
Linux Sparc Documentation

The kernel development community

Jul 14, 2020

CONTENTS

i

ii

CHAPTER

ONE

STEPS FOR SENDING ‘BREAK’ON SUNHV CONSOLE

On Baremetal:
1. press Esc + ‘B’

On LDOM:
1. press Ctrl + ‘]’
2. telnet> send break

1

Linux Sparc Documentation

2 Chapter 1. Steps for sending ‘break’on sunhv console

CHAPTER

TWO

APPLICATION DATA INTEGRITY (ADI)

SPARCM7 processor adds the Application Data Integrity (ADI) feature. ADI allows
a task to set version tags on any subset of its address space. Once ADI is enabled
and version tags are set for ranges of address space of a task, the processor will
compare the tag in pointers to memory in these ranges to the version set by the
application previously. Access to memory is granted only if the tag in given pointer
matches the tag set by the application. In case of mismatch, processor raises an
exception.

Following steps must be taken by a task to enable ADI fully:

1. Set the user mode PSTATE.mcde bit. This acts as master switch for the task’
s entire address space to enable/disable ADI for the task.

2. Set TTE.mcd bit on any TLB entries that correspond to the range of addresses
ADI is being enabled on. MMU checks the version tag only on the pages that
have TTE.mcd bit set.

3. Set the version tag for virtual addresses using stxa instruction and one of the
MCD specific ASIs. Each stxa instruction sets the given tag for one ADI block
size number of bytes. This step must be repeated for entire page to set tags
for entire page.

ADI block size for the platform is provided by the hypervisor to kernel in machine
description tables. Hypervisor also provides the number of top bits in the virtual
address that specify the version tag. Once version tag has been set for a memory
location, the tag is stored in the physical memory and the same tagmust be present
in the ADI version tag bits of the virtual address being presented to the MMU. For
example on SPARC M7 processor, MMU uses bits 63-60 for version tags and ADI
block size is same as cacheline size which is 64 bytes. A task that sets ADI version
to, say 10, on a range of memory, must access that memory using virtual addresses
that contain 0xa in bits 63-60.

ADI is enabled on a set of pages using mprotect() with PROT_ADI flag. When ADI is
enabled on a set of pages by a task for the first time, kernel sets the PSTATE.mcde
bit fot the task. Version tags for memory addresses are set with an stxa instruction
on the addresses using ASI_MCD_PRIMARY or ASI_MCD_ST_BLKINIT_PRIMARY.
ADI block size is provided by the hypervisor to the kernel. Kernel returns the
value of ADI block size to userspace using auxiliary vector along with other ADI
info. Following auxiliary vectors are provided by the kernel:

3

Linux Sparc Documentation

AT_ADI_BLKSZADI block size. This is the granularity and alignment, in
bytes, of ADI versioning.

AT_ADI_NBITSNumber of ADI version bits in the VA

2.1 IMPORTANT NOTES

• Version tag values of 0x0 and 0xf are reserved. These values match any tag
in virtual address and never generate a mismatch exception.

• Version tags are set on virtual addresses from userspace even though tags
are stored in physical memory. Tags are set on a physical page after it has
been allocated to a task and a pte has been created for it.

• When a task frees a memory page it had set version tags on, the page goes
back to free page pool. When this page is re-allocated to a task, kernel clears
the page using block initialization ASI which clears the version tags as well
for the page. If a page allocated to a task is freed and allocated back to the
same task, old version tags set by the task on that page will no longer be
present.

• ADI tag mismatches are not detected for non-faulting loads.

• Kernel does not set any tags for user pages and it is entirely a task’s re-
sponsibility to set any version tags. Kernel does ensure the version tags are
preserved if a page is swapped out to the disk and swapped back in. It also
preserves that version tags if a page is migrated.

• ADI works for any size pages. A userspace task need not be aware of page
size when using ADI. It can simply select a virtual address range, enable
ADI on the range using mprotect() and set version tags for the entire range.
mprotect() ensures range is aligned to page size and is a multiple of page
size.

• ADI tags can only be set on writable memory. For example, ADI tags can not
be set on read-only mappings.

2.2 ADI related traps

With ADI enabled, following new traps may occur:

2.2.1 Disrupting memory corruption

When a store accesses a memory localtion that has TTE.mcd=1, the task
is running with ADI enabled (PSTATE.mcde=1), and the ADI tag in the
address used (bits 63:60) does not match the tag set on the correspond-
ing cacheline, a memory corruption trap occurs. By default, it is a dis-
rupting trap and is sent to the hypervisor first. Hypervisor creates a
sun4v error report and sends a resumable error (TT=0x7e) trap to the
kernel. The kernel sends a SIGSEGV to the task that resulted in this trap
with the following info:

4 Chapter 2. Application Data Integrity (ADI)

Linux Sparc Documentation

siginfo.si_signo = SIGSEGV;
siginfo.errno = 0;
siginfo.si_code = SEGV_ADIDERR;
siginfo.si_addr = addr; /* PC where first mismatch occurred */
siginfo.si_trapno = 0;

2.2.2 Precise memory corruption

When a store accesses a memory location that has TTE.mcd=1, the task
is running with ADI enabled (PSTATE.mcde=1), and the ADI tag in the
address used (bits 63:60) does not match the tag set on the correspond-
ing cacheline, a memory corruption trap occurs. If MCD precise excep-
tion is enabled (MCDPERR=1), a precise exception is sent to the kernel
with TT=0x1a. The kernel sends a SIGSEGV to the task that resulted in
this trap with the following info:

siginfo.si_signo = SIGSEGV;
siginfo.errno = 0;
siginfo.si_code = SEGV_ADIPERR;
siginfo.si_addr = addr; /* address that caused trap */
siginfo.si_trapno = 0;

NOTE: ADI tag mismatch on a load always results in precise trap.

2.2.3 MCD disabled

When a task has not enabled ADI and attempts to set ADI version on a
memory address, processor sends an MCD disabled trap. This trap is
handled by hypervisor first and the hypervisor vectors this trap through
to the kernel as Data Access Exception trap with fault type set to 0xa (in-
valid ASI). When this occurs, the kernel sends the task SIGSEGV signal
with following info:

siginfo.si_signo = SIGSEGV;
siginfo.errno = 0;
siginfo.si_code = SEGV_ACCADI;
siginfo.si_addr = addr; /* address that caused trap */
siginfo.si_trapno = 0;

2.2.4 Sample program to use ADI

Following sample program is meant to illustrate how to use the ADI functionality:

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <elf.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/mman.h>

(continues on next page)

2.2. ADI related traps 5

Linux Sparc Documentation

(continued from previous page)
#include <asm/asi.h>

#ifndef AT_ADI_BLKSZ
#define AT_ADI_BLKSZ 48
#endif
#ifndef AT_ADI_NBITS
#define AT_ADI_NBITS 49
#endif

#ifndef PROT_ADI
#define PROT_ADI 0x10
#endif

#define BUFFER_SIZE 32*1024*1024UL

main(int argc, char* argv[], char* envp[])
{

unsigned long i, mcde, adi_blksz, adi_nbits;
char *shmaddr, *tmp_addr, *end, *veraddr, *clraddr;
int shmid, version;

Elf64_auxv_t *auxv;

adi_blksz = 0;

while(*envp++ != NULL);
for (auxv = (Elf64_auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) {

switch (auxv->a_type) {
case AT_ADI_BLKSZ:

adi_blksz = auxv->a_un.a_val;
break;

case AT_ADI_NBITS:
adi_nbits = auxv->a_un.a_val;
break;

}
}
if (adi_blksz == 0) {

fprintf(stderr, "Oops! ADI is not supported\n");
exit(1);

}

printf("ADI capabilities:\n");
printf("\tBlock size = %ld\n", adi_blksz);
printf("\tNumber of bits = %ld\n", adi_nbits);

if ((shmid = shmget(2, BUFFER_SIZE,
IPC_CREAT | SHM_R | SHM_W)) < 0) {

perror("shmget failed");
exit(1);

}

shmaddr = shmat(shmid, NULL, 0);
if (shmaddr == (char *)-1) {

perror("shm attach failed");
shmctl(shmid, IPC_RMID, NULL);
exit(1);

}
(continues on next page)

6 Chapter 2. Application Data Integrity (ADI)

Linux Sparc Documentation

(continued from previous page)

if (mprotect(shmaddr, BUFFER_SIZE, PROT_READ|PROT_WRITE|PROT_ADI)) {
perror("mprotect failed");
goto err_out;

}

/* Set the ADI version tag on the shm segment
*/

version = 10;
tmp_addr = shmaddr;
end = shmaddr + BUFFER_SIZE;
while (tmp_addr < end) {

asm volatile(
"stxa %1, [%0]0x90\n\t"
:
: "r" (tmp_addr), "r" (version));

tmp_addr += adi_blksz;
}

asm volatile("membar #Sync\n\t");

/* Create a versioned address from the normal address by placing
* version tag in the upper adi_nbits bits

*/
tmp_addr = (void *) ((unsigned long)shmaddr << adi_nbits);
tmp_addr = (void *) ((unsigned long)tmp_addr >> adi_nbits);
veraddr = (void *) (((unsigned long)version << (64-adi_nbits))

| (unsigned long)tmp_addr);

printf("Starting the writes:\n");
for (i = 0; i < BUFFER_SIZE; i++) {

veraddr[i] = (char)(i);
if (!(i % (1024 * 1024)))

printf(".");
}
printf("\n");

printf("Verifying data...");
fflush(stdout);

for (i = 0; i < BUFFER_SIZE; i++)
if (veraddr[i] != (char)i)

printf("\nIndex %lu mismatched\n", i);
printf("Done.\n");

/* Disable ADI and clean up
*/

if (mprotect(shmaddr, BUFFER_SIZE, PROT_READ|PROT_WRITE)) {
perror("mprotect failed");
goto err_out;

}

if (shmdt((const void *)shmaddr) != 0)
perror("Detach failure");

shmctl(shmid, IPC_RMID, NULL);

exit(0);

(continues on next page)

2.2. ADI related traps 7

Linux Sparc Documentation

(continued from previous page)
err_out:

if (shmdt((const void *)shmaddr) != 0)
perror("Detach failure");

shmctl(shmid, IPC_RMID, NULL);
exit(1);

}

8 Chapter 2. Application Data Integrity (ADI)

CHAPTER

THREE

ORACLE DATA ANALYTICS ACCELERATOR (DAX)

DAX is a coprocessor which resides on the SPARC M7 (DAX1) and M8 (DAX2) pro-
cessor chips, and has direct access to the CPU’s L3 caches as well as physical
memory. It can perform several operations on data streams with various input and
output formats. A driver provides a transport mechanism and has limited knowl-
edge of the various opcodes and data formats. A user space library provides high
level services and translates these into low level commands which are then passed
into the driver and subsequently the Hypervisor and the coprocessor. The library
is the recommended way for applications to use the coprocessor, and the driver
interface is not intended for general use. This document describes the general
flow of the driver, its structures, and its programmatic interface. It also provides
example code sufficient to write user or kernel applications that use DAX function-
ality.

The user library is open source and available at:

https://oss.oracle.com/git/gitweb.cgi?p=libdax.git

The Hypervisor interface to the coprocessor is described in detail in the accompa-
nying document, dax-hv-api.txt, which is a plain text excerpt of the (Oracle inter-
nal)“UltraSPARC Virtual Machine Specification”version 3.0.20+15, dated 2017-
09-25.

