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CHAPTER

ONE

FUNCTION TRACER DESIGN

Author Mike Frysinger

Caution: This document is out of date. Some of the description below doesn’
t match current implementation now.

1.1 Introduction

Here we will cover the architecture pieces that the common function tracing code
relies on for proper functioning. Things are broken down into increasing complex-
ity so that you can start simple and at least get basic functionality.

Note that this focuses on architecture implementation details only. If you want
more explanation of a feature in terms of common code, review the common
ftrace.txt file.

Ideally, everyone who wishes to retain performance while supporting tracing in
their kernel should make it all the way to dynamic ftrace support.

1.2 Prerequisites

Ftrace relies on these features being implemented:
• STACKTRACE_SUPPORT - implement save_stack_trace()

• TRACE_IRQFLAGS_SUPPORT - implement include/asm/irqflags.h

1.3 HAVE_FUNCTION_TRACER

You will need to implement the mcount and the ftrace_stub functions.

The exact mcount symbol name will depend on your toolchain. Some call it
“mcount”, “_mcount”, or even “__mcount”. You can probably figure it out
by running something like:

$ echo 'main(){}' | gcc -x c -S -o - - -pg | grep mcount
call mcount
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We’ll make the assumption below that the symbol is“mcount”just to keep things
nice and simple in the examples.

Keep in mind that the ABI that is in effect inside of the mcount function is highly
architecture/toolchain specific. We cannot help you in this regard, sorry. Dig up
some old documentation and/or find someone more familiar than you to bang ideas
off of. Typically, register usage (argument/scratch/etc⋯) is a major issue at this
point, especially in relation to the location of the mcount call (before/after function
prologue). You might also want to look at how glibc has implemented the mcount
function for your architecture. It might be (semi-)relevant.

The mcount function should check the function pointer ftrace_trace_function to
see if it is set to ftrace_stub. If it is, there is nothing for you to do, so return
immediately. If it isn’t, then call that function in the same way the mcount function
normally calls __mcount_internal – the first argument is the “frompc”while the
second argument is the “selfpc”(adjusted to remove the size of the mcount call
that is embedded in the function).

For example, if the function foo() calls bar(), when the bar() function calls mcount(),
the arguments mcount() will pass to the tracer are:

•“frompc”- the address bar() will use to return to foo()
•“selfpc”- the address bar() (with mcount() size adjustment)

Also keep inmind that this mcount function will be called a lot, so optimizing for the
default case of no tracer will help the smooth running of your system when tracing
is disabled. So the start of the mcount function is typically the bare minimum with
checking things before returning. That also means the code flow should usually
be kept linear (i.e. no branching in the nop case). This is of course an optimization
and not a hard requirement.

Here is some pseudo code that should help (these functions should actually be
implemented in assembly):

void ftrace_stub(void)
{

return;
}

void mcount(void)
{

/* save any bare state needed in order to do initial checking */

extern void (*ftrace_trace_function)(unsigned long, unsigned long);
if (ftrace_trace_function != ftrace_stub)

goto do_trace;

/* restore any bare state */

return;

do_trace:

/* save all state needed by the ABI (see paragraph above) */

unsigned long frompc = ...;
(continues on next page)
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(continued from previous page)
unsigned long selfpc = <return address> - MCOUNT_INSN_SIZE;
ftrace_trace_function(frompc, selfpc);

/* restore all state needed by the ABI */
}

Don’t forget to export mcount for modules !
extern void mcount(void);
EXPORT_SYMBOL(mcount);

1.4 HAVE_FUNCTION_GRAPH_TRACER

Deep breath⋯time to do some real work. Here you will need to update the mcount
function to check ftrace graph function pointers, as well as implement some func-
tions to save (hijack) and restore the return address.

Themcount function should check the function pointers ftrace_graph_return (com-
pare to ftrace_stub) and ftrace_graph_entry (compare to ftrace_graph_entry_stub).
If either of those is not set to the relevant stub function, call the arch-specific
function ftrace_graph_caller which in turn calls the arch-specific function pre-
pare_ftrace_return. Neither of these function names is strictly required, but you
should use them anyway to stay consistent across the architecture ports – easier
to compare & contrast things.

The arguments to prepare_ftrace_return are slightly different than what are
passed to ftrace_trace_function. The second argument “selfpc”is the same, but
the first argument should be a pointer to the “frompc”. Typically this is located
on the stack. This allows the function to hijack the return address temporarily
to have it point to the arch-specific function return_to_handler. That function will
simply call the common ftrace_return_to_handler function and that will return the
original return address with which you can return to the original call site.

Here is the updated mcount pseudo code:

void mcount(void)
{
...

if (ftrace_trace_function != ftrace_stub)
goto do_trace;

+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+ extern void (*ftrace_graph_return)(...);
+ extern void (*ftrace_graph_entry)(...);
+ if (ftrace_graph_return != ftrace_stub ||
+ ftrace_graph_entry != ftrace_graph_entry_stub)
+ ftrace_graph_caller();
+#endif

/* restore any bare state */
...

Here is the pseudo code for the new ftrace_graph_caller assembly function:

1.4. HAVE_FUNCTION_GRAPH_TRACER 3
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#ifdef CONFIG_FUNCTION_GRAPH_TRACER
void ftrace_graph_caller(void)
{

/* save all state needed by the ABI */

unsigned long *frompc = &...;
unsigned long selfpc = <return address> - MCOUNT_INSN_SIZE;
/* passing frame pointer up is optional -- see below */
prepare_ftrace_return(frompc, selfpc, frame_pointer);

/* restore all state needed by the ABI */
}
#endif

For information on how to implement prepare_ftrace_return(), simply look at the
x86 version (the frame pointer passing is optional; see the next section for more
information). The only architecture-specific piece in it is the setup of the fault re-
covery table (the asm(⋯) code). The rest should be the same across architectures.
Here is the pseudo code for the new return_to_handler assembly function. Note
that the ABI that applies here is different from what applies to the mcount code.
Since you are returning from a function (after the epilogue), you might be able to
skimp on things saved/restored (usually just registers used to pass return values).

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
void return_to_handler(void)
{

/* save all state needed by the ABI (see paragraph above) */

void (*original_return_point)(void) = ftrace_return_to_handler();

/* restore all state needed by the ABI */

/* this is usually either a return or a jump */
original_return_point();

}
#endif

1.5 HAVE_FUNCTION_GRAPH_FP_TEST

An arch may pass in a unique value (frame pointer) to both the entering and exiting
of a function. On exit, the value is compared and if it does not match, then it will
panic the kernel. This is largely a sanity check for bad code generation with gcc.
If gcc for your port sanely updates the frame pointer under different optimization
levels, then ignore this option.

However, adding support for it isn’t terribly difficult. In your assembly code that
calls prepare_ftrace_return(), pass the frame pointer as the 3rd argument. Then
in the C version of that function, do what the x86 port does and pass it along to
ftrace_push_return_trace() instead of a stub value of 0.

Similarly, when you call ftrace_return_to_handler(), pass it the frame pointer.
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1.6 HAVE_FUNCTION_GRAPH_RET_ADDR_PTR

An arch may pass in a pointer to the return address on the stack. This prevents po-
tential stack unwinding issues where the unwinder gets out of sync with ret_stack
and the wrong addresses are reported by ftrace_graph_ret_addr().

Adding support for it is easy: just define the macro in asm/ftrace.h and pass the
return address pointer as the ‘retp’argument to ftrace_push_return_trace().

1.7 HAVE_SYSCALL_TRACEPOINTS

You need very few things to get the syscalls tracing in an arch.

• Support HAVE_ARCH_TRACEHOOK (see arch/Kconfig).

• Have a NR_syscalls variable in <asm/unistd.h> that provides the number of
syscalls supported by the arch.

• Support the TIF_SYSCALL_TRACEPOINT thread flags.

• Put the trace_sys_enter() and trace_sys_exit() tracepoints calls from ptrace in
the ptrace syscalls tracing path.

• If the system call table on this arch is more complicated than a simple array
of addresses of the system calls, implement an arch_syscall_addr to return
the address of a given system call.

• If the symbol names of the system calls do not match the function names on
this arch, define ARCH_HAS_SYSCALL_MATCH_SYM_NAME in asm/ftrace.h
and implement arch_syscall_match_sym_name with the appropriate logic to
return true if the function name corresponds with the symbol name.

• Tag this arch as HAVE_SYSCALL_TRACEPOINTS.

1.8 HAVE_FTRACE_MCOUNT_RECORD

See scripts/recordmcount.pl for more info. Just fill in the arch-specific details for
how to locate the addresses of mcount call sites via objdump. This option doesn’
t make much sense without also implementing dynamic ftrace.

1.9 HAVE_DYNAMIC_FTRACE

You will first need HAVE_FTRACE_MCOUNT_RECORD and
HAVE_FUNCTION_TRACER, so scroll your reader back up if you got over
eager.

Once those are out of the way, you will need to implement:
• asm/ftrace.h:

– MCOUNT_ADDR
– ftrace_call_adjust()

1.6. HAVE_FUNCTION_GRAPH_RET_ADDR_PTR 5
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– struct dyn_arch_ftrace{}
• asm code:

– mcount() (new stub)
– ftrace_caller()
– ftrace_call()
– ftrace_stub()

• C code:
– ftrace_dyn_arch_init()
– ftrace_make_nop()
– ftrace_make_call()
– ftrace_update_ftrace_func()

First you will need to fill out some arch details in your asm/ftrace.h.

Define MCOUNT_ADDR as the address of your mcount symbol similar to:

#define MCOUNT_ADDR ((unsigned long)mcount)

Since no one else will have a decl for that function, you will need to:

extern void mcount(void);

You will also need the helper function ftrace_call_adjust(). Most people will be able
to stub it out like so:

static inline unsigned long ftrace_call_adjust(unsigned long addr)
{

return addr;
}

<details to be filled>

Lastly you will need the custom dyn_arch_ftrace structure. If you need some extra
state when runtime patching arbitrary call sites, this is the place. For now though,
create an empty struct:

struct dyn_arch_ftrace {
/* No extra data needed */

};

With the header out of the way, we can fill out the assembly code. While we did
already create a mcount() function earlier, dynamic ftrace only wants a stub func-
tion. This is because the mcount() will only be used during boot and then all ref-
erences to it will be patched out never to return. Instead, the guts of the old
mcount() will be used to create a new ftrace_caller() function. Because the two
are hard to merge, it will most likely be a lot easier to have two separate defini-
tions split up by #ifdefs. Same goes for the ftrace_stub() as that will now be inlined
in ftrace_caller().
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Before we get confused anymore, let’s check out some pseudo code so you can
implement your own stuff in assembly:

void mcount(void)
{

return;
}

void ftrace_caller(void)
{

/* save all state needed by the ABI (see paragraph above) */

unsigned long frompc = ...;
unsigned long selfpc = <return address> - MCOUNT_INSN_SIZE;

ftrace_call:
ftrace_stub(frompc, selfpc);

/* restore all state needed by the ABI */

ftrace_stub:
return;

}

This might look a little odd at first, but keep in mind that we will be runtime patch-
ing multiple things. First, only functions that we actually want to trace will be
patched to call ftrace_caller(). Second, since we only have one tracer active at a
time, we will patch the ftrace_caller() function itself to call the specific tracer in
question. That is the point of the ftrace_call label.

With that in mind, let’s move on to the C code that will actually be doing the
runtime patching. You’ll need a little knowledge of your arch’s opcodes in order
to make it through the next section.

Every arch has an init callback function. If you need to do something early on to
initialize some state, this is the time to do that. Otherwise, this simple function
below should be sufficient for most people:

int __init ftrace_dyn_arch_init(void)
{

return 0;
}

There are two functions that are used to do runtime patching of arbitrary functions.
The first is used to turn themcount call site into a nop (which is what helps us retain
runtime performance when not tracing). The second is used to turn the mcount
call site into a call to an arbitrary location (but typically that is ftracer_caller()).
See the general function definition in linux/ftrace.h for the functions:

ftrace_make_nop()
ftrace_make_call()

The rec->ip value is the address of the mcount call site that was collected by the
scripts/recordmcount.pl during build time.

The last function is used to do runtime patching of the active tracer. This will be
modifying the assembly code at the location of the ftrace_call symbol inside of the

1.9. HAVE_DYNAMIC_FTRACE 7
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ftrace_caller() function. So you should have sufficient padding at that location to
support the new function calls you’ll be inserting. Some people will be using
a “call”type instruction while others will be using a “branch”type instruction.
Specifically, the function is:

ftrace_update_ftrace_func()

1.10 HAVE_DYNAMIC_FTRACE+HAVE_FUNCTION_GRAPH_TRACER

The function grapher needs a few tweaks in order to work with dynamic ftrace.
Basically, you will need to:

• update:
– ftrace_caller()
– ftrace_graph_call()
– ftrace_graph_caller()

• implement:
– ftrace_enable_ftrace_graph_caller()
– ftrace_disable_ftrace_graph_caller()

<details to be filled>

Quick notes:

• add a nop stub after the ftrace_call location named ftrace_graph_call; stub
needs to be large enough to support a call to ftrace_graph_caller()

• update ftrace_graph_caller() to work with being called by the new
ftrace_caller() since some semantics may have changed

• ftrace_enable_ftrace_graph_caller() will runtime patch the ftrace_graph_call
location with a call to ftrace_graph_caller()

• ftrace_disable_ftrace_graph_caller() will runtime patch the ftrace_graph_call
location with nops

8 Chapter 1. Function Tracer Design



CHAPTER

TWO

NOTES ON ANALYSING BEHAVIOUR USING EVENTS AND
TRACEPOINTS

Author Mel Gorman (PCL information heavily based on email from Ingo
Molnar)

2.1 1. Introduction

Tracepoints (see Documentation/trace/tracepoints.rst) can be used without cre-
ating custom kernel modules to register probe functions using the event tracing
infrastructure.

Simplistically, tracepoints represent important events that can be taken in con-
junction with other tracepoints to build a“Big Picture”of what is going on within
the system. There are a large number of methods for gathering and interpreting
these events. Lacking any current Best Practises, this document describes some
of the methods that can be used.

This document assumes that debugfs is mounted on /sys/kernel/debug and that the
appropriate tracing options have been configured into the kernel. It is assumed
that the PCL tool tools/perf has been installed and is in your path.

2.2 2. Listing Available Events

2.2.1 2.1 Standard Utilities

All possible events are visible from /sys/kernel/debug/tracing/events. Simply call-
ing:

$ find /sys/kernel/debug/tracing/events -type d

will give a fair indication of the number of events available.

9
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2.2.2 2.2 PCL (Performance Counters for Linux)

Discovery and enumeration of all counters and events, including tracepoints, are
available with the perf tool. Getting a list of available events is a simple case of:

$ perf list 2>&1 | grep Tracepoint
ext4:ext4_free_inode [Tracepoint event]
ext4:ext4_request_inode [Tracepoint event]
ext4:ext4_allocate_inode [Tracepoint event]
ext4:ext4_write_begin [Tracepoint event]
ext4:ext4_ordered_write_end [Tracepoint event]
[ .... remaining output snipped .... ]

2.3 3. Enabling Events

2.3.1 3.1 System-Wide Event Enabling

See Documentation/trace/events.rst for a proper description on how events can
be enabled system-wide. A short example of enabling all events related to page
allocation would look something like:

$ for i in `find /sys/kernel/debug/tracing/events -name "enable" | grep mm_
↪→`; do echo 1 > $i; done

2.3.2 3.2 System-Wide Event Enabling with SystemTap

In SystemTap, tracepoints are accessible using the kernel.trace() function call.
The following is an example that reports every 5 seconds what processes were
allocating the pages.

global page_allocs

probe kernel.trace("mm_page_alloc") {
page_allocs[execname()]++

}

function print_count() {
printf ("%-25s %-s\n", "#Pages Allocated", "Process Name")
foreach (proc in page_allocs-)

printf("%-25d %s\n", page_allocs[proc], proc)
printf ("\n")
delete page_allocs

}

probe timer.s(5) {
print_count()

}

10Chapter 2. Notes on Analysing Behaviour Using Events and Tracepoints
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2.3.3 3.3 System-Wide Event Enabling with PCL

By specifying the -a switch and analysing sleep, the system-wide events for a du-
ration of time can be examined.

$ perf stat -a \
-e kmem:mm_page_alloc -e kmem:mm_page_free \
-e kmem:mm_page_free_batched \
sleep 10

Performance counter stats for 'sleep 10':

9630 kmem:mm_page_alloc
2143 kmem:mm_page_free
7424 kmem:mm_page_free_batched

10.002577764 seconds time elapsed

Similarly, one could execute a shell and exit it as desired to get a report at that
point.

2.3.4 3.4 Local Event Enabling

Documentation/trace/ftrace.rst describes how to enable events on a per-thread
basis using set_ftrace_pid.

2.3.5 3.5 Local Event Enablement with PCL

Events can be activated and tracked for the duration of a process on a local basis
using PCL such as follows.

$ perf stat -e kmem:mm_page_alloc -e kmem:mm_page_free \
-e kmem:mm_page_free_batched ./hackbench 10

Time: 0.909

Performance counter stats for './hackbench 10':

17803 kmem:mm_page_alloc
12398 kmem:mm_page_free
4827 kmem:mm_page_free_batched

0.973913387 seconds time elapsed

2.4 4. Event Filtering

Documentation/trace/ftrace.rst covers in-depth how to filter events in ftrace. Ob-
viously using grep and awk of trace_pipe is an option as well as any script reading
trace_pipe.

2.4. 4. Event Filtering 11
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2.5 5. Analysing Event Variances with PCL

Any workload can exhibit variances between runs and it can be important to know
what the standard deviation is. By and large, this is left to the performance analyst
to do it by hand. In the event that the discrete event occurrences are useful to the
performance analyst, then perf can be used.

$ perf stat --repeat 5 -e kmem:mm_page_alloc -e kmem:mm_page_free
-e kmem:mm_page_free_batched ./hackbench 10

Time: 0.890
Time: 0.895
Time: 0.915
Time: 1.001
Time: 0.899

Performance counter stats for './hackbench 10' (5 runs):

16630 kmem:mm_page_alloc ( +- 3.542% )
11486 kmem:mm_page_free ( +- 4.771% )
4730 kmem:mm_page_free_batched ( +- 2.325% )

0.982653002 seconds time elapsed ( +- 1.448% )

In the event that some higher-level event is required that depends on some aggre-
gation of discrete events, then a script would need to be developed.

Using –repeat, it is also possible to view how events are fluctuating over time on
a system-wide basis using -a and sleep.

$ perf stat -e kmem:mm_page_alloc -e kmem:mm_page_free \
-e kmem:mm_page_free_batched \
-a --repeat 10 \
sleep 1

Performance counter stats for 'sleep 1' (10 runs):

1066 kmem:mm_page_alloc ( +- 26.148% )
182 kmem:mm_page_free ( +- 5.464% )
890 kmem:mm_page_free_batched ( +- 30.079% )

1.002251757 seconds time elapsed ( +- 0.005% )

2.6 6. Higher-Level Analysis with Helper Scripts

When events are enabled the events that are triggering can be read from
/sys/kernel/debug/tracing/trace_pipe in human-readable format although binary
options exist as well. By post-processing the output, further information can be
gathered on-line as appropriate. Examples of post-processing might include

• Reading information from /proc for the PID that triggered the event

• Deriving a higher-level event from a series of lower-level events.

• Calculating latencies between two events

12Chapter 2. Notes on Analysing Behaviour Using Events and Tracepoints
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Documentation/trace/postprocess/trace-pagealloc-postprocess.pl is an example
script that can read trace_pipe from STDIN or a copy of a trace. When used on-
line, it can be interrupted once to generate a report without exiting and twice to
exit.

Simplistically, the script just reads STDIN and counts up events but it also can do
more such as

• Derive high-level events from many low-level events. If a number of pages
are freed to the main allocator from the per-CPU lists, it recognises that as
one per-CPU drain even though there is no specific tracepoint for that event

• It can aggregate based on PID or individual process number

• In the event memory is getting externally fragmented, it reports on whether
the fragmentation event was severe or moderate.

• When receiving an event about a PID, it can record who the parent was so
that if large numbers of events are coming from very short-lived processes,
the parent process responsible for creating all the helpers can be identified

2.7 7. Lower-Level Analysis with PCL

There may also be a requirement to identify what functions within a program were
generating events within the kernel. To begin this sort of analysis, the data must
be recorded. At the time of writing, this required root:

$ perf record -c 1 \
-e kmem:mm_page_alloc -e kmem:mm_page_free \
-e kmem:mm_page_free_batched \
./hackbench 10

Time: 0.894
[ perf record: Captured and wrote 0.733 MB perf.data (~32010 samples) ]

Note the use of‘-c 1’to set the event period to sample. The default sample period is
quite high to minimise overhead but the information collected can be very coarse
as a result.

This record outputted a file called perf.data which can be analysed using perf re-
port.

$ perf report
# Samples: 30922
#
# Overhead Command Shared Object
# ........ ......... ................................
#

87.27% hackbench [vdso]
6.85% hackbench /lib/i686/cmov/libc-2.9.so
2.62% hackbench /lib/ld-2.9.so
1.52% perf [vdso]
1.22% hackbench ./hackbench
0.48% hackbench [kernel]
0.02% perf /lib/i686/cmov/libc-2.9.so
0.01% perf /usr/bin/perf

(continues on next page)

2.7. 7. Lower-Level Analysis with PCL 13
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(continued from previous page)
0.01% perf /lib/ld-2.9.so
0.00% hackbench /lib/i686/cmov/libpthread-2.9.so

#
# (For more details, try: perf report --sort comm,dso,symbol)
#

According to this, the vast majority of events triggered on events within the VDSO.
With simple binaries, this will often be the case so let’s take a slightly different
example. In the course of writing this, it was noticed that X was generating an
insane amount of page allocations so let’s look at it:
$ perf record -c 1 -f \

-e kmem:mm_page_alloc -e kmem:mm_page_free \
-e kmem:mm_page_free_batched \
-p `pidof X`

This was interrupted after a few seconds and

$ perf report
# Samples: 27666
#
# Overhead Command Shared Object
# ........ ....... .......................................
#

51.95% Xorg [vdso]
47.95% Xorg /opt/gfx-test/lib/libpixman-1.so.0.13.1
0.09% Xorg /lib/i686/cmov/libc-2.9.so
0.01% Xorg [kernel]

#
# (For more details, try: perf report --sort comm,dso,symbol)
#

So, almost half of the events are occurring in a library. To get an ideawhich symbol:

$ perf report --sort comm,dso,symbol
# Samples: 27666
#
# Overhead Command Shared Object Symbol
# ........ ....... ....................................... ......
#

51.95% Xorg [vdso] [.]␣
↪→0x000000ffffe424

47.93% Xorg /opt/gfx-test/lib/libpixman-1.so.0.13.1 [.]␣
↪→pixmanFillsse2

0.09% Xorg /lib/i686/cmov/libc-2.9.so [.] _int_
↪→malloc

0.01% Xorg /opt/gfx-test/lib/libpixman-1.so.0.13.1 [.] pixman_
↪→region32_copy_f

0.01% Xorg [kernel] [k] read_hpet
0.01% Xorg /opt/gfx-test/lib/libpixman-1.so.0.13.1 [.] get_fast_

↪→path
0.00% Xorg [kernel] [k] ftrace_

↪→trace_userstack

To see where within the function pixmanFillsse2 things are going wrong:

14Chapter 2. Notes on Analysing Behaviour Using Events and Tracepoints
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$ perf annotate pixmanFillsse2
[ ... ]

0.00 : 34eeb: 0f 18 08 prefetcht0 (%eax)
: }
:
: extern __inline void __attribute__((__gnu_inline__, __always_

↪→inline__, _
: _mm_store_si128 (__m128i *__P, __m128i __B) : {
: *__P = __B;

12.40 : 34eee: 66 0f 7f 80 40 ff ff movdqa %xmm0,-0xc0(
↪→%eax)
0.00 : 34ef5: ff

12.40 : 34ef6: 66 0f 7f 80 50 ff ff movdqa %xmm0,-0xb0(
↪→%eax)
0.00 : 34efd: ff

12.39 : 34efe: 66 0f 7f 80 60 ff ff movdqa %xmm0,-0xa0(
↪→%eax)
0.00 : 34f05: ff

12.67 : 34f06: 66 0f 7f 80 70 ff ff movdqa %xmm0,-0x90(
↪→%eax)
0.00 : 34f0d: ff

12.58 : 34f0e: 66 0f 7f 40 80 movdqa %xmm0,-0x80(
↪→%eax)
12.31 : 34f13: 66 0f 7f 40 90 movdqa %xmm0,-0x70(
↪→%eax)
12.40 : 34f18: 66 0f 7f 40 a0 movdqa %xmm0,-0x60(
↪→%eax)
12.31 : 34f1d: 66 0f 7f 40 b0 movdqa %xmm0,-0x50(
↪→%eax)

At a glance, it looks like the time is being spent copying pixmaps to the card.
Further investigation would be needed to determine why pixmaps are being copied
around so much but a starting point would be to take an ancient build of libpixmap
out of the library path where it was totally forgotten about from months ago!

2.7. 7. Lower-Level Analysis with PCL 15
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CHAPTER

THREE

FTRACE - FUNCTION TRACER

Copyright 2008 Red Hat Inc.

Author Steven Rostedt <srostedt@redhat.com>
License The GNU Free Documentation License, Version 1.2 (dual li-

censed under the GPL v2)

Original Reviewers Elias Oltmanns, Randy Dunlap, Andrew Morton,
John Kacur, and David Teigland.

• Written for: 2.6.28-rc2

• Updated for: 3.10
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3.1 Introduction

Ftrace is an internal tracer designed to help out developers and designers of sys-
tems to find what is going on inside the kernel. It can be used for debugging or
analyzing latencies and performance issues that take place outside of user-space.

Although ftrace is typically considered the function tracer, it is really a framework
of several assorted tracing utilities. There’s latency tracing to examine what
occurs between interrupts disabled and enabled, as well as for preemption and
from a time a task is woken to the task is actually scheduled in.

One of the most common uses of ftrace is the event tracing. Throughout the kernel
is hundreds of static event points that can be enabled via the tracefs file system to
see what is going on in certain parts of the kernel.

See events.txt for more information.
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3.2 Implementation Details

See Function Tracer Design for details for arch porters and such.

3.3 The File System

Ftrace uses the tracefs file system to hold the control files as well as the files to
display output.

When tracefs is configured into the kernel (which selecting any ftrace option will
do) the directory /sys/kernel/tracing will be created. To mount this directory, you
can add to your /etc/fstab file:

tracefs /sys/kernel/tracing tracefs defaults 0 0

Or you can mount it at run time with:

mount -t tracefs nodev /sys/kernel/tracing

For quicker access to that directory you may want to make a soft link to it:

ln -s /sys/kernel/tracing /tracing

Attention: Before 4.1, all ftrace tracing control files were within the debugfs
file system, which is typically located at /sys/kernel/debug/tracing. For back-
ward compatibility, when mounting the debugfs file system, the tracefs file sys-
tem will be automatically mounted at:

/sys/kernel/debug/tracing

All files located in the tracefs file system will be located in that debugfs file
system directory as well.

Attention: Any selected ftrace option will also create the tracefs file system.
The rest of the document will assume that you are in the ftrace directory (cd
/sys/kernel/tracing) and will only concentrate on the files within that directory
and not distract from the content with the extended“/sys/kernel/tracing”path
name.

That’s it! (assuming that you have ftrace configured into your kernel)
After mounting tracefs you will have access to the control and output files of ftrace.
Here is a list of some of the key files:

Note: all time values are in microseconds.

current_tracer:

This is used to set or display the current tracer that is
configured. Changing the current tracer clears the ring
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buffer content as well as the “snapshot”buffer.
available_tracers:

This holds the different types of tracers that have been
compiled into the kernel. The tracers listed here can be
configured by echoing their name into current_tracer.

tracing_on:

This sets or displays whether writing to the trace ring
buffer is enabled. Echo 0 into this file to disable the
tracer or 1 to enable it. Note, this only disables writ-
ing to the ring buffer, the tracing overhead may still be
occurring.

The kernel function tracing_off() can be used within the
kernel to disable writing to the ring buffer, which will
set this file to“0”. User space can re-enable tracing by
echoing “1”into the file.
Note, the function and event trigger“traceoff”will also
set this file to zero and stop tracing. Which can also be
re-enabled by user space using this file.

trace:

This file holds the output of the trace in a human read-
able format (described below). Opening this file for writ-
ing with the O_TRUNC flag clears the ring buffer con-
tent. Note, this file is not a consumer. If tracing is off
(no tracer running, or tracing_on is zero), it will produce
the same output each time it is read. When tracing is on,
it may produce inconsistent results as it tries to read the
entire buffer without consuming it.

trace_pipe:

The output is the same as the “trace”file but this file
is meant to be streamed with live tracing. Reads from
this file will block until new data is retrieved. Unlike
the “trace”file, this file is a consumer. This means
reading from this file causes sequential reads to display
more current data. Once data is read from this file, it is
consumed, and will not be read again with a sequential
read. The “trace”file is static, and if the tracer is not
adding more data, it will display the same information
every time it is read.

trace_options:

This file lets the user control the amount of data that
is displayed in one of the above output files. Options
also exist to modify how a tracer or events work (stack
traces, timestamps, etc).

options:
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This is a directory that has a file for every available trace
option (also in trace_options). Options may also be set
or cleared by writing a“1”or“0”respectively into the
corresponding file with the option name.

tracing_max_latency:

Some of the tracers record the max latency. For exam-
ple, the maximum time that interrupts are disabled. The
maximum time is saved in this file. The max trace will
also be stored, and displayed by “trace”. A new max
trace will only be recorded if the latency is greater than
the value in this file (in microseconds).

By echoing in a time into this file, no latency will be
recorded unless it is greater than the time in this file.

tracing_thresh:

Some latency tracers will record a trace whenever the
latency is greater than the number in this file. Only ac-
tive when the file contains a number greater than 0. (in
microseconds)

buffer_size_kb:

This sets or displays the number of kilobytes each CPU
buffer holds. By default, the trace buffers are the same
size for each CPU. The displayed number is the size of
the CPU buffer and not total size of all buffers. The trace
buffers are allocated in pages (blocks of memory that the
kernel uses for allocation, usually 4 KB in size). A few ex-
tra pages may be allocated to accommodate buffer man-
agement meta-data. If the last page allocated has room
for more bytes than requested, the rest of the page will
be used, making the actual allocation bigger than re-
quested or shown. ( Note, the size may not be a multiple
of the page size due to buffer management meta-data. )

Buffer sizes for individual CPUs may vary (see
“per_cpu/cpu0/buffer_size_kb”below), and if they do this
file will show “X”.

buffer_total_size_kb:

This displays the total combined size of all the trace
buffers.

free_buffer:

If a process is performing tracing, and the ring buffer
should be shrunk“freed”when the process is finished,
even if it were to be killed by a signal, this file can be
used for that purpose. On close of this file, the ring
buffer will be resized to its minimum size. Having a pro-
cess that is tracing also open this file, when the process
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exits its file descriptor for this file will be closed, and in
doing so, the ring buffer will be “freed”.
It may also stop tracing if disable_on_free option is set.

tracing_cpumask:

This is a mask that lets the user only trace on specified
CPUs. The format is a hex string representing the CPUs.

set_ftrace_filter:

When dynamic ftrace is configured in (see the section
below“dynamic ftrace”), the code is dynamically modi-
fied (code text rewrite) to disable calling of the function
profiler (mcount). This lets tracing be configured in with
practically no overhead in performance. This also has a
side effect of enabling or disabling specific functions to
be traced. Echoing names of functions into this file will
limit the trace to only those functions. This influences
the tracers“function”and“function_graph”and thus
also function profiling (see“function_profile_enabled”).
The functions listed in “available_filter_functions”are
what can be written into this file.

This interface also allows for commands to be used. See
the “Filter commands”section for more details.
As a speed up, since processing strings can be quite ex-
pensive and requires a check of all functions registered
to tracing, instead an index can be written into this file.
A number (starting with “1”) written will instead se-
lect the same corresponding at the line position of the
“available_filter_functions”file.

set_ftrace_notrace:

This has an effect opposite to that of set_ftrace_filter.
Any function that is added here will not be traced.
If a function exists in both set_ftrace_filter and
set_ftrace_notrace, the function will _not_ be traced.

set_ftrace_pid:

Have the function tracer only trace the threads whose
PID are listed in this file.

If the “function-fork”option is set, then when a task
whose PID is listed in this file forks, the child’s PID will
automatically be added to this file, and the child will be
traced by the function tracer as well. This option will
also cause PIDs of tasks that exit to be removed from
the file.

set_ftrace_notrace_pid:

Have the function tracer ignore threads whose PID are
listed in this file.
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If the “function-fork”option is set, then when a task
whose PID is listed in this file forks, the child’s PID will
automatically be added to this file, and the child will not
be traced by the function tracer as well. This option will
also cause PIDs of tasks that exit to be removed from the
file.

If a PID is in both this file and“set_ftrace_pid”, then this
file takes precedence, and the thread will not be traced.

set_event_pid:

Have the events only trace a task with a PID listed in this
file. Note, sched_switch and sched_wake_up will also
trace events listed in this file.

To have the PIDs of children of tasks with their PID in
this file added on fork, enable the “event-fork”option.
That option will also cause the PIDs of tasks to be re-
moved from this file when the task exits.

set_event_notrace_pid:

Have the events not trace a task with a PID listed in this
file. Note, sched_switch and sched_wakeup will trace
threads not listed in this file, even if a thread’s PID is
in the file if the sched_switch or sched_wakeup events
also trace a thread that should be traced.

To have the PIDs of children of tasks with their PID in
this file added on fork, enable the “event-fork”option.
That option will also cause the PIDs of tasks to be re-
moved from this file when the task exits.

set_graph_function:

Functions listed in this file will cause the function graph
tracer to only trace these functions and the functions
that they call. (See the section“dynamic ftrace”for more
details). Note, set_ftrace_filter and set_ftrace_notrace
still affects what functions are being traced.

set_graph_notrace:

Similar to set_graph_function, but will disable function
graph tracing when the function is hit until it exits the
function. This makes it possible to ignore tracing func-
tions that are called by a specific function.

available_filter_functions:

This lists the functions that ftrace has processed and
can trace. These are the function names that you
can pass to“set_ftrace_filter”,“set_ftrace_notrace”,
“set_graph_function”, or“set_graph_notrace”. (See the
section “dynamic ftrace”below for more details.)

dyn_ftrace_total_info:
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This file is for debugging purposes. The number of func-
tions that have been converted to nops and are available
to be traced.

enabled_functions:

This file is more for debugging ftrace, but can also be
useful in seeing if any function has a callback attached
to it. Not only does the trace infrastructure use ftrace
function trace utility, but other subsystems might too.
This file displays all functions that have a callback at-
tached to them as well as the number of callbacks that
have been attached. Note, a callback may also call mul-
tiple functions which will not be listed in this count.

If the callback registered to be traced by a function with
the“save regs”attribute (thus even more overhead), a
‘R’will be displayed on the same line as the function that
is returning registers.

If the callback registered to be traced by a function
with the “ip modify”attribute (thus the regs->ip can
be changed), an ‘I’will be displayed on the same line
as the function that can be overridden.

If the architecture supports it, it will also show what
callback is being directly called by the function. If
the count is greater than 1 it most likely will be
ftrace_ops_list_func().

If the callback of the function jumps to a trampoline that
is specific to a the callback and not the standard tram-
poline, its address will be printed as well as the function
that the trampoline calls.

function_profile_enabled:

When set it will enable all functions with either the func-
tion tracer, or if configured, the function graph tracer.
It will keep a histogram of the number of functions that
were called and if the function graph tracer was config-
ured, it will also keep track of the time spent in those
functions. The histogram content can be displayed in
the files:

trace_stat/function<cpu> ( function0, function1, etc).

trace_stat:

A directory that holds different tracing stats.

kprobe_events:

Enable dynamic trace points. See kprobetrace.txt.

kprobe_profile:

Dynamic trace points stats. See kprobetrace.txt.
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max_graph_depth:

Used with the function graph tracer. This is the max
depth it will trace into a function. Setting this to a value
of one will show only the first kernel function that is
called from user space.

printk_formats:

This is for tools that read the raw format files. If an event
in the ring buffer references a string, only a pointer to
the string is recorded into the buffer and not the string
itself. This prevents tools from knowing what that string
was. This file displays the string and address for the
string allowing tools to map the pointers to what the
strings were.

saved_cmdlines:

Only the pid of the task is recorded in a trace event un-
less the event specifically saves the task comm as well.
Ftrace makes a cache of pid mappings to comms to try
to display comms for events. If a pid for a comm is not
listed, then “<⋯>”is displayed in the output.
If the option “record-cmd”is set to “0”, then comms
of tasks will not be saved during recording. By default,
it is enabled.

saved_cmdlines_size:

By default, 128 comms are saved (see“saved_cmdlines”
above). To increase or decrease the amount of comms
that are cached, echo the number of comms to cache
into this file.

saved_tgids:

If the option “record-tgid”is set, on each scheduling
context switch the Task Group ID of a task is saved in
a table mapping the PID of the thread to its TGID. By
default, the “record-tgid”option is disabled.

snapshot:

This displays the“snapshot”buffer and also lets the user
take a snapshot of the current running trace. See the
“Snapshot”section below for more details.

stack_max_size:

When the stack tracer is activated, this will display the
maximum stack size it has encountered. See the“Stack
Trace”section below.

stack_trace:

This displays the stack back trace of the largest stack
that was encountered when the stack tracer is activated.
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See the “Stack Trace”section below.
stack_trace_filter:

This is similar to “set_ftrace_filter”but it limits what
functions the stack tracer will check.

trace_clock:

Whenever an event is recorded into the ring buffer, a
“timestamp”is added. This stamp comes from a specified
clock. By default, ftrace uses the“local”clock. This clock
is very fast and strictly per cpu, but on some systems it
may not be monotonic with respect to other CPUs. In
other words, the local clocks may not be in sync with
local clocks on other CPUs.

Usual clocks for tracing:

# cat trace_clock
[local] global counter x86-tsc

The clock with the square brackets around it is the one
in effect.

local: Default clock, but may not be in sync across CPUs
global: This clock is in sync with all CPUs but may be a

bit slower than the local clock.

counter: This is not a clock at all, but literally an atomic
counter. It counts up one by one, but is in sync with
all CPUs. This is useful when you need to know ex-
actly the order events occurred with respect to each
other on different CPUs.

uptime: This uses the jiffies counter and the time stamp
is relative to the time since boot up.

perf: This makes ftrace use the same clock that perf
uses. Eventually perf will be able to read ftrace
buffers and this will help out in interleaving the data.

x86-tsc: Architectures may define their own clocks.
For example, x86 uses its own TSC cycle clock here.

ppc-tb: This uses the powerpc timebase register value.
This is in sync across CPUs and can also be used to
correlate events across hypervisor/guest if tb_offset
is known.

mono: This uses the fast monotonic clock
(CLOCK_MONOTONIC) which is monotonic and
is subject to NTP rate adjustments.

mono_raw: This is the raw monotonic clock
(CLOCK_MONOTONIC_RAW) which is monotonic
but is not subject to any rate adjustments and ticks
at the same rate as the hardware clocksource.
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boot: This is the boot clock (CLOCK_BOOTTIME) and is
based on the fast monotonic clock, but also accounts
for time spent in suspend. Since the clock access is
designed for use in tracing in the suspend path, some
side effects are possible if clock is accessed after the
suspend time is accounted before the fast mono clock
is updated. In this case, the clock update appears to
happen slightly sooner than it normally would have.
Also on 32-bit systems, it’s possible that the 64-bit
boot offset sees a partial update. These effects are
rare and post processing should be able to handle
them. See comments in the ktime_get_boot_fast_ns()
function for more information.

To set a clock, simply echo the clock name into this file:

# echo global > trace_clock

Setting a clock clears the ring buffer content as well as
the “snapshot”buffer.

trace_marker:

This is a very useful file for synchronizing user space
with events happening in the kernel. Writing strings into
this file will be written into the ftrace buffer.

It is useful in applications to open this file at the start of
the application and just reference the file descriptor for
the file:

void trace_write(const char *fmt, ...)
{

va_list ap;
char buf[256];
int n;

if (trace_fd < 0)
return;

va_start(ap, fmt);
n = vsnprintf(buf, 256, fmt, ap);
va_end(ap);

write(trace_fd, buf, n);
}

start:

trace_fd = open("trace_marker", WR_ONLY);

Note: Writing into the trace_marker file can also initiate triggers
that are written into /sys/kernel/tracing/events/ftrace/print/trigger
See “Event triggers”in Documenta-
tion/trace/events.rst and an example in Docu-
mentation/trace/histogram.rst (Section 3.)
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trace_marker_raw:

This is similar to trace_marker above, but is meant for
for binary data to be written to it, where a tool can be
used to parse the data from trace_pipe_raw.

uprobe_events:

Add dynamic tracepoints in programs. See uprobe-
tracer.txt

uprobe_profile:

Uprobe statistics. See uprobetrace.txt

instances:

This is a way to make multiple trace buffers where dif-
ferent events can be recorded in different buffers. See
“Instances”section below.

events:

This is the trace event directory. It holds event trace-
points (also known as static tracepoints) that have been
compiled into the kernel. It shows what event trace-
points exist and how they are grouped by system. There
are “enable”files at various levels that can enable the
tracepoints when a “1”is written to them.
See events.txt for more information.

set_event:

By echoing in the event into this file, will enable that
event.

See events.txt for more information.

available_events:

A list of events that can be enabled in tracing.

See events.txt for more information.

timestamp_mode:

Certain tracers may change the timestamp mode used
when logging trace events into the event buffer. Events
with different modes can coexist within a buffer but
the mode in effect when an event is logged determines
which timestamp mode is used for that event. The de-
fault timestamp mode is ‘delta’.
Usual timestamp modes for tracing:

# cat timestamp_mode [delta] absolute

The timestamp mode with the square brackets
around it is the one in effect.
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delta: Default timestamp mode - timestamp is a delta against
a per-buffer timestamp.

absolute: The timestamp is a full timestamp, not a delta
against some other value. As such it takes up
more space and is less efficient.

hwlat_detector:

Directory for the Hardware Latency Detector. See
“Hardware Latency Detector”section below.

per_cpu:

This is a directory that contains the trace per_cpu infor-
mation.

per_cpu/cpu0/buffer_size_kb:

The ftrace buffer is defined per_cpu. That is, there’s a
separate buffer for each CPU to allow writes to be done
atomically, and free from cache bouncing. These buffers
may have different size buffers. This file is similar to the
buffer_size_kb file, but it only displays or sets the buffer
size for the specific CPU. (here cpu0).

per_cpu/cpu0/trace:

This is similar to the“trace”file, but it will only display
the data specific for the CPU. If written to, it only clears
the specific CPU buffer.

per_cpu/cpu0/trace_pipe

This is similar to the“trace_pipe”file, and is a consum-
ing read, but it will only display (and consume) the data
specific for the CPU.

per_cpu/cpu0/trace_pipe_raw

For tools that can parse the ftrace ring buffer binary
format, the trace_pipe_raw file can be used to extract
the data from the ring buffer directly. With the use of
the splice() system call, the buffer data can be quickly
transferred to a file or to the network where a server is
collecting the data.

Like trace_pipe, this is a consuming reader, where mul-
tiple reads will always produce different data.

per_cpu/cpu0/snapshot:

This is similar to the main“snapshot”file, but will only
snapshot the current CPU (if supported). It only displays
the content of the snapshot for a given CPU, and if writ-
ten to, only clears this CPU buffer.

per_cpu/cpu0/snapshot_raw:
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Similar to the trace_pipe_raw, but will read the binary
format from the snapshot buffer for the given CPU.

per_cpu/cpu0/stats:

This displays certain stats about the ring buffer:

entries: The number of events that are still in the
buffer.

overrun: The number of lost events due to overwriting
when the buffer was full.

commit overrun: Should always be zero. This gets set
if so many events happened within a nested event
(ring buffer is re-entrant), that it fills the buffer and
starts dropping events.

bytes: Bytes actually read (not overwritten).
oldest event ts: The oldest timestamp in the buffer
now ts: The current timestamp
dropped events: Events lost due to overwrite option

being off.

read events: The number of events read.

3.4 The Tracers

Here is the list of current tracers that may be configured.

“function”
Function call tracer to trace all kernel functions.

“function_graph”
Similar to the function tracer except that the function tracer
probes the functions on their entry whereas the function graph
tracer traces on both entry and exit of the functions. It then
provides the ability to draw a graph of function calls similar to
C code source.

“blk”
The block tracer. The tracer used by the blktrace user applica-
tion.

“hwlat”
The Hardware Latency tracer is used to detect if the hardware
produces any latency. See“Hardware Latency Detector”section
below.

“irqsoff”
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Traces the areas that disable interrupts and saves the trace with
the longest max latency. See tracing_max_latency. When a new
max is recorded, it replaces the old trace. It is best to view this
trace with the latency-format option enabled, which happens
automatically when the tracer is selected.

“preemptoff”
Similar to irqsoff but traces and records the amount of time for
which preemption is disabled.

“preemptirqsoff”
Similar to irqsoff and preemptoff, but traces and records the
largest time for which irqs and/or preemption is disabled.

“wakeup”
Traces and records the max latency that it takes for the highest
priority task to get scheduled after it has beenwoken up. Traces
all tasks as an average developer would expect.

“wakeup_rt”
Traces and records the max latency that it takes for just RT
tasks (as the current “wakeup”does). This is useful for those
interested in wake up timings of RT tasks.

“wakeup_dl”
Traces and records the max latency that it takes for a
SCHED_DEADLINE task to be woken (as the “wakeup”and
“wakeup_rt”does).

“mmiotrace”
A special tracer that is used to trace binary module. It will trace
all the calls that a module makes to the hardware. Everything
it writes and reads from the I/O as well.

“branch”
This tracer can be configured when tracing likely/unlikely calls
within the kernel. It will trace when a likely and unlikely branch
is hit and if it was correct in its prediction of being correct.

“nop”
This is the “trace nothing”tracer. To remove all tracers from
tracing simply echo “nop”into current_tracer.
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3.5 Error conditions

For most ftrace commands, failure modes are obvious and communi-
cated using standard return codes.

For other more involved commands, extended error information may be
available via the tracing/error_log file. For the commands that support
it, reading the tracing/error_log file after an error will display more de-
tailed information about what went wrong, if information is available.
The tracing/error_log file is a circular error log displaying a small num-
ber (currently, 8) of ftrace errors for the last (8) failed commands.

The extended error information and usage takes the form shown in this
example:

# echo xxx > /sys/kernel/debug/tracing/events/sched/sched_wakeup/
↪→trigger
echo: write error: Invalid argument

# cat /sys/kernel/debug/tracing/error_log
[ 5348.887237] location: error: Couldn't yyy: zzz
Command: xxx

^
[ 7517.023364] location: error: Bad rrr: sss

Command: ppp qqq
^

To clear the error log, echo the empty string into it:

# echo > /sys/kernel/debug/tracing/error_log

3.6 Examples of using the tracer

Here are typical examples of using the tracers when controlling them only with
the tracefs interface (without using any user-land utilities).

3.7 Output format:

Here is an example of the output format of the file “trace”:
# tracer: function
#
# entries-in-buffer/entries-written: 140080/250280 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

(continues on next page)
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(continued from previous page)
bash-1977 [000] .... 17284.993652: sys_close <-system_call_

↪→fastpath
bash-1977 [000] .... 17284.993653: __close_fd <-sys_close
bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd
sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-

↪→fsnotify
bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_

↪→spin_lock
bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_

↪→fd
bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_

↪→spin_unlock
bash-1977 [000] .... 17284.993657: filp_close <-__close_fd
bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close
sshd-1974 [003] .... 17284.993658: sys_select <-system_call_

↪→fastpath
....

A header is printed with the tracer name that is represented by the trace. In this
case the tracer is“function”. Then it shows the number of events in the buffer as
well as the total number of entries that were written. The difference is the number
of entries that were lost due to the buffer filling up (250280 - 140080 = 110200
events lost).

The header explains the content of the events. Task name “bash”, the task PID
“1977”, the CPU that it was running on“000”, the latency format (explained be-
low), the timestamp in <secs>.<usecs> format, the function name that was traced
“sys_close”and the parent function that called this function“system_call_fastpath”
. The timestamp is the time at which the function was entered.

3.8 Latency trace format

When the latency-format option is enabled or when one of the latency tracers is
set, the trace file gives somewhat more information to see why a latency happened.
Here is a typical trace:

# tracer: irqsoff
#
# irqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
# -----------------
# => started at: __lock_task_sighand
# => ended at: _raw_spin_unlock_irqrestore
#
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq

(continues on next page)
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# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /

ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand
ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_

↪→irqrestore
ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_

↪→irqrestore
ps-6143 2d..1 306us : <stack trace>

=> trace_hardirqs_on_caller
=> trace_hardirqs_on
=> _raw_spin_unlock_irqrestore
=> do_task_stat
=> proc_tgid_stat
=> proc_single_show
=> seq_read
=> vfs_read
=> sys_read
=> system_call_fastpath

This shows that the current tracer is“irqsoff”tracing the time for which interrupts
were disabled. It gives the trace version (which never changes) and the version
of the kernel upon which this was executed on (3.8). Then it displays the max
latency in microseconds (259 us). The number of trace entries displayed and the
total number (both are four: #4/4). VP, KP, SP, and HP are always zero and are
reserved for later use. #P is the number of online CPUs (#P:4).

The task is the process that was running when the latency occurred. (ps pid:
6143).

The start and stop (the functions in which the interrupts were disabled and enabled
respectively) that caused the latencies:

• __lock_task_sighand is where the interrupts were disabled.

• _raw_spin_unlock_irqrestore is where they were enabled again.

The next lines after the header are the trace itself. The header explains which is
which.

cmd: The name of the process in the trace.

pid: The PID of that process.

CPU#: The CPU which the process was running on.

irqs-off: ‘d’interrupts are disabled. ‘.’otherwise.

Caution: If the architecture does not support a way to read the
irq flags variable, an ‘X’will always be printed here.

need-resched:
•‘N’both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED
is set,
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•‘n’only TIF_NEED_RESCHED is set,
•‘p’only PREEMPT_NEED_RESCHED is set,
•‘.’otherwise.

hardirq/softirq:
•‘Z’- NMI occurred inside a hardirq
•‘z’- NMI is running
•‘H’- hard irq occurred inside a softirq.
•‘h’- hard irq is running
•‘s’- soft irq is running
•‘.’- normal context.

preempt-depth: The level of preempt_disabled

The above is mostly meaningful for kernel developers.

time: When the latency-format option is enabled, the trace file output
includes a timestamp relative to the start of the trace. This differs
from the output when latency-format is disabled, which includes an
absolute timestamp.

delay: This is just to help catch your eye a bit better. And needs to be
fixed to be only relative to the same CPU. The marks are determined
by the difference between this current trace and the next trace.

•‘$’- greater than 1 second
•‘@’- greater than 100 millisecond
•‘*’- greater than 10 millisecond
•‘#’- greater than 1000 microsecond
•‘!’- greater than 100 microsecond
•‘+’- greater than 10 microsecond
•‘‘- less than or equal to 10 microsecond.

The rest is the same as the ‘trace’file.
Note, the latency tracers will usually end with a back trace to easily find
where the latency occurred.

3.9 trace_options

The trace_options file (or the options directory) is used to control what gets printed
in the trace output, or manipulate the tracers. To see what is available, simply cat
the file:
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cat trace_options
print-parent
nosym-offset
nosym-addr
noverbose
noraw
nohex
nobin
noblock
trace_printk
annotate
nouserstacktrace
nosym-userobj
noprintk-msg-only
context-info
nolatency-format
record-cmd
norecord-tgid
overwrite
nodisable_on_free
irq-info
markers
noevent-fork
function-trace
nofunction-fork
nodisplay-graph
nostacktrace
nobranch

To disable one of the options, echo in the option prepended with “no”:
echo noprint-parent > trace_options

To enable an option, leave off the “no”:
echo sym-offset > trace_options

Here are the available options:

print-parent On function traces, display the calling (parent) function
as well as the function being traced.

print-parent:
bash-4000 [01] 1477.606694: simple_strtoul <-kstrtoul

noprint-parent:
bash-4000 [01] 1477.606694: simple_strtoul

sym-offset Display not only the function name, but also the offset in the
function. For example, instead of seeing just“ktime_get”, you will
see “ktime_get+0xb/0x20”.
sym-offset:
bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0

sym-addr This will also display the function address as well as the func-
tion name.
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sym-addr:
bash-4000 [01] 1477.606694: simple_strtoul <c0339346>

verbose This deals with the trace file when the latency-format option is
enabled.

bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
(+0.000ms): simple_strtoul (kstrtoul)

raw This will display raw numbers. This option is best for use with user
applications that can translate the raw numbers better than having
it done in the kernel.

hex Similar to raw, but the numbers will be in a hexadecimal format.
bin This will print out the formats in raw binary.
block When set, reading trace_pipe will not block when polled.
trace_printk Can disable trace_printk() from writing into the buffer.

annotate It is sometimes confusing when the CPU buffers are full and
one CPU buffer had a lot of events recently, thus a shorter time
frame, were another CPU may have only had a few events, which
lets it have older events. When the trace is reported, it shows the
oldest events first, and it may look like only one CPU ran (the one
with the oldest events). When the annotate option is set, it will dis-
play when a new CPU buffer started:

<idle>-0 [001] dNs4 21169.031481: wake_up_idle_
↪→cpu <-add_timer_on

<idle>-0 [001] dNs4 21169.031482: _raw_spin_
↪→unlock_irqrestore <-add_timer_on

<idle>-0 [001] .Ns4 21169.031484: sub_preempt_
↪→count <-_raw_spin_unlock_irqrestore
##### CPU 2 buffer started ####

<idle>-0 [002] .N.1 21169.031484: rcu_idle_exit
↪→<-cpu_idle

<idle>-0 [001] .Ns3 21169.031484: _raw_spin_
↪→unlock <-clocksource_watchdog

<idle>-0 [001] .Ns3 21169.031485: sub_preempt_
↪→count <-_raw_spin_unlock

userstacktrace This option changes the trace. It records a stacktrace
of the current user space thread after each trace event.

sym-userobj when user stacktrace are enabled, look up which object
the address belongs to, and print a relative address. This is espe-
cially useful when ASLR is on, otherwise you don’t get a chance
to resolve the address to object/file/line after the app is no longer
running

The lookup is performed when you read trace,trace_pipe. Example:

a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.
↪→out[+0
x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
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printk-msg-only When set, trace_printk()s will only show the format
and not their parameters (if trace_bprintk() or trace_bputs() was
used to save the trace_printk()).

context-info Show only the event data. Hides the comm, PID, times-
tamp, CPU, and other useful data.

latency-format This option changes the trace output. When it is en-
abled, the trace displays additional information about the latency,
as described in “Latency trace format”.

pause-on-trace When set, opening the trace file for read, will pause
writing to the ring buffer (as if tracing_on was set to zero). This
simulates the original behavior of the trace file. When the file is
closed, tracing will be enabled again.

record-cmd When any event or tracer is enabled, a hook is enabled in
the sched_switch trace point to fill comm cache with mapped pids
and comms. But this may cause some overhead, and if you only care
about pids, and not the name of the task, disabling this option can
lower the impact of tracing. See “saved_cmdlines”.

record-tgid When any event or tracer is enabled, a hook is enabled
in the sched_switch trace point to fill the cache of mapped Thread
Group IDs (TGID) mapping to pids. See “saved_tgids”.

overwrite This controls what happens when the trace buffer is full. If
“1”(default), the oldest events are discarded and overwritten. If“0”
, then the newest events are discarded. (see per_cpu/cpu0/stats for
overrun and dropped)

disable_on_free When the free_buffer is closed, tracing will stop (trac-
ing_on set to 0).

irq-info Shows the interrupt, preempt count, need resched data. When
disabled, the trace looks like:

# tracer: function
#
# entries-in-buffer/entries-written: 144405/9452052 #P:4
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |

<idle>-0 [002] 23636.756054: ttwu_do_activate.
↪→constprop.89 <-try_to_wake_up

<idle>-0 [002] 23636.756054: activate_task <-
↪→ttwu_do_activate.constprop.89

<idle>-0 [002] 23636.756055: enqueue_task <-
↪→activate_task

markers When set, the trace_marker is writable (only by root). When
disabled, the trace_marker will error with EINVAL on write.

event-fork When set, tasks with PIDs listed in set_event_pid will have
the PIDs of their children added to set_event_pid when those tasks
fork. Also, when tasks with PIDs in set_event_pid exit, their PIDs
will be removed from the file.
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This affects PIDs listed in set_event_notrace_pid as well.

function-trace The latency tracers will enable function tracing if this
option is enabled (default it is). When it is disabled, the latency
tracers do not trace functions. This keeps the overhead of the tracer
down when performing latency tests.

function-fork When set, tasks with PIDs listed in set_ftrace_pid will
have the PIDs of their children added to set_ftrace_pid when those
tasks fork. Also, when tasks with PIDs in set_ftrace_pid exit, their
PIDs will be removed from the file.

