of RCU eliminates the need for writers to ex-
clude readers.

The list_del(), list_add(), and list_add_tail() primitives have been replaced by
list_del_rcu(), list_add_rcu(), and list_add_tail_rcu(). The _rcu() list-manipulation
primitives add memory barriers that are needed on weakly ordered CPUs (most of
them!). The list_del_rcu() primitive omits the pointer poisoning debug-assist code
that would otherwise cause concurrent readers to fail spectacularly.

So, when readers can tolerate stale data and when entries are either added or
deleted, without in-place modification, it is very easy to use RCU!

6.3 Example 3: Handling In-Place Updates

The system-call auditing code does not update auditing rules in place. However, if
it did, the reader-writer-locked code to do so might look as follows (assuming only
field_count is updated, otherwise, the added fields would need to be filled in):

static inline int audit_upd_rule(struct audit_rule *rule,
struct list_head *list,
__u32 newaction,

(continues on next page)

46 Chapter 6. Using RCU to Protect Read-Mostly Linked Lists

Linux Rcu Documentation

(continued from previous page)
__u32 newfield_count)

{
struct audit_entry *e;
struct audit_entry *ne;

write_lock(&auditsc_lock);
/* Note: audit_filter_mutex held by caller. */
list_for_each_entry(e, list, list) {

if (!audit_compare_rule(rule, &e->rule)) {
e->rule.action = newaction;
e->rule.field_count = newfield_count;
write_unlock(&auditsc_lock);
return 0;

}
}
write_unlock(&auditsc_lock);
return -EFAULT; /* No matching rule */

}

The RCU version creates a copy, updates the copy, then replaces the old entry
with the newly updated entry. This sequence of actions, allowing concurrent reads
while making a copy to perform an update, is what gives RCU (read-copy update)
its name. The RCU code is as follows:

static inline int audit_upd_rule(struct audit_rule *rule,
struct list_head *list,
__u32 newaction,
__u32 newfield_count)

{
struct audit_entry *e;
struct audit_entry *ne;

list_for_each_entry(e, list, list) {
if (!audit_compare_rule(rule, &e->rule)) {

ne = kmalloc(sizeof(*entry), GFP_ATOMIC);
if (ne == NULL)

return -ENOMEM;
audit_copy_rule(&ne->rule, &e->rule);
ne->rule.action = newaction;
ne->rule.field_count = newfield_count;
list_replace_rcu(&e->list, &ne->list);
call_rcu(&e->rcu, audit_free_rule);
return 0;

}
}
return -EFAULT; /* No matching rule */

}

Again, this assumes that the caller holds audit_filter_mutex. Normally, the
writer lock would become a spinlock in this sort of code.

Another use of this pattern can be found in the openswitch driver’s connection
tracking table code in ct_limit_set(). The table holds connection tracking en-
tries and has a limit on the maximum entries. There is one such table per-zone
and hence one limit per zone. The zones are mapped to their limits through a
hashtable using an RCU-managed hlist for the hash chains. When a new limit is

6.3. Example 3: Handling In-Place Updates 47

Linux Rcu Documentation

set, a new limit object is allocated and ct_limit_set() is called to replace the old
limit object with the new one using list_replace_rcu(). The old limit object is then
freed after a grace period using kfree_rcu().

6.4 Example 4: Eliminating Stale Data

The auditing example above tolerates stale data, as do most algorithms that are
tracking external state. Because there is a delay from the time the external state
changes before Linux becomes aware of the change, additional RCU-induced stal-
eness is generally not a problem.

However, there are many examples where stale data cannot be tolerated. One
example in the Linux kernel is the System V IPC (see the shm_lock() function in
ipc/shm.c). This code checks a deleted flag under a per-entry spinlock, and, if the
deleted flag is set, pretends that the entry does not exist. For this to be helpful,
the search function must return holding the per-entry spinlock, as shm_lock() does
in fact do.

Quick Quiz: For the deleted-flag technique to be helpful, why is it necessary to
hold the per-entry lock while returning from the search function?

Answer to Quick Quiz

If the system-call audit module were to ever need to reject stale data, one way
to accomplish this would be to add a deleted flag and a lock spinlock to the au-
dit_entry structure, and modify audit_filter_task() as follows:

static enum audit_state audit_filter_task(struct task_struct *tsk)
{

struct audit_entry *e;
enum audit_state state;

rcu_read_lock();
list_for_each_entry_rcu(e, &audit_tsklist, list) {

if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
spin_lock(&e->lock);
if (e->deleted) {

spin_unlock(&e->lock);
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;

}
rcu_read_unlock();
return state;

}
}
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;

}

Note that this example assumes that entries are only added and deleted. Addi-
tional mechanism is required to deal correctly with the update-in-place performed
by audit_upd_rule(). For one thing, audit_upd_rule() would need additional
memory barriers to ensure that the list_add_rcu() was really executed before the
list_del_rcu().

48 Chapter 6. Using RCU to Protect Read-Mostly Linked Lists

Linux Rcu Documentation

The audit_del_rule() function would need to set the deleted flag under the
spinlock as follows:

static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)

{
struct audit_entry *e;

/* No need to use the _rcu iterator here, since this
* is the only deletion routine. */

list_for_each_entry(e, list, list) {
if (!audit_compare_rule(rule, &e->rule)) {

spin_lock(&e->lock);
list_del_rcu(&e->list);
e->deleted = 1;
spin_unlock(&e->lock);
call_rcu(&e->rcu, audit_free_rule);
return 0;

}
}
return -EFAULT; /* No matching rule */

}

This too assumes that the caller holds audit_filter_mutex.

6.5 Example 5: Skipping Stale Objects

For some usecases, reader performance can be improved by skipping stale objects
during read-side list traversal if the object in concern is pending destruction after
one or more grace periods. One such example can be found in the timerfd subsys-
tem. When a CLOCK_REALTIME clock is reprogrammed - for example due to setting
of the system time, then all programmed timerfds that depend on this clock get
triggered and processes waiting on them to expire are woken up in advance of their
scheduled expiry. To facilitate this, all such timers are added to an RCU-managed
cancel_list when they are setup in timerfd_setup_cancel():

static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
{

spin_lock(&ctx->cancel_lock);
if ((ctx->clockid == CLOCK_REALTIME &&

(flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_
↪→SET)) {

if (!ctx->might_cancel) {
ctx->might_cancel = true;
spin_lock(&cancel_lock);
list_add_rcu(&ctx->clist, &cancel_list);
spin_unlock(&cancel_lock);

}
}
spin_unlock(&ctx->cancel_lock);

}

When a timerfd is freed (fd is closed), then the might_cancel flag of the timerfd
object is cleared, the object removed from the cancel_list and destroyed:

6.5. Example 5: Skipping Stale Objects 49

Linux Rcu Documentation

int timerfd_release(struct inode *inode, struct file *file)
{

struct timerfd_ctx *ctx = file->private_data;

spin_lock(&ctx->cancel_lock);
if (ctx->might_cancel) {

ctx->might_cancel = false;
spin_lock(&cancel_lock);
list_del_rcu(&ctx->clist);
spin_unlock(&cancel_lock);

}
spin_unlock(&ctx->cancel_lock);

hrtimer_cancel(&ctx->t.tmr);
kfree_rcu(ctx, rcu);
return 0;

}

If the CLOCK_REALTIME clock is set, for example by a time server, the hrtimer
framework calls timerfd_clock_was_set() which walks the cancel_list and
wakes up processes waiting on the timerfd. While iterating the cancel_list, the
might_cancel flag is consulted to skip stale objects:

void timerfd_clock_was_set(void)
{

struct timerfd_ctx *ctx;
unsigned long flags;

rcu_read_lock();
list_for_each_entry_rcu(ctx, &cancel_list, clist) {

if (!ctx->might_cancel)
continue;

spin_lock_irqsave(&ctx->wqh.lock, flags);
if (ctx->moffs != ktime_mono_to_real(0)) {

ctx->moffs = KTIME_MAX;
ctx->ticks++;
wake_up_locked_poll(&ctx->wqh, EPOLLIN);

}
spin_unlock_irqrestore(&ctx->wqh.lock, flags);

}
rcu_read_unlock();

}

The key point here is, because RCU-traversal of the cancel_list happens while
objects are being added and removed to the list, sometimes the traversal can step
on an object that has been removed from the list. In this example, it is seen that
it is better to skip such objects using a flag.

50 Chapter 6. Using RCU to Protect Read-Mostly Linked Lists

Linux Rcu Documentation

6.6 Summary

Read-mostly list-based data structures that can tolerate stale data are the most
amenable to use of RCU. The simplest case is where entries are either added or
deleted from the data structure (or atomically modified in place), but non-atomic
in-place modifications can be handled by making a copy, updating the copy, then
replacing the original with the copy. If stale data cannot be tolerated, then a
deleted flag may be used in conjunction with a per-entry spinlock in order to allow
the search function to reject newly deleted data.

Answer to Quick Quiz: For the deleted-flag technique to be helpful, why is it
necessary to hold the per-entry lock while returning from the search function?

If the search function drops the per-entry lock before returning, then the
caller will be processing stale data in any case. If it is really OK to be pro-
cessing stale data, then you don’t need a deleted flag. If processing stale
data really is a problem, then you need to hold the per-entry lock across all
of the code that uses the value that was returned.

Back to Quick Quiz

6.6. Summary 51

Linux Rcu Documentation

52 Chapter 6. Using RCU to Protect Read-Mostly Linked Lists

CHAPTER

SEVEN

USING RCU TO PROTECT DYNAMIC NMI HANDLERS

Although RCU is usually used to protect read-mostly data structures, it is possible
to use RCU to provide dynamic non-maskable interrupt handlers, as well as dy-
namic irq handlers. This document describes how to do this, drawing loosely from
Zwane Mwaikambo’s NMI-timer work in“arch/x86/oprofile/nmi_timer_int.c”and
in “arch/x86/kernel/traps.c”.
The relevant pieces of code are listed below, each followed by a brief explanation:

static int dummy_nmi_callback(struct pt_regs *regs, int cpu)
{

return 0;
}

The dummy_nmi_callback() function is a“dummy”NMI handler that does nothing,
but returns zero, thus saying that it did nothing, allowing the NMI handler to take
the default machine-specific action:

static nmi_callback_t nmi_callback = dummy_nmi_callback;

This nmi_callback variable is a global function pointer to the current NMI handler:

void do_nmi(struct pt_regs * regs, long error_code)
{

int cpu;

nmi_enter();

cpu = smp_processor_id();
++nmi_count(cpu);

if (!rcu_dereference_sched(nmi_callback)(regs, cpu))
default_do_nmi(regs);

nmi_exit();
}

The do_nmi() function processes each NMI. It first disables preemption in the same
way that a hardware irq would, then increments the per-CPU count of NMIs. It
then invokes the NMI handler stored in the nmi_callback function pointer. If this
handler returns zero, do_nmi() invokes the default_do_nmi() function to handle a
machine-specific NMI. Finally, preemption is restored.

In theory, rcu_dereference_sched() is not needed, since this code runs only on

53

Linux Rcu Documentation

i386, which in theory does not need rcu_dereference_sched() anyway. However, in
practice it is a good documentation aid, particularly for anyone attempting to do
something similar on Alpha or on systems with aggressive optimizing compilers.

Quick Quiz: Why might the rcu_dereference_sched() be necessary on Alpha,
given that the code referenced by the pointer is read-only?

Answer to Quick Quiz

Back to the discussion of NMI and RCU:

void set_nmi_callback(nmi_callback_t callback)
{

rcu_assign_pointer(nmi_callback, callback);
}

The set_nmi_callback() function registers an NMI handler. Note that any
data that is to be used by the callback must be initialized up -before- the
call to set_nmi_callback(). On architectures that do not order writes, the
rcu_assign_pointer() ensures that the NMI handler sees the initialized values:

void unset_nmi_callback(void)
{

rcu_assign_pointer(nmi_callback, dummy_nmi_callback);
}

This function unregisters an NMI handler, restoring the original
dummy_nmi_handler(). However, there may well be an NMI handler currently
executing on some other CPU. We therefore cannot free up any data structures
used by the old NMI handler until execution of it completes on all other CPUs.

One way to accomplish this is via synchronize_rcu(), perhaps as follows:

unset_nmi_callback();
synchronize_rcu();
kfree(my_nmi_data);

This works because (as of v4.20) synchronize_rcu() blocks until all CPUs complete
any preemption-disabled segments of code that they were executing. Since NMI
handlers disable preemption, synchronize_rcu() is guaranteed not to return until
all ongoing NMI handlers exit. It is therefore safe to free up the handler’s data
as soon as synchronize_rcu() returns.

Important note: for this to work, the architecture in question must invoke
nmi_enter() and nmi_exit() on NMI entry and exit, respectively.

Answer to Quick Quiz: Why might the rcu_dereference_sched() be necessary on
Alpha, given that the code referenced by the pointer is read-only?

The caller to set_nmi_callback() might well have initialized some data that is
to be used by the new NMI handler. In this case, the rcu_dereference_sched()
would be needed, because otherwise a CPU that received an NMI just after
the new handler was set might see the pointer to the new NMI handler, but
the old pre-initialized version of the handler’s data.
This same sad story can happen on other CPUs when using a compiler with
aggressive pointer-value speculation optimizations.

54 Chapter 7. Using RCU to Protect Dynamic NMI Handlers

Linux Rcu Documentation

More important, the rcu_dereference_sched() makes it clear to someone read-
ing the code that the pointer is being protected by RCU-sched.

55

Linux Rcu Documentation

56 Chapter 7. Using RCU to Protect Dynamic NMI Handlers

CHAPTER

EIGHT

RCU ON UNIPROCESSOR SYSTEMS

A common misconception is that, on UP systems, the call_rcu() primitive may im-
mediately invoke its function. The basis of this misconception is that since there
is only one CPU, it should not be necessary to wait for anything else to get done,
since there are no other CPUs for anything else to be happening on. Although this
approach will sort of work a surprising amount of the time, it is a very bad idea
in general. This document presents three examples that demonstrate exactly how
bad an idea this is.

8.1 Example 1: softirq Suicide

Suppose that an RCU-based algorithm scans a linked list containing elements A,
B, and C in process context, and can delete elements from this same list in softirq
context. Suppose that the process-context scan is referencing element B when it
is interrupted by softirq processing, which deletes element B, and then invokes
call_rcu() to free element B after a grace period.

Now, if call_rcu() were to directly invoke its arguments, then upon return from
softirq, the list scan would find itself referencing a newly freed element B. This
situation can greatly decrease the life expectancy of your kernel.

This same problem can occur if call_rcu() is invoked from a hardware interrupt
handler.

8.2 Example 2: Function-Call Fatality

Of course, one could avert the suicide described in the preceding example by hav-
ing call_rcu() directly invoke its arguments only if it was called from process con-
text. However, this can fail in a similar manner.

Suppose that an RCU-based algorithm again scans a linked list containing ele-
ments A, B, and C in process contexts, but that it invokes a function on each ele-
ment as it is scanned. Suppose further that this function deletes element B from
the list, then passes it to call_rcu() for deferred freeing. This may be a bit uncon-
ventional, but it is perfectly legal RCU usage, since call_rcu() must wait for a grace
period to elapse. Therefore, in this case, allowing call_rcu() to immediately invoke
its arguments would cause it to fail to make the fundamental guarantee underlying
RCU, namely that call_rcu() defers invoking its arguments until all RCU read-side
critical sections currently executing have completed.

57

Linux Rcu Documentation

Quick Quiz #1: Why is it not legal to invoke synchronize_rcu() in this case?
Answers to Quick Quiz

8.3 Example 3: Death by Deadlock

Suppose that call_rcu() is invoked while holding a lock, and that the callback func-
tion must acquire this same lock. In this case, if call_rcu() were to directly invoke
the callback, the result would be self-deadlock.

In some cases, it would possible to restructure to code so that the call_rcu() is
delayed until after the lock is released. However, there are cases where this can
be quite ugly:

1. If a number of items need to be passed to call_rcu() within the same critical
section, then the code would need to create a list of them, then traverse the
list once the lock was released.

2. In some cases, the lock will be held across some kernel API, so that delaying
the call_rcu() until the lock is released requires that the data item be passed
up via a common API. It is far better to guarantee that callbacks are invoked
with no locks held than to have to modify such APIs to allow arbitrary data
items to be passed back up through them.

If call_rcu() directly invokes the callback, painful locking restrictions or API
changes would be required.

Quick Quiz #2: What locking restriction must RCU callbacks respect?
Answers to Quick Quiz

8.4 Summary

Permitting call_rcu() to immediately invoke its arguments breaks RCU, even on a
UP system. So do not do it! Even on a UP system, the RCU infrastructure must
respect grace periods, and must invoke callbacks from a known environment in
which no locks are held.

Note that it is safe for synchronize_rcu() to return immediately on UP systems,
including PREEMPT SMP builds running on UP systems.

Quick Quiz #3: Why can’t synchronize_rcu() return immediately on UP systems
running preemptable RCU?

Answer to Quick Quiz #1: Why is it not legal to invoke synchronize_rcu() in this
case?

Because the calling function is scanning an RCU-protected linked list, and
is therefore within an RCU read-side critical section. Therefore, the called
function has been invoked within an RCU read-side critical section, and is
not permitted to block.

Answer to Quick Quiz #2: What locking restriction must RCU callbacks re-
spect?

58 Chapter 8. RCU on Uniprocessor Systems

Linux Rcu Documentation

Any lock that is acquired within an RCU callback must be acquired elsewhere
using an _bh variant of the spinlock primitive. For example, if “mylock”is
acquired by an RCU callback, then a process-context acquisition of this lock
must use something like spin_lock_bh() to acquire the lock. Please note that it
is also OK to use _irq variants of spinlocks, for example, spin_lock_irqsave().

If the process-context code were to simply use spin_lock(), then, since RCU
callbacks can be invoked from softirq context, the callback might be called
from a softirq that interrupted the process-context critical section. This would
result in self-deadlock.

This restriction might seem gratuitous, since very few RCU callbacks acquire
locks directly. However, a great many RCU callbacks do acquire locks indi-
rectly, for example, via the kfree() primitive.

Answer to Quick Quiz #3: Why can’t synchronize_rcu() return immediately on
UP systems running preemptable RCU?

Because some other task might have been preempted in the middle of an RCU
read-side critical section. If synchronize_rcu() simply immediately returned,
it would prematurely signal the end of the grace period, which would come
as a nasty shock to that other thread when it started running again.

8.4. Summary 59

Linux Rcu Documentation

60 Chapter 8. RCU on Uniprocessor Systems

CHAPTER

NINE

A TOUR THROUGH TREE_RCU’S GRACE-PERIOD
MEMORY ORDERING

August 8, 2017

This article was contributed by Paul E. McKenney

9.1 Introduction

This document gives a rough visual overview of how Tree RCU’s grace-period
memory ordering guarantee is provided.

9.2 What Is Tree RCU’s Grace Period Memory Ordering
Guarantee?

RCUgrace periods provide extremely strongmemory-ordering guarantees for non-
idle non-offline code. Any code that happens after the end of a given RCU grace
period is guaranteed to see the effects of all accesses prior to the beginning of that
grace period that are within RCU read-side critical sections. Similarly, any code
that happens before the beginning of a given RCU grace period is guaranteed to
see the effects of all accesses following the end of that grace period that are within
RCU read-side critical sections.

Note well that RCU-sched read-side critical sections include any region of code for
which preemption is disabled. Given that each individual machine instruction can
be thought of as an extremely small region of preemption-disabled code, one can
think of synchronize_rcu() as smp_mb() on steroids.

RCU updaters use this guarantee by splitting their updates into two phases, one of
which is executed before the grace period and the other of which is executed after
the grace period. In the most common use case, phase one removes an element
from a linked RCU-protected data structure, and phase two frees that element. For
this to work, any readers that have witnessed state prior to the phase-one update
(in the common case, removal) must not witness state following the phase-two
update (in the common case, freeing).

The RCU implementation provides this guarantee using a network of lock-based
critical sections, memory barriers, and per-CPU processing, as is described in the
following sections.

61

Linux Rcu Documentation

9.3 Tree RCU Grace Period Memory Ordering Building
Blocks

The workhorse for RCU’s grace-period memory ordering is the
critical section for the rcu_node structure’s ->lock. These crit-
ical sections use helper functions for lock acquisition, including
raw_spin_lock_rcu_node(), raw_spin_lock_irq_rcu_node(), and
raw_spin_lock_irqsave_rcu_node(). Their lock-release counterparts are
raw_spin_unlock_rcu_node(), raw_spin_unlock_irq_rcu_node(), and
raw_spin_unlock_irqrestore_rcu_node(), respectively. For completeness,
a raw_spin_trylock_rcu_node() is also provided. The key point is that the
lock-acquisition functions, including raw_spin_trylock_rcu_node(), all invoke
smp_mb__after_unlock_lock() immediately after successful acquisition of the
lock.

Therefore, for any given rcu_node structure, any access happening before one
of the above lock-release functions will be seen by all CPUs as happening before
any access happening after a later one of the above lock-acquisition functions.
Furthermore, any access happening before one of the above lock-release function
on any given CPU will be seen by all CPUs as happening before any access hap-
pening after a later one of the above lock-acquisition functions executing on that
same CPU, even if the lock-release and lock-acquisition functions are operating on
different rcu_node structures. Tree RCU uses these two ordering guarantees to
form an ordering network among all CPUs that were in any way involved in the
grace period, including any CPUs that came online or went offline during the grace
period in question.

The following litmus test exhibits the ordering effects of these lock-acquisition and
lock-release functions:

1 int x, y, z;
2
3 void task0(void)
4 {
5 raw_spin_lock_rcu_node(rnp);
6 WRITE_ONCE(x, 1);
7 r1 = READ_ONCE(y);
8 raw_spin_unlock_rcu_node(rnp);
9 }

10
11 void task1(void)
12 {
13 raw_spin_lock_rcu_node(rnp);
14 WRITE_ONCE(y, 1);
15 r2 = READ_ONCE(z);
16 raw_spin_unlock_rcu_node(rnp);
17 }
18
19 void task2(void)
20 {
21 WRITE_ONCE(z, 1);
22 smp_mb();
23 r3 = READ_ONCE(x);
24 }

(continues on next page)

62Chapter 9. A Tour Through TREE_RCU’s Grace-Period Memory Ordering

Linux Rcu Documentation

(continued from previous page)
25
26 WARN_ON(r1 == 0 && r2 == 0 && r3 == 0);

The WARN_ON() is evaluated at“the end of time”, after all changes have propagated
throughout the system. Without the smp_mb__after_unlock_lock() provided by
the acquisition functions, this WARN_ON() could trigger, for example on PowerPC.
The smp_mb__after_unlock_lock() invocations prevent this WARN_ON() from trig-
gering.

This approach must be extended to include idle CPUs, which need RCU’s grace-
periodmemory ordering guarantee to extend to any RCU read-side critical sections
preceding and following the current idle sojourn. This case is handled by calls to
the strongly ordered atomic_add_return() read-modify-write atomic operation
that is invoked within rcu_dynticks_eqs_enter() at idle-entry time and within
rcu_dynticks_eqs_exit() at idle-exit time. The grace-period kthread invokes
rcu_dynticks_snap() and rcu_dynticks_in_eqs_since() (both of which invoke
an atomic_add_return() of zero) to detect idle CPUs.

Quick Quiz:
But what about CPUs that remain offline for the entire grace period?
Answer:
Such CPUs will be offline at the beginning of the grace period, so the grace
period won’t expect quiescent states from them. Races between grace-period
start and CPU-hotplug operations are mediated by the CPU’s leaf rcu_node
structure’s ->lock as described above.

The approach must be extended to handle one final case, that of waking a task
blocked in synchronize_rcu(). This task might be affinitied to a CPU that is not
yet aware that the grace period has ended, and thus might not yet be subject to
the grace period’s memory ordering. Therefore, there is an smp_mb() after the
return from wait_for_completion() in the synchronize_rcu() code path.

Quick Quiz:
What? Where??? I don’t see any smp_mb() after the return from
wait_for_completion()!!!
Answer:
That would be because I spotted the need for that smp_mb() during the creation
of this documentation, and it is therefore unlikely to hit mainline before v4.14.
Kudos to Lance Roy, Will Deacon, Peter Zijlstra, and Jonathan Cameron for ask-
ing questions that sensitized me to the rather elaborate sequence of events that
demonstrate the need for this memory barrier.

Tree RCU’s grace–period memory-ordering guarantees rely most heavily on the
rcu_node structure’s ->lock field, so much so that it is necessary to abbrevi-
ate this pattern in the diagrams in the next section. For example, consider the
rcu_prepare_for_idle() function shown below, which is one of several functions
that enforce ordering of newly arrived RCU callbacks against future grace periods:

9.3. Tree RCU Grace Period Memory Ordering Building Blocks 63

Linux Rcu Documentation

1 static void rcu_prepare_for_idle(void)
2 {
3 bool needwake;
4 struct rcu_data *rdp;
5 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
6 struct rcu_node *rnp;
7 struct rcu_state *rsp;
8 int tne;
9

10 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
11 rcu_is_nocb_cpu(smp_processor_id()))
12 return;
13 tne = READ_ONCE(tick_nohz_active);
14 if (tne != rdtp->tick_nohz_enabled_snap) {
15 if (rcu_cpu_has_callbacks(NULL))
16 invoke_rcu_core();
17 rdtp->tick_nohz_enabled_snap = tne;
18 return;
19 }
20 if (!tne)
21 return;
22 if (rdtp->all_lazy &&
23 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
24 rdtp->all_lazy = false;
25 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
26 invoke_rcu_core();
27 return;
28 }
29 if (rdtp->last_accelerate == jiffies)
30 return;
31 rdtp->last_accelerate = jiffies;
32 for_each_rcu_flavor(rsp) {
33 rdp = this_cpu_ptr(rsp->rda);
34 if (rcu_segcblist_pend_cbs(&rdp->cblist))
35 continue;
36 rnp = rdp->mynode;
37 raw_spin_lock_rcu_node(rnp);
38 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
39 raw_spin_unlock_rcu_node(rnp);
40 if (needwake)
41 rcu_gp_kthread_wake(rsp);
42 }
43 }

But the only part of rcu_prepare_for_idle() that really matters for this discus-
sion are lines 37–39. We will therefore abbreviate this function as follows:

The box represents the rcu_node structure’s ->lock critical section, with the
double line on top representing the additional smp_mb__after_unlock_lock().

