
Linux Spi Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

OVERVIEW OF LINUX KERNEL SPI SUPPORT

02-Feb-2012

1.1 What is SPI?

The“Serial Peripheral Interface”(SPI) is a synchronous four wire serial link used
to connect microcontrollers to sensors, memory, and peripherals. It’s a simple
“de facto”standard, not complicated enough to acquire a standardization body.
SPI uses a master/slave configuration.

The three signal wires hold a clock (SCK, often on the order of 10 MHz), and par-
allel data lines with “Master Out, Slave In”(MOSI) or “Master In, Slave Out”
(MISO) signals. (Other names are also used.) There are four clocking modes
through which data is exchanged; mode-0 and mode-3 are most commonly used.
Each clock cycle shifts data out and data in; the clock doesn’t cycle except when
there is a data bit to shift. Not all data bits are used though; not every protocol
uses those full duplex capabilities.

SPI masters use a fourth “chip select”line to activate a given SPI slave device,
so those three signal wires may be connected to several chips in parallel. All SPI
slaves support chipselects; they are usually active low signals, labeled nCSx for
slave‘x’(e.g. nCS0). Some devices have other signals, often including an interrupt
to the master.

Unlike serial busses like USB or SMBus, even low level protocols for SPI slave
functions are usually not interoperable between vendors (except for commodities
like SPI memory chips).

• SPI may be used for request/response style device protocols, as with touch-
screen sensors and memory chips.

• It may also be used to stream data in either direction (half duplex), or both
of them at the same time (full duplex).

• Some devices may use eight bit words. Others may use different word
lengths, such as streams of 12-bit or 20-bit digital samples.

• Words are usually sent with their most significant bit (MSB) first, but some-
times the least significant bit (LSB) goes first instead.

• Sometimes SPI is used to daisy-chain devices, like shift registers.

1

Linux Spi Documentation

In the same way, SPI slaves will only rarely support any kind of automatic discov-
ery/enumeration protocol. The tree of slave devices accessible from a given SPI
master will normally be set up manually, with configuration tables.

SPI is only one of the names used by such four-wire protocols, and most con-
trollers have no problem handling “MicroWire”(think of it as half-duplex SPI,
for request/response protocols), SSP (“Synchronous Serial Protocol”), PSP (“Pro-
grammable Serial Protocol”), and other related protocols.
Some chips eliminate a signal line by combining MOSI and MISO, and limiting
themselves to half-duplex at the hardware level. In fact some SPI chips have this
signal mode as a strapping option. These can be accessed using the same pro-
gramming interface as SPI, but of course they won’t handle full duplex transfers.
You may find such chips described as using “three wire”signaling: SCK, data,
nCSx. (That data line is sometimes called MOMI or SISO.)

Microcontrollers often support both master and slave sides of the SPI protocol.
This document (and Linux) supports both the master and slave sides of SPI inter-
actions.

1.2 Who uses it? On what kinds of systems?

Linux developers using SPI are probably writing device drivers for embedded sys-
tems boards. SPI is used to control external chips, and it is also a protocol sup-
ported by every MMC or SD memory card. (The older“DataFlash”cards, predat-
ing MMC cards but using the same connectors and card shape, support only SPI.)
Some PC hardware uses SPI flash for BIOS code.

SPI slave chips range from digital/analog converters used for analog sensors and
codecs, to memory, to peripherals like USB controllers or Ethernet adapters; and
more.

Most systems using SPI will integrate a few devices on a mainboard. Some provide
SPI links on expansion connectors; in cases where no dedicated SPI controller
exists, GPIO pins can be used to create a low speed “bitbanging”adapter. Very
few systems will“hotplug”an SPI controller; the reasons to use SPI focus on low
cost and simple operation, and if dynamic reconfiguration is important, USB will
often be a more appropriate low-pincount peripheral bus.

Many microcontrollers that can run Linux integrate one or more I/O interfaces
with SPI modes. Given SPI support, they could use MMC or SD cards without
needing a special purpose MMC/SD/SDIO controller.

2 Chapter 1. Overview of Linux kernel SPI support

Linux Spi Documentation

1.3 I’m confused. What are these four SPI“clock modes”
?

It’s easy to be confused here, and the vendor documentation you’ll find isn’t
necessarily helpful. The four modes combine two mode bits:

• CPOL indicates the initial clock polarity. CPOL=0 means the clock starts low,
so the first (leading) edge is rising, and the second (trailing) edge is falling.
CPOL=1 means the clock starts high, so the first (leading) edge is falling.

• CPHA indicates the clock phase used to sample data; CPHA=0 says sample
on the leading edge, CPHA=1 means the trailing edge.

Since the signal needs to stablize before it’s sampled, CPHA=0 implies that
its data is written half a clock before the first clock edge. The chipselect may
have made it become available.

Chip specs won’t always say“uses SPI mode X”in as many words, but their timing
diagrams will make the CPOL and CPHA modes clear.

In the SPI mode number, CPOL is the high order bit and CPHA is the low order
bit. So when a chip’s timing diagram shows the clock starting low (CPOL=0) and
data stabilized for sampling during the trailing clock edge (CPHA=1), that’s SPI
mode 1.

Note that the clock mode is relevant as soon as the chipselect goes active. So the
master must set the clock to inactive before selecting a slave, and the slave can
tell the chosen polarity by sampling the clock level when its select line goes active.
That’s why many devices support for example both modes 0 and 3: they don’t
care about polarity, and always clock data in/out on rising clock edges.

1.4 How do these driver programming interfaces work?

The <linux/spi/spi.h> header file includes kerneldoc, as does the main source
code, and you should certainly read that chapter of the kernel API document. This
is just an overview, so you get the big picture before those details.

SPI requests always go into I/O queues. Requests for a given SPI device are al-
ways executed in FIFO order, and complete asynchronously through completion
callbacks. There are also some simple synchronous wrappers for those calls, in-
cluding ones for common transaction types like writing a command and then read-
ing its response.