This affects PIDs in set_ftrace_notrace_pid as well.

display-graph When set, the latency tracers (irqsoff, wakeup, etc) will
use function graph tracing instead of function tracing.

stacktrace When set, a stack trace is recorded after any trace event is
recorded.

branch Enable branch tracing with the tracer. This enables branch
tracer along with the currently set tracer. Enabling this with the
“nop”tracer is the same as just enabling the “branch”tracer.

Tip: Some tracers have their own options. They only appear in this file when the
tracer is active. They always appear in the options directory.

Here are the per tracer options:

Options for function tracer:

func_stack_trace When set, a stack trace is recorded after every func-
tion that is recorded. NOTE! Limit the functions that are recorded
before enabling this, with “set_ftrace_filter”otherwise the system
performance will be critically degraded. Remember to disable this
option before clearing the function filter.

Options for function_graph tracer:

Since the function_graph tracer has a slightly different output it has its
own options to control what is displayed.

funcgraph-overrun When set, the“overrun”of the graph stack
is displayed after each function traced. The overrun, is
when the stack depth of the calls is greater than what is
reserved for each task. Each task has a fixed array of func-
tions to trace in the call graph. If the depth of the calls
exceeds that, the function is not traced. The overrun is the
number of functions missed due to exceeding this array.

funcgraph-cpu When set, the CPU number of the CPU where
the trace occurred is displayed.

funcgraph-overhead When set, if the function takes longer
than A certain amount, then a delay marker is displayed.
See “delay”above, under the header description.
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funcgraph-proc Unlike other tracers, the process’command
line is not displayed by default, but instead only when a task
is traced in and out during a context switch. Enabling this
options has the command of each process displayed at every
line.

funcgraph-duration At the end of each function (the return)
the duration of the amount of time in the function is dis-
played in microseconds.

funcgraph-abstime When set, the timestamp is displayed at
each line.

funcgraph-irqs When disabled, functions that happen inside
an interrupt will not be traced.

funcgraph-tail When set, the return event will include the
function that it represents. By default this is off, and only
a closing curly bracket “}”is displayed for the return of a
function.

sleep-time When running function graph tracer, to include the
time a task schedules out in its function. When enabled, it
will account time the task has been scheduled out as part of
the function call.

graph-time When running function profiler with function
graph tracer, to include the time to call nested functions.
When this is not set, the time reported for the function will
only include the time the function itself executed for, not
the time for functions that it called.

Options for blk tracer:

blk_classic Shows a more minimalistic output.

3.10 irqsoff

When interrupts are disabled, the CPU can not react to any other external event
(besides NMIs and SMIs). This prevents the timer interrupt from triggering or the
mouse interrupt from letting the kernel know of a new mouse event. The result is
a latency with the reaction time.

The irqsoff tracer tracks the time for which interrupts are disabled. When a new
maximum latency is hit, the tracer saves the trace leading up to that latency point
so that every time a new maximum is reached, the old saved trace is discarded
and the new trace is saved.

To reset the maximum, echo 0 into tracing_max_latency. Here is an example:

# echo 0 > options/function-trace
# echo irqsoff > current_tracer
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# ls -ltr

(continues on next page)
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[...]
# echo 0 > tracing_on
# cat trace
# tracer: irqsoff
#
# irqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
# -----------------
# => started at: run_timer_softirq
# => ended at: run_timer_softirq
#
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /
<idle>-0 0d.s2 0us+: _raw_spin_lock_irq <-run_timer_softirq
<idle>-0 0dNs3 17us : _raw_spin_unlock_irq <-run_timer_softirq
<idle>-0 0dNs3 17us+: trace_hardirqs_on <-run_timer_softirq
<idle>-0 0dNs3 25us : <stack trace>

=> _raw_spin_unlock_irq
=> run_timer_softirq
=> __do_softirq
=> call_softirq
=> do_softirq
=> irq_exit
=> smp_apic_timer_interrupt
=> apic_timer_interrupt
=> rcu_idle_exit
=> cpu_idle
=> rest_init
=> start_kernel
=> x86_64_start_reservations
=> x86_64_start_kernel

Here we see that that we had a latency of 16 microseconds (which is very good).
The _raw_spin_lock_irq in run_timer_softirq disabled interrupts. The difference
between the 16 and the displayed timestamp 25us occurred because the clock
was incremented between the time of recording the max latency and the time of
recording the function that had that latency.

Note the above example had function-trace not set. If we set function-trace, we
get a much larger output:

with echo 1 > options/function-trace

# tracer: irqsoff
#

(continues on next page)
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# irqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
# -----------------
# => started at: ata_scsi_queuecmd
# => ended at: ata_scsi_queuecmd
#
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /

bash-2042 3d... 0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
bash-2042 3d... 0us : add_preempt_count <-_raw_spin_lock_irqsave
bash-2042 3d..1 1us : ata_scsi_find_dev <-ata_scsi_queuecmd
bash-2042 3d..1 1us : __ata_scsi_find_dev <-ata_scsi_find_dev
bash-2042 3d..1 2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
bash-2042 3d..1 2us : ata_qc_new_init <-__ata_scsi_queuecmd
bash-2042 3d..1 3us : ata_sg_init <-__ata_scsi_queuecmd
bash-2042 3d..1 4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
bash-2042 3d..1 4us : ata_build_rw_tf <-ata_scsi_rw_xlat

[...]
bash-2042 3d..1 67us : delay_tsc <-__delay
bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
bash-2042 3d..2 67us : sub_preempt_count <-delay_tsc
bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
bash-2042 3d..2 68us : sub_preempt_count <-delay_tsc
bash-2042 3d..1 68us+: ata_bmdma_start <-ata_bmdma_qc_issue
bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_

↪→queuecmd
bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_

↪→queuecmd
bash-2042 3d..1 72us+: trace_hardirqs_on <-ata_scsi_queuecmd
bash-2042 3d..1 120us : <stack trace>

=> _raw_spin_unlock_irqrestore
=> ata_scsi_queuecmd
=> scsi_dispatch_cmd
=> scsi_request_fn
=> __blk_run_queue_uncond
=> __blk_run_queue
=> blk_queue_bio
=> generic_make_request
=> submit_bio
=> submit_bh
=> __ext3_get_inode_loc
=> ext3_iget
=> ext3_lookup
=> lookup_real
=> __lookup_hash
=> walk_component

(continues on next page)

3.10. irqsoff 41



Linux Trace Documentation

(continued from previous page)
=> lookup_last
=> path_lookupat
=> filename_lookup
=> user_path_at_empty
=> user_path_at
=> vfs_fstatat
=> vfs_stat
=> sys_newstat
=> system_call_fastpath

Here we traced a 71 microsecond latency. But we also see all the functions that
were called during that time. Note that by enabling function tracing, we incur an
added overhead. This overhead may extend the latency times. But nevertheless,
this trace has provided some very helpful debugging information.

If we prefer function graph output instead of function, we can set display-graph
option:

with echo 1 > options/display-graph

# tracer: irqsoff
#
# irqsoff latency trace v1.1.5 on 4.20.0-rc6+
# --------------------------------------------------------------------
# latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0
↪→#P:4)
# -----------------
# | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0)
# -----------------
# => started at: free_debug_processing
# => ended at: return_to_handler
#
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| /
# REL TIME CPU TASK/PID |||| DURATION ␣
↪→FUNCTION CALLS
# | | | | |||| | | ␣
↪→| | | |

0 us | 0) bash-1507 | d... | 0.000 us | _raw_spin_
↪→lock_irqsave();

0 us | 0) bash-1507 | d..1 | 0.378 us | do_raw_
↪→spin_trylock();

1 us | 0) bash-1507 | d..2 | | set_
↪→track() {

2 us | 0) bash-1507 | d..2 | | save_
↪→stack_trace() {

2 us | 0) bash-1507 | d..2 | | __
↪→save_stack_trace() {

3 us | 0) bash-1507 | d..2 | | __
↪→unwind_start() {

3 us | 0) bash-1507 | d..2 | | ␣
↪→get_stack_info() {

(continues on next page)
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3 us | 0) bash-1507 | d..2 | 0.351 us | ␣

↪→in_task_stack();
4 us | 0) bash-1507 | d..2 | 1.107 us | }

[...]
3750 us | 0) bash-1507 | d..1 | 0.516 us | do_raw_

↪→spin_unlock();
3750 us | 0) bash-1507 | d..1 | 0.000 us | _raw_spin_

↪→unlock_irqrestore();
3764 us | 0) bash-1507 | d..1 | 0.000 us | tracer_

↪→hardirqs_on();
bash-1507 0d..1 3792us : <stack trace>

=> free_debug_processing
=> __slab_free
=> kmem_cache_free
=> vm_area_free
=> remove_vma
=> exit_mmap
=> mmput
=> begin_new_exec
=> load_elf_binary
=> search_binary_handler
=> __do_execve_file.isra.32
=> __x64_sys_execve
=> do_syscall_64
=> entry_SYSCALL_64_after_hwframe

3.11 preemptoff

When preemption is disabled, we may be able to receive interrupts but the task
cannot be preempted and a higher priority task must wait for preemption to be
enabled again before it can preempt a lower priority task.

The preemptoff tracer traces the places that disable preemption. Like the irqsoff
tracer, it records the maximum latency for which preemption was disabled. The
control of preemptoff tracer is much like the irqsoff tracer.

# echo 0 > options/function-trace
# echo preemptoff > current_tracer
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# ls -ltr
[...]
# echo 0 > tracing_on
# cat trace
# tracer: preemptoff
#
# preemptoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
# -----------------
# => started at: do_IRQ

(continues on next page)
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# => ended at: do_IRQ
#
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /

sshd-1991 1d.h. 0us+: irq_enter <-do_IRQ
sshd-1991 1d..1 46us : irq_exit <-do_IRQ
sshd-1991 1d..1 47us+: trace_preempt_on <-do_IRQ
sshd-1991 1d..1 52us : <stack trace>

=> sub_preempt_count
=> irq_exit
=> do_IRQ
=> ret_from_intr

This has some more changes. Preemption was disabled when an interrupt came
in (notice the‘h’), and was enabled on exit. But we also see that interrupts have
been disabled when entering the preempt off section and leaving it (the‘d’). We
do not know if interrupts were enabled in the mean time or shortly after this was
over.

# tracer: preemptoff
#
# preemptoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
# -----------------
# => started at: wake_up_new_task
# => ended at: task_rq_unlock
#
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /

bash-1994 1d..1 0us : _raw_spin_lock_irqsave <-wake_up_new_task
bash-1994 1d..1 0us : select_task_rq_fair <-select_task_rq
bash-1994 1d..1 1us : __rcu_read_lock <-select_task_rq_fair
bash-1994 1d..1 1us : source_load <-select_task_rq_fair
bash-1994 1d..1 1us : source_load <-select_task_rq_fair

[...]
bash-1994 1d..1 12us : irq_enter <-smp_apic_timer_interrupt
bash-1994 1d..1 12us : rcu_irq_enter <-irq_enter
bash-1994 1d..1 13us : add_preempt_count <-irq_enter

(continues on next page)
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bash-1994 1d.h1 13us : exit_idle <-smp_apic_timer_interrupt
bash-1994 1d.h1 13us : hrtimer_interrupt <-smp_apic_timer_

↪→interrupt
bash-1994 1d.h1 13us : _raw_spin_lock <-hrtimer_interrupt
bash-1994 1d.h1 14us : add_preempt_count <-_raw_spin_lock
bash-1994 1d.h2 14us : ktime_get_update_offsets <-hrtimer_

↪→interrupt
[...]

bash-1994 1d.h1 35us : lapic_next_event <-clockevents_program_
↪→event

bash-1994 1d.h1 35us : irq_exit <-smp_apic_timer_interrupt
bash-1994 1d.h1 36us : sub_preempt_count <-irq_exit
bash-1994 1d..2 36us : do_softirq <-irq_exit
bash-1994 1d..2 36us : __do_softirq <-call_softirq
bash-1994 1d..2 36us : __local_bh_disable <-__do_softirq
bash-1994 1d.s2 37us : add_preempt_count <-_raw_spin_lock_irq
bash-1994 1d.s3 38us : _raw_spin_unlock <-run_timer_softirq
bash-1994 1d.s3 39us : sub_preempt_count <-_raw_spin_unlock
bash-1994 1d.s2 39us : call_timer_fn <-run_timer_softirq

[...]
bash-1994 1dNs2 81us : cpu_needs_another_gp <-rcu_process_

↪→callbacks
bash-1994 1dNs2 82us : __local_bh_enable <-__do_softirq
bash-1994 1dNs2 82us : sub_preempt_count <-__local_bh_enable
bash-1994 1dN.2 82us : idle_cpu <-irq_exit
bash-1994 1dN.2 83us : rcu_irq_exit <-irq_exit
bash-1994 1dN.2 83us : sub_preempt_count <-irq_exit
bash-1994 1.N.1 84us : _raw_spin_unlock_irqrestore <-task_rq_

↪→unlock
bash-1994 1.N.1 84us+: trace_preempt_on <-task_rq_unlock
bash-1994 1.N.1 104us : <stack trace>

=> sub_preempt_count
=> _raw_spin_unlock_irqrestore
=> task_rq_unlock
=> wake_up_new_task
=> do_fork
=> sys_clone
=> stub_clone

The above is an example of the preemptoff trace with function-trace set. Here we
see that interrupts were not disabled the entire time. The irq_enter code lets us
know that we entered an interrupt‘h’. Before that, the functions being traced still
show that it is not in an interrupt, but we can see from the functions themselves
that this is not the case.
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3.12 preemptirqsoff

Knowing the locations that have interrupts disabled or preemption disabled for
the longest times is helpful. But sometimes we would like to know when either
preemption and/or interrupts are disabled.

Consider the following code:

local_irq_disable();
call_function_with_irqs_off();
preempt_disable();
call_function_with_irqs_and_preemption_off();
local_irq_enable();
call_function_with_preemption_off();
preempt_enable();

The irqsoff tracer will record the total length of call_function_with_irqs_off() and
call_function_with_irqs_and_preemption_off().

The preemptoff tracer will record the total length of
call_function_with_irqs_and_preemption_off() and call_function_with_preemption_off().

But neither will trace the time that interrupts and/or preemption is disabled. This
total time is the time that we can not schedule. To record this time, use the pre-
emptirqsoff tracer.

Again, using this trace is much like the irqsoff and preemptoff tracers.

# echo 0 > options/function-trace
# echo preemptirqsoff > current_tracer
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# ls -ltr
[...]
# echo 0 > tracing_on
# cat trace
# tracer: preemptirqsoff
#
# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
# -----------------
# => started at: ata_scsi_queuecmd
# => ended at: ata_scsi_queuecmd
#
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /

ls-2230 3d... 0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
(continues on next page)
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ls-2230 3...1 100us : _raw_spin_unlock_irqrestore <-ata_scsi_

↪→queuecmd
ls-2230 3...1 101us+: trace_preempt_on <-ata_scsi_queuecmd
ls-2230 3...1 111us : <stack trace>

=> sub_preempt_count
=> _raw_spin_unlock_irqrestore
=> ata_scsi_queuecmd
=> scsi_dispatch_cmd
=> scsi_request_fn
=> __blk_run_queue_uncond
=> __blk_run_queue
=> blk_queue_bio
=> generic_make_request
=> submit_bio
=> submit_bh
=> ext3_bread
=> ext3_dir_bread
=> htree_dirblock_to_tree
=> ext3_htree_fill_tree
=> ext3_readdir
=> vfs_readdir
=> sys_getdents
=> system_call_fastpath

The trace_hardirqs_off_thunk is called from assembly on x86 when interrupts are
disabled in the assembly code. Without the function tracing, we do not know if
interrupts were enabled within the preemption points. We do see that it started
with preemption enabled.

Here is a trace with function-trace set:

# tracer: preemptirqsoff
#
# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
# -----------------
# => started at: schedule
# => ended at: mutex_unlock
#
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /
kworker/-59 3...1 0us : __schedule <-schedule
kworker/-59 3d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
kworker/-59 3d..1 1us : add_preempt_count <-_raw_spin_lock_irq
kworker/-59 3d..2 1us : deactivate_task <-__schedule

(continues on next page)

3.12. preemptirqsoff 47



Linux Trace Documentation

(continued from previous page)
kworker/-59 3d..2 1us : dequeue_task <-deactivate_task
kworker/-59 3d..2 2us : update_rq_clock <-dequeue_task
kworker/-59 3d..2 2us : dequeue_task_fair <-dequeue_task
kworker/-59 3d..2 2us : update_curr <-dequeue_task_fair
kworker/-59 3d..2 2us : update_min_vruntime <-update_curr
kworker/-59 3d..2 3us : cpuacct_charge <-update_curr
kworker/-59 3d..2 3us : __rcu_read_lock <-cpuacct_charge
kworker/-59 3d..2 3us : __rcu_read_unlock <-cpuacct_charge
kworker/-59 3d..2 3us : update_cfs_rq_blocked_load <-dequeue_task_
↪→fair
kworker/-59 3d..2 4us : clear_buddies <-dequeue_task_fair
kworker/-59 3d..2 4us : account_entity_dequeue <-dequeue_task_fair
kworker/-59 3d..2 4us : update_min_vruntime <-dequeue_task_fair
kworker/-59 3d..2 4us : update_cfs_shares <-dequeue_task_fair
kworker/-59 3d..2 5us : hrtick_update <-dequeue_task_fair
kworker/-59 3d..2 5us : wq_worker_sleeping <-__schedule
kworker/-59 3d..2 5us : kthread_data <-wq_worker_sleeping
kworker/-59 3d..2 5us : put_prev_task_fair <-__schedule
kworker/-59 3d..2 6us : pick_next_task_fair <-pick_next_task
kworker/-59 3d..2 6us : clear_buddies <-pick_next_task_fair
kworker/-59 3d..2 6us : set_next_entity <-pick_next_task_fair
kworker/-59 3d..2 6us : update_stats_wait_end <-set_next_entity

ls-2269 3d..2 7us : finish_task_switch <-__schedule
ls-2269 3d..2 7us : _raw_spin_unlock_irq <-finish_task_switch
ls-2269 3d..2 8us : do_IRQ <-ret_from_intr
ls-2269 3d..2 8us : irq_enter <-do_IRQ
ls-2269 3d..2 8us : rcu_irq_enter <-irq_enter
ls-2269 3d..2 9us : add_preempt_count <-irq_enter
ls-2269 3d.h2 9us : exit_idle <-do_IRQ

[...]
ls-2269 3d.h3 20us : sub_preempt_count <-_raw_spin_unlock
ls-2269 3d.h2 20us : irq_exit <-do_IRQ
ls-2269 3d.h2 21us : sub_preempt_count <-irq_exit
ls-2269 3d..3 21us : do_softirq <-irq_exit
ls-2269 3d..3 21us : __do_softirq <-call_softirq
ls-2269 3d..3 21us+: __local_bh_disable <-__do_softirq
ls-2269 3d.s4 29us : sub_preempt_count <-_local_bh_enable_ip
ls-2269 3d.s5 29us : sub_preempt_count <-_local_bh_enable_ip
ls-2269 3d.s5 31us : do_IRQ <-ret_from_intr
ls-2269 3d.s5 31us : irq_enter <-do_IRQ
ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter

[...]
ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
ls-2269 3d.s5 32us : add_preempt_count <-irq_enter
ls-2269 3d.H5 32us : exit_idle <-do_IRQ
ls-2269 3d.H5 32us : handle_irq <-do_IRQ
ls-2269 3d.H5 32us : irq_to_desc <-handle_irq
ls-2269 3d.H5 33us : handle_fasteoi_irq <-handle_irq

[...]
ls-2269 3d.s5 158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
ls-2269 3d.s3 158us : net_rps_action_and_irq_enable.isra.65 <-

↪→net_rx_action
ls-2269 3d.s3 159us : __local_bh_enable <-__do_softirq
ls-2269 3d.s3 159us : sub_preempt_count <-__local_bh_enable
ls-2269 3d..3 159us : idle_cpu <-irq_exit
ls-2269 3d..3 159us : rcu_irq_exit <-irq_exit

(continues on next page)
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ls-2269 3d..3 160us : sub_preempt_count <-irq_exit
ls-2269 3d... 161us : __mutex_unlock_slowpath <-mutex_unlock
ls-2269 3d... 162us+: trace_hardirqs_on <-mutex_unlock
ls-2269 3d... 186us : <stack trace>

=> __mutex_unlock_slowpath
=> mutex_unlock
=> process_output
=> n_tty_write
=> tty_write
=> vfs_write
=> sys_write
=> system_call_fastpath

This is an interesting trace. It started with kworker running and scheduling out
and ls taking over. But as soon as ls released the rq lock and enabled interrupts
(but not preemption) an interrupt triggered. When the interrupt finished, it started
running softirqs. But while the softirq was running, another interrupt triggered.
When an interrupt is running inside a softirq, the annotation is ‘H’.

3.13 wakeup

One common case that people are interested in tracing is the time it takes for a
task that is woken to actually wake up. Now for non Real-Time tasks, this can be
arbitrary. But tracing it none the less can be interesting.

Without function tracing:

# echo 0 > options/function-trace
# echo wakeup > current_tracer
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# chrt -f 5 sleep 1
# echo 0 > tracing_on
# cat trace
# tracer: wakeup
#
# wakeup latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
# -----------------
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /
<idle>-0 3dNs7 0us : 0:120:R + [003] 312:100:R kworker/

↪→3:1H
(continues on next page)
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<idle>-0 3dNs7 1us+: ttwu_do_activate.constprop.87 <-try_to_

↪→wake_up
<idle>-0 3d..3 15us : __schedule <-schedule
<idle>-0 3d..3 15us : 0:120:R ==> [003] 312:100:R kworker/

↪→3:1H

The tracer only traces the highest priority task in the system to avoid tracing the
normal circumstances. Here we see that the kworker with a nice priority of -20
(not very nice), took just 15 microseconds from the time it woke up, to the time it
ran.

Non Real-Time tasks are not that interesting. A more interesting trace is to con-
centrate only on Real-Time tasks.

3.14 wakeup_rt

In a Real-Time environment it is very important to know the wakeup time it takes
for the highest priority task that is woken up to the time that it executes. This
is also known as “schedule latency”. I stress the point that this is about RT
tasks. It is also important to know the scheduling latency of non-RT tasks, but
the average schedule latency is better for non-RT tasks. Tools like LatencyTop are
more appropriate for such measurements.

Real-Time environments are interested in the worst case latency. That is the
longest latency it takes for something to happen, and not the average. We can
have a very fast scheduler that may only have a large latency once in a while,
but that would not work well with Real-Time tasks. The wakeup_rt tracer was
designed to record the worst case wakeups of RT tasks. Non-RT tasks are not
recorded because the tracer only records one worst case and tracing non-RT tasks
that are unpredictable will overwrite the worst case latency of RT tasks (just run
the normal wakeup tracer for a while to see that effect).

Since this tracer only deals with RT tasks, we will run this slightly differently than
we did with the previous tracers. Instead of performing an‘ls’, we will run‘sleep
1’under ‘chrt’which changes the priority of the task.
# echo 0 > options/function-trace
# echo wakeup_rt > current_tracer
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# chrt -f 5 sleep 1
# echo 0 > tracing_on
# cat trace
# tracer: wakeup
#
# tracer: wakeup_rt
#
# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)

(continues on next page)
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# -----------------
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /
<idle>-0 3d.h4 0us : 0:120:R + [003] 2389: 94:R sleep
<idle>-0 3d.h4 1us+: ttwu_do_activate.constprop.87 <-try_to_

↪→wake_up
<idle>-0 3d..3 5us : __schedule <-schedule
<idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep

Running this on an idle system, we see that it only took 5 microseconds to perform
the task switch. Note, since the trace point in the schedule is before the actual
“switch”, we stop the tracing when the recorded task is about to schedule in. This
may change if we add a new marker at the end of the scheduler.

Notice that the recorded task is‘sleep’with the PID of 2389 and it has an rt_prio
of 5. This priority is user-space priority and not the internal kernel priority. The
policy is 1 for SCHED_FIFO and 2 for SCHED_RR.

Note, that the trace data shows the internal priority (99 - rtprio).

<idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep

The 0:120:R means idle was running with a nice priority of 0 (120 - 120) and in the
running state‘R’. The sleep task was scheduled in with 2389: 94:R. That is the
priority is the kernel rtprio (99 - 5 = 94) and it too is in the running state.

Doing the same with chrt -r 5 and function-trace set.

echo 1 > options/function-trace

# tracer: wakeup_rt
#
# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
# -----------------
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /
<idle>-0 3d.h4 1us+: 0:120:R + [003] 2448: 94:R sleep

(continues on next page)
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<idle>-0 3d.h4 2us : ttwu_do_activate.constprop.87 <-try_to_

↪→wake_up
<idle>-0 3d.h3 3us : check_preempt_curr <-ttwu_do_wakeup
<idle>-0 3d.h3 3us : resched_curr <-check_preempt_curr
<idle>-0 3dNh3 4us : task_woken_rt <-ttwu_do_wakeup
<idle>-0 3dNh3 4us : _raw_spin_unlock <-try_to_wake_up
<idle>-0 3dNh3 4us : sub_preempt_count <-_raw_spin_unlock
<idle>-0 3dNh2 5us : ttwu_stat <-try_to_wake_up
<idle>-0 3dNh2 5us : _raw_spin_unlock_irqrestore <-try_to_wake_

↪→up
<idle>-0 3dNh2 6us : sub_preempt_count <-_raw_spin_unlock_

↪→irqrestore
<idle>-0 3dNh1 6us : _raw_spin_lock <-__run_hrtimer
<idle>-0 3dNh1 6us : add_preempt_count <-_raw_spin_lock
<idle>-0 3dNh2 7us : _raw_spin_unlock <-hrtimer_interrupt
<idle>-0 3dNh2 7us : sub_preempt_count <-_raw_spin_unlock
<idle>-0 3dNh1 7us : tick_program_event <-hrtimer_interrupt
<idle>-0 3dNh1 7us : clockevents_program_event <-tick_program_

↪→event
<idle>-0 3dNh1 8us : ktime_get <-clockevents_program_event
<idle>-0 3dNh1 8us : lapic_next_event <-clockevents_program_

↪→event
<idle>-0 3dNh1 8us : irq_exit <-smp_apic_timer_interrupt
<idle>-0 3dNh1 9us : sub_preempt_count <-irq_exit
<idle>-0 3dN.2 9us : idle_cpu <-irq_exit
<idle>-0 3dN.2 9us : rcu_irq_exit <-irq_exit
<idle>-0 3dN.2 10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
<idle>-0 3dN.2 10us : sub_preempt_count <-irq_exit
<idle>-0 3.N.1 11us : rcu_idle_exit <-cpu_idle
<idle>-0 3dN.1 11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
<idle>-0 3.N.1 11us : tick_nohz_idle_exit <-cpu_idle
<idle>-0 3dN.1 12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
<idle>-0 3dN.1 12us : ktime_get <-tick_nohz_idle_exit
<idle>-0 3dN.1 12us : tick_do_update_jiffies64 <-tick_nohz_idle_

↪→exit
<idle>-0 3dN.1 13us : cpu_load_update_nohz <-tick_nohz_idle_exit
<idle>-0 3dN.1 13us : _raw_spin_lock <-cpu_load_update_nohz
<idle>-0 3dN.1 13us : add_preempt_count <-_raw_spin_lock
<idle>-0 3dN.2 13us : __cpu_load_update <-cpu_load_update_nohz
<idle>-0 3dN.2 14us : sched_avg_update <-__cpu_load_update
<idle>-0 3dN.2 14us : _raw_spin_unlock <-cpu_load_update_nohz
<idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock
<idle>-0 3dN.1 15us : calc_load_nohz_stop <-tick_nohz_idle_exit
<idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_

↪→exit
<idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit
<idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel
<idle>-0 3dN.1 16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_

↪→cancel
<idle>-0 3dN.1 16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.

↪→isra.18
<idle>-0 3dN.1 16us : add_preempt_count <-_raw_spin_lock_irqsave
<idle>-0 3dN.2 17us : __remove_hrtimer <-remove_hrtimer.part.16
<idle>-0 3dN.2 17us : hrtimer_force_reprogram <-__remove_hrtimer
<idle>-0 3dN.2 17us : tick_program_event <-hrtimer_force_

↪→reprogram
(continues on next page)

52 Chapter 3. ftrace - Function Tracer



Linux Trace Documentation

(continued from previous page)
<idle>-0 3dN.2 18us : clockevents_program_event <-tick_program_

↪→event
<idle>-0 3dN.2 18us : ktime_get <-clockevents_program_event
<idle>-0 3dN.2 18us : lapic_next_event <-clockevents_program_

↪→event
<idle>-0 3dN.2 19us : _raw_spin_unlock_irqrestore <-hrtimer_try_

↪→to_cancel
<idle>-0 3dN.2 19us : sub_preempt_count <-_raw_spin_unlock_

↪→irqrestore
<idle>-0 3dN.1 19us : hrtimer_forward <-tick_nohz_idle_exit
<idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
<idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
<idle>-0 3dN.1 20us : hrtimer_start_range_ns <-hrtimer_start_

↪→expires.constprop.11
<idle>-0 3dN.1 20us : __hrtimer_start_range_ns <-hrtimer_start_

↪→range_ns
<idle>-0 3dN.1 21us : lock_hrtimer_base.isra.18 <-__hrtimer_

↪→start_range_ns
<idle>-0 3dN.1 21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.

↪→isra.18
<idle>-0 3dN.1 21us : add_preempt_count <-_raw_spin_lock_irqsave
<idle>-0 3dN.2 22us : ktime_add_safe <-__hrtimer_start_range_ns
<idle>-0 3dN.2 22us : enqueue_hrtimer <-__hrtimer_start_range_ns
<idle>-0 3dN.2 22us : tick_program_event <-__hrtimer_start_range_

↪→ns
<idle>-0 3dN.2 23us : clockevents_program_event <-tick_program_

↪→event
<idle>-0 3dN.2 23us : ktime_get <-clockevents_program_event
<idle>-0 3dN.2 23us : lapic_next_event <-clockevents_program_

↪→event
<idle>-0 3dN.2 24us : _raw_spin_unlock_irqrestore <-__hrtimer_

↪→start_range_ns
<idle>-0 3dN.2 24us : sub_preempt_count <-_raw_spin_unlock_

↪→irqrestore
<idle>-0 3dN.1 24us : account_idle_ticks <-tick_nohz_idle_exit
<idle>-0 3dN.1 24us : account_idle_time <-account_idle_ticks
<idle>-0 3.N.1 25us : sub_preempt_count <-cpu_idle
<idle>-0 3.N.. 25us : schedule <-cpu_idle
<idle>-0 3.N.. 25us : __schedule <-preempt_schedule
<idle>-0 3.N.. 26us : add_preempt_count <-__schedule
<idle>-0 3.N.1 26us : rcu_note_context_switch <-__schedule
<idle>-0 3.N.1 26us : rcu_sched_qs <-rcu_note_context_switch
<idle>-0 3dN.1 27us : rcu_preempt_qs <-rcu_note_context_switch
<idle>-0 3.N.1 27us : _raw_spin_lock_irq <-__schedule
<idle>-0 3dN.1 27us : add_preempt_count <-_raw_spin_lock_irq
<idle>-0 3dN.2 28us : put_prev_task_idle <-__schedule
<idle>-0 3dN.2 28us : pick_next_task_stop <-pick_next_task
<idle>-0 3dN.2 28us : pick_next_task_rt <-pick_next_task
<idle>-0 3dN.2 29us : dequeue_pushable_task <-pick_next_task_rt
<idle>-0 3d..3 29us : __schedule <-preempt_schedule
<idle>-0 3d..3 30us : 0:120:R ==> [003] 2448: 94:R sleep

This isn’t that big of a trace, even with function tracing enabled, so I included the
entire trace.

The interrupt went off while when the system was idle. Somewhere before
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task_woken_rt() was called, the NEED_RESCHED flag was set, this is indicated
by the first occurrence of the ‘N’flag.

3.15 Latency tracing and events

As function tracing can induce a much larger latency, but without seeing what
happens within the latency it is hard to know what caused it. There is a middle
ground, and that is with enabling events.

# echo 0 > options/function-trace
# echo wakeup_rt > current_tracer
# echo 1 > events/enable
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# chrt -f 5 sleep 1
# echo 0 > tracing_on
# cat trace
# tracer: wakeup_rt
#
# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
# -----------------
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| / delay
# cmd pid ||||| time | caller
# \ / ||||| \ | /
<idle>-0 2d.h4 0us : 0:120:R + [002] 5882: 94:R sleep
<idle>-0 2d.h4 0us : ttwu_do_activate.constprop.87 <-try_to_

↪→wake_up
<idle>-0 2d.h4 1us : sched_wakeup: comm=sleep pid=5882 prio=94␣

↪→success=1 target_cpu=002
<idle>-0 2dNh2 1us : hrtimer_expire_exit:␣

↪→hrtimer=ffff88007796feb8
<idle>-0 2.N.2 2us : power_end: cpu_id=2
<idle>-0 2.N.2 3us : cpu_idle: state=4294967295 cpu_id=2
<idle>-0 2dN.3 4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
<idle>-0 2dN.3 4us : hrtimer_start: hrtimer=ffff88007d50d5e0␣

↪→function=tick_sched_timer expires=34311211000000␣
↪→softexpires=34311211000000
<idle>-0 2.N.2 5us : rcu_utilization: Start context switch
<idle>-0 2.N.2 5us : rcu_utilization: End context switch
<idle>-0 2d..3 6us : __schedule <-schedule
<idle>-0 2d..3 6us : 0:120:R ==> [002] 5882: 94:R sleep
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3.16 Hardware Latency Detector

The hardware latency detector is executed by enabling the “hwlat”tracer.
NOTE, this tracer will affect the performance of the system as it will periodically
make a CPU constantly busy with interrupts disabled.

# echo hwlat > current_tracer
# sleep 100
# cat trace
# tracer: hwlat
#
# entries-in-buffer/entries-written: 13/13 #P:8
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

<...>-1729 [001] d... 678.473449: #1 inner/outer(us): ␣
↪→11/12 ts:1581527483.343962693 count:6

<...>-1729 [004] d... 689.556542: #2 inner/outer(us): ␣
↪→16/9 ts:1581527494.889008092 count:1

<...>-1729 [005] d... 714.756290: #3 inner/outer(us): ␣
↪→16/16 ts:1581527519.678961629 count:5

<...>-1729 [001] d... 718.788247: #4 inner/outer(us): ␣
↪→9/17 ts:1581527523.889012713 count:1

<...>-1729 [002] d... 719.796341: #5 inner/outer(us): ␣
↪→13/9 ts:1581527524.912872606 count:1

<...>-1729 [006] d... 844.787091: #6 inner/outer(us): ␣
↪→9/12 ts:1581527649.889048502 count:2

<...>-1729 [003] d... 849.827033: #7 inner/outer(us): ␣
↪→18/9 ts:1581527654.889013793 count:1

<...>-1729 [007] d... 853.859002: #8 inner/outer(us): ␣
↪→9/12 ts:1581527658.889065736 count:1

<...>-1729 [001] d... 855.874978: #9 inner/outer(us): ␣
↪→9/11 ts:1581527660.861991877 count:1

<...>-1729 [001] d... 863.938932: #10 inner/outer(us): ␣
↪→9/11 ts:1581527668.970010500 count:1 nmi-total:7 nmi-count:1

<...>-1729 [007] d... 878.050780: #11 inner/outer(us): ␣
↪→9/12 ts:1581527683.385002600 count:1 nmi-total:5 nmi-count:1

<...>-1729 [007] d... 886.114702: #12 inner/outer(us): ␣
↪→9/12 ts:1581527691.385001600 count:1

The above output is somewhat the same in the header. All events will have inter-
rupts disabled ‘d’. Under the FUNCTION title there is:

#1 This is the count of events recorded that were greater than the trac-
ing_threshold (See below).

inner/outer(us): 11/11

This shows two numbers as“inner latency”and“outer latency”.
The test runs in a loop checking a timestamp twice. The latency
detected within the two timestamps is the“inner latency”and
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the latency detected after the previous timestamp and the next
timestamp in the loop is the “outer latency”.

ts:1581527483.343962693

The absolute timestamp that the first latency was recorded in
the window.

count:6

The number of times a latency was detected during the window.

nmi-total:7 nmi-count:1

On architectures that support it, if an NMI comes in during the
test, the time spent in NMI is reported in “nmi-total”(in mi-
croseconds).

All architectures that have NMIs will show the “nmi-count”if
an NMI comes in during the test.

hwlat files:

tracing_threshold This gets automatically set to“10”to represent 10
microseconds. This is the threshold of latency that needs to be de-
tected before the trace will be recorded.

Note, when hwlat tracer is finished (another tracer is written into
“current_tracer”), the original value for tracing_threshold is placed
back into this file.

hwlat_detector/width The length of time the test runs with interrupts
disabled.

hwlat_detector/window The length of time of the window which the
test runs. That is, the test will run for “width”microseconds per
“window”microseconds

tracing_cpumask When the test is started. A kernel thread is created
that runs the test. This thread will alternate between CPUs listed in
the tracing_cpumask between each period (one“window”). To limit
the test to specific CPUs set the mask in this file to only the CPUs
that the test should run on.

3.17 function

This tracer is the function tracer. Enabling the function tracer can be done from
the debug file system. Make sure the ftrace_enabled is set; otherwise this tracer
is a nop. See the “ftrace_enabled”section below.
# sysctl kernel.ftrace_enabled=1
# echo function > current_tracer
# echo 1 > tracing_on
# usleep 1
# echo 0 > tracing_on
# cat trace

(continues on next page)
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# tracer: function
#
# entries-in-buffer/entries-written: 24799/24799 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

bash-1994 [002] .... 3082.063030: mutex_unlock <-rb_simple_
↪→write

bash-1994 [002] .... 3082.063031: __mutex_unlock_slowpath <-
↪→mutex_unlock

bash-1994 [002] .... 3082.063031: __fsnotify_parent <-
↪→fsnotify_modify

bash-1994 [002] .... 3082.063032: fsnotify <-fsnotify_modify
bash-1994 [002] .... 3082.063032: __srcu_read_lock <-fsnotify
bash-1994 [002] .... 3082.063032: add_preempt_count <-__srcu_

↪→read_lock
bash-1994 [002] ...1 3082.063032: sub_preempt_count <-__srcu_

↪→read_lock
bash-1994 [002] .... 3082.063033: __srcu_read_unlock <-

↪→fsnotify
[...]

Note: function tracer uses ring buffers to store the above entries. The newest
data may overwrite the oldest data. Sometimes using echo to stop the trace is not
sufficient because the tracing could have overwritten the data that you wanted to
record. For this reason, it is sometimes better to disable tracing directly from a
program. This allows you to stop the tracing at the point that you hit the part that
you are interested in. To disable the tracing directly from a C program, something
like following code snippet can be used:

int trace_fd;
[...]
int main(int argc, char *argv[]) {

[...]
trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
[...]
if (condition_hit()) {

write(trace_fd, "0", 1);
}
[...]

}
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3.18 Single thread tracing

By writing into set_ftrace_pid you can trace a single thread. For example:

# cat set_ftrace_pid
no pid
# echo 3111 > set_ftrace_pid
# cat set_ftrace_pid
3111
# echo function > current_tracer
# cat trace | head
# tracer: function
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |

yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_
↪→return

yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_
↪→hrtimeout_range

yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_
↪→cancel

yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_
↪→to_cancel

yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll

# echo > set_ftrace_pid
# cat trace |head
# tracer: function
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |
##### CPU 3 buffer started ####

yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_

↪→entry
yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_

↪→audit
yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit

If you want to trace a function when executing, you could use something like this
simple program.

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

#define _STR(x) #x
#define STR(x) _STR(x)
#define MAX_PATH 256

const char *find_tracefs(void)
(continues on next page)
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{

static char tracefs[MAX_PATH+1];
static int tracefs_found;
char type[100];
FILE *fp;

if (tracefs_found)
return tracefs;

if ((fp = fopen("/proc/mounts","r")) == NULL) {
perror("/proc/mounts");
return NULL;

}

while (fscanf(fp, "%*s %"
STR(MAX_PATH)
"s %99s %*s %*d %*d\n",
tracefs, type) == 2) {

if (strcmp(type, "tracefs") == 0)
break;

}
fclose(fp);

if (strcmp(type, "tracefs") != 0) {
fprintf(stderr, "tracefs not mounted");
return NULL;

}

strcat(tracefs, "/tracing/");
tracefs_found = 1;

return tracefs;
}

const char *tracing_file(const char *file_name)
{

static char trace_file[MAX_PATH+1];
snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
return trace_file;

}

int main (int argc, char **argv)
{

if (argc < 1)
exit(-1);

if (fork() > 0) {
int fd, ffd;
char line[64];
int s;

ffd = open(tracing_file("current_tracer"), O_WRONLY);
if (ffd < 0)

exit(-1);
write(ffd, "nop", 3);

(continues on next page)
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fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
s = sprintf(line, "%d\n", getpid());
write(fd, line, s);

write(ffd, "function", 8);

close(fd);
close(ffd);

execvp(argv[1], argv+1);
}

return 0;
}

Or this simple script!

#!/bin/bash

tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
echo nop > $tracefs/tracing/current_tracer
echo 0 > $tracefs/tracing/tracing_on
echo $$ > $tracefs/tracing/set_ftrace_pid
echo function > $tracefs/tracing/current_tracer
echo 1 > $tracefs/tracing/tracing_on
exec "$@"

3.19 function graph tracer

This tracer is similar to the function tracer except that it probes a function on its
entry and its exit. This is done by using a dynamically allocated stack of return
addresses in each task_struct. On function entry the tracer overwrites the return
address of each function traced to set a custom probe. Thus the original return
address is stored on the stack of return address in the task_struct.

Probing on both ends of a function leads to special features such as:

• measure of a function’s time execution
• having a reliable call stack to draw function calls graph

This tracer is useful in several situations:

• you want to find the reason of a strange kernel behavior and need to see what
happens in detail on any areas (or specific ones).

• you are experiencing weird latencies but it’s difficult to find its origin.
• you want to find quickly which path is taken by a specific function

• you just want to peek inside a working kernel and want to see what happens
there.

# tracer: function_graph
#

(continues on next page)
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# CPU DURATION FUNCTION CALLS
# | | | | | | |

0) | sys_open() {
0) | do_sys_open() {
0) | getname() {
0) | kmem_cache_alloc() {
0) 1.382 us | __might_sleep();
0) 2.478 us | }
0) | strncpy_from_user() {
0) | might_fault() {
0) 1.389 us | __might_sleep();
0) 2.553 us | }
0) 3.807 us | }
0) 7.876 us | }
0) | alloc_fd() {
0) 0.668 us | _spin_lock();
0) 0.570 us | expand_files();
0) 0.586 us | _spin_unlock();

There are several columns that can be dynamically enabled/disabled. You can use
every combination of options you want, depending on your needs.

• The cpu number on which the function executed is default enabled. It is
sometimes better to only trace one cpu (see tracing_cpu_mask file) or you
might sometimes see unordered function calls while cpu tracing switch.

– hide: echo nofuncgraph-cpu > trace_options
– show: echo funcgraph-cpu > trace_options

• The duration (function’s time of execution) is displayed on the closing bracket
line of a function or on the same line than the current function in case of a
leaf one. It is default enabled.

– hide: echo nofuncgraph-duration > trace_options
– show: echo funcgraph-duration > trace_options

• The overhead field precedes the duration field in case of reached duration
thresholds.

– hide: echo nofuncgraph-overhead > trace_options
– show: echo funcgraph-overhead > trace_options
– depends on: funcgraph-duration

ie:

3) # 1837.709 us | } /* __switch_to */
3) | finish_task_switch() {
3) 0.313 us | _raw_spin_unlock_irq();
3) 3.177 us | }
3) # 1889.063 us | } /* __schedule */
3) ! 140.417 us | } /* __schedule */
3) # 2034.948 us | } /* schedule */
3) * 33998.59 us | } /* schedule_preempt_disabled */

(continues on next page)
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[...]

1) 0.260 us | msecs_to_jiffies();
1) 0.313 us | __rcu_read_unlock();
1) + 61.770 us | }
1) + 64.479 us | }
1) 0.313 us | rcu_bh_qs();
1) 0.313 us | __local_bh_enable();
1) ! 217.240 us | }
1) 0.365 us | idle_cpu();
1) | rcu_irq_exit() {
1) 0.417 us | rcu_eqs_enter_common.isra.47();
1) 3.125 us | }
1) ! 227.812 us | }
1) ! 457.395 us | }
1) @ 119760.2 us | }

[...]

2) | handle_IPI() {
1) 6.979 us | }
2) 0.417 us | scheduler_ipi();
1) 9.791 us | }
1) + 12.917 us | }
2) 3.490 us | }
1) + 15.729 us | }
1) + 18.542 us | }
2) $ 3594274 us | }

Flags:

+ means that the function exceeded 10 usecs.
! means that the function exceeded 100 usecs.
# means that the function exceeded 1000 usecs.
* means that the function exceeded 10 msecs.
@ means that the function exceeded 100 msecs.
$ means that the function exceeded 1 sec.

• The task/pid field displays the thread cmdline and pid which executed the
function. It is default disabled.

– hide: echo nofuncgraph-proc > trace_options
– show: echo funcgraph-proc > trace_options

ie:

# tracer: function_graph
#
# CPU TASK/PID DURATION FUNCTION CALLS
# | | | | | | | | |
0) sh-4802 | | d_free() {
0) sh-4802 | | call_rcu() {
0) sh-4802 | | __call_rcu()
↪→{

(continues on next page)
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0) sh-4802 | 0.616 us | rcu_
↪→process_gp_end();
0) sh-4802 | 0.586 us | check_for_
↪→new_grace_period();
0) sh-4802 | 2.899 us | }
0) sh-4802 | 4.040 us | }
0) sh-4802 | 5.151 us | }
0) sh-4802 | + 49.370 us | }

• The absolute time field is an absolute timestamp given by the system clock
since it started. A snapshot of this time is given on each entry/exit of functions

– hide: echo nofuncgraph-abstime > trace_options
– show: echo funcgraph-abstime > trace_options

ie:

#
# TIME CPU DURATION FUNCTION CALLS
# | | | | | | | |
360.774522 | 1) 0.541 us | ␣
↪→ }
360.774522 | 1) 4.663 us | ␣
↪→ }
360.774523 | 1) 0.541 us | ␣
↪→ __wake_up_bit();
360.774524 | 1) 6.796 us | ␣
↪→ }
360.774524 | 1) 7.952 us | }
360.774525 | 1) 9.063 us | }
360.774525 | 1) 0.615 us | ␣
↪→journal_mark_dirty();
360.774527 | 1) 0.578 us | __
↪→brelse();
360.774528 | 1) | ␣
↪→reiserfs_prepare_for_journal() {
360.774528 | 1) | ␣
↪→unlock_buffer() {
360.774529 | 1) | ␣
↪→ wake_up_bit() {
360.774529 | 1) | ␣
↪→ bit_waitqueue() {
360.774530 | 1) 0.594 us | ␣
↪→ __phys_addr();

The function name is always displayed after the closing bracket for a function if
the start of that function is not in the trace buffer.

Display of the function name after the closing bracket may be enabled for functions
whose start is in the trace buffer, allowing easier searching with grep for function
durations. It is default disabled.

• hide: echo nofuncgraph-tail > trace_options

• show: echo funcgraph-tail > trace_options

Example with nofuncgraph-tail (default):
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0) | putname() {
0) | kmem_cache_free() {
0) 0.518 us | __phys_addr();
0) 1.757 us | }
0) 2.861 us | }

Example with funcgraph-tail:

0) | putname() {
0) | kmem_cache_free() {
0) 0.518 us | __phys_addr();
0) 1.757 us | } /* kmem_cache_free() */
0) 2.861 us | } /* putname() */

You can put some comments on specific functions by using trace_printk() For ex-
ample, if you want to put a comment inside the __might_sleep() function, you just
have to include <linux/ftrace.h> and call trace_printk() inside __might_sleep():

trace_printk("I'm a comment!\n")

will produce:

1) | __might_sleep() {
1) | /* I'm a comment! */
1) 1.449 us | }

Youmight find other useful features for this tracer in the following“dynamic ftrace”
section such as tracing only specific functions or tasks.

3.20 dynamic ftrace

If CONFIG_DYNAMIC_FTRACE is set, the system will run with virtually no over-
head when function tracing is disabled. The way this works is the mcount function
call (placed at the start of every kernel function, produced by the -pg switch in
gcc), starts of pointing to a simple return. (Enabling FTRACE will include the -pg
switch in the compiling of the kernel.)

At compile time every C file object is run through the recordmcount program (lo-
cated in the scripts directory). This program will parse the ELF headers in the C
object to find all the locations in the .text section that call mcount. Starting with
gcc version 4.6, the -mfentry has been added for x86, which calls “__fentry__”
instead of “mcount”. Which is called before the creation of the stack frame.
Note, not all sections are traced. They may be prevented by either a notrace, or
blocked another way and all inline functions are not traced. Check the “avail-
able_filter_functions”file to see what functions can be traced.
A section called “__mcount_loc”is created that holds references to all the
mcount/fentry call sites in the .text section. The recordmcount program re-links
this section back into the original object. The final linking stage of the kernel will
add all these references into a single table.

On boot up, before SMP is initialized, the dynamic ftrace code scans this table and
updates all the locations into nops. It also records the locations, which are added
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to the available_filter_functions list. Modules are processed as they are loaded and
before they are executed. When a module is unloaded, it also removes its functions
from the ftrace function list. This is automatic in the module unload code, and the
module author does not need to worry about it.

When tracing is enabled, the process of modifying the function tracepoints is de-
pendent on architecture. The old method is to use kstop_machine to prevent races
with the CPUs executing code beingmodified (which can cause the CPU to do unde-
sirable things, especially if the modified code crosses cache (or page) boundaries),
and the nops are patched back to calls. But this time, they do not call mcount
(which is just a function stub). They now call into the ftrace infrastructure.

The new method of modifying the function tracepoints is to place a breakpoint at
the location to be modified, sync all CPUs, modify the rest of the instruction not
covered by the breakpoint. Sync all CPUs again, and then remove the breakpoint
with the finished version to the ftrace call site.

Some archs do not even need to monkey around with the synchronization, and can
just slap the new code on top of the old without any problems with other CPUs
executing it at the same time.

One special side-effect to the recording of the functions being traced is that we
can now selectively choose which functions we wish to trace and which ones we
want the mcount calls to remain as nops.

Two files are used, one for enabling and one for disabling the tracing of specified
functions. They are:

set_ftrace_filter

and

set_ftrace_notrace

A list of available functions that you can add to these files is listed in:

available_filter_functions

# cat available_filter_functions
put_prev_task_idle
kmem_cache_create
pick_next_task_rt
get_online_cpus
pick_next_task_fair
mutex_lock
[...]

If I am only interested in sys_nanosleep and hrtimer_interrupt:

# echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
# echo function > current_tracer
# echo 1 > tracing_on
# usleep 1
# echo 0 > tracing_on
# cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 5/5 #P:4

(continues on next page)
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#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

usleep-2665 [001] .... 4186.475355: sys_nanosleep <-system_
↪→call_fastpath

<idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt <-smp_
↪→apic_timer_interrupt

usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt <-smp_
↪→apic_timer_interrupt

<idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt <-smp_
↪→apic_timer_interrupt

<idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt <-smp_
↪→apic_timer_interrupt

To see which functions are being traced, you can cat the file:

# cat set_ftrace_filter
hrtimer_interrupt
sys_nanosleep

Perhaps this is not enough. The filters also allow glob(7) matching.

<match>* will match functions that begin with <match>

*<match> will match functions that end with <match>

*<match>* will match functions that have <match> in it

<match1>*<match2> will match functions that begin with <match1> and
end with <match2>

Note: It is better to use quotes to enclose the wild cards, otherwise the shell may
expand the parameters into names of files in the local directory.