64Chapter 9. A Tour Through TREE_RCU’s Grace-Period Memory Ordering

Linux Rcu Documentation

9.3.1 Tree RCU Grace Period Memory Ordering Components

Tree RCU’s grace-period memory-ordering guarantee is provided by a number of
RCU components:

1. Callback Registry

2. Grace-Period Initialization

3. Self-Reported Quiescent States

4. Dynamic Tick Interface

5. CPU-Hotplug Interface

6. Forcing Quiescent States

7. Grace-Period Cleanup

8. Callback Invocation

Each of the following section looks at the corresponding component in detail.

Callback Registry

If RCU’s grace-period guarantee is to mean anything at all, any access that hap-
pens before a given invocation of call_rcu() must also happen before the corre-
sponding grace period. The implementation of this portion of RCU’s grace period
guarantee is shown in the following figure:

Because call_rcu() normally acts only on CPU-local state, it provides no order-
ing guarantees, either for itself or for phase one of the update (which again will
usually be removal of an element from an RCU-protected data structure). It simply
enqueues the rcu_head structure on a per-CPU list, which cannot become associ-
ated with a grace period until a later call to rcu_accelerate_cbs(), as shown in
the diagram above.

One set of code paths shown on the left invokes rcu_accelerate_cbs() via
note_gp_changes(), either directly from call_rcu() (if the current CPU is in-

9.3. Tree RCU Grace Period Memory Ordering Building Blocks 65

Linux Rcu Documentation

66Chapter 9. A Tour Through TREE_RCU’s Grace-Period Memory Ordering

Linux Rcu Documentation

undated with queued rcu_head structures) or more likely from an RCU_SOFTIRQ
handler. Another code path in the middle is taken only in kernels built
with CONFIG_RCU_FAST_NO_HZ=y, which invokes rcu_accelerate_cbs() via
rcu_prepare_for_idle(). The final code path on the right is taken only in ker-
nels built with CONFIG_HOTPLUG_CPU=y, which invokes rcu_accelerate_cbs() via
rcu_advance_cbs(), rcu_migrate_callbacks, rcutree_migrate_callbacks(),
and takedown_cpu(), which in turn is invoked on a surviving CPU after the outgo-
ing CPU has been completely offlined.

There are a few other code paths within grace-period processing that opportunis-
tically invoke rcu_accelerate_cbs(). However, either way, all of the CPU’s
recently queued rcu_head structures are associated with a future grace-period
number under the protection of the CPU’s lead rcu_node structure’s ->lock.
In all cases, there is full ordering against any prior critical section for that same
rcu_node structure’s ->lock, and also full ordering against any of the current
task’s or CPU’s prior critical sections for any rcu_node structure’s ->lock.
The next section will show how this ordering ensures that any accesses prior to
the call_rcu() (particularly including phase one of the update) happen before
the start of the corresponding grace period.

Quick Quiz:
But what about synchronize_rcu()?
Answer:
The synchronize_rcu() passes call_rcu() to wait_rcu_gp(), which invokes
it. So either way, it eventually comes down to call_rcu().

Grace-Period Initialization

Grace-period initialization is carried out by the grace-period kernel thread, which
makes several passes over the rcu_node tree within the rcu_gp_init() function.
This means that showing the full flow of ordering through the grace-period compu-
tation will require duplicating this tree. If you find this confusing, please note that
the state of the rcu_node changes over time, just like Heraclitus’s river. However,
to keep the rcu_node river tractable, the grace-period kernel thread’s traversals
are presented in multiple parts, starting in this section with the various phases of
grace-period initialization.

The first ordering-related grace-period initialization action is to advance the
rcu_state structure’s ->gp_seq grace-period-number counter, as shown below:
The actual increment is carried out using smp_store_release(), which helps re-
ject false-positive RCUCPU stall detection. Note that only the root rcu_node struc-
ture is touched.

The first pass through the rcu_node tree updates bitmasks based on CPUs having
come online or gone offline since the start of the previous grace period. In the
common case where the number of online CPUs for this rcu_node structure has
not transitioned to or from zero, this pass will scan only the leaf rcu_node struc-
tures. However, if the number of online CPUs for a given leaf rcu_node structure
has transitioned from zero, rcu_init_new_rnp() will be invoked for the first in-
coming CPU. Similarly, if the number of online CPUs for a given leaf rcu_node

9.3. Tree RCU Grace Period Memory Ordering Building Blocks 67

Linux Rcu Documentation

structure has transitioned to zero, rcu_cleanup_dead_rnp() will be invoked for
the last outgoing CPU. The diagram below shows the path of ordering if the left-
most rcu_node structure onlines its first CPU and if the next rcu_node structure
has no online CPUs (or, alternatively if the leftmost rcu_node structure offlines its
last CPU and if the next rcu_node structure has no online CPUs).

The final rcu_gp_init() pass through the rcu_node tree traverses breadth-first,
setting each rcu_node structure’s ->gp_seq field to the newly advanced value
from the rcu_state structure, as shown in the following diagram.

This change will also cause each CPU’s next call to __note_gp_changes() to notice
that a new grace period has started, as described in the next section. But because
the grace-period kthread started the grace period at the root (with the advancing
of the rcu_state structure’s ->gp_seq field) before setting each leaf rcu_node
structure’s ->gp_seq field, each CPU’s observation of the start of the grace period
will happen after the actual start of the grace period.

Quick Quiz:
But what about the CPU that started the grace period? Why wouldn’t it see the
start of the grace period right when it started that grace period?
Answer:
In some deep philosophical and overly anthromorphized sense, yes, the CPU
starting the grace period is immediately aware of having done so. However, if
we instead assume that RCU is not self-aware, then even the CPU starting the
grace period does not really become aware of the start of this grace period until
its first call to __note_gp_changes(). On the other hand, this CPU potentially
gets early notification because it invokes __note_gp_changes() during its last
rcu_gp_init() pass through its leaf rcu_node structure.

68Chapter 9. A Tour Through TREE_RCU’s Grace-Period Memory Ordering

Linux Rcu Documentation

9.3. Tree RCU Grace Period Memory Ordering Building Blocks 69

Linux Rcu Documentation

Self-Reported Quiescent States

When all entities that might block the grace period have reported quiescent states
(or as described in a later section, had quiescent states reported on their behalf),
the grace period can end. Online non-idle CPUs report their own quiescent states,
as shown in the following diagram:

This is for the last CPU to report a quiescent state, which signals the end of the
grace period. Earlier quiescent states would push up the rcu_node tree only until
they encountered an rcu_node structure that is waiting for additional quiescent
states. However, ordering is nevertheless preserved because some later quiescent
state will acquire that rcu_node structure’s ->lock.
Any number of events can lead up to a CPU invoking note_gp_changes (or alterna-
tively, directly invoking __note_gp_changes()), at which point that CPU will no-
tice the start of a new grace period while holding its leaf rcu_node lock. Therefore,
all execution shown in this diagram happens after the start of the grace period.
In addition, this CPU will consider any RCU read-side critical section that started
before the invocation of __note_gp_changes() to have started before the grace
period, and thus a critical section that the grace period must wait on.

Quick Quiz:
But a RCU read-side critical section might have started after the beginning of
the grace period (the advancing of ->gp_seq from earlier), so why should the
grace period wait on such a critical section?
Answer:
It is indeed not necessary for the grace period to wait on such a critical section.
However, it is permissible to wait on it. And it is furthermore important to wait
on it, as this lazy approach is far more scalable than a “big bang”all-at-once
grace-period start could possibly be.

If the CPU does a context switch, a quiescent state will be noted by
rcu_note_context_switch() on the left. On the other hand, if the CPU takes
a scheduler-clock interrupt while executing in usermode, a quiescent state will be
noted by rcu_sched_clock_irq() on the right. Either way, the passage through
a quiescent state will be noted in a per-CPU variable.

The next time an RCU_SOFTIRQ handler executes on this CPU (for ex-
ample, after the next scheduler-clock interrupt), rcu_core() will invoke
rcu_check_quiescent_state(), which will notice the recorded quiescent state,
and invoke rcu_report_qs_rdp(). If rcu_report_qs_rdp() verifies that the
quiescent state really does apply to the current grace period, it invokes
rcu_report_rnp() which traverses up the rcu_node tree as shown at the bottom
of the diagram, clearing bits from each rcu_node structure’s ->qsmask field, and
propagating up the tree when the result is zero.

Note that traversal passes upwards out of a given rcu_node structure only if the
current CPU is reporting the last quiescent state for the subtree headed by that
rcu_node structure. A key point is that if a CPU’s traversal stops at a given
rcu_node structure, then there will be a later traversal by another CPU (or perhaps
the same one) that proceeds upwards from that point, and the rcu_node ->lock
guarantees that the first CPU’s quiescent state happens before the remainder of
the second CPU’s traversal. Applying this line of thought repeatedly shows that

70Chapter 9. A Tour Through TREE_RCU’s Grace-Period Memory Ordering

Linux Rcu Documentation

9.3. Tree RCU Grace Period Memory Ordering Building Blocks 71

Linux Rcu Documentation

all CPUs’quiescent states happen before the last CPU traverses through the root
rcu_node structure, the “last CPU”being the one that clears the last bit in the
root rcu_node structure’s ->qsmask field.

Dynamic Tick Interface

Due to energy-efficiency considerations, RCU is forbidden from disturbing idle
CPUs. CPUs are therefore required to notify RCU when entering or leaving idle
state, which they do via fully ordered value-returning atomic operations on a per-
CPU variable. The ordering effects are as shown below:

The RCU grace-period kernel thread samples the per-CPU idleness variable while
holding the corresponding CPU’s leaf rcu_node structure’s ->lock. This means
that any RCU read-side critical sections that precede the idle period (the oval near
the top of the diagram above) will happen before the end of the current grace
period. Similarly, the beginning of the current grace period will happen before
any RCU read-side critical sections that follow the idle period (the oval near the
bottom of the diagram above).

Plumbing this into the full grace-period execution is described below.

72Chapter 9. A Tour Through TREE_RCU’s Grace-Period Memory Ordering

Linux Rcu Documentation

CPU-Hotplug Interface

RCU is also forbidden from disturbing offline CPUs, which might well be powered
off and removed from the system completely. CPUs are therefore required to no-
tify RCU of their comings and goings as part of the corresponding CPU hotplug
operations. The ordering effects are shown below:

Because CPU hotplug operations are much less frequent than idle transitions, they
are heavier weight, and thus acquire the CPU’s leaf rcu_node structure’s ->lock
and update this structure’s ->qsmaskinitnext. The RCU grace-period kernel
thread samples this mask to detect CPUs having gone offline since the beginning
of this grace period.

9.3. Tree RCU Grace Period Memory Ordering Building Blocks 73

Linux Rcu Documentation

Plumbing this into the full grace-period execution is described below.

Forcing Quiescent States

As noted above, idle and offline CPUs cannot report their own quiescent states,
and therefore the grace-period kernel threadmust do the reporting on their behalf.
This process is called “forcing quiescent states”, it is repeated every few jiffies,
and its ordering effects are shown below:

Each pass of quiescent state forcing is guaranteed to traverse the leaf rcu_node
structures, and if there are no new quiescent states due to recently idled and/or
offlined CPUs, then only the leaves are traversed. However, if there is a newly
offlined CPU as illustrated on the left or a newly idled CPU as illustrated on the
right, the corresponding quiescent state will be driven up towards the root. As
with self-reported quiescent states, the upwards driving stops once it reaches an
rcu_node structure that has quiescent states outstanding from other CPUs.

Quick Quiz:
The leftmost drive to root stopped before it reached the root rcu_node structure,
which means that there are still CPUs subordinate to that structure on which the
current grace period is waiting. Given that, how is it possible that the rightmost
drive to root ended the grace period?
Answer:
Good analysis! It is in fact impossible in the absence of bugs in RCU. But this
diagram is complex enough as it is, so simplicity overrode accuracy. You can
think of it as poetic license, or you can think of it as misdirection that is resolved
in the stitched-together diagram.

74Chapter 9. A Tour Through TREE_RCU’s Grace-Period Memory Ordering

Linux Rcu Documentation

Grace-Period Cleanup

Grace-period cleanup first scans the rcu_node tree breadth-first advancing all the
->gp_seq fields, then it advances the rcu_state structure’s ->gp_seq field. The
ordering effects are shown below:

As indicated by the oval at the bottom of the diagram, once grace-period cleanup
is complete, the next grace period can begin.

Quick Quiz:
But when precisely does the grace period end?
Answer:
There is no useful single point at which the grace period can be said to end. The
earliest reasonable candidate is as soon as the last CPU has reported its quies-
cent state, but it may be some milliseconds before RCU becomes aware of this.
The latest reasonable candidate is once the rcu_state structure’s ->gp_seq
field has been updated, but it is quite possible that some CPUs have already
completed phase two of their updates by that time. In short, if you are going to
work with RCU, you need to learn to embrace uncertainty.

Callback Invocation

Once a given CPU’s leaf rcu_node structure’s ->gp_seq field has been updated,
that CPU can begin invoking its RCU callbacks that were waiting for this grace pe-
riod to end. These callbacks are identified by rcu_advance_cbs(), which is usually
invoked by __note_gp_changes(). As shown in the diagram below, this invoca-
tion can be triggered by the scheduling-clock interrupt (rcu_sched_clock_irq()
on the left) or by idle entry (rcu_cleanup_after_idle() on the right, but only
for kernels build with CONFIG_RCU_FAST_NO_HZ=y). Either way, RCU_SOFTIRQ is
raised, which results in rcu_do_batch() invoking the callbacks, which in turn al-
lows those callbacks to carry out (either directly or indirectly via wakeup) the
needed phase-two processing for each update.

Please note that callback invocation can also be prompted by any number of
corner-case code paths, for example, when a CPU notes that it has excessive num-
bers of callbacks queued. In all cases, the CPU acquires its leaf rcu_node struc-
ture’s ->lock before invoking callbacks, which preserves the required ordering
against the newly completed grace period.

However, if the callback function communicates to other CPUs, for example, doing
a wakeup, then it is that function’s responsibility to maintain ordering. For exam-
ple, if the callback function wakes up a task that runs on some other CPU, proper
ordering must in place in both the callback function and the task being awakened.
To see why this is important, consider the top half of the grace-period cleanup dia-
gram. The callback might be running on a CPU corresponding to the leftmost leaf
rcu_node structure, and awaken a task that is to run on a CPU corresponding to
the rightmost leaf rcu_node structure, and the grace-period kernel thread might
not yet have reached the rightmost leaf. In this case, the grace period’s memory
ordering might not yet have reached that CPU, so again the callback function and
the awakened task must supply proper ordering.

9.3. Tree RCU Grace Period Memory Ordering Building Blocks 75

Linux Rcu Documentation

76Chapter 9. A Tour Through TREE_RCU’s Grace-Period Memory Ordering

Linux Rcu Documentation

9.3. Tree RCU Grace Period Memory Ordering Building Blocks 77

Linux Rcu Documentation

9.3.2 Putting It All Together

A stitched-together diagram is here:

9.3.3 Legal Statement

This work represents the view of the author and does not necessarily represent
the view of IBM.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service marks
of others.

78Chapter 9. A Tour Through TREE_RCU’s Grace-Period Memory Ordering

Linux Rcu Documentation

9.3. Tree RCU Grace Period Memory Ordering Building Blocks 79

Linux Rcu Documentation

80Chapter 9. A Tour Through TREE_RCU’s Grace-Period Memory Ordering

CHAPTER

TEN

A TOUR THROUGH TREE_RCU’S EXPEDITED GRACE
PERIODS

10.1 Introduction

This document describes RCU’s expedited grace periods. Unlike RCU’s normal
grace periods, which accept long latencies to attain high efficiency and minimal
disturbance, expedited grace periods accept lower efficiency and significant dis-
turbance to attain shorter latencies.

There are two flavors of RCU (RCU-preempt and RCU-sched), with an earlier third
RCU-bh flavor having been implemented in terms of the other two. Each of the
two implementations is covered in its own section.

10.2 Expedited Grace Period Design

The expedited RCU grace periods cannot be accused of being subtle, given
that they for all intents and purposes hammer every CPU that has not yet
provided a quiescent state for the current expedited grace period. The
one saving grace is that the hammer has grown a bit smaller over time:
The old call to try_stop_cpus() has been replaced with a set of calls to
smp_call_function_single(), each of which results in an IPI to the target CPU.
The corresponding handler function checks the CPU’s state, motivating a faster
quiescent state where possible, and triggering a report of that quiescent state. As
always for RCU, once everything has spent some time in a quiescent state, the
expedited grace period has completed.

The details of the smp_call_function_single() handler’s operation depend on
the RCU flavor, as described in the following sections.

81

Linux Rcu Documentation

10.3 RCU-preempt Expedited Grace Periods

CONFIG_PREEMPT=y kernels implement RCU-preempt. The overall flow of the han-
dling of a given CPU by an RCU-preempt expedited grace period is shown in the
following diagram:

The solid arrows denote direct action, for example, a function call. The dotted
arrows denote indirect action, for example, an IPI or a state that is reached after
some time.

If a given CPU is offline or idle, synchronize_rcu_expedited() will ignore it be-
cause idle and offline CPUs are already residing in quiescent states. Otherwise, the
expedited grace period will use smp_call_function_single() to send the CPU an
IPI, which is handled by rcu_exp_handler().

However, because this is preemptible RCU, rcu_exp_handler() can check to see
if the CPU is currently running in an RCU read-side critical section. If not, the
handler can immediately report a quiescent state. Otherwise, it sets flags so that
the outermost rcu_read_unlock() invocation will provide the needed quiescent-
state report. This flag-setting avoids the previous forced preemption of all CPUs
that might have RCU read-side critical sections. In addition, this flag-setting is
done so as to avoid increasing the overhead of the common-case fastpath through
the scheduler.

Again because this is preemptible RCU, an RCU read-side critical section can
be preempted. When that happens, RCU will enqueue the task, which will
the continue to block the current expedited grace period until it resumes
and finds its outermost rcu_read_unlock(). The CPU will report a quies-
cent state just after enqueuing the task because the CPU is no longer block-
ing the grace period. It is instead the preempted task doing the blocking.
The list of blocked tasks is managed by rcu_preempt_ctxt_queue(), which is
called from rcu_preempt_note_context_switch(), which in turn is called from
rcu_note_context_switch(), which in turn is called from the scheduler.

Quick Quiz:
Why not just have the expedited grace period check the state of all the CPUs?
After all, that would avoid all those real-time-unfriendly IPIs.
Answer:
Because we want the RCU read-side critical sections to run fast, which means
no memory barriers. Therefore, it is not possible to safely check the state
from some other CPU. And even if it was possible to safely check the state,
it would still be necessary to IPI the CPU to safely interact with the upcom-
ing rcu_read_unlock() invocation, which means that the remote state testing
would not help the worst-case latency that real-time applications care about.
One way to prevent your real-time application from getting hit with these IPIs
is to build your kernel with CONFIG_NO_HZ_FULL=y. RCU would then perceive
the CPU running your application as being idle, and it would be able to safely
detect that state without needing to IPI the CPU.

Please note that this is just the overall flow: Additional complications can arise
due to races with CPUs going idle or offline, among other things.

82 Chapter 10. A Tour Through TREE_RCU’s Expedited Grace Periods

Linux Rcu Documentation

10.3. RCU-preempt Expedited Grace Periods 83

Linux Rcu Documentation

10.3.1 RCU-sched Expedited Grace Periods

CONFIG_PREEMPT=n kernels implement RCU-sched. The overall flow of the han-
dling of a given CPU by an RCU-sched expedited grace period is shown in the
following diagram:

As with RCU-preempt, RCU-sched’s synchronize_rcu_expedited() ig-
nores offline and idle CPUs, again because they are in remotely detectable
quiescent states. However, because the rcu_read_lock_sched() and
rcu_read_unlock_sched() leave no trace of their invocation, in general it is
not possible to tell whether or not the current CPU is in an RCU read-side critical
section. The best that RCU-sched’s rcu_exp_handler() can do is to check for
idle, on the off-chance that the CPU went idle while the IPI was in flight. If the
CPU is idle, then rcu_exp_handler() reports the quiescent state.

Otherwise, the handler forces a future context switch by setting the
NEED_RESCHED flag of the current task’s thread flag and the CPU preempt
counter. At the time of the context switch, the CPU reports the quiescent state.
Should the CPU go offline first, it will report the quiescent state at that time.

10.3.2 Expedited Grace Period and CPU Hotplug

The expedited nature of expedited grace periods require a much tighter interac-
tion with CPU hotplug operations than is required for normal grace periods. In
addition, attempting to IPI offline CPUs will result in splats, but failing to IPI on-
line CPUs can result in too-short grace periods. Neither option is acceptable in
production kernels.

The interaction between expedited grace periods and CPU hotplug operations is
carried out at several levels:

1. The number of CPUs that have ever been online is tracked by the rcu_state
structure’s ->ncpus field. The rcu_state structure’s ->ncpus_snap field
tracks the number of CPUs that have ever been online at the beginning of an
RCU expedited grace period. Note that this number never decreases, at least
in the absence of a time machine.

2. The identities of the CPUs that have ever been online is tracked by the
rcu_node structure’s ->expmaskinitnext field. The rcu_node structure’s
->expmaskinit field tracks the identities of the CPUs that were online at
least once at the beginning of the most recent RCU expedited grace period.
The rcu_state structure’s ->ncpus and ->ncpus_snap fields are used to de-
tect when new CPUs have come online for the first time, that is, when the
rcu_node structure’s ->expmaskinitnext field has changed since the be-
ginning of the last RCU expedited grace period, which triggers an update of
each rcu_node structure’s ->expmaskinit field from its ->expmaskinitnext
field.

3. Each rcu_node structure’s ->expmaskinit field is used to initialize that struc-
ture’s ->expmask at the beginning of each RCU expedited grace period. This
means that only those CPUs that have been online at least once will be con-
sidered for a given grace period.

84 Chapter 10. A Tour Through TREE_RCU’s Expedited Grace Periods

Linux Rcu Documentation

10.3. RCU-preempt Expedited Grace Periods 85

Linux Rcu Documentation

4. Any CPU that goes offline will clear its bit in its leaf rcu_node structure’s
->qsmaskinitnext field, so any CPU with that bit clear can safely be ignored.
However, it is possible for a CPU coming online or going offline to have this
bit set for some time while cpu_online returns false.

5. For each non-idle CPU that RCU believes is currently online, the grace period
invokes smp_call_function_single(). If this succeeds, the CPU was fully
online. Failure indicates that the CPU is in the process of coming online or
going offline, in which case it is necessary to wait for a short time period and
try again. The purpose of this wait (or series of waits, as the case may be) is
to permit a concurrent CPU-hotplug operation to complete.

6. In the case of RCU-sched, one of the last acts of an outgoing CPU is to invoke
rcu_report_dead(), which reports a quiescent state for that CPU. However,
this is likely paranoia-induced redundancy.

Quick Quiz:
Why all the dancing around with multiple counters and masks tracking CPUs
that were once online? Why not just have a single set of masks tracking the
currently online CPUs and be done with it?
Answer:
Maintaining single set of masks tracking the online CPUs sounds easier, at least
until you try working out all the race conditions between grace-period initial-
ization and CPU-hotplug operations. For example, suppose initialization is pro-
gressing down the tree while a CPU-offline operation is progressing up the tree.
This situation can result in bits set at the top of the tree that have no coun-
terparts at the bottom of the tree. Those bits will never be cleared, which will
result in grace-period hangs. In short, that way lies madness, to say nothing of
a great many bugs, hangs, and deadlocks. In contrast, the current multi-mask
multi-counter scheme ensures that grace-period initialization will always see
consistent masks up and down the tree, which brings significant simplifications
over the single-mask method.
This is an instance of deferring work in order to avoid synchronization. Lazily
recording CPU-hotplug events at the beginning of the next grace period greatly
simplifies maintenance of the CPU-tracking bitmasks in the rcu_node tree.

10.3.3 Expedited Grace Period Refinements

Idle-CPU Checks

Each expedited grace period checks for idle CPUs when initially forming the
mask of CPUs to be IPIed and again just before IPIing a CPU (both checks are
carried out by sync_rcu_exp_select_cpus()). If the CPU is idle at any time
between those two times, the CPU will not be IPIed. Instead, the task push-
ing the grace period forward will include the idle CPUs in the mask passed to
rcu_report_exp_cpu_mult().

For RCU-sched, there is an additional check: If the IPI has interrupted the idle
loop, then rcu_exp_handler() invokes rcu_report_exp_rdp() to report the cor-
responding quiescent state.

For RCU-preempt, there is no specific check for idle in the IPI handler

86 Chapter 10. A Tour Through TREE_RCU’s Expedited Grace Periods

http://www.cs.columbia.edu/~library/TR-repository/reports/reports-1992/cucs-039-92.ps.gz

Linux Rcu Documentation

(rcu_exp_handler()), but because RCU read-side critical sections are not per-
mitted within the idle loop, if rcu_exp_handler() sees that the CPU is within
RCU read-side critical section, the CPU cannot possibly be idle. Otherwise,
rcu_exp_handler() invokes rcu_report_exp_rdp() to report the corresponding
quiescent state, regardless of whether or not that quiescent state was due to the
CPU being idle.

In summary, RCU expedited grace periods check for idle when building the bitmask
of CPUs that must be IPIed, just before sending each IPI, and (either explicitly or
implicitly) within the IPI handler.

Batching via Sequence Counter

If each grace-period request was carried out separately, expedited grace peri-
ods would have abysmal scalability and problematic high-load characteristics. Be-
cause each grace-period operation can serve an unlimited number of updates, it
is important to batch requests, so that a single expedited grace-period operation
will cover all requests in the corresponding batch.