3.1 High Level Overview

A coprocessor request is described by a Command Control Block (CCB). The CCB
contains an opcode and various parameters. The opcode specifies what operation
is to be done, and the parameters specify options, flags, sizes, and addresses. The
CCB (or an array of CCBs) is passed to the Hypervisor, which handles queueing
and scheduling of requests to the available coprocessor execution units. A status
code returned indicates if the request was submitted successfully or if there was
an error. One of the addresses given in each CCB is a pointer to a“completion area”
, which is a 128 byte memory block that is written by the coprocessor to provide
execution status. No interrupt is generated upon completion; the completion area
must be polled by software to find out when a transaction has finished, but the
M7 and later processors provide a mechanism to pause the virtual processor until
the completion status has been updated by the coprocessor. This is done using
the monitored load and mwait instructions, which are described in more detail
later. The DAX coprocessor was designed so that after a request is submitted, the
kernel is no longer involved in the processing of it. The polling is done at the user

9

https://oss.oracle.com/git/gitweb.cgi?p=libdax.git

Linux Sparc Documentation

level, which results in almost zero latency between completion of a request and
resumption of execution of the requesting thread.

3.2 Addressing Memory

The kernel does not have access to physical memory in the Sun4v architecture,
as there is an additional level of memory virtualization present. This intermediate
level is called “real”memory, and the kernel treats this as if it were physical.
The Hypervisor handles the translations between real memory and physical so
that each logical domain (LDOM) can have a partition of physical memory that is
isolated from that of other LDOMs. When the kernel sets up a virtual mapping, it
specifies a virtual address and the real address to which it should be mapped.

The DAX coprocessor can only operate on physical memory, so before a request
can be fed to the coprocessor, all the addresses in a CCB must be converted into
physical addresses. The kernel cannot do this since it has no visibility into physical
addresses. So a CCBmay contain either the virtual or real addresses of the buffers
or a combination of them. An “address type”field is available for each address
that may be given in the CCB. In all cases, the Hypervisor will translate all the
addresses to physical before dispatching to hardware. Address translations are
performed using the context of the process initiating the request.

3.3 The Driver API

An application makes requests to the driver via the write() system call, and gets
results (if any) via read(). The completion areas are made accessible via mmap(),
and are read-only for the application.

The request may either be an immediate command or an array of CCBs to be
submitted to the hardware.

Each open instance of the device is exclusive to the thread that opened it, and
must be used by that thread for all subsequent operations. The driver open func-
tion creates a new context for the thread and initializes it for use. This context
contains pointers and values used internally by the driver to keep track of submit-
ted requests. The completion area buffer is also allocated, and this is large enough
to contain the completion areas for many concurrent requests. When the device
is closed, any outstanding transactions are flushed and the context is cleaned up.

On a DAX1 system (M7), the device will be called “oradax1”, while on a DAX2
system (M8) it will be “oradax2”. If an application requires one or the other,
it should simply attempt to open the appropriate device. Only one of the devices
will exist on any given system, so the name can be used to determine what the
platform supports.

The immediate commands are CCB_DEQUEUE, CCB_KILL, and CCB_INFO. For all
of these, success is indicated by a return value from write() equal to the number
of bytes given in the call. Otherwise -1 is returned and errno is set.

10 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

3.3.1 CCB_DEQUEUE

Tells the driver to clean up resources associated with past requests. Since no
interrupt is generated upon the completion of a request, the driver must be told
when it may reclaim resources. No further status information is returned, so the
user should not subsequently call read().

3.3.2 CCB_KILL

Kills a CCB during execution. The CCB is guaranteed to not continue executing
once this call returns successfully. On success, read() must be called to retrieve
the result of the action.

3.3.3 CCB_INFO

Retrieves information about a currently executing CCB. Note that some Hypervi-
sors might return‘notfound’when the CCB is in‘inprogress’state. To ensure a
CCB in the‘notfound’state will never be executed, CCB_KILL must be invoked on
that CCB. Upon success, read() must be called to retrieve the details of the action.

3.3.4 Submission of an array of CCBs for execution

Awrite() whose length is amultiple of the CCB size is treated as a submit operation.
The file offset is treated as the index of the completion area to use, and may be
set via lseek() or using the pwrite() system call. If -1 is returned then errno is
set to indicate the error. Otherwise, the return value is the length of the array
that was actually accepted by the coprocessor. If the accepted length is equal to
the requested length, then the submission was completely successful and there
is no further status needed; hence, the user should not subsequently call read().
Partial acceptance of the CCB array is indicated by a return value less than the
requested length, and read() must be called to retrieve further status information.
The status will reflect the error caused by the first CCB that was not accepted, and
status_data will provide additional data in some cases.

3.3.5 MMAP

Themmap() function provides access to the completion area allocated in the driver.
Note that the completion area is not writeable by the user process, and the mmap
call must not specify PROT_WRITE.

3.3. The Driver API 11

Linux Sparc Documentation

3.4 Completion of a Request

The first byte in each completion area is the command status which is updated
by the coprocessor hardware. Software may take advantage of new M7/M8 pro-
cessor capabilities to efficiently poll this status byte. First, a “monitored load”
is achieved via a Load from Alternate Space (ldxa, lduba, etc.) with ASI 0x84
(ASI_MONITOR_PRIMARY). Second, a“monitored wait”is achieved via the mwait
instruction (a write to %asr28). This instruction is like pause in that it suspends
execution of the virtual processor for the given number of nanoseconds, but in ad-
dition will terminate early when one of several events occur. If the block of data
containing the monitored location is modified, then the mwait terminates. This
causes software to resume execution immediately (without a context switch or
kernel to user transition) after a transaction completes. Thus the latency between
transaction completion and resumption of execution may be just a few nanosec-
onds.

3.5 Application Life Cycle of a DAX Submission

• open dax device

• call mmap() to get the completion area address

• allocate a CCB and fill in the opcode, flags, parameters, addresses, etc.

• submit CCB via write() or pwrite()

• go into a loop executing monitored load + monitored wait and terminate
when the command status indicates the request is complete (CCB_KILL or
CCB_INFO may be used any time as necessary)

• perform a CCB_DEQUEUE

• call munmap() for completion area

• close the dax device

3.6 Memory Constraints

The DAX hardware operates only on physical addresses. Therefore, it is not aware
of virtual memory mappings and the discontiguities that may exist in the physical
memory that a virtual buffer maps to. There is no I/O TLB or any scatter/gather
mechanism. All buffers, whether input or output, must reside in a physically con-
tiguous region of memory.

The Hypervisor translates all addresses within a CCB to physical before handing
off the CCB to DAX. The Hypervisor determines the virtual page size for each
virtual address given, and uses this to program a size limit for each address. This
prevents the coprocessor from reading or writing beyond the bound of the virtual
page, even though it is accessing physical memory directly. A simpler way of saying
this is that a DAX operation will never “cross”a virtual page boundary. If an 8k
virtual page is used, then the data is strictly limited to 8k. If a user’s buffer is

12 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

larger than 8k, then a larger page size must be used, or the transaction size will
be truncated to 8k.

Huge pages. A user may allocate huge pages using standard interfaces. Memory
buffers residing on huge pages may be used to achieve much larger DAX trans-
action sizes, but the rules must still be followed, and no transaction will cross a
page boundary, even a huge page. A major caveat is that Linux on Sparc presents
8Mb as one of the huge page sizes. Sparc does not actually provide a 8Mb hard-
ware page size, and this size is synthesized by pasting together two 4Mb pages.
The reasons for this are historical, and it creates an issue because only half of this
8Mb page can actually be used for any given buffer in a DAX request, and it must
be either the first half or the second half; it cannot be a 4Mb chunk in the middle,
since that crosses a (hardware) page boundary. Note that this entire issue may be
hidden by higher level libraries.

3.6.1 CCB Structure

A CCB is an array of 8 64-bit words. Several of these words provide command
opcodes, parameters, flags, etc., and the rest are addresses for the completion
area, output buffer, and various inputs:

struct ccb {
u64 control;
u64 completion;
u64 input0;
u64 access;
u64 input1;
u64 op_data;
u64 output;
u64 table;

};

See libdax/common/sys/dax1/dax1_ccb.h for a detailed description of each of these
fields, and see dax-hv-api.txt for a complete description of the Hypervisor API avail-
able to the guest OS (ie, Linux kernel).

The first word (control) is examined by the driver for the following:
• CCB version, which must be consistent with hardware version

• Opcode, which must be one of the documented allowable commands

• Address types, whichmust be set to“virtual”for all the addresses given by
the user, thereby ensuring that the application can only access memory
that it owns

3.6. Memory Constraints 13

Linux Sparc Documentation

3.7 Example Code

The DAX is accessible to both user and kernel code. The kernel code can make
hypercalls directly while the user code must use wrappers provided by the driver.
The setup of the CCB is nearly identical for both; the only difference is in prepa-
ration of the completion area. An example of user code is given now, with kernel
code afterwards.

In order to program using the driver API, the file
arch/sparc/include/uapi/asm/oradax.h must be included.

First, the proper device must be opened. For M7 it will be /dev/oradax1 and for
M8 it will be /dev/oradax2. The simplest procedure is to attempt to open both, as
only one will succeed:

fd = open("/dev/oradax1", O_RDWR);
if (fd < 0)

fd = open("/dev/oradax2", O_RDWR);
if (fd < 0)

/* No DAX found */

Next, the completion area must be mapped:

completion_area = mmap(NULL, DAX_MMAP_LEN, PROT_READ, MAP_SHARED, fd, 0);

All input and output buffers must be fully contained in one hardware page, since
as explained above, the DAX is strictly constrained by virtual page boundaries. In
addition, the output buffer must be 64-byte aligned and its size must be a multiple
of 64 bytes because the coprocessor writes in units of cache lines.

This example demonstrates the DAX Scan command, which takes as input a vector
and a match value, and produces a bitmap as the output. For each input element
that matches the value, the corresponding bit is set in the output.

In this example, the input vector consists of a series of single bits, and the match
value is 0. So each 0 bit in the input will produce a 1 in the output, and vice versa,
which produces an output bitmap which is the input bitmap inverted.