# echo 'hrtimer_*' > set_ftrace_filter

Produces:

# tracer: function
#
# entries-in-buffer/entries-written: 897/897 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

(continues on next page)
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<idle>-0 [003] dN.1 4228.547803: hrtimer_cancel <-tick_nohz_

↪→idle_exit
<idle>-0 [003] dN.1 4228.547804: hrtimer_try_to_cancel <-

↪→hrtimer_cancel
<idle>-0 [003] dN.2 4228.547805: hrtimer_force_reprogram <-_

↪→_remove_hrtimer
<idle>-0 [003] dN.1 4228.547805: hrtimer_forward <-tick_

↪→nohz_idle_exit
<idle>-0 [003] dN.1 4228.547805: hrtimer_start_range_ns <-

↪→hrtimer_start_expires.constprop.11
<idle>-0 [003] d..1 4228.547858: hrtimer_get_next_event <-

↪→get_next_timer_interrupt
<idle>-0 [003] d..1 4228.547859: hrtimer_start <-__tick_

↪→nohz_idle_enter
<idle>-0 [003] d..2 4228.547860: hrtimer_force_reprogram <-_

↪→_rem

Notice that we lost the sys_nanosleep.

# cat set_ftrace_filter
hrtimer_run_queues
hrtimer_run_pending
hrtimer_init
hrtimer_cancel
hrtimer_try_to_cancel
hrtimer_forward
hrtimer_start
hrtimer_reprogram
hrtimer_force_reprogram
hrtimer_get_next_event
hrtimer_interrupt
hrtimer_nanosleep
hrtimer_wakeup
hrtimer_get_remaining
hrtimer_get_res
hrtimer_init_sleeper

This is because the ‘>’and ‘>>’act just like they do in bash. To rewrite the
filters, use ‘>’To append to the filters, use ‘>>’
To clear out a filter so that all functions will be recorded again:

# echo > set_ftrace_filter
# cat set_ftrace_filter
#

Again, now we want to append.

# echo sys_nanosleep > set_ftrace_filter
# cat set_ftrace_filter
sys_nanosleep
# echo 'hrtimer_*' >> set_ftrace_filter
# cat set_ftrace_filter
hrtimer_run_queues
hrtimer_run_pending
hrtimer_init

(continues on next page)
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hrtimer_cancel
hrtimer_try_to_cancel
hrtimer_forward
hrtimer_start
hrtimer_reprogram
hrtimer_force_reprogram
hrtimer_get_next_event
hrtimer_interrupt
sys_nanosleep
hrtimer_nanosleep
hrtimer_wakeup
hrtimer_get_remaining
hrtimer_get_res
hrtimer_init_sleeper

The set_ftrace_notrace prevents those functions from being traced.

# echo '*preempt*' '*lock*' > set_ftrace_notrace

Produces:

# tracer: function
#
# entries-in-buffer/entries-written: 39608/39608 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

bash-1994 [000] .... 4342.324896: file_ra_state_init <-do_
↪→dentry_open

bash-1994 [000] .... 4342.324897: open_check_o_direct <-do_
↪→last

bash-1994 [000] .... 4342.324897: ima_file_check <-do_last
bash-1994 [000] .... 4342.324898: process_measurement <-ima_

↪→file_check
bash-1994 [000] .... 4342.324898: ima_get_action <-process_

↪→measurement
bash-1994 [000] .... 4342.324898: ima_match_policy <-ima_get_

↪→action
bash-1994 [000] .... 4342.324899: do_truncate <-do_last
bash-1994 [000] .... 4342.324899: should_remove_suid <-do_

↪→truncate
bash-1994 [000] .... 4342.324899: notify_change <-do_truncate
bash-1994 [000] .... 4342.324900: current_fs_time <-notify_

↪→change
bash-1994 [000] .... 4342.324900: current_kernel_time <-

↪→current_fs_time
bash-1994 [000] .... 4342.324900: timespec_trunc <-current_

↪→fs_time

We can see that there’s no more lock or preempt tracing.
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3.21 Selecting function filters via index

Because processing of strings is expensive (the address of the function needs to
be looked up before comparing to the string being passed in), an index can be
used as well to enable functions. This is useful in the case of setting thousands of
specific functions at a time. By passing in a list of numbers, no string processing
will occur. Instead, the function at the specific location in the internal array (which
corresponds to the functions in the “available_filter_functions”file), is selected.
# echo 1 > set_ftrace_filter

Will select the first function listed in “available_filter_functions”
# head -1 available_filter_functions
trace_initcall_finish_cb

# cat set_ftrace_filter
trace_initcall_finish_cb

# head -50 available_filter_functions | tail -1
x86_pmu_commit_txn

# echo 1 50 > set_ftrace_filter
# cat set_ftrace_filter
trace_initcall_finish_cb
x86_pmu_commit_txn

3.22 Dynamic ftrace with the function graph tracer

Although what has been explained above concerns both the function tracer and
the function-graph-tracer, there are some special features only available in the
function-graph tracer.

If you want to trace only one function and all of its children, you just have to echo
its name into set_graph_function:

echo __do_fault > set_graph_function

will produce the following “expanded”trace of the __do_fault() function:
0) | __do_fault() {
0) | filemap_fault() {
0) | find_lock_page() {
0) 0.804 us | find_get_page();
0) | __might_sleep() {
0) 1.329 us | }
0) 3.904 us | }
0) 4.979 us | }
0) 0.653 us | _spin_lock();
0) 0.578 us | page_add_file_rmap();
0) 0.525 us | native_set_pte_at();
0) 0.585 us | _spin_unlock();
0) | unlock_page() {

(continues on next page)
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0) 0.541 us | page_waitqueue();
0) 0.639 us | __wake_up_bit();
0) 2.786 us | }
0) + 14.237 us | }
0) | __do_fault() {
0) | filemap_fault() {
0) | find_lock_page() {
0) 0.698 us | find_get_page();
0) | __might_sleep() {
0) 1.412 us | }
0) 3.950 us | }
0) 5.098 us | }
0) 0.631 us | _spin_lock();
0) 0.571 us | page_add_file_rmap();
0) 0.526 us | native_set_pte_at();
0) 0.586 us | _spin_unlock();
0) | unlock_page() {
0) 0.533 us | page_waitqueue();
0) 0.638 us | __wake_up_bit();
0) 2.793 us | }
0) + 14.012 us | }

You can also expand several functions at once:

echo sys_open > set_graph_function
echo sys_close >> set_graph_function

Now if you want to go back to trace all functions you can clear this special filter
via:

echo > set_graph_function

3.23 ftrace_enabled

Note, the proc sysctl ftrace_enable is a big on/off switch for the function tracer.
By default it is enabled (when function tracing is enabled in the kernel). If it is dis-
abled, all function tracing is disabled. This includes not only the function tracers
for ftrace, but also for any other uses (perf, kprobes, stack tracing, profiling, etc).
It cannot be disabled if there is a callback with FTRACE_OPS_FL_PERMANENT
set registered.

Please disable this with care.

This can be disable (and enabled) with:

sysctl kernel.ftrace_enabled=0
sysctl kernel.ftrace_enabled=1

or

echo 0 > /proc/sys/kernel/ftrace_enabled
echo 1 > /proc/sys/kernel/ftrace_enabled
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3.24 Filter commands

A few commands are supported by the set_ftrace_filter interface. Trace commands
have the following format:

<function>:<command>:<parameter>

The following commands are supported:

• mod: This command enables function filtering per module. The parameter
defines the module. For example, if only the write* functions in the ext3
module are desired, run:

echo ‘write*:mod:ext3’> set_ftrace_filter
This command interacts with the filter in the same way as filtering based on
function names. Thus, adding more functions in a different module is accom-
plished by appending (>>) to the filter file. Remove specific module functions
by prepending ‘!’:
echo '!writeback*:mod:ext3' >> set_ftrace_filter

Mod command supports module globbing. Disable tracing for all functions
except a specific module:

echo '!*:mod:!ext3' >> set_ftrace_filter

Disable tracing for all modules, but still trace kernel:

echo '!*:mod:*' >> set_ftrace_filter

Enable filter only for kernel:

echo '*write*:mod:!*' >> set_ftrace_filter

Enable filter for module globbing:

echo '*write*:mod:*snd*' >> set_ftrace_filter

• traceon/traceoff: These commands turn tracing on and off when the specified
functions are hit. The parameter determines how many times the tracing
system is turned on and off. If unspecified, there is no limit. For example, to
disable tracing when a schedule bug is hit the first 5 times, run:

echo '__schedule_bug:traceoff:5' > set_ftrace_filter

To always disable tracing when __schedule_bug is hit:

echo '__schedule_bug:traceoff' > set_ftrace_filter

These commands are cumulative whether or not they are appended to
set_ftrace_filter. To remove a command, prepend it by ‘!’and drop the pa-
rameter:
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echo '!__schedule_bug:traceoff:0' > set_ftrace_filter

The above removes the traceoff command for __schedule_bug that have a
counter. To remove commands without counters:

echo '!__schedule_bug:traceoff' > set_ftrace_filter

• snapshot: Will cause a snapshot to be triggered when the function is hit.

echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter

To only snapshot once:

echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter

To remove the above commands:

echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter

• enable_event/disable_event: These commands can enable or disable a trace
event. Note, because function tracing callbacks are very sensitive, when
these commands are registered, the trace point is activated, but disabled in a
“soft”mode. That is, the tracepoint will be called, but just will not be traced.
The event tracepoint stays in this mode as long as there’s a command that
triggers it.

echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
set_ftrace_filter

The format is:

<function>:enable_event:<system>:<event>[:count]
<function>:disable_event:<system>:<event>[:count]

To remove the events commands:

echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
set_ftrace_filter

echo '!schedule:disable_event:sched:sched_switch' > \
set_ftrace_filter

• dump: When the function is hit, it will dump the contents of the ftrace ring
buffer to the console. This is useful if you need to debug something, and want
to dump the trace when a certain function is hit. Perhaps it’s a function that
is called before a triple fault happens and does not allow you to get a regular
dump.

• cpudump: When the function is hit, it will dump the contents of the ftrace
ring buffer for the current CPU to the console. Unlike the“dump”command,
it only prints out the contents of the ring buffer for the CPU that executed the
function that triggered the dump.

• stacktrace: When the function is hit, a stack trace is recorded.
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3.25 trace_pipe

The trace_pipe outputs the same content as the trace file, but the effect on the
tracing is different. Every read from trace_pipe is consumed. This means that
subsequent reads will be different. The trace is live.

# echo function > current_tracer
# cat trace_pipe > /tmp/trace.out &
[1] 4153
# echo 1 > tracing_on
# usleep 1
# echo 0 > tracing_on
# cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 0/0 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

#
# cat /tmp/trace.out

bash-1994 [000] .... 5281.568961: mutex_unlock <-rb_simple_
↪→write

bash-1994 [000] .... 5281.568963: __mutex_unlock_slowpath <-
↪→mutex_unlock

bash-1994 [000] .... 5281.568963: __fsnotify_parent <-
↪→fsnotify_modify

bash-1994 [000] .... 5281.568964: fsnotify <-fsnotify_modify
bash-1994 [000] .... 5281.568964: __srcu_read_lock <-fsnotify
bash-1994 [000] .... 5281.568964: add_preempt_count <-__srcu_

↪→read_lock
bash-1994 [000] ...1 5281.568965: sub_preempt_count <-__srcu_

↪→read_lock
bash-1994 [000] .... 5281.568965: __srcu_read_unlock <-

↪→fsnotify
bash-1994 [000] .... 5281.568967: sys_dup2 <-system_call_

↪→fastpath

Note, reading the trace_pipe file will block until more input is added. This is con-
trary to the trace file. If any process opened the trace file for reading, it will ac-
tually disable tracing and prevent new entries from being added. The trace_pipe
file does not have this limitation.
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3.26 trace entries

Having too much or not enough data can be troublesome in diagnosing an issue in
the kernel. The file buffer_size_kb is used to modify the size of the internal trace
buffers. The number listed is the number of entries that can be recorded per CPU.
To know the full size, multiply the number of possible CPUs with the number of
entries.

# cat buffer_size_kb
1408 (units kilobytes)

Or simply read buffer_total_size_kb

# cat buffer_total_size_kb
5632

To modify the buffer, simple echo in a number (in 1024 byte segments).

# echo 10000 > buffer_size_kb
# cat buffer_size_kb
10000 (units kilobytes)

It will try to allocate as much as possible. If you allocate too much, it can cause
Out-Of-Memory to trigger.

# echo 1000000000000 > buffer_size_kb
-bash: echo: write error: Cannot allocate memory
# cat buffer_size_kb
85

The per_cpu buffers can be changed individually as well:

# echo 10000 > per_cpu/cpu0/buffer_size_kb
# echo 100 > per_cpu/cpu1/buffer_size_kb

When the per_cpu buffers are not the same, the buffer_size_kb at the top level will
just show an X

# cat buffer_size_kb
X

This is where the buffer_total_size_kb is useful:

# cat buffer_total_size_kb
12916

Writing to the top level buffer_size_kb will reset all the buffers to be the same
again.
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3.27 Snapshot

CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature available to all
non latency tracers. (Latency tracers which record max latency, such as“irqsoff”
or“wakeup”, can’t use this feature, since those are already using the snapshot
mechanism internally.)

Snapshot preserves a current trace buffer at a particular point in time without
stopping tracing. Ftrace swaps the current buffer with a spare buffer, and tracing
continues in the new current (=previous spare) buffer.

The following tracefs files in “tracing”are related to this feature:
snapshot:

This is used to take a snapshot and to read the output of the
snapshot. Echo 1 into this file to allocate a spare buffer and to
take a snapshot (swap), then read the snapshot from this file
in the same format as “trace”(described above in the section
“The File System”). Both reads snapshot and tracing are exe-
cutable in parallel. When the spare buffer is allocated, echoing
0 frees it, and echoing else (positive) values clear the snapshot
contents. More details are shown in the table below.

status\input 0 1 else
not allocated (do nothing) alloc+swap (do nothing)
allocated free swap clear

Here is an example of using the snapshot feature.

# echo 1 > events/sched/enable
# echo 1 > snapshot
# cat snapshot
# tracer: nop
#
# entries-in-buffer/entries-written: 71/71 #P:8
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

<idle>-0 [005] d... 2440.603828: sched_switch: prev_
↪→comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_
↪→comm=snapshot-test-2 next_pid=2242 next_prio=120

sleep-2242 [005] d... 2440.603846: sched_switch: prev_
↪→comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_
↪→comm=kworker/5:1 next_pid=60 next_prio=120
[...]

<idle>-0 [002] d... 2440.707230: sched_switch: prev_
↪→comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_
↪→comm=snapshot-test-2 next_pid=2229 next_prio=120

(continues on next page)
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# cat trace
# tracer: nop
#
# entries-in-buffer/entries-written: 77/77 #P:8
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

<idle>-0 [007] d... 2440.707395: sched_switch: prev_
↪→comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_
↪→comm=snapshot-test-2 next_pid=2243 next_prio=120
snapshot-test-2-2229 [002] d... 2440.707438: sched_switch: prev_
↪→comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_
↪→comm=swapper/2 next_pid=0 next_prio=120
[...]

If you try to use this snapshot feature when current tracer is one of the latency
tracers, you will get the following results.

# echo wakeup > current_tracer
# echo 1 > snapshot
bash: echo: write error: Device or resource busy
# cat snapshot
cat: snapshot: Device or resource busy

3.28 Instances

In the tracefs tracing directory is a directory called “instances”. This directory
can have new directories created inside of it using mkdir, and removing directories
with rmdir. The directory created with mkdir in this directory will already contain
files and other directories after it is created.

# mkdir instances/foo
# ls instances/foo
buffer_size_kb buffer_total_size_kb events free_buffer per_cpu
set_event snapshot trace trace_clock trace_marker trace_options
trace_pipe tracing_on

As you can see, the new directory looks similar to the tracing directory itself. In
fact, it is very similar, except that the buffer and events are agnostic from the main
directory, or from any other instances that are created.

The files in the new directory work just like the files with the same name in the
tracing directory except the buffer that is used is a separate and new buffer. The
files affect that buffer but do not affect the main buffer with the exception of
trace_options. Currently, the trace_options affect all instances and the top level
buffer the same, but this may change in future releases. That is, options may
become specific to the instance they reside in.
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Notice that none of the function tracer files are there, nor is current_tracer and
available_tracers. This is because the buffers can currently only have events en-
abled for them.

# mkdir instances/foo
# mkdir instances/bar
# mkdir instances/zoot
# echo 100000 > buffer_size_kb
# echo 1000 > instances/foo/buffer_size_kb
# echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
# echo function > current_trace
# echo 1 > instances/foo/events/sched/sched_wakeup/enable
# echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
# echo 1 > instances/foo/events/sched/sched_switch/enable
# echo 1 > instances/bar/events/irq/enable
# echo 1 > instances/zoot/events/syscalls/enable
# cat trace_pipe
CPU:2 [LOST 11745 EVENTS]

bash-2044 [002] .... 10594.481032: _raw_spin_lock_irqsave <-
↪→get_page_from_freelist

bash-2044 [002] d... 10594.481032: add_preempt_count <-_raw_
↪→spin_lock_irqsave

bash-2044 [002] d..1 10594.481032: __rmqueue <-get_page_from_
↪→freelist

bash-2044 [002] d..1 10594.481033: _raw_spin_unlock <-get_
↪→page_from_freelist

bash-2044 [002] d..1 10594.481033: sub_preempt_count <-_raw_
↪→spin_unlock

bash-2044 [002] d... 10594.481033: get_pageblock_flags_group
↪→<-get_pageblock_migratetype

bash-2044 [002] d... 10594.481034: __mod_zone_page_state <-
↪→get_page_from_freelist

bash-2044 [002] d... 10594.481034: zone_statistics <-get_page_
↪→from_freelist

bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_
↪→statistics

bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_
↪→statistics

bash-2044 [002] .... 10594.481035: arch_dup_task_struct <-
↪→copy_process
[...]

# cat instances/foo/trace_pipe
bash-1998 [000] d..4 136.676759: sched_wakeup: comm=kworker/

↪→0:1 pid=59 prio=120 success=1 target_cpu=000
bash-1998 [000] dN.4 136.676760: sched_wakeup: comm=bash␣

↪→pid=1998 prio=120 success=1 target_cpu=000
<idle>-0 [003] d.h3 136.676906: sched_wakeup: comm=rcu_

↪→preempt pid=9 prio=120 success=1 target_cpu=003
<idle>-0 [003] d..3 136.676909: sched_switch: prev_

↪→comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_
↪→preempt next_pid=9 next_prio=120

rcu_preempt-9 [003] d..3 136.676916: sched_switch: prev_
↪→comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_
↪→comm=swapper/3 next_pid=0 next_prio=120

bash-1998 [000] d..4 136.677014: sched_wakeup: comm=kworker/
↪→0:1 pid=59 prio=120 success=1 target_cpu=000

(continues on next page)
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bash-1998 [000] dN.4 136.677016: sched_wakeup: comm=bash␣

↪→pid=1998 prio=120 success=1 target_cpu=000
bash-1998 [000] d..3 136.677018: sched_switch: prev_

↪→comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_
↪→comm=kworker/0:1 next_pid=59 next_prio=120

kworker/0:1-59 [000] d..4 136.677022: sched_wakeup: comm=sshd␣
↪→pid=1995 prio=120 success=1 target_cpu=001

kworker/0:1-59 [000] d..3 136.677025: sched_switch: prev_
↪→comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_
↪→comm=bash next_pid=1998 next_prio=120
[...]

# cat instances/bar/trace_pipe
migration/1-14 [001] d.h3 138.732674: softirq_raise: vec=3␣

↪→[action=NET_RX]
<idle>-0 [001] dNh3 138.732725: softirq_raise: vec=3␣

↪→[action=NET_RX]
bash-1998 [000] d.h1 138.733101: softirq_raise: vec=1␣

↪→[action=TIMER]
bash-1998 [000] d.h1 138.733102: softirq_raise: vec=9␣

↪→[action=RCU]
bash-1998 [000] ..s2 138.733105: softirq_entry: vec=1␣

↪→[action=TIMER]
bash-1998 [000] ..s2 138.733106: softirq_exit: vec=1␣

↪→[action=TIMER]
bash-1998 [000] ..s2 138.733106: softirq_entry: vec=9␣

↪→[action=RCU]
bash-1998 [000] ..s2 138.733109: softirq_exit: vec=9␣

↪→[action=RCU]
sshd-1995 [001] d.h1 138.733278: irq_handler_entry: irq=21␣

↪→name=uhci_hcd:usb4
sshd-1995 [001] d.h1 138.733280: irq_handler_exit: irq=21␣

↪→ret=unhandled
sshd-1995 [001] d.h1 138.733281: irq_handler_entry: irq=21␣

↪→name=eth0
sshd-1995 [001] d.h1 138.733283: irq_handler_exit: irq=21␣

↪→ret=handled
[...]

# cat instances/zoot/trace
# tracer: nop
#
# entries-in-buffer/entries-written: 18996/18996 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

bash-1998 [000] d... 140.733501: sys_write -> 0x2
bash-1998 [000] d... 140.733504: sys_dup2(oldfd: a, newfd:␣

↪→1)
bash-1998 [000] d... 140.733506: sys_dup2 -> 0x1
bash-1998 [000] d... 140.733508: sys_fcntl(fd: a, cmd: 1,␣

↪→arg: 0) (continues on next page)
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bash-1998 [000] d... 140.733509: sys_fcntl -> 0x1
bash-1998 [000] d... 140.733510: sys_close(fd: a)
bash-1998 [000] d... 140.733510: sys_close -> 0x0
bash-1998 [000] d... 140.733514: sys_rt_sigprocmask(how: 0,␣

↪→nset: 0, oset: 6e2768, sigsetsize: 8)
bash-1998 [000] d... 140.733515: sys_rt_sigprocmask -> 0x0
bash-1998 [000] d... 140.733516: sys_rt_sigaction(sig: 2,␣

↪→act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
bash-1998 [000] d... 140.733516: sys_rt_sigaction -> 0x0

You can see that the trace of the top most trace buffer shows only the function
tracing. The foo instance displays wakeups and task switches.

To remove the instances, simply delete their directories:

# rmdir instances/foo
# rmdir instances/bar
# rmdir instances/zoot

Note, if a process has a trace file open in one of the instance directories, the rmdir
will fail with EBUSY.

3.29 Stack trace

Since the kernel has a fixed sized stack, it is important not to waste it in functions.
A kernel developer must be conscience of what they allocate on the stack. If they
add too much, the system can be in danger of a stack overflow, and corruption will
occur, usually leading to a system panic.

There are some tools that check this, usually with interrupts periodically checking
usage. But if you can perform a check at every function call that will become very
useful. As ftrace provides a function tracer, it makes it convenient to check the
stack size at every function call. This is enabled via the stack tracer.

CONFIG_STACK_TRACER enables the ftrace stack tracing functionality. To enable
it, write a ‘1’into /proc/sys/kernel/stack_tracer_enabled.
# echo 1 > /proc/sys/kernel/stack_tracer_enabled

You can also enable it from the kernel command line to trace the stack size of
the kernel during boot up, by adding “stacktrace”to the kernel command line
parameter.

After running it for a few minutes, the output looks like:

# cat stack_max_size
2928

# cat stack_trace
Depth Size Location (18 entries)
----- ---- --------

0) 2928 224 update_sd_lb_stats+0xbc/0x4ac
1) 2704 160 find_busiest_group+0x31/0x1f1

(continues on next page)
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2) 2544 256 load_balance+0xd9/0x662
3) 2288 80 idle_balance+0xbb/0x130
4) 2208 128 __schedule+0x26e/0x5b9
5) 2080 16 schedule+0x64/0x66
6) 2064 128 schedule_timeout+0x34/0xe0
7) 1936 112 wait_for_common+0x97/0xf1
8) 1824 16 wait_for_completion+0x1d/0x1f
9) 1808 128 flush_work+0xfe/0x119

10) 1680 16 tty_flush_to_ldisc+0x1e/0x20
11) 1664 48 input_available_p+0x1d/0x5c
12) 1616 48 n_tty_poll+0x6d/0x134
13) 1568 64 tty_poll+0x64/0x7f
14) 1504 880 do_select+0x31e/0x511
15) 624 400 core_sys_select+0x177/0x216
16) 224 96 sys_select+0x91/0xb9
17) 128 128 system_call_fastpath+0x16/0x1b

Note, if -mfentry is being used by gcc, functions get traced before they set up the
stack frame. This means that leaf level functions are not tested by the stack tracer
when -mfentry is used.

Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.

3.30 More

More details can be found in the source code, in the kernel/trace/*.c files.
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FOUR

USING FTRACE TO HOOK TO FUNCTIONS

Written for: 4.14

4.1 Introduction

The ftrace infrastructure was originally created to attach callbacks to the begin-
ning of functions in order to record and trace the flow of the kernel. But callbacks
to the start of a function can have other use cases. Either for live kernel patching,
or for security monitoring. This document describes how to use ftrace to imple-
ment your own function callbacks.

4.2 The ftrace context

Warning: The ability to add a callback to almost any function within the kernel
comes with risks. A callback can be called from any context (normal, softirq,
irq, and NMI). Callbacks can also be called just before going to idle, during CPU
bring up and takedown, or going to user space. This requires extra care to what
can be done inside a callback. A callback can be called outside the protective
scope of RCU.

The ftrace infrastructure has some protections against recursions and RCU but
one must still be very careful how they use the callbacks.

4.3 The ftrace_ops structure

To register a function callback, a ftrace_ops is required. This structure is used to
tell ftrace what function should be called as the callback as well as what protec-
tions the callback will perform and not require ftrace to handle.

There is only one field that is needed to be set when registering an ftrace_ops with
ftrace:

struct ftrace_ops ops = {
.func = my_callback_func,

(continues on next page)
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.flags = MY_FTRACE_FLAGS
.private = any_private_data_structure,

};

Both .flags and .private are optional. Only .func is required.

To enable tracing call:

register_ftrace_function(&ops);

To disable tracing call:

unregister_ftrace_function(&ops);

The above is defined by including the header:

#include <linux/ftrace.h>

The registered callback will start being called some time after the regis-
ter_ftrace_function() is called and before it returns. The exact time that callbacks
start being called is dependent upon architecture and scheduling of services. The
callback itself will have to handle any synchronization if it must begin at an exact
moment.

The unregister_ftrace_function() will guarantee that the callback is no longer being
called by functions after the unregister_ftrace_function() returns. Note that to
perform this guarantee, the unregister_ftrace_function() may take some time to
finish.

4.4 The callback function

The prototype of the callback function is as follows (as of v4.14):

void callback_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct pt_regs *regs);

@ip This is the instruction pointer of the function that is being traced. (where the
fentry or mcount is within the function)

@parent_ip This is the instruction pointer of the function that called the the func-
tion being traced (where the call of the function occurred).

@op This is a pointer to ftrace_ops that was used to register the callback. This
can be used to pass data to the callback via the private pointer.

@regs If the FTRACE_OPS_FL_SAVE_REGS or FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED
flags are set in the ftrace_ops structure, then this will be pointing to the
pt_regs structure like it would be if an breakpoint was placed at the start of
the function where ftrace was tracing. Otherwise it either contains garbage,
or NULL.
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4.5 The ftrace FLAGS

The ftrace_ops flags are all defined and documented in include/linux/ftrace.h.
Some of the flags are used for internal infrastructure of ftrace, but the ones that
users should be aware of are the following:

FTRACE_OPS_FL_SAVE_REGS If the callback requires reading or modifying the
pt_regs passed to the callback, then it must set this flag. Registering a
ftrace_ops with this flag set on an architecture that does not support pass-
ing of pt_regs to the callback will fail.

FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED Similar to SAVE_REGS but
the registering of a ftrace_ops on an architecture that does not support pass-
ing of regs will not fail with this flag set. But the callback must check if regs
is NULL or not to determine if the architecture supports it.

FTRACE_OPS_FL_RECURSION_SAFE By default, a wrapper is added around
the callback to make sure that recursion of the function does not occur. That
is, if a function that is called as a result of the callback’s execution is also
traced, ftrace will prevent the callback from being called again. But this
wrapper adds some overhead, and if the callback is safe from recursion, it
can set this flag to disable the ftrace protection.

Note, if this flag is set, and recursion does occur, it could cause the system to
crash, and possibly reboot via a triple fault.

It is OK if another callback traces a function that is called by a callback that is
marked recursion safe. Recursion safe callbacks must never trace any func-
tion that are called by the callback itself or any nested functions that those
functions call.

If this flag is set, it is possible that the callback will also be called with preemp-
tion enabled (when CONFIG_PREEMPTION is set), but this is not guaranteed.

FTRACE_OPS_FL_IPMODIFY Requires FTRACE_OPS_FL_SAVE_REGS set. If
the callback is to“hijack”the traced function (have another function called
instead of the traced function), it requires setting this flag. This is what live
kernel patches uses. Without this flag the pt_regs->ip can not be modified.

Note, only one ftrace_ops with FTRACE_OPS_FL_IPMODIFY set may be reg-
istered to any given function at a time.

FTRACE_OPS_FL_RCU If this is set, then the callback will only be called by func-
tions where RCU is “watching”. This is required if the callback function
performs any rcu_read_lock() operation.

RCU stops watching when the system goes idle, the time when a CPU is taken
down and comes back online, and when entering from kernel to user space
and back to kernel space. During these transitions, a callback may be exe-
cuted and RCU synchronization will not protect it.

FTRACE_OPS_FL_PERMANENT If this is set on any ftrace ops, then the tracing
cannot disabled by writing 0 to the proc sysctl ftrace_enabled. Equally, a
callback with the flag set cannot be registered if ftrace_enabled is 0.

Livepatch uses it not to lose the function redirection, so the system stays
protected.
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4.6 Filtering which functions to trace

If a callback is only to be called from specific functions, a filter must be set up.
The filters are added by name, or ip if it is known.

int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
int len, int reset);

@ops The ops to set the filter with
@buf The string that holds the function filter text.
@len The length of the string.
@reset Non-zero to reset all filters before applying this filter.
Filters denote which functions should be enabled when tracing is enabled. If @buf
is NULL and reset is set, all functions will be enabled for tracing.

The@buf can also be a glob expression to enable all functions that match a specific
pattern.

See Filter Commands in Documentation/trace/ftrace.rst.

To just trace the schedule function:

ret = ftrace_set_filter(&ops, "schedule", strlen("schedule"), 0);

To add more functions, call the ftrace_set_filter() more than once with the @reset
parameter set to zero. To remove the current filter set and replace it with new
functions defined by @buf, have @reset be non-zero.

To remove all the filtered functions and trace all functions:

ret = ftrace_set_filter(&ops, NULL, 0, 1);

Sometimes more than one function has the same name. To trace just a specific
function in this case, ftrace_set_filter_ip() can be used.

ret = ftrace_set_filter_ip(&ops, ip, 0, 0);

Although the ip must be the address where the call to fentry or mcount is located
in the function. This function is used by perf and kprobes that gets the ip address
from the user (usually using debug info from the kernel).

If a glob is used to set the filter, functions can be added to a “notrace”list that
will prevent those functions from calling the callback. The “notrace”list takes
precedence over the “filter”list. If the two lists are non-empty and contain the
same functions, the callback will not be called by any function.

An empty “notrace”list means to allow all functions defined by the filter to be
traced.

int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
int len, int reset);
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This takes the same parameters as ftrace_set_filter() but will add the functions it
finds to not be traced. This is a separate list from the filter list, and this function
does not modify the filter list.

A non-zero @reset will clear the“notrace”list before adding functions that match
@buf to it.

Clearing the “notrace”list is the same as clearing the filter list
ret = ftrace_set_notrace(&ops, NULL, 0, 1);

The filter and notrace lists may be changed at any time. If only a set of functions
should call the callback, it is best to set the filters before registering the callback.
But the changes may also happen after the callback has been registered.

If a filter is in place, and the @reset is non-zero, and @buf contains a matching
glob to functions, the switch will happen during the time of the ftrace_set_filter()
call. At no time will all functions call the callback.

ftrace_set_filter(&ops, "schedule", strlen("schedule"), 1);

register_ftrace_function(&ops);

msleep(10);

ftrace_set_filter(&ops, "try_to_wake_up", strlen("try_to_wake_up"), 1);

is not the same as:

ftrace_set_filter(&ops, "schedule", strlen("schedule"), 1);

register_ftrace_function(&ops);

msleep(10);

ftrace_set_filter(&ops, NULL, 0, 1);

ftrace_set_filter(&ops, "try_to_wake_up", strlen("try_to_wake_up"), 0);

As the latter will have a short time where all functions will call the callback, be-
tween the time of the reset, and the time of the new setting of the filter.
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FIVE

KPROBE-BASED EVENT TRACING

Author Masami Hiramatsu

5.1 Overview

These events are similar to tracepoint based events. Instead of Tracepoint, this
is based on kprobes (kprobe and kretprobe). So it can probe wherever kprobes
can probe (this means, all functions except those with __kprobes/nokprobe_inline
annotation and those marked NOKPROBE_SYMBOL). Unlike the Tracepoint based
event, this can be added and removed dynamically, on the fly.

To enable this feature, build your kernel with CONFIG_KPROBE_EVENTS=y.

Similar to the events tracer, this doesn’t need to be activated via current_tracer.
Instead of that, add probe points via /sys/kernel/debug/tracing/kprobe_events, and
enable it via /sys/kernel/debug/tracing/events/kprobes/<EVENT>/enable.

You can also use /sys/kernel/debug/tracing/dynamic_events instead of
kprobe_events. That interface will provide unified access to other dynamic
events too.

5.2 Synopsis of kprobe_events

p[:[GRP/]EVENT] [MOD:]SYM[+offs]|MEMADDR [FETCHARGS] : Set a probe
r[MAXACTIVE][:[GRP/]EVENT] [MOD:]SYM[+0] [FETCHARGS] : Set a return probe
-:[GRP/]EVENT : Clear a probe

GRP : Group name. If omitted, use "kprobes" for it.
EVENT : Event name. If omitted, the event name is generated

based on SYM+offs or MEMADDR.
MOD : Module name which has given SYM.
SYM[+offs] : Symbol+offset where the probe is inserted.
MEMADDR : Address where the probe is inserted.
MAXACTIVE : Maximum number of instances of the specified function that

can be probed simultaneously, or 0 for the default value
as defined in Documentation/kprobes.txt section 1.3.1.

FETCHARGS : Arguments. Each probe can have up to 128 args.
%REG : Fetch register REG
@ADDR : Fetch memory at ADDR (ADDR should be in kernel)

(continues on next page)
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@SYM[+|-offs] : Fetch memory at SYM +|- offs (SYM should be a data symbol)
$stackN : Fetch Nth entry of stack (N >= 0)
$stack : Fetch stack address.
$argN : Fetch the Nth function argument. (N >= 1) (\*1)
$retval : Fetch return value.(\*2)
$comm : Fetch current task comm.
+|-[u]OFFS(FETCHARG) : Fetch memory at FETCHARG +|- OFFS address.(\*3)(\
↪→*4)
\IMM : Store an immediate value to the argument.
NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types

(u8/u16/u32/u64/s8/s16/s32/s64), hexadecimal types
(x8/x16/x32/x64), "string", "ustring" and bitfield
are supported.

(\*1) only for the probe on function entry (offs == 0).
(\*2) only for return probe.
(\*3) this is useful for fetching a field of data structures.
(\*4) "u" means user-space dereference. See :ref:`user_mem_access`.

5.3 Types

Several types are supported for fetch-args. Kprobe tracer will access memory
by given type. Prefix ‘s’and ‘u’means those types are signed and unsigned
respectively. ‘x’prefix implies it is unsigned. Traced arguments are shown in
decimal (‘s’and‘u’) or hexadecimal (‘x’). Without type casting,‘x32’or‘x64’
is used depends on the architecture (e.g. x86-32 uses x32, and x86-64 uses x64).
These value types can be an array. To record array data, you can add‘[N]’(where
N is a fixed number, less than 64) to the base type. E.g. ‘x16[4]’means an array
of x16 (2bytes hex) with 4 elements. Note that the array can be applied to memory
type fetchargs, you can not apply it to registers/stack-entries etc. (for example,
‘$stack1:x8[8]’is wrong, but ‘+8($stack):x8[8]’is OK.) String type is a special
type, which fetches a “null-terminated”string from kernel space. This means it
will fail and store NULL if the string container has been paged out. “ustring”
type is an alternative of string for user-space. See User Memory Access for more
info.. The string array type is a bit different from other types. For other base
types, <base-type>[1] is equal to <base-type> (e.g. +0(%di):x32[1] is same as
+0(%di):x32.) But string[1] is not equal to string. The string type itself represents
“char array”, but string array type represents “char * array”. So, for example,
+0(%di):string[1] is equal to +0(+0(%di)):string. Bitfield is another special type,
which takes 3 parameters, bit-width, bit- offset, and container-size (usually 32).
The syntax is:

b<bit-width>@<bit-offset>/<container-size>

Symbol type(‘symbol’) is an alias of u32 or u64 type (depends on BITS_PER_LONG)
which shows given pointer in“symbol+offset”style. For $comm, the default type
is “string”; any other type is invalid.
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5.4 User Memory Access

Kprobe events supports user-space memory access. For that purpose, you can use
either user-space dereference syntax or ‘ustring’type.
The user-space dereference syntax allows you to access a field of a data structure
in user-space. This is done by adding the“u”prefix to the dereference syntax. For
example, +u4(%si) means it will read memory from the address in the register %si
offset by 4, and the memory is expected to be in user-space. You can use this for
strings too, e.g. +u0(%si):string will read a string from the address in the register
%si that is expected to be in user- space.‘ustring’is a shortcut way of performing
the same task. That is, +0(%si):ustring is equivalent to +u0(%si):string.

Note that kprobe-event provides the user-memory access syntax but it doesn’t
use it transparently. This means if you use normal dereference or string type for
user memory, it might fail, and may always fail on some archs. The user has to
carefully check if the target data is in kernel or user space.

5.5 Per-Probe Event Filtering

Per-probe event filtering feature allows you to set different filter on each probe
and gives you what arguments will be shown in trace buffer. If an event name is
specified right after ‘p:’or ‘r:’in kprobe_events, it adds an event under trac-
ing/events/kprobes/<EVENT>, at the directory you can see‘id’,‘enable’,‘format’
, ‘filter’and ‘trigger’.
enable: You can enable/disable the probe by writing 1 or 0 on it.
format: This shows the format of this probe event.
filter: You can write filtering rules of this event.
id: This shows the id of this probe event.
trigger: This allows to install trigger commands which are executed when the

event is hit (for details, see Documentation/trace/events.rst, section 6).

5.6 Event Profiling

You can check the total number of probe hits and probe miss-hits via
/sys/kernel/debug/tracing/kprobe_profile. The first column is event name, the sec-
ond is the number of probe hits, the third is the number of probe miss-hits.
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5.7 Kernel Boot Parameter

You can add and enable new kprobe events when booting up the kernel by
“kprobe_event=”parameter. The parameter accepts a semicolon-delimited kprobe
events, which format is similar to the kprobe_events. The difference is that the
probe definition parameters are comma-delimited instead of space. For example,
adding myprobe event on do_sys_open like below

p:myprobe do_sys_open dfd=%ax filename=%dx flags=%cx
mode=+4($stack)

should be below for kernel boot parameter (just replace spaces with comma)

p:myprobe,do_sys_open,dfd=%ax,filename=%dx,flags=%cx,mode=+4($stack)

5.8 Usage examples

To add a probe as a new event, write a new definition to kprobe_events as below:

echo 'p:myprobe do_sys_open dfd=%ax filename=%dx flags=%cx mode=+4($stack)
↪→' > /sys/kernel/debug/tracing/kprobe_events

This sets a kprobe on the top of do_sys_open() function with recording 1st to 4th
arguments as “myprobe”event. Note, which register/stack entry is assigned to
each function argument depends on arch-specific ABI. If you unsure the ABI, please
try to use probe subcommand of perf-tools (you can find it under tools/perf/). As
this example shows, users can choose more familiar names for each arguments.

echo 'r:myretprobe do_sys_open $retval' >> /sys/kernel/debug/tracing/
↪→kprobe_events

This sets a kretprobe on the return point of do_sys_open() function with recording
return value as “myretprobe”event. You can see the format of these events via
/sys/kernel/debug/tracing/events/kprobes/<EVENT>/format.

cat /sys/kernel/debug/tracing/events/kprobes/myprobe/format
name: myprobe
ID: 780
format:

field:unsigned short common_type; offset:0; size:2;␣
↪→signed:0;

field:unsigned char common_flags; offset:2; size:1;␣
↪→signed:0;

field:unsigned char common_preempt_count; offset:3; size:1;
↪→signed:0;

field:int common_pid; offset:4; size:4; signed:1;

field:unsigned long __probe_ip; offset:12; size:4; signed:0;
field:int __probe_nargs; offset:16; size:4; signed:1;
field:unsigned long dfd; offset:20; size:4; signed:0;
field:unsigned long filename; offset:24; size:4; signed:0;
field:unsigned long flags; offset:28; size:4; signed:0;
field:unsigned long mode; offset:32; size:4; signed:0;

(continues on next page)

90 Chapter 5. Kprobe-based Event Tracing



Linux Trace Documentation

(continued from previous page)

print fmt: "(%lx) dfd=%lx filename=%lx flags=%lx mode=%lx", REC->__probe_
↪→ip,
REC->dfd, REC->filename, REC->flags, REC->mode

You can see that the event has 4 arguments as in the expressions you specified.

echo > /sys/kernel/debug/tracing/kprobe_events

This clears all probe points.

Or,

echo -:myprobe >> kprobe_events

This clears probe points selectively.

Right after definition, each event is disabled by default. For tracing these events,
you need to enable it.

echo 1 > /sys/kernel/debug/tracing/events/kprobes/myprobe/enable
echo 1 > /sys/kernel/debug/tracing/events/kprobes/myretprobe/enable

Use the following command to start tracing in an interval.

# echo 1 > tracing_on
Open something...
# echo 0 > tracing_on

And you can see the traced information via /sys/kernel/debug/tracing/trace.

cat /sys/kernel/debug/tracing/trace
# tracer: nop
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |

<...>-1447 [001] 1038282.286875: myprobe: (do_sys_open+0x0/
↪→0xd6) dfd=3 filename=7fffd1ec4440 flags=8000 mode=0

<...>-1447 [001] 1038282.286878: myretprobe: (sys_openat+0xc/
↪→0xe <- do_sys_open) $retval=fffffffffffffffe

<...>-1447 [001] 1038282.286885: myprobe: (do_sys_open+0x0/
↪→0xd6) dfd=ffffff9c filename=40413c flags=8000 mode=1b6

<...>-1447 [001] 1038282.286915: myretprobe: (sys_open+0x1b/
↪→0x1d <- do_sys_open) $retval=3

<...>-1447 [001] 1038282.286969: myprobe: (do_sys_open+0x0/
↪→0xd6) dfd=ffffff9c filename=4041c6 flags=98800 mode=10

<...>-1447 [001] 1038282.286976: myretprobe: (sys_open+0x1b/
↪→0x1d <- do_sys_open) $retval=3

Each line shows when the kernel hits an event, and <- SYMBOL means kernel
returns from SYMBOL(e.g.“sys_open+0x1b/0x1d <- do_sys_open”means kernel
returns from do_sys_open to sys_open+0x1b).
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UPROBE-TRACER: UPROBE-BASED EVENT TRACING

Author Srikar Dronamraju

6.1 Overview

Uprobe based trace events are similar to kprobe based trace events. To enable
this feature, build your kernel with CONFIG_UPROBE_EVENTS=y.

Similar to the kprobe-event tracer, this doesn’t need to be ac-
tivated via current_tracer. Instead of that, add probe points
via /sys/kernel/debug/tracing/uprobe_events, and enable it via
/sys/kernel/debug/tracing/events/uprobes/<EVENT>/enable.

However unlike kprobe-event tracer, the uprobe event interface expects the user
to calculate the offset of the probepoint in the object.

You can also use /sys/kernel/debug/tracing/dynamic_events instead of up-
robe_events. That interface will provide unified access to other dynamic events
too.

6.2 Synopsis of uprobe_tracer

p[:[GRP/]EVENT] PATH:OFFSET [FETCHARGS] : Set a uprobe
r[:[GRP/]EVENT] PATH:OFFSET [FETCHARGS] : Set a return uprobe (uretprobe)
-:[GRP/]EVENT : Clear uprobe or uretprobe event

GRP : Group name. If omitted, "uprobes" is the default value.
EVENT : Event name. If omitted, the event name is generated based

on PATH+OFFSET.
PATH : Path to an executable or a library.
OFFSET : Offset where the probe is inserted.

FETCHARGS : Arguments. Each probe can have up to 128 args.
%REG : Fetch register REG
@ADDR : Fetch memory at ADDR (ADDR should be in userspace)
@+OFFSET : Fetch memory at OFFSET (OFFSET from same file as PATH)
$stackN : Fetch Nth entry of stack (N >= 0)
$stack : Fetch stack address.
$retval : Fetch return value.(\*1)
$comm : Fetch current task comm.

(continues on next page)
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+|-[u]OFFS(FETCHARG) : Fetch memory at FETCHARG +|- OFFS address.(\*2)(\
↪→*3)
\IMM : Store an immediate value to the argument.
NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic␣
↪→types

(u8/u16/u32/u64/s8/s16/s32/s64), hexadecimal types
(x8/x16/x32/x64), "string" and bitfield are supported.

(\*1) only for return probe.
(\*2) this is useful for fetching a field of data structures.
(\*3) Unlike kprobe event, "u" prefix will just be ignored, becuse uprobe

events can access only user-space memory.

6.3 Types

Several types are supported for fetch-args. Uprobe tracer will access memory
by given type. Prefix ‘s’and ‘u’means those types are signed and unsigned
respectively. ‘x’prefix implies it is unsigned. Traced arguments are shown in
decimal (‘s’and ‘u’) or hexadecimal (‘x’). Without type casting, ‘x32’or
‘x64’is used depends on the architecture (e.g. x86-32 uses x32, and x86-64 uses
x64). String type is a special type, which fetches a“null-terminated”string from
user space. Bitfield is another special type, which takes 3 parameters, bit-width,
bit- offset, and container-size (usually 32). The syntax is:

b<bit-width>@<bit-offset>/<container-size>

For $comm, the default type is “string”; any other type is invalid.

6.4 Event Profiling

You can check the total number of probe hits per event via
/sys/kernel/debug/tracing/uprobe_profile. The first column is the filename,
the second is the event name, the third is the number of probe hits.

6.5 Usage examples

• Add a probe as a new uprobe event, write a new definition to uprobe_events
as below (sets a uprobe at an offset of 0x4245c0 in the executable /bin/bash):

echo 'p /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events

• Add a probe as a new uretprobe event:

echo 'r /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events

• Unset registered event:
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echo '-:p_bash_0x4245c0' >> /sys/kernel/debug/tracing/uprobe_events

• Print out the events that are registered:

cat /sys/kernel/debug/tracing/uprobe_events

• Clear all events:

echo > /sys/kernel/debug/tracing/uprobe_events

Following example shows how to dump the instruction pointer and %ax register
at the probed text address. Probe zfree function in /bin/zsh:

# cd /sys/kernel/debug/tracing/
# cat /proc/`pgrep zsh`/maps | grep /bin/zsh | grep r-xp
00400000-0048a000 r-xp 00000000 08:03 130904 /bin/zsh
# objdump -T /bin/zsh | grep -w zfree
0000000000446420 g DF .text 0000000000000012 Base zfree

0x46420 is the offset of zfree in object /bin/zsh that is loaded at 0x00400000.
Hence the command to uprobe would be:

# echo 'p:zfree_entry /bin/zsh:0x46420 %ip %ax' > uprobe_events

And the same for the uretprobe would be:

# echo 'r:zfree_exit /bin/zsh:0x46420 %ip %ax' >> uprobe_events

Note: User has to explicitly calculate the offset of the probe-point in the object.

We can see the events that are registered by looking at the uprobe_events file.

# cat uprobe_events
p:uprobes/zfree_entry /bin/zsh:0x00046420 arg1=%ip arg2=%ax
r:uprobes/zfree_exit /bin/zsh:0x00046420 arg1=%ip arg2=%ax

Format of events can be seen by viewing the file
events/uprobes/zfree_entry/format.

# cat events/uprobes/zfree_entry/format
name: zfree_entry
ID: 922
format:

field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:int common_padding; offset:8; size:4; signed:1;

field:unsigned long __probe_ip; offset:12; size:4; signed:0;
field:u32 arg1; offset:16; size:4; signed:0;
field:u32 arg2; offset:20; size:4; signed:0;

print fmt: "(%lx) arg1=%lx arg2=%lx", REC->__probe_ip, REC->arg1, REC->arg2
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Right after definition, each event is disabled by default. For tracing these events,
you need to enable it by:

# echo 1 > events/uprobes/enable

Lets start tracing, sleep for some time and stop tracing.

# echo 1 > tracing_on
# sleep 20
# echo 0 > tracing_on

Also, you can disable the event by:

# echo 0 > events/uprobes/enable

And you can see the traced information via /sys/kernel/debug/tracing/trace.

# cat trace
# tracer: nop
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |

zsh-24842 [006] 258544.995456: zfree_entry: (0x446420)␣
↪→arg1=446420 arg2=79

zsh-24842 [007] 258545.000270: zfree_exit: (0x446540 <-␣
↪→0x446420) arg1=446540 arg2=0

zsh-24842 [002] 258545.043929: zfree_entry: (0x446420)␣
↪→arg1=446420 arg2=79

zsh-24842 [004] 258547.046129: zfree_exit: (0x446540 <-␣
↪→0x446420) arg1=446540 arg2=0

Output shows us uprobe was triggered for a pid 24842 with ip being 0x446420 and
contents of ax register being 79. And uretprobe was triggered with ip at 0x446540
with counterpart function entry at 0x446420.
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CHAPTER

SEVEN

USING THE LINUX KERNEL TRACEPOINTS

Author Mathieu Desnoyers
This document introduces Linux Kernel Tracepoints and their use. It provides
examples of how to insert tracepoints in the kernel and connect probe functions
to them and provides some examples of probe functions.

7.1 Purpose of tracepoints

A tracepoint placed in code provides a hook to call a function (probe) that you can
provide at runtime. A tracepoint can be“on”(a probe is connected to it) or“off”(no
probe is attached). When a tracepoint is“off”it has no effect, except for adding a
tiny time penalty (checking a condition for a branch) and space penalty (adding a
few bytes for the function call at the end of the instrumented function and adds a
data structure in a separate section). When a tracepoint is“on”, the function you
provide is called each time the tracepoint is executed, in the execution context of
the caller. When the function provided ends its execution, it returns to the caller
(continuing from the tracepoint site).

You can put tracepoints at important locations in the code. They are lightweight
hooks that can pass an arbitrary number of parameters, which prototypes are de-
scribed in a tracepoint declaration placed in a header file.

They can be used for tracing and performance accounting.

7.2 Usage

Two elements are required for tracepoints :

• A tracepoint definition, placed in a header file.

• The tracepoint statement, in C code.

In order to use tracepoints, you should include linux/tracepoint.h.

In include/trace/events/subsys.h:

#undef TRACE_SYSTEM
#define TRACE_SYSTEM subsys

#if !defined(_TRACE_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
(continues on next page)
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(continued from previous page)
#define _TRACE_SUBSYS_H

#include <linux/tracepoint.h>

DECLARE_TRACE(subsys_eventname,
TP_PROTO(int firstarg, struct task_struct *p),
TP_ARGS(firstarg, p));

#endif /* _TRACE_SUBSYS_H */

/* This part must be outside protection */
#include <trace/define_trace.h>

In subsys/file.c (where the tracing statement must be added):

#include <trace/events/subsys.h>

#define CREATE_TRACE_POINTS
DEFINE_TRACE(subsys_eventname);

void somefct(void)
{

...
trace_subsys_eventname(arg, task);
...

}

Where :
• subsys_eventname is an identifier unique to your event

– subsys is the name of your subsystem.
– eventname is the name of the event to trace.

• TP_PROTO(int firstarg, struct task_struct *p) is the prototype of the func-
tion called by this tracepoint.

• TP_ARGS(firstarg, p) are the parameters names, same as found in the
prototype.

• if you use the header in multiple source files, #define CRE-
ATE_TRACE_POINTS should appear only in one source file.

Connecting a function (probe) to a tracepoint is done by providing a probe (func-
tion to call) for the specific tracepoint through register_trace_subsys_eventname().
Removing a probe is done through unregister_trace_subsys_eventname(); it will
remove the probe.

tracepoint_synchronize_unregister() must be called before the end of the module
exit function to make sure there is no caller left using the probe. This, and the fact
that preemption is disabled around the probe call, make sure that probe removal
and module unload are safe.

The tracepoint mechanism supports insertingmultiple instances of the same trace-
point, but a single definition must be made of a given tracepoint name over all the
kernel to make sure no type conflict will occur. Name mangling of the tracepoints
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is done using the prototypes to make sure typing is correct. Verification of probe
type correctness is done at the registration site by the compiler. Tracepoints can
be put in inline functions, inlined static functions, and unrolled loops as well as
regular functions.

The naming scheme “subsys_event”is suggested here as a convention intended
to limit collisions. Tracepoint names are global to the kernel: they are considered
as being the same whether they are in the core kernel image or in modules.

If the tracepoint has to be used in kernel modules, an EX-
PORT_TRACEPOINT_SYMBOL_GPL() or EXPORT_TRACEPOINT_SYMBOL()
can be used to export the defined tracepoints.

If you need to do a bit of work for a tracepoint parameter, and that work is only
used for the tracepoint, that work can be encapsulated within an if statement with
the following:

if (trace_foo_bar_enabled()) {
int i;
int tot = 0;

for (i = 0; i < count; i++)
tot += calculate_nuggets();

trace_foo_bar(tot);
}

All trace_<tracepoint>() calls have a matching trace_<tracepoint>_enabled()
function defined that returns true if the tracepoint is enabled and false oth-
erwise. The trace_<tracepoint>() should always be within the block of the if
(trace_<tracepoint>_enabled()) to prevent races between the tracepoint being en-
abled and the check being seen.

The advantage of using the trace_<tracepoint>_enabled() is that it uses the
static_key of the tracepoint to allow the if statement to be implemented with jump
labels and avoid conditional branches.