This batching is controlled by a sequence counter named ->expedited_sequence
in the rcu_state structure. This counter has an odd value when there is an expe-
dited grace period in progress and an even value otherwise, so that dividing the
counter value by two gives the number of completed grace periods. During any
given update request, the counter must transition from even to odd and then back
to even, thus indicating that a grace period has elapsed. Therefore, if the initial
value of the counter is s, the updater must wait until the counter reaches at least
the value (s+3)&~0x1. This counter is managed by the following access functions:

1. rcu_exp_gp_seq_start(), which marks the start of an expedited grace pe-
riod.

2. rcu_exp_gp_seq_end(), which marks the end of an expedited grace period.

3. rcu_exp_gp_seq_snap(), which obtains a snapshot of the counter.

4. rcu_exp_gp_seq_done(), which returns true if a full expedited grace period
has elapsed since the corresponding call to rcu_exp_gp_seq_snap().

Again, only one request in a given batch need actually carry out a grace-period
operation, which means there must be an efficient way to identify which of many
concurrent reqeusts will initiate the grace period, and that there be an efficient
way for the remaining requests to wait for that grace period to complete. However,
that is the topic of the next section.

Funnel Locking and Wait/Wakeup

The natural way to sort out which of a batch of updaters will initiate the expe-
dited grace period is to use the rcu_node combining tree, as implemented by the
exp_funnel_lock() function. The first updater corresponding to a given grace
period arriving at a given rcu_node structure records its desired grace-period se-
quence number in the ->exp_seq_rq field and moves up to the next level in the
tree. Otherwise, if the ->exp_seq_rq field already contains the sequence num-
ber for the desired grace period or some later one, the updater blocks on one

10.3. RCU-preempt Expedited Grace Periods 87

Linux Rcu Documentation

of four wait queues in the ->exp_wq[] array, using the second-from-bottom and
third-from bottom bits as an index. An ->exp_lock field in the rcu_node structure
synchronizes access to these fields.

An empty rcu_node tree is shown in the following diagram, with the white cells
representing the ->exp_seq_rq field and the red cells representing the elements
of the ->exp_wq[] array.

The next diagram shows the situation after the arrival of Task A and Task B at the
leftmost and rightmost leaf rcu_node structures, respectively. The current value
of the rcu_state structure’s ->expedited_sequence field is zero, so adding three
and clearing the bottom bit results in the value two, which both tasks record in
the ->exp_seq_rq field of their respective rcu_node structures:

Each of Tasks A and B will move up to the root rcu_node structure. Suppose that
Task A wins, recording its desired grace-period sequence number and resulting in
the state shown below:

Task A now advances to initiate a new grace period, while Task B moves up to the
root rcu_node structure, and, seeing that its desired sequence number is already
recorded, blocks on ->exp_wq[1].

88 Chapter 10. A Tour Through TREE_RCU’s Expedited Grace Periods

Linux Rcu Documentation

Quick Quiz:
Why ->exp_wq[1]? Given that the value of these tasks’desired sequence number
is two, so shouldn’t they instead block on ->exp_wq[2]?
Answer:
No. Recall that the bottom bit of the desired sequence number indicates whether
or not a grace period is currently in progress. It is therefore necessary to shift
the sequence number right one bit position to obtain the number of the grace
period. This results in ->exp_wq[1].

If Tasks C and D also arrive at this point, they will compute the same desired grace-
period sequence number, and see that both leaf rcu_node structures already have
that value recorded. They will therefore block on their respective rcu_node struc-
tures’->exp_wq[1] fields, as shown below:

Task A now acquires the rcu_state structure’s ->exp_mutex and initiates the
grace period, which increments ->expedited_sequence. Therefore, if Tasks E
and F arrive, they will compute a desired sequence number of 4 and will record
this value as shown below:

Tasks E and F will propagate up the rcu_node combining tree, with Task F block-
ing on the root rcu_node structure and Task E wait for Task A to finish so that it
can start the next grace period. The resulting state is as shown below:

10.3. RCU-preempt Expedited Grace Periods 89

Linux Rcu Documentation

Once the grace period completes, Task A starts waking up the tasks waiting for
this grace period to complete, increments the ->expedited_sequence, acquires
the ->exp_wake_mutex and then releases the ->exp_mutex. This results in the
following state:

Task E can then acquire ->exp_mutex and increment ->expedited_sequence to
the value three. If new tasks G and H arrive and moves up the combining tree at
the same time, the state will be as follows:

Note that three of the root rcu_node structure’s waitqueues are now occupied.
However, at some point, Task A will wake up the tasks blocked on the ->exp_wq
waitqueues, resulting in the following state:

Execution will continue with Tasks E and H completing their grace periods and
carrying out their wakeups.

Quick Quiz:
What happens if Task A takes so long to do its wakeups that Task E’s grace
period completes?
Answer:
Then Task E will block on the ->exp_wake_mutex, which will also prevent it from
releasing ->exp_mutex, which in turn will prevent the next grace period from
starting. This last is important in preventing overflow of the ->exp_wq[] array.

90 Chapter 10. A Tour Through TREE_RCU’s Expedited Grace Periods

Linux Rcu Documentation

Use of Workqueues

In earlier implementations, the task requesting the expedited grace period also
drove it to completion. This straightforward approach had the disadvantage of
needing to account for POSIX signals sent to user tasks, so more recent impleme-
mentations use the Linux kernel’s workqueues.
The requesting task still does counter snapshotting and funnel-lock processing,
but the task reaching the top of the funnel lock does a schedule_work() (from
_synchronize_rcu_expedited() so that a workqueue kthread does the actual
grace-period processing. Because workqueue kthreads do not accept POSIX sig-
nals, grace-period-wait processing need not allow for POSIX signals. In addi-
tion, this approach allows wakeups for the previous expedited grace period to
be overlapped with processing for the next expedited grace period. Because
there are only four sets of waitqueues, it is necessary to ensure that the previ-
ous grace period’s wakeups complete before the next grace period’s wakeups
start. This is handled by having the ->exp_mutex guard expedited grace-period
processing and the ->exp_wake_mutex guard wakeups. The key point is that the
->exp_mutex is not released until the first wakeup is complete, which means that
the ->exp_wake_mutex has already been acquired at that point. This approach
ensures that the previous grace period’s wakeups can be carried out while the
current grace period is in process, but that these wakeups will complete before
the next grace period starts. This means that only three waitqueues are required,
guaranteeing that the four that are provided are sufficient.

Stall Warnings

Expediting grace periods does nothing to speed things up when RCU readers take
too long, and therefore expedited grace periods check for stalls just as normal
grace periods do.

Quick Quiz:
But why not just let the normal grace-period machinery detect the stalls, given
that a given reader must block both normal and expedited grace periods?
Answer:
Because it is quite possible that at a given time there is no normal grace period
in progress, in which case the normal grace period cannot emit a stall warning.

The synchronize_sched_expedited_wait() function loops waiting for the expe-
dited grace period to end, but with a timeout set to the current RCU CPU stall-
warning time. If this time is exceeded, any CPUs or rcu_node structures blocking
the current grace period are printed. Each stall warning results in another pass
through the loop, but the second and subsequent passes use longer stall times.

10.3. RCU-preempt Expedited Grace Periods 91

https://www.kernel.org/doc/Documentation/core-api/workqueue.rst

Linux Rcu Documentation

Mid-boot operation

The use of workqueues has the advantage that the expedited grace-period code
need not worry about POSIX signals. Unfortunately, it has the corresponding dis-
advantage that workqueues cannot be used until they are initialized, which does
not happen until some time after the scheduler spawns the first task. Given that
there are parts of the kernel that really do want to execute grace periods during
this mid-boot“dead zone”, expedited grace periods must do something else during
thie time.

What they do is to fall back to the old practice of requiring that the requesting task
drive the expedited grace period, as was the case before the use of workqueues.
However, the requesting task is only required to drive the grace period during
the mid-boot dead zone. Before mid-boot, a synchronous grace period is a no-op.
Some time after mid-boot, workqueues are used.

Non-expedited non-SRCU synchronous grace periods must also operate normally
during mid-boot. This is handled by causing non-expedited grace periods to take
the expedited code path during mid-boot.

The current code assumes that there are no POSIX signals during the mid-boot
dead zone. However, if an overwhelming need for POSIX signals somehow arises,
appropriate adjustments can be made to the expedited stall-warning code. One
such adjustment would reinstate the pre-workqueue stall-warning checks, but only
during the mid-boot dead zone.

With this refinement, synchronous grace periods can now be used from task con-
text pretty much any time during the life of the kernel. That is, aside from some
points in the suspend, hibernate, or shutdown code path.

Summary

Expedited grace periods use a sequence-number approach to promote batching, so
that a single grace-period operation can serve numerous requests. A funnel lock is
used to efficiently identify the one task out of a concurrent group that will request
the grace period. All members of the group will block on waitqueues provided in
the rcu_node structure. The actual grace-period processing is carried out by a
workqueue.

CPU-hotplug operations are noted lazily in order to prevent the need for tight
synchronization between expedited grace periods and CPU-hotplug operations.
The dyntick-idle counters are used to avoid sending IPIs to idle CPUs, at least in
the common case. RCU-preempt and RCU-sched use different IPI handlers and
different code to respond to the state changes carried out by those handlers, but
otherwise use common code.

Quiescent states are tracked using the rcu_node tree, and once all necessary qui-
escent states have been reported, all tasks waiting on this expedited grace period
are awakened. A pair of mutexes are used to allow one grace period’s wakeups
to proceed concurrently with the next grace period’s processing.
This combination of mechanisms allows expedited grace periods to run reason-
ably efficiently. However, for non-time-critical tasks, normal grace periods should

92 Chapter 10. A Tour Through TREE_RCU’s Expedited Grace Periods

Linux Rcu Documentation

be used instead because their longer duration permits much higher degrees of
batching, and thus much lower per-request overheads.

10.3. RCU-preempt Expedited Grace Periods 93

Linux Rcu Documentation

94 Chapter 10. A Tour Through TREE_RCU’s Expedited Grace Periods

CHAPTER

ELEVEN

A TOUR THROUGH RCU’S REQUIREMENTS

Copyright IBM Corporation, 2015

Author: Paul E. McKenney

The initial version of this document appeared in the LWN on those articles: part
1, part 2, and part 3.

11.1 Introduction

Read-copy update (RCU) is a synchronization mechanism that is often used as a
replacement for reader-writer locking. RCU is unusual in that updaters do not
block readers, which means that RCU’s read-side primitives can be exceedingly
fast and scalable. In addition, updaters can make useful forward progress con-
currently with readers. However, all this concurrency between RCU readers and
updaters does raise the question of exactly what RCU readers are doing, which in
turn raises the question of exactly what RCU’s requirements are.
This document therefore summarizes RCU’s requirements, and can be thought of
as an informal, high-level specification for RCU. It is important to understand that
RCU’s specification is primarily empirical in nature; in fact, I learned aboutmany of
these requirements the hard way. This situation might cause some consternation,
however, not only has this learning process been a lot of fun, but it has also been
a great privilege to work with so many people willing to apply technologies in
interesting new ways.

All that aside, here are the categories of currently known RCU requirements:

1. Fundamental Requirements

2. Fundamental Non-Requirements

3. Parallelism Facts of Life

4. Quality-of-Implementation Requirements

5. Linux Kernel Complications

6. Software-Engineering Requirements

7. Other RCU Flavors

8. Possible Future Changes

95

https://lwn.net/
https://lwn.net/Articles/652156/
https://lwn.net/Articles/652156/
https://lwn.net/Articles/652677/
https://lwn.net/Articles/653326/

Linux Rcu Documentation

This is followed by a summary, however, the answers to each quick quiz imme-
diately follows the quiz. Select the big white space with your mouse to see the
answer.

11.2 Fundamental Requirements

RCU’s fundamental requirements are the closest thing RCU has to hard mathe-
matical requirements. These are:

1. Grace-Period Guarantee

2. Publish/Subscribe Guarantee

3. Memory-Barrier Guarantees

4. RCU Primitives Guaranteed to Execute Unconditionally

5. Guaranteed Read-to-Write Upgrade

11.2.1 Grace-Period Guarantee

RCU’s grace-period guarantee is unusual in being premeditated: Jack Slingwine
and I had this guarantee firmly in mind when we started work on RCU (then called
“rclock”) in the early 1990s. That said, the past two decades of experience with
RCU have produced a much more detailed understanding of this guarantee.

RCU’s grace-period guarantee allows updaters to wait for the completion of all pre-
existing RCU read-side critical sections. An RCU read-side critical section begins
with the marker rcu_read_lock() and ends with the marker rcu_read_unlock().
These markers may be nested, and RCU treats a nested set as one big RCU read-
side critical section. Production-quality implementations of rcu_read_lock() and
rcu_read_unlock() are extremely lightweight, and in fact have exactly zero over-
head in Linux kernels built for production use with CONFIG_PREEMPT=n.

This guarantee allows ordering to be enforced with extremely low overhead to
readers, for example:

1 int x, y;
2
3 void thread0(void)
4 {
5 rcu_read_lock();
6 r1 = READ_ONCE(x);
7 r2 = READ_ONCE(y);
8 rcu_read_unlock();
9 }

10
11 void thread1(void)
12 {
13 WRITE_ONCE(x, 1);
14 synchronize_rcu();
15 WRITE_ONCE(y, 1);
16 }

96 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

Because the synchronize_rcu() on line 14 waits for all pre-existing readers, any
instance of thread0() that loads a value of zero from x must complete before
thread1() stores to y, so that instance must also load a value of zero from y.
Similarly, any instance of thread0() that loads a value of one from y must have
started after the synchronize_rcu() started, and must therefore also load a value
of one from x. Therefore, the outcome:

(r1 == 0 && r2 == 1)

cannot happen.

Quick Quiz:
Wait a minute! You said that updaters can make useful forward progress concur-
rently with readers, but pre-existing readers will block synchronize_rcu()!!!
Just who are you trying to fool???
Answer:
First, if updaters do not wish to be blocked by readers, they can use call_rcu()
or kfree_rcu(), which will be discussed later. Second, even when using
synchronize_rcu(), the other update-side code does run concurrently with
readers, whether pre-existing or not.

This scenario resembles one of the first uses of RCU in DYNIX/ptx, which managed
a distributed lock manager’s transition into a state suitable for handling recovery
from node failure, more or less as follows:

1 #define STATE_NORMAL 0
2 #define STATE_WANT_RECOVERY 1
3 #define STATE_RECOVERING 2
4 #define STATE_WANT_NORMAL 3
5
6 int state = STATE_NORMAL;
7
8 void do_something_dlm(void)
9 {

10 int state_snap;
11
12 rcu_read_lock();
13 state_snap = READ_ONCE(state);
14 if (state_snap == STATE_NORMAL)
15 do_something();
16 else
17 do_something_carefully();
18 rcu_read_unlock();
19 }
20
21 void start_recovery(void)
22 {
23 WRITE_ONCE(state, STATE_WANT_RECOVERY);
24 synchronize_rcu();
25 WRITE_ONCE(state, STATE_RECOVERING);
26 recovery();
27 WRITE_ONCE(state, STATE_WANT_NORMAL);
28 synchronize_rcu();
29 WRITE_ONCE(state, STATE_NORMAL);

(continues on next page)

11.2. Fundamental Requirements 97

https://en.wikipedia.org/wiki/DYNIX

Linux Rcu Documentation

(continued from previous page)
30 }

The RCU read-side critical section in do_something_dlm() works with the
synchronize_rcu() in start_recovery() to guarantee that do_something()
never runs concurrently with recovery(), but with little or no synchronization
overhead in do_something_dlm().

Quick Quiz:
Why is the synchronize_rcu() on line 28 needed?
Answer:
Without that extra grace period, memory reordering could result in
do_something_dlm() executing do_something() concurrently with the last bits
of recovery().

In order to avoid fatal problems such as deadlocks, an RCU read-side critical sec-
tion must not contain calls to synchronize_rcu(). Similarly, an RCU read-side
critical section must not contain anything that waits, directly or indirectly, on com-
pletion of an invocation of synchronize_rcu().

Although RCU’s grace-period guarantee is useful in and of itself, with quite a few
use cases, it would be good to be able to use RCU to coordinate read-side access
to linked data structures. For this, the grace-period guarantee is not sufficient, as
can be seen in function add_gp_buggy() below. We will look at the reader’s code
later, but in the meantime, just think of the reader as locklessly picking up the gp
pointer, and, if the value loaded is non-NULL, locklessly accessing the ->a and ->b
fields.

1 bool add_gp_buggy(int a, int b)
2 {
3 p = kmalloc(sizeof(*p), GFP_KERNEL);
4 if (!p)
5 return -ENOMEM;
6 spin_lock(&gp_lock);
7 if (rcu_access_pointer(gp)) {
8 spin_unlock(&gp_lock);
9 return false;

10 }
11 p->a = a;
12 p->b = a;
13 gp = p; /* ORDERING BUG */
14 spin_unlock(&gp_lock);
15 return true;
16 }

The problem is that both the compiler and weakly ordered CPUs are within their
rights to reorder this code as follows:

1 bool add_gp_buggy_optimized(int a, int b)
2 {
3 p = kmalloc(sizeof(*p), GFP_KERNEL);
4 if (!p)
5 return -ENOMEM;

(continues on next page)

98 Chapter 11. A Tour Through RCU’s Requirements

https://lwn.net/Articles/573497/
https://lwn.net/Articles/573497/

Linux Rcu Documentation

(continued from previous page)
6 spin_lock(&gp_lock);
7 if (rcu_access_pointer(gp)) {
8 spin_unlock(&gp_lock);
9 return false;

10 }
11 gp = p; /* ORDERING BUG */
12 p->a = a;
13 p->b = a;
14 spin_unlock(&gp_lock);
15 return true;
16 }

If an RCU reader fetches gp just after add_gp_buggy_optimized executes line 11,
it will see garbage in the ->a and ->b fields. And this is but one of many ways in
which compiler and hardware optimizations could cause trouble. Therefore, we
clearly need some way to prevent the compiler and the CPU from reordering in
this manner, which brings us to the publish-subscribe guarantee discussed in the
next section.

11.2.2 Publish/Subscribe Guarantee

RCU’s publish-subscribe guarantee allows data to be inserted into a
linked data structure without disrupting RCU readers. The updater
uses rcu_assign_pointer() to insert the new data, and readers use
rcu_dereference() to access data, whether new or old. The following shows an
example of insertion:

1 bool add_gp(int a, int b)
2 {
3 p = kmalloc(sizeof(*p), GFP_KERNEL);
4 if (!p)
5 return -ENOMEM;
6 spin_lock(&gp_lock);
7 if (rcu_access_pointer(gp)) {
8 spin_unlock(&gp_lock);
9 return false;

10 }
11 p->a = a;
12 p->b = a;
13 rcu_assign_pointer(gp, p);
14 spin_unlock(&gp_lock);
15 return true;
16 }

The rcu_assign_pointer() on line 13 is conceptually equivalent to a simple as-
signment statement, but also guarantees that its assignment will happen after the
two assignments in lines 11 and 12, similar to the C11 memory_order_release
store operation. It also prevents any number of“interesting”compiler optimiza-
tions, for example, the use of gp as a scratch location immediately preceding the
assignment.

11.2. Fundamental Requirements 99

Linux Rcu Documentation

Quick Quiz:
But rcu_assign_pointer() does nothing to prevent the two assignments to
p->a and p->b from being reordered. Can’t that also cause problems?
Answer:
No, it cannot. The readers cannot see either of these two fields until the as-
signment to gp, by which time both fields are fully initialized. So reordering the
assignments to p->a and p->b cannot possibly cause any problems.

It is tempting to assume that the reader need not do anything special to control
its accesses to the RCU-protected data, as shown in do_something_gp_buggy()
below:

1 bool do_something_gp_buggy(void)
2 {
3 rcu_read_lock();
4 p = gp; /* OPTIMIZATIONS GALORE!!! */
5 if (p) {
6 do_something(p->a, p->b);
7 rcu_read_unlock();
8 return true;
9 }

10 rcu_read_unlock();
11 return false;
12 }

However, this temptation must be resisted because there are a surprisingly large
number of ways that the compiler (to say nothing of DEC Alpha CPUs) can trip
this code up. For but one example, if the compiler were short of registers, it might
choose to refetch from gp rather than keeping a separate copy in p as follows:

1 bool do_something_gp_buggy_optimized(void)
2 {
3 rcu_read_lock();
4 if (gp) { /* OPTIMIZATIONS GALORE!!! */
5 do_something(gp->a, gp->b);
6 rcu_read_unlock();
7 return true;
8 }
9 rcu_read_unlock();

10 return false;
11 }

If this function ran concurrently with a series of updates that replaced the current
structure with a new one, the fetches of gp->a and gp->b might well come from
two different structures, which could cause serious confusion. To prevent this
(and much else besides), do_something_gp() uses rcu_dereference() to fetch
from gp:

1 bool do_something_gp(void)
2 {
3 rcu_read_lock();
4 p = rcu_dereference(gp);
5 if (p) {
6 do_something(p->a, p->b);

(continues on next page)

100 Chapter 11. A Tour Through RCU’s Requirements

https://h71000.www7.hp.com/wizard/wiz_2637.html

Linux Rcu Documentation

(continued from previous page)
7 rcu_read_unlock();
8 return true;
9 }

10 rcu_read_unlock();
11 return false;
12 }

The rcu_dereference() uses volatile casts and (for DEC Alpha) memory bar-
riers in the Linux kernel. Should a high-quality implementation of C11
``memory_order_consume` [PDF] <http://www.rdrop.com/users/paulmck/RCU/
consume.2015.07.13a.pdf>`__ ever appear, then rcu_dereference() could be im-
plemented as a memory_order_consume load. Regardless of the exact implementa-
tion, a pointer fetched by rcu_dereference() may not be used outside of the out-
ermost RCU read-side critical section containing that rcu_dereference(), unless
protection of the corresponding data element has been passed from RCU to some
other synchronization mechanism, most commonly locking or reference counting.

In short, updaters use rcu_assign_pointer() and readers use
rcu_dereference(), and these two RCU API elements work together to en-
sure that readers have a consistent view of newly added data elements.

Of course, it is also necessary to remove elements from RCU-protected data struc-
tures, for example, using the following process:

1. Remove the data element from the enclosing structure.

2. Wait for all pre-existing RCU read-side critical sections to complete (because
only pre-existing readers can possibly have a reference to the newly removed
data element).

3. At this point, only the updater has a reference to the newly removed data
element, so it can safely reclaim the data element, for example, by passing it
to kfree().

This process is implemented by remove_gp_synchronous():

1 bool remove_gp_synchronous(void)
2 {
3 struct foo *p;
4
5 spin_lock(&gp_lock);
6 p = rcu_access_pointer(gp);
7 if (!p) {
8 spin_unlock(&gp_lock);
9 return false;

10 }
11 rcu_assign_pointer(gp, NULL);
12 spin_unlock(&gp_lock);
13 synchronize_rcu();
14 kfree(p);
15 return true;
16 }

This function is straightforward, with line 13 waiting for a grace period before
line 14 frees the old data element. This waiting ensures that readers will reach

11.2. Fundamental Requirements 101

http://www.rdrop.com/users/paulmck/RCU/consume.2015.07.13a.pdf
http://www.rdrop.com/users/paulmck/RCU/consume.2015.07.13a.pdf
https://www.kernel.org/doc/Documentation/RCU/rcuref.txt

Linux Rcu Documentation

line 7 of do_something_gp() before the data element referenced by p is freed. The
rcu_access_pointer() on line 6 is similar to rcu_dereference(), except that:

1. The value returned by rcu_access_pointer() cannot be dereferenced. If
you want to access the value pointed to as well as the pointer itself, use
rcu_dereference() instead of rcu_access_pointer().

2. The call to rcu_access_pointer() need not be protected. In contrast,
rcu_dereference() must either be within an RCU read-side critical section
or in a code segment where the pointer cannot change, for example, in code
protected by the corresponding update-side lock.

Quick Quiz:
Without the rcu_dereference() or the rcu_access_pointer(), what destruc-
tive optimizations might the compiler make use of?
Answer:
Let’s start with what happens to do_something_gp() if it fails to use
rcu_dereference(). It could reuse a value formerly fetched from this same
pointer. It could also fetch the pointer from gp in a byte-at-a-time manner,
resulting in load tearing, in turn resulting a bytewise mash-up of two distinct
pointer values. It might even use value-speculation optimizations, where it
makes a wrong guess, but by the time it gets around to checking the value,
an update has changed the pointer to match the wrong guess. Too bad about
any dereferences that returned pre-initialization garbage in the meantime! For
remove_gp_synchronous(), as long as all modifications to gp are carried out
while holding gp_lock, the above optimizations are harmless. However, sparse
will complain if you define gp with __rcu and then access it without using either
rcu_access_pointer() or rcu_dereference().

In short, RCU’s publish-subscribe guarantee is provided by the combination of
rcu_assign_pointer() and rcu_dereference(). This guarantee allows data ele-
ments to be safely added to RCU-protected linked data structures without disrupt-
ing RCU readers. This guarantee can be used in combination with the grace-period
guarantee to also allow data elements to be removed from RCU-protected linked
data structures, again without disrupting RCU readers.

This guarantee was only partially premeditated. DYNIX/ptx used an
explicit memory barrier for publication, but had nothing resembling
rcu_dereference() for subscription, nor did it have anything resembling the
smp_read_barrier_depends() that was later subsumed into rcu_dereference()
and later still into READ_ONCE(). The need for these operations made itself known
quite suddenly at a late-1990s meeting with the DEC Alpha architects, back in the
days when DEC was still a free-standing company. It took the Alpha architects
a good hour to convince me that any sort of barrier would ever be needed, and
it then took me a good two hours to convince them that their documentation
did not make this point clear. More recent work with the C and C++ standards
committees have provided much education on tricks and traps from the compiler.
In short, compilers were much less tricky in the early 1990s, but in 2015, don’t
even think about omitting rcu_dereference()!

102 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

11.2.3 Memory-Barrier Guarantees

The previous section’s simple linked-data-structure scenario clearly demonstrates
the need for RCU’s stringent memory-ordering guarantees on systems with more
than one CPU:

1. Each CPU that has an RCU read-side critical section that begins before
synchronize_rcu() starts is guaranteed to execute a full memory barrier
between the time that the RCU read-side critical section ends and the time
that synchronize_rcu() returns. Without this guarantee, a pre-existing RCU
read-side critical section might hold a reference to the newly removed struct
foo after the kfree() on line 14 of remove_gp_synchronous().