For details of all the parameters and bits used in this CCB, please refer to section
36.2.1.3 of the DAX Hypervisor API document, which describes the Scan command
in detail:

ccb->control = /* Table 36.1, CCB Header Format */
(2L << 48) /* command = Scan Value */

| (3L << 40) /* output address type = primary virtual */
| (3L << 34) /* primary input address type = primary virtual */

/* Section 36.2.1, Query CCB Command Formats */
| (1 << 28) /* 36.2.1.1.1 primary input format = fixed width␣

↪→bit packed */
| (0 << 23) /* 36.2.1.1.2 primary input element size = 0 (1␣

↪→bit) */
| (8 << 10) /* 36.2.1.1.6 output format = bit vector */
| (0 << 5) /* 36.2.1.3 First scan criteria size = 0 (1 byte)␣

↪→*/
| (31 << 0); /* 36.2.1.3 Disable second scan criteria */

(continues on next page)

14 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

(continued from previous page)

ccb->completion = 0; /* Completion area address, to be filled in by␣
↪→driver */

ccb->input0 = (unsigned long) input; /* primary input address */

ccb->access = /* Section 36.2.1.2, Data Access Control */
(2 << 24) /* Primary input length format = bits */

| (nbits - 1); /* number of bits in primary input stream, minus 1␣
↪→*/

ccb->input1 = 0; /* secondary input address, unused */

ccb->op_data = 0; /* scan criteria (value to be matched) */

ccb->output = (unsigned long) output; /* output address */

ccb->table = 0; /* table address, unused */

The CCB submission is a write() or pwrite() system call to the driver. If the call
fails, then a read() must be used to retrieve the status:

if (pwrite(fd, ccb, 64, 0) != 64) {
struct ccb_exec_result status;
read(fd, &status, sizeof(status));
/* bail out */

}

After a successful submission of the CCB, the completion area may be polled to
determine when the DAX is finished. Detailed information on the contents of the
completion area can be found in section 36.2.2 of the DAX HV API document:

while (1) {
/* Monitored Load */
__asm__ __volatile__("lduba [%1] 0x84, %0\n"

: "=r" (status)
: "r" (completion_area));

if (status) /* 0 indicates command in progress */
break;

/* MWAIT */
__asm__ __volatile__("wr %%g0, 1000, %%asr28\n" ::); /* 1000 ns␣

↪→*/
}

A completion area status of 1 indicates successful completion of the CCB and va-
lidity of the output bitmap, which may be used immediately. All other non-zero
values indicate error conditions which are described in section 36.2.2:

if (completion_area[0] != 1) { /* section 36.2.2, 1 = command ran and␣
↪→succeeded */

/* completion_area[0] contains the completion status */
/* completion_area[1] contains an error code, see 36.2.2 */

}

3.7. Example Code 15

Linux Sparc Documentation

After the completion area has been processed, the driver must be notified that
it can release any resources associated with the request. This is done via the
dequeue operation:

struct dax_command cmd;
cmd.command = CCB_DEQUEUE;
if (write(fd, &cmd, sizeof(cmd)) != sizeof(cmd)) {

/* bail out */
}

Finally, normal program cleanup should be done, i.e., unmapping completion area,
closing the dax device, freeing memory etc.

3.7.1 Kernel example

The only difference in using the DAX in kernel code is the treatment of the com-
pletion area. Unlike user applications which mmap the completion area allocated
by the driver, kernel code must allocate its own memory to use for the completion
area, and this address and its type must be given in the CCB:

ccb->control |= /* Table 36.1, CCB Header Format */
(3L << 32); /* completion area address type = primary virtual␣

↪→*/

ccb->completion = (unsigned long) completion_area; /* Completion area␣
↪→address */

The dax submit hypercall is made directly. The flags used in the ccb_submit call
are documented in the DAX HV API in section 36.3.1/

#include <asm/hypervisor.h>

hv_rv = sun4v_ccb_submit((unsigned long)ccb, 64,
HV_CCB_QUERY_CMD |
HV_CCB_ARG0_PRIVILEGED | HV_CCB_ARG0_TYPE_

↪→PRIMARY |
HV_CCB_VA_PRIVILEGED,
0, &bytes_accepted, &status_data);

if (hv_rv != HV_EOK) {
/* hv_rv is an error code, status_data contains */
/* potential additional status, see 36.3.1.1 */

}

After the submission, the completion area polling code is identical to that in user
land:

while (1) {
/* Monitored Load */
__asm__ __volatile__("lduba [%1] 0x84, %0\n"

: "=r" (status)
: "r" (completion_area));

if (status) /* 0 indicates command in progress */
(continues on next page)

16 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

(continued from previous page)
break;

/* MWAIT */
__asm__ __volatile__("wr %%g0, 1000, %%asr28\n" ::); /* 1000 ns␣

↪→*/
}

if (completion_area[0] != 1) { /* section 36.2.2, 1 = command ran and␣
↪→succeeded */

/* completion_area[0] contains the completion status */
/* completion_area[1] contains an error code, see 36.2.2 */

}

The output bitmap is ready for consumption immediately after the completion sta-
tus indicates success.

3.8 Excer[t from UltraSPARC Virtual Machine Specifica-
tion

Excerpt from UltraSPARC Virtual Machine Specification
Compiled from version 3.0.20+15
Publication date 2017-09-25 08:21
Copyright © 2008, 2015 Oracle and/or its affiliates. All rights␣
↪→reserved.
Extracted via "pdftotext -f 547 -l 572 -layout sun4v_20170925.
↪→pdf"
Authors:

Charles Kunzman
Sam Glidden
Mark Cianchetti

Chapter 36. Coprocessor services
The following APIs provide access via the Hypervisor to␣

↪→hardware assisted data processing functionality.
These APIs may only be provided by certain platforms,␣

↪→and may not be available to all virtual machines
even on supported platforms. Restrictions on the use of␣

↪→these APIs may be imposed in order to support
live-migration and other system management activities.

36.1. Data Analytics Accelerator
The Data Analytics Accelerator (DAX) functionality is a␣

↪→collection of hardware coprocessors that provide
high speed processoring of database-centric operations.␣

↪→The coprocessors may support one or more of
the following data query operations: search, extraction,

↪→ compression, decompression, and translation. The
functionality offered may vary by virtual machine␣

↪→implementation.

3.8. Excer[t from UltraSPARC Virtual Machine Specification 17

Linux Sparc Documentation

The DAX is a virtual device to sun4v guests, with␣
↪→supported data operations indicated by the virtual device

compatibilty property. Functionality is accessed␣
↪→through the submission of Command Control Blocks

(CCBs) via the ccb_submit API function. The operations␣
↪→are processed asynchronously, with the status

of the submitted operations reported through a␣
↪→Completion Area linked to each CCB. Each CCB has a

separate Completion Area and, unless execution order is␣
↪→specifically restricted through the use of serial-

conditional flags, the execution order of submitted␣
↪→CCBs is arbitrary. Likewise, the time to completion

for a given CCB is never guaranteed.

Guest software may implement a software timeout on CCB␣
↪→operations, and if the timeout is exceeded, the

operation may be cancelled or killed via the ccb_kill␣
↪→API function. It is recommended for guest software

to implement a software timeout to account for certain␣
↪→RAS errors which may result in lost CCBs. It is

recommended such implementation use the ccb_info API␣
↪→function to check the status of a CCB prior to

killing it in order to determine if the CCB is still in␣
↪→queue, or may have been lost due to a RAS error.

There is no fixed limit on the number of outstanding␣
↪→CCBs guest software may have queued in the virtual

machine, however, internal resource limitations within␣
↪→the virtual machine can cause CCB submissions

to be temporarily rejected with EWOULDBLOCK. In such␣
↪→cases, guests should continue to attempt

submissions until they succeed; waiting for an␣
↪→outstanding CCB to complete is not necessary, and would

not be a guarantee that a future submission would␣
↪→succeed.

The availablility of DAX coprocessor command service is␣
↪→indicated by the presence of the DAX virtual

device node in the guest MD (Section 8.24.17,␣
↪→“Database Analytics Accelerators (DAX) virtual-device

node”).

36.1.1. DAX Compatibility Property
The query functionality may vary based on the␣

↪→compatibility property of the virtual device:

36.1.1.1. "ORCL,sun4v-dax" Device Compatibility
Available CCB commands:

• No-op/Sync

18 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

• Extract

• Scan Value

• Inverted Scan Value

• Scan Range

509

Coprocessor␣
↪→services

• Inverted Scan Range

• Translate

• Inverted Translate

• Select

See Section 36.2.1, “Query CCB Command Formats” for␣
↪→the corresponding CCB input and output formats.

Only version 0 CCBs are available.

36.1.1.2. "ORCL,sun4v-dax-fc" Device Compatibility
"ORCL,sun4v-dax-fc" is compatible with the "ORCL,

↪→sun4v-dax" interface, and includes additional CCB
bit fields and controls.

36.1.1.3. "ORCL,sun4v-dax2" Device Compatibility
Available CCB commands:

• No-op/Sync

• Extract

• Scan Value

• Inverted Scan Value

• Scan Range

• Inverted Scan Range

• Translate

3.8. Excer[t from UltraSPARC Virtual Machine Specification 19

Linux Sparc Documentation

• Inverted Translate

• Select

See Section 36.2.1, “Query CCB Command Formats” for␣
↪→the corresponding CCB input and output formats.

Version 0 and 1 CCBs are available. Only version 0 CCBs␣
↪→may use Huffman encoded data, whereas only

version 1 CCBs may use OZIP.

36.1.2. DAX Virtual Device Interrupts
The DAX virtual device has multiple interrupts␣

↪→associated with it which may be used by the guest if
desired. The number of device interrupts available to␣

↪→the guest is indicated in the virtual device node of the
guest MD (Section 8.24.17, “Database Analytics␣

↪→Accelerators (DAX) virtual-device node”). If the device
node indicates N interrupts available, the guest may␣

↪→use any value from 0 to N - 1 (inclusive) in a CCB
interrupt number field. Using values outside this range␣

↪→will result in the CCB being rejected for an invalid
field value.

The interrupts may be bound and managed using the␣
↪→standard sun4v device interrupts API (Chapter 16,

Device interrupt services). Sysino interrupts are not␣
↪→available for DAX devices.

36.2. Coprocessor Control Block (CCB)
CCBs are either 64 or 128 bytes long, depending on the␣

↪→operation type. The exact contents of the CCB
are command specific, but all CCBs contain at least one␣

↪→memory buffer address. All memory locations

510

Coprocessor services

referenced by a CCB must be pinned in memory until the CCB␣
↪→either completes execution or is killed
via the ccb_kill API call. Changes in virtual address mappings␣
↪→occurring after CCB submission are not
guaranteed to be visible, and as such all virtual address␣
↪→updates need to be synchronized with CCB
execution.

All CCBs begin with a common 32-bit header.

20 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

Table 36.1. CCB Header Format
Bits Field Description
[31:28] CCB version. For API version 2.0: set to 1 if CCB␣
↪→uses OZIP encoding; set to 0 if the CCB

uses Huffman encoding; otherwise either 0 or 1.␣
↪→For API version 1.0: always set to 0.
[27] When API version 2.0 is negotiated, this is the␣
↪→Pipeline Flag [512]. It is reserved in

API version 1.0
[26] Long CCB flag [512]
[25] Conditional synchronization flag [512]
[24] Serial synchronization flag
[23:16] CCB operation code:

0x00 No Operation (No-op) or Sync
0x01 Extract
0x02 Scan Value
0x12 Inverted Scan Value
0x03 Scan Range
0x13 Inverted Scan Range
0x04 Translate
0x14 Inverted Translate
0x05 Select

[15:13] Reserved
[12:11] Table address type

0b'00 No address
0b'01 Alternate context virtual address
0b'10 Real address
0b'11 Primary context virtual address

[10:8] Output/Destination address type
0b'000 No address
0b'001 Alternate context virtual address
0b'010 Real address
0b'011 Primary context virtual address
0b'100 Reserved
0b'101 Reserved
0b'110 Reserved
0b'111 Reserved

[7:5] Secondary source address type

511

Coprocessor services

Bits Field Description
0b'000 No address
0b'001 Alternate context virtual address
0b'010 Real address
0b'011 Primary context virtual address
0b'100 Reserved

3.8. Excer[t from UltraSPARC Virtual Machine Specification 21

Linux Sparc Documentation

0b'101 Reserved
0b'110 Reserved
0b'111 Reserved

[4:2] Primary source address type
0b'000 No address
0b'001 Alternate context virtual address
0b'010 Real address
0b'011 Primary context virtual address
0b'100 Reserved
0b'101 Reserved
0b'110 Reserved
0b'111 Reserved

[1:0] Completion area address type
0b'00 No address
0b'01 Alternate context virtual address
0b'10 Real address
0b'11 Primary context virtual address

The Long CCB flag indicates whether the submitted CCB is 64 or␣
↪→128 bytes long; value is 0 for 64 bytes
and 1 for 128 bytes.

