
Linux Usb Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

LINUX ACM DRIVER V0.16

Copyright (c) 1999 Vojtech Pavlik <vojtech@suse.cz>

Sponsored by SuSE

1.1 0. Disclaimer

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foun-
dation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA

Should you need to contact me, the author, you can do so either by e-mail - mail
your message to <vojtech@suse.cz>, or by paper mail: Vojtech Pavlik, Ucitelska
1576, Prague 8, 182 00 Czech Republic

For your convenience, the GNU General Public License version 2 is included in the
package: See the file COPYING.

1.2 1. Usage

The drivers/usb/class/cdc-acm.c drivers works with USB modems and USB ISDN
terminal adapters that conform to the Universal Serial Bus Communication Device
Class Abstract Control Model (USB CDC ACM) specification.

Many modems do, here is a list of those I know of:

• 3Com OfficeConnect 56k

• 3Com Voice FaxModem Pro

• 3Com Sportster

• MultiTech MultiModem 56k

1

mailto:vojtech@suse.cz
mailto:vojtech@suse.cz

Linux Usb Documentation

• Zoom 2986L FaxModem

• Compaq 56k FaxModem

• ELSA Microlink 56k

I know of one ISDN TA that does work with the acm driver:

• 3Com USR ISDN Pro TA

Some cell phones also connect via USB. I know the following phones work:

• SonyEricsson K800i

Unfortunately many modems and most ISDN TAs use proprietary interfaces and
thus won’t work with this drivers. Check for ACM compliance before buying.

To use the modems you need these modules loaded:

usbcore.ko
uhci-hcd.ko ohci-hcd.ko or ehci-hcd.ko
cdc-acm.ko

After that, the modem[s] should be accessible. You should be able to use minicom,
ppp and mgetty with them.

1.3 2. Verifying that it works

The first step would be to check /sys/kernel/debug/usb/devices, it should look like
this:

T: Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
B: Alloc= 0/900 us (0%), #Int= 0, #Iso= 0
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 0.00
S: Product=USB UHCI Root Hub
S: SerialNumber=6800
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms
T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=01 Dev#= 2 Spd=12 MxCh= 0
D: Ver= 1.00 Cls=02(comm.) Sub=00 Prot=00 MxPS= 8 #Cfgs= 2
P: Vendor=04c1 ProdID=008f Rev= 2.07
S: Manufacturer=3Com Inc.
S: Product=3Com U.S. Robotics Pro ISDN TA
S: SerialNumber=UFT53A49BVT7
C: #Ifs= 1 Cfg#= 1 Atr=60 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=acm
E: Ad=85(I) Atr=02(Bulk) MxPS= 64 Ivl= 0ms
E: Ad=04(O) Atr=02(Bulk) MxPS= 64 Ivl= 0ms
E: Ad=81(I) Atr=03(Int.) MxPS= 16 Ivl=128ms
C:* #Ifs= 2 Cfg#= 2 Atr=60 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=acm
E: Ad=81(I) Atr=03(Int.) MxPS= 16 Ivl=128ms
I: If#= 1 Alt= 0 #EPs= 2 Cls=0a(data) Sub=00 Prot=00 Driver=acm
E: Ad=85(I) Atr=02(Bulk) MxPS= 64 Ivl= 0ms
E: Ad=04(O) Atr=02(Bulk) MxPS= 64 Ivl= 0ms

2 Chapter 1. Linux ACM driver v0.16

Linux Usb Documentation

The presence of these three lines (and the Cls= ‘comm’and ‘data’classes) is
important, it means it’s an ACM device. The Driver=acm means the acm driver
is used for the device. If you see only Cls=ff(vend.) then you’re out of luck, you
have a device with vendor specific-interface:

D: Ver= 1.00 Cls=02(comm.) Sub=00 Prot=00 MxPS= 8 #Cfgs= 2
I: If#= 0 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=acm
I: If#= 1 Alt= 0 #EPs= 2 Cls=0a(data) Sub=00 Prot=00 Driver=acm

In the system log you should see:

usb.c: USB new device connect, assigned device number 2
usb.c: kmalloc IF c7691fa0, numif 1
usb.c: kmalloc IF c7b5f3e0, numif 2
usb.c: skipped 4 class/vendor specific interface descriptors
usb.c: new device strings: Mfr=1, Product=2, SerialNumber=3
usb.c: USB device number 2 default language ID 0x409
Manufacturer: 3Com Inc.
Product: 3Com U.S. Robotics Pro ISDN TA
SerialNumber: UFT53A49BVT7
acm.c: probing config 1
acm.c: probing config 2
ttyACM0: USB ACM device
acm.c: acm_control_msg: rq: 0x22 val: 0x0 len: 0x0 result: 0
acm.c: acm_control_msg: rq: 0x20 val: 0x0 len: 0x7 result: 7
usb.c: acm driver claimed interface c7b5f3e0
usb.c: acm driver claimed interface c7b5f3f8
usb.c: acm driver claimed interface c7691fa0

If all this seems to be OK, fire up minicom and set it to talk to the ttyACM device
and try typing ‘at’. If it responds with ‘OK’, then everything is working.

1.3. 2. Verifying that it works 3

Linux Usb Documentation

4 Chapter 1. Linux ACM driver v0.16

CHAPTER

TWO

AUTHORIZING (OR NOT) YOUR USB DEVICES TO
CONNECT TO THE SYSTEM

Copyright (C) 2007 Inaky Perez-Gonzalez <inaky@linux.intel.com> Intel Corpora-
tion

This feature allows you to control if a USB device can be used (or not) in a sys-
tem. This feature will allow you to implement a lock-down of USB devices, fully
controlled by user space.

As of now, when a USB device is connected it is configured and its interfaces
are immediately made available to the users. With this modification, only if root
authorizes the device to be configured will then it be possible to use it.

2.1 Usage

Authorize a device to connect:

$ echo 1 > /sys/bus/usb/devices/DEVICE/authorized

De-authorize a device:

$ echo 0 > /sys/bus/usb/devices/DEVICE/authorized

Set new devices connected to hostX to be deauthorized by default (ie: lock down):

$ echo 0 > /sys/bus/usb/devices/usbX/authorized_default

Remove the lock down:

$ echo 1 > /sys/bus/usb/devices/usbX/authorized_default

By default, Wired USB devices are authorized by default to connect. Wireless
USB hosts deauthorize by default all new connected devices (this is so because
we need to do an authentication phase before authorizing). Writing “2”to the
authorized_default attribute causes kernel to only authorize by default devices
connected to internal USB ports.

5

mailto:inaky@linux.intel.com

Linux Usb Documentation

2.1.1 Example system lockdown (lame)

Imagine you want to implement a lockdown so only devices of type XYZ can be
connected (for example, it is a kiosk machine with a visible USB port):

boot up
rc.local ->

for host in /sys/bus/usb/devices/usb*
do

echo 0 > $host/authorized_default
done

Hookup an script to udev, for new USB devices:

if device_is_my_type $DEV
then

echo 1 > $device_path/authorized
done

Now, device_is_my_type() is where the juice for a lockdown is. Just checking if the
class, type and protocol match something is the worse security verification you can
make (or the best, for someone willing to break it). If you need something secure,
use crypto and Certificate Authentication or stuff like that. Something simple for
an storage key could be:

function device_is_my_type()
{

echo 1 > authorized # temporarily authorize it
FIXME: make sure none can mount it

mount DEVICENODE /mntpoint
sum=$(md5sum /mntpoint/.signature)
if [$sum = $(cat /etc/lockdown/keysum)]
then

echo "We are good, connected"
umount /mntpoint
Other stuff so others can use it

else
echo 0 > authorized

fi
}

Of course, this is lame, you’d want to do a real certificate verification stuff with
PKI, so you don’t depend on a shared secret, etc, but you get the idea. Anybody
with access to a device gadget kit can fake descriptors and device info. Don’t
trust that. You are welcome.

6 Chapter 2. Authorizing (or not) your USB devices to connect to the
system

Linux Usb Documentation

2.1.2 Interface authorization

There is a similar approach to allow or deny specific USB interfaces. That allows
to block only a subset of an USB device.

Authorize an interface:

$ echo 1 > /sys/bus/usb/devices/INTERFACE/authorized

Deauthorize an interface:

$ echo 0 > /sys/bus/usb/devices/INTERFACE/authorized

The default value for new interfaces on a particular USB bus can be changed, too.

Allow interfaces per default:

$ echo 1 > /sys/bus/usb/devices/usbX/interface_authorized_default

Deny interfaces per default:

$ echo 0 > /sys/bus/usb/devices/usbX/interface_authorized_default

Per default the interface_authorized_default bit is 1. So all interfaces would au-
thorized per default.

Note: If a deauthorized interface will be authorized so the driver probing must be
triggered manually by writing INTERFACE to /sys/bus/usb/drivers_probe

For drivers that need multiple interfaces all needed interfaces should be autho-
rized first. After that the drivers should be probed. This avoids side effects.

2.1. Usage 7

Linux Usb Documentation

8 Chapter 2. Authorizing (or not) your USB devices to connect to the
system

CHAPTER

THREE

CHIPIDEA HIGHSPEED DUAL ROLE CONTROLLER DRIVER

3.1 1. How to test OTG FSM(HNP and SRP)

To show how to demo OTG HNP and SRP functions via sys input files with 2
Freescale i.MX6Q sabre SD boards.

3.2 1.1 How to enable OTG FSM

3.2.1 1.1.1 Select CONFIG_USB_OTG_FSM in menuconfig, rebuild
kernel

Image and modules. If you want to check some internal variables for otg fsm,
mount debugfs, there are 2 files which can show otg fsm variables and some con-
troller registers value:

cat /sys/kernel/debug/ci_hdrc.0/otg
cat /sys/kernel/debug/ci_hdrc.0/registers

3.2.2 1.1.2 Add below entries in your dts file for your controller
node

otg-rev = <0x0200>;
adp-disable;

3.3 1.2 Test operations

1) Power up 2 Freescale i.MX6Q sabre SD boards with gadget class driver loaded
(e.g. g_mass_storage).

2) Connect 2 boards with usb cable with one end is micro A plug, the other end
is micro B plug.

The A-device(with micro A plug inserted) should enumerate B-device.

3) Role switch

On B-device:

9

Linux Usb Documentation

echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req

B-device should take host role and enumerate A-device.

4) A-device switch back to host.

On B-device:

echo 0 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req

or, by introducing HNP polling, B-Host can know when A-peripheral wish to
be host role, so this role switch also can be trigged in A-peripheral side by
answering the polling from B-Host, this can be done on A-device:

echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_req

A-device should switch back to host and enumerate B-device.

5) Remove B-device(unplug micro B plug) and insert again in 10 seconds, A-
device should enumerate B-device again.

6) Remove B-device(unplug micro B plug) and insert again after 10 seconds,
A-device should NOT enumerate B-device.

if A-device wants to use bus:

On A-device:

echo 0 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_drop
echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_req

if B-device wants to use bus:

On B-device:

echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req

7) A-device power down the bus.

On A-device:

echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_drop

A-device should disconnect with B-device and power down the bus.

8) B-device does data pulse for SRP.

On B-device:

echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req

A-device should resume usb bus and enumerate B-device.

10 Chapter 3. ChipIdea Highspeed Dual Role Controller Driver

Linux Usb Documentation

3.4 1.3 Reference document

“On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
July 27, 2012 Revision 2.0 version 1.1a”

3.5 2. How to enable USB as system wakeup source

Below is the example for how to enable USB as system wakeup source at imx6
platform.

2.1 Enable core’s wakeup:
echo enabled > /sys/bus/platform/devices/ci_hdrc.0/power/wakeup

2.2 Enable glue layer’s wakeup:
echo enabled > /sys/bus/platform/devices/2184000.usb/power/wakeup

2.3 Enable PHY’s wakeup (optional):
echo enabled > /sys/bus/platform/devices/20c9000.usbphy/power/wakeup

2.4 Enable roothub’s wakeup:
echo enabled > /sys/bus/usb/devices/usb1/power/wakeup

2.5 Enable related device’s wakeup:
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

If the system has only one usb port, and you want usb wakeup at this port, you can
use below script to enable usb wakeup:

for i in $(find /sys -name wakeup | grep usb);do echo enabled > $i;done;

3.4. 1.3 Reference document 11

Linux Usb Documentation

12 Chapter 3. ChipIdea Highspeed Dual Role Controller Driver

CHAPTER

FOUR

DWC3 DRIVER

4.1 TODO

Please pick something while reading :)

• Convert interrupt handler to per-ep-thread-irq

As it turns out some DWC3-commands ~1ms to complete. Currently we spin
until the command completes which is bad.

Implementation idea:

– dwc core implements a demultiplexing irq chip for interrupts per end-
point. The interrupt numbers are allocated during probe and belong to
the device. If MSI provides per-endpoint interrupt this dummy interrupt
chip can be replaced with “real”interrupts.

– interrupts are requested / allocated on usb_ep_enable() and removed on
usb_ep_disable(). Worst case are 32 interrupts, the lower limit is two for
ep0/1.

– dwc3_send_gadget_ep_cmd() will sleep in wait_for_completion_timeout()
until the command completes.

– the interrupt handler is split into the following pieces:
∗ primary handler of the device goes through every event
and calls generic_handle_irq() for event it. On return from
generic_handle_irq() in acknowledges the event counter so interrupt
goes away (eventually).

∗ threaded handler of the device none

∗ primary handler of the EP-interrupt reads the event and tries to pro-
cess it. Everything that requires sleeping is handed over to the
Thread. The event is saved in an per-endpoint data-structure. We
probably have to pay attention not to process events once we handed
something to thread so we don’t process event X prio Y where X >
Y.

∗ threaded handler of the EP-interrupt handles the remaining EP work
which might sleep such as waiting for command completion.

Latency:

13

Linux Usb Documentation

There should be no increase in latency since the interrupt-thread has
a high priority and will be run before an average task in user land
(except the user changed priorities).

14 Chapter 4. DWC3 driver

CHAPTER

FIVE

EHCI DRIVER

27-Dec-2002

The EHCI driver is used to talk to high speed USB 2.0 devices using USB 2.0-
capable host controller hardware. The USB 2.0 standard is compatible with the
USB 1.1 standard. It defines three transfer speeds:

•“High Speed”480 Mbit/sec (60 MByte/sec)
•“Full Speed”12 Mbit/sec (1.5 MByte/sec)
•“Low Speed”1.5 Mbit/sec

USB 1.1 only addressed full speed and low speed. High speed devices can be used
on USB 1.1 systems, but they slow down to USB 1.1 speeds.

USB 1.1 devices may also be used on USB 2.0 systems. When plugged into an
EHCI controller, they are given to a USB 1.1 “companion”controller, which is
a OHCI or UHCI controller as normally used with such devices. When USB 1.1
devices plug into USB 2.0 hubs, they interact with the EHCI controller through a
“Transaction Translator”(TT) in the hub, which turns low or full speed transactions
into high speed “split transactions”that don’t waste transfer bandwidth.
At this writing, this driver has been seen to work with implementations of EHCI
from (in alphabetical order): Intel, NEC, Philips, and VIA. Other EHCI implemen-
tations are becoming available from other vendors; you should expect this driver
to work with them too.

While usb-storage devices have been available since mid-2001 (working quite
speedily on the 2.4 version of this driver), hubs have only been available since
late 2001, and other kinds of high speed devices appear to be on hold until more
systems come with USB 2.0 built-in. Such new systems have been available since
early 2002, and became much more typical in the second half of 2002.

Note that USB 2.0 support involves more than just EHCI. It requires other changes
to the Linux-USB core APIs, including the hub driver, but those changes haven’t
needed to really change the basic“usbcore”APIs exposed to USB device drivers.
• David Brownell <dbrownell@users.sourceforge.net>

15

mailto:dbrownell@users.sourceforge.net

Linux Usb Documentation

5.1 Functionality

This driver is regularly tested on x86 hardware, and has also been used on PPC
hardware so big/little endianness issues should be gone. It’s believed to do all the
right PCI magic so that I/O works even on systems with interesting DMA mapping
issues.

5.1.1 Transfer Types

At this writing the driver should comfortably handle all control, bulk, and interrupt
transfers, including requests to USB 1.1 devices through transaction translators
(TTs) in USB 2.0 hubs. But you may find bugs.

High Speed Isochronous (ISO) transfer support is also functional, but at this writ-
ing no Linux drivers have been using that support.

Full Speed Isochronous transfer support, through transaction translators, is not
yet available. Note that split transaction support for ISO transfers can’t share
much codewith the code for high speed ISO transfers, since EHCI represents these
with a different data structure. So for now, most USB audio and video devices can’
t be connected to high speed buses.

5.1.2 Driver Behavior

Transfers of all types can be queued. This means that control transfers from a
driver on one interface (or through usbfs) won’t interfere with ones from another
driver, and that interrupt transfers can use periods of one frame without risking
data loss due to interrupt processing costs.

The EHCI root hub code hands off USB 1.1 devices to its companion controller.
This driver doesn’t need to know anything about those drivers; a OHCI or UHCI
driver that works already doesn’t need to change just because the EHCI driver is
also present.

There are some issues with power management; suspend/resume doesn’t behave
quite right at the moment.

Also, some shortcuts have been taken with the scheduling periodic transactions
(interrupt and isochronous transfers). These place some limits on the number of
periodic transactions that can be scheduled, and prevent use of polling intervals
of less than one frame.

5.2 Use by

Assuming you have an EHCI controller (on a PCI card or motherboard) and have
compiled this driver as a module, load this like:

modprobe ehci-hcd

and remove it by:

16 Chapter 5. EHCI driver

Linux Usb Documentation

rmmod ehci-hcd

You should also have a driver for a “companion controller”, such as “ohci-hcd”
or “uhci-hcd”. In case of any trouble with the EHCI driver, remove its module
and then the driver for that companion controller will take over (at lower speed)
all the devices that were previously handled by the EHCI driver.

Module parameters (pass to “modprobe”) include:
log2_irq_thresh (default 0): Log2 of default interrupt delay, in mi-

croframes. The default value is 0, indicating 1 microframe (125
usec). Maximum value is 6, indicating 2^6 = 64 microframes. This
controls how often the EHCI controller can issue interrupts.

If you’re using this driver on a 2.5 kernel, and you’ve enabled USB debugging
support, you’ll see three files in the “sysfs”directory for any EHCI controller:

“async” dumps the asynchronous schedule, used for control and bulk
transfers. Shows each active qh and the qtds pending, usually one
qtd per urb. (Look at it with usb-storage doing disk I/O; watch the
request queues!)

“periodic” dumps the periodic schedule, used for interrupt and
isochronous transfers. Doesn’t show qtds.

“registers” show controller register state, and

The contents of those files can help identify driver problems.

Device drivers shouldn’t care whether they’re running over EHCI or not, but they
may want to check for“usb_device->speed == USB_SPEED_HIGH”. High speed
devices can do things that full speed (or low speed) ones can’t, such as “high
bandwidth”periodic (interrupt or ISO) transfers. Also, some values in device de-
scriptors (such as polling intervals for periodic transfers) use different encodings
when operating at high speed.

However, do make a point of testing device drivers through USB 2.0 hubs. Those
hubs report some failures, such as disconnections, differently when transaction
translators are in use; some drivers have been seen to behave badly when they
see different faults than OHCI or UHCI report.

5.3 Performance

USB 2.0 throughput is gated by two main factors: how fast the host controller can
process requests, and how fast devices can respond to them. The 480 Mbit/sec
“raw transfer rate”is obeyed by all devices, but aggregate throughput is also af-
fected by issues like delays between individual high speed packets, driver intel-
ligence, and of course the overall system load. Latency is also a performance
concern.

Bulk transfers are most often used where throughput is an issue. It’s good to
keep in mind that bulk transfers are always in 512 byte packets, and at most 13
of those fit into one USB 2.0 microframe. Eight USB 2.0 microframes fit in a USB
1.1 frame; a microframe is 1 msec/8 = 125 usec.

5.3. Performance 17

Linux Usb Documentation

So more than 50 MByte/sec is available for bulk transfers, when both hardware
and device driver software allow it. Periodic transfer modes (isochronous and
interrupt) allow the larger packet sizes which let you approach the quoted 480
MBit/sec transfer rate.

5.3.1 Hardware Performance

At this writing, individual USB 2.0 devices tend to max out at around 20 MByte/sec
transfer rates. This is of course subject to change; and some devices now go faster,
while others go slower.

The first NEC implementation of EHCI seems to have a hardware bottleneck at
around 28 MByte/sec aggregate transfer rate. While this is clearly enough for a
single device at 20 MByte/sec, putting three such devices onto one bus does not
get you 60 MByte/sec. The issue appears to be that the controller hardware won’
t do concurrent USB and PCI access, so that it’s only trying six (or maybe seven)
USB transactions each microframe rather than thirteen. (Seems like a reasonable
trade off for a product that beat all the others to market by over a year!)

It’s expected that newer implementations will better this, throwing more silicon
real estate at the problem so that new motherboard chip sets will get closer to that
60 MByte/sec target. That includes an updated implementation from NEC, as well
as other vendors’silicon.
There’s a minimum latency of one microframe (125 usec) for the host to receive
interrupts from the EHCI controller indicating completion of requests. That la-
tency is tunable; there’s a module option. By default ehci-hcd driver uses the
minimum latency, which means that if you issue a control or bulk request you can
often expect to learn that it completed in less than 250 usec (depending on transfer
size).

5.3.2 Software Performance

To get even 20 MByte/sec transfer rates, Linux-USB device drivers will need to
keep the EHCI queue full. That means issuing large requests, or using bulk queu-
ing if a series of small requests needs to be issued. When drivers don’t do that,
their performance results will show it.

In typical situations, a usb_bulk_msg() loop writing out 4 KB chunks is going to
waste more than half the USB 2.0 bandwidth. Delays between the I/O completion
and the driver issuing the next request will take longer than the I/O. If that same
loop used 16 KB chunks, it’d be better; a sequence of 128 KB chunks would waste
a lot less.

But rather than depending on such large I/O buffers to make synchronous I/O be
efficient, it’s better to just queue up several (bulk) requests to the HC, and wait
for them all to complete (or be canceled on error). Such URB queuing should work
with all the USB 1.1 HC drivers too.

In the Linux 2.5 kernels, new usb_sg_*() api calls have been defined; they queue
all the buffers from a scatterlist. They also use scatterlist DMA mapping (which
might apply an IOMMU) and IRQ reduction, all of which will help make high speed
transfers run as fast as they can.