There are two types of SPI driver, here called:

Controller drivers ⋯ controllers may be built into System-On-Chip
processors, and often support both Master and Slave roles. These
drivers touch hardware registers and may use DMA. Or they can be
PIO bitbangers, needing just GPIO pins.

Protocol drivers ⋯ these pass messages through the controller driver
to communicate with a Slave or Master device on the other side of
an SPI link.

1.3. I’m confused. What are these four SPI “clock modes”? 3

Linux Spi Documentation

So for example one protocol driver might talk to the MTD layer to export data to
filesystems stored on SPI flash like DataFlash; and others might control audio in-
terfaces, present touchscreen sensors as input interfaces, or monitor temperature
and voltage levels during industrial processing. And those might all be sharing
the same controller driver.

A“struct spi_device”encapsulates the controller-side interface between those two
types of drivers.

There is a minimal core of SPI programming interfaces, focussing on using the
driver model to connect controller and protocol drivers using device tables pro-
vided by board specific initialization code. SPI shows up in sysfs in several loca-
tions:

/sys/devices/.../CTLR ... physical node for a given SPI controller

/sys/devices/.../CTLR/spiB.C ... spi_device on bus "B",
chipselect C, accessed through CTLR.

/sys/bus/spi/devices/spiB.C ... symlink to that physical
.../CTLR/spiB.C device

/sys/devices/.../CTLR/spiB.C/modalias ... identifies the driver
that should be used with this device (for hotplug/coldplug)

/sys/bus/spi/drivers/D ... driver for one or more spi*.* devices

/sys/class/spi_master/spiB ... symlink (or actual device node) to
a logical node which could hold class related state for the SPI
master controller managing bus "B". All spiB.* devices share one
physical SPI bus segment, with SCLK, MOSI, and MISO.

/sys/devices/.../CTLR/slave ... virtual file for (un)registering the
slave device for an SPI slave controller.
Writing the driver name of an SPI slave handler to this file
registers the slave device; writing "(null)" unregisters the slave
device.
Reading from this file shows the name of the slave device ("(null)"
if not registered).

/sys/class/spi_slave/spiB ... symlink (or actual device node) to
a logical node which could hold class related state for the SPI
slave controller on bus "B". When registered, a single spiB.*
device is present here, possible sharing the physical SPI bus
segment with other SPI slave devices.

Note that the actual location of the controller’s class state depends on whether
you enabled CONFIG_SYSFS_DEPRECATED or not. At this time, the only class-
specific state is the bus number (“B”in “spiB”), so those /sys/class entries are
only useful to quickly identify busses.

4 Chapter 1. Overview of Linux kernel SPI support

Linux Spi Documentation

1.5 How does board-specific init code declare SPI de-
vices?

Linux needs several kinds of information to properly configure SPI devices. That
information is normally provided by board-specific code, even for chips that do
support some of automated discovery/enumeration.

1.5.1 Declare Controllers

The first kind of information is a list of what SPI controllers exist. For System-
on-Chip (SOC) based boards, these will usually be platform devices, and the con-
troller may need some platform_data in order to operate properly. The “struct
platform_device”will include resources like the physical address of the controller’
s first register and its IRQ.

Platforms will often abstract the“register SPI controller”operation, maybe cou-
pling it with code to initialize pin configurations, so that the arch/⋯/mach-/board-.c
files for several boards can all share the same basic controller setup code. This is
because most SOCs have several SPI-capable controllers, and only the ones actu-
ally usable on a given board should normally be set up and registered.

So for example arch/⋯/mach-/board-.c files might have code like:
#include <mach/spi.h> /* for mysoc_spi_data */

/* if your mach-* infrastructure doesn't support kernels that can
* run on multiple boards, pdata wouldn't benefit from "__init".
*/

static struct mysoc_spi_data pdata __initdata = { ... };

static __init board_init(void)
{

...
/* this board only uses SPI controller #2 */
mysoc_register_spi(2, &pdata);
...

}

And SOC-specific utility code might look something like:

#include <mach/spi.h>

static struct platform_device spi2 = { ... };

void mysoc_register_spi(unsigned n, struct mysoc_spi_data *pdata)
{

struct mysoc_spi_data *pdata2;

pdata2 = kmalloc(sizeof *pdata2, GFP_KERNEL);
*pdata2 = pdata;
...
if (n == 2) {

spi2->dev.platform_data = pdata2;
register_platform_device(&spi2);

(continues on next page)

1.5. How does board-specific init code declare SPI devices? 5

Linux Spi Documentation

(continued from previous page)

/* also: set up pin modes so the spi2 signals are
* visible on the relevant pins ... bootloaders on
* production boards may already have done this, but
* developer boards will often need Linux to do it.
*/

}
...

}

Notice how the platform_data for boards may be different, even if the same SOC
controller is used. For example, on one board SPI might use an external clock,
where another derives the SPI clock from current settings of some master clock.

1.5.2 Declare Slave Devices

The second kind of information is a list of what SPI slave devices exist on the target
board, often with some board-specific data needed for the driver to work correctly.

Normally your arch/⋯/mach-/board-.c files would provide a small table listing the
SPI devices on each board. (This would typically be only a small handful.) That
might look like:

static struct ads7846_platform_data ads_info = {
.vref_delay_usecs = 100,
.x_plate_ohms = 580,
.y_plate_ohms = 410,

};

static struct spi_board_info spi_board_info[] __initdata = {
{

.modalias = "ads7846",

.platform_data = &ads_info,

.mode = SPI_MODE_0,

.irq = GPIO_IRQ(31),

.max_speed_hz = 120000 /* max sample rate at 3V */ * 16,

.bus_num = 1,

.chip_select = 0,
},
};

Again, notice how board-specific information is provided; each chip may need sev-
eral types. This example shows generic constraints like the fastest SPI clock to
allow (a function of board voltage in this case) or how an IRQ pin is wired, plus
chip-specific constraints like an important delay that’s changed by the capacitance
at one pin.