The Serial and Conditional flags allow simple relative ordering␣
↪→between CCBs. Any CCB with the Serial
flag set will execute sequentially relative to any previous CCB␣
↪→that is also marked as Serial in the same
CCB submission. CCBs without the Serial flag set execute␣
↪→independently, even if they are between CCBs
with the Serial flag set. CCBs marked solely with the Serial␣
↪→flag will execute upon the completion of the
previous Serial CCB, regardless of the completion status of␣
↪→that CCB. The Conditional flag allows CCBs
to conditionally execute based on the successful execution of␣
↪→the closest CCB marked with the Serial flag.
A CCB may only be conditional on exactly one CCB, however, a␣
↪→CCB may be marked both Conditional
and Serial to allow execution chaining. The flags do NOT allow␣
↪→fan-out chaining, where multiple CCBs
execute in parallel based on the completion of another CCB.

The Pipeline flag is an optimization that directs the output of␣
↪→one CCB (the "source" CCB) directly to
the input of the next CCB (the "target" CCB). The target CCB␣
↪→thus does not need to read the input from
memory. The Pipeline flag is advisory and may be dropped.

Both the Pipeline and Serial bits must be set in the source CCB.
↪→ The Conditional bit must be set in the
target CCB. Exactly one CCB must be made conditional on the␣
↪→source CCB; either 0 or 2 target CCBs
is invalid. However, Pipelines can be extended beyond two CCBs:␣

22 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

↪→the sequence would start with a CCB
with both the Pipeline and Serial bits set, proceed through␣
↪→CCBs with the Pipeline, Serial, and Conditional
bits set, and terminate at a CCB that has the Conditional bit␣
↪→set, but not the Pipeline bit.

512

Coprocessor␣
↪→services

The input of the target CCB must start within 64␣
↪→bytes of the output of the source CCB or the pipeline flag

will be ignored. All CCBs in a pipeline must be␣
↪→submitted in the same call to ccb_submit.

The various address type fields indicate how the␣
↪→various address values used in the CCB should be

interpreted by the virtual machine. Not all of the␣
↪→types specified are used by every CCB format. Types

which are not applicable to the given CCB command␣
↪→should be indicated as type 0 (No address). Virtual

addresses used in the CCB must have translation␣
↪→entries present in either the TLB or a configured TSB

for the submitting virtual processor. Virtual␣
↪→addresses which cannot be translated by the virtual machine

will result in the CCB submission being rejected,␣
↪→with the causal virtual address indicated. The CCB

may be resubmitted after inserting the translation,␣
↪→or the address may be translated by guest software and

resubmitted using the real address translation.

36.2.1. Query CCB Command Formats
36.2.1.1. Supported Data Formats, Elements Sizes and Offsets

Data for query commands may be encoded in multiple␣
↪→possible formats. The data query commands use a

common set of values to indicate the encoding formats␣
↪→of the data being processed. Some encoding formats

require multiple data streams for processing,␣
↪→requiring the specification of both primary data formats (the

encoded data) and secondary data streams (meta-data␣
↪→for the encoded data).

36.2.1.1.1. Primary Input Format

The primary input format code is a 4-bit field when␣
↪→it is used. There are 10 primary input formats available.

The packed formats are not endian neutral. Code␣
↪→values not listed below are reserved.

3.8. Excer[t from UltraSPARC Virtual Machine Specification 23

Linux Sparc Documentation

Code Format ␣
↪→Description

0x0 Fixed width byte packed Up to␣
↪→16 bytes

0x1 Fixed width bit packed Up to␣
↪→15 bits (CCB version 0) or 23 bits (CCB version

1);␣
↪→bits are read most significant bit to least significant bit

␣
↪→within a byte

0x2 Variable width byte packed Data␣
↪→stream of lengths must be provided as a secondary

input
0x4 Fixed width byte packed with run Up to 16␣

↪→bytes; data stream of run lengths must be
length encoding provided␣

↪→as a secondary input
0x5 Fixed width bit packed with run Up to 15␣

↪→bits (CCB version 0) or 23 bits (CCB version
length encoding 1); bits␣

↪→are read most significant bit to least significant bit
within a␣

↪→byte; data stream of run lengths must be provided
as a␣

↪→secondary input
0x8 Fixed width byte packed with Up to 16␣

↪→bytes before the encoding; compressed stream
Huffman (CCB version 0) or bits are read␣

↪→most significant bit to least significant bit
OZIP (CCB version 1) encoding within a␣

↪→byte; pointer to the encoding table must be
provided

0x9 Fixed width bit packed with Up to 15 bits␣
↪→(CCB version 0) or 23 bits (CCB version

Huffman (CCB version 0) or 1); compressed␣
↪→stream bits are read most significant bit to

OZIP (CCB version 1) encoding least␣
↪→significant bit within a byte; pointer to the encoding

table must␣
↪→be provided

0xA Variable width byte packed with Up to 16␣
↪→bytes before the encoding; compressed stream

Huffman (CCB version 0) or bits are read␣
↪→most significant bit to least significant bit

OZIP (CCB version 1) encoding within a␣
↪→byte; data stream of lengths must be provided as

a␣
↪→secondary input; pointer to the encoding table must be

provided

24 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

513

Coprocessor␣
↪→services

Code Format ␣
↪→Description

0xC Fixed width byte packed with Up to␣
↪→16 bytes before the encoding; compressed stream

run length encoding, followed by bits␣
↪→are read most significant bit to least significant bit

Huffman (CCB version 0) or ␣
↪→within a byte; data stream of run lengths must be provided

OZIP (CCB version 1) encoding as a␣
↪→secondary input; pointer to the encoding table must

be␣
↪→provided

0xD Fixed width bit packed with Up to␣
↪→15 bits (CCB version 0) or 23 bits(CCB version 1)

run length encoding, followed by ␣
↪→before the encoding; compressed stream bits are read most

Huffman (CCB version 0) or ␣
↪→significant bit to least significant bit within a byte; data

OZIP (CCB version 1) encoding ␣
↪→stream of run lengths must be provided as a secondary

input;
↪→ pointer to the encoding table must be provided

If OZIP encoding is used, there must be no reserved␣
↪→bytes in the table.

36.2.1.1.2. Primary Input Element Size

For primary input data streams with fixed size␣
↪→elements, the element size must be indicated in the CCB

command. The size is encoded as the number of bits or␣
↪→bytes, minus one. The valid value range for this

field depends on the input format selected, as listed␣
↪→in the table above.

36.2.1.1.3. Secondary Input Format

For primary input data streams which require a␣
↪→secondary input stream, the secondary input stream is

always encoded in a fixed width, bit-packed format.␣
↪→The bits are read from most significant bit to least

significant bit within a byte. There are two encoding␣
↪→options for the secondary input stream data elements,

depending on whether the value of 0 is needed:

3.8. Excer[t from UltraSPARC Virtual Machine Specification 25

Linux Sparc Documentation

Secondary Input Description
Format Code
0 Element is stored as value␣

↪→minus 1 (0 evalutes to 1, 1 evalutes
to 2, etc)

1 Element is stored as value

36.2.1.1.4. Secondary Input Element Size

Secondary input element size is encoded as a two bit␣
↪→field:

Secondary Input Size Description
Code
0x0 1 bit
0x1 2 bits
0x2 4 bits
0x3 8 bits

36.2.1.1.5. Input Element Offsets

Bit-wise input data streams may have any alignment␣
↪→within the base addressed byte. The offset, specified

from most significant bit to least significant bit,␣
↪→is provided as a fixed 3 bit field for each input type. A

value of 0 indicates that the first input element␣
↪→begins at the most significant bit in the first byte, and a

value of 7 indicates it begins with the least␣
↪→significant bit.

This field should be zero for any byte-wise primary␣
↪→input data streams.

514

Coprocessor␣
↪→services

36.2.1.1.6. Output Format

Query commands support multiple sizes and encodings␣
↪→for output data streams. There are four possible

output encodings, and up to four supported element␣
↪→sizes per encoding. Not all output encodings are

supported for every command. The format is indicated␣
↪→by a 4-bit field in the CCB:

Output Format Code Description

26 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

0x0 Byte aligned, 1 byte␣
↪→elements

0x1 Byte aligned, 2 byte␣
↪→elements

0x2 Byte aligned, 4 byte␣
↪→elements

0x3 Byte aligned, 8 byte␣
↪→elements

0x4 16 byte aligned, 16 byte␣
↪→elements

0x5 Reserved
0x6 Reserved
0x7 Reserved
0x8 Packed vector of single␣

↪→bit elements
0x9 Reserved
0xA Reserved
0xB Reserved
0xC Reserved
0xD 2 byte elements where each␣

↪→element is the index value of a bit,
from an bit vector, which␣

↪→was 1.
0xE 4 byte elements where each␣

↪→element is the index value of a bit,
from an bit vector, which␣

↪→was 1.
0xF Reserved

36.2.1.1.7. Application Data Integrity (ADI)

On platforms which support ADI, the ADI version␣
↪→number may be specified for each separate memory

access type used in the CCB command. ADI checking␣
↪→only occurs when reading data. When writing data,

the specified ADI version number overwrites any␣
↪→existing ADI value in memory.

An ADI version value of 0 or 0xF indicates the ADI␣
↪→checking is disabled for that data access, even if it is

enabled in memory. By setting the appropriate flag in␣
↪→CCB_SUBMIT (Section 36.3.1, “ccb_submit”) it is

also an option to disable ADI checking for all inputs␣
↪→accessed via virtual address for all CCBs submitted

during that hypercall invocation.

The ADI value is only guaranteed to be checked on the␣
↪→first 64 bytes of each data access. Mismatches on

subsequent data chunks may not be detected, so guest␣
↪→software should be careful to use page size checking

to protect against buffer overruns.

3.8. Excer[t from UltraSPARC Virtual Machine Specification 27

Linux Sparc Documentation

36.2.1.1.8. Page size checking

All data accesses used in CCB commands must be␣
↪→bounded within a single memory page. When addresses

are provided using a virtual address, the page size␣
↪→for checking is extracted from the TTE for that virtual

address. When using real addresses, the guest must␣
↪→supply the page size in the same field as the address

value. The page size must be one of the sizes␣
↪→supported by the underlying virtual machine. Using a value

that is not supported may result in the CCB␣
↪→submission being rejected or the generation of a CCB parsing

error in the completion area.

515

Coprocessor␣
↪→services

36.2.1.2. Extract command

Converts an input vector in one format to an output␣
↪→vector in another format. All input format types are

supported.

The only supported output format is a padded,␣
↪→byte-aligned output stream, using output codes 0x0 - 0x4.

When the specified output element size is larger than␣
↪→the extracted input element size, zeros are padded to

the extracted input element. First, if the decompressed␣
↪→input size is not a whole number of bytes, 0 bits are

padded to the most significant bit side till the next␣
↪→byte boundary. Next, if the output element size is larger

than the byte padded input element, bytes of value 0␣
↪→are added based on the Padding Direction bit in the

CCB. If the output element size is smaller than the␣
↪→byte-padded input element size, the input element is

truncated by dropped from the least significant byte␣
↪→side until the selected output size is reached.

The return value of the CCB completion area is invalid.␣
↪→The “number of elements processed” field in the

CCB completion area will be valid.