18 Chapter 5. EHCI driver

Linux Usb Documentation

TBD: Interrupt and ISO transfer performance issues. Those periodic transfers
are fully scheduled, so the main issue is likely to be how to trigger “high
bandwidth”modes.

TBD: More than standard 80% periodic bandwidth allocation is possible through
sysfs uframe_periodic_max parameter. Describe that.

5.3. Performance 19

Linux Usb Documentation

20 Chapter 5. EHCI driver

CHAPTER

SIX

HOW FUNCTIONFS WORKS

From kernel point of view it is just a composite function with some unique be-
haviour. It may be added to an USB configuration only after the user space driver
has registered by writing descriptors and strings (the user space program has to
provide the same information that kernel level composite functions provide when
they are added to the configuration).

This in particular means that the composite initialisation functions may not be in
init section (ie. may not use the __init tag).

From user space point of view it is a file system which when mounted provides
an “ep0”file. User space driver need to write descriptors and strings to that
file. It does not need to worry about endpoints, interfaces or strings numbers but
simply provide descriptors such as if the function was the only one (endpoints and
strings numbers starting from one and interface numbers starting from zero). The
FunctionFS changes them as needed also handling situation when numbers differ
in different configurations.

When descriptors and strings are written“ep#”files appear (one for each declared
endpoint) which handle communication on a single endpoint. Again, FunctionFS
takes care of the real numbers and changing of the configuration (which means
that“ep1”file may be really mapped to (say) endpoint 3 (and when configuration
changes to (say) endpoint 2)). “ep0”is used for receiving events and handling
setup requests.

When all files are closed the function disables itself.

What I also want to mention is that the FunctionFS is designed in such a way that
it is possible to mount it several times so in the end a gadget could use several
FunctionFS functions. The idea is that each FunctionFS instance is identified by
the device name used when mounting.

One can imagine a gadget that has an Ethernet, MTP and HID interfaces where
the last two are implemented via FunctionFS. On user space level it would look
like this:

$ insmod g_ffs.ko idVendor=<ID> iSerialNumber=<string> functions=mtp,hid
$ mkdir /dev/ffs-mtp && mount -t functionfs mtp /dev/ffs-mtp
$ (cd /dev/ffs-mtp && mtp-daemon) &
$ mkdir /dev/ffs-hid && mount -t functionfs hid /dev/ffs-hid
$ (cd /dev/ffs-hid && hid-daemon) &

On kernel level the gadget checks ffs_data->dev_name to identify whether it’s
FunctionFS designed for MTP (“mtp”) or HID (“hid”).

21

Linux Usb Documentation

If no“functions”module parameters is supplied, the driver accepts just one func-
tion with any name.

When“functions”module parameter is supplied, only functions with listed names
are accepted. In particular, if the “functions”parameter’s value is just a one-
element list, then the behaviour is similar to when there is no “functions”at all;
however, only a function with the specified name is accepted.

The gadget is registered only after all the declared function filesystems have been
mounted and USB descriptors of all functions have been written to their ep0’s.
Conversely, the gadget is unregistered after the first USB function closes its end-
points.

22 Chapter 6. How FunctionFS works

CHAPTER

SEVEN

LINUX USB GADGET CONFIGURED THROUGH CONFIGFS

25th April 2013

7.1 Overview

A USB Linux Gadget is a device which has a UDC (USB Device Controller) and can
be connected to a USB Host to extend it with additional functions like a serial port
or a mass storage capability.

A gadget is seen by its host as a set of configurations, each of which contains a
number of interfaces which, from the gadget’s perspective, are known as functions,
each function representing e.g. a serial connection or a SCSI disk.

Linux provides a number of functions for gadgets to use.

Creating a gadget means deciding what configurations there will be and which
functions each configuration will provide.

Configfs (please see Documentation/filesystems/configfs.rst) lends itself nicely for
the purpose of telling the kernel about the above mentioned decision. This docu-
ment is about how to do it.

It also describes how configfs integration into gadget is designed.

7.2 Requirements

In order for this to work configfs must be available, so CONFIGFS_FS must be‘y’
or‘m’in .config. As of this writing USB_LIBCOMPOSITE selects CONFIGFS_FS.

7.3 Usage

(The original post describing the first function made available through configfs
can be seen here: http://www.spinics.net/lists/linux-usb/msg76388.html)

$ modprobe libcomposite
$ mount none $CONFIGFS_HOME -t configfs

where CONFIGFS_HOME is the mount point for configfs

23

http://www.spinics.net/lists/linux-usb/msg76388.html

Linux Usb Documentation

7.3.1 1. Creating the gadgets

For each gadget to be created its corresponding directory must be created:

$ mkdir $CONFIGFS_HOME/usb_gadget/<gadget name>

e.g.:

$ mkdir $CONFIGFS_HOME/usb_gadget/g1

...

...

...

$ cd $CONFIGFS_HOME/usb_gadget/g1

Each gadget needs to have its vendor id <VID> and product id <PID> specified:

$ echo <VID> > idVendor
$ echo <PID> > idProduct

A gadget also needs its serial number, manufacturer and product strings. In order
to have a place to store them, a strings subdirectory must be created for each
language, e.g.:

$ mkdir strings/0x409

Then the strings can be specified:

$ echo <serial number> > strings/0x409/serialnumber
$ echo <manufacturer> > strings/0x409/manufacturer
$ echo <product> > strings/0x409/product

7.3.2 2. Creating the configurations

Each gadget will consist of a number of configurations, their corresponding direc-
tories must be created:

$ mkdir configs/<name>.<number>

where <name> can be any string which is legal in a filesystem and the <number>
is the configuration’s number, e.g.:
$ mkdir configs/c.1

...

...

...

Each configuration also needs its strings, so a subdirectory must be created for
each language, e.g.:

$ mkdir configs/c.1/strings/0x409

Then the configuration string can be specified:

24 Chapter 7. Linux USB gadget configured through configfs

Linux Usb Documentation

$ echo <configuration> > configs/c.1/strings/0x409/configuration

Some attributes can also be set for a configuration, e.g.:

$ echo 120 > configs/c.1/MaxPower

7.3.3 3. Creating the functions

The gadget will provide some functions, for each function its corresponding direc-
tory must be created:

$ mkdir functions/<name>.<instance name>

where <name> corresponds to one of allowed function names and instance name
is an arbitrary string allowed in a filesystem, e.g.:

$ mkdir functions/ncm.usb0 # usb_f_ncm.ko gets loaded with request_module()

...

...

...

Each function provides its specific set of attributes, with either read-only or read-
write access. Where applicable they need to be written to as appropriate. Please
refer to Documentation/ABI//configfs-usb-gadget for more information.

7.3.4 4. Associating the functions with their configurations

At this moment a number of gadgets is created, each of which has a number of
configurations specified and a number of functions available. What remains is
specifying which function is available in which configuration (the same function
can be used in multiple configurations). This is achieved with creating symbolic
links:

$ ln -s functions/<name>.<instance name> configs/<name>.<number>

e.g.:

$ ln -s functions/ncm.usb0 configs/c.1

...

...

...

7.3. Usage 25

Linux Usb Documentation

7.3.5 5. Enabling the gadget

All the above steps serve the purpose of composing the gadget of configurations
and functions.

An example directory structure might look like this:

.

./strings

./strings/0x409

./strings/0x409/serialnumber

./strings/0x409/product

./strings/0x409/manufacturer

./configs

./configs/c.1

./configs/c.1/ncm.usb0 -> ../../../../usb_gadget/g1/functions/ncm.usb0

./configs/c.1/strings

./configs/c.1/strings/0x409

./configs/c.1/strings/0x409/configuration

./configs/c.1/bmAttributes

./configs/c.1/MaxPower

./functions

./functions/ncm.usb0

./functions/ncm.usb0/ifname

./functions/ncm.usb0/qmult

./functions/ncm.usb0/host_addr

./functions/ncm.usb0/dev_addr

./UDC

./bcdUSB

./bcdDevice

./idProduct

./idVendor

./bMaxPacketSize0

./bDeviceProtocol

./bDeviceSubClass

./bDeviceClass

Such a gadget must be finally enabled so that the USB host can enumerate it.

In order to enable the gadget it must be bound to a UDC (USB Device Controller):

$ echo <udc name> > UDC

where <udc name> is one of those found in /sys/class/udc/* e.g.:

$ echo s3c-hsotg > UDC

26 Chapter 7. Linux USB gadget configured through configfs

Linux Usb Documentation

7.3.6 6. Disabling the gadget

$ echo "" > UDC

7.3.7 7. Cleaning up

Remove functions from configurations:

$ rm configs/<config name>.<number>/<function>

where <config name>.<number> specify the configuration and <function> is a
symlink to a function being removed from the configuration, e.g.:

$ rm configs/c.1/ncm.usb0

...

...

...

Remove strings directories in configurations:

$ rmdir configs/<config name>.<number>/strings/<lang>

e.g.:

$ rmdir configs/c.1/strings/0x409

...

...

...

and remove the configurations:

$ rmdir configs/<config name>.<number>

e.g.:

rmdir configs/c.1

...

...

...

Remove functions (function modules are not unloaded, though):

$ rmdir functions/<name>.<instance name>

e.g.:

$ rmdir functions/ncm.usb0

...

...

...

Remove strings directories in the gadget:

7.3. Usage 27

Linux Usb Documentation

$ rmdir strings/<lang>

e.g.:

$ rmdir strings/0x409

and finally remove the gadget:

$ cd ..
$ rmdir <gadget name>

e.g.:

$ rmdir g1

7.4 Implementation design

Below the idea of how configfs works is presented. In configfs there are items and
groups, both represented as directories. The difference between an item and a
group is that a group can contain other groups. In the picture below only an item
is shown. Both items and groups can have attributes, which are represented as
files. The user can create and remove directories, but cannot remove files, which
can be read-only or read-write, depending on what they represent.

The filesystem part of configfs operates on config_items/groups and con-
figfs_attributes which are generic and of the same type for all configured elements.
However, they are embedded in usage-specific larger structures. In the picture
below there is a“cs”which contains a config_item and an“sa”which contains a
configfs_attribute.

The filesystem view would be like this:

./

./cs (directory)
|
+--sa (file)
|
.
.
.

Whenever a user reads/writes the “sa”file, a function is called which accepts a
struct config_item and a struct configfs_attribute. In the said function the“cs”and
“sa”are retrieved using the well known container_of technique and an appropriate
sa’s function (show or store) is called and passed the“cs”and a character buffer.
The “show”is for displaying the file’s contents (copy data from the cs to the
buffer), while the“store”is for modifying the file’s contents (copy data from the
buffer to the cs), but it is up to the implementer of the two functions to decide
what they actually do.

typedef struct configured_structure cs;
typedef struct specific_attribute sa;

(continues on next page)

28 Chapter 7. Linux USB gadget configured through configfs

Linux Usb Documentation

(continued from previous page)

sa
+----------------------------------+

cs | (*show)(cs *, buffer); |
+-----------------+ | (*store)(cs *, buffer, length); |
+-------------+		+------------------+				
	struct	-	----	------>	struct	
	config_item				configfs_attribute	
+-------------+		+------------------+				
	+----------------------------------+					
data to be set	.					
	.					
+-----------------+ .

The file names are decided by the config item/group designer, while the directories
in general can be named at will. A group can have a number of its default sub-
groups created automatically.

For more information on configfs please see Documenta-
tion/filesystems/configfs.rst.

The concepts described above translate to USB gadgets like this:

1. A gadget has its config group, which has some attributes (idVendor, idProduct
etc) and default sub-groups (configs, functions, strings). Writing to the attributes
causes the information to be stored in appropriate locations. In the configs, func-
tions and strings sub-groups a user can create their sub-groups to represent con-
figurations, functions, and groups of strings in a given language.

2. The user creates configurations and functions, in the configurations creates
symbolic links to functions. This information is used when the gadget’s UDC at-
tribute is written to, which means binding the gadget to the UDC. The code in
drivers/usb/gadget/configfs.c iterates over all configurations, and in each config-
uration it iterates over all functions and binds them. This way the whole gadget is
bound.

3. The file drivers/usb/gadget/configfs.c contains code for

• gadget’s config_group
• gadget’s default groups (configs, functions, strings)
• associating functions with configurations (symlinks)

4. Each USB function naturally has its own view of what it wants configured, so
config_groups for particular functions are defined in the functions implementation
files drivers/usb/gadget/f_*.c.

5. Function’s code is written in such a way that it uses
usb_get_function_instance(), which, in turn, calls request_module. So, provided
that modprobe works, modules for particular functions are loaded automatically.
Please note that the converse is not true: after a gadget is disabled and torn down,
the modules remain loaded.

7.4. Implementation design 29

Linux Usb Documentation

30 Chapter 7. Linux USB gadget configured through configfs

CHAPTER

EIGHT

LINUX USB HID GADGET DRIVER

8.1 Introduction

The HID Gadget driver provides emulation of USBHuman Interface Devices (HID).
The basic HID handling is done in the kernel, and HID reports can be sent/received
through I/O on the /dev/hidgX character devices.

For more details about HID, see the developer page on http://www.usb.org/
developers/hidpage/

8.2 Configuration

g_hid is a platform driver, so to use it you need to add struct platform_device(s)
to your platform code defining the HID function descriptors you want to use - E.G.
something like:

#include <linux/platform_device.h>
#include <linux/usb/g_hid.h>

/* hid descriptor for a keyboard */
static struct hidg_func_descriptor my_hid_data = {

.subclass = 0, /* No subclass */

.protocol = 1, /* Keyboard */

.report_length = 8,

.report_desc_length = 63,

.report_desc = {
0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */
0x09, 0x06, /* USAGE (Keyboard) */
0xa1, 0x01, /* COLLECTION (Application) */
0x05, 0x07, /* USAGE_PAGE (Keyboard) */
0x19, 0xe0, /* USAGE_MINIMUM (Keyboard LeftControl) */
0x29, 0xe7, /* USAGE_MAXIMUM (Keyboard Right GUI) */
0x15, 0x00, /* LOGICAL_MINIMUM (0) */
0x25, 0x01, /* LOGICAL_MAXIMUM (1) */
0x75, 0x01, /* REPORT_SIZE (1) */
0x95, 0x08, /* REPORT_COUNT (8) */
0x81, 0x02, /* INPUT (Data,Var,Abs) */
0x95, 0x01, /* REPORT_COUNT (1) */
0x75, 0x08, /* REPORT_SIZE (8) */
0x81, 0x03, /* INPUT (Cnst,Var,Abs) */
0x95, 0x05, /* REPORT_COUNT (5) */

(continues on next page)

31

http://www.usb.org/developers/hidpage/
http://www.usb.org/developers/hidpage/

Linux Usb Documentation

(continued from previous page)
0x75, 0x01, /* REPORT_SIZE (1) */
0x05, 0x08, /* USAGE_PAGE (LEDs) */
0x19, 0x01, /* USAGE_MINIMUM (Num Lock) */
0x29, 0x05, /* USAGE_MAXIMUM (Kana) */
0x91, 0x02, /* OUTPUT (Data,Var,Abs) */
0x95, 0x01, /* REPORT_COUNT (1) */
0x75, 0x03, /* REPORT_SIZE (3) */
0x91, 0x03, /* OUTPUT (Cnst,Var,Abs) */
0x95, 0x06, /* REPORT_COUNT (6) */
0x75, 0x08, /* REPORT_SIZE (8) */
0x15, 0x00, /* LOGICAL_MINIMUM (0) */
0x25, 0x65, /* LOGICAL_MAXIMUM (101) */
0x05, 0x07, /* USAGE_PAGE (Keyboard) */
0x19, 0x00, /* USAGE_MINIMUM (Reserved) */
0x29, 0x65, /* USAGE_MAXIMUM (Keyboard Application) */
0x81, 0x00, /* INPUT (Data,Ary,Abs) */
0xc0 /* END_COLLECTION */

}
};

static struct platform_device my_hid = {
.name = "hidg",
.id = 0,
.num_resources = 0,
.resource = 0,
.dev.platform_data = &my_hid_data,

};

You can add as many HID functions as you want, only limited by the amount of
interrupt endpoints your gadget driver supports.

8.3 Configuration with configfs

Instead of adding fake platform devices and drivers in order to pass some
data to the kernel, if HID is a part of a gadget composed with configfs the
hidg_func_descriptor.report_desc is passed to the kernel by writing the appropri-
ate stream of bytes to a configfs attribute.

8.4 Send and receive HID reports

HID reports can be sent/received using read/write on the /dev/hidgX character
devices. See below for an example program to do this.

hid_gadget_test is a small interactive program to test the HID gadget driver. To
use, point it at a hidg device and set the device type (keyboard / mouse / joystick)
- E.G.:

hid_gadget_test /dev/hidg0 keyboard

You are now in the prompt of hid_gadget_test. You can type any combination of
options and values. Available options and values are listed at program start. In

32 Chapter 8. Linux USB HID gadget driver

Linux Usb Documentation

keyboard mode you can send up to six values.

For example type: g i s t r –left-shift

Hit return and the corresponding report will be sent by the HID gadget.

Another interesting example is the caps lock test. Type –caps-lock and hit return.
A report is then sent by the gadget and you should receive the host answer, cor-
responding to the caps lock LED status:

--caps-lock
recv report:2

With this command:

hid_gadget_test /dev/hidg1 mouse

You can test the mouse emulation. Values are two signed numbers.

Sample code:

/* hid_gadget_test */

#include <pthread.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define BUF_LEN 512

struct options {
const char *opt;
unsigned char val;

};

static struct options kmod[] = {
{.opt = "--left-ctrl", .val = 0x01},
{.opt = "--right-ctrl", .val = 0x10},
{.opt = "--left-shift", .val = 0x02},
{.opt = "--right-shift", .val = 0x20},
{.opt = "--left-alt", .val = 0x04},
{.opt = "--right-alt", .val = 0x40},
{.opt = "--left-meta", .val = 0x08},
{.opt = "--right-meta", .val = 0x80},
{.opt = NULL}

};

static struct options kval[] = {
{.opt = "--return", .val = 0x28},
{.opt = "--esc", .val = 0x29},
{.opt = "--bckspc", .val = 0x2a},
{.opt = "--tab", .val = 0x2b},
{.opt = "--spacebar", .val = 0x2c},

(continues on next page)

8.4. Send and receive HID reports 33

Linux Usb Documentation

(continued from previous page)
{.opt = "--caps-lock", .val = 0x39},
{.opt = "--f1", .val = 0x3a},
{.opt = "--f2", .val = 0x3b},
{.opt = "--f3", .val = 0x3c},
{.opt = "--f4", .val = 0x3d},
{.opt = "--f5", .val = 0x3e},
{.opt = "--f6", .val = 0x3f},
{.opt = "--f7", .val = 0x40},
{.opt = "--f8", .val = 0x41},
{.opt = "--f9", .val = 0x42},
{.opt = "--f10", .val = 0x43},
{.opt = "--f11", .val = 0x44},
{.opt = "--f12", .val = 0x45},
{.opt = "--insert", .val = 0x49},
{.opt = "--home", .val = 0x4a},
{.opt = "--pageup", .val = 0x4b},
{.opt = "--del", .val = 0x4c},
{.opt = "--end", .val = 0x4d},
{.opt = "--pagedown", .val = 0x4e},
{.opt = "--right", .val = 0x4f},
{.opt = "--left", .val = 0x50},
{.opt = "--down", .val = 0x51},
{.opt = "--kp-enter", .val = 0x58},
{.opt = "--up", .val = 0x52},
{.opt = "--num-lock", .val = 0x53},
{.opt = NULL}

};

int keyboard_fill_report(char report[8], char buf[BUF_LEN], int *hold)
{

char *tok = strtok(buf, " ");
int key = 0;
int i = 0;

for (; tok != NULL; tok = strtok(NULL, " ")) {

if (strcmp(tok, "--quit") == 0)
return -1;

if (strcmp(tok, "--hold") == 0) {
*hold = 1;
continue;

}

if (key < 6) {
for (i = 0; kval[i].opt != NULL; i++)

if (strcmp(tok, kval[i].opt) == 0) {
report[2 + key++] = kval[i].val;
break;

}
if (kval[i].opt != NULL)

continue;
}

if (key < 6)
if (islower(tok[0])) {

(continues on next page)

34 Chapter 8. Linux USB HID gadget driver

Linux Usb Documentation

(continued from previous page)
report[2 + key++] = (tok[0] - ('a' - 0x04));
continue;

}

for (i = 0; kmod[i].opt != NULL; i++)
if (strcmp(tok, kmod[i].opt) == 0) {

report[0] = report[0] | kmod[i].val;
break;

}
if (kmod[i].opt != NULL)

continue;

if (key < 6)
fprintf(stderr, "unknown option: %s\n", tok);

}
return 8;

}

static struct options mmod[] = {
{.opt = "--b1", .val = 0x01},
{.opt = "--b2", .val = 0x02},
{.opt = "--b3", .val = 0x04},
{.opt = NULL}

};

int mouse_fill_report(char report[8], char buf[BUF_LEN], int *hold)
{

char *tok = strtok(buf, " ");
int mvt = 0;
int i = 0;
for (; tok != NULL; tok = strtok(NULL, " ")) {

if (strcmp(tok, "--quit") == 0)
return -1;

if (strcmp(tok, "--hold") == 0) {
*hold = 1;
continue;

}

for (i = 0; mmod[i].opt != NULL; i++)
if (strcmp(tok, mmod[i].opt) == 0) {

report[0] = report[0] | mmod[i].val;
break;

}
if (mmod[i].opt != NULL)

continue;

if (!(tok[0] == '-' && tok[1] == '-') && mvt < 2) {
errno = 0;
report[1 + mvt++] = (char)strtol(tok, NULL, 0);
if (errno != 0) {

fprintf(stderr, "Bad value:'%s'\n", tok);
report[1 + mvt--] = 0;

}
continue;

(continues on next page)

8.4. Send and receive HID reports 35

Linux Usb Documentation

(continued from previous page)
}

fprintf(stderr, "unknown option: %s\n", tok);
}
return 3;

}

static struct options jmod[] = {
{.opt = "--b1", .val = 0x10},
{.opt = "--b2", .val = 0x20},
{.opt = "--b3", .val = 0x40},
{.opt = "--b4", .val = 0x80},
{.opt = "--hat1", .val = 0x00},
{.opt = "--hat2", .val = 0x01},
{.opt = "--hat3", .val = 0x02},
{.opt = "--hat4", .val = 0x03},
{.opt = "--hatneutral", .val = 0x04},
{.opt = NULL}

