Linux Timers Documentation

The kernel development community

Jul 14, 2020






CONTENTS







CHAPTER
ONE

HIGH RESOLUTION TIMERS AND DYNAMIC TICKS DESIGN
NOTES

Further information can be found in the paper of the OLS 2006 talk “hrtimers
and beyond” . The paper is part of the OLS 2006 Proceedings Volume 1,
which can be found on the OLS website: https://www.kernel.org/doc/ols/2006/
0ls2006v1-pages-333-346.pdf

The slides to this talk are available from: http://www.cs.columbia.edu/~nahum/
w6998/papers/ols2006-hrtimers-slides.pdf

The slides contain five figures (pages 2, 15, 18, 20, 22), which illustrate the
changes in the time(r) related Linux subsystems. Figure #1 (p. 2) shows the
design of the Linux time(r) system before hrtimers and other building blocks got
merged into mainline.

Note: the paper and the slides are talking about “clock event source” , while we
switched to the name “clock event devices” in meantime.

The design contains the following basic building blocks:

e hrtimer base infrastructure

timeofday and clock source management

clock event management

high resolution timer functionality

dynamic ticks

1.1 hrtimer base infrastructure

The hrtimer base infrastructure was merged into the 2.6.16 kernel. Details of the
base implementation are covered in Documentation/timers/hrtimers.rst. See also
figure #2 (OLS slides p. 15)

The main differences to the timer wheel, which holds the armed timer list type
timers are:

* time ordered enqueueing into a rb-tree

* independent of ticks (the processing is based on nanoseconds)



https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
http://www.cs.columbia.edu/~nahum/w6998/papers/ols2006-hrtimers-slides.pdf
http://www.cs.columbia.edu/~nahum/w6998/papers/ols2006-hrtimers-slides.pdf

Linux Timers Documentation

1.2 timeofday and clock source management

John Stultz’s Generic Time Of Day (GTOD) framework moves a large portion of code
out of the architecture-specific areas into a generic management framework, as
illustrated in figure #3 (OLS slides p. 18). The architecture specific portion is re-
duced to the low level hardware details of the clock sources, which are registered
in the framework and selected on a quality based decision. The low level code pro-
vides hardware setup and readout routines and initializes data structures, which
are used by the generic time keeping code to convert the clock ticks to nanosecond
based time values. All other time keeping related functionality is moved into the
generic code. The GTOD base patch got merged into the 2.6.18 kernel.

Further information about the Generic Time Of Day framework is available in the
OLS 2005 Proceedings Volume 1:

http://www.linuxsymposium.org/2005/linuxsymposium_procvl.pdf

9

The paper “We Are Not Getting Any Younger: A New Approach to Time and Timers’
was written by J. Stultz, D.V. Hart, & N. Aravamudan.

Figure #3 (OLS slides p.18) illustrates the transformation.

1.3 clock event management

While clock sources provide read access to the monotonically increasing time
value, clock event devices are used to schedule the next event interrupt(s). The
next event is currently defined to be periodic, with its period defined at compile
time. The setup and selection of the event device for various event driven func-
tionalities is hardwired into the architecture dependent code. This results in du-
plicated code across all architectures and makes it extremely difficult to change
the configuration of the system to use event interrupt devices other than those
already built into the architecture. Another implication of the current design is
that it is necessary to touch all the architecture-specific implementations in order
to provide new functionality like high resolution timers or dynamic ticks.

The clock events subsystem tries to address this problem by providing a generic
solution to manage clock event devices and their usage for the various clock event
driven kernel functionalities. The goal of the clock event subsystem is to minimize
the clock event related architecture dependent code to the pure hardware related
handling and to allow easy addition and utilization of new clock event devices. It
also minimizes the duplicated code across the architectures as it provides generic
functionality down to the interrupt service handler, which is almost inherently
hardware dependent.

Clock event devices are registered either by the architecture dependent boot code
or at module insertion time. Each clock event device fills a data structure with
clock-specific property parameters and callback functions. The clock event man-
agement decides, by using the specified property parameters, the set of system
functions a clock event device will be used to support. This includes the distinc-
tion of per-CPU and per-system global event devices.

System-level global event devices are used for the Linux periodic tick. Per-CPU

2 Chapter 1. High resolution timers and dynamic ticks design notes


http://www.linuxsymposium.org/2005/linuxsymposium_procv1.pdf

Linux Timers Documentation

event devices are used to provide local CPU functionality such as process account-
ing, profiling, and high resolution timers.

The management layer assigns one or more of the following functions to a clock
event device:

» system global periodic tick (jiffies update)

* cpu local update process times

* cpu local profiling

* cpu local next event interrupt (non periodic mode)

The clock event device delegates the selection of those timer interrupt related
functions completely to the management layer. The clock management layer
stores a function pointer in the device description structure, which has to be called
from the hardware level handler. This removes a lot of duplicated code from the ar-
chitecture specific timer interrupt handlers and hands the control over the clock
event devices and the assignment of timer interrupt related functionality to the
core code.

The clock event layer API is rather small. Aside from the clock event device regis-
tration interface it provides functions to schedule the next event interrupt, clock
event device notification service and support for suspend and resume.

The framework adds about 700 lines of code which results in a 2KB increase of the
kernel binary size. The conversion of i386 removes about 100 lines of code. The
binary size decrease is in the range of 400 byte. We believe that the increase of
flexibility and the avoidance of duplicated code across architectures justifies the
slight increase of the binary size.

The conversion of an architecture has no functional impact, but allows to utilize
the high resolution and dynamic tick functionalities without any change to the
clock event device and timer interrupt code. After the conversion the enabling
of high resolution timers and dynamic ticks is simply provided by adding the ker-
nel/time/Kconfig file to the architecture specific Kconfig and adding the dynamic
tick specific calls to the idle routine (a total of 3 lines added to the idle function
and the Kconfig file)

Figure #4 (OLS slides p.20) illustrates the transformation.