The extract CCB is a 64-byte “short format” CCB.

The extract CCB command format can be specified by the␣
↪→following packed C structure for a big-endian

28 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

machine:

struct extract_ccb {
uint32_t header;
uint32_t control;
uint64_t completion;
uint64_t primary_input;
uint64_t data_access_control;
uint64_t secondary_input;
uint64_t reserved;
uint64_t output;
uint64_t table;

};

The exact field offsets, sizes, and composition are as␣
↪→follows:

Offset Size Field Description
0 4 CCB header (Table 36.1,␣

↪→“CCB Header Format”)
4 4 Command control

Bits Field␣
↪→Description

[31:28] Primary␣
↪→Input Format (see Section 36.2.1.1.1, “Primary Input

Format”)
[27:23] Primary␣

↪→Input Element Size (see Section 36.2.1.1.2, “Primary
Input␣

↪→Element Size”)
[22:20] Primary␣

↪→Input Starting Offset (see Section 36.2.1.1.5, “Input
Element␣

↪→Offsets”)
[19] Secondary␣

↪→Input Format (see Section 36.2.1.1.3, “Secondary
Input␣

↪→Format”)
[18:16] Secondary␣

↪→Input Starting Offset (see Section 36.2.1.1.5, “Input
Element␣

↪→Offsets”)

516

Coprocessor services

3.8. Excer[t from UltraSPARC Virtual Machine Specification 29

Linux Sparc Documentation

Offset Size Field Description
Bits Field Description
[15:14] Secondary Input Element Size (see␣

↪→Section 36.2.1.1.4,
“Secondary Input Element Size”

[13:10] Output Format (see Section 36.2.1.
↪→1.6, “Output Format”)

[9] Padding Direction selector: A␣
↪→value of 1 causes padding bytes

to be added to the left side of␣
↪→output elements. A value of 0

causes padding bytes to be added␣
↪→to the right side of output

elements.
[8:0] Reserved

8 8 Completion
Bits Field Description
[63:60] ADI version (see Section 36.2.1.1.

↪→7, “Application Data
Integrity (ADI)”)

[59] If set to 1, a virtual device␣
↪→interrupt will be generated using

the device interrupt number␣
↪→specified in the lower bits of this

completion word. If 0, the lower␣
↪→bits of this completion word

are ignored.
[58:6] Completion area address bits␣

↪→[58:6]. Address type is
determined by CCB header.

[5:0] Virtual device interrupt number␣
↪→for completion interrupt, if

enabled.
16 8 Primary Input

Bits Field Description
[63:60] ADI version (see Section 36.2.1.1.

↪→7, “Application Data
Integrity (ADI)”)

[59:56] If using real address, these bits␣
↪→should be filled in with the

page size code for the page␣
↪→boundary checking the guest wants

the virtual machine to use when␣
↪→accessing this data stream

(checking is only guaranteed to be␣
↪→performed when using API

version 1.1 and later). If using a␣
↪→virtual address, this field will

be used as as primary input␣
↪→address bits [59:56].

[55:0] Primary input address bits [55:0].␣

30 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

↪→Address type is determined
by CCB header.

24 8 Data Access Control
Bits Field Description
[63:62] Flow Control

Value Description
0b'00 Disable flow control
0b'01 Enable flow control␣

↪→(only valid with "ORCL,sun4v-
dax-fc" compatible␣

↪→virtual device variants)
0b'10 Reserved
0b'11 Reserved

[61:60] Reserved (API 1.0)

517

Coprocessor services

Offset Size Field Description
Bits Field Description

Pipeline target (API 2.0)
Value Description
0b'00 Connect to primary input
0b'01 Connect to secondary␣

↪→input
0b'10 Reserved
0b'11 Reserved

[59:40] Output buffer size given in units␣
↪→of 64 bytes, minus 1. Value of

0 means 64 bytes, value of 1 means␣
↪→128 bytes, etc. Buffer size is

only enforced if flow control is␣
↪→enabled in Flow Control field.

[39:32] Reserved
[31:30] Output Data Cache Allocation

Value Description
0b'00 Do not allocate cache␣

↪→lines for output data stream.
0b'01 Force cache lines for␣

↪→output data stream to be
allocated in the cache␣

↪→that is local to the submitting
virtual cpu.

0b'10 Allocate cache lines for␣
↪→output data stream, but allow

existing cache lines␣
↪→associated with the data to remain

in their current cache␣

3.8. Excer[t from UltraSPARC Virtual Machine Specification 31

Linux Sparc Documentation

↪→instance. Any memory not
already in cache will be␣

↪→allocated in the cache local
to the submitting␣

↪→virtual cpu.
0b'11 Reserved

[29:26] Reserved
[25:24] Primary Input Length Format

Value Description
0b'00 Number of primary symbols
0b'01 Number of primary bytes
0b'10 Number of primary bits
0b'11 Reserved

[23:0] Primary Input Length
Format Field␣

↪→Value
of primary symbols Number␣

↪→of input elements to process,
minus 1.

↪→ Command execution stops
once␣

↪→count is reached.
of primary bytes Number␣

↪→of input bytes to process,
minus 1.

↪→ Command execution stops
once␣

↪→count is reached. The count is
done␣

↪→before any decompression or
␣

↪→decoding.
of primary bits Number␣

↪→of input bits to process,
minus 1.

↪→ Command execution stops

518

Coprocessor␣
↪→services

Offset Size Field Description
Bits Field␣

↪→Description
Format ␣

↪→ Field Value
␣

32 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

↪→ once count is reached. The count is
␣

↪→ done before any decompression or
␣

↪→ decoding, and does not include any
␣

↪→ bits skipped by the Primary Input
␣

↪→ Offset field value of the command
␣

↪→ control word.
32 8 Secondary Input, if used␣

↪→by Primary Input Format. Same fields as Primary
Input.

40 8 Reserved
48 8 Output (same fields as␣

↪→Primary Input)
56 8 Symbol Table (if used by␣

↪→Primary Input)
Bits Field␣

↪→Description
[63:60] ADI␣

↪→version (see Section 36.2.1.1.7, “Application Data
Integrity␣

↪→(ADI)”)
[59:56] If using␣

↪→real address, these bits should be filled in with the
page size␣

↪→code for the page boundary checking the guest wants
the␣

↪→virtual machine to use when accessing this data stream
(checking␣

↪→is only guaranteed to be performed when using API
version 1.

↪→1 and later). If using a virtual address, this field will
be used as␣

↪→as symbol table address bits [59:56].
[55:4] Symbol␣

↪→table address bits [55:4]. Address type is determined
by CCB␣

↪→header.
[3:0] Symbol␣

↪→table version
Value ␣

↪→Description
0 ␣

↪→Huffman encoding. Must use 64 byte aligned table
␣

↪→address. (Only available when using version 0 CCBs)
1 ␣

↪→OZIP encoding. Must use 16 byte aligned table

3.8. Excer[t from UltraSPARC Virtual Machine Specification 33

Linux Sparc Documentation

␣
↪→address. (Only available when using version 1 CCBs)

36.2.1.3. Scan commands

The scan commands search a stream of input data␣
↪→elements for values which match the selection criteria.

All the input format types are supported. There are␣
↪→multiple formats for the scan commands, allowing the

scan to search for exact matches to one value, exact␣
↪→matches to either of two values, or any value within

a specified range. The specific type of scan is␣
↪→indicated by the command code in the CCB header. For the

scan range commands, the boundary conditions can be␣
↪→specified as greater-than-or-equal-to a value, less-

than-or-equal-to a value, or both by using two boundary␣
↪→values.

There are two supported formats for the output stream:␣
↪→the bit vector and index array formats (codes 0x8,

0xD, and 0xE). For the standard scan command using the␣
↪→bit vector output, for each input element there

exists one bit in the vector that is set if the input␣
↪→element matched the scan criteria, or clear if not. The

inverted scan command inverts the polarity of the bits␣
↪→in the output. The most significant bit of the first

byte of the output stream corresponds to the first␣
↪→element in the input stream. The standard index array

output format contains one array entry for each input␣
↪→element that matched the scan criteria. Each array

519

Coprocessor services

entry is the index of an input element that matched the scan␣
↪→criteria. An inverted scan command produces
a similar array, but of all the input elements which did NOT␣
↪→match the scan criteria.

The return value of the CCB completion area contains the number␣
↪→of input elements found which match
the scan criteria (or number that did not match for the␣
↪→inverted scans). The “number of elements processed”
field in the CCB completion area will be valid, indicating the␣
↪→number of input elements processed.

34 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

These commands are 128-byte “long format” CCBs.

The scan CCB command format can be specified by the following␣
↪→packed C structure for a big-endian
machine:

struct scan_ccb {
uint32_t header;
uint32_t control;
uint64_t completion;
uint64_t primary_input;
uint64_t data_access_control;
uint64_t secondary_input;
uint64_t match_criteria0;
uint64_t output;
uint64_t table;
uint64_t match_criteria1;
uint64_t match_criteria2;
uint64_t match_criteria3;
uint64_t reserved[5];

};

The exact field offsets, sizes, and composition are as follows:

Offset Size Field Description
0 4 CCB header (Table 36.1, “CCB␣
↪→Header Format”)
4 4 Command control

Bits Field Description
[31:28] Primary Input␣

↪→Format (see Section 36.2.1.1.1, “Primary Input
Format”)

[27:23] Primary Input␣
↪→Element Size (see Section 36.2.1.1.2, “Primary

Input Element␣
↪→Size”)

[22:20] Primary Input␣
↪→Starting Offset (see Section 36.2.1.1.5, “Input

Element Offsets”)
[19] Secondary Input␣

↪→Format (see Section 36.2.1.1.3, “Secondary
Input Format”)

[18:16] Secondary Input␣
↪→Starting Offset (see Section 36.2.1.1.5, “Input

Element Offsets”)
[15:14] Secondary Input␣

↪→Element Size (see Section 36.2.1.1.4,
“Secondary Input␣

↪→Element Size”

3.8. Excer[t from UltraSPARC Virtual Machine Specification 35

Linux Sparc Documentation

[13:10] Output Format (see␣
↪→Section 36.2.1.1.6, “Output Format”)

[9:5] Operand size for␣
↪→first scan criteria value. In a scan value

operation, this is␣
↪→one of two potential extact match values.

In a scan range␣
↪→operation, this is the size of the upper range

520

Coprocessor services

Offset Size Field Description
Bits Field Description

boundary. The value of this field␣
↪→is the number of bytes in the

operand, minus 1. Values 0xF-0x1E␣
↪→are reserved. A value of

0x1F indicates this operand is not␣
↪→in use for this scan operation.

[4:0] Operand size for second scan␣
↪→criteria value. In a scan value

operation, this is one of two␣
↪→potential extact match values.