};

int joystick_fill_report(char report[8], char buf[BUF_LEN], int *hold)
{

char *tok = strtok(buf, " ");
int mvt = 0;
int i = 0;

*hold = 1;

/* set default hat position: neutral */
report[3] = 0x04;

for (; tok != NULL; tok = strtok(NULL, " ")) {

if (strcmp(tok, "--quit") == 0)
return -1;

for (i = 0; jmod[i].opt != NULL; i++)
if (strcmp(tok, jmod[i].opt) == 0) {

report[3] = (report[3] & 0xF0) | jmod[i].val;
break;

}
if (jmod[i].opt != NULL)

continue;

if (!(tok[0] == '-' && tok[1] == '-') && mvt < 3) {
errno = 0;
report[mvt++] = (char)strtol(tok, NULL, 0);
if (errno != 0) {

fprintf(stderr, "Bad value:'%s'\n", tok);
report[mvt--] = 0;

}
continue;

}

fprintf(stderr, "unknown option: %s\n", tok);
}

(continues on next page)

36 Chapter 8. Linux USB HID gadget driver

Linux Usb Documentation

(continued from previous page)
return 4;

}

void print_options(char c)
{

int i = 0;

if (c == 'k') {
printf(" keyboard options:\n"

" --hold\n");
for (i = 0; kmod[i].opt != NULL; i++)

printf("\t\t%s\n", kmod[i].opt);
printf("\n keyboard values:\n"

" [a-z] or\n");
for (i = 0; kval[i].opt != NULL; i++)

printf("\t\t%-8s%s", kval[i].opt, i % 2 ? "\n" : "");
printf("\n");

} else if (c == 'm') {
printf(" mouse options:\n"

" --hold\n");
for (i = 0; mmod[i].opt != NULL; i++)

printf("\t\t%s\n", mmod[i].opt);
printf("\n mouse values:\n"

" Two signed numbers\n"
"--quit to close\n");

} else {
printf(" joystick options:\n");
for (i = 0; jmod[i].opt != NULL; i++)

printf("\t\t%s\n", jmod[i].opt);
printf("\n joystick values:\n"

" three signed numbers\n"
"--quit to close\n");

}
}

int main(int argc, const char *argv[])
{

const char *filename = NULL;
int fd = 0;
char buf[BUF_LEN];
int cmd_len;
char report[8];
int to_send = 8;
int hold = 0;
fd_set rfds;
int retval, i;

if (argc < 3) {
fprintf(stderr, "Usage: %s devname mouse|keyboard|joystick\n

↪→",
argv[0]);

return 1;
}

if (argv[2][0] != 'k' && argv[2][0] != 'm' && argv[2][0] != 'j')
return 2;

(continues on next page)

8.4. Send and receive HID reports 37

Linux Usb Documentation

(continued from previous page)

filename = argv[1];

if ((fd = open(filename, O_RDWR, 0666)) == -1) {
perror(filename);
return 3;

}

print_options(argv[2][0]);

while (42) {

FD_ZERO(&rfds);
FD_SET(STDIN_FILENO, &rfds);
FD_SET(fd, &rfds);

retval = select(fd + 1, &rfds, NULL, NULL, NULL);
if (retval == -1 && errno == EINTR)

continue;
if (retval < 0) {

perror("select()");
return 4;

}

if (FD_ISSET(fd, &rfds)) {
cmd_len = read(fd, buf, BUF_LEN - 1);
printf("recv report:");
for (i = 0; i < cmd_len; i++)

printf(" %02x", buf[i]);
printf("\n");

}

if (FD_ISSET(STDIN_FILENO, &rfds)) {
memset(report, 0x0, sizeof(report));
cmd_len = read(STDIN_FILENO, buf, BUF_LEN - 1);

if (cmd_len == 0)
break;

buf[cmd_len - 1] = '\0';
hold = 0;

memset(report, 0x0, sizeof(report));
if (argv[2][0] == 'k')

to_send = keyboard_fill_report(report, buf, &
↪→hold);

else if (argv[2][0] == 'm')
to_send = mouse_fill_report(report, buf, &

↪→hold);
else

to_send = joystick_fill_report(report, buf, &
↪→hold);

if (to_send == -1)
break;

(continues on next page)

38 Chapter 8. Linux USB HID gadget driver

Linux Usb Documentation

(continued from previous page)
if (write(fd, report, to_send) != to_send) {

perror(filename);
return 5;

}
if (!hold) {

memset(report, 0x0, sizeof(report));
if (write(fd, report, to_send) != to_send) {

perror(filename);
return 6;

}
}

}
}

close(fd);
return 0;

}

8.4. Send and receive HID reports 39

Linux Usb Documentation

40 Chapter 8. Linux USB HID gadget driver

CHAPTER

NINE

MULTIFUNCTION COMPOSITE GADGET

9.1 Overview

TheMultifunction Composite Gadget (or g_multi) is a composite gadget that makes
extensive use of the composite framework to provide a⋯multifunction gadget.
In it’s standard configuration it provides a single USB configuration with RNDIS[1]
(that is Ethernet), USB CDC[2] ACM (that is serial) and USB Mass Storage func-
tions.

A CDC ECM (Ethernet) function may be turned on via a Kconfig option and RNDIS
can be turned off. If they are both enabled the gadget will have two configurations
– one with RNDIS and another with CDC ECM[3].

Please note that if you use non-standard configuration (that is enable CDC ECM)
you may need to change vendor and/or product ID.

9.2 Host drivers

To make use of the gadget one needs to make it work on host side – without that
there’s no hope of achieving anything with the gadget. As one might expect,
things one need to do very from system to system.

9.2.1 Linux host drivers

Since the gadget uses standard composite framework and appears as such to Linux
host it does not need any additional drivers on Linux host side. All the functions
are handled by respective drivers developed for them.

This is also true for two configuration set-up with RNDIS configuration being the
first one. Linux host will use the second configuration with CDC ECMwhich should
work better under Linux.

41

Linux Usb Documentation

9.2.2 Windows host drivers

For the gadget to work under Windows two conditions have to be met:

Detecting as composite gadget

First of all, Windows need to detect the gadget as an USB composite gadget which
on its own have some conditions[4]. If they are met, Windows lets USB Generic
Parent Driver[5] handle the device which then tries to match drivers for each in-
dividual interface (sort of, don’t get into too many details).
The good news is: you do not have to worry about most of the conditions!

The only thing to worry is that the gadget has to have a single configuration so a
dual RNDIS and CDC ECM gadget won’t work unless you create a proper INF –
and of course, if you do submit it!

Installing drivers for each function

The other, trickier thing is makingWindows install drivers for each individual func-
tion.

For mass storage it is trivial since Windows detect it’s an interface implementing
USB Mass Storage class and selects appropriate driver.

Things are harder with RDNIS and CDC ACM.

RNDIS

To make Windows select RNDIS drivers for the first function in the gadget, one
needs to use the [[file:linux.inf]] file provided with this document. It “attaches”
Window’s RNDIS driver to the first interface of the gadget.
Please note, that while testing we encountered some issues[6] when RNDIS was
not the first interface. You do not need to worry abut it unless you are trying to
develop your own gadget in which case watch out for this bug.

CDC ACM

Similarly, [[file:linux-cdc-acm.inf]] is provided for CDC ACM.

42 Chapter 9. Multifunction Composite Gadget

file:linux.inf
file:linux-cdc-acm.inf

Linux Usb Documentation

Customising the gadget

If you intend to hack the g_multi gadget be advised that rearranging functions
will obviously change interface numbers for each of the functionality. As an effect
provided INFs won’t work since they have interface numbers hard-coded in them
(it’s not hard to change those though[7]).
This also means, that after experimenting with g_multi and changing provided
functions one should change gadget’s vendor and/or product ID so there will be
no collision with other customised gadgets or the original gadget.

Failing to comply may cause brain damage after wondering for hours why things
don’t work as intended before realising Windows have cached some drivers in-
formation (changing USB port may sometimes help plus you might try using USB-
Deview[8] to remove the phantom device).

INF testing

Provided INF files have been tested on Windows XP SP3, Windows Vista and Win-
dows 7, all 32-bit versions. It should work on 64-bit versions as well. It most likely
won’t work on Windows prior to Windows XP SP2.

9.2.3 Other systems

At this moment, drivers for any other systems have not been tested. Knowing how
MacOS is based on BSD and BSD is an Open Source it is believed that it should
(read: “I have no idea whether it will”) work out-of-the-box.
For more exotic systems I have even less to say⋯
Any testing and drivers are welcome!

9.3 Authors

This document has been written by Michal Nazarewicz ([[mailto:mina86@mina86.
com]]). INF files have been hacked with support of Marek Szyprowski ([[mailto:m.
szyprowski@samsung.com]]) and Xiaofan Chen ([[mailto:xiaofanc@gmail.com]])
basing on the MS RNDIS template[9], Microchip’s CDC ACM INF file and David
Brownell’s ([[mailto:dbrownell@users.sourceforge.net]]) original INF files.

9.3. Authors 43

mailto:mina86@mina86.com
mailto:mina86@mina86.com
mailto:m.szyprowski@samsung.com
mailto:m.szyprowski@samsung.com
mailto:xiaofanc@gmail.com
mailto:dbrownell@users.sourceforge.net

Linux Usb Documentation

9.4 Footnotes

[1] Remote Network Driver Interface Specification, [[http://msdn.microsoft.com/
en-us/library/ee484414.aspx]].

[2] Communications Device Class Abstract Control Model, spec for this and other
USB classes can be found at [[http://www.usb.org/developers/devclass_docs/]].

[3] CDC Ethernet Control Model.

[4] [[http://msdn.microsoft.com/en-us/library/ff537109(v=VS.85).aspx]]

[5] [[http://msdn.microsoft.com/en-us/library/ff539234(v=VS.85).aspx]]

[6] To put it in some other nice words, Windows failed to respond to any user input.

[7] You may find [[http://www.cygnal.org/ubb/Forum9/HTML/001050.html]] use-
ful.

[8] http://www.nirsoft.net/utils/usb_devices_view.html

[9] [[http://msdn.microsoft.com/en-us/library/ff570620.aspx]]

44 Chapter 9. Multifunction Composite Gadget

http://msdn.microsoft.com/en-us/library/ee484414.aspx
http://msdn.microsoft.com/en-us/library/ee484414.aspx
http://www.usb.org/developers/devclass_docs/
http://msdn.microsoft.com/en-us/library/ff537109(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff539234(v=VS.85).aspx
http://www.cygnal.org/ubb/Forum9/HTML/001050.html
http://www.nirsoft.net/utils/usb_devices_view.html
http://msdn.microsoft.com/en-us/library/ff570620.aspx

CHAPTER

TEN

LINUX USB PRINTER GADGET DRIVER

06/04/2007

Copyright (C) 2007 Craig W. Nadler <craig@nadler.us>

10.1 General

This driver may be used if you are writing printer firmware using Linux as the
embedded OS. This driver has nothing to do with using a printer with your Linux
host system.

You will need a USB device controller and a Linux driver for it that accepts a gadget
/ “device class”driver using the Linux USB Gadget API. After the USB device
controller driver is loaded then load the printer gadget driver. This will present a
printer interface to the USB Host that your USB Device port is connected to.

This driver is structured for printer firmware that runs in user mode. The user
mode printer firmware will read and write data from the kernel mode printer
gadget driver using a device file. The printer returns a printer status byte when
the USB HOST sends a device request to get the printer status. The user space
firmware can read or write this status byte using a device file /dev/g_printer . Both
blocking and non-blocking read/write calls are supported.

10.2 Howto Use This Driver

To load the USB device controller driver and the printer gadget driver. The fol-
lowing example uses the Netchip 2280 USB device controller driver:

modprobe net2280
modprobe g_printer

The follow command line parameter can be used when loading the printer gadget
(ex: modprobe g_printer idVendor=0x0525 idProduct=0xa4a8):

idVendor This is the Vendor ID used in the device descriptor. The default is the
Netchip vendor id 0x0525. YOU MUST CHANGE TO YOUR OWN VENDOR
ID BEFORE RELEASING A PRODUCT. If you plan to release a product and
don’t already have a Vendor ID please see www.usb.org for details on how
to get one.

45

mailto:craig@nadler.us

Linux Usb Documentation

idProduct This is the Product ID used in the device descriptor. The default is
0xa4a8, you should change this to an ID that’s not used by any of your other
USB products if you have any. It would be a good idea to start numbering
your products starting with say 0x0001.

bcdDevice This is the version number of your product. It would be a good idea
to put your firmware version here.

iManufacturer A string containing the name of the Vendor.
iProduct A string containing the Product Name.
iSerialNum A string containing the Serial Number. This should be changed for

each unit of your product.

iPNPstring The PNP ID string used for this printer. You will want to set either
on the command line or hard code the PNP ID string used for your printer
product.

qlen The number of 8k buffers to use per endpoint. The default is 10, you should
tune this for your product. You may also want to tune the size of each buffer
for your product.

10.3 Using The Example Code

This example code talks to stdout, instead of a print engine.

To compile the test code below:

1) save it to a file called prn_example.c

2) compile the code with the follow command:

gcc prn_example.c -o prn_example

To read printer data from the host to stdout:

prn_example -read_data

To write printer data from a file (data_file) to the host:

cat data_file | prn_example -write_data

To get the current printer status for the gadget driver::

prn_example -get_status

Printer status is:
Printer is NOT Selected
Paper is Out
Printer OK

To set printer to Selected/On-line:

prn_example -selected

To set printer to Not Selected/Off-line:

46 Chapter 10. Linux USB Printer Gadget Driver

Linux Usb Documentation

prn_example -not_selected

To set paper status to paper out:

prn_example -paper_out

To set paper status to paper loaded:

prn_example -paper_loaded

To set error status to printer OK:

prn_example -no_error

To set error status to ERROR:

prn_example -error

10.4 Example Code

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <linux/poll.h>
#include <sys/ioctl.h>
#include <linux/usb/g_printer.h>

#define PRINTER_FILE "/dev/g_printer"
#define BUF_SIZE 512

/*
* 'usage()' - Show program usage.
*/

static void
usage(const char *option) /* I - Option string or NULL */
{

if (option) {
fprintf(stderr,"prn_example: Unknown option \"%s\"!\n",

option);
}

fputs("\n", stderr);
fputs("Usage: prn_example -[options]\n", stderr);
fputs("Options:\n", stderr);
fputs("\n", stderr);
fputs("-get_status Get the current printer status.\n", stderr);
fputs("-selected Set the selected status to selected.\n",␣

↪→stderr);
fputs("-not_selected Set the selected status to NOT selected.\n",

stderr);
fputs("-error Set the error status to error.\n", stderr);

(continues on next page)

10.4. Example Code 47

Linux Usb Documentation

(continued from previous page)
fputs("-no_error Set the error status to NO error.\n", stderr);
fputs("-paper_out Set the paper status to paper out.\n", stderr);
fputs("-paper_loaded Set the paper status to paper loaded.\n",

stderr);
fputs("-read_data Read printer data from driver.\n", stderr);
fputs("-write_data Write printer sata to driver.\n", stderr);
fputs("-NB_read_data (Non-Blocking) Read printer data from driver.\n

↪→",
stderr);

fputs("\n\n", stderr);

exit(1);
}

static int
read_printer_data()
{

struct pollfd fd[1];

/* Open device file for printer gadget. */
fd[0].fd = open(PRINTER_FILE, O_RDWR);
if (fd[0].fd < 0) {

printf("Error %d opening %s\n", fd[0].fd, PRINTER_FILE);
close(fd[0].fd);
return(-1);

}

fd[0].events = POLLIN | POLLRDNORM;

while (1) {
static char buf[BUF_SIZE];
int bytes_read;
int retval;

/* Wait for up to 1 second for data. */
retval = poll(fd, 1, 1000);

if (retval && (fd[0].revents & POLLRDNORM)) {

/* Read data from printer gadget driver. */
bytes_read = read(fd[0].fd, buf, BUF_SIZE);

if (bytes_read < 0) {
printf("Error %d reading from %s\n",

fd[0].fd, PRINTER_FILE);
close(fd[0].fd);
return(-1);

} else if (bytes_read > 0) {
/* Write data to standard OUTPUT (stdout). */
fwrite(buf, 1, bytes_read, stdout);
fflush(stdout);

}

}

(continues on next page)

48 Chapter 10. Linux USB Printer Gadget Driver

Linux Usb Documentation

(continued from previous page)
}

/* Close the device file. */
close(fd[0].fd);

return 0;
}

static int
write_printer_data()
{

struct pollfd fd[1];

/* Open device file for printer gadget. */
fd[0].fd = open (PRINTER_FILE, O_RDWR);
if (fd[0].fd < 0) {

printf("Error %d opening %s\n", fd[0].fd, PRINTER_FILE);
close(fd[0].fd);
return(-1);

}

fd[0].events = POLLOUT | POLLWRNORM;

while (1) {
int retval;
static char buf[BUF_SIZE];
/* Read data from standard INPUT (stdin). */
int bytes_read = fread(buf, 1, BUF_SIZE, stdin);

if (!bytes_read) {
break;

}

while (bytes_read) {

/* Wait for up to 1 second to sent data. */
retval = poll(fd, 1, 1000);

/* Write data to printer gadget driver. */
if (retval && (fd[0].revents & POLLWRNORM)) {

retval = write(fd[0].fd, buf, bytes_read);
if (retval < 0) {

printf("Error %d writing to %s\n",
fd[0].fd,
PRINTER_FILE);

close(fd[0].fd);
return(-1);

} else {
bytes_read -= retval;

}

}

}

(continues on next page)

10.4. Example Code 49

Linux Usb Documentation

(continued from previous page)
}

/* Wait until the data has been sent. */
fsync(fd[0].fd);

/* Close the device file. */
close(fd[0].fd);

return 0;
}

static int
read_NB_printer_data()
{

int fd;
static char buf[BUF_SIZE];
int bytes_read;

/* Open device file for printer gadget. */
fd = open(PRINTER_FILE, O_RDWR|O_NONBLOCK);
if (fd < 0) {

printf("Error %d opening %s\n", fd, PRINTER_FILE);
close(fd);
return(-1);

}

while (1) {
/* Read data from printer gadget driver. */
bytes_read = read(fd, buf, BUF_SIZE);
if (bytes_read <= 0) {

break;
}

/* Write data to standard OUTPUT (stdout). */
fwrite(buf, 1, bytes_read, stdout);
fflush(stdout);

}

/* Close the device file. */
close(fd);

return 0;
}

static int
get_printer_status()
{

int retval;
int fd;

/* Open device file for printer gadget. */
fd = open(PRINTER_FILE, O_RDWR);
if (fd < 0) {

printf("Error %d opening %s\n", fd, PRINTER_FILE);
(continues on next page)

50 Chapter 10. Linux USB Printer Gadget Driver

Linux Usb Documentation

(continued from previous page)
close(fd);
return(-1);

}

/* Make the IOCTL call. */
retval = ioctl(fd, GADGET_GET_PRINTER_STATUS);
if (retval < 0) {

fprintf(stderr, "ERROR: Failed to set printer status\n");
return(-1);

}

/* Close the device file. */
close(fd);

return(retval);
}

static int
set_printer_status(unsigned char buf, int clear_printer_status_bit)
{

int retval;
int fd;

retval = get_printer_status();
if (retval < 0) {

fprintf(stderr, "ERROR: Failed to get printer status\n");
return(-1);

}

/* Open device file for printer gadget. */
fd = open(PRINTER_FILE, O_RDWR);

if (fd < 0) {
printf("Error %d opening %s\n", fd, PRINTER_FILE);
close(fd);
return(-1);

}

if (clear_printer_status_bit) {
retval &= ~buf;

} else {
retval |= buf;

}

/* Make the IOCTL call. */
if (ioctl(fd, GADGET_SET_PRINTER_STATUS, (unsigned char)retval)) {

fprintf(stderr, "ERROR: Failed to set printer status\n");
return(-1);

}

/* Close the device file. */
close(fd);

return 0;
}

(continues on next page)

10.4. Example Code 51

Linux Usb Documentation

(continued from previous page)

static int
display_printer_status()
{

char printer_status;

printer_status = get_printer_status();
if (printer_status < 0) {

fprintf(stderr, "ERROR: Failed to get printer status\n");
return(-1);

}

printf("Printer status is:\n");
if (printer_status & PRINTER_SELECTED) {

printf(" Printer is Selected\n");
} else {

printf(" Printer is NOT Selected\n");
}
if (printer_status & PRINTER_PAPER_EMPTY) {

printf(" Paper is Out\n");
} else {

printf(" Paper is Loaded\n");
}
if (printer_status & PRINTER_NOT_ERROR) {

printf(" Printer OK\n");
} else {

printf(" Printer ERROR\n");
}

return(0);
}

int
main(int argc, char *argv[])
{

int i; /* Looping var */
int retval = 0;

/* No Args */
if (argc == 1) {

usage(0);
exit(0);

}

for (i = 1; i < argc && !retval; i ++) {

if (argv[i][0] != '-') {
continue;

}

if (!strcmp(argv[i], "-get_status")) {
if (display_printer_status()) {

retval = 1;
}

(continues on next page)

52 Chapter 10. Linux USB Printer Gadget Driver

Linux Usb Documentation

(continued from previous page)

} else if (!strcmp(argv[i], "-paper_loaded")) {
if (set_printer_status(PRINTER_PAPER_EMPTY, 1)) {

retval = 1;
}

} else if (!strcmp(argv[i], "-paper_out")) {
if (set_printer_status(PRINTER_PAPER_EMPTY, 0)) {

retval = 1;
}

} else if (!strcmp(argv[i], "-selected")) {
if (set_printer_status(PRINTER_SELECTED, 0)) {

retval = 1;
}

} else if (!strcmp(argv[i], "-not_selected")) {
if (set_printer_status(PRINTER_SELECTED, 1)) {

retval = 1;
}

} else if (!strcmp(argv[i], "-error")) {
if (set_printer_status(PRINTER_NOT_ERROR, 1)) {

retval = 1;
}

} else if (!strcmp(argv[i], "-no_error")) {
if (set_printer_status(PRINTER_NOT_ERROR, 0)) {

retval = 1;
}

} else if (!strcmp(argv[i], "-read_data")) {
if (read_printer_data()) {

retval = 1;
}

} else if (!strcmp(argv[i], "-write_data")) {
if (write_printer_data()) {

retval = 1;
}

} else if (!strcmp(argv[i], "-NB_read_data")) {
if (read_NB_printer_data()) {

retval = 1;
}

} else {
usage(argv[i]);
retval = 1;

}
}

exit(retval);
}

10.4. Example Code 53

Linux Usb Documentation

54 Chapter 10. Linux USB Printer Gadget Driver

CHAPTER

ELEVEN

LINUX GADGET SERIAL DRIVER V2.0

11/20/2004

(updated 8-May-2008 for v2.3)

11.1 License and Disclaimer

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foun-
dation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA.