1.4 high resolution timer functionality

During system boot it is not possible to use the high resolution timer functionality,
while making it possible would be difficult and would serve no useful function.
The initialization of the clock event device framework, the clock source framework
(GTOD) and hrtimers itself has to be done and appropriate clock sources and clock
event devices have to be registered before the high resolution functionality can
work. Up to the point where hrtimers are initialized, the system works in the
usual low resolution periodic mode. The clock source and the clock event device
layers provide notification functions which inform hrtimers about availability of
new hardware. hrtimers validates the usability of the registered clock sources and
clock event devices before switching to high resolution mode. This ensures also

1.4. high resolution timer functionality 3



Linux Timers Documentation

that a kernel which is configured for high resolution timers can run on a system
which lacks the necessary hardware support.

The high resolution timer code does not support SMP machines which have only
global clock event devices. The support of such hardware would involve IPI calls
when an interrupt happens. The overhead would be much larger than the benefit.
This is the reason why we currently disable high resolution and dynamic ticks on
i386 SMP systems which stop the local APIC in C3 power state. A workaround is
available as an idea, but the problem has not been tackled yet.

The time ordered insertion of timers provides all the infrastructure to decide
whether the event device has to be reprogrammed when a timer is added. The
decision is made per timer base and synchronized across per-cpu timer bases in a
support function. The design allows the system to utilize separate per-CPU clock
event devices for the per-CPU timer bases, but currently only one reprogrammable
clock event device per-CPU is utilized.

When the timer interrupt happens, the next event interrupt handler is called from
the clock event distribution code and moves expired timers from the red-black
tree to a separate double linked list and invokes the softirq handler. An additional
mode field in the hrtimer structure allows the system to execute callback functions
directly from the next event interrupt handler. This is restricted to code which
can safely be executed in the hard interrupt context. This applies, for example, to
the common case of a wakeup function as used by nanosleep. The advantage of
executing the handler in the interrupt context is the avoidance of up to two context
switches - from the interrupted context to the softirq and to the task which is woken
up by the expired timer.

Once a system has switched to high resolution mode, the periodic tick is switched
off. This disables the per system global periodic clock event device - e.g. the PIT
on i386 SMP systems.

The periodic tick functionality is provided by an per-cpu hrtimer. The callback
function is executed in the next event interrupt context and updates jiffies and calls
update process times and profiling. The implementation of the hrtimer based pe-
riodic tick is designed to be extended with dynamic tick functionality. This allows
to use a single clock event device to schedule high resolution timer and periodic
events (jiffies tick, profiling, process accounting) on UP systems. This has been
proved to work with the PIT on i386 and the Incrementer on PPC.

The softirq for running the hrtimer queues and executing the callbacks has been
separated from the tick bound timer softirq to allow accurate delivery of high res-
olution timer signals which are used by itimer and POSIX interval timers. The
execution of this softirq can still be delayed by other softirqgs, but the overall la-
tencies have been significantly improved by this separation.

Figure #5 (OLS slides p.22) illustrates the transformation.

4 Chapter 1. High resolution timers and dynamic ticks design notes



Linux Timers Documentation

1.5 dynamic ticks

Dynamic ticks are the logical consequence of the hrtimer based periodic tick re-
placement (sched tick). The functionality of the sched tick hrtimer is extended by
three functions:

* hrtimer stop sched tick
* hrtimer restart sched tick
* hrtimer update jiffies

hrtimer stop sched tick() is called when a CPU goes into idle state. The code
evaluates the next scheduled timer event (from both hrtimers and the timer wheel)
and in case that the next event is further away than the next tick it reprograms
the sched tick to this future event, to allow longer idle sleeps without worthless
interruption by the periodic tick. The function is also called when an interrupt
happens during the idle period, which does not cause a reschedule. The call is
necessary as the interrupt handler might have armed a new timer whose expiry
time is before the time which was identified as the nearest event in the previous
call to hrtimer stop sched tick.

hrtimer restart sched tick() is called when the CPU leaves the idle state before it
calls schedule(). hrtimer restart sched tick() resumes the periodic tick, which is
kept active until the next call to hrtimer stop sched tick().

hrtimer update jiffies() is called from irq enter() when an interrupt happens in
the idle period to make sure that jiffies are up to date and the interrupt handler
has not to deal with an eventually stale jiffy value.

The dynamic tick feature provides statistical values which are exported to
userspace via /proc/stat and can be made available for enhanced power manage-
ment control.

The implementation leaves room for further development like full tickless systems,
where the time slice is controlled by the scheduler, variable frequency profiling,
and a complete removal of jiffies in the future.

Aside the current initial submission of i386 support, the patchset has been ex-
tended to x86 64 and ARM already. Initial (work in progress) support is also
available for MIPS and PowerPC.

Thomas, Ingo

1.5. dynamic ticks 5



Linux Timers Documentation

6 Chapter 1. High resolution timers and dynamic ticks design notes



CHAPTER
TWO

HIGH PRECISION EVENT TIMER DRIVER FOR LINUX

The High Precision Event Timer (HPET) hardware follows a specification by Intel
and Microsoft, revision 1.

Each HPET has one fixed-rate counter (at 10+ MHz, hence “High Precision” ) and
up to 32 comparators. Normally three or more comparators are provided, each
of which can generate oneshot interrupts and at least one of which has additional
hardware to support periodic interrupts. The comparators are also called “timers”
, which can be misleading since usually timers are independent of each other -
these share a counter, complicating resets.