In a scan range operation, this is␣
↪→the size of the lower range

boundary. The value of this field␣
↪→is the number of bytes in the

operand, minus 1. Values 0xF-0x1E␣
↪→are reserved. A value of

0x1F indicates this operand is not␣
↪→in use for this scan operation.
8 8 Completion (same fields as Section 36.2.1.2,␣
↪→“Extract command”)
16 8 Primary Input (same fields as Section 36.2.1.2,␣
↪→“Extract command”)
24 8 Data Access Control (same fields as Section 36.
↪→2.1.2, “Extract command”)
32 8 Secondary Input, if used by Primary Input␣
↪→Format. Same fields as Primary

Input.
40 4 Most significant 4 bytes of first scan criteria␣
↪→operand. If first operand is less

than 4 bytes, the value is left-aligned to the␣
↪→lowest address bytes.
44 4 Most significant 4 bytes of second scan␣
↪→criteria operand. If second operand

is less than 4 bytes, the value is left-aligned␣

36 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

↪→to the lowest address bytes.
48 8 Output (same fields as Primary Input)
56 8 Symbol Table (if used by Primary Input). Same␣
↪→fields as Section 36.2.1.2,

“Extract command”
64 4 Next 4 most significant bytes of first scan␣
↪→criteria operand occuring after the

bytes specified at offset 40, if needed by the␣
↪→operand size. If first operand

is less than 8 bytes, the valid bytes are␣
↪→left-aligned to the lowest address.
68 4 Next 4 most significant bytes of second scan␣
↪→criteria operand occuring after

the bytes specified at offset 44, if needed by␣
↪→the operand size. If second

operand is less than 8 bytes, the valid bytes␣
↪→are left-aligned to the lowest

address.
72 4 Next 4 most significant bytes of first scan␣
↪→criteria operand occuring after the

bytes specified at offset 64, if needed by the␣
↪→operand size. If first operand

is less than 12 bytes, the valid bytes are␣
↪→left-aligned to the lowest address.
76 4 Next 4 most significant bytes of second scan␣
↪→criteria operand occuring after

the bytes specified at offset 68, if needed by␣
↪→the operand size. If second

operand is less than 12 bytes, the valid bytes␣
↪→are left-aligned to the lowest

address.
80 4 Next 4 most significant bytes of first scan␣
↪→criteria operand occuring after the

bytes specified at offset 72, if needed by the␣
↪→operand size. If first operand

is less than 16 bytes, the valid bytes are␣
↪→left-aligned to the lowest address.
84 4 Next 4 most significant bytes of second scan␣
↪→criteria operand occuring after

the bytes specified at offset 76, if needed by␣
↪→the operand size. If second

operand is less than 16 bytes, the valid bytes␣
↪→are left-aligned to the lowest

address.

521

Coprocessor␣

3.8. Excer[t from UltraSPARC Virtual Machine Specification 37

Linux Sparc Documentation

↪→services

36.2.1.4. Translate commands

The translate commands takes an input array of indicies,
↪→ and a table of single bit values indexed by those

indicies, and outputs a bit vector or index array␣
↪→created by reading the tables bit value at each index in

the input array. The output should therefore contain␣
↪→exactly one bit per index in the input data stream,

when outputing as a bit vector. When outputing as an␣
↪→index array, the number of elements depends on the

values read in the bit table, but will always be less␣
↪→than, or equal to, the number of input elements. Only

a restricted subset of the possible input format types␣
↪→are supported. No variable width or Huffman/OZIP

encoded input streams are allowed. The primary input␣
↪→data element size must be 3 bytes or less.

The maximum table index size allowed is 15 bits,␣
↪→however, larger input elements may be used to provide

additional processing of the output values. If 2 or 3␣
↪→byte values are used, the least significant 15 bits are

used as an index into the bit table. The most␣
↪→significant 9 bits (when using 3-byte input elements) or␣
↪→single

bit (when using 2-byte input elements) are compared␣
↪→against a fixed 9-bit test value provided in the CCB.

If the values match, the value from the bit table is␣
↪→used as the output element value. If the values do not

match, the output data element value is forced to 0.

In the inverted translate operation, the bit value read␣
↪→from bit table is inverted prior to its use. The additional

additional processing based on any additional non-index␣
↪→bits remains unchanged, and still forces the output

element value to 0 on a mismatch. The specific type of␣
↪→translate command is indicated by the command

code in the CCB header.

There are two supported formats for the output stream:␣
↪→the bit vector and index array formats (codes 0x8,

0xD, and 0xE). The index array format is an array of␣
↪→indicies of bits which would have been set if the

output format was a bit array.

The return value of the CCB completion area contains␣
↪→the number of bits set in the output bit vector,

or number of elements in the output index array. The␣
↪→“number of elements processed” field in the CCB

38 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

completion area will be valid, indicating the number of␣
↪→input elements processed.

These commands are 64-byte “short format” CCBs.

The translate CCB command format can be specified by␣
↪→the following packed C structure for a big-endian

machine:

struct translate_ccb {
uint32_t header;
uint32_t control;
uint64_t completion;
uint64_t primary_input;
uint64_t data_access_control;
uint64_t secondary_input;
uint64_t reserved;
uint64_t output;
uint64_t table;

};

The exact field offsets, sizes, and composition are as␣
↪→follows:

Offset Size Field Description
0 4 CCB header (Table 36.1,

↪→ “CCB Header Format”)

522

Coprocessor services

Offset Size Field Description
4 4 Command control

Bits Field Description
[31:28] Primary Input Format (see Section␣

↪→36.2.1.1.1, “Primary Input
Format”)

[27:23] Primary Input Element Size (see␣
↪→Section 36.2.1.1.2, “Primary

Input Element Size”)
[22:20] Primary Input Starting Offset (see␣

↪→Section 36.2.1.1.5, “Input
Element Offsets”)

[19] Secondary Input Format (see␣
↪→Section 36.2.1.1.3, “Secondary

3.8. Excer[t from UltraSPARC Virtual Machine Specification 39

Linux Sparc Documentation

Input Format”)
[18:16] Secondary Input Starting Offset␣

↪→(see Section 36.2.1.1.5, “Input
Element Offsets”)

[15:14] Secondary Input Element Size (see␣
↪→Section 36.2.1.1.4,

“Secondary Input Element Size”
[13:10] Output Format (see Section 36.2.1.

↪→1.6, “Output Format”)
[9] Reserved
[8:0] Test value used for comparison␣

↪→against the most significant bits
in the input values, when using 2␣

↪→or 3 byte input elements.
8 8 Completion (same fields as Section 36.2.1.2,␣
↪→“Extract command”
16 8 Primary Input (same fields as Section 36.2.1.2,␣
↪→“Extract command”
24 8 Data Access Control (same fields as Section 36.
↪→2.1.2, “Extract command”,

except Primary Input Length Format may not use␣
↪→the 0x0 value)
32 8 Secondary Input, if used by Primary Input␣
↪→Format. Same fields as Primary

Input.
40 8 Reserved
48 8 Output (same fields as Primary Input)
56 8 Bit Table

Bits Field Description
[63:60] ADI version (see Section 36.2.1.1.

↪→7, “Application Data
Integrity (ADI)”)

[59:56] If using real address, these bits␣
↪→should be filled in with the

page size code for the page␣
↪→boundary checking the guest wants

the virtual machine to use when␣
↪→accessing this data stream

(checking is only guaranteed to be␣
↪→performed when using API

version 1.1 and later). If using a␣
↪→virtual address, this field will

be used as as bit table address␣
↪→bits [59:56]

[55:4] Bit table address bits [55:4].␣
↪→Address type is determined by

CCB header. Address must be␣
↪→64-byte aligned (CCB version

0) or 16-byte aligned (CCB version␣
↪→1).

[3:0] Bit table version

40 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

Value Description
0 4KB table size
1 8KB table size

523

Coprocessor␣
↪→services

36.2.1.5. Select command
The select command filters the primary input data␣

↪→stream by using a secondary input bit vector to determine
which input elements to include in the output. For each␣

↪→bit set at a given index N within the bit vector,
the Nth input element is included in the output. If the␣

↪→bit is not set, the element is not included. Only a
restricted subset of the possible input format types␣

↪→are supported. No variable width or run length encoded
input streams are allowed, since the secondary input␣

↪→stream is used for the filtering bit vector.

The only supported output format is a padded,␣
↪→byte-aligned output stream. The stream follows the same

rules and restrictions as padded output stream␣
↪→described in Section 36.2.1.2, “Extract command”.

The return value of the CCB completion area contains␣
↪→the number of bits set in the input bit vector. The

"number of elements processed" field in the CCB␣
↪→completion area will be valid, indicating the number

of input elements processed.

The select CCB is a 64-byte “short format” CCB.

The select CCB command format can be specified by the␣
↪→following packed C structure for a big-endian

machine:

struct select_ccb {
uint32_t header;
uint32_t control;
uint64_t completion;
uint64_t primary_input;
uint64_t data_access_control;
uint64_t secondary_input;
uint64_t reserved;
uint64_t output;

3.8. Excer[t from UltraSPARC Virtual Machine Specification 41

Linux Sparc Documentation

uint64_t table;
};

The exact field offsets, sizes, and composition are as␣
↪→follows:

Offset Size Field Description
0 4 CCB header (Table 36.1,␣

↪→“CCB Header Format”)
4 4 Command control

Bits Field␣
↪→Description

[31:28] Primary␣
↪→Input Format (see Section 36.2.1.1.1, “Primary Input

Format”)
[27:23] Primary␣

↪→Input Element Size (see Section 36.2.1.1.2, “Primary
Input␣

↪→Element Size”)
[22:20] Primary␣

↪→Input Starting Offset (see Section 36.2.1.1.5, “Input
Element␣

↪→Offsets”)
[19] Secondary␣

↪→Input Format (see Section 36.2.1.1.3, “Secondary
Input␣

↪→Format”)
[18:16] Secondary␣

↪→Input Starting Offset (see Section 36.2.1.1.5, “Input
Element␣

↪→Offsets”)
[15:14] Secondary␣

↪→Input Element Size (see Section 36.2.1.1.4,
“Secondary␣

↪→Input Element Size”

524

Coprocessor␣
↪→services

Offset Size Field Description
Bits Field␣

↪→Description
[13:10] Output␣

↪→Format (see Section 36.2.1.1.6, “Output Format”)
[9] Padding␣

↪→Direction selector: A value of 1 causes padding bytes

42 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

to be added␣
↪→to the left side of output elements. A value of 0

causes␣
↪→padding bytes to be added to the right side of output

elements.
[8:0] Reserved

8 8 Completion (same fields␣
↪→as Section 36.2.1.2, “Extract command”

16 8 Primary Input (same␣
↪→fields as Section 36.2.1.2, “Extract command”

24 8 Data Access Control␣
↪→(same fields as Section 36.2.1.2, “Extract command”)

32 8 Secondary Bit Vector␣
↪→Input. Same fields as Primary Input.

40 8 Reserved
48 8 Output (same fields as␣

↪→Primary Input)
56 8 Symbol Table (if used by␣

↪→Primary Input). Same fields as Section 36.2.1.2,
“Extract command”

36.2.1.6. No-op and Sync commands
The no-op (no operation) command is a CCB which has no␣

↪→processing effect. The CCB, when processed
by the virtual machine, simply updates the completion␣

↪→area with its execution status. The CCB may have
the serial-conditional flags set in order to restrict␣

↪→when it executes.

The sync command is a variant of the no-op command␣
↪→which with restricted execution timing. A sync

command CCB will only execute when all previous␣
↪→commands submitted in the same request have

completed. This is stronger than the conditional flag␣
↪→sequencing, which is only dependent on a single

previous serial CCB. While the relative ordering is␣
↪→guaranteed, virtual machine implementations with

shared hardware resources may cause the sync command to␣
↪→wait for longer than the minimum required

time.

The return value of the CCB completion area is invalid␣
↪→for these CCBs. The “number of elements

processed” field is also invalid for these CCBs.

These commands are 64-byte “short format” CCBs.