Note: The convenience macro TRACE_EVENT provides an alternative way to
define tracepoints. Check http://lwn.net/Articles/379903, http://lwn.net/Articles/
381064 and http://lwn.net/Articles/383362 for a series of articles with more de-
tails.
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CHAPTER

EIGHT

EVENT TRACING

Author Theodore Ts’o
Updated Li Zefan and Tom Zanussi

8.1 1. Introduction

Tracepoints (see Documentation/trace/tracepoints.rst) can be used without cre-
ating custom kernel modules to register probe functions using the event tracing
infrastructure.

Not all tracepoints can be traced using the event tracing system; the kernel de-
veloper must provide code snippets which define how the tracing information is
saved into the tracing buffer, and how the tracing information should be printed.

8.2 2. Using Event Tracing

8.2.1 2.1 Via the ‘set_event’interface

The events which are available for tracing can be found in the file
/sys/kernel/debug/tracing/available_events.

To enable a particular event, such as ‘sched_wakeup’, simply echo it to
/sys/kernel/debug/tracing/set_event. For example:

# echo sched_wakeup >> /sys/kernel/debug/tracing/set_event

Note: ‘>>’is necessary, otherwise it will firstly disable all the events.

To disable an event, echo the event name to the set_event file prefixed with an
exclamation point:

# echo '!sched_wakeup' >> /sys/kernel/debug/tracing/set_event

To disable all events, echo an empty line to the set_event file:

# echo > /sys/kernel/debug/tracing/set_event
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To enable all events, echo *:* or *: to the set_event file:

# echo *:* > /sys/kernel/debug/tracing/set_event

The events are organized into subsystems, such as ext4, irq, sched, etc., and a
full event name looks like this: <subsystem>:<event>. The subsystem name is
optional, but it is displayed in the available_events file. All of the events in a sub-
system can be specified via the syntax <subsystem>:*; for example, to enable all
irq events, you can use the command:

# echo 'irq:*' > /sys/kernel/debug/tracing/set_event

8.2.2 2.2 Via the ‘enable’toggle

The events available are also listed in /sys/kernel/debug/tracing/events/ hierarchy
of directories.

To enable event ‘sched_wakeup’:
# echo 1 > /sys/kernel/debug/tracing/events/sched/sched_wakeup/enable

To disable it:

# echo 0 > /sys/kernel/debug/tracing/events/sched/sched_wakeup/enable

To enable all events in sched subsystem:

# echo 1 > /sys/kernel/debug/tracing/events/sched/enable

To enable all events:

# echo 1 > /sys/kernel/debug/tracing/events/enable

When reading one of these enable files, there are four results:

• 0 - all events this file affects are disabled

• 1 - all events this file affects are enabled

• X - there is a mixture of events enabled and disabled

• ? - this file does not affect any event

8.2.3 2.3 Boot option

In order to facilitate early boot debugging, use boot option:

trace_event=[event-list]

event-list is a comma separated list of events. See section 2.1 for event format.
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8.3 3. Defining an event-enabled tracepoint

See The example provided in samples/trace_events

8.4 4. Event formats

Each trace event has a‘format’file associated with it that contains a description
of each field in a logged event. This information can be used to parse the binary
trace stream, and is also the place to find the field names that can be used in event
filters (see section 5).

It also displays the format string that will be used to print the event in text mode,
along with the event name and ID used for profiling.

Every event has a set of common fields associated with it; these are the fields pre-
fixed with common_. The other fields vary between events and correspond to the
fields defined in the TRACE_EVENT definition for that event.

Each field in the format has the form:

field:field-type field-name; offset:N; size:N;

where offset is the offset of the field in the trace record and size is the size of the
data item, in bytes.

For example, here’s the information displayed for the ‘sched_wakeup’event:
# cat /sys/kernel/debug/tracing/events/sched/sched_wakeup/format

name: sched_wakeup
ID: 60
format:

field:unsigned short common_type; offset:0; size:2;
field:unsigned char common_flags; offset:2; size:1;
field:unsigned char common_preempt_count; offset:3; ␣

↪→size:1;
field:int common_pid; offset:4; size:4;
field:int common_tgid; offset:8; size:4;

field:char comm[TASK_COMM_LEN]; offset:12; size:16;
field:pid_t pid; offset:28; size:4;
field:int prio; offset:32; size:4;
field:int success; offset:36; size:4;
field:int cpu; offset:40; size:4;

print fmt: "task %s:%d [%d] success=%d [%03d]", REC->comm, REC->pid,
REC->prio, REC->success, REC->cpu

This event contains 10 fields, the first 5 common and the remaining 5 event-
specific. All the fields for this event are numeric, except for ‘comm’which is
a string, a distinction important for event filtering.
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8.5 5. Event filtering

Trace events can be filtered in the kernel by associating boolean‘filter expressions’
with them. As soon as an event is logged into the trace buffer, its fields are checked
against the filter expression associated with that event type. An event with field
values that‘match’the filter will appear in the trace output, and an event whose
values don’t match will be discarded. An event with no filter associated with it
matches everything, and is the default when no filter has been set for an event.

8.5.1 5.1 Expression syntax

A filter expression consists of one or more‘predicates’that can be combined using
the logical operators‘&&’and‘||’. A predicate is simply a clause that compares the
value of a field contained within a logged event with a constant value and returns
either 0 or 1 depending on whether the field value matched (1) or didn’t match
(0):

field-name relational-operator value

Parentheses can be used to provide arbitrary logical groupings and double-quotes
can be used to prevent the shell from interpreting operators as shell metacharac-
ters.

The field-names available for use in filters can be found in the ‘format’files for
trace events (see section 4).

The relational-operators depend on the type of the field being tested:

The operators available for numeric fields are:

==, !=, <, <=, >, >=, &

And for string fields they are:

==, !=, ~

The glob (~) accepts a wild card character (*,?) and character classes ([). For
example:

prev_comm ~ "*sh"
prev_comm ~ "sh*"
prev_comm ~ "*sh*"
prev_comm ~ "ba*sh"

8.5.2 5.2 Setting filters

A filter for an individual event is set by writing a filter expression to the ‘filter’
file for the given event.

For example:

# cd /sys/kernel/debug/tracing/events/sched/sched_wakeup
# echo "common_preempt_count > 4" > filter
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A slightly more involved example:

# cd /sys/kernel/debug/tracing/events/signal/signal_generate
# echo "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter

If there is an error in the expression, you’ll get an‘Invalid argument’error when
setting it, and the erroneous string along with an error message can be seen by
looking at the filter e.g.:

# cd /sys/kernel/debug/tracing/events/signal/signal_generate
# echo "((sig >= 10 && sig < 15) || dsig == 17) && comm != bash" > filter
-bash: echo: write error: Invalid argument
# cat filter
((sig >= 10 && sig < 15) || dsig == 17) && comm != bash
^
parse_error: Field not found

Currently the caret (‘^’) for an error always appears at the beginning of the
filter string; the error message should still be useful though even without more
accurate position info.

8.5.3 5.3 Clearing filters

To clear the filter for an event, write a ‘0’to the event’s filter file.
To clear the filters for all events in a subsystem, write a ‘0’to the subsystem’s
filter file.

8.5.4 5.3 Subsystem filters

For convenience, filters for every event in a subsystem can be set or cleared as a
group by writing a filter expression into the filter file at the root of the subsystem.
Note however, that if a filter for any event within the subsystem lacks a field spec-
ified in the subsystem filter, or if the filter can’t be applied for any other reason,
the filter for that event will retain its previous setting. This can result in an un-
intended mixture of filters which could lead to confusing (to the user who might
think different filters are in effect) trace output. Only filters that reference just
the common fields can be guaranteed to propagate successfully to all events.

Here are a few subsystem filter examples that also illustrate the above points:

Clear the filters on all events in the sched subsystem:

# cd /sys/kernel/debug/tracing/events/sched
# echo 0 > filter
# cat sched_switch/filter
none
# cat sched_wakeup/filter
none

Set a filter using only common fields for all events in the sched subsystem (all
events end up with the same filter):
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# cd /sys/kernel/debug/tracing/events/sched
# echo common_pid == 0 > filter
# cat sched_switch/filter
common_pid == 0
# cat sched_wakeup/filter
common_pid == 0

Attempt to set a filter using a non-common field for all events in the sched subsys-
tem (all events but those that have a prev_pid field retain their old filters):

# cd /sys/kernel/debug/tracing/events/sched
# echo prev_pid == 0 > filter
# cat sched_switch/filter
prev_pid == 0
# cat sched_wakeup/filter
common_pid == 0

8.5.5 5.4 PID filtering

The set_event_pid file in the same directory as the top events directory exists,
will filter all events from tracing any task that does not have the PID listed in the
set_event_pid file.

# cd /sys/kernel/debug/tracing
# echo $$ > set_event_pid
# echo 1 > events/enable

Will only trace events for the current task.

To add more PIDs without losing the PIDs already included, use ‘>>’.
# echo 123 244 1 >> set_event_pid

8.6 6. Event triggers

Trace events can be made to conditionally invoke trigger‘commands’which can
take various forms and are described in detail below; examples would be enabling
or disabling other trace events or invoking a stack trace whenever the trace event
is hit. Whenever a trace event with attached triggers is invoked, the set of trigger
commands associated with that event is invoked. Any given trigger can addition-
ally have an event filter of the same form as described in section 5 (Event filtering)
associated with it - the command will only be invoked if the event being invoked
passes the associated filter. If no filter is associated with the trigger, it always
passes.

Triggers are added to and removed from a particular event by writing trigger
expressions to the ‘trigger’file for the given event.
A given event can have any number of triggers associated with it, subject to any
restrictions that individual commands may have in that regard.

106 Chapter 8. Event Tracing



Linux Trace Documentation

Event triggers are implemented on top of“soft”mode, which means that whenever
a trace event has one or more triggers associated with it, the event is activated
even if it isn’t actually enabled, but is disabled in a “soft”mode. That is, the
tracepoint will be called, but just will not be traced, unless of course it’s actually
enabled. This scheme allows triggers to be invoked even for events that aren’t
enabled, and also allows the current event filter implementation to be used for
conditionally invoking triggers.

The syntax for event triggers is roughly based on the syntax for set_ftrace_filter
‘ftrace filter commands’(see the ‘Filter commands’section of Documenta-
tion/trace/ftrace.rst), but there are major differences and the implementation isn’
t currently tied to it in any way, so beware about making generalizations between
the two.

Note: Writing into trace_marker (See Documentation/trace/ftrace.rst) can also
enable triggers that are written into /sys/kernel/tracing/events/ftrace/print/trigger

8.6.1 6.1 Expression syntax

Triggers are added by echoing the command to the ‘trigger’file:
# echo 'command[:count] [if filter]' > trigger

Triggers are removed by echoing the same command but starting with‘!’to the
‘trigger’file:
# echo '!command[:count] [if filter]' > trigger

The [if filter] part isn’t used in matching commands when removing, so leaving
that off in a ‘!’command will accomplish the same thing as having it in.
The filter syntax is the same as that described in the ‘Event filtering’section
above.

For ease of use, writing to the trigger file using‘>’currently just adds or removes
a single trigger and there’s no explicit‘>>’support (‘>’actually behaves like
‘>>’) or truncation support to remove all triggers (you have to use ‘!’for each
one added.)

8.6.2 6.2 Supported trigger commands

The following commands are supported:

• enable_event/disable_event

These commands can enable or disable another trace event whenever the
triggering event is hit. When these commands are registered, the other trace
event is activated, but disabled in a“soft”mode. That is, the tracepoint will
be called, but just will not be traced. The event tracepoint stays in this mode
as long as there’s a trigger in effect that can trigger it.
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For example, the following trigger causes kmalloc events to be traced when
a read system call is entered, and the :1 at the end specifies that this enable-
ment happens only once:

# echo 'enable_event:kmem:kmalloc:1' > \
/sys/kernel/debug/tracing/events/syscalls/sys_enter_read/trigger

The following trigger causes kmalloc events to stop being traced when a read
system call exits. This disablement happens on every read system call exit:

# echo 'disable_event:kmem:kmalloc' > \
/sys/kernel/debug/tracing/events/syscalls/sys_exit_read/trigger

The format is:

enable_event:<system>:<event>[:count]
disable_event:<system>:<event>[:count]

To remove the above commands:

# echo '!enable_event:kmem:kmalloc:1' > \
/sys/kernel/debug/tracing/events/syscalls/sys_enter_read/trigger

# echo '!disable_event:kmem:kmalloc' > \
/sys/kernel/debug/tracing/events/syscalls/sys_exit_read/trigger

Note that there can be any number of enable/disable_event triggers per
triggering event, but there can only be one trigger per triggered event.
e.g. sys_enter_read can have triggers enabling both kmem:kmalloc and
sched:sched_switch, but can’t have two kmem:kmalloc versions such as
kmem:kmalloc and kmem:kmalloc:1 or‘kmem:kmalloc if bytes_req == 256’
and ‘kmem:kmalloc if bytes_alloc == 256’(they could be combined into a
single filter on kmem:kmalloc though).

• stacktrace

This command dumps a stacktrace in the trace buffer whenever the triggering
event occurs.

For example, the following trigger dumps a stacktrace every time the kmalloc
tracepoint is hit:

# echo 'stacktrace' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

The following trigger dumps a stacktrace the first 5 times a kmalloc request
happens with a size >= 64K:

# echo 'stacktrace:5 if bytes_req >= 65536' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

The format is:

stacktrace[:count]

To remove the above commands:
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# echo '!stacktrace' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# echo '!stacktrace:5 if bytes_req >= 65536' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

The latter can also be removed more simply by the following (without the
filter):

# echo '!stacktrace:5' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

Note that there can be only one stacktrace trigger per triggering event.

• snapshot

This command causes a snapshot to be triggered whenever the triggering
event occurs.

The following command creates a snapshot every time a block request queue
is unplugged with a depth > 1. If you were tracing a set of events or functions
at the time, the snapshot trace buffer would capture those events when the
trigger event occurred:

# echo 'snapshot if nr_rq > 1' > \
/sys/kernel/debug/tracing/events/block/block_unplug/trigger

To only snapshot once:

# echo 'snapshot:1 if nr_rq > 1' > \
/sys/kernel/debug/tracing/events/block/block_unplug/trigger

To remove the above commands:

# echo '!snapshot if nr_rq > 1' > \
/sys/kernel/debug/tracing/events/block/block_unplug/trigger

# echo '!snapshot:1 if nr_rq > 1' > \
/sys/kernel/debug/tracing/events/block/block_unplug/trigger

Note that there can be only one snapshot trigger per triggering event.

• traceon/traceoff

These commands turn tracing on and off when the specified events are hit.
The parameter determines how many times the tracing system is turned on
and off. If unspecified, there is no limit.

The following command turns tracing off the first time a block request queue
is unplugged with a depth > 1. If you were tracing a set of events or functions
at the time, you could then examine the trace buffer to see the sequence of
events that led up to the trigger event:

# echo 'traceoff:1 if nr_rq > 1' > \
/sys/kernel/debug/tracing/events/block/block_unplug/trigger

To always disable tracing when nr_rq > 1:
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# echo 'traceoff if nr_rq > 1' > \
/sys/kernel/debug/tracing/events/block/block_unplug/trigger

To remove the above commands:

# echo '!traceoff:1 if nr_rq > 1' > \
/sys/kernel/debug/tracing/events/block/block_unplug/trigger

# echo '!traceoff if nr_rq > 1' > \
/sys/kernel/debug/tracing/events/block/block_unplug/trigger

Note that there can be only one traceon or traceoff trigger per triggering
event.

• hist

This command aggregates event hits into a hash table keyed on one or more
trace event format fields (or stacktrace) and a set of running totals derived
from one or more trace event format fields and/or event counts (hitcount).

See Documentation/trace/histogram.rst for details and examples.

8.7 7. In-kernel trace event API

In most cases, the command-line interface to trace events is more than sufficient.
Sometimes, however, applications might find the need for more complex relation-
ships than can be expressed through a simple series of linked command-line ex-
pressions, or putting together sets of commands may be simply too cumbersome.
An example might be an application that needs to ‘listen’to the trace stream
in order to maintain an in-kernel state machine detecting, for instance, when an
illegal kernel state occurs in the scheduler.

The trace event subsystem provides an in-kernel API allowing modules or other
kernel code to generate user-defined ‘synthetic’events at will, which can be
used to either augment the existing trace stream and/or signal that a particular
important state has occurred.

A similar in-kernel API is also available for creating kprobe and kretprobe events.

Both the synthetic event and k/ret/probe event APIs are built on top of a lower-level
“dynevent_cmd”event command API, which is also available for more specialized
applications, or as the basis of other higher-level trace event APIs.

The API provided for these purposes is describe below and allows the following:

• dynamically creating synthetic event definitions

• dynamically creating kprobe and kretprobe event definitions

• tracing synthetic events from in-kernel code

• the low-level “dynevent_cmd”API
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8.7.1 7.1 Dyamically creating synthetic event definitions

There are a couple ways to create a new synthetic event from a kernel module or
other kernel code.

The first creates the event in one step, using synth_event_create(). In this method,
the name of the event to create and an array defining the fields is supplied to
synth_event_create(). If successful, a synthetic event with that name and fields
will exist following that call. For example, to create a new “schedtest”synthetic
event:

ret = synth_event_create("schedtest", sched_fields,
ARRAY_SIZE(sched_fields), THIS_MODULE);

The sched_fields param in this example points to an array of struct
synth_field_desc, each of which describes an event field by type and name:

static struct synth_field_desc sched_fields[] = {
{ .type = "pid_t", .name = "next_pid_field" },
{ .type = "char[16]", .name = "next_comm_field" },
{ .type = "u64", .name = "ts_ns" },
{ .type = "u64", .name = "ts_ms" },
{ .type = "unsigned int", .name = "cpu" },
{ .type = "char[64]", .name = "my_string_field" },
{ .type = "int", .name = "my_int_field" },

};

See synth_field_size() for available types. If field_name contains [n] the field is
considered to be an array.

If the event is created from within a module, a pointer to the module must be
passed to synth_event_create(). This will ensure that the trace buffer won’t contain
unreadable events when the module is removed.

At this point, the event object is ready to be used for generating new events.

In the second method, the event is created in several steps. This allows events to
be created dynamically and without the need to create and populate an array of
fields beforehand.

To use this method, an empty or partially empty synthetic event should first be cre-
ated using synth_event_gen_cmd_start() or synth_event_gen_cmd_array_start().
For synth_event_gen_cmd_start(), the name of the event along with one or more
pairs of args each pair representing a ‘type field_name;’field specification
should be supplied. For synth_event_gen_cmd_array_start(), the name of the event
along with an array of struct synth_field_desc should be supplied. Before call-
ing synth_event_gen_cmd_start() or synth_event_gen_cmd_array_start(), the user
should create and initialize a dynevent_cmd object using synth_event_cmd_init().

For example, to create a new “schedtest”synthetic event with two fields:
struct dynevent_cmd cmd;
char *buf;

/* Create a buffer to hold the generated command */
buf = kzalloc(MAX_DYNEVENT_CMD_LEN, GFP_KERNEL);

(continues on next page)
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/* Before generating the command, initialize the cmd object */
synth_event_cmd_init(&cmd, buf, MAX_DYNEVENT_CMD_LEN);

ret = synth_event_gen_cmd_start(&cmd, "schedtest", THIS_MODULE,
"pid_t", "next_pid_field",
"u64", "ts_ns");

Alternatively, using an array of struct synth_field_desc fields containing the same
information:

ret = synth_event_gen_cmd_array_start(&cmd, "schedtest", THIS_MODULE,
fields, n_fields);

Once the synthetic event object has been created, it can then be populated with
more fields. Fields are added one by one using synth_event_add_field(), supplying
the dynevent_cmd object, a field type, and a field name. For example, to add a new
int field named “intfield”, the following call should be made:
ret = synth_event_add_field(&cmd, "int", "intfield");

See synth_field_size() for available types. If field_name contains [n] the field is
considered to be an array.

A group of fields can also be added all at once using an array of synth_field_desc
with add_synth_fields(). For example, this would add just the first four
sched_fields:

ret = synth_event_add_fields(&cmd, sched_fields, 4);

If you already have a string of the form ‘type field_name’,
synth_event_add_field_str() can be used to add it as-is; it will also automati-
cally append a ‘;’to the string.
Once all the fields have been added, the event should be finalized and registered
by calling the synth_event_gen_cmd_end() function:

ret = synth_event_gen_cmd_end(&cmd);

At this point, the event object is ready to be used for tracing new events.

8.7.2 7.2 Tracing synthetic events from in-kernel code

To trace a synthetic event, there are several options. The first option is to trace
the event in one call, using synth_event_trace() with a variable number of val-
ues, or synth_event_trace_array() with an array of values to be set. A second
option can be used to avoid the need for a pre-formed array of values or list of
arguments, via synth_event_trace_start() and synth_event_trace_end() along with
synth_event_add_next_val() or synth_event_add_val() to add the values piecewise.
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8.7.3 7.2.1 Tracing a synthetic event all at once

To trace a synthetic event all at once, the synth_event_trace() or
synth_event_trace_array() functions can be used.

The synth_event_trace() function is passed the trace_event_file representing the
synthetic event (which can be retrieved using trace_get_event_file() using the syn-
thetic event name,“synthetic”as the system name, and the trace instance name
(NULL if using the global trace array)), along with an variable number of u64 args,
one for each synthetic event field, and the number of values being passed.

So, to trace an event corresponding to the synthetic event definition above, code
like the following could be used:

ret = synth_event_trace(create_synth_test, 7, /* number of values */
444, /* next_pid_field */
(u64)"clackers", /* next_comm_field */
1000000, /* ts_ns */
1000, /* ts_ms */
smp_processor_id(),/* cpu */
(u64)"Thneed", /* my_string_field */
999); /* my_int_field */

All vals should be cast to u64, and string vals are just pointers to strings, cast to
u64. Strings will be copied into space reserved in the event for the string, using
these pointers.

Alternatively, the synth_event_trace_array() function can be used to accomplish
the same thing. It is passed the trace_event_file representing the synthetic event
(which can be retrieved using trace_get_event_file() using the synthetic event
name, “synthetic”as the system name, and the trace instance name (NULL if
using the global trace array)), along with an array of u64, one for each synthetic
event field.

To trace an event corresponding to the synthetic event definition above, code like
the following could be used:

u64 vals[7];

vals[0] = 777; /* next_pid_field */
vals[1] = (u64)"tiddlywinks"; /* next_comm_field */
vals[2] = 1000000; /* ts_ns */
vals[3] = 1000; /* ts_ms */
vals[4] = smp_processor_id(); /* cpu */
vals[5] = (u64)"thneed"; /* my_string_field */
vals[6] = 398; /* my_int_field */

The ‘vals’array is just an array of u64, the number of which must match the
number of field in the synthetic event, and which must be in the same order as the
synthetic event fields.

All vals should be cast to u64, and string vals are just pointers to strings, cast to
u64. Strings will be copied into space reserved in the event for the string, using
these pointers.

In order to trace a synthetic event, a pointer to the trace event file is needed. The
trace_get_event_file() function can be used to get it - it will find the file in the given
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trace instance (in this case NULL since the top trace array is being used) while at
the same time preventing the instance containing it from going away:

schedtest_event_file = trace_get_event_file(NULL, "synthetic",
"schedtest");

Before tracing the event, it should be enabled in some way, otherwise the synthetic
event won’t actually show up in the trace buffer.
To enable a synthetic event from the kernel, trace_array_set_clr_event() can be
used (which is not specific to synthetic events, so does need the“synthetic”system
name to be specified explicitly).

To enable the event, pass ‘true’to it:
trace_array_set_clr_event(schedtest_event_file->tr,

"synthetic", "schedtest", true);

To disable it pass false:

trace_array_set_clr_event(schedtest_event_file->tr,
"synthetic", "schedtest", false);

Finally, synth_event_trace_array() can be used to actually trace the event, which
should be visible in the trace buffer afterwards:

ret = synth_event_trace_array(schedtest_event_file, vals,
ARRAY_SIZE(vals));

To remove the synthetic event, the event should be disabled, and the trace instance
should be ‘put’back using trace_put_event_file():
trace_array_set_clr_event(schedtest_event_file->tr,

"synthetic", "schedtest", false);
trace_put_event_file(schedtest_event_file);

If those have been successful, synth_event_delete() can be called to remove the
event:

ret = synth_event_delete("schedtest");

8.7.4 7.2.2 Tracing a synthetic event piecewise

To trace a synthetic using the piecewise method described above, the
synth_event_trace_start() function is used to ‘open’the synthetic event trace:
struct synth_trace_state trace_state;

ret = synth_event_trace_start(schedtest_event_file, &trace_state);

It’s passed the trace_event_file representing the synthetic event using the same
methods as described above, along with a pointer to a struct synth_trace_state
object, which will be zeroed before use and used to maintain state between this
and following calls.
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Once the event has been opened, which means space for it has been reserved in
the trace buffer, the individual fields can be set. There are two ways to do that,
either one after another for each field in the event, which requires no lookups, or
by name, which does. The tradeoff is flexibility in doing the assignments vs the
cost of a lookup per field.

To assign the values one after the other without lookups,
synth_event_add_next_val() should be used. Each call is passed the same
synth_trace_state object used in the synth_event_trace_start(), along with the
value to set the next field in the event. After each field is set, the‘cursor’points
to the next field, which will be set by the subsequent call, continuing until all
the fields have been set in order. The same sequence of calls as in the above
examples using this method would be (without error-handling code):

/* next_pid_field */
ret = synth_event_add_next_val(777, &trace_state);

/* next_comm_field */
ret = synth_event_add_next_val((u64)"slinky", &trace_state);

/* ts_ns */
ret = synth_event_add_next_val(1000000, &trace_state);

/* ts_ms */
ret = synth_event_add_next_val(1000, &trace_state);

/* cpu */
ret = synth_event_add_next_val(smp_processor_id(), &trace_state);

/* my_string_field */
ret = synth_event_add_next_val((u64)"thneed_2.01", &trace_state);

/* my_int_field */
ret = synth_event_add_next_val(395, &trace_state);

To assign the values in any order, synth_event_add_val() should be used. Each call
is passed the same synth_trace_state object used in the synth_event_trace_start(),
along with the field name of the field to set and the value to set it to. The same
sequence of calls as in the above examples using this method would be (without
error-handling code):

ret = synth_event_add_val("next_pid_field", 777, &trace_state);
ret = synth_event_add_val("next_comm_field", (u64)"silly putty",

&trace_state);
ret = synth_event_add_val("ts_ns", 1000000, &trace_state);
ret = synth_event_add_val("ts_ms", 1000, &trace_state);
ret = synth_event_add_val("cpu", smp_processor_id(), &trace_state);
ret = synth_event_add_val("my_string_field", (u64)"thneed_9",

&trace_state);
ret = synth_event_add_val("my_int_field", 3999, &trace_state);

Note that synth_event_add_next_val() and synth_event_add_val() are incompatible
if used within the same trace of an event - either one can be used but not both at
the same time.

Finally, the event won’t be actually traced until it’s‘closed’, which is done using
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synth_event_trace_end(), which takes only the struct synth_trace_state object used
in the previous calls:

ret = synth_event_trace_end(&trace_state);

Note that synth_event_trace_end() must be called at the end regardless of whether
any of the add calls failed (say due to a bad field name being passed in).

8.7.5 7.3 Dyamically creating kprobe and kretprobe event defini-
tions

To create a kprobe or kretprobe trace event from kernel code, the
kprobe_event_gen_cmd_start() or kretprobe_event_gen_cmd_start() functions
can be used.

To create a kprobe event, an empty or partially empty kprobe event should
first be created using kprobe_event_gen_cmd_start(). The name of the event
and the probe location should be specfied along with one or args each rep-
resenting a probe field should be supplied to this function. Before call-
ing kprobe_event_gen_cmd_start(), the user should create and initialize a dyn-
event_cmd object using kprobe_event_cmd_init().

For example, to create a new “schedtest”kprobe event with two fields:
struct dynevent_cmd cmd;
char *buf;

/* Create a buffer to hold the generated command */
buf = kzalloc(MAX_DYNEVENT_CMD_LEN, GFP_KERNEL);

/* Before generating the command, initialize the cmd object */
kprobe_event_cmd_init(&cmd, buf, MAX_DYNEVENT_CMD_LEN);

/*
* Define the gen_kprobe_test event with the first 2 kprobe
* fields.
*/

ret = kprobe_event_gen_cmd_start(&cmd, "gen_kprobe_test", "do_sys_open",
"dfd=%ax", "filename=%dx");

Once the kprobe event object has been created, it can then be populated with
more fields. Fields can be added using kprobe_event_add_fields(), supplying the
dynevent_cmd object along with a variable arg list of probe fields. For example,
to add a couple additional fields, the following call could be made:

ret = kprobe_event_add_fields(&cmd, "flags=%cx", "mode=+4($stack)");

Once all the fields have been added, the event should be finalized and registered by
calling the kprobe_event_gen_cmd_end() or kretprobe_event_gen_cmd_end() func-
tions, depending on whether a kprobe or kretprobe command was started:

ret = kprobe_event_gen_cmd_end(&cmd);

or:
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ret = kretprobe_event_gen_cmd_end(&cmd);

At this point, the event object is ready to be used for tracing new events.

Similarly, a kretprobe event can be created using kret-
probe_event_gen_cmd_start() with a probe name and location and additional
params such as $retval:

ret = kretprobe_event_gen_cmd_start(&cmd, "gen_kretprobe_test",
"do_sys_open", "$retval");

Similar to the synthetic event case, code like the following can be used to enable
the newly created kprobe event:

gen_kprobe_test = trace_get_event_file(NULL, "kprobes", "gen_kprobe_test");

ret = trace_array_set_clr_event(gen_kprobe_test->tr,
"kprobes", "gen_kprobe_test", true);

Finally, also similar to synthetic events, the following code can be used to give the
kprobe event file back and delete the event:

trace_put_event_file(gen_kprobe_test);

ret = kprobe_event_delete("gen_kprobe_test");

8.7.6 7.4 The “dynevent_cmd”low-level API

Both the in-kernel synthetic event and kprobe interfaces are built on top of a lower-
level “dynevent_cmd”interface. This interface is meant to provide the basis for
higher-level interfaces such as the synthetic and kprobe interfaces, which can be
used as examples.

The basic idea is simple and amounts to providing a general-purpose layer that
can be used to generate trace event commands. The generated command strings
can then be passed to the command-parsing and event creation code that already
exists in the trace event subystem for creating the corresponding trace events.

In a nutshell, the way it works is that the higher-level interface code creates a
struct dynevent_cmd object, then uses a couple functions, dynevent_arg_add() and
dynevent_arg_pair_add() to build up a command string, which finally causes the
command to be executed using the dynevent_create() function. The details of the
interface are described below.

The first step in building a new command string is to create and initialize an in-
stance of a dynevent_cmd. Here, for instance, we create a dynevent_cmd on the
stack and initialize it:

struct dynevent_cmd cmd;
char *buf;
int ret;

buf = kzalloc(MAX_DYNEVENT_CMD_LEN, GFP_KERNEL);
(continues on next page)
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dynevent_cmd_init(cmd, buf, maxlen, DYNEVENT_TYPE_FOO,
foo_event_run_command);

The dynevent_cmd initialization needs to be given a user-specified buffer and the
length of the buffer (MAX_DYNEVENT_CMD_LEN can be used for this purpose -
at 2k it’s generally too big to be comfortably put on the stack, so is dynamically
allocated), a dynevent type id, which is meant to be used to check that further
API calls are for the correct command type, and a pointer to an event-specific
run_command() callback that will be called to actually execute the event-specific
command function.

Once that’s done, the command string can by built up by successive calls to
argument-adding functions.

To add a single argument, define and initialize a struct dynevent_arg or struct
dynevent_arg_pair object. Here’s an example of the simplest possible arg addition,
which is simply to append the given string as a whitespace-separated argument to
the command:

struct dynevent_arg arg;

dynevent_arg_init(&arg, NULL, 0);

arg.str = name;

ret = dynevent_arg_add(cmd, &arg);

The arg object is first initialized using dynevent_arg_init() and in this case the pa-
rameters are NULL or 0, which means there’s no optional sanity-checking function
or separator appended to the end of the arg.

Here’s another more complicated example using an‘arg pair’, which is used to
create an argument that consists of a couple components added together as a unit,
for example, a‘type field_name;’arg or a simple expression arg e.g.‘flags=%cx’
:

struct dynevent_arg_pair arg_pair;

dynevent_arg_pair_init(&arg_pair, dynevent_foo_check_arg_fn, 0, ';');

arg_pair.lhs = type;
arg_pair.rhs = name;

ret = dynevent_arg_pair_add(cmd, &arg_pair);

Again, the arg_pair is first initialized, in this case with a callback function used to
check the sanity of the args (for example, that neither part of the pair is NULL),
along with a character to be used to add an operator between the pair (here none)
and a separator to be appended onto the end of the arg pair (here ‘;’).
There’s also a dynevent_str_add() function that can be used to simply add a string
as-is, with no spaces, delimeters, or arg check.

Any number of dynevent_*_add() calls can be made to build up the string (until its
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length surpasses cmd->maxlen). When all the arguments have been added and
the command string is complete, the only thing left to do is run the command,
which happens by simply calling dynevent_create():

ret = dynevent_create(&cmd);

At that point, if the return value is 0, the dynamic event has been created and is
ready to use.

See the dynevent_cmd function definitions themselves for the details of the API.

8.7. 7. In-kernel trace event API 119



Linux Trace Documentation

120 Chapter 8. Event Tracing



CHAPTER

NINE

SUBSYSTEM TRACE POINTS: KMEM

The kmem tracing system captures events related to object and page allocation
within the kernel. Broadly speaking there are five major subheadings.

• Slab allocation of small objects of unknown type (kmalloc)

• Slab allocation of small objects of known type

• Page allocation

• Per-CPU Allocator Activity

• External Fragmentation

This document describes what each of the tracepoints is and why they might be
useful.

9.1 1. Slab allocation of small objects of unknown type

kmalloc call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu␣
↪→gfp_flags=%s
kmalloc_node call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=
↪→%s node=%d
kfree call_site=%lx ptr=%p

Heavy activity for these events may indicate that a specific cache is justified, par-
ticularly if kmalloc slab pages are getting significantly internal fragmented as a
result of the allocation pattern. By correlating kmalloc with kfree, it may be pos-
sible to identify memory leaks and where the allocation sites were.

9.2 2. Slab allocation of small objects of known type

kmem_cache_alloc call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu␣
↪→gfp_flags=%s
kmem_cache_alloc_node call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu␣
↪→gfp_flags=%s node=%d
kmem_cache_free call_site=%lx ptr=%p

These events are similar in usage to the kmalloc-related events except that it is
likely easier to pin the event down to a specific cache. At the time of writing, no
information is available on what slab is being allocated from, but the call_site can
usually be used to extrapolate that information.
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9.3 3. Page allocation

mm_page_alloc page=%p pfn=%lu order=%d migratetype=%d gfp_flags=
↪→%s
mm_page_alloc_zone_locked page=%p pfn=%lu order=%u migratetype=%d cpu=%d␣
↪→percpu_refill=%d
mm_page_free page=%p pfn=%lu order=%d
mm_page_free_batched page=%p pfn=%lu order=%d cold=%d

These four events deal with page allocation and freeing. mm_page_alloc is a sim-
ple indicator of page allocator activity. Pages may be allocated from the per-CPU
allocator (high performance) or the buddy allocator.

If pages are allocated directly from the buddy allocator, the
mm_page_alloc_zone_locked event is triggered. This event is important as
high amounts of activity imply high activity on the zone->lock. Taking this lock
impairs performance by disabling interrupts, dirtying cache lines between CPUs
and serialising many CPUs.

When a page is freed directly by the caller, the only mm_page_free event is trig-
gered. Significant amounts of activity here could indicate that the callers should
be batching their activities.

When pages are freed in batch, the also mm_page_free_batched is triggered.
Broadly speaking, pages are taken off the LRU lock in bulk and freed in batch with
a page list. Significant amounts of activity here could indicate that the system is
under memory pressure and can also indicate contention on the zone->lru_lock.

9.4 4. Per-CPU Allocator Activity

mm_page_alloc_zone_locked page=%p pfn=%lu order=%u migratetype=%d cpu=
↪→%d percpu_refill=%d
mm_page_pcpu_drain page=%p pfn=%lu order=%d cpu=%d migratetype=
↪→%d

In front of the page allocator is a per-cpu page allocator. It exists only for order-0
pages, reduces contention on the zone->lock and reduces the amount of writing
on struct page.

When a per-CPU list is empty or pages of the wrong type are allocated, the zone-
>lock will be taken once and the per-CPU list refilled. The event triggered is
mm_page_alloc_zone_locked for each page allocated with the event indicating
whether it is for a percpu_refill or not.

When the per-CPU list is too full, a number of pages are freed, each one which
triggers a mm_page_pcpu_drain event.

The individual nature of the events is so that pages can be tracked between alloca-
tion and freeing. A number of drain or refill pages that occur consecutively imply
the zone->lock being taken once. Large amounts of per-CPU refills and drains
could imply an imbalance between CPUs where too much work is being concen-
trated in one place. It could also indicate that the per-CPU lists should be a larger
size. Finally, large amounts of refills on one CPU and drains on another could
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be a factor in causing large amounts of cache line bounces due to writes between
CPUs and worth investigating if pages can be allocated and freed on the same CPU
through some algorithm change.

9.5 5. External Fragmentation

mm_page_alloc_extfrag page=%p pfn=%lu alloc_order=%d fallback_
↪→order=%d pageblock_order=%d alloc_migratetype=%d fallback_migratetype=%d␣
↪→fragmenting=%d change_ownership=%d

External fragmentation affects whether a high-order allocation will be successful
or not. For some types of hardware, this is important although it is avoided where
possible. If the system is using huge pages and needs to be able to resize the pool
over the lifetime of the system, this value is important.

Large numbers of this event implies that memory is fragmenting and high-order
allocations will start failing at some time in the future. One means of reducing the
occurrence of this event is to increase the size of min_free_kbytes in increments
of 3*pageblock_size*nr_online_nodes where pageblock_size is usually the size of
the default hugepage size.

9.5. 5. External Fragmentation 123



Linux Trace Documentation

124 Chapter 9. Subsystem Trace Points: kmem



CHAPTER

TEN

SUBSYSTEM TRACE POINTS: POWER

The power tracing system captures events related to power transitions within the
kernel. Broadly speaking there are three major subheadings:

• Power state switchwhich reports events related to suspend (S-states), cpuidle
(C-states) and cpufreq (P-states)

• System clock related changes

• Power domains related changes and transitions

This document describes what each of the tracepoints is and why they might be
useful.

Cf. include/trace/events/power.h for the events definitions.

10.1 1. Power state switch events

10.1.1 1.1 Trace API

A ‘cpu’event class gathers the CPU-related events: cpuidle and cpufreq.
cpu_idle "state=%lu cpu_id=%lu"
cpu_frequency "state=%lu cpu_id=%lu"
cpu_frequency_limits "min=%lu max=%lu cpu_id=%lu"

A suspend event is used to indicate the system going in and out of the suspend
mode:

machine_suspend "state=%lu"

Note: the value of‘-1’or‘4294967295’for state means an exit from the current
state, i.e. trace_cpu_idle(4, smp_processor_id()) means that the system enters the
idle state 4, while trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()) means
that the system exits the previous idle state.

The event which has ‘state=4294967295’in the trace is very important to the
user space tools which are using it to detect the end of the current state, and so
to correctly draw the states diagrams and to calculate accurate statistics etc.
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10.2 2. Clocks events

The clock events are used for clock enable/disable and for clock rate change.

clock_enable "%s state=%lu cpu_id=%lu"
clock_disable "%s state=%lu cpu_id=%lu"
clock_set_rate "%s state=%lu cpu_id=%lu"

The first parameter gives the clock name (e.g.“gpio1_iclk”). The second param-
eter is ‘1’for enable, ‘0’for disable, the target clock rate for set_rate.

10.3 3. Power domains events

The power domain events are used for power domains transitions

power_domain_target "%s state=%lu cpu_id=%lu"

The first parameter gives the power domain name (e.g. “mpu_pwrdm”). The
second parameter is the power domain target state.

10.4 4. PM QoS events

The PM QoS events are used for QoS add/update/remove request and for tar-
get/flags update.

pm_qos_update_target "action=%s prev_value=%d curr_value=%d"
pm_qos_update_flags "action=%s prev_value=0x%x curr_value=0x
↪→%x"

The first parameter gives the QoS action name (e.g. “ADD_REQ”). The second
parameter is the previous QoS value. The third parameter is the current QoS value
to update.

There are also events used for device PM QoS add/update/remove request.

dev_pm_qos_add_request "device=%s type=%s new_value=%d"
dev_pm_qos_update_request "device=%s type=%s new_value=%d"
dev_pm_qos_remove_request "device=%s type=%s new_value=%d"

The first parameter gives the device name which tries to add/update/remove
QoS requests. The second parameter gives the request type (e.g.
“DEV_PM_QOS_RESUME_LATENCY”). The third parameter is value to be
added/updated/removed.

And, there are events used for CPU latency QoS add/update/remove request.

pm_qos_add_request "value=%d"
pm_qos_update_request "value=%d"
pm_qos_remove_request "value=%d"

The parameter is the value to be added/updated/removed.
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NMI TRACE EVENTS

These events normally show up here:

/sys/kernel/debug/tracing/events/nmi

11.1 nmi_handler

You might want to use this tracepoint if you suspect that your NMI handlers are
hogging large amounts of CPU time. The kernel will warn if it sees long-running
handlers:

INFO: NMI handler took too long to run: 9.207 msecs

and this tracepoint will allow you to drill down and get some more details.

Let’s say you suspect that perf_event_nmi_handler() is causing you some problems
and you only want to trace that handler specifically. You need to find its address:

$ grep perf_event_nmi_handler /proc/kallsyms
ffffffff81625600 t perf_event_nmi_handler

Let’s also say you are only interested in when that function is really hogging a
lot of CPU time, like a millisecond at a time. Note that the kernel’s output is
in milliseconds, but the input to the filter is in nanoseconds! You can filter on
‘delta_ns’:
cd /sys/kernel/debug/tracing/events/nmi/nmi_handler
echo 'handler==0xffffffff81625600 && delta_ns>1000000' > filter
echo 1 > enable

Your output would then look like:

$ cat /sys/kernel/debug/tracing/trace_pipe
<idle>-0 [000] d.h3 505.397558: nmi_handler: perf_event_nmi_
↪→handler() delta_ns: 3236765 handled: 1
<idle>-0 [000] d.h3 505.805893: nmi_handler: perf_event_nmi_
↪→handler() delta_ns: 3174234 handled: 1
<idle>-0 [000] d.h3 506.158206: nmi_handler: perf_event_nmi_
↪→handler() delta_ns: 3084642 handled: 1
<idle>-0 [000] d.h3 506.334346: nmi_handler: perf_event_nmi_
↪→handler() delta_ns: 3080351 handled: 1
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MSR TRACE EVENTS

The x86 kernel supports tracing most MSR (Model Specific Register) accesses.
To see the definition of the MSRs on Intel systems please see the SDM at https:
//www.intel.com/sdm (Volume 3)

Available trace points:

/sys/kernel/debug/tracing/events/msr/

Trace MSR reads:

read_msr

• msr: MSR number

• val: Value written

• failed: 1 if the access failed, otherwise 0

Trace MSR writes:

write_msr

• msr: MSR number

• val: Value written

• failed: 1 if the access failed, otherwise 0

Trace RDPMC in kernel:

rdpmc

The trace data can be post processed with the postprocess/decode_msr.py script:

cat /sys/kernel/debug/tracing/trace | decode_msr.py /usr/src/linux/include/
↪→asm/msr-index.h

to add symbolic MSR names.

129

https://www.intel.com/sdm
https://www.intel.com/sdm


Linux Trace Documentation

130 Chapter 12. MSR Trace Events



CHAPTER

THIRTEEN

IN-KERNEL MEMORY-MAPPED I/O TRACING

Home page and links to optional user space tools:

https://nouveau.freedesktop.org/wiki/MmioTrace

MMIO tracing was originally developed by Intel around 2003 for their Fault Injec-
tion Test Harness. In Dec 2006 - Jan 2007, using the code from Intel, JeffMuizelaar
created a tool for tracing MMIO accesses with the Nouveau project in mind. Since
then many people have contributed.

Mmiotrace was built for reverse engineering any memory-mapped IO device with
the Nouveau project as the first real user. Only x86 and x86_64 architectures are
supported.

Out-of-tree mmiotrace was originally modified for mainline inclusion and ftrace
framework by Pekka Paalanen <pq@iki.fi>.

13.1 Preparation

Mmiotrace feature is compiled in by the CONFIG_MMIOTRACE option. Tracing
is disabled by default, so it is safe to have this set to yes. SMP systems are sup-
ported, but tracing is unreliable and may miss events if more than one CPU is
on-line, therefore mmiotrace takes all but one CPU off-line during run-time activa-
tion. You can re-enable CPUs by hand, but you have been warned, there is no way
to automatically detect if you are losing events due to CPUs racing.

13.2 Usage Quick Reference

$ mount -t debugfs debugfs /sys/kernel/debug
$ echo mmiotrace > /sys/kernel/debug/tracing/current_tracer
$ cat /sys/kernel/debug/tracing/trace_pipe > mydump.txt &
Start X or whatever.
$ echo "X is up" > /sys/kernel/debug/tracing/trace_marker
$ echo nop > /sys/kernel/debug/tracing/current_tracer
Check for lost events.
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13.3 Usage

Make sure debugfs is mounted to /sys/kernel/debug. If not (requires root privi-
leges):

$ mount -t debugfs debugfs /sys/kernel/debug

Check that the driver you are about to trace is not loaded.

Activate mmiotrace (requires root privileges):

$ echo mmiotrace > /sys/kernel/debug/tracing/current_tracer

Start storing the trace:

$ cat /sys/kernel/debug/tracing/trace_pipe > mydump.txt &

The ‘cat’process should stay running (sleeping) in the background.
Load the driver you want to trace and use it. Mmiotrace will only catch MMIO
accesses to areas that are ioremapped while mmiotrace is active.

During tracing you can place comments (markers) into the trace by $ echo “X is
up”> /sys/kernel/debug/tracing/trace_marker This makes it easier to see which
part of the (huge) trace corresponds to which action. It is recommended to place
descriptive markers about what you do.

Shut down mmiotrace (requires root privileges):

$ echo nop > /sys/kernel/debug/tracing/current_tracer

The‘cat’process exits. If it does not, kill it by issuing‘fg’command and pressing
ctrl+c.

Check that mmiotrace did not lose events due to a buffer filling up. Either:

$ grep -i lost mydump.txt

which tells you exactly how many events were lost, or use:

$ dmesg

to view your kernel log and look for“mmiotrace has lost events”warning. If events
were lost, the trace is incomplete. You should enlarge the buffers and try again.
Buffers are enlarged by first seeing how large the current buffers are:

$ cat /sys/kernel/debug/tracing/buffer_size_kb

gives you a number. Approximately double this number and write it back, for
instance:

$ echo 128000 > /sys/kernel/debug/tracing/buffer_size_kb

Then start again from the top.

If you are doing a trace for a driver project, e.g. Nouveau, you should also do the
following before sending your results:

132 Chapter 13. In-kernel memory-mapped I/O tracing



Linux Trace Documentation

$ lspci -vvv > lspci.txt
$ dmesg > dmesg.txt
$ tar zcf pciid-nick-mmiotrace.tar.gz mydump.txt lspci.txt dmesg.txt

and then send the .tar.gz file. The trace compresses considerably. Replace“pciid”
and“nick”with the PCI ID or model name of your piece of hardware under inves-
tigation and your nickname.

13.4 How Mmiotrace Works

Access to hardware IO-memory is gained by mapping addresses from PCI bus by
calling one of the ioremap_*() functions. Mmiotrace is hooked into the __ioremap()
function and gets called whenever a mapping is created. Mapping is an event that
is recorded into the trace log. Note that ISA range mappings are not caught, since
the mapping always exists and is returned directly.

MMIO accesses are recorded via page faults. Just before __ioremap() returns,
the mapped pages are marked as not present. Any access to the pages causes
a fault. The page fault handler calls mmiotrace to handle the fault. Mmiotrace
marks the page present, sets TF flag to achieve single stepping and exits the fault
handler. The instruction that faulted is executed and debug trap is entered. Here
mmiotrace again marks the page as not present. The instruction is decoded to get
the type of operation (read/write), data width and the value read or written. These
are stored to the trace log.

Setting the page present in the page fault handler has a race condition on SMP
machines. During the single stepping other CPUs may run freely on that page and
events can be missed without a notice. Re-enabling other CPUs during tracing is
discouraged.

13.5 Trace Log Format

The raw log is text and easily filtered with e.g. grep and awk. One record is one
line in the log. A record starts with a keyword, followed by keyword- dependent
arguments. Arguments are separated by a space, or continue until the end of line.
The format for version 20070824 is as follows:

13.6 Explanation Keyword Space-separated arguments

read event R width, timestamp, map id, physical, value, PC, PID write event W
width, timestamp, map id, physical, value, PC, PID ioremap event MAP times-
tamp, map id, physical, virtual, length, PC, PID iounmap event UNMAP times-
tamp, map id, PC, PID marker MARK timestamp, text version VERSION the string
“20070824”info for reader LSPCI one line from lspci -v PCI address map PCIDEV
space-separated /proc/bus/pci/devices data unk. opcode UNKNOWN timestamp,
map id, physical, data, PC, PID
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Timestamp is in seconds with decimals. Physical is a PCI bus address, virtual is
a kernel virtual address. Width is the data width in bytes and value is the data
value. Map id is an arbitrary id number identifying the mapping that was used in
an operation. PC is the program counter and PID is process id. PC is zero if it
is not recorded. PID is always zero as tracing MMIO accesses originating in user
space memory is not yet supported.

For instance, the following awk filter will pass all 32-bit writes that target physical
addresses in the range [0xfb73ce40, 0xfb800000]

$ awk '/W 4 / { adr=strtonum($5); if (adr >= 0xfb73ce40 &&
adr < 0xfb800000) print; }'

13.7 Tools for Developers

The user space tools include utilities for:
• replacing numeric addresses and values with hardware register names

• replaying MMIO logs, i.e., re-executing the recorded writes
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EVENT HISTOGRAMS

Documentation written by Tom Zanussi

14.1 1. Introduction

Histogram triggers are special event triggers that can be used to aggre-
gate trace event data into histograms. For information on trace events
and event triggers, see Documentation/trace/events.rst.

14.2 2. Histogram Trigger Command

A histogram trigger command is an event trigger command that aggre-
gates event hits into a hash table keyed on one or more trace event for-
mat fields (or stacktrace) and a set of running totals derived from one or
more trace event format fields and/or event counts (hitcount).

The format of a hist trigger is as follows:

hist:keys=<field1[,field2,...]>[:values=<field1[,field2,...]>]
[:sort=<field1[,field2,...]>][:size=#entries][:pause][:continue]
[:clear][:name=histname1][:<handler>.<action>] [if <filter>]

When a matching event is hit, an entry is added to a hash table using the
key(s) and value(s) named. Keys and values correspond to fields in the
event’s format description. Values must correspond to numeric fields
- on an event hit, the value(s) will be added to a sum kept for that field.
The special string‘hitcount’can be used in place of an explicit value field
- this is simply a count of event hits. If‘values’isn’t specified, an implicit
‘hitcount’value will be automatically created and used as the only value.
Keys can be any field, or the special string‘stacktrace’, which will use
the event’s kernel stacktrace as the key. The keywords‘keys’or‘key’can
be used to specify keys, and the keywords‘values’,‘vals’, or‘val’can be
used to specify values. Compound keys consisting of up to two fields can
be specified by the‘keys’keyword. Hashing a compound key produces
a unique entry in the table for each unique combination of component
keys, and can be useful for providing more fine-grained summaries of
event data. Additionally, sort keys consisting of up to two fields can be
specified by the‘sort’keyword. If more than one field is specified, the
result will be a‘sort within a sort’: the first key is taken to be the primary
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sort key and the second the secondary key. If a hist trigger is given a
name using the ‘name’parameter, its histogram data will be shared
with other triggers of the same name, and trigger hits will update this
common data. Only triggers with‘compatible’fields can be combined in
this way; triggers are‘compatible’if the fields named in the trigger share
the same number and type of fields and those fields also have the same
names. Note that any two events always share the compatible‘hitcount’
and‘stacktrace’fields and can therefore be combined using those fields,
however pointless that may be.

‘hist’triggers add a ‘hist’file to each event’s subdirectory. Reading
the ‘hist’file for the event will dump the hash table in its entirety to
stdout. If there are multiple hist triggers attached to an event, there
will be a table for each trigger in the output. The table displayed for a
named trigger will be the same as any other instance having the same
name. Each printed hash table entry is a simple list of the keys and
values comprising the entry; keys are printed first and are delineated by
curly braces, and are followed by the set of value fields for the entry. By
default, numeric fields are displayed as base-10 integers. This can be
modified by appending any of the following modifiers to the field name:

.hex display a number as a hex value

.sym display an address as a symbol

.sym-offset display an address as a symbol and offset

.syscall display a syscall id as a system call name

.execname display a common_pid as a program name

.log2 display log2 value rather than raw number

.usecs display a common_timestamp in microseconds

Note that in general the semantics of a given field aren’t interpreted
when applying a modifier to it, but there are some restrictions to be
aware of in this regard:

• only the‘hex’modifier can be used for values (because values are
essentially sums, and the other modifiers don’t make sense in that
context).

• the ‘execname’modifier can only be used on a ‘common_pid’.
The reason for this is that the execname is simply the‘comm’value
saved for the‘current’process when an event was triggered, which is
the same as the common_pid value saved by the event tracing code.
Trying to apply that comm value to other pid values wouldn’t be
correct, and typically events that care save pid-specific comm fields
in the event itself.

A typical usage scenario would be the following to enable a hist trigger,
read its current contents, and then turn it off:

# echo 'hist:keys=skbaddr.hex:vals=len' > \
/sys/kernel/debug/tracing/events/net/netif_rx/trigger

# cat /sys/kernel/debug/tracing/events/net/netif_rx/hist

(continues on next page)
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(continued from previous page)
# echo '!hist:keys=skbaddr.hex:vals=len' > \
/sys/kernel/debug/tracing/events/net/netif_rx/trigger

The trigger file itself can be read to show the details of the currently
attached hist trigger. This information is also displayed at the top of the
‘hist’file when read.
By default, the size of the hash table is 2048 entries. The‘size’parameter
can be used to specify more or fewer than that. The units are in terms of
hashtable entries - if a run uses more entries than specified, the results
will show the number of‘drops’, the number of hits that were ignored.
The size should be a power of 2 between 128 and 131072 (any non-
power-of-2 number specified will be rounded up).