This document and the gadget serial driver itself are Copyright (C) 2004 by Al
Borchers (alborchers@steinerpoint.com).

If you have questions, problems, or suggestions for this driver please contact Al
Borchers at alborchers@steinerpoint.com.

11.2 Prerequisites

Versions of the gadget serial driver are available for the 2.4 Linux kernels, but this
document assumes you are using version 2.3 or later of the gadget serial driver in
a 2.6 Linux kernel.

This document assumes that you are familiar with Linux and Windows and know
how to configure and build Linux kernels, run standard utilities, use minicom and
HyperTerminal, and work with USB and serial devices. It also assumes you con-
figure the Linux gadget and usb drivers as modules.

With version 2.3 of the driver, major and minor device nodes are no longer stati-
cally defined. Your Linux based system should mount sysfs in /sys, and use“mdev”
(in Busybox) or “udev”to make the /dev nodes matching the sysfs /sys/class/tty
files.

55

mailto:alborchers@steinerpoint.com
mailto:alborchers@steinerpoint.com

Linux Usb Documentation

11.3 Overview

The gadget serial driver is a Linux USB gadget driver, a USB device side driver. It
runs on a Linux system that has USB device side hardware; for example, a PDA,
an embedded Linux system, or a PC with a USB development card.

The gadget serial driver talks over USB to either a CDC ACM driver or a generic
USB serial driver running on a host PC:

Host

| Host-Side CDC ACM USB Host |
| Operating | or | Controller | USB
| System | Generic USB | Driver |--------
| (Linux or | Serial | and | |
| Windows) Driver USB Stack | |
-------------------------------------- |

|
|
|

Gadget
Gadget USB Periph.
Device-Side
Linux
Operating
System USB Stack

On the device-side Linux system, the gadget serial driver looks like a serial device.

On the host-side system, the gadget serial device looks like a CDC ACM compliant
class device or a simple vendor specific device with bulk in and bulk out endpoints,
and it is treated similarly to other serial devices.

The host side driver can potentially be any ACM compliant driver or any driver
that can talk to a device with a simple bulk in/out interface. Gadget serial has
been tested with the Linux ACM driver, the Windows usbser.sys ACM driver, and
the Linux USB generic serial driver.

With the gadget serial driver and the host side ACM or generic serial driver run-
ning, you should be able to communicate between the host and the gadget side
systems as if they were connected by a serial cable.

The gadget serial driver only provides simple unreliable data communication. It
does not yet handle flow control or many other features of normal serial devices.

56 Chapter 11. Linux Gadget Serial Driver v2.0

Linux Usb Documentation

11.4 Installing the Gadget Serial Driver

To use the gadget serial driver you must configure the Linux gadget side kernel
for“Support for USB Gadgets”, for a“USB Peripheral Controller”(for example,
net2280), and for the “Serial Gadget”driver. All this are listed under “USB
Gadget Support”when configuring the kernel. Then rebuild and install the kernel
or modules.

Then you must load the gadget serial driver. To load it as an ACM device (recom-
mended for interoperability), do this:

modprobe g_serial

To load it as a vendor specific bulk in/out device, do this:

modprobe g_serial use_acm=0

This will also automatically load the underlying gadget peripheral controller driver.
This must be done each time you reboot the gadget side Linux system. You can
add this to the start up scripts, if desired.

Your system should use mdev (from busybox) or udev to make the device nodes.
After this gadget driver has been set up you should then see a /dev/ttyGS0 node:

ls -l /dev/ttyGS0 | cat
crw-rw---- 1 root root 253, 0 May 8 14:10 /dev/ttyGS0
#

Note that the major number (253, above) is system-specific. If you need to create
/dev nodes by hand, the right numbers to usewill be in the /sys/class/tty/ttyGS0/dev
file.

When you link this gadget driver early, perhaps even statically, you may want to
set up an /etc/inittab entry to run“getty”on it. The /dev/ttyGS0 line should work
like most any other serial port.

If gadget serial is loaded as an ACM device you will want to use either theWindows
or Linux ACM driver on the host side. If gadget serial is loaded as a bulk in/out
device, you will want to use the Linux generic serial driver on the host side. Follow
the appropriate instructions below to install the host side driver.

11.5 Installing the Windows Host ACM Driver

To use the Windows ACM driver you must have the “linux-cdc-acm.inf”file (pro-
vided along this document) which supports all recent versions of Windows.

When the gadget serial driver is loaded and the USB device connected to the Win-
dows host with a USB cable, Windows should recognize the gadget serial device
and ask for a driver. Tell Windows to find the driver in the folder that contains the
“linux-cdc-acm.inf”file.
For example, on Windows XP, when the gadget serial device is first plugged in, the
“Found New Hardware Wizard”starts up. Select “Install from a list or specific
location (Advanced)”, then on the next screen select “Include this location in

11.4. Installing the Gadget Serial Driver 57

Linux Usb Documentation

the search”and enter the path or browse to the folder containing the “linux-
cdc-acm.inf”file. Windows will complain that the Gadget Serial driver has not
passed Windows Logo testing, but select“Continue anyway”and finish the driver
installation.

On Windows XP, in the “Device Manager”(under “Control Panel”, “System”,
“Hardware”) expand the“Ports (COM & LPT)”entry and you should see“Gadget
Serial”listed as the driver for one of the COM ports.

To uninstall the Windows XP driver for“Gadget Serial”, right click on the“Gadget
Serial”entry in the “Device Manager”and select “Uninstall”.

11.6 Installing the Linux Host ACM Driver

To use the Linux ACM driver you must configure the Linux host side kernel for
“Support for Host-side USB”and for “USB Modem (CDC ACM) support”.
Once the gadget serial driver is loaded and the USB device connected to the Linux
host with a USB cable, the host system should recognize the gadget serial device.
For example, the command:

cat /sys/kernel/debug/usb/devices

should show something like this::

T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=02 Dev#= 5 Spd=480 MxCh= 0
D: Ver= 2.00 Cls=02(comm.) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=0525 ProdID=a4a7 Rev= 2.01
S: Manufacturer=Linux 2.6.8.1 with net2280
S: Product=Gadget Serial
S: SerialNumber=0
C:* #Ifs= 2 Cfg#= 2 Atr=c0 MxPwr= 2mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=acm
E: Ad=83(I) Atr=03(Int.) MxPS= 8 Ivl=32ms
I: If#= 1 Alt= 0 #EPs= 2 Cls=0a(data) Sub=00 Prot=00 Driver=acm
E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

If the host side Linux system is configured properly, the ACM driver should be
loaded automatically. The command “lsmod”should show the “acm”module is
loaded.

11.7 Installing the Linux Host Generic USB Serial Driver

To use the Linux generic USB serial driver you must configure the Linux host side
kernel for “Support for Host-side USB”, for “USB Serial Converter support”,
and for the “USB Generic Serial Driver”.
Once the gadget serial driver is loaded and the USB device connected to the Linux
host with a USB cable, the host system should recognize the gadget serial device.
For example, the command:

58 Chapter 11. Linux Gadget Serial Driver v2.0

Linux Usb Documentation

cat /sys/kernel/debug/usb/devices

should show something like this::

T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=02 Dev#= 6 Spd=480 MxCh= 0
D: Ver= 2.00 Cls=ff(vend.) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=0525 ProdID=a4a6 Rev= 2.01
S: Manufacturer=Linux 2.6.8.1 with net2280
S: Product=Gadget Serial
S: SerialNumber=0
C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 2mA
I: If#= 0 Alt= 0 #EPs= 2 Cls=0a(data) Sub=00 Prot=00 Driver=serial
E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

You must load the usbserial driver and explicitly set its parameters to configure it
to recognize the gadget serial device, like this:

echo 0x0525 0xA4A6 >/sys/bus/usb-serial/drivers/generic/new_id

The legacy way is to use module parameters:

modprobe usbserial vendor=0x0525 product=0xA4A6

If everything is working, usbserial will print a message in the system log saying
something like “Gadget Serial converter now attached to ttyUSB0”.

11.8 Testing with Minicom or HyperTerminal

Once the gadget serial driver and the host driver are both installed, and a USB
cable connects the gadget device to the host, you should be able to communicate
over USB between the gadget and host systems. You can use minicom or HyperT-
erminal to try this out.

On the gadget side run“minicom -s”to configure a new minicom session. Under
“Serial port setup”set “/dev/ttygserial”as the “Serial Device”. Set baud rate,
data bits, parity, and stop bits, to 9600, 8, none, and 1–these settings mostly do
not matter. Under“Modem and dialing”erase all the modem and dialing strings.
On a Linux host running the ACM driver, configure minicom similarly but use
“/dev/ttyACM0”as the“Serial Device”. (If you have other ACM devices connected,
change the device name appropriately.)

On a Linux host running the USB generic serial driver, configureminicom similarly,
but use “/dev/ttyUSB0”as the “Serial Device”. (If you have other USB serial
devices connected, change the device name appropriately.)

On a Windows host configure a new HyperTerminal session to use the COM port
assigned to Gadget Serial. The “Port Settings”will be set automatically when
HyperTerminal connects to the gadget serial device, so you can leave them set to
the default values–these settings mostly do not matter.

With minicom configured and running on the gadget side and with minicom or
HyperTerminal configured and running on the host side, you should be able to

11.8. Testing with Minicom or HyperTerminal 59

Linux Usb Documentation

send data back and forth between the gadget side and host side systems. Anything
you type on the terminal window on the gadget side should appear in the terminal
window on the host side and vice versa.

60 Chapter 11. Linux Gadget Serial Driver v2.0

CHAPTER

TWELVE

GADGET TESTING

This file summarizes information on basic testing of USB functions provided by
gadgets.

12.1 1. ACM function

The function is provided by usb_f_acm.ko module.

12.1.1 Function-specific configfs interface

The function name to use when creating the function directory is “acm”. The
ACM function provides just one attribute in its function directory:

port_num

The attribute is read-only.

There can be at most 4 ACM/generic serial/OBEX ports in the system.

12.1.2 Testing the ACM function

On the host:

cat > /dev/ttyACM<X>

On the device:

cat /dev/ttyGS<Y>

then the other way round

On the device:

cat > /dev/ttyGS<Y>

On the host:

cat /dev/ttyACM<X>

61

Linux Usb Documentation

12.2 2. ECM function

The function is provided by usb_f_ecm.ko module.

12.2.1 Function-specific configfs interface

The function name to use when creating the function directory is “ecm”. The
ECM function provides these attributes in its function directory:

ifname network device interface name associated with this func-
tion instance

qmult queue length multiplier for high and super speed
host_addr MAC address of host’s end of this Ethernet over USB link
dev_addr MAC address of device’s end of this Ethernet over USB link

and after creating the functions/ecm.<instance name> they contain default val-
ues: qmult is 5, dev_addr and host_addr are randomly selected. Except for ifname
they can be written to until the function is linked to a configuration. The ifname
is read-only and contains the name of the interface which was assigned by the net
core, e. g. usb0.

12.2.2 Testing the ECM function

Configure IP addresses of the device and the host. Then:

On the device:

ping <host's IP>

On the host:

ping <device's IP>

12.3 3. ECM subset function

The function is provided by usb_f_ecm_subset.ko module.

12.3.1 Function-specific configfs interface

The function name to use when creating the function directory is “geth”. The
ECM subset function provides these attributes in its function directory:

62 Chapter 12. Gadget Testing

Linux Usb Documentation

ifname network device interface name associated with this func-
tion instance

qmult queue length multiplier for high and super speed
host_addr MAC address of host’s end of this Ethernet over USB link
dev_addr MAC address of device’s end of this Ethernet over USB link

and after creating the functions/ecm.<instance name> they contain default val-
ues: qmult is 5, dev_addr and host_addr are randomly selected. Except for ifname
they can be written to until the function is linked to a configuration. The ifname
is read-only and contains the name of the interface which was assigned by the net
core, e. g. usb0.

12.3.2 Testing the ECM subset function

Configure IP addresses of the device and the host. Then:

On the device:

ping <host's IP>

On the host:

ping <device's IP>

12.4 4. EEM function

The function is provided by usb_f_eem.ko module.

12.4.1 Function-specific configfs interface

The function name to use when creating the function directory is “eem”. The
EEM function provides these attributes in its function directory:

ifname network device interface name associated with this func-
tion instance

qmult queue length multiplier for high and super speed
host_addr MAC address of host’s end of this Ethernet over USB link
dev_addr MAC address of device’s end of this Ethernet over USB link

and after creating the functions/eem.<instance name> they contain default val-
ues: qmult is 5, dev_addr and host_addr are randomly selected. Except for ifname
they can be written to until the function is linked to a configuration. The ifname
is read-only and contains the name of the interface which was assigned by the net
core, e. g. usb0.

12.4. 4. EEM function 63

Linux Usb Documentation

12.4.2 Testing the EEM function

Configure IP addresses of the device and the host. Then:

On the device:

ping <host's IP>

On the host:

ping <device's IP>

12.5 5. FFS function

The function is provided by usb_f_fs.ko module.

12.5.1 Function-specific configfs interface

The function name to use when creating the function directory is “ffs”. The
function directory is intentionally empty and not modifiable.

After creating the directory there is a new instance (a “device”) of FunctionFS
available in the system. Once a “device”is available, the user should follow the
standard procedure for using FunctionFS (mount it, run the userspace process
which implements the function proper). The gadget should be enabled by writing
a suitable string to usb_gadget/<gadget>/UDC.

12.5.2 Testing the FFS function

On the device: start the function’s userspace daemon, enable the gadget
On the host: use the USB function provided by the device

12.6 6. HID function

The function is provided by usb_f_hid.ko module.

12.6.1 Function-specific configfs interface

The function name to use when creating the function directory is“hid”. The HID
function provides these attributes in its function directory:

64 Chapter 12. Gadget Testing

Linux Usb Documentation

protocol HID protocol to use
re-
port_desc

data to be used in HID reports, except data passed with
/dev/hidg<X>

re-
port_length

HID report length

subclass HID subclass to use

For a keyboard the protocol and the subclass are 1, the report_length is 8, while
the report_desc is:

$ hd my_report_desc
00000000 05 01 09 06 a1 01 05 07 19 e0 29 e7 15 00 25 01 |..........)...
↪→%.|
00000010 75 01 95 08 81 02 95 01 75 08 81 03 95 05 75 01 |u.......u.....
↪→u.|
00000020 05 08 19 01 29 05 91 02 95 01 75 03 91 03 95 06 |....).....u...
↪→..|
00000030 75 08 15 00 25 65 05 07 19 00 29 65 81 00 c0 |u...%e....)e..
↪→.|
0000003f

Such a sequence of bytes can be stored to the attribute with echo:

$ echo -ne \\x05\\x01\\x09\\x06\\xa1.....

12.6.2 Testing the HID function

Device:

• create the gadget

• connect the gadget to a host, preferably not the one used to control the gadget

• run a program which writes to /dev/hidg<N>, e.g. a userspace program
found in Documentation/usb/gadget_hid.rst:

$./hid_gadget_test /dev/hidg0 keyboard

Host:

• observe the keystrokes from the gadget

12.7 7. LOOPBACK function

The function is provided by usb_f_ss_lb.ko module.

12.7. 7. LOOPBACK function 65

Linux Usb Documentation

12.7.1 Function-specific configfs interface

The function name to use when creating the function directory is “Loopback”.
The LOOPBACK function provides these attributes in its function directory:

qlen depth of loopback queue
bulk_buflen buffer length

12.7.2 Testing the LOOPBACK function

device: run the gadget

host: test-usb (tools/usb/testusb.c)

12.8 8. MASS STORAGE function

The function is provided by usb_f_mass_storage.ko module.

12.8.1 Function-specific configfs interface

The function name to use when creating the function directory is“mass_storage”
. The MASS STORAGE function provides these attributes in its directory: files:

stall Set to permit function to halt bulk endpoints. Disabled on
some USB devices known not to work correctly. You should
set it to true.

num_buffersNumber of pipeline buffers. Valid numbers are 2..4. Available
only if CONFIG_USB_GADGET_DEBUG_FILES is set.

and a default lun.0 directory corresponding to SCSI LUN #0.

A new lun can be added with mkdir:

$ mkdir functions/mass_storage.0/partition.5

Lun numbering does not have to be continuous, except for lun #0 which is created
by default. A maximum of 8 luns can be specified and they all must be named
following the <name>.<number> scheme. The numbers can be 0..8. Probably a
good convention is to name the luns“lun.<number>”, although it is not mandatory.
In each lun directory there are the following attribute files:

66 Chapter 12. Gadget Testing

Linux Usb Documentation

file The path to the backing file for the LUN. Required if LUN is not
marked as removable.

ro Flag specifying access to the LUN shall be read-only. This is
implied if CD-ROM emulation is enabled as well as when it was
impossible to open “filename”in R/W mode.

re-
mov-
able

Flag specifying that LUN shall be indicated as being removable.

cdromFlag specifying that LUN shall be reported as being a CD-ROM.
no-
fua

Flag specifying that FUA flag in SCSI WRITE(10,12)

12.8.2 Testing the MASS STORAGE function

device: connect the gadget, enable it host: dmesg, see the USB drives appear (if
system configured to automatically mount)

12.9 9. MIDI function

The function is provided by usb_f_midi.ko module.

12.9.1 Function-specific configfs interface

The function name to use when creating the function directory is “midi”. The
MIDI function provides these attributes in its function directory:

buflen MIDI buffer length
id ID string for the USB MIDI adapter
in_ports number of MIDI input ports
index index value for the USB MIDI adapter
out_ports number of MIDI output ports
qlen USB read request queue length

12.9.2 Testing the MIDI function

There are two cases: playing a mid from the gadget to the host and playing a mid
from the host to the gadget.

1) Playing a mid from the gadget to the host:

host:

$ arecordmidi -l
Port Client name Port name
14:0 Midi Through Midi Through Port-0
24:0 MIDI Gadget MIDI Gadget MIDI 1

$ arecordmidi -p 24:0 from_gadget.mid

12.9. 9. MIDI function 67

Linux Usb Documentation

gadget:

$ aplaymidi -l
Port Client name Port name
20:0 f_midi f_midi

$ aplaymidi -p 20:0 to_host.mid

2) Playing a mid from the host to the gadget

gadget:

$ arecordmidi -l
Port Client name Port name
20:0 f_midi f_midi

$ arecordmidi -p 20:0 from_host.mid

host:

$ aplaymidi -l
Port Client name Port name
14:0 Midi Through Midi Through Port-0
24:0 MIDI Gadget MIDI Gadget MIDI 1

$ aplaymidi -p24:0 to_gadget.mid

The from_gadget.mid should sound identical to the to_host.mid.

The from_host.id should sound identical to the to_gadget.mid.

MIDI files can be played to speakers/headphones with e.g. timidity installed:

$ aplaymidi -l
Port Client name Port name
14:0 Midi Through Midi Through Port-0
24:0 MIDI Gadget MIDI Gadget MIDI 1

128:0 TiMidity TiMidity port 0
128:1 TiMidity TiMidity port 1
128:2 TiMidity TiMidity port 2
128:3 TiMidity TiMidity port 3

$ aplaymidi -p 128:0 file.mid

MIDI ports can be logically connected using the aconnect utility, e.g.:

$ aconnect 24:0 128:0 # try it on the host

After the gadget’s MIDI port is connected to timidity’s MIDI port, what-
ever is played at the gadget side with aplaymidi -l is audible in host’s speak-
ers/headphones.

68 Chapter 12. Gadget Testing

Linux Usb Documentation

12.10 10. NCM function

The function is provided by usb_f_ncm.ko module.

12.10.1 Function-specific configfs interface

The function name to use when creating the function directory is “ncm”. The
NCM function provides these attributes in its function directory:

ifname network device interface name associated with this func-
tion instance

qmult queue length multiplier for high and super speed
host_addr MAC address of host’s end of this Ethernet over USB link
dev_addr MAC address of device’s end of this Ethernet over USB link

and after creating the functions/ncm.<instance name> they contain default val-
ues: qmult is 5, dev_addr and host_addr are randomly selected. Except for ifname
they can be written to until the function is linked to a configuration. The ifname
is read-only and contains the name of the interface which was assigned by the net
core, e. g. usb0.

12.10.2 Testing the NCM function

Configure IP addresses of the device and the host. Then:

On the device:

ping <host's IP>

On the host:

ping <device's IP>

12.11 11. OBEX function

The function is provided by usb_f_obex.ko module.

12.11.1 Function-specific configfs interface

The function name to use when creating the function directory is “obex”. The
OBEX function provides just one attribute in its function directory:

port_num

The attribute is read-only.

There can be at most 4 ACM/generic serial/OBEX ports in the system.

12.10. 10. NCM function 69

Linux Usb Documentation

12.11.2 Testing the OBEX function

On device:

seriald -f /dev/ttyGS<Y> -s 1024

On host:

serialc -v <vendorID> -p <productID> -i<interface#> -a1 -s1024 \
-t<out endpoint addr> -r<in endpoint addr>

where seriald and serialc are Felipe’s utilities found here:
https://github.com/felipebalbi/usb-tools.git master

12.12 12. PHONET function

The function is provided by usb_f_phonet.ko module.

12.12.1 Function-specific configfs interface

The function name to use when creating the function directory is“phonet”. The
PHONET function provides just one attribute in its function directory:

if-
name

network device interface name associated with this function
instance

12.12.2 Testing the PHONET function

It is not possible to test the SOCK_STREAM protocol without a specific piece of
hardware, so only SOCK_DGRAM has been tested. For the latter to work, in the
past I had to apply the patch mentioned here:

http://www.spinics.net/lists/linux-usb/msg85689.html

These tools are required:

git://git.gitorious.org/meego-cellular/phonet-utils.git

On the host:

$./phonet -a 0x10 -i usbpn0
$./pnroute add 0x6c usbpn0
$./pnroute add 0x10 usbpn0
$ ifconfig usbpn0 up

On the device:

$./phonet -a 0x6c -i upnlink0
$./pnroute add 0x10 upnlink0
$ ifconfig upnlink0 up

70 Chapter 12. Gadget Testing

https://github.com/felipebalbi/usb-tools.git
http://www.spinics.net/lists/linux-usb/msg85689.html

Linux Usb Documentation

Then a test program can be used:

http://www.spinics.net/lists/linux-usb/msg85690.html

On the device:

$./pnxmit -a 0x6c -r

On the host:

$./pnxmit -a 0x10 -s 0x6c

As a result some data should be sent from host to device. Then the other way
round:

On the host:

$./pnxmit -a 0x10 -r

On the device:

$./pnxmit -a 0x6c -s 0x10

12.13 13. RNDIS function

The function is provided by usb_f_rndis.ko module.

