冗余编码的存储系统中最多允许多少节点失效?

本文讨论分布式存储系统如果采用编码方式保存数据,那么允许最多失效的节点个数与码率之间的关系。这个关系也可以通过图论中“最小分割最大流”定理来求证。

一个原始文件S(假设没有冗余信息)大小自信息量/文件大小为I ,进行冗余编码[n’,k](这里考虑系统码,为和分不到n 个节点区分开,用n’ 代替)的编码率为R = k/n’ ,则编码后文件大小为C:I → C = I/R。将编码后的数据分布在n 个节点上,每个节点的数据记做:X1 ,X2 ,X3 ……Xn ,每个节点数据的大小为C/n = I/R·n 。而每个节点数据/信息又有两部分组成,前一部分是系统码中的原始信息:Xii = I/n,另一部分是系统码中的校验信息:Xih = C/n – I/n ,且Xi = Xii + Xih。如下图所示

6_0               6

当a 个节点发生故障失效时,那么剩下的校验/冗余信息和原始信息应该能够恢复出丢失的原始信息,进而恢复出所有的校验信息。即:

    $$\frac{n-a}{n} \cdot H \geq \frac{a}{n} \cdot I$$

  因为H = C – I =I/R – I。得结果:

    $$\frac{n-a}{n} \geq R $$

这也就是说,所有没有损坏节点的个数与所有节点比率(n-a/n)应该大于编码码率R。

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据