The‘sort’parameter can be used to specify a value field to sort on. The
default if unspecified is‘hitcount’and the default sort order is‘ascending’
. To sort in the opposite direction, append .descending’to the sort key.
The‘pause’parameter can be used to pause an existing hist trigger or to
start a hist trigger but not log any events until told to do so. ‘continue’
or ‘cont’can be used to start or restart a paused hist trigger.
The ‘clear’parameter will clear the contents of a running hist trigger
and leave its current paused/active state.

Note that the ‘pause’, ‘cont’, and ‘clear’parameters should be
applied using‘append’shell operator (‘>>’) if applied to an existing
trigger, rather than via the ‘>’operator, which will cause the trigger
to be removed through truncation.

• enable_hist/disable_hist

The enable_hist and disable_hist triggers can be used to have one event con-
ditionally start and stop another event’s already-attached hist trigger. Any
number of enable_hist and disable_hist triggers can be attached to a given
event, allowing that event to kick off and stop aggregations on a host of other
events.

The format is very similar to the enable/disable_event triggers:

enable_hist:<system>:<event>[:count]
disable_hist:<system>:<event>[:count]

Instead of enabling or disabling the tracing of the target event into the trace
buffer as the enable/disable_event triggers do, the enable/disable_hist trig-
gers enable or disable the aggregation of the target event into a hash table.

A typical usage scenario for the enable_hist/disable_hist triggers would be
to first set up a paused hist trigger on some event, followed by an en-
able_hist/disable_hist pair that turns the hist aggregation on and off when
conditions of interest are hit:

# echo 'hist:keys=skbaddr.hex:vals=len:pause' > \
/sys/kernel/debug/tracing/events/net/netif_receive_skb/trigger

(continues on next page)
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(continued from previous page)
# echo 'enable_hist:net:netif_receive_skb if filename==/usr/bin/wget
↪→' > \

/sys/kernel/debug/tracing/events/sched/sched_process_exec/trigger

# echo 'disable_hist:net:netif_receive_skb if comm==wget' > \
/sys/kernel/debug/tracing/events/sched/sched_process_exit/trigger

The above sets up an initially paused hist trigger which is unpaused and starts
aggregating events when a given program is executed, and which stops ag-
gregating when the process exits and the hist trigger is paused again.

The examples below provide a more concrete illustration of the concepts and
typical usage patterns discussed above.

14.2.1 ‘special’event fields

There are a number of ‘special event fields’available for use as keys
or values in a hist trigger. These look like and behave as if they were
actual event fields, but aren’t really part of the event’s field definition
or format file. They are however available for any event, and can be used
anywhere an actual event field could be. They are:

com-
mon_timestamp

u64 timestamp (from ring buffer) associated with
the event, in nanoseconds. May be modified
by .usecs to have timestamps interpreted as mi-
croseconds.

cpu int the cpu on which the event occurred.

14.2.2 Extended error information

For some error conditions encountered when invoking a hist trigger com-
mand, extended error information is available via the tracing/error_log
file. See Error Conditions in Documentation/trace/ftrace.rst for de-
tails.

14.2.3 6.2 ‘hist’trigger examples

The first set of examples creates aggregations using the kmalloc event.
The fields that can be used for the hist trigger are listed in the kmalloc
event’s format file:
# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/format
name: kmalloc
ID: 374
format:

field:unsigned short common_type; offset:0; ␣
↪→size:2; signed:0;

field:unsigned char common_flags; offset:2; ␣
↪→size:1; signed:0;

(continues on next page)
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(continued from previous page)
field:unsigned char common_preempt_count; ␣

↪→offset:3; size:1; signed:0;
field:int common_pid; ␣

↪→offset:4; size:4; signed:1;

field:unsigned long call_site; ␣
↪→offset:8; size:8; signed:0;

field:const void * ptr; ␣
↪→offset:16; size:8; signed:0;

field:size_t bytes_req; ␣
↪→offset:24; size:8; signed:0;

field:size_t bytes_alloc; ␣
↪→offset:32; size:8; signed:0;

field:gfp_t gfp_flags; ␣
↪→offset:40; size:4; signed:0;

We’ll start by creating a hist trigger that generates a simple table that
lists the total number of bytes requested for each function in the kernel
that made one or more calls to kmalloc:

# echo 'hist:key=call_site:val=bytes_req' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

This tells the tracing system to create a‘hist’trigger using the call_site
field of the kmalloc event as the key for the table, which just means that
each unique call_site address will have an entry created for it in the
table. The‘val=bytes_req’parameter tells the hist trigger that for each
unique entry (call_site) in the table, it should keep a running total of the
number of bytes requested by that call_site.

We’ll let it run for awhile and then dump the contents of the‘hist’file
in the kmalloc event’s subdirectory (for readability, a number of entries
have been omitted):

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site:vals=bytes_
↪→req:sort=hitcount:size=2048 [active]

{ call_site: 18446744072106379007 } hitcount: 1 bytes_
↪→req: 176
{ call_site: 18446744071579557049 } hitcount: 1 bytes_
↪→req: 1024
{ call_site: 18446744071580608289 } hitcount: 1 bytes_
↪→req: 16384
{ call_site: 18446744071581827654 } hitcount: 1 bytes_
↪→req: 24
{ call_site: 18446744071580700980 } hitcount: 1 bytes_
↪→req: 8
{ call_site: 18446744071579359876 } hitcount: 1 bytes_
↪→req: 152
{ call_site: 18446744071580795365 } hitcount: 3 bytes_
↪→req: 144
{ call_site: 18446744071581303129 } hitcount: 3 bytes_
↪→req: 144
{ call_site: 18446744071580713234 } hitcount: 4 bytes_
↪→req: 2560 (continues on next page)
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(continued from previous page)
{ call_site: 18446744071580933750 } hitcount: 4 bytes_
↪→req: 736
.
.
.
{ call_site: 18446744072106047046 } hitcount: 69 bytes_
↪→req: 5576
{ call_site: 18446744071582116407 } hitcount: 73 bytes_
↪→req: 2336
{ call_site: 18446744072106054684 } hitcount: 136 bytes_
↪→req: 140504
{ call_site: 18446744072106224230 } hitcount: 136 bytes_
↪→req: 19584
{ call_site: 18446744072106078074 } hitcount: 153 bytes_
↪→req: 2448
{ call_site: 18446744072106062406 } hitcount: 153 bytes_
↪→req: 36720
{ call_site: 18446744071582507929 } hitcount: 153 bytes_
↪→req: 37088
{ call_site: 18446744072102520590 } hitcount: 273 bytes_
↪→req: 10920
{ call_site: 18446744071582143559 } hitcount: 358 bytes_
↪→req: 716
{ call_site: 18446744072106465852 } hitcount: 417 bytes_
↪→req: 56712
{ call_site: 18446744072102523378 } hitcount: 485 bytes_
↪→req: 27160
{ call_site: 18446744072099568646 } hitcount: 1676 bytes_
↪→req: 33520

Totals:
Hits: 4610
Entries: 45
Dropped: 0

The output displays a line for each entry, beginningwith the key specified
in the trigger, followed by the value(s) also specified in the trigger. At
the beginning of the output is a line that displays the trigger info, which
can also be displayed by reading the ‘trigger’file:
# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
hist:keys=call_site:vals=bytes_req:sort=hitcount:size=2048␣
↪→[active]

At the end of the output are a few lines that display the overall totals
for the run. The‘Hits’field shows the total number of times the event
trigger was hit, the‘Entries’field shows the total number of used entries
in the hash table, and the‘Dropped’field shows the number of hits that
were dropped because the number of used entries for the run exceeded
the maximum number of entries allowed for the table (normally 0, but if
not a hint that you may want to increase the size of the table using the
‘size’parameter).
Notice in the above output that there’s an extra field,‘hitcount’, which
wasn’t specified in the trigger. Also notice that in the trigger info output,
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there’s a parameter, ‘sort=hitcount’, which wasn’t specified in the
trigger either. The reason for that is that every trigger implicitly keeps
a count of the total number of hits attributed to a given entry, called
the‘hitcount’. That hitcount information is explicitly displayed in the
output, and in the absence of a user-specified sort parameter, is used as
the default sort field.

The value ‘hitcount’can be used in place of an explicit value in the
‘values’parameter if you don’t really need to have any particular field
summed and are mainly interested in hit frequencies.

To turn the hist trigger off, simply call up the trigger in the command
history and re-execute it with a ‘!’prepended:
# echo '!hist:key=call_site:val=bytes_req' > \

/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

Finally, notice that the call_site as displayed in the output above isn’t
really very useful. It’s an address, but normally addresses are displayed
in hex. To have a numeric field displayed as a hex value, simply append
‘.hex’to the field name in the trigger:
# echo 'hist:key=call_site.hex:val=bytes_req' > \

/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site.hex:vals=bytes_
↪→req:sort=hitcount:size=2048 [active]

{ call_site: ffffffffa026b291 } hitcount: 1 bytes_req: ␣
↪→ 433
{ call_site: ffffffffa07186ff } hitcount: 1 bytes_req: ␣
↪→ 176
{ call_site: ffffffff811ae721 } hitcount: 1 bytes_req: ␣
↪→ 16384
{ call_site: ffffffff811c5134 } hitcount: 1 bytes_req: ␣
↪→ 8
{ call_site: ffffffffa04a9ebb } hitcount: 1 bytes_req: ␣
↪→ 511
{ call_site: ffffffff8122e0a6 } hitcount: 1 bytes_req: ␣
↪→ 12
{ call_site: ffffffff8107da84 } hitcount: 1 bytes_req: ␣
↪→ 152
{ call_site: ffffffff812d8246 } hitcount: 1 bytes_req: ␣
↪→ 24
{ call_site: ffffffff811dc1e5 } hitcount: 3 bytes_req: ␣
↪→ 144
{ call_site: ffffffffa02515e8 } hitcount: 3 bytes_req: ␣
↪→ 648
{ call_site: ffffffff81258159 } hitcount: 3 bytes_req: ␣
↪→ 144
{ call_site: ffffffff811c80f4 } hitcount: 4 bytes_req: ␣
↪→ 544
.
.
.

(continues on next page)
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{ call_site: ffffffffa06c7646 } hitcount: 106 bytes_req: ␣
↪→ 8024
{ call_site: ffffffffa06cb246 } hitcount: 132 bytes_req: ␣
↪→ 31680
{ call_site: ffffffffa06cef7a } hitcount: 132 bytes_req: ␣
↪→ 2112
{ call_site: ffffffff8137e399 } hitcount: 132 bytes_req: ␣
↪→ 23232
{ call_site: ffffffffa06c941c } hitcount: 185 bytes_req: ␣
↪→ 171360
{ call_site: ffffffffa06f2a66 } hitcount: 185 bytes_req: ␣
↪→ 26640
{ call_site: ffffffffa036a70e } hitcount: 265 bytes_req: ␣
↪→ 10600
{ call_site: ffffffff81325447 } hitcount: 292 bytes_req: ␣
↪→ 584
{ call_site: ffffffffa072da3c } hitcount: 446 bytes_req: ␣
↪→ 60656
{ call_site: ffffffffa036b1f2 } hitcount: 526 bytes_req: ␣
↪→ 29456
{ call_site: ffffffffa0099c06 } hitcount: 1780 bytes_req: ␣
↪→ 35600

Totals:
Hits: 4775
Entries: 46
Dropped: 0

Even that’s only marginally more useful - while hex values do look more
like addresses, what users are typically more interested in when looking
at text addresses are the corresponding symbols instead. To have an
address displayed as symbolic value instead, simply append ‘.sym’or
‘.sym-offset’to the field name in the trigger:
# echo 'hist:key=call_site.sym:val=bytes_req' > \

/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site.sym:vals=bytes_
↪→req:sort=hitcount:size=2048 [active]

{ call_site: [ffffffff810adcb9] syslog_print_all ␣
↪→ } hitcount: 1 bytes_req: 1024
{ call_site: [ffffffff8154bc62] usb_control_msg ␣
↪→ } hitcount: 1 bytes_req: 8
{ call_site: [ffffffffa00bf6fe] hidraw_send_report [hid] ␣
↪→ } hitcount: 1 bytes_req: 7
{ call_site: [ffffffff8154acbe] usb_alloc_urb ␣
↪→ } hitcount: 1 bytes_req: 192
{ call_site: [ffffffffa00bf1ca] hidraw_report_event [hid] ␣
↪→ } hitcount: 1 bytes_req: 7
{ call_site: [ffffffff811e3a25] __seq_open_private ␣
↪→ } hitcount: 1 bytes_req: 40
{ call_site: [ffffffff8109524a] alloc_fair_sched_group ␣
↪→ } hitcount: 2 bytes_req: 128

(continues on next page)
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{ call_site: [ffffffff811febd5] fsnotify_alloc_group ␣
↪→ } hitcount: 2 bytes_req: 528
{ call_site: [ffffffff81440f58] __tty_buffer_request_room ␣
↪→ } hitcount: 2 bytes_req: 2624
{ call_site: [ffffffff81200ba6] inotify_new_group ␣
↪→ } hitcount: 2 bytes_req: 96
{ call_site: [ffffffffa05e19af] ieee80211_start_tx_ba_session␣
↪→[mac80211] } hitcount: 2 bytes_req: 464
{ call_site: [ffffffff81672406] tcp_get_metrics ␣
↪→ } hitcount: 2 bytes_req: 304
{ call_site: [ffffffff81097ec2] alloc_rt_sched_group ␣
↪→ } hitcount: 2 bytes_req: 128
{ call_site: [ffffffff81089b05] sched_create_group ␣
↪→ } hitcount: 2 bytes_req: 1424
.
.
.
{ call_site: [ffffffffa04a580c] intel_crtc_page_flip [i915] ␣
↪→ } hitcount: 1185 bytes_req: 123240
{ call_site: [ffffffffa0287592] drm_mode_page_flip_ioctl [drm] ␣
↪→ } hitcount: 1185 bytes_req: 104280
{ call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state␣
↪→[i915] } hitcount: 1402 bytes_req: 190672
{ call_site: [ffffffff812891ca] ext4_find_extent ␣
↪→ } hitcount: 1518 bytes_req: 146208
{ call_site: [ffffffffa029070e] drm_vma_node_allow [drm] ␣
↪→ } hitcount: 1746 bytes_req: 69840
{ call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23␣
↪→[i915] } hitcount: 2021 bytes_req: 792312
{ call_site: [ffffffffa02911f2] drm_modeset_lock_crtc [drm] ␣
↪→ } hitcount: 2592 bytes_req: 145152
{ call_site: [ffffffffa0489a66] intel_ring_begin [i915] ␣
↪→ } hitcount: 2629 bytes_req: 378576
{ call_site: [ffffffffa046041c] i915_gem_execbuffer2 [i915] ␣
↪→ } hitcount: 2629 bytes_req: 3783248
{ call_site: [ffffffff81325607] apparmor_file_alloc_security ␣
↪→ } hitcount: 5192 bytes_req: 10384
{ call_site: [ffffffffa00b7c06] hid_report_raw_event [hid] ␣
↪→ } hitcount: 5529 bytes_req: 110584
{ call_site: [ffffffff8131ebf7] aa_alloc_task_context ␣
↪→ } hitcount: 21943 bytes_req: 702176
{ call_site: [ffffffff8125847d] ext4_htree_store_dirent ␣
↪→ } hitcount: 55759 bytes_req: 5074265

Totals:
Hits: 109928
Entries: 71
Dropped: 0

Because the default sort key above is‘hitcount’, the above shows a the
list of call_sites by increasing hitcount, so that at the bottom we see the
functions that made the most kmalloc calls during the run. If instead we
we wanted to see the top kmalloc callers in terms of the number of bytes
requested rather than the number of calls, and we wanted the top caller
to appear at the top, we can use the ‘sort’parameter, along with the
‘descending’modifier:
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# echo 'hist:key=call_site.sym:val=bytes_req:sort=bytes_req.
↪→descending' > \

/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site.sym:vals=bytes_req:sort=bytes_
↪→req.descending:size=2048 [active]

{ call_site: [ffffffffa046041c] i915_gem_execbuffer2 [i915] ␣
↪→ } hitcount: 2186 bytes_req: 3397464
{ call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23␣
↪→[i915] } hitcount: 1790 bytes_req: 712176
{ call_site: [ffffffff8125847d] ext4_htree_store_dirent ␣
↪→ } hitcount: 8132 bytes_req: 513135
{ call_site: [ffffffff811e2a1b] seq_buf_alloc ␣
↪→ } hitcount: 106 bytes_req: 440128
{ call_site: [ffffffffa0489a66] intel_ring_begin [i915] ␣
↪→ } hitcount: 2186 bytes_req: 314784
{ call_site: [ffffffff812891ca] ext4_find_extent ␣
↪→ } hitcount: 2174 bytes_req: 208992
{ call_site: [ffffffff811ae8e1] __kmalloc ␣
↪→ } hitcount: 8 bytes_req: 131072
{ call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state␣
↪→[i915] } hitcount: 859 bytes_req: 116824
{ call_site: [ffffffffa02911f2] drm_modeset_lock_crtc [drm] ␣
↪→ } hitcount: 1834 bytes_req: 102704
{ call_site: [ffffffffa04a580c] intel_crtc_page_flip [i915] ␣
↪→ } hitcount: 972 bytes_req: 101088
{ call_site: [ffffffffa0287592] drm_mode_page_flip_ioctl [drm] ␣
↪→ } hitcount: 972 bytes_req: 85536
{ call_site: [ffffffffa00b7c06] hid_report_raw_event [hid] ␣
↪→ } hitcount: 3333 bytes_req: 66664
{ call_site: [ffffffff8137e559] sg_kmalloc ␣
↪→ } hitcount: 209 bytes_req: 61632
.
.
.
{ call_site: [ffffffff81095225] alloc_fair_sched_group ␣
↪→ } hitcount: 2 bytes_req: 128
{ call_site: [ffffffff81097ec2] alloc_rt_sched_group ␣
↪→ } hitcount: 2 bytes_req: 128
{ call_site: [ffffffff812d8406] copy_semundo ␣
↪→ } hitcount: 2 bytes_req: 48
{ call_site: [ffffffff81200ba6] inotify_new_group ␣
↪→ } hitcount: 1 bytes_req: 48
{ call_site: [ffffffffa027121a] drm_getmagic [drm] ␣
↪→ } hitcount: 1 bytes_req: 48
{ call_site: [ffffffff811e3a25] __seq_open_private ␣
↪→ } hitcount: 1 bytes_req: 40
{ call_site: [ffffffff811c52f4] bprm_change_interp ␣
↪→ } hitcount: 2 bytes_req: 16
{ call_site: [ffffffff8154bc62] usb_control_msg ␣
↪→ } hitcount: 1 bytes_req: 8
{ call_site: [ffffffffa00bf1ca] hidraw_report_event [hid] ␣
↪→ } hitcount: 1 bytes_req: 7
{ call_site: [ffffffffa00bf6fe] hidraw_send_report [hid] ␣
↪→ } hitcount: 1 bytes_req: 7
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Totals:
Hits: 32133
Entries: 81
Dropped: 0

To display the offset and size information in addition to the symbol name,
just use ‘sym-offset’instead:
# echo 'hist:key=call_site.sym-offset:val=bytes_req:sort=bytes_
↪→req.descending' > \

/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site.sym-offset:vals=bytes_
↪→req:sort=bytes_req.descending:size=2048 [active]

{ call_site: [ffffffffa046041c] i915_gem_execbuffer2+0x6c/0x2c0␣
↪→[i915] } hitcount: 4569 bytes_req: ␣
↪→3163720
{ call_site: [ffffffffa0489a66] intel_ring_begin+0xc6/0x1f0␣
↪→[i915] } hitcount: 4569 bytes_req: ␣
↪→ 657936
{ call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.
↪→23+0x694/0x1020 [i915] } hitcount: 1519 bytes_req: ␣
↪→ 472936
{ call_site: [ffffffffa045e646] i915_gem_do_execbuffer.isra.
↪→23+0x516/0x1020 [i915] } hitcount: 3050 bytes_req: ␣
↪→ 211832
{ call_site: [ffffffff811e2a1b] seq_buf_alloc+0x1b/0x50 ␣
↪→ } hitcount: 34 bytes_req: ␣
↪→148384
{ call_site: [ffffffffa04a580c] intel_crtc_page_flip+0xbc/0x870␣
↪→[i915] } hitcount: 1385 bytes_req: ␣
↪→144040
{ call_site: [ffffffff811ae8e1] __kmalloc+0x191/0x1b0 ␣
↪→ } hitcount: 8 bytes_req: ␣
↪→131072
{ call_site: [ffffffffa0287592] drm_mode_page_flip_ioctl+0x282/
↪→0x360 [drm] } hitcount: 1385 bytes_req: ␣
↪→121880
{ call_site: [ffffffffa02911f2] drm_modeset_lock_crtc+0x32/0x100␣
↪→[drm] } hitcount: 1848 bytes_req: ␣
↪→103488
{ call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state+0x2c/
↪→0xa0 [i915] } hitcount: 461 bytes_req: ␣
↪→62696
{ call_site: [ffffffffa029070e] drm_vma_node_allow+0x2e/0xd0␣
↪→[drm] } hitcount: 1541 bytes_req: ␣
↪→ 61640
{ call_site: [ffffffff815f8d7b] sk_prot_alloc+0xcb/0x1b0 ␣
↪→ } hitcount: 57 bytes_req: ␣
↪→57456
.
.

(continues on next page)
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{ call_site: [ffffffff8109524a] alloc_fair_sched_group+0x5a/0x1a0␣
↪→ } hitcount: 2 bytes_req: ␣
↪→128
{ call_site: [ffffffffa027b921] drm_vm_open_locked+0x31/0xa0␣
↪→[drm] } hitcount: 3 bytes_req: ␣
↪→ 96
{ call_site: [ffffffff8122e266] proc_self_follow_link+0x76/0xb0 ␣
↪→ } hitcount: 8 bytes_req: ␣
↪→ 96
{ call_site: [ffffffff81213e80] load_elf_binary+0x240/0x1650 ␣
↪→ } hitcount: 3 bytes_req: ␣
↪→ 84
{ call_site: [ffffffff8154bc62] usb_control_msg+0x42/0x110 ␣
↪→ } hitcount: 1 bytes_req: ␣
↪→ 8
{ call_site: [ffffffffa00bf6fe] hidraw_send_report+0x7e/0x1a0␣
↪→[hid] } hitcount: 1 bytes_req: ␣
↪→ 7
{ call_site: [ffffffffa00bf1ca] hidraw_report_event+0x8a/0x120␣
↪→[hid] } hitcount: 1 bytes_req: ␣
↪→ 7

Totals:
Hits: 26098
Entries: 64
Dropped: 0

We can also add multiple fields to the ‘values’parameter. For exam-
ple, we might want to see the total number of bytes allocated alongside
bytes requested, and display the result sorted by bytes allocated in a
descending order:

# echo 'hist:keys=call_site.sym:values=bytes_req,bytes_
↪→alloc:sort=bytes_alloc.descending' > \

/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site.sym:vals=bytes_req,bytes_
↪→alloc:sort=bytes_alloc.descending:size=2048 [active]

{ call_site: [ffffffffa046041c] i915_gem_execbuffer2 [i915] ␣
↪→ } hitcount: 7403 bytes_req: 4084360 ␣
↪→bytes_alloc: 5958016
{ call_site: [ffffffff811e2a1b] seq_buf_alloc ␣
↪→ } hitcount: 541 bytes_req: 2213968 ␣
↪→bytes_alloc: 2228224
{ call_site: [ffffffffa0489a66] intel_ring_begin [i915] ␣
↪→ } hitcount: 7404 bytes_req: 1066176 ␣
↪→bytes_alloc: 1421568
{ call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23␣
↪→[i915] } hitcount: 1565 bytes_req: 557368 ␣
↪→bytes_alloc: 1037760
{ call_site: [ffffffff8125847d] ext4_htree_store_dirent ␣
↪→ } hitcount: 9557 bytes_req: 595778 ␣
↪→bytes_alloc: 695744 (continues on next page)
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{ call_site: [ffffffffa045e646] i915_gem_do_execbuffer.isra.23␣
↪→[i915] } hitcount: 5839 bytes_req: 430680 ␣
↪→bytes_alloc: 470400
{ call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state␣
↪→[i915] } hitcount: 2388 bytes_req: 324768␣
↪→ bytes_alloc: 458496
{ call_site: [ffffffffa02911f2] drm_modeset_lock_crtc [drm] ␣
↪→ } hitcount: 3911 bytes_req: 219016 ␣
↪→bytes_alloc: 250304
{ call_site: [ffffffff815f8d7b] sk_prot_alloc ␣
↪→ } hitcount: 235 bytes_req: 236880 ␣
↪→bytes_alloc: 240640
{ call_site: [ffffffff8137e559] sg_kmalloc ␣
↪→ } hitcount: 557 bytes_req: 169024 ␣
↪→bytes_alloc: 221760
{ call_site: [ffffffffa00b7c06] hid_report_raw_event [hid] ␣
↪→ } hitcount: 9378 bytes_req: 187548 ␣
↪→bytes_alloc: 206312
{ call_site: [ffffffffa04a580c] intel_crtc_page_flip [i915] ␣
↪→ } hitcount: 1519 bytes_req: 157976 ␣
↪→bytes_alloc: 194432
.
.
.
{ call_site: [ffffffff8109bd3b] sched_autogroup_create_attach ␣
↪→ } hitcount: 2 bytes_req: 144 ␣
↪→bytes_alloc: 192
{ call_site: [ffffffff81097ee8] alloc_rt_sched_group ␣
↪→ } hitcount: 2 bytes_req: 128 ␣
↪→bytes_alloc: 128
{ call_site: [ffffffff8109524a] alloc_fair_sched_group ␣
↪→ } hitcount: 2 bytes_req: 128 ␣
↪→bytes_alloc: 128
{ call_site: [ffffffff81095225] alloc_fair_sched_group ␣
↪→ } hitcount: 2 bytes_req: 128 ␣
↪→bytes_alloc: 128
{ call_site: [ffffffff81097ec2] alloc_rt_sched_group ␣
↪→ } hitcount: 2 bytes_req: 128 ␣
↪→bytes_alloc: 128
{ call_site: [ffffffff81213e80] load_elf_binary ␣
↪→ } hitcount: 3 bytes_req: 84 ␣
↪→bytes_alloc: 96
{ call_site: [ffffffff81079a2e] kthread_create_on_node ␣
↪→ } hitcount: 1 bytes_req: 56 ␣
↪→bytes_alloc: 64
{ call_site: [ffffffffa00bf6fe] hidraw_send_report [hid] ␣
↪→ } hitcount: 1 bytes_req: 7 ␣
↪→bytes_alloc: 8
{ call_site: [ffffffff8154bc62] usb_control_msg ␣
↪→ } hitcount: 1 bytes_req: 8 ␣
↪→bytes_alloc: 8
{ call_site: [ffffffffa00bf1ca] hidraw_report_event [hid] ␣
↪→ } hitcount: 1 bytes_req: 7 ␣
↪→bytes_alloc: 8

Totals:
(continues on next page)
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Hits: 66598
Entries: 65
Dropped: 0

Finally, to finish off our kmalloc example, instead of simply having the
hist trigger display symbolic call_sites, we can have the hist trigger ad-
ditionally display the complete set of kernel stack traces that led to each
call_site. To do that, we simply use the special value ‘stacktrace’for
the key parameter:

# echo 'hist:keys=stacktrace:values=bytes_req,bytes_
↪→alloc:sort=bytes_alloc' > \

/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

The above trigger will use the kernel stack trace in effect when an event
is triggered as the key for the hash table. This allows the enumeration
of every kernel callpath that led up to a particular event, along with a
running total of any of the event fields for that event. Here we tally bytes
requested and bytes allocated for every callpath in the system that led
up to a kmalloc (in this case every callpath to a kmalloc for a kernel
compile):

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=stacktrace:vals=bytes_req,bytes_
↪→alloc:sort=bytes_alloc:size=2048 [active]

{ stacktrace:
__kmalloc_track_caller+0x10b/0x1a0
kmemdup+0x20/0x50
hidraw_report_event+0x8a/0x120 [hid]
hid_report_raw_event+0x3ea/0x440 [hid]
hid_input_report+0x112/0x190 [hid]
hid_irq_in+0xc2/0x260 [usbhid]
__usb_hcd_giveback_urb+0x72/0x120
usb_giveback_urb_bh+0x9e/0xe0
tasklet_hi_action+0xf8/0x100
__do_softirq+0x114/0x2c0
irq_exit+0xa5/0xb0
do_IRQ+0x5a/0xf0
ret_from_intr+0x0/0x30
cpuidle_enter+0x17/0x20
cpu_startup_entry+0x315/0x3e0
rest_init+0x7c/0x80

} hitcount: 3 bytes_req: 21 bytes_alloc: ␣
↪→ 24
{ stacktrace:

__kmalloc_track_caller+0x10b/0x1a0
kmemdup+0x20/0x50
hidraw_report_event+0x8a/0x120 [hid]
hid_report_raw_event+0x3ea/0x440 [hid]
hid_input_report+0x112/0x190 [hid]
hid_irq_in+0xc2/0x260 [usbhid]
__usb_hcd_giveback_urb+0x72/0x120
usb_giveback_urb_bh+0x9e/0xe0

(continues on next page)
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tasklet_hi_action+0xf8/0x100
__do_softirq+0x114/0x2c0
irq_exit+0xa5/0xb0
do_IRQ+0x5a/0xf0
ret_from_intr+0x0/0x30

} hitcount: 3 bytes_req: 21 bytes_alloc: ␣
↪→ 24
{ stacktrace:

kmem_cache_alloc_trace+0xeb/0x150
aa_alloc_task_context+0x27/0x40
apparmor_cred_prepare+0x1f/0x50
security_prepare_creds+0x16/0x20
prepare_creds+0xdf/0x1a0
SyS_capset+0xb5/0x200
system_call_fastpath+0x12/0x6a

} hitcount: 1 bytes_req: 32 bytes_alloc: ␣
↪→ 32
.
.
.
{ stacktrace:

__kmalloc+0x11b/0x1b0
i915_gem_execbuffer2+0x6c/0x2c0 [i915]
drm_ioctl+0x349/0x670 [drm]
do_vfs_ioctl+0x2f0/0x4f0
SyS_ioctl+0x81/0xa0
system_call_fastpath+0x12/0x6a

} hitcount: 17726 bytes_req: 13944120 bytes_alloc: ␣
↪→19593808
{ stacktrace:

__kmalloc+0x11b/0x1b0
load_elf_phdrs+0x76/0xa0
load_elf_binary+0x102/0x1650
search_binary_handler+0x97/0x1d0
do_execveat_common.isra.34+0x551/0x6e0
SyS_execve+0x3a/0x50
return_from_execve+0x0/0x23

} hitcount: 33348 bytes_req: 17152128 bytes_alloc: ␣
↪→20226048
{ stacktrace:

kmem_cache_alloc_trace+0xeb/0x150
apparmor_file_alloc_security+0x27/0x40
security_file_alloc+0x16/0x20
get_empty_filp+0x93/0x1c0
path_openat+0x31/0x5f0
do_filp_open+0x3a/0x90
do_sys_open+0x128/0x220
SyS_open+0x1e/0x20
system_call_fastpath+0x12/0x6a

} hitcount: 4766422 bytes_req: 9532844 bytes_alloc: ␣
↪→38131376
{ stacktrace:

__kmalloc+0x11b/0x1b0
seq_buf_alloc+0x1b/0x50
seq_read+0x2cc/0x370
proc_reg_read+0x3d/0x80

(continues on next page)
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__vfs_read+0x28/0xe0
vfs_read+0x86/0x140
SyS_read+0x46/0xb0
system_call_fastpath+0x12/0x6a

} hitcount: 19133 bytes_req: 78368768 bytes_alloc: ␣
↪→78368768

Totals:
Hits: 6085872
Entries: 253
Dropped: 0

If you key a hist trigger on common_pid, in order for example to gather
and display sorted totals for each process, you can use the special .exec-
name modifier to display the executable names for the processes in the
table rather than raw pids. The example below keeps a per-process sum
of total bytes read:

# echo 'hist:key=common_pid.execname:val=count:sort=count.
↪→descending' > \

/sys/kernel/debug/tracing/events/syscalls/sys_enter_read/
↪→trigger

# cat /sys/kernel/debug/tracing/events/syscalls/sys_enter_read/
↪→hist
# trigger info: hist:keys=common_pid.
↪→execname:vals=count:sort=count.descending:size=2048 [active]

{ common_pid: gnome-terminal [ 3196] } hitcount: 280␣
↪→ count: 1093512
{ common_pid: Xorg [ 1309] } hitcount: 525␣
↪→ count: 256640
{ common_pid: compiz [ 2889] } hitcount: 59␣
↪→ count: 254400
{ common_pid: bash [ 8710] } hitcount: 3␣
↪→ count: 66369
{ common_pid: dbus-daemon-lau [ 8703] } hitcount: 49␣
↪→ count: 47739
{ common_pid: irqbalance [ 1252] } hitcount: 27␣
↪→ count: 27648
{ common_pid: 01ifupdown [ 8705] } hitcount: 3␣
↪→ count: 17216
{ common_pid: dbus-daemon [ 772] } hitcount: 10␣
↪→ count: 12396
{ common_pid: Socket Thread [ 8342] } hitcount: 11␣
↪→ count: 11264
{ common_pid: nm-dhcp-client. [ 8701] } hitcount: 6␣
↪→ count: 7424
{ common_pid: gmain [ 1315] } hitcount: 18␣
↪→ count: 6336
.
.
.
{ common_pid: postgres [ 1892] } hitcount: 2␣
↪→ count: 32

(continues on next page)
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{ common_pid: postgres [ 1891] } hitcount: 2␣
↪→ count: 32
{ common_pid: gmain [ 8704] } hitcount: 2␣
↪→ count: 32
{ common_pid: upstart-dbus-br [ 2740] } hitcount: 21␣
↪→ count: 21
{ common_pid: nm-dispatcher.a [ 8696] } hitcount: 1␣
↪→ count: 16
{ common_pid: indicator-datet [ 2904] } hitcount: 1␣
↪→ count: 16
{ common_pid: gdbus [ 2998] } hitcount: 1␣
↪→ count: 16
{ common_pid: rtkit-daemon [ 2052] } hitcount: 1␣
↪→ count: 8
{ common_pid: init [ 1] } hitcount: 2␣
↪→ count: 2

Totals:
Hits: 2116
Entries: 51
Dropped: 0

Similarly, if you key a hist trigger on syscall id, for example to gather and
display a list of systemwide syscall hits, you can use the special .syscall
modifier to display the syscall names rather than raw ids. The example
below keeps a running total of syscall counts for the system during the
run:

# echo 'hist:key=id.syscall:val=hitcount' > \
/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/

↪→trigger

# cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
# trigger info: hist:keys=id.
↪→syscall:vals=hitcount:sort=hitcount:size=2048 [active]

{ id: sys_fsync [ 74] } hitcount: 1
{ id: sys_newuname [ 63] } hitcount: 1
{ id: sys_prctl [157] } hitcount: 1
{ id: sys_statfs [137] } hitcount: 1
{ id: sys_symlink [ 88] } hitcount: 1
{ id: sys_sendmmsg [307] } hitcount: 1
{ id: sys_semctl [ 66] } hitcount: 1
{ id: sys_readlink [ 89] } hitcount: 3
{ id: sys_bind [ 49] } hitcount: 3
{ id: sys_getsockname [ 51] } hitcount: 3
{ id: sys_unlink [ 87] } hitcount: 3
{ id: sys_rename [ 82] } hitcount: 4
{ id: unknown_syscall [ 58] } hitcount: 4
{ id: sys_connect [ 42] } hitcount: 4
{ id: sys_getpid [ 39] } hitcount: 4
.
.
.
{ id: sys_rt_sigprocmask [ 14] } hitcount: 952

(continues on next page)
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{ id: sys_futex [202] } hitcount: 1534
{ id: sys_write [ 1] } hitcount: 2689
{ id: sys_setitimer [ 38] } hitcount: 2797
{ id: sys_read [ 0] } hitcount: 3202
{ id: sys_select [ 23] } hitcount: 3773
{ id: sys_writev [ 20] } hitcount: 4531
{ id: sys_poll [ 7] } hitcount: 8314
{ id: sys_recvmsg [ 47] } hitcount: 13738
{ id: sys_ioctl [ 16] } hitcount: 21843

Totals:
Hits: 67612
Entries: 72
Dropped: 0

The syscall counts above provide a rough overall picture of system call
activity on the system; we can see for example that the most popular
system call on this system was the ‘sys_ioctl’system call.

We can use ‘compound’keys to refine that number and provide some
further insight as to which processes exactly contribute to the overall
ioctl count.

The command below keeps a hitcount for every unique combination of
system call id and pid - the end result is essentially a table that keeps a
per-pid sum of system call hits. The results are sorted using the system
call id as the primary key, and the hitcount sum as the secondary key:

# echo 'hist:key=id.syscall,common_pid.
↪→execname:val=hitcount:sort=id,hitcount' > \

/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/
↪→trigger

# cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
# trigger info: hist:keys=id.syscall,common_pid.
↪→execname:vals=hitcount:sort=id.syscall,hitcount:size=2048␣
↪→[active]

{ id: sys_read [ 0], common_pid: rtkit-
↪→daemon [ 1877] } hitcount: 1
{ id: sys_read [ 0], common_pid: gdbus ␣
↪→ [ 2976] } hitcount: 1
{ id: sys_read [ 0], common_pid: console-
↪→kit-dae [ 3400] } hitcount: 1
{ id: sys_read [ 0], common_pid: postgres ␣
↪→ [ 1865] } hitcount: 1
{ id: sys_read [ 0], common_pid: deja-dup-
↪→monito [ 3543] } hitcount: 2
{ id: sys_read [ 0], common_pid:␣
↪→NetworkManager [ 890] } hitcount: 2
{ id: sys_read [ 0], common_pid: evolution-
↪→calen [ 3048] } hitcount: 2
{ id: sys_read [ 0], common_pid: postgres ␣
↪→ [ 1864] } hitcount: 2
{ id: sys_read [ 0], common_pid: nm-applet ␣
↪→ [ 3022] } hitcount: 2

(continues on next page)
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{ id: sys_read [ 0], common_pid: whoopsie ␣
↪→ [ 1212] } hitcount: 2
.
.
.
{ id: sys_ioctl [ 16], common_pid: bash ␣
↪→ [ 8479] } hitcount: 1
{ id: sys_ioctl [ 16], common_pid: bash ␣
↪→ [ 3472] } hitcount: 12
{ id: sys_ioctl [ 16], common_pid: gnome-
↪→terminal [ 3199] } hitcount: 16
{ id: sys_ioctl [ 16], common_pid: Xorg ␣
↪→ [ 1267] } hitcount: 1808
{ id: sys_ioctl [ 16], common_pid: compiz ␣
↪→ [ 2994] } hitcount: 5580
.
.
.
{ id: sys_waitid [247], common_pid: upstart-
↪→dbus-br [ 2690] } hitcount: 3
{ id: sys_waitid [247], common_pid: upstart-
↪→dbus-br [ 2688] } hitcount: 16
{ id: sys_inotify_add_watch [254], common_pid: gmain ␣
↪→ [ 975] } hitcount: 2
{ id: sys_inotify_add_watch [254], common_pid: gmain ␣
↪→ [ 3204] } hitcount: 4
{ id: sys_inotify_add_watch [254], common_pid: gmain ␣
↪→ [ 2888] } hitcount: 4
{ id: sys_inotify_add_watch [254], common_pid: gmain ␣
↪→ [ 3003] } hitcount: 4
{ id: sys_inotify_add_watch [254], common_pid: gmain ␣
↪→ [ 2873] } hitcount: 4
{ id: sys_inotify_add_watch [254], common_pid: gmain ␣
↪→ [ 3196] } hitcount: 6
{ id: sys_openat [257], common_pid: java ␣
↪→ [ 2623] } hitcount: 2
{ id: sys_eventfd2 [290], common_pid: ibus-ui-
↪→gtk3 [ 2760] } hitcount: 4
{ id: sys_eventfd2 [290], common_pid: compiz ␣
↪→ [ 2994] } hitcount: 6

Totals:
Hits: 31536
Entries: 323
Dropped: 0

The above list does give us a breakdown of the ioctl syscall by pid, but it
also gives us quite a bit more than that, which we don’t really care about
at the moment. Since we know the syscall id for sys_ioctl (16, displayed
next to the sys_ioctl name), we can use that to filter out all the other
syscalls:

# echo 'hist:key=id.syscall,common_pid.
↪→execname:val=hitcount:sort=id,hitcount if id == 16' > \

/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/
↪→trigger (continues on next page)
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# cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
# trigger info: hist:keys=id.syscall,common_pid.
↪→execname:vals=hitcount:sort=id.syscall,hitcount:size=2048 if id␣
↪→== 16 [active]

{ id: sys_ioctl [ 16], common_pid: gmain ␣
↪→ [ 2769] } hitcount: 1
{ id: sys_ioctl [ 16], common_pid: evolution-
↪→addre [ 8571] } hitcount: 1
{ id: sys_ioctl [ 16], common_pid: gmain ␣
↪→ [ 3003] } hitcount: 1
{ id: sys_ioctl [ 16], common_pid: gmain ␣
↪→ [ 2781] } hitcount: 1
{ id: sys_ioctl [ 16], common_pid: gmain ␣
↪→ [ 2829] } hitcount: 1
{ id: sys_ioctl [ 16], common_pid: bash ␣
↪→ [ 8726] } hitcount: 1
{ id: sys_ioctl [ 16], common_pid: bash ␣
↪→ [ 8508] } hitcount: 1
{ id: sys_ioctl [ 16], common_pid: gmain ␣
↪→ [ 2970] } hitcount: 1
{ id: sys_ioctl [ 16], common_pid: gmain ␣
↪→ [ 2768] } hitcount: 1
.
.
.
{ id: sys_ioctl [ 16], common_pid: pool ␣
↪→ [ 8559] } hitcount: 45
{ id: sys_ioctl [ 16], common_pid: pool ␣
↪→ [ 8555] } hitcount: 48
{ id: sys_ioctl [ 16], common_pid: pool ␣
↪→ [ 8551] } hitcount: 48
{ id: sys_ioctl [ 16], common_pid: avahi-
↪→daemon [ 896] } hitcount: 66
{ id: sys_ioctl [ 16], common_pid: Xorg ␣
↪→ [ 1267] } hitcount: 26674
{ id: sys_ioctl [ 16], common_pid: compiz ␣
↪→ [ 2994] } hitcount: 73443

Totals:
Hits: 101162
Entries: 103
Dropped: 0

The above output shows that ‘compiz’and ‘Xorg’are far and away
the heaviest ioctl callers (which might lead to questions about whether
they really need to be making all those calls and to possible avenues for
further investigation.)

The compound key examples used a key and a sum value (hitcount) to
sort the output, but we can just as easily use two keys instead. Here’s an
example where we use a compound key composed of the the common_pid
and size event fields. Sorting with pid as the primary key and‘size’as the
secondary key allows us to display an ordered summary of the recvfrom
sizes, with counts, received by each process:
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# echo 'hist:key=common_pid.execname,
↪→size:val=hitcount:sort=common_pid,size' > \

/sys/kernel/debug/tracing/events/syscalls/sys_enter_
↪→recvfrom/trigger

# cat /sys/kernel/debug/tracing/events/syscalls/sys_enter_
↪→recvfrom/hist
# trigger info: hist:keys=common_pid.execname,
↪→size:vals=hitcount:sort=common_pid.execname,size:size=2048␣
↪→[active]

{ common_pid: smbd [ 784], size: 4 }␣
↪→hitcount: 1
{ common_pid: dnsmasq [ 1412], size: 4096 }␣
↪→hitcount: 672
{ common_pid: postgres [ 1796], size: 1000 }␣
↪→hitcount: 6
{ common_pid: postgres [ 1867], size: 1000 }␣
↪→hitcount: 10
{ common_pid: bamfdaemon [ 2787], size: 28 }␣
↪→hitcount: 2
{ common_pid: bamfdaemon [ 2787], size: 14360 }␣
↪→hitcount: 1
{ common_pid: compiz [ 2994], size: 8 }␣
↪→hitcount: 1
{ common_pid: compiz [ 2994], size: 20 }␣
↪→hitcount: 11
{ common_pid: gnome-terminal [ 3199], size: 4 }␣
↪→hitcount: 2
{ common_pid: firefox [ 8817], size: 4 }␣
↪→hitcount: 1
{ common_pid: firefox [ 8817], size: 8 }␣
↪→hitcount: 5
{ common_pid: firefox [ 8817], size: 588 }␣
↪→hitcount: 2
{ common_pid: firefox [ 8817], size: 628 }␣
↪→hitcount: 1
{ common_pid: firefox [ 8817], size: 6944 }␣
↪→hitcount: 1
{ common_pid: firefox [ 8817], size: 408880 }␣
↪→hitcount: 2
{ common_pid: firefox [ 8822], size: 8 }␣
↪→hitcount: 2
{ common_pid: firefox [ 8822], size: 160 }␣
↪→hitcount: 2
{ common_pid: firefox [ 8822], size: 320 }␣
↪→hitcount: 2
{ common_pid: firefox [ 8822], size: 352 }␣
↪→hitcount: 1
.
.
.
{ common_pid: pool [ 8923], size: 1960 }␣
↪→hitcount: 10
{ common_pid: pool [ 8923], size: 2048 }␣
↪→hitcount: 10

(continues on next page)
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{ common_pid: pool [ 8924], size: 1960 }␣
↪→hitcount: 10
{ common_pid: pool [ 8924], size: 2048 }␣
↪→hitcount: 10
{ common_pid: pool [ 8928], size: 1964 }␣
↪→hitcount: 4
{ common_pid: pool [ 8928], size: 1965 }␣
↪→hitcount: 2
{ common_pid: pool [ 8928], size: 2048 }␣
↪→hitcount: 6
{ common_pid: pool [ 8929], size: 1982 }␣
↪→hitcount: 1
{ common_pid: pool [ 8929], size: 2048 }␣
↪→hitcount: 1

Totals:
Hits: 2016
Entries: 224
Dropped: 0

The above example also illustrates the fact that although a compound
key is treated as a single entity for hashing purposes, the sub-keys it’s
composed of can be accessed independently.

The next example uses a string field as the hash key and demonstrates
how you can manually pause and continue a hist trigger. In this example,
we’ll aggregate fork counts and don’t expect a large number of entries
in the hash table, so we’ll drop it to a much smaller number, say 256:
# echo 'hist:key=child_comm:val=hitcount:size=256' > \

/sys/kernel/debug/tracing/events/sched/sched_process_fork/
↪→trigger

# cat /sys/kernel/debug/tracing/events/sched/sched_process_fork/
↪→hist
# trigger info: hist:keys=child_
↪→comm:vals=hitcount:sort=hitcount:size=256 [active]

{ child_comm: dconf worker } hitcount: ␣
↪→ 1
{ child_comm: ibus-daemon } hitcount: ␣
↪→ 1
{ child_comm: whoopsie } hitcount: ␣
↪→ 1
{ child_comm: smbd } hitcount: ␣
↪→ 1
{ child_comm: gdbus } hitcount: ␣
↪→ 1
{ child_comm: kthreadd } hitcount: ␣
↪→ 1
{ child_comm: dconf worker } hitcount: ␣
↪→ 1
{ child_comm: evolution-alarm } hitcount: ␣
↪→ 2
{ child_comm: Socket Thread } hitcount: ␣
↪→ 2 (continues on next page)
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{ child_comm: postgres } hitcount: ␣
↪→ 2
{ child_comm: bash } hitcount: ␣
↪→ 3
{ child_comm: compiz } hitcount: ␣
↪→ 3
{ child_comm: evolution-sourc } hitcount: ␣
↪→ 4
{ child_comm: dhclient } hitcount: ␣
↪→ 4
{ child_comm: pool } hitcount: ␣
↪→ 5
{ child_comm: nm-dispatcher.a } hitcount: ␣
↪→ 8
{ child_comm: firefox } hitcount: ␣
↪→ 8
{ child_comm: dbus-daemon } hitcount: ␣
↪→ 8
{ child_comm: glib-pacrunner } hitcount: ␣
↪→ 10
{ child_comm: evolution } hitcount: ␣
↪→ 23

Totals:
Hits: 89
Entries: 20
Dropped: 0

If we want to pause the hist trigger, we can simply append :pause to the
command that started the trigger. Notice that the trigger info displays
as [paused]:

# echo 'hist:key=child_comm:val=hitcount:size=256:pause' >> \
/sys/kernel/debug/tracing/events/sched/sched_process_fork/

↪→trigger

# cat /sys/kernel/debug/tracing/events/sched/sched_process_fork/
↪→hist
# trigger info: hist:keys=child_
↪→comm:vals=hitcount:sort=hitcount:size=256 [paused]

{ child_comm: dconf worker } hitcount: ␣
↪→ 1
{ child_comm: kthreadd } hitcount: ␣
↪→ 1
{ child_comm: dconf worker } hitcount: ␣
↪→ 1
{ child_comm: gdbus } hitcount: ␣
↪→ 1
{ child_comm: ibus-daemon } hitcount: ␣
↪→ 1
{ child_comm: Socket Thread } hitcount: ␣
↪→ 2
{ child_comm: evolution-alarm } hitcount: ␣
↪→ 2

(continues on next page)
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{ child_comm: smbd } hitcount: ␣
↪→ 2
{ child_comm: bash } hitcount: ␣
↪→ 3
{ child_comm: whoopsie } hitcount: ␣
↪→ 3
{ child_comm: compiz } hitcount: ␣
↪→ 3
{ child_comm: evolution-sourc } hitcount: ␣
↪→ 4
{ child_comm: pool } hitcount: ␣
↪→ 5
{ child_comm: postgres } hitcount: ␣
↪→ 6
{ child_comm: firefox } hitcount: ␣
↪→ 8
{ child_comm: dhclient } hitcount: ␣
↪→ 10
{ child_comm: emacs } hitcount: ␣
↪→ 12
{ child_comm: dbus-daemon } hitcount: ␣
↪→ 20
{ child_comm: nm-dispatcher.a } hitcount: ␣
↪→ 20
{ child_comm: evolution } hitcount: ␣
↪→ 35
{ child_comm: glib-pacrunner } hitcount: ␣
↪→ 59

Totals:
Hits: 199
Entries: 21
Dropped: 0

To manually continue having the trigger aggregate events, append :cont
instead. Notice that the trigger info displays as [active] again, and the
data has changed:

# echo 'hist:key=child_comm:val=hitcount:size=256:cont' >> \
/sys/kernel/debug/tracing/events/sched/sched_process_fork/

↪→trigger

# cat /sys/kernel/debug/tracing/events/sched/sched_process_fork/
↪→hist
# trigger info: hist:keys=child_
↪→comm:vals=hitcount:sort=hitcount:size=256 [active]

{ child_comm: dconf worker } hitcount: ␣
↪→ 1
{ child_comm: dconf worker } hitcount: ␣
↪→ 1
{ child_comm: kthreadd } hitcount: ␣
↪→ 1
{ child_comm: gdbus } hitcount: ␣
↪→ 1

(continues on next page)
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{ child_comm: ibus-daemon } hitcount: ␣
↪→ 1
{ child_comm: Socket Thread } hitcount: ␣
↪→ 2
{ child_comm: evolution-alarm } hitcount: ␣
↪→ 2
{ child_comm: smbd } hitcount: ␣
↪→ 2
{ child_comm: whoopsie } hitcount: ␣
↪→ 3
{ child_comm: compiz } hitcount: ␣
↪→ 3
{ child_comm: evolution-sourc } hitcount: ␣
↪→ 4
{ child_comm: bash } hitcount: ␣
↪→ 5
{ child_comm: pool } hitcount: ␣
↪→ 5
{ child_comm: postgres } hitcount: ␣
↪→ 6
{ child_comm: firefox } hitcount: ␣
↪→ 8
{ child_comm: dhclient } hitcount: ␣
↪→ 11
{ child_comm: emacs } hitcount: ␣
↪→ 12
{ child_comm: dbus-daemon } hitcount: ␣
↪→ 22
{ child_comm: nm-dispatcher.a } hitcount: ␣
↪→ 22
{ child_comm: evolution } hitcount: ␣
↪→ 35
{ child_comm: glib-pacrunner } hitcount: ␣
↪→ 59

Totals:
Hits: 206
Entries: 21
Dropped: 0

The previous example showed how to start and stop a hist trigger by
appending ‘pause’and ‘continue’to the hist trigger command. A
hist trigger can also be started in a paused state by initially starting the
trigger with ‘:pause’appended. This allows you to start the trigger
only when you’re ready to start collecting data and not before. For
example, you could start the trigger in a paused state, then unpause it
and do something you want to measure, then pause the trigger again
when done.

Of course, doing this manually can be difficult and error-prone, but it
is possible to automatically start and stop a hist trigger based on some
condition, via the enable_hist and disable_hist triggers.

For example, suppose we wanted to take a look at the relative weights
in terms of skb length for each callpath that leads to a netif_receive_skb
event when downloading a decent-sized file using wget.
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First we set up an initially paused stacktrace trigger on the
netif_receive_skb event:

# echo 'hist:key=stacktrace:vals=len:pause' > \
/sys/kernel/debug/tracing/events/net/netif_receive_skb/

↪→trigger

Next, we set up an ‘enable_hist’trigger on the sched_process_exec
event, with an ‘if filename==/usr/bin/wget’filter. The effect of this
new trigger is that it will ‘unpause’the hist trigger we just set up on
netif_receive_skb if and only if it sees a sched_process_exec event with
a filename of‘/usr/bin/wget’. When that happens, all netif_receive_skb
events are aggregated into a hash table keyed on stacktrace:

# echo 'enable_hist:net:netif_receive_skb if filename==/usr/bin/
↪→wget' > \

/sys/kernel/debug/tracing/events/sched/sched_process_exec/
↪→trigger

The aggregation continues until the netif_receive_skb is paused again,
which is what the following disable_hist event does by creating a similar
setup on the sched_process_exit event, using the filter ‘comm==wget’
:

# echo 'disable_hist:net:netif_receive_skb if comm==wget' > \
/sys/kernel/debug/tracing/events/sched/sched_process_exit/

↪→trigger

Whenever a process exits and the comm field of the disable_hist trig-
ger filter matches ‘comm==wget’, the netif_receive_skb hist trigger
is disabled.