HPET devices can support two interrupt routing modes. In one mode, the com-
parators are additional interrupt sources with no particular system role. Many
x86 BIOS writers don’ t route HPET interrupts at all, which prevents use of that
mode. They support the other “legacy replacement” mode where the first two
comparators block interrupts from 8254 timers and from the RTC.

The driver supports detection of HPET driver allocation and initialization of the
HPET before the driver module init routine is called. This enables platform code
which uses timer 0 or 1 as the main timer to intercept HPET initialization. An
example of this initialization can be found in arch/x86/kernel/hpet.c.

The driver provides a userspace API which resembles the API found in the RTC
driver framework. An example user space program is provided in file:samples/
timers/hpet example.c



file:samples/timers/hpet_example.c
file:samples/timers/hpet_example.c

Linux Timers Documentation

8 Chapter 2. High Precision Event Timer Driver for Linux



CHAPTER
THREE

HRTIMERS - SUBSYSTEM FOR HIGH-RESOLUTION
KERNEL TIMERS

This patch introduces a new subsystem for high-resolution kernel timers.

One might ask the question: we already have a timer subsystem (kernel/timers.c),
why do we need two timer subsystems? After a lot of back and forth trying to inte-
grate high-resolution and high-precision features into the existing timer frame-
work, and after testing various such high-resolution timer implementations in
practice, we came to the conclusion that the timer wheel code is fundamentally
not suitable for such an approach. We initially didn’ t believe this ( ‘there must
be a way to solve this’ ), and spent a considerable effort trying to integrate things
into the timer wheel, but we failed. In hindsight, there are several reasons why
such integration is hard/impossible:

* the forced handling of low-resolution and high-resolution timers in the same
way leads to a lot of compromises, macro magic and #ifdef mess. The timers.c
code is very “tightly coded”around jiffies and 32-bitness assumptions, and has
been honed and micro-optimized for a relatively narrow use case (jiffies in a
relatively narrow HZ range) for many years - and thus even small extensions
to it easily break the wheel concept, leading to even worse compromises. The
timer wheel code is very good and tight code, there’ s zero problems with it
in its current usage - but it is simply not suitable to be extended for high-res
timers.

* the unpredictable [O(N)] overhead of cascading leads to delays which ne-
cessitate a more complex handling of high resolution timers, which in turn
decreases robustness. Such a design still leads to rather large timing inac-
curacies. Cascading is a fundamental property of the timer wheel concept, it
cannot be ‘designed out’ without inevitably degrading other portions of the
timers.c code in an unacceptable way.

* the implementation of the current posix-timer subsystem on top of the timer
wheel has already introduced a quite complex handling of the required read-
justing of absolute CLOCK REALTIME timers at settimeofday or NTP time
- further underlying our experience by example: that the timer wheel data
structure is too rigid for high-res timers.

* the timer wheel code is most optimal for use cases which can be identified
as “timeouts” . Such timeouts are usually set up to cover error conditions
in various I/O paths, such as networking and block I/O. The vast majority of
those timers never expire and are rarely recascaded because the expected
correct event arrives in time so they can be removed from the timer wheel




Linux Timers Documentation

before any further processing of them becomes necessary. Thus the users
of these timeouts can accept the granularity and precision tradeoffs of the
timer wheel, and largely expect the timer subsystem to have near-zero over-
head. Accurate timing for them is not a core purpose - in fact most of the
timeout values used are ad-hoc. For them it is at most a necessary evil to
guarantee the processing of actual timeout completions (because most of the
timeouts are deleted before completion), which should thus be as cheap and
unintrusive as possible.

The primary users of precision timers are user-space applications that utilize
nanosleep, posix-timers and itimer interfaces. Also, in-kernel users like drivers
and subsystems which require precise timed events (e.g. multimedia) can benefit
from the availability of a separate high-resolution timer subsystem as well.

While this subsystem does not offer high-resolution clock sources just yet, the
hrtimer subsystem can be easily extended with high-resolution clock capabilities,
and patches for that exist and are maturing quickly. The increasing demand for
realtime and multimedia applications along with other potential users for precise
timers gives another reason to separate the “timeout” and “precise timer” sub-
systems.

Another potential benefit is that such a separation allows even more special-
purpose optimization of the existing timer wheel for the low resolution and low pre-
cision use cases - once the precision-sensitive APIs are separated from the timer
wheel and are migrated over to hrtimers. E.g. we could decrease the frequency
of the timeout subsystem from 250 Hz to 100 HZ (or even smaller).

3.1 hrtimer subsystem implementation details

the basic design considerations were:
* simplicity

* data structure not bound to jiffies or any other granularity. All the kernel
logic works at 64-bit nanoseconds resolution - no compromises.

» simplification of existing, timing related kernel code

another basic requirement was the immediate enqueueing and ordering of timers
at activation time. After looking at several possible solutions such as radix trees
and hashes, we chose the red black tree as the basic data structure. Rbtrees are
available as a library in the kernel and are used in various performance-critical
areas of e.g. memory management and file systems. The rbtree is solely used
for time sorted ordering, while a separate list is used to give the expiry code fast
access to the queued timers, without having to walk the rbtree.

(This separate list is also useful for later when we’ 1l introduce high-resolution
clocks, where we need separate pending and expired queues while keeping the
time-order intact.)

Time-ordered enqueueing is not purely for the purposes of high-resolution clocks
though, it also simplifies the handling of absolute timers based on a low-resolution
CLOCK REALTIME. The existing implementation needed to keep an extra list of
all armed absolute CLOCK REALTIME timers along with complex locking. In case

10 Chapter 3. hrtimers - subsystem for high-resolution kernel timers



Linux Timers Documentation

of settimeofday and NTP, all the timers (!) had to be dequeued, the time-changing
code had to fix them up one by one, and all of them had to be enqueued again. The
time-ordered enqueueing and the storage of the expiry time in absolute time units
removes all this complex and poorly scaling code from the posix-timer implemen-
tation - the clock can simply be set without having to touch the rbtree. This also
makes the handling of posix-timers simpler in general.