2. Each CPU that has an RCU read-side critical section that ends after
synchronize_rcu() returns is guaranteed to execute a full memory bar-
rier between the time that synchronize_rcu() begins and the time that
the RCU read-side critical section begins. Without this guarantee, a later
RCU read-side critical section running after the kfree() on line 14 of
remove_gp_synchronous() might later run do_something_gp() and find the
newly deleted struct foo.

3. If the task invoking synchronize_rcu() remains on a given CPU, then that
CPU is guaranteed to execute a full memory barrier sometime during the
execution of synchronize_rcu(). This guarantee ensures that the kfree()
on line 14 of remove_gp_synchronous() really does execute after the removal
on line 11.

4. If the task invoking synchronize_rcu() migrates among a group of CPUs
during that invocation, then each of the CPUs in that group is guar-
anteed to execute a full memory barrier sometime during the execution
of synchronize_rcu(). This guarantee also ensures that the kfree()
on line 14 of remove_gp_synchronous() really does execute after the re-
moval on line 11, but also in the case where the thread executing the
synchronize_rcu() migrates in the meantime.

11.2. Fundamental Requirements 103

Linux Rcu Documentation

Quick Quiz:
Given that multiple CPUs can start RCU read-side critical sections at any
time without any ordering whatsoever, how can RCU possibly tell whether or
not a given RCU read-side critical section starts before a given instance of
synchronize_rcu()?
Answer:
If RCU cannot tell whether or not a given RCU read-side critical section starts
before a given instance of synchronize_rcu(), then it must assume that the
RCU read-side critical section started first. In other words, a given instance of
synchronize_rcu() can avoid waiting on a given RCU read-side critical section
only if it can prove that synchronize_rcu() started first. A related question
is “When rcu_read_lock() doesn’t generate any code, why does it matter
how it relates to a grace period?”The answer is that it is not the relationship of
rcu_read_lock() itself that is important, but rather the relationship of the code
within the enclosed RCU read-side critical section to the code preceding and
following the grace period. If we take this viewpoint, then a given RCU read-side
critical section begins before a given grace period when some access preceding
the grace period observes the effect of some access within the critical section,
in which case none of the accesses within the critical section may observe the
effects of any access following the grace period.
As of late 2016, mathematical models of RCU take this viewpoint, for example,
see slides 62 and 63 of the 2016 LinuxCon EU presentation.

104 Chapter 11. A Tour Through RCU’s Requirements

http://www2.rdrop.com/users/paulmck/scalability/paper/LinuxMM.2016.10.04c.LCE.pdf

Linux Rcu Documentation

Quick Quiz:
The first and second guarantees require unbelievably strict ordering! Are all
these memory barriers really required?
Answer:
Yes, they really are required. To see why the first guarantee is required, consider
the following sequence of events:
1. CPU 1: rcu_read_lock()
2. CPU 1: q = rcu_dereference(gp); /* Very likely to return p. */
3. CPU 0: list_del_rcu(p);
4. CPU 0: synchronize_rcu() starts.
5. CPU 1: do_something_with(q->a); /* No smp_mb(), so might happen

after kfree(). */
6. CPU 1: rcu_read_unlock()
7. CPU 0: synchronize_rcu() returns.
8. CPU 0: kfree(p);

Therefore, there absolutely must be a full memory barrier between the end of
the RCU read-side critical section and the end of the grace period.
The sequence of events demonstrating the necessity of the second rule is roughly
similar:
1. CPU 0: list_del_rcu(p);
2. CPU 0: synchronize_rcu() starts.
3. CPU 1: rcu_read_lock()
4. CPU 1: q = rcu_dereference(gp); /* Might return p if no memory

barrier. */
5. CPU 0: synchronize_rcu() returns.
6. CPU 0: kfree(p);
7. CPU 1: do_something_with(q->a); /* Boom!!! */
8. CPU 1: rcu_read_unlock()

And similarly, without a memory barrier between the beginning of the grace
period and the beginning of the RCU read-side critical section, CPU 1 might
end up accessing the freelist.
The“as if”rule of course applies, so that any implementation that acts as if the
appropriate memory barriers were in place is a correct implementation. That
said, it is much easier to fool yourself into believing that you have adhered to
the as-if rule than it is to actually adhere to it!

11.2. Fundamental Requirements 105

Linux Rcu Documentation

Quick Quiz:
You claim that rcu_read_lock() and rcu_read_unlock() generate absolutely
no code in some kernel builds. This means that the compiler might arbitrarily
rearrange consecutive RCU read-side critical sections. Given such rearrange-
ment, if a given RCU read-side critical section is done, how can you be sure
that all prior RCU read-side critical sections are done? Won’t the compiler
rearrangements make that impossible to determine?
Answer:
In cases where rcu_read_lock() and rcu_read_unlock() generate absolutely
no code, RCU infers quiescent states only at special locations, for example,
within the scheduler. Because calls to schedule() had better prevent calling-
code accesses to shared variables from being rearranged across the call to
schedule(), if RCU detects the end of a given RCU read-side critical section,
it will necessarily detect the end of all prior RCU read-side critical sections, no
matter how aggressively the compiler scrambles the code. Again, this all as-
sumes that the compiler cannot scramble code across calls to the scheduler, out
of interrupt handlers, into the idle loop, into user-mode code, and so on. But if
your kernel build allows that sort of scrambling, you have broken far more than
just RCU!

Note that thesememory-barrier requirements do not replace the fundamental RCU
requirement that a grace period wait for all pre-existing readers. On the contrary,
the memory barriers called out in this section must operate in such a way as to en-
force this fundamental requirement. Of course, different implementations enforce
this requirement in different ways, but enforce it they must.

11.2.4 RCU Primitives Guaranteed to Execute Unconditionally

The common-case RCU primitives are unconditional. They are invoked, they do
their job, and they return, with no possibility of error, and no need to retry. This
is a key RCU design philosophy.

However, this philosophy is pragmatic rather than pigheaded. If someone comes
up with a good justification for a particular conditional RCU primitive, it might well
be implemented and added. After all, this guarantee was reverse-engineered, not
premeditated. The unconditional nature of the RCU primitives was initially an acci-
dent of implementation, and later experience with synchronization primitives with
conditional primitives caused me to elevate this accident to a guarantee. There-
fore, the justification for adding a conditional primitive to RCU would need to be
based on detailed and compelling use cases.

106 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

11.2.5 Guaranteed Read-to-Write Upgrade

As far as RCU is concerned, it is always possible to carry out an update within an
RCU read-side critical section. For example, that RCU read-side critical section
might search for a given data element, and then might acquire the update-side
spinlock in order to update that element, all while remaining in that RCU read-
side critical section. Of course, it is necessary to exit the RCU read-side critical
section before invoking synchronize_rcu(), however, this inconvenience can be
avoided through use of the call_rcu() and kfree_rcu() API members described
later in this document.

Quick Quiz:
But how does the upgrade-to-write operation exclude other readers?
Answer:
It doesn’t, just like normal RCU updates, which also do not exclude RCU readers.

This guarantee allows lookup code to be shared between read-side and update-side
code, and was premeditated, appearing in the earliest DYNIX/ptx RCU documen-
tation.

11.3 Fundamental Non-Requirements

RCU provides extremely lightweight readers, and its read-side guarantees, though
quite useful, are correspondingly lightweight. It is therefore all too easy to assume
that RCU is guaranteeing more than it really is. Of course, the list of things that
RCU does not guarantee is infinitely long, however, the following sections list a
few non-guarantees that have caused confusion. Except where otherwise noted,
these non-guarantees were premeditated.

1. Readers Impose Minimal Ordering

2. Readers Do Not Exclude Updaters

3. Updaters Only Wait For Old Readers

4. Grace Periods Don’t Partition Read-Side Critical Sections
5. Read-Side Critical Sections Don’t Partition Grace Periods

11.3.1 Readers Impose Minimal Ordering

Reader-side markers such as rcu_read_lock() and rcu_read_unlock() provide
absolutely no ordering guarantees except through their interaction with the grace-
period APIs such as synchronize_rcu(). To see this, consider the following pair
of threads:

1 void thread0(void)
2 {
3 rcu_read_lock();
4 WRITE_ONCE(x, 1);
5 rcu_read_unlock();

(continues on next page)

11.3. Fundamental Non-Requirements 107

Linux Rcu Documentation

(continued from previous page)
6 rcu_read_lock();
7 WRITE_ONCE(y, 1);
8 rcu_read_unlock();
9 }

10
11 void thread1(void)
12 {
13 rcu_read_lock();
14 r1 = READ_ONCE(y);
15 rcu_read_unlock();
16 rcu_read_lock();
17 r2 = READ_ONCE(x);
18 rcu_read_unlock();
19 }

After thread0() and thread1() execute concurrently, it is quite possible to have

(r1 == 1 && r2 == 0)

(that is, y appears to have been assigned before x), which would not be possi-
ble if rcu_read_lock() and rcu_read_unlock() had much in the way of ordering
properties. But they do not, so the CPU is within its rights to do significant re-
ordering. This is by design: Any significant ordering constraints would slow down
these fast-path APIs.

Quick Quiz:
Can’t the compiler also reorder this code?
Answer:
No, the volatile casts in READ_ONCE() and WRITE_ONCE() prevent the compiler
from reordering in this particular case.

11.3.2 Readers Do Not Exclude Updaters

Neither rcu_read_lock() nor rcu_read_unlock() exclude updates. All they do is
to prevent grace periods from ending. The following example illustrates this:

1 void thread0(void)
2 {
3 rcu_read_lock();
4 r1 = READ_ONCE(y);
5 if (r1) {
6 do_something_with_nonzero_x();
7 r2 = READ_ONCE(x);
8 WARN_ON(!r2); /* BUG!!! */
9 }

10 rcu_read_unlock();
11 }
12
13 void thread1(void)
14 {
15 spin_lock(&my_lock);
16 WRITE_ONCE(x, 1);

(continues on next page)

108 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

(continued from previous page)
17 WRITE_ONCE(y, 1);
18 spin_unlock(&my_lock);
19 }

If the thread0() function’s rcu_read_lock() excluded the thread1() function’
s update, the WARN_ON() could never fire. But the fact is that rcu_read_lock()
does not exclude much of anything aside from subsequent grace periods, of which
thread1() has none, so the WARN_ON() can and does fire.

11.3.3 Updaters Only Wait For Old Readers

It might be tempting to assume that after synchronize_rcu() completes, there
are no readers executing. This temptation must be avoided because new readers
can start immediately after synchronize_rcu() starts, and synchronize_rcu() is
under no obligation to wait for these new readers.

Quick Quiz:
Suppose that synchronize_rcu() did wait until all readers had completed instead
of waiting only on pre-existing readers. For how long would the updater be able
to rely on there being no readers?
Answer:
For no time at all. Even if synchronize_rcu() were to wait until all readers
had completed, a new reader might start immediately after synchronize_rcu()
completed. Therefore, the code following synchronize_rcu() can never rely on
there being no readers.

11.3.4 Grace Periods Don’t Partition Read-Side Critical Sections

It is tempting to assume that if any part of one RCU read-side critical section
precedes a given grace period, and if any part of another RCU read-side critical
section follows that same grace period, then all of the first RCU read-side critical
section must precede all of the second. However, this just isn’t the case: A single
grace period does not partition the set of RCU read-side critical sections. An ex-
ample of this situation can be illustrated as follows, where x, y, and z are initially
all zero:

1 void thread0(void)
2 {
3 rcu_read_lock();
4 WRITE_ONCE(a, 1);
5 WRITE_ONCE(b, 1);
6 rcu_read_unlock();
7 }
8
9 void thread1(void)

10 {
11 r1 = READ_ONCE(a);
12 synchronize_rcu();
13 WRITE_ONCE(c, 1);

(continues on next page)

11.3. Fundamental Non-Requirements 109

Linux Rcu Documentation

(continued from previous page)
14 }
15
16 void thread2(void)
17 {
18 rcu_read_lock();
19 r2 = READ_ONCE(b);
20 r3 = READ_ONCE(c);
21 rcu_read_unlock();
22 }

It turns out that the outcome:

(r1 == 1 && r2 == 0 && r3 == 1)

is entirely possible. The following figure show how this can happen, with each
circled QS indicating the point at which RCU recorded a quiescent state for each
thread, that is, a state in which RCU knows that the thread cannot be in the midst
of an RCU read-side critical section that started before the current grace period:

110 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

If it is necessary to partition RCU read-side critical sections in this manner, it is
necessary to use two grace periods, where the first grace period is known to end
before the second grace period starts:

1 void thread0(void)
2 {
3 rcu_read_lock();
4 WRITE_ONCE(a, 1);
5 WRITE_ONCE(b, 1);
6 rcu_read_unlock();
7 }
8
9 void thread1(void)

10 {
11 r1 = READ_ONCE(a);
12 synchronize_rcu();
13 WRITE_ONCE(c, 1);
14 }
15
16 void thread2(void)
17 {
18 r2 = READ_ONCE(c);
19 synchronize_rcu();
20 WRITE_ONCE(d, 1);
21 }
22
23 void thread3(void)
24 {
25 rcu_read_lock();
26 r3 = READ_ONCE(b);
27 r4 = READ_ONCE(d);
28 rcu_read_unlock();
29 }

Here, if (r1 == 1), then thread0()’s write to b must happen before the end of
thread1()’s grace period. If in addition (r4 == 1), then thread3()’s read from
b must happen after the beginning of thread2()’s grace period. If it is also the
case that (r2 == 1), then the end of thread1()’s grace period must precede the
beginning of thread2()’s grace period. This mean that the two RCU read-side
critical sections cannot overlap, guaranteeing that (r3 == 1). As a result, the
outcome:

(r1 == 1 && r2 == 1 && r3 == 0 && r4 == 1)

cannot happen.

This non-requirement was also non-premeditated, but became apparent when
studying RCU’s interaction with memory ordering.

11.3. Fundamental Non-Requirements 111

Linux Rcu Documentation

11.3.5 Read-Side Critical Sections Don’t Partition Grace Periods

It is also tempting to assume that if an RCU read-side critical section happens be-
tween a pair of grace periods, then those grace periods cannot overlap. However,
this temptation leads nowhere good, as can be illustrated by the following, with
all variables initially zero:

1 void thread0(void)
2 {
3 rcu_read_lock();
4 WRITE_ONCE(a, 1);
5 WRITE_ONCE(b, 1);
6 rcu_read_unlock();
7 }
8
9 void thread1(void)

10 {
11 r1 = READ_ONCE(a);
12 synchronize_rcu();
13 WRITE_ONCE(c, 1);
14 }
15
16 void thread2(void)
17 {
18 rcu_read_lock();
19 WRITE_ONCE(d, 1);
20 r2 = READ_ONCE(c);
21 rcu_read_unlock();
22 }
23
24 void thread3(void)
25 {
26 r3 = READ_ONCE(d);
27 synchronize_rcu();
28 WRITE_ONCE(e, 1);
29 }
30
31 void thread4(void)
32 {
33 rcu_read_lock();
34 r4 = READ_ONCE(b);
35 r5 = READ_ONCE(e);
36 rcu_read_unlock();
37 }

In this case, the outcome:

(r1 == 1 && r2 == 1 && r3 == 1 && r4 == 0 && r5 == 1)

is entirely possible, as illustrated below:

Again, an RCU read-side critical section can overlap almost all of a given grace
period, just so long as it does not overlap the entire grace period. As a result, an
RCU read-side critical section cannot partition a pair of RCU grace periods.

112 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

Quick Quiz:
How long a sequence of grace periods, each separated by an RCU read-side crit-
ical section, would be required to partition the RCU read-side critical sections
at the beginning and end of the chain?
Answer:
In theory, an infinite number. In practice, an unknown number that is sensi-
tive to both implementation details and timing considerations. Therefore, even
in practice, RCU users must abide by the theoretical rather than the practical
answer.

11.4 Parallelism Facts of Life

These parallelism facts of life are by no means specific to RCU, but the RCU im-
plementation must abide by them. They therefore bear repeating:

1. Any CPU or task may be delayed at any time, and any attempts to avoid these
delays by disabling preemption, interrupts, or whatever are completely futile.
This is most obvious in preemptible user-level environments and in virtualized
environments (where a given guest OS’s VCPUs can be preempted at any
time by the underlying hypervisor), but can also happen in bare-metal envi-
ronments due to ECC errors, NMIs, and other hardware events. Although a
delay of more than about 20 seconds can result in splats, the RCU implemen-
tation is obligated to use algorithms that can tolerate extremely long delays,
but where “extremely long”is not long enough to allow wrap-around when

11.4. Parallelism Facts of Life 113

Linux Rcu Documentation

incrementing a 64-bit counter.

2. Both the compiler and the CPU can reorder memory accesses. Where it mat-
ters, RCU must use compiler directives and memory-barrier instructions to
preserve ordering.

3. Conflicting writes to memory locations in any given cache line will result in
expensive cache misses. Greater numbers of concurrent writes and more-
frequent concurrent writes will result in more dramatic slowdowns. RCU is
therefore obligated to use algorithms that have sufficient locality to avoid
significant performance and scalability problems.

4. As a rough rule of thumb, only one CPU’s worth of processing may be carried
out under the protection of any given exclusive lock. RCU must therefore use
scalable locking designs.

5. Counters are finite, especially on 32-bit systems. RCU’s use of counters must
therefore tolerate counter wrap, or be designed such that counter wrap would
take way more time than a single system is likely to run. An uptime of ten
years is quite possible, a runtime of a century much less so. As an example
of the latter, RCU’s dyntick-idle nesting counter allows 54 bits for interrupt
nesting level (this counter is 64 bits even on a 32-bit system). Overflowing
this counter requires 254 half-interrupts on a given CPUwithout that CPU ever
going idle. If a half-interrupt happened every microsecond, it would take 570
years of runtime to overflow this counter, which is currently believed to be
an acceptably long time.

6. Linux systems can have thousands of CPUs running a single Linux kernel in a
single shared-memory environment. RCU must therefore pay close attention
to high-end scalability.

This last parallelism fact of life means that RCU must pay special attention to the
preceding facts of life. The idea that Linux might scale to systems with thousands
of CPUs would have been met with some skepticism in the 1990s, but these re-
quirements would have otherwise have been unsurprising, even in the early 1990s.

11.5 Quality-of-Implementation Requirements

These sections list quality-of-implementation requirements. Although an RCU im-
plementation that ignores these requirements could still be used, it would likely
be subject to limitations that would make it inappropriate for industrial-strength
production use. Classes of quality-of-implementation requirements are as follows:

1. Specialization

2. Performance and Scalability

3. Forward Progress

4. Composability

5. Corner Cases

These classes is covered in the following sections.

114 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

11.5.1 Specialization

RCU is and always has been intended primarily for read-mostly situations, which
means that RCU’s read-side primitives are optimized, often at the expense of its
update-side primitives. Experience thus far is captured by the following list of
situations:

1. Read-mostly data, where stale and inconsistent data is not a problem: RCU
works great!

2. Read-mostly data, where data must be consistent: RCU works well.

3. Read-write data, where data must be consistent: RCUmight work OK. Or not.

4. Write-mostly data, where data must be consistent: RCU is very unlikely to
be the right tool for the job, with the following exceptions, where RCU can
provide:

a. Existence guarantees for update-friendly mechanisms.

b. Wait-free read-side primitives for real-time use.

This focus on read-mostly situations means that RCU must interoperate
with other synchronization primitives. For example, the add_gp() and
remove_gp_synchronous() examples discussed earlier use RCU to protect readers
and locking to coordinate updaters. However, the need extends much farther, re-
quiring that a variety of synchronization primitives be legal within RCU read-side
critical sections, including spinlocks, sequence locks, atomic operations, reference
counters, and memory barriers.

Quick Quiz:
What about sleeping locks?
Answer:
These are forbidden within Linux-kernel RCU read-side critical sections because
it is not legal to place a quiescent state (in this case, voluntary context switch)
within an RCU read-side critical section. However, sleeping locks may be used
within userspace RCU read-side critical sections, and also within Linux-kernel
sleepable RCU (SRCU) read-side critical sections. In addition, the -rt patchset
turns spinlocks into a sleeping locks so that the corresponding critical sections
can be preempted, which also means that these sleeplockified spinlocks (but
not other sleeping locks!) may be acquire within -rt-Linux-kernel RCU read-side
critical sections. Note that it is legal for a normal RCU read-side critical sec-
tion to conditionally acquire a sleeping locks (as in mutex_trylock()), but only
as long as it does not loop indefinitely attempting to conditionally acquire that
sleeping locks. The key point is that things like mutex_trylock() either return
with the mutex held, or return an error indication if the mutex was not imme-
diately available. Either way, mutex_trylock() returns immediately without
sleeping.

It often comes as a surprise that many algorithms do not require a consistent view
of data, but many can function in that mode, with network routing being the poster
child. Internet routing algorithms take significant time to propagate updates, so
that by the time an update arrives at a given system, that system has been send-
ing network traffic the wrong way for a considerable length of time. Having a

11.5. Quality-of-Implementation Requirements 115

Linux Rcu Documentation

few threads continue to send traffic the wrong way for a few more milliseconds
is clearly not a problem: In the worst case, TCP retransmissions will eventually
get the data where it needs to go. In general, when tracking the state of the uni-
verse outside of the computer, some level of inconsistency must be tolerated due
to speed-of-light delays if nothing else.

Furthermore, uncertainty about external state is inherent in many cases. For ex-
ample, a pair of veterinarians might use heartbeat to determine whether or not
a given cat was alive. But how long should they wait after the last heartbeat to
decide that the cat is in fact dead? Waiting less than 400 milliseconds makes no
sense because this would mean that a relaxed cat would be considered to cycle
between death and life more than 100 times per minute. Moreover, just as with
human beings, a cat’s heart might stop for some period of time, so the exact wait
period is a judgment call. One of our pair of veterinarians might wait 30 seconds
before pronouncing the cat dead, while the other might insist on waiting a full
minute. The two veterinarians would then disagree on the state of the cat during
the final 30 seconds of the minute following the last heartbeat.

Interestingly enough, this same situation applies to hardware. When push comes
to shove, how do we tell whether or not some external server has failed? We send
messages to it periodically, and declare it failed if we don’t receive a response
within a given period of time. Policy decisions can usually tolerate short periods
of inconsistency. The policy was decided some time ago, and is only now being put
into effect, so a few milliseconds of delay is normally inconsequential.

However, there are algorithms that absolutely must see consistent data. For exam-
ple, the translation between a user-level SystemV semaphore ID to the correspond-
ing in-kernel data structure is protected by RCU, but it is absolutely forbidden to
update a semaphore that has just been removed. In the Linux kernel, this need for
consistency is accommodated by acquiring spinlocks located in the in-kernel data
structure from within the RCU read-side critical section, and this is indicated by
the green box in the figure above. Many other techniques may be used, and are in
fact used within the Linux kernel.

In short, RCU is not required to maintain consistency, and other mechanisms may
be used in concert with RCU when consistency is required. RCU’s specialization
allows it to do its job extremely well, and its ability to interoperate with other
synchronization mechanisms allows the right mix of synchronization tools to be
used for a given job.

11.5.2 Performance and Scalability

Energy efficiency is a critical component of performance today, and Linux-kernel
RCU implementations must therefore avoid unnecessarily awakening idle CPUs.
I cannot claim that this requirement was premeditated. In fact, I learned of it
during a telephone conversation in which I was given“frank and open”feedback
on the importance of energy efficiency in battery-powered systems and on spe-
cific energy-efficiency shortcomings of the Linux-kernel RCU implementation. In
my experience, the battery-powered embedded community will consider any un-
necessary wakeups to be extremely unfriendly acts. So much so that mere Linux-
kernel-mailing-list posts are insufficient to vent their ire.

Memory consumption is not particularly important for in most situations, and has

116 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

become decreasingly so as memory sizes have expanded and memory costs have
plummeted. However, as I learned from Matt Mackall’s bloatwatch efforts, mem-
ory footprint is critically important on single-CPU systems with non-preemptible
(CONFIG_PREEMPT=n) kernels, and thus tiny RCU was born. Josh Triplett has since
taken over the small-memory banner with his Linux kernel tinification project,
which resulted in SRCU becoming optional for those kernels not needing it.

The remaining performance requirements are, for the most part, unsurprising.
For example, in keeping with RCU’s read-side specialization, rcu_dereference()
should have negligible overhead (for example, suppression of a fewminor compiler
optimizations). Similarly, in non-preemptible environments, rcu_read_lock() and
rcu_read_unlock() should have exactly zero overhead.

In preemptible environments, in the case where the RCU read-side critical sec-
tion was not preempted (as will be the case for the highest-priority real-time
process), rcu_read_lock() and rcu_read_unlock() should have minimal over-
head. In particular, they should not contain atomic read-modify-write operations,
memory-barrier instructions, preemption disabling, interrupt disabling, or back-
wards branches. However, in the case where the RCU read-side critical section
was preempted, rcu_read_unlock()may acquire spinlocks and disable interrupts.
This is why it is better to nest an RCU read-side critical section within a preempt-
disable region than vice versa, at least in cases where that critical section is short
enough to avoid unduly degrading real-time latencies.

The synchronize_rcu() grace-period-wait primitive is optimized for throughput.
It may therefore incur several milliseconds of latency in addition to the duration of
the longest RCU read-side critical section. On the other hand, multiple concurrent
invocations of synchronize_rcu() are required to use batching optimizations so
that they can be satisfied by a single underlying grace-period-wait operation. For
example, in the Linux kernel, it is not unusual for a single grace-period-wait oper-
ation to serve more than 1,000 separate invocations of synchronize_rcu(), thus
amortizing the per-invocation overhead down to nearly zero. However, the grace-
period optimization is also required to avoid measurable degradation of real-time
scheduling and interrupt latencies.