The overall effect is that netif_receive_skb events are aggregated into
the hash table for only the duration of the wget. Executing a wget com-
mand and then listing the ‘hist’file will display the output generated
by the wget command:

$ wget https://www.kernel.org/pub/linux/kernel/v3.x/patch-3.19.xz

# cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/hist
# trigger info:␣
↪→hist:keys=stacktrace:vals=len:sort=hitcount:size=2048 [paused]

{ stacktrace:
__netif_receive_skb_core+0x46d/0x990
__netif_receive_skb+0x18/0x60
netif_receive_skb_internal+0x23/0x90
napi_gro_receive+0xc8/0x100
ieee80211_deliver_skb+0xd6/0x270 [mac80211]
ieee80211_rx_handlers+0xccf/0x22f0 [mac80211]
ieee80211_prepare_and_rx_handle+0x4e7/0xc40 [mac80211]
ieee80211_rx+0x31d/0x900 [mac80211]
iwlagn_rx_reply_rx+0x3db/0x6f0 [iwldvm]
iwl_rx_dispatch+0x8e/0xf0 [iwldvm]
iwl_pcie_irq_handler+0xe3c/0x12f0 [iwlwifi]

(continues on next page)
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irq_thread_fn+0x20/0x50
irq_thread+0x11f/0x150
kthread+0xd2/0xf0
ret_from_fork+0x42/0x70

} hitcount: 85 len: 28884
{ stacktrace:

__netif_receive_skb_core+0x46d/0x990
__netif_receive_skb+0x18/0x60
netif_receive_skb_internal+0x23/0x90
napi_gro_complete+0xa4/0xe0
dev_gro_receive+0x23a/0x360
napi_gro_receive+0x30/0x100
ieee80211_deliver_skb+0xd6/0x270 [mac80211]
ieee80211_rx_handlers+0xccf/0x22f0 [mac80211]
ieee80211_prepare_and_rx_handle+0x4e7/0xc40 [mac80211]
ieee80211_rx+0x31d/0x900 [mac80211]
iwlagn_rx_reply_rx+0x3db/0x6f0 [iwldvm]
iwl_rx_dispatch+0x8e/0xf0 [iwldvm]
iwl_pcie_irq_handler+0xe3c/0x12f0 [iwlwifi]
irq_thread_fn+0x20/0x50
irq_thread+0x11f/0x150
kthread+0xd2/0xf0

} hitcount: 98 len: 664329
{ stacktrace:

__netif_receive_skb_core+0x46d/0x990
__netif_receive_skb+0x18/0x60
process_backlog+0xa8/0x150
net_rx_action+0x15d/0x340
__do_softirq+0x114/0x2c0
do_softirq_own_stack+0x1c/0x30
do_softirq+0x65/0x70
__local_bh_enable_ip+0xb5/0xc0
ip_finish_output+0x1f4/0x840
ip_output+0x6b/0xc0
ip_local_out_sk+0x31/0x40
ip_send_skb+0x1a/0x50
udp_send_skb+0x173/0x2a0
udp_sendmsg+0x2bf/0x9f0
inet_sendmsg+0x64/0xa0
sock_sendmsg+0x3d/0x50

} hitcount: 115 len: 13030
{ stacktrace:

__netif_receive_skb_core+0x46d/0x990
__netif_receive_skb+0x18/0x60
netif_receive_skb_internal+0x23/0x90
napi_gro_complete+0xa4/0xe0
napi_gro_flush+0x6d/0x90
iwl_pcie_irq_handler+0x92a/0x12f0 [iwlwifi]
irq_thread_fn+0x20/0x50
irq_thread+0x11f/0x150
kthread+0xd2/0xf0
ret_from_fork+0x42/0x70

} hitcount: 934 len: 5512212

Totals:
Hits: 1232

(continues on next page)
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Entries: 4
Dropped: 0

The above shows all the netif_receive_skb callpaths and their total
lengths for the duration of the wget command.

The‘clear’hist trigger param can be used to clear the hash table. Sup-
pose we wanted to try another run of the previous example but this time
also wanted to see the complete list of events that went into the his-
togram. In order to avoid having to set everything up again, we can just
clear the histogram first:

# echo 'hist:key=stacktrace:vals=len:clear' >> \
/sys/kernel/debug/tracing/events/net/netif_receive_skb/

↪→trigger

Just to verify that it is in fact cleared, here’s what we now see in the
hist file:

# cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/hist
# trigger info:␣
↪→hist:keys=stacktrace:vals=len:sort=hitcount:size=2048 [paused]

Totals:
Hits: 0
Entries: 0
Dropped: 0

Since we want to see the detailed list of every netif_receive_skb event
occurring during the new run, which are in fact the same events being
aggregated into the hash table, we add some additional‘enable_event’
events to the triggering sched_process_exec and sched_process_exit
events as such:

# echo 'enable_event:net:netif_receive_skb if filename==/usr/bin/
↪→wget' > \

/sys/kernel/debug/tracing/events/sched/sched_process_exec/
↪→trigger

# echo 'disable_event:net:netif_receive_skb if comm==wget' > \
/sys/kernel/debug/tracing/events/sched/sched_process_exit/

↪→trigger

If you read the trigger files for the sched_process_exec and
sched_process_exit triggers, you should see two triggers for each: one
enabling/disabling the hist aggregation and the other enabling/disabling
the logging of events:

# cat /sys/kernel/debug/tracing/events/sched/sched_process_exec/
↪→trigger
enable_event:net:netif_receive_skb:unlimited if filename==/usr/
↪→bin/wget
enable_hist:net:netif_receive_skb:unlimited if filename==/usr/bin/
↪→wget

(continues on next page)
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# cat /sys/kernel/debug/tracing/events/sched/sched_process_exit/
↪→trigger
enable_event:net:netif_receive_skb:unlimited if comm==wget
disable_hist:net:netif_receive_skb:unlimited if comm==wget

In other words, whenever either of the sched_process_exec or
sched_process_exit events is hit and matches‘wget’, it enables or dis-
ables both the histogram and the event log, and what you end up with is
a hash table and set of events just covering the specified duration. Run
the wget command again:

$ wget https://www.kernel.org/pub/linux/kernel/v3.x/patch-3.19.xz

Displaying the‘hist’file should show something similar to what you saw
in the last run, but this time you should also see the individual events in
the trace file:

# cat /sys/kernel/debug/tracing/trace

# tracer: nop
#
# entries-in-buffer/entries-written: 183/1426 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |

wget-15108 [000] ..s1 31769.606929: netif_receive_
↪→skb: dev=lo skbaddr=ffff88009c353100 len=60

wget-15108 [000] ..s1 31769.606999: netif_receive_
↪→skb: dev=lo skbaddr=ffff88009c353200 len=60

dnsmasq-1382 [000] ..s1 31769.677652: netif_receive_
↪→skb: dev=lo skbaddr=ffff88009c352b00 len=130

dnsmasq-1382 [000] ..s1 31769.685917: netif_receive_
↪→skb: dev=lo skbaddr=ffff88009c352200 len=138
##### CPU 2 buffer started ####
irq/29-iwlwifi-559 [002] ..s. 31772.031529: netif_receive_

↪→skb: dev=wlan0 skbaddr=ffff88009d433d00 len=2948
irq/29-iwlwifi-559 [002] ..s. 31772.031572: netif_receive_

↪→skb: dev=wlan0 skbaddr=ffff88009d432200 len=1500
irq/29-iwlwifi-559 [002] ..s. 31772.032196: netif_receive_

↪→skb: dev=wlan0 skbaddr=ffff88009d433100 len=2948
irq/29-iwlwifi-559 [002] ..s. 31772.032761: netif_receive_

↪→skb: dev=wlan0 skbaddr=ffff88009d433000 len=2948
irq/29-iwlwifi-559 [002] ..s. 31772.033220: netif_receive_

↪→skb: dev=wlan0 skbaddr=ffff88009d432e00 len=1500
.
.
.

The following example demonstrates how multiple hist triggers can be
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attached to a given event. This capability can be useful for creating a
set of different summaries derived from the same set of events, or for
comparing the effects of different filters, among other things:

# echo 'hist:keys=skbaddr.hex:vals=len if len < 0' >> \
/sys/kernel/debug/tracing/events/net/netif_receive_skb/

↪→trigger
# echo 'hist:keys=skbaddr.hex:vals=len if len > 4096' >> \

/sys/kernel/debug/tracing/events/net/netif_receive_skb/
↪→trigger
# echo 'hist:keys=skbaddr.hex:vals=len if len == 256' >> \

/sys/kernel/debug/tracing/events/net/netif_receive_skb/
↪→trigger
# echo 'hist:keys=skbaddr.hex:vals=len' >> \

/sys/kernel/debug/tracing/events/net/netif_receive_skb/
↪→trigger
# echo 'hist:keys=len:vals=common_preempt_count' >> \

/sys/kernel/debug/tracing/events/net/netif_receive_skb/
↪→trigger

The above set of commands create four triggers differing only in their
filters, along with a completely different though fairly nonsensical trig-
ger. Note that in order to append multiple hist triggers to the same file,
you should use the‘>>’operator to append them (‘>’will also add the
new hist trigger, but will remove any existing hist triggers beforehand).

Displaying the contents of the‘hist’file for the event shows the contents
of all five histograms:

# cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/hist

# event histogram
#
# trigger info: hist:keys=len:vals=hitcount,common_preempt_
↪→count:sort=hitcount:size=2048 [active]
#

{ len: 176 } hitcount: 1 common_preempt_count: ␣
↪→ 0
{ len: 223 } hitcount: 1 common_preempt_count: ␣
↪→ 0
{ len: 4854 } hitcount: 1 common_preempt_count: ␣
↪→ 0
{ len: 395 } hitcount: 1 common_preempt_count: ␣
↪→ 0
{ len: 177 } hitcount: 1 common_preempt_count: ␣
↪→ 0
{ len: 446 } hitcount: 1 common_preempt_count: ␣
↪→ 0
{ len: 1601 } hitcount: 1 common_preempt_count: ␣
↪→ 0
.
.
.
{ len: 1280 } hitcount: 66 common_preempt_count: ␣
↪→ 0

(continues on next page)
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{ len: 116 } hitcount: 81 common_preempt_count: ␣
↪→ 40
{ len: 708 } hitcount: 112 common_preempt_count: ␣
↪→ 0
{ len: 46 } hitcount: 221 common_preempt_count: ␣
↪→ 0
{ len: 1264 } hitcount: 458 common_preempt_count: ␣
↪→ 0

Totals:
Hits: 1428
Entries: 147
Dropped: 0

# event histogram
#
# trigger info: hist:keys=skbaddr.hex:vals=hitcount,
↪→len:sort=hitcount:size=2048 [active]
#

{ skbaddr: ffff8800baee5e00 } hitcount: 1 len: ␣
↪→130
{ skbaddr: ffff88005f3d5600 } hitcount: 1 len: ␣
↪→1280
{ skbaddr: ffff88005f3d4900 } hitcount: 1 len: ␣
↪→1280
{ skbaddr: ffff88009fed6300 } hitcount: 1 len: ␣
↪→115
{ skbaddr: ffff88009fe0ad00 } hitcount: 1 len: ␣
↪→115
{ skbaddr: ffff88008cdb1900 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff880064b5ef00 } hitcount: 1 len: ␣
↪→118
{ skbaddr: ffff880044e3c700 } hitcount: 1 len: ␣
↪→60
{ skbaddr: ffff880100065900 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800d46bd500 } hitcount: 1 len: ␣
↪→116
{ skbaddr: ffff88005f3d5f00 } hitcount: 1 len: ␣
↪→1280
{ skbaddr: ffff880100064700 } hitcount: 1 len: ␣
↪→365
{ skbaddr: ffff8800badb6f00 } hitcount: 1 len: ␣
↪→60
.
.
.
{ skbaddr: ffff88009fe0be00 } hitcount: 27 len: ␣
↪→24677
{ skbaddr: ffff88009fe0a400 } hitcount: 27 len: ␣
↪→23052
{ skbaddr: ffff88009fe0b700 } hitcount: 31 len: ␣
↪→25589

(continues on next page)

14.2. 2. Histogram Trigger Command 165



Linux Trace Documentation

(continued from previous page)
{ skbaddr: ffff88009fe0b600 } hitcount: 32 len: ␣
↪→27326
{ skbaddr: ffff88006a462800 } hitcount: 68 len: ␣
↪→71678
{ skbaddr: ffff88006a463700 } hitcount: 70 len: ␣
↪→72678
{ skbaddr: ffff88006a462b00 } hitcount: 71 len: ␣
↪→77589
{ skbaddr: ffff88006a463600 } hitcount: 73 len: ␣
↪→71307
{ skbaddr: ffff88006a462200 } hitcount: 81 len: ␣
↪→81032

Totals:
Hits: 1451
Entries: 318
Dropped: 0

# event histogram
#
# trigger info: hist:keys=skbaddr.hex:vals=hitcount,
↪→len:sort=hitcount:size=2048 if len == 256 [active]
#

Totals:
Hits: 0
Entries: 0
Dropped: 0

# event histogram
#
# trigger info: hist:keys=skbaddr.hex:vals=hitcount,
↪→len:sort=hitcount:size=2048 if len > 4096 [active]
#

{ skbaddr: ffff88009fd2c300 } hitcount: 1 len: ␣
↪→7212
{ skbaddr: ffff8800d2bcce00 } hitcount: 1 len: ␣
↪→7212
{ skbaddr: ffff8800d2bcd700 } hitcount: 1 len: ␣
↪→7212
{ skbaddr: ffff8800d2bcda00 } hitcount: 1 len: ␣
↪→21492
{ skbaddr: ffff8800ae2e2d00 } hitcount: 1 len: ␣
↪→7212
{ skbaddr: ffff8800d2bcdb00 } hitcount: 1 len: ␣
↪→7212
{ skbaddr: ffff88006a4df500 } hitcount: 1 len: ␣
↪→4854
{ skbaddr: ffff88008ce47b00 } hitcount: 1 len: ␣
↪→18636
{ skbaddr: ffff8800ae2e2200 } hitcount: 1 len: ␣
↪→12924

(continues on next page)
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{ skbaddr: ffff88005f3e1000 } hitcount: 1 len: ␣
↪→4356
{ skbaddr: ffff8800d2bcdc00 } hitcount: 2 len: ␣
↪→24420
{ skbaddr: ffff8800d2bcc200 } hitcount: 2 len: ␣
↪→12996

Totals:
Hits: 14
Entries: 12
Dropped: 0

# event histogram
#
# trigger info: hist:keys=skbaddr.hex:vals=hitcount,
↪→len:sort=hitcount:size=2048 if len < 0 [active]
#

Totals:
Hits: 0
Entries: 0
Dropped: 0

Named triggers can be used to have triggers share a common set of
histogram data. This capability is mostly useful for combining the output
of events generated by tracepoints contained inside inline functions, but
names can be used in a hist trigger on any event. For example, these two
triggers when hit will update the same ‘len’field in the shared ‘foo’
histogram data:

# echo 'hist:name=foo:keys=skbaddr.hex:vals=len' > \
/sys/kernel/debug/tracing/events/net/netif_receive_skb/

↪→trigger
# echo 'hist:name=foo:keys=skbaddr.hex:vals=len' > \

/sys/kernel/debug/tracing/events/net/netif_rx/trigger

You can see that they’re updating common histogram data by reading
each event’s hist files at the same time:
# cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/hist;
cat /sys/kernel/debug/tracing/events/net/netif_rx/hist

# event histogram
#
# trigger info: hist:name=foo:keys=skbaddr.hex:vals=hitcount,
↪→len:sort=hitcount:size=2048 [active]
#

{ skbaddr: ffff88000ad53500 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800af5a1500 } hitcount: 1 len: ␣
↪→76
{ skbaddr: ffff8800d62a1900 } hitcount: 1 len: ␣
↪→46 (continues on next page)
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{ skbaddr: ffff8800d2bccb00 } hitcount: 1 len: ␣
↪→468
{ skbaddr: ffff8800d3c69900 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff88009ff09100 } hitcount: 1 len: ␣
↪→52
{ skbaddr: ffff88010f13ab00 } hitcount: 1 len: ␣
↪→168
{ skbaddr: ffff88006a54f400 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800d2bcc500 } hitcount: 1 len: ␣
↪→260
{ skbaddr: ffff880064505000 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800baf24e00 } hitcount: 1 len: ␣
↪→32
{ skbaddr: ffff88009fe0ad00 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800d3edff00 } hitcount: 1 len: ␣
↪→44
{ skbaddr: ffff88009fe0b400 } hitcount: 1 len: ␣
↪→168
{ skbaddr: ffff8800a1c55a00 } hitcount: 1 len: ␣
↪→40
{ skbaddr: ffff8800d2bcd100 } hitcount: 1 len: ␣
↪→40
{ skbaddr: ffff880064505f00 } hitcount: 1 len: ␣
↪→174
{ skbaddr: ffff8800a8bff200 } hitcount: 1 len: ␣
↪→160
{ skbaddr: ffff880044e3cc00 } hitcount: 1 len: ␣
↪→76
{ skbaddr: ffff8800a8bfe700 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800d2bcdc00 } hitcount: 1 len: ␣
↪→32
{ skbaddr: ffff8800a1f64800 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800d2bcde00 } hitcount: 1 len: ␣
↪→988
{ skbaddr: ffff88006a5dea00 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff88002e37a200 } hitcount: 1 len: ␣
↪→44
{ skbaddr: ffff8800a1f32c00 } hitcount: 2 len: ␣
↪→676
{ skbaddr: ffff88000ad52600 } hitcount: 2 len: ␣
↪→107
{ skbaddr: ffff8800a1f91e00 } hitcount: 2 len: ␣
↪→92
{ skbaddr: ffff8800af5a0200 } hitcount: 2 len: ␣
↪→142
{ skbaddr: ffff8800d2bcc600 } hitcount: 2 len: ␣
↪→220
{ skbaddr: ffff8800ba36f500 } hitcount: 2 len: ␣
↪→92

(continues on next page)
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{ skbaddr: ffff8800d021f800 } hitcount: 2 len: ␣
↪→92
{ skbaddr: ffff8800a1f33600 } hitcount: 2 len: ␣
↪→675
{ skbaddr: ffff8800a8bfff00 } hitcount: 3 len: ␣
↪→138
{ skbaddr: ffff8800d62a1300 } hitcount: 3 len: ␣
↪→138
{ skbaddr: ffff88002e37a100 } hitcount: 4 len: ␣
↪→184
{ skbaddr: ffff880064504400 } hitcount: 4 len: ␣
↪→184
{ skbaddr: ffff8800a8bfec00 } hitcount: 4 len: ␣
↪→184
{ skbaddr: ffff88000ad53700 } hitcount: 5 len: ␣
↪→230
{ skbaddr: ffff8800d2bcdb00 } hitcount: 5 len: ␣
↪→196
{ skbaddr: ffff8800a1f90000 } hitcount: 6 len: ␣
↪→276
{ skbaddr: ffff88006a54f900 } hitcount: 6 len: ␣
↪→276

Totals:
Hits: 81
Entries: 42
Dropped: 0

# event histogram
#
# trigger info: hist:name=foo:keys=skbaddr.hex:vals=hitcount,
↪→len:sort=hitcount:size=2048 [active]
#

{ skbaddr: ffff88000ad53500 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800af5a1500 } hitcount: 1 len: ␣
↪→76
{ skbaddr: ffff8800d62a1900 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800d2bccb00 } hitcount: 1 len: ␣
↪→468
{ skbaddr: ffff8800d3c69900 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff88009ff09100 } hitcount: 1 len: ␣
↪→52
{ skbaddr: ffff88010f13ab00 } hitcount: 1 len: ␣
↪→168
{ skbaddr: ffff88006a54f400 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800d2bcc500 } hitcount: 1 len: ␣
↪→260
{ skbaddr: ffff880064505000 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800baf24e00 } hitcount: 1 len: ␣
↪→32
{ skbaddr: ffff88009fe0ad00 } hitcount: 1 len: ␣
↪→46 (continues on next page)
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{ skbaddr: ffff8800d3edff00 } hitcount: 1 len: ␣
↪→44
{ skbaddr: ffff88009fe0b400 } hitcount: 1 len: ␣
↪→168
{ skbaddr: ffff8800a1c55a00 } hitcount: 1 len: ␣
↪→40
{ skbaddr: ffff8800d2bcd100 } hitcount: 1 len: ␣
↪→40
{ skbaddr: ffff880064505f00 } hitcount: 1 len: ␣
↪→174
{ skbaddr: ffff8800a8bff200 } hitcount: 1 len: ␣
↪→160
{ skbaddr: ffff880044e3cc00 } hitcount: 1 len: ␣
↪→76
{ skbaddr: ffff8800a8bfe700 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800d2bcdc00 } hitcount: 1 len: ␣
↪→32
{ skbaddr: ffff8800a1f64800 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff8800d2bcde00 } hitcount: 1 len: ␣
↪→988
{ skbaddr: ffff88006a5dea00 } hitcount: 1 len: ␣
↪→46
{ skbaddr: ffff88002e37a200 } hitcount: 1 len: ␣
↪→44
{ skbaddr: ffff8800a1f32c00 } hitcount: 2 len: ␣
↪→676
{ skbaddr: ffff88000ad52600 } hitcount: 2 len: ␣
↪→107
{ skbaddr: ffff8800a1f91e00 } hitcount: 2 len: ␣
↪→92
{ skbaddr: ffff8800af5a0200 } hitcount: 2 len: ␣
↪→142
{ skbaddr: ffff8800d2bcc600 } hitcount: 2 len: ␣
↪→220
{ skbaddr: ffff8800ba36f500 } hitcount: 2 len: ␣
↪→92
{ skbaddr: ffff8800d021f800 } hitcount: 2 len: ␣
↪→92
{ skbaddr: ffff8800a1f33600 } hitcount: 2 len: ␣
↪→675
{ skbaddr: ffff8800a8bfff00 } hitcount: 3 len: ␣
↪→138
{ skbaddr: ffff8800d62a1300 } hitcount: 3 len: ␣
↪→138
{ skbaddr: ffff88002e37a100 } hitcount: 4 len: ␣
↪→184
{ skbaddr: ffff880064504400 } hitcount: 4 len: ␣
↪→184
{ skbaddr: ffff8800a8bfec00 } hitcount: 4 len: ␣
↪→184
{ skbaddr: ffff88000ad53700 } hitcount: 5 len: ␣
↪→230
{ skbaddr: ffff8800d2bcdb00 } hitcount: 5 len: ␣
↪→196

(continues on next page)
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{ skbaddr: ffff8800a1f90000 } hitcount: 6 len: ␣
↪→276
{ skbaddr: ffff88006a54f900 } hitcount: 6 len: ␣
↪→276

Totals:
Hits: 81
Entries: 42
Dropped: 0

And here’s an example that shows how to combine histogram data from
any two events even if they don’t share any ‘compatible’fields other
than‘hitcount’and‘stacktrace’. These commands create a couple of
triggers named ‘bar’using those fields:
# echo 'hist:name=bar:key=stacktrace:val=hitcount' > \

/sys/kernel/debug/tracing/events/sched/sched_process_fork/
↪→trigger
# echo 'hist:name=bar:key=stacktrace:val=hitcount' > \

/sys/kernel/debug/tracing/events/net/netif_rx/trigger

And displaying the output of either shows some interesting if somewhat
confusing output:

# cat /sys/kernel/debug/tracing/events/sched/sched_process_fork/
↪→hist
# cat /sys/kernel/debug/tracing/events/net/netif_rx/hist

# event histogram
#
# trigger info:␣
↪→hist:name=bar:keys=stacktrace:vals=hitcount:sort=hitcount:size=2048␣
↪→[active]
#

{ stacktrace:
_do_fork+0x18e/0x330
kernel_thread+0x29/0x30
kthreadd+0x154/0x1b0
ret_from_fork+0x3f/0x70

} hitcount: 1
{ stacktrace:

netif_rx_internal+0xb2/0xd0
netif_rx_ni+0x20/0x70
dev_loopback_xmit+0xaa/0xd0
ip_mc_output+0x126/0x240
ip_local_out_sk+0x31/0x40
igmp_send_report+0x1e9/0x230
igmp_timer_expire+0xe9/0x120
call_timer_fn+0x39/0xf0
run_timer_softirq+0x1e1/0x290
__do_softirq+0xfd/0x290
irq_exit+0x98/0xb0
smp_apic_timer_interrupt+0x4a/0x60
apic_timer_interrupt+0x6d/0x80

(continues on next page)
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cpuidle_enter+0x17/0x20
call_cpuidle+0x3b/0x60
cpu_startup_entry+0x22d/0x310

} hitcount: 1
{ stacktrace:

netif_rx_internal+0xb2/0xd0
netif_rx_ni+0x20/0x70
dev_loopback_xmit+0xaa/0xd0
ip_mc_output+0x17f/0x240
ip_local_out_sk+0x31/0x40
ip_send_skb+0x1a/0x50
udp_send_skb+0x13e/0x270
udp_sendmsg+0x2bf/0x980
inet_sendmsg+0x67/0xa0
sock_sendmsg+0x38/0x50
SYSC_sendto+0xef/0x170
SyS_sendto+0xe/0x10
entry_SYSCALL_64_fastpath+0x12/0x6a

} hitcount: 2
{ stacktrace:

netif_rx_internal+0xb2/0xd0
netif_rx+0x1c/0x60
loopback_xmit+0x6c/0xb0
dev_hard_start_xmit+0x219/0x3a0
__dev_queue_xmit+0x415/0x4f0
dev_queue_xmit_sk+0x13/0x20
ip_finish_output2+0x237/0x340
ip_finish_output+0x113/0x1d0
ip_output+0x66/0xc0
ip_local_out_sk+0x31/0x40
ip_send_skb+0x1a/0x50
udp_send_skb+0x16d/0x270
udp_sendmsg+0x2bf/0x980
inet_sendmsg+0x67/0xa0
sock_sendmsg+0x38/0x50
___sys_sendmsg+0x14e/0x270

} hitcount: 76
{ stacktrace:

netif_rx_internal+0xb2/0xd0
netif_rx+0x1c/0x60
loopback_xmit+0x6c/0xb0
dev_hard_start_xmit+0x219/0x3a0
__dev_queue_xmit+0x415/0x4f0
dev_queue_xmit_sk+0x13/0x20
ip_finish_output2+0x237/0x340
ip_finish_output+0x113/0x1d0
ip_output+0x66/0xc0
ip_local_out_sk+0x31/0x40
ip_send_skb+0x1a/0x50
udp_send_skb+0x16d/0x270
udp_sendmsg+0x2bf/0x980
inet_sendmsg+0x67/0xa0
sock_sendmsg+0x38/0x50
___sys_sendmsg+0x269/0x270

} hitcount: 77
{ stacktrace:

(continues on next page)
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(continued from previous page)
netif_rx_internal+0xb2/0xd0
netif_rx+0x1c/0x60
loopback_xmit+0x6c/0xb0
dev_hard_start_xmit+0x219/0x3a0
__dev_queue_xmit+0x415/0x4f0
dev_queue_xmit_sk+0x13/0x20
ip_finish_output2+0x237/0x340
ip_finish_output+0x113/0x1d0
ip_output+0x66/0xc0
ip_local_out_sk+0x31/0x40
ip_send_skb+0x1a/0x50
udp_send_skb+0x16d/0x270
udp_sendmsg+0x2bf/0x980
inet_sendmsg+0x67/0xa0
sock_sendmsg+0x38/0x50
SYSC_sendto+0xef/0x170

} hitcount: 88
{ stacktrace:

_do_fork+0x18e/0x330
SyS_clone+0x19/0x20
entry_SYSCALL_64_fastpath+0x12/0x6a

} hitcount: 244

Totals:
Hits: 489
Entries: 7
Dropped: 0

14.2.4 2.2 Inter-event hist triggers

Inter-event hist triggers are hist triggers that combine values from one or more
other events and create a histogram using that data. Data from an inter-event
histogram can in turn become the source for further combined histograms, thus
providing a chain of related histograms, which is important for some applications.

The most important example of an inter-event quantity that can be used in this
manner is latency, which is simply a difference in timestamps between two events.
Although latency is the most important inter-event quantity, note that because the
support is completely general across the trace event subsystem, any event field
can be used in an inter-event quantity.

An example of a histogram that combines data from other histograms into a useful
chain would be a ‘wakeupswitch latency’histogram that combines a ‘wakeup
latency’histogram and a ‘switch latency’histogram.
Normally, a hist trigger specification consists of a (possibly compound) key along
with one or more numeric values, which are continually updated sums associated
with that key. A histogram specification in this case consists of individual key and
value specifications that refer to trace event fields associated with a single event
type.

The inter-event hist trigger extension allows fields frommultiple events to be refer-
enced and combined into a multi-event histogram specification. In support of this
overall goal, a few enabling features have been added to the hist trigger support:
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• In order to compute an inter-event quantity, a value from one event needs to
saved and then referenced from another event. This requires the introduction
of support for histogram ‘variables’.

• The computation of inter-event quantities and their combination require some
minimal amount of support for applying simple expressions to variables (+
and -).

• A histogram consisting of inter-event quantities isn’t logically a histogram
on either event (so having the‘hist’file for either event host the histogram
output doesn’t really make sense). To address the idea that the histogram
is associated with a combination of events, support is added allowing the
creation of‘synthetic’events that are events derived from other events. These
synthetic events are full-fledged events just like any other and can be used
as such, as for instance to create the ‘combination’histograms mentioned
previously.

• A set of ‘actions’can be associated with histogram entries - these can be
used to generate the previously mentioned synthetic events, but can also be
used for other purposes, such as for example saving context when a ‘max’
latency has been hit.

• Trace events don’t have a ‘timestamp’associated with them, but there is
an implicit timestamp saved along with an event in the underlying ftrace ring
buffer. This timestamp is now exposed as a a synthetic field named ‘com-
mon_timestamp’which can be used in histograms as if it were any other event
field; it isn’t an actual field in the trace format but rather is a synthesized
value that nonetheless can be used as if it were an actual field. By default it
is in units of nanoseconds; appending‘.usecs’to a common_timestamp field
changes the units to microseconds.

A note on inter-event timestamps: If common_timestamp is used in a histogram,
the trace buffer is automatically switched over to using absolute timestamps and
the“global”trace clock, in order to avoid bogus timestamp differences with other
clocks that aren’t coherent across CPUs. This can be overridden by specifying
one of the other trace clocks instead, using the“clock=XXX”hist trigger attribute,
where XXX is any of the clocks listed in the tracing/trace_clock pseudo-file.

These features are described in more detail in the following sections.

14.2.5 2.2.1 Histogram Variables

Variables are simply named locations used for saving and retrieving values be-
tween matching events. A ‘matching’event is defined as an event that has a
matching key - if a variable is saved for a histogram entry corresponding to that
key, any subsequent event with a matching key can access that variable.

A variable’s value is normally available to any subsequent event until it is set to
something else by a subsequent event. The one exception to that rule is that any
variable used in an expression is essentially ‘read-once’- once it’s used by an
expression in a subsequent event, it’s reset to its‘unset’state, which means it
can’t be used again unless it’s set again. This ensures not only that an event
doesn’t use an uninitialized variable in a calculation, but that that variable is used
only once and not for any unrelated subsequent match.
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The basic syntax for saving a variable is to simply prefix a unique variable name
not corresponding to any keyword along with an ‘=’sign to any event field.
Either keys or values can be saved and retrieved in this way. This creates a variable
named ‘ts0’for a histogram entry with the key ‘next_pid’:
# echo 'hist:keys=next_pid:vals=$ts0:ts0=common_timestamp ... >> \

event/trigger

The ts0 variable can be accessed by any subsequent event having the same pid as
‘next_pid’.
Variable references are formed by prepending the variable name with the ‘$’
sign. Thus for example, the ts0 variable above would be referenced as ‘$ts0’
in expressions.

Because ‘vals=’is used, the common_timestamp variable value above will also
be summed as a normal histogram value would (though for a timestamp it makes
little sense).

The below shows that a key value can also be saved in the same way:

# echo 'hist:timer_pid=common_pid:key=timer_pid ...' >> event/trigger

If a variable isn’t a key variable or prefixed with ‘vals=’, the associated event
field will be saved in a variable but won’t be summed as a value:
# echo 'hist:keys=next_pid:ts1=common_timestamp ...' >> event/trigger

Multiple variables can be assigned at the same time. The below would result in
both ts0 and b being created as variables, with both common_timestamp and field1
additionally being summed as values:

# echo 'hist:keys=pid:vals=$ts0,$b:ts0=common_timestamp,b=field1 ...' >> \
event/trigger

Note that variable assignments can appear either preceding or following their use.
The command below behaves identically to the command above:

# echo 'hist:keys=pid:ts0=common_timestamp,b=field1:vals=$ts0,$b ...' >> \
event/trigger

Any number of variables not bound to a‘vals=’prefix can also be assigned by simply
separating them with colons. Below is the same thing but without the values being
summed in the histogram:

# echo 'hist:keys=pid:ts0=common_timestamp:b=field1 ...' >> event/trigger

Variables set as above can be referenced and used in expressions on another event.

For example, here’s how a latency can be calculated:
# echo 'hist:keys=pid,prio:ts0=common_timestamp ...' >> event1/trigger
# echo 'hist:keys=next_pid:wakeup_lat=common_timestamp-$ts0 ...' >> event2/
↪→trigger
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In the first line above, the event’s timestamp is saved into the variable ts0. In
the next line, ts0 is subtracted from the second event’s timestamp to produce the
latency, which is then assigned into yet another variable,‘wakeup_lat’. The hist
trigger below in turn makes use of the wakeup_lat variable to compute a combined
latency using the same key and variable from yet another event:

# echo 'hist:key=pid:wakeupswitch_lat=$wakeup_lat+$switchtime_lat ...' >>␣
↪→event3/trigger

14.2.6 2.2.2 Synthetic Events

Synthetic events are user-defined events generated from hist trigger variables or
fields associated with one or more other events. Their purpose is to provide a
mechanism for displaying data spanning multiple events consistent with the exist-
ing and already familiar usage for normal events.

To define a synthetic event, the user writes a simple specification consisting of the
name of the new event along with one or more variables and their types, which can
be any valid field type, separated by semicolons, to the tracing/synthetic_events
file.

For instance, the following creates a new event named ‘wakeup_latency’with 3
fields: lat, pid, and prio. Each of those fields is simply a variable reference to a
variable on another event:

# echo 'wakeup_latency \
u64 lat; \
pid_t pid; \
int prio' >> \
/sys/kernel/debug/tracing/synthetic_events

Reading the tracing/synthetic_events file lists all the currently defined synthetic
events, in this case the event defined above:

# cat /sys/kernel/debug/tracing/synthetic_events
wakeup_latency u64 lat; pid_t pid; int prio

An existing synthetic event definition can be removed by prepending the command
that defined it with a ‘!’:
# echo '!wakeup_latency u64 lat pid_t pid int prio' >> \

/sys/kernel/debug/tracing/synthetic_events

At this point, there isn’t yet an actual‘wakeup_latency’event instantiated in the
event subsystem - for this to happen, a‘hist trigger action’needs to be instantiated
and bound to actual fields and variables defined on other events (see Section 2.2.3
below on how that is done using hist trigger‘onmatch’action). Once that is done,
the ‘wakeup_latency’synthetic event instance is created.
A histogram can now be defined for the new synthetic event:

# echo 'hist:keys=pid,prio,lat.log2:sort=pid,lat' >> \
/sys/kernel/debug/tracing/events/synthetic/wakeup_latency/trigger
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The new event is created under the tracing/events/synthetic/ directory and looks
and behaves just like any other event:

# ls /sys/kernel/debug/tracing/events/synthetic/wakeup_latency
enable filter format hist id trigger

Like any other event, once a histogram is enabled for the event, the output can be
displayed by reading the event’s ‘hist’file.

14.2.7 2.2.3 Hist trigger ‘handlers’and ‘actions’

A hist trigger‘action’is a function that’s executed (in most cases conditionally)
whenever a histogram entry is added or updated.

When a histogram entry is added or updated, a hist trigger ‘handler’is what
decides whether the corresponding action is actually invoked or not.

Hist trigger handlers and actions are paired together in the general form:

<handler>.<action>

To specify a handler.action pair for a given event, simply specify that handler.action
pair between colons in the hist trigger specification.

In theory, any handler can be combined with any action, but in practice, not ev-
ery handler.action combination is currently supported; if a given handler.action
combination isn’t supported, the hist trigger will fail with -EINVAL;
The default‘handler.action’if none is explicitly specified is as it always has been,
to simply update the set of values associated with an entry. Some applications,
however, may want to perform additional actions at that point, such as generate
another event, or compare and save a maximum.

The supported handlers and actions are listed below, and each is described in more
detail in the following paragraphs, in the context of descriptions of some common
and useful handler.action combinations.

The available handlers are:

• onmatch(matching.event) - invoke action on any addition or update

• onmax(var) - invoke action if var exceeds current max

• onchange(var) - invoke action if var changes

The available actions are:

• trace(<synthetic_event_name>,param list) - generate synthetic event

• save(field,⋯) - save current event fields
• snapshot() - snapshot the trace buffer

The following commonly-used handler.action pairs are available:

• onmatch(matching.event).trace(<synthetic_event_name>,param list)

The ‘onmatch(matching.event).trace(<synthetic_event_name>,param list)’
hist trigger action is invoked whenever an event matches and the histogram
entry would be added or updated. It causes the named synthetic event to
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be generated with the values given in the ‘param list’. The result is the
generation of a synthetic event that consists of the values contained in those
variables at the time the invoking event was hit. For example, if the synthetic
event name is‘wakeup_latency’, a wakeup_latency event is generated using
onmatch(event).trace(wakeup_latency,arg1,arg2).

There is also an equivalent alternative form available for generating synthetic
events. In this form, the synthetic event name is used as if it were a func-
tion name. For example, using the ‘wakeup_latency’synthetic event name
again, the wakeup_latency event would be generated by invoking it as if it
were a function call, with the event field values passed in as arguments: on-
match(event).wakeup_latency(arg1,arg2). The syntax for this form is:

onmatch(matching.event).<synthetic_event_name>(param list)

In either case, the ‘param list’consists of one or more parameters which
may be either variables or fields defined on either the ‘matching.event’or
the target event. The variables or fields specified in the param list may be
either fully-qualified or unqualified. If a variable is specified as unqualified,
it must be unique between the two events. A field name used as a param can
be unqualified if it refers to the target event, but must be fully qualified if
it refers to the matching event. A fully-qualified name is of the form ‘sys-
tem.event_name.$var_name’or ‘system.event_name.field’.
The‘matching.event’specification is simply the fully qualified event name of
the event that matches the target event for the onmatch() functionality, in the
form‘system.event_name’. Histogram keys of both events are compared to
find if events match. In case multiple histogram keys are used, they all must
match in the specified order.

Finally, the number and type of variables/fields in the‘param list’must match
the number and types of the fields in the synthetic event being generated.

As an example the below defines a simple synthetic event and uses a variable
defined on the sched_wakeup_new event as a parameter when invoking the
synthetic event. Here we define the synthetic event:

# echo 'wakeup_new_test pid_t pid' >> \
/sys/kernel/debug/tracing/synthetic_events

# cat /sys/kernel/debug/tracing/synthetic_events
wakeup_new_test pid_t pid

The following hist trigger both defines the missing testpid variable and spec-
ifies an onmatch() action that generates a wakeup_new_test synthetic event
whenever a sched_wakeup_new event occurs, which because of the‘if comm
== “cyclictest”’filter only happens when the executable is cyclictest:
# echo 'hist:keys=$testpid:testpid=pid:onmatch(sched.sched_wakeup_
↪→new).\

wakeup_new_test($testpid) if comm=="cyclictest"' >> \
/sys/kernel/debug/tracing/events/sched/sched_wakeup_new/

↪→trigger

Or, equivalently, using the ‘trace’keyword syntax:
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# echo ‘hist:keys=$testpid:testpid=pid:onmatch(sched.sched_wakeup_new).
trace(wakeup_new_test,$testpid) if comm==”cyclictest” ’>>
/sys/kernel/debug/tracing/events/sched/sched_wakeup_new/trigger

Creating and displaying a histogram based on those events is now just a mat-
ter of using the fields and new synthetic event in the tracing/events/synthetic
directory, as usual:

# echo 'hist:keys=pid:sort=pid' >> \
/sys/kernel/debug/tracing/events/synthetic/wakeup_new_test/

↪→trigger

Running ‘cyclictest’should cause wakeup_new events to generate
wakeup_new_test synthetic events which should result in histogram output
in the wakeup_new_test event’s hist file:
# cat /sys/kernel/debug/tracing/events/synthetic/wakeup_new_test/hist

A more typical usage would be to use two events to calculate a latency. The
following example uses a set of hist triggers to produce a ‘wakeup_latency’
histogram.

First, we define a ‘wakeup_latency’synthetic event:
# echo 'wakeup_latency u64 lat; pid_t pid; int prio' >> \

/sys/kernel/debug/tracing/synthetic_events

Next, we specify that whenever we see a sched_waking event for a cyclictest
thread, save the timestamp in a ‘ts0’variable:
# echo 'hist:keys=$saved_pid:saved_pid=pid:ts0=common_timestamp.usecs␣
↪→\

if comm=="cyclictest"' >> \
/sys/kernel/debug/tracing/events/sched/sched_waking/trigger

Then, when the corresponding thread is actually scheduled onto the CPU
by a sched_switch event (saved_pid matches next_pid), calculate the latency
and use that along with another variable and an event field to generate a
wakeup_latency synthetic event:

# echo 'hist:keys=next_pid:wakeup_lat=common_timestamp.usecs-$ts0:\
onmatch(sched.sched_waking).wakeup_latency($wakeup_lat,\

$saved_pid,next_prio) if next_comm=="cyclictest"' >> \
/sys/kernel/debug/tracing/events/sched/sched_switch/trigger

We also need to create a histogram on the wakeup_latency synthetic event in
order to aggregate the generated synthetic event data:

# echo 'hist:keys=pid,prio,lat:sort=pid,lat' >> \
/sys/kernel/debug/tracing/events/synthetic/wakeup_latency/

↪→trigger

Finally, once we’ve run cyclictest to actually generate some events, we can
see the output by looking at the wakeup_latency synthetic event’s hist file:
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# cat /sys/kernel/debug/tracing/events/synthetic/wakeup_latency/hist

• onmax(var).save(field,.. .)

The ‘onmax(var).save(field,⋯)’hist trigger action is invoked whenever the
value of‘var’associated with a histogram entry exceeds the current maximum
contained in that variable.

The end result is that the trace event fields specified as the onmax.save()
params will be saved if‘var’exceeds the current maximum for that hist trigger
entry. This allows context from the event that exhibited the new maximum
to be saved for later reference. When the histogram is displayed, additional
fields displaying the saved values will be printed.

As an example the below defines a couple of hist triggers, one for
sched_waking and another for sched_switch, keyed on pid. Whenever a
sched_waking occurs, the timestamp is saved in the entry corresponding to
the current pid, and when the scheduler switches back to that pid, the times-
tamp difference is calculated. If the resulting latency, stored in wakeup_lat,
exceeds the current maximum latency, the values specified in the save() fields
are recorded:

# echo 'hist:keys=pid:ts0=common_timestamp.usecs \
if comm=="cyclictest"' >> \
/sys/kernel/debug/tracing/events/sched/sched_waking/trigger

# echo 'hist:keys=next_pid:\
wakeup_lat=common_timestamp.usecs-$ts0:\
onmax($wakeup_lat).save(next_comm,prev_pid,prev_prio,prev_

↪→comm) \
if next_comm=="cyclictest"' >> \
/sys/kernel/debug/tracing/events/sched/sched_switch/trigger

When the histogram is displayed, the max value and the saved values corre-
sponding to the max are displayed following the rest of the fields:

# cat /sys/kernel/debug/tracing/events/sched/sched_switch/hist
{ next_pid: 2255 } hitcount: 239

common_timestamp-ts0: 0
max: 27
next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/1

{ next_pid: 2256 } hitcount: 2355
common_timestamp-ts0: 0
max: 49 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/0

Totals:
Hits: 12970
Entries: 2
Dropped: 0

• onmax(var).snapshot()

The‘onmax(var).snapshot()’hist trigger action is invoked whenever the value
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of ‘var’associated with a histogram entry exceeds the current maximum
contained in that variable.

The end result is that a global snapshot of the trace buffer will be saved in
the tracing/snapshot file if ‘var’exceeds the current maximum for any hist
trigger entry.

Note that in this case the maximum is a global maximum for the current trace
instance, which is the maximum across all buckets of the histogram. The key
of the specific trace event that caused the global maximum and the global
maximum itself are displayed, along with a message stating that a snapshot
has been taken and where to find it. The user can use the key information
displayed to locate the corresponding bucket in the histogram for even more
detail.

As an example the below defines a couple of hist triggers, one for
sched_waking and another for sched_switch, keyed on pid. Whenever a
sched_waking event occurs, the timestamp is saved in the entry correspond-
ing to the current pid, and when the scheduler switches back to that pid,
the timestamp difference is calculated. If the resulting latency, stored in
wakeup_lat, exceeds the current maximum latency, a snapshot is taken. As
part of the setup, all the scheduler events are also enabled, which are the
events that will show up in the snapshot when it is taken at some point:

# echo 1 > /sys/kernel/debug/tracing/events/sched/enable

# echo ‘hist:keys=pid:ts0=common_timestamp.usecs if comm==”
cyclictest”’>> /sys/kernel/debug/tracing/events/sched/sched_waking/trigger

# echo ‘hist:keys=next_pid:wakeup_lat=common_timestamp.usecs-$ts0:
onmax($wakeup_lat).save(next_prio,next_comm,prev_pid,prev_prio,
prev_comm):onmax($wakeup_lat).snapshot() if next_comm==”
cyclictest”’>> /sys/kernel/debug/tracing/events/sched/sched_switch/trigger

When the histogram is displayed, for each bucket the max value and the saved
values corresponding to the max are displayed following the rest of the fields.

If a snapshot was taken, there is also a message indicating that, along with
the value and event that triggered the global maximum:

# cat /sys/kernel/debug/tracing/events/sched/sched_switch/hist
{ next_pid: 2101 } hitcount: 200 max: 52 next_prio: 120

next_comm: cyclictest prev_pid: 0 prev_prio: 120 prev_comm:
swapper/6

{ next_pid: 2103 } hitcount: 1326 max: 572 next_prio: 19
next_comm: cyclictest prev_pid: 0 prev_prio: 120 prev_comm:
swapper/1

{ next_pid: 2102 } hitcount: 1982 max: 74 next_prio: 19
next_comm: cyclictest prev_pid: 0 prev_prio: 120 prev_comm:
swapper/5

Snapshot taken (see tracing/snapshot). Details: triggering value { on-
max($wakeup_lat) }: 572 triggered by event with key: { next_pid: 2103
}
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Totals: Hits: 3508 Entries: 3 Dropped: 0
In the above case, the event that triggered the global maximum has the key
with next_pid == 2103. If you look at the bucket that has 2103 as the key,
you’ll find the additional values save()’d along with the local maximum for
that bucket, which should be the same as the global maximum (since that was
the same value that triggered the global snapshot).

And finally, looking at the snapshot data should show at or near the end the
event that triggered the snapshot (in this case you can verify the timestamps
between the sched_waking and sched_switch events, which should match the
time displayed in the global maximum):

# cat /sys/kernel/debug/tracing/snapshot

<...>-2103 [005] d..3 309.873125: sched_switch: prev_
↪→comm=cyclictest prev_pid=2103 prev_prio=19 prev_state=D ==> next_
↪→comm=swapper/5 next_pid=0 next_prio=120

<idle>-0 [005] d.h3 309.873611: sched_waking:␣
↪→comm=cyclictest pid=2102 prio=19 target_cpu=005

<idle>-0 [005] dNh4 309.873613: sched_wakeup:␣
↪→comm=cyclictest pid=2102 prio=19 target_cpu=005

<idle>-0 [005] d..3 309.873616: sched_switch: prev_
↪→comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=S ==> next_
↪→comm=cyclictest next_pid=2102 next_prio=19

<...>-2102 [005] d..3 309.873625: sched_switch: prev_
↪→comm=cyclictest prev_pid=2102 prev_prio=19 prev_state=D ==> next_
↪→comm=swapper/5 next_pid=0 next_prio=120

<idle>-0 [005] d.h3 309.874624: sched_waking:␣
↪→comm=cyclictest pid=2102 prio=19 target_cpu=005

<idle>-0 [005] dNh4 309.874626: sched_wakeup:␣
↪→comm=cyclictest pid=2102 prio=19 target_cpu=005

<idle>-0 [005] dNh3 309.874628: sched_waking:␣
↪→comm=cyclictest pid=2103 prio=19 target_cpu=005

<idle>-0 [005] dNh4 309.874630: sched_wakeup:␣
↪→comm=cyclictest pid=2103 prio=19 target_cpu=005

<idle>-0 [005] d..3 309.874633: sched_switch: prev_
↪→comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=S ==> next_
↪→comm=cyclictest next_pid=2102 next_prio=19

<idle>-0 [004] d.h3 309.874757: sched_waking: comm=gnome-
↪→terminal- pid=1699 prio=120 target_cpu=004

<idle>-0 [004] dNh4 309.874762: sched_wakeup: comm=gnome-
↪→terminal- pid=1699 prio=120 target_cpu=004

<idle>-0 [004] d..3 309.874766: sched_switch: prev_
↪→comm=swapper/4 prev_pid=0 prev_prio=120 prev_state=S ==> next_
↪→comm=gnome-terminal- next_pid=1699 next_prio=120
gnome-terminal--1699 [004] d.h2 309.874941: sched_stat_runtime:␣
↪→comm=gnome-terminal- pid=1699 runtime=180706 [ns]␣
↪→vruntime=1126870572 [ns]

<idle>-0 [003] d.s4 309.874956: sched_waking: comm=rcu_
↪→sched pid=9 prio=120 target_cpu=007

<idle>-0 [003] d.s5 309.874960: sched_wake_idle_without_
↪→ipi: cpu=7

<idle>-0 [003] d.s5 309.874961: sched_wakeup: comm=rcu_
↪→sched pid=9 prio=120 target_cpu=007

<idle>-0 [007] d..3 309.874963: sched_switch: prev_
↪→comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=S ==> next_
↪→comm=rcu_sched next_pid=9 next_prio=120 (continues on next page)
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rcu_sched-9 [007] d..3 309.874973: sched_stat_runtime:␣
↪→comm=rcu_sched pid=9 runtime=13646 [ns] vruntime=22531430286 [ns]
rcu_sched-9 [007] d..3 309.874978: sched_switch: prev_comm=rcu_
↪→sched prev_pid=9 prev_prio=120 prev_state=R+ ==> next_comm=swapper/
↪→7 next_pid=0 next_prio=120

<...>-2102 [005] d..4 309.874994: sched_migrate_task:␣
↪→comm=cyclictest pid=2103 prio=19 orig_cpu=5 dest_cpu=1

<...>-2102 [005] d..4 309.875185: sched_wake_idle_without_
↪→ipi: cpu=1

<idle>-0 [001] d..3 309.875200: sched_switch: prev_
↪→comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=S ==> next_
↪→comm=cyclictest next_pid=2103 next_prio=19

• onchange(var).save(field,.. .)

The ‘onchange(var).save(field,⋯)’hist trigger action is invoked whenever
the value of ‘var’associated with a histogram entry changes.

The end result is that the trace event fields specified as the onchange.save()
params will be saved if‘var’changes for that hist trigger entry. This allows
context from the event that changed the value to be saved for later reference.
When the histogram is displayed, additional fields displaying the saved values
will be printed.

• onchange(var).snapshot()

The‘onchange(var).snapshot()’hist trigger action is invoked whenever the
value of ‘var’associated with a histogram entry changes.

The end result is that a global snapshot of the trace buffer will be saved in
the tracing/snapshot file if ‘var’changes for any hist trigger entry.
Note that in this case the changed value is a global variable associated with
current trace instance. The key of the specific trace event that caused the
value to change and the global value itself are displayed, along with a mes-
sage stating that a snapshot has been taken and where to find it. The user
can use the key information displayed to locate the corresponding bucket in
the histogram for even more detail.

As an example the below defines a hist trigger on the tcp_probe event, keyed
on dport. Whenever a tcp_probe event occurs, the cwnd field is checked
against the current value stored in the $cwnd variable. If the value has
changed, a snapshot is taken. As part of the setup, all the scheduler and
tcp events are also enabled, which are the events that will show up in the
snapshot when it is taken at some point:

# echo 1 > /sys/kernel/debug/tracing/events/sched/enable # echo 1 >
/sys/kernel/debug/tracing/events/tcp/enable

# echo ‘hist:keys=dport:cwnd=snd_cwnd: onchange($cwnd).save(snd_wnd,srtt,rcv_wnd):
onchange($cwnd).snapshot()’>> /sys/kernel/debug/tracing/events/tcp/tcp_probe/trigger

When the histogram is displayed, for each bucket the tracked value and the
saved values corresponding to that value are displayed following the rest of
the fields.
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If a snapshot was taken, there is also a message indicating that, along with
the value and event that triggered the snapshot:

# cat /sys/kernel/debug/tracing/events/tcp/tcp_probe/hist

{ dport: 1521 } hitcount: 8
changed: 10 snd_wnd: 35456 srtt: 154262 rcv_

↪→wnd: 42112

{ dport: 80 } hitcount: 23
changed: 10 snd_wnd: 28960 srtt: 19604 rcv_

↪→wnd: 29312

{ dport: 9001 } hitcount: 172
changed: 10 snd_wnd: 48384 srtt: 260444 rcv_

↪→wnd: 55168

{ dport: 443 } hitcount: 211
changed: 10 snd_wnd: 26960 srtt: 17379 rcv_

↪→wnd: 28800

Snapshot taken (see tracing/snapshot). Details:

triggering value { onchange($cwnd) }: 10
triggered by event with key: { dport: 80 }

Totals:
Hits: 414
Entries: 4
Dropped: 0

In the above case, the event that triggered the snapshot has the key with
dport == 80. If you look at the bucket that has 80 as the key, you’ll find
the additional values save()’d along with the changed value for that bucket,
which should be the same as the global changed value (since that was the
same value that triggered the global snapshot).