The locking and per-CPU behavior of hrtimers was mostly taken from the
existing timer wheel code, as it is mature and well suited. Sharing code
was not really a win, due to the different data structures. Also, the
hrtimer functions now have clearer behavior and clearer names - such as
hrtimer try to cancel() and hrtimer cancel() [which are roughly equivalent to
del timer() and del timer sync()] - so there’ s no direct 1:1 mapping between them
on the algorithmic level, and thus no real potential for code sharing either.

Basic data types: every time value, absolute or relative, is in a special nanosecond-
resolution type: ktime t. The kernel-internal representation of ktime t values and
operations is implemented via macros and inline functions, and can be switched
between a “hybrid union” type and a plain “scalar” 64bit nanoseconds repre-
sentation (at compile time). The hybrid union type optimizes time conversions on
32bit CPUs. This build-time-selectable ktime t storage format was implemented
to avoid the performance impact of 64-bit multiplications and divisions on 32bit
CPUs. Such operations are frequently necessary to convert between the storage
formats provided by kernel and userspace interfaces and the internal time format.
(See include/linux/ktime.h for further details.)

3.2 hrtimers - rounding of timer values

the hrtimer code will round timer events to lower-resolution clocks because it has
to. Otherwise it will do no artificial rounding at all.

one question is, what resolution value should be returned to the user by the
clock getres() interface. This will return whatever real resolution a given clock
has - be it low-res, high-res, or artificially-low-res.

3.3 hrtimers - testing and verification

We used the high-resolution clock subsystem ontop of hrtimers to verify the
hrtimer implementation details in praxis, and we also ran the posix timer tests
in order to ensure specification compliance. We also ran tests on low-resolution
clocks.

The hrtimer patch converts the following kernel functionality to use hrtimers:
* nanosleep
* itimers
* posix-timers

The conversion of nanosleep and posix-timers enabled the unification of nanosleep
and clock nanosleep.

3.2. hrtimers - rounding of timer values 11



Linux Timers Documentation

The code was successfully compiled for the following platforms:
i386, x86_64, ARM, PPC, PPC64, IA64

The code was run-tested on the following platforms:
i386(UP/SMP), x86 64(UP/SMP), ARM, PPC

hrtimers were also integrated into the -rt tree, along with a hrtimers-based high-
resolution clock implementation, so the hrtimers code got a healthy amount of
testing and use in practice.

Thomas Gleixner, Ingo Molnar

12 Chapter 3. hrtimers - subsystem for high-resolution kernel timers



CHAPTER
FOUR

NO_HZ: REDUCING SCHEDULING-CLOCK TICKS

This document describes Kconfig options and boot parameters that can reduce the
number of scheduling-clock interrupts, thereby improving energy efficiency and
reducing OS jitter. Reducing OS jitter is important for some types of computation-
ally intensive high-performance computing (HPC) applications and for real-time
applications.

There are three main ways of managing scheduling-clock interrupts (also known
as “scheduling-clock ticks” or simply “ticks” ):

1. Never omit scheduling-clock ticks (CONFIG HZ PERIODIC=y or CON-
FIG NO HZ=n for older kernels). You normally will -not- want to choose this
option.

2. Omit scheduling-clock ticks on idle CPUs (CONFIG NO HZ IDLE=y or CON-
FIG NO HZ=y for older kernels). This is the most common approach, and
should be the default.

3. Omit scheduling-clock ticks on CPUs that are either idle or that have only one
runnable task (CONFIG NO HZ FULL=y). Unless you are running realtime
applications or certain types of HPC workloads, you will normally -not- want
this option.

These three cases are described in the following three sections, followed by a third
section on RCU-specific considerations, a fourth section discussing testing, and a
fifth and final section listing known issues.

4.1 Never Omit Scheduling-Clock Ticks

Very old versions of Linux from the 1990s and the very early 2000s are incapable of
omitting scheduling-clock ticks. It turns out that there are some situations where
this old-school approach is still the right approach, for example, in heavy work-
loads with lots of tasks that use short bursts of CPU, where there are very frequent
idle periods, but where these idle periods are also quite short (tens or hundreds
of microseconds). For these types of workloads, scheduling clock interrupts will
normally be delivered any way because there will frequently be multiple runnable
tasks per CPU. In these cases, attempting to turn off the scheduling clock inter-
rupt will have no effect other than increasing the overhead of switching to and
from idle and transitioning between user and kernel execution.

This mode of operation can be selected using CONFIG HZ PERIODIC=y (or CON-
FIG NO HZ=n for older kernels).

13



Linux Timers Documentation

However, if you are instead running a light workload with long idle periods, failing
to omit scheduling-clock interrupts will result in excessive power consumption.
This is especially bad on battery-powered devices, where it results in extremely
short battery lifetimes. If you are running light workloads, you should therefore
read the following section.

In addition, if you are running either a real-time workload or an HPC workload
with short iterations, the scheduling-clock interrupts can degrade your applica-
tions performance. If this describes your workload, you should read the following
two sections.

4.2 Omit Scheduling-Clock Ticks For Idle CPUs

If a CPU is idle, there is little point in sending it a scheduling-clock interrupt. After
all, the primary purpose of a scheduling-clock interrupt is to force a busy CPU to
shift its attention among multiple duties, and an idle CPU has no duties to shift its
attention among.