12.13.1 Function-specific configfs interface

The function name to use when creating the function directory is “rndis”. The
RNDIS function provides these attributes in its function directory:

ifname network device interface name associated with this func-
tion instance

qmult queue length multiplier for high and super speed
host_addr MAC address of host’s end of this Ethernet over USB link
dev_addr MAC address of device’s end of this Ethernet over USB link

and after creating the functions/rndis.<instance name> they contain default val-
ues: qmult is 5, dev_addr and host_addr are randomly selected. Except for ifname
they can be written to until the function is linked to a configuration. The ifname
is read-only and contains the name of the interface which was assigned by the net
core, e. g. usb0.

12.13. 13. RNDIS function 71

Linux Usb Documentation

12.13.2 Testing the RNDIS function

Configure IP addresses of the device and the host. Then:

On the device:

ping <host's IP>

On the host:

ping <device's IP>

12.14 14. SERIAL function

The function is provided by usb_f_gser.ko module.

12.14.1 Function-specific configfs interface

The function name to use when creating the function directory is “gser”. The
SERIAL function provides just one attribute in its function directory:

port_num

The attribute is read-only.

There can be at most 4 ACM/generic serial/OBEX ports in the system.

12.14.2 Testing the SERIAL function

On host:

insmod usbserial
echo VID PID >/sys/bus/usb-serial/drivers/generic/new_id

On host:

cat > /dev/ttyUSB<X>

On target:

cat /dev/ttyGS<Y>

then the other way round

On target:

cat > /dev/ttyGS<Y>

On host:

cat /dev/ttyUSB<X>

72 Chapter 12. Gadget Testing

Linux Usb Documentation

12.15 15. SOURCESINK function

The function is provided by usb_f_ss_lb.ko module.

12.15.1 Function-specific configfs interface

The function name to use when creating the function directory is“SourceSink”.
The SOURCESINK function provides these attributes in its function directory:

pattern 0 (all zeros), 1 (mod63), 2 (none)
isoc_interval 1..16
isoc_maxpacket 0 - 1023 (fs), 0 - 1024 (hs/ss)
isoc_mult 0..2 (hs/ss only)
isoc_maxburst 0..15 (ss only)
bulk_buflen buffer length
bulk_qlen depth of queue for bulk
iso_qlen depth of queue for iso

12.15.2 Testing the SOURCESINK function

device: run the gadget

host: test-usb (tools/usb/testusb.c)

12.16 16. UAC1 function (legacy implementation)

The function is provided by usb_f_uac1_legacy.ko module.

12.16.1 Function-specific configfs interface

The function name to use when creating the function directory is“uac1_legacy”.
The uac1 function provides these attributes in its function directory:

audio_buf_size audio buffer size
fn_cap capture pcm device file name
fn_cntl control device file name
fn_play playback pcm device file name
req_buf_size ISO OUT endpoint request buffer size
req_count ISO OUT endpoint request count

The attributes have sane default values.

12.15. 15. SOURCESINK function 73

Linux Usb Documentation

12.16.2 Testing the UAC1 function

device: run the gadget

host:

aplay -l # should list our USB Audio Gadget

12.17 17. UAC2 function

The function is provided by usb_f_uac2.ko module.

12.17.1 Function-specific configfs interface

The function name to use when creating the function directory is “uac2”. The
uac2 function provides these attributes in its function directory:

c_chmask capture channel mask
c_srate capture sampling rate
c_ssize capture sample size (bytes)
p_chmask playback channel mask
p_srate playback sampling rate
p_ssize playback sample size (bytes)
req_number the number of pre-allocated request for both capture and

playback

The attributes have sane default values.

12.17.2 Testing the UAC2 function

device: run the gadget host: aplay -l # should list our USB Audio Gadget

This function does not require real hardware support, it just sends a stream of
audio data to/from the host. In order to actually hear something at the device
side, a command similar to this must be used at the device side:

$ arecord -f dat -t wav -D hw:2,0 | aplay -D hw:0,0 &

e.g.:

$ arecord -f dat -t wav -D hw:CARD=UAC2Gadget,DEV=0 | \
aplay -D default:CARD=OdroidU3

74 Chapter 12. Gadget Testing

Linux Usb Documentation

12.18 18. UVC function

The function is provided by usb_f_uvc.ko module.

12.18.1 Function-specific configfs interface

The function name to use when creating the function directory is“uvc”. The uvc
function provides these attributes in its function directory:

stream-
ing_interval

interval for polling endpoint for data transfers

stream-
ing_maxburst

bMaxBurst for super speed companion descriptor

stream-
ing_maxpacket

maximum packet size this endpoint is capable of sending
or receiving when this configuration is selected

There are also“control”and“streaming”subdirectories, each of which contain
a number of their subdirectories. There are some sane defaults provided, but the
user must provide the following:

control
header

create in control/header, link from control/class/fs and/or
control/class/ss

stream-
ing
header

create in streaming/header, link from streaming/class/fs
and/or streaming/class/hs and/or streaming/class/ss

format
descrip-
tion

create in streaming/mjpeg and/or stream-
ing/uncompressed

frame de-
scription

create in streaming/mjpeg/<format> and/or in stream-
ing/uncompressed/<format>

Each frame description contains frame interval specification, and each such spec-
ification consists of a number of lines with an inverval value in each line. The rules
stated above are best illustrated with an example:

mkdir functions/uvc.usb0/control/header/h
cd functions/uvc.usb0/control/
ln -s header/h class/fs
ln -s header/h class/ss
mkdir -p functions/uvc.usb0/streaming/uncompressed/u/360p
cat <<EOF > functions/uvc.usb0/streaming/uncompressed/u/360p/
↪→dwFrameInterval
666666
1000000
5000000
EOF
cd $GADGET_CONFIGFS_ROOT
mkdir functions/uvc.usb0/streaming/header/h
cd functions/uvc.usb0/streaming/header/h

(continues on next page)

12.18. 18. UVC function 75

Linux Usb Documentation

(continued from previous page)
ln -s ../../uncompressed/u
cd ../../class/fs
ln -s ../../header/h
cd ../../class/hs
ln -s ../../header/h
cd ../../class/ss
ln -s ../../header/h

12.18.2 Testing the UVC function

device: run the gadget, modprobe vivid:

uvc-gadget -u /dev/video<uvc video node #> -v /dev/video<vivid video␣
↪→node #>

where uvc-gadget is this program: http://git.ideasonboard.org/uvc-gadget.git
with these patches:

http://www.spinics.net/lists/linux-usb/msg99220.html

host:

luvcview -f yuv

12.19 19. PRINTER function

The function is provided by usb_f_printer.ko module.

12.19.1 Function-specific configfs interface

The function name to use when creating the function directory is“printer”. The
printer function provides these attributes in its function directory:

pnp_string Data to be passed to the host in pnp string
q_len Number of requests per endpoint

12.19.2 Testing the PRINTER function

The most basic testing:

device: run the gadget:

ls -l /devices/virtual/usb_printer_gadget/

should show g_printer<number>.

If udev is active, then /dev/g_printer<number> should appear automatically.

host:

76 Chapter 12. Gadget Testing

http://git.ideasonboard.org/uvc-gadget.git
http://www.spinics.net/lists/linux-usb/msg99220.html

Linux Usb Documentation

If udev is active, then e.g. /dev/usb/lp0 should appear.

host->device transmission:

device:

cat /dev/g_printer<number>

host:

cat > /dev/usb/lp0

device->host transmission:

cat > /dev/g_printer<number>

host:

cat /dev/usb/lp0

More advanced testing can be done with the prn_example described in Documen-
tation/usb/gadget_printer.rst.

12.20 20. UAC1 function (virtual ALSA card, using
u_audio API)

The function is provided by usb_f_uac1.ko module. It will create a virtual ALSA
card and the audio streams are simply sinked to and sourced from it.

12.20.1 Function-specific configfs interface

The function name to use when creating the function directory is “uac1”. The
uac1 function provides these attributes in its function directory:

c_chmask capture channel mask
c_srate capture sampling rate
c_ssize capture sample size (bytes)
p_chmask playback channel mask
p_srate playback sampling rate
p_ssize playback sample size (bytes)
req_number the number of pre-allocated request for both capture and

playback

The attributes have sane default values.

12.20. 20. UAC1 function (virtual ALSA card, using u_audio API) 77

Linux Usb Documentation

12.20.2 Testing the UAC1 function

device: run the gadget host: aplay -l # should list our USB Audio Gadget

This function does not require real hardware support, it just sends a stream of
audio data to/from the host. In order to actually hear something at the device
side, a command similar to this must be used at the device side:

$ arecord -f dat -t wav -D hw:2,0 | aplay -D hw:0,0 &

e.g.:

$ arecord -f dat -t wav -D hw:CARD=UAC1Gadget,DEV=0 | \
aplay -D default:CARD=OdroidU3

78 Chapter 12. Gadget Testing

CHAPTER

THIRTEEN

INFINITY USB UNLIMITED README

Hi all,

This module provide a serial interface to use your IUU unit in phoenix mode. Load-
ing this module will bring a ttyUSB[0-x] interface. This driver must be used by your
favorite application to pilot the IUU

This driver is still in beta stage, so bugs can occur and your system may freeze.
As far I now, I never had any problem with it, but I’m not a real guru, so don’t
blame me if your system is unstable

You can plug more than one IUU. Every unit will have his own device
file(/dev/ttyUSB0,/dev/ttyUSB1,⋯)

13.1 How to tune the reader speed?

A few parameters can be used at load time To use parameters, just un-
load the module if it is already loaded and use modprobe iuu_phoenix
param=value. In case of prebuilt module, use the command insmod
iuu_phoenix param=value.

Example:

modprobe iuu_phoenix clockmode=3

The parameters are:

clockmode: 1=3Mhz579,2=3Mhz680,3=6Mhz (int)
boost: overclock boost percent 100 to 500 (int)
cdmode: Card detect mode 0=none, 1=CD, 2=!CD, 3=DSR, 4=!DSR, 5=CTS,

6=!CTS, 7=RING, 8=!RING (int)

xmas: xmas color enabled or not (bool)
debug: Debug enabled or not (bool)
• clockmode will provide 3 different base settings commonly adopted by differ-
ent software:

1. 3Mhz579

2. 3Mhz680

3. 6Mhz

79

Linux Usb Documentation

• boost provide a way to overclock the reader (my favorite :-)) For example to
have best performance than a simple clockmode=3, try this:

modprobe boost=195

This will put the reader in a base of 3Mhz579 but boosted a 195 % ! the real
clock will be now : 6979050 Hz (6Mhz979) and will increase the speed to a
score 10 to 20% better than the simple clockmode=3 !!!

• cdmode permit to setup the signal used to inform the userland (ioctl answer
) if the card is present or not. Eight signals are possible.

• xmas is completely useless except for your eyes. This is one of my friend who
was so sad to have a nice device like the iuu without seeing all color range
available. So I have added this option to permit him to see a lot of color (each
activity change the color and the frequency randomly)

• debug will produce a lot of debugging messages⋯

13.2 Last notes

Don’t worry about the serial settings, the serial emulation is an abstrac-
tion, so use any speed or parity setting will work. (This will not change
anything).Later I will perhaps use this settings to deduce de boost but is
that feature really necessary ? The autodetect feature used is the serial
CD. If that doesn’t work for your software, disable detection mechanism
in it.

Have fun !

Alain Degreffe

eczema(at)ecze.com

80 Chapter 13. Infinity Usb Unlimited Readme

CHAPTER

FOURTEEN

MASS STORAGE GADGET (MSG)

14.1 Overview

Mass Storage Gadget (or MSG) acts as a USB Mass Storage device, ap-
pearing to the host as a disk or a CD-ROM drive. It supports multiple
logical units (LUNs). Backing storage for each LUN is provided by a reg-
ular file or a block device, access can be limited to read-only, and gadget
can indicate that it is removable and/or CD-ROM (the latter implies read-
only access).

Its requirements are modest; only a bulk-in and a bulk-out endpoint are
needed. The memory requirement amounts to two 16K buffers. Support
is included for full-speed, high-speed and SuperSpeed operation.

Note that the driver is slightly non-portable in that it assumes a single
memory/DMA buffer will be usable for bulk-in and bulk-out endpoints.
With most device controllers this is not an issue, but there may be some
with hardware restrictions that prevent a buffer from being used bymore
than one endpoint.

This document describes how to use the gadget from user space, its
relation to mass storage function (or MSF) and different gadgets using
it, and how it differs from File Storage Gadget (or FSG) (which is no
longer included in Linux). It will talk only briefly about how to use MSF
within composite gadgets.

14.2 Module parameters

The mass storage gadget accepts the following mass storage specific
module parameters:

• file=filename[,filename⋯]
This parameter lists paths to files or block devices used for backing
storage for each logical unit. Theremay be at most FSG_MAX_LUNS
(8) LUNs set. If more files are specified, they will be silently ignored.
See also “luns”parameter.
BEWARE that if a file is used as a backing storage, it may not be
modified by any other process. This is because the host assumes
the data does not change without its knowledge. It may be read,

81

Linux Usb Documentation

but (if the logical unit is writable) due to buffering on the host side,
the contents are not well defined.

The size of the logical unit will be rounded down to a full logical
block. The logical block size is 2048 bytes for LUNs simulating CD-
ROM, block size of the device if the backing file is a block device, or
512 bytes otherwise.

• removable=b[,b⋯]
This parameter specifies whether each logical unit should be remov-
able. “b”here is either“y”,“Y”or“1”for true or“n”,“N”or
“0”for false.
If this option is set for a logical unit, gadget will accept an “eject”
SCSI request (Start/Stop Unit). When it is sent, the backing file will
be closed to simulate ejection and the logical unit will not be mount-
able by the host until a new backing file is specified by userspace on
the device (see “sysfs entries”section).
If a logical unit is not removable (the default), a backing file must
be specified for it with the“file”parameter as the module is loaded.
The same applies if the module is built in, no exceptions.

The default value of the flag is false, HOWEVER it used to be true.
This has been changed to better match File Storage Gadget and be-
cause it seems like a saner default after all. Thus to maintain com-
patibility with older kernels, it’s best to specify the default values.
Also, if one relied on old default, explicit“n”needs to be specified
now.

Note that“removable”means the logical unit’s media can be ejected
or removed (as is true for a CD-ROM drive or a card reader). It does
not mean that the entire gadget can be unplugged from the host;
the proper term for that is “hot-unpluggable”.

• cdrom=b[,b⋯]
This parameter specifies whether each logical unit should simulate
CD-ROM. The default is false.

• ro=b[,b⋯]
This parameter specifies whether each logical unit should be re-
ported as read only. This will prevent host from modifying the back-
ing files.

Note that if this flag for given logical unit is false but the backing file
could not be opened in read/write mode, the gadget will fall back to
read only mode anyway.

The default value for non-CD-ROM logical units is false; for logical
units simulating CD-ROM it is forced to true.

• nofua=b[,b⋯]
This parameter specifies whether FUA flag should be ignored in
SCSI Write10 and Write12 commands sent to given logical units.

82 Chapter 14. Mass Storage Gadget (MSG)

Linux Usb Documentation

MS Windows mounts removable storage in “Removal optimised
mode”by default. All the writes to the media are synchronous,
which is achieved by setting the FUA (Force Unit Access) bit in SCSI
Write(10,12) commands. This forces eachwrite to wait until the data
has actually been written out and prevents I/O requests aggregation
in block layer dramatically decreasing performance.

Note that this may mean that if the device is powered from USB and
the user unplugs the device without unmounting it first (which at
least some Windows users do), the data may be lost.

The default value is false.

• luns=N

This parameter specifies number of logical units the gadget will
have. It is limited by FSG_MAX_LUNS (8) and higher value will be
capped.

If this parameter is provided, and the number of files specified in
“file”argument is greater then the value of“luns”, all excess files
will be ignored.

If this parameter is not present, the number of logical units will be
deduced from the number of files specified in the“file”parameter.
If the file parameter is missing as well, one is assumed.

• stall=b

Specifies whether the gadget is allowed to halt bulk endpoints. The
default is determined according to the type of USB device controller,
but usually true.

In addition to the above, the gadget also accepts the following parame-
ters defined by the composite framework (they are common to all com-
posite gadgets so just a quick listing):

• idVendor – USB Vendor ID (16 bit integer)

• idProduct – USB Product ID (16 bit integer)

• bcdDevice – USB Device version (BCD) (16 bit integer)

• iManufacturer – USB Manufacturer string (string)

• iProduct – USB Product string (string)

• iSerialNumber – SerialNumber string (sting)

14.2. Module parameters 83

Linux Usb Documentation

14.3 sysfs entries

For each logical unit, the gadget creates a directory in the sysfs hierar-
chy. Inside of it the following three files are created:

• file

When read it returns the path to the backing file for the given logical
unit. If there is no backing file (possible only if the logical unit is
removable), the content is empty.

When written into, it changes the backing file for given logical unit.
This change can be performed even if given logical unit is not speci-
fied as removable (but that may look strange to the host). It may fail,
however, if host disallowed medium removal with the Prevent-Allow
Medium Removal SCSI command.

• ro

Reflects the state of ro flag for the given logical unit. It can be read
any time, and written to when there is no backing file open for given
logical unit.

• nofua

Reflects the state of nofua flag for given logical unit. It can be read
and written.

Other then those, as usual, the values of module parameters can be read
from /sys/module/g_mass_storage/parameters/* files.

14.4 Other gadgets using mass storage function

The Mass Storage Gadget uses the Mass Storage Function to handle
mass storage protocol. As a composite function, MSF may be used by
other gadgets as well (eg. g_multi and acm_ms).

All of the information in previous sections are valid for other gadgets
using MSF, except that support for mass storage related module param-
eters may be missing, or the parameters may have a prefix. To figure
out whether any of this is true one needs to consult the gadget’s docu-
mentation or its source code.

For examples of how to include mass storage function in gadgets, one
may take a look at mass_storage.c, acm_ms.c and multi.c (sorted by com-
plexity).

84 Chapter 14. Mass Storage Gadget (MSG)

Linux Usb Documentation

14.5 Relation to file storage gadget

The Mass Storage Function and thus the Mass Storage Gadget has been
based on the File Storage Gadget. The difference between the two is that
MSG is a composite gadget (ie. uses the composite framework) while
file storage gadget was a traditional gadget. From userspace point of
view this distinction does not really matter, but from kernel hacker’s
point of view, this means that (i) MSG does not duplicate code needed
for handling basic USB protocol commands and (ii) MSF can be used in
any other composite gadget.

Because of that, File Storage Gadget has been removed in Linux 3.8. All
users need to transition to the Mass Storage Gadget. The two gadgets
behave mostly the same from the outside except:

1. In FSG the“removable”and“cdrom”module parameters set the flag
for all logical units whereas in MSG they accept a list of y/n values
for each logical unit. If one uses only a single logical unit this does
not matter, but if there are more, the y/n value needs to be repeated
for each logical unit.

2. FSG’s“serial”,“vendor”,“product”and“release”module pa-
rameters are handled in MSG by the composite layer’s parameters
named respectively: “iSerialnumber”, “idVendor”, “idProduct”
and “bcdDevice”.

3. MSG does not support FSG’s test mode, thus“transport”,“protocol”
and “buflen”FSG’s module parameters are not supported. MSG
always uses SCSI protocol with bulk only transport mode and 16 KiB
buffers.

14.5. Relation to file storage gadget 85

Linux Usb Documentation

86 Chapter 14. Mass Storage Gadget (MSG)

CHAPTER

FIFTEEN

USB 7-SEGMENT NUMERIC DISPLAY

Manufactured by Delcom Engineering

15.1 Device Information

USB VENDOR_ID 0x0fc5 USB PRODUCT_ID 0x1227 Both the 6 character and 8
character displays have PRODUCT_ID, and according to Delcom Engineering no
queryable information can be obtained from the device to tell them apart.

15.2 Device Modes

By default, the driver assumes the display is only 6 characters The mode for 6
characters is:

MSB 0x06; LSB 0x3f

For the 8 character display:

MSB 0x08; LSB 0xff

The device can accept “text”either in raw, hex, or ascii textmode. raw controls
each segment manually, hex expects a value between 0-15 per character, ascii
expects a value between ‘0’-‘9’and ‘A’-‘F’. The default is ascii.

15.3 Device Operation

1. Turn on the device: echo 1 > /sys/bus/usb/⋯/powered
2. Set the device’s mode: echo $mode_msb > /sys/bus/usb/⋯/mode_msb echo
$mode_lsb > /sys/bus/usb/⋯/mode_lsb

3. Set the textmode: echo $textmode > /sys/bus/usb/⋯/textmode
4. set the text (for example): echo“123ABC”> /sys/bus/usb/⋯/text (ascii) echo
“A1B2”> /sys/bus/usb/⋯/text (ascii) echo -ne“x01x02x03”> /sys/bus/usb/⋯
/text (hex)

5. Set the decimal places. The device has either 6 or 8 decimal points. to set the
nth decimal place calculate 10 ** n and echo it in to /sys/bus/usb/⋯/decimals

87

Linux Usb Documentation

To set multiple decimals points sum up each power. For example, to set the
0th and 3rd decimal place echo 1001 > /sys/bus/usb/⋯/decimals

88 Chapter 15. USB 7-Segment Numeric Display

CHAPTER

SIXTEEN

MTOUCHUSB DRIVER

16.1 Changes

• 0.3 - Created based off of scanner & INSTALL from the original touchscreen
driver on freecode (http://freecode.com/projects/3mtouchscreendriver)

• Amended for linux-2.4.18, then 2.4.19

• 0.5 - Complete rewrite using Linux Input in 2.6.3 Unfortunately no calibration
support at this time

• 1.4 - Multiple changes to support the EXII 5000UC and house cleaning
Changed reset from standard USB dev reset to vendor reset Changed data
sent to host from compensated to raw coordinates Eliminated vendor/product
module params Performed multiple successful tests with an EXII-5010UC

16.2 Supported Hardware

All controllers have the Vendor: 0x0596 & Product: 0x0001

Controller Description Part Number
--

USB Capacitive - Pearl Case 14-205 (Discontinued)
USB Capacitive - Black Case 14-124 (Discontinued)
USB Capacitive - No Case 14-206 (Discontinued)

USB Capacitive - Pearl Case EXII-5010UC
USB Capacitive - Black Case EXII-5030UC
USB Capacitive - No Case EXII-5050UC

89

http://freecode.com/projects/3mtouchscreendriver

Linux Usb Documentation

16.3 Driver Notes

Installation is simple, you only need to add Linux Input, Linux USB, and the driver
to the kernel. The driver can also be optionally built as a module.