The no-op CCB command format can be specified by the␣
↪→following packed C structure for a big-endian

machine:

3.8. Excer[t from UltraSPARC Virtual Machine Specification 43

Linux Sparc Documentation

struct nop_ccb {
uint32_t header;
uint32_t control;
uint64_t completion;
uint64_t reserved[6];

};

The exact field offsets, sizes, and composition are as␣
↪→follows:

Offset Size Field Description
0 4 CCB header (Table 36.1,␣

↪→“CCB Header Format”)

525

Coprocessor services

Offset Size Field Description
4 4 Command control

Bits Field Description
[31] If set, this CCB␣

↪→functions as a Sync command. If clear, this
CCB functions as␣

↪→a No-op command.
[30:0] Reserved

8 8 Completion (same fields as␣
↪→Section 36.2.1.2, “Extract command”

16 46 Reserved

36.2.2. CCB Completion Area
All CCB commands use a common 128-byte Completion Area␣

↪→format, which can be specified by the
following packed C structure for a big-endian machine:

struct completion_area {
uint8_t status_flag;
uint8_t error_note;
uint8_t rsvd0[2];
uint32_t error_values;
uint32_t output_size;
uint32_t rsvd1;
uint64_t run_time;
uint64_t run_stats;
uint32_t elements;
uint8_t rsvd2[20];

44 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

uint64_t return_value;
uint64_t extra_return_value[8];

};

The Completion Area must be a 128-byte aligned memory␣
↪→location. The exact layout can be described

using byte offsets and sizes relative to the memory base:

Offset Size Field Description
0 1 CCB execution status

0x0 Command␣
↪→not yet completed

0x1 Command␣
↪→ran and succeeded

0x2 Command␣
↪→ran and failed (partial results may be been

␣
↪→produced)

0x3 Command␣
↪→ran and was killed (partial execution may

have␣
↪→occurred)

0x4 Command␣
↪→was not run

0x5-0xF Reserved
1 1 Error reason code

0x0 Reserved
0x1 Buffer␣

↪→overflow

526

Coprocessor services

Offset Size Field Description
0x2 CCB␣

↪→decoding error
0x3 Page␣

↪→overflow
0x4-0x6 Reserved
0x7 Command was␣

↪→killed
0x8 Command␣

↪→execution timeout
0x9 ADI␣

↪→miscompare error
0xA Data format␣

↪→error

3.8. Excer[t from UltraSPARC Virtual Machine Specification 45

Linux Sparc Documentation

0xB-0xD Reserved
0xE Unexpected␣

↪→hardware error (Do not retry)
0xF Unexpected␣

↪→hardware error (Retry is ok)
0x10-0x7F Reserved
0x80 Partial␣

↪→Symbol Warning
0x81-0xFF Reserved

2 2 Reserved
4 4 If a partial symbol warning was␣
↪→generated, this field contains the number

of remaining bits which were not␣
↪→decoded.
8 4 Number of bytes of output␣
↪→produced
12 4 Reserved
16 8 Runtime of command (unspecified␣
↪→time units)
24 8 Reserved
32 4 Number of elements processed
36 20 Reserved
56 8 Return value
64 64 Extended return value

The CCB completion area should be treated as read-only by guest␣
↪→software. The CCB execution status
byte will be cleared by the Hypervisor to reflect the pending␣
↪→execution status when the CCB is submitted
successfully. All other fields are considered invalid upon CCB␣
↪→submission until the CCB execution status
byte becomes non-zero.

CCBs which complete with status 0x2 or 0x3 may produce partial␣
↪→results and/or side effects due to partial
execution of the CCB command. Some valid data may be accessible␣
↪→depending on the fault type, however,
it is recommended that guest software treat the destination␣
↪→buffer as being in an unknown state. If a CCB
completes with a status byte of 0x2, the error reason code byte␣
↪→can be read to determine what corrective
action should be taken.

A buffer overflow indicates that the results of the operation␣
↪→exceeded the size of the output buffer indicated
in the CCB. The operation can be retried by resubmitting the␣
↪→CCB with a larger output buffer.

A CCB decoding error indicates that the CCB contained some␣
↪→invalid field values. It may be also be
triggered if the CCB output is directed at a non-existent␣

46 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

↪→secondary input and the pipelining hint is followed.

A page overflow error indicates that the operation required␣
↪→accessing a memory location beyond the page
size associated with a given address. No data will have been␣
↪→read or written past the page boundary, but
partial results may have been written to the destination buffer.
↪→ The CCB can be resubmitted with a larger
page size memory allocation to complete the operation.

527

Coprocessor services

In the case of pipelined CCBs, a page overflow error␣
↪→will be triggered if the output from the pipeline source

CCB ends before the input of the pipeline target CCB.␣
↪→Page boundaries are ignored when the pipeline

hint is followed.

Command kill indicates that the CCB execution was halted␣
↪→or prevented by use of the ccb_kill API call.

Command timeout indicates that the CCB execution began,␣
↪→but did not complete within a pre-determined

limit set by the virtual machine. The command may have␣
↪→produced some or no output. The CCB may be

resubmitted with no alterations.

ADI miscompare indicates that the memory buffer version␣
↪→specified in the CCB did not match the value

in memory when accessed by the virtual machine. Guest␣
↪→software should not attempt to resubmit the CCB

without determining the cause of the version mismatch.

A data format error indicates that the input data stream␣
↪→did not follow the specified data input formatting

selected in the CCB.

Some CCBs which encounter hardware errors may be␣
↪→resubmitted without change. Persistent hardware

errors may result in multiple failures until RAS␣
↪→software can identify and isolate the faulty component.

The output size field indicates the number of bytes of␣
↪→valid output in the destination buffer. This field is

not valid for all possible CCB commands.

The runtime field indicates the execution time of the␣

3.8. Excer[t from UltraSPARC Virtual Machine Specification 47

Linux Sparc Documentation

↪→CCB command once it leaves the internal virtual
machine queue. The time units are fixed, but unspecified,

↪→ allowing only relative timing comparisons
by guest software. The time units may also vary by␣

↪→hardware platform, and should not be construed to
represent any absolute time value.

Some data query commands process data in units of␣
↪→elements. If applicable to the command, the number of

elements processed is indicated in the listed field.␣
↪→This field is not valid for all possible CCB commands.

The return value and extended return value fields are␣
↪→output locations for commands which do not use

a destination output buffer, or have secondary return␣
↪→results. The field is not valid for all possible CCB

commands.

36.3. Hypervisor API Functions
36.3.1. ccb_submit

trap# FAST_TRAP
function# CCB_SUBMIT
arg0 address
arg1 length
arg2 flags
arg3 reserved
ret0 status
ret1 length
ret2 status data
ret3 reserved

Submit one or more coprocessor control blocks (CCBs) for␣
↪→evaluation and processing by the virtual

machine. The CCBs are passed in a linear array indicated␣
↪→by address. length indicates the size of

the array in bytes.

528

Coprocessor services

The address should be aligned to the size indicated by length,␣
↪→rounded up to the nearest power of
two. Virtual machines implementations may reject submissions␣
↪→which do not adhere to that alignment.
length must be a multiple of 64 bytes. If length is zero, the␣
↪→maximum supported array length will be
returned as length in ret1. In all other cases, the length␣
↪→value in ret1 will reflect the number of bytes

48 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

successfully consumed from the input CCB array.

Implementation note
Virtual machines should never reject submissions based on␣

↪→the alignment of address if the
entire array is contained within a single memory page of␣

↪→the smallest page size supported by the
virtual machine.

A guest may choose to submit addresses used in this API␣
↪→function, including the CCB array address,
as either a real or virtual addresses, with the type of each␣
↪→address indicated in flags. Virtual addresses
must be present in either the TLB or an active TSB to be␣
↪→processed. The translation context for virtual
addresses is determined by a combination of CCB contents and␣
↪→the flags argument.

The flags argument is divided into multiple fields defined as␣
↪→follows:

Bits Field Description
[63:16] Reserved
[15] Disable ADI for VA reads (in API 2.0)

Reserved (in API 1.0)
[14] Virtual addresses within CCBs are translated in␣
↪→privileged context
[13:12] Alternate translation context for virtual␣
↪→addresses within CCBs:

0b'00 CCBs requesting alternate context␣
↪→are rejected

0b'01 Reserved
0b'10 CCBs requesting alternate context␣

↪→use secondary context
0b'11 CCBs requesting alternate context␣

↪→use nucleus context
[11:9] Reserved
[8] Queue info flag
[7] All-or-nothing flag
[6] If address is a virtual address, treat its␣
↪→translation context as privileged
[5:4] Address type of address:

0b'00 Real address
0b'01 Virtual address in primary context
0b'10 Virtual address in secondary␣

↪→context
0b'11 Virtual address in nucleus context

[3:2] Reserved
[1:0] CCB command type:

0b'00 Reserved

3.8. Excer[t from UltraSPARC Virtual Machine Specification 49

Linux Sparc Documentation

0b'01 Reserved
0b'10 Query command
0b'11 Reserved

529

Coprocessor␣
↪→services

The CCB submission type and address type for the CCB␣
↪→array must be provided in the flags argument.

All other fields are optional values which change the␣
↪→default behavior of the CCB processing.

When set to one, the "Disable ADI for VA reads" bit␣
↪→will turn off ADI checking when using a virtual

address to load data. ADI checking will still be done␣
↪→when loading real-addressed memory. This bit is only

available when using major version 2 of the␣
↪→coprocessor API group; at major version 1 it is reserved. For

more information about using ADI and DAX, see Section␣
↪→36.2.1.1.7, “Application Data Integrity (ADI)”.

By default, all virtual addresses are treated as user␣
↪→addresses. If the virtual address translations are

privileged, they must be marked as such in the␣
↪→appropriate flags field. The virtual addresses used within

the submitted CCBs must all be translated with the␣
↪→same privilege level.

By default, all virtual addresses used within the␣
↪→submitted CCBs are translated using the primary context

active at the time of the submission. The address type␣
↪→field within a CCB allows each address to request

translation in an alternate address context. The␣
↪→address context used when the alternate address context is

requested is selected in the flags argument.

The all-or-nothing flag specifies whether the virtual␣
↪→machine should allow partial submissions of the

input CCB array. When using CCBs with␣
↪→serial-conditional flags, it is strongly recommended to use

the all-or-nothing flag to avoid broken conditional␣
↪→chains. Using long CCB chains on a machine under

high coprocessor load may make this impractical,␣
↪→however, and require submitting without the flag.

When submitting serial-conditional CCBs without the␣
↪→all-or-nothing flag, guest software must manually

50 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

implement the serial-conditional behavior at any point␣
↪→where the chain was not submitted in a single API

call, and resubmission of the remaining CCBs should␣
↪→clear any conditional flag that might be set in the

first remaining CCB. Failure to do so will produce␣
↪→indeterminate CCB execution status and ordering.

When the all-or-nothing flag is not specified, callers␣
↪→should check the value of length in ret1 to determine

how many CCBs from the array were successfully␣
↪→submitted. Any remaining CCBs can be resubmitted

without modifications.

The value of length in ret1 is also valid when the API␣
↪→call returns an error, and callers should always

check its value to determine which CCBs in the array␣
↪→were already processed. This will additionally

identify which CCB encountered the processing error,␣
↪→and was not submitted successfully.

If the queue info flag is used during submission, and␣
↪→at least one CCB was successfully submitted, the

length value in ret1 will be a multi-field value␣
↪→defined as follows:

Bits Field Description
[63:48] DAX unit instance identifier
[47:32] DAX queue instance identifier
[31:16] Reserved
[15:0] Number of CCB bytes successfully␣

↪→submitted

The value of status data depends on the status value.␣
↪→See error status code descriptions for details.