The CONFIG NO HZ IDLE=y Kconfig option causes the kernel to avoid send-
ing scheduling-clock interrupts to idle CPUs, which is critically important both
to battery-powered devices and to highly virtualized mainframes. A battery-
powered device running a CONFIG _HZ PERIODIC=y kernel would drain its bat-
tery very quickly, easily 2-3 times as fast as would the same device running a
CONFIG NO HZ IDLE=y kernel. A mainframe running 1,500 OS instances might
find that half of its CPU time was consumed by unnecessary scheduling-clock inter-
rupts. In these situations, there is strong motivation to avoid sending scheduling-
clock interrupts to idle CPUs. That said, dyntick-idle mode is not free:

1. It increases the number of instructions executed on the path to and from the
idle loop.

2. On many architectures, dyntick-idle mode also increases the number of ex-
pensive clock-reprogramming operations.

Therefore, systems with aggressive real-time response constraints often run CON-
FIG HZ PERIODIC=y kernels (or CONFIG NO HZ=n for older kernels) in order
to avoid degrading from-idle transition latencies.

An idle CPU that is not receiving scheduling-clock interrupts is said to be “dyntick-

idle”, “in dyntick-idle mode”, “in nohz mode”, or “running tickless”. The remainder
of this document will use “dyntick-idle mode” .

There is also a boot parameter “nohz=" that can be used to disable dyntick-idle
mode in CONFIG NO HZ IDLE=y kernels by specifying “nohz=off” . By default,
CONFIG NO HZ IDLE=y kernels boot with “nohz=on” , enabling dyntick-idle
mode.

14 Chapter 4. NO_HZ: Reducing Scheduling-Clock Ticks



Linux Timers Documentation

4.3 Omit Scheduling-Clock Ticks For CPUs With Only One
Runnable Task

If a CPU has only one runnable task, there is little point in sending it a scheduling-
clock interrupt because there is no other task to switch to. Note that omitting
scheduling-clock ticks for CPUs with only one runnable task implies also omitting
them for idle CPUs.

The CONFIG NO HZ FULL=y Kconfig option causes the kernel to avoid sending
scheduling-clock interrupts to CPUs with a single runnable task, and such CPUs
are said to be “adaptive-ticks CPUs” . This is important for applications with ag-
gressive real-time response constraints because it allows them to improve their
worst-case response times by the maximum duration of a scheduling-clock inter-
rupt. It is also important for computationally intensive short-iteration workloads:
If any CPU is delayed during a given iteration, all the other CPUs will be forced to
wait idle while the delayed CPU finishes. Thus, the delay is multiplied by one less
than the number of CPUs. In these situations, there is again strong motivation to
avoid sending scheduling-clock interrupts.

By default, no CPU will be an adaptive-ticks CPU. The “nohz full=" boot param-
eter specifies the adaptive-ticks CPUs. For example, “nohz full=1,6-8" says that
CPUs 1, 6, 7, and 8 are to be adaptive-ticks CPUs. Note that you are prohibited
from marking all of the CPUs as adaptive-tick CPUs: At least one non-adaptive-
tick CPU must remain online to handle timekeeping tasks in order to ensure that
system calls like gettimeofday() returns accurate values on adaptive-tick CPUs.
(This is not an issue for CONFIG NO HZ IDLE=y because there are no running
user processes to observe slight drifts in clock rate.) Therefore, the boot CPU is
prohibited from entering adaptive-ticks mode. Specifying a “nohz full=" mask
that includes the boot CPU will result in a boot-time error message, and the boot
CPU will be removed from the mask. Note that this means that your system must
have at least two CPUs in order for CONFIG NO HZ FULL=y to do anything for
you.

Finally, adaptive-ticks CPUs must have their RCU callbacks offloaded. This is cov-
ered in the “RCU IMPLICATIONS” section below.

Normally, a CPU remains in adaptive-ticks mode as long as possible. In particular,
transitioning to kernel mode does not automatically change the mode. Instead,
the CPU will exit adaptive-ticks mode only if needed, for example, if that CPU
enqueues an RCU callback.

Just as with dyntick-idle mode, the benefits of adaptive-tick mode do not come for
free:

1. CONFIG NO HZ FULL selects CONFIG NO HZ COMMON, so you cannot
run adaptive ticks without also running dyntick idle. This dependency
extends down into the implementation, so that all of the costs of CON-
FIG NO HZ IDLE are also incurred by CONFIG NO HZ FULL.

2. The user/kernel transitions are slightly more expensive due to the need to
inform kernel subsystems (such as RCU) about the change in mode.

3. POSIX CPU timers prevent CPUs from entering adaptive-tick mode. Real-
time applications needing to take actions based on CPU time consumption

4.3. Omit Scheduling-Clock Ticks For CPUs With Only One Runnable Taik



Linux Timers Documentation

need to use other means of doing so.

4. If there are more perf events pending than the hardware can accommo-
date, they are normally round-robined so as to collect all of them over time.
Adaptive-tick mode may prevent this round-robining from happening. This
will likely be fixed by preventing CPUs with large numbers of perf events
pending from entering adaptive-tick mode.

5. Scheduler statistics for adaptive-tick CPUs may be computed slightly differ-
ently than those for non-adaptive-tick CPUs. This might in turn perturb load-
balancing of real-time tasks.

6. The LB BIAS scheduler feature is disabled by adaptive ticks.

Although improvements are expected over time, adaptive ticks is quite useful for
many types of real-time and compute-intensive applications. However, the draw-
backs listed above mean that adaptive ticks should not (yet) be enabled by default.

4.4 RCU Implications

There are situations in which idle CPUs cannot be permitted to enter either
dyntick-idle mode or adaptive-tick mode, the most common being when that CPU
has RCU callbacks pending.