In some cases, the multi-millisecond synchronize_rcu() latencies are unaccept-
able. In these cases, synchronize_rcu_expedited() may be used instead, reduc-
ing the grace-period latency down to a few tens of microseconds on small sys-
tems, at least in cases where the RCU read-side critical sections are short. There
are currently no special latency requirements for synchronize_rcu_expedited()
on large systems, but, consistent with the empirical nature of the RCU specifica-
tion, that is subject to change. However, there most definitely are scalability re-
quirements: A storm of synchronize_rcu_expedited() invocations on 4096 CPUs
should at least make reasonable forward progress. In return for its shorter laten-
cies, synchronize_rcu_expedited() is permitted to impose modest degradation
of real-time latency on non-idle online CPUs. Here,“modest”means roughly the
same latency degradation as a scheduling-clock interrupt.

There are a number of situations where even synchronize_rcu_expedited()’s re-
duced grace-period latency is unacceptable. In these situations, the asynchronous
call_rcu() can be used in place of synchronize_rcu() as follows:

1 struct foo {
(continues on next page)

11.5. Quality-of-Implementation Requirements 117

http://elinux.org/Linux_Tiny-FAQ
https://lkml.kernel.org/g/20090113221724.GA15307@linux.vnet.ibm.com
https://tiny.wiki.kernel.org/
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/making-rcu-safe-deep-sub-millisecond-response

Linux Rcu Documentation

(continued from previous page)
2 int a;
3 int b;
4 struct rcu_head rh;
5 };
6
7 static void remove_gp_cb(struct rcu_head *rhp)
8 {
9 struct foo *p = container_of(rhp, struct foo, rh);

10
11 kfree(p);
12 }
13
14 bool remove_gp_asynchronous(void)
15 {
16 struct foo *p;
17
18 spin_lock(&gp_lock);
19 p = rcu_access_pointer(gp);
20 if (!p) {
21 spin_unlock(&gp_lock);
22 return false;
23 }
24 rcu_assign_pointer(gp, NULL);
25 call_rcu(&p->rh, remove_gp_cb);
26 spin_unlock(&gp_lock);
27 return true;
28 }

A definition of struct foo is finally needed, and appears on lines 1-5. The
function remove_gp_cb() is passed to call_rcu() on line 25, and will be in-
voked after the end of a subsequent grace period. This gets the same effect as
remove_gp_synchronous(), but without forcing the updater to wait for a grace
period to elapse. The call_rcu() function may be used in a number of sit-
uations where neither synchronize_rcu() nor synchronize_rcu_expedited()
would be legal, including within preempt-disable code, local_bh_disable() code,
interrupt-disable code, and interrupt handlers. However, even call_rcu() is il-
legal within NMI handlers and from idle and offline CPUs. The callback function
(remove_gp_cb() in this case) will be executed within softirq (software interrupt)
environment within the Linux kernel, either within a real softirq handler or under
the protection of local_bh_disable(). In both the Linux kernel and in userspace,
it is bad practice to write an RCU callback function that takes too long. Long-
running operations should be relegated to separate threads or (in the Linux kernel)
workqueues.

Quick Quiz:
Why does line 19 use rcu_access_pointer()? After all, call_rcu() on line 25
stores into the structure, which would interact badly with concurrent insertions.
Doesn’t this mean that rcu_dereference() is required?
Answer:
Presumably the ->gp_lock acquired on line 18 excludes any changes, including
any insertions that rcu_dereference() would protect against. Therefore, any
insertions will be delayed until after ->gp_lock is released on line 25, which in
turn means that rcu_access_pointer() suffices.

118 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

However, all that remove_gp_cb() is doing is invoking kfree() on the data ele-
ment. This is a common idiom, and is supported by kfree_rcu(), which allows
“fire and forget”operation as shown below:

1 struct foo {
2 int a;
3 int b;
4 struct rcu_head rh;
5 };
6
7 bool remove_gp_faf(void)
8 {
9 struct foo *p;

10
11 spin_lock(&gp_lock);
12 p = rcu_dereference(gp);
13 if (!p) {
14 spin_unlock(&gp_lock);
15 return false;
16 }
17 rcu_assign_pointer(gp, NULL);
18 kfree_rcu(p, rh);
19 spin_unlock(&gp_lock);
20 return true;
21 }

Note that remove_gp_faf() simply invokes kfree_rcu() and proceeds, without
any need to pay any further attention to the subsequent grace period and kfree().
It is permissible to invoke kfree_rcu() from the same environments as for
call_rcu(). Interestingly enough, DYNIX/ptx had the equivalents of call_rcu()
and kfree_rcu(), but not synchronize_rcu(). This was due to the fact that RCU
was not heavily used within DYNIX/ptx, so the very few places that needed some-
thing like synchronize_rcu() simply open-coded it.

Quick Quiz:
Earlier it was claimed that call_rcu() and kfree_rcu() allowed updaters to
avoid being blocked by readers. But how can that be correct, given that the
invocation of the callback and the freeing of the memory (respectively) must
still wait for a grace period to elapse?
Answer:
We could define things this way, but keep in mind that this sort of definition
would say that updates in garbage-collected languages cannot complete until
the next time the garbage collector runs, which does not seem at all reason-
able. The key point is that in most cases, an updater using either call_rcu()
or kfree_rcu() can proceed to the next update as soon as it has invoked
call_rcu() or kfree_rcu(), without having to wait for a subsequent grace pe-
riod.

But what if the updater must wait for the completion of code to be executed
after the end of the grace period, but has other tasks that can be carried
out in the meantime? The polling-style get_state_synchronize_rcu() and
cond_synchronize_rcu() functions may be used for this purpose, as shown be-
low:

11.5. Quality-of-Implementation Requirements 119

Linux Rcu Documentation

1 bool remove_gp_poll(void)
2 {
3 struct foo *p;
4 unsigned long s;
5
6 spin_lock(&gp_lock);
7 p = rcu_access_pointer(gp);
8 if (!p) {
9 spin_unlock(&gp_lock);

10 return false;
11 }
12 rcu_assign_pointer(gp, NULL);
13 spin_unlock(&gp_lock);
14 s = get_state_synchronize_rcu();
15 do_something_while_waiting();
16 cond_synchronize_rcu(s);
17 kfree(p);
18 return true;
19 }

On line 14, get_state_synchronize_rcu() obtains a “cookie”from RCU, then
line 15 carries out other tasks, and finally, line 16 returns immediately if a grace
period has elapsed in the meantime, but otherwise waits as required. The need for
get_state_synchronize_rcu and cond_synchronize_rcu() has appeared quite
recently, so it is too early to tell whether they will stand the test of time.

RCU thus provides a range of tools to allow updaters to strike the required tradeoff
between latency, flexibility and CPU overhead.

11.5.3 Forward Progress

In theory, delaying grace-period completion and callback invocation is harmless.
In practice, not only are memory sizes finite but also callbacks sometimes do wake-
ups, and sufficiently deferred wakeups can be difficult to distinguish from system
hangs. Therefore, RCUmust provide a number of mechanisms to promote forward
progress.

These mechanisms are not foolproof, nor can they be. For one simple example, an
infinite loop in an RCU read-side critical section must by definition prevent later
grace periods from ever completing. For a more involved example, consider a 64-
CPU system built with CONFIG_RCU_NOCB_CPU=y and booted with rcu_nocbs=1-63,
where CPUs 1 through 63 spin in tight loops that invoke call_rcu(). Even if these
tight loops also contain calls to cond_resched() (thus allowing grace periods to
complete), CPU 0 simply will not be able to invoke callbacks as fast as the other 63
CPUs can register them, at least not until the system runs out of memory. In both of
these examples, the Spiderman principle applies: With great power comes great
responsibility. However, short of this level of abuse, RCU is required to ensure
timely completion of grace periods and timely invocation of callbacks.

RCU takes the following steps to encourage timely completion of grace periods:

1. If a grace period fails to complete within 100 milliseconds, RCU causes fu-
ture invocations of cond_resched() on the holdout CPUs to provide an RCU
quiescent state. RCU also causes those CPUs’need_resched() invocations to

120 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

return true, but only after the corresponding CPU’s next scheduling-clock.
2. CPUs mentioned in the nohz_full kernel boot parameter can run indefinitely
in the kernel without scheduling-clock interrupts, which defeats the above
need_resched() strategem. RCU will therefore invoke resched_cpu() on
any nohz_full CPUs still holding out after 109 milliseconds.

3. In kernels built with CONFIG_RCU_BOOST=y, if a given task that has been pre-
empted within an RCU read-side critical section is holding out for more than
500 milliseconds, RCU will resort to priority boosting.

4. If a CPU is still holding out 10 seconds into the grace period, RCU will invoke
resched_cpu() on it regardless of its nohz_full state.

The above values are defaults for systems running with HZ=1000. They will vary as
the value of HZ varies, and can also be changed using the relevant Kconfig options
and kernel boot parameters. RCU currently does not do much sanity checking
of these parameters, so please use caution when changing them. Note that these
forward-progressmeasures are provided only for RCU, not for SRCU or Tasks RCU.

RCU takes the following steps in call_rcu() to encourage timely invocation of
callbacks when any given non-rcu_nocbs CPU has 10,000 callbacks, or has 10,000
more callbacks than it had the last time encouragement was provided:

1. Starts a grace period, if one is not already in progress.

2. Forces immediate checking for quiescent states, rather than waiting for three
milliseconds to have elapsed since the beginning of the grace period.

3. Immediately tags the CPU’s callbacks with their grace period completion
numbers, rather than waiting for the RCU_SOFTIRQ handler to get around to
it.

4. Lifts callback-execution batch limits, which speeds up callback invocation at
the expense of degrading realtime response.

Again, these are default values when running at HZ=1000, and can be overridden.
Again, these forward-progress measures are provided only for RCU, not for SRCU
or Tasks RCU. Even for RCU, callback-invocation forward progress for rcu_nocbs
CPUs is much less well-developed, in part because workloads benefiting from
rcu_nocbs CPUs tend to invoke call_rcu() relatively infrequently. If workloads
emerge that need both rcu_nocbs CPUs and high call_rcu() invocation rates,
then additional forward-progress work will be required.

11.5.4 Composability

Composability has received much attention in recent years, perhaps in part due
to the collision of multicore hardware with object-oriented techniques designed
in single-threaded environments for single-threaded use. And in theory, RCU
read-side critical sections may be composed, and in fact may be nested arbitrarily
deeply. In practice, as with all real-world implementations of composable con-
structs, there are limitations.

Implementations of RCU for which rcu_read_lock() and rcu_read_unlock()
generate no code, such as Linux-kernel RCU when CONFIG_PREEMPT=n, can be
nested arbitrarily deeply. After all, there is no overhead. Except that if all these

11.5. Quality-of-Implementation Requirements 121

Linux Rcu Documentation

instances of rcu_read_lock() and rcu_read_unlock() are visible to the compiler,
compilation will eventually fail due to exhausting memory, mass storage, or user
patience, whichever comes first. If the nesting is not visible to the compiler, as is
the case with mutually recursive functions each in its own translation unit, stack
overflow will result. If the nesting takes the form of loops, perhaps in the guise of
tail recursion, either the control variable will overflow or (in the Linux kernel) you
will get an RCU CPU stall warning. Nevertheless, this class of RCU implementa-
tions is one of the most composable constructs in existence.

RCU implementations that explicitly track nesting depth are limited by the nesting-
depth counter. For example, the Linux kernel’s preemptible RCU limits nesting to
INT_MAX. This should suffice for almost all practical purposes. That said, a consec-
utive pair of RCU read-side critical sections between which there is an operation
that waits for a grace period cannot be enclosed in another RCU read-side critical
section. This is because it is not legal to wait for a grace period within an RCU
read-side critical section: To do so would result either in deadlock or in RCU im-
plicitly splitting the enclosing RCU read-side critical section, neither of which is
conducive to a long-lived and prosperous kernel.

It is worth noting that RCU is not alone in limiting composability. For example,
many transactional-memory implementations prohibit composing a pair of trans-
actions separated by an irrevocable operation (for example, a network receive
operation). For another example, lock-based critical sections can be composed
surprisingly freely, but only if deadlock is avoided.

In short, although RCU read-side critical sections are highly composable, care is
required in some situations, just as is the case for any other composable synchro-
nization mechanism.

11.5.5 Corner Cases

A given RCU workload might have an endless and intense stream of RCU read-
side critical sections, perhaps even so intense that there was never a point in time
during which there was not at least one RCU read-side critical section in flight.
RCU cannot allow this situation to block grace periods: As long as all the RCU
read-side critical sections are finite, grace periods must also be finite.

That said, preemptible RCU implementations could potentially result in RCU read-
side critical sections being preempted for long durations, which has the effect of
creating a long-duration RCU read-side critical section. This situation can arise
only in heavily loaded systems, but systems using real-time priorities are of course
more vulnerable. Therefore, RCU priority boosting is provided to help deal with
this case. That said, the exact requirements on RCU priority boosting will likely
evolve as more experience accumulates.

Other workloads might have very high update rates. Although one can ar-
gue that such workloads should instead use something other than RCU, the
fact remains that RCU must handle such workloads gracefully. This require-
ment is another factor driving batching of grace periods, but it is also the
driving force behind the checks for large numbers of queued RCU callbacks
in the call_rcu() code path. Finally, high update rates should not delay
RCU read-side critical sections, although some small read-side delays can occur

122 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

when using synchronize_rcu_expedited(), courtesy of this function’s use of
smp_call_function_single().

Although all three of these corner cases were understood in the early 1990s, a
simple user-level test consisting of close(open(path)) in a tight loop in the early
2000s suddenly provided a much deeper appreciation of the high-update-rate cor-
ner case. This test also motivated addition of some RCU code to react to high
update rates, for example, if a given CPU finds itself with more than 10,000 RCU
callbacks queued, it will cause RCU to take evasive action by more aggressively
starting grace periods and more aggressively forcing completion of grace-period
processing. This evasive action causes the grace period to complete more quickly,
but at the cost of restricting RCU’s batching optimizations, thus increasing the
CPU overhead incurred by that grace period.

11.6 Software-Engineering Requirements

Between Murphy’s Law and“To err is human”, it is necessary to guard against
mishaps and misuse:

1. It is all too easy to forget to use rcu_read_lock() everywhere that
it is needed, so kernels built with CONFIG_PROVE_RCU=y will splat if
rcu_dereference() is used outside of an RCU read-side critical section.
Update-side code can use rcu_dereference_protected(), which takes a
lockdep expression to indicate what is providing the protection. If the
indicated protection is not provided, a lockdep splat is emitted. Code
shared between readers and updaters can use rcu_dereference_check(),
which also takes a lockdep expression, and emits a lockdep splat if nei-
ther rcu_read_lock() nor the indicated protection is in place. In ad-
dition, rcu_dereference_raw() is used in those (hopefully rare) cases
where the required protection cannot be easily described. Finally,
rcu_read_lock_held() is provided to allow a function to verify that it has
been invoked within an RCU read-side critical section. I was made aware of
this set of requirements shortly after Thomas Gleixner audited a number of
RCU uses.

2. A given function might wish to check for RCU-related preconditions upon
entry, before using any other RCU API. The rcu_lockdep_assert() does this
job, asserting the expression in kernels having lockdep enabled and doing
nothing otherwise.

3. It is also easy to forget to use rcu_assign_pointer() and
rcu_dereference(), perhaps (incorrectly) substituting a simple assign-
ment. To catch this sort of error, a given RCU-protected pointer may be
tagged with __rcu, after which sparse will complain about simple-assignment
accesses to that pointer. Arnd Bergmannmade me aware of this requirement,
and also supplied the needed patch series.

4. Kernels built with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y will splat if a data
element is passed to call_rcu() twice in a row, without a grace pe-
riod in between. (This error is similar to a double free.) The cor-
responding rcu_head structures that are dynamically allocated are au-
tomatically tracked, but rcu_head structures allocated on the stack

11.6. Software-Engineering Requirements 123

https://lwn.net/Articles/371986/
https://lwn.net/Articles/376011/

Linux Rcu Documentation

must be initialized with init_rcu_head_on_stack() and cleaned up with
destroy_rcu_head_on_stack(). Similarly, statically allocated non-stack
rcu_head structures must be initialized with init_rcu_head() and cleaned
up with destroy_rcu_head(). Mathieu Desnoyers made me aware of this
requirement, and also supplied the needed patch.

5. An infinite loop in an RCU read-side critical section will eventually trigger
an RCU CPU stall warning splat, with the duration of “eventually”being
controlled by the RCU_CPU_STALL_TIMEOUT Kconfig option, or, alternatively,
by the rcupdate.rcu_cpu_stall_timeout boot/sysfs parameter. However,
RCU is not obligated to produce this splat unless there is a grace period wait-
ing on that particular RCU read-side critical section.

Some extreme workloads might intentionally delay RCU grace periods,
and systems running those workloads can be booted with rcupdate.
rcu_cpu_stall_suppress to suppress the splats. This kernel parameter may
also be set via sysfs. Furthermore, RCU CPU stall warnings are counter-
productive during sysrq dumps and during panics. RCU therefore supplies
the rcu_sysrq_start() and rcu_sysrq_end() API members to be called be-
fore and after long sysrq dumps. RCU also supplies the rcu_panic() notifier
that is automatically invoked at the beginning of a panic to suppress further
RCU CPU stall warnings.

This requirement made itself known in the early 1990s, pretty much the first
time that it was necessary to debug a CPU stall. That said, the initial imple-
mentation in DYNIX/ptx was quite generic in comparison with that of Linux.

6. Although it would be very good to detect pointers leaking out of RCU read-
side critical sections, there is currently no good way of doing this. One com-
plication is the need to distinguish between pointers leaking and pointers that
have been handed off from RCU to some other synchronization mechanism,
for example, reference counting.

7. In kernels built with CONFIG_RCU_TRACE=y, RCU-related information is pro-
vided via event tracing.

8. Open-coded use of rcu_assign_pointer() and rcu_dereference() to create
typical linked data structures can be surprisingly error-prone. Therefore,
RCU-protected linked lists and, more recently, RCU-protected hash tables
are available. Many other special-purpose RCU-protected data structures
are available in the Linux kernel and the userspace RCU library.

9. Some linked structures are created at compile time, but still require __rcu
checking. The RCU_POINTER_INITIALIZER() macro serves this purpose.

10. It is not necessary to use rcu_assign_pointer() when creating linked
structures that are to be published via a single external pointer. The
RCU_INIT_POINTER() macro is provided for this task and also for assigning
NULL pointers at runtime.

This not a hard-and-fast list: RCU’s diagnostic capabilities will continue to be
guided by the number and type of usage bugs found in real-world RCU usage.

124 Chapter 11. A Tour Through RCU’s Requirements

https://lkml.kernel.org/g/20100319013024.GA28456@Krystal
https://lwn.net/Articles/609973/#RCU%20List%20APIs
https://lwn.net/Articles/612100/

Linux Rcu Documentation

11.7 Linux Kernel Complications

The Linux kernel provides an interesting environment for all kinds of software,
including RCU. Some of the relevant points of interest are as follows:

1. Configuration

2. Firmware Interface

3. Early Boot

4. Interrupts and NMIs

5. Loadable Modules

6. Hotplug CPU

7. Scheduler and RCU

8. Tracing and RCU

9. Accesses to User Memory and RCU

10. Energy Efficiency

11. Scheduling-Clock Interrupts and RCU

12. Memory Efficiency

13. Performance, Scalability, Response Time, and Reliability

This list is probably incomplete, but it does give a feel for the most notable Linux-
kernel complications. Each of the following sections covers one of the above topics.

11.7.1 Configuration

RCU’s goal is automatic configuration, so that almost nobody needs to worry about
RCU’s Kconfig options. And for almost all users, RCU does in fact work well“out
of the box.”
However, there are specialized use cases that are handled by kernel boot param-
eters and Kconfig options. Unfortunately, the Kconfig system will explicitly ask
users about new Kconfig options, which requires almost all of them be hidden
behind a CONFIG_RCU_EXPERT Kconfig option.

This all should be quite obvious, but the fact remains that Linus Torvalds recently
had to remind me of this requirement.

11.7.2 Firmware Interface

In many cases, kernel obtains information about the system from the firmware,
and sometimes things are lost in translation. Or the translation is accurate, but
the original message is bogus.

For example, some systems’firmware overreports the number of CPUs, sometimes
by a large factor. If RCU naively believed the firmware, as it used to do, it would
create too many per-CPU kthreads. Although the resulting system will still run

11.7. Linux Kernel Complications 125

https://lkml.kernel.org/g/CA+55aFy4wcCwaL4okTs8wXhGZ5h-ibecy_Meg9C4MNQrUnwMcg@mail.gmail.com

Linux Rcu Documentation

correctly, the extra kthreads needlessly consume memory and can cause confusion
when they show up in ps listings.

RCUmust therefore wait for a given CPU to actually come online before it can allow
itself to believe that the CPU actually exists. The resulting “ghost CPUs”(which
are never going to come online) cause a number of interesting complications.

11.7.3 Early Boot

The Linux kernel’s boot sequence is an interesting process, and RCU is used
early, even before rcu_init() is invoked. In fact, a number of RCU’s primitives
can be used as soon as the initial task’s task_struct is available and the boot
CPU’s per-CPU variables are set up. The read-side primitives (rcu_read_lock(),
rcu_read_unlock(), rcu_dereference(), and rcu_access_pointer()) will oper-
ate normally very early on, as will rcu_assign_pointer().

Although call_rcu() may be invoked at any time during boot, callbacks are not
guaranteed to be invoked until after all of RCU’s kthreads have been spawned,
which occurs at early_initcall() time. This delay in callback invocation is due
to the fact that RCU does not invoke callbacks until it is fully initialized, and this
full initialization cannot occur until after the scheduler has initialized itself to the
point where RCU can spawn and run its kthreads. In theory, it would be possible
to invoke callbacks earlier, however, this is not a panacea because there would be
severe restrictions on what operations those callbacks could invoke.

Perhaps surprisingly, synchronize_rcu() and synchronize_rcu_expedited(),
will operate normally during very early boot, the reason being that there is only
one CPU and preemption is disabled. This means that the call synchronize_rcu()
(or friends) itself is a quiescent state and thus a grace period, so the early-boot
implementation can be a no-op.

However, once the scheduler has spawned its first kthread, this early boot trick
fails for synchronize_rcu() (as well as for synchronize_rcu_expedited()) in
CONFIG_PREEMPT=y kernels. The reason is that an RCU read-side critical section
might be preempted, which means that a subsequent synchronize_rcu() really
does have to wait for something, as opposed to simply returning immediately. Un-
fortunately, synchronize_rcu() can’t do this until all of its kthreads are spawned,
which doesn’t happen until some time during early_initcalls() time. But this
is no excuse: RCU is nevertheless required to correctly handle synchronous grace
periods during this time period. Once all of its kthreads are up and running, RCU
starts running normally.

126 Chapter 11. A Tour Through RCU’s Requirements

https://paulmck.livejournal.com/37494.html

Linux Rcu Documentation

Quick Quiz:
How can RCU possibly handle grace periods before all of its kthreads have been
spawned???
Answer:
Very carefully! During the “dead zone”between the time that the scheduler
spawns the first task and the time that all of RCU’s kthreads have been spawned,
all synchronous grace periods are handled by the expedited grace-period mech-
anism. At runtime, this expedited mechanism relies on workqueues, but during
the dead zone the requesting task itself drives the desired expedited grace pe-
riod. Because dead-zone execution takes place within task context, everything
works. Once the dead zone ends, expedited grace periods go back to using
workqueues, as is required to avoid problems that would otherwise occur when
a user task received a POSIX signal while driving an expedited grace period.
And yes, this does mean that it is unhelpful to send POSIX signals to random
tasks between the time that the scheduler spawns its first kthread and the time
that RCU’s kthreads have all been spawned. If there ever turns out to be a good
reason for sending POSIX signals during that time, appropriate adjustments will
be made. (If it turns out that POSIX signals are sent during this time for no good
reason, other adjustments will be made, appropriate or otherwise.)

I learned of these boot-time requirements as a result of a series of system hangs.

11.7.4 Interrupts and NMIs

The Linux kernel has interrupts, and RCU read-side critical sections are legal
within interrupt handlers and within interrupt-disabled regions of code, as are
invocations of call_rcu().

Some Linux-kernel architectures can enter an interrupt handler from non-idle pro-
cess context, and then just never leave it, instead stealthily transitioning back to
process context. This trick is sometimes used to invoke system calls from inside
the kernel. These “half-interrupts”mean that RCU has to be very careful about
how it counts interrupt nesting levels. I learned of this requirement the hard way
during a rewrite of RCU’s dyntick-idle code.
The Linux kernel has non-maskable interrupts (NMIs), and RCU read-side critical
sections are legal within NMI handlers. Thankfully, RCU update-side primitives,
including call_rcu(), are prohibited within NMI handlers.

The name notwithstanding, some Linux-kernel architectures can have nested
NMIs, which RCU must handle correctly. Andy Lutomirski surprised me with this
requirement; he also kindly surprised me with an algorithm that meets this re-
quirement.

Furthermore, NMI handlers can be interrupted by what appear to RCU to be
normal interrupts. One way that this can happen is for code that directly in-
vokes rcu_irq_enter() and rcu_irq_exit() to be called from an NMI han-
dler. This astonishing fact of life prompted the current code structure, which
has rcu_irq_enter() invoking rcu_nmi_enter() and rcu_irq_exit() invoking
rcu_nmi_exit(). And yes, I also learned of this requirement the hard way.

11.7. Linux Kernel Complications 127

https://lkml.kernel.org/r/CALCETrXLq1y7e_dKFPgou-FKHB6Pu-r8+t-6Ds+8=va7anBWDA@mail.gmail.com
https://lkml.kernel.org/r/CALCETrXSY9JpW3uE6H8WYk81sg56qasA2aqmjMPsq5dOtzso=g@mail.gmail.com

Linux Rcu Documentation

11.7.5 Loadable Modules

The Linux kernel has loadable modules, and these modules can also be unloaded.
After a given module has been unloaded, any attempt to call one of its functions
results in a segmentation fault. The module-unload functions must therefore can-
cel any delayed calls to loadable-module functions, for example, any outstanding
mod_timer() must be dealt with via del_timer_sync() or similar.

Unfortunately, there is no way to cancel an RCU callback; once you invoke
call_rcu(), the callback function is eventually going to be invoked, unless the
system goes down first. Because it is normally considered socially irresponsible
to crash the system in response to a module unload request, we need some other
way to deal with in-flight RCU callbacks.

