自循环字符串/周期性字符串的判别和概率

问题来源:需要判断一个长度为N 的0/1 二进制字符串是自循环的概率是多少?自循环指的是一个字符串循环移位s 位仍然可以得到其本身,s 小于字符串长度。比如,010010 是自循环的,为将这个字符串循环右移三个bits 字符串还是其本身。

通过自循环字符串特征很容易推导出:自循环字符串是周期性字符串,即字符串完全由若干个相同子串拼接得到,上面例子中重复的子串是 010。并且,自循环字符串移位得到其本身需要的最少步数s 和最小子串长度相同,也就是说,计算得到字符串最小重复子串也就得到了其自循环需要移位数s。

那么问题归结为如何找到一个周期性字符串的最小重复子串

算法:令周期性字符串为S,那么SS 是两个S 的拼接,从SS 第二个字符开始,利用字符串匹配寻找S,如果SS 从第c 个字符开始包含了S 字符串,则S 的最小周期子串长度为c。下面是两个例子:

例子一:S =  010010

SS = 010010010010

  1.  0 1 0 0 1 0 0 1 0 0 1 0  不是S
  2.  0 1 0 0 1 0 0 1 0 0 1 0  不是S
  3.  0 1 0 0 1 0 0 1 0 0 1 0  是S

结束,最小子串长度为3,即010 。

例子二:S =  abaaabaaabaa

SS = abaaabaaabaaabaaabaaabaa

  1.   a b a a a b a a a b a a a b a a a b a a a b a a
  2.   a b a a a b a a a b a a a b a a a b a a a b a a
  3.   a b a a a b a a a b a a a b a a a b a a a b a a
  4.   a b a a a b a a a b a a a b a a a b a a a b a a

结束,最小子串长度为4,即abaa 。

接着统计了下二进制字符长度(X轴)和周期性字符串个数/概率(Y轴)关系。

可见,自循环字符串个数和概率与其字符串长度有关,总的来说:

  1. 长度越长,包含的自循环的字符串个数越多,呈指数增加
  2. 长度越长,字符串可能是自循环的概率降低,呈指数下降
  3. 素数只有两个自循环字符串(全0,全1)
  4. 包含分解因子越多,越可能包含更多自循环字符串