(There’s also“controller_data”, information that may be useful to the controller
driver. An example would be peripheral-specific DMA tuning data or chipselect
callbacks. This is stored in spi_device later.)

The board_info should provide enough information to let the system work with-
out the chip’s driver being loaded. The most troublesome aspect of that is likely

6 Chapter 1. Overview of Linux kernel SPI support

Linux Spi Documentation

the SPI_CS_HIGH bit in the spi_device.mode field, since sharing a bus with a de-
vice that interprets chipselect“backwards”is not possible until the infrastructure
knows how to deselect it.

Then your board initialization code would register that table with the SPI infras-
tructure, so that it’s available later when the SPI master controller driver is reg-
istered:

spi_register_board_info(spi_board_info, ARRAY_SIZE(spi_board_info));

Like with other static board-specific setup, you won’t unregister those.
The widely used“card”style computers bundle memory, cpu, and little else onto a
card that’s maybe just thirty square centimeters. On such systems, your arch/...
/mach-.../board-*.c file would primarily provide information about the devices
on the mainboard into which such a card is plugged. That certainly includes SPI
devices hooked up through the card connectors!

1.5.3 Non-static Configurations

Developer boards often play by different rules than product boards, and one ex-
ample is the potential need to hotplug SPI devices and/or controllers.

For those cases you might need to use spi_busnum_to_master() to look up the
spi bus master, and will likely need spi_new_device() to provide the board info
based on the board that was hotplugged. Of course, you’d later call at least
spi_unregister_device() when that board is removed.

When Linux includes support for MMC/SD/SDIO/DataFlash cards through SPI,
those configurations will also be dynamic. Fortunately, such devices all support
basic device identification probes, so they should hotplug normally.

1.6 How do I write an “SPI Protocol Driver”?

Most SPI drivers are currently kernel drivers, but there’s also support for
userspace drivers. Here we talk only about kernel drivers.

SPI protocol drivers somewhat resemble platform device drivers:

static struct spi_driver CHIP_driver = {
.driver = {

.name = "CHIP",

.owner = THIS_MODULE,

.pm = &CHIP_pm_ops,
},

.probe = CHIP_probe,

.remove = CHIP_remove,
};

The driver core will automatically attempt to bind this driver to any SPI device
whose board_info gave a modalias of “CHIP”. Your probe() code might look like
this unless you’re creating a device which is managing a bus (appearing under
/sys/class/spi_master).

1.6. How do I write an “SPI Protocol Driver”? 7

Linux Spi Documentation

static int CHIP_probe(struct spi_device *spi)
{

struct CHIP *chip;
struct CHIP_platform_data *pdata;

/* assuming the driver requires board-specific data: */
pdata = &spi->dev.platform_data;
if (!pdata)

return -ENODEV;

/* get memory for driver's per-chip state */
chip = kzalloc(sizeof *chip, GFP_KERNEL);
if (!chip)

return -ENOMEM;
spi_set_drvdata(spi, chip);

... etc
return 0;

}

As soon as it enters probe(), the driver may issue I/O requests to the SPI device
using “struct spi_message”. When remove() returns, or after probe() fails, the
driver guarantees that it won’t submit any more such messages.
• An spi_message is a sequence of protocol operations, executed as one atomic
sequence. SPI driver controls include:

– when bidirectional reads and writes start ⋯by how its sequence of
spi_transfer requests is arranged;

– which I/O buffers are used ⋯each spi_transfer wraps a buffer for each
transfer direction, supporting full duplex (two pointers, maybe the same
one in both cases) and half duplex (one pointer is NULL) transfers;

– optionally defining short delays after transfers ⋯using the
spi_transfer.delay_usecs setting (this delay can be the only protocol
effect, if the buffer length is zero);

– whether the chipselect becomes inactive after a transfer and any delay
⋯by using the spi_transfer.cs_change flag;

– hinting whether the next message is likely to go to this same device ⋯
using the spi_transfer.cs_change flag on the last transfer in that atomic
group, and potentially saving costs for chip deselect and select opera-
tions.

• Follow standard kernel rules, and provide DMA-safe buffers in yourmessages.
That way controller drivers using DMA aren’t forced to make extra copies
unless the hardware requires it (e.g. working around hardware errata that
force the use of bounce buffering).

If standard dma_map_single() handling of these buffers is inappropriate, you
can use spi_message.is_dma_mapped to tell the controller driver that you’ve
already provided the relevant DMA addresses.

• The basic I/O primitive is spi_async(). Async requests may be issued in any
context (irq handler, task, etc) and completion is reported using a callback

8 Chapter 1. Overview of Linux kernel SPI support

Linux Spi Documentation

provided with the message. After any detected error, the chip is deselected
and processing of that spi_message is aborted.

• There are also synchronous wrappers like spi_sync(), and wrappers like
spi_read(), spi_write(), and spi_write_then_read(). These may be issued only
in contexts that may sleep, and they’re all clean (and small, and“optional”
) layers over spi_async().

• The spi_write_then_read() call, and convenience wrappers around it, should
only be used with small amounts of data where the cost of an extra copy may
be ignored. It’s designed to support common RPC-style requests, such as
writing an eight bit command and reading a sixteen bit response – spi_w8r16()
being one its wrappers, doing exactly that.

Some drivers may need to modify spi_device characteristics like the transfer mode,
wordsize, or clock rate. This is done with spi_setup(), which would normally be
called from probe() before the first I/O is done to the device. However, that can
also be called at any time that no message is pending for that device.

While“spi_device”would be the bottom boundary of the driver, the upper bound-
aries might include sysfs (especially for sensor readings), the input layer, ALSA,
networking, MTD, the character device framework, or other Linux subsystems.

Note that there are two types of memory your driver must manage as part of in-
teracting with SPI devices.

• I/O buffers use the usual Linux rules, and must be DMA-safe. You’d nor-
mally allocate them from the heap or free page pool. Don’t use the stack, or
anything that’s declared “static”.