This driver appears to be one of possible 2 Linux USB Input Touchscreen drivers.
Although 3M produces a binary only driver available for download, I persist in
updating this driver since I would like to use the touchscreen for embedded apps
using QTEmbedded, DirectFB, etc. So I feel the logical choice is to use Linux
Input.

Currently there is no way to calibrate the device via this driver. Even if the device
could be calibrated, the driver pulls to raw coordinate data from the controller.
This means calibration must be performed within the userspace.

The controller screen resolution is now 0 to 16384 for both X and Y reporting the
raw touch data. This is the same for the old and new capacitive USB controllers.

Perhaps at some point an abstract function will be placed into evdev so generic
functions like calibrations, resets, and vendor information can be requested from
the userspace (And the drivers would handle the vendor specific tasks).

16.4 TODO

Implement a control urb again to handle requests to and from the device such as
calibration, etc once/if it becomes available.

16.5 Disclaimer

I am not a MicroTouch/3M employee, nor have I ever been. 3M does not support
this driver! If you want touch drivers only supported within X, please go to:

http://www.3m.com/3MTouchSystems/

16.6 Thanks

A huge thank you to 3MTouch Systems for the EXII-5010UC controllers for testing!

90 Chapter 16. mtouchusb driver

http://www.3m.com/3MTouchSystems/

CHAPTER

SEVENTEEN

OHCI

23-Aug-2002

The“ohci-hcd”driver is a USB Host Controller Driver (HCD) that is derived from
the “usb-ohci”driver from the 2.4 kernel series. The “usb-ohci”code was writ-
ten primarily by RomanWeissgaerber <weissg@vienna.at> but with contributions
from many others (read its copyright/licencing header).

It supports the“Open Host Controller Interface”(OHCI), which standardizes hard-
ware register protocols used to talk to USB 1.1 host controllers. As compared to
the earlier“Universal Host Controller Interface”(UHCI) from Intel, it pushes more
intelligence into the hardware. USB 1.1 controllers from vendors other than Intel
and VIA generally use OHCI.

Changes since the 2.4 kernel include

• improved robustness; bugfixes; and less overhead

• supports the updated and simplified usbcore APIs

• interrupt transfers can be larger, and can be queued

• less code, by using the upper level “hcd”framework
• supports some non-PCI implementations of OHCI

• ⋯more
The “ohci-hcd”driver handles all USB 1.1 transfer types. Transfers of all types
can be queued. That was also true in “usb-ohci”, except for interrupt transfers.
Previously, using periods of one frame would risk data loss due to overhead in IRQ
processing. When interrupt transfers are queued, those risks can be minimized by
making sure the hardware always has transfers to work on while the OS is getting
around to the relevant IRQ processing.

• David Brownell <dbrownell@users.sourceforge.net>

91

mailto:weissg@vienna.at
mailto:dbrownell@users.sourceforge.net

Linux Usb Documentation

92 Chapter 17. OHCI

CHAPTER

EIGHTEEN

USB RAW GADGET

USB Raw Gadget is a kernel module that provides a userspace interface for
the USB Gadget subsystem. Essentially it allows to emulate USB devices from
userspace. Enabled with CONFIG_USB_RAW_GADGET. Raw Gadget is currently
a strictly debugging feature and shouldn’t be used in production, use GadgetFS
instead.

18.1 Comparison to GadgetFS

RawGadget is similar to GadgetFS, but provides amore low-level and direct access
to the USB Gadget layer for the userspace. The key differences are:

1. Every USB request is passed to the userspace to get a response, while Gad-
getFS responds to some USB requests internally based on the provided de-
scriptors. However note, that the UDC driver might respond to some requests
on its own and never forward them to the Gadget layer.

2. GadgetFS performs some sanity checks on the provided USB descriptors,
while Raw Gadget allows you to provide arbitrary data as responses to USB
requests.

3. Raw Gadget provides a way to select a UDC device/driver to bind to, while
GadgetFS currently binds to the first available UDC.

4. Raw Gadget explicitly exposes information about endpoints addresses and
capabilities allowing a user to write UDC-agnostic gadgets.

5. Raw Gadget has ioctl-based interface instead of a filesystem-based one.

18.2 Userspace interface

To create a Raw Gadget instance open /dev/raw-gadget. Multiple raw-gadget in-
stances (bound to different UDCs) can be used at the same time. The interac-
tion with the opened file happens through the ioctl() calls, see comments in in-
clude/uapi/linux/usb/raw_gadget.h for details.

The typical usage of Raw Gadget looks like:

1. Open Raw Gadget instance via /dev/raw-gadget.

2. Initialize the instance via USB_RAW_IOCTL_INIT.

93

Linux Usb Documentation

3. Launch the instance with USB_RAW_IOCTL_RUN.

4. In a loop issue USB_RAW_IOCTL_EVENT_FETCH calls to receive events from
Raw Gadget and react to those depending on what kind of USB device needs
to be emulated.

Note, that some UDC drivers have fixed addresses assigned to endpoints,
and therefore arbitrary endpoint addresses can’t be used in the descrip-
tors. Nevertheles, Raw Gadget provides a UDC-agnostic way to write
USB gadgets. Once a USB_RAW_EVENT_CONNECT event is received via
USB_RAW_IOCTL_EVENT_FETCH, the USB_RAW_IOCTL_EPS_INFO ioctl can be
used to find out information about endpoints that the UDC driver has. Based on
that information, the user must chose UDC endpoints that will be used for the
gadget being emulated, and properly assign addresses in endpoint descriptors.

You can find usage examples (along with a test suite) here:

https://github.com/xairy/raw-gadget

18.3 Internal details

Currently every endpoint read/write ioctl submits a USB request and waits until
its completion. This is the desired mode for coverage-guided fuzzing (as we’d like
all USB request processing happen during the lifetime of a syscall), and must be
kept in the implementation. (This might be slow for real world applications, thus
the O_NONBLOCK improvement suggestion below.)

18.4 Potential future improvements

• Report more events (suspend, resume, etc.) through
USB_RAW_IOCTL_EVENT_FETCH.

• Support O_NONBLOCK I/O.

• Support USB 3 features (accept SS endpoint companion descriptor when en-
abling endpoints; allow providing stream_id for bulk transfers).

• Support ISO transfer features (expose frame_number for completed re-
quests).

94 Chapter 18. USB Raw Gadget

https://github.com/xairy/raw-gadget

CHAPTER

NINETEEN

USB/IP PROTOCOL

PRELIMINARY DRAFT, MAY CONTAIN MISTAKES! 28 Jun 2011

The USB/IP protocol follows a server/client architecture. The server exports the
USB devices and the clients imports them. The device driver for the exported USB
device runs on the client machine.

The client may ask for the list of the exported USB devices. To get the list the client
opens a TCP/IP connection towards the server, and sends an OP_REQ_DEVLIST
packet on top of the TCP/IP connection (so the actual OP_REQ_DEVLIST may be
sent in one or more pieces at the low level transport layer). The server sends back
the OP_REP_DEVLIST packet which lists the exported USB devices. Finally the
TCP/IP connection is closed.

virtual host controller usb host
"client" "server"

(imports USB devices) (exports USB devices)
| |
| OP_REQ_DEVLIST |
| --> |
| |
| OP_REP_DEVLIST |
| <-- |
| |

Once the client knows the list of exported USB devices it may decide to use one of
them. First the client opens a TCP/IP connection towards the server and sends an
OP_REQ_IMPORT packet. The server replies with OP_REP_IMPORT. If the import
was successful the TCP/IP connection remains open and will be used to transfer
the URB traffic between the client and the server. The client may send two types of
packets: the USBIP_CMD_SUBMIT to submit an URB, and USBIP_CMD_UNLINK
to unlink a previously submitted URB. The answers of the server may be US-
BIP_RET_SUBMIT and USBIP_RET_UNLINK respectively.

virtual host controller usb host
"client" "server"

(imports USB devices) (exports USB devices)
| |
| OP_REQ_IMPORT |
| --> |
| |
| OP_REP_IMPORT |
| <-- |

(continues on next page)

95

Linux Usb Documentation

(continued from previous page)
| |
| |
| USBIP_CMD_SUBMIT(seqnum = n) |
| --> |
| |
| USBIP_RET_SUBMIT(seqnum = n) |
| <-- |
| . |
| : |
| |
| USBIP_CMD_SUBMIT(seqnum = m) |
| --> |
| |
| USBIP_CMD_SUBMIT(seqnum = m+1) |
| --> |
| |
| USBIP_CMD_SUBMIT(seqnum = m+2) |
| --> |
| |
| USBIP_RET_SUBMIT(seqnum = m) |
| <-- |
| |
| USBIP_CMD_SUBMIT(seqnum = m+3) |
| --> |
| |
| USBIP_RET_SUBMIT(seqnum = m+1) |
| <-- |
| |
| USBIP_CMD_SUBMIT(seqnum = m+4) |
| --> |
| |
| USBIP_RET_SUBMIT(seqnum = m+2) |
| <-- |
| . |
| : |
| |
| USBIP_CMD_UNLINK |
| --> |
| |
| USBIP_RET_UNLINK |
| <-- |
| |

The fields are in network (big endian) byte order meaning that the most significant
byte (MSB) is stored at the lowest address.

OP_REQ_DEVLIST: Retrieve the list of exported USB devices.

Off-
set

Length Value Description

0 2 0x0100 Binary-coded decimal USBIP version number:
v1.0.0

2 2 0x8005 Command code: Retrieve the list of exported USB
devices.

4 4 0x00000000 Status: unused, shall be set to 0

96 Chapter 19. USB/IP protocol

Linux Usb Documentation

OP_REP_DEVLIST: Reply with the list of exported USB devices.

Offset LengthValue Description
0 2 0x0100Binary-coded decimal USBIP version number: v1.0.0.
2 2 0x0005Reply code: The list of exported USB devices.
4 4 0x00000000Status: 0 for OK
8 4 n Number of exported devices: 0means no exported devices.
0x0C From now on the exported n devices are described, if any.

If no devices are exported the message ends with the pre-
vious “number of exported devices”field.

256 path: Path of the device on the host exporting
the USB device, string closed with zero byte, e.g.
“/sys/devices/pci0000:00/0000:00:1d.1/usb3/3-2”The un-
used bytes shall be filled with zero bytes.

0x10C 32 busid: Bus ID of the exported device, string closed with
zero byte, e.g. “3-2”. The unused bytes shall be filled
with zero bytes.

0x12C 4 busnum
0x130 4 devnum
0x134 4 speed
0x138 2 idVendor
0x13A 2 idProduct
0x13C 2 bcdDevice
0x13E 1 bDeviceClass
0x13F 1 bDeviceSubClass
0x140 1 bDeviceProtocol
0x141 1 bConfigurationValue
0x142 1 bNumConfigurations
0x143 1 bNumInterfaces
0x144 m_0 From now on each interface is described, all together bN-

umInterfaces times, with the the following 4 fields:
1 bInterfaceClass

0x145 1 bInterfaceSubClass
0x146 1 bInterfaceProtocol
0x147 1 padding byte for alignment, shall be set to zero
0xC +
i*0x138
+ m_(i-
1)*4

The second exported USB device starts at i=1 with the
busid field.

OP_REQ_IMPORT: Request to import (attach) a remote USB device.

97

Linux Usb Documentation

Off-
set

LengthValue Description

0 2 0x0100Binary-coded decimal USBIP version number: v1.0.0
2 2 0x8003Command code: import a remote USB device.
4 4 0x00000000Status: unused, shall be set to 0
8 32 busid: the busid of the exported device on the remote

host. The possible values are taken from the message field
OP_REP_DEVLIST.busid. A string closed with zero, the unused
bytes shall be filled with zeros.

OP_REP_IMPORT: Reply to import (attach) a remote USB device.

98 Chapter 19. USB/IP protocol

Linux Usb Documentation

Offset Length Value Description
0 2 0x0100 Binary-coded

decimal USBIP
version number:
v1.0.0

2 2 0x0003 Reply code: Reply
to import.

4 4 0x00000000 Status:
• 0 for OK
• 1 for error

8 From now on
comes the details
of the imported
device, if the
previous status
field was OK (0),
otherwise the
reply ends with
the status field.

256 path: Path of the
device on the
host exporting
the USB device,
string closed with
zero byte, e.g.
“/sys/devices/pci0000:00/0000:00:1d.1/usb3/3-
2”The unused
bytes shall be
filled with zero
bytes.

0x108 32 busid: Bus ID
of the exported
device, string
closed with zero
byte, e.g. “3-2”.
The unused bytes
shall be filled with
zero bytes.

0x128 4 busnum
0x12C 4 devnum
0x130 4 speed
0x134 2 idVendor
0x136 2 idProduct
0x138 2 bcdDevice
0x139 1 bDeviceClass
0x13A 1 bDeviceSubClass
0x13B 1 bDeviceProtocol
0x13C 1 bConfigurationValue
0x13D 1 bNumConfigurations
0x13E 1 bNumInterfaces

99

Linux Usb Documentation

USBIP_CMD_SUBMIT: Submit an URB

Offset Length Value Description
0 4 0x00000001 command: Sub-

mit an URB
4 4 seqnum: the se-

quence number of
the URB to submit

8 4 devid
0xC 4 direction:

• 0: US-
BIP_DIR_OUT

• 1: US-
BIP_DIR_IN

0x10 4 ep: endpoint
number, possible
values are: 0⋯15

0x14 4 transfer_flags:
possible values
depend on the
URB transfer
type, see below

0x18 4 transfer_buffer_length
0x1C 4 start_frame:

specify the se-
lected frame to
transmit an ISO
frame, ignored if
URB_ISO_ASAP
is specified at
transfer_flags

0x20 4 number_of_packets:
number of ISO
packets

0x24 4 interval: maxi-
mum time for the
request on the
server-side host
controller

0x28 8 setup: data bytes
for USB setup,
filled with zeros if
not used

0x30 URB data. For
ISO transfers the
padding between
each ISO packets
is not transmitted.

100 Chapter 19. USB/IP protocol

Linux Usb Documentation

Allowed transfer_flags value con-
trol

inter-
rupt

bulk isochronous

URB_SHORT_NOT_OK 0x00000001only
in

only
in

only
in

no

URB_ISO_ASAP 0x00000002no no no yes
URB_NO_TRANSFER_DMA_MAP0x00000004yes yes yes yes
URB_ZERO_PACKET 0x00000040no no only

out
no

URB_NO_INTERRUPT 0x00000080yes yes yes yes
URB_FREE_BUFFER 0x00000100yes yes yes yes
URB_DIR_MASK 0x00000200yes yes yes yes

USBIP_RET_SUBMIT: Reply for submitting an URB

101

Linux Usb Documentation

Offset Length Value Description
0 4 0x00000003 command
4 4 seqnum: URB se-

quence number
8 4 devid
0xC 4 direction:

• 0: US-
BIP_DIR_OUT

• 1: US-
BIP_DIR_IN

0x10 4 ep: endpoint
number

0x14 4 status: zero for
successful URB
transaction, oth-
erwise some
kind of error
happened.

0x18 4 n actual_length:
number of URB
data bytes

0x1C 4 start_frame: for
an ISO frame the
actually selected
frame for trans-
mit.

0x20 4 number_of_packets
0x24 4 error_count
0x28 8 setup: data bytes

for USB setup,
filled with zeros if
not used

0x30 n URB data bytes.
For ISO transfers
the padding be-
tween each ISO
packets is not
transmitted.

USBIP_CMD_UNLINK: Unlink an URB

102 Chapter 19. USB/IP protocol

Linux Usb Documentation

Offset Length Value Description
0 4 0x00000002 command: URB

unlink command
4 4 seqnum: URB se-

quence number to
unlink:
FIXME: is this

so?

8 4 devid
0xC 4 direction:

• 0: US-
BIP_DIR_OUT

• 1: US-
BIP_DIR_IN

0x10 4 ep: endpoint
number: zero

0x14 4 seqnum: the
URB sequence
number given
previously at US-
BIP_CMD_SUBMIT.seqnum
field

0x30 n URB data bytes.
For ISO transfers
the padding be-
tween each ISO
packets is not
transmitted.

USBIP_RET_UNLINK: Reply for URB unlink

103

Linux Usb Documentation

Offset Length Value Description
0 4 0x00000004 command: reply

for the URB un-
link command

4 4 seqnum: the
unlinked URB
sequence number

8 4 devid
0xC 4 direction:

• 0: US-
BIP_DIR_OUT

• 1: US-
BIP_DIR_IN

0x10 4 ep: endpoint
number

0x14 4 status: This is the
value contained in
the urb->status in
the URB completi-
tion handler.
FIXME: a better

explanation
needed.

0x30 n URB data bytes.
For ISO transfers
the padding be-
tween each ISO
packets is not
transmitted.

104 Chapter 19. USB/IP protocol

CHAPTER

TWENTY

USBMON

20.1 Introduction

The name “usbmon”in lowercase refers to a facility in kernel which is used to
collect traces of I/O on the USB bus. This function is analogous to a packet socket
used by network monitoring tools such as tcpdump(1) or Ethereal. Similarly, it is
expected that a tool such as usbdump or USBMon (with uppercase letters) is used
to examine raw traces produced by usbmon.

The usbmon reports requests made by peripheral-specific drivers to Host Con-
troller Drivers (HCD). So, if HCD is buggy, the traces reported by usbmon may
not correspond to bus transactions precisely. This is the same situation as with
tcpdump.

Two APIs are currently implemented: “text”and “binary”. The binary API is
available through a character device in /dev namespace and is an ABI. The text
API is deprecated since 2.6.35, but available for convenience.

20.2 How to use usbmon to collect raw text traces

Unlike the packet socket, usbmon has an interface which provides traces in a text
format. This is used for two purposes. First, it serves as a common trace exchange
format for tools while more sophisticated formats are finalized. Second, humans
can read it in case tools are not available.

To collect a raw text trace, execute following steps.

20.2.1 1. Prepare

Mount debugfs (it has to be enabled in your kernel configuration), and load the
usbmon module (if built as module). The second step is skipped if usbmon is built
into the kernel:

mount -t debugfs none_debugs /sys/kernel/debug
modprobe usbmon
#

Verify that bus sockets are present:

105

Linux Usb Documentation

ls /sys/kernel/debug/usb/usbmon 0s 0u 1s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t
4u #

Now you can choose to either use the socket‘0u’(to capture packets on all buses),
and skip to step #3, or find the bus used by your device with step #2. This allows
to filter away annoying devices that talk continuously.

20.2.2 2. Find which bus connects to the desired device

Run “cat /sys/kernel/debug/usb/devices”, and find the T-line which corresponds
to the device. Usually you do it by looking for the vendor string. If you have many
similar devices, unplug one and compare the two /sys/kernel/debug/usb/devices
outputs. The T-line will have a bus number.

Example:

T: Bus=03 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0557 ProdID=2004 Rev= 1.00
S: Manufacturer=ATEN
S: Product=UC100KM V2.00

“Bus=03”means it’s bus 3. Alternatively, you can look at the output from“lsusb”
and get the bus number from the appropriate line. Example:

Bus 003 Device 002: ID 0557:2004 ATEN UC100KM V2.00

20.2.3 3. Start ‘cat’

cat /sys/kernel/debug/usb/usbmon/3u > /tmp/1.mon.out

to listen on a single bus, otherwise, to listen on all buses, type:

cat /sys/kernel/debug/usb/usbmon/0u > /tmp/1.mon.out

This process will read until it is killed. Naturally, the output can be redirected to
a desirable location. This is preferred, because it is going to be quite long.

20.2.4 4. Perform the desired operation on the USB bus

This is where you do something that creates the traffic: plug in a flash key, copy
files, control a webcam, etc.

106 Chapter 20. usbmon

Linux Usb Documentation

20.2.5 5. Kill cat

Usually it’s done with a keyboard interrupt (Control-C).
At this point the output file (/tmp/1.mon.out in this example) can be saved, sent by
e-mail, or inspected with a text editor. In the last case make sure that the file size
is not excessive for your favourite editor.

20.3 Raw text data format

Two formats are supported currently: the original, or ‘1t’format, and the ‘1u’
format. The‘1t’format is deprecated in kernel 2.6.21. The‘1u’format adds a
few fields, such as ISO frame descriptors, interval, etc. It produces slightly longer
lines, but otherwise is a perfect superset of ‘1t’format.
If it is desired to recognize one from the other in a program, look at the“address”
word (see below), where‘1u’format adds a bus number. If 2 colons are present,
it’s the ‘1t’format, otherwise ‘1u’.
Any text format data consists of a stream of events, such as URB submission, URB
callback, submission error. Every event is a text line, which consists of whitespace
separated words. The number or position of words may depend on the event type,
but there is a set of words, common for all types.

Here is the list of words, from left to right:

• URB Tag. This is used to identify URBs, and is normally an in-kernel address
of the URB structure in hexadecimal, but can be a sequence number or any
other unique string, within reason.

• Timestamp in microseconds, a decimal number. The timestamp’s resolution
depends on available clock, and so it can be much worse than a microsecond
(if the implementation uses jiffies, for example).

• Event Type. This type refers to the format of the event, not URB type. Avail-
able types are: S - submission, C - callback, E - submission error.

•“Address”word (formerly a “pipe”). It consists of four fields, separated by
colons: URB type and direction, Bus number, Device address, Endpoint num-
ber. Type and direction are encoded with two bytes in the following manner:

Ci Co Control input and output
Zi Zo Isochronous input and output
Ii Io Interrupt input and output
Bi Bo Bulk input and output

Bus number, Device address, and Endpoint are decimal numbers, but they
may have leading zeros, for the sake of human readers.