And finally, looking at the snapshot data should show at or near the end the
event that triggered the snapshot:

# cat /sys/kernel/debug/tracing/snapshot

gnome-shell-1261 [006] dN.3 49.823113: sched_stat_runtime:␣
↪→comm=gnome-shell pid=1261 runtime=49347 [ns] vruntime=1835730389␣
↪→[ns]
kworker/u16:4-773 [003] d..3 49.823114: sched_switch: prev_
↪→comm=kworker/u16:4 prev_pid=773 prev_prio=120 prev_state=R+ ==>␣
↪→next_comm=kworker/3:2 next_pid=135 next_prio=120

gnome-shell-1261 [006] d..3 49.823114: sched_switch: prev_
↪→comm=gnome-shell prev_pid=1261 prev_prio=120 prev_state=R+ ==> next_
↪→comm=kworker/6:2 next_pid=387 next_prio=120

kworker/3:2-135 [003] d..3 49.823118: sched_stat_runtime:␣
↪→comm=kworker/3:2 pid=135 runtime=5339 [ns] vruntime=17815800388 [ns]

kworker/6:2-387 [006] d..3 49.823120: sched_stat_runtime:␣
↪→comm=kworker/6:2 pid=387 runtime=9594 [ns] vruntime=14589605367 [ns]

kworker/6:2-387 [006] d..3 49.823122: sched_switch: prev_
↪→comm=kworker/6:2 prev_pid=387 prev_prio=120 prev_state=R+ ==> next_
↪→comm=gnome-shell next_pid=1261 next_prio=120 (continues on next page)
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kworker/3:2-135 [003] d..3 49.823123: sched_switch: prev_

↪→comm=kworker/3:2 prev_pid=135 prev_prio=120 prev_state=T ==> next_
↪→comm=swapper/3 next_pid=0 next_prio=120

<idle>-0 [004] ..s7 49.823798: tcp_probe: src=10.0.0.
↪→10:54326 dest=23.215.104.193:80 mark=0x0 length=32 snd_
↪→nxt=0xe3ae2ff5 snd_una=0xe3ae2ecd snd_cwnd=10 ssthresh=2147483647␣
↪→snd_wnd=28960 srtt=19604 rcv_wnd=29312

14.2.8 3. User space creating a trigger

Writing into /sys/kernel/tracing/trace_marker writes into the ftrace ring buffer.
This can also act like an event, by writing into the trigger file located in
/sys/kernel/tracing/events/ftrace/print/

Modifying cyclictest to write into the trace_marker file before it sleeps and after
it wakes up, something like this:

static void traceputs(char *str)
{

/* tracemark_fd is the trace_marker file descriptor */
if (tracemark_fd < 0)

return;
/* write the tracemark message */
write(tracemark_fd, str, strlen(str));

}

And later add something like:

traceputs("start");
clock_nanosleep(...);
traceputs("end");

We can make a histogram from this:

# cd /sys/kernel/tracing
# echo 'latency u64 lat' > synthetic_events
# echo 'hist:keys=common_pid:ts0=common_timestamp.usecs if buf == "start"'␣
↪→> events/ftrace/print/trigger
# echo 'hist:keys=common_pid:lat=common_timestamp.usecs-
↪→$ts0:onmatch(ftrace.print).latency($lat) if buf == "end"' >> events/
↪→ftrace/print/trigger
# echo 'hist:keys=lat,common_pid:sort=lat' > events/synthetic/latency/
↪→trigger

The above created a synthetic event called“latency”and two histograms against
the trace_marker, one gets triggered when“start”is written into the trace_marker
file and the other when “end”is written. If the pids match, then it will call the
“latency”synthetic event with the calculated latency as its parameter. Finally, a
histogram is added to the latency synthetic event to record the calculated latency
along with the pid.

Now running cyclictest with:
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# ./cyclictest -p80 -d0 -i250 -n -a -t --tracemark -b 1000

-p80 : run threads at priority 80
-d0 : have all threads run at the same interval
-i250 : start the interval at 250 microseconds (all threads will do this)
-n : sleep with nanosleep
-a : affine all threads to a separate CPU
-t : one thread per available CPU
--tracemark : enable trace mark writing
-b 1000 : stop if any latency is greater than 1000 microseconds

Note, the -b 1000 is used just to make –tracemark available.

Then we can see the histogram created by this with:

# cat events/synthetic/latency/hist
# event histogram
#
# trigger info: hist:keys=lat,common_pid:vals=hitcount:sort=lat:size=2048␣
↪→[active]
#

{ lat: 107, common_pid: 2039 } hitcount: 1
{ lat: 122, common_pid: 2041 } hitcount: 1
{ lat: 166, common_pid: 2039 } hitcount: 1
{ lat: 174, common_pid: 2039 } hitcount: 1
{ lat: 194, common_pid: 2041 } hitcount: 1
{ lat: 196, common_pid: 2036 } hitcount: 1
{ lat: 197, common_pid: 2038 } hitcount: 1
{ lat: 198, common_pid: 2039 } hitcount: 1
{ lat: 199, common_pid: 2039 } hitcount: 1
{ lat: 200, common_pid: 2041 } hitcount: 1
{ lat: 201, common_pid: 2039 } hitcount: 2
{ lat: 202, common_pid: 2038 } hitcount: 1
{ lat: 202, common_pid: 2043 } hitcount: 1
{ lat: 203, common_pid: 2039 } hitcount: 1
{ lat: 203, common_pid: 2036 } hitcount: 1
{ lat: 203, common_pid: 2041 } hitcount: 1
{ lat: 206, common_pid: 2038 } hitcount: 2
{ lat: 207, common_pid: 2039 } hitcount: 1
{ lat: 207, common_pid: 2036 } hitcount: 1
{ lat: 208, common_pid: 2040 } hitcount: 1
{ lat: 209, common_pid: 2043 } hitcount: 1
{ lat: 210, common_pid: 2039 } hitcount: 1
{ lat: 211, common_pid: 2039 } hitcount: 4
{ lat: 212, common_pid: 2043 } hitcount: 1
{ lat: 212, common_pid: 2039 } hitcount: 2
{ lat: 213, common_pid: 2039 } hitcount: 1
{ lat: 214, common_pid: 2038 } hitcount: 1
{ lat: 214, common_pid: 2039 } hitcount: 2
{ lat: 214, common_pid: 2042 } hitcount: 1
{ lat: 215, common_pid: 2039 } hitcount: 1
{ lat: 217, common_pid: 2036 } hitcount: 1
{ lat: 217, common_pid: 2040 } hitcount: 1
{ lat: 217, common_pid: 2039 } hitcount: 1
{ lat: 218, common_pid: 2039 } hitcount: 6
{ lat: 219, common_pid: 2039 } hitcount: 9

(continues on next page)
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{ lat: 220, common_pid: 2039 } hitcount: 11
{ lat: 221, common_pid: 2039 } hitcount: 5
{ lat: 221, common_pid: 2042 } hitcount: 1
{ lat: 222, common_pid: 2039 } hitcount: 7
{ lat: 223, common_pid: 2036 } hitcount: 1
{ lat: 223, common_pid: 2039 } hitcount: 3
{ lat: 224, common_pid: 2039 } hitcount: 4
{ lat: 224, common_pid: 2037 } hitcount: 1
{ lat: 224, common_pid: 2036 } hitcount: 2
{ lat: 225, common_pid: 2039 } hitcount: 5
{ lat: 225, common_pid: 2042 } hitcount: 1
{ lat: 226, common_pid: 2039 } hitcount: 7
{ lat: 226, common_pid: 2036 } hitcount: 4
{ lat: 227, common_pid: 2039 } hitcount: 6
{ lat: 227, common_pid: 2036 } hitcount: 12
{ lat: 227, common_pid: 2043 } hitcount: 1
{ lat: 228, common_pid: 2039 } hitcount: 7
{ lat: 228, common_pid: 2036 } hitcount: 14
{ lat: 229, common_pid: 2039 } hitcount: 9
{ lat: 229, common_pid: 2036 } hitcount: 8
{ lat: 229, common_pid: 2038 } hitcount: 1
{ lat: 230, common_pid: 2039 } hitcount: 11
{ lat: 230, common_pid: 2036 } hitcount: 6
{ lat: 230, common_pid: 2043 } hitcount: 1
{ lat: 230, common_pid: 2042 } hitcount: 2
{ lat: 231, common_pid: 2041 } hitcount: 1
{ lat: 231, common_pid: 2036 } hitcount: 6
{ lat: 231, common_pid: 2043 } hitcount: 1
{ lat: 231, common_pid: 2039 } hitcount: 8
{ lat: 232, common_pid: 2037 } hitcount: 1
{ lat: 232, common_pid: 2039 } hitcount: 6
{ lat: 232, common_pid: 2040 } hitcount: 2
{ lat: 232, common_pid: 2036 } hitcount: 5
{ lat: 232, common_pid: 2043 } hitcount: 1
{ lat: 233, common_pid: 2036 } hitcount: 5
{ lat: 233, common_pid: 2039 } hitcount: 11
{ lat: 234, common_pid: 2039 } hitcount: 4
{ lat: 234, common_pid: 2038 } hitcount: 2
{ lat: 234, common_pid: 2043 } hitcount: 2
{ lat: 234, common_pid: 2036 } hitcount: 11
{ lat: 234, common_pid: 2040 } hitcount: 1
{ lat: 235, common_pid: 2037 } hitcount: 2
{ lat: 235, common_pid: 2036 } hitcount: 8
{ lat: 235, common_pid: 2043 } hitcount: 2
{ lat: 235, common_pid: 2039 } hitcount: 5
{ lat: 235, common_pid: 2042 } hitcount: 2
{ lat: 235, common_pid: 2040 } hitcount: 4
{ lat: 235, common_pid: 2041 } hitcount: 1
{ lat: 236, common_pid: 2036 } hitcount: 7
{ lat: 236, common_pid: 2037 } hitcount: 1
{ lat: 236, common_pid: 2041 } hitcount: 5
{ lat: 236, common_pid: 2039 } hitcount: 3
{ lat: 236, common_pid: 2043 } hitcount: 9
{ lat: 236, common_pid: 2040 } hitcount: 7
{ lat: 237, common_pid: 2037 } hitcount: 1
{ lat: 237, common_pid: 2040 } hitcount: 1

(continues on next page)
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{ lat: 237, common_pid: 2036 } hitcount: 9
{ lat: 237, common_pid: 2039 } hitcount: 3
{ lat: 237, common_pid: 2043 } hitcount: 8
{ lat: 237, common_pid: 2042 } hitcount: 2
{ lat: 237, common_pid: 2041 } hitcount: 2
{ lat: 238, common_pid: 2043 } hitcount: 10
{ lat: 238, common_pid: 2040 } hitcount: 1
{ lat: 238, common_pid: 2037 } hitcount: 9
{ lat: 238, common_pid: 2038 } hitcount: 1
{ lat: 238, common_pid: 2039 } hitcount: 1
{ lat: 238, common_pid: 2042 } hitcount: 3
{ lat: 238, common_pid: 2036 } hitcount: 7
{ lat: 239, common_pid: 2041 } hitcount: 1
{ lat: 239, common_pid: 2043 } hitcount: 11
{ lat: 239, common_pid: 2037 } hitcount: 11
{ lat: 239, common_pid: 2038 } hitcount: 6
{ lat: 239, common_pid: 2036 } hitcount: 7
{ lat: 239, common_pid: 2040 } hitcount: 1
{ lat: 239, common_pid: 2042 } hitcount: 9
{ lat: 240, common_pid: 2037 } hitcount: 29
{ lat: 240, common_pid: 2043 } hitcount: 15
{ lat: 240, common_pid: 2040 } hitcount: 44
{ lat: 240, common_pid: 2039 } hitcount: 1
{ lat: 240, common_pid: 2041 } hitcount: 2
{ lat: 240, common_pid: 2038 } hitcount: 1
{ lat: 240, common_pid: 2036 } hitcount: 10
{ lat: 240, common_pid: 2042 } hitcount: 13
{ lat: 241, common_pid: 2036 } hitcount: 21
{ lat: 241, common_pid: 2041 } hitcount: 36
{ lat: 241, common_pid: 2037 } hitcount: 34
{ lat: 241, common_pid: 2042 } hitcount: 14
{ lat: 241, common_pid: 2040 } hitcount: 94
{ lat: 241, common_pid: 2039 } hitcount: 12
{ lat: 241, common_pid: 2038 } hitcount: 2
{ lat: 241, common_pid: 2043 } hitcount: 28
{ lat: 242, common_pid: 2040 } hitcount: 109
{ lat: 242, common_pid: 2041 } hitcount: 506
{ lat: 242, common_pid: 2039 } hitcount: 155
{ lat: 242, common_pid: 2042 } hitcount: 21
{ lat: 242, common_pid: 2037 } hitcount: 52
{ lat: 242, common_pid: 2043 } hitcount: 21
{ lat: 242, common_pid: 2036 } hitcount: 16
{ lat: 242, common_pid: 2038 } hitcount: 156
{ lat: 243, common_pid: 2037 } hitcount: 46
{ lat: 243, common_pid: 2039 } hitcount: 40
{ lat: 243, common_pid: 2042 } hitcount: 119
{ lat: 243, common_pid: 2041 } hitcount: 611
{ lat: 243, common_pid: 2036 } hitcount: 69
{ lat: 243, common_pid: 2038 } hitcount: 784
{ lat: 243, common_pid: 2040 } hitcount: 323
{ lat: 243, common_pid: 2043 } hitcount: 14
{ lat: 244, common_pid: 2043 } hitcount: 35
{ lat: 244, common_pid: 2042 } hitcount: 305
{ lat: 244, common_pid: 2039 } hitcount: 8
{ lat: 244, common_pid: 2040 } hitcount: 4515
{ lat: 244, common_pid: 2038 } hitcount: 371

(continues on next page)
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{ lat: 244, common_pid: 2037 } hitcount: 31
{ lat: 244, common_pid: 2036 } hitcount: 114
{ lat: 244, common_pid: 2041 } hitcount: 3396
{ lat: 245, common_pid: 2036 } hitcount: 700
{ lat: 245, common_pid: 2041 } hitcount: 2772
{ lat: 245, common_pid: 2037 } hitcount: 268
{ lat: 245, common_pid: 2039 } hitcount: 472
{ lat: 245, common_pid: 2038 } hitcount: 2758
{ lat: 245, common_pid: 2042 } hitcount: 3833
{ lat: 245, common_pid: 2040 } hitcount: 3105
{ lat: 245, common_pid: 2043 } hitcount: 645
{ lat: 246, common_pid: 2038 } hitcount: 3451
{ lat: 246, common_pid: 2041 } hitcount: 142
{ lat: 246, common_pid: 2037 } hitcount: 5101
{ lat: 246, common_pid: 2040 } hitcount: 68
{ lat: 246, common_pid: 2043 } hitcount: 5099
{ lat: 246, common_pid: 2039 } hitcount: 5608
{ lat: 246, common_pid: 2042 } hitcount: 3723
{ lat: 246, common_pid: 2036 } hitcount: 4738
{ lat: 247, common_pid: 2042 } hitcount: 312
{ lat: 247, common_pid: 2043 } hitcount: 2385
{ lat: 247, common_pid: 2041 } hitcount: 452
{ lat: 247, common_pid: 2038 } hitcount: 792
{ lat: 247, common_pid: 2040 } hitcount: 78
{ lat: 247, common_pid: 2036 } hitcount: 2375
{ lat: 247, common_pid: 2039 } hitcount: 1834
{ lat: 247, common_pid: 2037 } hitcount: 2655
{ lat: 248, common_pid: 2037 } hitcount: 36
{ lat: 248, common_pid: 2042 } hitcount: 11
{ lat: 248, common_pid: 2038 } hitcount: 122
{ lat: 248, common_pid: 2036 } hitcount: 135
{ lat: 248, common_pid: 2039 } hitcount: 26
{ lat: 248, common_pid: 2041 } hitcount: 503
{ lat: 248, common_pid: 2043 } hitcount: 66
{ lat: 248, common_pid: 2040 } hitcount: 46
{ lat: 249, common_pid: 2037 } hitcount: 29
{ lat: 249, common_pid: 2038 } hitcount: 1
{ lat: 249, common_pid: 2043 } hitcount: 29
{ lat: 249, common_pid: 2039 } hitcount: 8
{ lat: 249, common_pid: 2042 } hitcount: 56
{ lat: 249, common_pid: 2040 } hitcount: 27
{ lat: 249, common_pid: 2041 } hitcount: 11
{ lat: 249, common_pid: 2036 } hitcount: 27
{ lat: 250, common_pid: 2038 } hitcount: 1
{ lat: 250, common_pid: 2036 } hitcount: 30
{ lat: 250, common_pid: 2040 } hitcount: 19
{ lat: 250, common_pid: 2043 } hitcount: 22
{ lat: 250, common_pid: 2042 } hitcount: 20
{ lat: 250, common_pid: 2041 } hitcount: 1
{ lat: 250, common_pid: 2039 } hitcount: 6
{ lat: 250, common_pid: 2037 } hitcount: 48
{ lat: 251, common_pid: 2037 } hitcount: 43
{ lat: 251, common_pid: 2039 } hitcount: 1
{ lat: 251, common_pid: 2036 } hitcount: 12
{ lat: 251, common_pid: 2042 } hitcount: 2
{ lat: 251, common_pid: 2041 } hitcount: 1

(continues on next page)
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{ lat: 251, common_pid: 2043 } hitcount: 15
{ lat: 251, common_pid: 2040 } hitcount: 3
{ lat: 252, common_pid: 2040 } hitcount: 1
{ lat: 252, common_pid: 2036 } hitcount: 12
{ lat: 252, common_pid: 2037 } hitcount: 21
{ lat: 252, common_pid: 2043 } hitcount: 14
{ lat: 253, common_pid: 2037 } hitcount: 21
{ lat: 253, common_pid: 2039 } hitcount: 2
{ lat: 253, common_pid: 2036 } hitcount: 9
{ lat: 253, common_pid: 2043 } hitcount: 6
{ lat: 253, common_pid: 2040 } hitcount: 1
{ lat: 254, common_pid: 2036 } hitcount: 8
{ lat: 254, common_pid: 2043 } hitcount: 3
{ lat: 254, common_pid: 2041 } hitcount: 1
{ lat: 254, common_pid: 2042 } hitcount: 1
{ lat: 254, common_pid: 2039 } hitcount: 1
{ lat: 254, common_pid: 2037 } hitcount: 12
{ lat: 255, common_pid: 2043 } hitcount: 1
{ lat: 255, common_pid: 2037 } hitcount: 2
{ lat: 255, common_pid: 2036 } hitcount: 2
{ lat: 255, common_pid: 2039 } hitcount: 8
{ lat: 256, common_pid: 2043 } hitcount: 1
{ lat: 256, common_pid: 2036 } hitcount: 4
{ lat: 256, common_pid: 2039 } hitcount: 6
{ lat: 257, common_pid: 2039 } hitcount: 5
{ lat: 257, common_pid: 2036 } hitcount: 4
{ lat: 258, common_pid: 2039 } hitcount: 5
{ lat: 258, common_pid: 2036 } hitcount: 2
{ lat: 259, common_pid: 2036 } hitcount: 7
{ lat: 259, common_pid: 2039 } hitcount: 7
{ lat: 260, common_pid: 2036 } hitcount: 8
{ lat: 260, common_pid: 2039 } hitcount: 6
{ lat: 261, common_pid: 2036 } hitcount: 5
{ lat: 261, common_pid: 2039 } hitcount: 7
{ lat: 262, common_pid: 2039 } hitcount: 5
{ lat: 262, common_pid: 2036 } hitcount: 5
{ lat: 263, common_pid: 2039 } hitcount: 7
{ lat: 263, common_pid: 2036 } hitcount: 7
{ lat: 264, common_pid: 2039 } hitcount: 9
{ lat: 264, common_pid: 2036 } hitcount: 9
{ lat: 265, common_pid: 2036 } hitcount: 5
{ lat: 265, common_pid: 2039 } hitcount: 1
{ lat: 266, common_pid: 2036 } hitcount: 1
{ lat: 266, common_pid: 2039 } hitcount: 3
{ lat: 267, common_pid: 2036 } hitcount: 1
{ lat: 267, common_pid: 2039 } hitcount: 3
{ lat: 268, common_pid: 2036 } hitcount: 1
{ lat: 268, common_pid: 2039 } hitcount: 6
{ lat: 269, common_pid: 2036 } hitcount: 1
{ lat: 269, common_pid: 2043 } hitcount: 1
{ lat: 269, common_pid: 2039 } hitcount: 2
{ lat: 270, common_pid: 2040 } hitcount: 1
{ lat: 270, common_pid: 2039 } hitcount: 6
{ lat: 271, common_pid: 2041 } hitcount: 1
{ lat: 271, common_pid: 2039 } hitcount: 5
{ lat: 272, common_pid: 2039 } hitcount: 10

(continues on next page)
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{ lat: 273, common_pid: 2039 } hitcount: 8
{ lat: 274, common_pid: 2039 } hitcount: 2
{ lat: 275, common_pid: 2039 } hitcount: 1
{ lat: 276, common_pid: 2039 } hitcount: 2
{ lat: 276, common_pid: 2037 } hitcount: 1
{ lat: 276, common_pid: 2038 } hitcount: 1
{ lat: 277, common_pid: 2039 } hitcount: 1
{ lat: 277, common_pid: 2042 } hitcount: 1
{ lat: 278, common_pid: 2039 } hitcount: 1
{ lat: 279, common_pid: 2039 } hitcount: 4
{ lat: 279, common_pid: 2043 } hitcount: 1
{ lat: 280, common_pid: 2039 } hitcount: 3
{ lat: 283, common_pid: 2036 } hitcount: 2
{ lat: 284, common_pid: 2039 } hitcount: 1
{ lat: 284, common_pid: 2043 } hitcount: 1
{ lat: 288, common_pid: 2039 } hitcount: 1
{ lat: 289, common_pid: 2039 } hitcount: 1
{ lat: 300, common_pid: 2039 } hitcount: 1
{ lat: 384, common_pid: 2039 } hitcount: 1

Totals:
Hits: 67625
Entries: 278
Dropped: 0

Note, the writes are around the sleep, so ideally they will all be of 250 microsec-
onds. If you are wondering how there are several that are under 250microseconds,
that is because the way cyclictest works, is if one iteration comes in late, the next
one will set the timer to wake up less that 250. That is, if an iteration came in 50
microseconds late, the next wake up will be at 200 microseconds.

But this could easily be done in userspace. To make this even more interest-
ing, we can mix the histogram between events that happened in the kernel with
trace_marker:

# cd /sys/kernel/tracing
# echo 'latency u64 lat' > synthetic_events
# echo 'hist:keys=pid:ts0=common_timestamp.usecs' > events/sched/sched_
↪→waking/trigger
# echo 'hist:keys=common_pid:lat=common_timestamp.usecs-$ts0:onmatch(sched.
↪→sched_waking).latency($lat) if buf == "end"' > events/ftrace/print/
↪→trigger
# echo 'hist:keys=lat,common_pid:sort=lat' > events/synthetic/latency/
↪→trigger

The difference this time is that instead of using the trace_marker to start the
latency, the sched_waking event is used, matching the common_pid for the
trace_marker write with the pid that is being woken by sched_waking.

After running cyclictest again with the same parameters, we now have:

# cat events/synthetic/latency/hist
# event histogram
#
# trigger info: hist:keys=lat,common_pid:vals=hitcount:sort=lat:size=2048␣
↪→[active] (continues on next page)
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#

{ lat: 7, common_pid: 2302 } hitcount: 640
{ lat: 7, common_pid: 2299 } hitcount: 42
{ lat: 7, common_pid: 2303 } hitcount: 18
{ lat: 7, common_pid: 2305 } hitcount: 166
{ lat: 7, common_pid: 2306 } hitcount: 1
{ lat: 7, common_pid: 2301 } hitcount: 91
{ lat: 7, common_pid: 2300 } hitcount: 17
{ lat: 8, common_pid: 2303 } hitcount: 8296
{ lat: 8, common_pid: 2304 } hitcount: 6864
{ lat: 8, common_pid: 2305 } hitcount: 9464
{ lat: 8, common_pid: 2301 } hitcount: 9213
{ lat: 8, common_pid: 2306 } hitcount: 6246
{ lat: 8, common_pid: 2302 } hitcount: 8797
{ lat: 8, common_pid: 2299 } hitcount: 8771
{ lat: 8, common_pid: 2300 } hitcount: 8119
{ lat: 9, common_pid: 2305 } hitcount: 1519
{ lat: 9, common_pid: 2299 } hitcount: 2346
{ lat: 9, common_pid: 2303 } hitcount: 2841
{ lat: 9, common_pid: 2301 } hitcount: 1846
{ lat: 9, common_pid: 2304 } hitcount: 3861
{ lat: 9, common_pid: 2302 } hitcount: 1210
{ lat: 9, common_pid: 2300 } hitcount: 2762
{ lat: 9, common_pid: 2306 } hitcount: 4247
{ lat: 10, common_pid: 2299 } hitcount: 16
{ lat: 10, common_pid: 2306 } hitcount: 333
{ lat: 10, common_pid: 2303 } hitcount: 16
{ lat: 10, common_pid: 2304 } hitcount: 168
{ lat: 10, common_pid: 2302 } hitcount: 240
{ lat: 10, common_pid: 2301 } hitcount: 28
{ lat: 10, common_pid: 2300 } hitcount: 95
{ lat: 10, common_pid: 2305 } hitcount: 18
{ lat: 11, common_pid: 2303 } hitcount: 5
{ lat: 11, common_pid: 2305 } hitcount: 8
{ lat: 11, common_pid: 2306 } hitcount: 221
{ lat: 11, common_pid: 2302 } hitcount: 76
{ lat: 11, common_pid: 2304 } hitcount: 26
{ lat: 11, common_pid: 2300 } hitcount: 125
{ lat: 11, common_pid: 2299 } hitcount: 2
{ lat: 12, common_pid: 2305 } hitcount: 3
{ lat: 12, common_pid: 2300 } hitcount: 6
{ lat: 12, common_pid: 2306 } hitcount: 90
{ lat: 12, common_pid: 2302 } hitcount: 4
{ lat: 12, common_pid: 2303 } hitcount: 1
{ lat: 12, common_pid: 2304 } hitcount: 122
{ lat: 13, common_pid: 2300 } hitcount: 12
{ lat: 13, common_pid: 2301 } hitcount: 1
{ lat: 13, common_pid: 2306 } hitcount: 32
{ lat: 13, common_pid: 2302 } hitcount: 5
{ lat: 13, common_pid: 2305 } hitcount: 1
{ lat: 13, common_pid: 2303 } hitcount: 1
{ lat: 13, common_pid: 2304 } hitcount: 61
{ lat: 14, common_pid: 2303 } hitcount: 4
{ lat: 14, common_pid: 2306 } hitcount: 5
{ lat: 14, common_pid: 2305 } hitcount: 4

(continues on next page)
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{ lat: 14, common_pid: 2304 } hitcount: 62
{ lat: 14, common_pid: 2302 } hitcount: 19
{ lat: 14, common_pid: 2300 } hitcount: 33
{ lat: 14, common_pid: 2299 } hitcount: 1
{ lat: 14, common_pid: 2301 } hitcount: 4
{ lat: 15, common_pid: 2305 } hitcount: 1
{ lat: 15, common_pid: 2302 } hitcount: 25
{ lat: 15, common_pid: 2300 } hitcount: 11
{ lat: 15, common_pid: 2299 } hitcount: 5
{ lat: 15, common_pid: 2301 } hitcount: 1
{ lat: 15, common_pid: 2304 } hitcount: 8
{ lat: 15, common_pid: 2303 } hitcount: 1
{ lat: 15, common_pid: 2306 } hitcount: 6
{ lat: 16, common_pid: 2302 } hitcount: 31
{ lat: 16, common_pid: 2306 } hitcount: 3
{ lat: 16, common_pid: 2300 } hitcount: 5
{ lat: 17, common_pid: 2302 } hitcount: 6
{ lat: 17, common_pid: 2303 } hitcount: 1
{ lat: 18, common_pid: 2304 } hitcount: 1
{ lat: 18, common_pid: 2302 } hitcount: 8
{ lat: 18, common_pid: 2299 } hitcount: 1
{ lat: 18, common_pid: 2301 } hitcount: 1
{ lat: 19, common_pid: 2303 } hitcount: 4
{ lat: 19, common_pid: 2304 } hitcount: 5
{ lat: 19, common_pid: 2302 } hitcount: 4
{ lat: 19, common_pid: 2299 } hitcount: 3
{ lat: 19, common_pid: 2306 } hitcount: 1
{ lat: 19, common_pid: 2300 } hitcount: 4
{ lat: 19, common_pid: 2305 } hitcount: 5
{ lat: 20, common_pid: 2299 } hitcount: 2
{ lat: 20, common_pid: 2302 } hitcount: 3
{ lat: 20, common_pid: 2305 } hitcount: 1
{ lat: 20, common_pid: 2300 } hitcount: 2
{ lat: 20, common_pid: 2301 } hitcount: 2
{ lat: 20, common_pid: 2303 } hitcount: 3
{ lat: 21, common_pid: 2305 } hitcount: 1
{ lat: 21, common_pid: 2299 } hitcount: 5
{ lat: 21, common_pid: 2303 } hitcount: 4
{ lat: 21, common_pid: 2302 } hitcount: 7
{ lat: 21, common_pid: 2300 } hitcount: 1
{ lat: 21, common_pid: 2301 } hitcount: 5
{ lat: 21, common_pid: 2304 } hitcount: 2
{ lat: 22, common_pid: 2302 } hitcount: 5
{ lat: 22, common_pid: 2303 } hitcount: 1
{ lat: 22, common_pid: 2306 } hitcount: 3
{ lat: 22, common_pid: 2301 } hitcount: 2
{ lat: 22, common_pid: 2300 } hitcount: 1
{ lat: 22, common_pid: 2299 } hitcount: 1
{ lat: 22, common_pid: 2305 } hitcount: 1
{ lat: 22, common_pid: 2304 } hitcount: 1
{ lat: 23, common_pid: 2299 } hitcount: 1
{ lat: 23, common_pid: 2306 } hitcount: 2
{ lat: 23, common_pid: 2302 } hitcount: 6
{ lat: 24, common_pid: 2302 } hitcount: 3
{ lat: 24, common_pid: 2300 } hitcount: 1
{ lat: 24, common_pid: 2306 } hitcount: 2

(continues on next page)
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{ lat: 24, common_pid: 2305 } hitcount: 1
{ lat: 24, common_pid: 2299 } hitcount: 1
{ lat: 25, common_pid: 2300 } hitcount: 1
{ lat: 25, common_pid: 2302 } hitcount: 4
{ lat: 26, common_pid: 2302 } hitcount: 2
{ lat: 27, common_pid: 2305 } hitcount: 1
{ lat: 27, common_pid: 2300 } hitcount: 1
{ lat: 27, common_pid: 2302 } hitcount: 3
{ lat: 28, common_pid: 2306 } hitcount: 1
{ lat: 28, common_pid: 2302 } hitcount: 4
{ lat: 29, common_pid: 2302 } hitcount: 1
{ lat: 29, common_pid: 2300 } hitcount: 2
{ lat: 29, common_pid: 2306 } hitcount: 1
{ lat: 29, common_pid: 2304 } hitcount: 1
{ lat: 30, common_pid: 2302 } hitcount: 4
{ lat: 31, common_pid: 2302 } hitcount: 6
{ lat: 32, common_pid: 2302 } hitcount: 1
{ lat: 33, common_pid: 2299 } hitcount: 1
{ lat: 33, common_pid: 2302 } hitcount: 3
{ lat: 34, common_pid: 2302 } hitcount: 2
{ lat: 35, common_pid: 2302 } hitcount: 1
{ lat: 35, common_pid: 2304 } hitcount: 1
{ lat: 36, common_pid: 2302 } hitcount: 4
{ lat: 37, common_pid: 2302 } hitcount: 6
{ lat: 38, common_pid: 2302 } hitcount: 2
{ lat: 39, common_pid: 2302 } hitcount: 2
{ lat: 39, common_pid: 2304 } hitcount: 1
{ lat: 40, common_pid: 2304 } hitcount: 2
{ lat: 40, common_pid: 2302 } hitcount: 5
{ lat: 41, common_pid: 2304 } hitcount: 1
{ lat: 41, common_pid: 2302 } hitcount: 8
{ lat: 42, common_pid: 2302 } hitcount: 6
{ lat: 42, common_pid: 2304 } hitcount: 1
{ lat: 43, common_pid: 2302 } hitcount: 3
{ lat: 43, common_pid: 2304 } hitcount: 4
{ lat: 44, common_pid: 2302 } hitcount: 6
{ lat: 45, common_pid: 2302 } hitcount: 5
{ lat: 46, common_pid: 2302 } hitcount: 5
{ lat: 47, common_pid: 2302 } hitcount: 7
{ lat: 48, common_pid: 2301 } hitcount: 1
{ lat: 48, common_pid: 2302 } hitcount: 9
{ lat: 49, common_pid: 2302 } hitcount: 3
{ lat: 50, common_pid: 2302 } hitcount: 1
{ lat: 50, common_pid: 2301 } hitcount: 1
{ lat: 51, common_pid: 2302 } hitcount: 2
{ lat: 51, common_pid: 2301 } hitcount: 1
{ lat: 61, common_pid: 2302 } hitcount: 1
{ lat: 110, common_pid: 2302 } hitcount: 1

Totals:
Hits: 89565
Entries: 158
Dropped: 0

This doesn’t tell us any information about how late cyclictest may have woken
up, but it does show us a nice histogram of how long it took from the time that
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cyclictest was woken to the time it made it into user space.
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BOOT-TIME TRACING

Author Masami Hiramatsu <mhiramat@kernel.org>

15.1 Overview

Boot-time tracing allows users to trace boot-time process including device ini-
tialization with full features of ftrace including per-event filter and actions, his-
tograms, kprobe-events and synthetic-events, and trace instances. Since kernel
command line is not enough to control these complex features, this uses bootcon-
fig file to describe tracing feature programming.

15.2 Options in the Boot Config

Here is the list of available options list for boot time tracing in boot config file1.
All options are under“ftrace.”or“kernel.”prefix. See kernel parameters for the
options which starts with “kernel.”prefix2.

15.2.1 Ftrace Global Options

Ftrace global options have “kernel.”prefix in boot config, which means these
options are passed as a part of kernel legacy command line.

kernel.tp_printk Output trace-event data on printk buffer too.
kernel.dump_on_oops [= MODE] Dump ftrace on Oops. If MODE = 1 or omit-

ted, dump trace buffer on all CPUs. If MODE = 2, dump a buffer on a CPU
which kicks Oops.

kernel.traceoff_on_warning Stop tracing if WARN_ON() occurs.
kernel.fgraph_max_depth = MAX_DEPTH Set MAX_DEPTH to maximum

depth of fgraph tracer.

kernel.fgraph_filters = FILTER[, FILTER2⋯] Add fgraph tracing function fil-
ters.

kernel.fgraph_notraces = FILTER[, FILTER2⋯] Add fgraph non-tracing func-
tion filters.

1 See Documentation/admin-guide/bootconfig.rst
2 See Documentation/admin-guide/kernel-parameters.rst
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15.2.2 Ftrace Per-instance Options

These options can be used for each instance including global ftrace node.

ftrace.[instance.INSTANCE.]options = OPT1[, OPT2[⋯]] Enable given
ftrace options.

ftrace.[instance.INSTANCE.]trace_clock = CLOCK Set given CLOCK to
ftrace’s trace_clock.

ftrace.[instance.INSTANCE.]buffer_size = SIZE Configure ftrace buffer size
to SIZE. You can use “KB”or “MB”for that SIZE.

ftrace.[instance.INSTANCE.]alloc_snapshot Allocate snapshot buffer.
ftrace.[instance.INSTANCE.]cpumask = CPUMASK Set CPUMASK as trace

cpu-mask.

ftrace.[instance.INSTANCE.]events = EVENT[, EVENT2[⋯]] Enable given
events on boot. You can use a wild card in EVENT.

ftrace.[instance.INSTANCE.]tracer = TRACER Set TRACER to current tracer
on boot. (e.g. function)

ftrace.[instance.INSTANCE.]ftrace.filters This will take an array of tracing
function filter rules.

ftrace.[instance.INSTANCE.]ftrace.notraces This will take an array of NON-
tracing function filter rules.

15.2.3 Ftrace Per-Event Options

These options are setting per-event options.

ftrace.[instance.INSTANCE.]event.GROUP.EVENT.enable Enable
GROUP:EVENT tracing.

ftrace.[instance.INSTANCE.]event.GROUP.EVENT.filter = FILTER Set FIL-
TER rule to the GROUP:EVENT.

ftrace.[instance.INSTANCE.]event.GROUP.EVENT.actions = ACTION[, ACTION2[⋯]]
Set ACTIONs to the GROUP:EVENT.

ftrace.[instance.INSTANCE.]event.kprobes.EVENT.probes = PROBE[, PROBE2[⋯]]
Defines new kprobe event based on PROBEs. It is able to define multiple
probes on one event, but those must have same type of arguments. This
option is available only for the event which group name is “kprobes”.

ftrace.[instance.INSTANCE.]event.synthetic.EVENT.fields = FIELD[, FIELD2[⋯]]
Defines new synthetic event with FIELDs. Each field should be “type var-
name”.

Note that kprobe and synthetic event definitions can be written under instance
node, but those are also visible from other instances. So please take care for
event name conflict.
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15.3 Examples

For example, to add filter and actions for each event, define kprobe events, and
synthetic events with histogram, write a boot config like below:

ftrace.event {
task.task_newtask {

filter = "pid < 128"
enable

}
kprobes.vfs_read {

probes = "vfs_read $arg1 $arg2"
filter = "common_pid < 200"
enable

}
synthetic.initcall_latency {

fields = "unsigned long func", "u64 lat"
actions = "hist:keys=func.sym,lat:vals=lat:sort=lat"

}
initcall.initcall_start {

actions = "hist:keys=func:ts0=common_timestamp.usecs"
}
initcall.initcall_finish {

actions = "hist:keys=func:lat=common_timestamp.usecs-
↪→$ts0:onmatch(initcall.initcall_start).initcall_latency(func,$lat)"

}
}

Also, boot-time tracing supports“instance”node, which allows us to run several
tracers for different purpose at once. For example, one tracer is for tracing func-
tions starting with“user_”, and others tracing“kernel_”functions, you can write
boot config as below:

ftrace.instance {
foo {

tracer = "function"
ftrace.filters = "user_*"

}
bar {

tracer = "function"
ftrace.filters = "kernel_*"

}
}

The instance node also accepts event nodes so that each instance can customize
its event tracing.

This boot-time tracing also supports ftrace kernel parameters via boot config. For
example, following kernel parameters:

trace_options=sym-addr trace_event=initcall:* tp_printk trace_buf_size=1M␣
↪→ftrace=function ftrace_filter="vfs*"

This can be written in boot config like below:
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kernel {
trace_options = sym-addr
trace_event = "initcall:*"
tp_printk
trace_buf_size = 1M
ftrace = function
ftrace_filter = "vfs*"

}

Note that parameters start with “kernel”prefix instead of “ftrace”.
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HARDWARE LATENCY DETECTOR

16.1 Introduction

The tracer hwlat_detector is a special purpose tracer that is used to detect
large system latencies induced by the behavior of certain underlying hardware
or firmware, independent of Linux itself. The code was developed originally to
detect SMIs (System Management Interrupts) on x86 systems, however there is
nothing x86 specific about this patchset. It was originally written for use by the
“RT”patch since the Real Time kernel is highly latency sensitive.
SMIs are not serviced by the Linux kernel, which means that it does not even know
that they are occuring. SMIs are instead set up by BIOS code and are serviced by
BIOS code, usually for“critical”events such asmanagement of thermal sensors and
fans. Sometimes though, SMIs are used for other tasks and those tasks can spend
an inordinate amount of time in the handler (sometimes measured in milliseconds).
Obviously this is a problem if you are trying to keep event service latencies down
in the microsecond range.

The hardware latency detector works by hogging one of the cpus for configurable
amounts of time (with interrupts disabled), polling the CPU Time Stamp Counter
for some period, then looking for gaps in the TSC data. Any gap indicates a time
when the polling was interrupted and since the interrupts are disabled, the only
thing that could do that would be an SMI or other hardware hiccup (or an NMI,
but those can be tracked).

Note that the hwlat detector should NEVER be used in a production environment.
It is intended to be run manually to determine if the hardware platform has a
problem with long system firmware service routines.

16.2 Usage

Write the ASCII text “hwlat”into the current_tracer file of the tracing system
(mounted at /sys/kernel/tracing or /sys/kernel/tracing). It is possible to redefine
the threshold in microseconds (us) above which latency spikes will be taken into
account.

Example:

# echo hwlat > /sys/kernel/tracing/current_tracer
# echo 100 > /sys/kernel/tracing/tracing_thresh
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The /sys/kernel/tracing/hwlat_detector interface contains the following files:

• width - time period to sample with CPUs held (usecs) must be less
than the total window size (enforced)

• window - total period of sampling, width being inside (usecs)

By default the width is set to 500,000 and window to 1,000,000, meaning that for
every 1,000,000 usecs (1s) the hwlat detector will spin for 500,000 usecs (0.5s).
If tracing_thresh contains zero when hwlat tracer is enabled, it will change to a
default of 10 usecs. If any latencies that exceed the threshold is observed then the
data will be written to the tracing ring buffer.

The minimum sleep time between periods is 1 millisecond. Even if width is less
than 1 millisecond apart from window, to allow the system to not be totally starved.

If tracing_thresh was zero when hwlat detector was started, it will be set back to
zero if another tracer is loaded. Note, the last value in tracing_thresh that hwlat
detector had will be saved and this value will be restored in tracing_thresh if it is
still zero when hwlat detector is started again.

The following tracing directory files are used by the hwlat_detector:

in /sys/kernel/tracing:

• tracing_threshold - minimum latency value to be considered (usecs)

• tracing_max_latency - maximum hardware latency actually observed (usecs)

• tracing_cpumask - the CPUs to move the hwlat thread across

• hwlat_detector/width - specified amount of time to spin within window (usecs)

• hwlat_detector/window - amount of time between (width) runs (usecs)

The hwlat detector’s kernel thread will migrate across each CPU specified in trac-
ing_cpumask between each window. To limit the migration, either modify trac-
ing_cpumask, or modify the hwlat kernel thread (named [hwlatd]) CPU affinity
directly, and the migration will stop.
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INTEL(R) TRACE HUB (TH)

17.1 Overview

Intel(R) Trace Hub (TH) is a set of hardware blocks that produce, switch and out-
put trace data from multiple hardware and software sources over several types
of trace output ports encoded in System Trace Protocol (MIPI STPv2) and is in-
tended to perform full system debugging. For more information on the hardware,
see Intel(R) Trace Hub developer’s manual [1].
It consists of trace sources, trace destinations (outputs) and a switch (Global Trace
Hub, GTH). These devices are placed on a bus of their own (“intel_th”), where
they can be discovered and configured via sysfs attributes.

Currently, the following Intel TH subdevices (blocks) are supported:
• Software Trace Hub (STH), trace source, which is a System TraceModule
(STM) device,

• Memory Storage Unit (MSU), trace output, which allows storing trace
hub output in system memory,

• Parallel Trace Interface output (PTI), trace output to an external debug
host via a PTI port,

• Global Trace Hub (GTH), which is a switch and a central component of
Intel(R) Trace Hub architecture.

Common attributes for output devices are described in
Documentation/ABI/testing/sysfs-bus-intel_th-output-devices, the most notable of
them is “active”, which enables or disables trace output into that particular
output device.

GTH allows directing different STP masters into different output ports via
its “masters”attribute group. More detailed GTH interface description is at
Documentation/ABI/testing/sysfs-bus-intel_th-devices-gth.

STH registers an stm class device, throughwhich it provides interface to userspace
and kernelspace software trace sources. See Documentation/trace/stm.rst for
more information on that.

MSU can be configured to collect trace data into a system memory buffer, which
can later on be read from its device nodes via read() or mmap() interface and
directed to a “software sink”driver that will consume the data and/or relay it
further.
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On the whole, Intel(R) Trace Hub does not require any special userspace soft-
ware to function; everything can be configured, started and collected via sysfs
attributes, and device nodes.

[1] https://software.intel.com/sites/default/files/managed/d3/3c/
intel-th-developer-manual.pdf

17.2 Bus and Subdevices

For each Intel TH device in the system a bus of its own is created and assigned
an id number that reflects the order in which TH devices were emumerated. All
TH subdevices (devices on intel_th bus) begin with this id: 0-gth, 0-msc0, 0-msc1,
0-pti, 0-sth, which is followed by device’s name and an optional index.
Output devices also get a device node in /dev/intel_thN, where N is the Intel TH
device id. For example, MSU’s memory buffers, when allocated, are accessible
via /dev/intel_th0/msc{0,1}.

17.3 Quick example

# figure out which GTH port is the first memory controller:

$ cat /sys/bus/intel_th/devices/0-msc0/port
0

# looks like it’s port 0, configure master 33 to send data to port 0:
$ echo 0 > /sys/bus/intel_th/devices/0-gth/masters/33

# allocate a 2-windowed multiblock buffer on the first memory # controller, each
with 64 pages:

$ echo multi > /sys/bus/intel_th/devices/0-msc0/mode
$ echo 64,64 > /sys/bus/intel_th/devices/0-msc0/nr_pages

# enable wrapping for this controller, too:

$ echo 1 > /sys/bus/intel_th/devices/0-msc0/wrap

# and enable tracing into this port:

$ echo 1 > /sys/bus/intel_th/devices/0-msc0/active

# .. send data to master 33, see stm.txt for more details .. # .. wait for traces to
pile up .. # .. and stop the trace:

$ echo 0 > /sys/bus/intel_th/devices/0-msc0/active

# and now you can collect the trace from the device node:

$ cat /dev/intel_th0/msc0 > my_stp_trace
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17.4 Host Debugger Mode

It is possible to configure the Trace Hub and control its trace capture from a re-
mote debug host, which should be connected via one of the hardware debugging
interfaces, which will then be used to both control Intel Trace Hub and transfer
its trace data to the debug host.

The driver needs to be told that such an arrangement is taking place so that it does
not touch any capture/port configuration and avoids conflicting with the debug
host’s configuration accesses. The only activity that the driver will perform in this
mode is collecting software traces to the Software Trace Hub (an stm class device).
The user is still responsible for setting up adequate master/channel mappings that
the decoder on the receiving end would recognize.

In order to enable the host mode, set the‘host_mode’parameter of the‘intel_th’
kernel module to ‘y’. None of the virtual output devices will show up on the
intel_th bus. Also, trace configuration and capture controlling attribute groups of
the ‘gth’device will not be exposed. The ‘sth’device will operate as usual.

17.5 Software Sinks

The Memory Storage Unit (MSU) driver provides an in-kernel API for drivers to
register themselves as software sinks for the trace data. Such drivers can further
export the data via other devices, such as USB device controllers or network cards.

The API has two main parts::
• notifying the software sink that a particular window is full, and “lock-
ing”that window, that is, making it unavailable for the trace collection;
when this happens, the MSU driver will automatically switch to the next
window in the buffer if it is unlocked, or stop the trace capture if it’s not;

• tracking the“locked”state of windows and providing a way for the soft-
ware sink driver to notify the MSU driver when a window is unlocked and
can be used again to collect trace data.

An example sink driver, msu-sink illustrates the implementation of a software sink.
Functionally, it simply unlocks windows as soon as they are full, keeping the MSU
running in a circular buffer mode. Unlike the “multi”mode, it will fill out all the
windows in the buffer as opposed to just the first one. It can be enabled by writing
“sink”to the “mode”file (assuming msu-sink.ko is loaded).
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SYSTEM TRACE MODULE

System Trace Module (STM) is a device described in MIPI STP specs as STP trace
stream generator. STP (System Trace Protocol) is a trace protocol multiplexing
data from multiple trace sources, each one of which is assigned a unique pair of
master and channel. While some of these masters and channels are statically al-
located to certain hardware trace sources, others are available to software. Soft-
ware trace sources are usually free to pick for themselves any master/channel
combination from this pool.

On the receiving end of this STP stream (the decoder side), trace sources can only
be identified by master/channel combination, so in order for the decoder to be able
to make sense of the trace that involves multiple trace sources, it needs to be able
to map those master/channel pairs to the trace sources that it understands.

For instance, it is helpful to know that syslog messages come on master 7 channel
15, while arbitrary user applications can use masters 48 to 63 and channels 0 to
127.

To solve this mapping problem, stm class provides a policy management mecha-
nism via configfs, that allows defining rules that map string identifiers to ranges
of masters and channels. If these rules (policy) are consistent with what decoder
expects, it will be able to properly process the trace data.

This policy is a tree structure containing rules (policy_node) that have a name
(string identifier) and a range of masters and channels associated with it, located
in “stp-policy”subsystem directory in configfs. The topmost directory’s name
(the policy) is formatted as the STM device name to which this policy applies and
and arbitrary string identifier separated by a stop. From the examle above, a rule
may look like this:

$ ls /config/stp-policy/dummy_stm.my-policy/user
channels masters
$ cat /config/stp-policy/dummy_stm.my-policy/user/masters
48 63
$ cat /config/stp-policy/dummy_stm.my-policy/user/channels
0 127

which means that the master allocation pool for this rule consists of masters 48
through 63 and channel allocation pool has channels 0 through 127 in it. Now, any
producer (trace source) identifying itself with“user”identification string will be
allocated a master and channel from within these ranges.

These rules can be nested, for example, one can define a rule “dummy”under
“user”directory from the example above and this new rule will be used for trace
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sources with the id string of “user/dummy”.
Trace sources have to open the stm class device’s node and write their trace data
into its file descriptor.

In order to find an appropriate policy node for a given trace source, several mech-
anisms can be used. First, a trace source can explicitly identify itself by calling
an STP_POLICY_ID_SET ioctl on the character device’s file descriptor, providing
their id string, before they write any data there. Secondly, if they chose not to
perform the explicit identification (because you may not want to patch existing
software to do this), they can just start writing the data, at which point the stm
core will try to find a policy node with the name matching the task’s name (e.g.,
“syslogd”) and if one exists, it will be used. Thirdly, if the task name can’t be
found among the policy nodes, the catch-all entry“default”will be used, if it exists.
This entry also needs to be created and configured by the system administrator or
whatever tools are taking care of the policy configuration. Finally, if all the above
steps failed, the write() to an stm file descriptor will return a error (EINVAL).

Previously, if no policy nodes were found for a trace source, the stm class
would silently fall back to allocating the first available contiguous range of mas-
ter/channels from the beginning of the device’s master/channel range. The new
requirement for a policy node to exist will help programmers and sysadmins iden-
tify gaps in configuration and have better control over the un-identified sources.

Some STM devices may allow direct mapping of the channel mmio regions to
userspace for zero-copy writing. Onemappable page (in terms of mmu) will usually
contain multiple channels’mmios, so the user will need to allocate that many chan-
nels to themselves (via the aforementioned ioctl() call) to be able to do this. That
is, if your stm device’s channel mmio region is 64 bytes and hardware page size
is 4096 bytes, after a successful STP_POLICY_ID_SET ioctl() call with width==64,
you should be able to mmap() one page on this file descriptor and obtain direct
access to an mmio region for 64 channels.

Examples of STM devices are Intel(R) Trace Hub [1] and Coresight STM [2].

18.1 stm_source

For kernel-based trace sources, there is “stm_source”device class. Devices of
this class can be connected and disconnected to/from stm devices at runtime via
a sysfs attribute called“stm_source_link”by writing the name of the desired stm
device there, for example:

$ echo dummy_stm.0 > /sys/class/stm_source/console/stm_source_link

For examples on how to use stm_source interface in the kernel, refer to
stm_console, stm_heartbeat or stm_ftrace drivers.

Each stm_source device will need to assume a master and a range of channels,
depending on how many channels it requires. These are allocated for the device
according to the policy configuration. If there’s a node in the root of the policy
directory that matches the stm_source device’s name (for example,“console”),
this node will be used to allocate master and channel numbers. If there’s no such
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policy node, the stm core will use the catch-all entry “default”, if one exists. If
neither policy nodes exist, the write() to stm_source_link will return an error.

18.2 stm_console

One implementation of this interface also used in the example above is the
“stm_console”driver, which basically provides a one-way console for kernel mes-
sages over an stm device.

To configure the master/channel pair that will be assigned to this console in the
STP stream, create a“console”policy entry (see the beginning of this text on how
to do that). When initialized, it will consume one channel.

18.3 stm_ftrace

This is another“stm_source”device, once the stm_ftrace has been linked with an
stm device, and if“function”tracer is enabled, function address and parent function
address which Ftrace subsystem would store into ring buffer will be exported via
the stm device at the same time.

Currently only Ftrace “function”tracer is supported.
• [1] https://software.intel.com/sites/default/files/managed/d3/3c/
intel-th-developer-manual.pdf

• [2] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0444b/
index.html
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MIPI SYS-T OVER STP

The MIPI SyS-T protocol driver can be used with STM class devices to generate
standardized trace stream. Aside from being a standard, it provides better trace
source identification and timestamp correlation.

In order to use the MIPI SyS-T protocol driver with your STM device, first, you’ll
need CONFIG_STM_PROTO_SYS_T.

Now, you can select which protocol driver you want to use when you create a policy
for your STM device, by specifying it in the policy name:

# mkdir /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/

In other words, the policy name format is extended like this:

<device_name>:<protocol_name>.<policy_name>

With Intel TH, therefore it can look like “0-sth:p_sys-t.my-policy”.
If the protocol name is omitted, the STM class will chose whichever protocol driver
was loaded first.

You can also double check that everything is working as expected by

# cat /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/protocol p_sys-t

Now, with the MIPI SyS-T protocol driver, each policy node in the configfs gets a
few additional attributes, which determine per-source parameters specific to the
protocol:

# mkdir /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/default # ls /config/stp-
policy/dummy_stm.0:p_sys-t.my-policy/default channels clocksync_interval do_len
masters ts_interval uuid

The most important one here is the“uuid”, which determines the UUID that will
be used to tag all data coming from this source. It is automatically generated when
a new node is created, but it is likely that you would want to change it.

do_len switches on/off the additional “payload length”field in the MIPI SyS-T
message header. It is off by default as the STP already marks message boundaries.

ts_interval and clocksync_interval determine how much time in milliseconds can
pass before we need to include a protocol (not transport, aka STP) timestamp in a
message header or send a CLOCKSYNC packet, respectively.

See Documentation/ABI/testing/configfs-stp-policy-p_sys-t for more details.