The CONFIG RCU FAST NO HZ=y Kconfig option may be used to cause such
CPUs to enter dyntick-idle mode or adaptive-tick mode anyway. In this case, a
timer will awaken these CPUs every four jiffies in order to ensure that the RCU
callbacks are processed in a timely fashion.

Another approach is to offload RCU callback processing to “rcuo” kthreads using
the CONFIG RCU NOCB CPU=y Kconfig option. The specific CPUs to offload may
be selected using The “rcu nocbs=" kernel boot parameter, which takes a comma-
separated list of CPUs and CPU ranges, for example, “1,3-5” selects CPUs 1, 3,
4, and 5.

The offloaded CPUs will never queue RCU callbacks, and therefore RCU never
prevents offloaded CPUs from entering either dyntick-idle mode or adaptive-tick
mode. That said, note that it is up to userspace to pin the “rcuo” kthreads to
specific CPUs if desired. Otherwise, the scheduler will decide where to run them,
which might or might not be where you want them to run.

4.5 Testing

So you enable all the OS-jitter features described in this document, but do not see
any change in your workload’ s behavior. Is this because your workload isn’ t
affected that much by OS jitter, or is it because something else is in the way? This
section helps answer this question by providing a simple OS-jitter test suite, which
is available on branch master of the following git archive:

git://git.kernel.org/pub/scm/linux/kernel/git/frederic/dynticks-testing.git

Clone this archive and follow the instructions in the README file. This test proce-
dure will produce a trace that will allow you to evaluate whether or not you have

16 Chapter 4. NO_HZ: Reducing Scheduling-Clock Ticks



Linux Timers Documentation

succeeded in removing OS jitter from your system. If this trace shows that you
have removed OS jitter as much as is possible, then you can conclude that your
workload is not all that sensitive to OS jitter.

Note: this test requires that your system have at least two CPUs. We do not cur-
rently have a good way to remove OS jitter from single-CPU systems.

4.6 Known Issues

* Dyntick-idle slows transitions to and from idle slightly. In practice, this has
not been a problem except for the most aggressive real-time workloads, which
have the option of disabling dyntick-idle mode, an option that most of them
take. However, some workloads will no doubt want to use adaptive ticks to
eliminate scheduling-clock interrupt latencies. Here are some options for
these workloads:

a. Use PMQOS from userspace to inform the kernel of your latency require-
ments (preferred).

b. On x86 systems, use the “idle=mwait” boot parameter.

c. On x86 systems, use the “intel idle.max cstate=" to limit * the maximum
C-state depth.

d. On x86 systems, use the “idle=poll” boot parameter. However, please
note that use of this parameter can cause your CPU to overheat, which
may cause thermal throttling to degrade your latencies - and that this
degradation can be even worse than that of dyntick-idle. Furthermore,
this parameter effectively disables Turbo Mode on Intel CPUs, which can
significantly reduce maximum performance.

* Adaptive-ticks slows user/kernel transitions slightly. This is not expected to
be a problem for computationally intensive workloads, which have few such
transitions. Careful benchmarking will be required to determine whether or
not other workloads are significantly affected by this effect.

» Adaptive-ticks does not do anything unless there is only one runnable task for
a given CPU, even though there are a number of other situations where the
scheduling-clock tick is not needed. To give but one example, consider a CPU
that has one runnable high-priority SCHED FIFO task and an arbitrary num-
ber of low-priority SCHED OTHER tasks. In this case, the CPU is required to
run the SCHED FIFO task until it either blocks or some other higher-priority
task awakens on (or is assigned to) this CPU, so there is no point in sending
a scheduling-clock interrupt to this CPU. However, the current implemen-
tation nevertheless sends scheduling-clock interrupts to CPUs having a sin-
gle runnable SCHED FIFO task and multiple runnable SCHED OTHER tasks,
even though these interrupts are unnecessary.

And even when there are multiple runnable tasks on a given CPU, there is
little point in interrupting that CPU until the current running task’ s times-
lice expires, which is almost always way longer than the time of the next
scheduling-clock interrupt.

Better handling of these sorts of situations is future work.

4.6. Known Issues 17



Linux Timers Documentation

A reboot is required to reconfigure both adaptive idle and RCU callback of-
floading. Runtime reconfiguration could be provided if needed, however, due
to the complexity of reconfiguring RCU at runtime, there would need to be
an earthshakingly good reason. Especially given that you have the straight-
forward option of simply offloading RCU callbacks from all CPUs and pinning
them where you want them whenever you want them pinned.

Additional configuration is required to deal with other sources of OS jitter, in-
cluding interrupts and system-utility tasks and processes. This configuration
normally involves binding interrupts and tasks to particular CPUs.

Some sources of OS jitter can currently be eliminated only by constraining
the workload. For example, the only way to eliminate OS jitter due to global
TLB shootdowns is to avoid the unmapping operations (such as kernel module
unload operations) that result in these shootdowns. For another example,
page faults and TLB misses can be reduced (and in some cases eliminated)
by using huge pages and by constraining the amount of memory used by the
application. Pre-faulting the working set can also be helpful, especially when
combined with the mlock() and mlockall() system calls.

Unless all CPUs are idle, at least one CPU must keep the scheduling-clock
interrupt going in order to support accurate timekeeping.

If there might potentially be some adaptive-ticks CPUs, there will be at least
one CPU keeping the scheduling-clock interrupt going, even if all CPUs are
otherwise idle.

Better handling of this situation is ongoing work.

Some process-handling operations still require the occasional scheduling-
clock tick. These operations include calculating CPU load, maintaining sched
average, computing CFS entity vruntime, computing avenrun, and carrying
out load balancing. They are currently accommodated by scheduling-clock
tick every second or so. On-going work will eliminate the need even for these
infrequent scheduling-clock ticks.