• The spi_message and spi_transfer metadata used to glue those I/O buffers
into a group of protocol transactions. These can be allocated anywhere it’s
convenient, including as part of other allocate-once driver data structures.
Zero-init these.

If you like, spi_message_alloc() and spi_message_free() convenience routines are
available to allocate and zero-initialize an spi_message with several transfers.

1.7 How do I write an “SPI Master Controller Driver”?

An SPI controller will probably be registered on the platform_bus; write a driver
to bind to the device, whichever bus is involved.

The main task of this type of driver is to provide an “spi_master”. Use
spi_alloc_master() to allocate the master, and spi_master_get_devdata() to get the
driver-private data allocated for that device.

struct spi_master *master;
struct CONTROLLER *c;

master = spi_alloc_master(dev, sizeof *c);
if (!master)

return -ENODEV;

c = spi_master_get_devdata(master);

1.7. How do I write an “SPI Master Controller Driver”? 9

Linux Spi Documentation

The driver will initialize the fields of that spi_master, including the bus number
(maybe the same as the platform device ID) and three methods used to interact
with the SPI core and SPI protocol drivers. It will also initialize its own internal
state. (See below about bus numbering and those methods.)

After you initialize the spi_master, then use spi_register_master() to publish it to
the rest of the system. At that time, device nodes for the controller and any prede-
clared spi devices will be made available, and the driver model core will take care
of binding them to drivers.

If you need to remove your SPI controller driver, spi_unregister_master() will re-
verse the effect of spi_register_master().

1.7.1 Bus Numbering

Bus numbering is important, since that’s how Linux identifies a given SPI bus
(shared SCK, MOSI, MISO). Valid bus numbers start at zero. On SOC systems, the
bus numbers should match the numbers defined by the chip manufacturer. For
example, hardware controller SPI2 would be bus number 2, and spi_board_info
for devices connected to it would use that number.

If you don’t have such hardware-assigned bus number, and for some reason you
can’t just assign them, then provide a negative bus number. That will then be
replaced by a dynamically assigned number. You’d then need to treat this as a
non-static configuration (see above).

1.7.2 SPI Master Methods

master->setup(struct spi_device *spi) This sets up the device clock rate,
SPI mode, and word sizes. Drivers may change the defaults provided by
board_info, and then call spi_setup(spi) to invoke this routine. It may sleep.

Unless each SPI slave has its own configuration registers, don’t change them
right away⋯otherwise drivers could corrupt I/O that’s in progress for other
SPI devices.

Note: BUG ALERT: for some reason the first version of many spi_master
drivers seems to get this wrong. When you code setup(), ASSUME that the
controller is actively processing transfers for another device.

master->cleanup(struct spi_device *spi) Your controller driver may use
spi_device.controller_state to hold state it dynamically associates with that
device. If you do that, be sure to provide the cleanup() method to free that
state.

master->prepare_transfer_hardware(struct spi_master *master) This will
be called by the queue mechanism to signal to the driver that a message is
coming in soon, so the subsystem requests the driver to prepare the transfer
hardware by issuing this call. This may sleep.

master->unprepare_transfer_hardware(struct spi_master *master) This
will be called by the queue mechanism to signal to the driver that there are

10 Chapter 1. Overview of Linux kernel SPI support

Linux Spi Documentation

no more messages pending in the queue and it may relax the hardware (e.g.
by power management calls). This may sleep.

master->transfer_one_message(struct spi_master *master, struct spi_message *mesg)
The subsystem calls the driver to transfer a single message while queuing
transfers that arrive in the meantime. When the driver is finished with this
message, it must call spi_finalize_current_message() so the subsystem can
issue the next message. This may sleep.

master->transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *transfer)
The subsystem calls the driver to transfer a single transfer while queuing
transfers that arrive in the meantime. When the driver is finished with
this transfer, it must call spi_finalize_current_transfer() so the subsystem
can issue the next transfer. This may sleep. Note: transfer_one and trans-
fer_one_message are mutually exclusive; when both are set, the generic
subsystem does not call your transfer_one callback.

Return values:

• negative errno: error

• 0: transfer is finished

• 1: transfer is still in progress

master->set_cs_timing(struct spi_device *spi, u8 setup_clk_cycles, u8 hold_clk_cycles, u8 inactive_clk_cycles)
This method allows SPI client drivers to request SPI master controller for
configuring device specific CS setup, hold and inactive timing requirements.

1.7.3 Deprecated Methods

master->transfer(struct spi_device *spi, struct spi_message *message)
This must not sleep. Its responsibility is to arrange that the transfer happens
and its complete() callback is issued. The two will normally happen later,
after other transfers complete, and if the controller is idle it will need to
be kickstarted. This method is not used on queued controllers and must be
NULL if transfer_one_message() and (un)prepare_transfer_hardware() are
implemented.

1.7.4 SPI Message Queue

If you are happy with the standard queueing mechanism provided by the SPI sub-
system, just implement the queued methods specified above. Using the message
queue has the upside of centralizing a lot of code and providing pure process-
context execution of methods. The message queue can also be elevated to realtime
priority on high-priority SPI traffic.

Unless the queueing mechanism in the SPI subsystem is selected, the bulk of the
driver will be managing the I/O queue fed by the now deprecated function trans-
fer().

That queue could be purely conceptual. For example, a driver used only for low-
frequency sensor access might be fine using synchronous PIO.

1.7. How do I write an “SPI Master Controller Driver”? 11

Linux Spi Documentation

But the queue will probably be very real, using message->queue, PIO, often DMA
(especially if the root filesystem is in SPI flash), and execution contexts like IRQ
handlers, tasklets, or workqueues (such as keventd). Your driver can be as fancy,
or as simple, as you need. Such a transfer() method would normally just add the
message to a queue, and then start some asynchronous transfer engine (unless it’
s already running).