The value is undefined for status values that do not␣
↪→specifically list a value for the status data.

The API has a reserved input and output register which␣
↪→will be used in subsequent minor versions of this

API function. Guest software implementations should␣
↪→treat that register as voltile across the function call

in order to maintain forward compatibility.

36.3.1.1. Errors
EOK One or more CCBs have been␣

↪→accepted and enqueued in the virtual machine
and no errors were been␣

↪→encountered during submission. Some submitted
CCBs may not have been␣

↪→enqueued due to internal virtual machine limitations,
and may be resubmitted␣

↪→without changes.

3.8. Excer[t from UltraSPARC Virtual Machine Specification 51

Linux Sparc Documentation

530

Coprocessor services

EWOULDBLOCK An internal resource conflict within the virtual␣
↪→machine has prevented it from

being able to complete the CCB submissions␣
↪→sufficiently quickly, requiring

it to abandon processing before it was complete.␣
↪→Some CCBs may have been

successfully enqueued prior to the block, and␣
↪→all remaining CCBs may be

resubmitted without changes.
EBADALIGN CCB array is not on a 64-byte boundary, or the␣
↪→array length is not a multiple

of 64 bytes.
ENORADDR A real address used either for the CCB array, or␣
↪→within one of the submitted

CCBs, is not valid for the guest. Some CCBs may␣
↪→have been enqueued prior

to the error being detected.
ENOMAP A virtual address used either for the CCB array,␣
↪→or within one of the submitted

CCBs, could not be translated by the virtual␣
↪→machine using either the TLB

or TSB contents. The submission may be retried␣
↪→after adding the required

mapping, or by converting the virtual address␣
↪→into a real address. Due to the

shared nature of address translation resources,␣
↪→there is no theoretical limit on

the number of times the translation may fail,␣
↪→and it is recommended all guests

implement some real address based backup. The␣
↪→virtual address which failed

translation is returned as status data in ret2.␣
↪→Some CCBs may have been

enqueued prior to the error being detected.
EINVAL The virtual machine detected an invalid CCB␣
↪→during submission, or invalid

input arguments, such as bad flag values. Note␣
↪→that not all invalid CCB values

will be detected during submission, and some may␣
↪→be reported as errors in the

completion area instead. Some CCBs may have been␣
↪→enqueued prior to the

error being detected. This error may be returned␣
↪→if the CCB version is invalid.

52 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

ETOOMANY The request was submitted with the␣
↪→all-or-nothing flag set, and the array size is

greater than the virtual machine can support in␣
↪→a single request. The maximum

supported size for the current virtual machine␣
↪→can be queried by submitting a

request with a zero length array, as described␣
↪→above.
ENOACCESS The guest does not have permission to submit␣
↪→CCBs, or an address used in a

CCBs lacks sufficient permissions to perform the␣
↪→required operation (no write

permission on the destination buffer address,␣
↪→for example). A virtual address

which fails permission checking is returned as␣
↪→status data in ret2. Some

CCBs may have been enqueued prior to the error␣
↪→being detected.
EUNAVAILABLE The requested CCB operation could not be␣
↪→performed at this time. The

restricted operation availability may apply only␣
↪→to the first unsuccessfully

submitted CCB, or may apply to a larger scope.␣
↪→The status should not be

interpreted as permanent, and the guest should␣
↪→attempt to submit CCBs in

the future which had previously been unable to␣
↪→be performed. The status

data provides additional information about scope␣
↪→of the retricted availability

as follows:
Value Description
0 Processing for the exact CCB␣

↪→instance submitted was unavailable,
and it is recommended the guest␣

↪→emulate the operation. The
guest should continue to submit all␣

↪→other CCBs, and assume no
restrictions beyond this exact CCB␣

↪→instance.
1 Processing is unavailable for all␣

↪→CCBs using the requested opcode,
and it is recommended the guest␣

↪→emulate the operation. The
guest should continue to submit all␣

↪→other CCBs that use different
opcodes, but can expect continued␣

↪→rejections of CCBs using the
same opcode in the near future.

3.8. Excer[t from UltraSPARC Virtual Machine Specification 53

Linux Sparc Documentation

531

Coprocessor␣
↪→services

Value Description
2 Processing is␣

↪→unavailable for all CCBs using the requested CCB
version, and it␣

↪→is recommended the guest emulate the operation.
The guest␣

↪→should continue to submit all other CCBs that use
different CCB␣

↪→versions, but can expect continued rejections of
CCBs using the␣

↪→same CCB version in the near future.
3 Processing is␣

↪→unavailable for all CCBs on the submitting vcpu,
and it is␣

↪→recommended the guest emulate the operation or resubmit
the CCB on a␣

↪→different vcpu. The guest should continue to submit
CCBs on all␣

↪→other vcpus but can expect continued rejections of all
CCBs on this␣

↪→vcpu in the near future.
4 Processing is␣

↪→unavailable for all CCBs, and it is recommended
the guest␣

↪→emulate the operation. The guest should expect all CCB
submissions to␣

↪→be similarly rejected in the near future.

36.3.2. ccb_info

trap# FAST_TRAP
function# CCB_INFO
arg0 address
ret0 status
ret1 CCB state
ret2 position
ret3 dax
ret4 queue

Requests status information on a previously submitted␣
↪→CCB. The previously submitted CCB is identified

by the 64-byte aligned real address of the CCBs␣
↪→completion area.

54 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

A CCB can be in one of 4 states:

State Value Description
COMPLETED 0 The CCB has been␣

↪→fetched and executed, and is no longer active in
the virtual␣

↪→machine.
ENQUEUED 1 The requested CCB␣

↪→is current in a queue awaiting execution.
INPROGRESS 2 The CCB has been␣

↪→fetched and is currently being executed. It may still
be possible to␣

↪→stop the execution using the ccb_kill hypercall.
NOTFOUND 3 The CCB could not␣

↪→be located in the virtual machine, and does not
appear to have␣

↪→been executed. This may occur if the CCB was lost
due to a hardware␣

↪→error, or the CCB may not have been successfully
submitted to the␣

↪→virtual machine in the first place.

Implementation note
Some platforms may not be able to report CCBs␣

↪→that are currently being processed, and therefore
guest software should invoke the ccb_kill␣

↪→hypercall prior to assuming the request CCB will never
be executed because it was in the NOTFOUND state.

532

Coprocessor␣
↪→services

The position return value is only valid when the state␣
↪→is ENQUEUED. The value returned is the number

of other CCBs ahead of the requested CCB, to provide a␣
↪→relative estimate of when the CCB may execute.

The dax return value is only valid when the state is␣
↪→ENQUEUED. The value returned is the DAX unit

instance indentifier for the DAX unit processing the␣
↪→queue where the requested CCB is located. The value

matches the value that would have been, or was,␣
↪→returned by ccb_submit using the queue info flag.

The queue return value is only valid when the state is␣
↪→ENQUEUED. The value returned is the DAX

3.8. Excer[t from UltraSPARC Virtual Machine Specification 55

Linux Sparc Documentation

queue instance indentifier for the DAX unit processing␣
↪→the queue where the requested CCB is located. The

value matches the value that would have been, or was,␣
↪→returned by ccb_submit using the queue info flag.

36.3.2.1. Errors

EOK The request was proccessed␣
↪→and the CCB state is valid.

EBADALIGN address is not on a 64-byte␣
↪→aligned.

ENORADDR The real address provided␣
↪→for address is not valid.

EINVAL The CCB completion area␣
↪→contents are not valid.

EWOULDBLOCK Internal resource␣
↪→contraints prevented the CCB state from being queried at this

time. The guest should␣
↪→retry the request.

ENOACCESS The guest does not have␣
↪→permission to access the coprocessor virtual device

functionality.

36.3.3. ccb_kill

trap# FAST_TRAP
function# CCB_KILL
arg0 address
ret0 status
ret1 result

Request to stop execution of a previously submitted␣
↪→CCB. The previously submitted CCB is identified by

the 64-byte aligned real address of the CCBs␣
↪→completion area.

The kill attempt can produce one of several values in␣
↪→the result return value, reflecting the CCB state

and actions taken by the Hypervisor:

Result Value Description
COMPLETED 0 The CCB has been␣

↪→fetched and executed, and is no longer active in
the virtual machine.

↪→ It could not be killed and no action was taken.
DEQUEUED 1 The requested CCB␣

↪→was still enqueued when the kill request was
submitted, and has␣

↪→been removed from the queue. Since the CCB
never began␣

↪→execution, no memory modifications were produced by

56 Chapter 3. Oracle Data Analytics Accelerator (DAX)

Linux Sparc Documentation

it, and the␣
↪→completion area will never be updated. The same CCB may

be submitted again,␣
↪→if desired, with no modifications required.

KILLED 2 The CCB had been␣
↪→fetched and was being executed when the kill

request was␣
↪→submitted. The CCB execution was stopped, and the CCB

is no longer active␣
↪→in the virtual machine. The CCB completion area

will reflect the␣
↪→killed status, with the subsequent implications that

partial results may␣
↪→have been produced. Partial results may include full

533

Coprocessor␣
↪→services

Result Value Description
command execution␣

↪→if the command was stopped just prior to writing
to the completion␣

↪→area.
NOTFOUND 3 The CCB could not␣

↪→be located in the virtual machine, and does not
appear to have␣

↪→been executed. This may occur if the CCB was lost
due to a hardware␣

↪→error, or the CCB may not have been successfully
submitted to the␣

↪→virtual machine in the first place. CCBs in the state
are guaranteed to␣

↪→never execute in the future unless resubmitted.

36.3.3.1. Interactions with Pipelined CCBs

If the pipeline target CCB is killed but the pipeline␣
↪→source CCB was skipped, the completion area of the

target CCB may contain status (4,0) "Command was␣
↪→skipped" instead of (3,7) "Command was killed".

If the pipeline source CCB is killed, the pipeline␣
↪→target CCB's completion status may read (1,0) "Success".

This does not mean the target CCB was processed; since␣
↪→the source CCB was killed, there was no

meaningful output on which the target CCB could␣
↪→operate.

3.8. Excer[t from UltraSPARC Virtual Machine Specification 57

Linux Sparc Documentation

36.3.3.2. Errors

EOK The request was proccessed␣
↪→and the result is valid.

EBADALIGN address is not on a␣
↪→64-byte aligned.

ENORADDR The real address provided␣
↪→for address is not valid.

EINVAL The CCB completion area␣
↪→contents are not valid.

EWOULDBLOCK Internal resource␣
↪→contraints prevented the CCB from being killed at this time.

The guest should retry the␣
↪→request.

ENOACCESS The guest does not have␣
↪→permission to access the coprocessor virtual device

functionality.

36.3.4. dax_info
trap# FAST_TRAP
function# DAX_INFO
ret0 status
ret1 Number of enabled DAX units
ret2 Number of disabled DAX units

Returns the number of DAX units that are enabled for␣
↪→the calling guest to submit CCBs. The number of

DAX units that are disabled for the calling guest are␣
↪→also returned. A disabled DAX unit would have been

available for CCB submission to the calling guest had␣
↪→it not been offlined.

36.3.4.1. Errors

EOK The request was proccessed␣
↪→and the number of enabled/disabled DAX units

are valid.

534

58 Chapter 3. Oracle Data Analytics Accelerator (DAX)