18

Chapter 4. NO_HZ: Reducing Scheduling-Clock Ticks



CHAPTER
FIVE

CLOCK SOURCES, CLOCK EVENTS, SCHED_CLOCK() AND
DELAY TIMERS

This document tries to briefly explain some basic kernel timekeeping abstractions.
It partly pertains to the drivers usually found in drivers/clocksource in the kernel
tree, but the code may be spread out across the kernel.

If you grep through the kernel source you will find a number of architecture-
specific implementations of clock sources, clockevents and several likewise
architecture-specific overrides of the sched clock() function and some delay
timers.

To provide timekeeping for your platform, the clock source provides the basic time-
line, whereas clock events shoot interrupts on certain points on this timeline, pro-
viding facilities such as high-resolution timers. sched clock() is used for schedul-
ing and timestamping, and delay timers provide an accurate delay source using
hardware counters.

5.1 Clock sources

The purpose of the clock source is to provide a timeline for the system that tells
you where you are in time. For example issuing the command ‘date’ on a Linux
system will eventually read the clock source to determine exactly what time it is.

Typically the clock source is a monotonic, atomic counter which will provide n bits
which count from 0 to (27 n)-1 and then wraps around to 0 and start over. It will
ideally NEVER stop ticking as long as the system is running. It may stop during
system suspend.

The clock source shall have as high resolution as possible, and the frequency shall
be as stable and correct as possible as compared to a real-world wall clock. It
should not move unpredictably back and forth in time or miss a few cycles here
and there.

It must be immune to the kind of effects that occur in hardware where e.g. the
counter register is read in two phases on the bus lowest 16 bits first and the higher
16 bits in a second bus cycle with the counter bits potentially being updated in
between leading to the risk of very strange values from the counter.

When the wall-clock accuracy of the clock source isn’ t satisfactory, there are
various quirks and layers in the timekeeping code for e.g. synchronizing the user-
visible time to RTC clocks in the system or against networked time servers using
NTP, but all they do basically is update an offset against the clock source, which

19



Linux Timers Documentation

provides the fundamental timeline for the system. These measures does not affect
the clock source per se, they only adapt the system to the shortcomings of it.

The clock source struct shall provide means to translate the provided counter into
a nanosecond value as an unsigned long long (unsigned 64 bit) number. Since this
operation may be invoked very often, doing this in a strict mathematical sense
is not desirable: instead the number is taken as close as possible to a nanosec-
ond value using only the arithmetic operations multiply and shift, so in clock-
source cyc2ns() you find:

ns ~= (clocksource * mult) >> shift

You will find a number of helper functions in the clock source code intended to aid
in providing these mult and shift values, such as clocksource khz2mult(), clock-
source_hz2mult() that help determine the mult factor from a fixed shift, and clock-
source register hz() and clocksource register khz() which will help out assigning
both shift and mult factors using the frequency of the clock source as the only
input.

For real simple clock sources accessed from a single I/O memory location there
is nowadays even clocksource mmio init() which will take a memory location, bit
width, a parameter telling whether the counter in the register counts up or down,
and the timer clock rate, and then conjure all necessary parameters.

Since a 32-bit counter at say 100 MHz will wrap around to zero after some 43
seconds, the code handling the clock source will have to compensate for this. That
is the reason why the clock source struct also contains a ‘mask’ member telling
how many bits of the source are valid. This way the timekeeping code knows when
the counter will wrap around and can insert the necessary compensation code on
both sides of the wrap point so that the system timeline remains monotonic.

5.2 Clock events

Clock events are the conceptual reverse of clock sources: they take a desired time
specification value and calculate the values to poke into hardware timer registers.

Clock events are orthogonal to clock sources. The same hardware and register
range may be used for the clock event, but it is essentially a different thing. The
hardware driving clock events has to be able to fire interrupts, so as to trigger
events on the system timeline. On an SMP system, it is ideal (and customary) to
have one such event driving timer per CPU core, so that each core can trigger
events independently of any other core.

You will notice that the clock event device code is based on the same basic idea
about translating counters to nanoseconds using mult and shift arithmetic, and
you find the same family of helper functions again for assigning these values. The
clock event driver does not need a ‘mask’ attribute however: the system will not
try to plan events beyond the time horizon of the clock event.

2@hapter 5. Clock sources, Clock events, sched_clock() and delay timers



Linux Timers Documentation

5.3 sched clock()

In addition to the clock sources and clock events there is a special weak func-
tion in the kernel called sched clock(). This function shall return the number of
nanoseconds since the system was started. An architecture may or may not pro-
vide an implementation of sched clock() on its own. If a local implementation is
not provided, the system jiffy counter will be used as sched clock().

As the name suggests, sched clock() is used for scheduling the system, determin-
ing the absolute timeslice for a certain process in the CFS scheduler for example.
It is also used for printk timestamps when you have selected to include time infor-
mation in printk for things like bootcharts.

Compared to clock sources, sched clock() has to be very fast: it is called much
more often, especially by the scheduler. If you have to do trade-offs between ac-
curacy compared to the clock source, you may sacrifice accuracy for speed in
sched clock(). It however requires some of the same basic characteristics as the
clock source, i.e. it should be monotonic.

The sched clock() function may wrap only on unsigned long long boundaries, i.e.
after 64 bits. Since this is a nanosecond value this will mean it wraps after circa
585 years. (For most practical systems this means “never” .)

If an architecture does not provide its own implementation of this function, it will
fall back to using jiffies, making its maximum resolution 1/HZ of the jiffy frequency
for the architecture. This will affect scheduling accuracy and will likely show up
in system benchmarks.