1.8 THANKS TO

Contributors to Linux-SPI discussions include (in alphabetical order, by last name):

• Mark Brown

• David Brownell

• Russell King

• Grant Likely

• Dmitry Pervushin

• Stephen Street

• Mark Underwood

• Andrew Victor

• Linus Walleij

• Vitaly Wool

12 Chapter 1. Overview of Linux kernel SPI support

CHAPTER

TWO

SPI USERSPACE API

SPI devices have a limited userspace API, supporting basic half-duplex read() and
write() access to SPI slave devices. Using ioctl() requests, full duplex transfers
and device I/O configuration are also available.

#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>

Some reasons you might want to use this programming interface include:

• Prototyping in an environment that’s not crash-prone; stray pointers in
userspace won’t normally bring down any Linux system.

• Developing simple protocols used to talk to microcontrollers acting as SPI
slaves, which you may need to change quite often.

Of course there are drivers that can never be written in userspace, because they
need to access kernel interfaces (such as IRQ handlers or other layers of the driver
stack) that are not accessible to userspace.

2.1 DEVICE CREATION, DRIVER BINDING

The simplest way to arrange to use this driver is to just list it in the spi_board_info
for a device as the driver it should use: the“modalias”entry is“spidev”, matching
the name of the driver exposing this API. Set up the other device characteristics
(bits per word, SPI clocking, chipselect polarity, etc) as usual, so you won’t always
need to override them later.

(Sysfs also supports userspace driven binding/unbinding of drivers to devices.
That mechanism might be supported here in the future.)

When you do that, the sysfs node for the SPI device will include a child device node
with a “dev”attribute that will be understood by udev or mdev. (Larger systems
will have “udev”. Smaller ones may configure “mdev”into busybox; it’s less
featureful, but often enough.) For a SPI device with chipselect C on bus B, you
should see:

/dev/spidevB.C ⋯ character special device, major number 153 with a
dynamically chosen minor device number. This is the node that
userspace programs will open, created by “udev”or “mdev”.

13

Linux Spi Documentation

/sys/devices/⋯/spiB.C ⋯ as usual, the SPI device node will be a child
of its SPI master controller.

/sys/class/spidev/spidevB.C ⋯ created when the“spidev”driver binds
to that device. (Directory or symlink, based on whether or not you
enabled the “deprecated sysfs files”Kconfig option.)

Do not try to manage the /dev character device special file nodes by hand. That’
s error prone, and you’d need to pay careful attention to system security issues;
udev/mdev should already be configured securely.

If you unbind the“spidev”driver from that device, those two“spidev”nodes (in
sysfs and in /dev) should automatically be removed (respectively by the kernel and
by udev/mdev). You can unbind by removing the “spidev”driver module, which
will affect all devices using this driver. You can also unbind by having kernel code
remove the SPI device, probably by removing the driver for its SPI controller (so
its spi_master vanishes).

Since this is a standard Linux device driver – even though it just happens to expose
a low level API to userspace – it can be associated with any number of devices at
a time. Just provide one spi_board_info record for each such SPI device, and you’
ll get a /dev device node for each device.

2.2 BASIC CHARACTER DEVICE API

Normal open() and close() operations on /dev/spidevB.D files work as you would
expect.

Standard read() and write() operations are obviously only half-duplex, and the
chipselect is deactivated between those operations. Full-duplex access, and
composite operation without chipselect de-activation, is available using the
SPI_IOC_MESSAGE(N) request.

Several ioctl() requests let your driver read or override the device’s current set-
tings for data transfer parameters:

SPI_IOC_RD_MODE, SPI_IOC_WR_MODE ⋯ pass a pointer to a byte
whichwill return (RD) or assign (WR) the SPI transfermode. Use the
constants SPI_MODE_0..SPI_MODE_3; or if you prefer you can com-
bine SPI_CPOL (clock polarity, idle high iff this is set) or SPI_CPHA
(clock phase, sample on trailing edge iff this is set) flags. Note that
this request is limited to SPI mode flags that fit in a single byte.

SPI_IOC_RD_MODE32, SPI_IOC_WR_MODE32 ⋯ pass a pointer to a
uin32_t which will return (RD) or assign (WR) the full SPI transfer
mode, not limited to the bits that fit in one byte.

SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST ⋯ pass a
pointer to a byte which will return (RD) or assign (WR) the bit
justification used to transfer SPI words. Zero indicates MSB-first;
other values indicate the less common LSB-first encoding. In both
cases the specified value is right-justified in each word, so that
unused (TX) or undefined (RX) bits are in the MSBs.

14 Chapter 2. SPI userspace API

Linux Spi Documentation

SPI_IOC_RD_BITS_PER_WORD, SPI_IOC_WR_BITS_PER_WORD ⋯
pass a pointer to a byte which will return (RD) or assign (WR) the
number of bits in each SPI transfer word. The value zero signifies
eight bits.

SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_SPEED_HZ ⋯
pass a pointer to a u32 which will return (RD) or assign (WR)
the maximum SPI transfer speed, in Hz. The controller can’t
necessarily assign that specific clock speed.

NOTES:

• At this time there is no async I/O support; everything is purely synchronous.

• There’s currently no way to report the actual bit rate used to shift data to/from
a given device.

• From userspace, you can’t currently change the chip select polarity; that
could corrupt transfers to other devices sharing the SPI bus. Each SPI device
is deselected when it’s not in active use, allowing other drivers to talk to other
devices.

• There’s a limit on the number of bytes each I/O request can transfer to the
SPI device. It defaults to one page, but that can be changed using a module
parameter.

• Because SPI has no low-level transfer acknowledgement, you usually won’t
see any I/O errors when talking to a non-existent device.

2.3 FULL DUPLEX CHARACTER DEVICE API

See the spidev_fdx.c sample program for one example showing the use of the full
duplex programming interface. (Although it doesn’t perform a full duplex transfer.)
The model is the same as that used in the kernel spi_sync() request; the individual
transfers offer the same capabilities as are available to kernel drivers (except that
it’s not asynchronous).
The example shows one half-duplex RPC-style request and response message.
These requests commonly require that the chip not be deselected between the
request and response. Several such requests could be chained into a single ker-
nel request, even allowing the chip to be deselected after each response. (Other
protocol options include changing the word size and bitrate for each transfer seg-
ment.)