RCU therefore provides rcu_barrier(), which waits until all in-flight RCU
callbacks have been invoked. If a module uses call_rcu(), its exit func-
tion should therefore prevent any future invocation of call_rcu(), then invoke
rcu_barrier(). In theory, the underlying module-unload code could invoke
rcu_barrier() unconditionally, but in practice this would incur unacceptable la-
tencies.

Nikita Danilov noted this requirement for an analogous filesystem-unmount situ-
ation, and Dipankar Sarma incorporated rcu_barrier() into RCU. The need for
rcu_barrier() for module unloading became apparent later.

Important: The rcu_barrier() function is not, repeat, not, obligated to wait
for a grace period. It is instead only required to wait for RCU callbacks that have
already been posted. Therefore, if there are no RCU callbacks posted anywhere
in the system, rcu_barrier() is within its rights to return immediately. Even if
there are callbacks posted, rcu_barrier() does not necessarily need to wait for
a grace period.

Quick Quiz:
Wait a minute! Each RCU callbacks must wait for a grace period to complete,
and rcu_barrier() must wait for each pre-existing callback to be invoked.
Doesn’t rcu_barrier() therefore need to wait for a full grace period if there
is even one callback posted anywhere in the system?
Answer:
Absolutely not!!! Yes, each RCU callbacks must wait for a grace period to com-
plete, but it might well be partly (or even completely) finished waiting by the
time rcu_barrier() is invoked. In that case, rcu_barrier() need only wait for
the remaining portion of the grace period to elapse. So even if there are quite
a few callbacks posted, rcu_barrier() might well return quite quickly.
So if you need to wait for a grace period as well as for all pre-existing callbacks,
you will need to invoke both synchronize_rcu() and rcu_barrier(). If latency
is a concern, you can always use workqueues to invoke them concurrently.

128 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

11.7.6 Hotplug CPU

The Linux kernel supports CPU hotplug, which means that CPUs can come and
go. It is of course illegal to use any RCU API member from an offline CPU, with
the exception of SRCU read-side critical sections. This requirement was present
from day one in DYNIX/ptx, but on the other hand, the Linux kernel’s CPU-hotplug
implementation is “interesting.”
The Linux-kernel CPU-hotplug implementation has notifiers that are used to al-
low the various kernel subsystems (including RCU) to respond appropriately to a
given CPU-hotplug operation. Most RCU operations may be invoked from CPU-
hotplug notifiers, including even synchronous grace-period operations such as
synchronize_rcu() and synchronize_rcu_expedited().

However, all-callback-wait operations such as rcu_barrier() are also not sup-
ported, due to the fact that there are phases of CPU-hotplug operations where
the outgoing CPU’s callbacks will not be invoked until after the CPU-hotplug op-
eration ends, which could also result in deadlock. Furthermore, rcu_barrier()
blocks CPU-hotplug operations during its execution, which results in another type
of deadlock when invoked from a CPU-hotplug notifier.

11.7.7 Scheduler and RCU

RCU makes use of kthreads, and it is necessary to avoid excessive CPU-
time accumulation by these kthreads. This requirement was no surprise,
but RCU’s violation of it when running context-switch-heavy workloads when
built with CONFIG_NO_HZ_FULL=y did come as a surprise [PDF]. RCU has made
good progress towards meeting this requirement, even for context-switch-heavy
CONFIG_NO_HZ_FULL=y workloads, but there is room for further improvement.

There is no longer any prohibition against holding any of scheduler’s runqueue
or priority-inheritance spinlocks across an rcu_read_unlock(), even if interrupts
and preemption were enabled somewhere within the corresponding RCU read-side
critical section. Therefore, it is now perfectly legal to execute rcu_read_lock()
with preemption enabled, acquire one of the scheduler locks, and hold that lock
across the matching rcu_read_unlock().

Similarly, the RCU flavor consolidation has removed the need for negative nest-
ing. The fact that interrupt-disabled regions of code act as RCU read-side critical
sections implicitly avoids earlier issues that used to result in destructive recursion
via interrupt handler’s use of RCU.

11.7.8 Tracing and RCU

It is possible to use tracing on RCU code, but tracing itself uses RCU. For this rea-
son, rcu_dereference_raw_check() is provided for use by tracing, which avoids
the destructive recursion that could otherwise ensue. This API is also used by vir-
tualization in some architectures, where RCU readers execute in environments in
which tracing cannot be used. The tracing folks both located the requirement and
provided the needed fix, so this surprise requirement was relatively painless.

11.7. Linux Kernel Complications 129

http://www.rdrop.com/users/paulmck/scalability/paper/BareMetal.2015.01.15b.pdf

Linux Rcu Documentation

11.7.9 Accesses to User Memory and RCU

The kernel needs to access user-space memory, for example, to access data refer-
enced by system-call parameters. The get_user() macro does this job.

However, user-space memory might well be paged out, which means that
get_user()might well page-fault and thus block while waiting for the resulting I/O
to complete. It would be a very bad thing for the compiler to reorder a get_user()
invocation into an RCU read-side critical section.

For example, suppose that the source code looked like this:

1 rcu_read_lock();
2 p = rcu_dereference(gp);
3 v = p->value;
4 rcu_read_unlock();
5 get_user(user_v, user_p);
6 do_something_with(v, user_v);

The compiler must not be permitted to transform this source code into the follow-
ing:

1 rcu_read_lock();
2 p = rcu_dereference(gp);
3 get_user(user_v, user_p); // BUG: POSSIBLE PAGE FAULT!!!
4 v = p->value;
5 rcu_read_unlock();
6 do_something_with(v, user_v);

If the compiler did make this transformation in a CONFIG_PREEMPT=n kernel build,
and if get_user() did page fault, the result would be a quiescent state in the
middle of an RCU read-side critical section. This misplaced quiescent state could
result in line 4 being a use-after-free access, which could be bad for your ker-
nel’s actuarial statistics. Similar examples can be constructed with the call to
get_user() preceding the rcu_read_lock().

Unfortunately, get_user() doesn’t have any particular ordering properties, and
in some architectures the underlying asm isn’t even marked volatile. And even
if it was marked volatile, the above access to p->value is not volatile, so the
compiler would not have any reason to keep those two accesses in order.

Therefore, the Linux-kernel definitions of rcu_read_lock() and
rcu_read_unlock() must act as compiler barriers, at least for outermost in-
stances of rcu_read_lock() and rcu_read_unlock() within a nested set of RCU
read-side critical sections.

130 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

11.7.10 Energy Efficiency

Interrupting idle CPUs is considered socially unacceptable, especially by people
with battery-powered embedded systems. RCU therefore conserves energy by
detecting which CPUs are idle, including tracking CPUs that have been interrupted
from idle. This is a large part of the energy-efficiency requirement, so I learned of
this via an irate phone call.

Because RCU avoids interrupting idle CPUs, it is illegal to execute an RCU read-
side critical section on an idle CPU. (Kernels built with CONFIG_PROVE_RCU=y will
splat if you try it.) The RCU_NONIDLE() macro and _rcuidle event tracing is pro-
vided to work around this restriction. In addition, rcu_is_watching() may be
used to test whether or not it is currently legal to run RCU read-side critical
sections on this CPU. I learned of the need for diagnostics on the one hand and
RCU_NONIDLE() on the other while inspecting idle-loop code. Steven Rostedt sup-
plied _rcuidle event tracing, which is used quite heavily in the idle loop. However,
there are some restrictions on the code placed within RCU_NONIDLE():

1. Blocking is prohibited. In practice, this is not a serious restriction given that
idle tasks are prohibited from blocking to begin with.

2. Although nesting RCU_NONIDLE() is permitted, they cannot nest indefinitely
deeply. However, given that they can be nested on the order of a million deep,
even on 32-bit systems, this should not be a serious restriction. This nesting
limit would probably be reached long after the compiler OOMed or the stack
overflowed.

3. Any code path that enters RCU_NONIDLE() must sequence out of that same
RCU_NONIDLE(). For example, the following is grossly illegal:

1 RCU_NONIDLE({
2 do_something();
3 goto bad_idea; /* BUG!!! */
4 do_something_else();});
5 bad_idea:

It is just as illegal to transfer control into the middle of RCU_NONIDLE()’s argu-
ment. Yes, in theory, you could transfer in as long as you also transferred out,
but in practice you could also expect to get sharply worded review comments.

It is similarly socially unacceptable to interrupt an nohz_full CPU running in
userspace. RCU must therefore track nohz_full userspace execution. RCU must
therefore be able to sample state at two points in time, and be able to determine
whether or not some other CPU spent any time idle and/or executing in userspace.

These energy-efficiency requirements have proven quite difficult to understand
and to meet, for example, there have been more than five clean-sheet rewrites of
RCU’s energy-efficiency code, the last of which was finally able to demonstrate
real energy savings running on real hardware [PDF]. As noted earlier, I learned
of many of these requirements via angry phone calls: Flaming me on the Linux-
kernel mailing list was apparently not sufficient to fully vent their ire at RCU’s
energy-efficiency bugs!

11.7. Linux Kernel Complications 131

http://www.rdrop.com/users/paulmck/realtime/paper/AMPenergy.2013.04.19a.pdf

Linux Rcu Documentation

11.7.11 Scheduling-Clock Interrupts and RCU

The kernel transitions between in-kernel non-idle execution, userspace execution,
and the idle loop. Depending on kernel configuration, RCU handles these states
differently:

HZ
Kcon-
fig

In-Kernel Usermode Idle

HZ_PERIODICCan rely on scheduling-clock inter-
rupt.

Can rely on
scheduling-clock
interrupt and its de-
tection of interrupt
from usermode.

Can rely
on RCU’
s dyntick-
idle detec-
tion.

NO_HZ_IDLECan rely on scheduling-clock inter-
rupt.

Can rely on
scheduling-clock
interrupt and its de-
tection of interrupt
from usermode.

Can rely
on RCU’
s dyntick-
idle detec-
tion.

NO_HZ_FULLCan only sometimes rely on
scheduling-clock interrupt. In
other cases, it is necessary to
bound kernel execution times
and/or use IPIs.

Can rely on RCU’s
dyntick-idle detection.

Can rely
on RCU’
s dyntick-
idle detec-
tion.

Quick Quiz:
Why can’t NO_HZ_FULL in-kernel execution rely on the scheduling-clock inter-
rupt, just like HZ_PERIODIC and NO_HZ_IDLE do?
Answer:
Because, as a performance optimization, NO_HZ_FULL does not necessarily re-
enable the scheduling-clock interrupt on entry to each and every system call.

However, RCU must be reliably informed as to whether any given CPU is currently
in the idle loop, and, for NO_HZ_FULL, also whether that CPU is executing in user-
mode, as discussed earlier. It also requires that the scheduling-clock interrupt be
enabled when RCU needs it to be:

1. If a CPU is either idle or executing in usermode, and RCU believes it is non-
idle, the scheduling-clock tick had better be running. Otherwise, you will get
RCU CPU stall warnings. Or at best, very long (11-second) grace periods,
with a pointless IPI waking the CPU from time to time.

2. If a CPU is in a portion of the kernel that executes RCU read-side critical
sections, and RCU believes this CPU to be idle, you will get random memory
corruption. DON’T DO THIS!!! This is one reason to test with lockdep,
which will complain about this sort of thing.

3. If a CPU is in a portion of the kernel that is absolutely positively no-joking
guaranteed to never execute any RCU read-side critical sections, and RCU
believes this CPU to to be idle, no problem. This sort of thing is used by some
architectures for light-weight exception handlers, which can then avoid the

132 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

overhead of rcu_irq_enter() and rcu_irq_exit() at exception entry and
exit, respectively. Some go further and avoid the entireties of irq_enter()
and irq_exit(). Just make very sure you are running some of your tests with
CONFIG_PROVE_RCU=y, just in case one of your code paths was in fact joking
about not doing RCU read-side critical sections.

4. If a CPU is executing in the kernel with the scheduling-clock interrupt dis-
abled and RCU believes this CPU to be non-idle, and if the CPU goes idle
(from an RCU perspective) every few jiffies, no problem. It is usually OK for
there to be the occasional gap between idle periods of up to a second or so.
If the gap grows too long, you get RCU CPU stall warnings.

5. If a CPU is either idle or executing in usermode, and RCU believes it to be
idle, of course no problem.

6. If a CPU is executing in the kernel, the kernel code path is passing through
quiescent states at a reasonable frequency (preferably about once per few
jiffies, but the occasional excursion to a second or so is usually OK) and the
scheduling-clock interrupt is enabled, of course no problem. If the gap be-
tween a successive pair of quiescent states grows too long, you get RCU CPU
stall warnings.

Quick Quiz:
But what if my driver has a hardware interrupt handler that can run for many
seconds? I cannot invoke schedule() from an hardware interrupt handler, after
all!
Answer:
One approach is to do rcu_irq_exit();rcu_irq_enter(); every so often. But
given that long-running interrupt handlers can cause other problems, not least
for response time, shouldn’t you work to keep your interrupt handler’s runtime
within reasonable bounds?

But as long as RCU is properly informed of kernel state transitions between in-
kernel execution, usermode execution, and idle, and as long as the scheduling-
clock interrupt is enabled when RCU needs it to be, you can rest assured that the
bugs you encounter will be in some other part of RCU or some other part of the
kernel!

11.7.12 Memory Efficiency

Although small-memory non-realtime systems can simply use Tiny RCU, code size
is only one aspect of memory efficiency. Another aspect is the size of the rcu_head
structure used by call_rcu() and kfree_rcu(). Although this structure contains
nothing more than a pair of pointers, it does appear in many RCU-protected data
structures, including some that are size critical. The page structure is a case in
point, as evidenced by the many occurrences of the union keyword within that
structure.

This need for memory efficiency is one reason that RCU uses hand-crafted singly
linked lists to track the rcu_head structures that are waiting for a grace period to
elapse. It is also the reason why rcu_head structures do not contain debug infor-
mation, such as fields tracking the file and line of the call_rcu() or kfree_rcu()

11.7. Linux Kernel Complications 133

Linux Rcu Documentation

that posted them. Although this information might appear in debug-only kernel
builds at some point, in the meantime, the ->func field will often provide the
needed debug information.

However, in some cases, the need for memory efficiency leads to even more ex-
treme measures. Returning to the page structure, the rcu_head field shares stor-
age with a great many other structures that are used at various points in the corre-
sponding page’s lifetime. In order to correctly resolve certain race conditions, the
Linux kernel’s memory-management subsystem needs a particular bit to remain
zero during all phases of grace-period processing, and that bit happens to map to
the bottom bit of the rcu_head structure’s ->next field. RCU makes this guaran-
tee as long as call_rcu() is used to post the callback, as opposed to kfree_rcu()
or some future “lazy”variant of call_rcu() that might one day be created for
energy-efficiency purposes.

That said, there are limits. RCU requires that the rcu_head structure be aligned
to a two-byte boundary, and passing a misaligned rcu_head structure to one of
the call_rcu() family of functions will result in a splat. It is therefore necessary
to exercise caution when packing structures containing fields of type rcu_head.
Why not a four-byte or even eight-byte alignment requirement? Because the m68k
architecture provides only two-byte alignment, and thus acts as alignment’s least
common denominator.

The reason for reserving the bottom bit of pointers to rcu_head structures is to
leave the door open to“lazy”callbacks whose invocations can safely be deferred.
Deferring invocation could potentially have energy-efficiency benefits, but only if
the rate of non-lazy callbacks decreases significantly for some important workload.
In the meantime, reserving the bottom bit keeps this option open in case it one day
becomes useful.

11.7.13 Performance, Scalability, Response Time, and Reliability

Expanding on the earlier discussion, RCU is used heavily by hot code paths in
performance-critical portions of the Linux kernel’s networking, security, virtual-
ization, and scheduling code paths. RCU must therefore use efficient implemen-
tations, especially in its read-side primitives. To that end, it would be good if pre-
emptible RCU’s implementation of rcu_read_lock() could be inlined, however,
doing this requires resolving #include issues with the task_struct structure.

The Linux kernel supports hardware configurations with up to 4096 CPUs, which
means that RCU must be extremely scalable. Algorithms that involve frequent ac-
quisitions of global locks or frequent atomic operations on global variables simply
cannot be tolerated within the RCU implementation. RCU therefore makes heavy
use of a combining tree based on the rcu_node structure. RCU is required to
tolerate all CPUs continuously invoking any combination of RCU’s runtime prim-
itives with minimal per-operation overhead. In fact, in many cases, increasing
load must decrease the per-operation overhead, witness the batching optimiza-
tions for synchronize_rcu(), call_rcu(), synchronize_rcu_expedited(), and
rcu_barrier(). As a general rule, RCU must cheerfully accept whatever the rest
of the Linux kernel decides to throw at it.

The Linux kernel is used for real-time workloads, especially in conjunction with the
-rt patchset. The real-time-latency response requirements are such that the tra-

134 Chapter 11. A Tour Through RCU’s Requirements

https://lkml.kernel.org/g/1439976106-137226-1-git-send-email-kirill.shutemov@linux.intel.com
https://rt.wiki.kernel.org/index.php/Main_Page

Linux Rcu Documentation

ditional approach of disabling preemption across RCU read-side critical sections
is inappropriate. Kernels built with CONFIG_PREEMPT=y therefore use an RCU im-
plementation that allows RCU read-side critical sections to be preempted. This
requirement made its presence known after users made it clear that an earlier
real-time patch did not meet their needs, in conjunction with some RCU issues
encountered by a very early version of the -rt patchset.

In addition, RCUmust make do with a sub-100-microsecond real-time latency bud-
get. In fact, on smaller systems with the -rt patchset, the Linux kernel provides
sub-20-microsecond real-time latencies for the whole kernel, including RCU. RCU’
s scalability and latency must therefore be sufficient for these sorts of configura-
tions. Tomy surprise, the sub-100-microsecond real-time latency budget applies to
even the largest systems [PDF], up to and including systems with 4096 CPUs. This
real-time requirement motivated the grace-period kthread, which also simplified
handling of a number of race conditions.

RCU must avoid degrading real-time response for CPU-bound threads, whether
executing in usermode (which is one use case for CONFIG_NO_HZ_FULL=y) or in the
kernel. That said, CPU-bound loops in the kernel must execute cond_resched()
at least once per few tens of milliseconds in order to avoid receiving an IPI from
RCU.

Finally, RCU’s status as a synchronization primitive means that any RCU failure
can result in arbitrary memory corruption that can be extremely difficult to debug.
This means that RCU must be extremely reliable, which in practice also means
that RCU must have an aggressive stress-test suite. This stress-test suite is called
rcutorture.

Although the need for rcutorture was no surprise, the current immense popu-
larity of the Linux kernel is posing interesting—and perhaps unprecedented—val-
idation challenges. To see this, keep in mind that there are well over one billion
instances of the Linux kernel running today, given Android smartphones, Linux-
powered televisions, and servers. This number can be expected to increase sharply
with the advent of the celebrated Internet of Things.

Suppose that RCU contains a race condition that manifests on average once per
million years of runtime. This bug will be occurring about three times per day
across the installed base. RCU could simply hide behind hardware error rates,
given that no one should really expect their smartphone to last for a million years.
However, anyone taking too much comfort from this thought should consider the
fact that in most jurisdictions, a successful multi-year test of a given mechanism,
which might include a Linux kernel, suffices for a number of types of safety-critical
certifications. In fact, rumor has it that the Linux kernel is already being used in
production for safety-critical applications. I don’t know about you, but I would
feel quite bad if a bug in RCU killed someone. Which might explain my recent
focus on validation and verification.

11.7. Linux Kernel Complications 135

https://lwn.net/Articles/107930/
https://lkml.kernel.org/g/20050318002026.GA2693@us.ibm.com
http://www.rdrop.com/users/paulmck/realtime/paper/bigrt.2013.01.31a.LCA.pdf
http://www.rdrop.com/users/paulmck/realtime/paper/bigrt.2013.01.31a.LCA.pdf

Linux Rcu Documentation

11.8 Other RCU Flavors

One of the more surprising things about RCU is that there are now no fewer than
five flavors, or API families. In addition, the primary flavor that has been the
sole focus up to this point has two different implementations, non-preemptible
and preemptible. The other four flavors are listed below, with requirements for
each described in a separate section.

1. Bottom-Half Flavor (Historical)

2. Sched Flavor (Historical)

3. Sleepable RCU

4. Tasks RCU

11.8.1 Bottom-Half Flavor (Historical)

The RCU-bh flavor of RCU has since been expressed in terms of the other RCU
flavors as part of a consolidation of the three flavors into a single flavor. The
read-side API remains, and continues to disable softirq and to be accounted for
by lockdep. Much of the material in this section is therefore strictly historical in
nature.

The softirq-disable (AKA“bottom-half”, hence the“_bh”abbreviations) flavor of
RCU, or RCU-bh, was developed by Dipankar Sarma to provide a flavor of RCU that
could withstand the network-based denial-of-service attacks researched by Robert
Olsson. These attacks placed so much networking load on the system that some
of the CPUs never exited softirq execution, which in turn prevented those CPUs
from ever executing a context switch, which, in the RCU implementation of that
time, prevented grace periods from ever ending. The result was an out-of-memory
condition and a system hang.

The solution was the creation of RCU-bh, which does local_bh_disable() across
its read-side critical sections, and which uses the transition from one type of softirq
processing to another as a quiescent state in addition to context switch, idle, user
mode, and offline. This means that RCU-bh grace periods can complete even when
some of the CPUs execute in softirq indefinitely, thus allowing algorithms based
on RCU-bh to withstand network-based denial-of-service attacks.

Because rcu_read_lock_bh() and rcu_read_unlock_bh() disable and re-enable
softirq handlers, any attempt to start a softirq handlers during the RCU-bh read-
side critical section will be deferred. In this case, rcu_read_unlock_bh() will
invoke softirq processing, which can take considerable time. One can of course
argue that this softirq overhead should be associated with the code following the
RCU-bh read-side critical section rather than rcu_read_unlock_bh(), but the fact
is that most profiling tools cannot be expected to make this sort of fine distinction.
For example, suppose that a three-millisecond-long RCU-bh read-side critical sec-
tion executes during a time of heavy networking load. There will very likely be an
attempt to invoke at least one softirq handler during that three milliseconds, but
any such invocation will be delayed until the time of the rcu_read_unlock_bh().
This can of course make it appear at first glance as if rcu_read_unlock_bh() was
executing very slowly.

136 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

The RCU-bh API includes rcu_read_lock_bh(), rcu_read_unlock_bh(),
rcu_dereference_bh(), rcu_dereference_bh_check(), synchronize_rcu_bh(),
synchronize_rcu_bh_expedited(), call_rcu_bh(), rcu_barrier_bh(), and
rcu_read_lock_bh_held(). However, the update-side APIs are now simple
wrappers for other RCU flavors, namely RCU-sched in CONFIG_PREEMPT=n
kernels and RCU-preempt otherwise.

11.8.2 Sched Flavor (Historical)

The RCU-sched flavor of RCU has since been expressed in terms of the other RCU
flavors as part of a consolidation of the three flavors into a single flavor. The read-
side API remains, and continues to disable preemption and to be accounted for
by lockdep. Much of the material in this section is therefore strictly historical in
nature.

Before preemptible RCU, waiting for an RCU grace period had the side effect of
also waiting for all pre-existing interrupt and NMI handlers. However, there are
legitimate preemptible-RCU implementations that do not have this property, given
that any point in the code outside of an RCU read-side critical section can be a qui-
escent state. Therefore, RCU-sched was created, which follows“classic”RCU in
that an RCU-sched grace period waits for for pre-existing interrupt and NMI han-
dlers. In kernels built with CONFIG_PREEMPT=n, the RCU and RCU-sched APIs have
identical implementations, while kernels built with CONFIG_PREEMPT=y provide a
separate implementation for each.

Note well that in CONFIG_PREEMPT=y kernels, rcu_read_lock_sched() and
rcu_read_unlock_sched() disable and re-enable preemption, respectively. This
means that if there was a preemption attempt during the RCU-sched read-side
critical section, rcu_read_unlock_sched() will enter the scheduler, with all the
latency and overhead entailed. Just as with rcu_read_unlock_bh(), this can make
it look as if rcu_read_unlock_sched() was executing very slowly. However, the
highest-priority task won’t be preempted, so that task will enjoy low-overhead
rcu_read_unlock_sched() invocations.

The RCU-sched API includes rcu_read_lock_sched(),
rcu_read_unlock_sched(), rcu_read_lock_sched_notrace(),
rcu_read_unlock_sched_notrace(), rcu_dereference_sched(),
rcu_dereference_sched_check(), synchronize_sched(),
synchronize_rcu_sched_expedited(), call_rcu_sched(),
rcu_barrier_sched(), and rcu_read_lock_sched_held(). However, anything
that disables preemption also marks an RCU-sched read-side critical section,
including preempt_disable() and preempt_enable(), local_irq_save() and
local_irq_restore(), and so on.

11.8. Other RCU Flavors 137

https://lwn.net/Articles/609973/#RCU%20Per-Flavor%20API%20Table
https://lwn.net/Articles/609973/#RCU%20Per-Flavor%20API%20Table

Linux Rcu Documentation

11.8.3 Sleepable RCU

For well over a decade, someone saying“I need to block within an RCU read-side
critical section”was a reliable indication that this someone did not understand
RCU. After all, if you are always blocking in an RCU read-side critical section, you
can probably afford to use a higher-overhead synchronization mechanism. How-
ever, that changed with the advent of the Linux kernel’s notifiers, whose RCU
read-side critical sections almost never sleep, but sometimes need to. This re-
sulted in the introduction of sleepable RCU, or SRCU.