• URB Status word. This is either a letter, or several numbers separated by
colons: URB status, interval, start frame, and error count. Unlike the “ad-
dress”word, all fields save the status are optional. Interval is printed only for
interrupt and isochronous URBs. Start frame is printed only for isochronous
URBs. Error count is printed only for isochronous callback events.

20.3. Raw text data format 107

Linux Usb Documentation

The status field is a decimal number, sometimes negative, which represents
a“status”field of the URB. This field makes no sense for submissions, but is
present anyway to help scripts with parsing. When an error occurs, the field
contains the error code.

In case of a submission of a Control packet, this field contains a Setup Tag
instead of an group of numbers. It is easy to tell whether the Setup Tag is
present because it is never a number. Thus if scripts find a set of numbers in
this word, they proceed to read Data Length (except for isochronous URBs).
If they find something else, like a letter, they read the setup packet before
reading the Data Length or isochronous descriptors.

• Setup packet, if present, consists of 5 words: one of each for bmRequestType,
bRequest, wValue, wIndex, wLength, as specified by the USB Specification
2.0. These words are safe to decode if Setup Tag was ‘s’. Otherwise, the
setup packet was present, but not captured, and the fields contain filler.

• Number of isochronous frame descriptors and descriptors themselves. If an
Isochronous transfer event has a set of descriptors, a total number of them in
an URB is printed first, then a word per descriptor, up to a total of 5. The word
consists of 3 colon-separated decimal numbers for status, offset, and length
respectively. For submissions, initial length is reported. For callbacks, actual
length is reported.

• Data Length. For submissions, this is the requested length. For callbacks,
this is the actual length.

• Data tag. The usbmon may not always capture data, even if length is nonzero.
The data words are present only if this tag is ‘=’.

• Data words follow, in big endian hexadecimal format. Notice that they are not
machine words, but really just a byte stream split into words to make it easier
to read. Thus, the last word may contain from one to four bytes. The length
of collected data is limited and can be less than the data length reported in
the Data Length word. In the case of an Isochronous input (Zi) completion
where the received data is sparse in the buffer, the length of the collected
data can be greater than the Data Length value (because Data Length counts
only the bytes that were received whereas the Data words contain the entire
transfer buffer).

Examples:

An input control transfer to get a port status:

d5ea89a0 3575914555 S Ci:1:001:0 s a3 00 0000 0003 0004 4 <
d5ea89a0 3575914560 C Ci:1:001:0 0 4 = 01050000

An output bulk transfer to send a SCSI command 0x28 (READ_10) in a 31-byte
Bulk wrapper to a storage device at address 5:

dd65f0e8 4128379752 S Bo:1:005:2 -115 31 = 55534243 ad000000 00800000␣
↪→80010a28 20000000 20000040 00000000 000000
dd65f0e8 4128379808 C Bo:1:005:2 0 31 >

108 Chapter 20. usbmon

Linux Usb Documentation

20.4 Raw binary format and API

The overall architecture of the API is about the same as the one above, only the
events are delivered in binary format. Each event is sent in the following structure
(its name is made up, so that we can refer to it):

struct usbmon_packet {
u64 id; /* 0: URB ID - from submission to callback␣

↪→*/
unsigned char type; /* 8: Same as text; extensible. */
unsigned char xfer_type; /* ISO (0), Intr, Control, Bulk (3) */
unsigned char epnum; /* Endpoint number and transfer␣

↪→direction */
unsigned char devnum; /* Device address */
u16 busnum; /* 12: Bus number */
char flag_setup; /* 14: Same as text */
char flag_data; /* 15: Same as text; Binary zero is OK. */
s64 ts_sec; /* 16: gettimeofday */
s32 ts_usec; /* 24: gettimeofday */
int status; /* 28: */
unsigned int length; /* 32: Length of data (submitted or actual)␣

↪→*/
unsigned int len_cap; /* 36: Delivered length */
union { /* 40: */

unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
struct iso_rec { /* Only for ISO */

int error_count;
int numdesc;

} iso;
} s;
int interval; /* 48: Only for Interrupt and ISO */
int start_frame; /* 52: For ISO */
unsigned int xfer_flags; /* 56: copy of URB's transfer_flags */
unsigned int ndesc; /* 60: Actual number of ISO descriptors */

}; /* 64 total length */

These events can be received from a character device by reading with read(2),
with an ioctl(2), or by accessing the buffer with mmap. However, read(2) only
returns first 48 bytes for compatibility reasons.

The character device is usually called /dev/usbmonN, where N is the USB bus
number. Number zero (/dev/usbmon0) is special and means “all buses”. Note
that specific naming policy is set by your Linux distribution.

If you create /dev/usbmon0 by hand, make sure that it is owned by root and has
mode 0600. Otherwise, unprivileged users will be able to snoop keyboard traffic.

The following ioctl calls are available, with MON_IOC_MAGIC 0x92:

MON_IOCQ_URB_LEN, defined as _IO(MON_IOC_MAGIC, 1)

This call returns the length of data in the next event. Note that majority of events
contain no data, so if this call returns zero, it does not mean that no events are
available.

MON_IOCG_STATS, defined as _IOR(MON_IOC_MAGIC, 3, struct
mon_bin_stats)

20.4. Raw binary format and API 109

Linux Usb Documentation

The argument is a pointer to the following structure:

struct mon_bin_stats {
u32 queued;
u32 dropped;

};

The member “queued”refers to the number of events currently queued in the
buffer (and not to the number of events processed since the last reset).

The member “dropped”is the number of events lost since the last call to
MON_IOCG_STATS.

MON_IOCT_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 4)

This call sets the buffer size. The argument is the size in bytes. The size may be
rounded down to the next chunk (or page). If the requested size is out of [unspec-
ified] bounds for this kernel, the call fails with -EINVAL.

MON_IOCQ_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 5)

This call returns the current size of the buffer in bytes.

MON_IOCX_GET, defined as _IOW(MON_IOC_MAGIC, 6, struct
mon_get_arg) MON_IOCX_GETX, defined as _IOW(MON_IOC_MAGIC,
10, struct mon_get_arg)

These calls wait for events to arrive if none were in the kernel buffer, then return
the first event. The argument is a pointer to the following structure:

struct mon_get_arg {
struct usbmon_packet *hdr;
void *data;
size_t alloc; /* Length of data (can be zero) */

};

Before the call, hdr, data, and alloc should be filled. Upon return, the area pointed
by hdr contains the next event structure, and the data buffer contains the data, if
any. The event is removed from the kernel buffer.

The MON_IOCX_GET copies 48 bytes to hdr area, MON_IOCX_GETX copies 64
bytes.

MON_IOCX_MFETCH, defined as _IOWR(MON_IOC_MAGIC, 7, struct
mon_mfetch_arg)

This ioctl is primarily used when the application accesses the buffer with mmap(2).
Its argument is a pointer to the following structure:

struct mon_mfetch_arg {
uint32_t *offvec; /* Vector of events fetched */
uint32_t nfetch; /* Number of events to fetch (out: fetched)␣

↪→*/
uint32_t nflush; /* Number of events to flush */

};

The ioctl operates in 3 stages.

110 Chapter 20. usbmon

Linux Usb Documentation

First, it removes and discards up to nflush events from the kernel buffer. The
actual number of events discarded is returned in nflush.

Second, it waits for an event to be present in the buffer, unless the pseudo- device
is open with O_NONBLOCK.

Third, it extracts up to nfetch offsets into the mmap buffer, and stores them into
the offvec. The actual number of event offsets is stored into the nfetch.

MON_IOCH_MFLUSH, defined as _IO(MON_IOC_MAGIC, 8)

This call removes a number of events from the kernel buffer. Its argument is the
number of events to remove. If the buffer contains fewer events than requested,
all events present are removed, and no error is reported. This works when no
events are available too.

FIONBIO

The ioctl FIONBIO may be implemented in the future, if there’s a need.
In addition to ioctl(2) and read(2), the special file of binary API can be polled with
select(2) and poll(2). But lseek(2) does not work.

• Memory-mapped access of the kernel buffer for the binary API

The basic idea is simple:

To prepare, map the buffer by getting the current size, then using mmap(2). Then,
execute a loop similar to the one written in pseudo-code below:

struct mon_mfetch_arg fetch;
struct usbmon_packet *hdr;
int nflush = 0;
for (;;) {

fetch.offvec = vec; // Has N 32-bit words
fetch.nfetch = N; // Or less than N
fetch.nflush = nflush;
ioctl(fd, MON_IOCX_MFETCH, &fetch); // Process errors, too
nflush = fetch.nfetch; // This many packets to flush when done
for (i = 0; i < nflush; i++) {

hdr = (struct ubsmon_packet *) &mmap_area[vec[i]];
if (hdr->type == '@') // Filler packet

continue;
caddr_t data = &mmap_area[vec[i]] + 64;
process_packet(hdr, data);

}
}

Thus, the main idea is to execute only one ioctl per N events.

Although the buffer is circular, the returned headers and data do not cross the end
of the buffer, so the above pseudo-code does not need any gathering.

20.4. Raw binary format and API 111

Linux Usb Documentation

112 Chapter 20. usbmon

CHAPTER

TWENTYONE

USB SERIAL

21.1 Introduction

The USB serial driver currently supports a number of different USB to
serial converter products, as well as some devices that use a serial in-
terface from userspace to talk to the device.

See the individual product section below for specific information about
the different devices.

21.2 Configuration

Currently the driver can handle up to 256 different serial interfaces at
one time.

The major number that the driver uses is 188 so to use the
driver, create the following nodes:

mknod /dev/ttyUSB0 c 188 0
mknod /dev/ttyUSB1 c 188 1
mknod /dev/ttyUSB2 c 188 2
mknod /dev/ttyUSB3 c 188 3

.

.

.
mknod /dev/ttyUSB254 c 188 254
mknod /dev/ttyUSB255 c 188 255

When the device is connected and recognized by the driver, the driver
will print to the system log, which node(s) the device has been bound to.

113

Linux Usb Documentation

21.3 Specific Devices Supported

21.3.1 ConnectTech WhiteHEAT 4 port converter

ConnectTech has been very forthcoming with information about their
device, including providing a unit to test with.

The driver is officially supported by Connect Tech Inc. http://www.
connecttech.com

For any questions or problems with this driver, please contact Connect
Tech’s Support Department at support@connecttech.com

21.3.2 HandSpring Visor, Palm USB, and Clié USB driver

This driver works with all HandSpring USB, Palm USB, and Sony Clié
USB devices.

Only when the device tries to connect to the host, will the device show
up to the host as a valid USB device. When this happens, the device is
properly enumerated, assigned a port, and then communication _should_
be possible. The driver cleans up properly when the device is removed,
or the connection is canceled on the device.

NOTE: This means that in order to talk to the device, the sync button
must be pressed BEFORE trying to get any program to communicate
to the device. This goes against the current documentation for pilot-
xfer and other packages, but is the only way that it will work due to
the hardware in the device.

When the device is connected, try talking to it on the second port (this
is usually /dev/ttyUSB1 if you do not have any other usb-serial devices
in the system.) The system log should tell you which port is the port to
use for the HotSync transfer. The“Generic”port can be used for other
device communication, such as a PPP link.

For some Sony Clié devices, /dev/ttyUSB0 must be used to talk to the
device. This is true for all OS version 3.5 devices, and most devices that
have had a flash upgrade to a newer version of the OS. See the kernel
system log for information on which is the correct port to use.

If after pressing the sync button, nothing shows up in the system log, try
resetting the device, first a hot reset, and then a cold reset if necessary.
Some devices need this before they can talk to the USB port properly.

Devices that are not compiled into the kernel can be specified with mod-
ule parameters. e.g. modprobe visor vendor=0x54c product=0x66

There is a webpage and mailing lists for this portion of the driver at:
http://sourceforge.net/projects/usbvisor/

For any questions or problems with this driver, please contact Greg
Kroah-Hartman at greg@kroah.com

114 Chapter 21. USB serial

http://www.connecttech.com
http://www.connecttech.com
mailto:support@connecttech.com
http://sourceforge.net/projects/usbvisor/
mailto:greg@kroah.com

Linux Usb Documentation

21.3.3 PocketPC PDA Driver

This driver can be used to connect to Compaq iPAQ, HP Jornada, Ca-
sio EM500 and other PDAs running Windows CE 3.0 or PocketPC 2002
using a USB cable/cradle. Most devices supported by ActiveSync are
supported out of the box. For others, please use module parameters to
specify the product and vendor id. e.g. modprobe ipaq vendor=0x3f0
product=0x1125

The driver presents a serial interface (usually on /dev/ttyUSB0) over
which one may run ppp and establish a TCP/IP link to the PDA. Once
this is done, you can transfer files, backup, download email etc. The
most significant advantage of using USB is speed - I can get 73 to 113
kbytes/sec for download/upload to my iPAQ.

This driver is only one of a set of components required to utilize the USB
connection. Please visit http://synce.sourceforge.net which contains the
necessary packages and a simple step-by-step howto.

Once connected, you can use Win CE programs like ftpView, Pocket Out-
look from the PDA and xcerdisp, synce utilities from the Linux side.

To use Pocket IE, follow the instructions given at http://www.tekguru.
co.uk/EM500/usbtonet.htm to achieve the same thing on Win98. Omit
the proxy server part; Linux is quite capable of forwarding pack-
ets unlike Win98. Another modification is required at least for the
iPAQ - disable autosync by going to the Start/Settings/Connections
menu and unchecking the “Automatically synchronize ⋯”box. Go to
Start/Programs/Connections, connect the cable and select“usbdial”(or
whatever you named your new USB connection). You should finally wind
upwith a“Connected to usbdial”windowwith status shown as connected.
Now start up PIE and browse away.

If it doesn’t work for some reason, load both the usbserial and ipaq
module with the module parameter “debug”set to 1 and examine the
system log. You can also try soft-resetting your PDA before attempting
a connection.

Other functionality may be possible depending on your PDA. Accord-
ing to Wes Cilldhaire <billybobjoehenrybob@hotmail.com>, with the
Toshiba E570, ⋯if you boot into the bootloader (hold down the power
when hitting the reset button, continuing to hold onto the power until
the bootloader screen is displayed), then put it in the cradle with the ipaq
driver loaded, open a terminal on /dev/ttyUSB0, it gives you a“USB Re-
flash”terminal, which can be used to flash the ROM, as well as themicroP
code.. so much for needing Toshiba’s $350 serial cable for flashing!! :D
NOTE: This has NOT been tested. Use at your own risk.

For any questions or problems with the driver, please contact Ganesh
Varadarajan <ganesh@veritas.com>

21.3. Specific Devices Supported 115

http://synce.sourceforge.net
http://www.tekguru.co.uk/EM500/usbtonet.htm
http://www.tekguru.co.uk/EM500/usbtonet.htm
mailto:billybobjoehenrybob@hotmail.com
mailto:ganesh@veritas.com

Linux Usb Documentation

21.3.4 Keyspan PDA Serial Adapter

Single port DB-9 serial adapter, pushed as a PDA adapter for iMacs
(mostly sold in Macintosh catalogs, comes in a translucent white/green
dongle). Fairly simple device. Firmware is homebrew. This driver also
works for the Xircom/Entrega single port serial adapter.

Current status:

Things that work:
• basic input/output (tested with ‘cu’)
• blocking write when serial line can’t keep up
• changing baud rates (up to 115200)

• getting/setting modem control pins (TI-
OCM{GET,SET,BIS,BIC})

• sending break (although duration looks suspect)

Things that don’t:
• device strings (as logged by kernel) have trailing binary
garbage

• device ID isn’t right, might collide with other Keyspan
products

• changing baud rates ought to flush tx/rx to avoid man-
gled half characters

Big Things on the todo list:
• parity, 7 vs 8 bits per char, 1 or 2 stop bits

• HW flow control

• not all of the standard USB descriptors are handled:
Get_Status, Set_Feature, O_NONBLOCK, select()

For any questions or problems with this driver, please contact Brian
Warner at warner@lothar.com

21.3.5 Keyspan USA-series Serial Adapters

Single, Dual and Quad port adapters - driver uses Keyspan supplied
firmware and is being developed with their support.

Current status:

The USA-18X, USA-28X, USA-19, USA-19W and USA-49W are
supported and have been pretty thoroughly tested at various
baud rates with 8-N-1 character settings. Other character
lengths and parity setups are presently untested.

The USA-28 isn’t yet supported though doing so should be
pretty straightforward. Contact the maintainer if you require
this functionality.

116 Chapter 21. USB serial

mailto:warner@lothar.com

Linux Usb Documentation

More information is available at:

http://www.carnationsoftware.com/carnation/Keyspan.html

For any questions or problems with this driver, please contact Hugh
Blemings at hugh@misc.nu

21.3.6 FTDI Single Port Serial Driver

This is a single port DB-25 serial adapter.

Devices supported include:

• TripNav TN-200 USB GPS

• Navis Engineering Bureau CH-4711 USB GPS

For any questions or problems with this driver, please contact Bill Ryder.

21.3.7 ZyXEL omni.net lcd plus ISDN TA

This is an ISDN TA. Please report both successes and troubles to
azummo@towertech.it

21.3.8 Cypress M8 CY4601 Family Serial Driver

This driver was in most part developed by Neil “koyama”Whelchel. It
has been improved since that previous form to support dynamic serial
line settings and improved line handling. The driver is for the most part
stable and has been tested on an smp machine. (dual p2)

Chipsets supported under CY4601 family:

CY7C63723, CY7C63742, CY7C63743, CY7C64013

Devices supported:

• DeLorme’s USB Earthmate GPS (SiRF Star II
lp arch)

• Cypress HID->COM RS232 adapter

Note: Cypress Semiconductor claims no affilia-
tion with the hid->com device.

Most devices using chipsets under the CY4601 family
should work with the driver. As long as they stay true to
the CY4601 usbserial specification.

Technical notes:

The Earthmate starts out at 4800 8N1 by default⋯the
driver will upon start init to this setting. usbserial core
provides the rest of the termios settings, along with
some custom termios so that the output is in proper for-
mat and parsable.

21.3. Specific Devices Supported 117

http://www.carnationsoftware.com/carnation/Keyspan.html
mailto:hugh@misc.nu
mailto:azummo@towertech.it

Linux Usb Documentation

The device can be put into sirf mode by issuing NMEA
command:

$PSRF100,<protocol>,<baud>,<databits>,<stopbits>,
↪→<parity>*CHECKSUM
$PSRF100,0,9600,8,1,0*0C

It should then be sufficient to change the port␣
↪→termios to match this
to begin communicating.

As far as I can tell it supports pretty much every sirf
command as documented online available with firmware
2.31, with some unknown message ids.

The hid->com adapter can run at a maximum baud of
115200bps. Please note that the device has trouble or
is incapable of raising line voltage properly. It will be
fine with null modem links, as long as you do not try to
link two together without hacking the adapter to set the
line high.

The driver is smp safe. Performance with the driver is
rather lowwhen using it for transferring files. This is be-
ing worked on, but I would be willing to accept patches.
An urb queue or packet buffer would likely fit the bill
here.

If you have any questions, problems, patches, feature
requests, etc. you can contact me here via email:

dignome@gmail.com

(your problems/patches can alternately be sub-
mitted to usb-devel)

21.3.9 Digi AccelePort Driver

This driver supports the Digi AccelePort USB 2 and 4 devices, 2 port
(plus a parallel port) and 4 port USB serial converters. The driver does
NOT yet support the Digi AccelePort USB 8.

This driver works under SMP with the usb-uhci driver. It does not work
under SMP with the uhci driver.

The driver is generally working, though we still have a few more ioctls
to implement and final testing and debugging to do. The parallel port on
the USB 2 is supported as a serial to parallel converter; in other words,
it appears as another USB serial port on Linux, even though physically it
is really a parallel port. The Digi Acceleport USB 8 is not yet supported.

Please contact Peter Berger (pberger@brimson.com) or Al Borchers (al-
borchers@steinerpoint.com) for questions or problems with this driver.

118 Chapter 21. USB serial

mailto:dignome@gmail.com
mailto:pberger@brimson.com
mailto:alborchers@steinerpoint.com
mailto:alborchers@steinerpoint.com

Linux Usb Documentation

21.3.10 Belkin USB Serial Adapter F5U103

Single port DB-9/PS-2 serial adapter from Belkin with firmware by eTEK
Labs. The Peracom single port serial adapter also works with this driver,
as well as the GoHubs adapter.

Current status:

The following have been tested and work:

• Baud rate 300-230400

• Data bits 5-8

• Stop bits 1-2

• Parity N,E,O,M,S

• Handshake None, Software (XON/XOFF), Hardware (CT-
SRTS,CTSDTR)1

• Break Set and clear

• Line control Input/Output query and control2

TO DO List:
• Add true modem control line query capability. Currently tracks
the states reported by the interrupt and the states requested.

• Add error reporting back to application for UART error condi-
tions.

• Add support for flush ioctls.

• Add everything else that is missing :)

For any questions or problems with this driver, please contact William
Greathouse at wgreathouse@smva.com

21.3.11 Empeg empeg-car Mark I/II Driver

This is an experimental driver to provide connectivity support for the
client synchronization tools for an Empeg empeg-car mp3 player.

Tips:
• Don’t forget to create the device nodes for ttyUSB{0,1,2,⋯}
• modprobe empeg (modprobe is your friend)

• emptool –usb /dev/ttyUSB0 (or whatever you named your device
node)

1 Hardware input flow control is only enabled for firmware levels above 2.06. Read source
code comments describing Belkin firmware errata. Hardware output flow control is working for
all firmware versions.

2 Queries of inputs (CTS,DSR,CD,RI) show the last reported state. Queries of outputs (DTR,RTS)
show the last requested state and may not reflect current state as set by automatic hardware flow
control.

21.3. Specific Devices Supported 119

mailto:wgreathouse@smva.com

Linux Usb Documentation

For any questions or problems with this driver, please contact Gary
Brubaker at xavyer@ix.netcom.com

21.3.12 MCT USB Single Port Serial Adapter U232

This driver is for the MCT USB-RS232 Converter (25 pin, Model No.
U232-P25) from Magic Control Technology Corp. (there is also a 9 pin
Model No. U232-P9). More information about this device can be found
at the manufacturer’s web-site: http://www.mct.com.tw.
The driver is generally working, though it still needs some more testing.
It is derived from the Belkin USB Serial Adapter F5U103 driver and its
TODO list is valid for this driver as well.