To make a full duplex request, provide both rx_buf and tx_buf for the same transfer.
It’s even OK if those are the same buffer.

2.3. FULL DUPLEX CHARACTER DEVICE API 15

Linux Spi Documentation

16 Chapter 2. SPI userspace API

CHAPTER

THREE

SPI_BUTTERFLY - PARPORT-TO-BUTTERFLY ADAPTER
DRIVER

This is a hardware and software project that includes building and using a parallel
port adapter cable, together with an “AVR Butterfly”to run firmware for user
interfacing and/or sensors. A Butterfly is a $US20 battery powered card with an
AVR microcontroller and lots of goodies: sensors, LCD, flash, toggle stick, and
more. You can use AVR-GCC to develop firmware for this, and flash it using this
adapter cable.

You can make this adapter from an old printer cable and solder things directly to
the Butterfly. Or (if you have the parts and skills) you can come up with something
fancier, providing ciruit protection to the Butterfly and the printer port, or with a
better power supply than two signal pins from the printer port. Or for that matter,
you can use similar cables to talk to many AVR boards, even a breadboard.

This is more powerful than “ISP programming”cables since it lets kernel SPI
protocol drivers interact with the AVR, and could even let the AVR issue interrupts
to them. Later, your protocol driver should work easily with a“real SPI controller”
, instead of this bitbanger.

The first cable connections will hook Linux up to one SPI bus, with the AVR and
a DataFlash chip; and to the AVR reset line. This is all you need to reflash the
firmware, and the pins are the standard Atmel“ISP”connector pins (used also on
non-Butterfly AVR boards). On the parport side this is like “sp12”programming
cables.

Signal Butterfly Parport (DB-25)
SCK J403.PB1/SCK pin 2/D0
RESET J403.nRST pin 3/D1
VCC J403.VCC_EXT pin 8/D6
MOSI J403.PB2/MOSI pin 9/D7
MISO J403.PB3/MISO pin 11/S7,nBUSY
GND J403.GND pin 23/GND

Then to let Linux master that bus to talk to the DataFlash chip, you must (a)
flash new firmware that disables SPI (set PRR.2, and disable pullups by clearing
PORTB.[0-3]); (b) configure the mtd_dataflash driver; and (c) cable in the chipse-
lect.

17

Linux Spi Documentation

Signal Butterfly Parport (DB-25)
VCC J400.VCC_EXT pin 7/D5
SELECT J400.PB0/nSS pin 17/C3,nSELECT
GND J400.GND pin 24/GND

Or you could flash firmware making the AVR into an SPI slave (keeping the
DataFlash in reset) and tweak the spi_butterfly driver to make it bind to the driver
for your custom SPI-based protocol.

The “USI”controller, using J405, can also be used for a second SPI bus. That
would let you talk to the AVR using custom SPI-with-USI firmware, while letting
either Linux or the AVR use the DataFlash. There are plenty of spare parport pins
to wire this one up, such as:

Signal Butterfly Parport (DB-25)
SCK J403.PE4/USCK pin 5/D3
MOSI J403.PE5/DI pin 6/D4
MISO J403.PE6/DO pin 12/S5,nPAPEROUT
GND J403.GND pin 22/GND
IRQ J402.PF4 pin 10/S6,ACK
GND J402.GND(P2) pin 25/GND

18 Chapter 3. spi_butterfly - parport-to-butterfly adapter driver

CHAPTER

FOUR

PXA2XX SPI ON SSP DRIVER HOWTO

This a mini howto on the pxa2xx_spi driver. The driver turns a PXA2xx synchronous
serial port into a SPI master controller (see Documentation/spi/spi-summary.rst).
The driver has the following features

• Support for any PXA2xx SSP

• SSP PIO and SSP DMA data transfers.

• External and Internal (SSPFRM) chip selects.

• Per slave device (chip) configuration.

• Full suspend, freeze, resume support.

The driver is built around a “spi_message”fifo serviced by workqueue and a
tasklet. The workqueue, “pump_messages”, drives message fifo and the tasklet
(pump_transfer) is responsible for queuing SPI transactions and setting up and
launching the dma/interrupt driven transfers.

4.1 Declaring PXA2xx Master Controllers

Typically a SPI master is defined in the arch/⋯/mach-/board-.c as a “platform
device”. The master configuration is passed to the driver via a table found in
include/linux/spi/pxa2xx_spi.h:

struct pxa2xx_spi_controller {
u16 num_chipselect;
u8 enable_dma;

};

The“pxa2xx_spi_controller.num_chipselect”field is used to determine the number
of slave device (chips) attached to this SPI master.

The “pxa2xx_spi_controller.enable_dma”field informs the driver that SSP DMA
should be used. This caused the driver to acquire two DMA channels: rx_channel
and tx_channel. The rx_channel has a higher DMA service priority the tx_channel.
See the “PXA2xx Developer Manual”section “DMA Controller”.

19

Linux Spi Documentation

4.2 NSSP MASTER SAMPLE

Below is a sample configuration using the PXA255 NSSP:

static struct resource pxa_spi_nssp_resources[] = {
[0] = {

.start = __PREG(SSCR0_P(2)), /* Start address of NSSP */

.end = __PREG(SSCR0_P(2)) + 0x2c, /* Range of registers */

.flags = IORESOURCE_MEM,
},
[1] = {

.start = IRQ_NSSP, /* NSSP IRQ */

.end = IRQ_NSSP,

.flags = IORESOURCE_IRQ,
},

};

static struct pxa2xx_spi_controller pxa_nssp_master_info = {
.num_chipselect = 1, /* Matches the number of chips attached to NSSP␣

↪→*/
.enable_dma = 1, /* Enables NSSP DMA */

};

static struct platform_device pxa_spi_nssp = {
.name = "pxa2xx-spi", /* MUST BE THIS VALUE, so device match driver␣