SRCU allows different domains to be defined, with each such domain defined by an
instance of an srcu_struct structure. A pointer to this structure must be passed
in to each SRCU function, for example, synchronize_srcu(&ss), where ss is the
srcu_struct structure. The key benefit of these domains is that a slow SRCU
reader in one domain does not delay an SRCU grace period in some other domain.
That said, one consequence of these domains is that read-side code must pass a
“cookie”from srcu_read_lock() to srcu_read_unlock(), for example, as follows:

1 int idx;
2
3 idx = srcu_read_lock(&ss);
4 do_something();
5 srcu_read_unlock(&ss, idx);

As noted above, it is legal to block within SRCU read-side critical sections, how-
ever, with great power comes great responsibility. If you block forever in one of a
given domain’s SRCU read-side critical sections, then that domain’s grace pe-
riods will also be blocked forever. Of course, one good way to block forever is
to deadlock, which can happen if any operation in a given domain’s SRCU read-
side critical section can wait, either directly or indirectly, for that domain’s grace
period to elapse. For example, this results in a self-deadlock:

1 int idx;
2
3 idx = srcu_read_lock(&ss);
4 do_something();
5 synchronize_srcu(&ss);
6 srcu_read_unlock(&ss, idx);

However, if line 5 acquired a mutex that was held across a synchronize_srcu()
for domain ss, deadlock would still be possible. Furthermore, if line 5 acquired a
mutex that was held across a synchronize_srcu() for some other domain ss1, and
if an ss1-domain SRCU read-side critical section acquired another mutex that was
held across as ss-domain synchronize_srcu(), deadlock would again be possible.
Such a deadlock cycle could extend across an arbitrarily large number of different
SRCU domains. Again, with great power comes great responsibility.

Unlike the other RCU flavors, SRCU read-side critical sections can run on
idle and even offline CPUs. This ability requires that srcu_read_lock()
and srcu_read_unlock() contain memory barriers, which means that SRCU
readers will run a bit slower than would RCU readers. It also moti-
vates the smp_mb__after_srcu_read_unlock() API, which, in combination with
srcu_read_unlock(), guarantees a full memory barrier.

Also unlike other RCU flavors, synchronize_srcu() may not be invoked from

138 Chapter 11. A Tour Through RCU’s Requirements

https://lwn.net/Articles/202847/

Linux Rcu Documentation

CPU-hotplug notifiers, due to the fact that SRCU grace periods make use of timers
and the possibility of timers being temporarily “stranded”on the outgoing CPU.
This stranding of timers means that timers posted to the outgoing CPU will not
fire until late in the CPU-hotplug process. The problem is that if a notifier is wait-
ing on an SRCU grace period, that grace period is waiting on a timer, and that
timer is stranded on the outgoing CPU, then the notifier will never be awakened,
in other words, deadlock has occurred. This same situation of course also prohibits
srcu_barrier() from being invoked from CPU-hotplug notifiers.

SRCU also differs from other RCU flavors in that SRCU’s expedited and non-
expedited grace periods are implemented by the same mechanism. This means
that in the current SRCU implementation, expediting a future grace period has
the side effect of expediting all prior grace periods that have not yet completed.
(But please note that this is a property of the current implementation, not neces-
sarily of future implementations.) In addition, if SRCU has been idle for longer
than the interval specified by the srcutree.exp_holdoff kernel boot parameter
(25 microseconds by default), and if a synchronize_srcu() invocation ends this
idle period, that invocation will be automatically expedited.

As of v4.12, SRCU’s callbacks are maintained per-CPU, eliminating a locking bot-
tleneck present in prior kernel versions. Although this will allow users to put much
heavier stress on call_srcu(), it is important to note that SRCU does not yet take
any special steps to deal with callback flooding. So if you are posting (say) 10,000
SRCU callbacks per second per CPU, you are probably totally OK, but if you in-
tend to post (say) 1,000,000 SRCU callbacks per second per CPU, please run some
tests first. SRCU just might need a few adjustment to deal with that sort of load.
Of course, your mileage may vary based on the speed of your CPUs and the size of
your memory.

The SRCU API includes srcu_read_lock(), srcu_read_unlock(),
srcu_dereference(), srcu_dereference_check(), synchronize_srcu(),
synchronize_srcu_expedited(), call_srcu(), srcu_barrier(),
and srcu_read_lock_held(). It also includes DEFINE_SRCU(),
DEFINE_STATIC_SRCU(), and init_srcu_struct() APIs for defining and ini-
tializing srcu_struct structures.

11.8.4 Tasks RCU

Some forms of tracing use“trampolines”to handle the binary rewriting required to
install different types of probes. It would be good to be able to free old trampolines,
which sounds like a job for some form of RCU. However, because it is necessary to
be able to install a trace anywhere in the code, it is not possible to use read-side
markers such as rcu_read_lock() and rcu_read_unlock(). In addition, it does
not work to have these markers in the trampoline itself, because there would need
to be instructions following rcu_read_unlock(). Although synchronize_rcu()
would guarantee that execution reached the rcu_read_unlock(), it would not be
able to guarantee that execution had completely left the trampoline.

The solution, in the form of Tasks RCU, is to have implicit read-side critical sec-
tions that are delimited by voluntary context switches, that is, calls to schedule(),
cond_resched(), and synchronize_rcu_tasks(). In addition, transitions to and
from userspace execution also delimit tasks-RCU read-side critical sections.

11.8. Other RCU Flavors 139

https://lwn.net/Articles/609973/#RCU%20Per-Flavor%20API%20Table
https://lwn.net/Articles/607117/

Linux Rcu Documentation

The tasks-RCU API is quite compact, consisting only of call_rcu_tasks(),
synchronize_rcu_tasks(), and rcu_barrier_tasks(). In CONFIG_PREEMPT=n
kernels, trampolines cannot be preempted, so these APIs map to call_rcu(),
synchronize_rcu(), and rcu_barrier(), respectively. In CONFIG_PREEMPT=y ker-
nels, trampolines can be preempted, and these three APIs are therefore imple-
mented by separate functions that check for voluntary context switches.

11.9 Possible Future Changes

One of the tricks that RCU uses to attain update-side scalability is to increase
grace-period latency with increasing numbers of CPUs. If this becomes a serious
problem, it will be necessary to rework the grace-period state machine so as to
avoid the need for the additional latency.

RCU disables CPU hotplug in a few places, perhaps most notably in the
rcu_barrier() operations. If there is a strong reason to use rcu_barrier() in
CPU-hotplug notifiers, it will be necessary to avoid disabling CPU hotplug. This
would introduce some complexity, so there had better be a very good reason.

The tradeoff between grace-period latency on the one hand and interruptions of
other CPUs on the other hand may need to be re-examined. The desire is of course
for zero grace-period latency as well as zero interprocessor interrupts undertaken
during an expedited grace period operation. While this ideal is unlikely to be
achievable, it is quite possible that further improvements can be made.

The multiprocessor implementations of RCU use a combining tree that groups
CPUs so as to reduce lock contention and increase cache locality. However,
this combining tree does not spread its memory across NUMA nodes nor does
it align the CPU groups with hardware features such as sockets or cores. Such
spreading and alignment is currently believed to be unnecessary because the hot-
path read-side primitives do not access the combining tree, nor does call_rcu()
in the common case. If you believe that your architecture needs such spread-
ing and alignment, then your architecture should also benefit from the rcutree.
rcu_fanout_leaf boot parameter, which can be set to the number of CPUs in
a socket, NUMA node, or whatever. If the number of CPUs is too large, use a
fraction of the number of CPUs. If the number of CPUs is a large prime number,
well, that certainly is an“interesting”architectural choice! More flexible arrange-
ments might be considered, but only if rcutree.rcu_fanout_leaf has proven in-
adequate, and only if the inadequacy has been demonstrated by a carefully run
and realistic system-level workload.

Please note that arrangements that require RCU to remap CPU numbers will re-
quire extremely good demonstration of need and full exploration of alternatives.

RCU’s various kthreads are reasonably recent additions. It is quite likely that
adjustments will be required to more gracefully handle extreme loads. It might
also be necessary to be able to relate CPU utilization by RCU’s kthreads and
softirq handlers to the code that instigated this CPU utilization. For example, RCU
callback overhead might be charged back to the originating call_rcu() instance,
though probably not in production kernels.

Additional work may be required to provide reasonable forward-progress guaran-
tees under heavy load for grace periods and for callback invocation.

140 Chapter 11. A Tour Through RCU’s Requirements

Linux Rcu Documentation

11.10 Summary

This document has presented more than two decade’s worth of RCU requirements.
Given that the requirements keep changing, this will not be the last word on this
subject, but at least it serves to get an important subset of the requirements set
forth.

11.11 Acknowledgments

I am grateful to Steven Rostedt, Lai Jiangshan, Ingo Molnar, Oleg Nesterov,
Borislav Petkov, Peter Zijlstra, Boqun Feng, and Andy Lutomirski for their help
in rendering this article human readable, and to Michelle Rankin for her support
of this effort. Other contributions are acknowledged in the Linux kernel’s git
archive.

11.10. Summary 141

Linux Rcu Documentation

142 Chapter 11. A Tour Through RCU’s Requirements

CHAPTER

TWELVE

A TOUR THROUGH TREE_RCU’S DATA STRUCTURES
[LWN.NET]

December 18, 2016

This article was contributed by Paul E. McKenney

12.1 Introduction

This document describes RCU’s major data structures and their relationship to
each other.

12.2 Data-Structure Relationships

RCU is for all intents and purposes a large state machine, and its data structures
maintain the state in such a way as to allow RCU readers to execute extremely
quickly, while also processing the RCU grace periods requested by updaters in
an efficient and extremely scalable fashion. The efficiency and scalability of RCU
updaters is provided primarily by a combining tree, as shown below:

This diagram shows an enclosing rcu_state structure containing a tree of
rcu_node structures. Each leaf node of the rcu_node tree has up to 16 rcu_data
structures associated with it, so that there are NR_CPUS number of rcu_data struc-
tures, one for each possible CPU. This structure is adjusted at boot time, if needed,
to handle the common case where nr_cpu_ids is much less than NR_CPUs. For
example, a number of Linux distributions set NR_CPUs=4096, which results in a
three-level rcu_node tree. If the actual hardware has only 16 CPUs, RCU will
adjust itself at boot time, resulting in an rcu_node tree with only a single node.

The purpose of this combining tree is to allow per-CPU events such as quiescent
states, dyntick-idle transitions, and CPU hotplug operations to be processed ef-
ficiently and scalably. Quiescent states are recorded by the per-CPU rcu_data
structures, and other events are recorded by the leaf-level rcu_node structures.
All of these events are combined at each level of the tree until finally grace periods
are completed at the tree’s root rcu_node structure. A grace period can be com-
pleted at the root once every CPU (or, in the case of CONFIG_PREEMPT_RCU, task)
has passed through a quiescent state. Once a grace period has completed, record
of that fact is propagated back down the tree.

143

Linux Rcu Documentation

144 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

As can be seen from the diagram, on a 64-bit system a two-level tree with 64 leaves
can accommodate 1,024 CPUs, with a fanout of 64 at the root and a fanout of 16
at the leaves.

Quick Quiz:
Why isn’t the fanout at the leaves also 64?
Answer:
Because there are more types of events that affect the leaf-level rcu_node struc-
tures than further up the tree. Therefore, if the leaf rcu_node structures have
fanout of 64, the contention on these structures’->structures becomes exces-
sive. Experimentation on a wide variety of systems has shown that a fanout of
16 works well for the leaves of the rcu_node tree.
Of course, further experience with systems having hundreds or thousands of
CPUs may demonstrate that the fanout for the non-leaf rcu_node structures
must also be reduced. Such reduction can be easily carried out when and if
it proves necessary. In the meantime, if you are using such a system and run-
ning into contention problems on the non-leaf rcu_node structures, you may use
the CONFIG_RCU_FANOUT kernel configuration parameter to reduce the non-leaf
fanout as needed.
Kernels built for systems with strong NUMA characteristics might also need to
adjust CONFIG_RCU_FANOUT so that the domains of the rcu_node structures align
with hardware boundaries. However, there has thus far been no need for this.

If your system has more than 1,024 CPUs (or more than 512 CPUs on a 32-bit
system), then RCU will automatically add more levels to the tree. For example,
if you are crazy enough to build a 64-bit system with 65,536 CPUs, RCU would
configure the rcu_node tree as follows:

RCU currently permits up to a four-level tree, which on a 64-bit system ac-
commodates up to 4,194,304 CPUs, though only a mere 524,288 CPUs for 32-
bit systems. On the other hand, you can set both CONFIG_RCU_FANOUT and
CONFIG_RCU_FANOUT_LEAF to be as small as 2, which would result in a 16-CPU
test using a 4-level tree. This can be useful for testing large-system capabilities
on small test machines.

This multi-level combining tree allows us to get most of the performance and scal-
ability benefits of partitioning, even though RCU grace-period detection is inher-
ently a global operation. The trick here is that only the last CPU to report a quies-
cent state into a given rcu_node structure need advance to the rcu_node structure
at the next level up the tree. This means that at the leaf-level rcu_node structure,
only one access out of sixteen will progress up the tree. For the internal rcu_node
structures, the situation is even more extreme: Only one access out of sixty-four
will progress up the tree. Because the vast majority of the CPUs do not progress
up the tree, the lock contention remains roughly constant up the tree. No matter
how many CPUs there are in the system, at most 64 quiescent-state reports per
grace period will progress all the way to the root rcu_node structure, thus ensur-
ing that the lock contention on that root rcu_node structure remains acceptably
low.

In effect, the combining tree acts like a big shock absorber, keeping lock contention
under control at all tree levels regardless of the level of loading on the system.

RCU updaters wait for normal grace periods by registering RCU callbacks, either

12.2. Data-Structure Relationships 145

Linux Rcu Documentation

directly via call_rcu() or indirectly via synchronize_rcu() and friends. RCU
callbacks are represented by rcu_head structures, which are queued on rcu_data
structures while they are waiting for a grace period to elapse, as shown in the
following figure:

This figure shows how TREE_RCU’s and PREEMPT_RCU’s major data structures are
related. Lesser data structures will be introduced with the algorithms that make
use of them.

Note that each of the data structures in the above figure has its own synchroniza-
tion:

1. Each rcu_state structures has a lock and a mutex, and some fields are pro-
tected by the corresponding root rcu_node structure’s lock.

2. Each rcu_node structure has a spinlock.

3. The fields in rcu_data are private to the corresponding CPU, although a few
can be read and written by other CPUs.

It is important to note that different data structures can have very different ideas
about the state of RCU at any given time. For but one example, awareness of
the start or end of a given RCU grace period propagates slowly through the data
structures. This slow propagation is absolutely necessary for RCU to have good
read-side performance. If this balkanized implementation seems foreign to you,
one useful trick is to consider each instance of these data structures to be a dif-
ferent person, each having the usual slightly different view of reality.

The general role of each of these data structures is as follows:

146 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

12.2. Data-Structure Relationships 147

Linux Rcu Documentation

1. rcu_state: This structure forms the interconnection between the rcu_node
and rcu_data structures, tracks grace periods, serves as short-term
repository for callbacks orphaned by CPU-hotplug events, maintains
rcu_barrier() state, tracks expedited grace-period state, and maintains
state used to force quiescent states when grace periods extend too long,

2. rcu_node: This structure forms the combining tree that propagates
quiescent-state information from the leaves to the root, and also propagates
grace-period information from the root to the leaves. It provides local copies
of the grace-period state in order to allow this information to be accessed in a
synchronized manner without suffering the scalability limitations that would
otherwise be imposed by global locking. In CONFIG_PREEMPT_RCU kernels,
it manages the lists of tasks that have blocked while in their current RCU
read-side critical section. In CONFIG_PREEMPT_RCU with CONFIG_RCU_BOOST,
it manages the per-rcu_node priority-boosting kernel threads (kthreads) and
state. Finally, it records CPU-hotplug state in order to determine which CPUs
should be ignored during a given grace period.

3. rcu_data: This per-CPU structure is the focus of quiescent-state detection
and RCU callback queuing. It also tracks its relationship to the correspond-
ing leaf rcu_node structure to allow more-efficient propagation of quiescent
states up the rcu_node combining tree. Like the rcu_node structure, it pro-
vides a local copy of the grace-period information to allow for-free synchro-
nized access to this information from the corresponding CPU. Finally, this
structure records past dyntick-idle state for the corresponding CPU and also
tracks statistics.

4. rcu_head: This structure represents RCU callbacks, and is the only structure
allocated and managed by RCU users. The rcu_head structure is normally
embedded within the RCU-protected data structure.

If all you wanted from this article was a general notion of how RCU’s data struc-
tures are related, you are done. Otherwise, each of the following sections give
more details on the rcu_state, rcu_node and rcu_data data structures.

12.2.1 The rcu_state Structure

The rcu_state structure is the base structure that represents the state of RCU in
the system. This structure forms the interconnection between the rcu_node and
rcu_data structures, tracks grace periods, contains the lock used to synchronize
with CPU-hotplug events, and maintains state used to force quiescent states when
grace periods extend too long,

A few of the rcu_state structure’s fields are discussed, singly and in groups, in
the following sections. The more specialized fields are covered in the discussion
of their use.

148 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

Relationship to rcu_node and rcu_data Structures

This portion of the rcu_state structure is declared as follows:

1 struct rcu_node node[NUM_RCU_NODES];
2 struct rcu_node *level[NUM_RCU_LVLS + 1];
3 struct rcu_data __percpu *rda;

Quick Quiz:
Wait a minute! You said that the rcu_node structures formed a tree, but they
are declared as a flat array! What gives?
Answer:
The tree is laid out in the array. The first node In the array is the head, the next
set of nodes in the array are children of the head node, and so on until the last
set of nodes in the array are the leaves. See the following diagrams to see how
this works.

The rcu_node tree is embedded into the ->node[] array as shown in the following
figure:

One interesting consequence of this mapping is that a breadth-first traversal of
the tree is implemented as a simple linear scan of the array, which is in fact what
the rcu_for_each_node_breadth_first() macro does. This macro is used at the
beginning and ends of grace periods.

Each entry of the ->level array references the first rcu_node structure on the
corresponding level of the tree, for example, as shown below:

The zeroth element of the array references the root rcu_node structure, the first
element references the first child of the root rcu_node, and finally the second
element references the first leaf rcu_node structure.

12.2. Data-Structure Relationships 149

Linux Rcu Documentation

For whatever it is worth, if you draw the tree to be tree-shaped rather than array-
shaped, it is easy to draw a planar representation:

Finally, the ->rda field references a per-CPU pointer to the corresponding CPU’s
rcu_data structure.

All of these fields are constant once initialization is complete, and therefore need
no protection.

Grace-Period Tracking

This portion of the rcu_state structure is declared as follows:

1 unsigned long gp_seq;

RCU grace periods are numbered, and the ->gp_seq field contains the current
grace-period sequence number. The bottom two bits are the state of the current
grace period, which can be zero for not yet started or one for in progress. In
other words, if the bottom two bits of ->gp_seq are zero, then RCU is idle. Any
other value in the bottom two bits indicates that something is broken. This field is
protected by the root rcu_node structure’s ->lock field.
There are ->gp_seq fields in the rcu_node and rcu_data structures as well. The
fields in the rcu_state structure represent themost current value, and those of the
other structures are compared in order to detect the beginnings and ends of grace
periods in a distributed fashion. The values flow from rcu_state to rcu_node
(down the tree from the root to the leaves) to rcu_data.

150 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

Miscellaneous

This portion of the rcu_state structure is declared as follows:

1 unsigned long gp_max;
2 char abbr;
3 char *name;

The ->gp_max field tracks the duration of the longest grace period in jiffies. It is
protected by the root rcu_node’s ->lock.
The ->name and ->abbr fields distinguish between preemptible RCU (
“rcu_preempt”and“p”) and non-preemptible RCU (“rcu_sched”and“s”). These
fields are used for diagnostic and tracing purposes.

12.2.2 The rcu_node Structure

The rcu_node structures form the combining tree that propagates quiescent-state
information from the leaves to the root and also that propagates grace-period in-
formation from the root down to the leaves. They provides local copies of the
grace-period state in order to allow this information to be accessed in a synchro-
nized manner without suffering the scalability limitations that would otherwise be
imposed by global locking. In CONFIG_PREEMPT_RCU kernels, they manage the lists
of tasks that have blocked while in their current RCU read-side critical section.
In CONFIG_PREEMPT_RCU with CONFIG_RCU_BOOST, they manage the per-rcu_node
priority-boosting kernel threads (kthreads) and state. Finally, they record CPU-
hotplug state in order to determine which CPUs should be ignored during a given
grace period.

The rcu_node structure’s fields are discussed, singly and in groups, in the follow-
ing sections.

Connection to Combining Tree

This portion of the rcu_node structure is declared as follows:

1 struct rcu_node *parent;
2 u8 level;
3 u8 grpnum;
4 unsigned long grpmask;
5 int grplo;
6 int grphi;

The ->parent pointer references the rcu_node one level up in the tree, and is NULL
for the root rcu_node. The RCU implementation makes heavy use of this field to
push quiescent states up the tree. The ->level field gives the level in the tree,
with the root being at level zero, its children at level one, and so on. The ->grpnum
field gives this node’s position within the children of its parent, so this number can
range between 0 and 31 on 32-bit systems and between 0 and 63 on 64-bit systems.
The ->level and ->grpnum fields are used only during initialization and for tracing.
The ->grpmask field is the bitmask counterpart of ->grpnum, and therefore always
has exactly one bit set. This mask is used to clear the bit corresponding to this

12.2. Data-Structure Relationships 151

Linux Rcu Documentation

rcu_node structure in its parent’s bitmasks, which are described later. Finally, the
->grplo and ->grphi fields contain the lowest and highest numbered CPU served
by this rcu_node structure, respectively.

All of these fields are constant, and thus do not require any synchronization.

Synchronization

This field of the rcu_node structure is declared as follows:

1 raw_spinlock_t lock;

This field is used to protect the remaining fields in this structure, unless otherwise
stated. That said, all of the fields in this structure can be accessed without locking
for tracing purposes. Yes, this can result in confusing traces, but better some
tracing confusion than to be heisenbugged out of existence.

Grace-Period Tracking

This portion of the rcu_node structure is declared as follows:

1 unsigned long gp_seq;
2 unsigned long gp_seq_needed;

The rcu_node structures’->gp_seq fields are the counterparts of the field of the
same name in the rcu_state structure. They each may lag up to one step behind
their rcu_state counterpart. If the bottom two bits of a given rcu_node structure’
s ->gp_seq field is zero, then this rcu_node structure believes that RCU is idle.

The >gp_seq field of each rcu_node structure is updated at the beginning and the
end of each grace period.

The ->gp_seq_needed fields record the furthest-in-the-future grace period re-
quest seen by the corresponding rcu_node structure. The request is consid-
ered fulfilled when the value of the ->gp_seq field equals or exceeds that of the
->gp_seq_needed field.

Quick Quiz:
Suppose that this rcu_node structure doesn’t see a request for a very long time.
Won’t wrapping of the ->gp_seq field cause problems?
Answer:
No, because if the ->gp_seq_needed field lags behind the ->gp_seq field, the
->gp_seq_needed field will be updated at the end of the grace period. Modulo-
arithmetic comparisons therefore will always get the correct answer, even with
wrapping.

152 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

Quiescent-State Tracking

These fields manage the propagation of quiescent states up the combining tree.

This portion of the rcu_node structure has fields as follows:

1 unsigned long qsmask;
2 unsigned long expmask;
3 unsigned long qsmaskinit;
4 unsigned long expmaskinit;

The ->qsmask field tracks which of this rcu_node structure’s children still need
to report quiescent states for the current normal grace period. Such children will
have a value of 1 in their corresponding bit. Note that the leaf rcu_node structures
should be thought of as having rcu_data structures as their children. Similarly,
the ->expmask field tracks which of this rcu_node structure’s children still need
to report quiescent states for the current expedited grace period. An expedited
grace period has the same conceptual properties as a normal grace period, but the
expedited implementation accepts extreme CPU overhead to obtain much lower
grace-period latency, for example, consuming a few tens of microseconds worth of
CPU time to reduce grace-period duration from milliseconds to tens of microsec-
onds. The ->qsmaskinit field tracks which of this rcu_node structure’s children
cover for at least one online CPU. This mask is used to initialize ->qsmask, and
->expmaskinit is used to initialize ->expmask and the beginning of the normal
and expedited grace periods, respectively.

Quick Quiz:
Why are these bitmasks protected by locking? Come on, haven’t you heard of
atomic instructions???
Answer:
Lockless grace-period computation! Such a tantalizing possibility! But consider
the following sequence of events:
1. CPU 0 has been in dyntick-idle mode for quite some time. When it wakes
up, it notices that the current RCU grace period needs it to report in, so it
sets a flag where the scheduling clock interrupt will find it.

2. Meanwhile, CPU 1 is running force_quiescent_state(), and notices that
CPU 0 has been in dyntick idle mode, which qualifies as an extended qui-
escent state.

3. CPU 0’s scheduling clock interrupt fires in the middle of an RCU read-
side critical section, and notices that the RCU core needs something, so
commences RCU softirq processing.

4. CPU 0’s softirq handler executes and is just about ready to report its qui-
escent state up the rcu_node tree.

5. But CPU 1 beats it to the punch, completing the current grace period and
starting a new one.

6. CPU 0 now reports its quiescent state for the wrong grace period. That
grace period might now end before the RCU read-side critical section. If
that happens, disaster will ensue.

So the locking is absolutely required in order to coordinate clearing of the bits
with updating of the grace-period sequence number in ->gp_seq.

12.2. Data-Structure Relationships 153

Linux Rcu Documentation

Blocked-Task Management

PREEMPT_RCU allows tasks to be preempted in the midst of their RCU read-side
critical sections, and these tasks must be tracked explicitly. The details of exactly
why and how they are tracked will be covered in a separate article on RCU read-
side processing. For now, it is enough to know that the rcu_node structure tracks
them.

1 struct list_head blkd_tasks;
2 struct list_head *gp_tasks;
3 struct list_head *exp_tasks;
4 bool wait_blkd_tasks;

The ->blkd_tasks field is a list header for the list of blocked and preempted tasks.
As tasks undergo context switches within RCU read-side critical sections, their
task_struct structures are enqueued (via the task_struct’s ->rcu_node_entry
field) onto the head of the ->blkd_tasks list for the leaf rcu_node structure cor-
responding to the CPU on which the outgoing context switch executed. As these
tasks later exit their RCU read-side critical sections, they remove themselves from
the list. This list is therefore in reverse time order, so that if one of the tasks is
blocking the current grace period, all subsequent tasks must also be blocking that
same grace period. Therefore, a single pointer into this list suffices to track all
tasks blocking a given grace period. That pointer is stored in ->gp_tasks for nor-
mal grace periods and in ->exp_tasks for expedited grace periods. These last two
fields are NULL if either there is no grace period in flight or if there are no blocked
tasks preventing that grace period from completing. If either of these two pointers
is referencing a task that removes itself from the ->blkd_tasks list, then that task
must advance the pointer to the next task on the list, or set the pointer to NULL if
there are no subsequent tasks on the list.