• [1] https://www.mipi.org/specifications/sys-t
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TWENTY

CORESIGHT - ARM HARDWARE TRACE

20.1 Coresight - HW Assisted Tracing on ARM

Author Mathieu Poirier <mathieu.poirier@linaro.org>
Date September 11th, 2014

20.1.1 Introduction

Coresight is an umbrella of technologies allowing for the debugging of ARM based
SoC. It includes solutions for JTAG and HW assisted tracing. This document is
concerned with the latter.

HW assisted tracing is becoming increasingly useful when dealing with systems
that have many SoCs and other components like GPU and DMA engines. ARM
has developed a HW assisted tracing solution by means of different components,
each being added to a design at synthesis time to cater to specific tracing needs.
Components are generally categorised as source, link and sinks and are (usually)
discovered using the AMBA bus.

“Sources”generate a compressed stream representing the processor instruction
path based on tracing scenarios as configured by users. From there the stream
flows through the coresight system (via ATB bus) using links that are connecting
the emanating source to a sink(s). Sinks serve as endpoints to the coresight imple-
mentation, either storing the compressed stream in a memory buffer or creating
an interface to the outside world where data can be transferred to a host without
fear of filling up the onboard coresight memory buffer.

At typical coresight system would look like this:

*****************************************************************
**************************** AMBA AXI ****************************===||
***************************************************************** ||

^ ^ | ||
| | * **

0000000 ::::: 0000000 ::::: ::::: @@@@@@@ ␣
↪→||||||||||||

0 CPU 0<-->: C : 0 CPU 0<-->: C : : C : @ STM @ || System␣
↪→||
|->0000000 : T : |->0000000 : T : : T :<--->@@@@@ || Memory␣
↪→||
| #######<-->: I : | #######<-->: I : : I : @@@<-| ␣
↪→|||||||||||| (continues on next page)
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(continued from previous page)
| # ETM # ::::: | # PTM # ::::: ::::: @ |
| ##### ^ ^ | ##### ^ ! ^ ! . | |||||||||
| |->### | ! | |->### | ! | ! . | || DAP ||
| | # | ! | | # | ! | ! . | |||||||||
| | . | ! | | . | ! | ! . | | |
| | . | ! | | . | ! | ! . | | *
| | . | ! | | . | ! | ! . | | SWD/
| | . | ! | | . | ! | ! . | | JTAG
*****************************************************************<-|

*************************** AMBA Debug APB ************************
*****************************************************************
| . ! . ! ! . |
| . * . * * . |

*****************************************************************
******************** Cross Trigger Matrix (CTM) *******************
*****************************************************************
| . ^ . . |
| * ! * * |

*****************************************************************
****************** AMBA Advanced Trace Bus (ATB) ******************
*****************************************************************
| ! =============== |
| * ===== F =====<---------|
| ::::::::: ==== U ====
|-->:: CTI ::<!! === N ===
| ::::::::: ! == N ==
| ^ * == E ==
| ! &&&&&&&&& IIIIIII == L ==
|------>&& ETB &&<......II I =======
| ! &&&&&&&&& II I .
| ! I I .
| ! I REP I<..........
| ! I I
| !!>&&&&&&&&& II I *Source: ARM ltd.
|------>& TPIU &<......II I DAP = Debug Access Port

&&&&&&&&& IIIIIII ETM = Embedded Trace Macrocell
; PTM = Program Trace Macrocell
; CTI = Cross Trigger Interface
* ETB = Embedded Trace Buffer

To trace port TPIU= Trace Port Interface␣
↪→Unit

SWD = Serial Wire Debug

While on target configuration of the components is done via the APB bus, all trace
data are carried out-of-band on the ATB bus. The CTM provides a way to aggregate
and distribute signals between CoreSight components.

The coresight framework provides a central point to represent, configure andman-
age coresight devices on a platform. This first implementation centers on the ba-
sic tracing functionality, enabling components such ETM/PTM, funnel, replicator,
TMC, TPIU and ETB. Future work will enable more intricate IP blocks such as STM
and CTI.
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20.1.2 Acronyms and Classification

Acronyms:

PTM: Program Trace Macrocell

ETM: Embedded Trace Macrocell
STM: System trace Macrocell

ETB: Embedded Trace Buffer
ITM: Instrumentation Trace Macrocell
TPIU: Trace Port Interface Unit
TMC-ETR: Trace Memory Controller, configured as Embedded Trace Router
TMC-ETF: Trace Memory Controller, configured as Embedded Trace FIFO
CTI: Cross Trigger Interface
Classification:

Source: ETMv3.x ETMv4, PTMv1.0, PTMv1.1, STM, STM500, ITM
Link: Funnel, replicator (intelligent or not), TMC-ETR
Sinks: ETBv1.0, ETB1.1, TPIU, TMC-ETF
Misc: CTI

20.1.3 Device Tree Bindings

See Documentation/devicetree/bindings/arm/coresight.txt for details.

As of this writing drivers for ITM, STMs and CTIs are not provided but are expected
to be added as the solution matures.

20.1.4 Framework and implementation

The coresight framework provides a central point to represent, configure andman-
age coresight devices on a platform. Any coresight compliant device can register
with the framework for as long as they use the right APIs:

struct coresight_device *coresight_register(struct coresight_desc *desc);

void coresight_unregister(struct coresight_device *csdev);

The registering function is taking a struct coresight_desc *desc and register
the device with the core framework. The unregister function takes a reference to
a struct coresight_device *csdev obtained at registration time.

If everything goes well during the registration process the new devices will show
up under /sys/bus/coresight/devices, as showns here for a TC2 platform:

root:~# ls /sys/bus/coresight/devices/
replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
20010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
root:~#
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The functions take a struct coresight_device, which looks like this:

struct coresight_desc {
enum coresight_dev_type type;
struct coresight_dev_subtype subtype;
const struct coresight_ops *ops;
struct coresight_platform_data *pdata;
struct device *dev;
const struct attribute_group **groups;

};

The“coresight_dev_type”identifies what the device is, i.e, source link or sink while
the “coresight_dev_subtype”will characterise that type further.
The struct coresight_ops is mandatory and will tell the framework how to
perform base operations related to the components, each component having
a different set of requirement. For that struct coresight_ops_sink, struct
coresight_ops_link and struct coresight_ops_source have been provided.

The next field struct coresight_platform_data *pdata is acquired by calling
of_get_coresight_platform_data(), as part of the driver’s _probe routine and
struct device *dev gets the device reference embedded in the amba_device:

static int etm_probe(struct amba_device *adev, const struct amba_id *id)
{
...
...
drvdata->dev = &adev->dev;
...

}

Specific class of device (source, link, or sink) have generic operations that can be
performed on them (see struct coresight_ops). The **groups is a list of sysfs
entries pertaining to operations specific to that component only.“Implementation
defined”customisations are expected to be accessed and controlled using those
entries.

20.1.5 Device Naming scheme

The devices that appear on the “coresight”bus were named the same as their
parent devices, i.e, the real devices that appears on AMBA bus or the platform bus.
Thus the names were based on the Linux Open Firmware layer naming convention,
which follows the base physical address of the device followed by the device type.
e.g:

root:~# ls /sys/bus/coresight/devices/
20010000.etf 20040000.funnel 20100000.stm 22040000.etm
22140000.etm 230c0000.funnel 23240000.etm 20030000.tpiu
20070000.etr 20120000.replicator 220c0000.funnel
23040000.etm 23140000.etm 23340000.etm

However, with the introduction of ACPI support, the names of the real devices are
a bit cryptic and non-obvious. Thus, a new naming scheme was introduced to use
more generic names based on the type of the device. The following rules apply:
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1) Devices that are bound to CPUs, are named based on the CPU logical
number.

e.g, ETM bound to CPU0 is named "etm0"

2) All other devices follow a pattern, "<device_type_prefix>N", where :

<device_type_prefix> - A prefix specific to the type of the device
N - a sequential number assigned based on the␣

↪→order
of probing.

e.g, tmc_etf0, tmc_etr0, funnel0, funnel1

Thus, with the new scheme the devices could appear as

root:~# ls /sys/bus/coresight/devices/
etm0 etm1 etm2 etm3 etm4 etm5 funnel0
funnel1 funnel2 replicator0 stm0 tmc_etf0 tmc_etr0 tpiu0

Some of the examples below might refer to old naming scheme and some to the
newer scheme, to give a confirmation that what you see on your system is not
unexpected. One must use the “names”as they appear on the system under
specified locations.

20.1.6 Topology Representation

Each CoreSight component has a connections directory which will contain links
to other CoreSight components. This allows the user to explore the trace topology
and for larger systems, determine the most appropriate sink for a given source.
The connection information can also be used to establish which CTI devices are
connected to a given component. This directory contains a nr_links attribute
detailing the number of links in the directory.

For an ETM source, in this case etm0 on a Juno platform, a typical arrangement
will be:

linaro-developer:~# ls - l /sys/bus/coresight/devices/etm0/connections
<file details> cti_cpu0 -> ../../../23020000.cti/cti_cpu0
<file details> nr_links
<file details> out:0 -> ../../../230c0000.funnel/funnel2

Following the out port to funnel2:

linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel2/connections
<file details> in:0 -> ../../../23040000.etm/etm0
<file details> in:1 -> ../../../23140000.etm/etm3
<file details> in:2 -> ../../../23240000.etm/etm4
<file details> in:3 -> ../../../23340000.etm/etm5
<file details> nr_links
<file details> out:0 -> ../../../20040000.funnel/funnel0

And again to funnel0:
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linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel0/connections
<file details> in:0 -> ../../../220c0000.funnel/funnel1
<file details> in:1 -> ../../../230c0000.funnel/funnel2
<file details> nr_links
<file details> out:0 -> ../../../20010000.etf/tmc_etf0

Finding the first sink tmc_etf0. This can be used to collect data as a sink, or as a
link to propagate further along the chain:

linaro-developer:~# ls -l /sys/bus/coresight/devices/tmc_etf0/connections
<file details> cti_sys0 -> ../../../20020000.cti/cti_sys0
<file details> in:0 -> ../../../20040000.funnel/funnel0
<file details> nr_links
<file details> out:0 -> ../../../20150000.funnel/funnel4

via funnel4:

linaro-developer:~# ls -l /sys/bus/coresight/devices/funnel4/connections
<file details> in:0 -> ../../../20010000.etf/tmc_etf0
<file details> in:1 -> ../../../20140000.etf/tmc_etf1
<file details> nr_links
<file details> out:0 -> ../../../20120000.replicator/replicator0

and a replicator0:

linaro-developer:~# ls -l /sys/bus/coresight/devices/replicator0/
↪→connections
<file details> in:0 -> ../../../20150000.funnel/funnel4
<file details> nr_links
<file details> out:0 -> ../../../20030000.tpiu/tpiu0
<file details> out:1 -> ../../../20070000.etr/tmc_etr0

Arriving at the final sink in the chain, tmc_etr0:

linaro-developer:~# ls -l /sys/bus/coresight/devices/tmc_etr0/connections
<file details> cti_sys0 -> ../../../20020000.cti/cti_sys0
<file details> in:0 -> ../../../20120000.replicator/replicator0
<file details> nr_links

As described below, when using sysfs it is sufficient to enable a sink and a source
for successful trace. The framework will correctly enable all intermediate links as
required.

Note: cti_sys0 appears in two of the connections lists above. CTIs can connect to
multiple devices and are arranged in a star topology via the CTM. See (CoreSight
Embedded Cross Trigger (CTI & CTM).)4 for further details. Looking at this device
we see 4 connections:

linaro-developer:~# ls -l /sys/bus/coresight/devices/cti_sys0/connections
<file details> nr_links
<file details> stm0 -> ../../../20100000.stm/stm0
<file details> tmc_etf0 -> ../../../20010000.etf/tmc_etf0
<file details> tmc_etr0 -> ../../../20070000.etr/tmc_etr0
<file details> tpiu0 -> ../../../20030000.tpiu/tpiu0

4 Documentation/trace/coresight/coresight-ect.rst
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20.1.7 How to use the tracer modules

There are two ways to use the Coresight framework:

1. using the perf cmd line tools.

2. interacting directly with the Coresight devices using the sysFS interface.

Preference is given to the former as using the sysFS interface requires a deep
understanding of the Coresight HW. The following sections provide details on using
both methods.

1) Using the sysFS interface:

Before trace collection can start, a coresight sink needs to be identified. There
is no limit on the amount of sinks (nor sources) that can be enabled at any given
moment. As a generic operation, all device pertaining to the sink class will have
an “active”entry in sysfs:
root:/sys/bus/coresight/devices# ls
replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
20010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
root:/sys/bus/coresight/devices# ls 20010000.etb
enable_sink status trigger_cntr
root:/sys/bus/coresight/devices# echo 1 > 20010000.etb/enable_sink
root:/sys/bus/coresight/devices# cat 20010000.etb/enable_sink
1
root:/sys/bus/coresight/devices#

At boot time the current etm3x driver will configure the first address comparator
with “_stext”and “_etext”, essentially tracing any instruction that falls within
that range. As such“enabling”a source will immediately trigger a trace capture:
root:/sys/bus/coresight/devices# echo 1 > 2201c000.ptm/enable_source
root:/sys/bus/coresight/devices# cat 2201c000.ptm/enable_source
1
root:/sys/bus/coresight/devices# cat 20010000.etb/status
Depth: 0x2000
Status: 0x1
RAM read ptr: 0x0
RAM wrt ptr: 0x19d3 <----- The write pointer is moving
Trigger cnt: 0x0
Control: 0x1
Flush status: 0x0
Flush ctrl: 0x2001
root:/sys/bus/coresight/devices#

Trace collection is stopped the same way:

root:/sys/bus/coresight/devices# echo 0 > 2201c000.ptm/enable_source
root:/sys/bus/coresight/devices#

The content of the ETB buffer can be harvested directly from /dev:

root:/sys/bus/coresight/devices# dd if=/dev/20010000.etb \
of=~/cstrace.bin
64+0 records in

(continues on next page)
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(continued from previous page)
64+0 records out
32768 bytes (33 kB) copied, 0.00125258 s, 26.2 MB/s
root:/sys/bus/coresight/devices#

The file cstrace.bin can be decompressed using“ptm2human”, DS-5 or Trace32.
Following is a DS-5 output of an experimental loop that increments a variable up
to a certain value. The example is simple and yet provides a glimpse of the wealth
of possibilities that coresight provides.

Info Tracing enabled
Instruction 106378866 0x8026B53C E52DE004 false ␣
↪→PUSH {lr}
Instruction 0 0x8026B540 E24DD00C false SUB ␣
↪→sp,sp,#0xc
Instruction 0 0x8026B544 E3A03000 false MOV ␣
↪→r3,#0
Instruction 0 0x8026B548 E58D3004 false STR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B54C E59D3004 false LDR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B550 E3530004 false CMP ␣
↪→r3,#4
Instruction 0 0x8026B554 E2833001 false ADD ␣
↪→r3,r3,#1
Instruction 0 0x8026B558 E58D3004 false STR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B55C DAFFFFFA true BLE
↪→{pc}-0x10 ; 0x8026b54c
Timestamp Timestamp: 17106715833
Instruction 319 0x8026B54C E59D3004 false LDR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B550 E3530004 false CMP ␣
↪→r3,#4
Instruction 0 0x8026B554 E2833001 false ADD ␣
↪→r3,r3,#1
Instruction 0 0x8026B558 E58D3004 false STR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B55C DAFFFFFA true BLE
↪→{pc}-0x10 ; 0x8026b54c
Instruction 9 0x8026B54C E59D3004 false LDR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B550 E3530004 false CMP ␣
↪→r3,#4
Instruction 0 0x8026B554 E2833001 false ADD ␣
↪→r3,r3,#1
Instruction 0 0x8026B558 E58D3004 false STR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B55C DAFFFFFA true BLE
↪→{pc}-0x10 ; 0x8026b54c
Instruction 7 0x8026B54C E59D3004 false LDR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B550 E3530004 false CMP ␣
↪→r3,#4
Instruction 0 0x8026B554 E2833001 false ADD ␣
↪→r3,r3,#1

(continues on next page)
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Instruction 0 0x8026B558 E58D3004 false STR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B55C DAFFFFFA true BLE
↪→{pc}-0x10 ; 0x8026b54c
Instruction 7 0x8026B54C E59D3004 false LDR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B550 E3530004 false CMP ␣
↪→r3,#4
Instruction 0 0x8026B554 E2833001 false ADD ␣
↪→r3,r3,#1
Instruction 0 0x8026B558 E58D3004 false STR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B55C DAFFFFFA true BLE
↪→{pc}-0x10 ; 0x8026b54c
Instruction 10 0x8026B54C E59D3004 false LDR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B550 E3530004 false CMP ␣
↪→r3,#4
Instruction 0 0x8026B554 E2833001 false ADD ␣
↪→r3,r3,#1
Instruction 0 0x8026B558 E58D3004 false STR ␣
↪→r3,[sp,#4]
Instruction 0 0x8026B55C DAFFFFFA true BLE
↪→{pc}-0x10 ; 0x8026b54c
Instruction 6 0x8026B560 EE1D3F30 false MRC ␣
↪→p15,#0x0,r3,c13,c0,#1
Instruction 0 0x8026B564 E1A0100D false MOV ␣
↪→r1,sp
Instruction 0 0x8026B568 E3C12D7F false BIC ␣
↪→r2,r1,#0x1fc0
Instruction 0 0x8026B56C E3C2203F false BIC ␣
↪→r2,r2,#0x3f
Instruction 0 0x8026B570 E59D1004 false LDR ␣
↪→r1,[sp,#4]
Instruction 0 0x8026B574 E59F0010 false LDR ␣
↪→r0,[pc,#16] ; [0x8026B58C] = 0x80550368
Instruction 0 0x8026B578 E592200C false LDR ␣
↪→r2,[r2,#0xc]
Instruction 0 0x8026B57C E59221D0 false LDR ␣
↪→r2,[r2,#0x1d0]
Instruction 0 0x8026B580 EB07A4CF true BL
↪→{pc}+0x1e9344 ; 0x804548c4
Info Tracing enabled
Instruction 13570831 0x8026B584 E28DD00C false ␣
↪→ADD sp,sp,#0xc
Instruction 0 0x8026B588 E8BD8000 true LDM ␣
↪→sp!,{pc}
Timestamp Timestamp: 17107041535

2) Using perf framework:

Coresight tracers are represented using the Perf framework’s Performance Mon-
itoring Unit (PMU) abstraction. As such the perf framework takes charge of con-
trolling when tracing gets enabled based on when the process of interest is sched-
uled. When configured in a system, Coresight PMUs will be listed when queried
by the perf command line tool:
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linaro@linaro-nano:~$ ./perf list pmu

List of pre-defined events (to be used in -e):

cs_etm// [Kernel PMU event]

linaro@linaro-nano:~$

Regardless of the number of tracers available in a system (usually equal to the
amount of processor cores), the “cs_etm”PMU will be listed only once.
A Coresight PMU works the same way as any other PMU, i.e the name of the PMU
is listed along with configuration options within forward slashes ‘/’. Since a
Coresight system will typically have more than one sink, the name of the sink to
work with needs to be specified as an event option. On newer kernels the available
sinks are listed in sysFS under ($SYSFS)/bus/event_source/devices/cs_etm/sinks/:

root@localhost:/sys/bus/event_source/devices/cs_etm/sinks# ls
tmc_etf0 tmc_etr0 tpiu0

On older kernels, this may need to be found from the list of coresight devices,
available under ($SYSFS)/bus/coresight/devices/:

root:~# ls /sys/bus/coresight/devices/
etm0 etm1 etm2 etm3 etm4 etm5 funnel0
funnel1 funnel2 replicator0 stm0 tmc_etf0 tmc_etr0 tpiu0

root@linaro-nano:~# perf record -e cs_etm/@tmc_etr0/u --per-thread program

As mentioned above in section“Device Naming scheme”, the names of the devices
could look different from what is used in the example above. One must use the
device names as it appears under the sysFS.

The syntax within the forward slashes‘/’is important. The‘@’character tells
the parser that a sink is about to be specified and that this is the sink to use for
the trace session.

More information on the above and other example on how to use Coresight with the
perf tools can be found in the“HOWTO.md”file of the openCSD gitHub repository3.
2.1) AutoFDO analysis using the perf tools:

perf can be used to record and analyze trace of programs.

Execution can be recorded using‘perf record’with the cs_etm event, specifying
the name of the sink to record to, e.g:

perf record -e cs_etm/@tmc_etr0/u --per-thread

The‘perf report’and‘perf script’commands can be used to analyze execution, syn-
thesizing instruction and branch events from the instruction trace.‘perf inject’can
be used to replace the trace data with the synthesized events. The –itrace option
controls the type and frequency of synthesized events (see perf documentation).

Note that only 64-bit programs are currently supported - further work is required
to support instruction decode of 32-bit Arm programs.

3 https://github.com/Linaro/perf-opencsd

222 Chapter 20. CoreSight - ARM Hardware Trace

mailto:linaro@linaro-nano
mailto:linaro@linaro-nano
https://github.com/Linaro/perf-opencsd


Linux Trace Documentation

20.1.8 Generating coverage files for Feedback Directed Optimiza-
tion: AutoFDO

‘perf inject’accepts the –itrace option in which case tracing data is removed and
replaced with the synthesized events. e.g.

perf inject --itrace --strip -i perf.data -o perf.data.new

Below is an example of using ARM ETM for autoFDO. It requires autofdo (https:
//github.com/google/autofdo) and gcc version 5. The bubble sort example is from
the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial).

$ gcc-5 -O3 sort.c -o sort
$ taskset -c 2 ./sort
Bubble sorting array of 30000 elements
5910 ms

$ perf record -e cs_etm/@tmc_etr0/u --per-thread taskset -c 2 ./sort
Bubble sorting array of 30000 elements
12543 ms
[ perf record: Woken up 35 times to write data ]
[ perf record: Captured and wrote 69.640 MB perf.data ]

$ perf inject -i perf.data -o inj.data --itrace=il64 --strip
$ create_gcov --binary=./sort --profile=inj.data --gcov=sort.gcov -gcov_
↪→version=1
$ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
$ taskset -c 2 ./sort_autofdo
Bubble sorting array of 30000 elements
5806 ms

20.1.9 How to use the STM module

Using the System Trace Macrocell module is the same as the tracers - the only
difference is that clients are driving the trace capture rather than the program
flow through the code.

As with any other CoreSight component, specifics about the STM tracer can be
found in sysfs with more information on each entry being found in1:

root@genericarmv8:~# ls /sys/bus/coresight/devices/stm0
enable_source hwevent_select port_enable subsystem uevent
hwevent_enable mgmt port_select traceid
root@genericarmv8:~#

Like any other source a sink needs to be identified and the STM enabled before
being used:

root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/tmc_etf0/enable_
↪→sink
root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/stm0/enable_source

1 Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
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From there user space applications can request and use channels using the devfs
interface provided for that purpose by the generic STM API:

root@genericarmv8:~# ls -l /dev/stm0
crw------- 1 root root 10, 61 Jan 3 18:11 /dev/stm0
root@genericarmv8:~#

Details on how to use the generic STM API can be found here:- System Trace
Module2.

20.1.10 The CTI & CTM Modules

The CTI (Cross Trigger Interface) provides a set of trigger signals between individ-
ual CTIs and components, and can propagate these between all CTIs via channels
on the CTM (Cross Trigger Matrix).

A separate documentation file is provided to explain the use of these devices.
(CoreSight Embedded Cross Trigger (CTI & CTM).)4.

20.2 Coresight CPU Debug Module

Author Leo Yan <leo.yan@linaro.org>
Date April 5th, 2017

20.2.1 Introduction

Coresight CPU debugmodule is defined in ARMv8-a architecture referencemanual
(ARMDDI 0487A.k) Chapter‘Part H: External debug’, the CPU can integrate debug
module and it is mainly used for two modes: self-hosted debug and external debug.
Usually the external debug mode is well known as the external debugger connects
with SoC from JTAG port; on the other hand the program can explore debugging
method which rely on self-hosted debug mode, this document is to focus on this
part.

The debug module provides sample-based profiling extension, which can be used
to sample CPU program counter, secure state and exception level, etc; usually ev-
ery CPU has one dedicated debug module to be connected. Based on self-hosted
debug mechanism, Linux kernel can access these related registers from mmio re-
gion when the kernel panic happens. The callback notifier for kernel panic will
dump related registers for every CPU; finally this is good for assistant analysis for
panic.

2 Documentation/trace/stm.rst
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20.2.2 Implementation

• During driver registration, it uses EDDEVID and EDDEVID1 - two device ID
registers to decide if sample-based profiling is implemented or not. On some
platforms this hardware feature is fully or partially implemented; and if this
feature is not supported then registration will fail.

• At the time this documentation was written, the debug driver mainly relies
on information gathered by the kernel panic callback notifier from three sam-
pling registers: EDPCSR, EDVIDSR and EDCIDSR: from EDPCSR we can get
program counter; EDVIDSR has information for secure state, exception level,
bit width, etc; EDCIDSR is context ID value which contains the sampled value
of CONTEXTIDR_EL1.

• The driver supports a CPU running in either AArch64 or AArch32 mode. The
registers naming convention is a bit different between them, AArch64 uses
‘ED’for register prefix (ARM DDI 0487A.k, chapter H9.1) and AArch32 uses
‘DBG’as prefix (ARM DDI 0487A.k, chapter G5.1). The driver is unified to
use AArch64 naming convention.

• ARMv8-a (ARM DDI 0487A.k) and ARMv7-a (ARM DDI 0406C.b) have differ-
ent register bits definition. So the driver consolidates two difference:

If PCSROffset=0b0000, on ARMv8-a the feature of EDPCSR is not imple-
mented; but ARMv7-a defines “PCSR samples are offset by a value that
depends on the instruction set state”. For ARMv7-a, the driver checks
furthermore if CPU runs with ARM or thumb instruction set and calibrate
PCSR value, the detailed description for offset is in ARMv7-a ARM (ARM DDI
0406C.b) chapter C11.11.34“DBGPCSR, Program Counter Sampling Regis-
ter”.
If PCSROffset=0b0010, ARMv8-a defines “EDPCSR implemented, and sam-
ples have no offset applied and do not sample the instruction set state in
AArch32 state”. So on ARMv8 if EDDEVID1.PCSROffset is 0b0010 and the
CPU operates in AArch32 state, EDPCSR is not sampled; when the CPU op-
erates in AArch64 state EDPCSR is sampled and no offset are applied.

20.2.3 Clock and power domain

Before accessing debug registers, we should ensure the clock and power domain
have been enabled properly. In ARMv8-a ARM (ARM DDI 0487A.k) chapter‘H9.1
Debug registers’, the debug registers are spread into two domains: the debug
domain and the CPU domain.

+---------------+
| |
| |

+----------+--+ |
dbg_clock -->| |**| |<-- cpu_clock

| Debug |**| CPU |
dbg_power_domain -->| |**| |<-- cpu_power_domain

+----------+--+ |
| |

(continues on next page)
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| |
+---------------+

For debug domain, the user uses DT binding “clocks”and “power-domains”to
specify the corresponding clock source and power supply for the debug logic. The
driver calls the pm_runtime_{put|get} operations as needed to handle the debug
power domain.

For CPU domain, the different SoC designs have different power management
schemes and finally this heavily impacts external debug module. So we can divide
into below cases:

• On systems with a sane power controller which can behave correctly with
respect to CPU power domain, the CPU power domain can be controlled by
register EDPRCR in driver. The driver firstly writes bit EDPRCR.COREPURQ
to power up the CPU, and then writes bit EDPRCR.CORENPDRQ for emula-
tion of CPU power down. As result, this can ensure the CPU power domain is
powered on properly during the period when access debug related registers;

• Some designs will power down an entire cluster if all CPUs on the cluster are
powered down - including the parts of the debug registers that should remain
powered in the debug power domain. The bits in EDPRCR are not respected
in these cases, so these designs do not support debug over power down in the
way that the CoreSight / Debug designers anticipated. This means that even
checking EDPRSR has the potential to cause a bus hang if the target register
is unpowered.

In this case, accessing to the debug registers while they are not powered is a
recipe for disaster; so we need preventing CPU low power states at boot time
or when user enable module at the run time. Please see chapter“How to use
the module”for detailed usage info for this.

20.2.4 Device Tree Bindings

See Documentation/devicetree/bindings/arm/coresight-cpu-debug.txt for details.

20.2.5 How to use the module

If you want to enable debugging functionality at boot time, you can add “core-
sight_cpu_debug.enable=1”to the kernel command line parameter.
The driver also can work as module, so can enable the debugging when insmod
module:

# insmod coresight_cpu_debug.ko debug=1

When boot time or insmod module you have not enabled the debugging, the driver
uses the debugfs file system to provide a knob to dynamically enable or disable
debugging:

To enable it, write a ‘1’into /sys/kernel/debug/coresight_cpu_debug/enable:
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# echo 1 > /sys/kernel/debug/coresight_cpu_debug/enable

To disable it, write a ‘0’into /sys/kernel/debug/coresight_cpu_debug/enable:
# echo 0 > /sys/kernel/debug/coresight_cpu_debug/enable

As explained in chapter “Clock and power domain”, if you are working on one
platform which has idle states to power off debug logic and the power controller
cannot work well for the request from EDPRCR, then you should firstly constraint
CPU idle states before enable CPU debugging feature; so can ensure the accessing
to debug logic.

If you want to limit idle states at boot time, you can use“nohlt”or“cpuidle.off=1”
in the kernel command line.

At the runtime you can disable idle states with below methods:

It is possible to disable CPU idle states by way of the PM QoS subsystem,
more specifically by using the “/dev/cpu_dma_latency”interface (see Documen-
tation/power/pm_qos_interface.rst for more details). As specified in the PM QoS
documentation the requested parameter will stay in effect until the file descriptor
is released. For example:

# exec 3<> /dev/cpu_dma_latency; echo 0 >&3
...
Do some work...
...
# exec 3<>-

The same can also be done from an application program.

Disable specific CPU’s specific idle state from cpuidle sysfs (see
Documentation/admin-guide/pm/cpuidle.rst):

# echo 1 > /sys/devices/system/cpu/cpu$cpu/cpuidle/state$state/disable

20.2.6 Output format

Here is an example of the debugging output format:

ARM external debug module:
coresight-cpu-debug 850000.debug: CPU[0]:
coresight-cpu-debug 850000.debug: EDPRSR: 00000001 (Power:On DLK:Unlock)
coresight-cpu-debug 850000.debug: EDPCSR: handle_IPI+0x174/0x1d8
coresight-cpu-debug 850000.debug: EDCIDSR: 00000000
coresight-cpu-debug 850000.debug: EDVIDSR: 90000000 (State:Non-secure␣
↪→Mode:EL1/0 Width:64bits VMID:0)
coresight-cpu-debug 852000.debug: CPU[1]:
coresight-cpu-debug 852000.debug: EDPRSR: 00000001 (Power:On DLK:Unlock)
coresight-cpu-debug 852000.debug: EDPCSR: debug_notifier_call+0x23c/0x358
coresight-cpu-debug 852000.debug: EDCIDSR: 00000000
coresight-cpu-debug 852000.debug: EDVIDSR: 90000000 (State:Non-secure␣
↪→Mode:EL1/0 Width:64bits VMID:0)
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20.3 CoreSight Embedded Cross Trigger (CTI & CTM).

Author Mike Leach <mike.leach@linaro.org>
Date November 2019

20.3.1 Hardware Description

The CoreSight Cross Trigger Interface (CTI) is a hardware device that takes indi-
vidual input and output hardware signals known as triggers to and from devices
and interconnects them via the Cross Trigger Matrix (CTM) to other devices via
numbered channels, in order to propagate events between devices.

e.g.:

0000000 in_trigs :::::::
0 C 0----------->: : +======>(other CTI channel IO)
0 P 0<-----------: : v
0 U 0 out_trigs : : Channels ***** :::::::
0000000 : CTI :<=========>*CTM*<====>: CTI :---+
####### in_trigs : : (id 0-3) ***** ::::::: v
# ETM #----------->: : ^ #######
# #<-----------: : +---# ETR #
####### out_trigs ::::::: #######

The CTI driver enables the programming of the CTI to attach triggers to channels.
When an input trigger becomes active, the attached channel will become active.
Any output trigger attached to that channel will also become active. The active
channel is propagated to other CTIs via the CTM, activating connected output
triggers there, unless filtered by the CTI channel gate.

It is also possible to activate a channel using system software directly program-
ming registers in the CTI.

The CTIs are registered by the system to be associated with CPUs and/or other
CoreSight devices on the trace data path. When these devices are enabled the
attached CTIs will also be enabled. By default/on power up the CTIs have no pro-
grammed trigger/channel attachments, so will not affect the system until explicitly
programmed.

The hardware trigger connections between CTIs and devices is implementation
defined, unless the CPU/ETM combination is a v8 architecture, in which case the
connections have an architecturally defined standard layout.

The hardware trigger signals can also be connected to non-CoreSight devices (e.g.
UART), or be propagated off chip as hardware IO lines.

All the CTI devices are associated with a CTM. On many systems there will be
a single effective CTM (one CTM, or multiple CTMs all interconnected), but it is
possible that systems can have nets of CTIs+CTM that are not interconnected by
a CTM to each other. On these systems a CTM index is declared to associate CTI
devices that are interconnected via a given CTM.
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20.3.2 Sysfs files and directories

The CTI devices appear on the existing CoreSight bus alongside the other Core-
Sight devices:

>$ ls /sys/bus/coresight/devices
cti_cpu0 cti_cpu2 cti_sys0 etm0 etm2 funnel0 replicator0 tmc_etr0
cti_cpu1 cti_cpu3 cti_sys1 etm1 etm3 funnel1 tmc_etf0 tpiu0

The cti_cpu<N> named CTIs are associated with a CPU, and any ETM used by
that core. The cti_sys<N> CTIs are general system infrastructure CTIs that can
be associated with other CoreSight devices, or other system hardware capable of
generating or using trigger signals.:

>$ ls /sys/bus/coresight/devices/etm0/cti_cpu0
channels ctmid enable nr_trigger_cons mgmt power powered regs
connections subsystem triggers0 triggers1 uevent

Key file items are:-
• enable: enables/disables the CTI. Read to determine current state. If
this shows as enabled (1), but powered shows unpowered (0), then the
enable indicates a request to enabled when the device is powered.

• ctmid : associated CTM - only relevant if system has multiple CTI+CTM
clusters that are not interconnected.

• nr_trigger_cons : total connections - triggers<N> directories.

• powered : Read to determine if the CTI is currently powered.

Sub-directories:-
• triggers<N>: contains list of triggers for an individual connection.

• channels: Contains the channel API - CTI main programming interface.

• regs: Gives access to the raw programmable CTI regs.

• mgmt: the standard CoreSight management registers.

• connections: Links to connected CoreSight devices. The number of links
can be 0 to nr_trigger_cons. Actual number given by nr_links in this
directory.

triggers<N> directories

Individual trigger connection information. This describes trigger signals for Core-
Sight and non-CoreSight connections.

Each triggers directory has a set of parameters describing the triggers for the
connection.

• name : name of connection

• in_signals : input trigger signal indexes used in this connection.

• in_types : functional types for in signals.
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• out_signals : output trigger signals for this connection.

• out_types : functional types for out signals.

e.g:

>$ ls ./cti_cpu0/triggers0/
in_signals in_types name out_signals out_types
>$ cat ./cti_cpu0/triggers0/name
cpu0
>$ cat ./cti_cpu0/triggers0/out_signals
0-2
>$ cat ./cti_cpu0/triggers0/out_types
pe_edbgreq pe_dbgrestart pe_ctiirq
>$ cat ./cti_cpu0/triggers0/in_signals
0-1
>$ cat ./cti_cpu0/triggers0/in_types
pe_dbgtrigger pe_pmuirq

If a connection has zero signals in either the ‘in’or ‘out’triggers then those
parameters will be omitted.

Channels API Directory

This provides an easy way to attach triggers to channels, without needing the
multiple register operations that are required if manipulating the ‘regs’sub-
directory elements directly.

A number of files provide this API:

>$ ls ./cti_sys0/channels/
chan_clear chan_inuse chan_xtrigs_out trigin_attach
chan_free chan_pulse chan_xtrigs_reset trigin_detach
chan_gate_disable chan_set chan_xtrigs_sel trigout_attach
chan_gate_enable chan_xtrigs_in trig_filter_enable trigout_detach
trigout_filtered

Most access to these elements take the form:

echo <chan> [<trigger>] > /<device_path>/<operation>

where the optional <trigger> is only needed for trigXX_attach | detach operations.

e.g.:

>$ echo 0 1 > ./cti_sys0/channels/trigout_attach
>$ echo 0 > ./cti_sys0/channels/chan_set

Attaches trigout(1) to channel(0), then activates channel(0) generating a set state
on cti_sys0.trigout(1)

API operations

• trigin_attach, trigout_attach: Attach a channel to a trigger signal.

• trigin_detach, trigout_detach: Detach a channel from a trigger signal.
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• chan_set: Set the channel - the set state will be propagated around the CTM
to other connected devices.

• chan_clear: Clear the channel.

• chan_pulse: Set the channel for a single CoreSight clock cycle.

• chan_gate_enable: Write operation sets the CTI gate to propagate (enable)
the channel to other devices. This operation takes a channel number. CTI
gate is enabled for all channels by default at power up. Read to list the cur-
rently enabled channels on the gate.

• chan_gate_disable: Write channel number to disable gate for that channel.

• chan_inuse: Show the current channels attached to any signal

• chan_free: Show channels with no attached signals.

• chan_xtrigs_sel: write a channel number to select a channel to view, read
to show the selected channel number.

• chan_xtrigs_in: Read to show the input triggers attached to the selected
view channel.

• chan_xtrigs_out:Read to show the output triggers attached to the selected
view channel.

• trig_filter_enable: Defaults to enabled, disable to allow potentially dan-
gerous output signals to be set.

• trigout_filtered: Trigger out signals that are prevented from being set if
filtering trig_filter_enable is enabled. One use is to prevent accidental
EDBGREQ signals stopping a core.

• chan_xtrigs_reset: Write 1 to clear all channel / trigger programming. Re-
sets device hardware to default state.

The example below attaches input trigger index 1 to channel 2, and output trigger
index 6 to the same channel. It then examines the state of the channel / trigger
connections using the appropriate sysfs attributes.

The settings mean that if either input trigger 1, or channel 2 go active then trigger
out 6 will go active. We then enable the CTI, and use the software channel control
to activate channel 2. We see the active channel on the choutstatus register
and the active signal on the trigoutstatus register. Finally clearing the channel
removes this.

e.g.:

.../cti_sys0/channels# echo 2 1 > trigin_attach

.../cti_sys0/channels# echo 2 6 > trigout_attach

.../cti_sys0/channels# cat chan_free
0-1,3
.../cti_sys0/channels# cat chan_inuse
2
.../cti_sys0/channels# echo 2 > chan_xtrigs_sel
.../cti_sys0/channels# cat chan_xtrigs_trigin
1
.../cti_sys0/channels# cat chan_xtrigs_trigout

(continues on next page)
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6
.../cti_sys0/# echo 1 > enable
.../cti_sys0/channels# echo 2 > chan_set
.../cti_sys0/channels# cat ../regs/choutstatus
0x4
.../cti_sys0/channels# cat ../regs/trigoutstatus
0x40
.../cti_sys0/channels# echo 2 > chan_clear
.../cti_sys0/channels# cat ../regs/trigoutstatus
0x0
.../cti_sys0/channels# cat ../regs/choutstatus
0x0

20.4 ETMv4 sysfs linux driver programming reference.

Author Mike Leach <mike.leach@linaro.org>
Date October 11th, 2019

Supplement to existing ETMv4 driver documentation.

20.4.1 Sysfs files and directories

Root: /sys/bus/coresight/devices/etm<N>

The following paragraphs explain the association between sysfs files and the
ETMv4 registers that they effect. Note the register names are given without the
‘TRC’prefix.

File mode (rw)

Trace Registers {CONFIGR + others}
Notes Bit select trace features. See ‘mode’section below. Bits in

this will cause equivalent programming of trace config and other
registers to enable the features requested.

Syntax & eg echo bitfield > mode

bitfield up to 32 bits setting trace features.

Example $> echo 0x012 > mode

File reset (wo)

Trace Registers All
Notes Reset all programming to trace nothing / no logic programmed.
Syntax echo 1 > reset
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File enable_source (wo)

Trace Registers PRGCTLR, All hardware regs.
Notes

• > 0 : Programs up the hardware with the current values held in
the driver and enables trace.

• = 0 : disable trace hardware.

Syntax echo 1 > enable_source

File cpu (ro)

Trace Registers None.
Notes CPU ID that this ETM is attached to.

Example $> cat cpu

$> 0

File addr_idx (rw)

Trace Registers None.
Notes Virtual register to index address comparator and range features.

Set index for first of the pair in a range.

Syntax echo idx > addr_idx

Where idx < nr_addr_cmp x 2

File addr_range (rw)

Trace Registers ACVR[idx, idx+1], VIIECTLR
Notes Pair of addresses for a range selected by addr_idx. Include / ex-

clude according to the optional parameter, or if omitted uses the
current ‘mode’setting. Select comparator range in control regis-
ter. Error if index is odd value.

Depends mode, addr_idx

Syntax echo addr1 addr2 [exclude] > addr_range

Where addr1 and addr2 define the range and addr1 < addr2.

Optional exclude value:-

• 0 for include

• 1 for exclude.

Example $> echo 0x0000 0x2000 0 > addr_range

File addr_single (rw)
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Trace Registers ACVR[idx]
Notes Set a single address comparator according to addr_idx. This is

used if the address comparator is used as part of event generation
logic etc.

Depends addr_idx

Syntax echo addr1 > addr_single

File addr_start (rw)

Trace Registers ACVR[idx], VISSCTLR
Notes Set a trace start address comparator according to addr_idx. Se-

lect comparator in control register.

Depends addr_idx

Syntax echo addr1 > addr_start

File addr_stop (rw)

Trace Registers ACVR[idx], VISSCTLR
Notes Set a trace stop address comparator according to addr_idx. Se-

lect comparator in control register.

Depends addr_idx

Syntax echo addr1 > addr_stop

File addr_context (rw)

Trace Registers ACATR[idx,{6:4}]
Notes Link context ID comparator to address comparator addr_idx
Depends addr_idx

Syntax echo ctxt_idx > addr_context

Where ctxt_idx is the index of the linked context id / vmid compara-
tor.

File addr_ctxtype (rw)

Trace Registers ACATR[idx,{3:2}]
Notes Input value string. Set type for linked context ID comparator
Depends addr_idx

Syntax echo type > addr_ctxtype

Type one of {all, vmid, ctxid, none}

Example $> echo ctxid > addr_ctxtype
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File addr_exlevel_s_ns (rw)

Trace Registers ACATR[idx,{14:8}]
Notes Set the ELx secure and non-secure matching bits for the selected

address comparator

Depends addr_idx

Syntax echo val > addr_exlevel_s_ns

val is a 7 bit value for exception levels to exclude. Input value shifted
to correct bits in register.

Example $> echo 0x4F > addr_exlevel_s_ns

File addr_instdatatype (rw)

Trace Registers ACATR[idx,{1:0}]
Notes Set the comparator address type for matching. Driver only sup-

ports setting instruction address type.

Depends addr_idx

File addr_cmp_view (ro)

Trace Registers ACVR[idx, idx+1], ACATR[idx], VIIECTLR
Notes Read the currently selected address comparator. If part of ad-

dress range then display both addresses.

Depends addr_idx

Syntax cat addr_cmp_view

Example
$> cat addr_cmp_view

addr_cmp[0] range 0x0 0xffffffffffffffff include
ctrl(0x4b00)

File nr_addr_cmp (ro)

Trace Registers From IDR4

Notes Number of address comparator pairs

File sshot_idx (rw)

Trace Registers None
Notes Select single shot register set.
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File sshot_ctrl (rw)

Trace Registers SSCCR[idx]
Notes Access a single shot comparator control register.
Depends sshot_idx

Syntax echo val > sshot_ctrl

Writes val into the selected control register.

File sshot_status (ro)

Trace Registers SSCSR[idx]
Notes Read a single shot comparator status register
Depends sshot_idx

Syntax cat sshot_status

Read status.

Example $> cat sshot_status

0x1

File sshot_pe_ctrl (rw)

Trace Registers SSPCICR[idx]
Notes Access a single shot PE comparator input control register.
Depends sshot_idx

Syntax echo val > sshot_pe_ctrl

Writes val into the selected control register.

File ns_exlevel_vinst (rw)

Trace Registers VICTLR{23:20}
Notes Program non-secure exception level filters. Set / clear NS ex-

ception filter bits. Setting ‘1’excludes trace from the exception
level.

Syntax echo bitfield > ns_exlevel_viinst

Where bitfield contains bits to set clear for EL0 to EL2

Example %> echo 0x4 > ns_exlevel_viinst

Excludes EL2 NS trace.

File vinst_pe_cmp_start_stop (rw)

Trace Registers VIPCSSCTLR
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Notes Access PE start stop comparator input control registers

File bb_ctrl (rw)

Trace Registers BBCTLR
Notes Define ranges that Branch Broadcast will operate in. Default

(0x0) is all addresses.

Depends BB enabled.

File cyc_threshold (rw)

Trace Registers CCCTLR
Notes Set the threshold for which cycle counts will be emitted. Error if

attempt to set below minimum defined in IDR3, masked to width of
valid bits.

Depends CC enabled.

File syncfreq (rw)

Trace Registers SYNCPR
Notes Set trace synchronisation period. Power of 2 value, 0 (off) or

8-20. Driver defaults to 12 (every 4096 bytes).

File cntr_idx (rw)

Trace Registers none
Notes Select the counter to access
Syntax echo idx > cntr_idx

Where idx < nr_cntr

File cntr_ctrl (rw)

Trace Registers CNTCTLR[idx]
Notes Set counter control value.
Depends cntr_idx

Syntax echo val > cntr_ctrl

Where val is per ETMv4 spec.

File cntrldvr (rw)

Trace Registers CNTRLDVR[idx]
Notes Set counter reload value.
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Depends cntr_idx

Syntax echo val > cntrldvr

Where val is per ETMv4 spec.

File nr_cntr (ro)

Trace Registers From IDR5

Notes Number of counters implemented.

File ctxid_idx (rw)

Trace Registers None
Notes Select the context ID comparator to access
Syntax echo idx > ctxid_idx

Where idx < numcidc

File ctxid_pid (rw)

Trace Registers CIDCVR[idx]
Notes Set the context ID comparator value
Depends ctxid_idx

File ctxid_masks (rw)

Trace Registers CIDCCTLR0, CIDCCTLR1, CIDCVR<0-7>
Notes Pair of values to set the byte masks for 1-8 context ID compara-

tors. Automatically clears masked bytes to 0 in CID value registers.

Syntax echo m3m2m1m0 [m7m6m5m4] > ctxid_masks

32 bit values made up of mask bytes, where mN represents a byte
mask value for Context ID comparator N.

Second value not required on systems that have fewer than 4 context
ID comparators

File numcidc (ro)

Trace Registers From IDR4

Notes Number of Context ID comparators

File vmid_idx (rw)

Trace Registers None
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Notes Select the VM ID comparator to access.

Syntax echo idx > vmid_idx

Where idx <  numvmidc

File vmid_val (rw)

Trace Registers VMIDCVR[idx]
Notes Set the VM ID comparator value

Depends vmid_idx

File vmid_masks (rw)

Trace Registers VMIDCCTLR0, VMIDCCTLR1, VMIDCVR<0-7>
Notes Pair of values to set the byte masks for 1-8 VM ID comparators.

Automatically clears masked bytes to 0 in VMID value registers.

Syntax echo m3m2m1m0 [m7m6m5m4] > vmid_masks

Where mN represents a byte mask value for VMID comparator N.
Second value not required on systems that have fewer than 4 VMID
comparators.

File numvmidc (ro)

Trace Registers From IDR4

Notes Number of VMID comparators

File res_idx (rw)

Trace Registers None.
Notes Select the resource selector control to access. Must be 2 or

higher as selectors 0 and 1 are hardwired.

Syntax echo idx > res_idx

Where 2 <= idx < nr_resource x 2

File res_ctrl (rw)

Trace Registers RSCTLR[idx]
Notes Set resource selector control value. Value per ETMv4 spec.
Depends res_idx

Syntax echo val > res_cntr

Where val is per ETMv4 spec.
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File nr_resource (ro)

Trace Registers From IDR4

Notes Number of resource selector pairs

File event (rw)

Trace Registers EVENTCTRL0R
Notes Set up to 4 implemented event fields.
Syntax echo ev3ev2ev1ev0 > event

Where evN is an 8 bit event field. Up to 4 event fields make up the
32-bit input value. Number of valid fields is implementation depen-
dent, defined in IDR0.

File event_instren (rw)

Trace Registers EVENTCTRL1R
Notes Choose events which insert event packets into trace stream.
Depends EVENTCTRL0R
Syntax echo bitfield > event_instren

Where bitfield is up to 4 bits according to number of event fields.

File event_ts (rw)

Trace Registers TSCTLR
Notes Set the event that will generate timestamp requests.
Depends TS activated

Syntax echo evfield > event_ts

Where evfield is an 8 bit event selector.

File seq_idx (rw)

Trace Registers None
Notes Sequencer event register select - 0 to 2

File seq_state (rw)

Trace Registers SEQSTR
Notes Sequencer current state - 0 to 3.

File seq_event (rw)
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Trace Registers SEQEVR[idx]
Notes State transition event registers
Depends seq_idx

Syntax echo evBevF > seq_event

Where evBevF is a 16 bit value made up of two event selectors,

• evB : back

• evF : forwards.

File seq_reset_event (rw)

Trace Registers SEQRSTEVR
Notes Sequencer reset event
Syntax echo evfield > seq_reset_event

Where evfield is an 8 bit event selector.

File nrseqstate (ro)

Trace Registers From IDR5

Notes Number of sequencer states (0 or 4)

File nr_pe_cmp (ro)

Trace Registers From IDR4

Notes Number of PE comparator inputs

File nr_ext_inp (ro)

Trace Registers From IDR5

Notes Number of external inputs

File nr_ss_cmp (ro)

Trace Registers From IDR4

Notes Number of Single Shot control registers

Note: When programming any address comparator the driver will tag the com-
parator with a type used - i.e. RANGE, SINGLE, START, STOP. Once this tag is
set, then only the values can be changed using the same sysfs file / type used to
program it.

Thus:
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% echo 0 > addr_idx ; select address comparator 0
% echo 0x1000 0x5000 0 > addr_range ; set address range on comparators 0,␣
↪→1.
% echo 0x2000 > addr_start ; error as comparator 0 is a range comparator
% echo 2 > addr_idx ; select address comparator 2
% echo 0x2000 > addr_start ; this is OK as comparator 2 is unused.
% echo 0x3000 > addr_stop ; error as comparator 2 set as start address.
% echo 2 > addr_idx ; select address comparator 3
% echo 0x3000 > addr_stop ; this is OK

To remove programming on all the comparators (and all the other hardware) use
the reset parameter:

% echo 1 > reset

20.4.2 The ‘mode’sysfs parameter.

This is a bitfield selection parameter that sets the overall trace mode for the ETM.
The table below describes the bits, using the defines from the driver source file,
along with a description of the feature these represent. Many features are optional
and therefore dependent on implementation in the hardware.

Bit assignments shown below:-

bit (0): ETM_MODE_EXCLUDE
description: This is the default value for the include / exclude function when set-

ting address ranges. Set 1 for exclude range. When the mode parameter is
set this value is applied to the currently indexed address range.

bit (4): ETM_MODE_BB
description: Set to enable branch broadcast if supported in hardware [IDR0].
bit (5): ETMv4_MODE_CYCACC
description: Set to enable cycle accurate trace if supported [IDR0].
bit (6): ETMv4_MODE_CTXID
description: Set to enable context ID tracing if supported in hardware [IDR2].
bit (7): ETM_MODE_VMID
description: Set to enable virtual machine ID tracing if supported [IDR2].
bit (11): ETMv4_MODE_TIMESTAMP
description: Set to enable timestamp generation if supported [IDR0].
bit (12): ETM_MODE_RETURNSTACK
description: Set to enable trace return stack use if supported [IDR0].
bit (13-14): ETM_MODE_QELEM(val)
description:‘val’determines level of Q element support enabled if implemented

by the ETM [IDR0]
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bit (19): ETM_MODE_ATB_TRIGGER
description: Set to enable the ATBTRIGGER bit in the event control register

[EVENTCTLR1] if supported [IDR5].

bit (20): ETM_MODE_LPOVERRIDE
description: Set to enable the LPOVERRIDE bit in the event control register

[EVENTCTLR1], if supported [IDR5].

bit (21): ETM_MODE_ISTALL_EN
description: Set to enable the ISTALL bit in the stall control register

[STALLCTLR]

bit (23): ETM_MODE_INSTPRIO
description: Set to enable the INSTPRIORITY bit in the stall control register

[STALLCTLR] , if supported [IDR0].

bit (24): ETM_MODE_NOOVERFLOW
description: Set to enable the NOOVERFLOW bit in the stall control register

[STALLCTLR], if supported [IDR3].

bit (25): ETM_MODE_TRACE_RESET
description: Set to enable the TRCRESET bit in the viewinst control register

[VICTLR] , if supported [IDR3].

bit (26): ETM_MODE_TRACE_ERR
description: Set to enable the TRCCTRL bit in the viewinst control register

[VICTLR].

bit (27): ETM_MODE_VIEWINST_STARTSTOP
description: Set the initial state value of the ViewInst start / stop logic in the

viewinst control register [VICTLR]

bit (30): ETM_MODE_EXCL_KERN
description: Set default trace setup to exclude kernel mode trace (see note a)
bit (31): ETM_MODE_EXCL_USER
description: Set default trace setup to exclude user space trace (see note a)

Note a) On startup the ETM is programmed to trace the complete address space
using address range comparator 0. ‘mode’bits 30 / 31 modify this setting to set
EL exclude bits for NS state in either user space (EL0) or kernel space (EL1) in
the address range comparator. (the default setting excludes all secure EL, and NS
EL2)

Once the reset parameter has been used, and/or custom programming has been
implemented - using these bits will result in the EL bits for address comparator 0
being set in the same way.

Note b) Bits 2-3, 8-10, 15-16, 18, 22, control features that only work with data
trace. As A-profile data trace is architecturally prohibited in ETMv4, these have
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been omitted here. Possible uses could be where a kernel has support for control
of R or M profile infrastructure as part of a heterogeneous system.

Bits 17, 28-29 are unused.
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