The clock driving sched clock() may stop or reset to zero during system sus-
pend/sleep. This does not matter to the function it serves of scheduling events
on the system. However it may result in interesting timestamps in printk().

The sched clock() function should be callable in any context, IRQ- and NMI-safe
and return a sane value in any context.

Some architectures may have a limited set of time sources and lack a nice counter
to derive a 64-bit nanosecond value, so for example on the ARM architecture,
special helper functions have been created to provide a sched clock() nanosecond
base from a 16- or 32-bit counter. Sometimes the same counter that is also used
as clock source is used for this purpose.

On SMP systems, it is crucial for performance that sched clock() can be called
independently on each CPU without any synchronization performance hits. Some
hardware (such as the x86 TSC) will cause the sched clock() function to drift be-
tween the CPUs on the system. The kernel can work around this by enabling the
CONFIG HAVE UNSTABLE SCHED CLOCK option. This is another aspect that
makes sched clock() different from the ordinary clock source.

5.3. sched_clock() 21



Linux Timers Documentation

5.4 Delay timers (some architectures only)

On systems with variable CPU frequency, the various kernel delay() functions will
sometimes behave strangely. Basically these delays usually use a hard loop to de-
lay a certain number of jiffy fractions using a “Ipj” (loops per jiffy) value, calibrated
on boot.

Let’ s hope that your system is running on maximum frequency when this value
is calibrated: as an effect when the frequency is geared down to half the full fre-
quency, any delay() will be twice as long. Usually this does not hurt, as you’ re
commonly requesting that amount of delay or more. But basically the semantics
are quite unpredictable on such systems.

Enter timer-based delays. Using these, a timer read may be used instead of a
hard-coded loop for providing the desired delay.

This is done by declaring a struct delay timer and assigning the appropriate func-
tion pointers and rate settings for this delay timer.

This is available on some architectures like OpenRISC or ARM.

2Zhapter 5. Clock sources, Clock events, sched_clock() and delay timers



CHAPTER
SIX

DELAYS - INFORMATION ON THE VARIOUS KERNEL
DELAY / SLEEP MECHANISMS

This document seeks to answer the common question: “What is the RightWay (TM)
to insert a delay?”

This question is most often faced by driver writers who have to deal with hardware
delays and who may not be the most intimately familiar with the inner workings
of the Linux Kernel.

6.1 Inserting Delays

The first, and most important, question you need to ask is “Is my code in an atomic
context?” This should be followed closely by “Does it really need to delay in atomic
context?” If so--

ATOMIC CONTEXT: You must use the *delay family of functions. These functions
use the jiffie estimation of clock speed and will busy wait for enough loop
cycles to achieve the desired delay:

ndelay(unsigned long nsecs) udelay(unsigned long usecs) mdelay(unsigned
long msecs)

udelay is the generally preferred API; ndelay-level precision may not actually
exist on many non-PC devices.

mdelay is macro wrapper around udelay, to account for possible overflow
when passing large arguments to udelay. In general, use of mdelay is dis-
couraged and code should be refactored to allow for the use of msleep.

NON-ATOMIC CONTEXT: You should use the *sleep[ range] family of functions.
There are a few more options here, while any of them may work correctly,
using the “right” sleep function will help the scheduler, power management,
and just make your driver better :)

- Backed by busy-wait loop:
udelay(unsigned long usecs)
- Backed by hrtimers:
usleep range(unsigned long min, unsigned long max)

- Backed by jiffies / legacy timers

23



Linux Timers Documentation

msleep(unsigned long msecs) msleep interruptible(unsigned long
msecs)

Unlike the *delay family, the underlying mechanism driving each of these calls
varies, thus there are quirks you should be aware of.

SLEEPING FOR “A FEW” USECS ( < ~10us? ):
* Use udelay

* Why not usleep? On slower systems, (embedded, OR perhaps a
speed- stepped PC!) the overhead of setting up the hrtimers for
usleep may not be worth it. Such an evaluation will obviously de-
pend on your specific situation, but it is something to be aware
of.

SLEEPING FOR ~USECS OR SMALL MSECS ( 10us - 20ms):
* Use usleep range
* Why not msleep for (1ms - 20ms)?
Explained originally here: http://lkml.org/lkml/2007/8/3/250

msleep(1~20) may not do what the caller intends, and will of-
ten sleep longer (~20 ms actual sleep for any value given in the
1~20ms range). In many cases this is not the desired behavior.

* Why is there no “usleep”’” / What is a good range? Since
usleep range is built on top of hrtimers, the wakeup will be
very precise (ish), thus a simple usleep function would likely
introduce a large number of undesired interrupts.

With the introduction of a range, the scheduler is free to coalesce
your wakeup with any other wakeup that may have happened for
other reasons, or at the worst case, fire an interrupt for your upper
bound.

The larger a range you supply, the greater a chance that you will
not trigger an interrupt; this should be balanced with what is an
acceptable upper bound on delay / performance for your specific
code path. Exact tolerances here are very situation specific, thus
it is left to the caller to determine a reasonable range.

SLEEPING FOR LARGER MSECS ( 10ms+ )
* Use msleep or possibly msleep interruptible

e What’ s the difference? msleep sets the current task to
TASK UNINTERRUPTIBLE whereas msleep interruptible sets
the current task to TASK INTERRUPTIBLE before scheduling the
sleep. In short, the difference is whether the sleep can be ended
early by a signal. In general, just use msleep unless you know
you have a need for the interruptible variant.

FLEXIBLE SLEEPING (any delay, uninterruptible)
* Use fsleep

24 Chapter 6. delays - Information on the various kernel delay / sleep
mechanisms


http://lkml.org/lkml/2007/8/3/250