For example, suppose that tasks T1, T2, and T3 are all hard-affinitied to the
largest-numbered CPU in the system. Then if task T1 blocked in an RCU read-
side critical section, then an expedited grace period started, then task T2 blocked
in an RCU read-side critical section, then a normal grace period started, and fi-
nally task 3 blocked in an RCU read-side critical section, then the state of the last
leaf rcu_node structure’s blocked-task list would be as shown below:
Task T1 is blocking both grace periods, task T2 is blocking only the normal grace
period, and task T3 is blocking neither grace period. Note that these tasks will not
remove themselves from this list immediately upon resuming execution. They will
instead remain on the list until they execute the outermost rcu_read_unlock()
that ends their RCU read-side critical section.

The ->wait_blkd_tasks field indicates whether or not the current grace period is
waiting on a blocked task.

154 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

Sizing the rcu_node Array

The rcu_node array is sized via a series of C-preprocessor expressions as follows:

1 #ifdef CONFIG_RCU_FANOUT
2 #define RCU_FANOUT CONFIG_RCU_FANOUT
3 #else
4 # ifdef CONFIG_64BIT
5 # define RCU_FANOUT 64
6 # else
7 # define RCU_FANOUT 32
8 # endif
9 #endif

10
11 #ifdef CONFIG_RCU_FANOUT_LEAF
12 #define RCU_FANOUT_LEAF CONFIG_RCU_FANOUT_LEAF
13 #else
14 # ifdef CONFIG_64BIT
15 # define RCU_FANOUT_LEAF 64
16 # else
17 # define RCU_FANOUT_LEAF 32
18 # endif
19 #endif
20
21 #define RCU_FANOUT_1 (RCU_FANOUT_LEAF)
22 #define RCU_FANOUT_2 (RCU_FANOUT_1 * RCU_FANOUT)
23 #define RCU_FANOUT_3 (RCU_FANOUT_2 * RCU_FANOUT)
24 #define RCU_FANOUT_4 (RCU_FANOUT_3 * RCU_FANOUT)
25
26 #if NR_CPUS <= RCU_FANOUT_1
27 # define RCU_NUM_LVLS 1

(continues on next page)

12.2. Data-Structure Relationships 155

Linux Rcu Documentation

(continued from previous page)
28 # define NUM_RCU_LVL_0 1
29 # define NUM_RCU_NODES NUM_RCU_LVL_0
30 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0 }
31 # define RCU_NODE_NAME_INIT { "rcu_node_0" }
32 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0" }
33 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0" }
34 #elif NR_CPUS <= RCU_FANOUT_2
35 # define RCU_NUM_LVLS 2
36 # define NUM_RCU_LVL_0 1
37 # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
38 # define NUM_RCU_NODES (NUM_RCU_LVL_0 + NUM_RCU_LVL_1)
39 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0, NUM_RCU_LVL_1 }
40 # define RCU_NODE_NAME_INIT { "rcu_node_0", "rcu_node_1" }
41 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0", "rcu_node_fqs_1" }
42 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0", "rcu_node_exp_1" }
43 #elif NR_CPUS <= RCU_FANOUT_3
44 # define RCU_NUM_LVLS 3
45 # define NUM_RCU_LVL_0 1
46 # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2)
47 # define NUM_RCU_LVL_2 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
48 # define NUM_RCU_NODES (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_
↪→LVL_2)
49 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_
↪→LVL_2 }
50 # define RCU_NODE_NAME_INIT { "rcu_node_0", "rcu_node_1", "rcu_node_2
↪→" }
51 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0", "rcu_node_fqs_1",
↪→"rcu_node_fqs_2" }
52 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0", "rcu_node_exp_1",
↪→"rcu_node_exp_2" }
53 #elif NR_CPUS <= RCU_FANOUT_4
54 # define RCU_NUM_LVLS 4
55 # define NUM_RCU_LVL_0 1
56 # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_3)
57 # define NUM_RCU_LVL_2 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2)
58 # define NUM_RCU_LVL_3 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
59 # define NUM_RCU_NODES (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_
↪→LVL_2 + NUM_RCU_LVL_3)
60 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_
↪→LVL_2, NUM_RCU_LVL_3 }
61 # define RCU_NODE_NAME_INIT { "rcu_node_0", "rcu_node_1", "rcu_node_2
↪→", "rcu_node_3" }
62 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0", "rcu_node_fqs_1",
↪→"rcu_node_fqs_2", "rcu_node_fqs_3" }
63 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0", "rcu_node_exp_1",
↪→"rcu_node_exp_2", "rcu_node_exp_3" }
64 #else
65 # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS"
66 #endif

The maximum number of levels in the rcu_node structure is currently limited to
four, as specified by lines 21-24 and the structure of the subsequent“if”statement.
For 32-bit systems, this allows 16*32*32*32=524,288 CPUs, which should be suf-
ficient for the next few years at least. For 64-bit systems, 16*64*64*64=4,194,304
CPUs is allowed, which should see us through the next decade or so. This four-level
tree also allows kernels built with CONFIG_RCU_FANOUT=8 to support up to 4096

156 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

CPUs, which might be useful in very large systems having eight CPUs per socket
(but please note that no one has yet shown any measurable performance degra-
dation due to misaligned socket and rcu_node boundaries). In addition, building
kernels with a full four levels of rcu_node tree permits better testing of RCU’s
combining-tree code.

The RCU_FANOUT symbol controls how many children are permitted at each non-
leaf level of the rcu_node tree. If the CONFIG_RCU_FANOUT Kconfig option is not
specified, it is set based on the word size of the system, which is also the Kconfig
default.

The RCU_FANOUT_LEAF symbol controls how many CPUs are handled by each leaf
rcu_node structure. Experience has shown that allowing a given leaf rcu_node
structure to handle 64 CPUs, as permitted by the number of bits in the ->qsmask
field on a 64-bit system, results in excessive contention for the leaf rcu_node
structures’->lock fields. The number of CPUs per leaf rcu_node structure is
therefore limited to 16 given the default value of CONFIG_RCU_FANOUT_LEAF. If
CONFIG_RCU_FANOUT_LEAF is unspecified, the value selected is based on the word
size of the system, just as for CONFIG_RCU_FANOUT. Lines 11-19 perform this com-
putation.

Lines 21-24 compute the maximum number of CPUs supported by a single-level
(which contains a single rcu_node structure), two-level, three-level, and four-
level rcu_node tree, respectively, given the fanout specified by RCU_FANOUT and
RCU_FANOUT_LEAF. These numbers of CPUs are retained in the RCU_FANOUT_1,
RCU_FANOUT_2, RCU_FANOUT_3, and RCU_FANOUT_4 C-preprocessor variables, re-
spectively.

These variables are used to control the C-preprocessor #if statement spanning
lines 26-66 that computes the number of rcu_node structures required for each
level of the tree, as well as the number of levels required. The number of levels is
placed in the NUM_RCU_LVLS C-preprocessor variable by lines 27, 35, 44, and 54.
The number of rcu_node structures for the topmost level of the tree is always ex-
actly one, and this value is unconditionally placed into NUM_RCU_LVL_0 by lines 28,
36, 45, and 55. The rest of the levels (if any) of the rcu_node tree are computed
by dividing the maximum number of CPUs by the fanout supported by the number
of levels from the current level down, rounding up. This computation is performed
by lines 37, 46-47, and 56-58. Lines 31-33, 40-42, 50-52, and 62-63 create initial-
izers for lockdep lock-class names. Finally, lines 64-66 produce an error if the
maximum number of CPUs is too large for the specified fanout.

12.2.3 The rcu_segcblist Structure

The rcu_segcblist structure maintains a segmented list of callbacks as follows:

1 #define RCU_DONE_TAIL 0
2 #define RCU_WAIT_TAIL 1
3 #define RCU_NEXT_READY_TAIL 2
4 #define RCU_NEXT_TAIL 3
5 #define RCU_CBLIST_NSEGS 4
6
7 struct rcu_segcblist {
8 struct rcu_head *head;

(continues on next page)

12.2. Data-Structure Relationships 157

Linux Rcu Documentation

(continued from previous page)
9 struct rcu_head **tails[RCU_CBLIST_NSEGS];

10 unsigned long gp_seq[RCU_CBLIST_NSEGS];
11 long len;
12 long len_lazy;
13 };

The segments are as follows:

1. RCU_DONE_TAIL: Callbacks whose grace periods have elapsed. These call-
backs are ready to be invoked.

2. RCU_WAIT_TAIL: Callbacks that are waiting for the current grace period. Note
that different CPUs can have different ideas about which grace period is cur-
rent, hence the ->gp_seq field.

3. RCU_NEXT_READY_TAIL: Callbacks waiting for the next grace period to start.

4. RCU_NEXT_TAIL: Callbacks that have not yet been associated with a grace
period.

The ->head pointer references the first callback or is NULL if the list contains no
callbacks (which is not the same as being empty). Each element of the ->tails[]
array references the ->next pointer of the last callback in the corresponding seg-
ment of the list, or the list’s ->head pointer if that segment and all previous
segments are empty. If the corresponding segment is empty but some previous
segment is not empty, then the array element is identical to its predecessor. Older
callbacks are closer to the head of the list, and new callbacks are added at the tail.
This relationship between the ->head pointer, the ->tails[] array, and the call-
backs is shown in this diagram:

In this figure, the ->head pointer references the first RCU callback in the list. The
->tails[RCU_DONE_TAIL] array element references the ->head pointer itself, indi-
cating that none of the callbacks is ready to invoke. The ->tails[RCU_WAIT_TAIL]
array element references callback CB 2’s ->next pointer, which indicates that
CB 1 and CB 2 are both waiting on the current grace period, give or take pos-
sible disagreements about exactly which grace period is the current one. The
->tails[RCU_NEXT_READY_TAIL] array element references the same RCU call-
back that ->tails[RCU_WAIT_TAIL] does, which indicates that there are no call-
backs waiting on the next RCU grace period. The ->tails[RCU_NEXT_TAIL] ar-
ray element references CB 4’s ->next pointer, indicating that all the remaining
RCU callbacks have not yet been assigned to an RCU grace period. Note that the
->tails[RCU_NEXT_TAIL] array element always references the last RCU callback’
s ->next pointer unless the callback list is empty, in which case it references the
->head pointer.

There is one additional important special case for the ->tails[RCU_NEXT_TAIL]
array element: It can be NULL when this list is disabled. Lists are disabled when
the corresponding CPU is offline or when the corresponding CPU’s callbacks are
offloaded to a kthread, both of which are described elsewhere.

CPUs advance their callbacks from the RCU_NEXT_TAIL to the
RCU_NEXT_READY_TAIL to the RCU_WAIT_TAIL to the RCU_DONE_TAIL list seg-
ments as grace periods advance.

The ->gp_seq[] array records grace-period numbers corresponding to the list seg-

158 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

12.2. Data-Structure Relationships 159

Linux Rcu Documentation

ments. This is what allows different CPUs to have different ideas as to which is the
current grace period while still avoiding premature invocation of their callbacks.
In particular, this allows CPUs that go idle for extended periods to determine which
of their callbacks are ready to be invoked after reawakening.

The ->len counter contains the number of callbacks in ->head, and the
->len_lazy contains the number of those callbacks that are known to only free
memory, and whose invocation can therefore be safely deferred.

Important: It is the ->len field that determines whether or not there are
callbacks associated with this rcu_segcblist structure, not the ->head pointer.
The reason for this is that all the ready-to-invoke callbacks (that is, those in the
RCU_DONE_TAIL segment) are extracted all at once at callback-invocation time
(rcu_do_batch), due to which ->head may be set to NULL if there are no not-
done callbacks remaining in the rcu_segcblist. If callback invocation must be
postponed, for example, because a high-priority process just woke up on this CPU,
then the remaining callbacks are placed back on the RCU_DONE_TAIL segment and
->head once again points to the start of the segment. In short, the head field
can briefly be NULL even though the CPU has callbacks present the entire time.
Therefore, it is not appropriate to test the ->head pointer for NULL.

In contrast, the ->len and ->len_lazy counts are adjusted only after the corre-
sponding callbacks have been invoked. This means that the ->len count is zero
only if the rcu_segcblist structure really is devoid of callbacks. Of course, off-
CPU sampling of the ->len count requires careful use of appropriate synchro-
nization, for example, memory barriers. This synchronization can be a bit subtle,
particularly in the case of rcu_barrier().

12.2.4 The rcu_data Structure

The rcu_data maintains the per-CPU state for the RCU subsystem. The fields
in this structure may be accessed only from the corresponding CPU (and from
tracing) unless otherwise stated. This structure is the focus of quiescent-state
detection and RCU callback queuing. It also tracks its relationship to the corre-
sponding leaf rcu_node structure to allow more-efficient propagation of quiescent
states up the rcu_node combining tree. Like the rcu_node structure, it provides a
local copy of the grace-period information to allow for-free synchronized access to
this information from the corresponding CPU. Finally, this structure records past
dyntick-idle state for the corresponding CPU and also tracks statistics.

The rcu_data structure’s fields are discussed, singly and in groups, in the follow-
ing sections.

160 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

Connection to Other Data Structures

This portion of the rcu_data structure is declared as follows:

1 int cpu;
2 struct rcu_node *mynode;
3 unsigned long grpmask;
4 bool beenonline;

The ->cpu field contains the number of the corresponding CPU and the ->mynode
field references the corresponding rcu_node structure. The ->mynode is used to
propagate quiescent states up the combining tree. These two fields are constant
and therefore do not require synchronization.

The ->grpmask field indicates the bit in the ->mynode->qsmask corresponding to
this rcu_data structure, and is also used when propagating quiescent states. The
->beenonline flag is set whenever the corresponding CPU comes online, which
means that the debugfs tracing need not dump out any rcu_data structure for
which this flag is not set.

Quiescent-State and Grace-Period Tracking

This portion of the rcu_data structure is declared as follows:

1 unsigned long gp_seq;
2 unsigned long gp_seq_needed;
3 bool cpu_no_qs;
4 bool core_needs_qs;
5 bool gpwrap;

The ->gp_seq field is the counterpart of the field of the same name in the
rcu_state and rcu_node structures. The ->gp_seq_needed field is the counter-
part of the field of the same name in the rcu_node structure. They may each lag
up to one behind their rcu_node counterparts, but in CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_FULL kernels can lag arbitrarily far behind for CPUs in dyntick-
idle mode (but these counters will catch up upon exit from dyntick-idle mode). If
the lower two bits of a given rcu_data structure’s ->gp_seq are zero, then this
rcu_data structure believes that RCU is idle.

Quick Quiz:
All this replication of the grace period numbers can only cause massive confu-
sion. Why not just keep a global sequence number and be done with it???
Answer:
Because if there was only a single global sequence numbers, there would need
to be a single global lock to allow safely accessing and updating it. And if we are
not going to have a single global lock, we need to carefully manage the numbers
on a per-node basis. Recall from the answer to a previous Quick Quiz that the
consequences of applying a previously sampled quiescent state to the wrong
grace period are quite severe.

The ->cpu_no_qs flag indicates that the CPU has not yet passed through a quies-
cent state, while the ->core_needs_qs flag indicates that the RCU core needs a

12.2. Data-Structure Relationships 161

Linux Rcu Documentation

quiescent state from the corresponding CPU. The ->gpwrap field indicates that the
corresponding CPU has remained idle for so long that the gp_seq counter is in dan-
ger of overflow, which will cause the CPU to disregard the values of its counters
on its next exit from idle.

RCU Callback Handling

In the absence of CPU-hotplug events, RCU callbacks are invoked by the same
CPU that registered them. This is strictly a cache-locality optimization: callbacks
can and do get invoked on CPUs other than the one that registered them. After
all, if the CPU that registered a given callback has gone offline before the callback
can be invoked, there really is no other choice.

This portion of the rcu_data structure is declared as follows:

1 struct rcu_segcblist cblist;
2 long qlen_last_fqs_check;
3 unsigned long n_cbs_invoked;
4 unsigned long n_nocbs_invoked;
5 unsigned long n_cbs_orphaned;
6 unsigned long n_cbs_adopted;
7 unsigned long n_force_qs_snap;
8 long blimit;

The ->cblist structure is the segmented callback list described earlier. The CPU
advances the callbacks in its rcu_data structure whenever it notices that another
RCU grace period has completed. The CPU detects the completion of an RCU
grace period by noticing that the value of its rcu_data structure’s ->gp_seq field
differs from that of its leaf rcu_node structure. Recall that each rcu_node struc-
ture’s ->gp_seq field is updated at the beginnings and ends of each grace period.
The ->qlen_last_fqs_check and ->n_force_qs_snap coordinate the forcing of
quiescent states from call_rcu() and friends when callback lists grow excessively
long.

The ->n_cbs_invoked, ->n_cbs_orphaned, and ->n_cbs_adopted fields count
the number of callbacks invoked, sent to other CPUs when this CPU goes of-
fline, and received from other CPUs when those other CPUs go offline. The
->n_nocbs_invoked is used when the CPU’s callbacks are offloaded to a kthread.
Finally, the ->blimit counter is the maximum number of RCU callbacks that may
be invoked at a given time.

Dyntick-Idle Handling

This portion of the rcu_data structure is declared as follows:

1 int dynticks_snap;
2 unsigned long dynticks_fqs;

The ->dynticks_snap field is used to take a snapshot of the corresponding CPU’
s dyntick-idle state when forcing quiescent states, and is therefore accessed from
other CPUs. Finally, the ->dynticks_fqs field is used to count the number of

162 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

times this CPU is determined to be in dyntick-idle state, and is used for tracing
and debugging purposes.

This portion of the rcu_data structure is declared as follows:

1 long dynticks_nesting;
2 long dynticks_nmi_nesting;
3 atomic_t dynticks;
4 bool rcu_need_heavy_qs;
5 bool rcu_urgent_qs;

These fields in the rcu_data structure maintain the per-CPU dyntick-idle state for
the corresponding CPU. The fields may be accessed only from the corresponding
CPU (and from tracing) unless otherwise stated.

The ->dynticks_nesting field counts the nesting depth of process execution, so
that in normal circumstances this counter has value zero or one. NMIs, irqs, and
tracers are counted by the ->dynticks_nmi_nesting field. Because NMIs cannot
be masked, changes to this variable have to be undertaken carefully using an al-
gorithm provided by Andy Lutomirski. The initial transition from idle adds one,
and nested transitions add two, so that a nesting level of five is represented by
a ->dynticks_nmi_nesting value of nine. This counter can therefore be thought
of as counting the number of reasons why this CPU cannot be permitted to enter
dyntick-idle mode, aside from process-level transitions.

However, it turns out that when running in non-idle kernel context, the Linux ker-
nel is fully capable of entering interrupt handlers that never exit and perhaps also
vice versa. Therefore, whenever the ->dynticks_nesting field is incremented up
from zero, the ->dynticks_nmi_nesting field is set to a large positive number,
and whenever the ->dynticks_nesting field is decremented down to zero, the
the ->dynticks_nmi_nesting field is set to zero. Assuming that the number of
misnested interrupts is not sufficient to overflow the counter, this approach cor-
rects the ->dynticks_nmi_nesting field every time the corresponding CPU enters
the idle loop from process context.

The ->dynticks field counts the corresponding CPU’s transitions to and from
either dyntick-idle or user mode, so that this counter has an even value when
the CPU is in dyntick-idle mode or user mode and an odd value otherwise. The
transitions to/from user mode need to be counted for user mode adaptive-ticks
support (see timers/NO_HZ.txt).

The ->rcu_need_heavy_qs field is used to record the fact that the RCU core code
would really like to see a quiescent state from the corresponding CPU, so much
so that it is willing to call for heavy-weight dyntick-counter operations. This flag
is checked by RCU’s context-switch and cond_resched() code, which provide a
momentary idle sojourn in response.

Finally, the ->rcu_urgent_qs field is used to record the fact that the RCU core
code would really like to see a quiescent state from the corresponding CPU, with
the various other fields indicating just how badly RCU wants this quiescent state.
This flag is checked by RCU’s context-switch path (rcu_note_context_switch)
and the cond_resched code.

12.2. Data-Structure Relationships 163

Linux Rcu Documentation

Quick Quiz:
Why not simply combine the ->dynticks_nesting and
->dynticks_nmi_nesting counters into a single counter that just counts
the number of reasons that the corresponding CPU is non-idle?
Answer:
Because this would fail in the presence of interrupts whose handlers never re-
turn and of handlers that manage to return from a made-up interrupt.

Additional fields are present for some special-purpose builds, and are discussed
separately.

12.2.5 The rcu_head Structure

Each rcu_head structure represents an RCU callback. These structures are nor-
mally embedded within RCU-protected data structures whose algorithms use asyn-
chronous grace periods. In contrast, when using algorithms that block waiting for
RCU grace periods, RCU users need not provide rcu_head structures.

The rcu_head structure has fields as follows:

1 struct rcu_head *next;
2 void (*func)(struct rcu_head *head);

The ->next field is used to link the rcu_head structures together in the lists within
the rcu_data structures. The ->func field is a pointer to the function to be called
when the callback is ready to be invoked, and this function is passed a pointer
to the rcu_head structure. However, kfree_rcu() uses the ->func field to record
the offset of the rcu_head structure within the enclosing RCU-protected data struc-
ture.

Both of these fields are used internally by RCU. From the viewpoint of RCU users,
this structure is an opaque “cookie”.

Quick Quiz:
Given that the callback function ->func is passed a pointer to the rcu_head
structure, how is that function supposed to find the beginning of the enclosing
RCU-protected data structure?
Answer:
In actual practice, there is a separate callback function per type of RCU-
protected data structure. The callback function can therefore use the
container_of() macro in the Linux kernel (or other pointer-manipulation fa-
cilities in other software environments) to find the beginning of the enclosing
structure.

164 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

Linux Rcu Documentation

12.2.6 RCU-Specific Fields in the task_struct Structure

The CONFIG_PREEMPT_RCU implementation uses some additional fields in the
task_struct structure:

1 #ifdef CONFIG_PREEMPT_RCU
2 int rcu_read_lock_nesting;
3 union rcu_special rcu_read_unlock_special;
4 struct list_head rcu_node_entry;
5 struct rcu_node *rcu_blocked_node;
6 #endif /* #ifdef CONFIG_PREEMPT_RCU */
7 #ifdef CONFIG_TASKS_RCU
8 unsigned long rcu_tasks_nvcsw;
9 bool rcu_tasks_holdout;

10 struct list_head rcu_tasks_holdout_list;
11 int rcu_tasks_idle_cpu;
12 #endif /* #ifdef CONFIG_TASKS_RCU */

The ->rcu_read_lock_nesting field records the nesting level for RCU read-side
critical sections, and the ->rcu_read_unlock_special field is a bitmask that
records special conditions that require rcu_read_unlock() to do additional work.
The ->rcu_node_entry field is used to form lists of tasks that have blocked within
preemptible-RCU read-side critical sections and the ->rcu_blocked_node field ref-
erences the rcu_node structure whose list this task is a member of, or NULL if it is
not blocked within a preemptible-RCU read-side critical section.

The ->rcu_tasks_nvcsw field tracks the number of voluntary context switches that
this task had undergone at the beginning of the current tasks-RCU grace period,
->rcu_tasks_holdout is set if the current tasks-RCU grace period is waiting on
this task, ->rcu_tasks_holdout_list is a list element enqueuing this task on the
holdout list, and ->rcu_tasks_idle_cpu tracks which CPU this idle task is run-
ning, but only if the task is currently running, that is, if the CPU is currently idle.

12.2.7 Accessor Functions

The following listing shows the rcu_get_root(), rcu_for_each_node_breadth_first
and rcu_for_each_leaf_node() function and macros:

1 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
2 {
3 return &rsp->node[0];
4 }
5
6 #define rcu_for_each_node_breadth_first(rsp, rnp) \
7 for ((rnp) = &(rsp)->node[0]; \
8 (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++)
9

10 #define rcu_for_each_leaf_node(rsp, rnp) \
11 for ((rnp) = (rsp)->level[NUM_RCU_LVLS - 1]; \
12 (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++)

The rcu_get_root() simply returns a pointer to the first element of the specified
rcu_state structure’s ->node[] array, which is the root rcu_node structure.

12.2. Data-Structure Relationships 165

Linux Rcu Documentation

As noted earlier, the rcu_for_each_node_breadth_first() macro takes advan-
tage of the layout of the rcu_node structures in the rcu_state structure’s
->node[] array, performing a breadth-first traversal by simply traversing the ar-
ray in order. Similarly, the rcu_for_each_leaf_node() macro traverses only the
last part of the array, thus traversing only the leaf rcu_node structures.

Quick Quiz:
What does rcu_for_each_leaf_node() do if the rcu_node tree contains only a
single node?
Answer:
In the single-node case, rcu_for_each_leaf_node() traverses the single node.

12.2.8 Summary

So the state of RCU is represented by an rcu_state structure, which con-
tains a combining tree of rcu_node and rcu_data structures. Finally, in
CONFIG_NO_HZ_IDLE kernels, each CPU’s dyntick-idle state is tracked by dynticks-
related fields in the rcu_data structure. If you made it this far, you are well pre-
pared to read the code walkthroughs in the other articles in this series.

12.2.9 Acknowledgments

I owe thanks to Cyrill Gorcunov, Mathieu Desnoyers, Dhaval Giani, Paul Turner,
Abhishek Srivastava, Matt Kowalczyk, and Serge Hallyn for helping me get this
document into a more human-readable state.

12.2.10 Legal Statement

This work represents the view of the author and does not necessarily represent
the view of IBM.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service marks
of others.

166 Chapter 12. A Tour Through TREE_RCU’s Data Structures [LWN.net]