This driver has also been found to work for other products, which have
the same Vendor ID but different Product IDs. Sitecom’s U232-P25
serial converter uses Product ID 0x230 and Vendor ID 0x711 and works
with this driver. Also, D-Link’s DU-H3SP USB BAY also works with this
driver.

For any questions or problems with this driver, please contact Wolfgang
Grandegger at wolfgang@ces.ch

21.3.13 Inside Out Networks Edgeport Driver

This driver supports all devices made by Inside Out Networks, specifi-
cally the following models:

• Edgeport/4

• Rapidport/4

• Edgeport/4t

• Edgeport/2

• Edgeport/4i

• Edgeport/2i

• Edgeport/421

• Edgeport/21

• Edgeport/8

• Edgeport/8 Dual

• Edgeport/2D8

• Edgeport/4D8

• Edgeport/8i

• Edgeport/2 DIN

• Edgeport/4 DIN

• Edgeport/16 Dual

120 Chapter 21. USB serial

mailto:xavyer@ix.netcom.com
http://www.mct.com.tw
mailto:wolfgang@ces.ch

Linux Usb Documentation

For any questions or problems with this driver, please contact Greg
Kroah-Hartman at greg@kroah.com

21.3.14 REINER SCT cyberJack pinpad/e-com USB chipcard reader

Interface to ISO 7816 compatible contactbased chipcards, e.g. GSM
SIMs.

Current status:

This is the kernel part of the driver for this USB card reader.
There is also a user part for a CT-API driver available. A site
for downloading is TBA. For now, you can request it from the
maintainer (linux-usb@sii.li).

For any questions or problems with this driver, please contact linux-
usb@sii.li

21.3.15 Prolific PL2303 Driver

This driver supports any device that has the PL2303 chip from Prolific in
it. This includes a number of single port USB to serial converters, more
than 70% of USB GPS devices (in 2010), and some USB UPSes. Devices
from Aten (the UC-232) and IO-Data work with this driver, as does the
DCU-11 mobile-phone cable.

For any questions or problems with this driver, please contact Greg
Kroah-Hartman at greg@kroah.com

21.3.16 KL5KUSB105 chipset / PalmConnect USB single-port
adapter

Current status:

The driver was put together by looking at the usb bus transactions done
by Palm’s driver under Windows, so a lot of functionality is still miss-
ing. Notably, serial ioctls are sometimes faked or not yet implemented.
Support for finding out about DSR and CTS line status is however im-
plemented (though not nicely), so your favorite autopilot(1) and pilot-
manager -daemon calls will work. Baud rates up to 115200 are sup-
ported, but handshaking (software or hardware) is not, which is why it
is wise to cut down on the rate used is wise for large transfers until this
is settled.

See http://www.uuhaus.de/linux/palmconnect.html for up-to-date infor-
mation on this driver.

21.3. Specific Devices Supported 121

mailto:greg@kroah.com
mailto:linux-usb@sii.li
mailto:linux-usb@sii.li
mailto:linux-usb@sii.li
mailto:greg@kroah.com
http://www.uuhaus.de/linux/palmconnect.html

Linux Usb Documentation

21.3.17 Winchiphead CH341 Driver

This driver is for the Winchiphead CH341 USB-RS232 Converter. This
chip also implements an IEEE 1284 parallel port, I2C and SPI, but that
is not supported by the driver. The protocol was analyzed from the be-
haviour of the Windows driver, no datasheet is available at present.

The manufacturer’s website: http://www.winchiphead.com/.
For any questions or problems with this driver, please contact
frank@kingswood-consulting.co.uk.

21.3.18 Moschip MCS7720, MCS7715 driver

These chips are present in devices sold by various manufacturers, such
as Syba and Cables Unlimited. There may be others. The 7720 provides
two serial ports, and the 7715 provides one serial and one standard PC
parallel port. Support for the 7715’s parallel port is enabled by a sep-
arate option, which will not appear unless parallel port support is first
enabled at the top-level of the Device Drivers config menu. Currently
only compatibility mode is supported on the parallel port (no ECP/EPP).

TODO:
• Implement ECP/EPP modes for the parallel port.

• Baud rates higher than 115200 are currently broken.

• Devices with a single serial port based on theMoschip MCS7703
may work with this driver with a simple addition to the
usb_device_id table. I don’t have one of these devices, so I
can’t say for sure.

21.3.19 Generic Serial driver

If your device is not one of the above listed devices, compatible with the
above models, you can try out the “generic”interface. This interface
does not provide any type of control messages sent to the device, and
does not support any kind of device flow control. All that is required of
your device is that it has at least one bulk in endpoint, or one bulk out
endpoint.

To enable the generic driver to recognize your device, provide:

echo <vid> <pid> >/sys/bus/usb-serial/drivers/generic/new_id

where the <vid> and <pid> is replaced with the hex representation of
your device’s vendor id and product id. If the driver is compiled as a
module you can also provide one id when loading the module:

insmod usbserial vendor=0x#### product=0x####

122 Chapter 21. USB serial

http://www.winchiphead.com/
mailto:frank@kingswood-consulting.co.uk

Linux Usb Documentation

This driver has been successfully used to connect to the NetChip USB
development board, providing a way to develop USB firmware without
having to write a custom driver.

For any questions or problems with this driver, please contact Greg
Kroah-Hartman at greg@kroah.com

21.4 Contact

If anyone has any problems using these drivers, with any of the above
specified products, please contact the specific driver’s author listed
above, or join the Linux-USB mailing list (information on joining the
mailing list, as well as a link to its searchable archive is at http://www.
linux-usb.org/)

Greg Kroah-Hartman greg@kroah.com

21.4. Contact 123

mailto:greg@kroah.com
http://www.linux-usb.org/
http://www.linux-usb.org/
mailto:greg@kroah.com

Linux Usb Documentation

124 Chapter 21. USB serial

CHAPTER

TWENTYTWO

USB REFERENCES

2008-Mar-7

For USB help other than the readme files that are located in Documentation/usb/*,
see the following:

• Linux-USB project: http://www.linux-usb.org mirrors at http://usb.in.tum.de/
linux-usb/ and http://it.linux-usb.org

• Linux USB Guide: http://linux-usb.sourceforge.net

• Linux-USB device overview (working devices and drivers): http://www.qbik.
ch/usb/devices/

The Linux-USB mailing list is at linux-usb@vger.kernel.org

125

http://www.linux-usb.org
http://usb.in.tum.de/linux-usb/
http://usb.in.tum.de/linux-usb/
http://it.linux-usb.org
http://linux-usb.sourceforge.net
http://www.qbik.ch/usb/devices/
http://www.qbik.ch/usb/devices/
mailto:linux-usb@vger.kernel.org

Linux Usb Documentation

126 Chapter 22. USB references

CHAPTER

TWENTYTHREE

LINUX CDC ACM INF

; Windows USB CDC ACM Setup File

; Based on INF template which was:
; Copyright (c) 2000 Microsoft Corporation
; Copyright (c) 2007 Microchip Technology Inc.
; likely to be covered by the MLPL as found at:
; <http://msdn.microsoft.com/en-us/cc300389.aspx#MLPL>.
; For use only on Windows operating systems.

[Version]
Signature="$Windows NT$"
Class=Ports
ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
Provider=%Linux%
DriverVer=11/15/2007,5.1.2600.0

[Manufacturer]
%Linux%=DeviceList, NTamd64

[DestinationDirs]
DefaultDestDir=12

;--
↪→----
; Windows 2000/XP/Vista-32bit Sections
;--
↪→----

[DriverInstall.nt]
include=mdmcpq.inf
CopyFiles=DriverCopyFiles.nt
AddReg=DriverInstall.nt.AddReg

[DriverCopyFiles.nt]
usbser.sys,,,0x20

[DriverInstall.nt.AddReg]
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,USBSER.sys
HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"

[DriverInstall.nt.Services]
(continues on next page)

127

Linux Usb Documentation

(continued from previous page)
AddService=usbser, 0x00000002, DriverService.nt

[DriverService.nt]
DisplayName=%SERVICE%
ServiceType=1
StartType=3
ErrorControl=1
ServiceBinary=%12%\USBSER.sys

;--
↪→----
; Vista-64bit Sections
;--
↪→----

[DriverInstall.NTamd64]
include=mdmcpq.inf
CopyFiles=DriverCopyFiles.NTamd64
AddReg=DriverInstall.NTamd64.AddReg

[DriverCopyFiles.NTamd64]
USBSER.sys,,,0x20

[DriverInstall.NTamd64.AddReg]
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,USBSER.sys
HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"

[DriverInstall.NTamd64.Services]
AddService=usbser, 0x00000002, DriverService.NTamd64

[DriverService.NTamd64]
DisplayName=%SERVICE%
ServiceType=1
StartType=3
ErrorControl=1
ServiceBinary=%12%\USBSER.sys

;--
↪→----
; Vendor and Product ID Definitions
;--
↪→----
; When developing your USB device, the VID and PID used in the PC side
; application program and the firmware on the microcontroller must match.
; Modify the below line to use your VID and PID. Use the format as shown
; below.
; Note: One INF file can be used for multiple devices with different
; VID and PIDs. For each supported device, append
; ",USB\VID_xxxx&PID_yyyy" to the end of the line.
;--
↪→----
[SourceDisksFiles]
[SourceDisksNames]
[DeviceList]

(continues on next page)

128 Chapter 23. Linux CDC ACM inf

Linux Usb Documentation

(continued from previous page)
%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&
↪→MI_02, USB\VID_1D6B&PID_0106&MI_00

[DeviceList.NTamd64]
%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&
↪→MI_02, USB\VID_1D6B&PID_0106&MI_00

;--
↪→----
; String Definitions
;--
↪→----
;Modify these strings to customize your device
;--
↪→----
[Strings]
Linux = "Linux Developer Community"
DESCRIPTION = "Gadget Serial"
SERVICE = "USB RS-232 Emulation Driver"

129

Linux Usb Documentation

130 Chapter 23. Linux CDC ACM inf

CHAPTER

TWENTYFOUR

LINUX INF

; Based on template INF file found at
; <http://msdn.microsoft.com/en-us/library/ff570620.aspx>
; which was:
; Copyright (c) Microsoft Corporation
; and released under the MLPL as found at:
; <http://msdn.microsoft.com/en-us/cc300389.aspx#MLPL>.
; For use only on Windows operating systems.

[Version]
Signature = "$Windows NT$"
Class = Net
ClassGUID = {4d36e972-e325-11ce-bfc1-08002be10318}
Provider = %Linux%
DriverVer = 06/21/2006,6.0.6000.16384

[Manufacturer]
%Linux% = LinuxDevices,NTx86,NTamd64,NTia64

; Decoration for x86 architecture
[LinuxDevices.NTx86]
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&
↪→PID_0104&MI_00

; Decoration for x64 architecture
[LinuxDevices.NTamd64]
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&
↪→PID_0104&MI_00

; Decoration for ia64 architecture
[LinuxDevices.NTia64]
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&
↪→PID_0104&MI_00

;@@@ This is the common setting for setup
[ControlFlags]
ExcludeFromSelect=*

; DDInstall section
; References the in-build Netrndis.inf
[RNDIS.NT.5.1]
Characteristics = 0x84 ; NCF_PHYSICAL + NCF_HAS_UI
BusType = 15
; NEVER REMOVE THE FOLLOWING REFERENCE FOR NETRNDIS.INF

(continues on next page)

131

Linux Usb Documentation

(continued from previous page)
include = netrndis.inf
needs = Usb_Rndis.ndi
AddReg = Rndis_AddReg_Vista

; DDInstal.Services section
[RNDIS.NT.5.1.Services]
include = netrndis.inf
needs = Usb_Rndis.ndi.Services

; Optional registry settings. You can modify as needed.
[RNDIS_AddReg_Vista]
HKR, NDI\params\VistaProperty, ParamDesc, 0, %Vista_Property%
HKR, NDI\params\VistaProperty, type, 0, "edit"
HKR, NDI\params\VistaProperty, LimitText, 0, "12"
HKR, NDI\params\VistaProperty, UpperCase, 0, "1"
HKR, NDI\params\VistaProperty, default, 0, " "
HKR, NDI\params\VistaProperty, optional, 0, "1"

; No sys copyfiles - the sys files are already in-build
; (part of the operating system).
; We do not support XP SP1-, 2003 SP1-, ME, 9x.

[Strings]
Linux = "Linux Developer Community"
LinuxDevice = "Linux USB Ethernet/RNDIS Gadget"
Vista_Property = "Optional Vista Property"

132 Chapter 24. Linux inf

CHAPTER

TWENTYFIVE

USB DEVFS DROP PERMISSIONS SOURCE

#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <inttypes.h>
#include <unistd.h>

#include <linux/usbdevice_fs.h>

/* For building without an updated set of headers */
#ifndef USBDEVFS_DROP_PRIVILEGES
#define USBDEVFS_DROP_PRIVILEGES _IOW('U', 30, __u32)
#define USBDEVFS_CAP_DROP_PRIVILEGES 0x40
#endif

void drop_privileges(int fd, uint32_t mask)
{

int res;

res = ioctl(fd, USBDEVFS_DROP_PRIVILEGES, &mask);
if (res)

printf("ERROR: USBDEVFS_DROP_PRIVILEGES returned %d\n",␣
↪→res);

else
printf("OK: privileges dropped!\n");

}

void reset_device(int fd)
{

int res;

res = ioctl(fd, USBDEVFS_RESET);
if (!res)

printf("OK: USBDEVFS_RESET succeeded\n");
else

printf("ERROR: reset failed! (%d - %s)\n",
-res, strerror(-res));

}

void claim_some_intf(int fd)
(continues on next page)

133

Linux Usb Documentation

(continued from previous page)
{

int i, res;

for (i = 0; i < 4; i++) {
res = ioctl(fd, USBDEVFS_CLAIMINTERFACE, &i);
if (!res)

printf("OK: claimed if %d\n", i);
else

printf("ERROR claiming if %d (%d - %s)\n",
i, -res, strerror(-res));

}
}

int main(int argc, char *argv[])
{

uint32_t mask, caps;
int c, fd;

fd = open(argv[1], O_RDWR);
if (fd < 0) {

printf("Failed to open file\n");
goto err_fd;

}

/*
* check if dropping privileges is supported,
* bail on systems where the capability is not present
*/

ioctl(fd, USBDEVFS_GET_CAPABILITIES, &caps);
if (!(caps & USBDEVFS_CAP_DROP_PRIVILEGES)) {

printf("DROP_PRIVILEGES not supported\n");
goto err;

}

/*
* Drop privileges but keep the ability to claim all
* free interfaces (i.e., those not used by kernel drivers)
*/

drop_privileges(fd, -1U);

printf("Available options:\n"
"[0] Exit now\n"
"[1] Reset device. Should fail if device is in use\n"
"[2] Claim 4 interfaces. Should succeed where not in use\n"
"[3] Narrow interface permission mask\n"
"Which option shall I run?: ");

while (scanf("%d", &c) == 1) {
switch (c) {
case 0:

goto exit;
case 1:

reset_device(fd);
break;

case 2:
claim_some_intf(fd);

(continues on next page)

134 Chapter 25. USB devfs drop permissions source

Linux Usb Documentation

(continued from previous page)
break;

case 3:
printf("Insert new mask: ");
scanf("%x", &mask);
drop_privileges(fd, mask);
break;

default:
printf("I don't recognize that\n");

}

printf("Which test shall I run next?: ");
}

exit:
close(fd);
return 0;

err:
close(fd);

err_fd:
return 1;

}

135

Linux Usb Documentation

136 Chapter 25. USB devfs drop permissions source

CHAPTER

TWENTYSIX

CREDITS

Credits for the Simple Linux USB Driver:

The following people have contributed to this code (in alphabetical
order by last name). I'm sure this list should be longer, its
difficult to maintain, add yourself with a patch if desired.

Georg Acher <acher@informatik.tu-muenchen.de>
David Brownell <dbrownell@users.sourceforge.net>
Alan Cox <alan@lxorguk.ukuu.org.uk>
Randy Dunlap <randy.dunlap@intel.com>
Johannes Erdfelt <johannes@erdfelt.com>
Deti Fliegl <deti@fliegl.de>
ham <ham@unsuave.com>
Bradley M Keryan <keryan@andrew.cmu.edu>
Greg Kroah-Hartman <greg@kroah.com>
Pavel Machek <pavel@suse.cz>
Paul Mackerras <paulus@cs.anu.edu.au>
Petko Manlolov <petkan@dce.bg>
David E. Nelson <dnelson@jump.net>
Vojtech Pavlik <vojtech@suse.cz>
Bill Ryder <bryder@sgi.com>
Thomas Sailer <sailer@ife.ee.ethz.ch>
Gregory P. Smith <greg@electricrain.com>
Linus Torvalds <torvalds@linux-foundation.org>
Roman Weissgaerber <weissg@vienna.at>
<Kazuki.Yasumatsu@fujixerox.co.jp>

Special thanks to:

Inaky Perez Gonzalez <inaky@peloncho.fis.ucm.es> for starting the
Linux USB driver effort and writing much of the larger uusbd␣

↪→driver.
Much has been learned from that effort.

The NetBSD & FreeBSD USB developers. For being on the Linux USB␣
↪→list
and offering suggestions and sharing implementation experiences.

Additional thanks to the following companies and people for␣

137

Linux Usb Documentation

↪→donations
of hardware, support, time and development (this is from the␣
↪→original
THANKS file in Inaky's driver):

The following corporations have helped us in the development
of Linux USB / UUSBD:

- 3Com GmbH for donating a ISDN Pro TA and supporting me
in technical questions and with test equipment. I'd never
expect such a great help.

- USAR Systems provided us with one of their excellent USB
Evaluation Kits. It allows us to test the Linux-USB driver
for compliance with the latest USB specification. USAR
Systems recognized the importance of an up-to-date open
Operating System and supports this project with
Hardware. Thanks!.

- Thanks to Intel Corporation for their precious help.

- We teamed up with Cherry to make Linux the first OS with
built-in USB support. Cherry is one of the biggest␣

↪→keyboard
makers in the world.

- CMD Technology, Inc. sponsored us kindly donating a␣
↪→CSA-6700

PCI-to-USB Controller Board to test the OHCI␣
↪→implementation.

- Due to their support to us, Keytronic can be sure that␣
↪→they

will sell keyboards to some of the 3 million (at least)
Linux users.

- Many thanks to ing büro h doran [http://www.ibhdoran.com]!
It was almost impossible to get a PC backplate USB␣

↪→connector
for the motherboard here at Europe (mine, home-made, was
quite lousy :). Now I know where to acquire nice USB␣

↪→stuff!

- Genius Germany donated a USB mouse to test the mouse boot
protocol. They've also donated a F-23 digital joystick␣

↪→and a
NetMouse Pro. Thanks!

- AVM GmbH Berlin is supporting the development of the Linux
USB driver for the AVM ISDN Controller B1 USB. AVM is a
leading manufacturer for active and passive ISDN␣

138 Chapter 26. Credits

Linux Usb Documentation

↪→Controllers
and CAPI 2.0-based software. The active design of the AVM␣

↪→B1
is open for all OS platforms, including Linux.

- Thanks to Y-E Data, Inc. for donating their FlashBuster-U
USB Floppy Disk Drive, so we could test the bulk transfer
code.

- Many thanks to Logitech for contributing a three axis USB
mouse.

Logitech designs, manufactures and markets
Human Interface Devices, having a long history and
experience in making devices such as keyboards, mice,
trackballs, cameras, loudspeakers and control devices for
gaming and professional use.

Being a recognized vendor and seller for all these␣
↪→devices,

they have donated USB mice, a joystick and a scanner, as a
way to acknowledge the importance of Linux and to allow
Logitech customers to enjoy support in their favorite
operating systems and all Linux users to use Logitech and
other USB hardware.

Logitech is official sponsor of the Linux Conference on
Feb. 11th 1999 in Vienna, where we'll will present the
current state of the Linux USB effort.

- CATC has provided means to uncover dark corners of the␣
↪→UHCI

inner workings with a USB Inspector.

- Thanks to Entrega for providing PCI to USB cards, hubs and
converter products for development.

- Thanks to ConnectTech for providing a WhiteHEAT usb to
serial converter, and the documentation for the device to
allow a driver to be written.

- Thanks to ADMtek for providing Pegasus and Pegasus II
evaluation boards, specs and valuable advices during
the driver development.

And thanks go to (hey! in no particular order :)

- Oren Tirosh <orenti@hishome.net>, for standing so␣
↪→patiently

all my doubts'bout USB and giving lots of cool ideas.

139

Linux Usb Documentation

- Jochen Karrer <karrer@wpfd25.physik.uni-wuerzburg.de>, for
pointing out mortal bugs and giving advice.

- Edmund Humemberger <ed@atnet.at>, for it's great work on
public relationships and general management stuff for the
Linux-USB effort.

- Alberto Menegazzi <flash@flash.iol.it> is starting the
documentation for the UUSBD. Go for it!

- Ric Klaren <ia_ric@cs.utwente.nl> for doing nice
introductory documents (competing with Alberto's :).

- Christian Groessler <cpg@aladdin.de>, for it's help on␣
↪→those

itchy bits ... :)

- Paul MacKerras for polishing OHCI and pushing me harder␣
↪→for

the iMac support, giving improvements and enhancements.

- Fernando Herrera <fherrera@eurielec.etsit.upm.es> has␣
↪→taken

charge of composing, maintaining and feeding the
long-awaited, unique and marvelous UUSBD FAQ! Tadaaaa!!!

- Rasca Gmelch <thron@gmx.de> has revived the raw driver and
pointed bugs, as well as started the uusbd-utils package.

- Peter Dettori <dettori@ozy.dec.com> is uncovering bugs␣
↪→like

crazy, as well as making cool suggestions, great :)

- All the Free Software and Linux community, the FSF & the␣
↪→GNU

project, the MIT X consortium, the TeX people ...␣
↪→everyone!

You know who you are!

- Big thanks to Richard Stallman for creating Emacs!

- The people at the linux-usb mailing list, for reading so
many messages :) Ok, no more kidding; for all your␣

↪→advises!

- All the people at the USB Implementors Forum for their
help and assistance.

- Nathan Myers <ncm@cantrip.org>, for his advice! (hope you
liked Cibeles' party).

140 Chapter 26. Credits

Linux Usb Documentation

- Linus Torvalds, for starting, developing and managing␣
↪→Linux.

- Mike Smith, Craig Keithley, Thierry Giron and Janet Schank
for convincing me USB Standard hubs are not that standard
and that's good to allow for vendor specific quirks on the
standard hub driver.

141