↪→*/
.id = 2, /* Bus number, MUST MATCH SSP number 1..n */
.resource = pxa_spi_nssp_resources,
.num_resources = ARRAY_SIZE(pxa_spi_nssp_resources),
.dev = {

.platform_data = &pxa_nssp_master_info, /* Passed to driver␣
↪→*/

},
};

static struct platform_device *devices[] __initdata = {
&pxa_spi_nssp,

};

static void __init board_init(void)
{

(void)platform_add_device(devices, ARRAY_SIZE(devices));
}

4.3 Declaring Slave Devices

Typically each SPI slave (chip) is defined in the arch/⋯/mach-/board-.c using the
“spi_board_info”structure found in“linux/spi/spi.h”. See“Documentation/spi/spi-
summary.rst”for additional information.
Each slave device attached to the PXA must provide slave specific con-
figuration information via the structure “pxa2xx_spi_chip”found in “in-
clude/linux/spi/pxa2xx_spi.h”. The pxa2xx_spi master controller driver will uses
the configuration whenever the driver communicates with the slave device. All

20 Chapter 4. PXA2xx SPI on SSP driver HOWTO

Linux Spi Documentation

fields are optional.

struct pxa2xx_spi_chip {
u8 tx_threshold;
u8 rx_threshold;
u8 dma_burst_size;
u32 timeout;
u8 enable_loopback;
void (*cs_control)(u32 command);

};

The“pxa2xx_spi_chip.tx_threshold”and“pxa2xx_spi_chip.rx_threshold”fields are
used to configure the SSP hardware fifo. These fields are critical to the perfor-
mance of pxa2xx_spi driver and misconfiguration will result in rx fifo overruns
(especially in PIO mode transfers). Good default values are:

.tx_threshold = 8,

.rx_threshold = 8,

The range is 1 to 16 where zero indicates “use default”.
The“pxa2xx_spi_chip.dma_burst_size”field is used to configure PXA2xx DMA en-
gine and is related the“spi_device.bits_per_word”field. Read and understand the
PXA2xx“Developer Manual”sections on the DMA controller and SSP Controllers
to determine the correct value. An SSP configured for byte-wide transfers would
use a value of 8. The driver will determine a reasonable default if dma_burst_size
== 0.

The“pxa2xx_spi_chip.timeout”fields is used to efficiently handle trailing bytes in
the SSP receiver fifo. The correct value for this field is dependent on the SPI bus
speed (“spi_board_info.max_speed_hz”) and the specific slave device. Please note
that the PXA2xx SSP 1 does not support trailing byte timeouts and must busy-wait
any trailing bytes.

The“pxa2xx_spi_chip.enable_loopback”field is used to place the SSP porting into
internal loopback mode. In this mode the SSP controller internally connects the
SSPTX pin to the SSPRX pin. This is useful for initial setup testing.

The “pxa2xx_spi_chip.cs_control”field is used to point to a board specific func-
tion for asserting/deasserting a slave device chip select. If the field is NULL, the
pxa2xx_spi master controller driver assumes that the SSP port is configured to use
SSPFRM instead.

NOTE: the SPI driver cannot control the chip select if SSPFRM is used, so the
chipselect is dropped after each spi_transfer. Most devices need chip select as-
serted around the complete message. Use SSPFRM as a GPIO (through cs_control)
to accommodate these chips.

4.3. Declaring Slave Devices 21

Linux Spi Documentation

4.4 NSSP SLAVE SAMPLE

The pxa2xx_spi_chip structure is passed to the pxa2xx_spi driver in the
“spi_board_info.controller_data”field. Below is a sample configuration using the
PXA255 NSSP.

/* Chip Select control for the CS8415A SPI slave device */
static void cs8415a_cs_control(u32 command)
{

if (command & PXA2XX_CS_ASSERT)
GPCR(2) = GPIO_bit(2);

else
GPSR(2) = GPIO_bit(2);

}

/* Chip Select control for the CS8405A SPI slave device */
static void cs8405a_cs_control(u32 command)
{

if (command & PXA2XX_CS_ASSERT)
GPCR(3) = GPIO_bit(3);

else
GPSR(3) = GPIO_bit(3);

}

static struct pxa2xx_spi_chip cs8415a_chip_info = {
.tx_threshold = 8, /* SSP hardward FIFO threshold */
.rx_threshold = 8, /* SSP hardward FIFO threshold */
.dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */
.timeout = 235, /* See Intel documentation */
.cs_control = cs8415a_cs_control, /* Use external chip select */

};

static struct pxa2xx_spi_chip cs8405a_chip_info = {
.tx_threshold = 8, /* SSP hardward FIFO threshold */
.rx_threshold = 8, /* SSP hardward FIFO threshold */
.dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */
.timeout = 235, /* See Intel documentation */
.cs_control = cs8405a_cs_control, /* Use external chip select */

};

static struct spi_board_info streetracer_spi_board_info[] __initdata = {
{

.modalias = "cs8415a", /* Name of spi_driver for this device␣
↪→*/

.max_speed_hz = 3686400, /* Run SSP as fast a possbile */

.bus_num = 2, /* Framework bus number */

.chip_select = 0, /* Framework chip select */

.platform_data = NULL; /* No spi_driver specific config */

.controller_data = &cs8415a_chip_info, /* Master chip config␣
↪→*/

.irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */
},
{

.modalias = "cs8405a", /* Name of spi_driver for this device␣
↪→*/

.max_speed_hz = 3686400, /* Run SSP as fast a possbile */
(continues on next page)

22 Chapter 4. PXA2xx SPI on SSP driver HOWTO

Linux Spi Documentation

(continued from previous page)
.bus_num = 2, /* Framework bus number */
.chip_select = 1, /* Framework chip select */
.controller_data = &cs8405a_chip_info, /* Master chip config␣

↪→*/
.irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */

},
};

static void __init streetracer_init(void)
{

spi_register_board_info(streetracer_spi_board_info,
ARRAY_SIZE(streetracer_spi_board_info));

}

4.5 DMA and PIO I/O Support

The pxa2xx_spi driver supports both DMA and interrupt driven PIOmessage trans-
fers. The driver defaults to PIO mode and DMA transfers must be enabled by set-
ting the “enable_dma”flag in the “pxa2xx_spi_controller”structure. The DMA
mode supports both coherent and stream based DMA mappings.

