Linux Xtensa Documentation

The kernel development community

Jul 14, 2020

CONTENTS

CHAPTER
ONE

ATOMIC OPERATION CONTROL (ATOMCTL) REGISTER

We Have Atomic Operation Control (ATOMCTL) Register. This register determines
the effect of using a S32C1I instruction with various combinations of:

1. With and without an Coherent Cache Controller which can do Atomic Trans-
actions to the memory internally.

2. With and without An Intelligent Memory Controller which can do Atomic
Transactions itself.

The Core comes up with a default value of for the three types of cache ops:

0x28: (WB: Internal, WT: Internal, BY:Exception)

On the FPGA Cards we typically simulate an Intelligent Memory controller which
can implement RCW transactions. For FPGA cards with an External Memory con-
troller we let it to the atomic operations internally while doing a Cached (WB)
transaction and use the Memory RCW for un-cached operations.

For systems without an coherent cache controller, non-MX, we always use the
memory controllers RCW, thought non-MX controlers likely support the Internal
Operation.

CUSTOMER-WARNING: Virtually all customers buy their memory controllers
from vendors that don’ t support atomic RCW memory transactions and will
likely want to configure this register to not use RCW.

Developers might find using RCW in Bypass mode convenient when testing with
the cache being bypassed; for example studying cache alias problems.

See Section 4.3.12.4 of ISA; Bits:

WB WT BY

5 413 2|1 0
2 Bit
Field
Values | WB - Write Back WT - Write Thru BY - Bypass
0 Exception Exception Exception
1 RCW Transaction | RCW Transaction | RCW Transaction
2 Internal Operation | Internal Operation | Reserved
3 Reserved Reserved Reserved

Linux Xtensa Documentation

2 Chapter 1. Atomic Operation Control (ATOMCTL) Register

CHAPTER
TWO

PASSING BOOT PARAMETERS TO THE KERNEL

Boot parameters are represented as a TLV list in the memory. Please see
arch/xtensa/include/asm/bootparam.h for definition of the bp tag structure and
tag value constants. First entry in the list must have type BP TAG FIRST, last en-
try must have type BP TAG LAST. The address of the first list entry is passed to
the kernel in the register a2. The address type depends on MMU type:

* For configurations without MMU, with region protection or with MPU the
address must be the physical address.

* For configurations with region translarion MMU or with MMUv3 and CON-
FIG MMU=n the address must be a valid address in the current mapping.
The kernel will not change the mapping on its own.

» For configurations with MMUv2 the address must be a virtual address in the
default virtual mapping (0xd0000000..Oxffffffff).

» For configurations with MMUv3 and CONFIG MMU=y the address may be ei-
ther a virtual or physical address. In either case it must be within the default
virtual mapping. It is considered physical if it is within the range of physi-
cal addresses covered by the default KSEG mapping (XCHAL KSEG PADDR..
XCHAL KSEG PADDR + XCHAL KSEG SIZE), otherwise it is considered vir-
tual.

Linux Xtensa Documentation

4 Chapter 2. Passing boot parameters to the kernel

CHAPTER
THREE

MMUV3 INITIALIZATION SEQUENCE

The code in the initialize mmu macro sets up MMUv3 memory map-
ping identically to MMUv2 fixed memory mapping. Depending on CON-
FIG INITIALIZE XTENSA MMU INSIDE VMLINUX symbol this code is located
in addresses it was linked for (symbol undefined), or not (symbol defined), so it
needs to be position-independent.

The code has the following assumptions:
* This code fragment is run only on an MMU v3.
* TLBs are in their reset state.
ITLBCFG and DTLBCFG are zero (reset state).
RASID is 0x04030201 (reset state).
PS.RING is zero (reset state).

LITBASE is zero (reset state, PC-relative literals); required to be PIC.
TLB setup proceeds along the following steps.
Legend:

* VA = virtual address (two upper nibbles of it);

* PA = physical address (two upper nibbles of it);

* pc = physical range that contains this code;

After step 2, we jump to virtual address in the range 0x40000000..0x5fffffff
or 0x00000000..0x1fffffff, depending on whether the kernel was loaded below
0x40000000 or above. That address corresponds to next instruction to execute
in this code. After step 4, we jump to intended (linked) address of this code. The
scheme below assumes that the kernel is loaded below 0x40000000.

Linux Xtensa Documentation

. Step0 | Stepl | Step2 | Step3 Step4 | Step5
VA PA PA PA PA VA PA PA
EO.FF | ->EO0 | ->EO | ->EO FO..FF | -> F0O | -> FO
CO0.DF|->C0 |->C0O0 | ->CO EO..EF | -> F0O | ->FO
AO0.BF | -> A0 | ->A0 | -> A0 D8..DF | -> 00 -> 00
80..9F | -> 80 -> 80 -> 80 DO0..D7 | -> 00 -> 00
60..7F | -> 60 -> 60 -> 60
40..5F | -> 40 -> pcC -> pcC 40..5F | -> pc
20.3F | -=>20 |->20 |->20
00..1F | -> 00 -> 00 -> 00

The default location of 10 peripherals is above 0xf0000000. This may be changed
using a “ranges” property in a device tree simple-bus node. See the Devicetree
Specification, section 4.5 for details on the syntax and semantics of simple-bus
nodes. The following limitations apply:

1. Only top level simple-bus nodes are considered

2. Only one (first) simple-bus node is considered

3. Empty “ranges” properties are not supported

4. Only the first triplet in the “ranges” property is considered
5

. The parent-bus-address value is rounded down to the nearest 256MB bound-
ary

6. The 10 area covers the entire 256MB segment of parent-bus-address; the
“ranges” triplet length field is ignored

3.1 MMUv3 address space layouts.

Default MMUv2-compatible layout:

Symbol VADDR Size
oo +
| Userspace | 0x00000000 TASK SIZE
LR + 0x40000000
e L +
| Page table | XCHAL_PAGE TABLE VADDR 0x80000000 XCHAL PAGE_
—TABLE SIZE
R +
| KASAN shadow map | KASAN SHADOW START 0x80400000 KASAN SHADOW
—SIZE
L L + 0x8e400000
oo +
| VMALLOC area | VMALLOC START 0xcO000000 128MB - 64KB
LR + VMALLOC END
| Cache aliasing | TLBTEMP BASE 1 Oxc7ff0000 DCACHE WAY SIZE
| remap area 1 |
oo +
| Cache aliasing | TLBTEMP_BASE 2 DCACHE WAY SIZE

(continues on next page)

6 Chapter 3. MMUv3 initialization sequence

Linux Xtensa Documentation

(continued from previous page)

| remap area 2

| KMAP area | PKMAP BASE PTRS PER PTE *
| | DCACHE_N_COLORS,,
LK

| | PAGE SIZE

| | (4MB * DCACHE N _
—COLORS)

R L +

| Atomic KMAP area | FIXADDR START KM TYPE_NR *

| | NR _CPUS *

| | DCACHE_N_COLORS,,
Lk

| | PAGE SIZE

e + FIXADDR TOP Oxcffffooo

e +

| Cached KSEG | XCHAL KSEG CACHED VADDR 0xd0000000 128MB

I +

| Uncached KSEG | XCHAL KSEG BYPASS VADDR 0xd8000000 128MB

R L L +

| Cached KIO | XCHAL KIO CACHED VADDR 0xe0000000 256MB

I +

| Uncached KIO | XCHAL KIO BYPASS VADDR 0xf0000000 256MB

R +

256MB cached + 256MB uncached layout:

Symbol VADDR Size

R I +

| Userspace | 0x00000000 TASK SIZE

e + 0x40000000

Fommm e +

| Page table | XCHAL PAGE_TABLE VADDR 0x80000000 XCHAL PAGE
—TABLE SIZE

R IR +

| KASAN shadow map | KASAN SHADOW START 0x80400000 KASAN SHADOW
—SIZE

R T + 0x8e400000

oo +

| VMALLOC area | VMALLOC START 0xal000000 128MB - 64KB

A + VMALLOC END

| Cache aliasing | TLBTEMP BASE 1 0xa7ff0000 DCACHE WAY SIZE

| remap area 1

| Cache aliasing
| remap area 2

TLBTEMP_BASE 2

PKMAP_BASE

DCACHE_WAY SIZE

PTRS PER PTE *
DCACHE_N_COLORS,,

PAGE SIZE
(4MB * DCACHE N_

(continues on next page)

3.1. MMUv3 address space layouts.

7

Linux Xtensa Documentation

(continued from previous page)

| Atomic KMAP area | FIXADDR START KM_TYPE_NR *
| | NR_CPUS *
| | DCACHE_N_COLORS,,
(_)*
| | PAGE _SIZE
R R LR + FIXADDR TOP Oxaffffo00
I +
| Cached KSEG | XCHAL KSEG CACHED VADDR 0xb0000000 256MB
Fmmmm e eme e eaaaa +
| Uncached KSEG | XCHAL KSEG BYPASS VADDR 0xc0000000 256MB
Fommm e - +
L +
| Cached KIO | XCHAL KIO CACHED VADDR 0xe0000000 256MB
R R +
| Uncached KIO | XCHAL KIO BYPASS VADDR 0xf0000000 256MB
Fommm e +
512MB cached + 512MB uncached layout:
Symbol VADDR Size

Fomme e eme e ee e +
| Userspace | 0x00000000 TASK SIZE
L L + 0x40000000
oo +
| Page table | XCHAL PAGE TABLE VADDR 0x80000000 XCHAL PAGE
—TABLE SIZE
R L L +
| KASAN shadow map | KASAN SHADOW_ START 0x80400000 KASAN SHADOW
—SIZE
L + 0x8e400000
R +
| VMALLOC area | VMALLOC START 0x90000000 128MB - 64KB
Fomm - + VMALLOC END
| Cache aliasing | TLBTEMP_BASE 1 0x97ff0000 DCACHE WAY SIZE
| remap area 1 |
R IR +
| Cache aliasing | TLBTEMP_BASE 2 DCACHE WAY SIZE
| remap area 2 |
e +
oo +
| KMAP area | PKMAP BASE PTRS PER PTE *
| | DCACHE N COLORS,,
(_)*
| | PAGE SIZE

| (4MB * DCACHE N _
—COLORS)
R R +
| Atomic KMAP area | FIXADDR START KM TYPE _NR *
| | NR CPUS *
| | DCACHE N COLORS,,
Lk
| | PAGE SIZE
LR + FIXADDR TOP Ox9ffff000
Fommm e +
| Cached KSEG | XCHAL KSEG CACHED VADDR 0xa0000000 512MB
oo +

(continues on next page)

8 Chapter 3. MMUv3 initialization sequence

Linux Xtensa Documentation

(continued from previous page)

| Uncached KSEG | XCHAL_KSEG BYPASS VADDR 0xc0000000 512MB
e +
| Cached KIO | XCHAL_KIO CACHED VADDR 0xe0000000 256MB
L +
| Uncached KIO | XCHAL_KIO BYPASS VADDR 0xf0000000 256MB
i +

3.1. MMUv3 address space layouts. 9