The following logic is used to determine the type of I/O to be used on a per
“spi_transfer”basis:
if !enable_dma then

always use PIO transfers

if spi_message.len > 8191 then
print "rate limited" warning
use PIO transfers

if spi_message.is_dma_mapped and rx_dma_buf != 0 and tx_dma_buf != 0 then
use coherent DMA mode

if rx_buf and tx_buf are aligned on 8 byte boundary then
use streaming DMA mode

otherwise
use PIO transfer

4.6 THANKS TO

David Brownell and others for mentoring the development of this driver.

4.5. DMA and PIO I/O Support 23

Linux Spi Documentation

24 Chapter 4. PXA2xx SPI on SSP driver HOWTO

CHAPTER

FIVE

SPI_LM70LLP : LM70-LLP PARPORT-TO-SPI ADAPTER

Supported board/chip:

• National Semiconductor LM70 LLP evaluation board

Datasheet: http://www.national.com/pf/LM/LM70.html

Author: Kaiwan N Billimoria <kaiwan@designergraphix.com>

5.1 Description

This driver provides glue code connecting a National Semiconductor LM70 LLP
temperature sensor evaluation board to the kernel’s SPI core subsystem.
This is a SPI master controller driver. It can be used in conjunction with (layered
under) the LM70 logical driver (a“SPI protocol driver”). In effect, this driver turns
the parallel port interface on the eval board into a SPI bus with a single device,
which will be driven by the generic LM70 driver (drivers/hwmon/lm70.c).

5.2 Hardware Interfacing

The schematic for this particular board (the LM70EVAL-LLP) is available (on page
4) here:

http://www.national.com/appinfo/tempsensors/files/
LM70LLPEVALmanual.pdf

The hardware interfacing on the LM70 LLP eval board is as follows:

25

http://www.national.com/pf/LM/LM70.html
mailto:kaiwan@designergraphix.com
http://www.national.com/appinfo/tempsensors/files/LM70LLPEVALmanual.pdf
http://www.national.com/appinfo/tempsensors/files/LM70LLPEVALmanual.pdf

Linux Spi Documentation

Parallel LM70 LLP
Port . Direction JP2 Header
D0 2 • •

D1 3 –> V+ 5
D2 4 –> V+ 5
D3 5 –> V+ 5
D4 6 –> V+ 5
D5 7 –> nCS 8
D6 8 –> SCLK 3
D7 9 –> SI/O 5
GND 25 • GND 7

Select 13 <– SI/O 1

Note that since the LM70 uses a“3-wire”variant of SPI, the SI/SO pin is connected
to both pin D7 (as Master Out) and Select (as Master In) using an arrangement
that lets either the parport or the LM70 pull the pin low. This can’t be shared
with true SPI devices, but other 3-wire devices might share the same SI/SO pin.

The bitbanger routine in this driver (lm70_txrx) is called back from the bound“hw-
mon/lm70”protocol driver through its sysfs hook, using a spi_write_then_read()
call. It performs Mode 0 (SPI/Microwire) bitbanging. The lm70 driver then in-
teprets the resulting digital temperature value and exports it through sysfs.

A “gotcha”: National Semiconductor’s LM70 LLP eval board circuit schematic
shows that the SI/O line from the LM70 chip is connected to the base of a transistor
Q1 (and also a pullup, and a zener diode to D7); while the collector is tied to VCC.

Interpreting this circuit, when the LM70 SI/O line is High (or tristate and not
grounded by the host via D7), the transistor conducts and switches the collector
to zero, which is reflected on pin 13 of the DB25 parport connector. When SI/O is
Low (driven by the LM70 or the host) on the other hand, the transistor is cut off
and the voltage tied to it’s collector is reflected on pin 13 as a High level.
So: the getmiso inline routine in this driver takes this fact into account, inverting
the value read at pin 13.

5.3 Thanks to

• David Brownell for mentoring the SPI-side driver development.

• Dr.Craig Hollabaugh for the (early) “manual”bitbanging driver version.
• Nadir Billimoria for help interpreting the circuit schematic.

26 Chapter 5. spi_lm70llp : LM70-LLP parport-to-SPI adapter

CHAPTER

SIX

KERNEL DRIVER SPI-SC18IS602

Supported chips:

• NXP SI18IS602/602B/603

Datasheet: http://www.nxp.com/documents/data_sheet/SC18IS602_602B_
603.pdf

Author: Guenter Roeck <linux@roeck-us.net>

6.1 Description

This driver provides connects a NXP SC18IS602/603 I2C-bus to SPI bridge to the
kernel’s SPI core subsystem.
The driver does not probe for supported chips, since the SI18IS602/603 does not
support Chip ID registers. You will have to instantiate the devices explicitly. Please
see Documentation/i2c/instantiating-devices.rst for details.

6.2 Usage Notes

This driver requires the I2C adapter driver to support raw I2C messages. I2C
adapter drivers which can only handle the SMBus protocol are not supported.

The maximum SPI message size supported by SC18IS602/603 is 200 bytes. At-
tempts to initiate longer transfers will fail with -EINVAL. EEPROM read opera-
tions and similar large accesses have to be split into multiple chunks of no more
than 200 bytes per SPI message (128 bytes of data per message is recommended).
This means that programs such as “cp”or “od”, which automatically use large
block sizes to access a device, can not be used directly to read data from EEP-
ROM. Programs such as dd, where the block size can be specified, should be used
instead.

27

http://www.nxp.com/documents/data_sheet/SC18IS602_602B_603.pdf
http://www.nxp.com/documents/data_sheet/SC18IS602_602B_603.pdf
mailto:linux@roeck-us.net

